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To my parents, wife, and daughters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Great knowledge sees all in one. Small knowledge  

breaks down into the many. 
 

Chuang Tzu (399 – 295 BC) 
 
 

Problems that are created by our current level of thinking 

 cannot be solved by that same level of thinking. 
 

Albert Einstein (1879 – 1955) 
 
 

 The more science becomes divided into specialized disciplines, the more 

important it becomes to find unifying principles. 
 

Herman Haken (1977) 
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Preface 
 

 
 

oftware engineering is a discipline of engineering science that studies 
the nature of software, approaches and methodologies of large-scale 
software development, and theories and laws behind software 
behaviors and software engineering practices.  

Software engineering appears still to be a young and immature science 
and engineering discipline characterized by a wide variety of segmented 
knowledge, a lack of a theoretical framework, and a bountiful inefficient 
industrial practice. To deal with the difficulties inherent in large-scale 
software development, rigorous and transdisciplinary foundations of software 
engineering are yet to be explored. A particular gap in the current software 
engineering curriculum is the missing of a fundamental framework that 
would provide students and practitioners for overarching, durable, and 
transdisciplinary theories, in order to explain a great many complicated 
phenomena and problems of software engineering in terms of a core set of 
theoretical and organizational foundations.  

This book attempts to set forth a comprehensive, coherent, and rigorous 
framework of theoretical and empirical foundations of software engineering. 
It covers a wide range of necessary foundations for software engineering, 
such as those of philosophy, mathematics, computing, linguistics, 
informatics, engineering science, cognitive informatics, systems science, 
management, economics, and sociology. 

It is recognized that two important reasons make software engineering 
an ideal testbed for existing theories and methodologies in the forementioned 
disciplines from mathematics to cognitive informatics, and from management 
science to sociology. The reasons are: 
 

     a) Software engineering is the latest and the most complicated 
engineering branch that mankind has ever experienced. 

b) Software engineering is inherently a transdisciplinary field in both 
its theoretical foundations and empirical applications.       

 
Constrained by the cognitive, organizational, and resources limitations 

and their complicated interrelations, most problems in software engineering 
are innately complicated. Many of them has been observed in the very 
beginning of software engineering for 40 years, some of them may even be 

S
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traced back to more than a century ago in management science and system 
philosophy.  

Therefore, a rigorous book is expected to explore and address a set of 
coherent and unified principles, foundations, theories, laws, models, 
frameworks, and empirical methodologies of software engineering. These 
have motivated the basic research into software engineering foundations as 
presented in this book with a software science perspective.   

 
 

 

The Objectives of this Book 
 

 
 
The objectives of this book on foundations of software engineering are as 
follows: 
  

     • To explore the whole picture of software engineering, particularly 
the theoretical and empirical knowledge accumulated so far in this 
discipline, and the fundamental problems that the discipline faces. 

     • To identify the fundamental cognitive, organizational, and 
resource constraints to software engineering.                                   

     • To reveal that all the fundamental problems in software 
engineering are necessarily complicated theoretical problems 
rather than only empirical ones. 

     • To recognize the need for multi-facet and transdisciplinary 
theories and empirical knowledge for software engineering. 

     • To highlight that a rigorous and formal approach is needed to seek 
the fundamental principles, laws, and their transdisciplinary 
foundations required by the nature of the problems in software 
engineering.      

     •  To recognize the need for a scientific and rational coordinative 
work organization theory for software engineering.   

     • To realize the inherent limitation of the historical programming-
language-centered approach to software engineering. 

     • To recognize the need for mathematical modeling of both 
software system architectures and static/dynamic behaviors, 
supplemented with the support of automatic code generation 
systems, to software engineering.  
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     • To understand that the ultimate goal of software engineering is 
automated code generation, rather than intensive programmer-
centered practice. Therefore, any mathematical, theoretical, and 
empirical means contributing towards this goal should give 
significant attention. 

     •  To reveal that software engineering encompasses not only a wider 
domain of empirical applications, but also a richer set of 
theoretical essences that are closer to the root of human 
knowledge in terms of mathematics, philosophy, cognitive 
informatics, computation, sociology, and system science. 

     •  To predict the emergence of software science on the basis of the 
transdisciplinary and theoretical studies on software engineering, 
as well as the observation on the generic pattern of science and 
engineering discipline maturity.  

 
This book adopts a rigorous approach to explore the theoretical and 

empirical foundations of software engineering. It is a great curiosity to 
investigate into the transdisciplinary foundations of software engineering and 
the laws and theories behind them. It is also a great joyance to see a wide 
variety of complicated phenomena and empirical practices in software 
engineering can perfectly fit in the proposed theoretical framework of 
software science and engineering. 
 
 

 

The Features of this Book 
 

 
 
This book is characterized both as a comprehensive reference text for 
practitioners and as a vade mecum for students. This book is self-contained 
and only basic programming experience and software engineering concepts 
are required. This book is designed and expected to appeal to students, 
software engineers, scholars, and managers who are curious in exploring the 
theoretical and empirical foundations and laws underpinning the fast 
development of software engineering techniques and practice.  

This book, as the first textbook on rigorous and transdisciplinary 
theoretical foundations of software engineering, provides the following 
features: 

 
       •  A holistic exploration of theoretical foundations of software 

engineering 
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  •  A coherent framework of software engineering theories and 
methodologies 

       •   A clear knowledge structure and a coherently organized body of 
knowledge for software engineering 

       •  In-depth comments on alternative methodologies and approaches 
       •  Plentiful references 
       •  Real-world problems and heuristic questions  
       •  Detailed guide and case studies for practitioners in the industry 
       •  An integration of latest research findings, new methodologies, 

and their applications in the discipline of software engineering 
 

This book is needed for the following reasons: 
 

        •  Software engineering is an immature and fast growing discipline. 
Although a number of books are available on various technologies 
in software engineering, a few of them has been rigorously 
covering the theoretical and organizational foundations of it. 
Now, it is the time to address this vital problem and to build a 
solid foundation for software engineering.    

        •  It is recognized that software engineering depends on
 multidisciplinary foundations such as philosophy, computation, 
mathematics, informatics, system engineering, management, 
cognitive informatics, linguistics, and engineering economics. 
There was a lack of effort that attempted to put all these together 
and to explore the impact of the interdisciplinary approach to 
software engineering.              

        •   Current software engineering is based on empirical practices, 
while theoretical research and investigation into foundations of 
software engineering have long been left behind. This book 
attempts to synergize theories, principles, and best practices of 
software engineering into a coherent framework. 

 
This book is developed based on the author’s 30-year experience in 

research, teaching, and industrial collaborations. This book is designed as an 
essential text for software engineers, students, and managers. This book 
provides a comprehensive and rigorous text addressing unified and integrated 
principles, foundations, theories, laws, frameworks, methodologies, best 
practices, alternative solutions, open issues for further research, and plentiful 
resources of software engineering. The manuscript of this book in the form 
of lecture notes has been successfully taught in several 
graduate/undergraduate courses in the software engineering program of 
University of Calgary for more than seven years.  
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The Architecture of this Book 
 

 
 
The theoretical and empirical foundations of software engineering presented 
in this book encompass four parts and 15 chapters as shown in the following 
architecture. The four parts of this book cover principles/constraints, 
theoretical foundations, organizational foundations of software engineering, 
as well as perspectives on software science, respectively.  
 
 

       

I. Principles and 
   Constraints of  
   Software 
   Engineering      

III. Organizational 
       Foundations of 
       Software  
       Engineering 

IV. Perspectives  
      on 
      Software 
      Science 

4. Mathematical
    Foundations 
    of SE  

5. Computing
    Foundations 
    of SE  

6. Linguistics
    Foundations  
    of SE  

7. Information
    Foundations  
    of SE 

9. Cognitive Inf.
    Foundations 
    of SE  

1. Introduction 
     

II. Theoretical  
     Foundations of 
     Software 
     Engineering      

Software Engineering Foundations 
– A Software Science Perspective 

2. Principles  
    of SE 

8. Engineering
    Foundations 
    of SE 

3. Philosophical
    Foundations 
    of SE 

11. Management
      Science Foundations 
      of SE 

12. Economics
      Foundations 
      of SE 

13. Sociology
      Foundations 
      of SE 

14. Retrospect 
      on SE 

15. Prospect on  
      Software 
      Science 

10. SystemScience
      Foundations 
      of SE 
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  Part I. Principles and Constraints of Software Engineering  
 

It is recognized that software engineering requires both theoretical and 
empirical research. The former focuses on foundations and basic theories of 
software engineering, whilst the latter concentrates on heuristic principles, 
methodologies, tools/environments, and best practices. Although software 
engineering has accumulated a rich set of empirical principles, a few of them 
have been refined and formalized in order to form coherent theories for 
software engineering.         

The knowledge structure of Part I on Principles and Constraints of 
Software Engineering encompasses the following chapters:  
 

     • Chapter 1. Introduction 
     • Chapter 2. Principles of Software Engineering 

 
Part I addresses the nature of software and software engineering. The 

basic constraints to software engineering and the fundamental principles for 
software engineering are systematically sought. A set of 14 basic constraints 
is identified in Chapter 1 in three categories known as the cognitive 
constraints, organizational constraints, and resource constraints. Then, a set 
of 31 fundamental software engineering principles is elicited in Chapter 2. 
The usages of the fundamental principles of software engineering are 
perceived to be counter measures to tackle the basic constraints. Via mapping 
the fundamental principles into the basic constraints of software engineering, 
a unified framework of software engineering principles is established. 

Part I will provide a whole picture of software engineering, particularly 
the theoretical and empirical knowledge cumulated so far in this discipline, 
and the fundamental problems the discipline faces. It establishes a solid basis 
enabling readers to investigate into the theoretical and organizational 
foundations of software engineering with formal, rigorous, and 
transdisciplinary approaches in the remainder of this book.  
 
Part II. Theoretical Foundations of Software Engineering 
 

Theoretical software engineering studies the nature of software, 
mathematical models of software architectures, mechanisms of software 
behaviors, methodologies of large-scale software development, and laws 
behind software behaviors and software engineering practices. Part II 
attempts to present readers the philosophical, mathematical, computing, 
linguistic, and informatics metaphors of software and software engineering. 
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It is recognized that all the fundamental problems in software engineering are 
complicated theoretical problems rather than only empirical ones. A rigorous 
and formal approach is needed to seek the fundamental principles and laws 
of software engineering, and their transdisciplinary foundations required by 
the nature of the problems in software engineering.      

The knowledge structure of Part II on Theoretical Foundations of 
Software Engineering encompasses the following chapters:  

 
       •  Chapter 3. Philosophical Foundations of Software Engineering   
       • Chapter 4. Mathematical Foundations of Software Engineering   
       • Chapter 5. Computing Foundations of Software Engineering         
       • Chapter 6. Linguistics Foundations of Software Engineering   
       • Chapter 7. Information Science Foundations of Software 
                            Engineering   

 
This part focuses on fundamental theories of software engineering with 

the cross-fertilization among engineering philosophy, denotational 
mathematics, computing theories, formal linguistics, and informatics. It is 
noteworthy that, historically, language-centered programming had been the 
dominant methodology in computing and software engineering. However, it 
should not be taken for granted as the only approach to software engineering, 
because the expressive power of programming languages is inadequate to 
deal with complicated software systems. Further, the rigorousness and level 
of abstraction of programming languages are too low in modeling the 
dynamic architectures and behaviors of software systems. This is why a 
bridge in mechanical engineering or a building in civil engineering was not 
modeled or described by natural or artificial languages. This observation 
leads to the recognition of the need for mathematical modeling of both 
software system architectures and static/dynamic behaviors, supplemented 
with the support of automatic code generation systems.                             

Part II will establish a coherent theoretical framework of software 
engineering with a comprehensive set of formal principles and laws for 
software engineering. New structures of denotational mathematics will be 
developed to deal with the innate complexity of software systems.    The 
philosophical, informatics, and linguistic theories and laws that constrain 
software and software engineering practice will be systematically derived.     
On the basis of this part, the empirical framework of software engineering, in 
terms of its organizational, system engineering, and cognitive informatics 
foundations, will be presented in the next part.        
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Part III. Organizational Foundations of Software Engineering 
 

Organizational foundations of software engineering incorporate multi-
facet and transdisciplinary theories and empirical knowledge for software 
engineering. Part III presents the organizational and system metaphors 
toward software engineering. Three main threads are adopted in this part 
known as the system science, cognitive informatics, and organizational 
theories at different levels in the domains of engineering, management 
science, economics, and sociology. It is recognized in this part that the 
hidden reasons caused so many failures of large-scale software engineering 
projects are not only pure technical issues, but also organizational issues of 
non-optimal labor allocation and the incorrect sequences of interlocked 
labor-duration-cost determination.            

The knowledge structure of Part III on Organizational Foundations of 
Software Engineering encompasses the following chapters:  
 

      • Chapter 8.   Engineering Foundations of Software Engineering 
      • Chapter 9.   Cognitive  Informatics  Foundations  of  Software 
                             Engineering 
      • Chapter 10.  System   Science   Foundations   of    Software  
                             Engineering 
      • Chapter 11. Management  Science  Foundations  of  Software  
                             Engineering 

             • Chapter 12. Economics Foundations of Software Engineering 
             • Chapter 13. Sociology Foundations of Software Engineering 
  

This part addresses the organizational and cognitive theories and 
methodologies of software engineering with a transdisciplinary approach.  
With system science theories as an overarching framework, the 
organizational theories for software engineering form a hierarchical structure 
covering classic and contemporary thought of engineering science, 
management science, economics, and sociology, from the bottom up. 
Cognitive informatics is intensively studied in this part in order to address 
the cognitive constraints of software engineering.  
 Part III will establish the organizational foundations of software 
engineering with engineering science, cognitive informatics, and system 
science. Supplemented to Part II, this part will reveal that the particularly 
important aspects of software engineering theories are the organizational and 
cognitive theories. It will demonstrate that the profound causes that result in 
all the failures in software engineering history are not only pure technical 
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issues, but also organizational issues due to the limitations of human 
cognitive capability.              
 
Part IV. Perspectives on Software Science 
   

Software engineering is immature because it lacks a theoretical 
framework with underpinning foundations. A vast volume of empirical 
knowledge has been documented in software engineering without efficiently 
and intensively theoretical processing and refinement. Therefore, a formal 
documentation of software engineering theories and fundamental body of 
knowledge is the key towards the maturing of software engineering. This 
book is devoted as a rational attempt to establish the formal and coherent 
theoretical framework of software engineering for its maturity. 

The knowledge structure of Part IV on Perspectives on Software 
Science encompasses the following chapters:  

 
      • Chapter 14. Retrospect on Software Engineering 
      • Chapter 15. Prospect on Software Science 

 
This part attempts to reveal that almost all the fundamental problems 

that could not be solved in the last four decades in software engineering 
stemmed from the lack of coherent theories in the form of software science. 
The objective of this part is to demonstrate how software science may be 
established on the basis of the theoretical foundations about it, the empirical 
observations on it, and the transdisciplinary knowledge gained from other 
much matured disciplines.  

Part IV will wrap up this book by a retrospect on the coherent 
framework of software engineering theories, and a prospect on the structure 
of the emerging discipline of software science. This part reveals that software 
engineering encompasses not only a wider domain of empirical applications, 
but also a richer set of theoretical essences that are closer to the root of 
human knowledge. In this discipline, denotational mathematics, intelligent 
code generation techniques, and coordinative work organization 
methodologies will play significant roles in the theoretical framework of 
software science and engineering.   

 
 

The Readership of this Book 
 

 
 

The readership of this book is intended to include graduate, senior-level 
undergraduate students, and instructors in software engineering and 
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computer science; researchers and practitioners in software engineering; and 
software engineers and managers in the software industry.  

This book provides a comprehensive and rigorous text addressing 
unified and integrated principles, foundations, theories, models, frameworks, 
methodologies, empirical approaches, open issues for further research, and 
comprehensive resources with bibliography and indexes. 

One of the graduate students and an experienced full-time software 
engineer commented on a course based on the manuscript of this book as 
follows:  

 

“This course sought to identify and explore the varied 
knowledge and disciplines that form the foundations of software 
engineering. While it is recognized that software engineering is a 
discipline which branches from the work of computer science, it 
should have, at its core, a broader and multidisciplinary base of 
knowledge. There are two aspects that stand out when I reflect on 
this course. The first is the exposure to the historical work of 
software engineering, especially through the classic papers that I 
had not previously encountered. The second is the concept of the 
multidisciplinary foundations of software engineering, the first time 
I have seen them gathered together and made explicit. I was 
pleasantly surprised on the nature of the course, and am happy I 
have had the chance to take this class. I had not considered the 
implication that the foundations and roots of software engineering 
were not established, defined, or understood.” 
 

This book is self-contained and only basic programming experience 
and software engineering concepts are required. This book is designed and 
expected to appeal to students, developers, scholars, and managers because 
software engineering theories and methodologies are leading the agenda in 
the light of the information era. 

This book may be used for a one-semester or two-semester course on 
Theoretical Foundations of Software Engineering at undergraduate or 
graduate level. In the case of a one-semester course, Parts I, II, IV, and 
Chapter 8 are recommended. For graduate courses, this book may be tailored 
flexibly. The chapters in Part II may be composed for a graduate course on 
Theoretical Software Engineering in computer science and/or software 
engineering programs. The chapters in Part III may be selected for a course 
on Organizational Foundations of Software Engineering for graduate 
students majoring in software engineering. Some chapters of this book may 
also be selected for graduate seminars on abstract systems, formal theories of 
management science, computational psychology, and/or theoretical 
foundations of engineering economics.         
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2   Part I  Principles and Constraints of SE 

 

oftware engineering is an engineering discipline that studies the 
nature of software, approaches and methodologies of large-scale 
software development, and the theories and laws behind software 

behaviors and software engineering practices. The nature of software 
engineering and its theories and methodologies are determined by the nature 
of the objects under study, software, and the needs for adequate and 
denotational mathematical, theoretical, and methodological means for this 
discipline. Although software engineering has accumulated a rich set of 
empirical and heuristic principles, a few of them have been refined and 
formalized in order to form coherent theories for software engineering.         

It is recognized that software engineering requires both theoretical and 
empirical research. The former focuses on foundations and basic theories of 
software engineering, whilst the latter concentrates on fundamental 
principles, tools/environments, and best practices.  

The knowledge structure of Part I on Principles and Constraints of 
Software Engineering is as follows:  
 

     • Chapter 1. Introduction 
     • Chapter 2. Principles of Software Engineering 

 
This part addresses the nature of software and software engineering. 

The basic constraints to software engineering and the fundamental principles 
for software engineering are systematically studied. A set of 14 basic 
constraints is identified in Chapter 1 in three categories known as the 
cognitive constraints, organizational constraints, and resource constraints. 
Then, a set of 31 fundamental software engineering principles are elicited in 
Chapter 2. The usages of the fundamental principles of software engineering 
are perceived to be counter measures to tackle the basic constraints. Via 
mapping the fundamental principles into the basic constraints of software 
engineering, a unified framework of software engineering principles is 
established. 

Chapter 1, Introduction, presents fundamental concepts, structures, and 
constraints of software engineering, and explores the problem domain of 
software engineering. The essences of software as instructive and behavioral 
information, the fundamental problems, and basic constraints of software 
engineering are identified. The approaches to software engineering are 
explored in the context of how the basic problems of software engineering 
are coped with. Then, the construction of theoretical and transdisciplinary 
foundations of software engineering is presented as a strategic approach 
towards software engineering. The architecture of this book, as well as 
interrelationships and dependency between the four parts and 15 chapters of 
this book, is systematically overviewed. 

Chapter 2, Principles of Software Engineering, surveys the vast 
literature of software engineering in order to elicit and summarize the pioneer 
pursuits of software engineering principles in the last four decades. A 

S
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comprehensive set of fundamental principles for software engineering is 
identified, which provides a whole picture for understanding the theories and 
foundations of software engineering. Based on the survey and comparative 
study, a unified framework of 31 software engineering principles is 
developed, which may be adopted as powerful measures for tackling the 
basic constraints to software engineering. 

Part I will provide an overarching framework of software engineering 
by reviewing the theoretical and empirical knowledge accumulated in this 
discipline. It will also identify the fundamental problems the discipline faces. 
This part will establish a solid basis enabling readers to investigate into the 
theoretical and organizational foundations of software engineering with 
formal, rigorous, and transdisciplinary approaches in the remainder of this 
book. 
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Knowledge Structure 
 

 

 What is Software Engineering?  

     •  What is Software? 
     •  What is Software Engineering? 
     •  What is the Status of Software Engineering as an Engineering Discipline? 

 Characteristics of Software Engineering  

     •  The Nature of Software 
     •  Perceptions on Software Engineering 
     •  Software Engineering as an Engineering Discipline 
     •  Hierarchy of Abstraction and Descriptivity in Software Engineering 

 Basic Constraints of Software Engineering 

     •  The Software Engineering Constraint Model 
     •  Cognitive Constraints of Software Engineering 
     •  Organizational Constraints of Software Engineering 
     •  Resources Constraints of Software Engineering 

 Approaches to Software Engineering  

     •  Programming Methodologies               •  Software Development Models 
     •  Automated Software Engineering        •  Formal Methods 
     •  Software Engineering Processes          •  Theoretical Foundations of Software Engineering 

 Transdisciplinary Foundations of Software Engineering  

     •  Philosophical Foundations                   •  Mathematical Foundations                   
     •  Computing Foundations                        •  Linguistics Foundations                        
     •  Information Science Foundations        •  Engineering Foundations               
     •  Cognitive Informatics Foundations      •  Systems Science Foundations 
     •  Management Science Foundations      •  Economics Foundations 
     •  Sociology Foundations 

 The Architecture of this Book 
 

 

Learning Objectives 
 

 
 

   • To view software engineering as a scientific and engineering discipline.           

   •  To be aware of the nature of software and the characteristics of software 
engineering.    

   •  To understand the fundamental constraints of software engineering.  

   •  To be aware of the approaches to software engineering.   

   •  To appreciate the needs for seeking the transdisciplinary foundations of 
software engineering. 

   •  To understand the architecture of this book.   
 

1. Introduction 
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 “There is nothing more practical than a good theory.” 
 

Immanuel Kant (1724-1804) 
 

“If our problems in building and interacting with complex systems are really rooted 
in intellectual manageability and human limits in managing complexity, 

 then we will need to stretch these limits to build ever more complex systems.” 
 

N.G. Leveson (1997) 
 

“Software engineering education can, and must, focus on fundamentals.” 
 

David L. Parnas (1998) 
 
 

 
1.1 Overview 
 

 
 

oftware engineering is an increasingly important discipline that 
studies the nature of software, approaches and methodologies for 
large-scale software development, and the theories and laws behind 

software behaviors and software engineering practices.  
Software, the object under study in software engineering, is a unique 

abstract structure, which will be rigorously treated by the mathematics, 
product, information, system, cognitive informatics, and intelligent 
behavioral metaphors throughout this book. As a result, the theoretical and 
transdisciplinary foundations of software engineering will be established in 
line with what Kant (1724 – 1804) asserted: “There is nothing more practical 
than a good theory.” 

Fundamental problems yet to be explored in software engineering are 
identified, inter alia, as follows:  
 

     •  What is the nature of software? 
     •  What are the basic constraints of software engineering? 
     •  What are the mathematical means required in software 

engineering? 
     •  What are the engineering approaches to software engineering?       

•  Why have more than half of software engineering projects failed 
in the history? Is this a theoretical, organizational, or operational 
problem? 

•   What are the attributes of software quality and whether can they 
be quantitatively measured?  

S
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     •   Is time and labor interchangeable in software engineering? If so, 
what are the constraints for the interchangeability between them? 

     •   How is a project team optimally organized in large-scale software 
engineering projects?     

     •   How may the software industry be systematically organized? 
 
None of the fundamental issues shown above would be pursued solely 

by empirical means or simply following common senses in practice. A 
rigorous and theoretical approach is needed to seek the fundamental 
principles and laws of software engineering and their transdisciplinary 
foundations. This is required by the nature of problems of software 
engineering, which may be classified into two categories known as the 
theoretical and empirical problems as shown in Table 1.1. For instance, a 
generic program model and an abstract work organization methodology are 
theoretical problems, while a specific application and a given data structure 
are empirical ones.      

 
Table 1.1 

Theoretical vs. Empirical Problems in Software Engineering 
 

Category of problems Typical means Typical methodology 
Theoretical Abstract,  

mathematics-based 
Inductive,  
formal inferences 

Empirical Concrete,  
data-based  

Deductive,  
experimental validation 

 
Table 1.1 contrasts the basic characteristics of these two categories of 

problems in terms of their typical means and methodologies. According to 
Table 1.1, the criteria to distinguish theoretical and empirical problems 
under study in software engineering can be derived in the following theorem. 
 

 
The theme of this book is set forth on the enquiry of both theoretical 

and empirical problems in software engineering, particularly the former, 
where most of the key problems remain. 

 

The 1st Law of Software Engineering 
 

Theorem 1.1 Software engineering problems must be treated by both 
theoretical and empirical methodologies. The former is characterized by 
abstract, inductive, mathematics-based, and formal-inference-centered 
studies; while the latter is characterized by concrete, deductive, data-
based, and experimental-validation-centered studies. 
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The objectives of this book on foundations of software engineering are 
as follows: 
  

     • To explore the whole picture of software engineering, particularly 
the theoretical and empirical knowledge accumulated so far in this 
discipline, and the fundamental problems that the discipline faces. 

     • To identify the fundamental cognitive, organizational, and 
resource constraints to software engineering.                                   

     • To reveal that all the fundamental problems in software 
engineering are complicated theoretical problems rather than only 
empirical ones. 

     • To recognize the need for multi-facets and transdisciplinary 
theories and empirical knowledge for software engineering. 

     • To highlight that a rigorous and formal approach is needed to 
seek the fundamental principles, laws, and their transdisciplinary 
foundations required by the nature of the problems in software 
engineering.      

     •  To recognize the need for a scientific and rational work 
organization theory for software engineering.   

     • To realize the inherent limitation of the historical programming-
language-centered approach to software engineering. 

     • To recognize the need for mathematical modeling of both 
software system architectures and static/dynamic behaviors, 
supplemented with the support of automatic code generation 
systems, to software engineering.  

     • To understand that the ultimate goal of software engineering is 
automated code generation, rather than intensive programmer-
centered practice. Therefore, any mathematical, theoretical, and 
empirical means helping towards this goal should give significant 
attention. 

     •  To predict the emergence of software science on the basis of the 
transdisciplinary theoretical studies on software engineering, as 
well as the observation on the generic patterns of engineering 
discipline maturity.  

 
This book will reveal that software engineering encompasses not only a 

wider domain of empirical applications, but also a richer set of theoretical 
essences that are closer to the root of human knowledge in terms of 
mathematics, philosophy, cognition, informatics, computation, sociology, 
and system science. 
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1.1.1 SOFTWARE ENGINEERING: STATUS AND 
         PROBLEMS 
 

Any matured science and engineering discipline has a stable pyramid 
structure among its foundations, education, and practices/applications. So 
will software engineering, with the ideal logical structure as shown in Fig. 
1.1.  
 

                                   

            
 
Figure 1.1 Relationship between software engineering foundations, education, 
and practices/applications   

 
However, the current status of software engineering as a discipline 

demonstrates an upside down pyramid, where the whole field is driven by 
industrial practice and technical innovations. Theories and fundamental 
research in software engineering, particularly the laws that constrain software 
behaviors and software engineering practice, have been left behind or 
overlooked, if not been ignored or perceived inexist. As a consequence, 
software engineering educators had no solid and durable theoretical 
framework to base in teaching. Instead, they were busy explaining an 
extremely wide variety of practices, techniques, and tools as in a fashion 
industry.  

It is observed by McDonnell in 1999 that the average half-life of most 
software engineering techniques is only about two to three years 
[McConnell, 1999]. That is, after every year, 15% to 25% techniques one has 
acquired in software engineering practice will be obsolete. What a young 
field where techniques had never been durable!  

The special phenomenon in software engineering, in which we are still 
facing the same problems as those identified in the very beginning of 
software engineering four decades ago [Bauer, 1972/1976; Naur and Randell, 
1969, Ashenhurst and Graham, 1987], indicates that the current software 
engineering theories, foundations, and mathematical means are inadequate, 

 Software engineering education 

SE practices/ 
applications 

Foundations of software engineering 
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and the current empirical approach toward programming is insufficient. It 
also indicates that the problems and the objects of our study in software 
engineering are fundamentally complicated and unique, which require new 
forms of mathematics and new theories different from those that deal with 
entities in the physical world or in the conventional engineering disciplines 
[McDermid, 1991; Pressman, 1992; Sommerville, 1996; Pfleeger, 1998;  
Peters and Pedrycz, 2000;  Vliet, 2000; Wang and King, 2000a; Wang and 
Patel, 2000; Broy and Denert, 2002; Wang and Bryant, 2002; Wang, 
2000/05a/05d/05f/05g/05h/05i/05j/05k/05l/06a/06c/06f/06g/06h/06i].             

The profound uniqueness of the discipline of software science and 
engineering lies on the fact that its objects under study are located in a dual 
world as described below and formalized in Theorem 1.2 [Wang, 
2002d/2003a/2006a].  
 

Definition 1.1 The general worldview, as shown in Fig. 1.2, reveals 
that the natural world (NW) is a dual world encompassing both the physical 
(concrete) would (PW) and the abstract (perceived) would (AW). 
   

 
According to the IME model [Wang, 2004b/06b/2007a], information 

plays a vital role in connecting the physical world with the abstract world. 
Models of the natural world have been well studied in physics and other 
natural sciences. However, the modeling of the abstract world is still a 
fundamental issue yet to be explored in cognitive informatics, computing, 
software science, knowledge engineering, brain sciences, and cognitive 
informatics. Especially, the relationships between I-M-E and their 

 

The 2nd Law of Software Engineering 
 
Theorem 1.2 The Information-Matter-Energy (IME) model states that 
the natural world (NW) which forms the context of human intelligence 
and software science is a dual: one aspect of it is the physical world 
(PW), and the other is the abstract world (AW), where matter (M) and 
energy (E) are used to model the former, and information (I) to the latter, 
i.e.: 
 

         
||ˆ

( , ) || ( )

( , , )

NW PW AW

M E I

I M E

=

=

=

p a

n

           (1.1) 

 
where || denotes a parallel relation, and p, a, and n are functions that 
determine a certain PW, AW, or NW, respectively. 
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transformations are deemed as one of the fundamental questions in science 
and engineering. 
 

 

 I 

 EM

 The abstract world (AW)

The physical world (PW)

 The natural world 
           (NW) 

 
 
Figure 1.2 The IME model of the general worldview  
 

 
Corollary 1.1 indicates that although the physical world PW(M, E) is 

the same to everybody, the natural world NW(I, M, E) is unique to different 
individuals, because the abstract world AW(I), as a part of it, is subjective 
depending on the information that individual obtains and perceives.    

Software is a special type of behavioral information of computing and a 
means of interaction between the abstract world and the physical world. The 
nature of software makes software engineering a unique discipline, which is 
innately the most complicated engineering branch that human ever 
experienced, and inherently the most overarching transdisciplinary field in 
both theories and applications. These are also the reasons that set forth          
software engineering as an ideal testbed for existing theories and 
methodologies of a wide range of science and engineering disciplines from 
mathematics to cognitive informatics, and from management science to 
sociology. 
 
 

1.1.2 MYTHS ON SOFTWARE ENGINEERING 
 

A variety of myths exist on perceiving software engineering from both 
academics and practitioners. Some of the common ones can be described as 
follows:            

 

Corollary 1.1 The natural world NW(I, M, E), particularly the part of the 
abstract world AW(I), is deemed diversely by individuals because of the 
differences of perceptions and mental contexts among them. 
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     • Software engineering has no theoretical foundation since 
mathematics had not played a central role in programming.   

     • Software engineering is not an engineering discipline rather than 
a branch of art, because there were few scientific laws to follow. 

• Everybody can do programming; Kids even do it better 
sometimes. 

     • When one can get a program run in a programming language that 
displays the classical greeting “Hello world,” one is then 
confident to claim that he/she is a programmer. 

• Do we need software engineering? Whether software engineering 
is a faculty of empirical best practices or a system of essential 
theories? 

 
It is observed that quite a few people who major in software 

engineering have never experienced the impact of sizes of problems in 
software development, where the complexity threshold for understanding the 
true problems in software engineering is considered 5,000 Lines Of Code 
(LOC) to 10,000 LOC [Wang and King, 2000a]. Note that LOC here is 
treated as a unit rather than the measure, which is identified as the symbolic 
size of software. When the symbolic sizes of problems are below a few 
hundreds LOC, programmers or students may doubt whether software 
engineering theories and methodologies should be applied in the 
development processes. However, if the sizes of problems are above the 
threshold, practitioners will always complain there is a lack of theories and 
methodologies that may provide strategic and specific help for both 
programmers and managers. 

Software engineering theories and methodologies are developed for 
dealing with complexity and intellectual challenges in large-scale software 
development. According to cognitive psychology and empirical statistics 
[Wang, 2001d/03f/05j/06c; Wang and King, 2000a], the size threshold of 
complexity in software development is given below.    

     
Definition 1.2 A general complexity threshold of software engineering 

is empirically set according to the symbolic size of software systems, S0, as 
follows:            
 

     S0  ≥ 5,000   [LOC]              (1.2) 
 
where LOC is the unit of the symbolic size of software. 
 

The complexity threshold is equivalent to 100-page source code in a 
typical high-level programming language and related documentation, which 
is above one person-year workload according to average software productivity 

© 2008 by Taylor & Francis Group, LLC



14   Part I Principles and Constraints of SE 

[Boehm, 1987; Dale and Zee, 1992; Jones, 1981/1986; Livermore, 2005]. 
Taking this threshold as a benchmark of system size or cognitive complexity 
in software system development, one may realize that only a few students 
who graduated from computer science or software engineering have already 
been trained on problems in the order of complexity beyond this threshold.                          
    Therefore, the primary aim of software engineering theories and 
technologies is to facilitate students, software engineers, and managers to 
deal with the fundamental problems generated by the inherent complexity of 
software development, such as: 
 

      • How to design and implement a software system that one is not 
able to do by only oneself?    

      • How to cope with the development of a software system in which 
one does not completely know or understand the whole system 
and parts produced by other team members?   

 
Strategic answers to the above questions will be sought in the 

remainder of this chapter and throughout this book.  
This chapter presents fundamental concepts, structures, and constraints 

of software engineering. In the remainder of this chapter, Section 1.2 
presents a set of basic concepts and characteristics of software engineering. 
Section 1.3 identifies fundamental problems and basic constraints of software 
engineering. The approaches to software engineering are explored in Section 
1.4 in the context of how the basic problems in software engineering are 
coped with. Based on the preceding introductory sections, the construction of 
theoretical and transdisciplinary foundations of software engineering is 
presented in Section 1.5 as a strategic approach towards software 
engineering. Section 1.6 describes the architecture of this book, as well as 
interrelationships and dependency between the four parts and 15 chapters of 
this book. 

 
 

 
1.2 Characteristics of Software 
       Engineering 
 

 
 
As introduced in Section 1.1, there are a variety of perceptions, even myths, 
toward the nature of software and software engineering from both academics 
and practitioners. In order to understand the fundamental characteristics of 
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software and software engineering, this section explores the metaphors of 
software, and the intensions and extensions of the term software engineering. 
 
 
1.2.1 PERCEPTIONS ON SOFTWARE  
 

Software, in daily life, is simply meant as anything flexible and without 
a physical dimension. Software or a program system is a frequently referred 
concept and a widely applied human creative artifact in both the software 
industry and the information society. The engineering discipline for software 
development, software engineering, has emerged for four decades since 
Friedrich Bauer proposed the term in 1968 [Bauer, 1972/1976; Naur and 
Randell, 1969]. However, from the point of view of the development 
lifecycle of science and engineering disciplines, which may typically evolve 
hundreds of years, software engineering is still an infant. In software 
engineering, we are still searching a suitable mathematical means that may be 
used for modeling the nature of software, and seeking an understanding on 
what laws constrain software behaviors and software engineering processes.                       
 A computer program means the code in a programming language 
physically or the algorithms plus typed data logically. Software is an 
integration of the program code with design and supporting documentations 
and intermediate work products, such as original requirements, system 
specification, system design and decision rationales, code configuration, test 
cases and results, maintenance mechanisms, and user manuals. 
 Observing the above list of software work products, a definition of 
software can be given as follows. 
 

Definition 1.3 Software is an intellectual artefact that provides a 
solution for a repeatable computing application, which enables existing tasks 
to be done easier, faster, and smarter, or which provides innovative 
applications for the industries and everyday life. 
 

The nature of software has been perceived quite differently in research 
and practice of computing and software engineering. The following 
perceptions on the nature of software can be found in the literature: 
 

     • Software is a mathematical entity 
     • Software is a concrete product  
     • Software is a set of behavioral information  

 
The following subsections describe the three-type perceptions on 

software known as the mathematical, product, and informatics metaphors. 
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1.2.1.1 The Mathematical Metaphor of Software  
 

The mathematical metaphor of software is adopted by many computer 
scientists who perceive software as a stored programmed logic on computing 
hardware [von Neumann, 1963; Dijkstra, 1976; Cries, 1981; Lewis and 
Papadimitriou, 1988; Hartmanis, 1994] or simply as a mathematical entity 
[Hoare, 1969/1986; Scott and Strachey, 1971; Hoare et al., 1987; Wang, 
2005a].  

A general taxonomy of the usages of computational mathematics can be 
derived on the basis of their relations with natural languages. It is recognized 
that languages are the means of thinking. Although they can be rich, 
complex, and powerfully descriptive, natural languages share the common 
and basic mechanisms, such as to be, to have, and to do [Wang, 
2003b/06d/06e/06f/06h/06j/07a]. All mathematical means and forms, in 
general, are an abstract description of these three categories of human or 
system behaviors and their common rules. Taking this view, mathematical 
logic may be perceived as the abstract means for describing ‘to be,’ set 
theory for describing ‘to have,’ and algebras, particularly process algebra, for 
describing ‘to do.’  
 This is a fundamental view toward the formal description and modeling 
of human and system behaviors in general, and software behaviors in 
particular, because a software system can be perceived as a virtual agent of 
human beings created to do something repeatable, to extend human 
capability, reachability, and/or memory capacity. The author found that both 
human and software behaviors can be described by a three-dimensional 
representative model comprising action, time, and space. For software 
system behaviors, the three dimensions are known as mathematical 
operations, event/process timing, and memory manipulation [Wang, 
2002a/02b/02c]. 

A powerful concept introduced by C.A.R. Hoare in formal methods is 
the process [Hoare, 1986]. With this concept, the behaviors of a software 
system can be perceived as a set of processes composed with given rules 
defined in a particular process algebra. It is found that a process can be 
formally modeled by a set of cumulative relational statements [Wang, 
2006f/06h]; further, a program can be formally modeled by a set of 
cumulative relational processes. The cumulative relational models of 
processes and programs will be described in Sections 4.6.1 and 5.5.1, 
respectively.  
 
1.2.1.2 The Product Metaphor of Software  

 
Software is conventionally deemed as a concrete product in software 

engineering and the IT industry [Baker, 1972; ISO 9001, 1989/94; ISO 9126, 
1991; Taguchi, 1986; Jones, 1986; SQPL, 1990; Dromey, 1995]. With the 
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product metaphor, a number of manufacturing technologies and quality 
assurance principles were introduced into software engineering. However, 
the phenomenon, in which we are facing almost the same fundamental 
problems in software engineering as we dealt with four decades ago, 
indicates a failure of the manufacture-based and mass-production-oriented 
metaphor and related technologies in software development. Therefore, we 
have to examine the nature of software and how we produce software in 
software engineering.  

The primary technical deficiencies in the software industry are the 
inadequate of abstractive and precise description means for software 
architectures and behaviors, and the perplexity of labor organization in large 
groups and large-scale projects. The former refers to the current practice that 
uses less expressive and inaccurate means to describe more abstract and 
complicated software systems. The latter refers to the extremely high rate of 
interpersonal coordination and coupling that dramatically changes the nature 
of large-scale project organization. Both of them are rooted deeply in the 
theoretical deficiency of software engineering and the overlooking of the 
unique need of software engineering that are so fundamentally different from 
conventional engineering disciplines and manufacturing industries.  

The descriptive power and abstraction means needed in software 
engineering will be discussed in Section 1.2.4, while theories and solutions 
for the organizational issues in software engineering will be developed in 
Chapters 8, 10, 11, and 13, respectively, on the engineering, system science, 
management science, and sociology foundations of software engineering.         

           
1.2.1.3 The Informatics Metaphor of Software  

 
As shown in the IME model given in Theorem 1.2 and Fig. 1.2, 

information is the third essence in modeling the natural world supplementing 
to matter and energy. According to cognitive informatics theory [Wang, 
2002d/02e/03a/03b/06b/06j/07a/07b; Wang and Wang, 2006; Wang and 
Kinsner, 2006; Wang et al. 2002a/06], information is any property or 
attribute of entities in the natural world that can be abstracted, digitally 
represented, and mentally processed.   

Software is both behavioral information to designers and instructive 
information to computers. With the informatics metaphor, the definition of 
software may be revised as follows.     

 
Definition 1.4 Software is a specific solution for computing in order to 

implement a certain architecture and obtain a set of expected behaviors on a 
universal computer platform for a required application.  

 
 For software engineering to become a matured engineering discipline 
like others, it must establish its own laws and theories, which are perceived 
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to be mainly relied on by denotational mathematics [Wang, 
2002a/05a/06d/06e/06f/06j/07a] and cognitive informatics [Wang, 
2002d/02e/03a/03b/06b/06j/07a/07b; Wang and Wang, 2006; Wang and 
Kinsner, 2006; Wang et al. 2002a/06].  

The informatics metaphor provides a new approach to study the nature 
and basic properties of software in software engineering, which forms an 
important part of the cognitive informatics foundations of software 
engineering that will be described in Chapters 7 and 9. In conventional 
engineering disciplines, the common approach moves from abstract to 
concrete, and the final product is the physical realization of an abstract 
design. In software engineering, however, the approach is reversed. The final 
software product is the virtualization and abstraction, by binary streams, of a 
set of original real-world requirements. The only tangible part of a software 
implementation is its storage media or its run-time behaviors. This is 
probably the most unique and interesting feature of software engineering. 

In software design we need to describe the abstract architecture of the 
system and its components by logical and algebraic modeling techniques, and 
their static and dynamic behaviors in terms of actions and processes. In 
software system behaviors description and specification, the architectures of 
software refer to frameworks and patterns. Software static behaviors are 
those that can be determined at design-and-compile time, and dynamic 
behaviors are those that are indeterministic until run-time.      

In recognizing that software is a special abstract system of behavioral 
and instructive information, the processes and techniques widely used in the 
publishing industry and the journalism industry are worthy to be intensively 
studied and adopted in software engineering.  

Further discussions on the nature of software and software engineering 
on the cognitive, intelligent behavioral, and system properties of software 
will be presented in Section 3.4 on the philosophical views of software. 
 
 
1.2.2 PERCEPTIONS ON SOFTWARE ENGINEERING  
 

Before the identification of what knowledge is required for software 
engineering, an understanding of what is meant by ‘software engineering’ is 
needed in the first place. Readers need to know why the engineering 
approach seems to fit well with the goals of software development 
[McDermid, 1991; Pressman, 1992; Sommerville, 1996; Pfleeger, 1998;  
Peters and Pedrycz, 2000;  Vliet, 2000; Wang and King, 2000a; Wang and 
Patel, 2000; Broy and Denert, 2002; Wang and Bryant, 2002; Wang, 
2000/05a/05d/05f/05g/05h/05i/05j/05k/05l/06a/06c/06f/06g/06h/06i]. 

The term software engineering was initially proposed by Friedrich L. 
Bauer at the 1968 NATO conference on Software Engineering [Bauer, 1976; 
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Naur and Randell, 1969]. In his paper, Bauer defined software engineering 
as:   
 

“The establishment and use of sound engineering principles in 
order to obtain economical software that is reliable and works 
efficiently on real machines.”  
 
Bauer introduced software engineering as a solution to the so called 

software crisis. However, he did not explain what the sound engineering 
principles are and which of them are applicable to software engineering. That 
is why, after 38 years, professionals are still arguing what software 
engineering is and whether it makes sense to speak the engineering of 
software development. 

Later, in 1990, IEEE Standard 610.12 defines software engineering as 
follows [IEEE 610.12, 1990]: 
 

   (1) The application of a systematic, disciplined, quantifiable 
approach to the development, operation, and maintenance of 
software; that is, the application of engineering to software. 

 

   (2) The study of approaches as in (1). 
 
The nature of problems in software engineering has been addressed by 

D.L. Parnas (1972/78), F.P. Brooks (1975/87), C.A.R. Hoare (69/75/85), B. 
Boehm (1976/81/83), J.A. McDermid (1991), Y. Wang 
(2004b/04c/05a/06c/06g/06h/06i), Y. Wang and G. King (2000a), Y. Wang 
and D. Patel (2000), and Y. Wang and A. Bryant (2002). A summary of 
fundamental characteristics of software engineering is listed below:  

 
     • Inherited complexity and diversity  
     • Difficulty of establishing and stabilizing requirements  
     • Changeability or malleability of software  
     • Abstraction and intangibility of software  
     • Requirement of various problem-domain knowledge  
     • Nondeterministic and polysolvability in design  
     • Polyglotics and polymorphism in implementation 
     • Dependability of interactions between software, hardware, and 

humans  
 

The following humour known as the ‘cat theory’ had been presented at 
NASA’s web site [NASA, 2000]: 
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      •  Mechanical engineering is like looking for a black cat in a 
lighted room. 

      •  Chemical engineering is like looking for a black cat in a dark 
room. 

      •  Software engineering is like looking for a black cat in a dark 
room in which there is no cat. 

   • System engineering is like looking for a black cat in dark room 
in which there is no cat and one yells, “I got it!”   
 

The humour cat was posted in the 1990s and represented the statuses of 
relative maturities of different engineering disciplines. Why is the cat in the 
mechanical or chemical rooms? Because these disciplines have already 
developed rigorous theoretical frameworks and suitable mathematical means, 
but the other disciplines did not. Therefore, lack of theoretical foundations is 
the same situation that challenges software engineering and system 
engineering characterized as immature science and engineering disciplines.                    

Along with the research and practices of software engineering, and the 
speedy growing of the software industry, the definition of software 
engineering has further evolved. In 1991, J.A. McDermid provided an 
extended definition of software engineering as follows [McDermid, 1991]:  

 

“Software engineering is the science and art of 
specifying, designing, implementing and evolving – with 
economy, timeliness and elegance – programs, documentation 
and operating procedures whereby computers can be made 
useful to man.” 

 

This is a representative of the second-generation definitions of software 
engineering. Comparing the first- and second-generation definitions of 
software engineering, it can be seen that the former perceived software 
engineering as a method for software development while the latter implied 
that software engineering is both science and art for programming. Bearing 
in mind that the intention is to better represent trends and to recognize 
software engineering as an engineering discipline while deemphasizing the 
uncontrollable and unrepeatable aspects of programming as an art, the third-
generation definition of software engineering can be represented by the 
following [Wang and King, 2000a]. 

 
Definition 1.5 Software engineering is a discipline that adopts 

engineering approaches, such as established methodologies, processes, 
measurement, tools, standards, organisation methods, management methods, 
quality assurance systems and the like, in the development of large-scale 
software seeking to result in high productivity, low cost, controllable quality, 
and measurable development schedule.  
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In order to analyze the differences between the three generations of 
definitions, a comparison of the intensions and extensions of these 
perceptions on software engineering is listed in Table 1.2. The table shows 
how the understanding of software engineering can be greatly improved by 
contrasting the perceived nature of software engineering as well as its means, 
aims, and attributes.  

 

Table 1.2 
Contrast of Representative Definitions of Software Engineering 

 

Generation Nature Means Object 
under study 

Attributes of 
aims 

1 
(Bauer, 
1968) 

A method Generic engineering 
principles 

Program • Economy 
• Reliability 
• Efficiency 

2 
 
(McDermid, 
1991) 

A science 
and art 

Life cycle methods: 
  • specification 
  • design 
  • implementation 
  • evolving  

Program and 
document 

• Economy 
• Timeliness 
• Elegance 

3 
 
(Wang and 
King, 2000) 

An engineering 
discipline 

Engineering approaches: 
  • methodologies 
  • processes 
  • measurements 
  • tools 
  • standards 
  • organizational methods 
  • management methods 
  • quality assurance systems 

Large scale 
software 

• Productivity 
• Quality 
• Cost 
• Time 

 
It is noteworthy that the perceived nature, means, and aims together 

with the attributes of their definitions of software engineering have been 
evolved over time. The first-generation definition proposed software 
engineering as a method or approach to software development; the second-
generation definition focused on scientific methods and art for programming. 
The third-generation definition portrays software engineering as an 
engineering discipline for large-scale software development in an 
industrialized context. 
 
 

1.2.3 SOFTWARE ENGINEERING AS AN 
         ENGINEERING DISCIPLINE  
 

To many professionals engineering means systematic planning, 
teamwork, rigorous process, repeatability, and efficiency. Software 
professionals have been arguing the term “software + engineering” and its 
implication for four decades since Friedrich Bauer first proposed it in 1968 
[Bauer, 1976]. Yet, still some fundamental questions remain, such as:  
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a. Is software development an engineering discipline?  
b. Are software developers engineers or craftsmen?  

 
There were completely different assertions and opinions on the above 

key issues of “to be or not to be” that is still confusing the academics, 
practitioners, and students in software engineering and in the software 
industry.  

In investigating these fundamental problems, the author finds that the 
myths were caused by a confusion of time in perceiving software 
development as, or as not, an engineering discipline. A rational answer to the 
question whether software development is an engineering discipline is ‘not’ 
at present and in the past, and it is going to be and should be ‘yes’ in the 
future. Currently, software development is evolving from the laboratory-
oriented and all-round-programmer-based practice to an industry-oriented 
and process-based platform, and software developers are experiencing 
changes of roles from craftsmen to regulated professionals – the software 
engineers. The practices of the former are based on personal talents, tastes, 
and art, while those of the latter are based on theoretical foundations, 
disciplined processes, and repeatable professional activities.                    

With an evolution point of view, software engineering is actually a 
young discipline, which is located in the art age and is in a transition to the 
engineering age, though there is still some way to go for software 
engineering to be a matured engineering discipline. 

IEEE/ACM identified the following characteristics of software 
engineering in the Computing Curricula – Software Engineering (CCSE)   
[IEEE/ACM 2003; Wang, 2005h]:  
 

     • “Engineers carry out a task by making a series of decisions, 
carefully evaluating options, and choosing an approach at each 
decision-point that is appropriate for the current task in the 
current context. Appropriateness can be judged by tradeoff 
analysis, which balances costs against benefits. 

     •  “Engineers measure things, and when appropriate, work 
quantitatively; they calibrate and validate their measurements; 
and they use approximations based on experience and empirical 
data. 

     •  “Engineers emphasize the use of a disciplined process when 
creating a design. 

     •  “Engineers can have multiple roles: research, development, 
design, production, testing, construction, operations, 
management, and others such as sales, consulting, and teaching. 
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     •  “Engineers use tools to apply process systematically. 
Therefore, the choice and use of appropriate tools are key to 
engineering. 

     • “Engineering disciplines advance by the development and 
validation of principles, standards, and best practices. 

     •  “Engineers reuse designs and design artifacts.” 
 
Many scientists perceived that software engineering is not only a subset 

of computer science [Parnas, 1995/96/97/98; Hartmanis, 1994], because it is 
a much broader field than computer science, which encompasses 
denotational mathematics, engineering foundations, cognitive informatics 
foundations, system science foundations, and organizational foundations. 
Further, the objects under study in software engineering are not only 
computers and computational data objects, but also behavioral information, 
knowledge representation, and machine and natural intelligence, which are 
more fundamental at the root of human knowledge than computing [Wang, 
2004b/04c/05a/06c/06g/06h/06i]. Further details will be discussed 
throughout this book, particularly in Chapter 5.   

Therefore, more rigorously, the definition of software engineering can 
be revised as follows. 

 
Definition 1.6 Software engineering is an engineering discipline that 

studies the nature of software, approaches and methodologies of large-scale 
software development, and the theories and laws behind software behaviors 
and software engineering practices.  

 

The perception as presented in Definition 1.6 on software engineering 
may be treated as a guideline in the search of software engineering theories 
and foundations towards a matured engineering discipline as adopted in this 
book.            
 
 

1.2.4 HIERARCHY OF ABSTRACTION AND 
         DESCRIPTIVITY IN SOFTWARE ENGINEERING  
 

It is recognized that software engineering seems using low-tech means 
to deal with high-tech problems [Wang, 2005g]. Consider that the accuracy 
of micrometer technologies is at the level of 10-6m, while that of nanometer 
technologies is at the level of 10-9m. If one asks whether a microtechnique 
may be used to denote, measure, or process a nanotechnical product, 
mechanical or electronic engineers will tell that is impossible! However, 
software engineers are still attempting to do so by using inadequate means 
and tools to deal with more complicated software systems. Various graphical 
blocks and arrows are proposed to denote more intricate system architectures 
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and dynamic behaviors of software systems. At the mean time, academics 
and practitioners in software engineering seem to be use to the practice. It is 
believed that both the inadequate techniques and the undoubted attitude form 
the profound problems of software engineering and are the fundamental 
reasons of almost all difficulties and failures in industrial practice in software 
engineering. 

This observation leads to the following question: What kind of 
descriptive means does software engineering need? The answer is abstraction 
according to Theorem 1.2. Abstraction is a powerful and fundamental mental 
function of human beings that most of the higher cognitive processes of the 
brain are relied on [Wang et al., 2006; Wang, 2007h]. Abstraction is also the 
most fundamental principle of mathematics [Lipschutz, 1964]. Abstract 
objects exist only in the brain as a concept or idea but not exist in the real 
world as a physical or concrete entity. However, the sources of abstract 
objects are reflections of real world entities, phenomena, and their relations. 
Abstraction is a powerful key to reduce complexity in creative work such as 
software engineering. It is a software engineering principle for eliciting 
essential properties of a set of objects while omitting inessential details of 
them. 
 
1.2.4.1 The Hierarchical Abstraction Model of System Descriptivity 
            (HAMSD)   
 

According to the IME model as stated in Theorem 1.2, there are two 
categories of objects under studies in science and engineering known as the 
concrete entities in the real world and the abstract objects in the information 
world. In the latter, an important part of the abstract objects are human and/or 
system behaviors, which are planned or executed actions onto the real-world 
entities and abstract objects.  

In Section 1.2.1 software is described as both the abstraction of real-
world objects and their relations in its architectural aspect, and the 
abstraction of the executable behaviors that the system is expected. A 
hierarchical abstraction model of system descriptivity of human knowledge 
can be defined below and illustrated in Fig. 1.3.  
 

Definition 1.7 The Hierarchical Abstraction Model of System 
Descriptivity (HAMSD) states that the abstract levels of cognitive 
information of both the objects and their behaviors can be divided into five 
levels such as those of analogue objects, diagrams, natural languages, 
professional notations, and mathematics.  

 
Because software is the abstraction of both real-world objects and their 

relations, and the expected and executed behaviors of a system that, in turn, 
are real or expected human behaviors (see Theorem 3.4), the means and 
nature of software obeys the same HAMSD model as shown in Fig. 1.3. 

© 2008 by Taylor & Francis Group, LLC



Chapter 1 Introduction    25 

The abstract levels of objects or knowledge modeled in the HAMSD 
model can be explained in Table 1.3. According to Fig. 1.3 and Table 1.3, 
there are five abstract levels and related descriptive means. The higher the 
abstraction level of an object, the more complex the description means. In 
software engineering the objects under study are system and interactive 
behaviors in the abstract world, rather than concrete entities in the real world, 
which is located at abstraction levels L3 to L5. This is a fundamental 
difference between software engineering and other engineering disciplines. 
This can be formally described in the 3rd law of software engineering. 
 
       

Abstract levels of 
objects 

Means of 
description 

Objects  
under study 

L1
Analogue objects 

 
System/human 

behaviors 
in the abstract world 

 
(Corresponding to  

Abstraction L3 to L5) 
 

L4
Professional notations 

L5
Mathematics 

 

M3 Languages  
       syntaxes 
       and semantics  

M5 Formal notations 
       with rigor syntax 
       and semantics 

 
Entities 

in the physical world 
 

(Corresponding to  
Abstraction L1 to L2) 

L3
Natural languages 

M1 Images, icons, 
       pictures    

M4 Symbolic notations 
       with syntax and 
       semantics  

↑ Explanation
 

(Increased 
intuition) 

↓ Abstraction
(Increased 
descriptive 

power) 

L2
Diagrams 

M2 Blocks, lines, 
       arrows, blue prints, 
       schematics    

 

Figure 1.3 The hierarchical abstraction model of system descriptivity 
(HAMSD) for software engineering 
 

Table 1.3 
Abstract Levels of Knowledge and Cognitive Information 

 

Level Category Description 
L1 Analogue objects Real-world entities, empirical artifacts 
L2 Diagrams Geometric shapes, abstract entities, relations 
L3 Natural languages Empirical methods, heuristic rules  
L4 Professional 

notations 
Special notations, rigorous languages, formal 
methods 

L5 Mathematics  
(philosophy) 

High-level abstraction of objects, attributes, 
and their relations and rules, particularly those 
that are time and space independent 
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There are two approaches for system description as shown in Fig. 1.3 

known as abstraction and explanation. The former enables system analysts to 
increase the descriptive power in terms of expressiveness, preciseness, and 
rigorous; while the latter helps users to increase the intuitiveness of 
understanding and comprehension because the means of description is much 
closer to the real world images and analogue objects directly acquired by the 
sensors of the brain. Detailed discussion of the cognitive foundations of 
notation systems may be referred to Chapter 9.    

 
1.2.4.2 Software Engineering Practice: Can Microtech be Used to 
            Denote Nanotech? 
 

Contrary to physical, mechanical, and geometrical designs in the 
concrete world, software design is carried out in the abstract world where 
only things that can be embodied are blocks, lines, or arrows, which show 
connections or relations between architectural and/or behavioral components 
at different levels. In other words, software behaviors, particularly the 
dynamic aspect, are inexpressible by conventional means of diagrams.       

For instance, geometry is the ultimate form of graphical reasoning and 
is more rigorous than any software block diagrams and class diagrams. 
However, even for that, algebraic geometry had to be developed to deal with 
more complicated structures in dynamics in order to enable more powerful 
inferences in geometrical analyses.       
 

 
To prove Corollary 1.2, one may try to read a cartoon after erasing all 

dialogues and explanations. It is obvious that one cannot obtain too much 
accurate information from it. It may be worse that different persons may 

 

Corollary 1.2 The expressive power of icons and diagrams are 
inadequate in software engineering because they make software design 
and specifications vague. 
 

 

The 3rd Law of Software Engineering 
 
Theorem 1.3 The abstract objects under study state that the nature of 
software stems from intangibility of the abstract objects under study, 
intricate inner connections of software systems, adaptive interactions to 
external events and environments, and the cognitive complexity to 
explicitly describe them. 
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perceive different information and meanings from the same picture. This is 
totally unacceptable in engineering design.      

Why may visual means be used adequately in system designs in 
mechanical engineering and civil engineering, but not adequately in software 
engineering? It is because the objects under study of the former are 
physically and geographically located at Level 1 according to the HAMSD 
model, while those of the latter are abstract objects located at Level 3 or 
above in HAMSD.  

It is recognized that architectures of software are complex interrelated 
objects with functional variables and constraints. Behaviors of software are 
embedded relational processes [Wang, 2006h]. These types of abstract and 
complicated entities may only be expressed without implication by 
professional notation systems at Level 4 or mathematical means at Level 5 
according to the HAMSD model, because only more abstract and precise 
means are powerful enough to express an object at a lower level of 
abstraction. This leads to the 4th law of software engineering. 
 

 
According to Theorem 1.4, software architectures and behaviors cannot 

be explicitly expressed by diagrams, because the abstraction level of the 
latter is lower than the former. However, diagrams can be used to express 
and denote physical architectures and designs, because the abstraction levels 
of the physical objects are lower than the means. This explains that, although 
visualization is a powerful means to form a mental image and conceptual 
representation of a design by means of diagrams and pictures in other 
engineering disciplines, it is inadequate in software engineering. 

 

 
The descriptive power of formal notation systems in software 

engineering lies in its adequacy for describing abstract objects, their 
relations, behaviors, and for enabling rigorous inferences based on formally 
defined composing rules in terms of formal syntaxes and semantics. 

 

                    The 4th Law of Software Engineering 
 
Theorem 1.4 The explicit descriptivity states that only a higher-level 
abstract, precise, and rigorous means is adequate to express an object at 
a given level of abstraction, where denotational mathematics is the top-
level abstraction means. 
 

 

Corollary 1.3 Symbolic notations and mathematics are the key means for 
expressing and embodying software behaviors, because they are at higher 
level abstraction and therefore with more powerful descriptivity. 
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Although diagrams are widely used to represent abstract physical designs, 
they are not suitable for expressing and embodying more abstract and 
intricately interconnected entities like software systems, because using 
graphical means in system specification and refinement is just like using 
conventional microtechniques to denote and measure nanotechnologies.  

Therefore, in software engineering, graphical means may be used to 
describe rough conceptual models of software systems for assisting human 
comprehension, but not for the precise specifications of system architectures 
and behaviors in system modeling and execution. Lessons learnt from all the 
failures in the last four decades indicate, no matter how convenient it might 
appear to be, intuitive comprehension should not be an excuse to stick at any 
graphical and visual means for rigorously describing complicated software 
architectures and behaviors. This is what Theorems 1.3 and 1.4 reveal and 
suggest. The fade away of many historical graphical means such as flow 
charts and state diagrams is evidence to support the HAMSD theory. Further 
explanation of the need of formal inference means in software engineering 
will be described in Section 3.3 on formal inference methodologies.   

 
 

 
1.3 Basic Constraints of Software 
       Engineering 
 

 
 
Software engineering is a unique and probably the most complicated 
engineering discipline that has ever been faced by mankind. The constraints 
of software engineering are inherent due to its intangibility, complexity, 
diversity, and human dependency. The study of the fundamental constraints 
of software engineering is helpful to: a) Understand the fundamental 
problems in software engineering, b) Guide the development of software 
engineering theories and methodologies, and c) Evaluate newly proposed 
software engineering theories, principles, and techniques.          

 
 

1.3.1 THE SOFTWARE ENGINEERING CONSTRAINT 
         MODEL 
 

One of the discoveries on the nature of software engineering reveals 
that software engineering is characterized as an organizational challenge 
supplemented to the cognitive and resources challenges [Dijkstra, 1965; 
Wang, 2004b/06a]. A comprehensive set of 14 basic constraints of software 
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engineering are identified, which can be classified into three categories 
known as follows: 
 

     • The cognitive constraints: such as intangibility, complexity, 
indeterminacy, diversity, polymorphism, inexpressiveness, 
inexplicit embodiment, and unquantifiable quality measures. 

     • The organizational constraints: such as time dependency, 
conservative productivity, and labor-time interlock. 

     • The resources constraints: such as costs, human dependency, and 
hardware dependency. 

 

 
       The relationships between the three categories of basic constraints of 
software engineering can be described by the Software Engineering 
Constraint Model (SECM) as shown in Fig. 1.4. In SECM, the first eight 
constraints can be perceived as cognitive and technical constraints in 
software engineering, whilst the last six are considered as business 
constraints on organizational limitations or resources scarcity in software 
engineering.  

In the following subsections, we examine each of the basic constraints 
of software engineering according to the classifications of the SECM model.  

 
 

1.3.2 COGNITIVE CONSTRAINTS OF SOFTWARE 
         ENGINEERING 
  

Definition 1.8 The cognitive constraints of software engineering are a 
set of innate cognitive attributes of software and the nature of the problems 
in software engineering that create the intricate relations of software objects 
and make software engineering inheritably difficult.  

 
All cognitive constraints of software engineering stem from 

intangibility, intricate inner connections, and the cognitive difficulty of 
software and their systems. The following subsections describe each of the 
eight cognitive constraints of software engineering. 
 

 

The 5th Law of Software Engineering 
 
Theorem 1.5 The basic constraints of software engineering state that 
software engineering faces the cognitive, organizational, and resources 
constraints. 
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C3 
Indeterminacy 

C4 
Diversity 

C14
Hardware 

dependency 

C12
Costs 

Software Engineering Constraints 

C10
Conservative 
productivity 

C1 
Intangibility 

C2 
Complicity 

C6
Inexpressive-

ness 

C7
Inexplicit 

embodiment 

C8
Unquantifiable 

quality 

C9
Time 

dependency 

C13
Human 

dependency 

C5
Polymorphism 

C11
Labor-time 
interlock 

Cognitive 
constraints 

Organizational 
constraints 

Resources 
constraints 

 
Figure 1.4 The Software Engineering Constraint Model (SECM) 
 
1.3.2.1 Intangibility 
 

Definition 1.9 Intangibility (C1) is a basic constraint of software 
engineering that states software is an abstract artifact which is not constituted 
by physical objects or presence, and is difficult to be defined or expressed.     
          

 The intangibility of software refers to all aspects of software and its 
development. That is, none of the software engineering processes, such as 
problem representation, requirements description, design, and 
implementation, is tangible.             
         
1.3.2.2 Complexity   
                     

Definition 1.10 Complexity (C2) is a basic constraint of software 
engineering that states software is innately complex and its intricate internal 
connections and external couplings make it extremely difficult to be 
expressed or cognized.    

 

The complexity of software refers to the complexities of its 
architectures, behaviors, and environments. The architectural complexity is 
the innate complexity of a software system with its data objects and their 
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external/internal representations. The behavioral complexity is the 
complexity of a software system with its processes and their inputs/outputs. 
The environmental complexity is the complexity of a software system with its 
platform, related interacting processes, and users.                

The most unique feature of software complexity is its intricate 
interconnection among components, functions, operations, and data objects. 
A small change in one place may result in multiple and unpredictable 
consequences in other places. This type of problem propagation due to 
intricate interconnection and coupling is a major challenge for system 
architects, programmers, and managers. 

The integration of a large-scale software system may easily result in a 
situation where no single person in the team may understand the system. The 
project leader and system architect may lack the knowledge of sufficient 
details about the implementation of the system, whilst the programmers may 
lack the knowledge of global view that treats the system as a whole with the 
interfaces to other subsystems and components. This is a great challenging 
and critical phase to human comprehension capability that often results in 
major failures after almost all resources have been exhausted in large-scale 
software projects.    

In Chapters 9 and 10 we will introduce the concept of cognitive 
complexity of software, which provides a quantitative measure that reveals 
the cognitive functional complexity of software systems. 

           
1.3.2.3 Indeterminacy  
                     

Definition 1.11 Indeterminacy (C3) is a basic constraint of software 
engineering that states the events, behaviors, or their sequence of occurrence 
in a software system are not fully determinable on the basis of a given 
algorithm during design time. Instead, some of them may only be 
determinable until run-time. 

  
The indeterminacy constraint indicates that, in general, a large portion 

of software behaviors and/or their sequence of occurrence are unpredictable 
at design time or compile time. Although the behavior space and all possible 
events are determinable during design time, the order of events and the 
behaviors triggered by the chain of events will be greatly varying at run-time. 
Therefore, indeterminacy makes software design, implementation, and 
testing extremely difficult, because it results in an extremely large behavior 
space for the given software system and its complete verification and through 
testing are impossible sometimes. 

Dijkstra discussed the special case of indeterminacy in automata where 
a given even to a finite state machine in a context may trigger no action 
because the machine cannot decide explicitly which action should be 
executed based on the given input and current state of the machine [Dijkstra, 
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1968b/1975]. This kind of phenomena occurs in operating system, agent 
systems, complier design, and real-time systems, where additional 
information or an arbitrary decision needs to be adopted in the machine.       
 
1.3.2.4 Diversity  
                     

Definition 1.12 Diversity (C4) is a basic constraint of software 
engineering that states the great variety of software in types, styles, 
architectures, behaviors, platforms, application domains, implementation 
techniques, usability, reliability, and quality.        
 

The characteristic of software domain dependency dominates the 
cognitive complexity of software engineering and the knowledge 
requirement for architects and programmers who design and implement a 
software system.             
 The diversity of software also refers to its types. A wide variety of 
software systems can be classified into the following categories: system 
software, tools (compilers, code generators, communication/networking 
software,  database  management  systems,  and  test  software),  and 
application software. The latter can be further categorized into transaction 
processing software, distributed software, real-time software, databases, and 
web-based software. 
 
1.3.2.5 Polymorphism  
                     

Definition 1.13 Polymorphism (C5) is a basic constraint of software 
engineering that states the approaches and styles of both software design and 
implementation are multifaceted and polyglottic. 

 
Definition 1.13 indicates that the possible solution space of software 

engineering can be very large because both design and implementation have 
a great many options as shown in Fig. 1.5. According to the problem solving 
theory in cognitive informatics, software design and development is an open-
end problem, which is similar to a creation process, where both possible 
solutions and paths that lead to one of the solutions are unknown and highly 
optional. 

As that of the polysolvability for design, the polymorphism of software 
implementation refers to the cognitive phenomenon that approaches to 
implement a given design are not necessarily single. Many factors influence 
the solution space such as programming languages, target machine 
languages, coding styles, data models, and memory allocations. Any change 
among these factors may result in a different implementation of a software 
system.  
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Figure 1.5 Polymorphism of the software solution space for a given problem 
 

 
On the basis of Theorem 1.6, a basic engineering principle can be 

derived as follows.         
 

 
The polymorphic characteristic of the solution space of software 

engineering contributes greatly to the complexity of both theories and 
practices of software engineering. 
 
1.3.2.6 Inexpressiveness  
 

Software system requirements and specifications need to be essentially 
expressed in three aspects known as the architecture, static behaviors, and 
dynamic behaviors of the system.  

 

 The 1st Principle of Software Engineering 
 
Theorem 1.6 Polymorphous solutions state that the solution space SS of 
software engineering for a given problem is a product of the number of 
possible design options Nd and the number of possible implementation 
options Ni, i.e.: 

 

d iSS N N= •           (1.3) 
 

 

Corollary 1.4 It is hard to prove technically and/or economically a 
certain software system is the optimal solution rather than a sound one 
constrained by the size of the solution space. This is known as the no 
number one principle in engineering. 
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Definition 1.14 Inexpressiveness (C6) is a basic constraint of software 
engineering that states software architectures and behaviors are inherently 
difficult to be expressed, modeled, represented, and quantified both formally 
and rigorously.    
 

As discussed in Section 1.2, software represents a set of instructive 
behavioral information. Unless the behaviors and the underpinning 
architecture can be expressed rigorously and explicitly, no developer and 
machine may understand the requirement correctly and completely. 
Therefore, a new type of denotational mathematics is needed for system 
specification and refinement, which will be introduced in Chapter 4.  

In addition, a specification of a software system is innately a moving 
target. No practical methodology may suggest customers to fix and freeze 
their requirements in order to get the system implemented. 
 
1.3.2.7 Inexplicit Embodiment  
                     

Because software is intangible, the only way to make it embodied is to 
adopt expressive means such as formal notations, programming languages, 
and special diagrams.            

 
Definition 1.15 Inexplicit embodiment (C7) is a basic constraint of 

software engineering that states architectures and behaviors of software 
systems should be explicitly described by coherent symbolic notations in 
order to be processed and executed by computers.           
 

 Any notation or diagram that cannot explicitly describe the architecture 
and behaviors of software systems, or that highly depends on human 
interpretation or imagination for implied instructions, is inadequate. 
According to the explicit criterion, diagram-based techniques may be useful 
for describing conceptual models of software systems particularly for 
nonprofessionals, but it is unlikely to be an expressive and rigorous basis for 
future automatic code generation systems, because too much design and 
implementation information are implied rather than explicitly expressed. 
Machines will be capable to carry out translations or compilations between 
explicit specifications and code in order to improve software productivity. 
However, no machine may help to extend inadequate system specifications 
or to comprehend inexplicit system designs implied in the software 
architectural and behavioral information.      

A denotational mathematical means for describing software 
engineering work products in the entire lifecycle will be introduced in 
Chapter 4.  
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1.3.2.8 Unquantifiable Quality Measures    
 

Determined by the complexity, diversity, and polymorphism constraints 
discussed earlier, the quality of software is a multifaceted entity and some 
facets of it are application specific.  
 

Definition 1.16 Unquantifiable quality measures (C8) are a basic 
constraint of software engineering that states the model of software quality 
has intricate facets and is difficult to be quantitatively modeled and 
measured.  
 

Software quality can be perceived from a relative point of view as the 
conformity of a software system to its specifications (design models). 
Therefore, software quality is inversely proportional to the differences 
between the behaviours and performance of a software system and those 
required in the specifications. However, many quality attributes of software, 
such as design quality, usability, implementation efficiency, and reliability, 
cannot be quantified, thus immeasurable. 

A basic quality principle is “no measurement, no quality control.” The 
factor that it is impossible to measure all quality attributes of a large-scale 
software system indicates that we are not completely in control of the 
development of such systems. Some qualitative or informal validation and 
evaluation techniques, such as review and prototyping [Boehm et al., 1984; 
Arnowitz et al., 2006], are adopted in software engineering. Practitioners and 
users seem to be used to this situation. Therefore, measurement theories and 
methodologies for software systems had never been a central focus in 
software engineering, particularly because of its inherent difficulty in this 
area [Wang, 2003f]. 

 
 

1.3.3 ORGANIZATIONAL CONSTRAINTS OF 
         SOFTWARE ENGINEERING 
 

Definition 1.17 The organizational constraints of software engineering 
are a set of coordinative and managerial requirements for software 
engineering that enables cooperative work to be efficiently carried out 
among a group of software engineers with different roles.  

 
There are various organizational constraints for software engineering. 

The fundamental ones identified in software engineering are such as time 
dependency, conservative productivity, and labor-time interlock, which will 
be described in the following subsections. 
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1.3.3.1 Time Dependency  
                     

Definition 1.18 Time dependency (C9) is a basic constraint of software 
engineering that states almost all organizational issues in software 
engineering, such as software development scheduling, business goal of time 
to market, and labor allocation, are dependent on time. 

 
Although the development time of a certain software system is 

incompressible in software engineering, it is interchangeable with labor 
under given conditions. The interchangeability between time and labor is 
constrained by the coordinative work organization laws of software 
engineering (Theorems 8.4 through 8.11), which will be presented in Section 
8.5.                       
 
1.3.3.2 Conservative Productivity 
 

According to the cognitive model of internal information representation 
in the brain (Section 9.4), all human intelligent and creative work are 
internally grown by means of synaptic neural connections rather than 
externally composed. Therefore, there are natural constraints for 
programming productivity and development time dependent on the 
complexity of problems. Also, almost all human cognitive processes, such as 
abstraction, creation, problem solving, learning, and comprehension, are 
dependent on individuals’ cognition capability.   

 
Definition 1.19 Conservative productivity (C10) is a basic constraint of 

software engineering that states abstract artifacts and their relations in system 
designs need to be represented physiologically in the brain via growing 
synaptic connections, which is constrained by natural laws and its speed is 
not consciously controllable.  
 

The fact that before any program is composed, an internal abstract 
model must be created inside the brain [Wang, 2007g; Wang and Wang, 
2006] reveals the most fundamental constraint of software engineering as 
stated below.  

 

 

The 6th Law of Software Engineering 
 

Theorem 1.7 Conservative productivity states that software productivity 
is physiologically constrained by the growing speed of synaptic 
connections inside the brain, because before any creative artifact is 
generated externally, it must be created and represented physiologically 
inside the brain by the synaptic connections. 
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Theorem 1.7 is also supported by the 24-hour law of memory 
establishment as presented in Theorem 9.11. According to the statistics of 
several sources [Boehm, 1987; Dale and Zee, 1992; Jones, 1981/1986; 
Livermore, 2005], the average productivity of software development was 
about 1,300 LOC/person-year in the 1970s, 2,500 LOC/person-year in the 
1980s, and 3,000 LOC/person-year in the 1990s where management, quality 
assurance, and supporting activities are considered. It is obvious that the 
productivity in software engineering has not been increased remarkably in 
the last three decades, independent of the fast advances of hardware and 
programming languages! In other words, no matter what kinds of 
programming languages are used, as long as they are for human 
programming, there is no difference in principle.  

 

 
This assertion is equivalent to the answers for the following questions: 

Did you ever know a writer who is productive because he/she writes in a 
specific language? Would typing speed predominantly determine a writer’s 
productivity?   

 
Productivity of software development is the key among all the 

cognitive, organizational, and resources constraints in software engineering. 
The other constraints may be overcome as a result of the improvement of 
software engineering productivity. Therefore, the major approach to improve 
software development productivity is to explicitly express software 
architectures and behaviors, in order to allow automatic tools to seamlessly 
generate code based on the explicit specifications. Key approaches and 
theories supporting them will be discussed throughout this book.  

         
1.3.3.3 Labor-Time Interlock 
 

Definition 1.20 Labor-time interlock (C11) is a basic constraint of 
software engineering that states the nature of software project organization is 
dominated by the extremely high interpersonal coordination rate, which 
prevents the workload (effort) from free decomposition into a sum of 
products of arbitrary amount of labor and periods of time.  

 
The empirical observation that labor and time may be interchangeable 

in conventional engineering disciplines and everyday life is not freely 
applicable in software engineering, because the much higher rate of 

Corollary 1.5 It is very hard to dramatically improve programmers’ 
productivity of software development, unless automatic tools are adopted 
for code generation.                    
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requirement for human interaction and coordination in software engineering, 
up to 70% overhead, dramatically changes the nature of software project 
organization [McCue, 1978; Wang, 2007d].  

The theory and skill of labor-time allocation will determine the 
outcome of a software engineering project. Inappropriate allocation of labor 
and time will result in a dramatic increase of a project’s workload or lead to a 
failure of the project. Detailed explanation will be provided in the 
coordinative work organization theory in Chapters 8, 11, and 13.  

 
 

1.3.4 RESOURCES CONSTRAINTS OF SOFTWARE 
         ENGINEERING 
 

Definition 1.21 The resources constraints of software engineering are 
referred to the development costs and budgets, human resources, and the 
supporting and operating platforms of hardware. 

 
The resources constraints of costs, human dependency, and hardware 

dependency will be described in the following subsections.    
 
1.3.4.1 Costs 
 

Definition 1.22 Costs (C12) are a basic constraint of software 
engineering that states software engineering costs are incurred from both 
necessary and futility costs, and from both development and maintenance 
costs.             
 

Software engineering costs are incurred from the contributions of both 
the necessary development costs and the costs sank into the black hole of 
inappropriate project organization. According to Theorems 8.4 through 8.11 
developed in Section 8.5, inappropriate software engineering organization 
may easily increase the workload and costs of a certain project as high as ten 
times as it should normally be. This is the major reason why more than half 
of software engineering projects had failed in the history. Detailed cost 
models of software engineering will be developed in Chapter 12 on 
economics foundations of software engineering. 

Software systems have cost too much to be built. It is even more costly 
to be maintained. There is a trend in software engineering that in a software 
development organization the costs spent on legacy software system 
maintenance frequently exceeds those spent on developing new systems at a 
given point of time. This phenomenon leads to the discovery of software 
maintenance crisis [Wang, 2005d] as described in Sections 12.6.5 and 
14.3.3.                     
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1.3.4.2 Human Dependency 
 

Definition 1.23 Human dependency (C13) is a basic constraint of 
software engineering that states all software engineering activities and 
processes are human-based and constrained by basic human traits, cognitive 
and creative capabilities, as well as motivations and attitudes. 

 
All processes of software development in software engineering, such as 

design, implementation, and maintenance, rely on human cognitive and 
creative power, especially when the work products and objects under study 
are intangible and complicated. Because software is intangible, almost all 
processes of software engineering are conducted in the abstract world, where 
highly capable cognitive power is required for both software engineers and 
managers.  

            
1.3.4.3 Hardware Dependency  
 

Definition 1.24 Hardware dependency (C14) is a basic constraint of 
software engineering that states software behaviors and functionality can 
only be embodied via the computing platform and related interactive I/O 
devices. 

       
The above constraint indicates that software relies closely on hardware 

and it cannot be functioning without a hardware platform. The platform and 
media dependency is a common property of information. Software as a 
special type of behavioral information shares the same property. The fact that 
both hardware and software can be described by Boolean logic and 
denotational mathematics shows the equivalence of hardware and software.  

 
Therefore, an excellent software engineer needs not only software 

engineering knowledge, but also knowledge about computers, networks, and 
interface devices.                 
 

Based on the discussion of this section, it can be concluded that 
software engineering theories and practices face a set of fundamental 
cognitive, organizational, and resources constraints. Therefore, the problems 
and difficulties in software engineering are inherent; behind them there are a 
set of cognitive, informatics, technical, systematic, managerial, and social 
reasons, which are the driving force of all the constraints in software 
engineering. Each of the multidisciplinary reasons that constrains software 
engineering will be addressed in individual chapters throughout this book. 
The historical pursuits of effective theories and technologies for dealing with 
the fundamental constraints in software engineering will be reviewed in the 
next section. 
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1.4 Approaches to Software 
       Engineering 
 

 
 
Various approaches have been sought in the history of software engineering 
in order to deal with the fundamental problems and constraints as identified 
in the previous sections. The methodologies and approaches can be 
summarized as shown in Table 1.4, which cover programming 
methodologies, software development models, automated software 
engineering, formal methods, software engineering processes, and theoretical 
foundations. 

In Table 1.4, H, M, and L represent a high, medium, or low coverage of 
software engineering problems, respectively, by a given approach. The six 
software engineering approaches listed in Table 1.4 can be categorized into 
theoretical and empirical ones. The former are mathematics-based 
methodologies, such as formal methods and the theoretical foundations; and 
the latter are principles- and best-practice-based that encompasses the rest of 
the approaches in the list.    

 
Table 1.4 

Domain Coverage of the Approaches to Software Engineering 
 

Coverage  of  SE  Problems No. Approach 
Theoretical Technical Organization Management 

1 Programming 
methodologies 

L H L L 

2 Software development 
models 

L H M L 

3 Automated software 
engineering 
environments 

M H L L 

4 Formal methods H H L L 
5 Software engineering 

processes 
L H H H 

6 Theoretical 
foundations 

H H H H 

 
It can be seen that the traditional approaches to software engineering, 

such as programming methodologies, software development models, and    
automated software engineering, are mainly technology oriented. They 
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generally lack the capability to address the theoretical, organizational, and 
managerial problems in software engineering. The relatively newer 
approaches to software engineering, such as formal methods, software 
engineering processes, and theoretical foundations, however, encompass a 
wider and higher portion of software engineering problems, particularly the 
theoretical foundation approach towards a matured discipline of software 
engineering that fully covers every facet of the inherent problems.   
 The following subsections provide a brief description for each of the 
approaches to software engineering. 
 
 
1.4.1 PROGRAMMING METHODOLOGIES 
 

Programming methodologies are a set of the earliest technologies for 
software engineering. Useful principles were proposed such as abstraction, 
information hiding, functional decomposition, modularization, and 
reusability.  

In tracing the history of programming methodologies, it can be seen 
that functional decomposition has been adopted in programming since the 
1950s [McDermid, 1991]. In the 1970s the most significant progress in 
programming methodologies was structured programming [Hoare, 1972; 
Dijkstra, 1965/68/72; Knuth, 1974] and Abstract Data Types (ADTs) [Liskov 
and Zilles, 1974; Parnas et al., 1976]. These methods are still useful in 
programming and software system designs. Since the 1980s Object-Oriented 
Programming (OOP) [Stroustrup, 1982/86; Snyder, 1987] has been broadly 
adopted. Object-Oriented technologies have inherited the merits of structured 
programming and ADTs, and have represented them in well-organized 
mechanisms such as encapsulation, inheritance, reusability, and 
polymorphism. The most powerful feature of OOP is the supporting of 
software reuse by inheriting code and structural information at object and 
system levels. On the basis of OOP, component-based program composition 
and the availability of Commercial Off-The-Shelf (COTS) software 
components are the latest developments [Bayana, 2006; Wang et al, 
1998a/99e/2000]. 
 
 
1.4.2 SOFTWARE DEVELOPMENT MODELS 
 

Programming methodologies can be perceived as mainly oriented to the 
conceptual principles of software engineering. A set of more programmatic 
technologies developed in software engineering is known as the software 
development models, such as the waterfall [Royce, 1970], prototype [Boehm 
et al., 1984; Curtis et al., 1987], spiral [Boehm, 1988; Boehm and Bose, 
1994], V [GMOD, 1992], evolutionary [Lehman, 1985; Gilb, 1988; 
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Gustavsson, 1989], and incremental [Parnas, 1979; Mills et al., 1980/87] 
models.  

Supplementary to the above development models, a variety of detailed 
methods have been proposed for each phase of the development models. For 
instance, just for the software design phase, a number of design methods 
have been in existence [McDermid, 1991], typically flowcharts, data flow 
diagrams, Nassi-Shneiderman charts, Program Description Languages 
(PDLs), entity-relationship diagrams, Yourdon methods, and Jackson system 
development. Of course, some of these methods may cover multiple phases in 
software development. 

The software development model approach attempts to provide a set of 
guidelines for the design and implementation of software at system and 
module levels. However, this approach has been focused on technical aspects 
of software development lifecycles. Organizational and managerial 
methodologies and processes have not been covered. Detailed descriptions 
and applications of existing software development models may be referred to 
the classic software engineering books [McDermid, 1991; Pressman, 1992; 
and Sommerville, 1996]. 
 
 
1.4.3 AUTOMATED SOFTWARE ENGINEERING 
  

In order to support programming methodologies and software 
development models, an automated software engineering approach has been 
sought through the adoption of integrated systems and Computer-Aided 
Software Engineering (CASE) tools. The applications of artificial 
intelligence, cognitive informatics, and knowledge engineering play 
important roles in this approach. The standardization of the Unified 
Modelling Language (UML) [Rumbaugh et al., 1998; OMG, 2005] and 
related tools such as Rational Rose [Quatrani, 1999], as well as Real-Time 
Process Algebra (RTPA) based code generators [Tan and Wang, 2006; Tan, 
Wang, and Ngolah, 2004a/04b/05/06; Ngolah, Wang, and Tan, 2005b/06], 
are some of the recent progress in automated software engineering. Cognitive 
informatics [Wang, 2002d/02e/03a/03b/06b/06j/07a/07b], agent techniques 
[Chorafas, 1998], and autonomic computing [IBM, 2001/06; Kephart and 
Chess, 2003; Murch, 2004; Wang, 2007f] may influence the techniques in 
this area.         

 
The main technical difficulties in automating software development are 

requirement acquisition and specification, system architectural behavioral 
modeling, application domain knowledge representation, and implementation 
correctness proof. These have led to the development of the approaches of 
formal methods and theoretical foundations as described in the following 
subsections. 
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1.4.4 FORMAL METHODS 
 

Formal methods are a set of mathematics and logic based notations and 
methodologies for software development [Hoare, 1978/85; Milner, 1980/89]. 
The logical, algebraic, and functional foundations of programming are 
studied in formal methods. A number of applications of formal methods in 
safety-critical system design and program correctness proof have been 
reported [Hayes, 1987; Schneider, 1989; Wang and Ngolah, 2003; Tan, 
Wang and Ngolah, 2005].    

 
As structured programming and OOP solved many problems in 

software development in the 1970s and 1980s, formal methods attempt to dig 
deeply into the nature of programming and to provide new solutions for 
rigorous and correction-provable software development. Although 
knowledge about the nature of programming has been greatly improved by 
the studies of formal methods, only a few of them, such as Z [Spivey, 
1988/92; Bowen et al., 1998; Derrick and Boiten, 2001], SDL [CCITT, 
1988], CSP [Hoare, 1978/85], and Real-Time Process Algebra (RTPA) 
[Wang, 2002a/02b/03c/07h/07i; Wang and Gafurov, 2003; Wang and 
Ngolah, 2002/03; Wang and Zhang, 2003; Wang and Huang, 2005; Wang 
and Ruhe, 2007; Tan and Wang, 2003; Adewumi and Wang, 2004; Vu and 
Wang, 2004; Chiew and Wang, 2004], have been directly applied in real-
world software engineering.  

 
 

1.4.5 SOFTWARE ENGINEERING PROCESSES 
 

In view of domain coverage it is recognized that the conventional 
approaches, methodologies, and tools that cover individual subdomains of 
software engineering are inadequate. Thus, it makes sense to think in terms 
of an overarching set of approaches for a suitable theoretical and practical 
infrastructure that accommodates both new demands and improvement on 
existing methodologies. An interesting way forward, which is capable of 
accommodating the full domain of modern software engineering, is that of 
the software engineering process. 

The software engineering process is a set of sequential practices that 
are functionally coherent, repeatable, and reusable for software engineering 
organization, development, and management. It is usually referred to as the 
software process, or simply the process.  

The software engineering process approach concerns systematical, 
organizational, and managerial infrastructures of software engineering. It is 
necessary to expand the horizons of software engineering in this way because 
of the rapidly increasing complexity and scale demanded by software 
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products. The need to improve software quality is also a driving force for 
management in software engineering. 

 
There are a number of process models developed such as the CMM 

[Humphrey, 1988/89/95; Paulk et al., 1991/93/95], ISO 12207 [ISO/IEC 
12207, 1995], ISO 15504 [ISO/IEC 15504, 2000], and the Software 
Engineering Process Reference Model (SEPRM) [Wang and King, 2000a]. 
On the basis of the software engineering process technologies, an 
infrastructural methodology called Process-Based Software Engineering 
(PBSE) has been established [Wang and Bryant, 2002]. 

 
 

1.4.6 THEORETICAL FOUNDATIONS OF SOFTWARE 
         ENGINEERING 
 

A particular gap in the current curriculum of software engineering is 
the lack of a fundamental framework that provides students and practitioners 
for a set of overarching, durable, and multidisciplinary theories and 
foundations, in order to explain a great many complicated phenomena and 
problems of software engineering in terms of a core set of fundamental 
principles. To deal with the difficulties inherent in large-scale software 
development, the multidisciplinary foundations of software engineering are 
yet to be explored.  

 
Along with the fast growth of the Internet and the Internet-based 

distributed programming environment in the 1990s, there has been evidence 
that the software engineering agenda has been driven by the industry and 
users. Technical innovations in software engineering have been a major force 
that drives software engineering trends, methodologies, and practice. 
However, all unsolved tough problems and the continuous high failure rate 
of projects in software engineering suggest the necessary need for seeking 
fundamental theories and systematically structures of software engineering. 

 
One of the fundamental findings in software engineering is that its 

problems are not solely an empirical one rather than a theoretical one. That 
is, the same set of fundamental problems that could not have been overcome 
in the last four decades indicates the existence of fundamental constraints 
that need theoretical investigations to reveal the laws and principles behind 
all the problems. Definition 1.6 on software engineering expressed the 
theoretical view towards an engineering discipline with sound theories and 
rigorous organizational methodologies. It is also the main objective of this 
book towards the elicitation and establishment of a rigorous theoretical 
framework of software engineering.       
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1.5 Transdisciplinary Foundations 
       of Software Engineering 
 

 
 
Although software engineering has emerged as a branch in computer science, 
it is recognized that software engineering requires much broader and 
multidisciplinary foundations, particularly those that facilitate rigorous 
expression of notions and thought in system design, and those that enable 
optimal organization of creative and cooperative human work. 

As discussed in Sections 1.1 and 1.2, the complexity, diversity, and 
transdisciplinary nature of software engineering sets forth an ideal testbed for 
existing theories and methodologies of a wide range of science and 
engineering disciplines, such as philosophy, mathematics, computing, 
linguistics, information science, cognitive informatics, system science, 
management science, economics, sociology, and engineering organization. 
From another angle, software engineering theories can also contribute 
significantly to those aforementioned disciplines. This forms the theme of 
this book towards a transdisciplinary and rigorous framework of software 
engineering foundations.        

Albert Einstein believed that ‘Problems that are created by our current 
level of thinking cannot be solved by that same level of thinking.’ In other 
words, the inherent problems in software engineering may be solved by an 
transdisciplinary approach. This section examines closely related science and 
engineering disciplines to software engineering that may contribute to the 
transdisciplinary theories of software engineering. However, the coverage is 
by no means exhaustive. Therefore, readers are encouraged to seek additional 
disciplines that would shed light on the development of theories and 
methodologies of software engineering or that would take software 
engineering as a testbed to evaluate a specific theory or technique. With the 
support of multidisciplinary foundations and theories, software engineering 
education and practice may be carried out on a more solid basis.   
 
 
1.5.1 PHILOSOPHICAL FOUNDATIONS 
 

Philosophy is the common root of all sciences and the crystallization of 
fundamental knowledge of mankind in the pursuit of understanding and 
utilizing nature resources and rules. Philosophy is the top level human 
knowledge with highly generalized usability and extremely long durability. 
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Philosophical foundations of software engineering explore the classical 
thought of science philosophy on epistemology/cognition, holism/ 
reductionism, positivism/empiricism, rationalism/causation, determinism/ 
indeterminism in Chapter 3. Formal inference methodologies as an important 
branch of philosophy will be described with argumentation techniques, 
deductive, inductive, abductive, and analogical inferences. The nature of 
software will be studied on its inherent characteristics and properties of 
informatics, intelligence, mathematics, cognition, quality, and engineering 
applications. The nature of software engineering will be investigated on its 
cognitive properties, engineering characteristics, scope of domains, and the 
scope of its solution space. 

 
 

1.5.2 MATHEMATICAL FOUNDATIONS 
 

Mathematics is the basic means to model, describe, and document 
formal knowledge in any science and engineering disciplines. Mathematics 
enables rigorous reasoning and inferences be carried out on the basis of 
simple deductive rules, and the formally documented results are validated 
without exceptions. Therefore, the entire theory of software science and 
engineering in Chapter 4 is about mathematical models of software and 
denotational mathematics for software engineering processes. 

Mathematical foundations for software engineering encompass classical 
mathematics such as set theory, relations, functions, propositional logic, and 
predicate logic. Complex mathematical entities in software engineering, such 
as processes, embedded relations, and systems, as well as a comprehensive 
set of mathematical laws of software, will be newly developed. Software 
behaviors are modeled by a three-dimensional (3-D) mathematical entity, and 
RTPA will be introduced as a software engineering notation system to deal 
with the 3-D behaviors and architectures of software systems. RTPA 
notations, type system, meta processes, and process relations will be 
presented, and the RTPA methodology for software system specification and 
refinement will be systematically described.             

  
 

1.5.3 COMPUTING FOUNDATIONS 
 

Computing theory is one of the most important and direct foundations 
of software engineering as presented in Chapter 5. However, classical 
computing theories may be treated and reinterpreted on focusing the needs 
for modeling and manipulating data objects, computing behaviors, and 
resources in software engineering. 
 The computing foundations for software engineering encompass the 
basic models and needs in computing, and the fundamental computation 
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models, such as automata, Turing machines, von Neumann machines, and 
autonomic computing machines. Computing theories will be classified into 
three categories known as the modeling and manipulation of data objects, 
computing behaviors, and resources/processes. Based on this, programs and 
software will be modeled as a coordination of both computational behaviors 
and data objects in software engineering.  
 
 
1.5.4 LINGUISTICS FOUNDATIONS 
 

A language is a symbolic system for thought, self-expression, and 
communication. Although linguistics studies human or natural languages, the 
theories and foundations of linguistics and formal languages in software 
engineering are cross fertilized in many areas as presented in Chapter 6.  

Linguistic foundations for software engineering encompass the 
fundamental theories of linguistics, the nature of languages, and their 
acquisition and applications. Classical linguistics will be extended to the 
theories of programming languages, which investigate formal language 
theories, formal semantics, and mathematical models of linguistics.     
 
 
1.5.5 INFORMATION SCIENCE FOUNDATIONS 
 

According to the IME model as given in Theorem 1.2, information is 
the third essence for modeling the abstract world and its interactions with the 
physical world. Information science, or informatics, studies the nature of 
information, its processing, and ways of transformation between information, 
matter, and energy. In the classical information theory, Shannon defined 
information as a probabilistic predication of message sending from a source.  
Conventional information theory focuses on information transmission rather 
than information itself. The contemporary informatics tends to regard 
information as entities of messages, rather than a probability predication of 
messages. The new perception is found better to explain the theories and 
practices in the IT and software industries. 

The information science foundations for software engineering 
encompass classical and contemporary information theories in Chapter 7. In 
the former, Shannon’s information and entropy will be discussed; in the 
latter, new mathematical model of information will be introduced, and the 
transition from machine informatics to cognitive informatics that focuses on 
human perception and processing of information will be described. A 
comprehensive set of informatics laws of software will be derived that reveal 
the nature of software. Applications of informatics in software engineering 
will be discussed on how behavioral information of software is expressed 
and processed in software engineering.   
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1.5.6 ENGINEERING FOUNDATIONS 
 

Engineering is a powerful concept and methodology emerged in the 
industrial revolutions during the 18th and 19th centuries. The engineering 
foundations of software engineering study generic engineering approaches 
and basic engineering principles that are commonly shared by all engineering 
disciplines in Chapter 8.  

Engineering principles for software development and organization will 
be systematically sought. The theory of optimal software engineering 
organization will be developed based on the investigation on team 
coordination and the transformability between labor and time. Empirical 
software engineering foundations will be explored on case studies, 
experiments, trials, benchmarking, and standardization in software 
engineering.                           
 
 
1.5.7 COGNITIVE INFORMATICS FOUNDATIONS 
 

Cognitive informatics is a discipline that studies the internal 
information processing mechanisms of the brain and their engineering 
applications. Information in cognitive informatics is defined as abstract 
artifacts and their relations that can be elicited, modeled, represented, stored, 
and processed by human brains. One of the most interesting findings in 
cognitive informatics is that so many science and engineering disciplines, 
such as informatics, computing, software engineering, and cognitive 
sciences, share a common root problem – how the natural intelligence 
processes information.  
 Cognitive informatics foundations for software engineering encompass 
neurophysiology of cognition and cognitive foundations of the brain and 
natural intelligence in Chapter 9. A Layered Reference Model of the Brain 
(LRMB) will be developed. The mechanism of internal information 
representation will be formally described by the Object-Attribute-Relation 
(OAR) model. Applications of cognitive informatics in software engineering 
will be focused on cognitive laws of software engineering, software 
comprehension, and the measurement of cognitive complexity of software.    
 
 
1.5.8 SYSTEM SCIENCE FOUNDATIONS 
 

A system is a collection of coherent and interactive entities that has 
stable functions and clear boundary with its external environment. System 
science and engineering study the most complicated objects and phenomena 
in the physical, abstract, and social worlds, namely systems, across all 
science and engineering disciplines. A system can be treated as an extended 
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mathematical entity constrained by certain mathematical laws. Systems are a 
powerful concept for describing a closure of a number of components and 
their relations and behaviors, because any given compound entity can be 
modeled as a system or a subsystem of another system.               
 System science foundations for software engineering encompass 
system philosophies, principles, and properties in Chapter 10. An extension 
of mathematics to deal with abstract systems, known as system algebra, will 
be newly developed [Wang, 2006d], which presents an algebraic treatment of 
system modeling, relations, and operations. System models of software and 
software engineering processes will be described on the basis of system 
algebra. A number of system engineering models for software engineering 
will be discussed. 
 
1.5.9 MANAGEMENT SCIENCE FOUNDATIONS 
 

Management is a coordination process that organizes activities and 
efforts of a group to achieve goals and results not possible by an individual.       
Management science is the discipline that studies organizational behaviors, 
executive decision making, and resource optimization on given internal and 
external constraints. Historically, software engineering has focused on 
programming methodologies, programming languages, and software 
development models. One of the critical areas to software engineering – 
organizational and management infrastructures – has been largely 
overlooked. 
 Management science foundations for software engineering encompass 
management principles, classical management thought, decision theories, and 
quality systems in Chapter 11. A set of organizational theorems and laws will 
be formally derived. A theoretical framework of decision theories will be 
developed with the mathematical models of decisions, the cognitive process 
of decision making, the formal decision strategies, the extended game 
theories, and the newly developed decision grid theory. Quality systems will 
be presented focusing on quality principles, quality assurance, and quality 
management systems. The emphases of applications of management science 
in software engineering will be put on SEPRM and the methodology of 
process-based software engineering. 
 
1.5.10 ECONOMICS FOUNDATIONS 
 

Economics is the study of how resources are used to produce and 
distribute commodities and how services are provided in society. 
Engineering economics is a branch of microeconomics dealing with 
engineering related economic decisions. Fundamental concepts and 
principles of economics will be presented in Chapter 12 covering economic 
models, and analyses. A mathematical model on Adam Smith’s equilibrium 
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between demands and supplies will be derived that explains the nature and 
mechanisms of the invisible hands rigorously.  

Software engineering economics will be discussed on elements of 
software costs, project costs estimation and analysis, and project benefit-cost 
ratio analysis. The software legacy maintenance model will be developed 
based on the software engineering economic models, which leads to the 
discovery of the phenomenon known as software maintenance crisis.  

 
1.5.11 SOCIOLOGY FOUNDATIONS 
 

Sociology is a branch of science that studies the structure, organization, 
operation, and development of human societies. A society is a dynamic 
human system that is interacting not only among members of the society, but 
also between societies and the natural environment. Collective behaviors and 
how motivation and attitude may influence human productivity and decision 
making will be studied in Chapter 13. Optimal organization of groups and 
societies will be focused.  

Sociology foundations for software engineering encompass social 
structures, norms, collective behaviors and social psychology of software 
engineering. A formal model of social organization will be developed based 
on a new mathematical model known as the organization tree. Models of 
socialization will be used to explain the historical evolution of human 
societies, which predict that information society will be the form of human 
societies following the postindustrial one driven by underpinning economic 
structures and basic human needs. Applications of sociology in software 
engineering will be explored in the areas of social organization, social 
environment, ergonomics, and human factors of software engineering.       
 
 
 

1.6 The Architecture of this Book 
 

 
An improved understanding of the theoretical foundations of software 
engineering is helpful to design appropriate curricula for software 
engineering education, and to provide students with a solid and well founded 
discipline of software engineering knowledge. In a field such as physics, its 
knowledge structure is well developed based on clear foundations. Physicists 
know what they can do and what they cannot. This offers a solid basis for 
judging innovative and emerging technologies. Software engineering 
requires a similar basis. It is anticipated that investigations into the 
theoretical foundations of software engineering will provide fundamental 
capabilities for students and practitioners of software engineering.   
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The architecture of this book is constructed as shown in Fig. 1.6. The 
book encompasses four parts on principles and constraints, theoretical 
foundations, organizational foundations, and perspectives on software 
science. Part I, principles and constraints of software engineering, models 
the basic constraints in software engineering and explores suitable measures 
dealing with them by a comprehensive set of software engineering principles. 
In Part II, theoretical foundations of software engineering are created on the 
basis of philosophy, mathematics, computing, linguistics, and information 
science. In Part III, organizational foundations of software engineering are 
elicited from those contributing disciplines such as engineering 
methodologies, cognitive informatics, system science, management science, 
economics, and sociology. Part IV, perspectives on software science, 
summarizes the theoretical framework of software engineering, and provides 
a prospect on the development of software science.      
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Figure 1.6 Architecture of this book 
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Corresponding to the architecture of this book, the key subject areas of 
software engineering foundations are highlighted in Table 1.5. Throughout 
this book, new theories for both software engineering and related fields are 
developed, and more formal treatments of existing theories and empirical 
practice are implemented. Table 1.5 shows the bidirectional impact of this 
work on transdisciplinary investigation into the theoretical foundations of 
software engineering.   

                        
 

Table 1.5 
Structure of this Book 

 

Part Chapter Topic Key Subject Areas 

1 Introduction 
 

• Basic concept of SE     
• Fundamental constraints of SE 
• Approaches to SE 
• Transdisciplinary foundations of SE 

I. 
Principles and 
Constraints of 
Software 
Engineering 
 2 Principles of 

Software 
Engineering 

• Pursuits on principles of SE 
• A unified framework of SE principles 
• SE principles as measures for dealing 
  with its constraints 

3 Philosophical 
Foundations 

• Philosophy of science and engineering 
• Logical reasoning methodologies 
• The nature of software 
• The nature of SE 
• Murphy’s laws for SE 

4 Mathematical 
Foundations 

• Set theory  
• Mathematical logic 
• Denotational mathematics for SE 
• Real-Time Process Algebra (RTPA) 
• The RTPA methodology for software 
   system description 
• RTPA: notations for SE 

5 Computing 
Foundations  

• Basic computational models 
• Data object modeling and manipulation 
• Behavioral modeling and manipulation 
• Program modeling: coordination of 
   computational behaviors and data 
   objects 
• Resources and processes modeling and 
   manipulation 

II. 
Theoretical 
Foundations of 
Software 
Engineering 
 

6 Linguistics 
Foundations  

• Fundamentals of linguistics 
• Formal language theory 
• Syntax of programming languages 
• Semantics of programming languages 
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• Semantics of RTPA 
• Linguistics perceptions on SE  

 

7 Information 
Science 
Foundations 

• Classic information theory 
• Contemporary informatics 
• Informatics laws of software 
• Applications of informatics in SE 

8 Engineering 
Foundations   

• Generic engineering approaches 
• Basic engineering principles 
• Engineering principles for SE 
• Empirical SE 
• SE standardization 

9 Cognitive 
Informatics 
Foundations 

• Principles 
   • Cognitive informatics 
   • Cognitive informatics models of  
       the brain 
   • Cognitive models of internal 
      information presentation in the brain 
• Cognitive informatics for SE 
   • Cognitive Informatics laws of SE 
   • SE psychology 
   • Software comprehension 
   • SE skills and experience 
   • Software agent systems 
   • Cognitive Complexity of SE 

10 Systems  
Science 
Foundations 
  

• Principles 
   • System philosophy 
   • Principles of system theories 
   • System modeling  
   • Properties of systems 
• System engineering for SE 
   • System algebra 
   • The system metaphor of software 
   • System engineering for SE  
   • Software system engineering models  

III. 
Organizational 
Foundations of 
Software 
Engineering 
 

11 Management 
Science 
Foundations 

• Principles 
   • Classic management thought 
   • Decision theories 
   • Quality systems 
• SE management 
   • Decision theories 
   • Formal models of games 
   • Decision grid theory 
   • SE organization 
   • The SE Process Reference Model 
      (SEPRM) 
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   • Process-Based SE (PBSE) 

12 Economics 
Foundations 

• Principles 
   • Classical economic thought  
   • Economic models 
   • Dynamic values of money and assets 
   • Economic analyses 
• SE economics 
   • Elements of software costs    
   • SE project costs estimation    
   • Economic analyses for software 
      projects    
   • The software legacy maintenance cost 
      model     

 

13 Sociology 
Foundations 

• Principles 
   • Principles of sociology  
   • Social psychology 
   • Theory of social organization 
• Sociology and SE 
   • Organization trees  
   • Social organization of SE 
   • Ergonomics for SE 
   • Human factors in SE 

14 Retrospect on 
Software 
Engineering 

• Infrastructure of SE  
• Software industry organization 
• Essential knowledge towards excellent 
   software engineers  
• Impact of the theoretical foundations 
   to SE 

IV. 
Perspectives 
on  
Software 
Science 

15 Prospect on 
Software 
Engineering 

• The formal knowledge system for SE  
• Software industry organization 
• A discipline of software 
• Impact of software science on 
   computing 
• Epilogue 

 
This book adopts a transdisciplinary approach to explore the theoretical 

foundations of software engineering. This work attempts to put together a 
number of multidisciplinary foundations for software engineering, such as 
philosophy, mathematics, computing, linguistics, informatics, engineering 
science, cognitive informatics, systems science, management science, 
economics, and sociology. It is a great curiosity to explore such 
transdisciplinary foundations for software engineering and the laws behind 
software and software engineering organization. It is also a great comfort to 
see that a set of extremely complicated phenomena and a wide variety of 
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practices in software engineering can fit in a coherent and integrated 
framework of software science with overarching and durable theories and 
foundations. 

 
 

 
1.7 Summary 
 

 
 
Software is a special type of behavioral information of computing and a 
means of interaction between the information world and the physical world. 
The nature of software makes software engineering a unique discipline, 
which is innately the most complicated engineering branch that humans ever 
experienced, and inherently the most overarching transdisciplinary field in 
both theories and applications. These are also the reasons that set forth          
software engineering as an ideal testbed for existing theories and 
methodologies of a wide range of science and engineering disciplines from 
mathematics to cognitive informatics, and from management science to 
sociology. 

Software engineering is an increasingly important discipline that 
studies the nature of software, approaches and methodologies of large-scale 
software development, and the laws behind software behaviors and software 
engineering practices.  

The study of the fundamental constraints of software engineering is 
helpful for: a) Understanding fundamental problems in software engineering; 
b) Guiding the development of software engineering theories and 
methodologies; and (c) Evaluating software engineering theories, principles, 
and techniques.         

To deal with the difficulties inherent in large-scale software 
development, the multidisciplinary foundations of software engineering 
are yet to be explored. This book adopts an interdisciplinary approach to 
explore the foundations of software engineering. This work attempts to put 
together a number of multidisciplinary foundations for software engineering, 
such as philosophy, computing, mathematics, informatics, systems science, 
management science, cognitive science, linguistics, and measurement.  

This chapter has introduced the nature, the problem domain, the 
inherited constraints, and the transdisciplinary solutions towards software 
engineering. A set of basic concepts of software engineering has been 
presented. Fundamental problems and constraints of software engineering 
have been identified. The approaches to software engineering have been 
explored in the context of how the basic constraints of software engineering 
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may be dealt with. The framework of multidisciplinary foundations of 
software engineering has been presented as a new approach towards software 
engineering. This chapter has also described the architecture of this book. As 
a result, the problem domain and its nature of software engineering, as 
well as the fundamental approach to software engineering, have been 
established.    

 
 

ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Introduction to Software Engineering, readers 
have achieved the following strategic goals with the knowledge structure as 
summarized below. 

 
 

 
Chapter 1. Introduction 

 
■ Software Engineering as a Discipline  
        • The nature of software 

 - The mathematical metaphor 
 - The product metaphor 

           - The informatics metaphor 
        • The nature of software engineering 
        • Status of software engineering as an engineering discipline 
        • Characteristics of Software Engineering  
        • Hierarchy of abstraction and descriptivity in software engineering 
 
■  Fundamental Constraints of Software Engineering 
        • The software engineering constraint model 
        • Cognitive constraints of software engineering 

- Intangibility, complexity, indeterminacy, diversity, polymorphism, 
  inexpressiveness, inexplicit embodiment, and unquantifiable 
  quality measures  
 

        • Organizational constraints of software engineering 
           - Time dependency, conservative productivity, and labor-time 
              interlock 
 

        • Resources constraints of software engineering 
             - Costs, human dependency, and hardware dependency  
 
■  Approaches to Software Engineering  
        • Programming methodologies 
        • Software development models 
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        • Automated software engineering  
        • Formal methods  
        • Software engineering processes  
        • Theoretical foundations of software engineering 
 
■  Transdisciplinary Foundations of Software Engineering  
        • Engineering foundations                      
        • Philosophical foundations 
        • Mathematical foundations                   
        • Computing foundations 
        • Linguistics foundations                        
        • Information science foundations 
        • Cognitive informatics foundations       
        • Systems science foundations 
        • Management science foundations       
        • Economics foundations 
        • Sociology foundations 
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• Software engineering is an engineering discipline that studies the 
nature of software, approaches and methodologies of large-scale software 
development, and the laws behind software behaviors and software 
engineering practices. This is a guideline in our search of software 
engineering theories and foundations towards a matured engineering 
discipline.  

           
• The characteristics of theoretical problems under study in a field are 

abstract, inductive, mathematics-based, and formal-inference-centered; while 
those of empirical problems are concrete, deductive, data-based, and 
experimental-validation-centered (Theorem 1.1). 

 
• The theories and techniques of software engineering are centered by 

the cognitive, organizational, and resources issues (see the SECM model).  
 
• Software engineering is a unique and the most complicated 

engineering discipline that is ever faced in the human history. The 
constraints of software engineering are inherited by its intangibility, 
complexity, and diversity.  
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• According to the abstraction and descriptivity model, the abstract 
levels of cognitive information of both the objects and their behaviors can be 
divided into the levels of analogue objects, diagrams, natural languages, 
special notation systems, and mathematics. Software engineering was using 
lowtech means (lower level abstraction) to deal with hightech problems 
(higher level abstraction). This is the root of a whole bunch of problems in 
software engineering.     

 
• The problem in software engineering is not solely an empirical one 

rather than a theoretical one. That is, the same set of fundamental problems 
that could not been overcome in the last four decades indicates the existence 
of fundamental constraints that need theoretical investigations to reveal the 
laws and principles behind all the problems. 

 
• A particular gap in the current software engineering curriculum is 

the lack of a fundamental framework that provides students and practitioners 
for overarching, durable, and multidisciplinary theories and foundations, in 
order to explain a great many complicated phenomena and problems of 
software engineering in terms of a core set of fundamental principles.  
 

• A rigorous and theoretical approach is needed to seek the 
fundamental principles and laws of software engineering, and their 
transdisciplinary foundations required by the nature of the problems in 
software engineering.      
 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 

• The IME model: The information-matter-energy (IME) model 
provides a generic world view, which reveals that the concrete and abstract 
worlds can be modeled as three essences known as matter, energy, and 
information.  

• According to the IME model, information plays a vital role in 
connecting the physical world and the abstract world. Software is a 
special type of behavioral information of computing and a means of 
interaction between the information world and the physical world. The 
nature of software makes software engineering a unique discipline, 
which is innately the most complicated engineering branch that humans 
experienced, and inherently the most overarching transdisciplinary field 
in both theories and applications. These are also the reasons that set 
forth software engineering as an ideal testbed for existing theories and 
methodologies of a wide range of science and engineering disciplines 
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from mathematics to cognitive informatics, and from management 
science to sociology. 
 

Software Engineering as a Discipline 
 

• Software is an intellectual artefact that provides a solution for a 
repeatable computer application, which enables existing tasks to be done 
easier, faster, and smarter, or which provides innovative applications for the 
industries and in everyday life. Although the nature of software has been 
perceived quite differently in research and practice of computing and 
software engineering, the following perceptions on the nature of software can 
be found in the literature: 

     - Software is a mathematical entity 
     - Software is a concrete product  
     - Software is a set of behavioral information  
 
• Software engineering is a discipline that adopts engineering 

approaches, such as established methodologies, processes, measurement, 
tools, standards, organisation methods, management methods, quality 
assurance systems and the like, in the development of large-scale software 
seeking to result in high productivity, low cost, controllable quality, and 
measurable development schedule.  

 
Fundamental Constraints of Software Engineering 
 

• The abstraction and descriptivity model: The abstract levels of 
cognitive information of both the objects and their behaviors can be divided 
into the levels of analogue objects, diagrams, natural languages, special 
notation systems, and mathematics.  

 
• The cognitive constraints of software engineering (Theorem 1.2) 

states that fundamental constraints of software engineering stem from 
intangibility and intricate inner connections of software systems, and the 
cognitive complexity to explicitly describe them. 

• It is noteworthy that in software engineering the objects under 
study are system and human behaviors in the abstract world rather than 
concrete entities in the real world. This is a fundamental difference 
between software engineering and other engineering disciplines.   

 
• The expressive power of icons and diagrams are inadequate in 

software engineering because they make software design and specifications 
vague. 
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• It is recognized that architectures of software are complex 
interrelated objects with functional variables and constraints; and 
behaviors of software are embedded relational processes. These types 
of abstract and complicated entities may only be expressed without 
implication by professional notation systems, because only more 
abstract and precise means is powerful enough to express an object at a 
given level of abstraction.     

 
• The law of explicit descriptivity (Theorem 1.3) states that only a 

higher level of more abstract, precise, and rigor means is required to express 
an object at a given level of abstraction.   

    
• Symbolic notations and mathematics are the key means for 

expressing and embodying software behaviors, because they are at 
higher level abstraction and therefore with more adequate descriptive 
power. 

 
• The software engineering constraint model (SECM): SECM 

models a comprehensive set of 14 basic constraints of software engineering 
encompassing three categories known as  

     • The cognitive constraints: such as intangibility, complexity, 
indeterminacy, diversity, polymorphism, inexpressiveness, 
inexplicit embodiment, unquantifiable quality measures. 

     • The organizational constraints: such as time dependency, 
conservative productivity, and labor-time interlock. 

     • The resources constraints: such as costs, human dependency, 
and hardware dependency. 

 
• The problems and difficulties in software engineering are inherited; 

behind them there are a set of cognitive, informatics, technical, systematic, 
managerial, and social reasons, which are the driving force of all the 
constraints in software engineering.  

 
Approaches to Software Engineering 

 
• Various approaches have been sought in order to deal with the 

fundamental problems in software engineering as identified in the previous 
section. The historical development in software engineering approaches 
can be summarized as shown below: 

     - Programming methodologies 
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     - Software development models 
     - Automated software engineering environments 
     - Formal methods 
     - Software engineering processes 
     - Theoretical foundations 

 
Transdisciplinary Foundations of Software Engineering 
 

• Transdisciplinary foundations of software engineering: Although 
software engineering has emerged as a branch of computer science, it is 
recognized that software engineering requires much broader and 
multidisciplinary foundations as follows: 

     - Principles of Software Engineering 
     - Engineering Foundations   
     - Philosophical Foundations 
     - Mathematical Foundations 
     - Computing Foundations  
     - Linguistics Foundations  
     - Information Science Foundations 
     - Cognitive Informatics Foundations 
     - Systems Science Foundations 
     - Management Science Foundations 
     - Economics Foundations 
     - Sociology Foundations 
 
• The complicity, broadness, and transdisciplinary nature of software 

engineering sets forth an ideal testbed for existing theories and 
methodologies of a wide range of science and engineering disciplines, such 
as philosophy, mathematics, computing, linguistics, information science, 
cognitive informatics, system science, management science, economics, 
sociology, and engineering organization.  

 
• From another angle, software engineering theories can contribute 

significantly to those above mentioned disciplines. This forms the theme of 
this book towards a transdisciplinary and rigorous framework of software 
engineering foundations.    
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Questions and  
Research Opportunities 
 

 
 
1.1 What is the nature of software engineering? Is software 

engineering unique or special in relation to the other engineering 
disciplines?  

 
1.2  According to Theorem 1.1, the criteria of theoretical problems 

under study in a field are abstract, inductive, mathematics-based, 
and formal-inference-centered; while the criteria of empirical 
problems under study in a field are concrete, deductive, data-
based, and experimental-validation-centered. Try to identify three 
example problems for each of these categories.  

 
1.3   On the basis of Ex. 1.2, discuss why the basic problems of 

software engineering, such as software system architectural 
modeling and behavioral description, cannot be pursued solely by 
empirical means and methodologies, but are needed for 
theoretical and formal means and methodologies. 

 
1.4   A number of myths have been identified in Section 1.1.2. Try to 

find an additional myth on perceiving software engineering and 
explain why it is a myth theoretically or empirically.  

 
1.5  Discuss the meaning of Theorem 1.2 – the Information-Matter-

Energy (IME) model – and its impact on understanding the nature 
of software and software engineering activities. 

 
1.6   Referring to the general complexity threshold of software 

engineering as given in Definition 1.2, discuss why sizes of 
software systems are so important in determining the 
methodologies and techniques of software engineering.             

 
1.7   The Hierarchical Abstraction Model of System Descriptivity 

(HAMSD)  reveals  that  the  abstract  levels  of  cognitive 
information and knowledge can  be divided into five levels such 
as those of analogue objects, diagrams, natural languages, 
professional notations, and mathematics.  
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Based on Theorem 1.4 and the HAMSD model, discuss what the 
abstraction levels of software systems and the UML diagrams are, 
and whether UML is adequate to model and describe a software 
system.          

 
1.8   What are the usages for studying the basic constraints of software 

engineering and their categories? 
 
1.9   Explain what are the cognitive constraints of software 

engineering.   
 
1.10  Explain what are the organizational constraints of software 

engineering.   
 
1.11  Explain what are the resource constraints of software 

engineering.   
 
1.12   Discuss the software dependencies on humans and hardware as 

modeled in the resource constraints of software engineering. 
 
1.13   Software vs. Hardware: Many traditional hardware architectures 

and behaviors of systems can be digitalized, therefore 
implemented by software. Taking an automobile as an example: 
 
a) Construct a conceptual model of the automobile; 
   

b) Try  to  analyze  which  parts  (as many as possible)  of  the 
automobile can be replaced by software; 
 

c) Discuss what your understanding of the relationships between 
software and hardware on the basis of this example. 

 
1.14   Try to use Theorem 1.6 to prove (or explain) Corollary 1.4 – the 

no number one principle in software engineering. 
 
1.15   Explain Table 1.4 on the domain coverage of the different 

approaches to software engineering, and analyze their strengths 
and weaknesses.  

 
1.16   Why is software productivity conservative? Is there any technique 

that may help to increase programming productivity? (Refer to 
Theorem 1.7)   

 
1.17   Summarize the multidisciplinary foundations of software 

engineering that will be covered in this book, and explain why the 
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transdisciplinary approach needs to be taken in understanding the 
fundamental problems and potential solutions of software 
engineering. 

 
1.18   Searching for Relevant Theories: On the basis of Ex. 1.17, try to 

propose one or more potential disciplines or subdisciplines that 
may contribute to the maturity of software engineering theories 
and methodologies. 

 
1.19  There is an argument that programming has no scientific 

foundations because both professionals and amateurs can write 
programs. Do you agree with this observation? Why?     

 
1.20  Why have more than half of software engineering projects failed 

in the history? Is this a theoretical, organizational, cognitive, or 
operational problem? 

 
1.21  What are the attributes of software quality and can they be 

quantitatively measured, therefore be controlled?  
 
1.22  Is time and labor interchangeable in software engineering? If so, 

what would be the constraints for the interchangeability between 
them? 

 
1.23  How is a project team optimally organized in large-scale software 

engineering projects?     
 
1.24  What would be the mathematical means for dealing with the 

cognitive complexity of software engineering? 
 
1.25  Software engineering methodologies have been evolved from 

programming methods, software development models, CASE 
tools, formal methods, and the software engineering process, to 
transdisciplinary theoretical foundations. Referring to Section 1.4, 
analyze the advantages and disadvantages of each approach to 
software engineering.         

 
1.26   Read the following classic article: 
 

Edsger W. Dijkstra (1972), The Humble Programmer, 

The 1972 Turing Award Lecture, Communications of 

the ACM, 15(10), pp.859-866. 
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Discuss the following topics in a group: 
 
               •  About the author. 
               •  What was the status of software engineering in the 1970s?  

• Why would professional programmers feel humble? What 
limitations of programmers and/or techniques of software 
engineering resulted in this perception?    

• What conclusions derived in the articles interested you? 
Why?  

      •  Express your arguments or counter-points on any of the 
conclusions.              
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Knowledge Structure 
 

 
 Pioneer pursuits of principles for software engineering 

     •  Parnas’ principles of SE 
     •  Hoare’s principles of SE 
     •  Brooks’ principles of SE 
     •  Wasserman’s principles of SE 

 •  IEEE SESC’s principles of SE 
 •  IEEE Software magazine’s principles of SE 

 A unified framework of software engineering principles 

     •  Elicitation of fundamental principles of SE 
     •  The unified framework of SE principles 
     •  Description of the fundamental principles of SE 

 Software engineering principles as measures to its constraints 

     •  Principles for coping with the cognitive constraints 
     •  Principles for coping with the organizational constraints 
     •  Principles for coping with the resource constraints 
     •  A systematic view on mapping between the principles and constraints 
 

 

Learning Objectives 
 

 
     • To view software engineering principles as fundamental theorems and laws that 

constrain software system behaviors and their design and implementation 
processes.           

     •  To be aware of the major pioneer work of leading scientists in pursuing of 
software engineering principles in the last four decades.    

•  To gain a unified and coherent framework of software engineering principles.   

     •  To understand the interrelationship between software engineering principles 
and constraints with a systematical view.  

     •  To be able to apply the software engineering principles to tackle the 
fundamental constraints of software engineering. 

 
 
 

2. Principles of Software Engineering 
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 “The more science becomes divided into specialized disciplines, the more important  
it becomes to find unified principles.” 

 
Herman Haken (1977) 

 
“As a software development professional, you need  

knowledge of specific technologies to do your job. But you need knowledge of  
software engineering principles to do your job well.” 

 
Steve McConnell (1999)  

 
 

 
2.1  Introduction 
 

 
 

rinciples of a scientific or engineering field are the basic heuristic 
rules, based on theoretical and empirical foundations, which provide a 
fundamental and conceptual means for conducting research, 

performing practice, and explaining various phenomena in the field.  
Engineering sciences are disciplines of human enquiries that seek 

solutions for complicated problems and systems that could not be done by 
separate individuals. The key aim of engineering is to repetitively produce 
complicated artifacts in an efficient way. Thus, to many professionals, 
engineering means systematic planning, teamwork, rigorous process, 
repeatability, as well as efficiency.  

Software engineering is a maturing engineering discipline that adopts 
the generic engineering principles in the development of large-scale 
software, which could not be produced by individuals. Currently, software 
development is evolving from the laboratory-oriented and all-round-
programmer-based practice to an industry-oriented and process-based 
platform, and software developers are experiencing changes of roles from 
craftsmen to regulated professionals – the software engineers. The practices 
of the former are based on personal talents, tastes and art, while those of the 
latter are based on disciplined processes and repeatable professional 
activities.                    

Studying the vast literature of software engineering, readers may find 
that pioneers in software engineering have addressed many fundamental 
problems with insightful visions, and a large set of fundamental principles of 
software engineering has been laid. In the remainder of this chapter, the 
fundamental principles of software engineering will be presented as follows. 
Section 2.2 reviews the major pioneer pursuits of principles for software 
engineering in the last four decades, which provide a whole picture for 

P
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understanding the theories and foundations of software engineering. Section 
2.3 presents a unified framework of software engineering principles with a 
comprehensive set of 31 commonly identified fundamental principles of 
software engineering. Then, Section 2.4 treats these fundamental principles 
of software engineering as a set of powerful measures to tackle the 14 basic 
constraints of software engineering as identified in Section 1.3. 

 
 

 
2.2 Pioneer Pursuits of Principles 
        for Software Engineering 
 

 
 
Since the coining of the term software engineering in 1968 [Bauer, 1976; 
Naur and Randell, 1969], efforts for attempting to identify the principles of 
software engineering and to explain its implication and extension have been 
continued. Although technologies have been changing from time to time, the 
fundamental principles of software engineering have remained constant as 
the crystallization of theories and methodologies over a long period of time. 

A principle is a generic theorem, rule, or law of a theory that can be 
applied to a wide range of cases or instances in a field of study. A principle 
serves as a fundamental predicate for logical reasoning and deduction. 
Principles can be classified into two categories known as the formal and 
empirical/heuristic principles. Most known principles in software 
engineering are empirical and heuristic. For supporting rigorous reasoning 
and decision making in software engineering, formalization of those 
empirical principles seems profoundly important and necessary.                           

  
Definition 2.1 Software engineering principles are a set of fundamental 

and coherent theorems and laws that constrain the behaviours of software 
systems and the processes of their development. 

 
Software engineering principles are the essential knowledge that a 

software engineer needs in order to develop software scientifically, 
effectively, and professionally.  

This section surveys the pursuits of fundamental principles in software 
engineering by pioneers and leading institutions during the last four decades 
in the development of software engineering. The work and contributions of 
Davis L. Parnas, C.A.R. Hoare, Frederick P. Brooks, and Anthony I. 
Wasserman, as well as the IEEE Software Engineering Standardization 
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Committee (SESC) and IEEE Software Board of Advisors, will be briefly 
reviewed.           

 
      

2.2.1 PARNAS’ PRINCIPLES OF SOFTWARE 
         ENGINEERING 
 

During the 1970s through the 1990s, David L. Parnas enunciated five 
important principles of software engineering [Parnas, 
1971/72/76/78/86/94a/94b/95/96/97/98; Aspray et al., 1996; Hoffman and 
Weiss, 2001] as follows: 
 

     •  DP1: Information hiding 
     •  DP2: Modularization 
     •  DP3: Engineering approach 
     •  DP4: Professional responsibility 
     •  DP5: Documentation 

 
The following subsections describe Parnas’ insightful visions on the 

principles of software engineering.       
 
2.2.1.1 Information Hiding 
 

Information hiding (DP1) is a widely accepted principle for software 
engineering identified by Parnas [Parnas and Clements, 1986], which 
supposes that unnecessary details of information of software at a certain level 
should be masked in lower level implementations.       

Parnas viewed that the hierarchical approach to design is useful for 
representing and describing a system following the principle of information 
hiding. He enunciated that “a programmer is most effective if shielded from, 
rather than exposed to, the details of system parts other than his own.”  

In his classic papers [Parnas, 1971/72], Parnas explained that it was ill-
structured information distribution that made software systems dirty by 
involving almost invisible connections (coupling) between supposedly 
independent modules. Parnas believed that limitation of the information 
coupling among modules was the key to improve design quality in software 
system design.                   

Information hiding is considered as one of the major methodologies for 
implementing modularization, functional decomposition, and stepwise 
refinement in structured programming. It is also the foundation of a number 
of modern software modeling techniques such as abstract data types, 
encapsulation, object technology, and software components.  
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An equivalent expression of information hiding in software engineering 
is abstraction, which describes how common properties and shared 
information of a set of objects may be elicited and explicitly represented. As 
a consequence of abstraction, the uncommon properties and unshared 
information of software components are then hidden at lower level structures. 

  
2.2.1.2 Modularization 
 

Modularization (DP2) is a generic system construction approach in 
almost all engineering disciplines. Modularization is important in software 
engineering, particularly in structured programming, for dealing with 
complexity in software architectural design and implementation. 

The central idea of modularization is the assumption that a software 
system can be broken up, or decomposed, into smaller functional pieces 
during system design, and when they are implemented, the system can be 
composed by integrating the pieces. The software pieces were called modules 
during the 1950s through the 1980s, and then they are known as 
classes/objects and components beginning in the 1990s. All these adopt the 
philosophy known as divide-and-conquer.  

Parnas considered that when systems are decomposed into a large 
number of modules, structures need to be emphasized [Parnas, 1972], sharing 
similar ideas with the concept of structured programming proposed by Dahl, 
Dijkstra, and Hoare in the same period [Dahl et al., 1972] and the 
contemporary concept of object-oriented and component-based software 
engineering.                                   
  
2.2.1.3 Engineering Approach 
 

Parnas (1971/72) as well as Baure (1976) supposed that software 
development has to take the engineering approach (DP3) in which the 
common best practice matured in other engineering disciplines need to be 
adopted. Software engineering should focus on ‘fundamental knowledge’ 
rather than specific techniques, ‘program design’ rather than ‘language 
syntax’ or things that are ‘neither mathematical truths nor facts about the 
world.’ Parnas wrote [Parnas, 1996]: 

 
“Engineering educators have long known that their students 

must be prepared to work in rapidly changing fields. We have 
recognized that the educational program must stress fundamentals 
– science, mathematics, and design discipline – so that graduates will 
find their education still valid and useful late in their careers. Most 
of the books that I used in my own engineering education are still 
correct and relevant, several decades later. In contrast, many 
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introductory programming books are considered out of date before 
the students who use them have graduated.” 

 
In a number of papers [Parnas, 1995/96/97], Parnas stresses the 

differences between software engineering and computer science, and 
emphasizes that software engineering is not computer science. As a result of 
this argument, we now understand more about the nature of software 
engineering as a much broader field than that of computer science, which 
encompasses the engineering organization foundations, cognitive informatics 
foundations, and system science foundations [Wang, 2005g/05i/05l]. Further, 
the objects of study in software engineering are behavioral information of 
both machine and natural intelligence, which are more fundamental at the 
root of human knowledge than that of computing. 
 
2.2.1.4 Professional Responsibility 
 

Professional responsibility (DP4) is identified by Parnas as a basic 
principle for software engineering [Parnas, 1994a]. He classified the 
professional responsibilities of software engineers into three categories 
known as the personal, professional, and social responsibilities. According to 
Parnas, the three categories of responsibilities can be defined as follows: 

 
“Personal responsibilities are those that are shared by all 

persons, no matter what is their profession or educational 
background. 

“Professional responsibilities are additional responsibilities 
that we take on because we have become members of a particular 
profession such as medicine, journalism, or engineering. 

“Social responsibilities are responsibilities toward society as a 
whole rather than toward other individuals.”          

 
The particularly important responsibilities for software engineers 

emphasized by Parnas are on accepting individual responsibility, solving the 
real problem, being honest about capability, producing reviewable designs, 
and software maintainability.      
 
2.2.1.5 Documentation 
 

Parnas and his colleague pointed out that: “Design without 
documentation is not design [Parnas and Clements, 1986; Hoffman and 
Weiss, 2001],” and “If it is not documented, it is not done [Parnas, 1994b].” 
Computer programs were considered as the combination of algorithms and 
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data structures; whilst software is supposed as programs plus documents. 
Hence, documentation (DP5) is a basic property of software systems. 

Parnas puts emphases on the importance of documentation in software 
engineering not only during the design phase of software development, but 
also during implementation and maintenance [Hester, Parnas, and Utter, 
1981]. According to the discussions on the fundamental constraints of 
software engineering in Section 1.3, documentation is a major approach to 
dealing with intangibility and cognitive complexity of all intermediate and 
final work products in software engineering. 

 
          

2.2.2 HOARE’S PRINCIPLES OF SOFTWARE 
          ENGINEERING 
 

In a number of basic studies [Hoare, 1969/73/75/80/94], C.A.R. (Tony) 
Hoare identified seven generic principles of software engineering as follows: 

 
     •  TH1: Professionalism 

        • TH2: Vigilance 
     •  TH3: Sound theoretical knowledge 
     •  TH4: Using tools  
     •  TH5: Abstraction 
     •  TH6: Structured programming  
     •  TH7: Readability 

 
The above list provides Hoare’s insight on the ‘sound engineering 

principles’ as Bauer implied. The following subsections describe Hoare’s 
views on the principles of software engineering.       
 
2.2.2.1 Professionalism 
 

Hoare defined professionals as those who earn their living by using 
their special knowledge and expertise. Professionalism (TH1) represents the 
qualification, identity, ethic, and pride of a group of highly qualified people 
in a sector of society or engineering fields.     
 Professional engineers value and maintain professional integrity. They 
should be able to understand client needs, and have the capability, 
confidence, and status to advise and persuade clients of their genuine 
requirements. Their activities are founded on professional skills as well as 
tried and tested techniques. They will aim to recommend a solution that is 
cost-effective, simple, efficient, practical, and satisfactory [Hoare, 1975/94].       
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2.2.2.2 Vigilance 
 

Vigilance (TH2) is the awareness of possible dangers, risks, and/or 
difficulties in a field. It can also be an action of keeping careful watch for the 
dangers, risks, and difficulties. Vigilance in software engineering is meant by 
Hoare as watchfulness or practice with caution [Hoare, 1975]. Dijkstra used 
a similar term “humble” [Dijkstra, 1972] to describe this important 
characteristic of professional software engineers.  
 
2.2.2.3 Sound Theoretical Knowledge 
 

Sound theoretical knowledge (TH3) refers to principles, mathematical 
theories, and standard codes of practice based upon which engineering 
practices are premised [Hoare, 1975; Hoare and Jones, 1989]. This is an 
analogy to other matured engineering disciplines, such as mechanical 
engineering and electrical engineering, in which mathematical modeling and 
logical reasoning are applied to represent system components and the ways in 
which the components fit together. 
 
2.2.2.4 Using Tools 
 

It has been observed that all engineering disciplines adopt specialized 
tools in order to improve productivity and assure quality. Using tools (TH4) 
is a sign of professionalism in engineering.   

 
Software engineers should be able to select and use a range of tools of 

proven quality, effectiveness, efficiency, precision, and convenience [Hoare, 
1975; Hoare and Jones, 1989].        
 
2.2.2.5 Abstraction 
 

Abstraction (TH5) is an approach to deal with common properties of 
objects under study with symbolic representations and with rigorous 
treatment. Mathematic logic, set theory, and algebra are perfect paradigms of 
applications of abstraction.  

 
Hoare and his colleagues attempted to introduce abstract means of 

mathematics into programming language design and programming [Hoare, 
1986; Hoare et al., 1987]. Hoare contributed two powerful concepts for 
abstraction in programming. One is the process concept for program 
behavior abstraction [Hoare, 1978/85]. The other is axiomatic semantics for 
program semantic abstraction and their correctness proof on the basis of the 
semantics [Hoare, 1969].              
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2.2.2.6 Structured Programming 
 

In Structured Programming (TH6), Dahl, Dijkstra, and Hoare proposed 
a systematic approach to the design, development, and documentation of 
computer programs [Dahl, Dijkstra and Hoare, 1972]. The concept of 
stepwise design refinement is explored. Hoare also studied the logic of 
engineering design, and developed the axiomatic basis for computer 
programming [Hoare, 1969].       
 
2.2.2.7 Readability 
 

Readability (TH7) of software refers to the extent of how 
understandable a program is in a given programming language. Hoare 
asserted [Hoare, 1973]: 

  
“The readability of programs is immeasurably more important 

than their writeability.” However, “The objective of readability by 
human beings has sometimes been denied in favor of readability by a 
machine; and sometimes even been denied in favor of abbreviation 
of writing, achieved by a wealth of default conventions and implicit 
assumptions.” 
 
Hoare believed that readability should be an important attribute of all 

programming languages [Hoare, 1973/80; Hoare and Wirth, 1966]. 
Readability may also be extended to documentations and design work 
products in software engineering. This principle also implies a striving for 
elegance and simplicity in software design and implementation.         
 
 
2.2.3 BROOKS’ PRINCIPLES OF SOFTWARE 
          ENGINEERING 
 

In his well received paper [Brooks, 1987], “No Silver Bullets – Essence 
and Accident in Software Engineering,” Frederick Brooks predicated that 
there will be no individual methodology or tool that can solve all 
fundamental problems in software engineering and yield a ten-fold 
productivity boom in software development in the given decade. Brooks 
drew this conclusion by identifying the four basic constraints of software 
development known as the essences below, in contrast to the trivial 
difficulties called accidents in software engineering:          
 

     •  FB1: Complexity 
        • FB2: Conformity 
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     •  FB3: Changeability 
     •  FB4: Invisibility 
 
Brooks argued that essential difficulties of software engineering 

encompass the inherited complexity, real-world conformity, inevitable 
changeability, and abstractive invisibility as shown in Fig. 2.1. The following 
subsections describe Brooks’ discoveries on the principles of software 
engineering with the framework as modeled in Fig. 2.1.       

 

 
Figure 2.1 Brooks’ constraints of software engineering  

 
2.2.3.1 Complexity 
 

Complexity (FB1) of software refers to the fact that software 
complexity is determined by the nature of problems. No language, tool, or 
technology may reduce the complexity of a given problem itself.          

The complexity of software can be analyzed from the aspects of 
requirement complexity, design/architectural complexity, and decision 
traceability complexity. The naturally inherited complexity of the object of 
study makes software engineering one of the most complicated engineering 
fields. 

Properly designed software has no homogeneity, which prevents the 
scaling of low-level solutions to higher-level problems. As complexity is an 
essential property of software, it cannot be abstracted away without losing 
the correctness and applicability of the result [Brooks, 1975/95].  
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2.2.3.2 Conformity 
 

Conformity (FB2) of software refers to the natural and human 
constraints to a software system. The proper functioning of a software system 
is both human and hardware dependent, because the given software system 
must seamlessly adapt to an operating platform and to users who apply it in a 
certain working environment.  

In addition, there are existing regulations, standards, requirements, and 
quality expectations to be confirmed setting forth for a software system. 
Therefore, software is always being put into a context where decision 
parameters of the environment are out of the influence of the designers 
[Brooks, 1975]. 

 
2.2.3.3 Changeability 
 

Changeability (FB3) of software refers to the constant need for change 
and adaptation of functionality. Brooks considered software changeability to 
encompass adaptability, expansion, and pruning.    

For a physical product, a rule of thumb is “if it does not break, do not 
fix it.” However, a software system is under continuous psychological and 
practical pressure to be improved from both motivations of developers and 
users of the system [Brooks, 1975]. This is because there is no perfect 
solution for a software system, and even an originally good solution may 
become obsolete over time, or due to technical advance and additional user 
demands.  

Changeability is the innate characteristic to explain why people adopt a 
software solution for a given problem rather than a hardware solution. As a 
consequence, the requirements and expected functionality of a software 
system are always a moving target. 

 
2.2.3.4 Invisibility 
 

Invisibility (FB4) of software refers to its abstract trait and intangibility. 
Software defies physical representation, because its time and operational 
complexity cannot be successfully captured and explicitly described by using 
physical models, an invaluable tool for designers and inventors in other 
fields. Brooks perceived that software invisibility “not only impedes the 
process of design within one mind, it severely hinders communication among 
minds [Brooks, 1987].”   
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The invisibility of software lies in two interlocked aspects: the 
architecture and behaviors of software. The former is very difficult to be 
visualized if it is still possible. The latter is almost impossible to be 
visualized by any diagram-based or “geometrical” means. Recent studies on 
dealing with software invisibility adopt denotational mathematics such as 
Real-Time Process Algebra (RTPA) [Wang, 2002a/02b/03c/06a/07a], which 
will be described in Chapter 5 on mathematical foundations of software 
engineering. 

 
 

2.2.4 WASSERMAN’S PRINCIPLES OF SOFTWARE 
          ENGINEERING 

 
In an article on “Toward a Discipline of Software Engineering,” 

Anthony Wasserman surveyed the literature and summarized the following 
eight principles of software engineering [Wasserman, 1996]: 
 

     • AW1: Abstraction 
     • AW2: Methods and notations 
     • AW3: Prototyping 
     • AW4: Modularity and architecture 
     • AW5: Lifecycle and process 
     • AW6: Reuse 
     • AW7: Metrics  
     • AW8: Tools and integrated environments 

 
Wasserman identified that despite the rapid changes in software 

engineering techniques, the above fundamental principles have been kept 
constant and together constitute a viable foundation for software engineering. 
The following subsections describe Wasserman’s perceptions on the 
principles of software engineering.       
 
2.2.4.1 Abstraction 
 

“Abstraction (AW1) is a fundamental technique for understanding and 
solving problems [Wasserman, 1996].” Abstraction is a common intellectual 
technique for managing the understanding of complex items. It allows us to 
concentrate on a problem at some generalized level without regard to 
irrelevant low-level details. Abstraction is the central concept of information 
hiding, which lets software developers focus on the appropriate level of 
detail concerning a software component.  
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2.2.4.2 Methods and Notations 
 

Wasserman believed that “Analysis and design methods and notations 
(AW2) are basic tools for communication in an engineering discipline. … If 
software engineering is to mature as a discipline, standard specification and 
design notations have to be developed [Wasserman, 1996].” 

It is perceived that analysis and design methodologies as well as 
notations are helpful to fill the cognitive leap from requirement specification 
to system implementation in software engineering. Analyses consider the 
problem space, address the structure of the problem, and include the logical 
structures of objects in the real world. Design deals with the structures of the 
system that implements a solution to the problem.   

Wasserman identified that almost all engineering disciplines use 
standard blueprints, block diagrams, and/or schematic diagrams. But 
software engineering was an exception, where hundreds of different 
notations and programming languages were used and the community is still 
expecting new ones. He suggested that it is possible to develop a method-
independent software notation that represents a system design which may be 
implemented by various development methods.     
 
2.2.4.3 Prototyping 
 

Prototyping (AW3) is a universal practice in engineering disciplines. 
Many rapid development methods are based on prototyping.  

Wasserman considered prototyping was particularly useful in Graphic 
User Interface (GUI) design and implementation. He wrote: “Prototyping of 
the user interface is the most effective way to elicit user requirements and to 
improve usability of applications [Wasserman, 1996].” 

As well as a system can be designed and described hierarchically by 
different levels, it can also be implemented in the same way. Prototyping is a 
natural approach to implement a complex software system by different level 
of abstraction from the top-down.  

              
2.2.4.4 Modularity and Architecture  

 
As Parnas pointed out, modularity and architecture (AW4) are a pair of 

techniques that complement each other. Modules are the materials, and 
architecture is the framework that accommodates the modules and allows 
them to work as a whole.            

Wasserman identified that “Software architectures play a major role in 
determining system quality and maintainability [Wasserman, 1996].” He 
commented that of all the various qualities of software design, none has 
proven over time to be more significant than modularity. Objects, 
components, design patterns, and application frameworks are modern 
techniques that apply the modularization principle of software engineering.     
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2.2.4.5 Lifecycle and Process 
 

Wasserman considered software lifecycles and processes (AW5) to be 
the infrastructure of software development. Although small- or medium-sized 
software may adopt ad hoc and rapid development methods, large-scale 
software system development, which involves numerous developers, 
supporting staff, and customers for months or years, requires well-defined 
processes. Also, large and complex software development is both the goal 
and the reason of software engineering. Therefore, he suggested that having 
some defined and manageable process for software development is much 
better than not having one at all [Wasserman, 1996]. 

 
2.2.4.6 Reuse 
 

Wasserman agreed that “reuse (AW6) of existing software 
development assets is an essential part of any software development process 
[Wasserman, 1996].”  

However, he observed that “effective reuse beyond the level of function 
and class libraries has proven to be more difficult than hoped,” because it 
was hard to build high quality reusable components. He observed that there 
were fundamental technical barriers in conducting code reuse, such as 
application diversity, delayed time-to-market, and extra work involved.          
 
2.2.4.7 Metrics 
 

Wasserman perceived that metrics (AW7) play an important role in 
quantifying software engineering measurement. He surveyed a wide range of 
software metrics on software processes, quality, defects, productivity, 
schedule, sizes, architectures, tests, and costs. Based on the survey, he 
asserted that: “improvements in the software development process and 
system quality cannot be evaluated without an effective metrics effort 
[Wasserman, 1996].” 
       
2.2.4.8 Tools and Integrated Environments 
 

To increase efficiency and productivity, software engineering processes 
have to be supported by appropriate tools and integrated environments 
(AW8). Wasserman supposed that the infrastructure of software engineering 
encompasses integrated tools of object management, process management, 
communication, and operating systems. “The application development 
environment and its tools should provide comprehensive and integrated 
support for the development process [Wasserman, 1996].” 
 Wasserman identified that tool integration in software engineering falls 
into five categories, such as platform integration, presentation integration, 
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process integration, data integration, and control integration. The issues 
surrounding tool integration are complicated and involve both technical and 
business trade-offs. Therefore, much work needs to be done before 
comprehensive multivendor and multiplatform CASE tools may be achieved.                
 
 
2.2.5 IEEE SESC’S PRINCIPLES OF SOFTWARE 
         ENGINEERING 

 
An international effort has been devoted by the IEEE Software 

Engineering Standards Committee (SESC), in collaboration with the 
IEEE/ACM Joint Committee on Software Engineering Body of Knowledge 
(SWEBOK) and ISO/IEC JTC1/SC7, to identify fundamental principles of 
software engineering during 1996 to 2000 [Davis, 1994; SESC, 1996/97/99; 
Tripp, 1996; Abran et al., 1999; Dupuis et al., 1999].  

The First IEEE Forum on Software Engineering Standards Issues 
(SES’96) was held in Montreal, Canada in October 1996 as a part of the 
International Symposium on Software Engineering Standards (ISESS’96). 
Following the success of ISESS’96, two events, ISESS’97 and ISESS’99, 
were held in Walnut Creek, California and Curitiba, Brazil, respectively.      
 It is believed that based on the cumulated experience, we may identify 
the underlying principles of software engineering that are fundamental and 
hence enduring. The purposes of IEEE SESC were to promote the 
recognition of software engineering as a well-established discipline, and to 
provide a broader and richer framework for establishing relationships among 
groups of software engineering standards.    

Robert Dupuis and his colleagues reported that a Delphi study was 
conducted in 1997 over the Internet among 14 renowned researchers to 
identify a first candidate list of fundamental principles of software 
engineering. A second workshop was held at the International Software 
Engineering Standards Symposium (ISESS’97) to reformulate or eliminate 
some of the principles and the selection criteria. Then, a second Delphi study 
was conducted in 1998 among 31 IEEE software engineering committee 
members in order to improve the set of principles. From this study a list of 15 
fundamental principles of software engineering has been compiled        
[Dupuis et al., 1999] as shown in Table 2.1. 

All the principles proposed in Table 2.1 provide a fundamental view on 
software engineering by identifying a set of durable characteristics and 
processes. According to a number of surveys, the most significant principles 
are SC7 – understanding the problem, SC12 – change management, and 
SC13 – specify tradeoffs. The least significant principles are SC9 – minimize 
components coupling, SC1 – quantitative measurements, and SC4 – rigorous 
specification. There are two principles, SC10 – stepwise development and 
SC11 – specify quality objectives, with the weights unidentified. 
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Table 2.1 
The IEEE SESC Proposed Principles of Software Engineering 

 
No. Principle Detailed Description Mean 

Weight 
[0 ..10] 

SC1  Quantitative 
measurements  

Apply and use quantitative measurements in 
decision-making  

7.5 

SC2  Reuse Build with and for reuse 8.3 
SC3  Control complexity Control complexity with multiple perspectives and 

multiple levels of abstraction 
8.0 

SC4  Rigorous specification Define software artifacts rigorously 7.5 
SC5  Software process Establish a software process that provides 

flexibility 
7.9 

SC6  Disciplined approach Implement a disciplined approach and improve it 
continuously 

8.0 

SC7  Understanding the 
problem 

Invest in the understanding of the problem 9.6 

SC8  Management  
of quality 

Manage quality throughout the life cycle as 
formally as possible 

8.3 

SC9  Minimize components 
coupling 

Minimize software components interaction 7.8 

SC10 Stepwise development Produce software in a stepwise fashion - 
SC11 Specify quality 

Objectives 
Set quality objectives for each deliverable product - 

SC12 Change management Since change is inherent to software, plan for it and 
manage it 

9.4 

SC13 Specify tradeoffs Since tradeoffs are inherent to software 
engineering, make them explicit and document 
them 

8.8 

SC14 Domain knowledge To improve design, study previous solutions to 
similar problems 

8.5 

SC15 Uncertainty 
management 

Uncertainty is unavoidable in software engineering. 
Identify and manage it 

8.7 

 
 
2.2.6 IEEE SOFTWARE MAGAZINE’S PRINCIPLES OF 
         SOFTWARE ENGINEERING 
 

In reviewing the best influences during the software engineering’s first 
50 years [McConnell, 1999], the advisor board of IEEE Software selected the 
following 11 principles for software engineering developed in the past 
century.     
 

      •  SW1: Reviews and inspections 
      •  SW2: Information hiding 
      •  SW3: Incremental development 
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      •  SW4: User involvement 
      •  SW5: Automated revision control  
      •  SW6: Internet development 
      •  SW7: Programming languages hall of fame 
      •  SW8: Capacity maturity model (CMM) 
      •  SW9: Object-oriented programming 
      •  SW10: Component-based programming 
      •  SW11: Metrics and measurement 

 
The following subsections describe the IEEE Software Editors’ 

perceptions on the principles of software engineering [McConnell, 1999].  
      
2.2.6.1 Reviews and Inspections  
 

Reviews and inspections (SW1): “One of the great 
breakthroughs in software engineering was Gerald Weinberg’s 
concept of egoless programming – the idea that no matter how 
smart a programmer is, reviews will be beneficial. Weinberg’s ideas 
were formalized by Michael Fagan into a well-defined review 
technique called Fagan inspections. The data in supporting of the 
quality, cost, and schedule impact of inspections are overwhelming. 
They are an indispensable part of engineering high quality software.”     

 
2.2.6.2 Information Hiding 
 

Information hiding (SW2): “David Parnas’ 25-year old concept 
of information hiding is one of the seminal ideas in software 
engineering – the idea that good design consists of identifying 
“design secrets” that a program’s classes, modules, functions, or 
even variables and named constants should hide from other parts of 
the program. While other insights into how to come up with the good 
design ideas in the first place, information hiding is at the 
foundation of both structured design and object-oriented design. In 
an age when buzzword methodologies often occupy center stage, 
information hiding is a technique with real value.”  

 
2.2.6.3 Incremental Development 
 

Incremental development (SW3): “The software engineering 
literature of the 1970s was full of horror stories of software 
meltdowns during the integration phase. Components were brought 
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together for the first time during ’system integration.’ So many 
mistaken or misunderstood interface assumptions were exposed at 
the same time that debugging a nest of intertwined assumptions 
became all but impossible. Incremental development and integration 
approaches have virtually eliminated code-level integration problems 
on modern software projects. Of these incremental approaches, the 
daily build is the best example of a real-world approach that works. 
It minimizes integration risk, provides steady evidence of progress 
to project stakeholders, keeps quality levels high, and helps team 
morale because everyone can see that the software works.”    

 
2.2.6.4 User Involvement 
 

User involvement (SW4): “We have seen tremendous 
developments in the past several years in techniques that bring 
users more into the software product design process. Techniques 
such as JAD sessions, user interface prototyping, and use cases 
engage users with product concepts in ways that paper 
specifications simply cannot. Requirements problems are usually 
listed as the number one cause of software project failure; these 
techniques go a long way toward eliminating requirements problems.”  

 
2.2.6.5 Automated Revision Control 
 

Automated revision control (SW5): “It takes care of mountains 
of housekeeping details associated with team programming projects. 
In the Mythical Man-Month in 1975, Fred Brooks’ “surgical team” 
made use of a librarian. Today, that person’s function is handled by 
software. The efficiencies by today’s programming teams would be 
inconceivable without automated revision control.” 

 
2.2.6.6 Internet Development  
 

Internet development (SW6): “What we have seen with the 
Open Source development is just the beginning of collaborative 
efforts made possible via the Internet. The potential this creates 
for effective, geographically distributed programming is truly mind 
boggling.”     

 
2.2.6.7 Programming Languages Hall of Fame  
 

Programming language hall of fame (SW7): “Programming 
languages hall of fame: FORTRAN, COBOL, Turbo Pascal, Visual 
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Basic. A few specific technologies have had significant influence on 
software development in the past 30 years.  

“Academics and researchers talked about components and 
reuse for decades, and nothing happened. Within 18 months of 
Visual Basic’s release, a thriving pre-built components market had 
sprung from nothing. The direct-manipulation, drag-and-drop, point-
and-click programming interface was a revolutionary advance.” 

 
2.2.6.8 Capability Maturity Model  
 

Capacity maturity model (SW8): “The Software Capability 
Maturity Model (CMM) is one of the few branded methodologies 
that has had any affect on typical software organizations. More 
than 1,000 organizations and 5,000 projects have undergone CMM 
assessment, and dozens of organizations have produced mountains 
of compelling data on the effectiveness of process improvement 
programs based on the CMM model.”    

 
2.2.6.9 Object-Oriented Programming 
 

Object-oriented programming (SW9): “Object-oriented 
programming offered great improvements in ‘natural’ design and 
programming. After the initial hype faded, practitioners were 
sometimes left with programming technologies that increased 
complicity, provided only marginal productivity gains, produced 
unmaintainable code, and could only be used by experts. In the final 
analysis, the real benefit of object-oriented programming is 
probably not objects, per se, but the ability to aggregate 
programming concepts into larger chunks than subroutines or 
functions.”     

 
2.2.6.10 Component-Based Development 
 

Component-based development (SW10): “Component-based 
development has held out much promise, but aside from a few 
limited successes, it seems to be shaping up to be another idea that 
works better in the laboratory than in the real world. Component-
version incompatibilities have given rise to massive setup-program 
headaches, unpredictable interactions among programs, de-
installation problems, and a need for utilities that restore all the 
components on a person’s computer to ‘last known good state.’ This 
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might be one of the ten best for the twenty-first century, probably 
not for the twentieth.”     

 
2.2.6.11 Metrics and Measurement 
 

Metrics and Measurement (SW11): “Metrics and measurement 
have the potential to revolutionize software engineering. In the few 
instances in which they have been used effectively (NASA’s 
Software Engineering Lab and a few other organizations), the 
insights that well-defined numbers can provide have been amazingly 
useful. Powerful as they can be, software process measurements are 
not the end, they are the means to the end. The metrics community 
seems to forget this lesson again every year.”   

 
Steve McConnell concluded that “An investment in learning software 

engineering principles is a particular good investment for a software 
professional to make because that knowledge will last a whole career – not 
be half obsolete within three years (as those of software development 
technologies) [McConnell, 1999].”      
 
 
 
2.3 A Unified Framework of 
       Software Engineering Principles 
 

 
 
The ultimate objective of investigations into the principles of software 
engineering is to build an integrated inference framework with axioms 
implicitly defining primitive concepts, principles, and rules in order to 
construct higher order concepts and theories of software engineering. The 
fundamental principles are supposed to be self-evident if not tautologies. The 
implications of these principles, like most theorems on the other hand, may 
be far from trivial. 

Section 2.2 presents a comprehensive survey on existing fundamental 
software engineering principles and methodologies. There are 50 principles 
identified individually by different authors or institutions. It would be useful 
to rethink the parable of the blind men and the elephant about searching the 
truth, which probably tells a quite similar situation as we got in seeking the 
principles for the giant elephant of software engineering. 
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This section introduces a method of constraints vs. measures to elicit 
and integrate the entire set of principles of software engineering. By this 
approach, each principle for software engineering is introduced as a measure 
that may be used to deal with one or more constraints and problems in 
software engineering. Then, all principles can be organized into a coherent 
framework of software engineering principles. The purposes and usability of 
the principles can also be clarified by mapping them into the constraints of 
software engineering.  

 
 

2.3.1 ELICITATION OF FUNDAMENTAL PRINCIPLES 
         OF SOFTWARE ENGINEERING 
 

A significant problem in the software engineering community is the 
tendency to think that a brilliant new idea or powerful future tool will solve 
all current problems. This tendency is so strong that previously proven 
methods or tools would be forgotten as soon as a new idea gains some 
support, and consequently problems are re-solved in a new style. Maarten 
Boasson recognized that this is a perfect recipe for preventing progress in a 
discipline [McConnell, 2000].   

 
Definition 2.2 A principle of software engineering is a generic 

theorem, rule, law, or methodology that can be applied to a wide range of 
cases and instances in software engineering. 

 
The IEEE Software Engineering Standards Committee (SESC) 

proposed that the following criteria can be used to select the fundamental 
principles for software engineering [SESC, 1996/97/99; Tripp, 1996; Abran 
et al., 1999; Dupuis et al., 1999]:  

 
     • Principles are less specific than methodologies and techniques 
     • Principles are more enduring than methodologies and 

techniques 
     • Principles should be able to withstand the test of time 
     • Principles should be selected or elicited from best practices 
     • Principles should not contradict more general engineering or 

computer science principles 
     • Principles should be precise enough to be applied and 

implemented 
     • Principles should not conceal a tradeoff  
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Table 2.2 
The Integrated Set of Software Engineering Principles    

 

Individually Identified Principles No Unified Principles 
Parnas

 
(DP) 

Hoare
 

(TH) 

Brooks 
 

(FB) 

Wasser-
man 

(AW) 

IEEE  
SESC 
(SC) 

IEEE  
Software 

(SW) 
1 Abstraction  TH5  AW1   
2 Decomposition and 

modularization  
DP2 TH6  AW4 SC9 SW9 

SW10 
3 Information hiding DP1     SW2 
4 Engineering approach DP3    SC6  
5 Professionalism DP4 TH1     
6 Tools and environments  TH4  AW8  SW5 

7 Documentation DP5      
8 Stepwise refinement     SC10 SW3 
9 Prototyping    AW10   
10 Engineering notations    AW2  SW6, SW7 
11 Process models    AW5 SC5 SW8 
12 Reuse    AW6 SC2  
13 Measurement and metrics    AW7 SC1 SW11 
14 Cognitive complexity 

control 
  FB1 - 3  SC3 

 
 

15 Formal requirement 
specification 

    SC4, 
SC7 

 

16 Systematical quality 
assurance 

    SC8, 
SC11 

 

17 Review and inspection      SW1 
18 Management engineering     SC12/15  
19 Domain knowledge     SC14  
20 Customer involvement      SW4 
21 Feasibility analysis     SC13  
22 Comprehensibility  TH7     
23 Exception handling  TH2     
24 Divide-and-conquer DP2      
25 Visualization   FB4    
26 Theoretical foundations  TH3     
27 Architecture and 

behavior modeling 
      

28 Standardization       
29 Systems engineering       
30 Engineering organization       
31 Cognitive engineering       

 
There are 50 software engineering principles identified in Section 2.2 

with considerable overlaps as well as gaps. Also, it is noteworthy that the 
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ways in which the principles were identified and proposed were ad hoc and 
informal. Eliminating overlaps among these proposals, there are 26 software 
engineering principles identified in the literature as shown in Table 2.2. 
Those principles that have not been identified in Section 2.2 are newly 
proposed by the author based on recent studies on the nature of software and 
software engineering, such as architectural and behavioral modeling, system 
engineering, engineering organization, cognitive engineering, and theoretical 
foundations [Wang, 2001g/02j/02g/04a/04b/05i/05k/05j/06a/06h/06i; Wang 
and Patel, 2000; Wang et al. 2006].  
 This section attempts to systematically derive a set of fundamental 
principles of software engineering that is commonly recognized in the work 
of Parnas, Hoare, Brooks, Wasserman, McConnell, IEEE SESC, Wang 
[Wang, 2004c/05a/05i/05k/05l; Wang et al., 2004], and of many other 
authors. It is achieved by a mapping between the principles identified in 
Section 2.2 as summarized in Table 2.2. A set of 31 fundamental principles 
of software engineering is then elicited, and each of them will be formally 
described in the remainder of this section.  
 
2.3.2 THE UNIFIED FRAMEWORK OF SOFTWARE 
         ENGINEERING PRINCIPLES 
 

The relationship between the fundamental principles and basic 
constraints of software engineering is a complicated relational network. A 
main thread to analyze their relations is to perceive the constraints are the 
problems, and the principles are the measures to tackle the problems. On the 
basis of this thread, a mapping between the 31 fundamental principles 
developed in this chapter and the 14 basic constraints as identified in Section 
1.3 can be carried out as shown in Fig. 2.2. A detailed mapping of the 
principles of software engineering into the basic constraints in the categories 
of cognitive, organization, and resources will be presented in Section 2.4 and 
summarized in Table 2.3.    
 
2.3.3 DESCRIPTION OF THE FUNDAMENTAL 
         PRINCIPLES OF SOFTWARE ENGINEERING 
 

The following subsections describe each of the 31 fundamental 
principles for software engineering as identified in the unified framework 
shown in Table 2.2 with a more rigorous and formal treatment.  

 

2.3.3.1 Abstraction 
 

Abstraction is a powerful means of philosophy and mathematics. It is 
also a preeminent trait of the human brain identified in cognitive informatics 
studies. All formal logical inferences and reasoning can only be carried out 
on the basis of generic and abstract properties shared by a given set of 
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objects under study. Abstraction is a powerful key to reduce complexity in 
software engineering.  

 

Definition 2.3 Abstraction (PR1) is a software engineering principle 
for eliciting essential properties of a set of objects while omitting inessential 
details of them. 

 
       

PR1 Abstraction C1 
Intangibility 

C2 
Complicity 

C3 
Indeterminacy 

C4 
Diversity 

C5 
Polymorphism 

C6 
Inexpressiveness 

C7 
 Inexplicit embodiment

C8 
 Unquantifiable quality

C10 
Conservative productivity 

C11 
 Labor-time interlock 

C12 
Costs 

C13 
Human dependency 

C14 
Hardware dependency 

C9 
 Time dependency

PR2 decomposition/ 
        modularization 

PR17 Review and 
          inspection 

PR3 Information 
        hiding 

PR4 Engineering 
        approach 

PR19 Acquiring 
          domain  
          knowledge  

PR5 Professionalism 

PR6 Tools and  
        environments 

PR7 Documentation 

PR8 Stepwise  
        refinement 

PR14 Cognitive 
          Complexity 
          control 

PR9 Prototyping 

PR10 Adopting 
          Engineering 
          notations 

PR11 Process  
          modeling 

PR12 Reuse 

PR13 Measurements 
          and metrics 

PR18 Management  
          engineering 

PR15 Formal  
          Requirement 
          specification 

PR16 Systematic  
          quality 
          assurance 

PR25 Explicit  
          embodiment 

PR29 System 
          engineering 

PR26 Establishing 
          theoretical 
          foundations  

PR27 Architecture  
          and behaviour 
          modeling 

PR28 Standardization 

PR31 Cognitive 
          engineering 

PR30 Engineering 
          organization 

PR23 Exception 
          handling 

PR22 Improving 
          comprehen- 
          sibility 

PR21 Feasibility  
          analysis    

PR20 Customer 
          involvement 

PR24 Divide and  
          conquer 

  
Figure 2.2 Principles of software engineering as measures for its constraints 
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The mathematical principle of abstraction in set theory will be 
rigorously described in Section 4.2. Human abstract knowledge about the 
world may be described by a set of objects and their relations. For seeking 
generality and universal truth, either the objects or the relations can only be 
abstractly described and rigorously inferred by abstract models rather than 
real-world details. 

Abstraction is recognized as a gifted capability of human beings. It is a 
basic cognitive process of the brain that is modeled at the meta cognitive 
layer of the cognitive models of the brain as described in Chapter 9. 
Throughout this book, it will be seen that only by abstraction the important 
theorems and laws of software engineering may be elicited and discovered 
from a great variety of phenomena and empirical observations in software 
engineering.                

 
2.3.3.2 Decomposition/Modularization 
 
 In software engineering, decomposition as a process results in 
modularization. The contemporary concepts of software modules are such as 
objects, components, design patterns, and applications frameworks.      
 

Definition 2.4 Decomposition and modularization (PR2) are a software 
engineering principle by which the functions of a software system are broken 
up and allocated into individual modules or components.   
 

The central idea of modularization is based on the basic assumption 
that a software system can be broken up or decomposed into smaller 
functional pieces during system design. When these pieces are implemented, 
the system can be composed by integrating these pieces together. This is 
known as the re-composability of software. The decomposed software pieces 
were called modules during the 1950s to the 1980s, and then they are known 
as classes/objects or components since the 1990s.                       

An important condition of modularization is that a global view, i.e., the 
big picture of the whole system, should be consistently maintained and 
relationships among components and between the system and the 
components should be unambiguously understood. During functional 
decomposition, the modules/components and their interfaces should be 
clearly defined.    
 Another rule in modularization is localization by which logically 
related functions and operations will be encapsulated into one module or 
components. This will also improve module cohesion and decrease module 
coupling.     
 However, many evidences of problems in software engineering indicate 
that the decomposition-integration approach, or the basic assumption of the 
reassembly-ability of software, may be doubtful. Because, according to 
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system theory as described in Chapter 10, the information loss during 
decomposition may lead to a non-lossless conjunction of the modules into a 
coherent system. 
 
2.3.3.3 Information Hiding 
 
 Information hiding is a consequence of abstraction (PR1) and 
modularization (PR2). In other words, the methodology for information 
hiding is abstraction and modularization.        
 

Definition 2.5 Information hiding (PR3) is a software engineering 
principle for the reduction and mask of unnecessary information of software 
at a given level from the lower level details. 
 

The purpose of information hiding is to keep the uncommon properties 
and unshared information of software components at lower level constructs. 
Information hiding and modularization are helpful to limit the degree of 
coupling between software components, prevent propaganda of faults, 
changes, maintenance errors into other components of a software system.  

Parnas proposes that the key to improve design quality in software 
system design is to limit the information coupling among modules [Parnas, 
1971/72]. Parnas points out that “a programmer is most effective if shielded 
from, rather than exposed to, the details of systems parts other than his own 
[Parnas and Clements, 1986].”  

Abstraction and set theory provides rigorous means to describe 
information hiding. The HAMSD model and the mathematical foundations of 
information hiding and abstraction are discussed in Sections 1.2.4 and 4.2, 
respectively. 

                    
2.3.3.4 Engineering Approach 
 

Although the engineering approach to software development was first 
proposed by Baure in 1968 [Naure and Randell, 1969; Bauer, 1976], Parnas 
best expressed the need of software engineering and what the engineering 
characteristics and professionalism are [Parnas, 1971/72/78/95]. 

 
Definition 2.6 Engineering approach (PR4) is a software engineering 

principle that states software development and its organization should adopt 
proven generic engineering methodologies and practice.  
 

Hoare believed simplicity and elegance are important characteristics of 
all engineering disciplines. Hoare proposed to maintain the criteria of 
simplicity in language and system design, and suggested to build only what is 
needed for a program [Hoare, 1973/80].   
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Parnas emphasizes that the focuses of software engineering theories 
and methodologies must always put on both ‘fundamental knowledge’ and 
‘program design’ rather than specific techniques and language syntax 
[Parnas, 1971/72/96].  

 
One of the discoveries on the nature of software engineering is that the 

problems of software engineering are an organizational issue, as well as the 
cognitive and resources issues. The major organizational issues in software 
engineering are work organization, optimal labor/time allocation, and 
division of labor. A comprehensive exploration of generic engineering 
methodologies and approaches will be presented in Chapter 8 on the 
engineering foundations of software engineering.         

 
2.3.3.5 Professionalism 
 

Professionalism is a common standard in engineering and many other 
sectors of the society, such as those of medical doctors, lawyers, and 
accountants.  

 
Definition 2.7 Professionalism (PR5) is a software engineering 

principle that refers to the competence or skill expected for a professional 
software engineer who is formally trained and certified. 
 

Professionalism of software engineering refers to the qualification, 
identity, and ethic of qualified software engineers. Professionalism of 
software engineering also refers to the professional and social responsibilities 
of software engineers and their effort for maintaining professional integrity 
and service quality to customers and the society.  

 
Because of the importance of software in many systems and daily life 

in the modern information society, software engineers take much more 
responsibility in system design, implementation, and maintenance, as well as 
in technology development and evaluation. The ultimate objective of 
professionalism in software engineering is that the software engineers are 
capable to recommend a solution to customers that is cost-effective, simple, 
efficient, practical, satisfactory, reliable, and safe. 

           
2.3.3.6 Tools and Environments 
 

A tool is a device with a particular function for doing something. A tool 
in software engineering is a system or application software that is used to 
create, design, or implement other software. An environment for software 
engineering is an integrated set of supporting tools that cover multiple 
development processes of software engineering.  
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Definition 2.8 Tools and environments (PR6) are a software 
engineering principle that states software development tools and software 
engineering supporting environments are facilities that enable efficient 
organization of coordinative work or extend human physical and intelligent 
capability in software development. 

 
Tools are crucial means in software engineering to improve both 

productivity and quality, as well as to extend the capability or lower the 
requirement for skills of software engineers. It is noteworthy that both tools 
and supporting environments for software engineering should be treated as a 
system that integrates a coherent set of certain functions rather than 
individual means.        

Tools and supporting environments are used to extend human physical 
and/or intelligent capability. The latter is particularly needed in software 
engineering, such as those of dealing with the cognitive complexity, 
facilitating coordinative work, improving productivity, and saving resources 
and labor. Fundamental supporting environment for software engineering 
should focus on cognitive, organizational, and productivity.                       
 
2.3.3.7 Documentation 
 

Documentation is written materials that serve as a record of information 
and evidence. Software engineering documentation encompasses not only 
source code, but also all intermediate work products toward the code and its 
validation and operation, such as memorials, contracts, design architectures 
and diagrams, reports, configurations, test cases, maintenance logs, design 
comments, and user manuals.    
   

Definition 2.9 Documentation (PR7) is a software engineering 
principle that is used to embody system design and architectures, record 
work products, maintain traceability of serial decisions, log problems and 
maintenance solutions, and enable postmortem analysis.  
 

The need for documentation is to express and embody the intangible 
and abstract design and implementation information, including all 
intermediate work products and decision rationales in software engineering 
that are usually created in software engineers’ and managers’ minds, 
explicitly described and formally recorded. 

Therefore, documentation is required for all software engineering 
processes from requirements to system design, from specification to code, 
and from target configuration to maintenance. Emphases should be put on 
what Parnas stressed on software engineering documentation: “Design 
without documentation is not design [Parnas and Clements, 1986; Hoffman 
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and Weiss, 2001],” and “If it is not documented, it is not done [Parnas, 
1994b].”                     
 
2.3.3.8 Stepwise Refinement 
 

Refinement is a process to improve or clarify a conceptual model or 
prototype by a series of deductive extensions or incremental development of 
details. 

    
Definition 2.10 Stepwise refinement (PR8) is a software engineering 

principle for deductively extending a conceptual model of requirements for a 
given software system by a series of expatiations and incremental 
specifications at an increased degree of details.    

 
Software design refinement can be carried out by a serial process of 

improved clarity starting from a conceptual model, in which each step results 
in an intermediate model that reveals greater degree of details of the 
architecture and behaviors of the system. The philosophy of refinement is 
deductive extension, where each of them is based on known principles, laws, 
and constraints for that particular step of refinement.  

The incremental software development methodology is a special case of 
stepwise refinement. It is noteworthy that incremental development, as well 
as stepwise refinement, is a useful system design methodology, but not a 
system implementation technique. Stepwise refinement of system design is 
the strategy to deal with the great cognitive complexity in the specification 
and design phases of a system. However, once the design of the system is 
obtained, its implementation should be completed as customers require rather 
than done incrementally. 

Usually, detailed system specifications may be obtained through three 
to four steps of refinements. Detailed descriptions of system refinement 
methodologies can be referred to Section 4.7. If stepwise refinement may be 
perceived as an incremental design or specification methodology, 
prototyping that will be introduced below can be perceived as an incremental 
implementation methodology in software engineering.        
 
2.3.3.9 Prototyping 
 

A prototype in engineering is a rough or preliminary model of an 
implementation based on which refined designs or improved models can be 
developed. Prototyping is an experimental process in which the design of a 
required system can be evaluated and validated via a prototype of the system. 
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Definition 2.11 Prototyping (PR9) is a software engineering principle 
for evaluating or validating a design and feasibility of a required system 
based on the implementation of a prototype of the system. 

    
Prototyping is a common practice in almost all engineering disciplines. 

Prototyping is particularly important in software engineering because a 
prototype is an executable model that embodies abstract system 
specifications and design concepts. The focus of software engineering 
prototyping should be on evaluation and validation of the design on the basis 
of the system specifications. Therefore, a matured process of the design 
phase in software engineering must include requirement analysis, system 
specification, feasibility evaluation, system design, prototyping, and design 
evaluation, before a full scale implementation may be commenced.    
 

 
 
2.3.3.10 Adopting Engineering Notations  
 

A notation is a set of symbols for representing attributes of real-world 
or abstract objects such as quantity, quality, characteristics, and 
classifications. Software engineering notations are formal and descriptive 
notations designed for the description and embodiment of intangible software 
architectures and behaviors.  
 

Definition 2.12 Adopting engineering notations (PR10) is a software 
engineering principle for abstracting, denoting, and modeling of user 
requirements and system specifications expressively and explicitly. 
 
 Notations are the formal means of software modeling and design. They 
also facilitate top-down refinement of software systems from top-level 
designs to low-level details. This leads to the realization of automatic code 
generation based on explicitly refined system specifications.         

Although, almost all engineering disciplines adopt blueprints, block 
diagrams, or schematic diagrams in system design and modeling, due to the 
abstract and intangible nature of the object under study, software engineering 
requires a descriptive notation system that must be application, method, and 
language independent. A recent development for such notations for software 

 

Corollary 2.1 As a necessary and sufficient condition for full scale 
implementation of a software system, the design phase of software 
engineering shall be extended from requirement analysis, system 
specification, and system design to feasibility evaluation, prototyping, and 
design evaluation.  
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engineering is RTPA, which is developed based on cognitive informatics 
studies that help to elicit basic architectural and behavioral processes of 
software system [Wang, 2002a/02c/03c/06a]. RTPA encompasses a small set 
of mathematical notations for 17 meta processes and 17 process relations. 
However, this coherent set of notations is adequate to seamlessly model and 
describe system and human behaviors from top-level design to low-level 
implementations based on algebraic rules. RTPA will be described in 
Sections 4.5 through 4.8, as well as Section 6.6. 
 
2.3.3.11 Process Modeling 
 

A process is a series of actions toward a particular goal or a series of 
transitions toward a particular state. A process model is a formal description 
of the sequence of actions or transitions and their conditions.               
 

Definition 2.13 Process modeling (PR11) is a software engineering 
principle for dealing with organizational and managerial issues in software 
engineering, as well as software behaviors.        
 

Understanding the need to examine the software engineering process 
follows naturally from the premise that has been found to be true in other 
engineering disciplines, that is, that better products result from better 
processes. For the expanded domain of software engineering, the existing 
methodologies that cover individual subdomains are becoming inadequate. 
Therefore, an overarching approach is sought for a suitable theoretical and 
practical infrastructure to accommodate all the modern software engineering 
practices and requirements. An interesting approach, which is capable of 
accommodating the complete domain of software engineering, has been 
recognized and termed the “software engineering process”. Adoption of the 
software engineering process paradigm will enhance software engineering 
methodologies and techniques in the aspects of management and 
organization, and quality assurance.  
  

RTPA can be used as a formal tool for process system modeling and 
description. In other words, software engineering processes can be formally 
treated and manipulated on the basis of algebraic rules.       
 
2.3.3.12 Reuse 
 

Reuse refers to using a software object more than once. It is perceived 
that design for reuse can improve programming efficiency and productivity 
in software engineering.    

  

© 2008 by Taylor & Francis Group, LLC



Chapter 2  Principles of Software Engineering   99 

Definition 2.14 Reuse (PR12) is a software engineering principle for 
adopting higher-level building blocks, such as algorithms, methods, 
processes, patterns, frameworks, in order to improve efficiency, productivity, 
and quality of software engineering.       
 

There is a whole spectrum of reuse opportunities from language 
statements up to system design notations. However, reuse is first a 
philosophy suggesting that a completely new development from scratch is 
anti-productive and always error-prone in software engineering. Reuse is a 
universal practice in all engineering disciplines.  

In software engineering, reuse had been focused on code at a higher 
level than statements of programming languages. However, considering that 
software is a specific solution to a given application on a general hardware 
platform and every application is a one-off activity, code reuse will not be 
significantly beneficial to software engineering as the technology might 
promise, because there are not so many generic and universal software 
components available.            

On the other hand, if a broad perception of reuse in software 
engineering is adopted from reuse of code to design patterns, frameworks, 
tests, processes, and documentation, there will be a wide range of 
applications of reuse. The constraints and bottleneck for software reuse 
beyond language statement level is not programmers’ willingness but the 
standardization of highly reusable components. In software engineering, the 
majority of reusable functions and components have been already a part of 
different kinds of system software. Then, generic reusable components in 
application software are system frameworks, patterns, algorithms, processes, 
and documentation.     
 A recent progress in reuse methodologies for software engineering is 
the finding that tests can be reused as well as that of code via the techniques 
known as Built-in Tests (BITs) [Wang et al., 1997/98a/99d/2000]. BITs 
provide a new focus on reuse for both system and application software 
systems, especially for real-time and safety-critical systems.  
 
2.3.3.13 Measurements and Metrics 
 

A measurement can be perceived as a process to evaluate and quantify 
an attribute of physical or abstract object against a certain standard or a unit 
system. Metrics is a system of the standard of measurement. 

   
Definition 2.15 Measurements and metrics (PR13) are a software 

engineering principle that is applied to elicit generic software attributes, 
quantify their measurement, and unify their metrics.    
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Measurement and metrics play an important role in quantitative 
software engineering, because where there is no measure, there is no control 
on both quality and productivity [Fenton, 1991; Melton, 1996; Zuse, 1997; 
Fenton and Pfleeger, 1997; Wang, 2001f/02d/02f]. However, software 
measurement and metrics have been overlooked in software engineering for 
decades, perhaps partially because of the immaturity of software 
measurement theories, and partially because the  software industry has not 
been convinced with the benefits of quantitative software engineering. 
Nevertheless, the day of the maturity of software measurement theories and 
practices will be the day of the maturity of software engineering itself.                   

 
2.3.3.14 Cognitive Complexity Control  
 
 Complexity is an attribute of a physical or abstract system that 
represents the magnitude of its internal parts and the extent of their intricate 
connections. Complexity in nature is closely referred to the cognitive 
difficulty in comprehension and analysis of the system or objects.              
 

Definition 2.16 Cognitive complexity control (PR14) is a software 
engineering principle for dealing with the innate difficulty in both 
architectural and behavioral design and implementation of software systems 
by a variety of means such as abstraction, modularization, descriptive 
notations, stepwise refinement, and prototyping.   

          
As the scale of software increases continually and at an ever faster rate, 

greater complexity of software engineering becomes critical. Although, no 
language, tool, or technology may reduce the inherited complexity of a given 
problem, proven principles and methodologies can help system architects and 
programmers to comprehend, represent, and manipulate the cognitive 
complicity better in software engineering.                       

 
Except the technical complexity in software engineering, a whole set of 

cognitive difficulty lies in the areas of organization and management of 
large-scale  software  system  development.  It  will  be  shown  in  Section 
8.5 that a certain workload of a given software project may be amplified 
several even hundreds times due to improper organization and poor 
management. This can be considered the major reason that results in the 
failures of more than half of large software engineering projects with 
severely overspent budgets and/or overrun schedules [Schonberger, 1981; 
Jones, 1996; Wang, 2006c; Wang and King, 2000a; Wang and Shao, 2003;  
Shao and Wang, 2003].   
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2.3.3.15 Formal Requirement Specification 
 

A requirement is a need or wish for a certain object or a function for a 
particular purpose and with given conditions. A specification is a precise 
statement of a requirement for identifying its attributes and functions, 
describing its design and implementation approaches, and proving evaluation 
standards.     
  

Definition 2.17 Formal requirement specification (PR15) is a software 
engineering principle that states customers’ nonprofessional requirements for 
a software system should be formally and rigorously specified in the 
development team in order to avoid any misinterpretation and ambiguity, and 
to eliminate any conceptual gap and inconsistency.          
 

Formal system specification helps to identify conceptual gaps about the 
perceived system in customer’s requirements, between the development team 
and the customers, and among team members. It is also a perfect means for 
documenting designs of software systems that is independent of 
methodologies, languages, and implementation techniques.              
 Because the major difficulty in early phase design in software 
engineering is the cognitive complexity, a rush into coding by a large group 
of programmers may create more problems than those of solved, which may 
dramatically increase the real workload for a given project. Instead, the 
payoff of a formally specified system approach will be seen in the 
implementation phase by an improved productivity, shorter duration, and 
predictable quality.  
 
2.3.3.16 Systematic Quality Assurance 
 

Quality is a distinctive attribute or the extent of excellence of an object 
against a certain standard. Quality assurance is the maintenance of a required 
level of quality for a given object by systematical controls and evaluations 
throughout all processes.   
 

Definition 2.18 Systematic quality assurance (PR16) is a software 
engineering principle that states software quality is multiple faceted; 
therefore a systematic tackle is needed on all attributes of software quality 
and their quantitative measurement.        
 

The study on software quality and quality assurance is a particularly 
weak area in software engineering and the software industry. The vague 
perception on the nature of software quality, the lack of quantitative 
measures for software quality, and the stranding to software quality 
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assurance indicate that software quality is a theoretical problem rather than a 
technical one yet to be solved in software engineering. A rigorous description 
of software quality and quality assurance as a system problem will be 
presented in Section 11.4.                                
 
2.3.3.17 Review and Inspection 
 

Review is a process to assess a given object by carefully and critical 
readings of peers or more experienced experts. Inspection is a process to 
examine if a given object confirms with a certain standard or requirement.   

      
Definition 2.19 Review and inspection (PR17) is a software 

engineering principle for finding and eliminating software design and 
implementation defects via reading and examining the work products by peer 
or more experienced reviewers.      
 

Review and inspection have been found effective and useful in design 
phase of software development rather than implementation phase, because in 
the early phase there are no other verification techniques or tools available, 
and no thorough testing can be carried out before the code is ready. 
Weinberg believed that review and inspection are an indispensable part of 
engineering high quality software, because no matter how smart a 
programmer is, reviews will be beneficial [McConnell, 1999]. Watts 
Humphrey proposed that review should be a mandatory process before code 
compiling and testing [Humphrey, 1995/96].            

The theory behind the empirical usage of review and inspection in 
software engineering is based on the theory of the randomness of human 
errors in performing tasks [Wang, 2005f]. Because different programmers 
are unlikely to make the same mistake for the same task at the same time in 
software development, review and inspection are entitled to find errors and 
eliminate bugs efficiently. Section 13.5.3 will formally prove that review and 
inspection are effective techniques dealing with creative work products such 
as software systems and related documents. 
   
2.3.3.18 Management Engineering  
 

Management is a process to deal with coordinated work and how 
people and resources may be optimally allocated on the work.               
 

Definition 2.20 Management engineering (PR18) is a software 
engineering principle that states a crucial facet of software engineering is the 
need for a suitable theory for organizing and coordinating large groups in 
large-scale projects.            
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As the scale of software increases continually, the complexity of the 
problem grows at an ever faster rate. In contemporary software engineering, 
the central role is no longer that of the programmers; project managers and 
corporate management have critical roles to play. As programmers use 
programming technologies, software corporation managers seek 
organizational and strategic management methodologies, and project 
managers seek professional management and software quality assurance 
methodologies. These developments have resulted in an expanded domain of 
software engineering, which includes three important aspects: development 
methodology, organization and infrastructure, and management [Wang and 
King, 2000a]. 

An interesting discovery in a recent survey on the international 
curricula of software engineering is that project management is the most 
popular course commonly offered in almost all universities worldwide 
[Wang and Liu, 2004]. Management theories and methodologies are an 
important facet of the theoretical and empirical framework of software 
engineering. A formal treatment of the coordinative work organization theory 
and the management foundations of software engineering will be presented 
in Chapters 8 and 11, respectively. 
 
2.3.3.19 Acquiring Domain Knowledge  
 

Domain knowledge is the knowledge about application areas, the nature 
of categories of problems, and the environment and context in which a given 
problem is encountered, and conventional customer practice for dealing with 
the problem.  
 

Definition 2.21 Acquiring domain knowledge (PR19) is a software 
engineering principle that states four aspects of domain knowledge, such as 
(a) the nature of the problem, (b) the environment and context of the 
problem, (c) current customer practice for dealing with the problem, and (d) 
existing regulations and constraints in the application area, should be 
acquired before a system design for the given problem may proceed. 

           
The approaches to obtain essential domain knowledge are as follows:  
 
     •  To observe how the customer deals with the problem traditionally.       

     •  To understand the environment of the problem and processes 
preceding and following the given problem.  

     •  To be aware of any regulations, standards, and constraints related 
to the given problem.  
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     •  To survey alternative practices, best practices, and domain norms 
on the given problem.      

     •  To search possible existing solutions in the literature.    
 

The need for domain knowledge in software engineering is a necessary 
condition to be able to design a professional system that best suits customers’ 
requirements and environment. This need leads to the following principle of 
software engineering known as customer involvement, and it also results in a 
new role in the software industry called domain engineers who are 
specialized in one or more application domains and familiar with typical 
software solutions for problems in these domains.  

       
2.3.3.20 Customer Involvement 
 

Customer involvement is a key to success in software engineering. 
Customers are representatives of a project and/or end users of a software 
system, who should be involved in all processes of system development. In 
case the customer and user of a certain system are different, the target users 
have to be identified clearly. 

    
Definition 2.22 Customer involvement (PR20) is a software 

engineering principle that states all stakeholders, particularly the end users of 
a software system, should be involved throughout the entire lifecycle of the 
system by customer reviews and joint meetings.      
 
 Regular joint meetings and collection of customer review feedback are 
two useful techniques that enable customers to be involved in the 
development process of software system and feel the growth of the system 
well before adopting it in practice.         

It is noteworthy that the successful acceptation and adaptation of a new 
system is not only dependent on technical performance, but also dependent 
on users’ attitudes toward the system. Since the introduction of a new system 
requires considerable working behavioral changes even cultural changes in 
an organization, training of users and orientation of related stakeholders are a 
crucial process for the success of newly developed systems.        

 
2.3.3.21 Feasibility Analysis 
 

Feasibility is the extent of possibility or practicality to carry out a task 
within the given constraints. There are technical and economical feasibilities 
for any given task or project. The former refers to the feasibility that is 
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constrained by technology availability and adequacy, while the latter is 
determined by the analysis of the benefit-cost ratio of a given project.                   
 

Definition 2.23 Feasibility analysis (PR21) is a software engineering 
principle that states both the technical and economical feasibilities of a given 
software project should be rigorously estimated and evaluated before the 
later-phase processes may be continued.     
 

According to Corollary 2.1, feasibility analysis should be a mandate 
process between system specification and detailed system design. The rule of 
thumb in software engineering is that both technical and economical 
feasibilities should be evaluated before a software project may proceed. The 
technical feasibility of a given software engineering project is addressed 
through rigorous modeling methodologies in this book. The economic 
feasibility in software engineering is discussed in Section 12.6 on economic 
analyses of software projects.  
 
2.3.3.22 Comprehensibility 
 

Comprehension is a process to understand or a capability for 
understanding. Comprehensibility is the degree of understanding or cognitive 
capability about a particular object or issue. 
 

Definition 2.24 Improving comprehensibility (PR22) is a software 
engineering principle for explicitly and expressively describing the intangible 
problem and its solution with improved understandability, readability, and 
cognitive capability.       
 

The natural strategies for dealing with the intangible and abstract 
objects under study in software engineering are explicit description and 
facilitating comprehensibility, which include readability, cognitive 
complexity, and intellectual manageability about the problem and its 
software solution. Therefore, the emphases of software engineering theories 
and techniques should be put on supporting human comprehensibility in 
dealing with large-scale and extremely complicated software systems. 
Software engineering notations and explicit documentation methodologies 
are some typical means for improving comprehensibility of software. 

It is noteworthy that the requirement for comprehensibility covers all 
work products in software engineering including design specification, code, 
decision making records, documentation, and testing cases and results.  

The cognitive process of comprehension will be formally described in 
Section 9.5. A formal software engineering notation system, RTPA, will be 
presented in Sections 4.5 through 4.8 (notations and methodologies), 
Sections 5.3 through 5.6 (usage), and Section 6.6 (deductive semantics).    
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2.3.3.23 Exception Handling  
 

An exception is an unusual event or behavior that is not expected 
according to a given rule or norm. 

 
Definition 2.25 Exception handling (PR23) is a software engineering 

principle that states system design and specification should consider not only 
customer required functions for a given system, but also all possible 
exceptions that may drive the system into illegal state(s) in the entire state 
space of the system.           
 

The size of the state space of a program is determined by a Cartesian 
product between the number of possible states and the number of possible 
events. However, the required or legal states of functions for a given system 
are usually a small portion of the whole space. The remainders are 
nonrequired or illegal states. Customers of a given system just require the 
desired and legal functions of the system, but the job of system analysts and 
architects is to identify the whole state space of the system and predicate 
what would happen if the system enters an illegal state by any reason such as 
external interferences, data distortions, human mistakes, or hardware 
malfunctions. Therefore, in a certain extent for professional architects, 
system designs are meant not only to consider the required functionality but 
also to prevent what would go wrong in the given system setting.                                                           

Exception handling is first to identify all possible illegal transitions in 
the entire state space of the system and then prevent them from happening. 
An exception handling strategy and process should be designed for each 
exception or each category of equivalent exceptions.  
 
2.3.3.24 Divide and Conquer 
 

Divide-and-conquer is an analytic strategy of system design based on 
reductionism. In software engineering, divide-and-conquer, functional 
decomposition, and modularization can all be perceived as strategies for 
dealing with the cognitive complexity of software systems. 

 
Definition 2.26 Divide-and-conquer (PR24) is a software engineering 

principle that supposes if a complex system may be divided into multiple 
components, the individual components of the system will be easier to be 
dealt with than the whole system. 

 
 Empirically, to directly solve a large problem is often very difficult and 
complicated. However, if the problem can be broken up and partitioned into 
a set of smaller sub-problems, and the sub-problems are usually easier than 
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the original problem, then the problem may be solved individually. This is 
the philosophy of divide-and-conquer.  

 
As that of the abstraction principle, divide-and-conquer is another key 

to reduce complexity in software engineering. The techniques for conducting 
divide-and-conquer in software engineering are modularization and 
decomposition. It is noteworthy that the essence of the principle of divide-
and-conquer is not ‘to divide’ but ‘to conquer.’ Therefore the architecture 
and structure of the decomposed components are the core in any technology 
that supports system modularization.                     

 
When applying the principles of divide-and-conquer, a practical 

question is how many sub-components should be divided. A heuristic rule is 
that when the given system is divided into a set of similar sized sub-systems, 
an optimistic solution would be reached. Especially, when the sub-systems 
are divided further in the same way, a hierarchical tree structure may be 
derived by recursively applying the divide-and-conquer principle. The 
heuristic rule indicates that the best way in modularization is to divide the 
modules, components, or subsystems into similar and balanced sizes. More 
formal treatment of this heuristic rule will be provided in Section 10.3 on 
system topology.              

 
2.3.3.25 Explicit Embodiment  
 

Embodiment is a representation or expression of an abstract object, 
such as an idea, concept, or feeling, in a tangible or visible form.    

  

Definition 2.27 Explicit embodiment (PR25) is a software engineering 
principle for dealing with the implicitness and inexpressiveness in software 
engineering by introducing more powerful descriptive means at a higher 
level of abstraction and precision.           
 

According to the principle of explicit descriptivity as given in Theorem 
1.3, only a higher level of more abstract and more precise means is adequate 
and sufficient to express and embody an object at a certain level of 
abstraction.      

Because of the nature of software, architectures are complicatedly 
interrelated objects with functional variables and constraints, and behaviors 
are embedded relational processes. These types of abstract and complicated 
entities may only be expressed without implication and ambiguity by 
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professional notation systems, because only more abstract and precise means 
is powerful enough to express an object at a given level of abstraction. 
Therefore, symbolic notations are the key means for expressing and 
embodying software visualization. A form of denotational mathematics for 
describing software engineering work products, RTPA, will be described in 
Chapters 4, 5, and 6.    
     

2.3.3.26 Establishing Theoretical Foundations  
 

A foundation is a principle that forms an underlying basis for deriving 
new knowledge and for supporting rigorous reasoning. A theoretical 
foundation is a set of formally described foundations derived by rigorous 
inductive inferences and proven true universally.        
   

Definition 2.28 Establishing theoretical foundations (PR26) is a 
software engineering principle that states rigorous theories and generic laws 
should be elicited once there are a wide variety of observed phenomena and 
alternative practices.         
 

The lack of theoretical foundations in software engineering is an 
essential deficiency for software engineering to be claimed as a matured 
engineering discipline. Theories in nature are abstract, generic, and 
mathematically rigor. Software engineering theories and their foundations on 
the basis of mathematics, particularly denotational mathematics such as logic 
and process algebra, allow reasoning about the work products in software 
engineering before they are built, and the optimal organization of large 
development projects and cooperative human creative work.  

This book is devoted to seek the fundamental theories and suitable 
mathematical means for software engineering. The foundations of software 
engineering will be systematically established in the remainder of this book 
on those of philosophy, mathematics, computing, linguistics, information 
science, cognitive informatics, system science, management science, 
economics, sociology, and engineering science.  
 
2.3.3.27 Architecture and Behavior Modeling 
 
 Modeling is a process to represent complicated objects by systematical, 
visualized, procedural, or denotative means.  
 

Definition 2.29 Architecture and behavior modeling (PR27) is a 
software engineering principle that states software system models are a 
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hybrid model where both architectures and behaviors should be coherently 
described. 

 
In software engineering, modeling is focused on the architectures and 

behaviors of software systems. The former refers to the abstract models of 
the data objects and their logical structures, relations, and constraints; the 
latter are computational and interactive operations onto the architectural 
model and their interacting environments. 

RTPA provides a denotative mathematical means for modeling 
software system architectures and their static and dynamic behaviors via a 
top-down refinement scheme. Based on the explicit and rigorous models 
specified in RTPA, corresponding code in a desired programming language 
can be generated automatically using RTPA supporting tools as extensively 
described in Chapters 4, 5, and 6.                                
 
2.3.3.28 Standardization 
 

Standardization is a process to establish and quantify measures, norms, 
or models for enabling comparative evaluation of work products or services. 
Standardization is not only useful in societies and everyday life, but also 
particularly important and widely applied in engineering for documenting 
common factors and best practices, and synchronizing individuals and 
systems behaviors.     
 

Definition 2.30 Standardization (PR28) is a software engineering 
principle for attempting to integrate, regulate, and optimize existing 
principles and best practices in research and in the industry.  
 

Standardization provides a metric, norm, or benchmark as the standard 
for a certain attribute of a category of objects. Then, measurement may be 
carried out based on the standard.  

Software engineering standards are not only records of best practices, 
but also vehicles for reconciling successful practices with the underlying 
principles of the profession. In software engineering, a large portion of 
cognitive, technical, and organizational practices are widely optional or even 
arbitrary when they are conducted in an isolated environment. However, 
when they are designed and applied for public uses, standardization becomes 
necessary. Because of the widely optional feature of design and 
implementation in the software industry, the first system of a kind in the 
market may become a de facto standard. 

A comprehensive review of software engineering standards and 
international effort in software engineering standardization will be provided 
in Section 8.6.5 [Wang, 2001b].      
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2.3.3.29 Systems Engineering 
 
 A system is a complex whole of interacting components toward a 
particular goal. System engineering is the application of system science that 
adopts a systematical view to treat complicated objects and their interactions 
with the external environment.    
 

Definition 2.31 Systems engineering (PR29) is a software engineering 
principle that states system science theories and methodologies should be 
adopted to deal with complicated architectures and behaviors of software.      
 

One facet of software as explored in Section 1.5.8 is that it can be 
perceived as a system. The design and implementation of both architectures 
and behaviors of software are a system issue in software engineering. A 
rigorous description of system theories by system algebra [Wang, 2006d] and 
system science foundations of software engineering will be presented in 
Chapter 10. An important finding according to the formal system model is 
that the complexity of a system is on the order of O(n2) in general, where n is 
the number of components or objects in the system [Wang, 2006c/06d].    

  
2.3.3.30 Engineering Organization 
 
 Organization is a process to systematically and efficiently coordinate 
human activities and interactions for a given work or social event. 
    

Definition 2.32 Engineering organization (PR30) is a software 
engineering principle that states the coordinative work organization theory 
should be adopted in order to optimize team, project, and enterprise 
organizations. 
 

It is identified that an essential facet of the problems in software 
engineering is an organizational issue, which is as equally important as those 
of the cognitive and technical ones. Therefore, organizational theories and 
management methodologies can play an important role in software 
engineering. 

A formal treatment of generic engineering methodologies and the 
exploration of the engineering foundations of software engineering will be 
presented in Chapter 8, particularly the coordinative work organization 
theory [Wang, 2007d]. Applications of the organization theories will be 
discussed in Section 8.5 at the project level and Sections 13.4 and 13.5 at the 
society level.     

  
2.3.3.31 Cognitive Engineering 
 

Cognition is a knowledge acquisition process to understand the external 
world via sensation, perception, and reasoning. Cognitive engineering is the 
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application of cognitive informatics in explaining and solving engineering 
problems where human beings are involved as part of the system or the 
problems.  

 
Definition 2.33 Cognitive engineering (PR31) is a software 

engineering principle that states the cognitive complexity and human 
intelligent manageability should be addressed as the dominant problem in 
almost all processes of software design, implementation, and maintenance. 
 
 As described in Section 1.3, a large portion of the software engineering 
problems can be classified as a cognitive issue and is constrained by human 
cognitive capability and manageability of complexity for given problems. 
Formal descriptions of cognitive informatics foundations of software 
engineering will be presented in Chapter 9.               
 
 
 

2.4 Software Engineering Principles 
       as Measures to its Constraints  
 

 
 
In Section 2.3 a comprehensive set of 31 fundamental principles of software 
engineering has been obtained by eliciting the common core proposals of a 
number of software scientists and institutions. Based on this, a unified 
framework of software engineering principles is established.  

Principles are powerful means for facilitating deductive reasoning. This 
section examines the relationships between the basic constraints and 
fundamental principles of software engineering. The comprehensive set of 
basic principles of software engineering will be treated as the fundamental 
measures for coping with the basic constraints of software engineering. 
According to the discussions in Section 1.3, the 14 basic software 
engineering constraints can be classified into three categories known as the 
cognitive, organizational, and resources constraints as shown in Fig. 2.2. The 
applications of the 31 fundamental principles to each category of these basic 
constraints will be explored in the following subsections.     

 
2.4.1 PRINCIPLES FOR COPING WITH THE 
         COGNITIVE CONSTRAINTS    
 

The first set of the basic software engineering constraints as shown in 
Fig. 2.3 is the cognitive constraints. Many fundamental principles elicited in 
Section 2.3 are suitable to deal with these cognitive constraints in software 
engineering. A mapping of the fundamental principles into the basic 
cognitive constraints is shown in Figs. 2.3 and 2.4, respectively.      
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Figure 2.3 The software engineering principles vs. the cognitive  
                  constraints (I) 

 
It can be observed in Figs. 2.3 and 2.4 that multiple principles may be 

applied to tackle a specific problem and constraint in software engineering. 
For instance, 27 principles are applicable to deal with the cognitive 
constraint, such as abstraction, modularization, information hiding, divide-
and-conquer, modularization, stepwise refinement, prototyping, and 
decomposition. 
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Figure 2.4 The software engineering principles vs. the cognitive  
                  constraints (II) 
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2.4.2 PRINCIPLES FOR COPING WITH THE 
         ORGANIZATIONAL CONSTRAINTS    
 

The second set of the basic software engineering constraints as shown 
in Fig. 2.2 is the organizational constraints. A mapping of the fundamental 
principles into the basic organizational constraints of software engineering is 
shown in Fig. 2.5.           
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Figure 2.5 The software engineering principles vs. the organizational 
                  constraints 
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2.4.3 PRINCIPLES FOR COPING WITH THE 
         RESOURCE CONSTRAINTS    
 

The third set of the basic software engineering constraints as shown in 
Fig. 2.2 is the resource constraints. A mapping of the fundamental principles 
into the basic resources constraints of software engineering is shown in Fig. 
2.6.   
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C13 
Human  

dependency 

C14 
Hardware 

dependency 

PR2 decomposition/ 
        modularization 

PR17 Review and 
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          domain  
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PR6 Tools and  
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PR7 Documentation 
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          and metrics 

PR18 Management  
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PR15 Formal  
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PR16 Systematic  
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PR26 Establishing 
          theoretical 
          foundations  

PR27 Architecture  
          and behaviour 
          modeling 

PR28 Standardization 

PR31 Cognitive 
          engineering 

PR30 Engineering 
          organization 

PR23 Exception 
          handling 

PR22 Improving 
          comprehen- 
          sibility 

PR21 Feasibility  
          analysis    

PR20 Customer 
          involvement 

PR24 Divide and  
          conquer 

 
 

Figure 2.6 The software engineering principles vs. the resource constraints  
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2.4.4 A SYSTEMATIC VIEW ON MAPPING BETWEEN 
         THE PRINCIPLES AND CONSTRAINTS    
 

So far the basic problems and fundamental methodologies of software 
engineering have been modeled by the 14 constraints and the 31 principles, 
respectively. A general view between the principles and constraints of 
software engineering can be represented by a matrix as shown in Table 2.3. 

  

Table 2.3 
Mapping Software Engineering Principles into its Constraints 

 

Constraint 
Cognitive Organizational Resource 

 
Principle 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 

 
WPR 

      PR1   x x    x x  x x   x  7 
     PR2 x x    x x   x x x x  8 
     PR3 x x   x        x  4 
     PR4 x x x x x x x x x x x x x x 14 
     PR5           x  x  2 
     PR6 x x x x x x x x x x x x x x 14 
     PR7 x x  x x x x   x   x  8 
     PR8 x x x x x x x  x  x x x  11 
     PR9 x x x x x x x x x x x x x x 14 

PR10 x x x x x x x x x x  x x x 13 
PR11  x  x    x x x x x x  8 
PR12  x      x  x  x   4 
PR13  x    x x x  x x x x  8 
PR14 x x  x x x x x  x x x x  11 
PR15 x x x x x x x x     x x 10 
PR16    x    x    x x x 5 
PR17 x x  x x x x x     x  8 
PR18  x  x x   x x x x x x x 10 
PR19  x  x x x  x    x x x 8 
PR20 x x x x x x x x x   x   10 
PR21  x x x x x   x x x x x x 11 
PR22 x x x x x x x x x x x x x  13 
PR23  x x     x    x x x 6 
PR24  x  x  x x x x  x x x  9 
PR25 x x x x x x x x  x  x x  11 
PR26 x x x x x x x x x x x x x x 14 
PR27 x x x x x x x x x x x  x x 13 
PR28    x x   x  x  x x x 7 
PR29 x x x x x x x x x x x x x x 14 
PR30 x x  x x   x x x x x x x 11 
PR31 x x x x x x x x x x x x x x 14 

     WC 20 28 15 14 22 22 20 24 17 21 18 24 29 16  
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The mapping between the software engineering constraints and 
measures as shown in Table 2.3 can be used as a guideline for allocating 
certain methodologies for coping with a given problem in a software 
engineering project. Table 2.3 can also be used to seek new theories and 
principles for software engineering. 

Analyzing the mapping between software engineering principles and 
constraints, it may be found that some of the principles are more fundamental 
or useful in software engineering, because they deal with more basic 
constraints in software engineering problem solving.  

In Table 2.3, the right-most column provides the weights of usage 
coverage for each principle WPR. The top six most widely applicable 
principles in software engineering, which may be used to deal with all the 
basic problems, are as follows:    
 

      • PR4   Engineering approach 
      • PR6    Tools and environments 
      • PR9   Prototyping 
      • PR26   Establishing theoretical foundations 
      • PR29   Systems engineering 
      • PR31   Cognitive engineering 

 

Following the above list, a set of very useful principles of software 
engineering, which cover more than ten basic problems, is identified below 
in the order according to their weights of coverage: 

 
     • PR10   Adopting engineering notations 
      • PR22   Comprehensibility 
     • PR27   Architecture and behavioral modeling 
 

      • PR8   Stepwise refinement 
      • PR14   Cognitive complexity control  
      • PR21   Feasibility analysis 
      • PR25   Explicit embodiment  
      • PR30   Engineering organization 

 

      • PR15   Formal requirement specification 
               • PR18   Management engineering 

      • PR20   Customer involvement 
 

Generally, it may be seen from Table 2.3 that the newly identified 
principles in this book labeled PR25 through PR31 are more effective than 
those of the conventional ones.      
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In Table 2.3, the data shown in the bottom row indicate the weight of 
methodology coverage WC, or how many principles and methodologies of 
software engineering have been focused on each of the basic constraints. 
According to the weights of methodology coverage, the constraints and 
problems in software engineering are covered by multiple principles in the 
following order: C13 – human dependency, C2 – complexity, C8 – 
unquantifiable quality measures, C12 – costs, C5- polymorphism, C6 – 
inexpressiveness, C10 – conservative productivity, C1 – intangibility, C7 – 
inexplicit embodiment, C11 – labor-time interlock, C9 – time dependency, 
C14 – hardware dependency, C3 – indeterminacy, and C4 – diversity. It may 
also be interpreted that the last few problems are tougher to be dealt with 
because there are fewer methodologies covering them.  

The above list also shows the inadequacy of current principles and 
methodologies for software engineering, because most software engineering 
principles identified so far are empirical and heuristic. Toward the maturity 
of a software engineering discipline, there is still a need to seek the 
theoretical foundations and laws of these fundamental principles, and their 
rigorous description and empirical studies in software engineering.  

  

 
The development of coherent software engineering theories, 

methodologies, and techniques should put emphases on these tough 
challenges and problems in software engineering. To some extent, this is one 
of the main motivations and purposes of this book in the remaining chapters. 
By putting together all the principles as well as theoretical and empirical 
foundations, adequate and sufficient theories and methodologies for software 
engineering will be developed systematically throughout the book. 
 
 

 
2.5 Summary 
 

 
 
The principles of software engineering are the essential knowledge that a 
software engineer needs to know in order to develop software scientifically 

 

The 2nd Principle of Software Engineering 
 
Theorem 2.1 Formalization of principles states that the empirical 
principles for software engineering are heuristic and data-based; while the 
formal principles for software engineering are rigorous and mathematics-
based, which are elicited and refined from the empirical principles. 
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and effectively. A principle is a generic theorem, rule, or law of a theory that 
can be applied to a wide range of cases or instances in a field of study. A 
principle serves as a fundamental predicate for logical reasoning and 
deduction.  

Software engineering principles are a set of fundamental and coherent 
theorems and laws that constrain the behaviours of software systems and the 
processes of their development.  

This chapter has attempted to elicit a coherent set of fundamental 
principles of software engineering. The major pioneer pursuits of principles 
for software engineering in the last four decades have been reviewed, which 
provide a whole picture for understanding the fundamental theories and 
foundations of software engineering. A unified framework of software 
engineering principles has been established with a comprehensive set of 31 
commonly identified fundamental principles. These fundamental principles 
of software engineering have been treated as powerful measures to tackle the 
14 basic constraints of software engineering as identified in Chapter 1. As a 
result, the unified framework of software engineering principles has been 
established.   
 
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

The theme of this chapter is on fundamental principles of software 
engineering and their relations with the basic constraints. Through this 
chapter, readers have achieved the following strategic goals with the 
knowledge structure as summarized below. 
 

 
Chapter 2. Principles of Software Engineering  

 
■  Pioneer Pursuits of Principles for Software Engineering 
        • Parnas’ principles of software engineering 
           - Information hiding, modularization, engineering approach, 
             professional responsibility, and documentation 
  

        • Hoare’s principles of software engineering 
           - Professionalism, vigilance, sound theoretical knowledge, using 
              tools, abstraction, structured programming, and readability 
  

        • Brooks’ principles of software engineering 
           - Complexity, conformity, changeability, and invisibility 
 \ 

        • Wasserman’s principles of software engineering 
           - Abstraction, method and notation, prototyping, modularity and 
              architecture, lifecycle and process, reuse, metrics, tools and 
              integrated environments 
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     • IEEE SESC’s principles of software engineering 
       - Quantitative measurements, reuse, control complexity, rigorous 
          specification, software process, disciplined approach, 
          understanding the problem, management of quality, minimize 
          components coupling, stepwise development, specify quality, 
          objectives, change management, specify tradeoffs, domain 
          knowledge, and uncertainty management 
 

     • IEEE Software’s principles of software engineering 
           - Reviews and inspections, information hiding, incremental 
             development, user involvement, automated revision control, 
             Internet development, programming languages hall of fame, 
             Capacity Maturity Model (CMM), object-oriented programming, 
             component-based programming, metrics and measurement  

 
■  A Unified Framework of Software Engineering Principles 
        • Elicitation of fundamental principles of software engineering 
        • The unified framework of software engineering principles 
        • Description of the fundamental principles of software engineering 
           - Abstraction  
           - Decomposition/modularization  
           - Information hiding  
           - Engineering approach  
           - Professionalism  
           - Tools and environments  
           - Documentation  
           - Stepwise refinement  
           - Prototyping  
           - Adopting engineering notations  
           - Process modeling  
           - Reuse  
           - Measurement and metrics  
           - Cognitive complexity control   
           - Formal requirement specification  
           - Systematic quality assurance  
           - Review and inspection  
           - Management engineering  
           - Acquiring domain knowledge  
           - Customer involvement  
           - Feasibility analysis  
           - Improving comprehensibility  
           - Exception handling           
           - Divide and conquer   
           - Explicit embodiment  

© 2008 by Taylor & Francis Group, LLC



Chapter 2  Principles of Software Engineering   121 

           - Establishing theoretical foundations  
           - Architecture and behavior modeling  
           - Standardization  
           - Systems engineering  
           - Engineering organization  
           - Cognitive engineering 
 
■  Software Engineering Principles as Measures to its Constraints 
        • Principles for coping with the cognitive constraints 
        • Principles for coping with the organizational constraints 
        • Principles for coping with the resources constraints 
        • A systematic view on mapping between the principles and 
           constraints 
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• The pursuits of fundamental principles for software engineering 
can be traced back to the 1950s by pioneers such as Davis L. Parnas, C.A.R. 
Hoare, Edsger W. Dijkstra, Friedrich L. Bauer, Frederick P. Brooks, and 
Barry Boehm. Software engineering principles form the essential knowledge 
that a software engineer needs to know in order to develop software 
scientifically and effectively.  

 
• Theories vs. Technologies: Although software development 

technologies have been changing from time to time, the fundamental 
principles of software engineering have remained constant as the 
crystallization of theories and methodologies over a long period of time. 

 
• The relationship between the fundamental principles and basic 

constraints of software engineering is a complicated network. A main thread 
to analyze their relations is to perceive the constraints are the problems, and 
the principles are the measures to tackle the problems. On the basis of this 
thread, a mapping between the 31 principles and the 14 constraints is 
presented in Fig. 2.2. A detailed mapping of the principles of software 
engineering into its constraints is summarized in Table 2.3.  

 
• Principles can be classified into two categories known as the formal 

and empirical/heuristic principles. Most known principles in software 
engineering are empirical and heuristic. For supporting rigorous reasoning 
and decision making in software engineering, formalization of those 
empirical principles seems profoundly important.                            
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• The most widely applicable principles of software engineering, 
which may be used to deal with almost all the basic constraints and problems, 
are: PR4 – Engineering  approach,  PR6 – Tools and environments, PR9 – 
Prototyping, PR26 – Establishing theoretical foundations, PR29 – Systems 
engineering, and PR31 – Cognitive engineering. 

 
• Newly identified principles, based on the recent studies on the 

nature of software and software engineering, are architectural and behavioral 
modeling, system engineering, engineering organization, and cognitive 
engineering, as well as theoretical foundations.              

 
• A profound pattern for preventing progress in software engineering is 

that the tendency to think that a new idea or future tool will solve all 
problems. This tendency is so strong that previously solved problems are 
forgotten as soon as a new idea gains some support, and consequently 
problems are re-solved in the new style. 
 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
A Unified Framework of Software Engineering Principles 

 
• The ultimate objective of investigation into the principles of 

software engineering is to build an integrated inference framework with 
axioms implicitly defining primitive concepts, principles, and rules for 
enabling to construct higher order concepts and theories of software 
engineering.  

 
• The unified framework of software engineering principles models 

a comprehensive set of fundamental principles as summarized below: 

• PR1. Abstraction is to elicit essential properties of a set of 
objects while omitting inessential details of them. 

• PR2. Decomposition/modularization is to break up the 
functions of a software system and to allocate them into individual 
modules or components.   

• PR3. Information hiding is to reduce and mask unnecessary 
information of software at a given level from the lower level details. 

• PR4. Engineering approach is to adopt proven generic 
engineering methodology and practice in software development and its 
organization.  
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• PR5. Professionalism is to set forth the competence or skill 
required for a professional software engineer who is formally trained 
and certified. 

• PR6. Tools and environments are facilities that enable efficient 
organization of coordinative work or extend human physical and 
intelligent capability in software development. 

• PR7. Documentation is a written record that is used to embody 
system design and architectures, record work products, maintain 
traceability of serial decisions, log problems and maintenance solutions, 
and enable postmortem analysis.  

• PR8. Stepwise refinement is to deductively extend a 
conceptual model of requirements for a given software system by a 
series of expatiated and incremental specifications at increased degrees 
of details.    

• PR9. Prototyping is to evaluate or validate a design and 
feasibility of a required system based on the implementation of a 
prototype of the system. 

• PR10. Adopting engineering notations is to abstract, denote, 
and model user requirements and system specifications expressively 
and explicitly. 

• PR11. Process  modeling  is  deal  with  organizational  and 
managerial issues in software engineering.        

• PR12. Reuse is to adopt higher-level building blocks, such as 
algorithms, methods, processes, patterns, frameworks, in order to 
improve efficiency, productivity, and quality of software engineering.       

• PR13. Measurements  and  metrics  are  to  elicit  generic 
software attributes, quantify their measurement, and unify their metrics.    

• PR14. Cognitive complexity control is to deal with the innate 
difficulty in both architectural and behavioral design and 
implementation of software systems by a variety of means such as 
abstraction, modularization, descriptive notations, stepwise refinement, 
and prototyping.            

• PR15. Formal requirement specification is to formally and 
rigorously specify customer’s nonprofessional requirements for a 
software system, in order to avoid any misinterpretation and ambiguity, 
and to eliminate any conceptual gap and inconsistency.          
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• PR16. Systematic quality assurance is to adopt a systematic 
tackle of the multifaceted attributes of software quality and their 
quantitative measurement.        

• PR17. Review and inspection is to find and eliminate software 
design and implementation defects via reading and examining the work 
products by peer or more experienced reviewers.      

• PR18. Management engineering is to acknowledge the crucial 
need of a suitable theory for organizing and coordinating large human 
groups in large-scale projects in software engineering.            

• PR19. Acquiring domain knowledge is to obtain four aspects 
of application knowledge: (a) the nature of the problem, (b) the 
environment and context of the problem, (c) current customer practice 
for dealing the problem, and (d) existing regulations and constraints in 
the application area. 

• PR20. Customer  involvement  is  to  incorporate  all 
stakeholders, particularly the end users of a software system, into the 
entire lifecycle of the system by customer reviews and joint meetings.      

• PR21. Feasibility analysis is to rigorously estimate and 
evaluate both the technical and economical feasibilities of a given 
software project before the later-phase processes may be continued.     

• PR22. Improving comprehensibility is to explicitly and 
expressively describe the intangible problem and its solution in 
software engineering with improved understandability, readability, and 
cognitive capability.       

• PR23. Exception handling is to consider not only customer 
required functions for a given system, but also all possible exceptions 
that may drive the system into illegal state(s) in the entire state space in 
system design and specification.           

• PR24. Divide and conquer is to partition a complex system 
into multiple components, and then to deal with these individual 
components in order to reduce complicity. 

• PR25. Explicit embodiment is to deal with the implicitness and 
inexpressiveness in software engineering by introducing more powerful 
descriptive means at a higher level of abstraction and precision.           

• PR26. Establishing theoretical foundations is to elicit 
rigorous theories and generic laws of software engineering on the basis 
of empirical observations and practices.         
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• PR27. Architecture and behavior modeling is a software 
engineering principle that states software system models are a hybrid 
model where both architectures and behaviors should be coherently 
described. 

• PR28. Standardization is to integrate, regulate, and optimize 
existing principles and best practices in research and in the industry.  

• PR29. Systems engineering is to adopt system science theories 
and approaches to deal with complicated architectures and behaviors of 
software.      

• PR30. Engineering organization is to adopt the coordinative 
work organization theory in order to optimize team, project, and 
enterprise organizations. 

• PR31. Cognitive engineering is to address the cognitive 
complexity and human intelligent manageability as the dominant 
problem in almost all processes of software design, implementation, 
and maintenance. 

 
Software Engineering Principles as Measures to its Constraints 
 

• The 31 basic principles of software engineering are used as the 
fundamental measures for dealing with the 14 basic constraints of software 
engineering.  

 
• The set of 14 basic software engineering constraints can be classified 

into three categories known as the cognitive, organizational, and resources 
constraints.  

 
 

 
Questions and  
Research Opportunities 
 

 
 
2.1 A software engineering principle is a generic theorem, rule, or 

law of a theory that can be applied to a wide range of cases or 
instances in software engineering methodologies and practice. 
Search on the Internet and try to identify one or more principles 
for software engineering, which are not included in this chapter.  
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2.2 Analyze the similarity and differences between principle DP1 – 
information hiding proposed by D.L. Parnas and TH5 – 
abstraction by C.A.R. Hoare.   

 
2.3 Compare the principles of “invisibility” proposed by F. Brooks 

(FB4) that suggests visualization and “intangibility” in the unified 
set of principles that suggests abstraction. Discuss the 
relationship and differences of these two principles.        

 
2.4  Discuss and comment on S. McConnell’s observation: “An 

investment in learning software engineering principles is a 
particular good investment for a software professional to make 
because that knowledge will last a whole career – not be half 
obsolete within three years (as those of software development 
technologies) [McConnell, 1999].”      

 
2.5 The IEEE Software Engineering Standards Committee (SESC) 

proposed a set of criteria on selecting the fundamental principles 
for software engineering [SESC, 1996/97/99] as given in Section 
2.3.1. Compare it and Definition 2.2; discuss what the differences 
between empirical and theoretical principles are for software 
engineering. 

 
2.6 A software engineering principle serves as a fundamental 

proposition for logical reasoning and deduction. Principles can be 
classified into two categories known as the formal and empirical 
(heuristic) principles as described in Theorem 1.1.  

 
 The 31 fundamental software engineering principles elicited in 

this chapter may be classified into the above two categories 
known as the formal and empirical (heuristic) principles. Use a 
table to classify these 31 principles into the formal or empirical 
category, and explain your rationale. (Note: Some of the 
principles may belong to both categories.) 

 
2.7 A software engineering principle serves as a fundamental 

proposition for logical reasoning and deduction. Why are most 
known principles in software engineering empirical and heuristic 
so far?  

 
2.8  According to Theorem 2.2, for supporting rigorous reasoning and 

decision making in software engineering, formalization of those 

© 2008 by Taylor & Francis Group, LLC



Chapter 2  Principles of Software Engineering   127 

empirical principles seems profoundly important and necessary. 
Try to formalize any of the 31 principles using rigorous 
mathematical means.  

 
2.9 Briefly describe the relationships between the 31 fundamental 

principles and the 14 basic constraints of software engineering.     
 
2.10 Reviewing the 31 software engineering principle, did you observe 

any conflict or contradictory principles that need further study?      
 
2.11  How to formalize the empirical principles of software engineering 

in order to support rigorous reasoning and decision making in 
software engineering? Would formalization with quantified 
models result in a set of laws for software engineering?  

 
2.12  Read the following classic articles: 
 

Parnas, D.L. and Clements, P.C. (1986), A Rational Design 

Process: How and Why to Fake It, IEEE Trans. on 

Software Engineering, 12(2), pp. 251-257. 

 

Parnas, D.L. (1994), Software Aging, Proc. 16th 

International Conference on Software Engineering, Sorento, 

Italy, May, pp.279-287.   
 

Discuss the following topics in a group: 
 
                     •  About the author. 

•  Why the author put emphases on design without 
documentation is not design? 

•  Why, in almost all software engineering processes and/or 
work products, “if it is not documented, it is not done”? 

      • What conclusions derived in the articles interested you?  
      •  Express your arguments or counter-points on any of the 

conclusions.              
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heoretical software engineering studies the nature of software, 
mathematical models of software architectures, mechanisms of 
software behaviors, methodologies of large-scale software 

development, and the laws behind software behaviors and software 
engineering practices. Part II attempts to present the philosophical, 
mathematical, computing, linguistic, and informatics metaphors of software 
and software engineering.  

It is recognized that all the fundamental problems in software 
engineering are complicated theoretical problems rather than only empirical 
ones. A rigorous and formal approach is needed to seek the fundamental 
principles and laws of software engineering, and their transdisciplinary 
foundations required by the nature of the problems in software engineering.      

The knowledge structure of Part II on Theoretical Foundations of 
Software Engineering is as follows:  
 

       •  Chapter 3. Philosophical Foundations of Software Engineering   
       • Chapter 4. Mathematical Foundations of Software Engineering   
       • Chapter 5. Computing Foundations of Software Engineering         
       • Chapter 6. Linguistics Foundations of Software Engineering   
       • Chapter 7. Information Science Foundations of Software 
                             Engineering   

 
This part addresses the theoretical foundations of software engineering 

with emphases on fundamental theories of software engineering via the cross-
fertilization among engineering philosophy, denotational mathematics, 
computing theories, formal linguistics, and informatics. It is noteworthy that, 
historically, language-centered programming had been the dominant 
methodology in computing and software engineering. However, this should 
not be taken for granted as the only approach to software engineering, 
because the expressive power of programming languages is inadequate to 
deal with complicated software systems, and the rigorousness and level of 
abstraction of programming languages are too low in modeling the 
architectures and behaviors of software systems. This is why a bridge in 
mechanical engineering or a building in civil engineering was not modeled or 
described by natural or artificial languages. This observation leads to the 
recognition of the need for mathematical modeling of both software system 
architectures and static/dynamic behaviors, supplemented with the support of 
automatic code generation systems.                             

Chapter 3, Philosophical Foundations of Software Engineering, 
explains the relationship of objects and entities between the abstract world 
and the physical world. The problem domain of software engineering can be 
seen in the connection between these two worlds, where philosophy provides 
the basic judgment for evaluating and predicating complicated phenomena in 
software engineering. Philosophies of sciences and engineering in general, 

T
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and philosophical methodologies for software engineering in particular, are 
explored in this chapter. The properties of software and the philosophy of 
software engineering are presented, complemented by a set of practitioners’ 
philosophies in engineering known as Murphy’s laws. Formal inference 
methodologies such as deductive, inductive, abductive, and analogical 
inferences are described, which forms the logical means of software 
engineering.  

Chapter 4, Mathematical Foundations of Software Engineering, 
investigates the logical and algebraic properties and laws of software and 
software engineering. Mathematics enabling rigorous inferences to be carried 
out on the basis of simple deductive rules, and the formally documented 
results are validated without exceptions. Therefore, the entire theory of 
software engineering is about mathematical modeling of software and 
denotational mathematics for software engineering. Essential elements of 
denotational mathematics for modeling software architectures and software 
system behaviors are analyzed. New mathematical structures such as 
cumulative relations and Real-Time Process Algebra (RTPA) are developed 
on the basis of conventional fundamental mathematics such as set theory, 
Boolean algebra, and mathematical logic. RTPA serves as both a denotational 
mathematical means and a system design and refinement methodology for 
software engineering. 

Chapter 5, Computing Foundations of Software Engineering, analyzes 
the computational and denotational properties and laws of software and 
software engineering. This chapter examines what computer science may 
provide for software engineering as well as what it may not. A new treatment 
of computing theories for software engineering is taken, which focuses on the 
needs for modeling and manipulating complicated data objects, behaviors, 
programs, and resources in software engineering. Data objects modeling 
methodologies are presented with the focuses on type theory and architectural 
modeling of software systems. Behavioral modeling, particularly a set of 
Basic Control Structures (BCS’s), is formally described. Programs are then 
modeled as the coordination and interaction between computational 
behaviors and data objects. As a result, the abstract model of a generic 
computing system is formally described encompassing all computing 
resources and processes.  

Chapter 6, Linguistics Foundations of Software Engineering, presents 
the syntactical and semantic properties and laws of software and software 
engineering. Linguistics and formal language theories play important roles in 
computing theories; without them computing and software engineering 
theories would not be complete. This chapter analyzes not only how 
linguistics may improve the understanding of programming languages and 
their work products – software, but also how formal language theories extend 
the study of natural languages. Formal language theories for rigorous 
treatment of language elements are described on syntaxes, semantics, 
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grammars, and linguistic analyses from the bottom up. A formal semantics 
theory known as deductive semantics is presented, which is used to formally 
describe the semantics of RTPA. Comparative analyses of natural and 
programming languages, as well as linguistics perceptions on software 
engineering, are presented.  

Chapter 7, Information Science Foundations of Software Engineering, 
analyzes the informatics properties and laws of software and software 
engineering. Information is the product of either natural or machine 
intelligence. Informatics, the science of information, studies the nature of 
information, its processing, and ways of transformation between information, 
matter, and energy. A fundamental discovery in computer science and 
software engineering is that software, as a unique entity, is not constrained by 
any law and principle known in the physical world. This chapter 
demonstrates that software obeys the laws of informatics. The evolvement of 
information science from classic, contemporary, to cognitive informatics is 
reviewed. The classic information theories and its perception on information 
as probability-based properties of signals and channels are introduced. Then, 
contemporary informatics and modern perceptions on information as abstract 
entities in computing and software engineering are discussed. A set of 
informatics laws that constrains the behaviors of software is described, and 
their applications in software engineering are presented. 

Part II will establish a coherent theoretical framework of software 
engineering with a comprehensive set of formal principles and laws. New 
structures of denotational mathematical means will be developed to deal with 
the innate complexity of software systems. The philosophical, informatics, 
and linguistic theories and laws that constrain software and software 
engineering practice will be systematically derived. With this part as a basis,    
the empirical framework of software engineering, in terms of its 
organizational, system engineering, and cognitive informatics foundations, 
will be presented in Part III.        
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Knowledge Structure 
 

 

 Philosophy of sciences and engineering  

     •  The natural world and the abstract world 
     •  The basic axioms about nature 
     •  Epistemology and foundationalism 
     •  Holism vs. reductionism 
     •  Positivism vs. rationalism 
     •  Empiricism and objectivity  
     •  Determinism vs. indeterminism 
     •  Natural intelligence vs. artificial intelligence  
     •  Ethical philosophy of engineering  

 Formal inference methodologies  

     •  Logical argumentations  
     •  Deductive inferences                                         •  Inductive inferences 
     •  Abductive inferences                                         •  Analogical inferences 

  The nature of software 

     •  The three situations where software is needed  
     •  The behavioral space of software 
     •  Properties of software 

  Philosophy of software engineering 

     •  The cognitive characteristics of SE 
     •  The nature of SE 

  Murphy’s laws: the practitioners’ philosophy for software engineering 

     •  Murphy’s laws on generic engineering 
     •  Murphy’s laws on SE 
 

 

Learning Objectives 
 

 
     • To understand the structure of philosophy for science and engineering. 
     • To know fundamental philosophical thoughts and views for science and 

engineering. 
     • To know basic logical argument methodologies.  
     • To be familiar with the formal inference methodologies in reasoning.  
     • To understand the nature of software and its 3-D behavioral space.  
     • To understand the nature of software engineering and its cognitive 

characteristics.  
     • To be able to apply the philosophies of science and engineering to software 

engineering. 
 

3. Philosophical Foundations of SE 
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“Philosophy is a subject devoted to evaluating arguments and  
constructing theories.” 

 
Elliott Sober (1995)   

 
 “Everything it is possible for us to analyze depends on a clear method which 

distinguishes the similar from the not similar.” 
 

Linneus G. Plantarum (1754)   
 
 

3.1  Introduction 
 

 
 

aving provided an improved understanding of the intensions and 
extensions of software engineering in Chapters 1 and 2, this chapter 
attempts to investigate the foundations of software engineering from 

the perspectives of philosophy, particularly, the means and methodologies of 
rigorous logical inference and reasoning. 

 Software is a brainchild of human creativity, and it is created to do 
something repeatable at high speed, to extend human capability, reachability, 
and/or memory capacity. Therefore, software systems, to some extent, can be 
perceived as a virtual agent of human beings.  

 W.I. Beveridge (1957) questioned that “Elaborate apparatus plays an 
important part in the science of today, but I sometimes wonder if we are not 
inclined to forget that the most important instrument in research must always 
be the mind of man.”   

Modern sciences have been mainly using analytic methodologies and 
mathematics in theory development and problem solving. However, the 
analytic approach has its inherent limitation for possibly losing the forest to 
the trees in reasoning.  

It is a common phenomenon that almost all preeminent scientists are 
philosophers too. They adopt philosophy, the tool of abstraction, synthesis, 
induction, and deduction, to develop new theories when there are inadequate 
laws or lack of intuitive facts to be based for reasoning and draw rational 
conclusions. For examples, Isaac Newton’s Philosophiae Naturalis Principia 
Mathematica (The Principia 1687), Max Planck’s The Philosophy of Physics 
(1936), and C.A.R. Hoare’s The Philosophy of Engineering [Hoare and 
Jones, 1989].                   

The philosophical foundations of software engineering highlight the 
relationship between the abstract world modeled by information and the 
physical world modeled by matter and energy. The problem domain of 

H 
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software engineering can be seen in the connection between the abstract 
world to the physical world. That is, software engineering deals with 
abstractions, while manufacturing engineering deals with realization. Due to 
this ability to call upon multiple levels of abstraction, the problem domain of 
software engineering is infinite but it also requires that the process is design 
intensive.   
 This chapter explores the philosophical foundations and logical means 
of software engineering. In the remainder of this chapter, Section 3.2 surveys 
philosophies of sciences and engineering. Section 3.3 develops a set of 
formal inference methodologies. Section 3.4 examines the nature of software 
and its properties. Section 3.5 presents the philosophy of software 
engineering, complemented by Murphy’s laws – the practitioners’ 
philosophy in Section 3.6.  

 
 

 
3.2 Philosophy of Sciences and 
       Engineering 
 

 
 
Philosophy addresses fundamental questions of great generality and ways of 
reasoning. Philosophy studies the common doctrines, known or unknown, 
shared by all science disciplines. As described in Section 1.2.4, philosophy is 
the highest level of abstract knowledge that is general, fundamental, and 
universally true. Human wonder about the nature and themselves started by 
philosophical queries and concluded in philosophical doctrines [Aristotle, 
1925; Plato, 1961/75; Descartes, 1979; Russell, 1948]. Therefore, philosophy 
is the common root of all sciences and the crystallization of general 
knowledge of mankind in the pursuit of understanding the natural rules and 
utilizing the natural resources.  
 
 Philosophy can be divided into the following four branches: 
 
  • Epistemology: The study of knowledge itself. 

  • Metaphysics: The study of fundamental concepts of the nature 
     such as existence, appearance, reality, and determinism. 

  • Logic: The study of rules of reason. 

  • Ethics: The study of right and wrong, good and evil, obligations 
      and rights, justice, and social organization. 

© 2008 by Taylor & Francis Group, LLC



Chapter 3  Philosophical Foundations of SE   137 

 Scientific and engineering philosophy is an aspect of philosophy that 
studies general phenomena and rules of sciences and engineering 
methodologies. The following subsections present eight pairs of 
philosophical thought on science and engineering, as well as the ethical 
philosophy of engineering.      
 
 
3.2.1 THE NATURAL WORLD AND THE ABSTRACT 
         WORLD 

 
 According to the IME model introduced in Section 1.1.1, matter, 

energy, and information are the three essences of natural and the abstract 
worlds as shown in Fig. 1.2 [Wang, 2003a/07a]. In a modern society, 
information plays more and more important roles because it is the only link 
between the physical (external) and the abstract (internal) worlds in human 
life. It is also the fundamental means for modeling the abstract world. In 
cognitive informatics [Wang, 2002d/02e/03a/03b/06b/06j/07a/07b; Wang 
and Wang, 2006; Wang and Kinsner, 2006; Wang et al. 2002a/06], software 
is perceived as a special type of instructive and behavioral information that 
describes a solution for the design and implementation of a computer system.  

The IME model also reveals there are two categories of objects under 
study in science and engineering known as the concrete entities in the real 
world and the abstract objects in the information world. In the latter, an 
important part of the abstract objects are human or system behaviors, which 
are planned or executed actions onto the real-world entities and abstract 
objects.  

 

 
The principle of universal constraints indicates that any theory, method, 

or technology has its own limitations and constraints. In a certain extent, 
science and engineering are searching the maximum extent of general 
relations between entities, phenomena, and behaviors under a set of 
constraints.         

Theorem 3.1 will be found useful in a number of disciplines as 
described in the following chapters throughout this book, such as the 
principle of information scarcity in information theory (Property 7.19), the 

 

The 7th Law of Software Engineering 
 

Theorem 3.1 The universal constraints state that both the natural world 
and the perceived abstract world are constrained by certain known 
restrictions and laws, or by those yet to be known due to both current 
limitations of natural resources and/or human cognitive capability. 
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law of conservation of basic engineering constraints (Theorem 8.2), the 
principle of bounded rationality in decision theories (Lemma 11.2), and the 
principle of resource scarcity in economics (Lemma 12.1).  

 
 

3.2.2 THE BASIC AXIOMS ABOUT NATURE 
 
 Skinner (1948) stated that science is “a search for order, for 
uniformities, for lawful relations among the events in nature.” The basic 
assumptions underlying scientific inquiry in the context of the above world 
view is that the nature of the universe obeys a set of fundamental axioms, 
referring to uniformity, determinism, reality, rationality, regularity, 
replication, and discoverability of natural events and their relations 
[Christensen, 1997]. 
 
 Definition 3.1 Uniformity is the most basic scientific axiom, which 
assumes that the future will resemble the past. 
 
 Uniformity suggests that natural events and phenomena share generic 
and common laws, which are observable, repeatable, and determinable. The 
uniformity principle is the foundation of all inductive inferences. 
 The effort to uncover the uniform laws of the nature may be carried out 
by identifying the variables that are linked together, and by constructing 
experiments that attempt to understand the effects produced by given events. 
Once it is determined that an event produces an expected effect or a set of 
them, the uniformity of nature has been uncovered.  
 
 Definition 3.2 Determinism is a basic scientific axiom that assumes 
there are causes or determinants for any natural event, phenomenon, and 
effect, and these causes are observable in the sequence of events or 
reasonable by studying relations of the events.         
 
 Definition 3.3 Reality is a basic scientific axiom that assumes the 
natural phenomena observed as a result of our means of sensation are real 
and objective rather than subjective perceptions. 
 
 Definition 3.4 Rationality is a basic scientific axiom that assumes there 
is a rational basis for any event that occurs in nature and they can be 
understood through the use of logical reasoning. 
 
 Definition 3.5 Regularity is a basic scientific axiom that assumes 
events in nature follow the same laws and occur the same way at all times 
and places under the same context.  
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 Regularity is a natural extension of the uniformity axiom. If there is 
uniformity in nature, there must be regularity that can be observed and 
determined.   
 
 Definition 3.6 Replication is a basic scientific axiom that requires the 
results of a study must be reproducible under the same condition. 
 

 Reproduction is the criterion to achieve objectivity and rationality. 
Only through replication can we have any confidence that the results of our 
studies are valid and reliable. Reproducibility is equally important in both 
sciences and engineering.      
 
 Definition 3.7 Discoverability is a basic scientific axiom that assumes 
the existence of entities and occurrence of events in nature can be observed 
and determined. 
 
 Greek philosopher Thales (625-546 BC) made the first extraordinary 
rationalistic assumption that the world – the cosmos – was a thing whose 
mechanisms can be understood by human mind [Doren, 1992]. This means 
that it is possible to discover the uniformity of nature no matter how difficult 
it would be.   
 
 
3.2.3 EPISTEMOLOGY AND FOUNDATIONALISM 
 
 Definition 3.8 Epistemology is a branch of philosophy that studies 
concepts of knowledge and their rational justification.  
 

According to epistemology [Sober, 1995], there are six approaches to 
acquire knowledge or gain cognition of nature. These approaches of 
cognition are tenacity, intuition, experience, authority, reasoning or 
inferring, and logical inquiry. Logical inquiry is a cognitive methodology for 
knowledge acquisition by scientific investigation that adopts the processes of 
problem identification, hypothesis proposing, experiment and testing, and 
theory forming. 
 To have the knack of reducing a problem to its simplest and basic 
elements and then finding a solution by the most direct means are commonly 
recognized as a vital scientific research method, because this approach is 
rooted in the philosophy of foundationalism. 
             
 Definition 3.9 Foundationalism is a basic philosophical view that all 
propositions known to be true can be divided into foundational and 
superstructural ones. The former are indubitable and axiomatically to be 
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true. The latter are propositions that bear deductive or implicated relationship 
to the foundations. 
 
 Rene Descartes (1596 – 1650) is regarded as the father of modern 
philosophy and the epistemology known as foundationalism. In Core 
Questions in Philosophy [Sober, 1995], Descartes’ foundationalism is 
described as follows: 
 

“The word foundationalism should make you think of a building. 
What keeps a building from falling over? The answer has two parts. 
First, there is a solid foundation. Second, the rest of the building, 
which I will call the superstructure, is attached securely to that 
solid foundation. Descartes wanted to show that (many if not all of) 
the beliefs we have about the world are cases of genuine knowledge. 
To show this, he wanted to derive our beliefs into two categories. 
There are the foundational beliefs, which are perfectly solid. 
Second, there are the superstructural beliefs, which count as 
knowledge because they rest securely on that solid foundation. 

 
“A foundationalist theory of knowledge could also be called a 

Euclidean  theory of knowledge. To show that a given body beliefs 
counts as knowledge, we use the following strategy: First, we 
identify the beliefs that will provide the foundations of knowledge 
(the axioms). These must be shown to have some special property, 
like being absolutely certain. ... Second, we show that the rest of 
our beliefs count as knowledge because they bear some special 
relationship to the foundational items. In Euclid’s geometry, the 
special relationship was deductive implication. 

 
“Descartes was interested in the totality of what we believe. 

But whether the problem is to describe the foundations of 
geometry or the foundations of knowledge as a whole, there are two 
ideas that must be clarified. We need to identify what the 
foundational items are. And we need to describe the relationship 
that must be obtained between foundational and superstructural 
items that qualifies the latter as knowledge.” 

 
 Foundationalism provides a fundamental approach towards justification 
of knowledge and belief in epistemology and cognition. For example, 
Turing's thesis on basic computability, Euclid's geometry, and many 
mathematical branches are developed on the basis of foundationalism.    
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 The design of this book, Software Engineering Foundations: A 
Software Science Perspective, follows Descartes' foundationalism in order to 
identify the foundational theories and methodologies of software 
engineering, and to explain how superstructures, the rational software 
engineering practices, may be built and derived on these foundations.  
 
 
3.2.4 HOLISM VS. REDUCTIONISM 
 
 Philosophies as the fundamental and general methodologies of sciences 
and engineering were evolving over all the time in human history. However, 
the core methodologies that remain stable are holism and reductionism.  
 
 Definition 3.10 Holism is a philosophical view that perceives a 
phenomenon and system with wholeness in an integrated, synthetic, and 
systematic approach.    
 

The word holism is originated from the Greek word holos meaning the 
whole. Holism can be traced back to the time of Aristotle during which 
philosophers believed that the whole is more than the sum of its parts [Klir, 
2001]. According to holism, complex organisms and systems as a whole 
possess special properties when its elements and their interactions reach or 
go above a certain critical mass, which cannot be found from any of the 
individual elements.                  

       
Definition 3.11 Reductionism is a philosophical view that investigates a 

phenomenon and system by using a decomposition and analytic approach.  
 
  Reductionism perceives that any system can be analyzed by breaking it 
down into more fundamental elements, then the system can be reduced by the 
properties of its elements. As a holistic psychologist, Max Wertheimer 
described [Ellis, 1938; Ellis and Fred, 1962]: 
 

“Science means breaking up complexes into their component 
elements. Isolate the elements, discover their laws, then 
reassemble them, and the problem is solved. All wholes are 
reduced to pieces and piecewise relations between pieces.” 

 
The evolution of philosophies of science and engineering can be 

illustrated in Fig. 3.1 from a historical point of view. As shown in Fig. 3.1, 
holism had been the main philosophical thought starting from Aristotle 
during a very long period between 400BC to the 1600s. Then, reductionism 
has been the dominating philosophy since Rene Descartes. Beginning in the 
later 1990s, there has been a trend to explore the unification of the two 
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philosophical doctrines when most of the modern scientific and engineering 
problems become increasingly complicated and the means to solve them 
become increasingly interrelated with multiple disciplines and systems. This 
trend of shifting in scientific philosophy is in accordance with the 
development of systems science and engineering as described in Chapter 10.       

       

Figure 3.1 Philosophies of sciences and their transitions  
  
 
3.2.5 POSITIVISM VS. RATIONALISM 
 
 The contemporary philosophy behind natural sciences is positivism and 
rationalism. 
 
 Definition 3.12 Positivism is a philosophical view, which states that a 
thesis about physical phenomena must either be analytic or empirical. 
 
 Positivism perceives that nature obeys physical laws in the concrete 
world. According to positivism, an event or fact must be publicly observable 
and independently repeatable. Validation methodologies in positivism are 
experiments and logical reasoning.       
 Natural scientists adopt a common perception that physical phenomena 
must be re-observable and repeatable. However, most mental phenomena in 
psychology and cognitive informatics are clearly not, even though all 
individuals believe they are truly happening based on rationalism and 
empiricism.  
 
 Definition 3.13 Rationalism is a philosophical view to arrive at 
knowledge in which reasoning is used to acquire, process, derive, and 
evaluate the knowledge. 
 
 Rationalism believes that knowledge or truth can be derived from 
reason, and the derived knowledge is just as valid as, and even superior to, 
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that gained from observations. Rationalism and reasoning are a vital 
approach in the scientific process. Reasoning process is used not only to 
derive hypotheses but also to identify the manner in which these hypotheses 
are to be tested.    
 

 
It is noteworthy that reasoning based on the same input may result in 

controversially derived information or conclusions, in which one or all of 
them could be wrong. Therefore, cross evaluation of any derived information 
by other methodologies, such as positivism and empiricism, is often 
necessary. 
 This contradiction can be explained by the IME model as described in 
Section 1.1.1, that classifies the natural phenomena into two categories 
known as those of the natural/concrete world and of the abstract/perceptual 
world. According to the IME model, the mental phenomena and cognitive 
processes, particularly perceptivity and thinking, should be recognized as a 
new category of special phenomena occurring in the abstract and information 
world that apparently do not obey specific rules observed in the physical 
world. In other words, all information/mental-process-oriented sciences deal 
with a totally different category of phenomena that are constricted by 
informatics and cognitive laws rather than the physical ones. Software and 
software engineering methodologies fall exactly into this category.        
 
 

3.2.6 EMPIRICISM AND OBJECTIVITY   
 
 Definition 3.14 Empiricism is a philosophical view that states 
knowledge can be gained through the experience of an event, the observation 
of a fact, or the use of a methodology.  
 
 Empiricism perceives that mental phenomena in psychology and 
cognitive informatics may not be publicly observable and independently 
repeatable, and they don’t obey all rules observed in the physical world. 
However, they obey informatics and cognitive laws in the abstract world. 
According to empiricism, an event or fact can be validated by experience, 
logical reasoning, and mathematical proving. 

 

The 3rd Principle of Software Engineering 
 

Theorem 3.2 The validation of abstract propositions states that the 
abstract and information-based propositions and work products, such as a 
design or a specification of a system, are bounded by logical 
verifications, mathematical proofs, systematical reviews, behavioral 
simulations and tests, and/or in field trials. 
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 It is noteworthy that empiricism may result in a subjective observation. 
Therefore, the criteria of objectivity, replication, and causation are developed 
in order to maintain rigor and accuracy in scientific inquiry.     

 
Definition 3.15 Objectivity is a scientific criterion that requires an 

observation must be independent of individual opinion, bias, or prejudice. 
 
 True or false of an objective matter is independent of what anyone 
believes or thinks.    
 
 Definition 3.16 Causality is a cause-and-effect relationship where the 
manipulation of one event produces another event as the effect of the causal 
event. 
 
 In his work, A System of Logic, John S. Mill (1843) set forth canons for 
identifying causality experimentally:  
 

     • Method of agreement: The identification of the common element 
in several instances of an event.  

     • Method of difference: The identification of the different effects 
produced by variation in only one event.   

     •  Joint method of agreement and difference: The combination of the 
first and the second canons to identify causation.   

     •  Method of concomitant variation: The identification of parallel 
changes in two variables by a correlation between them. 

 
 The four canons of Mill enable one to adequately grasp the idea of 
causation and to identify the relationships between a set of variables. 
However, they do not allow one to name the single factor that causes an 
effect. This identifies the need for distinguishing the necessary and the 
sufficient conditions for the occurrence of an event.  
 

 

 

The 8th Law of Software Engineering 
 
Theorem 3.3 The law of causality states that a condition must be both 
necessary and sufficient to qualify as a cause, where the necessary 
condition is a condition that must be present in order for the effect to 
occur, while the sufficient condition is a condition that will always 
produce the effect.  
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Therefore, the finding of a cause for an event means that both the 
necessary and the sufficient conditions have been met in causality analyses, 
as W.I. Beveradge wrote:    
    

“The current attitude is that scientific theories aim at 
describing association between events without attempting to explain 
the relationship as being causal. The idea of cause, as implying an 
inherent necessity, raises philosophical difficulties and in 
theoretical physics the ides can be abandoned with advantage as 
there is then no longer the need to postulate a connection between 
the cause and effect. Thus, in this way, science confines itself to 
description – ‘how’, not ‘why’ [Beveradge, 1957].” 

  
3.2.7 DETERMINISM VS. INDETERMINISM 
 
 Definition 3.17 Determinism is a philosophical view, which states the 
thesis that a complete description of the causal facts at one time uniquely 
determines what must happen next.       
 
 Determinism states the causes of a natural event, phenomenon, and 
effect are observable in the sequence of events or reasonable by studying 
relations of the events. There is only one possible future given a complete 
description of the present. For example, the Newtonian physics says that the 
behavior of physical objects is deterministic. In software engineering, most 
automata and process dispatching algorithms are deterministic based on a 
current state and given event(s).                           
 
 Definition 3.18 Indeterminism is a philosophical view, which states the 
thesis that even a complete description of the present does not uniquely 
determine what will happen in the future. 

Indeterminism describes the phenomena in the natural world that not all 
events are wholly determinable by antecedent causes. According to 
indeterminism, there is more than one possible future and each with its own 
probability of coming true under a given complete description of the present. 
For examples, the quantum theory says that nature is indeterministic. In 
computing, there are indeterministic automata and process dispatching 
algorithms, whose behavior or next state is unpredictable caused by internal 
memory and intricate internal interacting mechanisms.                  
 
3.2.8 NATURAL INTELLIGENCE VS. ARTIFICIAL 
         INTELLIGENCE 
 

It is found that the natural intelligence and artificial intelligence share 
the same cognitive informatics foundations, because the latter is a machine 
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implementation of the former. Conventional machines are invented to extend 
human physical capability, while modern information processing machines, 
such as computers, communication networks, and robots, are developed for 
extending human intelligence, memory, and the capacity for information 
processing [Turing, 1950; Wang, 2004a/2006b/2007a/07b/07f]. Therefore, 
any machine that may implement a part of human behaviors and actions in 
information processing is significantly important. 

 
It is recognized [Wang, 2004a/2007a/07f] that the basic approaches to 

implement intelligent behaviors can be classified as shown in Table 3.1. 

 
Table 3.1 

Approaches to Implement Intelligence 
 

No. Means Approach 
1  Biological organisms   Naturally grown  
2  Silicon automata Wired 
3  Computing systems Programmed 
4  Other (future) means Hybrid    

 
Observing Table 3.1, software for computation is the third approach to 

simulate and implement the natural intelligence by programmed logic. This 
indicates that the nature of software is the simulation and execution of human 
behaviors, and the extension of human capability, reachability, persistency, 
memory, and information processing speed. Therefore, the natural and 
machine (artificial) intelligence share the same cognitive foundation or there 
is no difference between them in principles and mechanisms rather than 
implementation means.   

 
 

 
 
On the basis of Theorem 3.4, the following theorem can be derived.  

  

 

The 4th Principle of Software Engineering 
 

Theorem 3.4 The compatible intelligent capability states that natural 
intelligence (NI) and artificial intelligence (AI) are compatible by sharing 
the same mechanisms of intelligent capability, i.e.: 
 

                                     AI  ∝  NI                  (3.1) 
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Theorem 3.5 indicates that AI is dominated by NI. Therefore, one 

should not expect a computer or a software system to solve a problem where 
human cannot. In other words, no AI or computer systems may be designed 
and/or implemented for a given problem where there is no solution being 
known collectively by human beings. Further, Theorem 3.5 explains that 
without understanding the mechanisms and laws of NI, the development or 
implementation of AI is not scientifically based yet.          
 
3.2.9 ETHICAL PHILOSOPHIES OF ENGINEERING  
 

 Definition 3.19 Ethics is a branch of philosophy that develops moral 
criteria to guide human behavior and professional practice.  

 

A number of ethical theories have evolved since the dawn of 
civilization. Four of those theories, which have stood the test of time and are 
relevant to applications in engineering, are Aristotle’s virtue ethics, Mill’s 
utilitarianism, Kant’s formalism or duty ethics, and Locke’s rights ethics.  
   The virtue-based ethics of Aristotle (384 – 322BC) describes that 
happiness is achieved by developing virtues, or qualities of character, 
through deduction and reason. An act is good if it is in accordance with 
reason. This usually means a course of action that is the golden mean 
between extremes of excess and deficiency. 
 Mill’s utilitarianism (1806 – 1873) states that an action is morally 
correct if it produces the greatest benefit for the greatest number of people. 
The duration, intensity, and equality of distribution of the benefit should be 
considered.     
   The duty-based ethics developed by Kant (1724 – 1804) believes that 
each person has a duty to follow those courses of action that would be 
acceptable as universal principles for everyone to follow. 
 The rights-based ethics, represented by Locke (1632 – 1704), perceives 
that all persons are free and equal, and each has a right to life, health, liberty, 
possessions, and the product of one’s labor. However, it is occasionally 
difficult to determine when one person’s rights infringe on another person’s 
rights. 

Professionalism is a part of the ethical philosophy. The philosophy of 
professionalism for software engineering will be discussed in Section 8.4.5.   

 

The 9th Law of Software Engineering 
 

Theorem 3.5 The inclusive intelligent capability states that artificial 
intelligence (AI) is a subset of natural intelligence (NI), i.e.: 
 

                                     AI  ⊆  NI                  (3.2) 
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3.3 Formal Inference Methodologies 
 

 
Inferences are a formalized cognitive process that reasons a possible causal 
conclusion from given premises based on known causal relations between a 
pair of cause and effect proven true by empirical observations, theoretical 
inferences, and/or statistical regulations. Formal logic inferences may be 
classified as causal argument, deductive inference, inductive inference, 
abductive inference, and analogical inference. All formal logical inferences 
can only be carried out on the basis of abstract properties shared by a given 
set of objects under study. In other words, abstraction and formalization 
described in Sections 1.2.4 and 4.2 are the foundation of formal inferences.     
 
 

3.3.1 LOGICAL ARGUMENTATIONS 
 

Mathematical logics, such as propositional and predicate logic, provide 
a powerful means for logical reasoning and inference on truth and falsity 
[Hurley, 1997], which will be systematically described in Chapter 4.    

 
Definition 3.20 An argument A is an assertion that yields ( ) a 

proposition Q called the conclusion from a given finite set of propositions 
known as the premises P1, P2, …, Pn, i.e.: 

 

ABL  (P1BL ∧ P2BL ∧ … ∧ PnBL  QBL)BL           (3.3) 
 

where the argument and all propositions are in type Boolean (BL). Hence, ABL 
= T called a valid argument, otherwise it is a fallacy, i.e., ABL = F.     
  

Eq. 3.3 can also be denoted in the following inference structure:    
 

 1 2 ... nPremises P P P
Conclusion Q

∧ ∧ ∧=A
BL BL BL BLBL

BL BL
          (3.4) 

 
Example 3.1 The following expressions are concrete arguments:  
 
(a) A concrete deductive argument  
 

   
1 2

   Information processing is an intelligent behavior ( ).

 Computer is able to process information ( ).          

          Computer is an itelligent machine ( ).

1P

P

Q

∧A BL   (3.5) 
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(b) A concrete inductive argument 
 

         2
2

   Human is able to process information ( ).

 Computer is able to process information ( ).

Information processing is a common property of 

                     itelligence ( ).

1P

P

Q

∧
A BL         (3.6) 

 
Example 3.2 The following expressions are abstract arguments:  
 
(a) Abstract deductive arguments  
 
                               3

, ( )
, ( )

x S P x a S
x a P a

∀ ∈ ∧ ∈
∃ =

A BL                   (3.7) 

 
                                 4

,  1
1 ,  1 2

n n n
n

∀ ∈ < +
∃ = ∈ <

A
NBL

N
                         (3.8) 

 
where N represents the type suffix of natural numbers. 

 
(b) Abstract inductive arguments 

 

                                          
5

  , ( )

, ( )

, ( )

    , ( )

x a S P a

x b S P b

x c S P c

x S P x

∃ = ∈

∧ ∃ = ∈

∧ ∃ = ∈

∀ ∈

A BL                    (3.9) 

  

                      

1

1
4

1
6 5

1

1 (1 1)
   1

2

14  (14 1)
 14

2

15 (15 1)
 15

2

( 1)
        

2

i

i

i

n i

n i

n i

n n
n

=

=

=

⇒

• +∃ = ∈ ⇒ =

• +∧ ∃ = ∈ ⇒ =

• +∧ ∃ = ∈ ⇒ =

+∀ ∈

∑

∑

∑
A

N

N
BL

N

N

               (3.10) 

 
where N represents the type of natural numbers. 

 
In the above examples that the premier propositions should be arranged 

in a list that the most general ones are put in the front. This condition 
preserves the deductive chain in reasoning. 
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It is noteworthy that propositional arguments can be classified as a kind 
of causal and static inference. More rigorous and dynamic inferences may be 
modeled and described as a set of cognitive processes encompassing a series 
of simple inference steps as described in the following subsections.    
 
    
3.3.2 DEDUCTIVE INFERENCES 
 

For seeking generality and universal truth, either the objects or the 
relations can only be rigorously described and formally inferred by abstract 
models rather than real world details. 
 

Definition 3.21 Deduction is a cognitive process by which a specific 
conclusion necessarily follows from a set of general premises.  
 

Deduction is a reasoning process that discovers or generates new 
knowledge based on generic beliefs one already holds such as abstract rules 
or principles. The validity of a deductive inference depends on its conformity 
to the validity of generic principle; at the same time, the generic principle 
that the deduction is based on is evaluated during the deductive practice. 

 

 
In Theorem 3.6,  denotes yield or a causal relation. Any valid logical 

statement, established mathematical formula, or proven theorem can be used 
as the generic promise for facilitating the above deductive inferring process. 

 
Example 3.3 Let P(n)BL 

1

( 1)
2

n

i

n n
i

=

+=∑  be a proposition, n ∈ N, a 
deductive inference for a given n = 10 can be derived as follows: 

 

The 5th Principle of Software Engineering 
 
Theorem 3.6 The generic formula of deductive inference states that, 
given an arbitrary nonempty set X, let p(x) be a proposition for ∀x ∈ X, a 
specific conclusion on ∃a ∈ X, p(a) can be drawn as follows: 

 

                          ∀x ∈ X, p(x)  ∃a ∈ X, p(a)          (3.11a) 
 

A composite form of Eq. 3.11a can be given below: 
 

              (∀x ∈ X, p(x) ⇒ q(x))  (∃a ∈ X, p(a) ⇒ q(a))         (3.11b) 
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      ∀n ∈ N, P(n)BL  
1

( 1)
2

n

i

n n
i

=

+=∑   

                   ∃n =10 ∈ N,  

                   P(10)BL = {
10

1

10(10 1)
110/2 55

2i
i

=

+= = =∑ }BL  

                                   = T 
 
It is noteworthy that not every deduction may reach a sound deductive 

argument as shown in Table 3.2 [Hurley, 1997]. Based on Table 3.2, 
Corollary 3.1 can be derived.     
 

Table 3.2 
Sound Argument by Deductive Validation 

 

Conclusion  
T F 

T Valid and sound Invalid  
Premises F Invalid Invalid 

 

 
Corollary 3.1 may be used to avoid any deductive dilemma and falsity 

in logical reasoning.   
 
 

3.3.3 INDUCTIVE INFERENCES 
 

Definition 3.22 Induction is a cognitive process by which a general 
conclusion is drawn from a set of specific premises based mainly on 
experience or experimental evidences.  
  

Induction is a reasoning process that derives a general rule, pattern, or 
theory from summarizing a series of stimuli or events. In contrary to the 
deductive inference approach, induction may introduce uncertainty during 
the extension of limited observations into general rules. The inductive 
inference process encompasses rule learning, category formation, 
generalization, and analogy. 
 

 

Corollary 3.1 A sound deductive inference is yielded iff all premises are 
true and the argument is valid.     
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Theorem 3.7 indicates that for a finite list or an infinite sequence of 

recurring patterns, three samplings (two determinate and one random) are 
usually sufficient to determine the behavior of the given list or sequence of 
patterns. Therefore, logical induction is a tremendously powerful and 
efficient cognitive and inferring tool in science and engineering, as well as in 
everyday life. 

It is noteworthy that because of the limitation of samples, logical 
induction may result in faulty proofs or conclusions. Therefore, as a rule of 
thumb, the inference results of logic inductions need to be evaluated or 
validated by more random samples. 
 

Example 3.4 An iteration of a process P in programming can be 
defined as a series of n+1 repetitions, Ri, 1 ≤ i ≤ n+1, of P by mathematical 
induction, i.e.: 
 

R0 = ⊗, 
R1 = P → R0, 
… 
Rn+1 = P → Rn,  n ≥ 0          (3.13) 

 
where ⊗ denotes skip, or doing nothing but exit.  
 

A recursive process should be terminable or noncircular, i.e., the depth 
of recursive dr must be finite. The following lemma guarantees that dr < ∞ 
for a given recursive process or function [Lipschutz, 1964].               

 

The 6th Principle of Software Engineering 
 

Theorem 3.7 The generic formula of inductive inference states that, if ∃a, 
k, succ(k) ∈ X, p(a) and p(k) ⇒ p(succ(k)) are three valid predicates, then 
a generic conclusion on ∀x ∈ X, p(x) can be drawn as follows: 

 
             ((∃a ∈ X, p(a)) ∧ (∃k, succ(k) ∈ X, (p(k) ⇒ p(succ(k))))  

                     ∀x ∈ X, p(x)             (3.12a) 
 

where succ(k) denotes the next element of k in X. 
 
A composite form of Eq. 3.12a can be given below: 
 
           ((∃a ∈ X, p(a) ⇒ q(a)) ∧ (∃k, succ(k) ∈ X, ((p(k) ⇒ q(k)) ⇒  
                   (p(succ(k)) ⇒ q(succ(k)))))  ∀x ∈ X, p(x) ⇒ q(x)       (3.12b) 
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It is noteworthy there are certain conditions to reach a cogent inductive 

argument as shown in Table 3.3 [Hurley, 1997]. Based on Table 3.3, 
Corollary 3.2 can be derived.     
 

Table 3.3 
Cogent Argument by Inductive Validation 

 

Conclusion  
T F 

T Valid and cogent Invalid  
Premises F Invalid Invalid 

 
 

 
Corollary 3.2 may be used to avoid any inductive dilemma in logical 

reasoning.   
 
 
3.3.4 ABDUCTIVE INFERENCES 
 

Definition 3.23 Abduction is a cognitive process by which an inference 
to the best explanation or most likely reason of an observation or event is 
resulted.     
 

Abduction is widely used in causal reasoning, particularly when a 
change of events needs to be traced back where not all of the events have 
been observed. 

 

 

Lemma 3.1 A recursive function is noncircular, i.e., dr < ∞, iff: 
 
    a) A base value exists for certain arguments for which the function 

does not refer to itself; 
 

    b)  In each recursion, the argument of the function must be closer to the 
base value.       

   

 

Corollary 3.2 A cogent inductive inference is yielded iff all premises are 
true and the argument is valid. 
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Abduction is a powerful inference technique for seeking the most likely 

cause(s) or reason(s) of an observed phenomenon in causal analyses. 
 
3.3.5 ANALOGICAL INFERENCES 
 

Definition 3.24 Analogy is a cognitive process by which an inference 
about the similarity of the same relations holds between different domains or 
systems, and/or examines that if two things agree in certain respects then 
they probably agree in others. 
 

Analogy is a mapping process that identifies relation(s) in order to 
understand one situation in terms of another. Analogy can be used as a 
mental model for understanding new domains, explaining new phenomena, 
capturing significant parallels across different situations, describing new 
concepts, and discovering new relations.   

 

 

 

The 7th Principle of Software Engineering 
 

Theorem 3.8 The generic formula of abductive inference states that 
based on a general implication ∀x ∈ X, p(x) ⇒ q(x), a specific conclusion 
on ∃a ∈ X, p(a) can be drawn as follows: 
 

   (∀x ∈ X, p(x) ⇒ q(x))  (∃a ∈ X, q(a) ⇒ p(a))        (3.14a) 
 

A composite form of Eq. 3.14a can be given below: 
 

        (∀x ∈ X, p(x) ⇒ q(x) ∧ r(x) ⇒ q(x)) 
                           (∃a ∈ X, q(a) ⇒ (p(a) ∨ r(a)))           (3.14b) 
 

 

The 8th Principle of Software Engineering 
 
Theorem 3.9 The generic formula of analogical inference states that 
based on a specific predicate ∃a ∈ X, p(a), a similar specific conclusion 
can be drawn iff ∃x ∈ X, p(x) as follows: 
 

          ∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a)  ∃b ∈ X ∧ b ≠ a, p(b)        (3.15a) 
 

A composite form of Eq. 3.15a can be given below: 
 

                   (∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a) ⇒ q(a))  
                        (∃b ∈ X ∧ b ≠ a, p(b) ⇒ q(b))                        (3.15b) 
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Analogy is widely used to predict a similar phenomenon or 
consequence based on a known observation.    

Theoretical research is predominantly an inductive process; while 
applied research is mainly a deductive process. Both inference processes are 
based on the cognitive process and means of abstraction. The five inference 
methodologies, causal argument, deduction, induction, abduction, and 
analogy, form a set of fundamental reasoning processes of the natural 
intelligence. They are an important set of human cognitive processes as 
modeled in LRMB [Wang et al., 2006], and have been formally described 
using RTPA [Wang, 2002a/02b/03c/07a], which will be further described in 
Chapters 9 and 4, respectively. 
 
 

 
3.4 The Nature of Software 
 

  
 
The remainder of this chapter will show that philosophy is a powerful means 
to reveal the nature of software and software engineering. Section 1.2.1 has 
reviewed the mathematical, product, and informatics metaphors of software. 
This section presents philosophical thought on the nature of software, and 
further examines the fundamental properties of software as the objects under 
study in software engineering.      
 
 
3.4.1 THE THREE SITUATIONS WHERE SOFTWARE IS 
         NEEDED  

  
The exploration on the nature of software may start from the analysis of 

usages of software in different contexts. As an explanation, let us consider 
when one needs a software system in particular, and a computing solution in 
general. There are three situations, namely the repeatability, flexibility, and 
run-time determinability, in which a software system is required [Wang, 
2004b; Wang et al., 2004b]. 
 

Situation 1: The repeatability – Software is required when one 
needs to do something for more than once. 

  
Repeatability is one of the most premier needs for a software solution; 

whilst it is not the only sufficient condition for requiring a software system 
because repeatability may also be implemented by wired logic or hardware.         
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  Based on the repeatability, the following situation is introduced.    
   

Situation 2:  The programmability – Software is required when one 
needs to repeatedly do something not exactly the 
same. 

  
In addition to Situations 1 and 2, the following case should be 

considered in order to complete the necessary and sufficiency usage analyses 
of software.         
 

Situation 3:  The run-time determinability – Software is required 
when one needs to flexibly do something by a series of 
choices on the basis of varying sequences of events 
determinable only at run-time. 

 
 The third situation may also be considered as the indeterminism at 
compile-time or design time. This has been identified by Turing (1936), 
Dijkstra (1975), and Hoare (1978).   
   The above analysis leads to the following theorem.    
  

  
 Theorem 3.10 indicates that the above three situations, namely 
repeatability, flexibility, and run-time determinability, form the necessary 
and sufficient conditions that warrant the requirement for a software solution. 
The third condition is the fundamental issue in computation that determines 
the complexity of programming. 

 
 
3.4.2 THE BEHAVIORAL SPACE OF SOFTWARE 

 
 It is found that both human and software behaviors can be described by 

a three-dimensional representative model encompassing action, time, and 
space [Wang, 2006a]. For software system behaviors, the three dimensions 
are known as computational operations, event/process timing, and memory 
manipulation [Wang, 2006a]  

 

The 9th Principle of Software Engineering 
 

Theorem 3.10 The necessary and sufficient conditions of software usage 
state those that warrant the requirements for software solutions are the 
system behaviors of repeatability, programmability, and run-time 
determinability. 
 

© 2008 by Taylor & Francis Group, LLC



Chapter 3  Philosophical Foundations of SE   157 

Definition 3.25 The behavior of a computational statement is a set of 
observable actions or changes of status of objects operated by the statement.    

 
The 3-D behavioral space of software systems can be illustrated in Fig. 

3.2. According to Theorem 3.11, the fundamental and general requirements 
for programming languages and software development tools are the 
capability to express and manipulate the 3-D behaviors. No language or tool 
only capable for two of the dimensions, usually OP × S, is adequate to cope 
with the more general requirements in software engineering. Therefore, a lot 
of problems have stemmed from the implied treatment of time in software 
development, particularly for real-time software systems, in conventional 
programming languages and tools.                               

 

t

s

op

Ω = OP × T × S  

The behavior space (Ω) 
0

 
 
Figure 3.2 The 3-dimensional behavior space of software 

 
 
3.4.3 PROPERTIES OF SOFTWARE 
 

 The creation as software of conventional physical products by the use 
of programmable and reconfigurable components is a new and quiet 
industrial revolution. The 19th Century industrial revolutions were oriented 
on mass production by machinery and standardized process and components 
[Tayler, 1911; Warner and Low, 1947; Gregory, 1971; Wright, 2002]. The 
development of soft systems is a revolution that transforms the information 

 

The 10th Law of Software Engineering 

 
Theorem 3.11 The behavior space of software states that the software 
behavior space Ω is innately three-dimensional, which can be described 
by a Cartesian product of computational operations OP, time T, and 
memory space S, i.e.: 
 
                       Ω  = OP × T × S                                 (3.16) 
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processing and intelligent components of the conventional physical products 
into software.        

  Therefore, it might be argued that software engineering has become a 
discipline that is at the root of the knowledge structure of most engineering 
disciplines. The philosophical considerations explored in this subsection have 
attempted to clarify a set of fundamental characteristics of software 
engineering. These considerations also provide a basis for judging the 
soundness or unsoundness of specific technical solutions for software 
engineering, while not losing the sight of the woods for the trees.  
 In addition to the mathematical, product, and informatics properties of 
software as discussed in Section 1.2.1, this subsection describes another set 
of software properties that encompasses the cognitive, intelligent behavioral, 
and system properties of software.   
 
3.4.3.1 The Cognitive Properties of Software 

 
The cognitive properties of software refer to its human dependency in 

almost all processes of software engineering. Eight cognitive properties of 
software are identified [Wang, 2004b] as shown in Fig. 3.3, such as those of 
intangibility, complexity, indeterminacy, diversity, polymorphism, 
inexpressiveness, inexplicit embodiment, and unquantifiable quality 
measures.             

One of the unique properties of software is the inherent complexity. 
Software complexity may be classified into time, space, symbolic, functional, 
and cognitive complexities [Wang, 2006c/07a]. The cognitive complexity of 
software models and measures the cognitive property of software by a 
product of its architectural and operational complexities. The measure of 
cognitive complexity of software plays a key role in understanding the 
fundamental properties of software in all phases of software engineering 
including the design, implementation, maintenance, and comprehension 
phases. Detailed description of software cognitive complexity will be 
provided in Sections 9.6 and 10.7.3.  

Another unique property of software is its intangibility in design and 
comprehension. In Sections 9.2.2 and 9.4.4 it will be revealed that the 
abstract architecture and behavior of software should be physiologically 
created in the brain, before they can be represented externally in the forms of 
system design, code, and documentation.           
 
3.4.3.2 The Intelligent Behavioral Properties of Software 

 
 Software is a brainchild of human beings. A software system, to some 
extent, can be perceived as a virtual agent of humans, because it is created to 
do something repeatable, to extend human capability, reachability, or 
memory, just like assistants hired to do the same thing.       
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Figure 3.3 The cognitive properties of software 
 

 As shown in Table 3.1, software for computation is the third approach 
to simulate and implement the natural intelligence by programmed logic. 
According to Theorem 3.4 on inclusive intelligent capability, software is 
inherently a part of natural intelligence and human behaviors. Because any 
behavior of machine intelligence is a part of expected human behaviors, 
according to Theorem 3.4, the following corollary on the relationship 
between a software behavior and natural intelligence behavior can be 
derived.      
 

  
Corollary 3.3 reveals that the nature of software is the simulation and 

execution of human behaviors, as well as the extension of human capability, 
reachability, persistency, memory, and information processing speed. This 
leads to the concept of autonomic computing, which will be introduced in 
Section 15.4.1. 
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Corollary 3.3 Software behaviors SB are a subset of simulated human 
intelligent behaviors IB described by programmed instructive information 
in a programming language, i.e.: 
 

                                            SB ⊆ IB                              (3.17)  
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3.4.3.3 The System Properties of Software 

 
The nature of software is well fit to the concept of a system, because    

software is a complex artifact that consists of a large set of different and 
intricately interconnected components. Changes at one point of a software 
system may affect the functioning of the entire whole due to propagation of 
interactions via highly coupled data architectures and intricately 
interconnected components. 

A system is the most complicated object that can be modeled in 
mathematics. The system science foundations of software engineering define 
a system as a collection of coherent and interactive entities that has stable 
functions and clear boundary with the external environment. Systems can be 
viewed in a hierarchy where one system may be considered part of a larger 
system. Contemporary system theory [Klir, 1972/2001; Wang, 2005l/06d] is 
a powerful conceptual tool that facilitates a deductive approach to software 
engineering problem solving. The design of a large software system would 
divide the system into interrelated subsystems and components. The 
components may then be developed in parallel by multiple teams before the 
system is integrated. 

System theory seeks to understand the nature of interactions and 
collaborations of systems, subsystems, and components. A system is 
considered to be a closure at a certain level of hierarchical architecture of our 
conceptual world. The system metaphor of software reveals that software in 
nature is an open system that obeys the abstract system theory and system 
algebra [Wang, 2006d] as described in Chapter 10 on system science 
foundations of software engineering.    
 
              
 
3.5 Philosophy of  Software 
       Engineering 
 

 
 
Software engineering is a unique discipline that relies on special 
philosophical foundations at the top level. Conventional industries produce 
physical products from raw materials via engineering approaches; the 
software industry produces software solutions for problems via software 
engineering. By contrasting the nature of software engineering with other 
engineering disciplines, it is clear that there are a number of interesting and 
fundamental differences between them as described in the following parts of 
this section.     
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3.5.1 THE COGNITIVE CHARACTERISTICS OF 
SOFTWARE ENGINEERING 

 
 The cognitive properties of software as described in previous section 

and the cognitive constraints of software engineering as identified in Section 
1.3 are helpful to explain the nature of software engineering and its 
dependency on human cognitive capability. Software as an abstract object 
under study and its cognitive complexity distinguish software engineering 
from conventional engineering disciplines. This subsection describes and 
analyzes the unique characteristics of software engineering stemmed from its 
basic cognitive constraints.            

 
3.5.1.1 The Abstraction and Intangibility of Software 
 

 The abstraction and intangibility of software refer to the nature that a 
specific software system is a solution for a given problem rather than a 
physical product. It is abstract and intangible because the solution is 
represented by code in a programming language. Further, in the time 
dimension, the software never runs as its static sequence shows in the 
program and it runs at hundred or thousand times faster than humans can 
simulate. We may never know the status of some of the intermediate data 
objects and the maps of dynamic memory allocation of a software system 
during run-time.          
 
3.5.1.2 The Inherent Complexity and Diversity 
 

 The inherent complexity and diversity refer to the difficulty for seeking 
and implementing solutions in software development and the surprisingly 
large scope of the problem domain in software engineering. Software 
development requires high level cognitive capability of abstraction, mental 
simulation, and relating a static sequential program to its dynamic run-time 
behaviors. Further, computer science has recognized a whole set of problems 
that are noncomputable or impossible to implement by programming known 
as the categories of NP-complete problems [Lewis and Papadimitriou, 1998].  
 
3.5.1.3 The Changeability or Malleability of Software 
 

 The changeability or malleability of software refers to the nature that 
software is considerably vulnerable and unstable. Although a software 
system may not wear-off, it does decay. Any hardware fault, timing fault, 
memory allocation problem, and external interference, no matter static or 
random, may result in unexpected behaviors of a software system. Therefore, 
focusing on software fault-tolerant and exception handling capability rather 
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than on implementation of ordinary functions that are directly required by 
customers is a basic sign to distinguish professional or naive software 
engineers.             
 
3.5.1.4 The Difficulty of Establishing and Stabilizing Requirements 
 

 The difficulty of establishing and stabilizing requirements refers to the 
nature of software engineering that the requirements in the real world are 
inevitably a moving target. One of the reasons we use a software solution 
rather than a wired logic for an application is for flexibility and adaptability 
on a common computer platform. In addition, system development is a 
learning process for both customers and developers. The involvement of 
customers in system development stimulates the extension of their 
requirements for the system. The deeper the customer understands the 
system, the more the customer seeks for functionality. At the same time, it is 
interesting that an enthusiastic and idealistic software developer does the 
same; even this is, sometimes, in contradiction to the financial objective of a 
project.  
 
3.5.1.5 The Requirement of Varying Problem Domain Knowledge 
 

 The requirement of varying problem domain knowledge refers to the 
nature that software engineering faces unlimited application domains. 
According to Theorem 3.9, it is recognized that for anything discretely 
expressive and for any activity needed to be repeated for more than two 
times, one may consider a software solution. Therefore, the recognition of 
domain knowledge requirements for an experienced software engineer is a 
significant issue in software engineering. It will be more important when a 
program can be automatically generated from requirement specifications in 
the future. 
 
3.5.1.6 The Indeterminacy and Polysolvability in Design 
 

 The indeterminacy and polysolvability in design refer to the nature that 
software solutions for a given problem are not sufficiently single. There is a 
combined solution space (options) for system design, functional 
specification, work products definition, and ways of interaction with 
operators. Within this extremely large solution space, an application is only 
one possible implementation that the developer believes is sound. We even 
can not prove theoretically and economically if the implemented solution is 
the best or not, because of the size of the solution space. This is the principle 
of nondeterministic and polysovability in software engineering. 
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3.5.1.7 The Polyglotics and Polymorphism in Implementation 
 

 The polyglotics and polymorphism in implementation refer to the nature 
that software implementation for a given problem is not sufficiently single in 
both languages and processes as that of the polysolvability for design 
described above. There is a combined solution space for programming 
languages, target machine languages, coding styles, data models, and 
memory allocations. Any change among these factors may result in a 
different implementation of a software system.  
 
3.5.1.8 The Dependability of Interactions between Software, Hardware, 
            and Humans 
 

 The dependability of interactions between software, hardware, and 
humans refers to the nature that any software is not running alone. It needs 
hardware support as an operating platform, and it needs interaction with 
human beings. Any hardware problem and human error may cause software 
malfunctions, even if it is believed that software itself does not wear-off.   

 
                 

3.5.2 THE NATURE OF SOFTWARE ENGINEERING 
 
The nature of software engineering may be explained by contrasting its 

unique characteristics with the conventional engineering disciplines [Wang 
and King, 2000a]. The uniqueness encompasses virtualization, infinitiveness 
of problem domains, design-intensive, generic platform, universal logical 
description, and repeatable processes.          
 
3.5.2.1 Programming: Virtualization vs. Realization 
 

 Given manufacturing engineering as an exemplar of conventional 
engineering, the common approach moves from abstract to concrete, and the 
final product is the physical realization of an abstract design. However, in 
software engineering, the approach is reversed. It moves from concrete to 
abstract. The final software product is the virtualization (coding) and 
invisible representation of an original design that expresses a real world 
problem. The only tangible part of a software product is its storage media or 
its run-time behaviors. As illustrated in Fig. 3.4, this is probably the most 
unique and interesting feature of software engineering. 
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-100% -50% 0% 50% 100%

Software engineering

Abstraction  <-------------------------------  Design  -------------------------------->  Realization

Manufacturing engineering

Figure 3.4 Virtualization vs. Realization  
 
3.5.2.2 Problem Domains: Infinitive vs. Limited 
 
 The problem domain of software engineering encompasses almost all 
domains in the real world as shown in Fig. 3.5, from scientific problems and 
real-time control to word processing and games. It is infinitely large when 
compared with the specific and limited problem domains of the other 
engineering disciplines. This stems from the notion of a computer as a 
universal machine, and is a feature fundamentally dominating the complexity 
in engineering implementation of large-scale software systems.  

       

  

Manufacture 
engineering 

 
Natural science 

Other 
engineering 
disciplines 

 

… etc. 

 
Everyday life 

 
Humanity 

 Software engineering

 
Literature 

Figure 3.5 Problem Domains: Infinite vs. Limited 
 
3.5.2.3 Effort Distribution: Design Intensive vs. Repetitive Production 
 

 As demonstrated in Fig. 3.6, software development is a design-
intensive process rather than a mass production process. The design activities 
include specification, design, implementation, test, and maintenance; the 
production activities consist of duplication and package. In some extent, 
software engineering is a design engineering of abstract artifacts, no matter 
how large of an exaggerated box may be used by the vendor to pack the 
software intending to imply a considerable production effort. 
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Figure 3.6 Effort distribution in software development and mass production 
 
3.5.2.4 Implementation: Specificity vs. Generality 
 

 Nancy Leveson (1997) viewed that the computer revolution enables 
“machines that were physically impossible or impractical to build become 
feasible.” Therefore, system designs may put “emphasis on steps to be 
achieved without worrying about how the steps will be realized physically.”          
 

 A specific application 

Specific software 

 Computerization 

A general 
purpose platform 

 
 
Figure 3.7 The role of software in computerization 
 

 The development of soft systems is a revolution that transforms the 
information processing and intelligent parts of the conventional physical 
products into software. Computerization as shown in Fig. 3.7 enables a 
specific problem or a special application be solved or implemented by a 
general purpose solution plus a specific software system. In this approach, a 
given problem is divided into two categories: (a) the standardized control 
drivers and interfaces to the general purpose computer, and (b) the special 
purpose software for the application. Therefore, a new design and 
implementation of a specific system is reduced to a problem of changing the 
software subsystem rather than that of refabricating the entire machine.  
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3.5.2.5 Universal Logical Description vs. Domain-Specific Description  
 

 Software engineering adopts only a few fundamental logical structures, 
such as sequence, branch, iteration, recursion, interrupt, and concurrency. 
However, these provide a powerful descriptive and abstractive capability for 
dealing with any real-world problem. In contrary, in other engineering 
disciplines, domain-and-application-specific notations have to be adopted 
that have limited descriptivity.  
 
3.5.2.6 Process Standardization vs. Product Standardization  
 

 Directly related to the fact that software engineering is design intensive, 
it is recognized that the development of specific application software is 
characterized as mainly a one-off activity in design and production. This is 
because there are fewer standard software applications or products that can 
be mass produced except a few kinds of system software or general utilities. 

 Thus, for the design-intensive software development, the only elements 
that can possibly be standardized and reused significantly are mainly the 
software engineering principles and processes, not the final products 
themselves as in other manufacturing engineering disciplines. 

 
                 

3.5.3 SOFTWARE ENGINEERING VALIDATION 
         METHODOLOGIES 
 

On the basis of rationalism, it can be seen that the methodology for 
software engineering validation and software quality assurance are 
profoundly different from the physical engineering disciplines, because the 
objects under study in the former are abstract and behavioral information. 

According to Theorem 3.2, the following corollaries can be derived. 
 

 
Corollary 3.4 indicates that the validation methodologies in software 

design and implementation are totally different. As shown in Table 3.4, the 
validation of the work products of software designs can be: a) Formal 
verification on the basis of logic and formal models of the design; b) Review 
or inspection of the design; and/or c) Simulation or prototyping. However, 
software implementations can only be validated by simulation, testing, and/or 
empirical trial.      

Corollary 3.4 The validation methodologies of software design and 
implementation can be sufficiently categorized as shown in Table 3.4. 
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Table 3.4 
Methodologies for Validating Software Products 

 

Work product in  
software engineering  

No. Validation method 

Design  
(Synthesis) 

Implementation 
(Instantiation) 

1 Logical verification √  

2 Mathematical prove √  

3 Review √  

4 Simulation √ √ 
5 Testing  √ 
6 Trial  √ 

 
Corollary 3.4 also indicates that software implementation itself is 

actually a validation method for the design of the given software system. 
This is an inherent property of complex systems where a long chain of 
processes is adopted in the design and implementation lifecycle to validate 
the system. Therefore, no simple or single process may be adequate in 
software system validation. As Brooks said, there is “no silver bullet.”    

The philosophical considerations explored in this subsection have 
attempted to clarify a set of fundamental characteristics of software 
engineering. Based on the above discussion it might be argued that software 
engineering has become a discipline that is at the root of human knowledge 
structure, and it deals with the most abstract and complex objects among all 
disciplines. These considerations also provide a basis for judging soundness 
or unsoundness of any specific technical solution for software engineering, 
while not losing the sight of the woods for the trees in various practice.  

 
 

 
3.6  Murphy's Laws: The 
        Practitioners' Philosophy for 
        Software Engineering 
 

 
 
In the preceding sections it may be seen that important philosophical 
thoughts were contributed by preeminent philosophers and scientists, who 
think at the highest level of abstraction and in a systematical way. However, 
this is not necessary to say that philosophy is only the brainchild of 
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philosophers and scientists. Actually, ordinary engineers and practitioners do 
recognize the usefulness of philosophy in eliciting the generic truth from 
everyday life. Murphy’s laws presented in this section are good examples of 
people’s philosophy elicited from empirical practice.  

The first Murphy's Law was named after Edward A. Murphy, an 
engineer working at Edwards Air Force Base in the 1940s. It says: “If 
anything can go wrong, it will.” A manager kept it as one of the “laws” 
called Murphy's Law. This law has helped the organization to maintain a 
good safety record for years. 
 Murphy's laws are people's wisdom that represents a number of simple 
and intuitive philosophical views on engineering practice. There are 
hundreds of Murphy's laws proposed and posted on the Internet. Selected 
ones are provided in the following subsections.    
 
 
3.6.1 MURPHY'S LAWS ON GENERAL ENGINEERING 
 

The following is a list of selected Murphy's laws on generic engineering 
practice. Readers may see they are also useful for daily life.         
 

      • If anything can go wrong, it will.  
      • Nothing is as easy as it looks.  
      • Everything takes longer than one expected.  
       • The complexity and frustration factor is inversely proportional to 

how much time you have left to finish a project. 
     • Experience is something you do not get until just after you needed 

 it most. 
      •   Confidence is the feeling you get just before you fully understand 
  the problem. 
      •  He who laughs last probably made a back-up. 

  •  You will always discover errors in your work after you have 
printed/submitted it. 

      •  The troubleshooting guide contains the answer to every problem 
  except yours. 

      •  He who hesitates is probably smart. 
       •  If builders built buildings the way programmers wrote programs, 

 then the first woodpecker that came along would destroy 
civilization.  

      •  Great discoveries are made by mistake.  
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      •  A meeting is an event at which the minutes are kept and the hours 
  are lost.  
      •  Any system which depends on human reliability is unreliable.  
      •  If an experiment works, something has gone wrong.  
      •  The remaining work to finish in order to reach your goal increases 
  as the deadline approaches.  

  •  Never trust modern technology. Trust it only when it is old 
enough. 

  •  It is simple to make something complex, and complex to make it 
 simple. 

  •  Impossible failures will happen at the test site. 
 
 
3.6.2 MURPHY'S LAWS ON SOFTWARE ENGINEERING 
 

The following is list of selected Murphy's laws related to software 
engineering.         
 
      •  A program will always do what you tell it to do, but never what 
  you want it to do. 

      •  Program complexity grows until it exceeds the capability of the 
  programmer who must maintain it.  
      •  Every nontrivial program has at least one bug. 
      •  The subtlest bugs cause the greatest damage and problems. 
      •  Undetectable errors are infinite in variety, in contrast to detectable 
  errors, which by definition are limited.  
      • Adding labor to a late software project makes it later.  
      • A working program is one that has only unobserved bugs.  
      • No matter how much resources you have, it is never enough.  
      • It is futile to try to get more disk space. Data expands to fill any 
  void.  
      •  A failure in a device will never appear until it has passed final 
  inspection.  

•  Computers don't make errors. What they do they do on purpose. 

•  Every nontrivial program can be simplified by at least one line of 
 code. 
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•  For any given software, the moment you manage to master it, a 
new version appears. And the new version always manages to 
change the very feature that you need most. 

      •  A patch is a piece of software which replaces old bugs with new 
  bugs.  
     •  The chances of a program doing what it's supposed to do are 

inversely proportional to the number of lines of code used to write 
 it. 

     •  Failure is not an option, it's a feature with software. 
     •  The worst bugs in your program will show up only during the 

final  review. 
     • The likelihood of problems occurring is inversely proportional to 

 the amount of time remaining before the deadline.  
      •  The error is human. To blame you computer for your mistakes is 
  even more human. 
      •  A complex system that does not work is invariably found to have 
  been evolved from a simple system that worked well. 

•  You can always spot an expert in the crowd. It is the person who 
 says that the project will take the longest to complete and will 
cost the most. 

      •  Investment in software reliability will increase until it exceeds the 
  probable cost of errors. 
 

More and newly proposed Murphy laws may be found at a number of 
websites such as: http://www.murphys-laws.com/, http://www. 
fourjokers.co.uk/murphy/, and http://www,hardcorenyc.com/murphys_law_ 
main.htm, etc.  

 
 

 
3.7 Summary 
 

 
 
Philosophy is the tool of abstraction, synthesis, and deduction, which 
enables new theories to be developed when there are inadequate laws or 
intuitive facts to be based for reasoning and draw inductive conclusions. 
Philosophy is the highest level of knowledge that is universally true without 
regard of time and places. Science and engineering philosophy is an aspect 
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of philosophy that studies general phenomena and rules of sciences and 
engineering technologies.     

The philosophical foundations of software engineering highlight the 
relationship between the abstract world that deals with information and the 
physical world that deals with matter and energy. The problem domain of 
software engineering can be seen in the connection between the abstract 
world of information to the physical world of matter and energy.   

This chapter has investigated the philosophical foundations and logical 
means of software engineering. Philosophies of science and engineering with 
inspiring philosophical thought have been surveyed. A set of formal 
inference methodologies based on logical arguments, deduction, induction, 
abduction, and analogy has been explored. The nature of software and its 
properties have been examined from a philosophical view. The philosophy of 
software engineering, complemented by Murphy’s laws – the practitioners’ 
philosophy, has been presented. As a result, the philosophical foundations 
of software engineering have been established.   

 
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Philosophical Foundations of Software 
Engineering, readers have achieved the following strategic goals with the 
knowledge architecture as summarized below. 
 
 

 
Chapter 3. Philosophical Foundations of SE  

 
■  Philosophies of Science and Engineering  
        • The physical world vs. the abstract world 
        • The basic axioms about nature 
        • Epistemology and cognition 
        • Holism vs. reductionism 
        • Positivism vs. rationalism 
        • Empiricism and objectivity  
        • Determinism vs. indeterminism 
        • Approaches to implement intelligence  
        • Ethical philosophy of engineering  
 
■  Formal Inference Methodologies  
        • Logical argumentations  
        • Deductive inferences 
        • Inductive inferences 
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        • Abductive inferences 
        • Analogical inferences 
 
■  The Nature of Software 
        • The three situations where software is needed  
        • The behavioral space of software 
        • Properties of software 
            - The cognitive properties 
            - The intelligent behavioral properties 
            - The system properties  
 
■  The Philosophy of Software Engineering 
        • The cognitive characteristics of software engineering 
            - The abstraction and intangibility 
            - The inherited complexity and diversity 
            - The changeability or malleability 
            - The difficulty of establishing and stabilizing requirements 
            - The requirements of varying problem domain knowledge 
            - The indeterminacy and polysolvability in design 
            - The polyglotics and polymorphism in implementation 
            - The dependability of interactions between software, hardware,  
               and humans 
 
        • The nature of software engineering 
           - Programming: virtualization vs. realization  
           - Problem domains: infinitive vs. limited  
           - Effort distribution: design intensive vs. repetitive production  
           - Implementation: specificity vs. generality  
           - Universal logical description vs. domain-specific description  
           - Process standardization vs. product standardization  
 
        • Software engineering validation methodologies 
 
■ Murphy’s Laws: The Practitioners’ Philosophy for Software 
    Engineering 
        • Murphy’s laws on general engineering 
        • Murphy’s laws on software engineering 
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• Philosophy is needed when there are inadequate laws or lack of 
intuitive facts to be based for reasoning and draw inductive conclusions. It is 
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also needed when there is no other clue for the judgment of a new problem or 
technology. 

 
• The philosophy of software engineering reveals that software 

engineering is a discipline at the root of human knowledge structure, and it 
deals with the most abstract and complex objects among all engineering 
disciplines. 

  
• Theoretical research is predominantly an inductive process; while 

applied research is mainly a deductive process. Both inference processes 
are based on the cognitive process and means of abstraction. 
 

• Philosophy, as well as mathematics, is the top level abstraction 
means and therefore the most general human knowledge.  

 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Philosophies of Science and Engineering 
 

• Philosophy can be divided into four branches known as 
epistemology, metaphysics, logic, and ethics. Logical inquiry is a generic 
cognitive methodology for knowledge acquisition by scientific investigation 
that adopts the processes of problem identification, hypothesis proposing, 
experiment and testing, and theory forming. 

 
• The principle of universal constraints states that both the natural 

world and the perceived abstract world are constrained by certain known 
restrictions and laws, or by those yet to be known due to current limitations 
of natural resources and/or human cognitive capability.  

 
• The basic axiom of scientific inquiry is that nature obeys a set of 

fundamental axioms, referring to uniformity, determinism, reality, rationality, 
regularity, replication, and discoverability of natural events and their 
relations. 

 
 • Epistemology is a branch of philosophy that studies concepts of 
knowledge and their rational justification, in which the six approaches to 
acquire knowledge or gain cognition of the nature are: tenacity, intuition, 
experience, authority, reasoning or inferring, and logical inquiry. 
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 • Foundationalism is a basic philosophical view that all the 
propositions we know to be true can be divided into foundational and 
superstructural ones. The former are indubitable and axiomatically to be 
true. The latter are propositions that bear deductive or implicated relationship 
to the foundations. To have the knack of reducing a problem to its simplest 
and basic elements and then finding a solution by the most direct means is 
commonly recognized as a vital scientific research method rooted in 
foundationalism. 
 

• Holism is a philosophical view that perceives a phenomenon and 
system with wholeness in an integrated, synthetic, and systematic approach.   
Reductionism is a philosophical view that investigates a phenomenon and 
system by using a decomposition and analytic approach.  

 
 • Positivism is a philosophical view, which states that a thesis about 
physical phenomena must either be analytic or empirical. Rationalism is a 
philosophical view to arrive at knowledge in which reasoning is used to 
acquire, process, derive, and evaluate the knowledge. 
 
 • Empiricism is a philosophical view that states knowledge can be 
gained through the experience of an event, the observation of a fact, or the 
use of a methodology. Objectivity is a scientific criterion that requires an 
observation must be independent of individual opinion, bias, or prejudice. 
The essence of objectivity is that true or false of an objective matter is 
independent of what anyone believes or thinks. Replication is a scientific 
criterion which requires that the results of a study must be replicable under 
the same condition. Causation is the cause-and-effect relationships where 
the manipulation of one event produces another event as the effect of the 
causal event. 
 

• Determinism is a philosophical view, which states the thesis that a 
complete description of the causal facts at one time uniquely determines what 
must happen next. Indeterminism is a philosophical view, which states the 
thesis that even a complete description of the present does not uniquely 
determine what will happen in the future. 

 
• The natural intelligence (NI) and machine intelligence (AI) share 

the same cognitive informatics (CI) foundation, because AI is a machine 
implementation of a subset of NI.  

 
• The approaches to implement intelligence can be classified into 

four categories known as biological organisms, silicon automata, computing 
systems, and hybrid systems. Autonomic computing is proposed as a new 
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and advanced computing technique built upon the routine, algorithmic, and 
adaptive systems. 

 
Formal Inference Methodologies 
 

• Inference is a cognitive process that inferences a possible causal 
conclusion from given premises based on known causal relations between a 
pair of cause and effect proven true by empirical observations, theoretical 
inferences, or statistical regulations. Reasoning can be classified as causal 
argument, deduction, induction, abduction, and analogy.   

 
• A causal argument is an assertion that yields a proposition called the 

conclusion from a given finite set of propositions known as the premises. The 
argument is valid if the conclusion is true; otherwise, the argument is a 
fallacy. 

 
• Deduction is a cognitive process by which a specific conclusion 

necessarily follows from a set of general premises (Eq. 3.11). A sound 
deductive inference is yielded iff all premises are true and the argument is 
valid. 

      
• Induction is a cognitive process by which a general conclusion is 

drawn from a set of specific premises based mainly on experience or 
experimental evidence (Eq. 3.12). A cogent inductive inference is yielded iff 
all premises are true and the argument is valid. 

 
• Abduction is a cognitive process by which an inference on a 

causality or the most likely reason of an observation or event may be derived 
(Eq. 3.14). A generic inference formula of logical abduction states that based 
on a general implication, a specific conclusion can be drawn. Abduction is a 
powerful inference technique for seeking the most likely cause(s) and 
reason(s) of an observed phenomenon in causal analyses. 

 
• Analogy is a cognitive process by which an inference about the 

similarity of the same relations holds between different domains or systems, 
and/or examines that if two things agree in certain respects then they 
probably agree in others (Eq. 3.15). A generic inference formula of logical 
analogy states that based on a specific proposition, a similar specific 
conclusion can be drawn. Analogy is widely used to predict a similar 
phenomenon or consequence based on a known observation.    

 
The Nature of Software 
 

• The necessary and sufficient conditions warranting the requirement 
for a software solution are the repeatability, programmability, and run-time 
determinability of system behaviors. 
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• The behavior of a computational statement is a set of observable 
actions or changes of status of objects operated by the statement. The 
behavior space of software Ω is a three-dimensional space with the 
dimensions of operations, time, and memory space. 

 
• The cognitive properties of software refer to its human dependency 

in almost all processes of software engineering, such as intangibility, 
complexity, inderterminacy, diversity, polymorphism, inexpressiveness, 
inexplicit embodiment, and unquantifiable quality measures.            

 
• The intelligent properties of software refer to the subset of 

simulated human intelligent behaviors described by programmed instructive 
information. The nature of software is the simulation and execution of human 
behaviors, and the extension of human capability, reachability, persistency, 
memory, and information processing speed. Both human and software 
behaviors can be described by a 3-dimensional representative model 
comprising action, time, and space.  

 
• The system properties of software refer to the intricate artifact that 

consists of a large set of different and intricately interconnected components. 
Changes at one point may affect the functioning of the entire whole due to 
propagation of interactions via highly coupled data architectures and 
intricately interconnected components. The system metaphor of software 
reveals that software in nature is an open system that can be rigorously 
treated using abstract system theory and system algebra. 

 
The Philosophy of Software Engineering 
 

• Conventional industries produce artifacts from raw materials via 
engineering approaches; the software industry produces software solutions 
for problems via software engineering. The nature of software engineering is 
explained by contrasting its unique characteristics with the conventional 
engineering disciplines. The uniqueness of software engineering 
encompasses virtualization in both design and implementation, infinitiveness 
of problem domains, design-intensive, generic platform, universal logical 
description, and repeatable processes.          

 
• The abstract objects under study and their cognitive complexity    

distinguish software engineering from conventional engineering disciplines. 
The cognitive characteristics of software engineering have been identified 
as follows: 

 
- The abstraction and intangibility 
- The inherited complexity and diversity 
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- The changeability or malleability 
- The difficulty of establishing and stabilizing requirements 
- The requirement of varying problem domain knowledge 
- The indeterminacy and polysolvability in design 
- The polyglotics and polymorphism in implementation 
- The dependability of interactions between software, hardware, 
   and humans 
 

• The philosophy of software engineering reveals that software 
engineering is a discipline at the root of human knowledge structure, and it 
deals with the most abstract and complex objects among all engineering 
disciplines.  

 
 

 
Questions and 
Research Opportunities 
 

 
 
3.1 Philosophy addresses fundamental questions of great generality 

and ways of reasoning. Try to explain that philosophy is the 
common root of all sciences and the crystallization of general 
knowledge of mankind in the pursuit of understanding and 
utilizing the natural resources and their rules.  

 
3.2       Why is philosophy needed when there are inadequate laws and 

principles to be based for deductive reasoning, and when there is 
no other rule of thumb to be based for a judgment of a given new 
problem or technology?     

 
3.3 Discuss why philosophy is the highest level of abstract 

knowledge that is universally true without regard of time and 
places.  

 
3.4       What are the four branches of philosophy? Why is logic treated as 

one of the branches?  
 
3.5       Explain why almost all science disciplines were originally 

emerged from philosophy. Why is it perceived that human 
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wonder about the nature and themselves started by philosophical 
queries and concluded in philosophical doctrines? 

 
3.6       Discuss the semantic differences between ‘epistemology’ in 

philosophy and ‘cognition’ in psychology and cognitive 
informatics.        

 
3.7       Foundationalism is a philosophical view and an important 

scientific research method that reduces a problem to its simplest 
and basic elements until direct solutions are known or can be 
derived. Try to provide an example problem in software 
engineering that can be solved in the foundationalism approach.      

 
3.8       According to Theorem 3.2, rationalism views that the abstract and 

information-based propositions and work products, such as a 
design or a specification of a system, are bounded by logical 
verifications, mathematical proofs, systematical reviews, 
behavioral simulations and tests, and/or in field trials. Try to 
compare rationalism with positivism, in which a thesis about 
physical phenomena must be empirically verifiable or repetitively 
observable, in a software engineering context. 

   
3.9       Theorems 3.3 and 3.4 indicate that natural and artificial 

intelligence are compatible and inclusive. On the basis of this 
philosophy, discuss whether a programmer may design a software 
system, which can solve a problem that no individual in the world 
knows how to solve.                

 
3.10       Why do ethics and professionalism play important roles in 

software engineering? 
 
3.11       What are the differences between the deductive and inductive 

inference methodologies? 
 
3.12       Explain why empirical research is mainly deductive, while 

scientific research is mainly inductive.  
 
3.13       In addition to Theorem 3.6, can induction be carried out by 

statistical methods on the basis of multiple observations of 
recurring phenomena? Why?      

 
3.14       Develop an instance of deductive inference in software 

engineering.  
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3.15       Develop an instance of inductive inference in software 
engineering.  

 
3.16       Develop an instance of abductive inference in software 

engineering.  
 
3.17       Develop an instance of analogical inference in software 

engineering.  
 
3.18       According to Theorem 3.9, discuss why the run-time 

determinability is the most important condition for implementing 
software behaviors.    

 
3.19       Theorem 3.10 states that the software behavior space is innately 

three-dimensional, i.e., Ω  = OP × T × S. However, almost all 
programming languages implement only two of them, but leave 
the time dimension T implied rather than explicitly expressed. 
What are the possible advantages and disadvantages of this 
convention in software engineering?                        

 
3.20 In order to understand the nature of software, this chapter presents 

the cognitive, intelligent behavior, and system metaphors of 
software. Chapter 1 has also presented the mathematics, product, 
and information metaphors.  

 
Summarize the set of the six metaphors of software, and consider 
if the traditional mass-manufacturing-based methodologies and 
quality assurance techniques in software engineering fit with all 
the six metaphors that reveals the nature of software from 
different angles.              

   
3.21       The concept of soft-systems is a revolution developed in 

computing and software engineering, which transform the 
information processing and intelligent parts of the conventional 
physical products into software. Try to explain the relationship 
between the universal machines and the soft-systems. 

 
3.22       A set of software engineering validation methodologies is 

presented in Table 3.4, such as logical verification, mathematical 
prove, review, simulation, testing, and trial. On the basis of Ex. 
3.8, discuss why the validation techniques should be different in 
software design and implementation in software engineering.     
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3.23 Select one of the Murphy's laws on software engineering and try 

to validate it by any of the following methodologies such as 
logical verification, mathematical prove, review, simulation, 
testing, trial, case study, experiment, and/or survey.  

 
3.24  Read the following classic article in software engineering:  
 

Dennis Ritchie (1984), Reflections on Software 

Research, The 1983 Turing Award Lecture, 

Communications of the ACM, 27(8), pp.758-760. 
 

Discuss the following topics in a group: 
 
                     •  About the author. 

      • What was the nature of software research in the 1980s?  
      • What distinguishes software research from computing and 

programming?  
      •  What conclusions of the article interested you? Why? 
      •  Your argument(s) or counter-points on any of the 

conclusions derived in this article.              
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Knowledge Structure 
 

 

 Fundamental mathematics  

      •  Set theory                                                     •  Relations 
      •  Functions                                                     •  Propositional logic 
      •  Predicate logic                                             •  Algebraic systems 

 Denotational mathematics for software engineering  

      •  Fundamental elements in modeling software systems 
      •  The need for a denotational mathematics in SE 
      •  The big-R notation  

 Real-time process algebra (RTPA) 

      •  The process metaphor of software systems 
      •  The structure of RTPA                                •  The type system of RTPA 
      •  Meta processes of RTPA                             •  Process relations of RTPA 

 The RTPA methodology for software system modeling and refinement 

      •  The RTPA methodology 
      •  System architecture modeling and refinement in RTPA 
      •  System static behavior modeling and refinement 
      •  System dynamic behavior modeling and refinement 

 RTPA: notations for software engineering 

      •  Modeling component-level problems using RTPA 
      •  Modeling system-level problems using RTPA 
      •  Modeling cognitive processes of the brain using RTPA 
 
 

 

Learning Objectives 
 

 

• To understand the central role of mathematics for software engineering. 
     • To be aware of the usages and limitations of classic mathematics for 

software engineering, particularly set theory, functions, and 
mathematical logic. 

     • To understand the new structure of denotational mathematics for 
software engineering, particularly real-time process algebra (RTPA). 

• To be familiar with the notation system of RTPA and its defined 
algebraic operations on basic processes.  

     • To be familiar with the RTPA methodology for software engineering in 
system architecture, static, and dynamic behavior modeling and 
manipulation. 

• To understand the need for a rigorous notation system for software 
engineering. 

4. Mathematical Foundations of SE 
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 “Software development is a tough engineering discipline with  
a strong mathematical flavor.” 

 
Edsgar W. Dijkstra (1982) 

 
 

“The basic insight is that programs themselves, as well as  
their specifications, are mathematical expressions. …  

The great advantage of mathematics is that the rules are much  
simpler than those of a natural language, and the vocabulary is much smaller.  

Consequently, when presented with something unfamiliar it is possible to work out a 
solution for yourself, by logical deduction and invention rather than  

by consulting books or experts.” 
 

C.A.R. Hoare (1985) 
 
 
 

4.1  Introduction 
 

 
 

any branches of mathematics have been created in sciences and 
engineering in order to meet their abstract, rigor, and expressive 
needs. These phenomena may be conceived as that new problems 

require new forms of mathematics.  
The entire computing theory, as Lewis and Papadimitriou (1998) 

perceived, is about mathematical models of computers and algorithms. 
Hence, the entire theory of software engineering is about mathematical 
models of software systems and denotational mathematics for software 
engineering.  

Applied mathematics can be classified into two categories: analytic and 
denotational mathematics [Wang, 2002a]. The former are mathematical 
structures that deal with functions of variables and their operations and 
behaviors; while the latter are mathematical structures that formalize rigorous 
expressions and inferences of system architectures and behaviors with data, 
concepts, and dynamic processes. Denotational mathematics also provides a 
formal semantics for other forms of means based on diagrams or languages in 
software engineering.  

The problems of software engineering are large-scaled and at the 
system level with abstract, complex architectures, and long chains of 
computing behaviors. Therefore, denotational mathematics is a system-level 
mathematics in which detailed individual computing behaviors may still be 

M 
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modeled by conventional analytical mathematics. Typical forms of 
denotational mathematics [Wang, 2002a/06d/06e/06j/07a] are system 
algebra, concept algebra, and Real-Time Process Algebra (RTPA). This 
chapter covers RTPA, while the other denotational mathematics will be 
presented in Chapters 10 and 15, respectively.    

 

    
 

This chapter explores essential elements of mathematics for modeling 
software architectures and software system behaviors encompassing 
fundamental mathematics such as set theory, algebra systems, and 
mathematical logic, as well as contemporary denotational mathematics such 
as process algebra [Mills, 1975; Hoare, 1978/85; Milner, 1980/89] and 
RTPA [Wang, 2002a/02b/03c/07a], which provides an essential formal 
notation for software engineering.     
 In the remainder of this chapter, existing mathematical means in terms 
of set theory, Boolean algebra, mathematical logic, and their applications in 
software engineering are orientated in Sections 4.2 through 4.4. The findings 
of their inadequacy in dealing with software engineering problems reveal an 
age-long overlooked problem in software engineering: the lack of a 
denotational and adequate mathematical means. This profound issue is 
explored further based on the analysis of essential elements of mathematics 
for modeling software systems and behaviors in Section 4.5. Then, a new 
mathematical structure, RTPA, is introduced in Section 4.6 as an expressive 
and practical notation system and methodology for rigorous treatment of 
software engineering problems. The RTPA methodology for software system 
modelling and refinement is presented in Section 4.7. Then, the usages of 
RTPA as a least complete yet powerful set of notations for software 
engineering modelling are described in Section 4.8 with case studies at 
system and component levels. 
 
 

 
The 11th Law of Software Engineering 

 
Theorem 4.1 The utility of mathematics in software engineering states 
that denotational mathematics is the means and rules to rigorously and 
explicitly express design notions and conceptual models on abstract 
architectures and complex interactive behaviors at the highest level of 
abstraction and in the largest scope of systems. 
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4.2  Set Theory 
 

 
 
Abstraction and categorization of external or internal objects in order to form 
concepts for reasoning are basic cognitive processes of human beings. Sets 
are the mathematical means for modeling such abstract objects, and not a 
surprise, it is also the foundation of almost all mathematical branches. This 
section briefly introduces set theories in the context of computing and 
software engineering. Detailed descriptions of set theory may be referred to 
Lipschutz (1964), and Arnold and Guessarian (1996). 
 

 

4.2.1 SETS AND PROPERTIES 
 
Set theory was created by Cantor in 1895. A set can be viewed as a 

collection of objects.       
 
4.2.1.1 Set Notations and Terminologies  
 

 Definition 4.1 A set S is a collection of elements e with a common 
property p, denoted by: 
 

       S  {e | p(e)}             (4.1) 
 

where    denotes  a  definition,  and  an  expression  following  the  vertical 
bar | defines the constraints or membership conditions of an element e, and 
p(e) means each e of S possesses the property p, i.e., ∀e ∈ S ⇔ p(e).  
 

Set can be used to express types of data structures, class models, and 
program syntaxes in software engineering. For examples, some fundamental 
sets in software engineering are as follows: 
 
    • The set of natural numbers:  N = {n | n is a positive integer} 
                                                                = {1, 2, 3, ...}          (4.2) 

    • The set of integers:              Z = {z | z is an integer} 
                                                               = {..., -2, -1, 0, 1, 2, ...}         (4.3) 

    • The set of real numbers:        R = {r | r is a real number} 
                                                                 = {-∞, ..., +∞}           (4.4) 

    • The set of byte:                    B = {b | b is a byte of binary numbers} 
                                                                 = {0, 1, ..., 255}           (4.5) 
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It is noteworthy that in software engineering, the mathematical domain 
of natural number N0 is usually extended to include zero because of the 
binary system convention for data representation, i.e.:    

 
         N0 = {n | n is 0 or a positive integer} 

                                      = {0, 1, 2, 3, ...}                   (4.6) 
       
 Definition 4.2 The membership between an element e and a set S can 

be determined by checking if e belongs to S or not, denoted by e ∈ S and e ∉ 
S, respectively. 
                                                                    

 Definition 4.3 Some important relationships between two sets A and B 
can be defined below: 
 
       •  Subset:    A ⊆ B  ∀a ∈ A ⇒ a ∈ B           (4.7) 

       •  Superset:         A ⊇ B  ∀b ∈ B ⇒ b ∈ A           (4.8) 

       •  Equal:  A = B  A ⊆ B ∧ B ⊆ A           (4.9) 

       •  Proper subset:  A ⊂ B  A ⊆ B ∧ A ≠ B        (4.10) 

       • Power set:  ÞA  {Ai | Ai ⊆ A ∧ 1 ≤ i ≤ 2#A}        (4.11) 
 
where ⇒ denotes an implication, and Þ a power set. 
   

Set is a fundamental and powerful mathematical concept for abstracting 
and eliciting objects that share certain common properties. Abstraction is an 
elicitation of common properties of elements from a given set. 

 

 
Definition 4.4 A universal set U is a superset of all sets under 

investigation.  
 
 The universal set U may be an infinite set, but without itself as a 
member. Otherwise, it may result in a number of fundamental dilemmas 

 

The 10th Principle of Software Engineering 
 

Theorem 4.2 The principle of abstraction states that, given an arbitrary 
set S and any property p, abstraction is to elicit a subset E such that the 
elements of it, e, possess the property p(e), i.e.: 
 

                    ∀S, p ⇒ ∃E ⊆ S, ∀e ∈ E ∧ p(e)    (4.12) 
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[Lipschutz, 1964]. The universal set U may be used to denote the 
environment or context of a software system.  
 

 Definition 4.5 The empty set ∅ is a set that contains no element. 
 

4.2.1.2 Set Operations 
 

 The basic set operations are union, intersection, difference, and 
cardinal size. Useful operations derived from the basic operations are 
complement, symmetric difference, Cartesian product, and partition. Table 
4.1 provides a summary of useful set operations collectively known as 
algebra of sets. Each operation in Table 4.1 is illustrated by an example 
using the following three sets: A = {1, 2, 3}, B = {3, 4}, and U = N. 
 

Table 4.1 
Definitions of Basic Set Operations 

   

Operation Definition Example 
Union X ∪ Y  {e | e ∈ X ∨ e ∈ Y} A ∪ B = {1, 2, 3, 4} 

Intersection X ∩ Y  { e | e ∈ X ∧ e ∈ Y} A ∩ B = {3} 

Difference X \ Y  { e | e ∈ X ∧ e ∉ Y} A \ B = {1, 2} 

Cardinal size 
# (1 | )X e X∈∑  

#A = 3 
#B = 2  

Complement X  U \ X  
      = { e | e ∈ U ∧ e ∉ X} 

A  = U \ A = N \ A 
      = {4, 5, 6, ...} 

Symmetric 
difference 

X ⊕ Y  (X ∪ Y) \  (X ∩ Y) 
           = {e | e ∈ X ∨ e ∈ Y ∧ e ∉ X ∩ Y} 

A ⊕ B = {1, 2, 4} 

  
The set operations union, intersection, and symmetric difference 

defined in Table 4.1 can be extended to multiple finite sets as follows:       
 

               S1 ∪ S2 ∪ … ∪ Sn = 
1

n

i
i

S
=
∪   

                              = {s | s ∈ S1 ∨ s ∈ S2  ∨ … ∨  s ∈ Sn}      (4.13) 

               S1 ∩ S2 ∩ … ∩ Sn = 
1

n

i
i

S
=
∩   

                               = {s | s ∈ Si ∧ s ∈ S2  ∧ … ∧  s ∈ Sn}         (4.14) 
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               S1 ⊕ S2 ⊕ … ⊕ Sn = {s | s ∈ 
1

n

i
i

S
=
∪ ∧ s ∉ 

1

n

i
i

S
=
∩ }         (4.15) 

 
 Definition 4.6 A partition of a set S, S ≠ ∅, is a subdivision of S into n, 

n ≥ 2, subsets Si, 1 ≤ i ≤ n, such that: 
 

               (a) S = 
1

n

i=
∪ Si                     (4.16) 

       (b) Si ≠ ∅, 1 ≤ i ≤ n         (4.17) 
       (c) Si ∩ Sj = ∅, i ≠ j, 1 ≤ i, j ≤ n       (4.18) 

 
where Si is called a cell. 
 
 Partition is a useful concept in component-based software engineering, 
in which a component can be modeled as a cell or a nonempty and non-
overlapping subset of a software system. Definition 4.6 also explains that a 
component-based system is a composition (union) of its components as 
partitions, which meets the three conditions.                 
 

Example 4.1 Given set A = {1, 2, 3}, all possible partitions of A can be 
derived according to Definition 4.6 as follows: 

 
    A = {{1}, {2}, {3}}, or 

         A = {{1}, {2, 3}}, or 
    A = {{1, 2}, {3}}, or 
    A = {{1, 3}, {2}} 

 
 Definition 4.7 Let A and B be two arbitrary nonempty sets, the 

Cartesian product of A × B is a set of all ordered pairs (a, b) where a ∈ A 
and b ∈ B, i.e.: 
 
                    A × B {(a, b) | a ∈ A ∧ b ∈ B}                      (4.19) 
 
where × reads cross, and an ordered pair (a, b) is a directed connection from 
a to b. 
 

  An important property of a Cartesian product is that the number of its 
elements (ordered pairs) is predictable, i.e.: 

 
                           #(A × B) = #A • #B                        (4.20) 
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Eq. 4.20 indicates that if the cardinal sizes of the finite and nonempty 
sets A and B are known, the number of combinations between their elements 
is determined.       

 
Example 4.2 Given sets A = {x, y, z} and B = {1, 2}, the size of the 

Cartesian product A × B can be predicated as follows:                 
 

#(A × B) = #A • #B = 3 • 2 = 6 
where the 6 pairs of A × B are: 
 

     A × B = {(x,1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)} 
  

Definition 4.7 can be extended to multiple finite numbers of sets, where 
each set is nonempty and finite.      
 

 Definition 4.8 Cartesian product of n sets S1 × S2 × … × Sn is a set of n-
tuples (s1, s2, …, sn) where si ∈ Si, 1 ≤ i ≤ n, i.e.: 
 

         S1 × S2 × … × Sn   

1
X
n

i
i

S
=

  

                                   = {(s1, s2, …, sn) | si ∈ Si, 1 ≤ i ≤ n}       (4.21) 
 
where  

   

#(S1 × S2 × … × Sn) = 
1
#

n

i
i

S
=
∏           (4.22) 

 
Cartesian products have a wide range of applications in modeling 

software systems and their behaviors. 
 

4.2.1.3 Algebraic Laws of Sets 
 
 Algebra of sets obeys the laws as summarized in Table 4.2. These 
algebraic laws play important roles to simplify set operations and to compose 
complex set relations. 
 Observing Table 4.2 it can be found that the set operations of union ∩ 
and intersection ∪ are symmetric on arbitrary sets including the dual of sets 
U and ∅.  

There are additional laws and properties on sets [Lipschuts, 1964] such 
as the involution law that states: 

 
 ( )A = A                             (4.23) 
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Table 4.2 
Laws of Set Algebra 

   

Law Description 
Idempotent A ∪ A = A A ∩ A = A 
Commutative A ∪ B = B ∪ A A ∩ B = B ∩ A 
Associative A ∪ (B ∪ C) = (A ∪ B) ∪ C  A ∩ (B ∩ C) = (A ∩ B) ∩ C  
Distributive A ∪ (B  ∩ C) = (A ∪ B) ∩  

                          (A ∪ C) 
A ∩ (B  ∪ C) = (A ∩ B) ∪  
                          (A ∩ C) 

Absorption (A ∪ B) ∩ A = A (A ∩ B) ∪ A = A 
DeMorgan A B A B∪ = ∩       A B A B∩ = ∪  

Complement A A U∪ =  U = ∅  A A∩ =∅  U∅ =  

Identity A ∪ ∅ = A A ∪ U = U A ∩ U = A  A ∩ ∅ = ∅ 

 
 

4.2.2 SEQUENCES AND ORDERED SETS 
 

According to Definition 4.1, the position, or the sequential order, of an 
element in a set has no meaning, i.e., {a, b, c} = {c, b, a}. However, in some 
special contexts, the positions of elements do represent important 
information. In order to deal with such requirements, the concepts of tuple, 
sequence, and ordered set are introduced in this subsection.             
   
4.2.2.1 Pairs and Tuples  
 
 Definition 4.9 A pair p is an ordered encapsulation of two objects a 
and b, or a directed connection from a to b, denoted by: 
 

p  (a, b)            (4.24) 
 
where the positions of the elements in p are sensitive, that is, (a, b) ≠  (b, a).  
 
 Definition 4.10 A tuple τ is an ordered encapsulation of multiple 
objects denoted by: 
 

  τ  (A, B, …, N)            (4.25) 
 
where the objects in the tuple can be a number, set, or function. 
 

A tuple encapsulated with n objects is called an n-tuple. In particular, 
the 3- through 6-tuples are called triples, quadruples, quintuples, and 
sextuples, respectively.      
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The tuple is a powerful modeling means in mathematics and software 
engineering for denoting a coherent encapsulation or composition of multiple 
objects. Usually, the objects in the tuple will be further characterized by their 
attributes or properties.             
 

Example 4.3 The syntax of a statement s in a program can be described 
as a triple, i.e.: 

 
                s = (I, P, O)          (4.26)
    

where   
 

• P is a specific operator, p ∈ Ξ, where Ξ denotes the instruction set 
of a given language; 

           •  I is a finite set of input; and    

     •  O is a finite set of output. 
 
4.2.2.2 Sequences 
 
 Definition 4.11 A sequence q is a finite or infinite ordered set where 
each element en, n ∈ N, is identified by its cardinal position in the set, i.e.: 
 
                         q  <en | n ∈ N>            

      = <e1, e2, e3, …>          (4.27) 
 
where N is the set of natural numbers N = {1, 2, 3, …}. 
 

In computing, the set N is usually extended to N0 = {0, 1, 2, 3, …} for 
convenience. If there is no ambiguity, N0 will not be specially denoted in this 
book. 

       
4.2.2.3 Lists 
 
 Definition 4.12 A finite sequence with n elements e1, e2, …, en is a list 
l, i.e.: 
 

            l  <e1, e2, …, en>         (4.28) 
 

Example 4.4 A linear (sequential) procedure P in a program with n 
statements, s1, s2,  …, sn, can be described as a list lP, i.e.: 
 
             lP = <s1, s2, …, sn>         (4.29) 
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4.2.2.4 Ordered Sets 
 

An ordered set is a set that the positions of its elements satisfy a certain 
condition. A set of natural or real numbers with the usual order is described 
below.  
 
 Definition 4.13 A partially ordered set S≤  is a set in which all elements 
are listed according to the usual order or their values in an ascending 
sequence, i.e.: 
 

                   SP  {ei  | i ≤ j ∧ i, j ∈ N ⇒ ei ≤ ej ∧ ei, ej ∈ R}        (4.30) 
 

Example 4.5 A sort operation on a set A = {5, 2, 1, 5, 8} transforms it 
into a partially ordered set A≤  ={1, 2, 5, 5, 8}. 
 

More general treatment of ordered sets is dependent on the definition of 
partially ordered relations, which will be described in Section 4.2.3.3. 
 
 
4.2.3 RELATIONS 
 

 Relation is the most important concept in programming theories, 
because a program can be modeled as a finite list of relations between 
individual statements. Relations also play an important role in explaining 
human internal knowledge representation and the natural intelligence. This 
section describes the basic mathematical theory of generic relations. The 
relational theory will be further extended in Section 4.6.5 on RTPA and 
Section 5.5.1 on the mathematical models of programs and software systems.           
 
4.2.3.1 Binary Relations  
 
 Definition 4.14 Let A and B be sets, a binary relation R(a, b) is an 
ordered pair (a, b) ∈ A × B, i.e.: 
    

R(a, b)  aRb 
   = (a, b),   a ∈ A, b ∈ B        (4.31) 
 

         Since the pair (a, b) is ordered, a relation aRb≠ bRa = aR-1b, where R-1 

is an inverse relation of R.   
Usually, a binary relation is simply called a relation.  
  

 Example 4.6 Given sets A = {x, y, z} and B = {1, 2}, a set of six binary 
relations can be derived as: 
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                    R(a, b) = {R1, R2, R3, R4, R5, R6} 
= {(x,1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)} 

 
4.2.3.2 Compositions of Relations 
  

The binary relation defined in Eq. 4.31 can be extended to a ternary or, 
in general, an n-nary relation. The operation that constructs a combinational 
relation with more than one binary relation is called a composition. 

      
         Definition 4.15 Let A, B, and C be sets. Then, a composition of two 
relations aPb and bQc, R(a, b, c), is denoted by P ο Q, i.e.: 
    

             R(a, b, c)  P ο Q  
                            = (aPb) ο (bQc) 
                            = (aPb)Qc 

= (a, b, c),   a ∈ A, b ∈ B, c ∈ C       (4.32) 
 
 Example 4.7 Given sets A = {x, y, z} and B = {1, 2}, C = {α, β}, a set 
of 12 ternary relations can be derived according to Definition 4.15: 
  
    R(a, b, c) = R(a,b) ο R(b,c) 

       = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)} × {α, β} 
       = {(x, 1, α ), (x, 2, α), (y, 1, α), (y, 2, α), (z, 1, α), (z, 2, α),  

                 (x, 1, β ), (x, 2, β), (y, 1, β), (y, 2, β), (z, 1, β), (z, 2, β)} 
 
         Definition 4.16 A composition of n relations s1R12s2, s2R23s3, …, sn-1Rn-

1,n sn, denoted by R(s1, s2, …, sn), is an ordered n-tuple (s1, s2, …, sn) ∈ S1 × S2 
× … × Sn , i.e.: 
    

    R(s1, s2, …, sn)  R12 ο R23 ο … ο Rn-1,n 
 = ( … ((s1R12s2)R23s3) … sn-1)Rn-1,n sn 
 = (s1, s2, …, sn),    si ∈ Si, 1 ≤ i ≤ n      (4.33) 

 
Example 4.8 A string S can be denoted as a list of characters αi, 1 ≤ i ≤ 

n, composed by the concatenation relation  , i.e.: 
 
          1 2 ...   nα α α=S   
     =  α1α2 … αn          (4.34) 
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Because any arbitrary n-nary relation can be reduced to n-1 embedded 
binary relations, the following subsections will be focused on operations and 
properties of binary relations.      
 
4.2.3.3 Properties of Relations  
 

Major properties of relations, such as associative, reflexive, symmetric, 
and transitive, are summarized in Table 4.3, where R, R1, R2, and R3 are 
relations, a, b, c are elements in set S, respectively. 

      
Table 4.3 

Properties of Relations 
   

Property Description 
Associative (R1 ο R2) ο R3 = R1 ο (R2 ο R3) 

Reflexive ∀a ∈ S ⇒ aRa 

Irreflexive ∀a, b ∈ S, aRb  ⇒ a ≠  b 
Symmetric ∀a, b ∈ S, aRb  ⇒ bRa 
Asymmetric ∀a, b ∈ S, aRb ∧ bRa  ⇒ a = b 
Transitive ∀a, b, c ∈ S, aRb ∧ bRc  ⇒ aRc 

 
Based on the basic properties of relations, two categories of relations 

known as equivalence and partial order relations can be derived.  
    

Definition 4.17 An equivalence relation is a relation R on a nonempty 
set S satisfying the following properties: 
 
  (a) R is reflexive, i.e., ∀a ∈ S ⇒ aRa;    

(b) R is symmetric, i.e., ∀a, b ∈ S, aRb ⇒ bRa;    
  (c) R is transitive, i.e., ∀a,b,c ∈ S, aRb ∧ bRc  ⇒ aRc.    

 
 Definition 4.18 A partially ordered relation Rp is a relation R on a 
nonempty set S satisfying the following properties: 
 
  (a) R is reflexive, i.e., ∀a ∈ S ⇒ aRa;    

(b) R is asymmetric, i.e., ∀a, b ∈ S, aRb ∧ bRa  ⇒ a = b;    
  (c) R is transitive, i.e., ∀a,b,c ∈ S, aRb ∧ bRc  ⇒ aRc.    
 
 Typical partially ordered relations are ≤, ≥, <, >, and ⊆. 
 
 Definition 4.19 A partially ordered set Sp is a set in which all elements 
satisfy a given partially ordered relation Rp. 
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 Typical partial ordered sets are N≤, N≥, N<, N>, R≤, R≥, R<, R>, and S⊆.   
 
 Definition 4.20 A totally ordered relation Rt is a relation R on a 
nonempty set S that is a partial order; in addition, every two elements in it are 
comparable. 
 
         According to Definition 4.20, N≤, N≥, N<, N>, R≤, R≥, R<, and R> are also 
totally ordered sets, since any pair of elements a and b in them are 
comparable by a < b, a = b, or a > b.       

 
4.2.3.4 Cumulative Relations of Programs 

 
A program can be treated as a composition of a list of statements by 

predefined relational or composing rules. The relations between statements 
are a special type relation known as cumulative relations [Wang, 
2006a/06h/06j], that is, a relation Ri is related to all previous relations R1 
through Ri-1, 1 ≤ i ≤ n, as defined below.    
 
         Definition 4.21 A cumulative relation ® is an ordered list of embedded 
relations where a relation Rij, j = i +1, 1 ≤ i < n-1, 1 < j ≤ n, is related to all 
previous relations R12 through Ri-1,j, i.e.: 
    

  ®(s1, s2, …, sn) = ( … ((R12) ο R23 ) ο … ) ο Rn-1,n   
= ( … ((s1R12s2)R23s3) … sn-1)Rn-1,n sn, 
            si ∈ Ξ, Rij ∈ R               (4.35) 

 
where Ξ is a set of predefined instructions in a given programming language, 
and R a set of designated compositional rules in the same language.      

 
Definition 4.21 indicates that program composition is left associative.  

The finding on the cumulative relations for modeling composing rules in 
programming will be further discussed in Section 4.6 on RTPA and Section 
5.5.1 on the unified mathematical models of programs.  

          
The composing rules R in programming can be classified into 

sequential, branch, switch, iteration, procedure call, recursion, parallel, 
concurrence, interleave, pipeline, interrupt, jump, and system dispatches. 
Detailed descriptions will be provided in Section 4.6.5 known as the 17 
fundamental process relations in RTPA.      
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4.3 Algebra Systems 
 

 
 
In the preceding section, set theory has been described as the foundation not 
only for the entire mathematical family, but also for the modeling and 
manipulation of software objects and software system behaviors. However, 
only sets and their operations are not adequate and convenient in dealing 
with the whole scope of problems in software engineering, particularly the 
intricate interrelations among software objects. This section describes algebra 
and algebraic operations on functions, which are an extended mathematical 
concept beyond sets.   
 
 

4.3.1 ABSTRACTION IN ALGEBRA SYSTEMS 
             

Definition 4.22 Algebra is a branch of mathematics in which objects 
and their relations are represented by abstract symbols and formulae.     

 
 Abstraction as described in Theorem 4.2 is the essence of algebra. 
Using algebra, generic relations between variables and quantities may be 
formally, precisely, and efficiently described. Rigorous reasoning can then be 
conducted based on established algebraic rules and properties. 

By extending the objects under study and their relations beyond sets, a 
number of advanced and special algebraic systems are developed, such as 
abstract algebra, Boolean algebra, process algebra, concept algebra, and 
system algebra.             
 
4.3.1.1 Abstract Algebra 

 
Definition 4.23 Abstract algebra studies a set of abstract algebraic 

structures beyond sets, such as semigroups, groups, rings, fields, and lattices. 
 
 Discussions on these algebraic structures are out of the scope of 

fundamental requirements for software engineering. Detailed materials may 
be referred to Arnold and Guessarian (1996) and Lipschutz and Lipson 
(1997).  
 
4.3.1.2 Boolean Algebra 
 

Definition 4.24 Boolean algebra is an abstract algebraic system on 
binary valued entities developed by George Boole (1813 - 1864).  
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Boolean algebra is built on the axioms of the algebraic laws of sets 
and/or logic as described in Sections 4.2 and 4.4. A more formal definition of 
Boolean algebra is as follows.  

 
Definition 4.25 A Boolean algebra ABL is a 6-tuple, i.e.:  
 

     A BL = (VBL, 0, 1, +, *, )           (4.36) 
    

where VBL is a set of Boolean variables, 0 and 1 are the Boolean constants, +, 
*, and  are Boolean operations known as sum, product, and complement, 
respectively.  
 
4.3.1.3 Process Algebra 
              

A process algebra is a sequence of state transitions that may be used to 
denote system behaviors. More rigorous definitions of processes will be 
given in Sections 4.6.1 and 5.5.1.   

 
Definition 4.26 Process algebra is an abstract algebraic system in 

which the entities of algebraic operation are computational processes. 
    
Process algebra is a kind of dynamic algebra that focuses on 

computational operations modeled as processes, their algebraic properties, 
and relations. Process algebra provides a set of formal notations and rules for 
describing algebraic objects of processes and their algebraic relations [Hoare, 
1978/85; Milner, 1980/89]. An extended form of process algebra, RTPA 
[Wang, 2002a/02b/03c/07a], which deals with the 3-D properties of software 
behaviours as introduced in Section 3.4.2, will be intensively described in 
Section 4.6. 
  
4.3.1.4 Concept Algebra 
              

Definition 4.27 Concept algebra (CA) is a new mathematical structure 
for the formal treatment of abstract concepts and their algebraic relations, 
operations, and associative rules for composing complex concepts and 
knowledge.          

 
Concept algebra deals with the algebraic relations and associational 

rules of abstract concepts. The associations of concepts form a foundation to 
denote complicated relations between concepts in knowledge representation. 
The associations among concepts can be classified into nine categories, such 
as inheritance, extension, tailoring, substitute, composition, decomposition, 
aggregation, specification, and instantiation [Wang, 2006e]. Further details 
will be presented in Section 15.3.3.  
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4.3.1.5 System Algebra 
 

Definition 4.28 System algebra is an algebraic system on entities 
known as systems, which are beyond sets, functions, and processes.  

 

System algebra [Wang, 2006d] is useful in abstract systems modeling, 
system analysis, and system operations. System algebra will be introduced in 
Chapter 10 on system science and its applications in software engineering.  

 

 
4.3.2 FUNCTIONS 

 
Function is an important mathematical concept developed in algebra for 

denoting complicated relations between abstract objects. Almost all discrete 
or continuous relations between sets can be described as functions.  

           
4.3.2.1 Notations of Functions  
 
 Definition 4.29 A function f is a mapping relation → between two sets 
X and Y in a generic signature as follows: 
    

     f : X → Y          (4.37) 
 
where X is called the domain of the function, and Y the codomain. 
 
 Another form for denoting a function, particularly a continuous 
function, is given below:   
 

    y = f(x),   x ∈ X, y ∈ Y         (4.38) 
 

Definition 4.29 denotes that for each given independent variable x ∈ X, 
function  f  maps  it  into  a  unique  dependent  variable   y  ∈  Y.  Thus,  f : 
X → Y is called a total function. The function that maps a subset of X into Y 
is called a partial function, denoted by  f : X  Y.     

A function usually results in a transformation of values between 
variables in either the same or different types. Most mathematical functions 
are in the former form, i.e.: 

 
     f : R → R          (4.39) 

 
where R denotes the type or a set of real numbers.  
 

However, more generally in software engineering, most computational 
operations may be defined in the latter form. That is, the mappings, in a more 
general case, are conducted between different types.  
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 Example 4.9 An important addressing function π in software 
engineering, which maps a given identified id in type S (string) into an 
associated memory address located by a pointer ptr in type H (hexidecimal), 
can be denoted as follows: 
  
                                 π: idS → ptrH          (4.40a) 
or 
                                                ptrH = π(idS)H             (4.40b) 
 
4.3.2.2 Inverse Functions  
 
 Definition 4.30 An inverse function f -1 is an inverse mapping relation 
between the codomain Y and domain X of a given function f, i.e.: 
 

    f -1: Y → X        (4.41a) 
or 

   x =  f -1 (y),   x ∈ X, y ∈ Y       (4.41b) 
 
 Example 4.10 The inverse function of addressing π as defined in 
Example 4.9 converses a given memory address ptrH into an associated 
logical name idS, known as memory allocation π -1, can be denoted as 
follows: 
  
                              π -1: ptrH → idS           (4.42a) 
or 
                                             idS = π -1(ptrH)S              (4.42b) 
 

Addressing π and memory allocation π -1 are fundamental computing 
functions widely used in software engineering, which will be modeled in 
RTPA in Section 4.6 using the notations ⇒ and ⇐, respectively.     

 
4.3.2.3 Composition of Functions 
  

As that of relations, complex functions can be constructed by a 
composition of simple ones. Reversely, complex functions can also be 
decomposed into primitive ones. 
 
         Definition 4.31 A composition of two functions f : X → Y and g : Y → 
Z, which results in a composed function c: X → Z , is denoted by g ο f, i.e.: 
    

                     c: X → Z  g(y) ο f(x)    
                              = g (f (x))           (4.43) 
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The composition operation can be extended to multiple functions as 
described below.   
  
 Definition 4.32 A composition of multiple functions among  f1 ,  f2 , …  
fn  is a multi-layer embedded function  f n, i.e.: 
    

           f n = fn ο … ο f2 ο f1 
=  fn (… (f2 (f1(x)) …)        (4.44) 

 
Example 4.11 If each statement in a list of linear (sequential) process 

in a program, s1, s2,  … ,  sn, is treated as a function, the process P is a 
composition of all the sequential statements, i.e.: 
 
           P = sn  

= sn ο … ο s2 ο s1    
= sn (… (s2 (s1(I)) …)                 (4.45) 

 
where I denotes a set of concrete data objects as the initial inputs in 
computing. 

 
It is noteworthy that the compositional description of the process P is 

only valid for sequential processes. There are more complicated relations 
between statements in a process such as branch, iteration, interrupt, and 
parallel. A process in a program that consists of those complicated relations 
rather than sequential ones will be given in Theorem 4.10 in Section 4.6.1. 

 
 

4.3.3 ALGEBRAIC OPERATIONS 
 

The third powerful property of algebra is that it is an open system 
allowing various algebraic operations to be introduced as functions between 
the objects under operation.       

              
Definition 4.33 An operation on a nonempty set A is an abstract 

function *, i.e.: 
 
                     * :  A × A → A           (4.46)  

 
denoted by *(a, b) or a * b, where a, b ∈ A.  

 
The abstract operation * can also be perceived as a binary relation, or 

more generally, an n-nary relation, n ≥ 1, between n variables in A.     
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Example 4.12 Let R be the set of real numbers, the arithmetical 
operations * ={+, -, •, ÷} on R can be defined as follows: 

 
                     * : R × R → R         (4.47a) 

and   
                     + : R × R → R         (4.47b)  
                     - :  R × R → R         (4.47c)  
                     • :  R × R → R         (4.47d)  
                     ÷ : R × R → R         (4.47e)  

 
 It is noteworthy that - and ÷ are not a valid operation on set N of natural 
numbers, because the results of these two operations may be out of the 
domain of N, such as negative or fractional numbers.           

The properties of operations can be associative and/or commutative, 
dependent on whether the following conditions are met respectively.     

 
Definition 4.34 An operation * on a set A is associative iff: 

 
    ∀a1, a2, a3 ∈ A  ⇒  (a1* a2) * a3  = a1* (a2 * a3 )        (4.48) 

 
Definition 4.35 An operation * on a set A is commutative if: 

 
           ∀a1, a2 ∈ A  ⇒  a1* a2   = a2* a1          (4.49) 
 

Example 4.13 Examining the arithmetic operations defined on R as 
shown in Example 4.12, * ={+, -, •, ÷}, it can be found that both + and • are 
associative and commutative, but - and ÷ are not. Further, it can be seen that  
• over + are distributive, i.e.:   
 

        ∀a, b, c ∈ R  ⇒  a • (b + c)  = ab + ac         (4.50) 
 
 
 
4.4 Mathematical Logic 
 

 
 
Mathematical logic formalizes the structures and procedures used in 
deductive manipulation of objects and relations. Symbolic logic is developed 
for a wide range of application in argument, reasoning, deduction, induction, 
and proof. George Boole (1815-1864) developed the mathematical theories 
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of logic and probabilities, particularly Boolean algebra, which he considered 
as the laws of thought. Russell and Godel advanced the art of mathematical 
logic [van Heijenoort, 1997]. 

This section describes prepositional logic, predicate logic, and their 
applications in software engineering. Further studies on higher order logic 
structures may be referred to [Hurley, 1997; Tomassi, 1999].    
 
 
4.4.1 PROPOSITIONAL LOGIC 

 
Propositional logic deals with a given logical statement as a whole 

known as a proposition. Compound statements can be built based on simple 
statements through the use of logical operators. Once an argument is 
symbolically represented by propositional logic, mere inspection will often 
determine whether it is valid or invalid.  

 
4.4.1.1 Propositions 
 

Before discussing the concept of a proposition, three conditional logical 
relations known as yield, implication, and equivalence are introduced.  

 
Definition 4.36 A yield relation γ  is a conditional logical relation  

that denotes a causal relationship between two Boolean objects o1BL (the 
cause) and o2BL (the consequence), i.e.: 

  
     γ BL  o1BL  o2BL 

        =  o2BL = T iff o1BL = T        (4.51) 
 
where the attached bold symbol such as BL is called the type-suffix to denote 
the Boolean type of a logical variable or statement, and similarly T or F 
denote the Boolean values true or false, respectively. 
 

A yield operation is used to express a causality between the cause and 
consequence where the consequence is true iff the cause is true. In other 
words, there is no definition when the cause is not true.       
 

Definition 4.37 An implication ι  is a conditional logical relation ⇒ 
that denotes iff o1BL = T then o2BL = T is determinable, otherwise o2BL is 
indeterminable, i.e.:  
 
  ι BL  o1BL ⇒ o2BL    
         = (o1BL = T  o2BL = T) ∨ (o1BL = F   (o2BL = T ∨ o2BL = F))    (4.52) 
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It is noteworthy that implication is often overloaded to denote the yield 
relation  between two propositions in logical inferences when it causes no 
confusion.      
 

Definition 4.38 An equivalence ε is a conditional logical relation ⇔ 
that denotes both if o1BL = T then o2BL = T and if o1BL = F then o2BL = F are 
determinable, and vice versa, i.e.:  
 
             ε BL  o1BL ⇔ o2BL    
            = (o1BL = T  o2BL = T) ∨ (o1BL = F   o2BL = F)            
            ∧ (o2BL = T  o1BL = T) ∨ (o2BL = F   o1BL = F)          (4.53) 
 

For contrasting the differences of the three conditional operations, 
readers are suggested to refer to Table 4.4. Based on the above conditional 
operations, logical propositions can be formally described as follows. 

 
Definition 4.39 A proposition ρ is a declarative statement that 

expresses a Boolean concept (BL) or a ‘to be’ relation  between two or more 
logical objects oiBL, 1 ≤ i ≤ n, which can be evaluated as either true (T) or 
false (F), i.e.:     
 
      ρBL  o1BL  o2BL         (4.54) 
 
where the to be relations  ∈ {is, are, =, ≡, , ⇒, ⇔}, and ≡ is treated as 
equivalent to ⇔. 
 

Example 4.14 The following statements are propositions:      
 
        ρ1BL  (1 ≡ 1)BL = T 

        ρ2BL  (North is not the opposite of south)BL = F 
 

Propositions defined according to Definition 4.39 are called primitive 
propositions, which cannot be broken down into more simpler ones. 
 
 Definition 4.40 Propositional logic is a branch of symbolic logic that 
deals with propositions as a whole and the Boolean logical relations between 
them. 
 
4.4.1.2 Propositional Logic Operations 
 
 The basic operations in propositional logic are conjunction (∧), 
disjunction (∨), implication (⇒), equivalence (⇔), and negation (¬). The 
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operations of propositional logic may also be classified into connective 
operations and conditional operations as shown in Table 4.4 defined using 
truth tables.  

The truth table is useful for defining and analyzing composite 
propositions. It is also useful for evaluating the equivalence between two 
composite propositions.    
 

Table 4.4 
Truth Tables of Connective and Conditional Logical Operations 

   

Propositions Connective Operations Conditional Operations 

p q ¬ p p ∧ q p ∨ q p  q p ⇒ q p ⇔ q 

T T F T T T T T 

T F F F T F F F 
F T T F F F T F 
F F T F F F T T 

 
Definition 4.41 A composite proposition P is a composition of multiple 

primitive propositions by connectives , such as conjunction ∧, disjunction 
∨, and negation ¬, i.e.: 
 

     PBL  ρ1BL  ρ2BL         (4.55) 
 
where  ∈ {∧, ∨,  ¬}. 
 

Example 4.15 Using the primitive propositions defined in Example 
4.14, the following composite propositions can be derived:      

 

           PBL  ρ1BL ∧ ρ2BL  
                              = (1 ≡ 1)BL ∧ (North is not the opposite of south)BL 
                              = T ∧ F 
                              = F       
  

          P’BL  ρ1BL ∨ ρ2BL  
                              = (1 ≡ 1)BL ∨ (North is not the opposite of south)BL 
                              = T ∨ F 
                              = T       
 
4.4.1.3 Laws of Propositional Algebra and Logical Inferences 
 
 Propositional algebra and the rules of logical inference obey the 
algebraic laws as summarized in Table 4.5. These laws play important roles 
to compose complex propositions and to facilitate logical reasoning. Table 
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4.5 shows that the propositional operations of conjunction, disjunction, and 
negation are symmetric. It is interesting to observe the phenomena of duality 
as well as similarity between the logical and set laws as shown in Tables 4.5 
and 4.2, respectively.    
   

Table 4.5 
Laws of Propositional Algebra 

   

Law Description 
Idempotent p ∨ p ≡ p  p ∧ q ≡ p 
Commutative p ∨ q ≡ q ∨ p p ∧ q ≡ q ∧ p 
Associative p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r 
Distributive p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 

Absorption (p  ∨ q) ∧ p ≡ p (p  ∧ q) ∨ p ≡ p 
DeMorgan ¬(p ∨ q) ≡ ¬p ∧ ¬q      ¬(p ∧ q) ≡ ¬p ∨ ¬q      
Complement p ∨ ¬p ≡ T ¬T ≡ F     p ∧ ¬p ≡ F ¬F ≡ T     

Identity p ∨ F ≡ p p ∨ T ≡ T p ∧ T ≡ p p ∧ F ≡ F 

 
Another law known as the involution law of propositions is: 
 
        ¬¬p ≡ p           (4.56) 
 
The fundamental unit of propositional argument is the whole statement.  

Therefore, propositional logic lacks the capability to look into the low level 
structures of statements that it treats as a black box. When more analytical 
power is needed to deal with the contents of a statement known as terms, and 
when the universal or existential quantifications need to be deduced, the 
extension of prepositional logic by predicate logic is required as described in 
the following subsection.       
 
 
4.4.2 PREDICATE LOGIC 
 

Predicate logic introduces variables, properties, and quantifiers on the 
basis of prepositional logic. Predicate logic combines the five operators of 
propositional logic with symbols for predicates and quantifiers. Based on 
this, a more powerful symbolic system is formed to represent the content of 
logical arguments and natural language statements.  
 

Definition 4.42 A predicate p is a declarative assertion that affirms or 
denies an object oBL or a relation R as true or existing, i.e.: 
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     p(o)BL  (o  p)BL       (4.57a) 

       p(o1, o2)BL  R(o1,o2)BL = (o1Ro2)BL      (4.57b) 
 
where the to be relations  ∈ {is, are, =, ≡, , ⇒, ⇔}, o1BL and o2BL are two 
arbitrary logical objects.  

 
Example 4.16 The following statements are predicates:      

 

             p1(x)BL  (x  p 1)BL = T 

                    p2(2,1)BL  >(2,1)BL = (2 > 1)BL = T 

 
Definition 4.43 Predicate logic is a branch of symbolic logic that deals 

with propositions containing predicates, variables, and quantifiers. 
 
 Once an argument is translated into the symbols of predicate logic, 
natural deduction is enabled to derive a sound and valid conclusion. 
 
4.4.2.1 Taxonomy of Predicates  
 

There are three types of predicates in predicate logic known as singular, 
universal, and particular predicates or statements.   
 

Definition 4.44 A singular predicate is a specific statement that asserts 
a specific object o satisfies a given predicate P, i.e.:  

 
                 P(o)BL           (4.58) 
 
where o is called an individual constant. 
 

Definition 4.45 A universal predicate is a general statement that asserts 
every element x in a set S satisfies a given predicate P, i.e.:  

 
         ∀x ∈ S   P(x)BL          (4.59) 
 
where ∀ is the universal quantifier, and x is called an individual variable. 
 

Definition 4.46 A particular predicate is a specific statement that 
asserts at least one element x in a set S satisfies a given predicate P, i.e.:  

 
         ∃x ∈ S   P(x)BL          (4.60) 
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where ∃ is the existential quantifier, and x is an individual variable. 
 
4.4.2.2 Concept Construction with Predicate Logic  
 

In predicate logic, complex logical concepts and arguments can be 
hierarchically constructed by predicates, functions, terms, and formulae, from 
the bottom up.     
  
4.4.2.2.1 Logical Functions  
 

Definition 4.47 A function F of predicate logic is a ‘to be’ relation  
between a predicate F and a given logical variable x, i.e.: 
 
         F(x)BL  (x  F)BL         (4.61) 
 
where x is a free variable that is not bounded by a quantifier. 
 
4.4.2.2.2 Logical Terms  

 
Definition 4.48 A term T of predicate logic is defined recursively as 

follows: 
 
     (a) Every logical variable and every constant is a term. 

(b) If t1, t2, …, tn are terms and f is a function that takes n 
arguments, then f(t1, t2, …, tn) is a term. 

     (c)  Every term is obtained in this manner.    
 
4.4.2.2.3 Logical Formulae  
 

Definition 4.49 A formula L of predicate logic is defined recursively 
as follows: 
 

(a) If t1, t2, …, tn are terms and P is a predicate that takes n 
arguments, then P(t1, t2, …, tn) is a formula called an atomic 
formula.  

(b)  If α and β are formulae, so are (¬α), (α ∧ β), (α ∨ β), (α ⇒ 
β), (α  ⇔ β). 

(c)  If x is a variable and α is a formula, then (∀x α), (∃x α) are 
formulae. 

     (d)  Every formula is obtained in this manner. 
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Example 4.17 Given three natural language statements and 
corresponding definitions of predicates as follows: 
    

  

Colored flowers always scented(1)  are .
( ) ( )

I dislike flowers grown in the open air
(2)  that are not .

( ) G( )
grown in the open air colorless(3) No flowers  are . 

G( ) ( )

C x S x

D x x

x C x¬

 

The equivalent formulae in predicate logic can be derived as follows: 
    

     (1) L1  ∀x C(x)   S(x)   

     (2) L2  ∀x (¬G(x)  D(x)) 

     (3) L3  ¬ (∃x (G(x) ∧ ¬C(x))) 
 
4.4.2.3 Inferences in Predicate Logic  
 

Once a natural language statement is represented by a symbolic formula 
in predicate logic, a conclusion of argument may be systematically and 
rigorously derived via logical deduction on the basis of known inference 
rules as developed in Section 3.3. 
 The basic propositional inferences are summarized in Table 4.5. Four 
additional rules in predicate logic for dealing with the quantifiers in predicate 
formulae can be derived. They are the rules of universal instantiation, 
universal generalization, existential instantiation, and existential 
generalization.             
 For individual variables x, y ∈ S, and individual constant a, b ∈ S, 
given L (a) be a statement, and L (x) or L (y) be a formula or function, the 
following definitions present the rules of inference on predicate formulae. 
          

Definition 4.50 The rule of universal instantiation states that a specific 
instance statement can be deduced from a general predicate formula or 
function, i.e.:   

 

         ∀x, L (x)  L (a)         (4.62) 
 

Definition 4.51 The rule of universal generalization states that a 
general predicate formula or function can be deduced from a specific 
instance formula or function, i.e.:   

 

         L (a)   ∀x, L (x)        (4.63) 
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Definition 4.52 The rule of existential instantiation states that a 
specific instance statement can be deduced from at least one predicate 
formula or function, i.e.:   

 
         ∃x, L (x)  L (a)          (4.64) 

 
Definition 4.53 The rule of existential generalization states that a 

generic predicate formula or function can be deduced from a specific 
instance formula, function, or statement, i.e.:   

 
         L (a)  ∃x, L (x)          (4.65) 
 

More complicated logical argument methodologies and formal 
inference processes may be referred to Section 3.3. It is noteworthy that first 
order predicate logic is timid. That is, if something is uncertain, it makes no 
assumptions. In order to deal with nontraditional problems in system 
description and uncertainty reasoning, a number of nonconventional logical 
forms have been proposed, such as multiple-valued logic [Dunn and Epstein, 
1977], temporal logic [Pnueli, 1997; Emerson, 1990], and fuzzy logic 
[Zadeh, 1965/73/82].   

 
However, it is noteworthy that mathematical logic is good at addressing 

the to be |= reasoning. More dynamic and diverse problems in the category of 
to do in system modeling require new forms of mathematical means known 
as denotational mathematics, which will be described in the following 
sections.            
 
 
 
4.5 Denotational Mathematics for 
        Software Engineering 
 

 
 
Denotational mathematics is a set of contemporary mathematical structures 
for dealing with the unique mathematical entities, abstract objects, relations, 
and formal manipulations in abstract system modeling, which encompasses 
concept algebra, system algebra, and RTPA. Concept algebra has been 
introduced in Section 4.3.1 and details are provided in Section 15.3.3.1 and 
in [Wang, 2006e]. System algebra will be intensively discussed in Section 
10.4. This section focuses on RTPA and the big-R notation. 
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4.5.1 FUNDAMENTAL ELEMENTS IN MODELING 
         SOFTWARE SYSTEMS 
 

It is observed that, although there are various ways to express oneself, 
human and system behaviors can be classified into three categories: to be, to 
have, and to do [Wang, 2006a]. All mathematical means and forms, in 
general, are an abstract description of these three categories of human and 
system behaviors and common rules of them. Taking this view, mathematical 
logic may be perceived as the abstract means for describing “to be,” set 
theory for describing “to have,” and functions for describing “to do.” 

Three forms of denotational mathematics [Wang, 
2002a/06d/06e/06j/07a] such as concept algebra, system algebra, and RTPA 
are created to enable rigorous treatment of software and knowledge 
representation and manipulation in a formal and coherent framework, which 
extend the expressive capability for abstract objects under study from basic 
mathematical entities of numbers and sets to higher levels, i.e., concepts, 
systems, and behavioral processes. Table 4.6 contrasts the usages of 
denotational mathematics and classic discrete mathematics.  

 
Table 4.6  

Basic Expressive Power for Denotational Mathematics 
 

Basic expressive 
power for computing  

Classic 
mathematics 

Denotational 
mathematics 

To be Logic Concept algebra  
To have Set theory System algebra 
To do Functions RTPA 

 
Table 4.6 demonstrates a fundamental view toward the natural and 

machine intelligence description in general, and software system in 
particular. This also indicates that only a logic-based approach, which 
developed in philosophy and pure mathematics, is not adequate to be taken as 
the sole mathematical foundation for software engineering.             

It is recognized in Theorem 3.10 that the behavioral space of any 
system or human action is three dimensional encompassing action, time, and 
space. Correspondingly, there are three fundamental categories of 
computational behaviors in a software system: a) computational operations 
for variable manipulation, b) timing operations for event manipulation, and 
c) space operations for memory manipulation. Therefore, the behavior of a 
software system can, in general, be viewed as a set of 3-D processes 
comprising computational operations, time, and memory.  

It may be argumentative that some transaction processing systems in 
computing are 2-D, i.e., those systems’ behavioral space may only 
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encompass operational logic and static memory allocation. Then, the 2-D 
systems can be treated as special cases of the generic 3-D systems. It is 
mathematically intuitive that any method or technologies that apply to the 3-
D problems in software engineering are applicable to the 2-D problems. 
However, a pure 2-D technology is inadequate and unsafe to be extended to a 
3-D problem. 

Therefore, the requirement for a denotational mathematics that is 
suitable for the 3-D problems is theoretically and practically fundamental in 
software engineering. RTPA has been developed as a coherent notation 
system and a formal engineering method for addressing the 3-D problems in 
software system specification, refinement, and implementation, particularly 
for real-time and embedded systems. 
 

Definition 4.54 A behavior of a software system is its computing 
operations OPs and observable outcomes and effects that affect or change the 
states of a system in the environment modeled by all variables and 
input/output events, as well as related memory structures M over time T, i.e.: 

  
                                   Software behavior  f (OP, T, M)                 (4.66)  

 
Behaviors of software systems can be classified as static and dynamic 

ones as shown in Table 4.7. 
 

Table 4.7 
Characteristics of Software System Behaviors 

   

No. Behaviors Static Dynamic 
1 System architectures                     

2 Data objects   

3 Dynamic memory allocations   

4 Timing   

5 Input/output manipulations           

6 Events handling   

7 Mathematical operations      

  
            

Definition 4.55 A static behavior of software systems is a process that 
can be determined at design or compile time.  

 
Definition 4.56 A dynamic behavior of software systems is a process 

specified by given timing requirements that may only be determined at run-
time.  
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It is noteworthy in Table 4.7 that most software behaviors are dynamic 
or characterized both dynamic and static. Mathematical logic is found 
capable to deal with the ‘to be’ type static behaviors; the rest of the dynamic 
instructive behaviors in computing have to be manipulated by process 
algebras, particularly RTPA.                   
 
 
4.5.2 THE NEED FOR DENOTATIONAL 
         MATHEMATICS IN SOFTWARE ENGINEERING 

 
Christopher Strachey (1965), the founder of the Programming Research 

Group (PRG) in the Computing Laboratory at Oxford University, wrote: “It 
has long been my personal view that the separation of practical and 
theoretical work is artificial and injurious. Much of the practical work done 
in computing, both in software and in hardware design, is unsound and 
clumsy because the people who do it have not any clear understanding of the 
fundamental design principles of their work. Most of the abstract 
mathematical and theoretical work is sterile because it has no point of contact 
with real computing.”  

 
4.5.2.1 Problems Yet to be Solved 

 
In software engineering we are still facing the same problems as those 

the community dealt with 40 years ago. Dijkstra supposed this was because 
of the spaghetti usage of “goto’ architectures and ‘the non-constructed 
approaches’ in programming [Dijkstra, 1968a]. Brooks explained that there 
is no silver bullet in the foreseeable future [Brooks, 1987].  

This special phenomenon indicates that: (a) The current empirical 
approach centered by languages toward programming is insufficiently 
practical, and (b) The current theories and mathematical means are 
inadequate. Profound problems yet to be solved and the core technology that 
we need in software engineering are to support the expression of system 
architectures, behaviors, and their implementation. Therefore, the major 
reason for all the difficulties in software engineering is that we did not get 
our theories, mathematical means, and tools ready before we can effectively 
and generically deal with the complicated long-chain sequences of instructive 
behaviors in software engineering.     
 
4.5.2.2 New Problems Require New Forms of Mathematics   
 

The history of sciences and engineering shows that new problems 
require new forms of mathematics. Many branches of mathematics were 
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emerged in engineering sciences in order to meet their abstract, rigor, and 
expressive needs. Software science and engineering is a transdisciplinary 
enquiry that encompasses a wide range of contemporary science and 
engineering disciplines related to information and knowledge processing, 
which cannot be described by conventional analytic mathematics. Therefore, 
new forms of mathematics are sought, collectively known as the denotational  
mathematics, to deal with the unique mathematical entities and abstract 
objects emerged in the field of software engineering, such as information, 
concepts, knowledge, processes, behaviors, systems, complex relations, and 
distributed objects. 

 
Definition 4.57 Denotational mathematics is a category of 

mathematical structures that formalizes rigorous expressions and inferences 
of system architectures and behaviors with data, concepts, and dynamic 
processes. 
 

It is observed that all existing mathematics, continuous or discrete, are 
mainly analytic, seeking unknown variables from known factors according to 
certain functions. Conventional science and engineering disciplines have 
been mainly using analytic methodologies and mathematics in theory 
development and problem solving. However, in software engineering, the 
need is to formally describe and specify software systems, particularly its 
architecture, static behaviors, and dynamic behaviors in terms of operational 
logic, timing, and memory manipulation. Because programming languages 
lack the required expressive power to deal with all the dynamic behaviors in 
the 3-D behavioral space, denotational mathematics that can describe 
software architectures and behaviors rigorously, precisely, and expressively 
are sought [Wang, 2002a/06d/06e/06j/07a].  

 
According to Theorems 1.3, 1.4, and 4.1, the utility of denotational 

mathematics for software engineering is the means and rules to rigorously 
and explicitly express design notions and conceptual models on system 
architectures and behaviors at the highest level of abstraction, in the largest 
scope of systems, and with the complicated long-chain sequences of 3-D 
computational behaviors. 

  
RTPA is a form of denotational mathematics that provides an 

expressive, coherent notation system, and systematical refinement 
methodology for addressing the abstract architectures and 3-D behaviors of 
software systems. RTPA will be introduced in Section 4.6. On the basis of 
denotational mathematics, an expressive software engineering notation 
system, a formal software engineering modelling methodology, and a 
rigorous specification of software architecture and behaviours may be 
developed systematically.  
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4.5.3 THE BIG-R NOTATION 
 
The most generic and fundamental operations in system and human 

behavioral modeling are iterations and recursions. Because a variety of 
iterative constructs are provided in different programming languages, the 
notation for repetitive, cyclic, recursive behaviors and architectures in 
computing need to be unified.  

The big-R notation is introduced to deal with this fundamental 
requirement in computing and software engineering [Wang, 2006f], which is 
proposed first in RTPA [Wang, 2002a]. In order to develop a general 
mathematical model for unifying the syntaxes and semantics of iterations and 
recursions, their inductive nature is analyzed below.   
 

Definition 4.58 An iteration of a process P can be defined as a series 
of n+1 repetitions, Ri, 1 ≤ i ≤ n+1, of P by mathematical induction, i.e.: 
 

R0 = ⊗, 
R1 = P → R0, 
… 
Rn+1 = P → Rn,  n ≥ 0           (4.67) 

 
where ⊗ denotes skip, or doing nothing but exit.  

 
Based on Definitions 4.58, the big-R notation can be introduced below.   

 
Definition 4.59 The big-R notation, R, is a generic mathematical 

operator that is used to denote: (a) a finite set of repetitive behaviors, or (b) a 
finite set of recurring architectural constructs in computing, in the following 
forms, respectively: 
         

(a) 
exp =
R

F

BL T
P               (4.68) 

(b)  
i =1
R

n

N
P(iN)                    (4.69) 

 
where BL and N are the type suffixes of Boolean and natural numbers, 
respectively; T and F are the Boolean constants true and false, respectively.    

 
Further description of the type system and a summary of all type 

suffixes of RTPA will be presented in Section 4.6.3. Formal type theory will 
be provided in Section 5.3 on data object modeling and manipulation.        
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The mechanism of the big-R notation can be in analogy with the 
mathematical notations ∑ and ∏, or programming notations of while-loop 
and for-loop as shown in the following examples.  

  

Example 4.18 The big-∑ notation
1

n

i
i

x
=
∑ is a widely used calculus for 

denoting repetitive additions. Assuming that the operation of addition is 
represented by sum(x), the mechanism of big-∑ can be expressed more 
generally by the big-R notation, i.e.: 
 

         
i=11

( )R
n n

i i
i

x sum x
=

=∑                   (4.70) 

    
According to Definition 4.59, the big-R notation can be used to denote 

not only repetitive operational behaviors in computing, but also recurring 
constructs of architectures and data objects as shown below.  

 
Example 4.19 The architecture of a two-dimensional array with n × m 

integer elements, Anm, can be denoted by the big-R notation as follows:  
 

   Anm =
i=0 j=0
RR
n-1 m-1

A[i, j]N                  (4.71) 

 
Because the big-R notation provides a powerful and expressive means 

for denoting iterative and recursive behaviors and architectures of systems or 
human beings, it is a universal mathematical means for system modeling in 
terms of repetitive behaviors and structures or architectures, respectively 
[Wang, 2006f]. From this point of view, ∑ and ∏ are special cases of the 
big-R for repetitively doing additions and multiplications, respectively.              
 

Definition 4.60 An infinitive iteration can be denoted by the big-R 
notation as:  
         

    R P  γ • P  γ                  (4.72) 
 
where γ is a label that denotes the rewinding point of a loop, and  denotes a 
jump. 
 

The infinitive iteration may be used to formally describe an everlasting 
behavior of systems.           
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Example 4.20 A simple everlasting clock, CLOCK, which does nothing 
but tick as C.A.R. Hoare proposed [Hoare, 1985], i.e.: 
 

   CLOCK  tick → tick → tick → …                (4.73) 

 
can be efficiently denoted by the big-R notation as simply as follows:  
 

          CLOCK R tick                       (4.74) 

 
A more generic and useful iterative construct is the conditional iteration.    

 
Definition 4.61 A conditional iteration can be denoted by the big-R 

notation as:  
         

  
exp =
R

F

BL T
P   γ • (   expBL = T  

           → P 
            γ    
         |  ~ 
           → ⊗ 

                          )                                             (4.75)   
 
where ⊗ denotes a skip.  
 

The conditional iteration is frequently used to formally describe 
repetitive behaviors on given conditions. Eq. 4.75 expresses that the iterative 
execution of P will go on as long as the evaluation  of the conditional 
expression is true (expBL = T), until expBL = F abbreviated by ‘~’.  

 
The big-R notation captures and models a fundamental and widely 

applied mathematical concept in computing and human behavior description. 
More applications of the big-R notation in modeling fundamental computing 
behaviors and architectures will be provided in Section 5.4.2, which 
demonstrate that a convenient mathematical notation may dramatically 
reduce the difficulty and complexity in expressing a frequently used and 
highly recurring concept and notion in computing. The big-R notation has 
been adapted and implemented in RTPA and its support tools.  
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4.6 Real-Time Process Algebra 
       (RTPA) 
 

 
 
Software engineering is a unique discipline in which the objects of their 
studies require new forms of mathematics known as denotational 
mathematics in the treatment, modeling, description, specification, 
development, implementation, and maintenance of software systems. RTPA 
is developed as a coherent notation system and a formal engineering 
methodology for addressing the 3-D problem in software system 
specification, refinement, and implementation for both real-time and nonreal-
time systems [Wang, 2002a/02b/03c/06a/07a].  

This section presents the process metaphor of software systems and the 
structure of RTPA. The type system, process notations, process relations, and 
process composing rules of RTPA are described. The system specification 
and refinement methodology of RTPA and case studies on real-world 
problems that demonstrate the descriptive power of RTAP as a powerful 
software engineering notation system will be provided in the following 
sections. More rigorous treatment of RTPA type rules and formal semantics 
will be explored in Chapters 5 and 6, respectively. 
 
 
4.6.1 THE PROCESS METAPHOR OF SOFTWARE 
         SYSTEMS 
 

An important finding in formal methods is that a software system can 
be perceived and described as the composition of a set of processes. The 
process metaphor of software systems has evolved from concurrent 
processes to real-time process systems in the area of operating system 
research and formal methods [Hoare, 1978/85; Milner, 1980/89].          

 
Definition 4.62 Formal methods are mathematics-based techniques for 

software system design, description, specification, and modeling in software 
engineering. 

 
Formal methods are developed to deal with human errors resulted by 

empirical technologies in software engineering. It has then been found that 
formal methods are also useful in training and in the exploration of 
theoretical foundations of software engineering. If software engineers were 
trained rigorously and experienced some mental challenges at a higher 
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abstract level, it would help them to develop correct, reliable, and high 
quality software. Current formal methods can be classified into three 
categories known as logic-based (e.g., Z, Object-Z), algebra-based (e.g., 
CSP, RTPA), and diagram-based (e.g., SDL, SMC, and UML) [Wang, 
2002h]. 

Conventional formal methods were based on logic and set theories 
[Spivey, 1988/92; Woodcock and Davies, 1996; Derrick and Boiten, 2001], 
which were perceived to be suitable for describing static behaviors of 
software systems. For describing system dynamic behaviors, a variety of 
algebra-based technologies were proposed since late 1970s [Hoare, 1978/85; 
Milner, 1980/89; Baeten and Bergstra, 1991; Gerber et al., 1992; Klusener, 
1992; Cerone, 2000; Dierks, 2000; Fecher, 2001].  
 
4.6.1.1 Process Algebra 
 

Algebra is a form of mathematics that simplifies difficult problems by 
using symbols to represent variables, calculus, and their relations. Algebra 
enables complicated problems to be expressed and investigated in a formal 
and rigorous process.  

Process algebra is a major branch of formal methods that provides an 
algebraic treatment for software systems as a set of interacting processes. 
According to Definition 4.26, a process algebra is an abstract algebraic 
system in which the entities of algebraic operation are computational 
processes. Process algebra defines a set of formal notations and rules for 
describing algebraic manipulations of software processes.  

Hoare [Hoare, 1978/85], Milner [Milner, 1980/89], and others [Corsetti 
et al., 1991; Nicollin and Sifakis, 1991; Jeffrey, 1992; Vereijken, 1995] 
developed algebraic ways to represent communicating and concurrent 
systems known as process algebra. A typical process algebra is known as 
Communicating Sequential Processes (CSP) developed by C.A.R. Hoare 
[Hoare, 1985; Brookes et al., 1984]. CSP provides a notation system for the 
specification of process systems and proof of the implemented processes 
satisfies their specifications. In CSP, a system is modeled as a set of 
processes, composed sequentially or in parallel. Each process is described in 
terms of all of its possible behaviors. Processes may communicate by 
exchanging data via abstract channels. CSP uses 14 notations to denote 
processes of software systems as shown in Fig. 4.1.  

An important finding in CSP and related work is that a software system 
may be modeled by a set of interacting (communicating) processes. A 
process in CSP is perceived as follows. 

 
Definition 4.63 A process is an abstract model of a unit of meaningful 

software behavior that represents a transition procedure of the system from 
one state to another by changing values of its inputs {I}, outputs {O}, and/or 
internal variables {V}. 
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Figure 4.1 The CSP notations 
 

It is noteworthy that the concept of process in CSP is hybrid. That is, it 
does not distinguish the differences between the fundamental meta processes 
and relational process operations. The CSP notations model a major part of 
elementary software behaviors that may be used in system specification and 
description. However, it lacks many useful processes that are perceived 
essential in system modeling, such as addressing, memory manipulation, 
timing, and system dispatch. CSP models all input and output (I/O) as 
abstract channel operations that are not expressive enough to denote complex 
system interactions, particularly for those of real-time systems. 

Wang found that the existing work on process algebra and their timed 
variations [Reed and Roscoe, 1986; Boucher and Gerth, 1987; Schneider, 
1991] can be extended to a new form of expressive mathematics: Real-time 
process algebra [Wang, 2002a/02b/03c/07a]. Real-time process algebra can 
be used to formally and precisely describe and specify architectures and 
behaviors of software systems on the basis of algebraic process notations and 
rules.  
 
4.6.1.2 Real-Time Process Algebra (RTPA) 
 

As indicated in Theorem 3.10, a generic computing problem is a 3-D 
problem that requires a formal method addressing the requirements in all 
dimensions, particularly the time dimension. The key metaphor in system 
modeling, specification, and description is that a software system can be 
perceived as the composition of a set of interacting processes, which are 

      Process                        Notation 
(1) Sequential    P ; Q  
(2) Event    a → P 

(3) Branch              P c Q 
(4) Repeat    * P 
(6) Parallel           P || Q 
(6) Deterministic choice  P �  Q  
(7) Non-deterministic choice P  Q  

(8) Pipeline    P » Q   
(9) Interleave    P  ||| Q 
(10) Interrupt    P ^ Q 
(11) Assignment                      x := v 
(12) Channel input                           c ? v  
(13) Channel output                   c ! v 
(14) System termination        STOP 
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constructed on the basis of algebraic operations. A formal description of a 
process is given below.    

 
Definition 4.64 A process P is a composed component of n meta 

statements si and sj, 1 ≤ i < n, j = i + 1, according to certain composing 
relations rij, i.e.:  
 

   1 12 2 23 3 1,(...((( )  )  ) ...  )n n nP s r s r s r s−=                (4.76) 

 
where rij ∈ ℜ, and ℜ is a set of algebraic process relations that will be 
described in Section 4.6.5.  
 

Contrasting Definitions 4.63 and 4.64, readers may find the differences 
between conventional and mathematical concepts of processes. On the basis 
of Definition 4.64, the cumulative relational model of processes can be 
derived in the following theorem. 

 

 
In Theorem 4.3, P and R represents a set of meta processes and a set 

of process relations (operations), which will be defined in Eqs. 4.85 and 
4.106, respectively. Theorem 4.3 reveals the nature of programs or software 
systems as a set of processes.    

 
 Definition 4.65 Real-Time Process Algebra (RTPA) is a set of formal 
notations and rules for describing algebraic and real-time relations of 
software processes. 
 

RTPA is designed as a coherent algebraic software engineering 
notation  system  and  a  formal  engineering  methodology  for  addressing 

 
                 The 12th Law of Software Engineering 
 

Theorem 4.3 The Cumulative Relational Model (CRM) of processes 
states that a process P is the basic unit of an applied computational 
behavior that is composed by a set of statements si, 1 ≤ i ≤ n-1, with left-
associated cumulative relations, i.e.: 
 

   

1

1

1 12 2 23 3 1,

 (   s ), 1

(...((( )  s )  s ) ...  s )

n

i ij j
i

n n n

P s r j i

s r r r

R
−

=

−

= = +

=

          (4.77) 

 

where si ∈ P and rij ∈ R. 
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the 3-D problems in software system specification, refinement, and 
implementation, particularly for real-time and embedded systems.  

RTPA can be used to describe both logical and physical models of a 
system. Therefore, logic views of the architecture of a software system and 
its operational platform can be described using the same set of RTAP 
notations as that for system behaviors. When the system architecture is 
formally specified, the static and dynamic behaviors that perform on the 
system architectural models can be rigorously described by a three-level 
refinement scheme at the system, class, and object levels in a top-down 
approach. 

 
 

4.6.2 THE STRUCTURE OF RTPA 
 

In software engineering, basic requirements for describing and 
specifying a software system can be considered in two categories: 
architectural components and operational components. Corresponding to 
this classification, system models can be described in three subsystems such 
as the architecture, static behaviors, and dynamic behaviors. A process can 
be a single meta process or a complex process that is built upon meta 
processes by using a set of algebraic process combination rules – the process 
relations.  

 
Definition 4.66 The structure of RTPA is an algebraic software 

engineering notation system encompassing six subsystems as follows: 
 

    RTPA   Meta processes         
  || Process relations      
  || System architecture models   
  || Primary types      
  || Abstract dada types   
  || Specification refinement scheme      (4.78) 

 
As shown in Eq. 4.78, RTPA is a set of coherent mathematical 

notations and a formal methodology for modeling software system 
architectures, static and dynamic behaviors. For modeling system behaviors, 
RTPA introduces 17 meta processes and 17 process relations, where a meta 
process is an elementary and primary process that serves as a common and 
basic building block for a software system, while a complex processes can be 
derived from meta processes by a set of process relations that serves as 
process combinatory rules. For modeling system architectures, RTPA 
provides 17 primitive types and a set of predefined Abstract Data Types 
(ADTs). Beyond the RTPA notation system, a stepwise system specification 
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and refinement methodology is presented in RTPA that states the 
architectures and behaviors of any software system can be modeled and 
specified by a three-step refinement scheme using the same set of RTPA 
notations.               

 
 
4.6.3 THE TYPE SYSTEM OF RTPA 
 

The RTPA notation is strongly typed. That is, every operand, variable, 
constant, object, or architecture in RTPA is assigned with a type labeled as a 
bold suffix. Every identifier in RTPA is bounded by a type and constrained 
by additional user-defined domains of values as subsets of the mathematical 
domains of the predefined RTPA primitive types.           

 
4.6.3.1 Primitive Types and the Type-Suffix Convention 

 
Definition 4.67 A variable x with an arbitrary type T or a constant c 

with an arbitrary type T* is an identifier that is first declared and then 
invoked in the following forms: 

 
(a) Variable declaration: <x : T | constraints >  

(b) Constant declaration: <c : T* | cT* = an instant value>  

(c) Invocation and reference: xT or cT*                                 (4.79) 

 
where the constraints for variables are usually user-defined scopes of values, 
and the constraints for constants are specifically bounded values. 
 

The type-suffix convention of RTPA provide great convenience for 
facilitating complicated large-scale system specifications where the type of 
variables and constants (and their scopes and allowable operations) are 
always explicitly denoted no matter how far away from where they were 
declared. The suffix convention of RTPA also dramatically reduces the 
complexity in syntaxes analysis and code generation.    
 
4.6.3.2 Definitions of the Primitive Types of RTPA 

 
The RTPA type system T encompasses 17 primitive types elicited from 

fundamental computing needs, where the names, syntaxes, and mathematical 
domains of these primitive types are given in Table 4.8.  
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As shown in Table 4.8, the RTPA primitive types #1 through #10 are 
basic data types. The primitive type date/time (#11) is a special type for 
continuous systems, such as databases and real-time systems where long-
range timing manipulation is needed. The event type is used to model a 
system event @eS (#14) as a string type; a timing event @tTM (#15) as a time 
type where TM is a collective timing type denoting TM ∈ {TI, D, DT}; or an 
interrupt event @e  (#16) as an interrupt-point type . The status type is 
designated to model system status ⓢsBL (#17) as a Boolean type.  

The run-time determinable type RT (#12) is a subset of all the rest of the 
primitive types defined in Table 4.8, which is designed to support flexible 
type specification that is unknown at compile-time, but will be instantiated at 
run-time. The system architectural type ST (#13) is a novel and important 
data type in RTPA that models system architectural components and is going 
to be further described in Section 5.3.1.         

It is noteworthy in Table 4.8 that the primitive types of RTPA in system 
specification and description can be classified into two categories known as 
the variable and constant types. The former are well known in programming, 
but the latter are equivalently important in system modeling.  

The mathematical domain given for each type is the scope of values of 
variables or constants in the type. Formal treatment of RTPA types will be 
discussed in Section 5.3 on type theories. 

Complex types can be derived from the 17 meta types based on a set of 
architecture composition rules known as the Component Logical Models 
(CLMs) in RTPA [Wang, 2002a/02b/03c/07a]. Details on CLMs will be 
provided in Sections 4.7.2 and 5.3.1. A set of 11 frequently used complex 
types in RTPA, such as arrays, stacks, queues, tress, graphs, and files, has 
been modeled as ADTs [Guttag, 1975/77/02 Guttag, 1975/77/02], which will 
be discussed in Section 5.3.4.            

 

The 11th Principle of Software Engineering 
 
Theorem 4.4 Primary types of computational objects state that the RTPA 
type system T encompasses 17 primitive types elicited from fundamental 
computing needs, i.e.:  
 

              T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST,  
                                       @eS, @tTM, @int ,ⓢsBL}                              (4.80) 
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Table 4.8 
Primitive Types of RTPA  

 

No. Primitive Type Syntax for 
Variables  

Syntax for 
Constants 

Mathematical 
Domain 

1 Natural number N N* {0, ..., +∞} 

2 Integer   Z Z* {-∞, ..., +∞} 

3 Real R R* {-∞, ..., +∞} 

4 String  S S* {0, ..., #S} 
5 Boolean BL BL* {T, F} 
6 Byte   B B* {0, ..., 256} 

7 Hexadecimal H H* {0, ..., +∞} 

8 Pointer P P* {0, ..., +∞} 
9 Time TI = 

hh:mm:ss:ms 
TI* = 
hh:mm:ss:ms* 

hh ∈ {0, ..., 23}, 
mm, ss ∈ {0, ..., 59}, 
ms ∈ {0, ..., 999} 

10 Date  
   

D = 
yy:MM:dd 

D* = 
yy:MM:dd* 

yy ∈ {0, ..., 99}, 
MM ∈ {1, ..., 12}, 
dd ∈ {1, ..., 31} 

11 Date/Time DT = 
yyyy:MM:dd: 
hh:mm:ss:ms 

DT* = 
yyyy:MM:dd: 
hh:mm:ss:ms* 

yyyy ∈ {0, ..., 9999}, 
MM ∈ {1, ..., 12}, 
dd ∈ {1, ..., 31}, 
hh ∈ {0, ..., 23}, 
mm, ss ∈ {0, ..., 59}, 
ms ∈ {0, ..., 999} 

12 Run-time 
determinable type 

RT – 
 

– 
 

13 System 
architectural type 

ST – 
 

– 
 

14 Event  @eS – @eS ∈ § 
15 Timing @tTM – @tTM ∈ § 
16 Interrupt @int  – @int  ∈ § 
17 Status   ⓢsBL – {T, F} 

 
4.6.3.3 Equivalence between Primitive Types 
  

Definition 4.68 Type equivalence  between two arbitrary primitive 
types T1 and T2 is the property that variables x and y in these types are 
compatible in all allowable operations, i.e.:      

 
    T1(x)  T2(y)          (4.81) 
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Examining Table 4.8 according to Theorem 4.5 and Definition 4.68, the 

following equivalent type categories among the RTPA primitive types can be 
identified: 

 
     B ⊆ P ⊆ H ⊆ N ⊆ Z ⊆ R         (4.83a)      

            TI, D ⊆ DT           (4.83b) 
 

Generally, let T be an arbitrary type, and let T be the universal type or 
the super type that encompasses all primitive types as defined in Table 4.8, 
the following type relations can be obtained: 
 
      RT ⊆ T ⊆ T  
      = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST, @eS, @tTM, @int ,ⓢsBL}   (4.84) 
 

Equivalent type relations can be used to facilitate system specifications 
and modeling, as well as formal syntax and semantics analyses.           
                                           
 
4.6.4 META PROCESSES OF RTPA 
 

Computational operations in conventional process algebra, such as   
CSP [Hoare, 1985], Timed-CSP [Reed and Roscoe, 1986; Boucher and 
Gerth, 1987; Schneider, 1991], and other proposals, are treated as a set of 
processes at the same level. This approach results in an exhaustive listing of 
processes. Whenever a new operation is identified or required in computing, 
the existing process system must be extended.  

RTPA adopts the foundationalism in order to find the most primitive 
computational processes known as the meta processes. In this approach, 
complex processes are treated as derived processes from these meta 
processes based on a set of algebraic process composition rules known as the 
process relations. This subsection describes the set of 17 meta processes of 

 

            The 12th Principles of Software Engineering 
 

Theorem 4.5 Type equivalence states that two types T1 and T2 are 
equivalent, iff the domain of type T1 is either identical to or a subset of 
that of T2, i.e.: 

 
T1(x) = T2(y) ⇒  T1(x)  T2(y)          (4.82a) 

or 
T1(x) ⊆ T2(y) ⇒  T1(x)  T2(y)          (4.82b) 
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RTPA. The 17 process relations of RTPA will be presented in the next 
subsection.  

 
Definition 4.69 A meta process in RTPA is a primitive computational 

operation that cannot be broken down to further individual actions or 
behaviors.  
      

Meta processes are elementary processes that serve as a basic building 
block for modeling software behaviors, based on them complex processes 
can be composed by algebraic operations.  
 
4.6.4.1 Structure of the RTPA Meta Processes 

 
In RTPA, a set of 17 meta processes has been elicited from essential 

and primary computational operations commonly identified in existing 
formal methods and modern programming languages [Higman, 1977; Hoare 
et al., 1987; Wilson and Clark, 1988; Louden, 1993]. Syntaxes and usages of 
the meta processes are formally described in the following subsections, while 
semantics of the meta processes will be formally presented in Section 6.6 
[Wang, 2006a].           

 

 
Names, notations, and syntaxes of the RTPA meta processes are 

described in Table 4.9. As shown in Table 4.9, each meta process is a basic 
operation on one or more operand such as variables, memory elements, or 
I/O ports. Structures of the operands and their allowable operations are 
constrained by their types as described in Section 4.6.3 where a generic type 
T ∈ T. 

 
It is noteworthy that not all generally important and fundamental 

computational operations, as shown in Table 4.9, have been explicitly 
identified in conventional formal methods such as the evaluation, addressing, 
memory allocation/release, timing/duration, and the system processes. 
However, all of them listed above are found necessary and essential in 
modeling both software system architectures and behaviors.    

 

 The 13th Principle of Software Engineering 
 
Theorem 4.6 The meta software processes state that the RTPA meta 
process system P encompasses 17 fundamental computational operations 
elicited from the most basic computing needs, i.e.:   

 
        P = {:=, , ⇒, ⇐, , , , | , | , @, , ↑, ↓, !, ⊗, , §}   (4.85) 
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Table 4.9 
RTPA Meta Processes 

 

No. Meta Process Notation Syntax 

1 Assignment                  := yT := xT 

2 Evaluation  TexpT → T 

3 Addressing          ⇒ idT ⇒ MEM[ptrP] T 

4 Memory allocation ⇐ idT ⇐ MEM[ptrP] T 

5 Memory release  idT  MEM[⊥]T 

6 Read                              MEM[ptrP]T  xT 

7 Write                              xT  MEM[ptrP]T 

8 Input                     |  PORT[ptrP]T |  xT 

9 Output                           |  xT |  PORT[ptrP]T 

10 Timing      @  @tTM @ §tTM 

TM =  yy:MM:dd     
        | hh:mm:ss:ms 
         | yy:MM:dd:hh:mm:ss:ms 

11 Duration  @tnTM ∆ §tnTM + ∆nTM 

12 Increase ↑ ↑(nT) 

13 Decrease  ↓ ↓(nT) 

14 Exception detection ! ! (@eS) 

15 Skip     ⊗ ⊗ 

16 Stop   

17 System     § §(SysIDST)  

 
4.6.4.2 Formal Description of the RTPA Meta Processes 
 

This subsection provides a formal description of the syntaxes and 
usages of the 17 meta processes. Deductive semantics of the meta processes 
of RTPA [Wang, 2006a] will be provided in Sections 6.6. 

 
4.6.4.2.1 Assignment 
 

Definition 4.70 Let x: T and y: T be two declared variables with a 
arbitrary type T. An assignment, denoted by :=, is a meta process that 
transfers the value of x, ν(x), to that of y, ν(y), if their types are identical T(x) 
= T(y) or equivalent T(x)  T(y), i.e.: 

 
     yT := xT                     (4.86) 
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where T ∈ T as defined in Table 4.7, and xT can be a constant, xT*, that 
matches yT. 
 

Note that in case xT is an expression expT in Eq. 4.86, an evaluation of 
the expression should be carried out first as described by the following meta 
process.    

 
4.6.4.2.2 Evaluation 
 

Definition 4.71 An evaluation, denoted by T, is a meta process that 
maps a given expression in type T into a value in the same type, i.e.: 

 

                 (expBL)BL = BL: expBL → {T, F}          (4.87a) 
                       (expN)N = N: expN → N                        (4.87b) 
                       (expZ)Z = Z: expZ → Z           (4.87c) 
                       (expR)R = R: expR → R          (4.87d) 

                       (expB)B = B: expB → B           (4.87e) 
 
where the types of the evaluations are called a Boolean (T = {BL}),  ordinal 
(T = {N}), or numerical (T = {Z,R, B}) evaluation, respectively. 

The preceding evaluations, except that of type Boolean, can be 
extended to a special type called power set evaluation such as ÞN, ÞZ, ÞR, and 
ÞB. For example, an ordinal evaluation on ÞN can be defined as follows:      

 

                     (expN)ÞN = ÞN: expN → ÞN            (4.88) 
 
which is frequently used in a switch construct where a branch may be 
selected by a subset of the numbers in a given range.  

Another special type of evaluation is relational evaluations that 
compare two variables or expressions by a binary relation R, R ∈ R , in the 
following form: 

 
                    (exp1T, exp2T)R = R: expT × expT → R         (4.89) 

 
where R = {=, ≠, >, <, ≥, ≤}.  
 
4.6.4.2.3 Addressing    
 

An addressing function, π: idT → ptrÞP, has been introduced in Eq. 
4.40a for mapping a given logical idT into the first byte of the physical 
memory block MEM[ptrP, ptrP+n-1]T. The addressing process of RTPA is 
formally defined as follows.     
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Definition 4.72 Addressing, denoted by ⇒, is a meta process that maps 
a given logical idT into a block of the physical memory MEM[ptrP, ptrP+n-
1]T, denoted by ptrÞP accommodating n bytes of memory for the variable in 
type T, T ∈ {P, H, N, Z}, i.e.: 

 
   idT ⇒ MEM[ptrÞP]T      

  (π: idT → ptrÞP    
                                           ⇔ idT = MEM[ptrP, ptrP+n-1]T    

     )             (4.90) 
 
where n is language implementation-dependent. 
 

A formal description of the abstract memory model, MEM[ptrP, 
ptrP+n-1]T, will be provided in Section 5.3.1.4.   
 
4.6.4.2.4 Memory Allocation  
 

Definition 4.73 Memory allocation, denoted by ⇐, is a meta process 
that collects a unique memory block logically named idT and physically 
located by ptrÞP accommodating n bytes of memory for the variable in type 
T, i.e.: 

 
  idT ⇐ MEM[ptrÞP]T      

 (π-1: ptrÞP → idT   
                                          ⇔ idT = MEM[ptrP, ptrP+n-1]T    

     )              (4.91) 
 
where π-1: ptrÞP → idT is the memory allocation function that is an inverse 
function of addressing, which associates a physical memory block 
MEM[ptrP, ptrP+n-1]T with the given logical idT.   
 

Memory allocation is a key meta process for dynamic memory 
manipulation implemented in the RTPA support system at a part of the 
operating system. 

 
4.6.4.2.5 Memory Release 
 

Definition 4.74 Memory release, denoted by , is a meta process that 
dissociates and frees a unique block of n continuous physical memory 
elements denoted by ptrÞP from its logical identifier idT, i.e.:  
 
        idT  MEM[⊥]T   
                (π: idT→ ptrÞP  
         ⇔ (MEM[ptrP, ptrP+n-1]T := ⊥ ∧ ptrP := ⊥ ∧ idT := ⊥)  
                    )                   (4.92) 
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where ⊥ denotes an undefined or unallocated value.  
 
The released memory block that was logically identified by idT will 

then be returned to the system memory pool collected by the system memory 
management function provided by an operating system or the RTPA support 
system. 
 
4.6.4.2.6 Read 
 

Definition 4.75 Read, denoted by , is a meta process that gets data xT 
from a given memory location MEM[ptrP], where PtrP is a pointer that 
identifies the physical memory address, i.e.: 

 
MEM[ptrP]T  xT                (4.93) 

 

where T ∈ T. 
 
4.6.4.2.7 Write 
 

Definition 4.76 Write, denoted by , is a meta process that puts data 
xT to a given memory location MEM[ptrP], where ptrP is a pointer that 
identifies the physical memory address, i.e.: 

 
xT  MEM[ptrP]T                     (4.94) 

 
where T ∈ T. 
 
4.6.4.2.8 Input 
 

Definition 4.77 Input, denoted by | , is a meta process that receives 
data xT from a given system I/O port PORT[ptrP]T, where ptrP is a pointer 
that identifies the physical address of the port interface, i.e.: 

 
    PORT[ptrP]T |  xT               (4.95) 

 
where T ∈ {B, S}. 
 

A formal description of the port model, PORT[ptrP]T, will be provided 
in Section 5.3.1.4. 

    
4.6.4.2.9 Output 
  

Definition 4.78 Output, denoted by | , is a meta process that sends 
data xT to a given system I/O port PORT[ptrP]T, where ptrP is a pointer that 
identifies the physical address of the port interface, i.e.: 
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      xT |  PORT[ptrP]T               (4.96) 
 
where T ∈ {B, S}. 
 
4.6.4.2.10 Timing 
 

Definition 4.79 Timing, denoted by @ , is a meta process that sets the 
value of a timing variable @t as the absolute time of the current system clock 
§t, i.e.: 

 
     @tTM @§tTM              (4.97) 

 
where TM ∈ {TI, D, DT}; each subdomain of time and/or date has been defined 
in Table 4.8, respectively. 
 

A specific timing process may adopt one of the following expressions 
depending on the need for the range of time in a given system: 
 

@thh:mm:ss:ms @  §thh:mm:ss:ms              (4.98a) 
     @tyy:MM:dd @  §tyy:MM:dd            (4.98b) 

    @tyyyy:MM:dd:hh:mm:ss:ms @  §tyyyy:MM:dd:hh:mm:ss:ms    (4.98c) 
 
4.6.4.2.11 Duration 
 

Definition 4.80 Duration, denoted by , is a meta process that sets a 
relative time @tnN as an integer based on the relative system clock §tnN and 
the given period ∆nN, i.e.: 

 
@tnN  §tnN + ∆nN                   (4.99) 

 
where the unit of all relative timing variables is ms. 
 
4.6.4.2.12 Increase 
 

Definition 4.81 Increase, denoted by ↑, is a meta process that adds one 
to a given variable nT, i.e.: 
 

    ↑(nT)         (4.100) 
 

where T ={N, Z, B, H, P, TI, D, DT}. 
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4.6.4.2.13 Decrease  
 

Definition 4.82 Decrease, denoted by ↓, is a meta process that 
subtracts one from a given variable nT, i.e.: 

 
    ↓(nT)                          (4.101)
                                        

where T ={N, Z, B, H, P, TI, D, DT}. 
 
4.6.4.2.14 Exception Detection 
 

Definition 4.83 Exception detection, denoted by !, is a meta process 
that logs a detected exception event @eS at run-time, i.e.: 
 

  ! (@eS)         (4.102) 
 

The RTPA exceptional detection mechanism is a fundamental process 
for safety and dependable system modeling, which enables system exception 
detection, handling, and postmortem analysis to be implemented. 
 
4.6.4.2.15 Skip   
 

Definition 4.84 Skip, denoted by ⊗, is a meta process that exits a 
current control structure, such as loop, branch, or switch and return to the 
immediate upper layer of the current control structure, i.e.: 

 
⊗         (4.103) 

 
A skip process implements no externally observable behaviors, but it 

conducts important internal control operations. The semantics of skip is 
equivalent to the behaviors of exit, break, or unconditional jump to a 
predefined program address. Further explanation of the semantics of the skip 
process may be referred to Section 6.6.1.15.  

    
4.6.4.2.16 Stop   
 

Definition 4.85 Stop, denoted by , is a meta process that terminates a 
system’s operation, i.e.: 

 

                     (4.104) 
 

Note that the stop process is a system level process that shuts down the 
system physically.   
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4.6.4.2.17 System 
 
Definition 4.86 The system, denoted by §, is a top-level meta process 

that acts at the highest level controller of a process system for dispatching 
and/or executing a specific process according to system timing or predefined 
events, i.e.:  

 
       §(SysIDS)               (4.105) 

 
where SysIDS is an identity of the system in string type. 
 

A formal description of an abstract system underlying the computing 
platform will be provided in Section 5.6.1.    

 
 
4.6.5 PROCESS RELATIONS AND ALGEBRAIC 
         OPERATIONS OF RTPA  
 

The meta processes of RTPA developed in Section 4.6.4 identified a set 
of fundamental elements for modeling the most basic behaviors of a software 
system. It is interesting to realize that there is only a small set of 17 meta 
processes in software system modeling. However, via the combination of a 
number of the meta processes by certain algebraic process operations, any 
architecture and behavior of real-time or nonreal-time software systems can 
be sufficiently described [Higman, 1977; Hoare et al., 1987; Wang and King, 
2000].  

 
Definition 4.87 A process relation in RTPA is an algebraic operation 

and a compositional rule between two or more meta processes in order to 
construct a complex process. 

 
A set of 17 fundamental process relations has been elicited for building 

and composing complex processes in the context of real-time software 
systems. Syntaxes and usages of the 17 RTPA meta processes are formally 
described in this subsection. Semantics of these process relations will be 
formally described in Section 6.6.           

 
4.6.5.1 Structure of the RTPA Process Relations 
 

A set of 17 process relations R has been elicited from fundamental 
algebraic and relational operations in computing, where definitions and 
syntaxes of each of these process relations will be provided in the following 
subsections.   
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Names, notations, and syntaxes of the 17 RTPA process relations are 

described in Table 4.10. The first 7 process relations in Table 4.10, 
sequential (#1), jump (#2), branch (#3), switch (#4), and iterations (#5 
through #7), have long been identified as the Basic Control Structures 
(BCS’s) of software architectures [Hoare et al., 1987; Wilson and Clark, 
1988]. To represent the modern programming structural concepts, CSP 
[Hoare, 1985] identified the following 7 additional process relations such as 
recursion (#8), function call (#9), parallel (#10), concurrency (#11), 
interleave (#12), pipeline (#13), and interrupt (#14).  

 
However, these process relations or operations were treated the same as 

the meta processes in existing formal methods. That is, the conventional 
notation systems are not an algebraic production system rather than an 
exhaustive instruction system, which do not distinguish the basic 
computational operations and their composing rules. 

 
RTPA [Wang, 2002a/02b/03c/07a] extends the BCS’s and process 

relations to time-driven dispatch (#15), event-driven dispatch (#16), and 
interrupt-driven dispatch (#17) in order to model the top-level system 
behaviors, particularly those of real-time systems. The 17 process relations 
(BCS’s) are regarded as the foundation of programming and system 
architectural design, because any complex process can be implemented by 
the algebraic process composing operations onto the set of the 17 meta 
processes as defined in Table 4.9.  

 

 
The 14th Principle of Software Engineering 

 
Theorem 4.7 The software composing rules state that the RTPA process 
relation system R encompasses 17 fundamental algebraic and relational 
operations elicited from basic computing needs, i.e.: 

 

             R = {→, , |, |…|…, 
*R , R+

,
iR , , , ||, ∯ , |||, »,  

                       ,  t,  e,  i}             (4.106) 
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Table 4.10 
RTPA Process Relations and Algebraic Operations 

 

No. Process Relation Notation Syntax 

1 Sequence → P → Q 

2 Jump                          P  Q 

3 Branch |   expBL = T → P 

| ~ → Q 

4 Switch          | 
… 
| 

   expT =    i → Pi 

              | ~ →  

   where T ∈ {N, Z, B, S} 

5 While-loop *R  

exp =
R

F

BL T
P 

6 Repeat-loop              R+
  P →

exp =
R

F

BL T
P 

7 For-loop              iR  

1

n

i
R
=

N

N
P(iM) 

8 Recursion    0

i n
R
=N N

PiM  PiM-1 

9 Function call   P  F 

10 Parallel               || P | | Q 

11 Concurrence  ∯  P ∯ Q 

12 Interleave ||| P ||| Q 

13 Pipeline   » P » Q   

14 Interrupt   P  Q  

15 Time-driven dispatch  t @tiTM t Pi 

16 Event-driven dispatch  e @eiS e Pi  

17 Interrupt-driven dispatch  i @intj  i Pj 
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Theorem 4.8 demonstrates the power of the algebraic structure towards 

computational behavior modeling and programming. It is noteworthy that an 
ordinary high level programming language may introduce about 150 to 300 
individual instructions. However, the expressive power of RTPA is in a very 
high order in program composition, i.e., one order higher than any 
programming language, although it just adopts a small set of 17 meta 
processes and 17 process relations. 

In Table 4.10, the big-R used in process relations #5 through #8 is a 
special notation recently created for denoting iterative and recursive 
behaviors of software systems [Wang, 2006f]. Formal models of the big-R 
notation have been given in Section 4.5.3, and its applications in iterative and 
recursive behavioral modeling will be provided in Section 5.4.2.     

 
4.6.5.2 Formal Description of the RTPA Process Relations 
 

This subsection defines and explains the 17 process relations of RTPA 
for manipulating process operations and combinational rules between meta 
processes. Deductive semantics of the process relations [Wang, 2006a] will 
be provided in Section 6.6.2. 
 
4.6.5.2.1 Sequence  
 

Definition 4.88 A sequence, denoted by →, is a process relation in 
which two meta processes P and Q are executed one by one, i.e.: 

                                 
  P → Q         (4.108) 

 

The 13th Law of Software Engineering 
 

Theorem 4.8 The express power of algebraic modeling states that the 
total number of the possible computational operations N is a set of 
combinations between two arbitrary meta processes P1, P2 ∈ P composed 
by each of the process relations R ∈ R in RTPA, i.e.:  
 

      

#

2
#=

17!
= 17 • 

2!(17-2)!
= 17 • 136

= 2,312

C•N  
P

R

           (4.107) 
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4.6.5.2.2 Jump      
 

Definition 4.89 A jump, denoted by , is a process relation in which, 
on the termination of a process P, the system exits the linear sequence of 
processes, and invokes a designated process Q, i.e.: 
 

  P  Q        (4.109) 
 
where Q is usually identified as a label or a logical address. 
  
4.6.5.2.3 Branch  
 

Definition 4.90 A branch, denoted by |, is a process relation in which 
the selection of a process is determined by a conditional expression expBL, 
i.e.: 
    

                 expBL = T → P 

            |  ~  → Q        (4.110) 
 
where ‘~’ means ‘expBL = F,’ or more general, ‘otherwise.’ When the else 
branch is optional, Eq. 4.110 is equivalent to: 
 

                 expBL = T → P 

            |  ~  → ∅        (4.111)     
   
4.6.5.2.4 Switch  
 

Definition 4.91 A switch, denoted by | … | …, is a process relation in 
which the branch is determined by a numerical expression expT, i.e.: 
 
                  expT =   0 → P0 
             | 1 → P1 
             | … 
             | n-1 → Pn-1 
             | ~ → ∅         (4.112) 
 
where T ∈ {N, Z, B, S}.  
 
4.6.5.2.5 While-Loop     
 

Definition 4.92 A while-loop, denoted by 
*R , is a process relation in 

which a meta process or a complex process, P, is executed repeatedly as long 
as the conditional expression expBL is true, i.e.: 
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*

exp =
R R

F

BL T
P          (4.113) 

 
where the lower bound, expBL = T, denotes that P may or may not be iterated 
at run-time if expBL ≠ T at the beginning; the upper bound, expBL = F, shows 
the condition to terminate the iteration.  
 
4.6.5.2.6 Repeat-Loop     
 

Definition 4.93 A repeat-loop, denoted by R +
, is a process relation 

in which a meta process or a complex process, P, is executed iteratively for at 
least one time until the conditional expression expBL = F, i.e.: 

                                 

               
exp =

R R
F

BL T
P P+ →                (4.114)     

 
It can be seen that a repeat-loop is a sequential combination of P and a 

while-loop of P, i.e.: 
 

              
*R RP P P+ = →          (4.115) 

 
4.6.5.2.7 For-Loop     

 
A for-loop is a special form of the while-loop, where the termination 

condition of iteration will be determined by a known constant or expression.  
 

Definition 4.94 A for-loop, denoted byR i
, is a process relation in 

which a meta process or a complex process, P(i), is executed repeatedly for n 
times controlling by an index i, i ∈ {1, …, n}, i.e.: 
                                 

                 
1

( )R R
n

i

i
P i

=N
        (4.116)     

 
Examples of the three forms of iterations as defined in Definitions 4.92 

through 4.94 will be provided in Section 5.4 on modeling iterative behaviors 
of software systems.   
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4.6.5.2.8 Recursion     
 

Definition 4.95 A recursion, denoted by , is a process relation in 
which a process P calls itself, i.e.: 
  

       P  P            (4.117) 
 

Recursion processes are frequently used in programming to simplify 
system structures and to specify neat and expressive system functions. It is 
particularly useful when an infinite or run-time determinable specification 
has to be clearly expressed. Examples of recursions will be provided in 
Chapter 6 on modeling recursive behaviors of software systems.   
 
4.6.5.2.9 Function Call      
 

Definition 4.96 A function call, denoted by , is a process relation in 
which a process P calls another process Q as a predefined sub-process, i.e.:  
 
         P  Q         (4.118) 
 

In Eq. 4.118, the called process Q can be regarded as an embedded part 
of process P.  
 
4.6.5.2.10 Parallel      
 

Definition 4.97 A parallel, denoted by ||, is a process relation in which 
two processes P and Q are executed simultaneously synchronizing by a 
common system clock, i.e.:    
 

                            P || Q                           (4.119)     
 

The parallel process relation is designed to model behaviors of a Multi-
Processor Single-Clock (MPSC) system as shown in Table 4.10 (#10). The 
syntax of parallel processes may also be extended to denote relations 
between system architectural models that are functionally parallel or 
equivalent.  
 
4.6.5.2.11 Concurrence      
  

Definition 4.98 A concurrence, denoted by ∯ , is a process relation in 
which two processes P and Q are executed simultaneously and 
asynchronously according to separate system clocks, and each such process 
is executed as a complete task, i.e.: 
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                         P ∯ Q         (4.120)    
 
The concurrent process relation is designed to model behaviors of a 

Multi-Processor Multi-Clock (MPMC) system. 

 
4.6.5.2.12 Interleave       
 

Definition 4.99 An interleave, denoted by |||, is a process relation in 
which two processes P and Q are executed simultaneously, synchronized by 
a common system clock, while the execution of each such process would be 
alternatively dispatched as a multi-threads system, i.e.:    

                                 
                              P ||| Q                      (4.121) 

 
The interleave process relation is designed to model behaviors of a 

Single-Processor Single-Clock (SPSC) system. 

 
4.6.5.2.13 Pipeline      
 

Definition 4.100 A pipeline, denoted by », is a process relation in 
which two processes P and Q are interconnected to each other, and the 
succeeding process takes the output(s) of the previous process as its input(s), 
i.e.: 
    

                          P » Q                        (4.122)  

 
4.6.5.2.14 Interrupt     
 

Definition 4.101 An interrupt, denoted by , is a process relation in 
which a running process P is temporarily held before completion by an 
interrupt event @e  at the interrupt point  sent by another process Q with 
a higher priority, and the interrupted process will be resumed when Q has 
been completed, i.e.:  

 
  P  Q  P || (@int   Q  )              (4.123) 

 
where  and  denote interrupt service and interrupt return, respectively.     
 

The interrupt relation describes execution priority and control taking-
over between processes.  
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4.6.5.2.15 Time-Driven Dispatch        
 

Definition 4.102 A time-driven dispatch, denoted by  t, is a process 
relation in which the ith process Pi is triggered by a predefined system time 
@tiTM, i.e.: 

   
                 @tiTM  t Pi ,  i ∈{1, ..., n}       (4.124) 
 
 4.6.5.2.16 Event-Driven Dispatch 
 

Definition 4.103 An event-driven dispatch, denoted by  e, is a process 
relation in which the ith process Pi is triggered by a predefined system event 
@eiS, i.e.:   
 
                   @eiS  e Pi ,  i ∈{1, …, n}         (4.125) 
 
4.6.5.2.17 Interrupt-Driven Dispatch     
 

Definition 4.104 An interrupt-driven dispatch, denoted by  i, is a 
process relation in which the ith process Pi is triggered by a predefined 
system interrupt @inti , i.e.:   
 
                  @intj   i Pj ,  j ∈{1, …, n}         (4.126) 

 
All types of events, including the operational events, timing events, and 

interrupt events, are captured by the system in order to dispatch a designated 
process. Detailed models and mechanisms of system event capture and 
dispatch will be discussed in Section 5.4.3.                
 
 
 
4.7 The RTPA Methodology for 
       Software System Modeling and 
       Refinement 
 

 
 
In common engineering practice, a complicated system should be specified 
via a number of systematic refinements in a top-down approach by using a 
set of coherent notations. On the basis of the RTPA notation system 
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developed in Section 4.6, this section describes the RTPA modeling, 
specification, and refinement methodology for software system architectures, 
static, and dynamic behaviors via three-level refinements.   
 
 
4.7.1 THE RTPA METHODOLOGY 
 

In RTPA three fundamental facets of software systems are recognized 
as the architecture, static behaviors, and dynamic behaviors. The top-level 
specification of a software system can be denoted by a coherent set of 
mathematical notations of RTPA as follows. 
 

Definition 4.105 A software system model in RTPA, §(SysIDST), 
encompasses the following three subsystems, i.e.: 
 
              §(SysIDST)   SysIDST.Architecture  
                                                   || SysIDST.StaticBehaviors  
                                                  || SysIDST.DynamicBehaviors     (4.127) 
 
where ST is the system type suffix.  

    
The RTPA specification and refinement methodology can be described 

as a 3 × 3 matrix as shown in Fig. 4.2. Each of the subsystems described in 
Eq. 4.127 can be systematically extended by a three-level refinement process 
at the system, class, and object levels. Fig. 4.2 shows the method and 
expected work products of each specification subsystem at a different level 
of system refinement.  

 
In the RTPA specification and refinement scheme for software systems, 

two key modeling methods, the component logical model and process, are 
introduced to model software system architectures and behaviors. The 
mathematical model of the latter has been described in Definitions 4.64 and 
4.69. The definition of the former is given below.    

  
 Definition 4.106 A Component Logical Model (CLM) is an abstract 
model of a system architectural component that represents a hardware 
interface, an internal logical model, a data structure, and/or a common 
control structure of a system.                

 
According to Fig. 4.2, the three refinement steps for system architecture 

specification (S1) are: 1.1 system architecture, 1.2 CLM schemas, and 1.3 
CLM objects. Similarly, the refinement strategy for system static behavior 
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specification (S2) is: 2.1 system static behaviors, 2.2 process schemas, and 
2.3 process implementations. System dynamic behaviors (S3) can be 
specified by: 3.1 system dynamic behaviors, 3.2 process deployment, and 3.3 
process dispatch, in a three-level refinement. Detailed explanations and 
illustrations of the RTPA scheme for software system specification and 
refinement will be given in Sections 4.7.2 through 4.7.4.   

 
        

 

Refinement  → 
↓ Specification 

R1.  System-Level 
Specification 

R2.  Class-Level 
Specification 

R3.  Object-Level 
Specification 

S1.  
System  
Architecture 

1.1 System architecture 
 

SysIDST.Architecture ≙           
       CLM1S [n1N] 
   || CLM2S [n2N] 
   || … 
   || CLMkS [nkN] 

1.2 CLM schemas 
 

CLMSchema ≙ CLM-IDS :: (       
  <Field1 : type1 | constraint1>, 
  <Field2 : type2 | constraint 2>, 
     … 
  <Fieldn : typen | constraint n>) 

1.3 CLM objects 
CLMObject ≙  
      CLMSchemaST 
  || ObjectIDS   
  || {InstanceParameters}      
  || {InitialValues} 

 
 
S2.  
Static 
Behaviors 

2.1 System static behaviors 
 

SysIDST.StaticBehaviors ≙   
      SysInitial 
   || Process1 
   || Process2 
   || … 
   || Processn 

2.2 Process schemas 
 

ProcessSchema ≙     
          PNN   // process number  
      || ProcessIDS ({I}; {O}) 
      || {OperatedCLMs} 
      || {RelatedProcesses} 
      || FunctionDescriptionS  

2.3 Process implementation 
 
ProcessImplementation ≙    
       ProcessSchemaST 
   || ProcessInstIDS 
   || {DetailedProcesses} 

 
 
S3.  
Dynamic 
Behaviors 

3.1 System dynamic behaviors  
 
SysIDST.DynamicBehaviors ≙  
   || {Base-level processes}    
   || {High-level processes} 
   || {Low-interrupt-level 
             processes} 
   || {High-interrupt-level  
             processes} 

3.2 Process deployment 
ProcessDeployment ≙ § →   
 ( BaseTimeEvent  
                    ↳ {ProcessSet1} 
  | HighLevelTimeEvent 
                    ↳ {Process set2}  
  | LowIntTimeEvent 
                    ↳ {Process set3} 
  | HighIntTimeEvent  
                    ↳ {Process set4} 
 )  → §    

3.3 Process dispatch 
 
ProcessDispatch ≙ § →  

(  @Event1S ↳ {ProcessSet1}   

 | @Event2S ↳ {ProcessSet2} 
 |  …                                
 | @EventnS ↳ {ProcessSetn}  
)    
 → §    

 
Figure 4.2 The scheme of system modeling and refinement in RTPA 

 
There are four basic types of system architectures known as: parallel, 

serial, pipeline, and nested as shown in Fig. 4.3. Any complicated system 
architecture can be represented by a combination of these four basic 
architectures between components. It is interesting to find that each of the 
basic architectures corresponds to a key RTPA process relation as defined in 
Table 4.10. Therefore, for the first time, not only system behaviors 
(operations), but also system architectures can be expressed by the same set 
of algebraic notations in RTPA.     
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Figure 4.3 RTPA meta architectures 

 
Example 4.21 The architecture of a sample system §(SysAST) is given 

in the left-hand side of Fig. 4.4, which consists of serial, parallel, and nested 
architectural relations among system components. Applying the RTPA 
methodology, the architecture of §(SysAST) can be formally specified as 
shown in the right-hand side of Fig. 4.4. 

 
The formal architectural specification of real-world systems with 

hardware and software subsystems will be demonstrated in Section 4.8.   
 
 
 

No. Type of 
Architecture 

Syntax Example 

1 Parallel P || Q §(ParallelSysST) ≙ P1 || P2 || … || Pn 
 
 
 
             P1                                 P2                         …                           Pn 
 

 

2 Serial P → Q §(SerialSysST)  ≙ P1 → P2 → … → Pn 
 
 
             P1                                 P2                         …                           Pn 
 

 

3 Pipeline P » Q §(PipelineSysST)  ≙ P1 » P2 » … » Pn 
 
 
             P1                                                            P2                            …                                Pn 
                                                                             … 
 
                                  …                                       … 
 
                                                                             … 
  

4 Nested P  Q §(NestedSysST)  ≙ P1  P2  …  Pn 
 
        …                                                    P1             

 

 
            …                                            P2 
 
 
 
              …                                      Pn 

 

                      

                      … 

       

                 … 

 

            … 
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System Architecture RTPA Expression 
 
 
                                       §(SysAST) 
 
 
 
  
             P1                                 P2                         …                           Pn 
 
                                          A 
 
             Q1                                Q2                                                       
 
 
             R1                                R2                     B     
 
 
                                      S2 
  

 
§(SysAST) ≙ § →  
               (   (P1 → Q1 → R1) 
                || (P2 → Q2 → R2 → S2) 
                || …  
                || (Pn  (A → B)) 
               ) 
 

 
Figure 4.4 The architecture of a sample system 
 
 
4.7.2 SYSTEM ARCHITECTURE MODELING AND 
         REFINEMENT IN RTPA 
 

In RTPA, the architectural components of a system are modeled by 
CLMs, which are an abstract model of the system hardware interface, an 
internal logic model of hardware, and/or a common control structure of a 
system [Wang, 2002a]. The operational components of a system are modeled 
by processes, which will be described in Section 4.8. 

 
4.7.2.1 The System Architecture 

 
 System architecture, at the top level, specifies a list of names of CLMs 
and their relations. A CLM can be regarded as a predefined class of system 
hardware or internal control models, which can be inherited or implemented 
by corresponding CLM objects as specific instances in the succeeding system 
architectural refinement procedures. 
      

Definition 4.107 The architecture of a software system can be 
described as a set of k parallel CLMs in RTPA, i.e.: 
 
       SysIDST.ArchitectureST   CLM1ST [n1N] 
           || CLM2 ST [n2 N] 
          || … 
          || CLMkST [nk N]           (4.128) 
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where ST is the suffix of the system architectural type that denotes a CLM in 
the type of system architectures, N is a type suffix of natural numbers, and niN 
is the given number of the ith CLM configured in the system. 
    

It can be seen that types play an important role in modeling system 
architectural entities such as CLMs and data objects. A complete definition 
of the RTPA type system may refer to Section 4.6.3.    

Eq. 4.128 provides the first-step refinement of the architectural 
specification of the given system represented by SysIDST.ArchitectureST. As 
a result, the system’s architectural components and their relationships are 
clearly specified. 
 
4.7.2.2 The CLM Schema 
 

Definition 4.108 A CLM schema is an abstract logical structure of a 
component logical model in the form of a record-like abstract data structure 
that specifies the configuration of a CLM by a set of n fields, types, and their 
constraints, i.e.:  
 
         CLMSchemaST   CLM_IDS::  
                                  ( Field1 : type1 | constraint1>, 
                     Field2 : type2 | constraint2>, 
                          … 
                          Fieldn : typen | constraintn> 
                                                      )                  (4.129) 
 

A CLM schema can be treated as the architectural specification of a 
class, which will be used as a blueprint in further refinement of the CLM 
objects as an instance in implementing the CLM classes in the next step. 
 
4.7.2.3 The CLM Objects 

 
The instantiation of a CLM schema is called a CLM object in RTPA. 

The CLM object is the result of the final refinement of the specification in 
order to obtain the architectural model of a given software system.   
 

Definition 4.109 A CLM object in RTPA is a derived instance of a 
CLM schema and its detailed implementation, i.e.: 
 

 CLMObjectST   CLMSchemaST 
        || ObjectIDS   
        || {InstanceParameters}      
        || {InitialValues}          (4.130) 
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After the three-step refinement known as system architecture, CLM 
schemas, and CLM objects, all architectural components, their relations and 
implementations can be obtained systematically. 

 
Example 4.22 In RTPA, similar architectural schemas, as well as 

repetitive actions or processes, can be specified by using the big-R notation. 
The RTPA specification of the architectures of request buttons of an elevator 
dispatching system, ButtonsST, is formally specified in RTPA as shown in 
Fig. 4.5. The specification indicates that there are 30 similar request buttons 
in the system denoted by Key(1) through Key (30) that share the same 
architectural model of ‘ButtonsST’.  
 
 
 
 
 
 
 
 
 
 
Figure 4.5 The component architectural schema of buttons in an elevator 
system 
 

As shown in Fig. 4.5, for each ButtonsST, it consists of the following 
four fields: (a) A PortAddressN with specific values; (b) A key input 
information KeyInputB with the last three bites effective; (c) A directionBL 
indicating moving direction up or down; and (d) A KeyPositionN showing 
the floor level of the buttons.  

The architectural specifications developed in this subsection provide a 
set of abstract object models and clear interfaces between system hardware 
and software. After reaching this point, the co-design of a software system, 
particularly a real-time system, can be separately carried out by hardware and 
software teams in parallel.   

It is recognized that system architecture specification by the means of 
CLMs is the most fundamental and the most difficult part in software design 
and modeling. However, conventional formal methods hardly provide any 
support for this purpose. RTPA provides a set of expressive notations for 
specifying system architectural structures and control models including 
hardware, software, and their interactions.  

On the basis of the system architecture specification and with the work 
products of system architectural components (CLMs), the operational 
components of the given system and their behaviors can be specified easily 

  ButtonsST  R
i

30

1=
 ( Key (iN):  

                                <PortAddress : H | FF00HH ≤ PortAddressH ≤ FF09HH>, 
                                <KeyInput :  B | KeyInputB = <xxxx xkkkB>, 
                                <Direction : BL | T = Up ∧ F = Down>, 
                               <KeyPosition : N | 1 ≤ KeyPositionN ≤ 6> 
                                )    
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by experienced analysts or programmers as discussed in the following 
subsections.               
 
 

4.7.3 SYSTEM STATIC BEHAVIOR MODELING 
         AND REFINEMENT 
 

Static behaviors of software systems are those determinable at compile-
time, which can be modeled by a set of processes and their relations. This 
subsection describes how RTPA is used to formulate detailed process 
specifications based on the CLM architectures specified in Section 4.7.2.       

 
4.7.3.1 System Static Behaviors 

 
Definition 4.110 The specification of system static behaviors is the 

high-level configuration of processes of a system and their relations. Its 
general form at the top-level can be represented by a set of parallel processes, 
i.e.: 

 

       SysIDST.StaticBehaviors   SysInitial 
           || Process1 
           || Process2 
           || … 
           || Processn                         (4.131) 

 
4.7.3.2 Process Schemas   
 

As a result of the first-step refinement in the previous subsection, 
system static behaviors have been described as a set of process names and 
their relations. The second-step refinement of system static behaviors in 
RTPA is to specify the schemas of these identified processes as defined in 
Fig. 4.2.          
 

Definition 4.111 A process schema is the structure of a process that 
identifies the process by a process number PNN and a process name 
ProcessIDS, lists operated CLMs and relations with other processes, and 
describes brief functions of the process, as follows:                   
 

     ProcessSchemaST  PNN                  
               || ProcessIDS ({I}; {O}) 
                                                      || FunctionDescriptionS                   
                || {OperatedCLMs} 
      || {RelatedProcesses} 
            || FunctionDescriptionS           (4.132) 
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where FunctionDescriptionS is a brief description of major functions of a 
process, which will be used to guide further refinement of the process. 
       

The process schema provides further detailed information on each 
process’ functionality, I/O, and its relationships with system architectural 
components (CLMs) and other processes.  
                        
4.7.3.3 Process Implementation  
 

The final refinement step of component static behaviors is to extend the 
process schemas as specified in Section 4.7.3.2 into detailed processes. This 
level of specification for system static behaviors is called process 
implementation. 

 
Definition 4.112 Process implementation is the final-step refinement of 

static behaviors of a system that extends a process schema to a detailed 
process by using meta processes, process relations, and related CLMs 
provided in RTPA, i.e.: 
 

   ProcessImplementationST   ProcessSchemasST 
                     || ProcessInstIDSS  
                     || {DetailedProcesses}        (4.133) 
 

Based on the refined specifications, code can be derived seamlessly and 
rigorously, and tests of the code can be generated prior to the coding phase.  
 

 
4.7.4 SYSTEM DYNAMIC BEHAVIOR MODELING 
         AND REFINEMENT 
 

Dynamic behaviors of software systems are processes determinable at 
run-time. According to the RTPA system specification and refinement 
scheme as shown in Fig. 4.2, the work products developed in Section 4.7.3, 
the specifications of system static behaviors in term of a set of processes, are 
only static functional components of the system. To run the components as a 
live and interacting system, its dynamic behaviors, in terms of process 
deployment and process dispatch of all predefined static processes, are yet to 
be specified in the following subsections.                               
 
4.7.4.1 System Dynamic Behaviors 
 

Definition 4.113  The specification of system dynamic behaviors at the 
top level can be generically modeled by the allocation of timing relationships 
of all static processes contained in the preceding phase, i.e.:    
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       SysIDST.DynamicBehaviors  {Base-level processes} 
         || {High-level processes} 
         || {Low-interrupt-level processes} 
         || {High-interrupt-level processes}  (4.134) 
 
where one or more priority levels may be added or omitted for a specific 
system. 
 

The four typical priority levels of processes in dynamic behavior 
specification for a real-time system can be defined as shown in Table 4.11 in 
an increased priority. For a nonreal-time system, such as a transaction 
processing and database system, only base level processes may be modeled.     
 
 

Table 4.11 
Priority Levels of Processes in Dynamic Behavior Specification 

 

No. Priority level  Definition Execution Priority 

1 Base A process that has no strict 
execution priority at run-time. 

All base-level processes of a system 
are dispatched in the lowest priority 
when there are no higher level 
processes scheduled or interrupt 
events occurred. 

2 High  A process that has some 
timing requirements for 
execution priority at run-time. 

A high-level process may take over 
the run-time resources of a base-level 
process in system dispatching. 

3 Low  

interrupt 

An interrupt-event-driven 
process that has strict 
execution priority at run-time. 

A low-interrupt-level process may 
take over the run-time resources of an 
ordinary base-level or high-level 
process in system dispatching. 

4 High 

interrupt 

An interrupt-event-driven 
process that has extremely 
strict execution priority at run-
time. 

A high-interrupt-level process may 
take over the run-time resources of all 
other type processes in system 
dispatching. 

 
4.7.4.2 Dynamic Behaviors Deployment 
 

Definition 4.114 Process deployment is a set of detailed dynamic 
process relations at run-time, which refines system dynamic behaviors by 
specifying precise time-driven relations between the system clock, system 
interrupt sources, and processes at different priority levels as follows: 
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  ProcessDeployment  § →   
                             (    @BaseTimeEventS      {ProcessSet1} 
               | @HighLevelTimeEventS    {ProcessSet2}  
               | @LowIntTimeEventS  {ProcessSet3} 
               | @HighIntTimeEventS  {ProcessSet4} 
                              )      
                           → §                  (4.135) 
 
where § denotes the system. 

 
Process deployment specifies time-driven process relations at run-time, 

where precise timing relationships between different priority levels are 
specified. Process deployment may be refined next by process dispatching 
structures.    
 
4.7.4.3 Dynamic Behaviors Dispatch  
 

Dynamic behavior dispatch is the most refined dynamic process 
relations of a system at run-time. 
 

Definition 4.115 Process dispatch is detailed dynamic process relations 
at run-time, which refines system dynamic behaviors by specifying event-
driven relations as follows: 
 
  ProcessDispatch ≙ § →  
                         (  @Event1S  {ProcessSet1}   
                 | @Event2S  {ProcessSet2}  
                  |  …                                
                  | @EventnS  {ProcessSetn}  
                                              )            
            → §            (4.136) 

 
Process dispatch specifies event-driven process relations at run-time, 

where precise process dispatching strategies are specified for each external or 
internal event.    

 

 

 The 14th Law of Software Engineering 
 

Theorem 4.9 The essential facets of software system modeling state that 
software systems can be formally specified by its architectures, static 
behaviors, and dynamic behaviors with multiple-level refinements.  
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RTPA adopts only 17 meta processes and 17 process relations to 
describe software system behaviors in a stepwise refinement approach. 
Experimental case studies demonstrate that both human and software 
behaviors can be sufficiently described by RTPA [Wang, 2003c/07h/07i; 
Wang and Gafurov, 2003; Wang and Ngolah, 2002/03; Wang and Zhang, 
2003; Wang and Huang, 2005; Wang and Ruhe, 2007; Tan and Wang, 2003; 
Adewumi and Wang, 2004; Vu and Wang, 2004; Chiew and Wang, 2004]. 
Specification and modeling of actions and behaviors are a core part of 
computing requirement that can be explicitly and precisely described by 
RTPA, which has been developed as an expressive, easy-to-comprehend, and 
language-independent notation system, and a specification and refinement 
methodology for software system modeling and specifications.  

This section has demonstrated that a software system, including its 
architecture, static behaviors, and dynamic behaviors, can be formally 
described and seamlessly refined by RTPA. Because of the equivalence 
between software and human behaviors, RTPA can also be used for 
describing human dynamic behaviors as a series of actions and cognitive 
processes [Wang, 2007h/07i; Wang and Gafurov, 2003; Wang and Ruhe, 
2007]. 
 

 

 
4.8 RTPA: Notations for Software   
       Engineering 
 

 
 
As explained in Sections 4.5 through 4.7, RTPA is a neat and powerful 
denotational mathematics structure, which is capable to be used as a generic 
software engineering notation system. RTPA will be adopted throughout the 
remainder of this book as a descriptive and expressive means for system 
architectures and behaviors description and specification. 

The preceding section has presented the generic methodology of RTPA 
for software system description and refinement. This section describes the 
usage of RTPA as software engineering notations based on case studies on 
real-world software engineering problems at both component and system 
levels.  

 
4.8.1 MODELING COMPONENT-LEVEL PROBLEMS 
         USING RTPA  
 

ADTs are perfect software architectures at component level that can be 
used to explain the modeling methodology of component architectures and 
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behaviors in RTPA. An ADT is a logical model of a complex and/or user 
defined data type with a set of predefined operations. A queue as a typical 
ADT is presented in this subsection to demonstrate how the RTPA notation 
and methodology are used to model and specify the architecture, static 
behaviors, and dynamic behaviors of software components. 
 
4.8.1.1 Existing Approaches to ADT Specification 
 

There are a number of approaches to the specification of ADTs. 
Mathematically, the main approaches are logical and algebraic, as well as 
their combinations. Although each of these approaches has its advantages, 
there are gaps when applying them to solve real-time specification problems.  

The logic approach is good at specifying the properties of ADT 
operations, usually in forms of the preconditions and post-conditions of 
operations. Due to the nature of logic, the logical approach is the easiest one 
to model the behaviors of ADTs, particularly their static behaviors. In 
contrary, the algebraic approach is good at describing dynamic and run-time 
behaviors of ADTs in an abstract, elegant, and dynamic manner. 

            

Example 4.23 A specification of the ADT, Queue, in the logic-based 
approach is shown in Fig. 4.6 [Stubbs and Webre, 1985]. 
 

 
Figure 4.6 Specification of an ADT model of Queue in predicate logic   
 

Note in the above example that the data structures are usually 
informally described in the logic-based approach. Also, there is actually 
nothing that has been specified for how the Queue is created, and what are 
the operations between the pre- and post-conditions. 

Elements:  e, f, g, … of type stdelement. 
Structure:  Queue Q = {<e, te>, <f, tf>, <g, tg>, …},  

 where tx is the time of insertion of 
                   <x, tx> into Q (<x, tx>, <y, ty> ∈ S | x <> y →  tx <> ty ) 
Domain:     0 <= Cardinality(Q) <= maxsize. 
Operations: 
 enqueue(e: stdelement) 
  pre – ∃Q ∧ Cardinality(Q) <> maxsize. 
  post – Q = Q’ ∪ {<e, te>}. 
 serve(var e: stdelement) 
  pre – ∃Q ∧ Q <> {}. 
  post – Q = Q’ - {<e, te>}|(∀<x, tx> ∈ Q, te < tx). 
 empty: boolean 
  pre – ∃Q. 
  post – empty = (Q = {}). 
 full: boolean 
  pre – ∃Q. 
  post – full = Cardinality(Q) = maxsize. 
 clear 
  pre – ∃Q. 
  post – Q = {}. 
 create 
  pre – true. 
  post – ∃Q ∧ Q = {}.                                      
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A queue in RTPA is modeled as an algebraic entity, which has 
predefined operations on the architectural model of the Queue. Unlike the 
conventional approaches to ADT specifications that treat ADTs as static data 
types, ADTs in RTPA are treated as dynamic finite state machines to serve as 
both structural and operational components in system design and modeling 
[Tan and Wang, 2003].  
 
4.8.1.2 Architectural Specification in RTPA 
 

At the top level, an RTPA specification of the queue, QueueST, has 
three parallel facets, which are the Queue’s architecture, static behaviors, and 
dynamic behaviors as shown below. 
 

           QueueST   QueueST.Architecture  
               || QueueST.StaticBehaviors 
               || QueueST.DynamicBehaviors       (4.137)  
 

Then, QueueST can be broken up and be further refined by detailed 
specifications according to the RTPA specification and refinement method.  

 
Example 4.24 The architecture of the QueueST is specified by RTPA as 

shown in Fig. 4.7, where both the architectural CLM and an access model are 
provided for the Queue. 

 

 
Figure 4.7 The architectural model of the Queue specified in RTPA    
 

In Fig. 4.7 the access model of QueueST is a logic model for supporting 
external invocation of the Queue in operations, such as enqueue and service. 
The other parts of the model are designed for internal manipulation of the 
Queue, such as creation, memory allocation, and release. 

Queue ST.Architecture    CLM : ST 
                                  || AccessModel : ST 
                                           || Events : S 
                                           || Status : BL 
  

Queue. ST Architecture.CLM  QueueIDS ::                       
             ( <Size : N  |  SizeN ≥ 0>, 
               <Element : RT>, 
               <CurrentPos : P  | 0 ≤  CurrentPosP ≤  SizeN-1> 
             ) 
                                        

Queue ST.Architecture.AccessModel  
                                       QueueIDS(CurrentPosP)RT                   
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4.8.1.3 Static Behavior Specification in RTPA 
          
        Component static behaviors in RTPA are valid operations of system 
that can be determined at compile-time, which describe the configuration of 
processes of the component and their relations. The schemas of a set of static 
behaviors of QueueST, known as create, release, enqueue, serve, clear, empty 
test, full test, are modeled as given in the following example. 
 
  Example 4.25 The detailed specification of one of the Queue’s static 
behaviors, QueueST.serve, is given below. 

 
Figure 4.8 The static behavioral model of the Queue specified in RTPA 

 
Contrasting the static behavior model of QueueST.serve in RTPA as 

shown in Fig. 4.8 and that of predicate logic as shown in Fig. 4.6, advances 
of the RTPA method and notations are well demonstrated. Among them, the 
most important advantage is that a system model in RTPA can be seamlessly 
refined into code in a programming language in the succeeding phases of 
software engineering.       

              
4.8.1.4 Dynamic Behavior Specification in RTPA  
 

Component dynamic behaviors in RTPA are process relations that may 
be determined at run-time. According to the RTPA system specification and 
refinement scheme, the specifications of system static behaviors are only 
functional components of the system. To incorporate the components into a 
live and interacting system, the dynamic behaviors of the system in terms of 
process deployment and dispatch are yet to be specified. 

QueueST.Serve (<I ::   QueueInstS>;   
                           <O :: ⓢQueueID.ServedBL, ElementRT>)     
{   
   QueueIDS := QueueInstS  

   → (  ⓢQueueExistBL = T  ∧ CurrentPosP  > 0 

               → (QueueID(1))RT ⋗ Element RT 
               → QueueID(i))RT ⋗ QueueID(i-1)RT 
               → ↓ (QueueID.CurrentPosP) 
               → ⓢQueueID.ServedBL := T  

          |  ~  

               → ⓢQueueID.ServedBL := F  
               → ! (@’QueueIDExistBL = F  ∨  QueueEmptyBL = T’)  
        ) 
}                                                                                               
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         Example 4.26 The dynamic behaviors of QueueST are specified in 
RTPA as shown in Fig. 4.9, where the process dispatch mechanisms of the 
Queue specifies detailed dynamic process relations at run-time by a set of 
event-driven relations. 

 

 
Figure 4.9 The dynamic behavioral model of the Queue specified in RTPA 

 
Figs. 4.7 through 4.9 model an ADT, QueueST, in a coherent system 

from three perspectives. With the RTPA specification and refinement method 
and the expressive power of RTPA notation system, the features of ADTs as 
both static data types and dynamic system components can be specified 
rigorously and precisely. 
 
 
4.8.2 MODELING SYSTEM-LEVEL PROBLEMS USING 
         RTPA   
 

The same methodology and notations of RTPA for component level 
specification can be applied in system level modeling and refinement. An 
Automated Teller Machine (ATM) is taken as a well-known example of 
safety-critical and real-time systems for demonstrating the methodology of 
RTPA. This subsection describes how the architecture, static and dynamic 

QueueST.DynamicBehaviors  { § → 

(   @CreateQueueS  ↳   Queue.Create (<I:: QueueInstS, ElementInstRT, SizeInstN>; 

                                       <O:: ⓢQueueID.AllocatedBL, ⓢQueueID.ExistBL>) 

  | @ReleaseQueueS ↳   Queue.Release (<I::  QueueInstS>;  

                                                                <O:: ⓢQueueID.ReleasedBL>) 

  | @EnqueueS          ↳   Queue.Enqueue  (<I::  QueueInstS, ElementInstRT>;  

                                                                    <O:: ⓢQueueID.EnqueuedBL>) 

  | @ServeS             ↳   Queue.Serve  (<I::  QueueInstS>;   

                                                               <O:: ⓢQueueID.ServedBL, ElementRT>)   

  | @ClearS               ↳   Queue.Clear  (<I::  QueueInstS>;   

                                                              <O:: ⓢQueueID.ClearedBL>)                

  | @QueueEmptyS   ↳  Queue.EmptyTest  (<I::  QueueInstS>;   

                                                                      <O:: ⓢQueueID.FullBL>)  

  | @QueueFullS       ↳  Queue.FullTest (<I::  QueueInstS>;   

                                                                <O:: ⓢQueueID.FullBL>)   
 ) → §     
}                          
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behaviors of the ATM system can be modeled rigorously, precisely, and 
consistently using RTPA [Wang and Zhang, 2003]. 

 
The conceptual model of the ATM system can be described by an FSM, 

and the formal model of the ATM is specified by RTPA. The formal model 
of the ATM enables implementation of system models independent of 
programming languages and operating platforms. It also improves the 
controllability, reliability, maintainability, and quality of the design and 
implementation in real-time software engineering.  

 
4.8.2.1 The Conceptual Model of the ATM 
 

The conceptual model of the ATM architecture and behaviors are given 
in Figs. 4.10 and 4.11, respectively. Fig. 4.10 describes the configuration and 
logical relationships among components of the ATM.  
 

 
Figure 4.10 The conceptual model of the ATM architecture 

 
A state transition diagram is adopted in Fig. 4.11 to describe the basis 

behaviors of the ATM system as an FSM. 
 
The following subsections develop a formal specification of the ATM 

system using RTPA notations and methodology. 
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Figure 4.11 The conceptual model of the ATM behaviors 

 
4.8.2.2 Formal Description of the ATM Architectures 
 

According to the RTPA scheme for system specification and 
refinement, the top-level specification of the ATM system can be described 
as follows: 

 
      §(ATMST)   ATMST.Architecture  
                                || ATMST.StaticBehaviors  
                                || ATMST.DynamicBehaviors      (4.138) 
 

   The high-level specification of the architecture of ATM as a set of 
CLMs is shown in Fig.4.12, where the number in the angular brackets, [nN], 
specifies the required number of instance objects for a CLM in the system 
architectural configuration. 
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Figure 4.12 The architecture of the ATM system  
 
For example, the RTPA specification of the architectural model of the 

CardReaderST in the ATM is further refined as given in Fig. 4.13, where the 
statuses, ports of interfaces, and the data format of the card reader are 
formally specified. A complete description of the ATM architectural models 
may be referred to Appendix K.    

 
Figure 4.13 The architecture of the ATM CardReaderST  
 
4.8.2.3 Formal Description of the ATM Static Behaviors 
 

System static behaviors model the high-level configuration of all 
processes of a system and their relations. This subsection describes how 
RTPA can be used to formulate detailed process specifications of the ATM 
system based on the CLM architectures obtained in the architectural 
modeling. 

The ATM system encompasses eight static behaviors, such as the 
system, welcome, check PIN, check amount, verify account balance, verify 
cash availability, disburse cash, and eject card. Each of these static behaviors 
can be described as a process in the ATM. For instance, the welcome 
processes can be specified as shown in Fig. 4.14. A complete description of 
the ATM process models is provided in Appendix K.    

Based on the detailed specifications of system components as a set of 
processes, program code can be derived easily and rigorously based on them, 

CardReaderST  CardReaderS :: 
                                (<Data : N  |  0 ≤ DataN  ≤ 1000000>, 
     <Status : BL  | T = CardInserted ∧ F  = NoCard>, 
    <CardEjectStatus : BL  | T = Ejected ∧ F = NoAction>, 
    <CardReaderPort : B | CardReaderPortB = FFF1H > 
            )                  

 

ATMST.Architecture   <ATMProcessor : ST | [1]> 
                                || <SystemClock : ST | [1]> 
                                || <CardReader : ST | [1]> 
         || <Keypad : ST | [1]> 

   || <Monitor : ST | [1]> 
   || <AccountDatabase : ST | [1]> 
   || <CashBank : ST | [1]> 
   || <CashDisburser : ST | [1]> 

      || <Events : S> 
      || <Status : BL>      
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and test cases for the code can also be generated prior to the program being 
implemented. 

 

 

 
Figure 4.14 The Welcome process of the ATM system  
 
4.8.2.4 Formal Description of the ATM Dynamic Behaviors 
 

Generally, system dynamic behaviors are the timing relationships 
between the static processes of a system. The dynamic behaviors of the ATM 
system can be specified by a number of execution priority levels of processes 
based on their real-time timing requirements, which are the base-level and 
high-interrupt-level processes.    

Process deployment is defined as dynamic process relations at run-time, 
which refines system dynamic behaviors by specifying precise and explicit 
time-driven relations between system clock, system interrupt sources, and 
processes at different priority levels. For example, the ATM dynamic 
behaviors are shown in Fig. 4.15, where precise timing relationships between 
different priority levels are specified. 

Welcome (<I::( )>; <O::( )>)  
{// State 1: Welcome 
 // Operated CLMs :: {stdCardSlotST } 
 // Related processes :: {CheckPIN} 

CardInserted  

T

BL F
R

=
(  Monitor.StatusBL = T  

                    → ‘Welcome!’ |⋖  PORT(MonitorPortP)S 

      → ‘Please insert your card.’ |⋖ PORT(MonitorPortP)S 
      → CardReaderST.StatusBL |⋗ CardInsertedBL 

             |  ~ 

     → ! (ⓈMonitorFaultBL = T) 
     → StateN := 8                       // System fault   

 )  
CardReaderST.DataN  |⋗ AccountNumN 

→ (  SysDatabaseST(AccountNumN).StatusBL := T   

            → PINEnterTimesN := 10000       // 10s   
   → ProcessStateN := 2   

      |  ~ 

            → ‘Invalid Card.’ |⋖ PORT(MonitorPortP^)S 
            → EjectCardBL := T   
            → EjectCardBL  |⋗ CardReaderST.CardEjectStatusBL  
            → ProcessStateN := 1   
}                   
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Figure 4.15 The ATM process deployment process    

  
Process dispatch describes another aspect of system dynamic behaviors 

at run-time by specifying the event-driven relationships of the given system. 
For instance, the specification of ATM process dispatch is shown in Fig. 
4.16.      

 

 
Figure 4.16 The ATM process dispatch process  

ATMProcessDispatch   
{( ⓢATMID.RunningBL = T  
        → ( @ATM.StateN = 0  // Idle   
          →   ∅  

| @ATM.StateN = 1     
  ↳ Welcome (<I:: (PNN)>;  <O:: ( )>)  

| @ATM.StateN = 2    
 ↳ CheckPIN (<I:: (PNN)>;  <O:: ( )>) 

| @ATM.StateN = 3      
         ↳ CheckAmount (<I:: (PNN)>;  <O:: ( )>)          

     | @ATM.StateN = 4   
 ↳ VerifyAccountBalance (<I:: (PNN)>;  <O:: ( )>) 

     | @ATM.StateN = 5    
 ↳ VerifyCashAvailability (<I:: (PNN)>;  <O:: ( )>)

     | @ATM.StateN = 6   
 ↳ DisburseCash (<I:: (PNN)>;  <O:: ( )>) 

     | @ATM.StateN = 7  
  ↳ EjectCard (<I:: (PNN)>;  <O:: ( )>)) 

}             

ATM.ProcessDeployment   
{ // basic level processes 
  @ System ↳ ( SysInitial 

                          → 
SysShutDown

R
=

T

BL F
ATMProcessDispatching 

                          →  ⊠  
                       ) 
|| // High-interrupt level processes 
  ⊙  @SysClock1msInt  
         ( SysClock 
              ↳  CardScanning 
            ) 
         ⊙  
}            
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This section has demonstrated that the ATM system, including its 
architecture, and static and dynamic behaviors, can be essentially and 
sufficiently described by RTPA. The case studies on real-world problems 
have shown that the formal specification and modeling of the ATM system 
are helpful for improving safety operations and quality services of the 
system. Other related case studies on RTPA for formally modeling real-time 
systems may be referred to [Wang, 2003c; Wang and Ngolah, 2002/03; 
Wang and Huang, 2005; Adewumi and Wang, 2004; Vu and Wang, 2004]. A 
complete specification of the ATM system is provided in Appendix K of this 
book.  

RTPA is not only useful as a generic notation and methodology for 
software engineering, but also good at modeling human cognitive processes. 
The applications of RTPA in modeling cognitive processes of the brain and 
natural intelligence may be referred to [Wang, 2007h/07i; Wang and 
Gafurov, 2003; Wang and Ruhe, 2007; Chiew and Wang, 2004].         

RTPA has been developed as an algebra-based, expressive, easy-to-
comprehend, and language-independent notation system, and a practical 
specification and refinement methodology for software engineering. RTPA is 
capable to support top-down software system design and implementation by 
algebraic modeling and seamless refinement methodologies. The RTPA 
methodology covers the entire software engineering processes from system 
modeling to code generation in a coherent algebraic notation. 

A number of case studies on large-scale software system modeling and 
specifications have been carried out, such as the Telephone Switching 
System (TSS) [2002a], the Lift Dispatching System (LDS) [Wang and 
Ngolah, 2002], the Automated Teller Machine (ATM) [Wang and Zhang, 
2003], and a set of ADTs [Tan and Wang, 2003]. RTPA has also been used 
to specify algorithms and software process models such as CMM.  

Experiences show that the RTPA notation system and methodology 
have the following advantages: 
 

•  Easy to learn and acquisition 
•  Easy to comprehend 
•  Suitable for specifying the 3-D real-time system behaviors 
• Suitable for specifying both architectural and operational 

components in a system              
•  Expressive for both system architectures and behaviors              
•  Expressive for real-time events and timing manipulations               
•  Strongly and strictly typed with a type suffix system            
• Built-in exceptional detection mechanisms for safety-critical 

applications                 
 
         A set of support tools for RTPA has been developed [Tan and Wang, 
2006; Tan, Wang, and Ngolah, 2004a/04b/05/06; Ngolah, Wang, and Tan, 
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2005b/06], which encompasses the RTPA parser, type checker, and code 
generator in C++ and Java. The RTPA code generator enables system 
specifications in RTPA to be automatically translated into fully executable 
code. The RTPA tools will support system architects, analysts, and 
practitioners for developing consistent and correct specifications and 
architectural models of large-scale real-time and distributed systems, and the 
automatic generation of code based on the rigorous specifications in the 
descriptive mathematical notations. 

RTPA is characterized as the least complete set of algebraic notations 
and well structured stepwise method for software system specification and 
refinement. The application results encouragingly demonstrated that RTPA is 
a powerful and practical software engineering notation system and 
methodology for both academics and practitioners in software engineering.       

  
  
 
4.9 Summary 
 

 
 
Mathematics deals with statements about abstract objects and relations 
between them. The entire theory of software engineering is about 
mathematical models and formal treatment of software architectures, 
behaviors, and software engineering processes, which are centered by 
denotational mathematics and formal inference means.  

This chapter has explored essential mathematical means for modeling 
software architectures and behaviors. Existing mathematical means, such as 
sets, functions, relations, mathematical logic, and their applications in 
software engineering, has been reviewed. The investigation has been 
continued on what are the essential elements of mathematical needs for 
modeling software systems and software engineering processes, which leads 
to the findings of the inadequacy of conventional analytic mathematics, and 
the requirement for a denotational mathematics in software engineering. 
Real-Time Process Algebra (RTPA) has thus been introduced as an 
expressive mathematics and practical notation system for a rigorous 
treatment of software system architectures, static behaviours, and dynamic 
behaviours. The methodology of RTPA for software system description and 
refinement has been presented, and applications of RTPA as a powerful and 
generic notation system for software engineering have been described. As a 
result, the mathematical foundations of software engineering have been 
established.   
 

© 2008 by Taylor & Francis Group, LLC



264   Part II  Theoretical Foundations of SE 

ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Mathematical Foundations of Software 
Engineering, readers have achieved the following strategic goals with the 
knowledge architecture as summarized below. 

 
 

Chapter 4. Mathematical Foundations of SE  
 

■ Fundamental Mathematics  
       •  Set theory 
       •  Relations 
       •  Functions  
       •  Propositional logic  
       •  Predicate logic 
       •  Algebraic systems 
 
■ Denotational Mathematics for Software Engineering  
       •  Fundamental elements in modeling software systems 
       •  The need for denotational mathematics in software engineering 
       •  The big-R notation  
 
■ Real-Time Process Algebra (RTPA) 
       •  The process metaphor of software systems 
       •  The structure of RTPA  
       •  The type system of RTPA  
       •  Meta processes of RTPA 
       •  Process relations of RTPA 
 
■ The RTPA Methodology for Software System Modeling and 
    Refinement 
       •  The RTPA methodology 
       •  System architecture modeling and refinement 

 - The system architecture 
 - The CLM schema 
 - The CLM objects   
 

       •  System static behavior modeling and refinement 
            - System static behaviors 
            - Process schemas 
            - Process implementation 
 

       •  System dynamic behavior modeling and refinement 
            - System dynamic behaviors 
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            - Dynamic behaviors deployment 
            - Dynamic behaviors dispatch   
 
■ RTPA: Notations for Software Engineering  
        •  Modeling Component-Level Problems using RTPA        
            - Existing approaches to ADT specification  
            - Architectural specification in RTPA  
            - Static behavior specification in RTPA  
            - Dynamic behavior specification in RTPA   
 

        •  Modeling System-Level Problems using RTPA        
            - The conceptual model of the ATM system  
            - Formal description of the ATM architectures  
            - Formal description of the ATM static behaviors  
            - Formal description of the ATM dynamic behaviors  
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• Mathematics, as well as philosophy, is the top level abstraction 
means and therefore the most general human knowledge.  

 
• The utility of mathematics in software engineering states that 

denotational mathematics is the means and rules to rigorously and explicitly 
express design notions and conceptual models on abstract architectures and 
complex interactive behaviors at the highest level of abstraction and in the 
largest scope of systems. 

 
• Conventional analytic mathematics and propositional logic are 

inadequate in dealing with software engineering problems. This finding 
reveals a profoundly overlooked problem in software engineering, i.e., the 
formal means and tools were inadequate, and there was a lack of a 
denotational mathematics for software engineering. 

 
• A fundamental view towards the description and modeling of human 

and system behaviors is that there are essentially three categories of 
descriptivity: to be, to have, and to do. All mathematical means and forms, 
in general, are an abstract description of these three categories of human and 
system behaviors. That is, mathematical logic is the abstract means for 
describing “to be,” set theory for describing “to have,” and algebras for 
describing “to do.” 
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• The behavior space Ω of software is 3-dimensional, which can be 
described by a Cartesian product of operations OP, time T, and memory 
space S, i.e.: Ω  =  OP × T × S. Mathematics, theories, methodologies, and 
tools for software engineering must be designed to adequately deal with such 
3-D problems.      

      
• The big-R notation models and unifies a fundamental and widely 

applied mathematical concept in computing and human behavior description, 
i.e., iterations and recursions. It demonstrates that a convenient mathematical 
notation may dramatically reduce the difficulty and complexity in expressing 
a frequently used and highly recurring concept and notion in computing. 

 
• Software system behaviors can be described as the composition of a 

list of interacting processes. The top-level behaviors of software systems 
are process dispatches known as the event-, time-, and interrupt-driven 
dispatching mechanisms.     

 
• Software system architectures can be described as a set of 

Component Logical Models (CLMs).  
 
• The evaluation (or quantification) T is a fundamental computing 

operation that maps a given expression in type T into a value in the same 
type. When the type T = {BL, N, Z, R, B}, the evaluations are called a Boolean, 
ordinal, or numerical evaluation (for types Z, R, B), respectively, i.e.: 

 
                 BL(expBL)BL = BL: expBL → {T, F}     
                       N(expN)N = N: expN → N     
                       Z(expZ)Z = Z: expZ → Z      
                       R(expR)R = R: expR → R      
                       B(expB)B = B: expB → B      
 

• The addressing ⇒ is a fundamental computing operation that maps a 
given logical idT into a block of the physical memory denoted by ptrÞP 
accommodating n bytes of memory for the variable in type T, i.e.: 

 
   idT ⇒ MEM[ptrÞP]T      

⇔ (π: idT → ptrÞP    
                                            → idT = MEM[ptrP, ptrP+n-1]T    
                                          )      
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• Memory allocation ⇐ is a fundamental computing operation that 
collects a unique memory block logically named idT and physically located 
by ptrÞP accommodating n bytes of memory for the variable in type T, i.e.: 

 
  idT ⇐ MEM[ptrÞP]T      

⇔ (π-1: ptrÞP → idT   
                                            → idT = MEM[ptrP, ptrP+n-1]T    
                                          ) 
 

• Memory release  is a fundamental computing operation that 
dissociates and frees a unique block of n continuous physical memory 
elements denoted by ptrÞP from its logical identifier idT, i.e.:  

 
idT  MEM[⊥]T   

⇔ (π: idT→ ptrÞP  
       → MEM[ptrP, ptrP+n-1]T := ⊥      
       → ptrP := ⊥ 
       → idT := ⊥ 

                                           )  
 

• The mathematical model of a process P is a composed component 
of n meta statements pi and pj, 1 ≤ i < n,  j = i + 1, according to certain 
composing relations rij, i.e.:  
 

   

1

1

1 12 2 23 3 1,
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where rij is one of the 17 cumulated relations or composing rules identified 
in RTPA.  
 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Fundamental Mathematics  

 
• Abstraction and categorization of objects are basic human cognitive 

processes. Set is the mathematical model of these cognitive processes.  
 
• A set is a collection of elements with a common property. Set is a 

fundamental and powerful mathematical concept for abstracting and eliciting 
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objects that share certain common properties. Abstraction is an elicitation of 
common properties of elements from a given set. 

 
• The basic set operations are union, intersection, difference, and 

cardinal size. Derived set operations are complement, symmetric difference, 
Cartesian product, and partition. 

 
• Since the position, or the sequential order, of an element in a set has 

no meaning, the mathematical entities of pair, tuple, sequence, list, and 
ordered set are introduced for dealing with the order information of 
elements in sets.   

 
 • Relation is the most important concept in programming theories, 

because a program can be modeled as a finite list of relations between 
individual statements. Relations also play an important role in explaining 
internal knowledge representation and the natural intelligence. Relations as 
mathematical entities can be treated and composed based on algebraic laws.  

    
• A program can be treated as a composition of a list of statements by 

predefined relational or composing rules. The relations between statements 
are special type relations known as cumulative relations ®, where a given 
relation is related to all previous relations.  

 
• The composing rules in programming can be classified into 17 

process relations known as sequential, branch, switch, iterations (3), 
procedure call, recursion, parallel, concurrence, interleave, pipeline, 
interrupt, jump, and system dispatches (3).  

 
• Algebra is a branch of mathematics in which variables and their 

relations are represented by abstract symbols and formulae. Using algebra, 
generic relations between variables and quantities may be formally, precisely, 
and efficiently described. Rigorous reasoning can then be conducted based 
on established algebraic rules and properties. 

 
• Function is another important mathematical concept developed in 

algebra. A function is a mapping relation between two sets in a generic 
signature. Almost all discrete or continuous relations between sets can be 
described as functions.   

          
• By extending the objects under study beyond sets in algebra, a 

number of advanced algebraic systems are developed, such as abstract 
algebra, process algebra, concept algebra, and system algebra. 
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Denotational Mathematics for Software Engineering  

 
• Denotational mathematics is a set of contemporary mathematical 

structures for dealing with the unique mathematical entities, abstract objects, 
relations, and formal manipulations in abstract system modeling, which 
encompasses concept algebra, system algebra, and RTPA. 

 
• New problems require new forms of mathematics. Conventional 

science and engineering disciplines have been mainly using analytic 
mathematics in theory development and problem solving. Software 
engineering needs a denotational mathematics, e.g., RTPA, which can be 
used to describe software systems rigorously, explicitly, and expressively. A 
coherent notation system for software engineering is derived on the basis of 
RTPA. 

 
• Denotational mathematics deal with the 3-D behavior space Ω of 

software system behaviors, i.e.: Ω  =  OP × T × S. 
 
• A generic and fundamental operation in system and human behavioral 

modeling is the formal description of repetitive actions and/or recurring 
architectures. The big-R notation is introduced to denote this fundamental 
requirement in computing and software engineering.  

 
Real-Time Process Algebra (RTPA) 

 
 • Real-Time Process Algebra (RTPA) is a set of formal notations and 
algebraic rules for modelling and describing real-time process architectures 
and behaviours of software systems. 
 

The structure of RTPA can be defined as follows: 
 

  RTPA     Meta processes         
  || Process relations      
  || System architectures   
  || Primary types      
  || Abstract dada types   
  || Specification refinement scheme     

   
• The RTPA type system T encompasses 17 primitive types as 

follows:  
 
              T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST, @eS, @tTM, @int ,ⓢsBL} 
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RTPA adopts the type-suffix convention in which every identifier of 
variables, constants, and expressions is attached with a type in bold in the 
format of idT, T ∈ T.         

 
• The set of RTPA meta processes P encompasses 17 fundamental 

primitive operations in computing as follows:  
 
     P = {:=, , ⇒, ⇐, , , , | , | , @ , , ↑, ↓, !, , ⊠ , §} 

 
• The set of RTPA process relations R encompasses 17 fundamental 

primitive operations in computing as follows: 
 

         R = {→, , |, |…|, 
*R , R+

,
iR , , , ||, ∯ , |||, », ,  t,  e,  i} 

 
 
The RTPA Methodology for Software System Modeling and 
Refinement 

 
• RTPA deals with complicated system modeling and specifications via 

a number of systematic refinements in a top-down approach by using a 
coherent set of notations.  

 
• In RTPA three fundamental aspects of software systems can be 

modeled and specified, i.e.: 
 
                     §(SysIDS) ≙ SysIDS.Architecture  
                                   || SysIDS.StaticBehaviors  
                                   || SysIDS.DynamicBehaviors   
 

• The specification of each of the above subsystems can be 
implemented by a three-level refinement process at the system, class, and 
object levels. 

 
• In the RTPA specification and refinement scheme, two key concepts, 

CLM and the process, are introduced to model software system architectures 
and behaviors, respectively. A CLM is an abstract model of a system 
architectural component that represents a hardware interface, an internal 
logical model, and/or a common control structure of a system. A process is 
an abstract model of a unit of software system behaviors that represents a 
transition procedure of the system from one state to another by changing 
values of its inputs {I}, outputs {O}, and/or internal variables {V}.  
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• RTPA is not only a mathematical inference means, but also a generic 
software engineering notation system. RTPA applications in system 
architectural and behavioral modeling and specifications are presented in a 
number of real-world case studies, which may be used as testing benchmarks 
for comparatively evaluating the express power of existing formal methods. 
 
 

 
Questions and  
Research Opportunities 
 

 
 
4.1 Why is denotational mathematics needed for software engineering 

determined by the nature of software as well as Theorem 1.3, 
Theorem 1.4, and the HAMSD model? 

 
4.2  What are the differences between denotational and analytic 

mathematics in means and purposes? 
 
4.3  Set is a fundamental and powerful mathematical concept for 

describing objects that share certain common properties. 
According to Lemma 4.1, abstraction is an elicitation of common 
properties of elements from a given set.  

 
According to the HAMSD model of knowledge abstraction as 
presented in Theorem 1.4, explain why mathematics is the top 
level abstraction means in system modeling.       

 
4.4  Tuple is a powerful modeling means in mathematics and software 

engineering for denoting a coherent encapsulation or composition 
of multiple objects. Try to denote the automobile you’ve modeled 
in Ex.1.13 with a tuple and extend the categories of functions 
defined in it with detailed attributes or properties.             

 
4.5  A cumulative relation ® as given in Definition 4.21 is an ordered 

list of embedded relations. Try to provide an instance of a 
cumulative relation. 

 
4.6  Try to prove the following logical equivalences using truth tables: 
 

              a) X ⇒ Y ⇔ ¬ X ∨ Y  
              b) (X ⇔ Y) ⇔ (X ∧ Y ) ∨ (¬ X ∧ ¬ Y ) 
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4.7  According to Definition 4.33, a generic computational operation 
can be defined as an abstract function op on the set of operands or 
data objects O. Provide a mathematical definition for the above 
concept.  

 
4.8  Create a form to compare and contrast the definitions and usages 

of inference methods in predicate logic, such as universal 
instantiation, universal generalization, existential instantiation, 
and existential generalization as described in Section 4.4.2.3.             

  
4.9  Describe the corresponding relationships between the basic 

expressiveness of natural languages and the mathematical means 
in conventional and denotational mathematics.     

 
4.10  Use the big-R notation of RTPA to denote the following 

computational operations: 
 

      a)  A while loop for process P 
      b)  A repeat loop for process Q 

 
4.11 Use the big-R notation of RTPA to denote the following 

architectural models of data objects and system structures: 
 

a)  A one dimensional array, ArrayST, with 100 integer 
elements A[i N]Z.  

b)  Ten buttons on an equipment, ButtonsST, that share the 
same structure, i.e., Button (0) … Button (9).   

 
4.12 Use the MaxFinder algorithm as given below to explain Theorem 

4.3, and identify all statements and relations in the process. 
 

 
4.13  What is the architecture of RTPA as a coherent notation system? 

MaxFinder ({I:: X[0]N, X[1]N, …, X[n-1]N }; {O:: maxN })  
{ 
    XmaxN := 0                                           

     → 
n -1 

i 0 
R
N

N=
(  X[i N]N > XmaxN                         

                          → XmaxN := X[i N]N             
                   )             
     → maxN := XmaxN              
} 
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4.14 Briefly describe the RTPA type system T.   
 
4.15  According to Theorem 4.5, partition the 17 RTPA primitive types 

into equivalence sets.    
 
4.16  RTPA extends the type rules from variables to constants. What 

are the advantages of this extension over conventional 
programming practice in software engineering?          

 
4.17  Briefly describe the set of RTPA meta processes P.   
 
4.18  Why is evaluation ( T) modeled as a fundamental computing 

process in RTPA? 
 
4.19  Why is addressing (⇒, or π: idT → ptrÞP) modeled as a 

fundamental computing process in RTPA? 
 
4.20  Why is memory allocation ( ) modeled as a fundamental 

computing process in RTPA? 
 
4.21  What is the syntactic and semantic differences between skip (⊗) 

as modeled in RTPA and an operation that does nothing? 
 
4.22  Briefly describe the algebraic process operations of RTPA known 

as the process relations R.   
 
4.23  Why can computing operations at the system level be modeled as 

three process dispatching operations known as the event-, time-, 
and interrupt-driven process dispatches?    

 
4.24  On the basis of Theorem 4.8, explain why the expressive power 

of RTPA is much higher than existing programming languages, 
though it only adopts 17 meta processes and 17 algebraic process 
operations.  

 
4.25  What are the three subsystems that are generically modelled at the 

top layer of software systems in RTPA? What are the sequences 
for specifying and refining these three subsystems in RTPA?          

 
4.26 Briefly summarize the methodology of RTPA in software system 

modelling and refinement.   
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4.27 Why has architectural modelling been recognized as the most 
creative, important, and difficult aspects in system design and 
implementation? 

 
4.28  Why should architectural models be designed and specified first 

before the behavioural models of a given system is carried out 
according to RTPA methodology? What would be wasted in 
software engineering if a project team goes directly into 
programming?    

 
4.29  A Component Logical Model (CLM) is a powerful modeling 

technique of RTPA for system architectural component modeling. 
Explain how CLM may be used to model the following data 
objects in system architectures: 

 
a) A hardware interface 
b) An internal logical model 
c) A data structure 
d) A top-level control structure of a system                

 
4.30  Serial, parallel, and nested architectures are the basic 

architectures of software systems. Try to describe the architecture 
of the following system, §, using proper RTPA notations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

4.31  Referring to Sections 4.7.4 and 4.8.2, describe what is the generic 
top-level structure of a real-time systems modelled by the event-
dispatching-based dynamic behaviours. 

 
4.32  Read the following classic article in software engineering:  

 
                                                                P1       

 

 
                                                            P2 
 
 
 
                                                    
                      

                      

       

                 

 

            … 

P3 P4 

P5 

 || 
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Juris Hartmanis (1994), On Computational 

Complexity and the Nature of Computer Science, The 

1993 Turing Award Lecture, Communications of the 

ACM, 37(10), pp.37-43. 
 

Discuss the following topics in a group: 
 
                     •  About the author. 

• What was the nature of computer science according to the 
author in the 1990s?  

      •  What is the role of mathematics in computer science? 
      •  What conclusions of the article interested you? Why? 
      •  Your argument(s) or counter-points on any of the 

conclusions derived in this article.              
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Knowledge Structure 
 

 

 Basic computation models 

     •  Basic operations in computing              •  Automata 
     •  Turing machines                                    •  von Neumann machines 
     •  Cognitive machines 

 Data object modeling and manipulation 

     •  Types and data structures                     •  Basic data modeling techniques            
     •  Formal type theory                                •  Abstract data types (ADTs)                    

 Behavioral modeling and manipulation  

     •  Internal behaviors modeling 
     •  Iterative and recursive behaviors modeling 
     •  External and Interactive behaviors modeling  

 Program modeling: coordination of computational behaviors and data objects  

     •  The unified mathematical model of programs                              
     •  Programs modeling at component level                                         
     •  Programs modeling at system level - Frameworks  

 Resources and processes modeling and manipulation  

     •  Abstract model of computing systems 
     •  Architectures of operating systems 
     •  Computing resources manipulation 
     •  Real-time/embedded resources and processes manipulation 
 

 

Learning Objectives 
 

 
• To understand the basic computing models such as automata, Turing 

machines, von Neumann machines.   
     • To know the techniques for data object and architecture modeling and 

manipulation in software engineering.  
     • To know the techniques for system behavioral modeling and 

manipulation in software engineering. 
     • To be familiar with the techniques for program modeling and 

manipulation in software engineering. 
     • To be familiar with the techniques for software engineering resources 

and process modeling and manipulation in software engineering. 
     • To understand the unified program model. 
     • To understand the generic abstract model of computing systems. 

5. Computing Foundations of Software Engineering 
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“The entire computing theory is about mathematical models of  
computers and algorithms.” 

 
Lewis and Papadimitriou (1998) 

 
“There are three levels of problems. There is the level of solving a very specific 

instance … . That is the level closest to the practitioners.  
Then there is the level of studying the problem in general, with emphasis on 

methodology for solving it ... .That is one level up  
because you are not interested just in a specific instance. Then there is a 

metatheoretic level where you study the whole structure of a class of problems. This is 
the point of view that we have inherited from logic and computability theory.” 

 
Richard Karp (1985) 

 
 

5.1  Introduction 
 

 
 

omputer science is an inquiry of computational methods, generic 
computer architectures and implementations, computing objects and 
their abstract representations, as well as programs and programming 

methodologies that embody a generic computer for specific applications.  
Computing theory is one of the most important and direct foundations 

of software engineering, because software engineering as an engineering 
discipline grew out of computer science when the complexity and costs for 
producing software had become increasingly greater than that of hardware 
since the 1970s. 
 As early as in the 1830s, there were creations of machines that 
attempted to realize many of the principles of modern computers such as 
Charles Babbage’s (1791-1871) difference engine and analytical engine. 
However, since these machines were too complicated to be implemented by 
the 19th century technologies, the leap from theory to practice had to wait 
until the inventions of electronics, particularly transistors and integrated 
circuits, a century later.   

Logical inferences and mathematical induction played a central rule in 
the ultimate philosophy of computing theory contributed by Charles 
Babbage, Alan M. Turing (1936, 1950), and John von Neumann (1946, 
1958, 1963, 1966). The fundamental objects of computation are abstracted 
by binary digits (bits). Any real-world data object is seen to be able to be 
reduced to bits – the most fundamental and general form of representation of 
real-world objects and data. As a consequence on the basis of this profound 
axiom, computation methods in general are perceived to be based on the 

C
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basic arithmetical and logical operations on bits known as Boolean algebra. 
Any other complex operations must be reduced to these kinds of basic forms 
of operations in computing. In addition, computing resources are 
dramatically simplified to the form of finite or infinite sequential memory of 
bits and characters. 

That is why the hardware technologies of computing were matured so 
quickly, because all problems can be unified by the basic operations on the 
basic objects based on bits. Therefore, hardware devices such as processor 
and memory chips may be repetitively designed and massively produced. 
Once a design of a computer is correct, all products based on it must be 
correct all the time.  

However, in software engineering, the development of software is 
recognized as a one-off activity. To the maximum extent, software design 
and implementation can only be reduced to known languages components or 
common design patterns. Although the method and process for software 
development may be reusable, the objects under study and the resources 
required in software engineering are far more complicated than those of basic 
computing hardware techniques.  

Table 5.1 summarizes and contrasts the differences of computational 
objects, methods, and resources in computer science and software 
engineering. As identified in Table 5.1, computer science only provides basic 
computing theories and programming methodologies to software 
engineering. However, areas now thought critical in software engineering – 
the nature of software, cognitive foundations, denotational mathematics, 
architectural and behavioral laws, system theories, coordinative work 
organization theories, and management infrastructures – have not been fully 
covered by computer science. 

   
Table 5.1 

Objects under Study in Computer Science and Software Engineering 
 

Category Description Computer Science 
Focuses  

Software Engineering 
Focuses 

Objects Entities, concepts, and 
their relations under 
study  

Computers and 
abstract data in 
binary form 

Programs, software 
systems, and complex 
data objects 

Methods Instructions, algorithms, 
and processes for 
computation 

Basic arithmetic 
and logical  
operations 

Complex operations plus 
I/O, real-time 
manipulation, and 
dynamic memory 
allocation 

Resources CPU power, memory, 
external storage, ports, 
files, databases, and 
communication 
channels    

Sequential memory 
with physical 
structures 

Large-scale memories 
with complex abstract 
(logical) structures 
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This chapter explores the computing foundations of software 
engineering, and examines what computer science may provide for software 
engineering as well as what it may not. A new treatment of computing 
theories for software engineering is taken, which focuses on the needs for 
modeling and manipulating complicated data objects, behaviors, and 
resources in software engineering beyond bits.  

In the remainder of this chapter, basic computation models, such as 
automata, Turing machines, von Neumann machines, and cognitive 
machines, are reinterpreted in the context of software engineering in Section 
5.2. Section 5.3 presents data objects modeling with the focuses on type 
theory and architectural modeling of software systems. Section 5.4 describes 
behavioral modeling, particularly the Basic Control Structures (BCS’s), and 
highlights their fundamental roles in computing. Section 5.5 models 
programs as the coordination and interaction between computational 
behaviors and data objects on the basis of Sections 5.3 and 5.4. Section 5.6 
discusses computing resources modeling and manipulation, as well as 
process coordination, by focusing on generic and real-time operating system 
models.  

Closely related to this chapter, the mathematical models and algebraic 
treatment of software have been described in Chapter 4. The language aspect 
of programming and software engineering will be discussed in Chapter 6 
with comparative studies between natural and programming languages, 
syntaxes and semantics, as well as linguistics and formal language theories in 
computing and software engineering. 
 
 
 
5.2 Basic Computational Models 
 

 
 
This section first elicits the fundamental needs in computation. Then, it 
describes the approaches to implement computing machines such as 
automata, Turing machines, von Neumann machines, and cognitive 
computers. 
 
 
5.2.1 BASIC OPERATIONS IN COMPUTING 
 

The philosophy on when computation and software are needed has 
been discussed in Section 3.4.1, where Theorem 3.9 states that the necessary 
and sufficient conditions for computing are the repeatability, flexibility, and 
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run-time determinability. As recognized in Section 3.5.2, the problem space 
of computing is infinite. Further, the solution space for each given 
application problem can be extremely large because of the combination of 
possible design and implementation technologies in each software 
engineering process.       

The fundamental operations in computation can be classified into three 
categories: computational operations, object manipulations, and resource 
manipulation as shown in Table 5.2. Although there are various 
computational operations such as logical, arithmetical, mathematical, flow 
control, and run-time control, all of them can be reduced to three 
fundamental Boolean logic operations known as ∧, ∨, and ¬. Objects in 
computing, such as data, I/O, events, time, and their addresses can be 
reduced to bits. Then, all resources of computing such as memory, standard 
devices, and external devices can be reduced to memory locations or port 
spaces identified by binary addresses.  

 
Table 5.2 

Basic Operations in Computing 
   

Category Operations Description of operations 
Data 
manipulation 

Data object modeling, types, CLMs, identifiers, read, and 
write       

I/O space 
manipulation 

I/O object modeling, port access, input, output, DMA, 
device representation, serial communication, and parallel 
communication 

Event 
manipulation  

Event capture, exception detection, interrupt, and system 
synchronization 

Objects 

Time 
manipulation 

Timing, duration, date, time 

Logic   Conjunction (∧), disjunction (∨), implication (⇒), 
equivalence (⇔), negation (¬) 

Arithmetic +, -, x, / 
Mathematic    Composed operations: evaluations, expressions, functions, 

classes, and processes  
Flow control Jump, branch, iteration, interrupt, and parallel  

Computation 

Run-time 
control 

Processes, task scheduling, time-driven dispatch, event-
driven dispatch, and interrupt-driven dispatch 

Memory Memory allocation, release, addressing, access, data 
representation, file, and database  

Standard 
devices 

Monitor, keyboard, mouse, printer, communication ports, 
external bus (USB), serial interface, parallel interface  

Resources 

External 
devices 

Generally abstracted as a port 
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In a summary, the most fundamental computing needs are only binary 
data, basic Boolean operations, and a linear memory/port space. Any 
complex application can be implemented on the basis of these three essences 
of computation by certain composition rules. Therefore, all digital computers 
and computational operations are based on Boolean algebra. This leads to the 
following theorem on the common root of computer science and information 
science. 

      

 
Theorem 5.1 reveals that the most fundamental data object in 

computing, informatics, and software engineering is bits. All other data 
objects in computing are derived objects of bits. Similarly, the following 
theorem recognizes the most fundamental operations in computing and 
software engineering. 

     
Theorem 5.2 indicates that the most fundamental computing operations 

and behaviors are bit-based logical, arithmetic, and memory operations. All 
other operations and behaviors in computing are derived behaviors of them.  

Theorems 5.1 and 5.2 are the profound conditions of the whole 
architecture of modern computing theories, methodologies, and technologies.    
However, it is noteworthy that some of programming languages, such as 
Java, puts limit on the expressive power to address all these essential 
programming requirements, particularly for real-time applications, in order to 
gain high portability. Some operating systems may also restrict direct access 
and manipulation of system resources and data objects such as absolute 
memory addresses, I/O ports, and interrupt events in programming.            

The mathematical models of all basic computing operations as shown 
in Table 5.2 have been described in RTPA, where these operations are 
categorized into the meta processes and the process relations. The latter are 
corresponding mainly to the flow and run-time control operations, which 

 

The 15th Law of Software Engineering 
 

Theorem 5.1 The root of computing and information science states that 
the most fundamental data object model shared in both computing and 
information science is binary digits (bits). 

 

 

 The 15th Principle of Software Engineering 
 

Theorem 5.2 The primitive computational behaviors state that the most 
fundamental computational operations are logical, arithmetic, and 
memory access operations on bits. 
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enable the algebraic composition of a large set of complex computational 
operations on the basis of a certain instruction set of a programming 
language.    

 
5.2.2 AUTOMATA 
 

 Automata are one of the earliest digital computing models that are still 
widely used in computing applications to model and describe system 
behaviors [von Neumann, 1946/58/63/66; Wiener, 1948; Shannon, 1956; 
Krohn and Rhodes, 1963; Arbib and Michael 1966; Arbib, 1969; Hopcroft 
and Ullman, 1979]. An automaton is an abstract model of computers or 
robots that respond to external events or stimulates by predesigned 
instructions. An automaton transits between a finite set of functional states 
driven by external events and current internal states. Therefore, it is also 
known as a finite state machine synonymously [Arbib et al., 1968].  

 In computing, automata are modeled and used mainly as finite state 
machines for language reorganization. However, in software engineering, 
automata are treated as fundamental modeling techniques of software 
behaviors and interactions with external environments. Therefore, an 
automaton can be perceived as an event-driven finite state machine. This 
subsection discusses the definition, formal descriptions, and applications of 
automata in software engineering, and their usage and limitations.         
 
5.2.2.1 Automata and Finite State Machines (FSMs) 
 

An automaton is a finite state machine based on the mechanism of 
event-driven state transitions that can be formally defined as follows. 
 
 Definition 5.1 A Finite State Machine (FSM) is a 5-tuple, i.e.: 
 
           FSM  (∑, S, s, T, δ)               (5.1) 
where  
 

(i) ∑ is a finite set of alphabet, inputs, or events;  
(ii) S is a finite set of internal states;  
(iii) s is the initial state, s ∈ S;  
(iv) T is the set of final states, T ⊆ S; and 
(v) δ is the state transition function, which is defined as: 

 
       δ: S × ∑ → S               (5.2) 
 

The state transition function δ as defined in Eq. 5.2 can be described 
equivalently by a state transition table with the following schema as shown 
in Table 5.3.    
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Table 5.3 
The Schema of a State Transition Table of FSMs 

 

Current state 
si,  si ∈ S 

Current event 
ei,  ei ∈ ∑ 

Next State 
si+1 = δ (si, ei),  si+1 ∈ S 

 
 
A practical question before all transitional instances are derived for 

Table 5.3 is how many possible transitions may be expected for a given 
layout of an FSM. Because the transition function δ is defined as a Cartesian 
product in Eq. 5.2, an outstanding advantage of it is that the number of 
transitions in δ can be exactly predicated by the following definition. 

 
Definition 5.2 The size of state space of an FSM, SΩ(FSM), is all 

possible transitions that can be determined by the product of both sizes of the 
state set S and alphabet set ∑., i.e.:       

 
SΩ (FSM) = #S • #∑                (5.3) 

 
It is noteworthy that SΩ (FSM) determined by Eq. 5.3 predicates all 

possible transitions of an FSM, which encompasses both legal and illegal 
transitions that represent the entire behaviors of the FSM. The former are the 
defined transitions in δ as defined in Eq. 5.2, and the latter are exceptional 
transitions outside δ denoted by δ . It may be expected that δ could be much 
larger than δ. Therefore, one of the important tasks of professional system 
architects and analysts is to identify the whole state space of an FSM and to 
rule out all possible exceptional transitions. 

 
Based on the above discussion, Eq. 5.3 may be extended to the 

following in order to consider the two important portions of transitional 
behaviors of a given FSM, i.e.:         

 
     SΩ (FSM) = #S • #∑            

            = # #δ δ+          (5.4) 
 

Therefore, it can be perceived in software engineering that, to a certain 
extent, requirement engineering elicits δ from users’ needs for a given 
system; while system specification identifies the entire space of all possible 
behaviors of the required system, SΩ (FSM) = # #δ δ+ , in order to prevent 
the FSM from going into any of the illegal transitions.             
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It is noteworthy, according to Theorem 5.3, that most software systems 

may go wrong not because they are incorrect on normally required functions, 
but because there are wrong or not prepared for implied and nonspecified 
exceptions. 

 

 
According to Corollary 5.1, system design and specification should 

focus on the entire SΩ, or should emphasize on both δ and δ . This is a major 
indicator that distinguishes professionals and amateurs in software 
engineering, where the latter focus only on required behaviors (δ) and rush to 
implement them, while the former thoughtfully model the whole behaviors of 
a given system ( δ  + δ) and eliminate the possibility for the system under 
design crashes into any undesired exceptional states.  
 
5.2.2.2 Approaches to Describe FSMs 
 

On the basis of discussions in Sections 5.2.2.1 and 4.7, four approaches 
to describe FSMs can be summarized below:  

 
 a) To define the 5-tuple for a given FSM according to   

Definitions 5.1 and 5.2; 

 b)  To define the state transition table for the FSM using the 
template as given in Table 5.3;  

 

The 16th Principle of Software Engineering 
 

Theorem 5.3 The nature of requirements and specifications states that 
requirement elicitation focuses on desired functions of a system δ, while 
system specification focuses on the entire behavioral space of the system 
Ω, including both δ and the undesired but potential system transitions 
represented by δ  in the behavioral space, i.e.: 

 

       SΩ  =# #δ δ+  
    = #S • #∑                     (5.5) 
 

 

Corollary 5.1 For a software system, particular a complex system, the 
size of undesired behavior space is far more greater than that of the 
desired one, i.e.:  
 

 # #δ δ                (5.6) 
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 c)  To draw a labeled digraph known as the state diagram as 
shown in Fig. 5.1;   

 d)  To specify an event-driven RTPA process as discussed in 
Section 4.7 and illustrated in Example 5.2.      

 
The following examples demonstrate the methods for specifying FSMs 

according to the above four approaches.  
  
Example 5.1 According to Definition 5.1, an automaton FSM1 can be 

described as follows: 
 

       FSM1 = (∑, S, s, T,δ) 
 
where ∑ = {a, b}, S = {s0, s1, s2}, s = s0, and T = {s2}.  

 
The transition function δ: S × ∑ → S is given in Table 5.4. According 

to Eq. 5.3, the state space includes six legal transitions and two illegal ones, 
because once FSM1 reaches the final state s2, it will no longer be able to 
change its state.        
 

Table 5.4 
The State Transition Table of FSM1 

 

Current state   
si 

Current event  
ei 

Next state   
si+1 = δ (si, ei) 

Category 

s0 A s1 

s0 B s2 

s1 A s1 

s1 b s2 

δ 

s2 a - 

s2 b - 

δ  

 
An equivalent state diagram of FSM1 can be derived on the basis of 

Table 5.4 as shown in Fig. 5.1, where a square block denotes the initial state, 
and a double circle denotes the final state.          

 

S0 S1 S2 

a 

b 

b 

a 

 
Figure 5.1 The state diagram of FSM1 
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Example 5.2 The fourth method for formally describing an FSM is by 
using RTPA. The RTPA specification of FSA1 is given below. 

 
FSA1  {s0  →                    

                            (   @aS ↳ s1  

                                         → (  @aS ↳ s1 

                                            | @bS ↳ s2 
                ) 
                                         | @bS ↳ s2                         
                                           ) 
                                }                (5.7) 

 
Further details may be referred to the RTPA notations and the system 

specification methodology described in Sections 4.6 and 4.7.        
  

Due to the well-defined theories and methods, FSMs have found a wide 
range of applications in computing and software engineering. This is why the 
state diagrams have been adopted in UML as an important part of its 
diagram-based notations for modeling software systems.            
 
 
5.2.2.3 Description of Software Behaviors by FSMs 
 
 

The preceding section shows that automata theories are expressive and 
rigorous methods that can be applied to describe and specify software system 
behaviors. Especially, it provides a powerful means to predict the possible 
state space or domain of behaviors of a given system requirement or 
specification according to Theorem 5.3.                         
  

This subsection takes the ATM as previously described in Section 4.8.2 
and Fig. 4.11 as a real-world example to demonstrate the application of FSM 
technologies in system modeling and specification [Wang and Zhang, 2003].       
 

Example 5.3 The ATM as shown in Fig. 4.11 can be abstracted as an 
FSM as described in Fig. 5.2. Therefore, the ATM can be formally described 
as follows:  
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e8 
e10 

e11 

e9 

e7 

e7 

e5 

e3 

e2 

e1 

e6 

e4 

S0 

   S2 

   S3 

  S4 

S1 

    S7 

S6 

S5 

 
 
Figure 5.2 The abstract FSM model of the ATM 
 
 
       ATM  (∑, S, s, T, δ)         (5.8a)  
 

Corresponding to the given ATM in Fig. 5.2, the components of the 5-
tuple as given in Eq. 5.8a can be formally defined below: 
 
 

• ∑ = {e1, e2, …, e11}, where:                                            
    

       e1   - Start 
   e2   - Insert card 
        e3   - Correct PIN

         e4   - Incorrect PIN 
        e5   - Cash ≤ max 
        e6   - Cash > max 
        e7   - Cancel transaction 
        e8   - Sufficient funds 
        e9   - Insufficient funds 
        e10  - Sufficient cash in ATM 
        e11  - Insufficient cash in ATM         (5.8b) 
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• S = {s0, s1, …, s7}, where:       
   
          s0 - System 
          s1 - Welcome 
          s2 - Check PIN 
          s3 - Check amount 
          s4 - Verify account balance 
          s5 - Verify cash availability 
          s6 - Disburse cash 
          s7 - Eject card                        (5.8c) 
 

• s = s1        // welcome        (5.8d) 

  • T = {s1}    // welcome          (5.8e) 

• δ = f: S x ∑ → S is given in Table 5.5 corresponding to the state 
   diagram model of the ATM system as shown in Fig. 5.2. 

 
Table 5.5 

The State Transition Table of the ATM 
 

si ei si+1 = δ(si, ei) 
s0 
s1 
s2 
s2 
s2 
s3 
s3 
s3 
s4 
s4 
s5 
s5 
s6 
s7 
 

… 

e1 
e2 
e3 
e4 
e7 
e5 
e6 
e7 
e8 
e9 
e10 
e11 
- 
- 
 

… 

s1 
s2 
s3 
s2 
s7 
s4 
s3 
s7 
s5 
s7 
s6 
s7 
s7 
s1 
 
δ  

 
Example 5.4 According to Theorem 5.3, the size of behavior space of 

the ATM can be predicated as:    
 

    SΩ (ATM) =# #δ δ+  
                                                 = #S • #∑ 
                                                 = 8 • 11 
                 = 88 
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where #δ = 12 + 2 • 11 = 34, and # δ  = SΩ - #δ = 88 – 34 = 54.  
 

Special care should be taken in the design of this ATM to prevent all 
the 54 illegal transitions from happening. If any of these transitions occurs, 
the system should be ready to handle it as an exception.                     

 
A complete specification of the ATM system in RTPA, in terms of its 

architecture and behaviors, is provided in Section 4.8.2 and Appendix K. 

 
5.2.2.4 FSM Composition and Refinement 
 

In an FSM, a state can be extended to a sub-FSM. This provides a 
powerful approach to refine a system design and specification, hierarchically. 

 
 Example 5.5 A given automaton FSM0 can be refined by three more 
detailed automata FSM1, FSM2, and FSM3, as shown in Fig. 5.3, where the 
event-driven relations between the sub-FSMs are also provided. A formal 
description of the refinement of FSM0 in RTPA is provided in Eq. 5.9.            
 

FSM0  { FSM1                   
                                               → (   e1   FSM2 
                                                      | e2   FSM3 
                                                    ) 
                                          }                      (5.9)   

 

FSM0 

FSM2 FSM1 

FSM3 

e1

e2

 
 
Figure 5.3 Refinement of an FSM by sub-FSMs 

 
If the refinement of FSM0 described above is perceived as 

decomposition of an FSM into sub-FSMs, the composition of a number of 
FSMs into a coherent system can be explained as an inverse operation of 
FSM refinement. Both FSM refinement and composition provide a 
foundation for software system modeling, specification, and integration.             
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5.2.2.5 Deterministic and Nondeterministic Automata 
 
 There are deterministic and nondeterministic automata. The former 
represent the automata that their transition functions are known for each 
given event in the context of the current state; the latter represent the 
automata that their transition functions are not unique, or the possible next 
states are multiple on a given event and the current state. Therefore, the 
behaviors of a nondeterministic FSM are inpredictable and should require 
additional information or be arbitrarily instantiated at run-time.  

The deterministic FSMs have been defined in Definition 5.1, This 
subsection introduces the definition of nondeterministic FSMs and their 
relationships with the deterministic counterparts.    
 
 Definition 5.3 A nondeterministic FSM, FSM’, is defined by a 5-tuple, 
i.e.: 
 
       FSM’  (∑’, S, s, T, δ’)         (5.10) 
    
where  

(i) ∑’ is a finite set of alphabet plus a generic freely 
transitional  event known as the empty event φ;  

(ii) S is a finite set of internal states;  
(iii) s is the initial state, s∈ S;  
(iv) T is the set of final states, T ⊆ S;  
(v) δ’ is the state transition function, which is defined as: 

 
                   δ’: S × ∑’ → S         (5.11)  

 
Comparing Definitions 5.1 and 5.3, it can be seen that the only 

differences between a deterministic and nondeterministic FSM is the 
extension of ∑ by φ, and the replacement of the transition function δ by δ’ 
that is no longer unique and allows multiple arbitrary next states. In other 
words, a nondeterministic FSM is a special case of the deterministic one. 
This leads to the following Corollary.     
 

    
A proof of Corollary 5.2 may be referred to [Lewis and Papadimitriou, 

1998].   

 

Corollary 5.2 The deterministic and nondeterministic FSMs are 
equivalent. That is, for any given nondeterministic FSM, there is an 
equivalent deterministic FSM.  
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According to Corollary 5.2, a nondeterministic FSM can always be 
converted into an equivalent deterministic counterpart. Conversion between 
nondeterministic and deterministic FSMs can be enabled by providing 
additional rules in the transition function or simply allowing arbitrary 
transitions among defined (legal) multiple next states on the basis of a given 
event and the current state of the system. 
 
5.2.2.6 Usage of Automata 
 

Automata are found useful for describing software behaviors based on 
event-driven mechanisms at framework level. However, their expressive 
power is limited when there is a series of complicated actions or algorithms 
responding to a specific event or request, which is modeled as a process in 
RTPA in Chapter 4. In addition, automata lack the capability to model the 
architectures and data objects of software systems as RTPA does, which are 
an equally, if not a more, important part of software system modeling and 
specification. These are the reasons why automata and FSMs have not been 
adopted as the main software engineering notation system and modeling 
techniques.  

 

 
Revealed by Theorem 5.4, the features, descriptive power, and 

suitability for large-scale systems modeling by FSMs and RTPA can be 
observed by comparing Examples 5.1, 5.2, 5.3, and the models presented in 
Section 4.8.2. In dealing with large-scale system specifications, it is found 
that the algebraic description of an automaton in RTPA is more convenient 
and rigorous. Another advantage of the RTPA methodology is that its work 
products for system modeling are much closer to the form of programs, the 
naturally succeeding phase in software system development.   

 

             The 17th Principle of Software Engineering 
 

Theorem 5.4 The weaknesses of automata state that automata and FSMs 
as a system composition and modeling method built on event-driven 
mechanisms are inadequate to model the complete basic computational 
requirements, particularly the lack of the descriptive power for: 
 
    a)  System architectures and data objects modeling; 

    b) Nonevent-driven transitional process modeling; 

    c)  Detailed behavioral descriptions; 

    d)  Mathematical operations and processing of complicated languages. 
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5.2.3 TURING MACHINES 
 

Turing machines are the most fundamental mathematical model of 
computation that are perceived, in theory, to imitate logical human thought. 
A Turing machine provides a generic abstract model for digital computers, 
and reveals the basic computability of problems and their implementation by 
the simplest computing machines.  
 
5.2.3.1 The Abstract Model of Computing 
 

The development of Turing machines is a great application of 
fundamentalism as described in Section 3.2.3 in computing, in order to seek 
the most fundamental needs and mechanisms for computing. According to 
Theorems 5.1 and 5.2, the most fundamental data object modeling technique 
is bits. Based on it the most fundamental computational operations are logical 
and architectural operations on bits.           

 In his classic paper On Computable Numbers, with an Application to 
the Entscheidungs Problem, Turing (1936) described that: “All detailed sets 
of instructions that can be carried out by a human calculator can also be 
carried out by a suitably defined simple machine.” It is known then as the 
Turing machine.  

 According to Theorems 5.1 and 5.2, a Turing machine is the simplest 
model of computing and machine intelligence. Any complicated computing 
machine can be reduced onto a number of basic Turing machines. This 
provides a practical approach to build large and complicated computing 
systems based on simple ones. Any computational task that cannot be 
processed by Turing machines is a non-determinable problem. 
 

 
Figure 5.4 A Turing machine 
 

A typical Turing machine can be illustrated as shown in Fig. 5.4. The 
Turing machine encompasses three basic components: (a) the finite-state 
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control unit, (b) the tape (memory) with finite or infinite cells, and (c) the 
read/write head.  In Fig. 5.4, the symbol  represents a blank space, and  
represents the left end or the beginning of the tape. Among the finite states of 
the control unit, h is the halting or termination state of the machine.  
 
5.2.3.2 Formal Description of Turing Machines 
 

A formal model of a Turing machine can be described as follows.    
 

Definition 5.4 A Turing machine (TM) is defined by a 6-tuple, i.e.: 
 
      TM  (∑, S, s, H, M, δ)        (5.12)  
 

where 
 

 (i) ∑ is the finite set of alphabet, ∑ = {R, W, , }, where R 
represents a finite set of symbols read from the tape, W a 
finite set of symbols written to the tape,  the blank space, 
and  the beginning of the tape; 

     (ii) S is the finite set of states; 
(iii) s is the initial state, s ∈ S; 

     (iv) H is the set of halting states, H ⊆ S; 
(v) M is the set of head movements, M = {←, →, ◊} denotes 

move to left, right, or no move, respectively.   
     (vi) δ  is the state transition function that is defined by:  
            

    δ: (S \ H) × ∑  → S × ∑  × M         (5.13) 
 
where the state transition function δ(si, ri) = (si+1, wi, mi) denotes that when 
the TM is in state si, si ∈ S\H, and scanning symbol ri, ri ∈ R ⊆ ∑, it will 
carry out three actions: (a) write symbol wi, wi ∈ W ⊆ ∑, onto the tape at the 
current position; (b) conduct a movement of the head mi , mi ∈ M ={←, →, 
◊}; and (c) transfer to the next state si+1, such that: 
       

(1) wi ≠ ; and  
  (2) If ri = , then wi = φ and mi = →;       
 

According to Definition 5.4, the transition function δ of the TM is not 
defined on any states in H. In other words, when the TM reaches a halting 
state its operation will be totally terminated. In the above definition, 
Condition (1) on δ means that the TM will never write additional  on the 
tape, so that  is the unmistakable sign of the left end of the tape; and 
Condition (2) means when the TM sees the left end of the tape , it must 
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move right in order to maintain that the leftmost  is never erased in order to 
prevent the TM from falling off the left end of the tape.  
 

Example 5.6 A Turing machine TM1 is designed to simulate 3 + 5 = 8, 
where the initial and final tape contents are [ ,0,0,1,1,1,0, ,0,1,1,1,1,1,0,0,0, 
…] and [ ,1,1,1,1,1,1,1,1,0,0,0, …], respectively. Let a finite set of states be 
given below:    
 

   s0: Scans rightwards through the first group of 1’s until the blank 
separator  is read; 

s1:  Scans rightwards through the second group of 1’s until it finds a 
0; 

   s2:  Erases the 1 scanned from the current position; 

   s3:  Writes the current scanned 1 at the tail of the first group of 1’s. 

         
The above given TM1 can be formally defined as follows:    

 
       TM1  (∑, S, s, H, M,δ)           (5.14)  

where  
    • ∑ = {1, 0, , } 
    • S = {s0, s1, s2, s3, h}   
    • s = s0 
    • H = {h} 
    • M = {←, →, ◊} 
    • δ: (S \ H) × ∑ → S × ∑  × M is as given in Table 5.6 below:   

 
Table 5.6 

The State Transition Table of TM1 
 

si ri (si+1, wi, mi) = δ(si, ri) 
s0 
s0 
s1 
s1 
s2 
s2 
s3 
s3 

0 
1 
0 
1 
0 
1 
0 
1 

(s1, 0, →)  
(s0, 1, →)  
(s2, 0, ←)  
(s1, 1, →)  
(s2, 0, ←)  
(s3, 0, ←)  
(h,  0,  ◊ )  
(s3, 1, ←)  
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Comparing the definitions of FSM and TM, it is noteworthy that the 
extension of descriptive power in TMs over FSMs is the introduction of both 
the output operation by writing a symbol wi onto the tape, and the head action 
mi associated to a state transition si+1. In the TM model, the output actions 
can be either to rewrite the currently scanned symbol ri-1 onto the tape in the 
current place or another designated symbol in the alphabet. The head 
movement actions can be any one in M = {←, →, ◊}. However, if 
considering that a state of FSM is a process that may be able to carry out 
more powerful operations, then FSM is equivalent to TM.  

Although there are a variety of TMs, it can be proven that all TMs are 
equivalent [Gersting, 1982; Lewis and Papadimitriou, 1998; McDermid, 
1991]. With the extension of TMs over FSMs on both the I/O capacity and 
the infinite memory tape, virtually any complex computing activities may be 
sufficiently modeled and implemented. This can be proven by Theorems 5.1 
and 5.2. 

 
5.2.3.3 The Nature of Computing 
 

Definition 5.5 A computation of a TM is a finite sequence of state 
transitions, i.e.:  

 

             
1

k

i
R
=

N

N
((si, ri-1, mi-1) → (si+1, wi, mi))    (5.15a) 

 
where (s0, -, -) is the initial state, (sk, ak-1, h) is the halting state, and the trace 
of I/Os or the processes of an TM computation is: 
 
                  (r0, w1) → (r1, w2)  → … → (rk-1, wk)       (5.15b) 
 

According to Definition 5.4, a certain TM is a fixed and 
unprogrammable computing machine, specialized at solving a particular 
problem with instructions (δ) that are hard-wired. An FSM can be perceived 
as a restricted TM where the head is read-only and shift only from left to 
right.  

Turing's contribution is the identification of the basic mechanism for 
computing and machine intelligence. Turing's theory shows that the basic 
elements needed for computing are: TM = (∑, S, s, H, M, δ). Any complex 
computing system may be decomposed into a number of simple TMs. In this 
view, Turing machines are the most fundamental computing structures rather 
than the most powerful machines. 

According to Turing’s theory as well as Theorems 5.1 and 5.2, the 
basic functionality for computing can be summarized in the following 
theorem. 
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The findings in Theorem 5.5 are significant because the theorem 

reveals that intelligence is memory-based [Wang and Wang, 2006]. Further, 
it indicates that computing, a highly abstract machine intelligence, can be 
reduced to a sequence of simple memory manipulations, such as addressing, 
reading, and writing, as well as quantitative evaluations.  

A TM is capable to process memory-stored information as a closed 
system. However, it cannot process interacting I/O events from/to the 
external world, which is seen as a basic requirement for a modern computing 
system. It also lacks the descriptive power for: a) System architectures and 
data objects modeling; b) Nontransitional behavioral modeling; and c) High- 
level data objects and behavioral modeling.        

The meta processes of RTPA as presented in Chapter 4 modeled all the 
basic computational operations as well as their algorithmic composing rules. 
Therefore, RTPA is a high-level and convenient mathematical means for 
formally denoting computing needs and computational behaviors on the basis 
of modern computers.   
 
 
5.2.4 VON NEUMANN MACHINES  

 
Sections 5.2.2 and 5.2.3 described the abstract models of low-level 

computers in terms of FSMs and TMs. Although these models reveal the 
necessary functions of computation, they possess insufficient functions to 
computing. This may be analogized to those of using machine languages vs. 
high-level languages in programming. 

 

The 18th Principle of Software Engineering 
 

Theorem 5.5 The fundamental computational capabilities state that the 
essential capabilities for computation are as follows:   

  
• A memory for storing bit information;  
• A simple addressing capability for accessing information in 

the memory; 
• Read/write operations for retrieving or updating the memory;  
• A conditional and quantitative evaluation capability for 

interpreting the inputted information;   
• A stored-information-driven mechanism for determining the 

next step.  
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  In order to develop more powerful high-level computers, the 
weaknesses of the low-level computational models, such as TM and 
automata, have to be enhanced. This subsection introduces the stored-
program concept in computing and a high-level computing model known as 
the von Neumann machines.   

 
5.2.4.1 The Stored-Program Concept 
 

Stored-program computers and systems are a remarkable technical 
advance in the evaluation of computer architectures and implementation 
technologies. Before the introduction of the stored-program concept, 
computing machines are designed and controlled by wired logic or electronic 
circuits, in which changes of instructions in applications require rewiring of 
the physical machine.  

 
Definition 5.6 Stored-program techniques are a computer organization 

technology that treats instructions of a computer as the same of data objects, 
and then the abstract representation of the instructions – the program – can be 
interpreted and executed by the Central Processing Unit (CPU). 

  
The stored-program concept can be traced back to the times of Babbage 

in mid 1940s. John von Neumann formalized the technology of stored-
program computers [von Neumann, 1946], and it is still the most widely used 
architecture of modern computers. Based on the successful development of 
the first electronic digital computer ENIAC (Electrical Numerical Integrator 
and Calculator) in 1946, von Neumann developed an abstract model of 
computers with a universal structure, and yet be able to execute any kind of 
computation by means of programmable control without the need for 
changing the physical units of the computer. The above concept, usually 
referred to as the stored-program technology, became essential for modern 
digital computers. 

The main purpose for introducing stored-program control is to provide 
flexible computation where updates of desired functions may be introduced 
primarily through program modification rather than through changes of 
hardware. Therefore, stored-program may be considered as the central 
concept of the von Neumann architecture of modern digital computers. It is 
also the foundation of theoretical and functional equivalence between 
hardware and software in computation.                             

  
5.2.4.2 The von Neumann Architecture of Computers 
 

The key requirements for implementing a stored-program controlled 
computer are: a) The generalization of common computing architectures; and 
b) The generic computer is able to interpret the data loaded in memory as 
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computing instructions. These are the essences of stored-program computers 
with von Neumann architecture [von Neumann, 1946/58; Stallings, 1987]. 
von Neumann elicited the five fundamental and essential components to 
implement general-purpose programmable digital computers in order to 
embody the concept of stored-program-controlled computers.    

 
Definition 5.7 A von Neumann Architecture (VNA) of computers is a 

5-tuple that consists of five components: (a) the Arithmetic-Logic Unit 
(ALU), (b) the Control Unit (CU) with a Program Counter (PC), (c) a 
memory (M), (d) a set of Input/Output (I/O) devices, and (e) a bus (B) that 
provides the data path between these components, i.e.: 
 

          VNA  (ALU, CU, M, I/O, B)        (5.16) 

 
Definition 5.8 von Neumann Machines (VNMs) are VNA-based 

computers aiming at stored-program-controlled data processing based on 
mathematical logic and Boolean algebra.    

 
A VNM can be illustrated in Fig. 5.5, which is centric by the bus and 

characterized by the all-purpose memory for both data and instructions. 
Comparing Figs. 5.5 and 5.4, it can be seen that a VNM is an enhanced 
Turing machine (TM), where the power and functionality of all components 
of TM including the control unit (with wired instructions), the tape 
(memory), and the head of I/O are greatly enhanced and extended with more 
powerful instructions and I/O capacity.  

 
 

 

    Bus

Control 
Unit 

Memory I/O 

   ALU

 
 
Figure 5.5 The von Neumann architecture of computers  
 
 

Definition 5.9 An abstract model of a VNM performs computation in 
the following iterative steps: 
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where nN is the length of the program, Instri denotes a specific instruction in 
the instruction set of a given computer [Wang, 2006h]. 
 

 External buses 

Memory I/O Interrupt 

Bus 
Adapter 

Registers 

Control 
Unit 

  Internal buses 

    ALU

Cache 

   Clock     CPU

  CB 
  AB 
  DB 

 
 
Figure 5.6 Typical modern computer architecture based on VNA 

    
A modern VNM can be illustrated as shown in Fig. 5.6. Although the 

architecture of computers has changed little since von Neumann’s times and 
most modern computers are still based on VNA, new extensions and 
enhancements have been developed and implemented in almost all aspects of 
VNMs as follows [Stallings, 1987; Hennessy and Patterson, 1996]: 

§(VNAMachine)   
      {  

PCN := 0  

→
EOF =
R

T

BL F
( MEM[PCN]B ⇒ InstB   

→ ↑(PCN) 
→ InstB = ( 

              0:   Instr0  
              1:   Instr1 
              … 
              i:   Read  
              i+1:   Write  
              i+2:    Input  
              i+3:  Output  
              i+4:  PCN := kN ,  kN ≤ nN  
              …  
              m:   ⊠ )  
                                                                 ) 
                                          ) 
                  }                        (5.17) 
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   • More powerful instruction set, register set, and on chip cache 
have been introduced into CPU. Pipeline techniques are adopted 
for instruction decoding and executions.    

 
   • The bus has been separated into control, address, and data buses, 

as well as internal and external buses.  
 

   • The memory has been extended from the 1-D sequential memory 
to 2-D segmented memory and virtual memory.                

 

   • The pure internal stored-program computing has been extended to 
be able to process external events and interrupts for advanced 
I/Os and multi-threads. 

 
Trends in advanced computer architectures beyond VNM are parallel, 

networking, and cognitive computers. Parallel and networking computers 
may be implemented with a set of homogeneous/heterogeneous VNMs or 
non-VNMs. The theory of cognitive computers may result in new 
architectures of computers as discussed in the following subsection.          

 
            
5.2.5 COGNITIVE MACHINES 
 

The theory and philosophy behind the next generation computers and 
computing technologies are cognitive informatics (Chapter 9) [Wang, 
2002d/02e/03a/03b/06b/06j/07a/07b; Wang and Wang, 2006; Wang and 
Kinsner, 2006; Wang et al. 2002a/06] and denotational mathematics [Wang, 
2002a/05a/06d/06e/06f/06j/07a]. It is commonly believed that the future-
generation cognitive computers will adopt non-von Neumann architectures.    

 
5.2.5.1 The Wang Architecture of Computers 
 

Definition 5.10 A Wang Architecture (WA) of computers, known as a 
Cognitive Machine, is a parallel structure encompassing an Inference Engine 
(IE) and a Perception Engine (PE), i.e. [Wang, 2006b]: 
 

        WA  (IE || PE) 
               =  (   KMU  // The Knowledge Manipulation Unit   
                     || BMU    // The Behavior Manipulation Unit 
                     || EMU    // The Experience Manipulation Unit 
                     || SMU     // The Skill Manipulation Unit  
                    ) 
                 || (   BPU     // The Behavior Perception Unit  
                     || EPU   // The Experience Perception Unit 
                    )                                                                  (5.18) 

© 2008 by Taylor & Francis Group, LLC



Chapter 5 Computing Foundations of SE   303 

As illustrated in Fig. 5.7, WA computers as defined in Eq. 5.18 are not 
centered by a CPU for data manipulation as the VNA computers do. The WA 
computers are centered by the concurrent IE and PE for cognitive learning 
and autonomic perception based on abstract concept inferences and empirical 
stimulus perception. The IE is designed for concept/knowledge manipulation 
according to concept algebra [Wang, 2006b], particularly the nine concept 
operations for knowledge acquisition, creation, and manipulation. The PE is 
designed for perception processing according to RTPA and the formally 
described cognitive process models of the perception layers as defined in the 
LRMB model in Section 9.3.1.  
 

IE

  LTM

  LTM

  ABM

  ABM

 LTM

 ABM

 LTM

 ABM

   PE

 KMU

 BMU

 EMU

 SMU

 BPU

 EPU

 The Cognitive Machine (CM)  

Interactions

  SBM

 LTM  SBM

 ABM

Knoledge

Behaviors

Experience

Skills

Behaviors

Experience

Enquiries 

Stimuli 

CM = IE || PE   

 
 
Figure 5.7 The architecture of a cognitive machine 
 
5.2.5.2 Cognitive Computers 
 

Definition 5.11. Cognitive computers with WA are aimed at cognitive 
and perceptive concept/knowledge processing based on contemporary 
denotational mathematics, i.e., Concept Algebra, RTPA, and System Algebra. 
 

As that of mathematical logic and Boolean algebra are the 
mathematical foundations of VNA computers. The mathematical foundations 
of WA computers are based on contemporary denotational mathematics. 
According to the LRMB reference model [Wang et al., 2006], all the 39 
fundamental cognitive processes of human brains can be formally described 
in denotational mathematics, particularly concept algebra and RTPA [Wang, 
2006e/02a], which can be implemented and simulated by WA-based 
cognitive computers. 
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One paradigm of cognitive computers is the autonomic computers 
[IBM, 2001/06; Pescovitz, 2002; Kephart and Chess, 2003; Murch, 2004; 
Wang, 2003d/04a/07e/04f], which is a nonimperative computer based on 
non-VNA, e.g., WA, that autonomously carries out robotistic and interactive 
applications based on goal- and inference-driven mechanisms on the basis of 
nonlinear and content sensitive memory architectures.  

The history towards autonomic computing may be traced back to the 
work on automata by Norbert Wiener, John von Neumann, Alan Turing, and 
Claude E. Shannon as early as in the 1940s [Wiener, 1948; von Neumann, 
1946/58/63/66; Turing, 1950; Shannon, 1956; Rabin and Scott, 1959]. In the 
same period, Warren McCulloch proposed the term of artificial intelligence 
(AI) [McCulloch, 1943/65/93], and S.C. Kleene analyzed the relations of 
automata and nerve nets [Kleene, 1956]. Then, Bernard Widrow developed 
the term of artificial neural networks in the 1950s [Widrow and Lehr, 1990; 
Harvey, 1994]. The concepts of robotics [Brooks, 1970] and expert systems 
[Giarrantans and Riley, 1989] were developed in the 1970s and 1980s, 
respectively. Then, intelligent systems [Meystel and Albus, 2002] and 
software agents [Negreponte, 1995; Chorafas, 1998; Jennings, 2000] 
emerged in the 1990s. These events and developments led to the formation of 
the concept of autonomic computing. This subject will be further discussed 
in Section 15.4.  

 
 

 

5.3 Data Object Modeling and 
       Manipulation 
 

 
 
As highlighted in the previous sections, a major thread of this chapter on 
computing foundations of software engineering is that computational 
operations can be classified into the categories of data object, behavior, and 
resources modeling and manipulations. Based on this view, programs are 
perceived as the coordination of data objects and behaviors in computing.      

 
Definition 5.12 Data object modeling in computing is a process to 

creatively extract and abstractly represent a real-world problem by 
computing objects based on the constraints of given computing resources.  

 
Relations between the data objects and resources form the architectural 

model of an application system. The behaviors of the application system are 
then the computational operations embodied onto the data objects. The data 
object modeling process is recognized as much more important and difficult 
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than behaviors modeling, because the former is an open and creative process 
and it involves both real-world entities and their abstract representation on 
computing resources and their constraints. This section focuses on how data 
objects of a system are elicited, modeled, and constructed. Behavioral 
modeling and manipulation will be presented in Section 5.4.      

 
                  

5.3.1 TYPES AND DATA STRUCTURES  
 

Using types to model the natural world can be traced back to the 
mathematical thought of Bertrand Russell and Godel [Schilpp, 1946; van 
Heijenoort, 1997]. Types are an important logical property shared by data 
objects in programming. Languages where variables should be declared in 
types are called typed languages. Most modern programming languages are 
typed and their compilers are capable to do static type checks to maintain 
consistency between declared and applied variables and data objects [Martin-
Lof, 1975; Grune et al., 2000]. 

In computing, data in their most primitive form are a string of bits. 
Therefore, types are not an innate property of data at the level of physical 
representation and implementation. However, types are found expressively 
convenient for data representation at the logical level in programming and 
software engineering.  

To some extent, type theory is developed for modeling and 
manipulating data objects for programmers, language processors, and tool 
developers. Therefore, types are the most fundamental techniques for 
modeling data objects in software engineering. Another purpose of type 
theory is to prevent computational operations on incompatible operands. The 
knowledge of type theory can help software engineers to avoid both obvious 
and not so obvious pitfalls, and it can also improve regularity and 
orthogonality in language design. 
 
5.3.1.1 Type Systems of Programming Languages  
 

The maximum range of values that a variable can assume is a type, and 
a type is associated with a set of predefined or allowable operations.  
Methodologies of types and their properties have been defined in RTPA in 
Table 4.8 and refined in Table 5.7, where 17 primitive types in computing 
and software engineering have been elicited.  

 
Definition 5.13 A data type, shortly a type, is a set in which all member 

data objects share a common logical property or attribute.  
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The usages of types are as follows: 
 
     • To determine allowable operations, e.g., Boolean variables can 

not be operated by arithmetic operations such as addition and 
subtraction. Integers can not be operated by logical operations 
such as union or intersection;  

     • To help elicit common properties of data;  
     •  To classify data into basic categories;  
     • To interpret semantics of values of data;   
     • To direct physical representation and implementations of data 

objects in a computer; 
• To separate logical models of data objects from their physical 

model’s implementation details.     
 

A type can be classified as primitive and derived (complex) types. The 
former are the most elemental types that cannot further divided into more 
simple ones; the latter are a compound form of multiple primitive types based 
on given rules, which will be discussed in Section 5.3.1.3. Most primitive 
types are provided by programming languages; while most user defined types 
are derived ones. 

           
Definition 5.14 A type system specifies data object modeling and 

manipulation rules of a programming language, as that of a grammar system 
which specifies the program composing rules (grammar) of the language.  

 
Some typical structures of type systems are modeled in Figs. 5.8 

through 5.10 with the Pascal [Jensen, 1978; Louden, 1993], Java [Wiener 
and Pinson, 2000], and IDL [OMG, 2002] type structures, respectively. IDL 
stands for the Interface Description Language defined by the Object 
Management Group (OMG).    

         

The Pascal Type System 

Simple Structured

Ordinal Real

Integer

Boolean

Char

Subrange

Enumerated

Array 

Record 

Set 

File 

Pointer

Text 
 

 
Figure 5.8 The type system of Pascal 
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The Java Type System 

Primitive Reference

Numeric Boolean

int

long

short

char

byte

Array

Class

Interface 

float

double
 

Figure 5.9 The type system of Java 
 
 

    

The IDL Type System 

Object reference Basic value Constructed value 

Integer Simple 

Short

Float point 

Float

Double

Char

String

Boolean

Enum

Octal

Any

Long 

UShort 

ULong 

Struct 

Sequence 

Union 

Any 

Figure 5.10 The type system of IDL 
 
The RTPA type system defines the mathematical models of 17 

primitive types and 11 abstract data types. The former will be discussed in 
the following subsection, and the latter will be described in Section 5.3.4 
[Wang, 2002a].         

 
5.3.1.2 Primitive Types  
   

Via comparative studies of programming languages and formal 
specification methodologies, RTPA elicits 17 common and essential 
primitive types as presented in Section 4.6.3. The RTPA primitive types and 
their syntaxes and domains are described in Table 5.7, where the first 11 
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primitive types are for mathematical and logical manipulation of data objects, 
and the remaining 6 are for system control. In Table 5.7, Dm is the 
mathematical domain of a type, Dl the language defined domain, where Dl ⊆ 
Dm, determined by the physical memory constraint in the implementation of a 
certain programming language. It is noteworthy that although a generic 
algorithm is constrained by Dm, an executable program is constrained by Dl 
or, at most of the time, by the user designed domain Du, where Du ⊆ Dl.      

 
According to Theorem 5.6, the following corollary can be derived.   

 

 
Most data objects modeling errors are various violations of the type 

domain rules as expressed in Eq. 5.19 and 5.20. Throughout this book, a type 
suffix convention is adopted for all identifiers as described below in order to 
avoid these fundamental problems in software engineering. 

 
Definition 5.15 The type suffix convention denotes every variable x 

declared in a type T, x : T, by a bold type label attached to the variable in all 
invocations, i.e.: 
   

         x : T  ⇒ xT              (5.21) 
 
where T is any valid primitive or derived type as defined in Table 5.7. 

 
The 16th Law of Software Engineering 

 
Theorem 5.6 The domain constraints of data objects state that to let Dm, 
Dl, and Du be the domains of mathematical (logical), language defined, 
and user defined, respectively, the following relationship between the 
domains of an identifier in programming is always held, i.e.: 

 
              Du ⊆ Dl ⊆ Dm             (5.19) 
 

 
Corollary 5.3 The precedence of domain determination in programming 
and software engineering is always:  

 
   Du ⇒ Dl ⇒ Dm            (5.20) 
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Table 5.7 
RTPA Primitive Types and Their Domains 

 

No Type Syntax Dm Dl Equivalence 
1 Natural number N [0, +∞] [0, 65535] 

2 Integer  Z [-∞, +∞] [-32768, 
+32767] 

3 Real R [-∞, +∞] [-2147483648, 
2147483647] 

Arithmetic, 
mathematic, 
assignment  
 

4 String  S [0, +∞] [0, 255] String and 
character 
operations  

5 Boolean BL [T, F] [T, F] Logical, 
assignment  

6 Byte  B [0, 256] [0, 256] 

7 Hexadecimal H [0, +∞] [0, max] 

8 Pointer P [0, +∞] [0, max] 

Arithmetic, 
assignment, 
addressing 

9 Time TI = 
hh:mm:ss:ms 

hh: [0, 23] 
mm: [0, 59] 
ss: [0, 59] 
ms: [0, 999] 

hh: [0, 23]  
mm: [0, 59] 
ss: [0, 59] 
ms: [0, 999] 

10 Date  
  

D = 
yy:MM:dd 
 

yy: [0, 99] 
MM: [1, 12] 
dd: [1, 31} 

yy: [0, 99] 
MM: [1, 12] 
dd: [1, 31} 

11 Date/Time DT = 
yyyy:MM:dd: 
hh:mm:ss:ms 
 

yyyy: [0, 9999] 
MM:[1, 12] 
dd: [1, 31]  
hh: [0, 23] 
mm: [0, 59] 
ss: [0, 59] 
ms: [0, 999] 

Yyyy: [0, 9999] 
MM:[1, 12] 
dd: [1, 31]  
hh: [0, 23]  
mm: [0, 59] 
ss: [0, 59] 
ms: [0, 999] 

Timing, 
duration, 
arithmetic 
 
(A generic 
  abbreviation: 
 
TI={TI, D, DT}) 

12 Run-time 
determinable 
type 

RT –  
 

–  
 

Operations 
suitable at 
run-time  

13 System 
architectural 
type 

ST – – Assignment 
(field 
reference by .)  

14 Random event @eS [0, +∞] [0, 255] String 
operations 

15 Time event   @tTM [0ms,  
9999 yyyy] 

[0ms,  
9999 yyyy] 

Logical 

16 Interrupt  
event  

@int  [0, 1023] [0, 1023] Logical 

17 Status   ⓢsBL [T, F] [T, F] Logical 
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 The type suffix convention as adopted in RTPA is a convenient 
notation for both programmers and language processors. One of the most 
important advances of the type suffix convention is the improvement of 
readability – the key attributes in designing a programming language. Using 
the type suffixes,  programmers may easily identify if all variables in a 
statement or expression are equivalent or compatible without referring to an 
earlier declaration that are scattered in a program across hundreds of pages in 
a large software. The convention also greatly simplifies type checking 
requirements during parsing the RTPA specifications [Wang, 2002a].       

 
5.3.1.3 Derived and Advanced Types  
 

The most common and powerful derived type shared by all 
programming languages is a record, also known as a construct in some 
languages. System architectures can be modeled on the basis of structured 
records. There are also a number of special advanced types for computing, 
such as the system types, dynamic run-time types, and event, interrupt, and 
status types. This subsection discusses those important derived types and 
their composing rules. User definable complex type in terms of ADTs will be 
described in Section 5.3.4.   

 
5.3.1.3.1 Dynamic Run-Time Types  
 

Definition 5.16 The run-time type RT is a nondeterministic type at 
compile-time that can be dynamically bound during run-time with one of the 
predefined primitive types. 

 
The run-time type RT provides programmers a powerful tool to express 

and handle highly flexible and nondeterministic computing objects in data 
modeling. Some language such as Java and IDL [OMG, 2002] label the 
dynamic type RT as anytype, for which a specific type may be bound until 
run-time. 

For example, referring to Section 4.7.2 on architectural specification 
and refinement in RTPA, data objects in a generic CLM schema may be 
specified in the type RT, for flexibility, while in the CLM objects, these data 
objects specified in RT will be instantiated in specific primitive types. 

 
5.3.1.3.2 Time Types 
 
 According to Table 5.7, the time types including data, time, and 
date/time, are a special property of all computational systems, particularly 
real-time systems.    
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Definition 5.17 A time type TM is a complex type with a set of 
structural segments in N that models absolute (calendar-based) or relative 
(system-based) date and/or time, i.e.: 

 
          TM = D | TI | DT   

            =  hh:mm:ss:ms 
         | yy:MM:dd 

    | yyyy:MM:dd: hh:mm:ss:ms         (5.22) 
 
where the scope of each TM segment is a natural number as defined in Table 
5.7.   
 
5.3.1.3.3 Event Types 
 

Definition 5.18 An event is an advanced type in computing that 
captures the occurring of a predefined external or internal change of status, 
such as an action of users, an external change of environment, and an internal 
change of the value of a specific variable.  

 
The event types of RTPA can be classified into operational (@eS), time 

(@tTM), and interrupt (@int ) events as shown in Table 5.8, where @ is the 
event prefix, and S, TM, and ⊙  the type suffixes, respectively. 

    
Table 5.8 

Event Types of RTPA 
 

No Type Syntax Usage in system 
dispatch 

Category 

1 Operational event @eS @eiS t  Pi External or internal 

2 Time event   @tTM @tiTM e  Pi Internal 

3 Interrupt event @int  @intj  i  Pj  External or internal 

 
The interrupt event is a kind of special event that models the 

interruption of an executing process and the temporal handover of controls to 
an Interrupt Service Routine (ISR) resuming till its completion. In a real-time 
environment, an ISR should just conduct the most necessary functions and 
must be short enough compared with the time slice scheduled for a normal 
process.       

    
5.3.1.3.4 Status Types 
 

Definition 5.19 A status is an advanced type in computing that models 
the Boolean result of an execution of a process or a logical assertion of a 
given state in a process.  
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A status s is denoted by ⓢsBL in RTPA as described in Section 4.6.3, 
where ⓢ is the status prefix, and BL the Boolean type suffix for all statuses. 
 
5.3.1.4 System Architectural Types 
 

A special set of complex types known as the system type ST is widely 
used for modeling system architectures, particularly real-time, embedded, 
and distributed systems architectures. These requirements as identified in 
RTPA are such as system components, system processes, memory, I/O ports, 
device interfaces, interrupt sources, real-time events, and communication 
sockets. All the system types are nontrivial data objects in computing, rather 
than simple data or logical objects, which play a very important role in the 
whole lifecycle of complex system development including design, modeling, 
specification, refinement, comprehension, implementation, and maintenance 
of such systems.                            
 
5.3.1.4.1 The System Type 
 

Definition 5.20 A system type ST is a system architectural type that 
models the architectural components of the system and their relations. 
 
 A generic ST type is CLM, which has been introduced in Definitions 
4.106 and 4.108. CLMs are an abstract model of a system architectural 
component that represents a hardware interface, an internal logical model, 
and/or a common control structure of a system.                

 
5.3.1.4.2 The System Memory Type 
 

All logical identifiers and data objects, no matter language generated or 
user created, should be implemented as physical data objects and be bound to 
specific memory locations. This subsection explores the memory models of 
computing, mathematical models of addressing, and dynamic memory 
allocations.   
 

Definition 5.21 The generic system memory model, MEMST, can be 
described as a system architectural type ST with a finite linear space, i.e.: 

 
MEMST  [addr1H … addr2H]RT       (5.23) 

 
where addr1H and addr2H are the start and end addresses of the memory space, 
and RT is the type of each of the memory elements. 
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 The entire memory space of a computer is typically divided into four 
general categories known as the system area, static area, stack, and heap as 
illustrated in Fig. 5.11.         
 

  ≈

 

System area 
(Space for operating system) 

 ≈

 

Stack 
(Language controlled area) 

Heap 
(Dynamic area) 

Free space for  
both stack and heap 

 

Static area 
(Global variables & data 

objects) 

maxH

  

x0000H 
 

 
Figure 5.11 The logical memory model of computing       

 
The system area is totally controlled by the operating system, and users 

have no access to this area. The static area is a language controlled area 
where global variables and data objects such as CLMs are allocated.   

The stack is a language (compiler) controlled area for storing local and 
intermediate variables associated with embedded program blocks such as a 
method, function, or procedure in a program hierarchy. When a block 
completes its execution, all local variables scoped within it will be popped up 
and eliminated from the system.     

The heap is a user controlled memory area reserved for dynamic 
memory allocation during run-time. A programmer may allocate or release a 
block of memory in heap by using special instructions like new(x) and 
dispose(x) in C++. Variables allocated in heap can be accessed by pointers or 
indirect addressing.                            
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Note that in a typical implementation, the stack and heap grow in 
opposite directions, thus they may share the unallocated working memory 
efficiently. Further discussions on memory allocation and management can 
be found in Section 5.6.3.            
 
5.3.1.4.3 The System Port Type 

 
A special system architectural type is the I/O port type for modeling 

hardware architectures and interfaces.      
 

Definition 5.22 The generic system I/O port model, PORTST, can be 
described as a system architectural type ST with a finite linear space, i.e.: 

 
PORTST  [ptr1H … ptr2H]RT       (5.24) 

 
where ptr1H and ptr2H are the start and end addresses of the port space, and RT 
is the type of each of the port I/O interfaces. 

 
Examples of I/O CLMs may be referred to Section 4.7.2 and Example 

4.22. More rigorous description of computational type systems in general, 
and the type rules of RTPA in particular, will be presented in Section 5.3.3.   

 
 
5.3.2 BASIC DATA MODELING TECHNIQUES  
 

As identified in Section 5.2, the most fundamental computing models 
and data objects in computing is bits. Therefore, it is at the center of all 
fundamental computing techniques to focus how real-world entities and their 
relations are represented and modeled by a set of given data structures and 
construct rules in computing and programming. 

This subsection describes basic data modeling techniques for 
identifiers, variables, constants, expressions, memory models, and physical 
data objects. The modeling of advanced data structures, type theory, and 
abstract data types will be discussed in Sections 5.3.3 and 5.3.4.                                      
 
5.3.2.1 Identifiers  
 

Definition 5.23 An identifier ID is a logical name of a language entity 
or construct, which can be formally defined by a 7-tuple, i.e.: 

 
                                    ID  (N, T, D, V, L, S, A)                 (5.25) 

 
where the 7 attributes of an ID can be defined as follows: 
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     • N is a representative symbol or name of the ID. 
     • T is the type of the ID, T ∈ T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, 

ST, @eS, @tTM, @int ,ⓢsBL}, which is one of the 17 primitive 
types of RTPA according to Theorem 4.4.  

     • D is the domain of the ID, or the scope of its value. 
     • V is an instant value of the ID valid within the scope of values 

defined for the type.      
     • L is the physical location of the ID in the memory space M.  
     • S is the scope of life-span of the ID.  
      • A is the scope of accessibility or visibility of the ID.  

    
Identifiers may be used to represent variables, constants, procedures, 

classes, or program names at different levels in programming. Definition 
5.23 provides a comprehensive set of characteristics of an ID. Any ID in 
computing can be uniquely identified and allocated using Eq. 5.25. Important 
characteristics of IDs are described below. 

The type of identifiers, T, can be language provided, user defined, or 
one of the system types such as a program, a class, a procedure, or a CLM.  
 

Definition 5.24 Binding is a process that associates an attribute to an 
identifier. 
 

Bindings may be implemented either during execution or prior to 
execution of a statement with the identifier. The former are called dynamic 
binding, and the latter are called static binding. Static bindings are widely 
used to define new identifiers in imperative languages, where “the rule of 
declaration before use” is adopted. Dynamic bindings are used in 
assignments and dynamic memory allocations.  

The scope of an identifier C as specified in Definition 5.23 can be 
defined below. 
 

Definition 5.25 The scope of an identifier ID is a region in a program 
over which the binding between the ID and a given attribute is declared. 

 
The scope of an identifier can be temporary, local, global, or persistent 

as shown in Table 5.9. Most IDs possess a local scope, except those declared 
at the top-level of a program. The persistent identifiers or variables have a 
longer lifecycle than the program that created them. This type of identifier 
can be found in file systems, data bases, and communication systems where 
the identifiers and related data are stored in an external storage such as a hard 
disk rather than the internal memory.  
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   Table 5.9 
Classifications of Scope of Life-Span and Accessibility of Variables 

 

       Category Symbol Description Example 
Temporary SBCS SBCS = S (BCS)  A control variable of a loop 
Local Sl Sl = S (function)  An exclusive variable declared 

in a function or process  
Global Sg Sg = S (program) A shared variable declared in 

the top level of a program  

Scope of 
life-span 

 
(S) 

Persistent S∞ S∞ = ∞ A data entity in a database  

Public A0 By any class  Public: int i; 
Private A1 Within the same 

class  
Private: int i; 

Protected A2 Within the same 
and derived 
classes 

Protected: int i; 

Accessi- 
bility 

 
(A) 

Read-only A3 A constant Public: int pi const;  

 
 

Example 5.7 Table 5.10 characterizes three formally defined identifiers 
and their application examples in programming languages.   

 
Table 5.10 

Formal Definition of Identifiers 
 

Formal definition 
 

ID = (N, T, D, V, L, S, A)          

Dm Dl Du Language 
property and 

example 
ID1 =  
<i, N, 0≤ i<9, 0, MEM[i], SBCS, A1> 

[0, +∞] [0, 65,535] [0, 9] Variable 
int i  

ID2 =  
<pi, Z*, pi=3.14, 3.14, MEM[pi], Sg, A2> 

[-∞, +∞] [-32,768,  
32,767] 

3.14 Constant 
pi = 3.14 

ID3 =  
<FunctA, S, #S =6, ⊥, x00F2H, Sl, A3>   

[1, +∞] [1, 255] #S=6 Class 
class FunctA 

 
 
According to the formal definition and the illustrations of Table 5.10, 

identifiers using the same representation symbol would be treated differently 
when any of the other attributes is different except that of V. In other words, 
Eq. 5.25, i.e., ID = (N, T, D, V, L, S, A), essentially specifies a unique 

identifier in a program. 
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5.3.2.2 Variables and Constants  
 

Real-world entities and their attributes can be abstracted and identified 
by symbols or identifiers. If an identifier can be quantified by a fixed value in 
its given scope, it is a constant; otherwise, it is a variable. Therefore, the 
descriptions of variables and constants share the same basis as for identifiers 
developed in the previous subsections.                       
 

Definition 5.26 A variable v is an identifier that its set of value V is 
multiple and changeable within the given domain D of type T, i.e.:  

 

        v = IDv  
        = (N, T, D, V, L, S, A),   #V > 1        (5.26) 
 

A variable obtains or changes its value through the operation of 
assignments. 

 
Definition 5.27 An assignment is an operation in programming that 

transfers a value q to a variable x, when their types are the same or 
equivalent, denoted by: 

 
xT := qT          (5.27) 

        
where T is the type suffix. Note that q can be a number, constant, or the 
value of an expression. 
      

Definition 5.28 A constant c is an identifier that its set of value V is 
fixed with only one read-only value within the given domain D of type T*, 
i.e.:  

 
        c = IDc  

        = (N, T*, D, V, L, S, A),   #V ≡ 1        (5.28) 

where T* shows that type T is a constant type. 

 
Unlike a variable, a constant obtains its value through declaration 

rather than assignment, and the binding between a constant identifier and its 
value is fixed, which can not be changed by any operations. 

According to Definitions 5.28 and 5.23, constants as those of variables 
can be specified in various types. That is, there are numerical constants such 
as c1 = 1 (T= Z*) and c2 = 3.14159 (T = R*), as well as Boolean constants 
such as c3 = T (T = BL*) and c4 = F (T = BL*). Therefore, most of the types T 
as defined in Table 5.7 have a corresponding form for constants T* as given 
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in Table 5.11. This convention is an extension of existing type theory, which 
provides additional expressive power to model constants as special data 
objects in computing and software engineering. 

 
Table 5.11 

Types of Constants and Their Usages  
 

No. Primitive Type Syntax for 
Constants 

Usages 

1 Natural number N* 
2 Integer   Z* 
3 Real R* 

Numerical constants 

4 String  S* Reserved words 

5 Boolean BL* = {T, F} Boolean constants 

6 Byte   B* 
7 Hexadecimal H* 
8 Pointer P* 

Constant addresses 
of  memory and port 
locations  

9 Time TI* = hh:mm:ss:ms* 
10 Date   D* = yy:MM:dd* 
11 Date/Time DT* = yyyy:MM:dd: 

            hh:mm:ss:ms* 

Constant date/time 
 
(A generic 
abbreviation is:  
TM* = { TI*, D*, DT*}) 

12 Run-time 
determinable type 

– 
 

13 System 
architectural type 

– 
 

14 Event  – 
15 Timing – 
16 Interrupt – 
17 Status   – 

N/A 

 
5.3.2.3 Expressions  
 

In programming, an expression is a basic formula for building 
meaningful syntactic entities that may be used in evaluation of its semantic 
values.   
 

Definition 5.29 An expression exp is a relation between a set of 
operands (variables or constants) O = {o1, o2, …, on} that is formed by a set 
of operators R = {r1, r2, …, rm}, i.e.:  

 
   exp = O × R × O 

= {oi rk oj},  oi, oj ∈ O ∧ rk ∈ R      (5.29) 
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where R can be the arithmetical, logical, memory manipulation, or data 
manipulation operators.  

 
An expression can be classified as logical, ordinal, numerical, timing, 

and architectural, according to the type of its value in BL, N, R/Z/S/B/H/P, TM, 
and ST, respectively.           
 Expressions as a language building block will discussed in Section 6.3 
on formal language theory.    
  
 
5.3.3 FORMAL TYPE THEORY  

 
A type system specifies the data objects composing rules of a 

programming language as that of a grammar system which specifies the 
behavioral composing rules of the language. The basic properties of type 
systems are decidable, transparent, and enforceable [Martin-Lof, 1975; 
Cardelli and Wegner, 1985; Mitchell, 1990; Nordstrom et al., 1990; Cardelli, 
1997; Pierce, 2002]. Type systems should be decidable by a type checking 
system that can ensure that types of variables are both well-declared and 
referred. Type systems should be transparent that diagnose reasons for 
inconsistency between variables or variables and their declarations. Type 
systems should be enforceable in order to check type inconsistence as much 
as possible. 

           
5.3.3.1 Type Rules  
 

A type is a category of variables that share a common property such as 
kinds of data, domain, and allowable operations. A formal rule of types is a 
mathematical relation and constraint on a given type. Type rules are defined 
on the basis of a type environment.    
 

Definition 5.30 A type environment Θt is a collection of all primitive 
types in the given programming language or formal notation system, i.e.: 

 
   Θt = T  
        = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST, @eS, @tTM, @int , sBL} (5.30) 
 
where T is the set of primitive types defined in the given notation system, 
i.e., RTPA. 
 

The description of a type rule can be expressed by a formal statement 
called a judgment in Θt.  
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Definition 5.31 A judgment σ is an assertion A yielded in a given type 
environment Θt, denoted by: 
 
                                                  

tΘ σ A                                        (5.31) 
 
where it reads that Θt yields A, or A is declared in Θt .  
 

The forms of the assertions A vary from judgment to judgment, but all 
the variables of A must be declared in Θt. For example, the following 
assertions are valid judgments: 

 
    • T is declared as a type in Θ t:     

tΘ T              (5.32) 
 • ID is declared as a variable of type T in Θ t:  tΘ : ID  T     (5.33) 
 • D is declared as a signature S in Θ t:        

tΘ D S     (5.34) 
 
where Eq. 5.34 assigns a signature S to a declaration D, and S is essentially 
the type of a declaration such as ID : T. 

 
Definition 5.32 A type rule is an assertion of the validity of the 

conclusion of a judgment on a type 
tΘ A  based on the inference of a 

number of n premise judgments 
tΘ iA , 0 ≤ i ≤ n, denoted by the 

following convention:     
 
                           t t n

t

Θ Θ
Θ
1
,...,

=
A APremise(s)

Conclusion A
                  (5.35) 

 
where the conclusion holds iff all of the premises are satisfied.  
 

Definition 5.33 An empty environment is an axiom of reference rule 
that derives an empty judgment ◊, which is always valid with no premise, 
i.e.:  
 

         
tΘ ◊

         (5.36) 

 
or simply written without the horizontal line, i.e.: 

tΘ ◊ . 

 
Example 5.8 A type rule, Val(n), n = 1, 2, …, can be derived based on 

the variable judgment, i.e.:  
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t

t

Θ
Θ  : 

◊
N

Val(n)
n

                                    (5.37) 

 
where the rule asserts that the value of any numeral n is declared in the 
natural number type N, derived on the basis of an empty type environment.  

 
Example 5.9 The type rule of assignment, id := E, can be derived based 

on the signature judgment, i.e.:  
 
                           

  

t t

t

Θ : , Θ : 
Θ ( ) : 

RT RT
RT

id E
id := E

id := E
                    (5.38) 

 
where the rule asserts that an assignment is valid when the types in the both 
sides of the assignment are the same, and E is a constant, variable, or 
expression in the same type as that of id. 

 
5.3.3.2 Formal Type Systems 

 
Definition 5.34 A formal type system is a collection of all type rules in 

Θt for a given programming language or formal notation system. 
 

The essential part of the formal type system of RTPA can be 
summarized in Table 5.12, where all of the 17 primitive types are rigorously 
derived by valid judgments on the basis of type rules of RTPA in its type 
environment Θt.  

 
Similarly, the type systems of Pascal, Java, and IDL as shown in Figs. 

5.8 through 5.10 can be rigorously described in the same approach. The 
formal definitions of these type systems are reserved as exercises for readers 
at the end of this chapter.      

 
5.3.3.3 Complex Type Rules for the RTPA Derived Types 

 
Complex and derived types of RTPA can be described by composed 

type rules based on those of the primitive types. As described in Chapter 4, 
there are two basic system modeling techniques in RTPA known as the 
process and CLM. The type rules of both CLMs and processes can be 
derived below. 
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Table 5.12 
The Formal Type System of RTPA 

 

No Type Syntax Type Rule Description 
1 Natural number N t

t

Θ
Θ

◊
N

 A primitive 
type 

2 Integer  Z t

t

Θ
Θ

◊
Z

 Ditto 

3 Real R t

t

Θ
Θ

◊
R

 Ditto 

4 String  S t

t

Θ
Θ

◊
S

 Ditto 

5 Boolean BL t

t

Θ
Θ  

◊
B L

 Ditto 

6 Byte  B t

t

Θ
Θ

◊
B

 Ditto 

7 Hexadecimal H t

t

Θ
Θ

◊
H

 Ditto 

8 Pointer P t

t

Θ
Θ

◊
P

 Ditto 

9 Time TI = 
hh:mm:ss:ms 

t

t : : :

Θ
Θ

◊
h h m m ss m s

 Ditto 

10 Date   D = 
yy:MM:dd 
 

t

t : :

Θ
Θ

◊
y y M M dd

 Ditto 

11 Date/Time DT = 
yyyy:MM:dd: 
hh:mm:ss:ms 

t

t

Θ
Θ : : : : :

◊
yyyy MM dd hh mm ss

 

 

Ditto 

12 Run-time 
determinable type 

RT t

t

Θ
Θ

◊
R T

 RT ∈ {N, Z, R, 
S, BL, B, H, P, 
TI, D, DT} 

13 System 
architectural type 

ST t

t

Θ
Θ

◊
S T

 ST is a 
CLM 

14 Event  @eS t t

t

Θ @ Θ
Θ @  

 

, 

:

S
Se

 A system 
variable 

15 Timing   @tTM t t

t

Θ @ Θ
Θ @  

 

, 

:

T M 
T Mt

 A system 
Variable 

={ , , }TM TI   D DT  

16 Interrupt   @int  t t

t

Θ @ Θ
Θ @  

 

, 

:int

 A system 
variable 

17 Status   ⓢsBL t t

t

Θ Θ
Θ  

 , 

:

B L
B Ls

 A system 
variable 
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5.3.3.3.1 The Type Rules for CLMs in RTPA 
 

CLM is a generic type for modeling and manipulating data objects and 
system architectures. A CLM is an abstract or logical model of a system 
component such as an internal data object, an external hardware device, and 
an interface between the system and its environment.  
 

Definition 5.35 The type rule of a CLM type, CLM, is a complex 
system type ST in RTPA derived in Θt, i.e.: 
 

    
  

t

t

Θ
Θ  : 

ST
STCLM

           (5.39) 

 
The declaration of a variable, ClmID, with the CLM type can be 

denoted by using the following type rule: 
 
    

 

t t t t

n

 
t i i i ii=1

, , ,

 

Θ Θ Θ : Θ :

Θ ::{ < : | Constraint( )>;}R

ClmID ID

ClmID ClmID ID ID

ST T ST T

ST S T T

 (5.40) 

 
where the ClmIDST is defined by the string type label ClmIDS with an n-field 
record, each of them specifies a meta variable IDi in type Ti, and its 
constraints denoted by Constraint(IDiTi). 
                     

Example 5.10 On the basis of the CLM type rule, the declaration of a 
system clock as a CLM, SysClockST, is given in Fig. 5.12.  

 
 
 
 
 
 
 
 
 
 
Figure 5.12 Specification of the architecture of system clock in RTPA 
 

In Fig. 5.12, §tnN is the relative clock; and §thh:mm:ss:ms is the absolute 
clock. The system clock is driven by an external tick signal from port 
MainClockPortB at address 00F1H with an interval of 1ms. The 
ClockIntCounterN transfers every 1,000 pulses of ClockIntervalN to a second 
inorder to update §thh:mm:ss:ms. When it is needed, a long-range absolute 
SysClockST may be specified using §tyyyy:MM:dd:hh:mm:ss:ms. 

SysClockST  SysClockS :: 
                        {  <§tn : N |  0 ≤ §tnN ≤ 1M>; 
      || <§t : hh:mm:ss:ms  | 0:0:0:0 ≤ §thh:mm:ss:ms ≤ 23:59:59:99>; 

   || <MainClockPort : B | MainClockPortB  = 00F1H>;  
   || <ClockInterval : N | ClockIntervalN = 1ms>; 

          || <ClockIntCounter : N |  0 ≤ ClockIntCounterN ≤ 999>  
                      } 
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5.3.3.3.2 The Type Rules for Processes in RTPA 
 

A process in RTPA is a basic behavioral unit for modeling software 
system operations onto the data objects. A process can be a meta process or a 
complex process composed with multiple meta processes by the relational 
process operators. Because processes are so frequently used in system 
modeling, a derived type in RTPA known as the process type can be 
introduced as a special system type.            

        

Definition 5.36 The type rule of a process type, ProcST, is a complex 
system type ST in RTPA derived fromΘt, i.e.: 
 

  t

t

Θ

Θ  : 

ST
STPROC

        (5.41) 

 

The declaration of a variable, ProcID, with the process type can be 
denoted by using the following type rule: 

 

      
t

t

n m q

i i j j k ki=1 j=1 k=1
      

Θ :

Θ

(I::< >; O::< >; CLM::< >)R R RID ID ClmID

ST
ST S

T T ST

ProcID
ProcID ProcID

    (5.42) 

 

where the ProcIDST is defined by the string type label ProcIDS with a set of 
n inputs and a set of m outputs in a specific T type, as well as a set of q I/O 
constructs known as CLMs in a specific ST type.  

Examples of process declarations and specifications will be provided in 
Section 5.5.1. Formal semantics of processes of RTPA in deductive 
semantics will be discussed in Chapter 6. 

 
 

5.3.4 ABSTRACT DATA TYPES    
 

Studies in algebraic specifications of software systems lead to the 
development of the concept on abstract data types [Gaudel, 1991]. The 
concept of ADT is proposed in Guttag’s work [Guttag, 1975/77/02; Guttag 
and Horning, 1978]. More systematic description of ADTs may be found in 
Broy et al. (1984), Goguen (1978), and Louden (1993).          

It is noteworthy that an ADT is not simply a type or complex type for 
data object modeling, rather than a behavioral modeling technique in 
computing. Because the purpose of ADTs is for encapsulation of predefined 
operations with related data objects, the emphases of ADT modeling 
techniques have been put on operational behaviors rather than expressive and 
comprehensive characterization of architectural data objects. However, for 
explaining the whole picture of data object modeling techniques in 
computing, ADTs are introduced in this subsection. 
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5.3.4.1 The Generic Model of ADTs 
 
Definition 5.37 An Abstract Data Type (ADT) is a logical model of 

data objects, which defines both the logical architecture and valid operations 
of the data object, with the following schema: 

 

ADT_IDST  ADT_IDS :: 
                      (    Architecture          

                       || Static behaviors 
            || Dynamic behaviors 
                               )           (5.43) 
    

According to Definition 5.37, ADTs are abstract logical models of user 
defined data objects, where predefined operations on given data objects are a 
set of behavioral schemas (interfaces) rather than detailed implementations. 
Particular specifications of physical implementation of the ADT on different 
computer platforms are omitted. 

 
Example 5.11 An ADT of arithmetic operations on R, *, has been 

given in Example 4.12 in RTPA, i.e., * : R × R → R.   
 
According to Definition 5.37, the architecture of the ADT * can be 

modeled as * : R × R → R. The static behaviors of * are all allowable 
operations, i.e., + : R × R → R; - :  R × R → R; • :  R × R → R; and  ÷ : R × R → 
R. The dynamic behaviors of * are:  

 
  @opS: 

+ : +(R, R)R  
- :  -(R, R)R 
• :  •(R, R)R 
÷ : ÷(R, R)R, ∀r ∈ R, ÷ (r, 0)R → ε 

 
where @opS represents the run-time selection of specific operations, and ε 
denotes an error.                  

 
ADTs possess the following properties: 
 
     • An extension of type constructions by integrating both data 

structures and functional behaviors.                  

     • A hybrid data object modeling technique that encapsulates both 
user defined data structures (types) and allowable operations on 
them.  
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     • The interface and implementation of an ADT are separated. 
Detailed implementation of the ADT is hidden to applications that 
invoke the ADT and its predefined operations. In other words, 
applications may only access the ADT as an abstract object as 
seen by the interfaces of the ADT. 

 
It is noteworthy that a class in modern object-oriented programming 

[Stroustrup, 1986] can be perceived as an ADT with the properties of 
encapsulation, abstraction, inheritance, and polymorphism. 

 
5.3.4.2 Modeling Complex Data Structures and Component 
            Architectures by ADTs 
 

Kenneth C. Louden (1993) described another form of ADT algebraic 
specifications with the following schema: 

 
        ADTST  ADT_IDS :: 

                      (    architecture          
                       || operations 
            || variables 
      || axioms 
                               )           (5.44) 
 
where the architecture is a brief date structure of the ADT and detailed 
properties of the ADT are specified by the axioms, and the remaining two 
parallel components are predefined operations and variables that represent 
instantiations of the architecture. Comparing Eqs. 5.43 and 5.44, it can be 
seen that the dynamic aspect of the ADT is not specified in the latter 
approach.   

       
Example 5.12 A specification of a stack ADT according to Louden can 

be described as shown in Fig. 5.13.    
 
Fig. 5.13 specifies that the Stack is an ADT with the architecture of the 

stack in type ST consisting of a set of element in type RT, where the specific 
type of RT will be instantiated during run-time. Predefined operations of the 
stack ADT, such as create, push, pop, and empty, are given in the operation 
section for the schemes, and in the axiom section for the instances. The Last-
In First-Out (LIFO) behavior of the Stack is specified with additional 
information provided in the axioms of the Stack. Note that the architecture or 
data structure of the ADT is usually informally described in this approach, 
and the creation of the Stack is not well defined. 
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Figure 5.13 A stack ADT   

 
The operations specified in an ADT are a set of functions, which may 

be classified in the following categories: 
 

     • Constructor: An operation that its codomain is the type of the 
ADT.       

     • Inspector: An operation that its codomain is different from the 
type of the ADT. Inspectors can be either predicates that result in 
a Boolean output or selectors that result in a non-Boolean output.    

     • Destructor: An operation that its codomain is a subset of the type 
of the ADT.  
 

According to the above classification, the create and push operations of 
the stack in Example 5.12 are constructors, pop is a destructor, and empty is 
an inspector or more specifically a predicate.   

 
5.3.4.3 Typical ADTs Modeled in RTPA  
 

An ADT in RTPA is described as a logical model of derived data 
objects that possesses predefined operations on the logical model. Unlike the 
conventional approaches to ADT specifications that treat ADTs as static data 
types, ADTs are treated as dynamic entities in RTPA, which have both 
architectures and behaviors to server as both structural and operational 
models.  

A set of 11 ADTs, which models typical and frequently used complex 
data objects in data structural and system architectural modeling, has been 

ADT Stack (element : RT) : ST  
 
operations: 
      create:   → stack 
 push:   stack × element → stack 
 pop:   stack  → element 
 empty:   stack  → Boolean  
 
variables: 
 s: stack;  
  e: element    
 
axioms: 
 create (s) = s 

push (s, e) = e s  
pop (create (s)) = error 
pop (push (s, e)) = e 
empty (create (s)) = T 
empty (push (s, e)) = F 
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predefined in RTPA as shown in Table 5.13. The ADTs, which are 
developed recursively by using the RTPA notation and primitive types, are a 
coherent part of the RTPA notation system. Users may use the ADTs and 
their designed behaviors in system specifications as those of the primitive 
types by directly invoking their structures and related operations.               

 
Table 5.13 

Abstract Data Types Defined in RTPA 
 

No. ADT Syntax Designed Behaviors 

1 Stack  Stack  :  ST StackST.{Create, Push, Pop, Clear, EmptyTest, 
FullTest, Release} 

2 Record 
  

Record  :  ST RecordST.{Create, fieldUpdate, Update, FieldRetrieve, 
Retrieve, Release} 

3 Array  Array :  ST ArrayST.{Create, Enqueue, Serve, Clear, EmptyTest, 
FullTest, Release} 

4 Queue 
(FIFO)  

Queue :  ST QueueST.{Create, Enqueue, Serve, Clear, EmptTest, 
FullTest, Release} 

5 Sequence Sequence :  ST SequenceST.{Create, Retrieve, Append, Clear, 
EmptyTest, FullTest, Release} 

6 List 
 
  

List :  ST ListST.{Create, FindNext, FindPrior, Findith, FindKey, 
Retrieve, Update, InsertAfter, InsertBefore, Delete, 
CurrentPos, FullTest, EmptyTest, SizeTest, Clear, 
Release} 

7 Set   Set :  ST SetST.{Create, Assign, In, Intersection, Union, 
Difference, Equal, Subset, Release} 

8 File 
(Sequential)  

SeqFile :  ST SeqFileST.{Create, Reset, Read, Append, Clear, 
EndTest, Release} 

9 File  
(Random) 

RandFile :  ST RandFileST.{Create, Reset, Read, Write, Clear, 
EndTest, Release} 

10 Binary Tree
  
  

BTree :  ST BTreeST.{Create, Traverse, Insert, DeleteSub, Update, 
Retrieve, Find, Characteristics, EmptyTest, Clear, 
Release} 

11 DiGraph
   
 
 
 
 

DiGraph :  ST DiGraph ST.{Create(G), Search(G), GetSize(G), 
ClearGraph(G), Release(G), InsertNode(u), 
DeleteNode(u), InsertEdge(u, v), DeleteEdge(u, v), 
RetrieveNode(u), UpdateNode(u), FindNode(u), 
FindEdge(u, v), CurrentNode, CurrentEdge, 
GetNumberOfEdges(u), FindNeighbors(u), FanIn(u), 
FanOut(u), Degree(u)} 

 
In the RTPA specifications of the ADTs, three related perspectives of 

ADTs are described: the architecture, static behaviors, and dynamic 
behaviors as modeled in Definition 5.37. With the RTPA specification and 
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refinement method, the features of ADTs as both static data types and 
dynamic behavioral objects or components can be specified formally and 
precisely. 
 

Example 5.13 A stack ADT specified in RTPA is as shown in Fig. 
5.14. 

 

StackST    StackST.Architecture  
                   || StackST.StaticBehaviors 
                   || StackST.DynamicBehaviors        (5.45) 

 
The architecture of the StackST is specified by RTPA as shown in Eq. 

5.12, where both the architectural CLM and an access model are provided for 
the StackST. 

 

 

Figure 5.14 The architecture of the stack ADT  
 

In Fig. 5.14, the access model of the StackST is a logic model for 
supporting external invoking of the StackST in operations, such as push and 
pop. The other parts of the model are designed for internal manipulations of 
the StackST, such as creation, memory allocation, and release. 
        System static behaviors in RTPA describe the configuration of 
processes of the StackST and their relations. The schemas of the seven static 
behaviors of the StackST are specified as follows. 

 
Figure 5.15 The static behaviors of the stack ADT  

StackST.Architecture   CLM : ST 
    || AccessModel : ST 
    || Events : S 
    || Status : BL 

 

StackST.Architecture.CLM  StackIDS ::   
                                                 ( <Element : RT>,                      
                                <Size : N  | SizeN  ≥ 0>, 
                                                    <CurrentPos : P | 0 ≤ CurrentPosP ≤ SizeN-1> 
                                                 )   
                                        

StackST.Architecture.AccessModel  StackIDS(CurrentPosP)RT   

StackST.StaticBehaviors   
                        Stack.Create (<I ::  StackInstS, SizeInstN, ElementInstRT>; 
     <O::  ⓢStackID.AllocatedBL, ⓢStackID.ExistBL>)           
  | Stack.Push (<I ::  StackInstS, ElementInstRT>; <O:: ⓢStackID.PushedBL>) 
  | Stack.Pop (<I :: StackInstS>; <O:: ⓢStackID.PoppedBL, ElementRT>) 
  | Stack.Clear (<I ::  StackInstS>; <O:: ⓢStackID.ClearedBL>) 
  | Stack.EmptyTest (<I ::  StackInstS>; <O:: ⓢStackID.EmptyBL>) 
  | Stack.FullTest (<I ::  StackInstS>;  <O:: ⓢStackID.FullBL>) 
  | Stack.Release (<I ::   StackInstS>;  <O:: ⓢStackID.ReleasedBL>) 
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The refinement of detailed specifications of two static behaviors of 
Stack, Stack.push and Stack.pop, is given in Fig. 5.16. 

 

 
Figure 5.16 The specification of detailed behaviors of the stack ADT  
   

According to the RTPA system modeling and refinement scheme as 
described in Section 4.7, the specifications of system static behaviors are 
only functional components of the system. To put the components into a live, 

Stack.PushST (<I::  <StackInstS, ElementInstRT>; <O::  ⓢStackID.PushedBL>)  
  {   

< StackIDS, ElementRT> := < StackInstS, ElementInstRT> 
→ (  ⓢStackID.ExistBL = T    

   →  (   (CurrentPosP^ < SizeN-1) 
 → ↑ (CurrentPosP^) 
 → ElementRT ⋖  StackIDS(CurrentPosP^)RT  

 → ⓢStackID.PushedBL := T 
                 |  ~  

     → ⓢStackID.PushedBL := F  
   → ! (@’StackID.Full’) 

                         )    
       |  ~  

  → ⓢStackID.PushedBL := F  
→ ! (@’StackID.ExistBL = F’)  

                ) 
  } 
 

Stack.PopST (<I:: StackInstS>; <O:: <ⓢStackID.PoppedBL, ElementRT>)  
  {   

StackIDS := StackInstS  
→ (  ⓢStackID.ExistBL = T   

→ (  (CurrentPosP^ > 0)     
→ StackIDS(CurrentPosP^)RT ⋗ ElementRT  
→ ↓ (CurrentPosP^)  
→ ⓢStackID.PoppedBL := T  

        |  ~  

   → ⓢStackID.PoppedBL := F 
→ ! (@’StackID.Empty’) 

        ) 
|  ~ 

  → ⓢStackID.PoppedBL := F  
→ ! (@’StackID.ExistBL = F’)  

                ) 
    } 
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coherent, and real-time system, the dynamic behaviors of the system, in 
terms of process deployment and dispatch, are yet to be specified. The 
dynamic behaviors of the StackST can be specified below in RTPA. 
 

  
Figure 5.17 The dynamic behaviors of the stack ADT  
 

The process dispatch mechanism of the StackST as defined in Fig. 5.17 
specifies detailed dynamic process relations at run-time by a set of event-
driven relations. 

On the basis of the above example, it is demonstrated that the important 
architectural and dynamic features of ADTs can be described by RTPA, 
including dynamic memory allocation, event and timing manipulation, 
exception detection, etc., which are hardly dealt with in other approaches to 
ADT specifications.  

These 11 typical ADTs have also been used for the construction of the 
RTPA type library, which enables the ADTs to be reused in real-time system 
and non real-time specifications via RTPA [2002a].  
 
 

 
5.4 Behavioral Modeling and 
        Manipulation 
 

 
Behaviors of programs and software systems are observable computing 
processes and operation consequences on the data objects modeled in the 
computing environment. On the basis of the discussions on data objects 

StackST.DynamicBehaviors  
  { (  @CreateStack ↘ Stack.Create (<I::  StackInstS, SizeInstN, ElementInstRT>; 
        <O::  ⓢStackID.AllocatedBL, ⓢStackID.ExistBL>) 
      | @Push  ↘ Stack.Push (<I::  StackInstS, ElementInstRT>; 
      <O::  ⓢStackID.PushedBL>) 
      | @Pop  ↘ Stack.Pop (<I ::  StackInstS>;  
                                                        <O::  ⓢStackID.PoppedBL, ElementRT>) 

      | @Clear   ↘ Stack.Clear (<I:: StackInstS>;  <O:: ⓢStackID.ClearedBL>) 

      | @StackEmpty  ↘ Stack.EmptyTest (<I:: StackInstS>; <O:: ⓢStackID.EmptyBL>) 

      | @StackFull ↘ Stack.FullTest (<I::  StackInstS>;  <O:: ⓢStackID.FullBL>) 

      | @ReleaseStack  ↘ Stack.Release (<I:: StackInstS>;  <O:: ⓢStackID.ReleasedBL>) 
     ) → ⊗ 
  } 
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modeling and manipulation in the preceding section, this section describes 
how internal and interactive behaviors embodied on data objects in 
computing may be formally modeled and manipulated. 
 Built upon the VNA machines as described in Section 5.2.4, 
fundamental computing behaviors modeled by various instruction sets of 
computers can be classified into eight categories, such as data manipulations, 
arithmetical operations, logical operations, bitwise operations, program 
controls, memory manipulations, I/O manipulations, and interrupt and time 
manipulations, as shown in Table 5.14.            
 

Table 5.14 
Taxonomy of Fundamental Instructions in Computing  

 

No Category of Behaviors Description 
1 Data manipulation Move {(r, r) | (r, m) | (m, r) | (m, m)},  

write (r, m), and read (m, r) 
where  r - registers and m – memory. 

2 Arithmetic +, −, ∗, / 
3 Logic ∧, ∨, ⊕, ¬  
4 Bitwise operations Bit manipulations, logical shift, arithmetic shift, 

rotate, rotate through the carry flag  
5 

Internal 
behaviors 

Program controls Operation flags: carry, sign, overflow, parity    
Evaluations: Boolean, cardinal, numeric  
Comparisons: =, ≠, >, <, ≥, ≤ 
Flow control: call, return, jump, skip, stop  

6 Memory 
manipulations  

Memory addressing, allocation, release, initialization, 
data-block transformation/comparison, dynamic 
management    

7 I/O manipulations  Input, output, I/O space manipulations 
8 

External 
behaviors 

Interrupt and time 
manipulations 

Interrupt capture, return, and mask, event processing, 
timing    

 
The eight categories of fundamental computing behaviors defined on 

abstract data objects can be grouped into internal and external (interactive) 
behaviors [Mandrioli and Ghezzi, 1987]. Sections 5.4.1 and 5.4.2 will focus 
on the modeling and manipulation of internal behaviors. The modeling of 
external and interactive behaviors will be discussed in Section 5.4.3.         
 
 
5.4.1 INTERNAL BEHAVIORS MODELING 
 

Definition 5.38 The internal behaviors of a software system are 
computing operations and processes implemented on internal data objects 
contained in registers, cache, and the stack.  
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As shown in Table 5.14, the internal behaviors encompass those of data 
manipulation, arithmetic, logic, bitwise, and program controls. Because the 
first four categories of behaviors are intuitive, this subsection will put 
emphases on the program control mechanisms in computing and software 
engineering.     

 
5.4.1.1 Basic Control Structures (BCS’s) 
 

Definition 5.39 Basic Control Structures (BCS’s) are a set of essential 
flow control mechanisms that are used for constructing logical architectures 
of software systems.  

 
The most commonly identified BCS’s in computing and program 

languages are known as the sequential, branch, iterations, recursion, 
function call, parallel, and interrupt structures as shown in Table 5.15. These 
BCS’s provide important compositional rules for programming. Based on 
them, complex computing functions and processes can be composed.    

According to Table 4.9, it can be seen that the 10 BCS’s identified in 
Table 5.15 are a subset of process relations R as defined in RTPA, i.e.:    
 

        BCS = {→, |, |…|…, 
*R , R+

,
iR , , , || ( ∯ ), } 

            ⊆ R                (5.46) 
 
where R has been formally specified in Theorem 4.7 and explained in 
Sections 4.6.5, 6.6.2, and 6.6.3.  
 
5.4.1.2 Control Flow Graphs 
 

BCS’s, or more general the RTPA process relations, model the 
fundamental flow control mechanisms and program composing rules in 
computing. To abstract the entire control structure of a program, the 
technique of control flow graph, which is a combinational representation of 
the digraph models of BCS’s as modeled in Table 5.15, may be applied. 
 

Definition 5.40 A Control Flow Graph (CFG) is a directed graph 
(digraph) model of program control structure, where a block of sequential 
instructions is abstractly represented by an edge, a branch BCS is denoted by 
two fan-out edges, and an iteration BCS is represented by a branch and 
sequential BCS’s.          
 
 Example 5.14 A program, MaxFinder, is formally described in RTPA 
as shown in Fig. 5.18. Its function is to find the maximum number maxN from 
a set of n inputted integers {X[1]N, X[2]N, …, X[n]N}. 
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Table 5.15 
BCS’s and their Mathematical Models 

 
 

Category BCS Notation Structural 
model 

RTPA model 

Sequence Sequence 
 

→     

 

P → Q 

Branch  
 

| 

 

    

 

  expBL = T → P 

| ~ → Q 

Branch 

Switch | 
… 
| 

 

    
 
       … 

 

   expT = 
  i → Pi 
| ~ →  

  where T ∈ {N, Z, B, S} 

While-
loop 
 

*R  

 

    
 
 
  

 
exp =
R

F

BL T
P 

Repeat-
loop 
 

R +
  

    
 
 
  

 

P →
exp =
R

F

BL T
P 

Iteration 

For-loop 
 

iR  

 

    
 
 
  

 1

n

i
R
=

N

N
P(iM) 

Function 
Call 

 

   

    
 
 
  

 

P  F Embedded 
component  

Recursion  
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MaxFinderST ({I:: X[1]N, X[2] N, …, X[n] N }; {O:: max N })  
{ 
    Xmax N := 0                                          // 1 

     → 
n  

i 0 
R

N

N=
(                                                 // 2 

                     X[i N] N > Xmax N                        // 3 
                        → Xmax N := X[i N] N           // 4 
                  )            // 5 
     → max N := Xmax N             // 6 
} 

 
 
Figure 5.18 Formal description of the MaxFinder program 
 
 The corresponding CFG of this program is shown in Fig. 5.19, where 
the  number  label  on  a  node  refers  to  the  instruction  number  marked  in 
Fig. 5.18.        
               

 

Figure 5.19 The CFG of the program MaxFinder 
 
 When a program is abstracted by a CFG, i.e., a problem is reduced to a 
digraph, well-defined graph theory can be used to analyze its properties and 
complexities. Examples will be given in Section 10.7.2.    
 
 
5.4.2 ITERATIVE AND RECURSIVE BEHAVIORS 
         MODELING  
 

As modeled in Table 5.15, the interactive and recursive behaviors are 
an important part of the internal behaviors in computing. Iterative and 

   4 

   2 

   6 

   3 

   5 

   1 
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recursive control structures are the most fundamental mechanisms of 
computing, because they make programming more effective and expressive. 
However, iteration constructs are perhaps the most diverse and confusable 
instructions in programming languages at both syntactic and semantic levels. 
Although a wide variety of notations have been proposed for describing 
iterations, there is still a lack of a unified mathematical notation that may be 
used to express the notion of repetitive, recursive, and predicative behaviors 
and architectures in computing.  

When analyzing the syntactic and semantic problems inherent in 
iterations in programming, B.L. Meek concluded that: “There are some who 
argue that this demonstrates that the procedural approach to programming 
languages must be inadequate and fatally flawed, and that coping with 
something so fundamental as looping must therefore entail looking at 
computation in a different way rather than trying to devise better procedural 
syntax. There are others who would argue the possible applications of 
looping so it cannot simply be removed or obviated. As ever it is probably 
this last argument that will hold sway until (or unless) someone proves them 
wrong, whether with a brilliant stroke of procedural syntactic genius, or an 
effective and comprehensive new approach to the whole area [Meek, 1991].” 

This section adopts the big-R notation [Wang, 2002a/06f] as developed 
in Section 4.5.3 as a unified mathematical means for representing and 
modeling iterations and recursions in computing. Based on the big-R 
notation, fundamental properties of iterative and recursive behaviors of 
software systems are comparatively analyzed. 

 
5.4.2.1 Formal Description of Iterations 
 

The importance of iterations in computing is rooted in the basic need 
for effectively describing recurrent and repetitive software behaviors and 
system architectures. However, unlike the high commonality in branch 
structures among programming languages, the syntaxes of loops are far more 
than unified. There is even a lack of common semantics of all forms of loops 
in modern programming languages.  

 
Based on the inductive property of iterations, the big-R notation as 

defined in Eq. 4.59 is found to be a convenient means to describe all types of 
iterations including the while-, repeat-, and for-loops. 
 

Definition 5.41 The while loop *R  is an iterative construct in which a 
process P is executed repeatedly as long as the conditional expression expBL 
is true, i.e.: 

                                 

© 2008 by Taylor & Francis Group, LLC



Chapter 5 Computing Foundations of SE   337 

               *R P 
exp =
R

F

BL T
P     

            = γ • (   expBL = T 
              → P  
                γ    

            |  ~     
               → ⊗ 
         )             (5.47) 

 
where  denotes a jump to a given label γ, ⊗ denotes the exit of the loop,  
and * denotes an iteration for 0 to n times, n ≥ 0. That is, P may not be 
iterated in the while-loop at run-time if expBL = F at the very beginning.  
 

According to Eq. 5.47, the semantics of the while-loop can be reduced 
to a series of repetitive conditional operations where the branch “? ~ → ∅” 
denotes an exit of the loop when expBL ≠ T. Note that the update of the 
control expression expBL is not necessarily to be explicitly specified inside 
the body of the loop. In other words, the termination of the while-loop, or the 
change of expBL, can either be a result of internal effect of P or that of other 
external events.    
 

Definition 5.42 The repeat loop +R is an iterative construct in which a 
process P is executed repetitively for at least once until the conditional 
expression expBL = F, i.e.: 

                                 

           
+R P  P → *R P 

                  = P →
exp =
R

F

BL T
P     

     = P → γ • (  expBL = T 
          → P 
            γ    

       |  ~ 
          → ⊗ 

                         )                           (5.48) 
 
where + denotes an iteration for 1 to n times, n ≥ 1. That is, P will be 
executed at least once in the repeat loop until expBL ≠ T. 
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According to Eq. 5.48, the semantics of the repeat-loop is deduced to a 
single sequential operation of P plus a serial of repetitive conditional 
operations whenever expBL = T. Or simply, the semantics of the repeat-loop is 
equivalent to a single sequential operation of P plus a while-loop of P.    

In both Eqs. 5.47 and 5.48, the loop control variable expBL is in the type 
Boolean. When a loop control variable i as an index is adopted in a numeric 
type, say in type N with known lower bound n1N and upper bounds n2N, then a 
special variation of iteration, the for loop, can be derived below.          
 

Definition 5.43 The for loop iR is an iterative construct in which a 
process P indexed by an identification variable iN, P(iN), is executed 
repeatedly in the scope n1N ≤ iN ≤ n2N, i.e.: 
 

         
iR P(iN) 

2

1

n

i =n
R

N

N N
P(iN)          

                                = iN := n1N 
                   → γ • (  iN ≤ n2N 

                         → P(iN) 
                            → ↑(iN) 
                      γ    

                    |  ~     
                   → ⊗ 
                 )    

                                = iN := n1N 
 → expBL = iN ≤ n2N  

                    →
exp =
R

F

BL T
( P(iN) 

                                 → ↑(iN) 
                             )              (5.49) 

 
where iN denotes the loop control variable, and ↑(iN) increases iN by one. 
 

According to Eq. 5.49, the semantics of the for loop is a special case of 
while-loops where the loop control expression is expBL = iN ≤ n2N, and the 
update of the control variable iN must be explicitly specified inside the body 
of the loop. In other words, the termination of the for-loop is internally 
controlled.   

 
Based on Definition 5.42, the most simple for loop that iteratively 

executes P(iN) for k times, 1 ≤ i ≤ k, can be derived as follows: 
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iR  P(iN) 

k

i =1
R
N

P(iN)                   (5.50) 

 
It is noteworthy that a general assumption in Eqs. 5.49 and 5.50 is that i 

is a natural number and the iteration step ∆iN = +1. In a more generic 
situation, i may be an arbitrary integer Z or in other numerical types, and ∆iZ ≠ 
+1. In this case, the lower bound of a for-loop can be described as an 
expression, or the incremental step ∆iZ  can be explicitly expressed inside the 
body of the loop, e.g.: 
 

          
iR  P(iZ)  

-10

i =0
R
z

( P(iZ)        

                      → iZ := iZ – ∆iZ   
                       )                             (5.51) 

 
where ∆iZ  ≥ 1. 
 
5.4.2.2 Formal Description of Recursions 
 

Recursion is a powerful tool in mathematics for a neat treatment of 
complex problems following a fundamental deduction-then-induction 
approach. Gödel, Herbrand, and Kleene developed the theory of recursive 
functions using an equational calculus in the 1930s [Kleene, 1952; 
McDermid, 1991]. More recent work on recursions in programming may be 
found in [Peter, 1967; Hermes, 1969; Hoare, 1985; Wilson and Clark, 1988]. 
The idea is to construct a class of effectively computable functions from a 
collection of base functions using fundamental techniques such as function 
composition and inductive referencing.      
 
5.4.2.2.1 Properties of Recursions 
 

Recursion is an operation that a process or function calls or refers to 
itself. 

 
Definition 5.44 A recursion of process P can be defined by 

mathematical induction, i.e.: 
 

F0(P) = P, 
F1(P) = F(F0(P)) = F(P), 
… 
Fn+1(P) = F(Fn(P)),  n ≥ 0         (5.52) 
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A recursive process should be terminable or noncircular, i.e., the depth 
of recursive dr must be finite. The following theorem guarantees that dr < ∞ 
for a given recursive process or function [Lipschutz and Lipson, 1997].     

           

           
Example 5.15 The factorial function can be recursively defined as 

shown in Eq. 5.53. 
 

           (nN)!  {            

                      nN = 0  
                              → (nN)! := 1                
                    |  ~     

           → (nN)! := nN • (nN-1)!    
           }            (5.53) 

 
Example 5.16 A C++ implementation of the factorial algorithm as 

given in Example 5.15 is provided below. 
 

 int factorial (int n) 
      {  

       int factor; 
       if (n==0) 
               factor = 1; 

         else factor = n * factorial(n-1); 
     return factor;       

      }                     (5.54) 
 

In addition to the usage of recursion for efficiently modeling repetitive 
behaviors of systems as above, it has also been found useful in modeling 
many fundamental language properties.  
 

Example 5.17 Assume the following letters are used to represent the 
corresponding syntactic entities in the angler brackets:  

 

Corollary 5.4 A recursive function is noncircular, i.e., dr < ∞, iff: 
 

   a) A base value exists for certain arguments for which the 
function does not refer to itself; 

   b) In each recursion, the argument of the function must be closer 
to the base value.          
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P <program>, 
L <statement list>,  
S <statement>,  
E <expression>,  
I <identifier>,  
A <letter>,  
N <number>, and  
D <digit> 

 
The abstract syntax of grammar rules for a simple programming 

language may be recursively specified in BNF (see Section 6.3.6) as follows. 
 

  E ::=  E ‘+’ E  
             | E ‘-‘ E  
             | E ‘*’ E  
             | ‘(‘ E ‘)’  
             | I  
             | N 
       I ::= I A | A 
       A ::= ‘a’ | ‘b’ | … | ‘z' 
       N ::= N D | D 
       D ::= ‘0’ | ‘1’ | … | ‘9’             (5.55) 

 
In Eq. 5.55 expression E is recursively defined by operations on E 

itself, an identifier I, or a number N. Further, I is recursively defined by itself 
and/or letter A; and N is recursively defined as itself and/or digit D. Since any 
form of E as specified above can be eventually deduced on terminal letters 
(‘a’, ‘b’, …, ‘z’), and digits (‘0’, ‘1’, …, ‘9’), or predefined operations (‘+’, 
‘-‘, ‘*’, ‘(‘, ’)’), the BNF specification of E as shown in Eq. 5.55 is called 
well defined.                   
 
5.4.2.2.2 The Mathematical Model of Recursions 
 

Definition 5.45 Recursion is an embedded process relation in which a 
process P calls itself. The recursive process relation can be denoted as 
follows: 

 

     P ↺ P                  (5.56) 
 

The mechanism of recursion is a series of embedding (deductive, 
denoted by ↺ ) and de-embedding (inductive, denoted by ↻ ) processes. In 
the first phase of embedding, a given layer of nested process is deduced to a 
lower layer till it is embodied to a known value. In the second phase of de-
embedding, the value of a higher layer process is induced by the lower layer 
starting from the base layer, where its value has already been known at the 
end of the embedding phase.      
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Recursion processes are frequently used in programming to simplify 
system structures and to specify neat and provable system functions. It is 
particularly useful when an infinite or run-time determinable specification 
has to be clearly expressed. 

Instead of using self-calling in recursions, a more generic form of 
embedded construct that enables inter-process calls is known as the function 
call, P  Q, as defined in RTPA, where the called process Q can be 
regarded as an embedded part of process P. 

Using the big-R notation, a recursion can be defined formally as 
follows. 

Definition 5.46 Recursion R Pi is a multi-layered embedded process 
relation in which a process P at layer i of embedment, Pi, calls itself at an 
inner layer i-1, Pi-1, 0 ≤ i ≤ n. The termination of Pi depends on the 
termination of Pi-1 during its execution, i.e.: 
 

                  R Pi  
0

i =n
R
N N

(    iN > 0 

                         → PiN := PiN-1 
                         |  ~     

                         → P0  
                    )          (5.57) 

 
where n is the depth of recursion or embedment that is determined by an 
explicitly specified conditional expression expBL = T inside the body of P.     
 

Example 5.18 Using the big-R notation, the recursive description of the 
algorithm provided in Example 5.15 can be improved as follows:  
 

          (nN)! R (nN) ! 

         = 
0

i =n
R
N N

 (   iN > 0 

             → (iN)! := iN • (iN-1)! 
           |  ~     
             → (iN)! := 1 

  )                (5.58) 
 
5.4.2.3 Comparative Analysis of Iterations and Recursions 
 

In the literature, iterations were often mixed with recursions, or an 
iteration was perceived as a special type of recursion. Although, both 
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iteration 
iR P(i) and recursion R Pi are repetitive and cyclic constructs 

in computing, the fundamental differences between their traces of execution 
at run-time are that the former is a linear structure, i.e.: 
 

          
iR P(i) = P1 → P2 → … → Pn              (5.59) 

 
However, the latter is an embedded structure, i.e.: 
 

          
R Pi = Pn ↺Pn-1 ↺…↺P1 ↺P0  ↻P1 ↻…↻Pn-1 ↻Pn    

 (5.60) 
 

The generic forms of iterative and recursive constructs and their trace 
models in computing can be contrasted as illustrated in Figs. 5.20 and 5.21 as 
follows.  
 

   

 

        …                                                           P          

 

 
            …                                            P1

 
 
 
            …                                            P2 
 

                      

             . . . 
         
 
            …                                             Pn 
       

             . . .  

 
 
Figure 5.20 The linear architecture of iterations  
 

 
        …                                                    Pn

            

 

 
            …                                           Pn-1

 
 
 
            ... 
                                           
                 P0

 

 

                      

                      … 

                 … 

 

            … 

 
  

Figure 5.21 The nested architecture of recursions  
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It is noteworthy that there is always a pair of counterpart solutions for a 
given repetitive and cyclic problem with either the recursive or iteration 
approach. For instance, the corresponding iterative version of Example 5.15 
can be described below.  
 

Example 5.19 Applying the big-R notation, the iterative description of 
the algorithm as provided in Example 5.15 is shown below.  
 

   (nN)!  {            
                     factorialN := 1  

                        → 
n

i =1
R

N

N
( factorialN := iN • factorialN) 

→ (nN)! := factorialN    
           }                    (5.61) 

 
It is interesting to compare both formal algorithms of factorial with 

recursion and iteration as shown in Eqs. 5.58 and 5.61, respectively.      
 

Example 5.20 On the basis of Example 5.19, an iterative 
implementation of Example 5.15 in C++ can be developed as follows. 
  

 int factorial (int n) 
      { 

           int factor = 1; 
for (int i = 1; i <= n ; i++) 

                     factor = i * factor; 
return factor;       

           }                     (5.62) 
 

The above examples show the difference between the recursive and 
iterative techniques for implementing the same algorithm for repetitive and 
cyclic computation. Contrasting Examples 5.18 and 5.19, or Examples 5.16 
and 5.20, it can be seen that the recursive solution for a given problem is 
usually more expressive, but less efficient in implementation in terms of time 
and space complexity, than its iterative counterpart. As Peter Deutsch, the 
creator of the GhostScript interpreter, put it: “To iterate is human, to recurse 
divine.”   

The efficient treatment of repetitive and recurrent behaviors and 
architectures has been recognized as one of the most premier needs in 
computing. Case studies on the applications of the big-R notation as 
introduced in Section 4.5.3 in denoting iterative and recursive computing 
behaviors demonstrated in this subsection show that a convenient notation 
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may dramatically reduce the difficulty and complexity in expressing the most 
frequently used and highly recurring concept and notion in computing.    

 
    

5.4.3 EXTERNAL AND INTERACTIVE BEHAVIORS 
         MODELING 
            

Definition 5.47 The external behaviors of a software system are 
interactive computing operations and processes implemented on external data 
objects modeled in the memory and I/O space that represent the system 
architectural model and environment.  

 
As shown in Table 5.14, interactive behaviors modeling in computing 

encompass memory manipulation, external interface (I/O) manipulation, 
operating event handling, timing event handling, interrupt handling, and 
exception handling.     

 
5.4.3.1 Memory Manipulations 
 

Memory manipulations are the most frequently used techniques of 
interactive behavioral modeling in computing, which deal with memory I/O 
operations on the system memory model MEMST  [addr1H … addr2H]RT as 
given in Definition 5.21.  

Typical memory manipulation behaviors are memory allocation, 
memory release, read, and write, as modeled in RTPA meta processes (Table 
4.8). 

       
5.4.3.1.1 Modes of Addressing 
 

As formally described in Definition 4.71, addressing is a function π: 
idT → ptrÞP that maps a given logical idT into the physical memory block 
identified by ptrÞP in MEM[ptrP, ptrP+n-1]T, and T ∈ {P, H, N, Z}.   

Addressing is one of the most important and special operations in 
computing, which is used to find the physical address of a logical data object 
represented by an identifier in the memory space. Addressing techniques can 
be classified as absolute and relative, where the letter can be further divided 
into direct and indirect addressing dependent on whether an address is 
directly provided or indirectly inferred. Typical addressing modes in 
computing can be summarized in Table 5.16, where a formula describes how 
a memory address in hexadecimal, addrH, can be obtained based on available 
information in registers and offsets.                          
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Table 5.16 
Typical Addressing Modes in Computing  

 

No. Category Mode  Description 
 Absolute  [addrH = dataH] 
1  Immediate addrH = PhysicalAddressH  
 Relative  [addrH = expH] 
2    - Direct Register addrH = RegisterH 
3  Offset addrH = RegisterH + offsetH 
4  Index addrH = RegisterH + IndexH 
5  Base addrH = BseRegH + offsetH 
6  Segment addrH = SegRegH + offsetH 
7    - Indirect Register addrH = (RegisterH)H 
8  Offset addrH = (RegisterH)H + offsetH 
9  Index addrH = (RegisterH)H + IndexH 
10  Base addrH = (BaseRegH)H + offsetH 
11  Segment addrH = (SegRegH)H + offsetH 

 

In high-level programming languages, addressing is usually relative 
and logical. That is, the address of a given data object is referred to as a 
logical location rather than an absolute memory address. However, in many 
situations in computing, such as system specification, architectural modeling, 
real-time system development, dynamic memory manipulation, and operating 
system development, physical and absolute addressing are necessary. 

In addition, physical port address manipulations are required for I/O 
space manipulations.                  
 
5.4.3.1.2 Memory Read and Write   
 

As given in Definition 4.74, a memory read denoted by  is a meta 
process that gets data xT from a given memory location MEM[ptrP], where 
PtrP is a pointer that identifies the physical memory address, i.e., 
MEM[ptrP]T  xT, where T ∈ T. 

As given in Definition 4.75, a memory write process denoted by  is a 
meta process that puts data xT to a given memory location MEM[ptrP], 
where ptrP is a pointer that identifies the physical memory address, i.e., xT  
MEM[ptrP]Twhere T ∈ T. 
 
5.4.3.1.3 Dynamic Memory Allocation  
 

Typical memory allocations for almost all the primitive types of 
variables as modeled in Table 5.7, except RT, are static that are controlled by 
the system. That is, the logical name of a variable is permanently bound to a 
fixed element or a continuous block of the physical memory throughout its 
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lifecycle and accessibility scope. The condition for enabling static memory 
allocation at compile-time is that the size of the given variable or its length 
of memory occupation is determinable. Otherwise, the memory allocation 
should be dynamic, and be postponed until run-time. 
 
 Definition 5.48 Dynamic memory allocation is a binding process that 
associates a logical name of a data object, usually consisting of multiple 
similar elements, with a series of inter-linked physical locations in the heap 
during run-time. 
 
      Example 5.21 A generic digraph model can be logically represented 
by a list of dynamically allocated nodes as shown in Fig. 5.22 using the 
doubly-linked list model.  
 
                   Node 1 
 
 
 
 
                   Node 2 
  
 
 
 
 
 
 
   

             Node k (k > 0) 
 
 
 

Head 

Tail 

  PriorPtrP    ElementRT      OrderN              {E}               {W}         NextPtrP 

  PriorPtrP    ElementRT      OrderN              {E}               {W}         NextPtrP 

  PriorPtrP    ElementRT      OrderN              {E}               {W}         NextPtrP 

          
 

Figure 5.22 The architectural model of a digraph 
 

In the doubly-linked list model of digraph, two global pointers, head 
and tail, pointing to a designated first and last node, respectively. The nodes 
are represented as a set of arrays, each of which points to a list of attributes 
consisting of two pointers (prior and next), the order (number of edges), a set 
of edges (E) in which the elements are node numbers connected to the given 
node, and a set of weights (W) denoting the weight of each corresponding 
edges.  

A formal description of the architecture of the digraph in RTPA is 
shown in Fig. 5.23. The digraph CLM describes the abstract data structures 
of its doubly-linked list model. Each node in the digraph is modeled in 
DiGraphST.Architecture.NodeCLMST. In the node CLM, an ElementRT is a 
data field for accommodating information of specific applications, and is 
specified as a run-time determinable type in RT. Attached to each node is a set 

of edges
1

Order

i
R
=

N

N
Edge(iN)S depending on the value of OrderN, and the edges 

may be specified for a WeightN corresponding to each of them in E. The 
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PriorPtrP and NextPtrP of a node specify the bidirectional links of a node. A 
complete specification of the DiGrapg static and dynamic behaviors may be 
referred to [Wang and Adewumi, 2004]. 
 

 
Figure 5.23 Formal specification of the architecture of the digraph 
 

The key difference between dynamic memory allocation and static 
memory allocation is whether the size of memory requirement of a given 
variable is run-time vs. compile-time determinable. This is in line with the 
definitions of dynamic and static behaviors of processes as recognized in 
Section 4.7.1. Another difference is the mechanisms of their physical 
implementations, where dynamic memory allocation uses the user-
controllable heap that is a user controlled memory area as shown in Fig. 
5.11; while static memory allocations uses language-controlled stacks in 
system memory.  

Dynamically allocated variables and data objects in the heap can be 
accessed by pointers or indirect addressing. As described in Definition 4.72, 
memory allocation is an inverse function of addressing, i.e., π-1: ptrÞP → 
idT, that associates a physical memory block MEM[ptrP, ptrP+n-1]T with the 
given logical idT.   

Because dynamic allocated variables and complex data objects reside in 
the user-controllable heap, a dynamic memory allocation and its release 
should be carried out by explicit instructions provided by users. Typical 
dynamic memory allocation and release instructions are as follows: 

   DiGraphST.Architecture.CLMST  DiGraphS :: 
(  <GSize: N | GSizeN ≥ 1>,      // Number of Nodes 

   
1

GSize

i
R
=

N

N
<Node(iN) : ST>,  

    <Head : P>,  
    <Tail : P> 
) 
 

DiGraphST.Architecture.NodeCLMST  NodeS ::
(  <Element : RT>, 
   <PriorPtr : P>,     
   <NextPtr : P>, 
   <Order: N | 0 ≤ OrderN ≤ SizeofEdgesN>,                

   <
1

Order

i
R
=

N

N
Edge(iN) : S>,  

   <
1

Order

i
R
=

N

N
Weight(iN) : N>,  

) 
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     a) C++:  (ptrP = new T,  delete ptrP)  
     b) C:  (ptrP = malloc(n),  free(ptrP)) 
     c) Java:  (objC = new objectC(),  system.gc())     (5.63) 
  

where in Java, gc stands for garbage collection and C denotes a type of class.  
Memory allocation is a key meta process for dynamic memory 

manipulation in RTPA. The memory allocation process in RTPA, idT ⇐ 
MEM[ptrP, ptrP+n-1]T, is implemented in Fig. 5.24. 
 
 

 
Figure 5.24 Implementation of dynamic memory allocation process in RTPA  
 

Memory release is a process that dissociates a given memory block 
from a logical identifier idT, and returns the memory block to the system 
through a mechanism known as system garbage collection. The memory 
release process of RTAP, idT  MEM[⊥]T, is implemented in Fig. 5.25. 
 

     

 
Figure 5.25 Implementation of the memory release process in RTPA  

1

n

i
R
=

MemoryRelease (<I ::  ObjectIDS>; <O:: ⓢObjectID.ReleasedBL>)   
{ 
   delete ObjectIDS                        // System.GarbageCollection( ) 
   → ObjectIDS := null  
   → (  ⓢObjectReleasedBL := T  
              → ⓢObjectID.ReleasedBL = T   
        |  ~                                                       
   → ⓢObjectID.ReleasedBL = F 
       ) 
} 

MemoryAllocation (<I ::  ObjectIDS, NofElementsN, ElementTypeRT >;  
                                  <O:: ⓢObjectID.ExistedBL>)   
{ 
  nN := NofElementsN  
 
   
  →         (New ObjectID(iN) : ElementTypeRT) 
  → (  ⓢObjectAllocatedBL := T  
              → ⓢObjectID.ExistedBL = T   
        |  ~                                                       
    → ⓢObjectID.ExistedBL = F 
       ) 
} 
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The released memory block that was logically identified by idS will 
then be collected by the system garbage management mechanism provided 
by an operating system.  
                 
5.4.3.2 Events Handling  
 
 Events capture and handling are important behaviors of all open 
systems, particularly for real-time systems. As given in Definition 5.18, the 
event types in computing can be classified into operational, time, and 
interrupt events as shown in Table 5.17, where @ is the event prefix, and S, 
TM, and ⊙  the type suffixes. The operational events occur randomly. A 
special kind of operational events is the exception events. Another special 
type of system events may be classified as the interrupt events.   

    
Table 5.17 

Event Types of RTPA 
 

No Type Syntax Usage in system 
dispatch 

Category 

1 Operational event @eS @eiS  e Pi Internal or external 

2 Time event   @tTM @tiTM  t Pi Internal 

3 Interrupt event @int  @intj   i Pj External or internal 

 
5.4.3.2.1 Operating Event Handling  
 

As given in Definition 5.102, an event-driven dispatch behavior of 
software  system,  denoted  by   e,  is  a  process  relation  in  which  the  ith 
process Pi is triggered by a predesignated system event @eiS, i.e., @eiS  e Pi , 
i ∈{1, …, n}. 
 
5.4.3.2.2 Time Event Handling  
 

As given in Definition 4.78, absolute timing event manipulation known 
as timing, denoted by @ , is a meta process that sets the value of a timing 
variable @tTM as the absolute time of the current system clock §tTM, i.e., 
@tTM @  §tTM, where TM  is an abbreviation of TI = hh:mm:ss:ms, D = yy:MM:dd, 

and DT = yyyy:MM:dd:hh:mm:ss:ms, respectively. 
Similarly, the related timing event manipulation known as duration 

given in Definition 4.79, denoted by , is a meta process that sets a relative 
time @tnZ as an integer based on the relative system clock §tnZ and the given 
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period ∆nZ, i.e., @tnTM   §tnTM + ∆nN, where the unit of all relative timing 
variables is ms. 

As given in Definition 4.101, a time-driven dispatch behavior of 
software system, denoted by  t, is a process relation, in which the ith process 
Pi is triggered by a predefined system time @tiTM, i.e., @tiTM  t Pi, i ∈{1, ..., 
n}. 
 
5.4.3.2.3 Interrupt Event Handling  
 

The interrupt mechanism describes execution priority and control 
taking-over between processes. As given in Definition 4.100, an interrupt, 
denoted by , is a process relation in which a running process P is 
temporarily held before termination by another higher priority process Q on 
interrupt event @e  at the interrupt point , and the interrupted process will 
be resumed when the high priority process has been completed, i.e., P  Q = 
P || (@int   Q  ), where  and  denote interrupt service and interrupt 
return.     

As given in Definition 4.103, an interrupt-driven dispatch, denoted by 
 i, is a process relation in which the ith process Pi is triggered by a 

predefined system interrupt @inti , i.e., @inti    Pi , i ∈{1, …, n}. 
 
5.4.3.2.4 Exceptional Event Handling 
 

As given in Definition 4.82, an exception detection, denoted by !, is a 
meta process that logs a detected exception event @eS at run-time, i.e., 
!(@eS). The RTPA exception detection mechanism is a fundamental process 
for safety and dependable system specification, which enables system 
exception detection, handling, or postmortem analysis to be implemented. 
 
 

 
5.5 Program Modeling: 
        Coordination of Computational 
       Behaviors with Data Objects 
 

 
 
Program modeling provides various encapsulation methodologies for 
integrating and coordinating computing behaviors and data objects into a 
coherent system. Since the scale of a program can be very large, 
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methodologies for program modeling, construction, and refinement play 
important roles in programming and software engineering.  

 
 

5.5.1 THE UNIFIED MATHEMATICAL MODEL OF 
         PROGRAMS 
 

The concept of program was treated as for granted in computing and 
software engineering. Although there are various perceptions of programs, a 
rigorous and generic mathematical model of programs, the key object under 
study in software engineering, is yet to be sought.  

The mathematical models of programs and software can be described 
and analyzed at various composition levels, such as those of statement, 
process, and system from bottom-up, according to the hierarchical 
architecture of the program. It is noteworthy that a statement is the minimum 
functional unit of programs at the most fundamental level of programming. If 
the mathematical models of all fundamental instructions (known as the meta 
processes in RTPA) [Wang, 2002a/02b/03c/06a/07a] and their relational 
composition rules (known as the process relations in RTPA) in a given 
language can be defined, the mathematical models of the process and 
program at the higher levels can be derived and established inductively. 

 
5.5.1.1 The Abstract Model of Statements 
 

A statement as an instance of an instruction in a programming language 
is the smallest functional unit of a program that specifies an explicit action 
and results in the change of one or more data objects logically modeled by 
variables.         
 

Definition 5.49 A statement s in a program is an instantiation of a meta 
instruction of a programming language that executes a basic unit of coherent 
function and leads to a predictable behavior. 
 

Definition 5.50 A generic model of a statement s in computing can be 
described as a function p, that maps a set of inputs I into a set of outputs O, 
i.e.: 

 

      s  p: I → O          (5.64) 
 

The above IPO model of statements can be illustrated as shown in Fig. 
5.26. A statement is usually a relational function between a variable on the 
left-hand side and an expression on the right-hand site.      
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p OI

 
Figure 5.26 A statement as an IPO process     
  

A set of 17 fundamental instructions in computing, as shown in Table 
4.8 and Theorem 4.6, has been identified and elicited in RTPA known as the 
meta processes. Although existing programming languages may implement a 
larger set of instructions, the additional ones are logical combinations of the 
17 essential meta processes. 

 
5.5.1.2 The Abstract Model of Processes 

 
A process at the middle or component level of the program hierarchy is 

composed by individual statements with given rules of algebraic 
compositions.   
 

Definition 5.51 A process P is a composed component in a program 
that forms a logical combination of n meta statements si and sj, 1 ≤ i < n, 1 < 
j ≤ m, according to certain composing relations rij, i.e.:  
 

   

1

1
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i

n n n

P s r j i

s r r r
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−

=

−

= = +

=

              (5.65) 

 
where rij is a set of algebraic relations or composing rules.  

 
A comprehensive set of those composing rules has been modeled in 

RTPA known as process relations as described in Table 4.9 and Theorem 
4.7. 

 
5.5.1.3 The Abstract Model of Programs 
 

Definition 5.52 A program ℘ is a triple of a finite list of instructive 
statements S that describes the computational behaviors, a set of data objects 
D that model the internal states and external environment, and their 
interrelations R, i.e.:  
 

    ℘= (S, D, R)        (5.66) 
 

The above definition puts emphases on the algebraic model of 
programs. A dynamic structural model of programs can be described below.          
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Definition 5.53 A program ℘ is a composition of a finite set of k 
processes at the component level according to certain process dispatching 
rules, i.e.: 
 

    
1

(@ )S  
k

i i
i

e PR
=

℘=           (5.67) 

 

where ↳ denotes a process dispatch according to a predesignated event @eiS, 
which may be an external, a system timing, or an interrupt event.  
 

Formal descriptions of the event-, time-, and interrupt-driven 
dispatching mechanisms of program systems are described in Section 5.4.3.2. 

The process in Definition 5.53 has been formally described in Theorem 
4.3 by the cumulative relational model of processes. Based on Theorem 4.3, 
the cumulative relational model of programs can be derived in the following 
theorem.        

 

 
Theorem 5.7 provides a unified mathematical model for programs 

[Wang, 2006h], which reveals that a program is a finite and nonempty set of 
embedded binary relations between a current statement and all previous ones 
that formed the semantic context or environment of computing. It also reveals 
that the nature of programs is a cumulative (nonlinear) relational composition 
of a set of finite meta processes. The law indicates that no program is 
context-free, because every statement is relational to the consequences of all 
its previous statements that form the context of the given statement in a 
program and constitute the semantics of the given execution.    

According to Theorem 5.7, a program can be reduced to the 
composition of a finite set of k processes at the component level. Then, each 

 

The 17th Law of Software Engineering 
 
Theorem 5.7 The generic mathematical model of programs states that a 
software system or a program ℘ is a set of complex embedded 
cumulative relational processes Pk dispatched by system-level events ek, 
i.e.: 
 

                              1
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1 1
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of the processes can be further reduced to the composition of a finite set of n 
statements at the bottom level. The definitions, syntaxes, and formal 
semantics of each of the meta processes and process relations may be 
referred to RTPA [Wang, 2002a/02b/03c/06a/07a]. A complex process and a 
program can be derived from the meta-processes by the set of algebraic 
process relations.  

 
 

5.5.2 PROGRAMS MODELING AT COMPONENT 
         LEVEL 
 

Typical program modeling methodologies at the component and system 
levels can be classified into algorithms, classes, patterns, and frameworks 
from the bottom up. This subsection presents the first three models in the 
component level of the program hierarchy. System level models in terms of 
software frameworks will be discussed in Section 5.5.3.                    
 
5.5.2.1 Algorithms 
 

An algorithm is a computational construct that provides an efficient 
method, which can be described and implemented by a finite list of 
instructive statements, for solving a particular and frequently encountered 
problem. 

 

Definition 5.54 An algorithm Λ is a frequently recurring function f that 
maps a set of input X into a set of output Y by a finite set of statements or a 
finite-step process, i.e.: 

 

  Λ = f: X → Y        (5.69)         
 

The criteria that warrant a piece of program as an algorithm are due to 
its reusability, finiteness, and efficiency. 

 
Example 5.22 A problem called the In-Between Sum, IBSum, for two 

given integers A and B, and A < B. For instance, when A = 2 and B = 5, 
IBSum = 3 + 4 = 7.      

A direct algorithm for IBSum can be described by the following:      
     
 

                                  

1

1

B

i A
i

−

= +
∑                  (5.70) 

 
A more efficient algorithm can be derived based on the difference of 

sums of B-1 and A on the basis of known fact that 
1

( 1)
2

n

i

n ni
=

+=∑ , i.e.:  
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IBSum = 
1

1

B

i

−

=
∑ - 

1

A

i=
∑  

                  = ( -1) • • ( 1)
2 2

B B A A +−       (5.71) 

 
The second algorithm as shown in Eq. 5.71 is well designed because its 

complexity in average and worst cases is a constant c, i.e., O(c), which is not 
dependent on the distance between A and B. However, the complexity of the 
first direct algorithm is O(n), which is more complicated when n is 
considerably large.  

 
The second IBSum algorithm is formally described in RTPA as shown 

in Fig. 5.27.   
 

 

Figure 5.27 RTPA specification of the algorithm of In-Between Sum 
 
5.5.2.2 Classes and Object-Orientation  
 

Bertrand Russell (1872-1970) proposed that the world could be 
described by a set of objects, classes, and relations in 1900 [Russell, 1961], 
which is considered the earliest concept of modern object notions that has 

IBSAlgorithm.Architecture  <Input: ST> 
 || <Output: ST> 
 || <Event: ST> 
 || <Status: ST> 

=   InputST::  (<A: N | 0 < AN < 65535>, 
                       <B: N | 0 < BN < 65535, BN > AN>) 
  || OutputST:: (<IBSum: N>) 
  || EventST:: (<@IBSAlgorithmS>) 
  || StatusST:: (<ⓢIBSResultBL>) 
 

IBSAlgorithm.StaticBehaviors  IBS_Algorithm  
 

IBS_Algorithm ({I:: AN, BN}; {O:: ⓢIBSResultBL, IBSumN})  
{ 

→ MaxN := 65535 
→ (   (0 < AN < maxN) ∧ (0 < BN < maxN) ∧ (AN < BN) 

 → IBSumN := ( -1) • • ( 1)
2 2

B B A A +−N N N N  

 → ⓢIBSResultBL := T 
        |  ~ 

 → ⓢIBSResultBL := F 
                       → ! (@’AN and/or BN out of range, or AN ≥ BN’) 
                ) 
} 
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latterly been adopted in software engineering [Goldberg and Robson, 1983; 
Stroustrup, 1982/86/87; Booch, 1986; Rumbaugh et al., 1991]. 

Object-oriented programming is one of the significant developments of 
software engineering that emerged in the 1980s represented by SmallTalk 
[Goldberg and Robson, 1983] and C++ [Stroustrup, 1982/86/87]. In 
computer science and software engineering, a set of fundamental conceptual 
tools has been developed to cope with the complexity of problem 
specification and solution. Some of the important methodologies are 
abstraction, information hiding, functional decomposition, modularization 
and reusability. Object-orientation technologies have inherited the merits of 
these fundamental approaches and represented them in well organized 
mechanisms such as encapsulation, inheritance, reusability, and 
polymorphism [Gunter and Mitchell, 1994]. 

 
5.5.2.2.1 Mathematical Models of Classes 

 
The abstract model of a generic class can be modeled using the 

following mathematical structures in RTPA.  
 
Definition 5.55 A class is a dynamic construct in object-oriented 

programming to build hierarchical architectures of a system, which can be 
formally described below:  

 

        ClassST  {   Architecture : ST 
       || StaticBehaviors : ST 
       || DynamicBehaviors : ST 
           }            (5.72) 
 

                 ClassST.ArchitectureST  {   <Interfaces : ST> 
                                       || <Implementations : ST> 
                                               }             (5.73) 

 

                 ClassST.ArchitectureST.InterfacesST  ClassIDST ::  
                   {    <Attributes : RT > 
                         || <Methods : ST > 
                    }                (5.74) 

 
The interfaces of a class are the means of access for users of the class, 

which model a set of attributes and methods. The implementations of the 
class are hidden behind the interfaces to realize detailed functions. For a well 
packaged class, the only access means to it is via its interfaces. The 
implementations of methods and related data structures are hidden inside the 
class, which enable the methods to be changed independently without 
affecting the interfaces of the class. 
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The types of classes in object-oriented methodologies can be classified 
into the categories of system classes (SC) and user derived classes (DC). The 
latter can be further divided into abstract classes (AC) and concrete classes 
(CC). These classes, as well as methods (M) modeled in a class, are treated as 
derived types of the system architecture type (ST) in RTPA as defined in 
Table 5.18. 

 
 

Table 5.18 
Taxonomy of Class Types 

 
 

 
 
 
 
 
 
 

 
Definition 5.56 An object is an instantiation of a class or multiple 

classes, which cannot be further inherited by other classes or objects.  
 
Tracing back the history of programming methodologies, it can be seen 

that object-orientation is a natural extension and combination of two main 
stream programming methodologies: the functional-oriented programming 
and the data-oriented programming. 

 
Definition 5.57 Object Orientation (OO) is a kind of system design 

and/or implementation methodologies that supports integrated functional- 
and data-oriented programming and system development.    
 
5.5.2.2.2 Associations between Classes and Objects 

 
The associations between classes can be classified into nine categories 

in OO methodologies as summaries in Table 5.19 [ORG, 2005]. Formal 
definitions of the mathematical semantics of these OO associations   [Wang 
and Huang, 2005] are given in RTPA.   

 
The associations of classes form a foundation to denote complicated 

relations between classes in software patterns, which will be discussed in 
Section 5.5.2.3. More formal treatment of the mathematical semantics of OO 
associations among classes may be referred to concept algebra as presented 
in Section 15.3.3 [Wang, 2006e]      

 

No Type Symbol Description 
1 System class SC A class provided by the system    
2 Derived class  DC A class defined by a user based on SC 
2.1 Abstract class  AC A class serves as a generalization and 

conceptual model, which can be 
inherited but can not be instantiated  

2.2 Concrete class CC An ordinary class derived from an  AC    
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Table 5.19 
OO Associations and their Mathematical Semantics in RTPA 

 
 

 
OO    

Associations 
UML RTPA 

Inheritance 
(Inh) 

Q 

P 

 

:In h Q P  

Multiple 
inheritance 

(MInh) 

Q 

P1 Pn 

 

 

1
:

n

i
i

M In g Q PR
=

 

Delegation 
(Del) 

Q 

P 

 

 D el Q P  

Aggregation 
(Agg) P 

Q1 Qn

 

1
. : ,

             

n

i i
i

i

A g g P M Q

P Q

R
=

∫∫
 

Composition 
(Com) P 

Q1 Qn

 

1
. : ,

            || 

n

i i
i

i

C o m P M Q

P Q

R
=  

Generalization 
(Gen) 

P 

Q1 Qn

 

 

1
:

n

i
i

G en Q PR
=

 

Instantiation 
(Ins) 

Q 

P 

 

:Ins Q P  

Dependency 
(Dep) 

P 

Q 

 

1
. :

n

i
i

D ep Q M PR
=

 

Abstract/ 
Concrete class 

(AC_CC) 

<<Interface>> 
AC 

CC CC 

 

 

_ :C C A C C C A C

© 2008 by Taylor & Francis Group, LLC



360   Part II  Theoretical Foundations of SE 

5.5.2.2.3 Basic Attributes of Object-Orientation 
 

OO technologies were originally designed for programming. Therefore 
OO was initially an implementation tool rather than a design tool. However, 
as OO programming became broadly accepted, it was found that OO 
technologies could be used not only in programming, but also in system 
design and analysis.  

The fundamental attributes that can be commonly identified in OO 
technologies are encapsulation, inheritance, reusability, and polymorphism. 
A set of formal descriptions of these basic attributes is given below.  
 

Definition 5.58 Encapsulation is a basic attribute of OO technologies 
by which functions and data structures of a class is integrated into a package, 
and the class can only be accessed through its methods with specific 
messages.       

 
Definition 5.59 Inheritance is a basic attribute of OO technologies by 

which methods and related data structures modeled in a class can be inherited 
by derived classes or objects as existing system functions and/or structural 
types.     

        
Definition 5.60 Reusability is a basic attribute of object-oriented 

technologies by which classes and their hierarchy modeled in an OO system 
can be reused by different applications as existing system resources. 
 

Definition 5.61 Polymorphism is a basic attribute of OO technologies 
that provides evolvability and tailorability for inheritance by which the 
inherited methods and related data structures of a class can be partially 
redefined or overloaded. 
         

Within the above set of basic attributes, encapsulation is a direct 
representation of the fundamental principles of abstraction, information 
hiding, and modularization in OO methodologies. Inheritance and reusability 
are powerful features for improving productivity and quality in software and 
system development. Polymorphism is a supplement of flexibility to other 
attributes.  

OO technologies are useful conceptual modeling approach and 
generically applicable in software system design, analysis, and 
implementation. However, a number of drawbacks of OO systems as 
discussed below have also been identified in applications. For example, by 
using common OO languages, programmers must know details of a 
complicated structure of the foundational class hierarchy provided by a 
compiler in order to inherit or reuse a software component and/or a data type. 
This approach significantly increases the difficulty of mastering OO 
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languages, and generates inherent complexity, subsequently, in OO software 
testing and maintenance. 

Moreover, inherence of a made class hierarchy in an OO language is 
not tailorable. Programmers have to inherit anything that is contained in a 
given class and its ancestors, even just a small portion of functions of the 
class intended to be reused. This inefficient implementation of object 
technology results in a special phenomenon so called ‘fatware,’ of which 
only an empty object encapsulation in common OO languages cost more than 
10 kbytes in implementation. Also, inheritance from the root of a vendor’s 
class system causes difficulty in testing and maintenance. For example, a 
project reported that more than half of the bugs in porting a Borland C++ 
based software into MS C++ environment were caused by the incompatibility 
between the two foundational class structures [Wang, 2001a].    

Another drawback of OO technologies is that the data objects and their 
architectures are bounded with a set of predefined operations. When an 
object needs to use data objects defined in multiple classes, or to only use 
one data object from a large set of them defined in a class, the efficiency will 
be dramatically decreased by multiple inheritance. This is not acceptable in 
the design and implementation of real-time systems. More generally, there is 
only one global data object model for an entire real-time system, and it is 
commonly shared by all classes. If the system architectural model is defined 
in the fundamental class of the system, every other derived class has to 
inherit the whole data model, but only use a very small portion of it. These 
result in very high level of coupling between the data objects and their 
behavioral (operational) models and low efficiency in implementation, 
particularly for real-time systems. 

In general, it is noteworthy that OO is only a high-level logical 
metaphor for software component and system modeling. There are no such 
concepts of object and class at machine or target language level. That is, 
either OO or non-OO technique results in the same implementation of a 
system at the machine level. In fact, OO techniques may result in low 
efficient code in both speed and memory usages than those of non-OO 
techniques. However, the gains from OO are a better modeling approach to 
complex systems, an improved readability of program, more available 
fundamental object libraries, and a wide-range support of tools.               
 
5.5.2.3 Patterns 
 

A pattern according to the Oxford Dictionary of English is a regular or 
logical form, a model, design, or a set of instructions for making something, 
or an excellent example. Christopher Alexander and his colleagues (1977), 
working in civil engineering, proposed that: “The pattern is, in short, at the 
same time a thing, which happens in the world, and the rule which tells us 
how to create that thing, and when we must create it. It is both a process and 

© 2008 by Taylor & Francis Group, LLC



362   Part II  Theoretical Foundations of SE 

a thing; both a description of a thing which is alive, and a description of the 
process which will generate that thing.” 

Software patterns [Gamma, 1995; Taibi and Ngo, 2003; Vu and Wang, 
2004] are a new component modeling technology built upon classes and 
object-oriented techniques. Software patterns are presented as a means of 
encapsulating the experience of architects and programmers in order to 
facilitate effective software reuse and design experience sharing. Patterns 
provide the following advantages in software architectural design: (a) 
experience encapsulation; (b) architectures of reusable components; and (c) 
enhanced documentation of software designs. 

  
5.5.2.3.1 The Concept of Software Patterns 
  

A pattern is a set of interacting classes. Patterns can be used as a 
powerful tool for capturing software design notions and best practices, which 
provide common solutions to core problems in software development.  
 

Definition 5.62 A pattern is a complex software construct that 
incorporates a set of classes for a recurring architectural and behavioral 
design described by abstract classes, concrete classes, instantiations, and 
their associations. 

 
Gamma and his colleagues (1995) proposed that software patterns can 

be classified into three categories known as the creational, structural, and 
behavioral patterns. The classification and description of software patterns 
can be summarized in Table 5.20, where the first three categories of patterns 
are adopted according to Gamma et al. (1995), while the fourth category of 
patterns is user defined according to Definition 5.62. 
 
5.5.2.3.2 The Mathematical Model of Patterns 
 

A pattern is a highly reusable and coherent set of complex classes that 
are encapsulated to provide certain functions [Wang and Huang, 2005]. 
Pattern specification is based on class specifications as described in Section 
5.5.2.2. Using RTPA notations and methodology, a pattern is denoted by 
three parallel components known as the architecture, static, and dynamic 
behaviors at the top level. Then, the architecture of the pattern is refined by a 
CLM. The static and dynamic behaviors of the pattern are denoted by a set of 
collaborating processes. 

 
Definition 5.63 The generic mathematical model of software pattern 

can be formally described by the four-level hierarchical model, as shown in 
Fig. 5.28, known as the interfaces, implementations, instantiations, and 
associations among the interfaces, implementations, and instantiations. 
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Table 5.20 
Classification of Software Patterns 

 

Category Pattern Description 
1. Creational 
    patterns 

CP CP deals with initializing and configuring 
classes and objects 

1.1 Factory Method Method in a derived class creates associates 
1.2 Abstract Factory Factory for building related objects 
1.3 Builder Factory for building complex objects 

incrementally 
1.4 Prototype Factory for cloning new instances from a 

prototype 
1.5 Singleton Factory for a singular (sole) instance 
2. Structural 
    patterns 

SP SP deals with decoupling interface and 
implementation of classes and objects  

2.1 Adapter A translator adapts a server interface for a client 
2.2 Bridge Abstraction for binding one of many 

implementations 
2.3 Composite Structure for building recursive aggregations 
2.4 Decorator Decorator extends an object transparently 
2.5 Facade Facade simplifies the interface for a subsystem 
2.6 Flyweight Many fine-grained objects shared efficiently 
2.7 Proxy One object approximates another 
3. Behavioral 
    patterns 

BP BP deals with dynamic interactions among 
societies of classes and objects 

3.1 Chain of 
Responsibility 

Request delegated to the responsible service 
provider 

3.2 Command Encapsulate a request as an object 
3.3 Interpreter Language interpreter for a small grammar 
3.4 Iterator Aggregate objects are accessed sequentially 
3.5 Mediator Coordinate interactions between its associates 
3.6 Memento Snapshot captures and restores object states 

privately 
3.7 Observer Update dependents automatically when a subject 

changes 
3.8 State Objects whose behavior depends on its state 
3.9 Strategy Abstraction for selecting one of many algorithms 
3.10 Template 

Method 
Algorithm with some steps supplied by a derived 
class 

3.11 Visitor Operations applied to elements of an 
heterogeneous object structure 

4. User 
    defined 
    patterns  

UDP An abstraction of a class or an algorithm by 
separation of its interface and 
implementation details 
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The generic pattern model given in Fig. 5.28 may be treated as a super 
meta pattern, which reveals that any specific software pattern can be 
specified at four structural levels. According to Definition 5.62, the features 
of patterns lie in the hierarchical architectures as described by 
PatternST.ArchitectureST (Eq. 5.76) in Fig. 5.28. It is noteworthy that a class 
is modeled as a two-level structure with the class interfaces and 
implementations. However, the architectural model of a pattern is a four-
level hierarchy featured with the extended refinement levels of instantiations 
and associations for deriving applications of the pattern.   

The interface of a pattern, PatternST.ArchitectureST.InterfacesST (Eq. 
5.77), isolates users of the pattern from its internal implementations. Users 
may only access the pattern via its interfaces. This mechanism enables the 
implementation of the pattern to be independent of its users. Whenever the 
internal implementations need to be changed, it is transparent to the users of 
the pattern as long as the interfaces remain the same. 

Since a pattern is a highly reusable design of a software object, the 
implementation of a pattern, PatternST.ArchitectureST.ImplementationST (Eq. 
5.78), will be kept in a generic concrete class, while the detailed and 
application specific functions related to users’ specific requirements, which 
are captured via the interface, will be implemented at the lower-level 
concrete classes known as the instantiations PatternST.ArchitectureST. 
InstantiationsST (Eq. 5.79) at run-time.  

The fourth component in the generic pattern hierarchy is the internal 
associations, PatternST.ArchitectureST.AssociationST (Eq. 5.77), which is 
used to model the interrelationships among the rest of the three-level 
abstractions of classes and interfaces within the pattern. 

The formal model of generic patterns can be used as a formula to derive 
specific descriptions of any software pattern. Case studies will be provided in 
the following section, which show that all typical and classic design patterns 
fit the generic pattern models of RTPA as developed in this section. 

It is noteworthy that a pattern is a generic model of reusable functions. 
Specific behaviors in an execution instance are dependent on run-time 
information provided by uses of the pattern. 

 
5.5.2.3.3 Pattern Modeling: Formal Models vs. UML Models 

 
The conventional descriptive means for design patterns are natural 

languages or UML class diagram. Due to the inherited complexity, the 
architectural and semantic descriptive power of the above means is found 
inadequate [Vu and Wnag, 2004; Wang and Huang, 2005]. This section 
contrasts the descriptive power of RTPA and UML on denoting pattern 
architectures and behaviors.         
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Figure 5.28 The generic mathematical model of software patterns 
  
 

PatternST  {   Architecture : ST 
       || StaticBehaviors : ST 
       || DynamicBehaviors : ST 
   }              (5.75) 
 

PatternST.ArchitectureST  {    <Interfaces> 
                                  || <Implementations> 
                                  || <Instantiations> 
                                  || <Associations> 
                              }            (5.76) 

 

PatternST.ArchitectureST.InterfacesST  PatterIDST ::  

                {   
1

n

i
R
=

N

N
<Attributes(i N) : RT > 

                  || 
1

m

j
R
=

N

N
<AbstractClass(jN) : AC> 

                }                     (5.77) 
 

PatternST.ArchitectureST.ImplementationsST    

                {
1

q

k
R
=

N

N
<ConcreteClass(kN) : CC> 

                 }                     (5.78) 
 

PatternST.ArchitectureST.InstantiationsST    

                {
1

r

l
R
=

N

N
<Instantiation(lN) : CC> 

                 }                     (5.79) 
 

PatternST.ArchitectureST.AssociationsST    

                {   
1

m

j
R
=

N

N
(  <Interface(jN)AC : SC> 

                         
1

| ( ) . : ( ' )
p

m
m

Interface j M Interface jR
=

N AC M N AC ) 

                  || 
1

q

k
R
=

N

N
<Implementation(kN)CC : AC(jN)> 

                  ||  
1

r

l
R
=

N

N
<Instantiation(lN)CC : CC(kN)> 

                }                      (5.80)   
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Example 5.23 The builder pattern is one of the important creational 
patterns proposed by Gamma and his colleagues [Gamma, 1995]. A UML 
class diagram of the builder pattern is shown in Fig. 5.29. This pattern is 
designed to separate the complex object construction process from its final 
diversity representations. The benefit of this treatment is that complicated 
construction processes may be reused to produce various object 
representations. 
 

 
Figure 5.29 The structure of the Builder pattern 

  

 

Figure 5.30 The behaviors of the Builder pattern 
 

As shown in the formal model of the Builder pattern in Fig. 5.30, the 
DirectorAC is an abstract class that serves as an interface of the builder 
pattern. The BuilderAC is another abstract class that represents the common 
and generic functions of the pattern, which may be implemented by a 
concrete class at lower levels. The ConcreteBuilderCC is a concrete class that 
implements the conceptual model BuilderAC. Note that the implementation of 
the ConcreteBuilderCC is still a generic model, which will be completely 

BuilderPatternST.StaticBehaviors  
{ 
     DirectorAC.Construct (<I:: PartIDS>; <O:: BuilderAC>) 
  || BuilderAC.BuildPart (<I:: PartIDS>; <O:: ConcreteBuilderCC>)  
  || ConcreteBuilderCC.BuildPart (<I:: PartIDS>; <O:: ConcreteBuilderCC.GetResult>)  
  || ConcreteBuilderCC.GetResult (<I:: PartIDS>; <O:: ProductST>)  
} 
 

BuilderPatternST.DynamicBehaviors  § → 
{ @PartIDS 
        DirectorAC.Construct (<I:: PartIDS>; <O:: BuilderAC>) 
            BuilderAC.BuildPart (<I:: PartIDS>; <O:: ConcreteBuilderCC>) 
                ConcreteBuilderCC.BuildPart (<I:: PartIDS>;  
                                                                    <O:: ConcreteBuilderCC.GetResult>)  
                    ConcreteBuilderCC.GetResult (<I:: PartIDS>; <O:: ProductST>)  
 
} 
→ § 
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implemented by the ProductCC at run-time when a user of the pattern 
provides further details of instances via the interface of the pattern. 
  
a) Architecture of the Builder Pattern 

 
Using Eqs. 5.75 through 5.80 as the generic design formulae, the 

architecture of the BuilderPatternST can be accurately and rigorously 
specified and stepwise refined as described below.  

 
According to Eq. 5.75, the top-level architecture of the 

BuilderPatternST can be specified as shown in Eq. 5.81.    
 

   BuilderPatternST  {   Architecture : ST 
                           || StaticBehaviors : ST 

                       || DynamicBehaviors : ST 
                        }            (5.81) 

 
Using Eq. 5.76, the architecture of the pattern, BuilderPatternST. 

ArchitectureST, can be specified as follows.   
  

   BuilderPatternST.ArchitectureST  {    <Interface> 
                                          || <Implementation> 
                                          || <Instantiation> 
                                          || <Association> 
                                               }                   (5.82) 

 

Applying Eq. 5.77, the interfaces of the pattern, BuilderPatternST. 
ArchitectureST.InterfaceST, can be specified as follows.    
 

     BuilderPatternST.ArchitectureST.InterfaceST  BuilderST ::  

                 {  
1

n

i
R
=

N

N
<Attributes(iN) : RT> 

                   || <Builder : AC> 
                   || <Director : AC> 
                 }                     (5.83) 

 
Applying Eq. 5.78, the implementations of the pattern, 

BuilderPatternST.ArchitectureST.ImplementationST, can be specified as 
follows.   

  

            BuilderPatternST.ArchitectureST.ImplementationST    
                  {   

        <ConcreteBuilder : CC> 
                   }                   (5.84) 

© 2008 by Taylor & Francis Group, LLC



368   Part II  Theoretical Foundations of SE 

Applying Eq. 5.79, the instantiations of the pattern, 
BuilderPatternST.ArchitectureST.InstantiationsST, can be specified as follows. 

    
                BuilderPatternST.ArchitectureST.InstantiationST    
                  { 
                      <Product : CC> 
                   }                   (5.85) 

 

The relations between the components described above, the 
associations of the pattern, BuilderPatternST.ArchitectureST.AssociationsST, 
can be formally described on the basis of Eq. 5.80 as follows.    
 

    BuilderPatternST.ArchitectureST.AssociationST    
                {   // Interface classes  
                     (   <BuilderAC : SC> 
                          || <

1
 :  | . :

p

m
m

Director Director M BuilderR
=

AC SC AC M AC > 

                         ) 
 

                  || // Implementation classes 
                        <ConcreteBuilderCC : BuilderAC> 
   

                  || // Instantiation classes 
                       <ProductCC : ConcreteBuilderCC> 
                }                     (5.86) 
 
b) Behaviors of the Builder Pattern 
 

Based on the formal model of the architecture of the Builder pattern, its 
static and dynamic behaviors can be rigorously described, as given in Fig. 
5.30, using the RTPA behavioral modeling scheme described in Section 4.7. 

It can be observed that the conventional pattern notations using UML 
class diagrams as shown in Fig. 5.29 are inadequate to denote what the 
behaviors and functions are, because it only provides a rough conceptual 
model. The RTPA notation system and methodology provide a rigorous 
means and generic formula for modeling any existing patterns and future user 
defined patterns in software engineering [Vu and Wang, 2004; Wang and 
Huang, 2005].     

It is noteworthy that the behaviors of a pattern are highly general in 
nature, for which application specific details are yet to be implemented 
according to user’s requirements during run-time until an instantiation of 
applications invokes the pattern.     

Software patterns are a higher layer construct built upon classes and 
objects for modeling system architectures and behaviors. Software patterns 
may be adopted to enable abstraction, guide creative design, separate 
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interface and implementation of system components, facilitate design reuse, 
and improve architecture design quality. The rigorous treatment of object-
oriented patterns demonstrates a powerful cognitive means for 
comprehending existing patterns and creating new patterns in software 
engineering.   
 
 
5.5.3 PROGRAMS MODELING AT SYSTEM LEVEL – 
         FRAMEWORKS 
 
 System frameworks are the top-level system modeling techniques built 
upon algorithms, classes, and/or patterns in an object-oriented or component-
based approach [Sparks et al., 1996; Fayad et al., 1999; Wang and King, 
2000a].         
  

Definition 5.64 A software system framework is an architectural model 
of an entire system that represents the overall structure, components, 
processes, and their interrelationships and interactions. 
 

A system framework permits template-based development in software 
engineering. Framework technologies enable domain and design knowledge 
to be reused as well as that of code. The taxonomy of system frameworks can 
be summarized as shown in Table 5.21.     

 
Table 5.21 

Taxonomy of System Frameworks 
 

Category Framework Example 
1. Systems   
1.1 Operating system frameworks Unix, MS Windows 
1.2 Compiler frameworks C++, Java, XML 

1.3 Database frameworks Oracle, Access, xbase 
1.4 Communication and networking 

frameworks 
Internet, OSI 

1.5 Distributed system and middleware  
Frameworks 

CORBA, DCOM   
 

1.6 Real-time system frameworks RT-CORBA, RTOS+ 
2. Applications   
2.1 Domain frameworks Telecom, banking, flight control 
2.2 Object-oriented frameworks  A reusable design of a system that 

is presented by a set of classes 
and their interactions 

2.3 Enterprise frameworks Companies, banks, universities 
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Example 5.24 A conceptual model of a Telephone Switching System 
(TSS) is given in Fig. 5.31 for illustrating the framework modeling 
methodology.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.31 The telephone switching system (TSS) 

 

The framework of the TSS system, encompassing its architecture, 
schemas of static behaviors, and schemas of dynamic behaviors, can be 
specified using RTPA as follows [Wang, 2002a].        
 

a) System architectural framework: The architectural framework of the 
TSS system is given in Fig. 5.32.    

 

 

Figure 5.32 The architectural framework of the TSS system 

 
                              Signaling 
                                Trunks                                 TSS 
                     …          [5]                                     Call 
                                                                        Processor 
    

  0          • 
                     

  1              •              Line                                                                                                                          Call 
                              Scanners                                                                         Records 
  …                                                            
  15               •           [16]                                                                                [16]   
 
  
                               Routes                                                                             System  
                                                                                                                        Clock 
                                   [5]                                                                                   [1] 
 
                                      
                                 Digits                                    [1] 
                    …      Receivers 
                                  [16]  
  

TSS.ArchitectureST  CallProcessingSubsys  
                                  || SubscriberSubsys  
                                  || RouteSubsys 
                                  || SignalingSubsys  
 
=   (  CallProcessorST [1]   // specified by the system static/dynamic behaviors 
      || SysClockST [1] 
      || CallRecordsST [16] 
     ) 
  || (   SubscribersST [16]                // status represented by  
                                                       // the line scanners and call records 
      || LineScannersST [16] 
     ) 
  || RoutesST [5] 
  || (   DigitsReceiversST [16] 
      || SignalingTrunksST [5] 
     )  
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b) System static behavioral framework: The static behavioral 
framework of the TSS system is given in Fig. 5.33.   

  

 
Figure 5.33 The static behavioral framework of the TSS system 
 

c) System dynamic behavioral framework: The dynamic behavioral 
framework of the TSS system, in terms of TSS process deployment and 
dispatch, is given in Figs. 5.34 and 5.35, respectively.    
 

 
Figure 5.34 The process deployment framework of the TSS system 

TSS.StaticBehaviorsST   SysInitial  
           || SysClock 
                || LineScanning 
                                   || DigitsReceiving  
              || ConnectDrive  
           || CallProcessing  
 

TSS.StaticBehaviorsST.CallProcessing  
              CallOrigination  
      || Dialling 
 || CheckCalledStatus 
 || Connecting 
 || Talking 
 || CallTermination  
 || ExceptionalTermination  

TSS.ProcessDeploymentST  § → 
{   // Base level processes 
    @SystemInitial 
       ↳ ( SysInitial 

              →   
SysShutdown

R
=

T

BL F
CallProcessing 

              → ⊠  
            ) 
 ||  // High-level interrupt processes 
    @SysClock1msInt⊙               

        ↳ (SysClock 
             → DigitsReceiving 
            ) 
 ||  // Low-level interrupt processes  
    @SysClock100msInt⊙                      

        ↳  LineScanning 
} → §  
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In Fig. 5.34, the iterative CallProcessing process is a complex process 
that can be further refined in the system process dispatching framework as 
shown in Fig. 5.35.   

 
 

 
 
Figure 5.35 The process dispatching framework of the TSS system 
 

In Example 5.24, all aspects of system framework descriptions follow 
the same system-level modeling scheme of RTPA as presented in Section 
4.7.1. Further details of the TSS system framework specifications may be 
referred to [Wang, 2002a]. More empirical design and implementation of 
application frameworks have been reported in [Fayad and Schmidt, 1997; 
Fayad et al., 1999].           
             

   

CallProcessing  § → 

{  

  nN := 15 

  → (   ⓢCallRecord.CallStatusBL = T  

                → LineNumN := iN 

                → ( @ CallRecord(iN).CallProcessN = 0                      // Idle   

                            → ∅ 

     | @ CallRecord(iN).CallProcessN = 1                     // Call origination   

                            ↳  CallOrigination (<I:: LineNumN>; <O:: CallProcessN>)  

            | @ CallRecord(iN).CallProcessN = 2               // Dialing 

                  ↳  Dialling (<I:: LineNumN>; <O:: CallProcessN>) 

             | @ CallRecord(iN).CallProcessN = 3                     // Check called status    

      ↳  CheckCalledStatus (<I:: LineNumN>; <O:: CallProcessN>)         

                | @ CallRecord(iN).CallProcessN = 4                // Connecting   

                  ↳  Connecting (<I:: LineNumN>; <O:: CallProcessN>) 

             | @ CallRecord(iN).CallProcessN = 5                     // Talking  

      ↳  Talking (<I:: LineNumN>; <O:: CallProcessN>) 

                    | @ CallRecord(iN).CallProcessN = 6                     // Call termination  

                  ↳  CallTermination (<I:: LineNumN>; <O:: CallProcessN>) 

              | @ CallRecord(iN).CallProcessN = 7                     // Exceptional termination 

                            ↳  ExceptionalTermination (<I:: LineNumN>; <O:: CallProcessN>) 

          ) 

      ) 

} → §   
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5.6 Resources and Processes   
        Modeling and Manipulation 
 

 
 
Theories and technologies of computational data objects, behaviors, and their 
interactions in the form of programs have been modeled in Sections 5.2 
through 5.4, respectively. The three facets form the foundation of computing, 
programming, and software engineering, which enable the coordination of 
computing resources and processes to be modeled and manipulated at the top 
level – the operating system level.  

 
This section describes typical architectures and generic functions of 

operating systems. In this section, the generic mathematical model of 
operating systems is established. The conceptual and typical commercial 
architectures of operating systems are surveyed. Then, the common functions 
of operating systems for computing resource and process manipulations, such 
as process and thread management, memory management, file system 
management, I/O system management, and network/communication 
management, are described. Real-time operating systems are presented with 
illustrations of the RTOS+ operating system to demonstrate how real-time 
resources and processes are coordinated and dispatched in computing. 
 
                     
5.6.1 ABSTRACT MODELS OF COMPUTING SYSTEMS  
 

Any program as well as its behavior space and semantic environment 
must be realized and executed by a target computer. A generic computing 
system model, also known as a virtual machine, can be described as shown in 
Fig. 5.36, where all computing resources and processes are modeled and 
represented in the system. The hardware subsystem at the bottom of the 
architecture can be extended as shown in Fig. 5.5.    

 
A mathematical model of the generic computing system on the basis of 

Fig. 5.36 can be described as follows.    
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Figure 5.36 Architecture of the operating system of a GCS 
 

Definition 5.65 The Generic Computing System (GCS), §, is an 
abstract logical model of the executing platform of a target machine denoted 
by a set of parallel or concurrent computing resources and processes, i.e.: 

 

 

 §  SysIDS ::  

            {    <
-1

0

procn

i
R
=
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N
 PiST>     // Processes   

               || <
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R
=

H

P
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           || <
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P
PORT[ptrP]RT>   // Ports 

|| <§tTM>    // The system clock   

|| <
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en

k
R
=

N

N
@ekS ↳Pk>    // Event-driven dispatch 

|| <
-1

0
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k
R
=

N

N
@tkTM ↳Pk>    // Time-driven dispatch  

|| <
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R
=
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@intk  ↳Pk >  // Interrupt-driven dispatch   

|| <
-1

0

Vn

i
R
=

N

N
ViRT>     // System variables    

|| <
-1

0

Sn

i
R
=

N

N
SiBL>    // System statuses   

   }                (5.87) 

 
where || denotes the parallel relation between given components of the 
system, and its formal semantics is provided in Section 6.6.2.      
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As shown in Eq. 5.87 and Fig. 5.36, a computing system § is the 
executing platform or the operating system that controls all the computing 
resources of the abstract target machine. The system is logically abstracted as 
a set of processes and underlying resources, such as the memory, ports, the 
system clock, and system status. A process is dispatched and controlled by 
the system §, which is triggered by various external, system timing, or 
interrupt events.   

Operating system technologies have evolved from rather simple notions 
of managing the hardware on behalf of a single user or sequentially 
scheduled users to multiuser time-sharing systems, and then to networked 
and distributed systems [Dijkstra, 1968b; Brinch-Hansen, 1971/73; Peterson 
and Silberschantz, 1985; Milenkovic, 1992; Tanenbaum, 1994/2001; 
Silberschatz et al., 2003]. Most modern operating systems are based on 
multi-programmed timesharing technologies.  

 
Definition 5.66 A Virtual Machine (VM) is a subset of an operating 

system that represents various computing resources to users in a unified 
manner, and hides hardware details and physical implementation differences 
at the lower layers.  

       
     For example, the Java Virtual Machine (JVM) is a self-contained Java 
operating environment that simulates a specific computer platform and its 
resources. 
 
      Definition 5.67 An Operating System is a set of integrated system 
software that organizes, manages, and controls the resources and computing 
power of a computer, or a computer network, and provides users a logical 
interface for accessing the physical machine to run applications.  
 

Almost all general-purpose computers need an operating system before 
any specific application may be installed and executed by users. The role of 
an operating system as a conceptual model of a computer is shown in Fig. 
5.37.                         
      The general-purpose operating systems can be classified into four 
types: the batch systems, time-sharing systems, real-time systems, and 
distributed systems. A batch system is an early type of operating system that 
runs similar jobs sorted by an operator as a batch through an operation 
console. A time-sharing system is a type of multitasking operating system 
that executes multiple jobs by automatically switching among them with 
predefined time slice. A real-time operating system is a type of special-
purpose operating system that is designed for dealing with highly time-
constrained events of processes and I/Os of control systems. A distributed 
operating system is a type of operating system that supports networking, 
communication, and file sharing among multiple computers via a network 
protocol [Sloane, 1993; Tanenbaum, 1994].   
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Figure 5.37 The role of an operating system in a general-purpose computer 
 
 
5.6.2 ARCHITECTURES OF OPERATING SYSTEMS 
 

The architectures of operating systems have evolved over the years 
from being a monolithic set of system services whose boundaries were 
difficult to establish to being a structured set of system services. Current 
operating systems are all based on the idea of building higher-level hardware 
abstraction from lower-level hardware-oriented functions. Thus, all kinds of 
hard disks, for example, are made to look and operate in the same manner by 
their low-level device drivers. Then, in turn, the operating system presents, 
with all other services in the system (such as the file system), a uniform, 
common view of the hard disk.  
 
5.6.2.1 The Generic Architecture of Operating Systems 
 

An operating system may be perceived as an agent between the 
computing resources of a computer or a computer network and the users as 
well as their applications as shown in GCS (Fig.5.36). The generic operating 
system may be divided into two parts: the kernel and the resource 
management subsystems [Peterson and Silberschantz, 1985; Silberschatz et 
al., 2003; and Tanenbaum, 2001]. The former is a set of central components 
for computing, including CPU scheduling and process management. The 
latter is a set of individual supporting software for various system resources 
and user interfaces.                      

The kernel is the most basic set of computing functions needed for an 
operating system. The kernel contains the interrupt handler, the task 
manager, and the interprocess communication manager. It may also contain 
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the virtual memory manager and the network subsystem manager. With these 
services the system can operate all the hardware present in the system and 
also coordinate the activities between tasks. The services provided by an 
operating system can be organized in categories, where four typical 
categories are task control, file manipulation, device control, and 
information maintenance.  

The following subsection presents the architectures of a number of 
typical operating systems such as Unix, Linux, and Windows XP. Users may 
compare their features with the generic architecture of GCS.        
 
5.6.2.2 The Unix™ and Linux™ Operating Systems 
 
 The history of Unix can be traced back to 1969 based on Ken 
Thompson, Dennis Ritchie, and others’ work [Thomas et al., 1986]. The 
name "Unix" was intended as a pun on Multics (UNiplexed Information and 
Computing System). The development of Unix was essentially confined to 
Bell Labs for DEC's PDP-11 (16 bits) and later VAXen (32 bits) [Earhart, 
1986]. But much happened to Unix outside AT&T, especially at Berkeley. 
Major vendors of workstations, such as SUN’s NFS, also contributed to this 
development.   

The architecture of Unix is shown in Fig. 5.38, which can be divided 
into the kernel and the system programs. The Unix kernel consists of system 
resource management, interfaces, and device drivers, such as the CPU 
scheduling, file system, memory management, and I/O management. 
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Figure 5.38 The architecture of Unix™ 
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      Linux is a complete Unix clone for Intel 386/486/Pentium machines 
[Siever et al., 2003]. Linux is an operating system, which acts as a 
communication service between the hardware and software of a computer 
system. The Linux kernel contains all of the features that one would expect 
in any operating system. Some of the features included are: multitasking, 
virtual memory, fast TCP/IP drivers, shared libraries, multi-user capability, 
and protected mode.  
 
5.6.2.3 The Windows™ XP Operating System 
 

Windows XP is a multitasking operating system built on enhanced 
technologies that integrate the strengths of Windows 2000 such as standard-
based security, manageability, and reliability, with the best features of 
Windows 98 such as plug and play, and easy-to-use user interfaces. 

The architecture of Windows XP is shown in Fig. 5.39. Windows XP 
adopts a layered structure that consists of the hardware abstraction layer, the 
kernel layer, the executive layer, the user mode layer, and applications. 
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Figure 5.39 The architecture of Windows™ XP 
      
      Each kernel entity of Windows XP is treated as an object that is 
managed by an object manager in the executive. The kernel objects can be 
called by the user-mode applications via an object handle in a process. The 
use of kernel objects to provide basic services, and the support of client-
server computing, enable Windows XP to support a wide variety of 
applications. Windows XP also provides virtual memory, integrated caching, 
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preemptive scheduling, stronger security mode, and internationalization 
features.           
 
 

5.6.3 COMPUTING RESOURCES MANIPULATION 
 

The basic functions of operating systems can be classified as process 
and thread management, memory management, file system management, I/O 
system management, and network/communication management. This 
subsection describes the fundamental technologies of main operating system 
functions for computing resources manipulation in modern operating 
systems.    
    
5.6.3.1 Process Management 
 

A process is an execution of a program on a computer under the 
support of an operating system. A process can be a system process or a user 
process. The former executes system code, and the latter runs a user’s 
application. Processes may be executed sequentially or concurrently 
depending on the type of operating systems.   
      The operating system carries out process management by the following 
activities: 

 
• Detection of process requests 

•  Creation of processes by individual Process Control Blocks 
(PCBs) 

•  Allocation of system resources to processes, such as CPU time, 
memory, files, and I/O devices  

•  Scheduling of processes based on a predefined process state 
transition diagram  

•  Termination of processes 
 
      A typical process state transition diagram of a real-time operating 
system, RTOS+ [Wang and Ngolah, 2003], will be given in Fig. 5.41.      
      Threads are an important concept of process management in operating 
systems [Lewis and Berg, 1998]. A thread is a basic unit of CPU utilization, 
or a flow of control within a process, supported by a thread control block 
with a thread ID, a program counter, a set of registers, and a stack. 
Conventional operating systems are single thread systems. Multithreaded 
systems enable a process to control a number of execution threads. The 
benefits of multithreaded operating systems and multithreaded programming 
are responsiveness, resource sharing, implementation efficiency, and 
utilization of multiprocessor architectures of modern computers.              
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5.6.3.2 CPU Scheduling 
 

CPU scheduling is a fundamental operating system function to 
maximize CPU utilization. The techniques of multiprogram and multithread 
are introduced to keep the CPU running different processes or threads on a 
time-sharing basis. CPU scheduling is the basis of multiprogrammed and 
multithreaded operating systems [Brinch-Hansen, 1971]. The CPU scheduler 
and dispatcher are two kernel functions of operating systems. The former 
selects which process in the ready queue should be run next based on a 
predefined scheduling algorithm or strategy. The latter switches control of 
the CPU to the process selected by the scheduler.      
      Some typical CPU scheduling algorithms are described as follows. 
   

     • First-come-first-served (FCFS) scheduling: This algorithm 
schedules the first process in the ready queue to the CPU based 
on the assumption that all processes in the queue have an equal 
priority. FCFS is the simplest scheduling algorithm for CPU 
scheduling. The disadvantage of the FCFS algorithm is that if 
there are long processes in front of the queue, short processes 
may have to wait for a very long time.   

•  Shortest-job-first (SJF) scheduling: This algorithm gives priority 
to the short processes, which results in the optimal average 
waiting time. But the predication of process length seems a 
difficult issue by using the SJF strategy. 

•  Priority (PR) scheduling: This algorithm assigns different 
priorities to individual processes. Based on this, CPU scheduling 
will be carried out by selecting the process with the highest 
priority. The drawback of the priority algorithm is starvation, a 
term that denotes the indefinite blocking of low priority processes 
under high CPU load. To deal with starvation, the ageing 
technique may be adopted that increases the priority levels of low 
priority processes periodically, so that the executing priorities of 
those processes will be increased automatically while waiting in 
the ready queue.             

     • Round-robin (RR) scheduling: This algorithm allocates the CPU 
to the first process in the FIFO ready queue for only a predefined 
time slice, and then it is put back at the tail of the ready queue if it 
has not yet been completed. 

     •  Multiprocessor scheduling: This algorithm schedules each 
processor individually in a multiprocessor operating system on 
the basis of a common queue of processes. In a multiprocessor 
operating system, processes that need to use a specific device 
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have to be switched to the right processor that is physically 
connected to the device.  

 
5.6.3.3 Memory Management 
 

Memory management is one of the key functions of operating systems 
because memory is both the working space and storage of data or files. 
Common memory management technologies of operating systems are 
contiguous allocation, paging, segmentation, and combinations of these 
methods [Silberschatz et al., 2003]. 
 

     •  Contiguous memory allocation: This method is used primarily in 
a batch system where memory is divided into a number of fixed-
sized partitions. The contiguous allocation of memory may be 
carried out by searching a set of holes (free partitions) that best fit 
the memory requirement of a process. A number of algorithms 
and strategies were developed for contiguous memory allocation 
such as the first-fit, best-fit, and worst-fit algorithms [Tanenbaum 
and Tanenbaum, 2001].         

     •  Paging: Paging is a dynamic memory allocation method that 
divides the logical memory into equal blocks known as pages 
corresponding to physical memory frames. In a paging system, 
each logical address contains a page number and a page offset. 
The physical address is generated via a page table where the base 
address of an available page is provided. Paging technology is 
used widely in modern operating systems to avoid the 
fragmentation problem as found in the early contiguous memory 
allocation techniques.                    

     •  Segmentation: This is a memory-management technique that uses 
a set of segments (logical address spaces) to represent user’s 
logical view of memory independent of the physical allocation of 
system memory. Segments can be accessed by providing their 
names (numbers) and offsets.      

     •  Virtual memory: When the memory requirement of a process is 
larger than physical memory, an advanced technique needs to be 
adopted known as the virtual memory, which enables the 
execution of processes that may not be completely in memory. 
The main approach to implement virtual memory is to separate 
the logical view of system memory from its physical allocation 
and limitations. Various technologies have been developed to 
support virtual memory such as the demand paging and demand 
segmentation algorithms [Silberschatz et al., 2003].            
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In memory-sharing systems, the sender and receiver use a common area 
of memory to place the data that is to be exchanged. To guarantee 
appropriate concurrent manipulation of these shared areas, the operating 
system has to provide synchronization services for mutual exclusion. A 
common synchronization primitive is the semaphore, which provides mutual 
exclusion for two tasks using a common area of memory. In a shared 
memory system the virtual memory subsystem must also collaborate to 
provide the shared areas of work. 
 
5.6.3.4 File System Management 
 

File system is the most used function of operating systems for non-
programming users. A file is a logical storage unit of data or code separated 
from its physical implementation and location. Types of files can be text, 
source code, executable code, object code, word processor formatted, or 
system library code. The attributes of files can be identified by name, type, 
location (path of directory), size, date/time, user ID, and access control 
information. Logical file structures can be classified as sequential and 
random files. The former are files that organize information as a list of 
ordered records; while the latter are files with fixed-length logical records 
accessible by its block number.                      
      Typical file operations are reading, writing, and appending. Common 
file management operations are creating, deleting, opening, closing, copying, 
and renaming.    
      The file system of an operating system consists of a set of files and a 
directory structure that organizes all files and provides detailed information 
about them. The major function of a file management system is to map 
logical files onto physical storage devices such as disks or tapes. Most file 
systems organize files by a tree-structured directory. A file in the file system 
can be identified by its name and detailed attributes provided by the file 
directory. The most frequently used method for directory management is the 
hash table. Although it is fast and efficient, backup is always required to 
recover a hash table from unpredicted damage.  
      A physical file system can be implemented by contiguous, linked, and 
indexed allocation. Contiguous allocation can suffer from external 
fragmentation. Direct-access is inefficient with linked allocation. Indexed 
allocation may require substantial overheads for its index block.                     
 
5.6.3.5 I/O System Management 
 

I/O devices of a computer system encompass a variety of generic and 
special-purpose hardware and interfaces. Typical I/O devices that an 
operating system deals with are shown in Table 5.22. 
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Table 5.22  
Types of I/O Devices  

 

Types of I/O devices Examples 

System devices System clock, timer, interrupt controller 

Storage devices Disks, CD drivers, tapes 

Human interface devices Keyboard, monitor, mouse 

Communication devices Serial/parallel buses, network cards, DMA controllers, 
MODEMs 

Special devices Application-specific control devices 

 
      I/O devices are connected to the computer through buses with specific 
ports or I/O addresses. Usually, between an I/O device and the bus, there is a 
device controller and an associated device driver program. The I/O 
management system of an operating system is designed to enable users to use 
and access system I/O devices seamlessly, harmoniously, and efficiently.                  
      I/O management techniques of operating systems can be described as 
follows: 
 

     •  Polling: Polling is a simple I/O control technique by which the 
operating system periodically checks the status of the device until 
it is ready before any I/O operation is carried out.   

 
     •  Interrupt: Interrupt is an advanced I/O control technique that lets 

the I/O device or control equipment notify the CPU or system 
interrupt controller whenever an I/O request has occurred or a 
waiting event is ready. When an interrupt is detected, the 
operating system saves the current execution environment, 
dispatches a corresponding interrupt handler to process the 
required interrupt, and then returns to the interrupted program. 
Interrupts can be divided into different priorities on the basis of 
processor structures in order to handle complicated and 
concurrent interrupt requests.                       

 
     •  DMA: Direct memory access (DMA) is used to transfer a batch of 

large amounts of data between the CPU and I/O devices, such as 
disks or communication ports. A DMA controller is handled by 
the operating system to carry out a DMA data transfer between an 
I/O device and the CPU.         

 
     •  Network sockets: Most operating systems use a socket interface to 

control network communications. When requested in networking, 
the operating system creates a local socket and asks the target 
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machine to be connected to establish a remote socket. Then, the 
pair of computers may communicate by a given communication 
protocol.                 

 
5.6.3.6 Communication Management  
 

A fundamental characteristic that may vary from system to system is 
the manner of communication between tasks. The two manners in which this 
is done are via messages sent between tasks or via the sharing of memory 
where the communicating tasks can both access the data. Operating systems 
can support either. In fact, both manners can coexist in a system.  

In message-passing systems, the sender task builds a message in an 
area that it owns and then contacts the operating system to send the message 
to the recipient. There must be a location mechanism in the system so that the 
sender can identify the receiver. The operating system is then put in charge 
of delivering the message to the recipient. To minimize the overhead of the 
message delivery process, some systems try to avoid copying the message 
from the sender to the kernel and then to the receiver, but to provide means 
by which the receiver can read the message directly from where the sender 
wrote it. This mechanism requires the operating system intervenes if the 
sender wants to modify the contents of a message before the recipient has 
gone through its content. 

In memory-sharing systems, the sender and receiver use a common area 
of memory to place the data that is to be exchanged. To guarantee 
appropriate concurrent manipulation of these shared areas, the operating 
system has to provide synchronization services for mutual exclusion. A 
common synchronization primitive is the semaphore, which provides mutual 
exclusion for two tasks using a common area of memory. In a shared 
memory system, the virtual memory subsystem must also collaborate to 
provide the shared areas of work. 

The ISO Open Systems Interconnection (OSI) reference model was 
developed in 1983 [Day and Zimmermann, 1983] for standardizing data 
communication protocols between different computer systems and networks. 
The OSI reference model is an important protocol framework for regulating 
multi-vendor multi-OS computers interconnection in Local Area Network 
(LAN) and Wide Area Network (WAN) environments [Stallings, 2000]. 
From bottom-up, the seven layers are: physical, data link, network, transport, 
session, presentation, and application as shown in Fig. 5.40.      

Fig. 5.40 contrasts the functional equivalence between the OSI model 
and TCP/IP (the Transmission Control Protocol/Internet Protocol) [Day and 
Zimmermann, 1983]. The TCP/IP design philosophy [Comer, 1996/2000] is 
to provide universal connectivity with connection-independent protocols at 
the network layer. Thus TCP/IP does not address the data link and physical 
layers which determine the communication channels. There are no separate 
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application, presentation, and session layers in TCP/IP; instead, a combined 
application layer is provided in TCP/IP, which has the functions of those 
layers.    
 

          OSI                                                          TCP/IP   
                  
                                                              
        Application                              Telnet      FTP      NFS        DNS        
        
       Presentation                                                                            etc.    
        
           Session         
        
         Transport                                         TCP                      UDP           
        
          Network                                                          IP           
         
          Data link                                                          - 
        
          Physical                                                           - 
        

 
Figure 5.40 The OSI reference model and TCP/IP 
 

The IP protocol is approximately equivalent to the OSI network layer. 
In a WAN, IP is presented on every node in the network. The role of IP is to 
segment messages into packets (up to 64 kbyte) and then route and pass the 
packets from one node to another until they reach their destinations. IP uses 
packet switching as its fundamental transmission algorithm. A message is 
transmitted from gateway to gateway by dynamic routed packets. IP routes 
packets to their destination network, but final delivery is left to TCP. The 
TCP protocol fulfills the role of the OSI transport layer, plus some of the 
functionality of the session layer. TCP is designed to provide end-to-end 
connectivity. TCP is not required for packet routing, so it is not included on 
gateways. TCP provides an acknowledgement mechanism to enable 
messages to be sent from destination(s) back to the sender to verify receipt of 
each packet that makes up a message.  
 
5.6.3.7 Network Management 
 

A network operating system implements protocols that are required for 
network communication and provides a variety of additional services to users 
and application programs. Network operating systems may provide support 
for several different protocols known as stacks, e.g., a TCP/IP stack and an 
IPX/SPX stack. A modern network operating system provides a socket 
facility to help users to plug-in utilities that provide additional services. 
Common services that a modern network operating system can provide are as 
follows. 
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•  File services: File services transfer programs and data files from a 
computer on the network to another.  

•  Message services: Message services allow users and applications 
to pass messages from a computer to another on the network. The 
most familiar application of message services is Email and 
intercomputer talk facilities. 

     • Security and network management services: These services 
provide security across the network and allow users to manage 
and control the network.  

     •  Printer services: Printer services enable sharing of expensive 
printer resources in a network. Print requests from applications 
are redirected by the operating system to a network workstation, 
which manages the requested printer. 

•  Remote Procedure Calls (RPCs): RPCs provide application 
program interface services to allow a program to access local or 
remote network operating system functions.   

•  Remote processing services: These services allow users or 
applications to remotely login to another system on the network 
and use its facilities for program execution. The most familiar 
service of this type is Telnet, which is included in the TCP/IP 
protocol suite [Comer, 1996/2000] and many other modern 
network operating systems. 

 
 

5.6.4 REAL-TIME/EMBEDDED RESOURCES AND 
         PROCESSES MANIPULATION 
 

A Real-Time Operating System (RTOS) is essential to implement 
embedded and/or real-time control systems. An RTOS is an operating system 
that guarantees timely processing of external and internal events of real-time 
systems. There were varying models of real-time operating systems 
developed in the last decades [Labrosse, 1999; Laplante, 1977; Liu, 2000].  

 
Problems often faced by RTOS's are CPU and tasks scheduling, 

timing/event management, and resource management. RTOS requires 
multitasking, process threads, and explicit interrupt levels to deal with real-
time events and interrupts. An extended RTOS, RTOS+ [Wang and Ngolah, 
2003; Ngolah et al., 2004] is presented in this section to describe real-time 
resources modeling and manipulation.  
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5.6.4.1 The Architecture of RTOS+ 
 

RTOS+ is a portable and multitask/multithread operating system 
capable of handling event-, time-, and interrupt-driven processes in a real-
time environment. The architecture of RTOS+ is shown in Fig. 5.41, where 
interactions between system resources, components, and internal control 
models are illustrated. There are four subsystems in RTOS+: a) the processor 
and task scheduler, b) the resource controller, c) the event handler, and d) the 
system resources. The task scheduler is the innermost operating system 
kernel that directly controls the CPU and all other system resources by 
system control blocks. The resources of RTOS+, supplemented to the CPU, 
are mainly the memory, system clock, I/O ports, interrupt facilities, files, and 
internal control models such as queues and task/resource control blocks as 
shown in Fig. 5.41. 
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Figure 5.41 The architecture of RTOS+ 
 
      The task scheduling of RTOS+ is priority-based. A fixed-priority 
scheduling algorithm is adopted where the priority of a task is assigned based 
on its importance when it is created. Tasks are categorized into four priority 
levels with descending priority: the high and low priority interrupts, as well 
as the high and base priority processes. A process, when created, will be put 
into a proper queue corresponding to its predefined priority level. 
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5.6.4.2 The Task Scheduler of RTOS+ 
 

The Task Scheduler is the kernel of RTOS+. Its behaviors can be 
modeled by a state transition diagram as shown in Fig. 5.42. The task 
scheduler of RTOS+ is designed for handling event-, time-, and interrupt-
driven processes, in which the CPU is allocated by a fixed time-slice for 
executing a given process.  
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Figure 5.42 Process state transition diagram of RTOS+ 
      

      Process requests are handled by the task scheduler for creating a 
process. When a new process is generated, it is first put into the waiting state 
with a PCB and a unique task ID. The system uses a Resource Control Block 
(RCB) to manage system resources. Each task in the waiting state must be 
checked to see if there are enough resources for its execution. If resources are 
available, it is transferred into the ready state; otherwise it has to be re-
queued at the tail of the waiting queue until resources are available. 

The task scheduler continuously checks the ready queue for any ready 
task. If there are ready tasks, it executes the first task in the queue until it is 
completed (State 4) or is suspended. There are three conditions that may 
cause a running task to be suspended during execution: a) interrupted by a 
task or event with higher priority, b) time-out for a scheduled time-slice of 
CPU, and c) waiting for a specific event. The scheduler may remove the CPU 
from a running task if a higher priority interrupt request occurs. Such 
interruption will cause the running task to go into the interrupted queue and 
later return to the appropriate ready queue when the interrupt service is over. 
A task that has exhausted its assigned time-slice must go to the delayed 
queue. When a new CPU time-slice is available, it is re-scheduled into the 
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appropriate ready queue. A task that can no longer be executed due to 
waiting for an event goes into the suspended queue, and returns to the 
appropriate ready queue once the event has occurred. In any of these 
suspended cases, the task is put into a corresponding queue in States 5, 6, or 
7, respectively. The task will be re-scheduled into ready state when the cause 
of the suspension is no longer true.  
      A task suspended may be cancelled (State 8) by the scheduler from the 
queues of States 5, 6, or 7 in case there is a lack of resources or under the 
request of users. 
 
5.6.4.3 Process Dispatching of RTOS+ 

 
      In the previous subsection, the conceptual model of RTOS+ has been 
established. To further refine the design of RTOS+, RTPA is adopted as a 
formal specification means. The dynamic behaviors of RTOS+ can be 
described by the interactions of parallel processes between TaskScheduling, 
TimeManagement, ResourceManagement, and SystemControlUpdate as 
shown in Fig. 5.43.  
 
 

 

Figure 5.43 Real-time process deployment in RTOS+ 

RTOSST.ProcessDeployment  
{ // Basic level processes 
      @SystemInitial 
          ↳ ( SysInitial  

      ↳
@SysShutDown=
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T
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TaskManagement 

       → ⊠  
    ) 
 

  || // High-interrupt level processes 
       ⊙ @SysClock1msInt  
            ( SysClock 

 ↳ TaskScheduling 
        ↳  SystemControlBlockUpdate 
        ↳  InterruptManagement 
        ↳  TimeManagement 
              ↳  HighPriorityEventScan 

      ) 
              ⊙  
   || // Low-interrupt level processes 
        ⊙ @SysClock100msInt  
              ( BaseEventScane 
                    ↳ ResourceManagement 
                 ) 
              ⊙  
} 
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RTOS+ runs the TaskManagment routine continuously by updating and 
dispatching various processes in different queues. If an interrupt occurs 
during run-time, the interrupt handling process (SysClock100msInst) saves 
the current executing environment, switches control to the interrupting 
process, and then automatically returns to the interrupted process following 
completion of a higher priority operation. SysClock100msInt handles low 
level interrupt events, such as system ResourceManagement at 100ms 
intervals.  

Corresponding to the state transition diagram as shown in Fig. 5.42, the 
task scheduler of RTOS+ is specified by RTPA in Fig. 5.44. The process 
dispatching mechanism of RTPA is used to formally describe the RTOS+ 
dynamic behaviors by a set of event-driven relationships between system 
events and functional processes of the operating system kernel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.44 Dynamic behaviors of the RTOS+ task scheduler 
 
 Other core operations of RTOS+, such as task scheduling, time, event, 
and resource management, can be rigorously modeled and described for 
better real-time performance and improved resource utilization. On the basis 
of the formal specification of RTOS+ by RTPA, architectural and behavioral 
consistency and correctness of RTOS+ can be improved [Wang and Ngolah, 
2003].  

This section has described resources and processes organization and 
manipulation by operating systems. The conceptual and typical commercial 
architectures of operating systems have been surveyed. A mathematical 

RTOSST.TaskScheduler   

{    ⓢNewProcRequestBL = T 

          → CreatePCB (<I:: ProcIDN>; <O:: ()> 
          → ProcStateN = 1 

   |  ⓢPCB.ProcStateN ≥ 1 

          ProcStateN 

            | 1 → Waiting (<I::(ProcIDN); O::()>) 
            | 2 → Ready (<I::(ProcIDN); O::()>) 
            | 3 → Running (<I::(ProcIDN); O::()>) 
            | 4 → Completed (<I::(ProcIDN); O::()>) 
            | 5 → Interrupted (<I::(ProcIDN); O::()>) 
            | 6 → Delayed (<I::(ProcIDN); O::()>) 
            | 7 → Suspended (<I::(ProcIDN); O::()>) 
            | 8 → Killed (<I::(ProcIDN); O::()>) 
            | 9 → InterruptService (<I::(ProcIDN); O::(IntReturnBL)>) 
           |~ → ∅ 
} 
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model of generic operating systems and computing resources is established. 
Common functions of operating systems, such as process and thread 
management, memory management, file system management, I/O system 
management, and network/communication management, are presented. The 
real-time operating system, RTOS+, is introduced with formal models and 
event/time/interrupt-driven process dispatching techniques. 
 
 

 
5.7 Summary 
 

 
 
Computer science is an applied scientific and engineering discipline with 
the systematic study and development of computers and software as its 
principle subject matters. Computing theories encompass computational 
methods, computing objects, and computing resources, which form one of 
the most important and direct foundations of software engineering. The 
essences of computer science are the rigorous treatment of modeling 
theories and techniques for data objects, system architectures, operational 
behaviors, and their interactions incorporated in a program. 

 This chapter has explored the computing foundations of software 
engineering on rigorous treatment of data objects, architectures, behaviors, 
program modeling theories, and techniques. It has also examined what 
computer science may and may not provide for software engineering. Basic 
computation models, such as automata, Turing machines, von Neumann 
machines, cognitive computers, and autonomic computing machines, have 
been explored. Data objects modeling with type theory and system 
architectural modeling with CLMs have been centered. Behavioral modeling 
and manipulation has been focused on meta processes and BCS’s because of 
their fundamental and highly recurring roles in computing. Program 
modeling has been treated as a coordination of computational behaviors and 
data objects/architectures. Resources manipulation and process coordination 
in software engineering have been presented with generic and real-time 
operating system models. As a result, the computing foundations of 
software engineering have been established.   
  
 

ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Computing Foundations of Software 
Engineering, readers have achieved the following strategic goals with the 
knowledge architecture as summarized below. 
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Chapter 5. Computing Foundations of SE  

 
■ Basic Computation Models 
        •  Basic operations in computing              
        •  Automata 
            - Automata and Finite State Machines (FSMs)   
            - Approaches to describe FSMs   
            - Description of software behaviors by FSMs   
            - FSM composition and fefinement   
            - Deterministic and nondeterministic automata  
            - Usage of automata  
   

        •  Turing machines           
            - The abstract model of computing  
            - Formal description of Turing machines   
            - The nature of computing  
          

        •  von Neumann machines 
            - The stored-program concept  
            - The von Neumann architecture of computers  
 

        •  Cognitive machines 
            - The Wang architecture of computers  
            - Cognitive computers  
 
■  Data Object Modeling and Manipulation 
        •  Types and data structures 
            - Type systems of programming languages  
            - Primitive types  
            - Derived and advanced types  
            - System architectural types  
 

        •  Basic data modeling techniques   
            - Identifiers  
            - Variables and constants  
            - Expressions  
          

        •  Formal type theory 
            - Type rules  
            - Formal type systems   
            - Complex type rules for the RTPA derived types  
 

        •  Abstract data types (ADTs)    
            - The generic model of ADTs  
            - Modeling complex data structures and component architectures 
               by ADTs  
            - Typical ADTs modeled in RTPA  
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■  Behavioral Modeling and Manipulation  
        •  Internal behaviors modeling 
            - Basic control structures (BCS’s)  
            - Control flow graphs  
 

        •  Iterative and recursive behaviors modeling 
            - Formal description of iterations  
            - Formal description of recursions  
            - Comparative analysis of iterations and recursions   
 

        •  External and interactive behaviors modeling  
            - Memory manipulations  
            - Events handling 
 

■  Program Modeling: Coordination of Computational Behaviors 
     and Data Objects  
        •  The unified mathematical model of programs   
            - The abstract model of statements  
            - The abstract model of processes  
            - The abstract model of programs  
                                           

        •  Program modeling at component level 
            - Algorithms  
            - Classes and object-orientation  
            - Patterns  
 

        •  Program modeling at system level - frameworks  
 

■  Resources and Processes Modeling and Manipulation  
        •  Abstract models of computing systems 
 

        •  Architectures of operating systems 
            - The generic architecture of operating systems  
            - The Unix and Linux operating systems  
            - The Windows XP operating systems  
 

        •  Computing resources manipulation 
            - Process management  
            - CPU scheduling  
            - Memory management  
            - File system management  
            - I/O system management  
            - Communication management  
            - Network management  
 

        •  Real-time/embedded resources and processes manipulation 
            - The architecture of RTOS+  
            - The task scheduler of RTOS+  
            - Process dispatching of RTOS+   
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SIGNIFICANT FINDINGS OF THIS CHAPTER 
 
 • Software engineering was perceived as a branch of computer 
science. However, computer science only provides basic computing theories 
and programming methodologies. Software engineering has historically 
focused on programming methodologies, programming languages, software 
development models, and tools. Areas now thought critical to software 
engineering – nature of software, cognitive foundations, denotational 
mathematical means, architectural and behavioral laws, system theories, 
organizational and management infrastructures – have been largely 
overlooked. 
 

• The objects in computation can be abstracted by binary digits (bits) 
and a few primitive types. Any complex real-world data object in computing 
can be reduced to these primitive types. Based on this profound axiom of 
data objects in computing, computational methods in general are assumed 
to be arithmetical and logical operations, and any other complex operations 
must be reduced to these kinds of basic forms. In addition, computing 
resources are dramatically simplified as a sequential memory space with 
binary digits or characters. That is why the hardware technology was so 
mature because all issues can be reduced to basic operations and basic 
objects by deduction.  

 
• However, in software engineering, the development of software is a 

one-off activity. To the maximum extent, a program can only be reduced to 
known languages statements and primitive types. The method and process 
are highly reusable, but the objects and resources are far more complicated 
than those of hardware devices. 

 
• Most software systems go wrong not because they are incorrect on 

normally required functions, but because there are wrong or not prepared 
for implied or nonspecified exceptions (Theorem 5.3). Therefore, system 
design and specification should focus on the entire SΩ = δ + δ .  

• This is a major indicator that distinguishes professionals and 
amateurs in software engineering, where the latter focus only on 
required behaviors (δ); while the former model the whole behaviors of 
a given system ( δ  + δ).  

 
• In computing, the most generic functions and routine tasks are 

implemented with a hardware processor. Therefore, what left for software are 
one-off applications. As a consequence, the reuse rate of software cannot be 
as high as any software reuse technique promises. Just like that in the 
publishing and journalist industries, nobody talks reuse in composition.  
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• The mathematical model of programs is a finite set of cumulated 

relations between processes, which in turn is a finite set of cumulated 
relations of statements (Eqs. 5.65, 5.67, and 5.68).   

 
• An Autonomic Computing Machine (ACM) is a nonimperative 

computer that autonomously carries out robotic and interactive applications 
based on goal- and event-driven mechanisms on the basis of nonlinear and 
content sensitive memory architectures. 

 
• On the basis of the above fundamental computing models, the entire 

computing theory can be divided into: 

- Data object modeling 
- Operational behavioral modeling 
- Program modeling 
- Resource and process modeling  
 
• The data object modeling process is much more important and 

difficult than that of behaviors modeling, because the former is an open and 
creative process and it involves both real-world entities and their abstract 
representation with computing resources and expressing constraints.  

 
• Fundamental computing behaviors can be classified into eight 

categories, such as data manipulations, arithmetical operations, logical 
operations, bitwise operations, program controls, memory manipulations, 
I/O manipulations, and interrupt and time manipulations.         

    
• Basic Control Structures (BCS’s) are the fundamental 

compositional means of programming. The mathematical laws of BCS’s and 
other process relations have been described in Section 5.4.1.  

 
• In programming, iterative and recursive behaviors are equivalent. 

A recursive solution for an iterative problem is usually more expressive, but 
less efficient in implementation than its iterative counterpart.  

 
• The mathematical model of programs is a finite set of cumulated 

relations between processes, which in turn is a finite set of cumulated 
relations of statements.   

 
• A pattern is a computational construct that extends the structure of a 

single class from interface and implementation to instantiations and 
associations. 
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• The Generic Computing System (GCS), §, is an abstract logical 

model of the executing platform of a target machine denoted by a set of 
parallel or concurrent computing resources and processes (See Eq. 5.87). 
 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Basic Computation Models 
 

• A statement is the smallest functional unit of a program that specifies 
an explicit action and results in the change of one or more variables. A 
generic model of a statement in programming languages can be described 
as a function, or a process, that maps a set of input into a set of output. 

 
• The fundamental operations in computing can be classified into 

three categories: computational operations, object manipulations, and 
resource manipulation. These fundamental computing needs can be 
reduced to only binary data, basic Boolean operations (∧, ∨, and ¬), and a 
linear memory space. Any complex application can be implemented on the 
basis of these three essences of computation by certain composition rules.  

 
 • A finite State Machine (FSM, or automaton) is defined by a 5-tuple 
encompassing the alphabet, states, initial state, final state(s), and the state 
transition function. The size of state space of an FSM, or all possible items 
in its transition table, SΩ(FSM), can be determined by the product of both 
sizes of the sets of state S and alphabet ∑., i.e., SΩ (FSM) = #S • #∑ .  
 

• The differences of requirement elicitation and system specification 
in software engineering are that the former is focused on desired functions of 
a system δ, and the latter is on entire behaviors of the system Ω, including 
both δ and the undesired but potential functions δ in the behavioral space SΩ 
(FSM) = #S • #∑ =#( ) #( )δ δ+ . For a complex software system, the size of 
undesired behavior space is far more greater than that of the desired ones, 
i.e.,#( ) #( )δ δ . 

 
• Automata and FSMs are a generic computing model for the rigorous 

description of event-driven behaviors of finite state systems. However, 
according to Theorem 5.1, the efficiency of automata decreases sharply 
when the size of a system is getting large and complicated. Therefore, FSMs 
are most useful for modeling computing behaviors at the component level.  
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• A Turing Machine (TM) is a 6-tuple encompassing the alphabet, 

states, initial state, halting states, head movements, and the state transition 
function. TM encompasses three basic components: the finite-state control 
unit, the tape (memory), and the read/write head. TM is the simplest model 
of computing and machine intelligence. Any complicated computing machine 
can be reduced to a number of basic TMs. This provides a practical approach 
to build large and complicated systems based on simple TMs. Although there 
are a variety of Turing machines, it can be proven that all Turing machines 
are equivalent. 

 
• Turing's contribution is the identification of the basic requirements 

for computing and machine intelligence. The essences of computing are 
those of a finite memory, a simple addressing capability for searching 
information in the memory, I/O operations on the memory, and evaluation or 
quantitative assessment capability. TM theory reveals that intelligence is 
memory-based. 

 
• TM vs. FSM: A TM extends the descriptive power of TM to both the 

output operation on the tape and the head actions associated to a state 
transition. An FSM is a restricted TM where the head is read-only and shift 
only from left to right. When a state of the FSM is a process that may be able 
to carry out any kind of operations, then FSM is equivalent to TM. This is 
why FSM is still widely applied in software engineering.  

 
• A von Neumann Machine (VNM) consists of five components: the 

arithmetic-logic unit (ALU), the control unit, the memory, a set of I/O 
devices, and a bus that provides a data path between these components. 

 
• The key requirements for implementing a VUM, the stored-program 

controlled computer, are the generalization of common computing 
architectures and the computer is able to interpret the data loaded in memory 
as computing instructions.  

 
• Trends in advanced computer architectures beyond VNM are 

parallel, networking (distributed), and autonomic computers.  
 
• Data object modeling is a process to creatively elicit and abstractly 

represent a real-world application by logical data objects and their relations 
based on the constraints of given computing resources. Operational 
behavioral modeling is composed dynamic operations embodied onto the 
data objects. Program architectural modeling provides encapsulation 
methodologies for integrating and coordinating computing behaviors and 
data objects into a coherent system. Resource and process modeling deals 
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with system platforms, operating resources, as well as the dynamic 
deployment of system data objects, architectures, and behaviors.       

 
Data Object Modeling and Manipulation 
 

• Dada object modeling is at the center of all profound computing 
techniques that studies how real-world entities and their relations are 
represented and modeled by a set of given data structures and construct rules 
in a programming language.  

• The abstract representation of any data object can be reduced 
to the fundamental level of binary digits.  

• The logical models of basic data objects in computing can be 
represented by identifiers, variables, constants, and expressions.  

• The physical models of data objects are allocated in memory as 
static or dynamic data.  

 
• An identifier is a logical name of a language entity or construct that 

represents variables, constants, procedures, classes, or program names from 
the bottom up.  

• Type is the most important attribute of an identifier.  

• Binding is a process that associates an attribute to an identifier. 

• The scope of an identifier is a region in a program over which 
the binding between the identifier and the attribute is declared. 

 
• A variable is an identifier that its domain of defined value is multiple 

and changeable. A variable obtains its value through assignment.   
 
• A constant is an identifier that its value is fixed and read-only. A 

constant obtains its value through declaration rather than assignment.  
 
• An expression is a relation between a set of operands (variables or 

constants) formed by relational operators in a given language. An expression 
can be classified as logical, ordinal, numerical, timing, and architectural, 
according to the type of its value in BL, N, R/Z/S/B/H/P, TM, and ST, respectively. 

 
• Addressing is one of the most important and special operations in 

computing. Addressing is a function π: idT → ptrÞP that maps a given 
logical idT into the physical memory block MEM[ptrP, ptrP+n-1]T, and T ∈ 
{P, H, N, Z}. Addressing locates the address of a given data object in the 
memory space.  
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• Addressing can be classified as absolute and relative, where 
the letter can be further divided into direct and indirect addressing 
dependent on whether an address is directly provided or indirectly 
inferred.  
 
• Memory allocation is a binding process that associates a logical 

name with a physical location in the memory. The key difference between 
dynamic and static memory allocation is whether the size of memory 
requirement of a given variable is run-time or compile-time determinable. 

• Dynamic memory allocation is a binding process that 
associates a logical name of complex data objects consisting of multiple 
similar elements with a series of inter-linked physical locations in the 
heap during run-time, when the unit size of a given element and the 
number of elements are determinable.  
 

• Types are an important logical property shared by data objects in 
programming. A type is a set in which all member data objects share a 
common logical property or attribute, and a type implies a set of allowable 
operations on data specified in this type. A type system specifies the type 
rules of a programming language as that of a grammar system which 
specifies the grammar rules of the language.  

 
• The RTPA type system T encompasses 17 primitive types as 

follows:  
 
              T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST, @eS, @tTM, @int ,ⓢsBL} 

 
• The type-suffix convention of RTPA attaches every identifier of 

variables, constants, and expressions with a type in bold in the format of idT, 
T ∈ T.         

 
• Important derived types in RTPA on the basis of the primitive types 

are those of run-time, time, event, status, and CLMs.   
  
• A special set of complex types known as the system types that are 

widely used for modeling system architectures, particularly real-time, 
embedded, and distributed systems, such as system components, system 
clocks, I/O interfaces, device drivers, interrupt sources, real-time events, and 
communication sockets.  
  

• The Component Logical Model (CLM) is an abstract model of a 
system architectural component that represents a hardware interface, an 
internal logical model, and/or a common control structure of a system.  
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• An Abstract Data Type (ADT) is a logical model of data objects, 

which defines the logical architecture and valid operations of the data object. 
ADTs extend type construction techniques by encapsulating both data 
structures and functional behaviors. The interface and implementation of an 
ADT can be separated.  

 
• A formal type system is a collection of type rules for a given 

programming language. A type rule is an assertion of the validity of a 
judgment’s conclusion on a type 

tΘ A  based on the inference of a number 
of premise judgments 

tΘ iA , where Θ t  is the given type environment.     

 
Operational Behavioral Modeling and Manipulation  
 

• Behaviors of programs and software systems are observable 
computing effects and consequences on the data objects. Fundamental 
computing behaviors shared by various instruction sets of computers can be 
classified into eight categories, such as data manipulations, arithmetical 
operations, logical operations, bitwise operations, program controls, 
memory manipulations, I/O manipulations, and interrupt and time 
manipulations.     

        
• Basic Control Structures (BCS’s) are a set of essential flow control 

mechanisms that are used for building logical architectures of software. The 
most commonly identified BCS’s in computing are known as the sequential, 
branch, iteration, procedure call, recursion, parallel, and interrupt 
structures. The BCS’s provide essential compositional rules for 
programming. Based on them, complex computing functions and processes 
can be composed.  

  
 • A Control Flow Graph (CFG) is a directed graph model of program 
control structures, where a block of sequential instructions is abstractly 
represented by an edge, a branch BCS is denoted by two fan-out edges, and 
an iteration BCS is represented by a branch and sequential BCS’s. When a 
program is abstracted by a CFG, the architecture of the problem is reduced to 
a graph where well-defined graph theory can be used to analyze its properties 
and complexity.  
 

• The importance of iterations in computing is rooted in the basic need 
for effectively describing recurrent and repetitive software behaviors and 
system architectures. Based on the inductive property of iterations, the big-R 
notation is introduced to unify all types of iterations including the while 
( *R ), repeat ( +R ), and  for ( iR ) loops. 
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• Recursion is an embedded process relation in which a process P calls 

itself, i.e. P ↺ P. The mechanism of recursion is a series of embedding 

(deductive, denoted by ↺ ) and de-embedding (inductive, denoted by ↻ ) 
processes. A recursive process should be terminable or noncircular. 
Recursions are used to model not only repetitive behaviors of systems, but 
also many fundamental language properties in computing.  

 
• Interactive behavior modeling in computing encompasses external 

interface (I/O) manipulation, memory manipulation, operating event 
handling, timing event handling, interrupt handling, and exception handling.     
 
Program Modeling: Coordination of Computational Behaviors with 

Data Objects  

 
• Typical program modeling technologies are statements, algorithms, 

classes, components, patterns, and frameworks from the bottom up.   
 
• A statement S is a function, or process, P, that maps a set of input I 

into a set of output O, i.e., S = P: I → O. A statement is the smallest 
functional unit in programming that specifies an explicit action and results in 
the change of one or more variables.         

 
• A program P is a finite list of instructive statements S that describes 

the computational behaviors, a set of data objects D that model the internal 
and external environment, and their interactions F that result in the change of 
the data objects, i.e., P = (S, D, F). A program is a finite set of cumulated 
relations between all statements. 

 
• An algorithm Λ is a frequently recurring function f that maps a set of 

input X into a set of output Y by a finite set of statements or a finite-step 
process, i.e., Λ = f: X → Y. The characteristics of algorithms are reusability, 
finite process, and efficiency. 

 
• A class is a computational construct that models a set of data objects 

and predefined behaviors or operations on them by an integrated 
encapsulation and an abstracted interface. 

 
• An object is an instance of a given class. An object forms an abstract 

model of a real world entity and/or a computational module, which is 
packaged by an integrated structure of interface and implementation, and is 
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described by methods for its functions and by data structures for its 
architecture and attributes. 

 
• Object-oriented technologies can be commonly identified as 

encapsulation, inheritance, reusability, and polymorphism.  
 

• A pattern is a complex computational construct that incorporates a 
set of classes for a recurring architectural and behavioral design described by 
abstract classes, concrete classes, instantiations, and their associations. 

• Software patterns (Definition 5.63) are a new component 
modeling technology built upon classes and object-oriented techniques. 
As a set of interacting classes, patterns can be used as a powerful tool 
for capturing software design notions and best practices, which provide 
common solutions to core problems in software development.  

 
• A framework is an architectural model of an entire system that 

represents the overall structure, components, processes, and their 
interrelationships and interactions.  

• Frameworks are the top level computational construct built 
upon algorithms, components, classes, and/or patterns in an object-
oriented or component-based approach. Framework technology enables 
domain and design knowledge to be reused as well as that of code.  

• A framework permits a new technology known as template-
based programming.  

 
Resources and Processes Modeling and Manipulation  

 
• The  coordination  of  computing  resources  and  processes  is 

manipulated at the operating system level. A program and its behavior space 
and semantic environment are realized by a target computer, which can be 
modeled by the Generic Computing System (GCS) §.  

 
• An operating system is a type of system software that manages and 

controls the resources and computing capability of a computer or a computer 
network, and provides users a logical interface for accessing the physical 
computer to execute applications. The general-purpose operating systems can 
be classified into four types: the batch systems, time-sharing systems, real-
time systems, and distributed systems.  

 
• A Virtual Machine (VM) is a subset of an operating system that 

represents various computing resources to the users in a unified manner, and 
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hides hardware differences and physical implementation details at the lower 
layers.        

 
• A generic operating system encompasses the kernel and the 

resource management subsystems. The former is a set of central components 
for computing, including CPU scheduling and process management. The 
latter is a set of individual supporting software for various system resources 
and user interfaces.                      
 

• The kernel encompasses the interrupt handler, the task manager, and 
the inter-process communication manager, the virtual memory manager, and 
the network subsystem manager.  
 

• The services provided by an operating system can be classified into 
categories of task control, file manipulation, device control, and information 
maintenance.  

 
• Basic computing resource manipulations enabled by an operating 

system can be classified as process and thread management, memory 
management, file system management, I/O system management, and 
network/communication management.  

 
• A Real-Time Operating System (RTOS) is an operating system 

that guarantees timely processing of external and internal events of real-time 
systems. RTOS requires multitasking, process threads, and explicit interrupt 
levels to deal with real-time events and interrupts. An RTOS is essential to 
implement embedded and/or real-time control systems. 

 
 
 
Questions and  
Research Opportunities 
 

 
 
5.1 On the basis of Table 5.1, analyze and contrast the orientations 

and focuses of problems in software engineering and computer 
science in terms of their objects, methods, and resources. 

 
5.2 Why are binary digits (bits) treated as the most fundamental form 

of data object representation in computing? Why do computer 

© 2008 by Taylor & Francis Group, LLC



404   Part II  Theoretical Foundations of SE 

science and information science share the same fundamental 
object form – bits? 

 
5.3 Why are the most fundamental problems in software engineering 

about how the complex data objects and complicated 
mathematical and behavioral operations on them may be reduced 
to bits and bits-based operations? 

 
5.4 Why are the most fundamental computational operations logical, 

arithmetic, and memory access operations on bits? 
 
5.5 What are the different orientations on the usage of automata in 

computer science and software engineering?        
 
5.6 Formally define the following FSM according to Definition 5.1.    

               

 

  a

 
 
5.7  According to Theorem 5.3, most software systems go wrong not 

because they are incorrect on normally required functions, but 
because there are wrong or not prepared for implied or 
nonspecified exceptions. 
 
Analyze the following properties of the FSM as given in Ex.5.6: 

 
            a) The entire behavior space Ω of the FSM; 

            b) The required behavior space δ of the FSM; 
            c) The unspecified behavior space δ  of the FSM; 

    d) The ratio between the specified behavior space and 
the entire behavior space, i.e., (δ / Ω) • 100%. 

 
5.8 What are the limitations or weaknesses of FSMs in computing 

and software engineering? What kind of software engineering 
problems cannot be dealt with FSMs?     
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5.9 Describe the extensions of a Turing machine (TM), TM  (∑, S, 
s, H, M, δ) and its transition function δ over the structure of an 
FSM.  

   
5.10 According to Theorem 5.5, what are the key findings of Turing on 

the fundamental computational capabilities? 
 

5.11 It is perceived that virtually any complex computing activities can 
be reduced to a Turing machine. Based on this assertion, discuss 
if Turing machines are either more fundamental or more powerful 
in modeling computing structures. 

 
5.12 What are the limitations or weaknesses of Turing machines in 

computing and software engineering? What kind of software 
engineering problems cannot be dealt with Turing machines?     

 
5.13 What are the extensions of von Neumann machines over Turing 

machines?   
 
5.14 Stored-program techniques unified data and ___?___ in memory. 

How?    
 

5.15 Describe the architecture of a VNM machine:  
 

VNA  (ALU, CU, M, I/O, B).    
 
5.16 What are the limitations or weaknesses of VNMs in computing 

and software engineering? What kind of software engineering 
problems cannot be dealt with VNMs?     

 
5.17 Discuss what would be the potential computing theories and 

techniques towards the development of non-VNMs.  
 
5.18 What is a data type and what are types’ usages in software 

engineering and computing? 
 
5.19 Summarize the 17 primitive types of RTPA, and highlight the 

special types that are not modeled in exiting programming 
languages.    

 
5.20 According to Theorem 5.6, the type domains of mathematics Dm, 

language Dl, and user defined Du obey the following law: Du ⊆ Dl 
⊆ Dm. On the basis of this theorem, explain why the precedence 
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of domain determination must be Du ⇒ Dl ⇒ Dm in software 
engineering. 

 
5.21  The type system of Pascal is given in Fig. 5.8. Referring to Table 

5.12, try to formally define the type system of Pascal according to 
Definition 5.34.      

 
5.22  The type system of Java is given in Fig. 5.9. Referring to Table 

5.12, try to formally define the type system of Java according to 
Definition 5.34.      

 
5.23  The type system of IDL is given in Fig. 5.10. Referring to Table 

5.12, try to formally define the type system of IDL according to 
Definition 5.34.      

 
5.24  Build an informal type system model for C++ as that of Fig. 5.9. 

Then, develop a formal type system model of C++ according to 
Definition 5.34 and Table 5.12.      

 
5.25  The  schema  of  a  function  in  programming  languages  can  be 

formally modeled as a complex type according to type theory. 
Referring to Definition 5.36, try to develop a formal type rule for 
the function type, FuncST, for Java. 

       
5.26  The schema of a class in UML may be modeled as three 

components known as the ClassIDS, AttributesRT, and MethodsST.  
Try to define a formal type rule, ClassST, for UML classes. 

       
5.27 What is the usage of the run-time type RT as modeled in RTPA? 

What are the counterparts in programming languages? 
 
5.28 What is the usage of the system (structural) type ST as modeled in 

RTPA? What are the counterparts in programming languages? 
 
5.29 The architectural model of an ADT, QueueST, is partially 

specified as follows:  
   

             Queue.ArchitectureST   QST ::  
                                                                       ( <_ : N | sizeN ≥ _>, 
                                                        <_ : _>, 
                                                                        <CurrentPos : _ | _ ≤ _ P ≤ _> 
                                                                      ) 
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    a) Try to complete the specification by providing proper 
values or types for the eight blank places marked by _.  

  
    b) Draw a diagram to show the corresponding conceptual 

model of the queue.     
 

5.30 How is a port or system interface modeled by the system structure 
PORTST in RTPA? What are the counterparts in programming 
languages? 

 
5.31 What are the characteristics modeled in the formal definition of 

an identifier?   
 
5.32 Referring to that of a variable obtains or changes its value 

through assignments, how does a constant obtain its value? Is the 
binding between the constant and its value permanent or 
temporary? 

 
5.33 BCS’s are a set of essential flow control mechanisms that are used 

for constructing logical architectures of software systems. What 
are the relations of the 10 BCS’s and the 17 process relations 
(operations) modeled in RTPA?   

 
5.34 Comparatively analyzing the linear and nested structure of 

iterations and recursions, and corresponding formal denotations in 
RTPA, describe the role of the big-R notation.   

 
5.35 Draw a conceptual model of a node in the digraph, NodeS, based 

on the following RTPA specification:    

 
5.36  According to Definition 5.51, i.e.: 
                   

DiGraphST.Architecture.NodeCLMST  NodeS :: 
(  <Element : RT>, 
   <PriorPtr : P>,     
   <NextPtr : P>, 
   <Order: N | 0 ≤ OrderN ≤ SizeofEdgesN>,             

   <
1

Order

i
R
=

N

N
Edge(iN) : S>,  

   <
1

Order

i
R
=

N

N
Weight(iN) : N>,  

) 
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explain the physical meaning of a process in programs. (Hint: 
Refer to Theorem 4.3 on the cumulative relational processes.) 

 
5.37 Explain Theorem 5.7, the generic mathematical model of 

programs, i.e.: 
 

1

1 1 1

(@ )  [@ ( ( ) ( ) s ( ))], 1
m m n
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−
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and demonstrate how it fits an example program in any 
programming language.    

 
5.38 Refer to Section 5.5.2.3 and explain how the generic 

mathematical model of patterns is applied to the Builder pattern 
deductively.      

 
5.39 The current design and implementation of software patterns are 

based on object-oriented technologies. Are software patterns 
independent of technologies and programming languages? Why? 

 
5.40 Refer to Section 5.5.3 and explain how the framework of the 

Telephone Switching System (TSS) is modeled by 
TSS.ArchitectureST, TSS.StaticBehaviorsST, and 
TSS.StaticBehaviorsST in RTPA. 

 
5.41 Discuss how an operating system may be described by the 

Generic Computing System (GCS), §, as given in Definition 5.56. 
 
5.42  Read the following classic article in software engineering:  
 

John E. Hopcroft (1987), Computer Science: The 

Emergence of a Discipline, The 1986 Turing Award 

Lecture, Communications of the ACM, 30(3), pp.198-

202. 
 

Discuss the following topics in a group: 
 
                     •  About the author. 
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• What was the nature of computer science according to the 
author in the 1980s?  

      • What is the architecture of computer science as a scientific 
discipline?  

      •  What conclusions of the article interested you? Why? 
      •  Your arguments or counter-points on any of the conclusions 

derived in this article.              
 
5.43 Using the state transition diagram (STD) of RTOS+ as shown 

below as an example, try to solve the following problems: 
 

    a) Formally define the STD of RTOS+ as an FSM. 
    b)  Analyze the size of the behavioral space Ω of the FSM. 

 

S0 S1 S2 S3

S8 S4 S5 S6

a b c

d

d

e

e f

g

S7

h

k

l
l

l

 
 
where  

 

 
 
 
 
 
 
 
 
 

s0:  Creating 
s1:  Ready 
s2:  Running 
s3:  Completed 
s4:  Interrupted 
s5:  Delayed 
s6:  Suspended 
s7:  Killed 
s8:  Interrupt Services

a: Resource available 
b: Schedule 
c: Completed 
d:  Interrupt 
e:  Interrupt return 
f : Time-out 
g: Time available 
h: Wait for event  
k: Event available 
l:  Delete 
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5.44   Read the following classic article in software engineering: 
 

Erich Gamma (2002), Design Patterns – Ten Years 

Later, in M. Broy and E. Denert eds., Software 

Pioneers, Springer, Berlin,  pp. 688 – 700. 
 

Discuss the following topics in a group: 
 
              •  About the author. 

•  Where does the concept of software design patterns comes 
from? 

      • Why are design patterns considered useful in software 
engineering? 

               •  What are the limitations of patterns in software reuse?   
               •  What conclusions of the article interested you? Why? 

      •  Your arguments or counter-points on any of the conclusions 
derived in this article. 
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Knowledge Architecture 
 

 

 Fundamentals of linguistics  

     •  Taxonomy of linguistics                       •  Syntaxes 
     •  Semantics                                              •  Grammars 

 Formal language theory 

     •  Alphabets                                              •  Strings 
     •  Expressions                                          •  Grammar theories   
     •  Languages                                             •  BNF and EBNF 
     •  Language recognitions 

 Syntax of programming languages 

     •  Lexical analyses                                   •  Syntax definition and descriptions   
     •  Syntactical analyses                              •  Syntactical analyses of RTPA   

 Semantics of programming languages  

     •  Taxonomy of semantics 
     •  Denotational semantics 
     •  Deductive semantics 

 Semantics of RTPA 

     •  Semantics of RTPA meta processes  
     •  Semantics of RTPA process relations   
     •  Semantics of system and system process dispatching 

 Linguistics perceptions on software engineering  

     •  Comparative analysis of natural and programming languages 
     •  Principles of programming language design 
     •  Characteristics of programming languages 
 

 

Learning Objectives 
 

 
• To understand the role of linguistics and fundamental principles of linguistics 

in software engineering.  
     • To be aware of the formal language theory and the formal grammar system. 
     • To be familiar with formal syntaxes and semantics. 
     • To understand the BNF and EBNF notations for language specification and 

modeling.  
     • To understand deductive semantics and its applications in RTPA modeling.  
     • To be familiar with applications of linguistics in software engineering. 
 
 

6. Linguistics Foundations of SE 
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 “The gift of language is the single human trait that marks us all genetically, 
 setting us apart from the rest of life.” 

 
Lewis Thomas (1974) 

 
 “I believe that the time is ripe for significantly better documentation of 

 programs, and that we can best achieve this by considering  
programs to be works of literature.” 

 
D.E. Knuth (1984) 

 
 

 
6.1 Introduction 
 

 
 

inguistics is the discipline that studies human or natural languages. 
Languages are an oral and/or written symbolic system for thought, 
self-expression, and communication. Lewis Thomas highlighted that 

“the gift of language is the single human trait that marks us all genetically, 
setting us apart from the rest of life [Thomas, 1974].” This is because 
functions of languages can be identified as for memory, instruction, 
communication, modeling, thought, reasoning, problem-solving, prediction, 
and planning [Pattee, 1986; Casti and Karlqvist, 1986]. 
 Linguists commonly agree there is a universal language structure or 
grammar [Chomski, 1956/57/59/62/65/82; Pattee, 1986; O’Grady and 
Archibald, 2000]. However, the grammar may be precise and explicit as in 
formal languages, or ambiguous and implied as in natural languages. 
Although a language string is symbolically constructed and read sequentially, 
all natural languages have the so called metalinguistic ability to reference 
themselves out of the sequences. That is, to construct strings which refer to 
other strings in a language. 
 This chapter comparatively studies natural and artificial languages, and 
explores fundamental theories of linguistics, language acquisition, and 
applications. Then, it extends linguistics to artificial languages, particularly 
programming languages, which investigate the theory of formal languages 
and the applications of mathematics in computational linguistics. 
 It is noteworthy that a natural language is context sensitive. While 
almost all programming languages, no matter at machine level or higher 
level, are supposed to be context free. Therefore, it is curious to query if a 
real-world problem and its solution(s), in a context-dependent manner, can 
be described by a context-free programming language without losing any 
information. Automata and compiler theories [Rabin and Scott, 1959; Aho et 
al. 1985; Louden, 1993; Lewis and Papadimitriou, 1998] indicate a context-

L
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sensitive language may be transformed into a corresponding context-free 
language. But the costs to do so are really dear, because the context cannot 
be freely removed. A common approach is to hide (imply) the context of 
software in data objects and intermediate data structures in programming. 
However, the drawbacks of this convention, or the limitations of 
conventional compiling technologies, make programming hard and 
complicated, because the computational behaviors and their data objects were 
separated or incoherent in the languages’ descriptive power. This is an 
indication that a much natural and context-dependent programming language 
and related compiling technology are yet to be sought. We may consider that 
ADTs and object-oriented programming technologies are context-dependent, 
because the context (in the form of a set of data objects) has been 
encapsulated into a set of individual classes and the whole class hierarchy of 
a software system.   
        

From a linguistic point of view, software engineering is the application 
of  information  technologies  in  communicating  between  a  variety  of  
stakeholders  in  computing,  such  as  professionals  and  customers, 
architects  and  software  engineers,  programmers  and  computers,  as  well 
as  computing  systems  and  their  environments.  Therefore,  linguistics  and 
formal  language  theories  may  play  important  roles  in  computing 
theories; without them computing and software engineering theories would 
not be complete. 

It is noteworthy that, historically, language-centered programming had 
been the dominant methodology in computing and software engineering. 
However, this should not be taken as granted as the only approach to 
software engineering, because the expressive power of programming 
languages is inadequate to deal with complicated software systems. In 
addition, the rigorousness and level of abstraction of programming languages 
are too low in modeling the architectures and behaviors of software systems. 
This is why a bridge in mechanical engineering or a building in civil 
engineering was not modeled or described by natural or artificial languages. 
This observation leads to the recognition of the need for mathematical 
modeling of both software system architectures and static/dynamic 
behaviors, supplemented with the support of automatic code generation 
systems.                             

This chapter analyzes not only how linguistics may improve the 
understanding of programming languages and their work products – 
software, but  also  how  formal  language  theories  extend  the  study  of  
natural languages.  In  the  remainder  of  this  chapter,  the  linguistics  
foundations of software engineering will be presented in six sections. 
Fundamental theories of linguistics are reviewed in Section 6.2 on syntaxes, 
semantics, grammars, and linguistic analyses. Formal language theories that 
provide a rigorous treatment  of  language  elements  from  the  bottom  up  
are  described  in Section 6.3. Syntaxes and semantics of programming 
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languages and  their  analyses  are  presented  in  Sections  6.4  and  6.5  with  
the  introduction  of  a  formal  semantics  theory  known  as  deductive  
semantics.  Semantics  of  RTPA  are  formally  described  in  Section  6.6  
using  deductive  semantics.  Comparative  analyses  of  natural  and  
programming  languages, as well as linguistics perceptions on software 
engineering, are discussed in Section 6.7.  

 
 

 
6.2 Fundamentals of Linguistics 
 

 
 
Linguistics studies natural languages in both oral and written forms. Since 
languages are the basic means of human communication and tools of 
thinking and expression, linguistics may be perceived as one of the 
foundations of computing, software engineering, and information sciences. 
This section surveys the basic theories and principles of linguistics, which 
form a reference system for the study of artificial, programming, and formal 
languages in software engineering. 
 
 
6.2.1 TAXONOMY OF LINGUISTICS 
 
 The basic function of languages is both to communicate information 
and to express abstract human behaviors. The central issue of linguistics is 
grammar, which is the rules of a language and the ways how the language is 
to be generated, formed, recognized, and interpreted.  
 

 Definition 6.1 Linguistics is a discipline that studies the nature and use 
of languages. 
 
 The domain of linguistics encompasses phonetics, phonology, 
morphology, syntax, and semantics. The first three facets of linguistics are 
introduced below, while syntax and semantics will be formally described in 
Sections 6.2.2 and 6.2.3. 
 

Definition 6.2 Phonetics is a domain of linguistics that studies the 
articulation and perception of sounds of human speech. 
 
 The sounds of any language can be categorized into two types known 
as syllabic and nonsyllabic sounds. The former are those of vowels, syllabic 
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liquids, and syllabic nasals; the latter are those of consonants and glides. It is 
interesting to observe that all sounds of human languages can be widely 
transcribed by the standard international phonetic alphabet defined by the 
International Phonetic Association [IPA, 1970].    
 

Definition 6.3 Phonology is a domain of linguistics that studies the 
patterns of speech sounds. 
 

Three units of phonological representation, known as the feature, 
phoneme, and syllable, are adopted in the bottom-up phonemic analyses. For 
a classic presentation of phonemic analysis, readers may refer to H. A. 
Gleason, Jr.’s An Introduction to Descriptive Linguistics [Gleason, 1961].        
   

Definition 6.4 Morphology is a domain of linguistics that studies the 
formation and structure of words. 
 
 Words are the smallest free form and basic building blocks of a 
language, where the element of words is morphemes. Basic word formation 
techniques are derivation and compounding in English. A basic word may be 
inflected to mark grammatical contrasts in number, person, gender, case, and 
tense. The mental dictionary acquired by a person is called lexicon, which 
contains a collection of information about the syntactic properties, meaning, 
and phonological representation of words in a language. Interested readers on 
morphology may refer to Jensen (1990) or Spencer (1991).     

In line with the theme of this chapter on comparative linguistics 
between natural and programming languages, the remainder of this section 
will put emphases on syntax and semantics of natural languages, because 
programming languages in nature are written languages rather than speaking 
ones.                    
 
 
6.2.2 SYNTAXES 

 
 Syntaxes deal with relations and combinational rules of words in 
sentences. Much of our understanding of the syntactic rules of languages has 
come from linguists who have studied and elicited the common rules that 
underlie the standard language. One of the most influential linguistic 
frameworks, known as the theory of universal grammar, was proposed by 
Noam Chomsky [Chomsky, 1957/65]. Universal grammar and its modern 
version, the Government and Binding Theory [Chomsky, 1982], have 
become a linguistic premise on grammatical analysis in linguistics, which 
will be discussed in Section 6.2.4.      
      

Definition 6.5 A syntax is a domain of linguistics that studies sentence 
formation and structures. 
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Definition 6.6 An abstract syntax is the abstract description of a syntax 
system where concrete strings of tokens and their grammatical relations are 
represented and analyzed symbolically. 
 

Linguistic  studies  are  used  to  the  convention  of  hierarchical  tree 
schema  to  denote  sentence  structures  in  syntactical  analyses.  In a 
syntactic  perspective,  any  human  language,  natural  or  artificial,  is a 
sequential or one-dimensional (1-D) symbol stream of syntactical blocks, 
which can be decomposed into paragraphs, sentences, phrases, words, and 
letters from the top down. Although the syntax of a language is 1-D, its 
grammar  is  recursively  structured  in  a  2-D  space.   

 

 
However, the semantics of languages implied by the sequential 

syntaxes can be more complicated, i.e., non-sequential and multi-dimensional 
in most cases, such as branch, parallel, embedded, concurrent, interleaved, 
and  interrupt  structures  as  shown  in Table 6.1 [Wang, 2007l].            
 

Table 6.1 
Semantic Relations of Sentences 

 

No. Relation Formal Symbol Description 
1 Sequential → and, then 

2 Branch | or 
3 Parallel || and, simultaneously (action by the same subjects)  
4 Embedded  that, which, if, whether 
5 Concurrent ∯  and, simultaneously (action by different subjects)   

6 Interleave ||| Alternatively   
7 Interrupt  when, while, during 

 
Table 6.1 indicates that the semantic relations of sentences are a set of 

connectors, which are a subset of the 17 process relations as defined in 
RTPA [Wang, 2002a/02b/03c/06a/07a]. 

Syntactic elements in natural languages can be classified into the 
categories of lexical, functional, phrasal, and relational. A summary of 
definitions of syntactic elements of languages is provided in Table 6.2, where 
an element in angular brackets is optional. In Table 6.2, there is special 
category of lexical components known as complement phrases (CPs). CPs 
can be a supplemental part of N/NP, V/VP, A/AP, or P/PP. The rules for 

 

Lemma 6.1 Syntaxes of natural languages, Syn, are 2-dimensionally 
descriptable and are recursive. 
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defining relations between CPs and other lexical categories of sentences may 
be referred to O’Grady and Archibald (2000). 

 
Table 6.2 

Definition of Lexical Categories of languages 
 

Category Sub Cat. Symbol Description 
Lexical     
 Noun N entities and abstract objects  
 Verb V actions, states, and possessions   
 Adjective A properties of a noun   
 Adverb Λ properties of a verb   

 Preposition P designates relations in space or time  
Functional    
 Determiner τ the, a, this, these, etc. 

 Degree word δ too, so, very, more, quite, etc.  

 Qualifier κ almost, always, often, perhaps, never, etc.  

 Auxiliary α will, can, may, must, should, could, etc.  

 Conjunctor γ and, or, that, which, if, whether, etc. 

 Negative ¬ not 

Phrasal   a syntactic unit with one or more words as a 
lexical category  

 Noun phrase NP τ N [PP] 
 Verb phrase  VP V NP etc. 
 Adjective 

phrase 
AP [δ] A [PP] 

 Adverb phrase ΛP [Λ] V | V [Λ] 
 Prepositional 

phrase 
PP [δ] P [NP]   

 Complement 
phrase 

CP supplemental part of N (NP), V (VP), A (AP), or 
P (PP) 

Relational  R A set of connectors 

 Sequential → and, then 

 Branch | or 
 Parallel || and, simultaneously (action by the same subjects)  
 Embedded  that, which, if, whether 

 Concurrent ∯  and, simultaneously (action by different subjects)   

 Interleave ||| alternatively 
 Interrupt  when, while, during 
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Based on the definitions of lexical functions of words and phrases, the 
syntactic structure of sentences can be described formally as shown in Fig. 
6.1. In Fig. 6.1, the D-structure represents relationship between subject and 
object in a sentence, while the S-structure represents the surface linear 
arrangements of words in a sentence [Gleason, 19961/97]. The S-structure 
consists of the sound structure of a sentence called the phonetic form and the 
meaning of the sentence called the logical form. The D-structure consists of a 
set of phrase structure rules and the lexicon that specifies the 
morphophonological and syntactical features of the sentence.       

 

 Phonetic form 

Transformation 
rules 

  Phrase rules 

   S-structure 

   D-structure 

    Logic form 

Semantic  
rules 

      Lexicon 

 
 

Figure 6.1 Relationships among components of universal grammar  
 

 
6.2.3 SEMANTICS 

 
Definition 6.7 Semantics is a domain of linguistics that studies the 

interpretation of words and sentences, and analysis of their meanings. 
 

 Semantics deals with how the meaning of a sentence in a language is 
obtained, hence the sentence is comprehended. Studies on semantics explore 
mechanisms in the understanding of language and the nature of meaning 
where syntactic structures play an important role in the interpretation of 
sentence and the intension and extension of word meaning [Tarski, 1944; 
Chomski, 1956/57/59/62/65/82].           
 

Definition 6.8 The mathematical model of semantics of natural 
languages, Sem, is a 5-tuple, i.e.:  
 

          Sem  (J, B, O, T, S)                                   (6.1) 

© 2008 by Taylor & Francis Group, LLC



420   Part II Theoretical Foundations of SE 

where 
 

• J is the subject of the sentence; 
• B is a behavior or action; 
• O is the subject of the sentence; 
• T is the time when the action is occurring; 
• S is the space where the action is occurring. 
 

According to Lemma 6.1 (Syn) and Definition 6.8 (Sem), the 
relationship between a language and its syntaxes and semantics can be 
illustrated as shown in Fig. 6.2. Fig. 6.2 explains that linguistic analyses are a 
deductive process that maps the 1-D language into the 5-D semantics of 
natural languages via the 2-D syntactical analyses [Wang, 2007h/07j]. 

 

  O  O … O … O  O   …                        [L (1-D)]

     Syn (2-D)      Sem (5-D) 

 S 

   J 

  B 

 T  O 

 
Figure 6.2 The Universal Language Processing (ULP) model 
 

Semantic analysis and comprehension are a deductive cognitive 
process. According to the OAR model as developed in Section 9.4, the 
semantics of a sentence may be considered having been understood when: a) 
The logical relations of parts of the sentence are clarified; and b) All parts of 
sentence are reduced to the terminal entities, which are either a real-world 
image or a primitive abstract concept. The theoretical foundations of 
language  cognition  and  comprehension  will  be  further  discussed  in 
Chapter 9.  

 
 

6.2.4 GRAMMARS 
 
Syntactic and semantic analyses in linguistics rely on a set of explicitly 

described rules known as the grammar of a language. Therefore, 

© 2008 by Taylor & Francis Group, LLC



            Chapter 6 Linguistic Foundations of SE    421 

contemporary linguistic analyses focus on the study of grammars, which is 
centered in language acquisition, understanding, and interpretation. 

 
 Definition 6.9 The grammar of a language is a set of common rules 

that integrates phonetics, phonology, morphology, syntax, and semantics of a 
given language. 

 
  The grammar governs the articulation, perception, and patterning of 

speech sounds, the formation of words and sentences, and the interpretation 
of utterance.    

 
6.2.4.1 Properties of Grammars 

 
O’Grady and Archibald (2000) identified five basic properties of 

grammars as follows:        
 
• Property 1. Generality: All languages have a grammar.   
• Property 2. Parity: All grammars are equivalent in terms of their 

expressive capacity.     
•  Property 3. Universality: Grammars are commonly alike, or 

basic principles and properties are shared in all languages.   
•  Property 4. Mutability: Grammars of all languages are constantly 

changing over time.  
• Property 5. Inaccessibility:  Grammatical  knowledge  of  the 

mother tongue is built at the subconscious layer of the brain.  
 

The above basic properties of grammars form an important part of the 
foundations of human intelligence. The most interesting property of 
grammars of natural languages is their expressive parity.      

 

 
Based on Lemmas 6.2, it is perceived that, in computing and software 

engineering, all programming languages are equivalent. In other words, no 
language may claim a primitive status over others, as long as they implement 
the 17 meta processes and 17 process relations of RTPA as stated in 
Theorems 4.6, 4.7, and 5.7 in Sections 4.6 and 5.5. 

 
6.2.4.2 The Universal Grammar 

 
An important discovery in modern linguistics is the existence of the 

universal grammar among human languages.      

 

Lemma 6.2 All grammars of natural languages are equivalent. 
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 Definition 6.10 The universal grammar (UG) is a system of categories, 
mechanisms, and constraints shared by all human languages. 

 
UG is perceived as innate based on recent neurolinguistic and 

psycholinguistic studies [Chomsky, 1982; O’Grady and Archibald, 2000; 
Wang, 2007h]. UG treats all languages with the same generic type of 
syntactic mechanisms, which include the merge and transformation 
operations. The former is a syntactic operation that combines words in 
accordance with their syntactic categories and properties; while the latter is a 
syntactic operation that puts words and phrases in an appropriate structure.       

An instance of UG is the English grammar, which may be formally 
described in the following section. 

 
6.2.4.3 The Deductive Grammar of English 

 
Formal language theories of computing science and software 

engineering perceive that the grammar of any programming language or 
professional notation systems may be rigorously defined by the EBNF 
notation [Naur, 1968/73]. The author found that the formal language theory 
can be extended to describe and analyze the grammar of natural languages 
such as that of English [Wang, 2007l]. 
 

 Definition 6.11 The deductive grammar is an abstract grammar that 
formally denotes the syntactic rules of a language based on which as a 
generic formula valid language sentences can be deductively derived.    

 
On the basis of the definitions of the syntactic elements as given in 

Table 6.2, the English grammar can be formally described in EBNF known 
as the Deductive Grammar of English (DGE) [Wang, 2007l]. A rigorous 
definition of DGE at the sentence level is given in Fig. 6.3. Some aspects of 
DGE are simplified at the bottom level, particularly on person rules of nouns, 
time rules of verbs, and the matching of nouns and verbs in sentences. 

According to DGE, the schema of the most complicated sentence in 
English that consists of all possible and legal syntactic components of DGE 
is shown in Fig. 6.4. The generic schema of DGE can be used as a universal 
formula to deductively derive any sentence in English. For example, the 
shortest possible sentence is given in Example 1 in Fig. 6.4. The longest 
possible sentence is presented in Example 3, i.e.:  
 

“The unregistered new student all in the class [and another 
phrase] will not get the expected comprehensive handbook directly 
from the teacher [or another sentence].”  
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Figure 6.3 The Deductive Grammar of English (DGE)   
 
 

S (Sentence) 
Subject Action 

NP VP 
NP γ NP VP γ VP 

AP PP NP Object * VP 

No. 

τ
Λ A 

N 
Λ P τ N

γ
…
α ¬ V 

τ Λ A N Λ P τ N 
γ 

… 
Ex.1         Look        .  
Ex.2   I      read a   book     .  
Ex.3 a b b d e f g h i j k l m n o p q r s t u v w 
 
Note:  Words in Sentence 3 are defined as follows: 

a – The, b – unregistered, c – new, d – student, e – all, f – in, g – the, h – class, i – and,  
j –  …, k – will, l – not, m – get, n – the, o – expected, p – comprehensive, q – handbook, 
r – directly, s – from, t – the, u – teacher, v – or, w – another sentence.   

 
Figure 6.4 The schema of a generic sentence based on DGE  

S ::=  [Subject] Predicate  
        | S γ S  
Subject ::= NP  
Predicate ::= VP [Object] 
Object ::= NP     
NP ::=   τ [AP] N [PP]  
            | τ N*  
            | NP γ NP    
AP ::= [Λ] A 
ΛP ::=   [δ] Λ   
           | [κ] Λ    
PP ::= [Λ] P [NP]   
VP ::=  VP γ VP  
           | [α] [¬] V [Object]*  
           | [ΛP] V [¬] [Object]*  
           | V [¬] [Object]* [ΛP]  
¬ ::= <not>    
N ::= <nouns> 
V ::=   <be>  
         | <have>  
         | <do> 
P ::= <propositions> 
A ::= <adjectives> 
Λ ::= <adverbs> 
δ ::= <degree words>  
κ ::= <qualifier words>  
α ::= <auxiliary words>  
τ ::= <determiner words>  
γ ::= <conjunction words> 
       | <.> 
       | <;> 
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The above example provided in Fig. 6.4 is an instance that uses almost 
all possible syntactic components. Obviously, natural sentences in practical 
usages are always a subset of the DGE schema. Therefore, they are rather 
simple and short as shown in the first two examples in Fig. 6.4.                   

The 1-D structured sentences as shown in Fig. 6.4 can be modeled in a 
2-D graphical form as shown in Fig. 6.5. Observing Figs. 6.3 through 6.5, it 
is noteworthy that the syntactic structure of the DGE schema is highly 
recursive. The recursive characteristics in Fig. 6.5 are repetitively 
represented by the none phrases (NP) and verb phrases (VP). 
 

   S 

Subj 
(NP)

 NP    γ 

   α   ¬    V 

 VP 

 Obj

  NP

  NP    γ  VP 

   τ    N   PP 

   A 

 AP 

 Act 
(VP) 

   Λ    Λ    P    N    τ 

 

Figure 6.5 The syntax structure of the generic sentence schema in DGE 
 

 
Theorem 6.1 indicates that the simpler the syntactic rules or the 

grammar, the richer or more complicated the semantics, and vice versa      
According to Theorem 6.1, since UG or DGE as defined in Fig. 6.3 are 
relatively simple, its semantics are much richer, more complicated, and more 
ambiguous. In contrary, because programming languages adopt very detailed 
and complicated grammars, their semantics are relatively concise, simple, 
and rigor.    

The fundamental elements of natural languages can be classified as 
shown in Table 6.3 [Wang, 2002a/06j/07a]. Observing Table 6.3 it can be 

 

The 18th Law of Software Engineering 
    
Theorem 6.1 The tradeoff between syntaxes and semantics states that in 
the DGE system, the complexities of the syntactic rules (or grammar) Csyn 
and of the semantic rules Csem are inversely proportional, i.e.: 

 

  1
syn

sem
C

C
∝             (6.2)  
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seen that although natural languages can be rich, complex, and powerfully 
descriptive, they share common basic structures, such as ‘to be (|=),’ ‘to have 
(|⊂),’ and ‘to do (|>).’  

 
Table 6.3 

Fundamental Elements in Natural Languages 
 

Function Category Notation Example 

Identify objects and 
attributes 

To be |= A |= B  ⇒ 
    (A is B)   

Describe relations and 
possession 

To have |⊂ A |⊂ B  ⇒  
    (A has B)   

To do |> A |> B  ⇒ 
    (A does B)   

Describe status and 
behaviors 

Indirect to do |>> … |>    A |>> B |> C  ⇒ 
    (A has B to do C)   

Describe negative facts Not   ¬ A ¬ |= B  ⇒ 
    (A is not B)        
A ¬ |⊂ B  ⇒ 
    (A has not B)    
A ¬ |> B  ⇒ 
    (A does not B)       

 
The formal models of UG and DGE provide linguistics, particularly 

language analyzers, implementers, and recognizers, for a powerful tool to 
formally describe and process natural language documents. Perspective 
applications of DGE may be in the development of Internet searching 
engines, semantic analysis of natural languages, speech recognitions, and 
intelligent systems for natural language parsing and word processing. 
 

 

 
6.3 Formal Language Theory 
 

 
Natural languages studied in Section 6.2 are informal and nonrigorous. Every 
defined rule in the grammars of human languages has exceptions and their 
semantics depends on contexts, situations, and subjective perceptions.  

In contrary, formal languages are theories and rules for rigorously 
specify, analyze, generate, and recognize programming languages. Formal 
language theories study the following objects hierarchically from the bottom 
up:   
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      •  Alphabets 
      •  Strings 
      •  Expressions   
      •  Languages 
      •  Grammars 
      •  Machines capable to process formal languages 
 
 Software engineering may need to extend conventional formal language 
theories from language generation and recognition to software system 
modeling and specification.     
 
6.3.1 ALPHABET 
 
 Any language, natural and artificial, for human or machine, is based on 
a set of symbols known as the alphabet. 
    
 Definition 6.12 An alphabet ∑ is a nonempty finite set of symbols or 
letters. 
    
 Example 6.1 The following sets of symbols are typical alphabets: 
 

     a) Roman alphabet:  ∑R = {a, b, …, z, A, B, …, Z} 
           b) The binary alphabet:  ∑B = {0,1} 

     c) Digits:   ∑D = {0,1, 2, …, 9} 
     d) Operators:   ∑OP = {+, -, *, /, :=, … } 
 

 In software engineering, the alphabet of a programming language ∑PL is 
usually an extension of ∑R ∪ ∑D ∪ ∑OP. The alphabets of modeling and 
specification notation systems can be more complicated over ∑L with 
extensions of special structural, architectural, and behavioral symbols. 
 
 
6.3.2 STRINGS 
  
 Strings are the second-level building block of a language based on a 
given alphabet.     
 

Definition 6.13 A string s over an alphabet ∑ is a finite sequence of 
symbols defined on ∑. A string is also known as a word.  
 
    Example 6.2 The following sequences are typical strings: 
 

     a) A string over Roman alphabet ∑R: s1 = ‘Software engineering’.  
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     b) A string over the binary alphabet ∑B: s2 = ‘011’. 
      c) An empty string over any alphabet: s3 = ∅, or s3 = ‘ ’. 
 
 Major string operations are length test, concatenation, and closure.      
 
 Definition 6.14 The length of a string s, Ls, is the number of symbols 
included in s, i.e.: 
 
          Ls = |s|  
                                                        = #s              (6.3) 
 
 Example 6.3 Given strings as shown in Example 6.2, the lengths Ls1 = 
|s1| = #(Software engineering) = 20, note that a space between symbols is 
counted as a symbol in the string; Ls2 = |s2| = #(011) = 3; and Ls3 = |s3| = |∅| = 
#(‘’) = 0.  
  
 Definition 6.15 The concatenation  of two strings p and q over given 
alphabets ∑p and ∑q is the connection of p and q in the given sequence that 
forms a combined string s over a joint alphabet ∑p ∪ ∑q, i.e.: 
 
                                s = p  q,   s ∈ ∑p ∪ ∑q and |s| = |p| + |q|               (6.4) 
    
where, s(i) = p(i) for i = 1, …, |p|, and s(|p|+i) = q(i) for i = 1, …, |q|. 
    
 Example 6.4 Let s1 and s2 be the strings as given in Example 6.3. Then, 
a string s that concatenates s1 and s2 is as follows: 
 
     s = s1  s2  
                              = ‘Software engineering’ + ‘011’  
      = ‘Software engineering011’,  s ∈ ∑R ∪ ∑B  
 

Concatenation can be extended to operations on more than two strings 
as described below.            
 

 

 

Lemma 6.3 The concatenation operation of arbitrary strings p, q, and r 
on an alphabet ∑ is constrained by the following laws: 
 

a) Associative:      (p ο q) ο r = p ο (q ο r)       (6.5) 
b) Antisymmetric: p ο q ≠ q ο p        (6.6) 
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Both laws on concatenation can be proven directly by using Definition 
6.15. 
 
 Definition 6.16 The closure of an alphabet ∑, ∑*, is the set of all 
strings on ∑, including the empty string ∅.   
 

The number of strings that can be generated by a closure ∑*, #(∑*), 
may easily grow to an infinitive when the size of the alphabet #∑ is larger 
enough. 
 

Example 6.5 a) Let alphabet ∑1 = {a, b}, the closure of ∑1 is ∑1* = 
{∅, a, b, ab, ba}. b) A subset of the closure of Roman alphabet ∑R that 
includes all strings with length of three is: ∑R3* = {s ∈ ∑R* | #(s) = 3} = 
{abc, bcd, ..., xyz, …}.          
 
 Example 6.6 The following strings belong to a specific closure of 
alphabet:  
 

(a) s1 = ‘Software engineering’ ∈ ∑*R 
(b) s2 = ‘011’ ∈ ∑*B 
(c) s = s1  s2 = ‘Software engineering011’ ∈ (∑R ∪ ∑B)* 

 
 
6.3.3 EXPRESSIONS 
 
 Expressions are the third-level building block of a language based on a 
given alphabet.     
 

Definition 6.17 An expression e is a string on an alphabet or a number 
of strings concatenated by a set of special symbols known as operators.   
   
 Definition 6.18 A regular expression er is an expression or a special 
kind of strings that consists of single symbols on a given alphabet, or of 
those single symbols combined with the symbols of the empty string ∅, 
union ∪ , repeat *, and parentheses ( ). 
 
 Example 6.7 According to Definition 6.18, the following expression 
 
      er1 = (a ∪ b)* a   
 
is a regular expression.  
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6.3.4 GRAMMAR THEORIES 
    
      As described in Section 6.2.4, the concept of formal grammars was 
developed by linguist Noam Chomsky in the 1950s [Chomsky, 1956]. In this 
subsection, readers are prepared with introductions to some terms before the 
discussions on formal grammars are presented. 
  
6.3.4.1 Production Rules of Grammars  
 

A production rule is a function that facilities formal reasoning in 
grammar analyses. On the basis of a set of productions, a grammar can be 
formally defined. 

  
Definition 6.19 A terminal is a constant string on a given alphabet ∑ 

that has a defined semantics and cannot be broken down further. Terminals 
will be denoted by lower case italic letters.   
 

Definition 6.20 A nonterminal is a variable string on a given alphabet 
∑ that is a syntactical category or combined term with semantics dependent 
on further deductions. Nonterminals will be denoted by italic capital letters.   
 

Definition 6.21 A production p is a function that produces an ordered 
pair (α, β), i.e.: 
 

p:  α → β                 (6.7) 
 
where α and β is a terminal, nonterminal, or their combinations.        
 

Example 6.8 The following are productions: 
 

A → a, A → Aa, A → B, and aB → b 
 
These productions may be shortly denoted by:     
 

A → (a, Aa, B), and aB → b 
 

A production with all terminals on its right-hand side (RHS) is a final 
product with a derived semantics or physical meaning; while a product with 
at least one nonterminal on its RHS is an intermediate product with its 
semantics pending on further deduction.  
 
6.3.4.2 Taxonomy of Grammars  

      
 There are various grammars classified according to the types of 
productions adopted for establishing the rules of a grammar, the relations of a 
grammar with the contexts, or the techniques for grammar recognitions.       
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6.3.4.2.1 Chomsky Grammars 
 

According to Noam Chomsky [Chomsky, 1956], formal grammars can 
be classified as Type 0 through Type 3 from the bottom up with increasing 
rigor, based on the types of production rules adopted in the grammars.      

  
Definition 6.22 A Type 0 grammar, G0, is a grammar that has no 

restrictions on its productions. 
 

Definition 6.23 A Type 1 grammar, G1, is a grammar that satisfies the 
following conditions: 

 
      ∀p ∈ G1,  p: α → ∅ ∨ (p: α → β ⇒ |α| ≤ |β |)               (6.8)    

 
Definition 6.24 A Type 2 grammar, G2, is a grammar that satisfies the 

following condition: 
 

          ∀p ∈ G2,  p: A → β                 (6.9)    
 
where A is a nonterminal. 
 

Definition 6.25 A Type 3 grammar, G3, is a grammar that satisfies the 
following conditions: 

 
    ∀p ∈ G3,  p: s0 → ∅ ∨ p: A → a ∨ p: A → aB              (6.10)    

 
where s0 is the start symbol, A and B are nonterminals, and a is a single 
terminal. 
 
 

   
Corollary 6.1 can be directly proven on the basis of Definitions 6.22 

through 6.25.       

 
Corollary 6.1 The four-type Chomsky grammars, G0 through G3, satisfy 
the following relations: 

 
G3 ⊆ G2 ⊆ G1 ⊆ G0    (6.11) 

 
That is, a higher level grammar imposes stronger restrictions on its 
production rules than those of the lower level grammar(s).  
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6.3.4.2.2 Grammars Classified by Relations with the Contexts    
 

A context of a production is a certain configuration of all symbols in 
the strings and expressions of a production.      
 

Definition 6.26 A context-sensitive grammar Gs is a grammar that is 
constrained by the following condition: 

 
             ∀p ∈ Gs, p: αAα’ → αβα’              (6.12)    

 
where αAα’ is the context, and A is a nonterminal symbol that can be 
replaced in the given context. 
 

Definition 6.27 A context-free grammar Gf is a grammar that is 
constrained by the following condition: 

 
          ∀p ∈ Gf,  p: A → β              (6.13)    

 
where p is context-independent. 
 

Definition 6.28 A regular grammar Gr is a grammar that is constrained 
by the following conditions: 

 
       ∀p ∈ Gr,  p: s0 → ∅ ∨ p: A → a ∨ p: A → aB             (6.14)    

 

  
6.3.4.2.3 Formal Description of Context-Free Grammars 
 

Context-free grammars, or Type 2 grammars due to Chomsky, are a 
category of the most widely used grammars in language generation, 
specification, recognition, and processing.      
 

Definition 6.29 A context-free grammar Gf is a language generator that 
can be described by a 4-tuple:  

 

Corollary 6.2 The three types of grammars classified with regard to their 
contexts, Gs, Gf, and Gr, satisfy the following relations: 

 
     Gr ⊆ Gf  ⊆ Gs             (6.15) 

and 
Gs  = G1            (6.16a) 
Gf  = G2            (6.16b) 

   Gr = G3           (6.16c) 
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                                Gf   (∑, s0, T, R)            (6.17) 
      
where 
 

     (i) ∑ is a finite nonempty set of alphabet;  
        (ii) T the set of terminals, T ⊆ ∑;  

   (iii) s0 the start symbol, S0 ∈ (∑ \ T), which is a nonterminal;  
   (iv) R the set of rules, R ⊆ (∑ \ T) × ∑*, which is called productions.  
 

 Example 6.9 According to Definition 6.27, the following given 
grammar Gf1 = (∑, s0, T, R) is a context-free grammar where: 
 
    ∑ = {a, b, ∅} 
                        s0 = a                        
                        T = {b}                        
            R = {s1→aMb, M→A, M→B, A→∅, A→aA, 
                                            B→∅, B→bB}  
 

In the rule set R, a capital letter represents a nonterminal symbol or a 
variable. Usually, a grammar G may be simply denoted by its productions R, 
because R contains all necessary information for defining G.  

 
6.3.4.2.4 Grammars Classified by Language Recognition Techniques 
 

According to the relations to language parsing techniques, context-free 
grammars can be classified into two categories known as the LL(k) [Aho and 
Ullman, 1972] and LR(k) grammars [Knuth, 1965].     

 
Definition 6.30 An LL(k) grammar is a class of context-free grammars, 

where the first L denotes that the parsing is from left to right, the second L 
specifies that the next production is derived by left-most derivation, and k, k 
≥ 1, denotes that at most k-symbol looking ahead into the unmatched part of 
the input string is required in order to uniquely determine the next 
production.          
 

When k > 1, the LL(k) grammar is called a strong LL(k) grammar. Any 
LL(k) grammar is unambiguous and suitable for top-down parsing. LL(1) 
grammars are widely used in compiling systems because most of the syntaxes 
of high-level programming languages can be defined by an LL(1) grammar 
[Aho, Sethi, and Ullman, 1985].    

 
Definition 6.31 An LR(k) grammar is a class of context-free grammars, 

where the letter L denotes that the parsing is from left to right, the letter R 
specifies that the next production is derived by right-most derivation in 
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reverse, and k, k ≥ 1, denotes that at most k-symbol looking ahead into the 
unmatched part of the input string is required in order to uniquely determine 
the next production.          
 

LR(k) grammars are the most widely used techniques in compiling 
systems because they are suitable for bottom-up parsing in order to reduce 
shift in input scanning [Knuth, 1965]. Any deterministic language can be 
defined by an LR(1) grammar [Hopcroft and Ullman, 1979]. The relationship 
between the two parsing-driven grammars is that any LL(k) grammar is 
necessarily LR(k) [Knuth, 1965].  

 
 

6.3.5 LANGUAGES 
 
 A language is a set of expressions and strings over an alphabet that is 
formed following certain properties and rules known as the grammar. 
 
 Definition 6.32 A language on a given alphabet ∑ is a subset of 
expressions e over ∑*, i.e.: 
    
        L = {e ∈ ∑* | p(e)}             (6.18) 
 
where p(e) denotes each e of L possesses the common property or satisfies 
the grammar rule p, i.e., ∀e ∈ L ⇔ p(e). 
 
 According to Definition 6.32, the following strings and expressions 
belong to a language:  
 
  •  The empty string ∅ 
                 •  All individual symbols in ∑ 

•  All finite sequences of combinations of the individual symbols 
    on ∑    

 
    Example 6.10 a) Let ∑1 = {a, b}, then language L1 = {s ∈ ∑1*} = {∅, 
a, b, ab, ba}. b) Let ∑2 = ∑R, then language L2 = {s ∈ ∑R3* | #(s) = 3} = 
{abc, bcd, ..., xyz, …}.          
 
 In order to enable machines to process certain language in computing,  
regular languages are introduced that composite more restricted strings in the 
form of regular expressions as described in Section 6.3.3.      
 
 Definition 6.33 A regular language Lr over an alphabet ∑ is a set of 
regular expressions on ∑*, i.e.: 
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        Lr = {er ∈ ∑* | p(er)}          (6.19) 
    
 Regular languages are all languages that can be described by regular 
expressions. In other words, every regular expression represents a regular 
language.  
 
 Example 6.11 According to Definition 6.8, the regular expression er1 = 
(a ∪ b)* a defines a regular language Lr1 as follows:  
 
    Lr1 = {er1 ∈ {a, b}* | er1 = (a ∪ b)* a} 
 
which encompasses all strings determined by er1 in the form {a, b}* a,  
representing any string repeated by ab and ends with a.  
 
 The relationship between formal languages and machines can be 
described by the following corollary.           
 

 
 Kleene proved the above theorem [Kleene, 1956], which reveals that 
automata are machines designed for recognizing and executing given 
instructions in the form of regular expressions or restricted strings with a set 
of given rules, i.e., the grammar.         
 
 Definition 6.34 A context-free language Lf is a language generated by a 
context-free grammar Gf, i.e.: 
 

        Lf = L(Gf)            (6.20) 
 
    Example 6.12 According to Definition 6.34, for a given context-free 
grammar Gf1 = (∑, s0, T, R) as shown in Example 6.9, the language 
 
                               L(Gf1) = a (a* ∪ b* ) b  
            
is a context-free language generated by Gf1. 
     
 In computing, context-free grammars are used for language generators, 
while automata are used for language recognizers. Context-free grammars 
are extremely useful in modeling syntaxes of programming languages, and 
parsers of compilers for programming languages. Techniques on using LL(k) 

 

Corollary 6.3 A language is regular iff it is accepted by a finite 
automaton.   
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and EBNF for RTPA recognition will be presented in Section 6.4.4 [Tan and 
Wang, 2006; Tan, Wang, and Ngolah, 2004a/04b/05/06; Ngolah, Wang, and 
Tan, 2005b/06].  
 
 
6.3.6 BNF AND EBNF 
     
 A Backus-Naur form is a recursive notation for describing the 
productions of a context-free grammar. It is developed based on the work of 
John Backus with contributions by Peter Naur [Naur, 1963/78].        
 

Definition 6.35 A Backus-Naur Form (BNF) is defined by a 5-tuple:  
 

BNF  (∑, T, V, P, S)         (6.21)  
 
where  
 
    (i) ∑ is a finite nonempty set of alphabet;  

   (ii) T is a finite set of terminals, T ⊆ ∑;  
   (iii) V is a finite set of nonterminals, V ⊆ ∑ ∧ V = ∑ \ T;   
   (iv) P is a finite set of production rules denoted by α ::= β.  

(v)  S is a finite set of metasymbols that denote relations of the 
 multiple derived products βs separated by alternative selection |.   

 
Example 6.13 The BNF counterparts of the productions as shown in 

Example 6.8, A → (a , Aa, B), aB → b, can be recursively denoted by:    
 

A ::= a | Aa | B 
aB ::= b 

 
Definition 6.36 An abstract syntax is the abstract description of a 

syntax where strings of tokens or nodes in a parse tree are represented by a 
symbol, usually a single letter. 
 

Example 6.14 Assume the following letters be used to represent their 
corresponding concrete syntactic entities: P <program>, L <statement list>, S 
<statement>, E <expression>, I <identifier>, A <letter>, N <number>, and D 
<digit>. The abstract syntax of a Sample Programming Language (SPL) 
[Louden, 1993] for integer arithmetic expressions, variables, basic 
statements, assignments, and loop constructs can be described in BNF as 
shown in Fig. 6.6. 
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Figure 6.6 An abstract syntax representation of the sample language SPL    
 

BNF is found very useful to define context-free grammars of 
programming languages, because its simplicity of notations, highly recursive 
structures, and the support of many compiler generation tools, such as YACC 
[Johnson, 1975], LEX [Lesk, 1975], and ANTLR [Parr, 2000]. 

 
In applications it is realized the descriptive power of BNF may be 

greatly improved by introducing a few extended metasymbols, particularly 
the ones for repetitive and optional structures of grammar rules. There are a 
variety of extended BNFs proposed for grammar description and analysis 
[Wirth, 1976]. A typical EBNF is given below.                      
 

Definition 6.37 An extended Backus-Naur form (EBNF) is defined by a 
similar 5-tuple as given in Eq. 6.21, i.e.:  

 
EBNF  (∑, T, V, P, S’)             (6.22)  

 
with an extended set of metasymbols S’ = { |, ( )*, ( )+, [ ]}, where:  
 

(i) The metasymbol β* and β+ are adopted to denote the repetitive   

structures of derived products, where β* =  

0
β

=

n

i
i
R  and β+ =  

1
β

=

n

i
i
R  

according to the big-R notation [Wang, 2002a].   
  
(ii)  The metasymbol [β] is adopted to denote optional structures of a 

derived product.  

P ::= L 
L ::=  L1 ‘;’ L2  
        | S 
S ::=   I ‘:=’ E ‘;’ 
        | ‘if’ E ‘then’ L1 ‘;’ 
        | ‘if’ E ‘then’ L1 ‘else’ L2 ‘;’ 
        | ‘while’ E ‘do’ L ‘;’ 
E ::=  E1 ‘+’ E2  
        | E1 ‘-‘ E2  
        | E1 ‘*’ E2  
        | ‘(‘ E ‘)’  
        | I  
        | N 
I ::= I A | A 
A ::= ‘a’ | ‘b’ | … | ‘z’ 
N ::= N D | D 
D ::= ‘0’ | ‘1’ | … | ‘9’ 
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Example 6.15 The BNF representation of the abstract syntax of SPL as 
given in Example 6.14 can be simplified by using EBNF nations as shown in 
Fig.6.7. The improved descriptions of grammar rules in EBNF are 
highlighted by underlines.          

     

 
Figure 6.7 An abstract syntax description of SPL using NBNF 
 
 
 

 
6.4 Syntaxes of Programming 
        Languages 
 

 
 
In Section 6.3 it is demonstrated that a programming language can be 
designed and generated from the bottom up according to a set of predefined 
lexes and syntaxes. Reversely, the language can be recognized, analyzed, and 
reduced from the top-down via lexical and syntactic analyses. Therefore, 
syntactical theories of programming languages play an important role in 
language processing.     

In software engineering it is more interested in language recognition, 
cognition, and its expressive power. A programming language in software 
engineering can be perceived as a special notation system for describing and 
specifying instructive computing information on both architectural (data) and 
behavioral (process) aspects of software systems.                          

P ::= L 
L ::=  L1 ‘;’ L2  
        | S 
S ::=  I ‘:=’ E ‘;’ 
        | ‘if’ E ‘then’ L1 [‘else’ L2] ‘;’ 
        | ‘while’ E ‘do’ L ‘;’ 
E ::=  E1 ‘+’ E2  
        | E1 ‘-‘ E2  
        | E1 ‘*’ E2  
        | ‘(‘ E1 ‘)’  
        | I  
        | N 
I ::= A A* 
A ::= ‘a’ | ‘b’ | … | ‘z’ 
N ::= D D* 
D ::= ‘0’ | ‘1’ | … | ‘9’
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The processing of programming languages by a compiler, interpreter, 
or generally a translator can be carried out in four phases: a) lexical analysis, 
b) syntactical analysis, c) semantic analysis, and d) code generation, as 
shown in Fig. 6.8. 
         

 
Source program

Stream of tokens

Syntactic structures

Lexical analyzer 

Parser 

Semantic analyzer

Semantics of syntactic structures

Code generator 

Target code

 
Figure 6.8 Processes of programming language compilations 
 

This section describes the analyses of program structures in a 
programming language in the first two phases known as lexical and 
syntactical analysis. The third and fourth phases on semantic analysis and 
code generation will be discussed in Section 6.5. Further discussions on 
intelligent code generation will be presented in Section 15.4.2.         
 
 
6.4.1 LEXICAL ANALYSES  
 

A lexeme is a basic lexical unit of a language, such as a word or a 
phrase, where the elements of which do not separately convey the meaning of 
the whole. Lexemes and lexical structures are the object of study in 
morphology.   

© 2008 by Taylor & Francis Group, LLC



            Chapter 6 Linguistic Foundations of SE    439 

     Definition 6.38 The lexical structure of a programming language is the 
structures of its lexemes, such as strings or words, known as tokens in 
language processing.    

 
6.4.1.1 Taxonomy of Lexical Entities in Programming Languages 
 

Tokens of a programming language can be classified into three 
categories that represent program entities of reserved words, reserved 
symbols (operators and separators), and identifiers (user-defined variables 
and constants) as shown in Table 6.4. 

   Identifiers are the most widely used entities in programming for 
representing variables, constants, procedures, classes, and program names.  
According to Definition 5.23, an identifier ID is a logical name of a language 
entity or construct, which can be essentially and uniquely specified by a 6-
tuple ID  (S, T, D, V, L, C), where the most important properties are the 
representative symbol S and its type T.  The other properties in the 6-tuple 
are the ID’s domain D, instant values V, the physical location L, and the 
scope C. Detailed descriptions can be referred to Section 5.3.2 on basic data 
object modeling techniques in computing. For the definition of a constant ID 
in Table 6.4, T* represents the type of the constant as that of variables.     

 
Table 6.4 

Taxonomy of Lexical Entities 
 

No Entity Description Property Example 

1 Reserved 
words 

Keywords in 
instructions  

System defined 
instructions 

if, do, end  

2 Symbols for building 
expressions and 
program structures 

  

2.1 - Operators System defined functions +, -,  = 

2.2 

Reserved 
symbols 

- Separators System defined formats //, (, ), ;  

3 Names of data objects User defined objects 

based on naming rules 

 

3.1 - Variables ID  (S, T, D, V, L, C)      iN, xR, expZ   

3.2 

Identifiers 

- Constants ID  (S, T*, D, V, L, C)    TBL*, event1S*  
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6.4.1.2 Lexical Analyses of Programs 
 

 In programming language processing, lexical analyses are conducted by 
the lexical analyzer or the scanner. The input of the lexical analyzer is the 
source program in a given language, and the output of the lexical analyzer is 
a sequence of tokens identified from the program.        

 
Lexical analysis is aimed to chop a long list of the source code in a 

programming language into a finite sequence of individual tokens, for each 
of them, its language properties such as identifier, reserved word, or reserved 
symbol, as classified in Table 6.4, is clearly identified.        

 
 
 
6.4.2 SYNTAX DEFINITIONS AND DESCRIPTIONS  

 
The syntax of a programming language constitutes how the language is 

built with lexical symbols or tokens. 

   
     Definition 6.39 The syntax of a programming language is a set of 

grammatical rules for constructing legal instructions.    
 

The grammar rules of a given language that constrain and direct a 
syntactic analysis of a parser can be described by BNF or EBNF as discussed 
in Section 6.3.6. Although both descriptions of grammars in BNF and EBNF 
are equivalent, the EBNF representation is more efficient and expressive to 
facilitate syntactic analyses. The BNF or EBNF grammar rules are applied by 
the parser to determine whether an inputted sequence of tokens is legal and 
correct. Corresponding to the EBNF description of the syntactic structures of 
a programming language, a flow diagram known as syntax diagram can be 
used to illustrate the rules and syntactic structures. Syntax of programming 
languages can also be formally described by RTPA.  

 
Table 6.5 contrasts the three syntactical description techniques for 

typical syntactic entities and structures in EBNF, syntax diagrams, and 
RTPA. In the syntax diagrams, a terminal and a nonterminal are represented 
by an oval and a square, respectively.    
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Table 6.5 
Description of Typical Syntactic Entities and Structures 

 

 
 

No Syntactic 
structure 

EBNF notation Syntax diagram RTPA notation 

1 Serial S ::=  
   S1 S2 … Sn 

 

S = S1 → S2 → .. → Sn 

2 Serial with 
option 

S ::=  
   S1 [S2] … Sn 

 

S =  S1 → S2 → S3 … 
       → Sn  
     | S1 → S3 → … Sn 

3 Repeat 
serial for 0 
or more 
times     

S ::=  
   (S1 S2 … Sn)* 

 

*
...1 2( )ns s sR → → →

 

4 Repeat 
serial for 1 
or more 
times     

S ::=  
   (S1 S2 … Sn)+ 

 

+
...1 2( )ns s sR → → →

 

5 Alternative S ::=  
   S1 | S2 | … | Sn 

 S =  S1 | S2 | … | Sn 

6 Alternative 
with 
option 

S ::=  
   [S1 | S2 | … | Sn]  
 

 S =  S1 | S2 | … | Sn | ∅ 

7 Repeat 
alternative 
for 0 or 
more times   

S ::=  
   (S1 | S2 | … | Sn)*  
 

 

*
1 2( | | ... | )ns s sR

 

8 Repeat 
alternative 
for 1 or 
more times   

S ::=  
  (S1 | S2 | … | Sn)+  
 

 

+
1 2( | | ... | )ns s sR

 

 S 
SnS1 S2

 …

 S 
SnS1 S2

… 

 S 
SnS1 S2

… 

 S 
SnS1 S2

… 

 

 S 

S2 

 … 

Sn 

S1 

 S 

 … 

Sn 

S1 

S2 

 S 

 … 

Sn 

S1 

S2 

 

 S 

 … 

Sn 

S1 

S2 
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Example 6.16 The syntax diagram of expressions in SPL as described 
in Section 6.3.6, i.e.:    

 
 E ::=  E1 ‘+’ E2  

             | E1 ‘-‘ E2  
             | E1 ‘*’ E2  
             | ‘(‘ E ‘)’  

    
can be derived as shown in Fig. 6.9. 

 
Figure 6.9 The syntactic structure of expressions in SPL 
 
               
6.4.3 SYNTACTICAL ANALYSES    
      
 In programming language processing, syntactical analyses are 
conducted by a parser or a syntactical analyzer. The input of the parser is a 
sequence of tokens identified by the lexical analyzer; and the output of the 
parser is a set of syntactically structured program instructions.        
 
6.4.3.1 Basic Syntactical Analysis Techniques 
 

Fundamental syntax analysis techniques can be classified into top-down 
and bottom-up parsing approaches, which adopt the LL(k) and LR(k) 
grammars, respectively.  

 
6.4.3.1.1 Top-Down Parsing 
 

Definition 6.40 Top-down parsing is a class of parsing techniques that 
matches an input string to a given syntax tree in a preorder, i.e., from the root 
of the syntax tree to the leftmost nodes.  
 

Top-down parsing is directed by an LL(k) grammar. Frequently used 
top-down parsing techniques are recursive-descent parsing and predictive 

  E 

E1 

E1 

E2    + 

    - 

    ) 

   * 

E2 

E2 

E1    ( 

E1 
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parsing. LL(k) parsers can be implemented using the compiler generation tool 
ANTLR [Parr, 2000].      
 

Definition 6.41 Recursive-descent parsing is a top-down parsing 
technique that derives a parsing tree according to a set of left-recursive 
grammar rules.        
 

For example, a recursive-descent parser can process a grammar G1 = {S 
::= αAβ, A ::= a | b}, where α and β are strings of tokens with terminals 
and/or nonterminals. It may require backtracking when a derivation can not 
match the whole input string in case the input string s = αaβ, for a grammar   
G2 = {S ::= αAβ, A ::= ab | a}. It may also result in an infinitive loop in the 
case such as G3 = {S ::= αAβ, A ::= ab | a | A}. 

A parser is nondeterministic if there is at least one decision point where 
the parser cannot resolve which path to take. Nondeterminisms arise because 
of the weakness of a given grammar.  
 

Example 6.17 The following grammar rule parsing by LL(1) grammar 
is nondeterministic:  
   

       S ::= aa ; | a ;  
 
However, by using LL(2) grammar, the above rule is deterministic because 
the second lookahead token helps to uniquely determine which alternative to 
predict.  
 

Definition 6.42 Predictive parsing is a restricted form of recursive-
descent parsing where the backtracking is eliminated in the top-down parsing 
by adopting an LL(1) grammar.   
    
 Any production rule in LL(1) in the form of A ::= α1 | α2 | … | αn  must 
meet the following conditions: a) The first token in αi | , 1 ≤ i ≤ n, should be 
unique; and b) The following tokens in each αi should not be the same with 
any of the first tokens of αi.  
        
6.4.3.1.2 Bottom-Up Parsing 
 

Complemented to the top-down approach, a bottom-up approach to 
syntactic analysis and parser implementation is also widely used. 

   
Definition 6.43 Bottom-up parsing is a class of parsing techniques that 

derives a parse tree for an input string from the leaves to the root, in order to 
reduce the string to the start symbol of production rules.  
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Example 6.18 Assume the grammar rules for expressions E are given 
below:  

 
E ::= E + E | E - E | E * E | (E) | id 

 
A bottom-up rightmost derivation for the input string S = id1 + id2 * id3 can 
be reduced in the following steps: 
 

      S  = id1 + id2 * id3 
⇒ E + id2 * id3 
⇒ E + E * id3 
⇒ E + E * E 
⇒ E + E 
⇒ E 

 
Bottom-up parsing is usually directed by an LR(k) grammar. That is, at 

each step of reduction, a rightmost derivation is traced out. LR(k) parsers can 
be implemented using the compiler generation tool YACC (Yet Another 
Compiler-Compiler) [Johnson, 1975].      
 
6.4.3.2 Description of Parsing Results by Syntax Trees 
 

Definition 6.44 An Abstract Syntax Tree (AST) is a tree structure that 
represents the parsing result, including a number of tokens and their 
syntactical relations, in a hierarchical diagram. 
  

Example 6.19 An AST of a simple grammar rule and an AST of the 
RTPA top-level rule of specifications can be generated by a parser, 
respectively, as follows: 

 
a) S ::= a | b 

 

   
 

 

 

 S

a b
/ \  

 

  b)  §(SysIDS) ::=    ArchitectureST  
                                  || StaticBehaviorsST  
                             || DynamicBehaviorsST     

 

Figure 6.10 ASTs generated by parsers 

 
   §(SysIDS) 

ArchitectureST StaticBehaviorsST DynamicBehaviorsST 
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6.4.4 SYNTACTICAL ANALYSES OF RTPA    
 
 The syntax of RTPA has been described in Section 4.6. This subsection 
describes the syntax analysis techniques for RTPA and their implementation 
[Tan and Wang, 2006; Tan, Wang, and Ngolah, 2004a/05/06; Ngolah, Wang, 
and Tan, 2005b/06]. A comprehensive set of RTPA grammar rules can be 
referred to [Tan, Wang, and Ngolah, 2004b].            
 
6.4.4.1 Description of the RTPA Syntax in LL(k)   
 

The RTPA methodology and syntax for software system specification 
and modeling are specified by a set of almost 300 LL(k) grammar rules [Tan, 
Wang, and Ngolah, 2004b]. Since LL(k) is a context-free grammar, it can be 
described by EBNF.   

On the basis of the description of the RTPA methodology and syntax in 
Sections 4.6 and 4.7, the top-level RTPA grammar rule for the entire 
architecture of a given software system can be specified in EBNF as shown 
in the following rule.  

  
rtpa_system_specification ::= 

top_schema architecture static_behaviors dynamic_behaviors  
EOF               (6.23) 

 
The first part of the system specification is the top_schema, which can 

be refined in Eq. 6.24. In this rule, the system declaration specifies the name 
of the system by a definition symbol. The system architecture declaration, 
system static behaviors declaration, and system dynamic behaviors 
declaration define the three subsystems in an RTPA specification, 
respectively. 
 

     top_schema ::=  
    system_declaration DEFINITION_SYMBOL  

       system_architecture_declaration 
       PARALLEL_SYMBOL  
       system_static_behaviors_declaration  

                     PARALLEL_SYMBOL  
                     system_dynamic_behaviors_declaration         (6.24) 
 

The system name is represented by a variable of kind system-name with 
type S and scope global. The system name can be used as a prefix before 
subsystem names, CLM names, process names, events, statuses, and 
constants used in the system. The system name variable should not be 
assigned with any value in the system specification, while it is treated as a 

© 2008 by Taylor & Francis Group, LLC



446   Part II Theoretical Foundations of SE 

unique identification of the system when it is referred in other system 
specifications in the way that it is initialized to a variable of system 
architecture type ST. 

The LL(k) grammar rules of RTPA can also be described by a 
corresponding syntax diagram.   

   
Example 6.20 An EBNF grammar rule for the component logical 

model (CLM) of RTPA as given in Eq. 6.25 below can be described by a 
corresponding syntax diagram in Fig. 6.11. More formal description of 
CLMs in RTPA has been provided in Section 5.3.3.3.1.      
 

clm_schemas ::= ( clm_schema   
                              (EQUALITY_SYMBOL 
                                clm_object (PARALLEL_SYMBOL  
                                                    clm_object)* 
                              ) 
                            )+              (6.25) 

 

   clm_schema   clm_object   clm_object = ||
 

 
Figure 6.11 An EBNF syntax diagram of RTPA CLM schemas 
 
6.4.4.2 Description of Special RTPA Grammar Rules by Syntactic 
            Predicates   
 

There are special RTPA grammar rules that cannot be described by 
LL(k) grammar, such as assignment, read/write, I/O, timing, duration, and the 
iteration processes denoted in the big-R notation. These special parsing rules 
of RTPA can be specified by a special means known as the syntactic 
predicates.  
          

Definition 6.45 A syntactic predicate, denoted by: 
 
                       <syntactic entity> ⇒ <production>         (6.26) 
 

is a selective form of backtracking adopted for recognizing complicated 
language constructs that cannot be distinguished without seeing the entire 
structure.  
 

A syntactic predicate is a conditional production determined by a 
current scanned token that directs the selection of a suitable rule in parsing. 
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The syntactic predicates can be implemented by the guarded predicate 
provided by ANTLR (ANother Tool for Language Recognizer) [Parr, 2000] 
in the process of RTPA parser generation [Tan, Wang, and Ngolah, 
2004a/06].  
 

Example 6.21 The grammar rules of several RTPA meta processes, 
such as shown in Eq. 6.27 through Eq. 6.31, may not be determined by a 
fixed k according to LL(k) grammar, because these meta processes share the 
same identifier with arbitrary length in an RTPA specification.  

 
    single_assignment ::=  

              variable ASSIGNMENT_SYMBOL expression      (6.27) 
 

    read_process ::=  
memory_expression READ_SYMBOL variable      (6.28) 

 
         write_process ::=  

variable WRITE_SYMBOL memory_expression      (6.29) 
 

    input_process ::=  
port_expression INPUT_SYMBOL variable       (6.30) 

 
    output_process ::=  

variable OUTPUT_SYMBOL port_expression      (6.31) 
 

To solve the above problems, a new rule using syntactic predicates as 
guarded directors is introduced as shown below. 
 

    id_prefixed_process ::=  
(pointer_variable ASSIGNMENT_SYMBOL) => 
  addressing_process 

| (variable ASSIGNMENT_SYMBOL) => single_assignment 
| (variable OUTPUT_SYMBOL) => output_process 
| (variable READ_SYMBOL) => read_process 
| (variable WRITE_SYMBOL) => write_process 
| (prefixed_identifier [subscript_expression] 
    LEFT_PARENTHESIS) => process_instance_expression 
| (prefixed_identifier [subscript_expression]) => name_process  

     (6.32) 
 

The rule given in Eq. 6.32 specifies that alternative guarding conditions 
should be checked before a specific alternative rule may be selected. The 
conditional syntactic predicates are shown in the left-hand side of  “=>” in 
Eq. 6.32. Since the conditions are described uniquely for each rule in Eq. 
6.32, a determinable choice can be implemented in the RTPA parser. The 
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method for solving the nondeterministic problems in parsing an RTPA 
specification is also useful in the definition of the expression rules of RTPA.  
 
6.4.4.3 Parsing RTPA Specifications  
 

An advanced compiler generation tool, ANTLR [Parr, 2000], takes 
LL(k) grammar rules as its input and generates a corresponding LL(k) parser 
as the output. ANTLR generates predicate-LL(k) parsers that support 
syntactic predicates for specifying both context-free and context-sensitive 
grammars. The generated RTPA parser encompasses a lexical analyzer and a 
type checker. The parsing of an RTPA system model and system 
specification can be conducted as shown in Fig. 6.12. 
                                    

 
Figure 6.12 Syntactic analysis of RTPA specifications 
 

Under the support of ANTLR, the RTPA parser can be implemented in 
the following processes [Tan, Wang and Ngolah, 2004b/2006]: 
 

 a)  To define the RTPA grammar in EBNF. 

b) To convert the RTPA grammar into a set of LL(k) parsing rules. 
For those RTPA grammar rules that can not be described by 
LL(k), the ANTLR syntactic predicates are used to make them 
determinable within a fixed depth of look-ahead.  

RTPA 
specifications 

RTPA lexical 
analyzer 

Stream of tokens 

RTPA  
parser and 

type checker

Report of syntactic 
or type errors 

Abstract syntax 
trees of RTPA

 Errors found Parsing 

RTPA grammar 
rules in EBNF 

RTPA syntactic 
predicates 
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c) To embed a type checker into the rules of RTPA parser as special 
semantic actions.  

d) To load the parser rules of RTPA to ANTLR in order to generate 
the RTPA parser (including the lexer and the type checker) in 
executable Java classes. 

 
It is noteworthy that, although there is no clearly drawn boundary 

between syntactical and semantic analyses, it is generally classified that 
language entities and properties expressible by context-free grammars are 
syntactic issues; otherwise, they are semantic issues. 

 
 

 
6.5 Semantics of Programming 
       Languages 
 

 
 
Studies on software semantics have been recognized as one of the key areas 
in the development of fundamental theories for computer science and 
software engineering [Hoare, 1969; Gries, 1981; McDermid, 1991; Slonneg 
and Kurts, 1995; Bjoner, 2000]. The semantics of a programming language is 
the behavioral meanings that constitute what a syntactically correct 
instructional statement in the language is supposed to do during run-time. 
The development of formal semantic theories of programming is one of the 
pinnacles of computing and software engineering [Pagan, 1981; Meyer, 
1990; Gunter, 1992; Louden, 1993; Bjoner, 2000].  

In semantics analyses, the instructions shared by all programming 
languages can be classified into three types: a) Internal operations such as 
memory manipulation and assignment instructions; b) Basic control 
structures such as the if-then-else and while-do instructions; and c) External 
operations onto the environment, such as input/output, event handling, and 
human-machine interactive instructions.    

 
Definition 6.46 The semantics of a program in a given programming 

language is the logical consequences of an execution of the program that 
results in the changes of values of a finite set of variables and/or the 
embodiment of computing behaviors in the underlying computing 
environment. 

 
 This section introduces existing semantic theories of programming 
languages such as target semantics, operational semantics, denotational 
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semantics, axiomatic semantics, and algebraic semantics. Then, it 
demonstrates how the semantics of a program in a given programming 
language is expressed and embodied on the basis of syntactic analysis. It also 
shows that the existing semantic notations and methodologies are inadequate 
to express some important instructions, complex control structures, and the 
real-time environments at run-time. This leads to the development of the 
deductive semantics as described in Section 6.5.3.                 
 
 
6.5.1 TAXONOMY OF SEMANTICS  
 

Basic semantics of a programming language can be described by its 
behavioral equivalence to another language, such as a natural language or 
languages of the target machines. Semantics can also be described by a set of 
predefined executable functions in machine languages. Another approach to 
specify the semantics of a programming language is by mathematical 
definitions known as formal semantics.  

A number of formal semantics, such as the operational [Wegner, 1972; 
Ollongren, 1974; Marcotty and Ledgard, 1986; Wikstrom, 1987], 
denotational [Scott and Strachey, 1971; Jones, 1980; Scott, 1982; Bjorner 
and Jones, 1982; Schmidt, 1988/94/96], axiomatic [Hoare, 1969; Dijktra, 
1975/76; Gries, 1981], algebraic [Goguen et al., 1977/96; Guttag and 
Horning, 1978], and deductive semantics [Wang, 2006a], have been 
proposed in the last three decades for defining and interpreting the meanings 
of programs and programming languages. The following subsections 
describe the formal approaches to specification and analysis of program 
semantics.  
 
6.5.1.1 Target Semantics 
 

The most basic and simplest semantics of programming languages is 
the target semantics, which maps the equivalent behaviors of a given 
statement in the target-machine’s language. Target semantics is typical 
semantics adopted in early stages of programming technologies.   

     
Definition 6.47 Target semantics is an equivalent semantics that adopts 

a target-machine’s language to interpret the behavioral meaning of a program 
in a programming language. 
 

The most typical target language is assembly language. Because 
machine languages are system dependent, there are two drawbacks in using 
target semantics. The first drawback is that it is not rigorous and cannot be 
formally defined and described in order to facilitate machine-based semantic 
analyses. Another is the low efficiency in applications because the semantics 
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of a given programming language has to be mapped into multiple target 
languages. Theses reasons motivated the studies on theories of formal 
semantics of programming languages and software systems.  

A common approach towards the establishment of formal semantics is 
to develop suitable and generic abstract models of the target machines, 
supplemented with the formal description of the abstract syntactic rules of 
the programming languages. Once the target machines can be abstracted by 
unified mathematic models, formal semantics such as the operational, 
denotational, axiomatic, and algebraic semantics may be developed as shown 
in the following subsections.  
  
6.5.1.2 Operational Semantics  
 

Definition 6.48 Operational semantics adopts a virtual machine, whose 
operations are well defined, to describe the semantics of a program in a 
specific programming language by its equivalent behaviors implemented on 
the virtual machine.    
 

The foundation of operational semantics is based on virtual machine 
theory [McDermid, 1991]. Virtual machines have been discussed in Section 
5.6.1. A typical virtual machine for embodying operational semantics of an 
arbitrary program is called a reduction machine [Louden, 1993]. The 
reduction machine is used to reduce the given program to values inside the 
machine and its environment by a finite set of permissible operations.           
               
6.5.1.3 Denotational Semantics  
 

Definition 6.49 Denotational semantics adopts functions to describe 
the semantics of a programming language, in which the functions map 
semantics values into syntactically legal program constructs.    
 
        The foundation of denotational semantics is based on recursive function 
theory [Scott and Strachey, 1971; Jones, 1980; Scott, 1982; Bjorner and 
Jones, 1982; Schmidt, 1988/94/96]. Denotational semantics is considered a 
well defined semantics among the existing ones for expressing the meaning 
of computational instructions in a programming language. In denotational 
semantics, instructions in a program can be translated into a set of functions 
based on rigorously defined methodologies.         
        
6.5.1.4 Axiomatic Semantics  
        

Definition 6.50 Axiomatic semantics adopts effective assertions to 
describe the semantics of a programming language, in which the assertions of 
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effects for executing an instruction are deduced to the values of data objects 
manipulated by the instruction.  
 

The foundation of axiomatic semantics is based on predicate logic 
[Hoare, 1969; Dijktra, 1975/76; Gries, 1981], where assertions play an 
important role in axiomatic semantics. Because logical axioms are used in the 
assertions for denoting program semantics, this method gains the name as 
axiomatic semantics.   

 
Definition 6.51 An assertion A is a logical statement about the 

predicate behavior Q and its initial assumptions P of a given instruction S at 
any given point of a program during run-time, which can be examined as true 
or false, i.e.:   
 

 A  {P} S {Q}         (6.33) 
 
where P is called the precondition and Q the postcondition.     

 
However, P and Q are not always specifiable, because some of the 

operations at run-time are unpredictable or indeterministic, such as event 
dispatching, parallel mechanisms, and dynamic memory allocations. 
Nevertheless, assertions have been adopted in a number of modern 
programming languages, such as C++ and Java. Assertions have also been 
found useful in formal-specification-based software testing [Yao and Wang, 
2004]. 

Assertions play an important role in correction proving for formal 
specifications of software systems. As C.A.R. Hoare wrote: “Thus the 
practice of proving programs would seem to lead to solution of three of the 
most pressing problems in software and programming, namely, reliability, 
documentation, and compatibility. However, program proving, certainly at 
present, will be difficult even for programmers of high caliber; and may be 
applicable only to quite simple program designs [Hoare, 1969].”  

 
6.5.1.5 Algebraic Semantics  
       

Definition 6.52 Algebraic semantics adopts abstract algebra to describe 
the semantics of a programming language, in which data objects and 
operations are defined by algebraic axioms and deduced by abstract algebraic 
laws. 
 
 The foundation of algebraic semantics is based on abstract algebras 
[Goguen et al., 1977/96; Guttag and Horning, 1978]. A well-known 
application of algebraic semantics is the definitions and descriptions of 
ADTs. Algebraic semantics are capable to deduce the semantics of data 
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objects and imposed operations on abstract types, sorts, and mathematical 
entities. However, it can not reduce the semantics onto concrete data entities 
and complex architectures and processes.  
 
6.5.1.6 Deductive Semantics  

 
The aforementioned classic formal semantics were oriented on a certain 

set of software behaviors that are limited by the models of their semantic 
environments. The mathematical models of the target machines and the 
semantic environments in conventional semantics seem to be inadequate to 
deal with the semantics of complex programming requirements, and to 
express some important instructions, complex control structures, and the real-
time environments at run-time. For supporting systematical and machine 
enabled semantic analysis and code generation in software engineering, the 
deductive semantics will be introduced that provides a systematic semantic 
analysis methodology.  

 
Definition 6.53 Deductive semantics is a formal software semantics 

that deduces the semantics of a program in a given programming language 
from a generic abstract semantic function to the concrete semantics, which 
are embodied onto the changes of status of a finite set of variables 
constituting the semantic environment of computing. 

 
The theoretical foundations of deductive semantics are based on 

process algebra and Boolean partial differentials [Wang, 2006a]. Based on 
the mathematical models and architectural properties of a program at 
different composing levels as described in Section 5.5, deductive models of 
software semantics, semantic environment, and semantic matrix will be 
formally defined in Section 6.5.3. Properties of software semantics and 
relations between the software behavioral space and semantic environment 
will be discussed. The deductive semantic rules of RTPA are presented in 
Section 6.6, which serve both as a comprehensive case study for verifying 
the expressive and analytic capacity of deductive semantics and as the 
completion of RTPA as a rigorously defined software engineering notation 
system. 

 
 
6.5.2 DENOTATIONAL SEMANTICS  
 

As that of natural languages, the semantic analysis of programs is 
syntax-directed, in which the semantic definitions are based on a context-free 
grammar or a set of BNF rules. The border between syntactic and semantic 
analyses lies at the interfaces of format and meaning, structure and behavior, 
and static grammar and dynamic implementation. Therefore, it can be 
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perceived that semantics of languages concern everything not specified by 
the grammar in term of the BNF rules.                          

Denotational semantics provides a rigorous approach to semantic 
analysis of programs and programming languages. This subsection uses the 
sample language SPL as given in Fig. 6.6 and explained in Section 6.3.6 to 
examine how semantics of programs expressed in this language may be 
elicited and comprehended formally by using the method of denotational 
semantics.      
 
6.5.2.1 Syntactic and Semantic Domains of Denotational Semantics 
 

Before proceeding to the description of denotational semantics, the 
concept of semantic functions and their syntactic and semantic domains are 
introduced as a preparation.    

 
Definition 6.54 A semantic function SF of a programming language is 

a function f that maps a set of syntactic constructs C onto a set of associated 
semantic values in V, i.e.: 

 
    SF = f: C → V         (6.34) 

           
Example 6.22 A semantic function of expression evaluation VAL that 

associates an integer value in  to an integer arithmetic expression E can be 
denoted by: 

 
                  VAL = fval: E →  

 
 The semantic functions provide a set of deduction rules for a language. 
Based on those rules, semantics of programs written in the language can be 
derived onto the values of all variables in a given environment. 
                    

Definition 6.55 The domain of a semantic function, C, is a syntactic 
domain. 

 
Definition 6.56 The codomain of a semantic function, V, is a semantic 

domain. 
 

Example 6.23 For the above semantic function VAL = fval: E → , its 
syntactic domain is the domain of E, i.e., all syntactically correct expressions 
according to the given grammar. Its semantic domain is the domain of , i.e., 
all binding values of each syntactically correct expression.  
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 In semantic analysis, the semantics of each statement in a program has 
to be deducted onto the values of all variables or identifiers. Since the 
identifiers operated by a statement are stored in a physical memory location, 
semantics of a statement is eventually embodied as the current values of all 
identifiers that are affected by a given statement. More exactly, semantics of 
a statement are the changes of the values of all identifiers after the execution 
of the statement. Hence, the semantic environment of a program in a given 
programming language is the collection of all values of identifiers stored in 
predefined memory locations.                
 

 Definition 6.57 A semantic environment Θ of a programming language 
is a logical model of a set of identifiers and their values bound in pairs, i.e.: 

 
Θ = f: I →  

        = {
#

1

I

k
R
=

(ik, vk)} 

                 = {(i1, v1), (i2, v2), …, (i#I, v#I)}               (6.35)    
 
where I is a set of identifier,  a set of integer, and #I the number of elements 
in I.    
 

According to Definition 6.57, an empty environment Θ0 is an empty set 
or a set of arbitrary numbers of undefined identifiers without binding value, 
i.e.: 

     
Θ0 = {(∅, ⊥)} 
      = ⊥                      (6.36) 

  
where ⊥, called the bottom, is used to denote an undefined value.  

The evaluation of a syntactic domain (SD), such as expressions E, 
statements S, or a program P, in the presence of an environment Θ can be 
denoted by: 

 
SD || Θ             (6.37) 
 

where || represents a parallel relation between an SD and its underlay 
environment Θ. In other words, any change in SD will result in a 
corresponding change of value for the related identifier(s) in Θ.          

For example, according to Eq. 6.37, P||Θ, S||Θ, or E||Θ represent the 
evaluation of a program, statement, or expression in the given environment 
Θ, respectively. When there is no confusion, the context ||Θ may be omitted. 
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6.5.2.2 Description of Syntactic Domains of the Sample Language SPL 
 

In denotational semantics, the syntactic domain of a language is defined 
as a set of pairwise relations between a syntactic variable and a syntactic 
entity. Then, the grammar rules for each of the syntactic variables are defined 
by an abstract syntax.      

As given in Example 6.15, the syntactic domain SD of the sample 
language SPL is defined below:  
 

        SD = {(P, <program>),  
                (L,  <statement list>),  
                (S,  <statement>),  
                (E,  <expression>),  
                (I,  <identifier>),  
                (A,  <letter>),  
                (N,  <number>), 
                (D,  <digit>)}                   (6.38) 

 
On the basis of the defined SD, the abstract syntactic model of SPL can 

be described in Fig. 6.13, where a terminal symbol ‘t’ is enclosed in quotes to 
denotes that it is different from the operation or value that t represents. 

 
Figure 6.13 The abstract syntax model of SPL    
 
6.5.2.3 Semantic Analysis using Denotational Semantics 
 

The sample language SPL can be divided into three parts: integer 
arithmetic expressions, assignments, and control constructs. This subsection 
analyzes those syntactic domains, their corresponding semantic functions, 

P ::=  L 
L ::=  L1 ‘;’ L2  
        | S 
S ::=   I ‘:=’ E ‘;’ 
        | ‘if’ E ‘then’ L1 ‘;’ 
        | ‘if’ E ‘then’ L1 ‘else’ L2 ‘;’ 
        | ‘while’ E ‘do’ L ‘;’ 
E ::=  E1 ‘+’ E2  
        | E1 ‘-‘ E2  
        | E1 ‘*’ E2  
        | ‘(‘ E1 ‘)’  
        | I  
        | N 
I ::= I A | A 
A ::= ‘a’ | ‘b’ | … | ‘z’ 
N ::= N D | D 
D ::= ‘0’ | ‘1’ | … | ‘9’ 
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and the semantic meaning of each syntactic domain that may be deducted 
from the semantic functions. The denotational semantics approach will be 
used in the analyses.                  

 
6.5.2.3.1 Semantics of Integer Arithmetic Expressions   
 

Denotational semantics can be described by a set of semantic functions 
or rules; each of them maps a syntactic domain into a semantic domain.               
The semantics of the integer arithmetic expressions of SPL in denotational 
semantics can be described by a set of semantic functions defined on given 
syntactic and semantic domains as shown in Table 6.6.  

 
Table 6.6 

Semantic Analysis of Integer Arithmetic Expressions 
 

Syntactic Domains Semantic Domains Semantic Functions 

E ::=  E1 ‘+’ E2  
| E1 ‘-‘ E2  
| E1 ‘*’ E2  
| ‘(‘ E ‘)’  
| N 
 

N ::= N D | D 
 
D ::= ‘0’ | ‘1’ | … | ‘9’ 

Domains  
   v :  
   Θ : I → ⊥ 
 
Operations 
  +:  ×  →  

  -:   ×  →  

  *:   ×  →  

E: E → ⊥ 

N: N →  

D: D →  
 

E E1 ‘+’ E2  = E E1  + E E2  

E E1 ‘-’ E2  = E E1  - E E2  

E E1 ‘*’ E2  = E E1  • E E2  

E ‘(‘ E ‘)’  = E E  

E N  = N N  
 

N ND  = 10 • N N + N D  

N D = D D  
 

D ‘0’ = 0 

D ‘1’ = 1 
    … 
D ‘9’ = 9 

 
The syntactic domain of SPL, SD = {E, N, D}, is specified in the left 

column of Table 6.6. It encompasses three syntactic sub-domains, E 
<Expression>, N <Number>, and D <Digit> as defined in EBNF.  

In the semantic domains, the domains of variables and the environment, 
as well as their allowable operations, are defined in the middle column of 
Table 6.6. A generic variable v is introduced in the simple type integer  for 
all identifiers in SPL. The environment Θ  is defined as a function that maps 
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a set of identifiers I into , which is undefined (⊥) initially. On the basis of 
the declarations of types of variables, three operations, +, _, *, are defined as 
functions that operate two integer variables and result in an integer value.  
 In the semantic function column of Table 6.6, there are two types of 
semantic functions: the generic and the derived semantic functions. The three 
generic semantic functions, E, N, and D, are schemas of functions that map a 
corresponding syntactic domain into a value in . On the basis of the generic 
functional schemas, a set of 17 derived semantic functions are defined for 
each of the corresponding production rules as defined in the syntactic 
domains. 
 
6.5.2.3.2 Semantics of Assignments  
 

This subsection extends the SPL to cover the semantics of the 
assignment statement in denotational semantics as shown in Table 6.7.  
 

Table 6.7 
Semantic Analysis of Assignments 

 

Syntactic Domains Semantic Domains Semantic Functions 
S ::=  I ‘:=’ E ‘;’ 
 
E ::=  E1 ‘+’ E2  

| E1 ‘-‘ E2  
| E1 ‘*’ E2  
| ‘(‘ E ‘)’  
| I  
| N 

 
I ::= I A | A 
 
A ::= ‘a’ | ‘b’ | … | ‘z’ 
 
N ::= N D | D 
 
D ::= ‘0’ | ‘1’ | … | ‘9’ 

Domains  
   v :  
   Θ : I → ⊥ 
 
Operations 
  +:  ×  →  

  -:   ×  →  

  *:   ×  →  

S: S → Θ 
E: E → ⊥ 

N: N →  

D: D →  
 
S I ‘:=’ E  = (I = E E )  
 
E E1 ‘+’ E2  = E E1  + E E2  

E E1 ‘-’ E2  = E E1  - E E2  

E E1 ‘*’ E2  = E E1  • E E2  

E ‘(‘ E ‘)’  = E E  

E N  = N N  
 
N ND  = 10 • N N  + N D  

N D  = D D  
 
D ‘0’ = 0 

D ‘1’ = 1 
    … 
D ‘9’ = 9 
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The syntactic domains SD = {E, N, D} in Table 6.6 are extended by S 
<Statement>, I <Identifier>, and A <Letter> with corresponding EBNF 
deduction rules. Therefore, the syntactic domains of assignment statements 
for semantic analysis include six domains, i.e., SD = {S, E, I, A, N, D} as 
shown in Table 6.7.             

The semantic domains and the environment Θ remain the same for 
interpreting the results of semantic analysis.               

The new generic semantic function S maps an assignment statement 
into the environment Θ, i.e., into an integer identifier in type . The new              
derived semantic function of assignment, S I ‘:=’ E  = (I = E E ), denotes 
that an assignment S I ‘:=’ E  in the environment Θ is an evaluation of the 
expression E, E, in Θ, and transfers the value of E to the identifier I. 
 
6.5.2.3.3 Semantics of Branch Statements    
               

This subsection extends the SPL to cover the semantics of the branch 
statement in denotational semantics as shown in Table 6.8.  
 

Table 6.8 
Semantic Analysis of Branch Construct 

 

Syntactic Domains Semantic Domains Semantic Functions 
L ::=   L1 ‘;’ L2  

| S 
 
S ::= ‘if’ E ‘then’ L1  
        ‘else’ L2 ‘;’ 
 
E ::=  E1 ‘+’ E2  

| E1 ‘-‘ E2  
| E1 ‘*’ E2  
| ‘(‘ E ‘)’  
| I  
| N 

Domains  
   v :  
   Θ : I → ⊥ 
    T: ℤ | T = 1 
   F: ℤ | F = 0 
 
Operations 
  +:  ×  →  

  -:   ×  →  
  *:   ×  →  

E: E → ⊥ 
L: L → Θ 
S: S → Θ 
 
L L1 ‘;’ L2  = L L2  ° L L1  
L S  = S S  
 
S ‘if’ E ‘then’ L1 ‘else’ L2 ’;’   
   = if (E E  = T 
           then L L1  
           else L L2  

 

The syntactic domains in Table 6.8 are extended by adding a 
<statement-list> L, i.e., SD = {S, E, I, A, N, D} ∪ {L}.             

The environment Θ in the semantic domain remains unchanged. 
However, two integer constants T and F are introduced with the value ‘1’ and 
‘0’ respectively. The reason for defining these two Boolean constants as 
integer is that Θ and all variables v in SPL have been restricted in ℤ for 
simplicity in analysis.           
 In the semantic functions, a statement-list L for a single statement S, 
L S , is interpreted as a derived function of an ordinary statement S S . 
Another semantic function L L1 ‘;’ L2  = L L2  ° L L1  denotes that two 
sequential statement-lists L1 followed by L2 are semantically equivalent to the 
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execution of L1 and then L2, which is denoted as a concatenation of functions 
L2 ° L1.  

The semantic function of a branch statement S ‘if’ E ‘then’ L1 ‘else’ L2 
’;’  interprets the branch operation as the choice of execution of two optional 
statement-lists on the conditional expression E. When the evaluation of E, 
i.e., the resulted value E E  = 1 (T), L1 will be executed; otherwise, L2 will be 
executed. 
 

6.5.2.3.4 Semantics of While-Loop Statements    
               

This subsection extends the SPL to cover the semantics of the while- 
loop statement in denotational semantics as shown in Table 6.9.  
 

Table 6.9 
Semantic Analysis of While Loop Construct 

 

Syntactic Domains Semantic Domains Semantic Functions 
L ::=   L1 ‘;’ L2  

| S 
 
S ::= ‘while’ E  
        ‘do’ L ‘;’ 
 
E ::=  E1 ‘+’ E2  

| E1 ‘-‘ E2  
| E1 ‘*’ E2  
| ‘(‘ E ‘)’  
| I  
| N 

Domains  
   v :  
   Θ : I → ⊥ 
    T: ℤ | T = 1 
   F: ℤ | F = 0 
 
Operations 
  +:  ×  →  

  -:   ×  →  
  *:   ×  →  

E: E → ⊥ 
L: L → Θ 
S: S → Θ 
 
L L1 ‘;’ L2  = L L2  ° L L1  
L S  = S S  
 
S ‘while’ E ‘do’ L ’;’  

    = 
F

TE
R
=

L  L L  

 
 Note that the semantics of the while loop, according to the definitions 
of the generic iteration representation as discussed in Section 5.4.2, is 
described as a repeat function that evaluates E , if it is true then execute L 
whenever E remains true, i.e.:  
 

      S ‘while’ E ‘do’ L ’;’  = 
=E
R

F

T
 L L       (6.39) 

 

Eq. 6.39 is equivalent to the conventional representation of the while 
loop by recursive if-then-else structures in the literature [Wirth, 1976; 
Louden, 1993] as described below:       
  

        S ‘while’ E ‘do’ L ’;’  =  
              S if E E  = T 
                 then L L; S   
                                                  else Θ  
                                                                                      (6.40) 
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6.5.2.4 Semantics of Programs in SPL  
 

On the basis of the semantic analysis methods developed in Section 
6.5.2.3, the semantics of a complete program can be derived in denotational 
semantics. This subsection describes the semantics of a whole program in 
SPL that covers all syntactic domains discussed earlier with new extensions 
of domains of a program P and statement-list L, as shown in Table 6.10.  

 
Table 6.10 

Semantic Analysis of a Whole Program in SPL 
 

Syntactic Domains Semantic Domains Semantic Functions 
P ::= L 
 
L ::=   L1 ‘;’ L2  

| S 
 
S ::=  I ‘:=’ E ‘;’ 
 
E ::=  E1 ‘+’ E2  

| E1 ‘-‘ E2  
| E1 ‘*’ E2  
| ‘(‘ E ‘)’  
| I  
| N 

 
I ::= I A | A 
 
A ::= ‘a’ | ‘b’ | … | ‘z’ 
 
N ::= N D | D 
 
D ::= ‘0’ | ‘1’ | … | ‘9’ 

Domains  
   v :  
   Θ : I → ⊥ 
 
Operations 
  +:  ×  →  

  -:   ×  →  

  *:   ×  →  

P: P → Θ 
L: L → Θ 
S: S → Θ 
E: E → ⊥ 
N: N →  
D: D →  
P P = L L  
 

L L1 ‘;’ L2  = L L2  ° L L1  

L S  = S S  
 

S I ‘:=’ E  = (I = E E ) 

S ‘if’ E ‘then’ L1 ‘else’ L2 ’;’  =  

   if (E E ) = T 
           then L L1  
           else L L2  

S ‘while’ E ‘do’ L ’;’  = = 
F

TE
R
=

L  L L  

 

E E1 ‘+’ E2  = E E1  + E E2  

E E1 ‘-’ E2  = E E1  - E E2  

E E1 ‘*’ E2  = E E1  • E E2  

E  ‘(‘ E ‘)’  = E E  

E N  = N N  
 

N ND = 10 • N N + N D  

N D = D D  
 

D  ‘0’ = 0 

D  ‘1’ = 1 
    … 
D  ‘9’ = 9 

© 2008 by Taylor & Francis Group, LLC



462   Part II Theoretical Foundations of SE 

It is noteworthy that the sample language SPL analyzed in this 
subsection is quite simple. Although the basic semantic deduction rules for 
arithmetic, assignment statements, and the branch and while loop constructs 
have been covered, complex statements and program constructs such as I/O 
environment, recursive and interrupt constructs, as well as event handling 
have not been touched. They are remaining as important topics in 
programming semantic studies yet to be explored.                            
 
 
6.5.3 DEDUCTIVE SEMANTICS  

 
Deduction is an inference process that discovers new knowledge or 

derives a specific conclusion based on generic premises such as abstract rules 
or principles. The nature of semantics of a given programming language is its 
computational meanings or embodied behaviors expressed by an instruction 
in the language. Because the carriers of software semantics are a finite set of 
variables declared in a given program, program semantics can be reduced 
onto the changes of values of these variables over time. In order to provide a 
rigorous mathematical treatment of both the abstract and concrete semantics 
of software, a new type of formal semantics known as the deductive 
semantics is developed [Wang, 2006a].  

 
Deductive semantics as given in Definition 6.53 is a formal software 

semantics that deduces the semantics of a program in a given programming 
language from a generic abstract semantic function to the concrete semantics, 
which are embodied onto the changes of status of a finite set of variables 
constituting the semantic environment of computing. Deductive semantics 
can be used to define both abstract and concrete semantics of large-scale 
software systems, facilitate software comprehension and recognition, support 
tool development, enable semantics-based software testing and verification, 
and explore the semantic complexity of software systems.  

 
This subsection develops the mathematical models of deductive 

semantics and elicits the fundamental properties of software semantics. The 
deductive models of semantics, semantic function, and semantic environment 
at various composing levels of programs are introduced. Properties of 
software semantics and relationships between the software behavioral space 
and the semantic environment are studied. New methods such as the semantic 
differential and semantic matrix are developed to facilitate deductive 
semantic analyses from a generic semantic function to a specific semantic 
matrix, and from semantics of statements to those of processes and programs. 
The establishment of the deductive semantic rules of RTPA will be described 
in Section 6.6, where deductive semantics of a comprehensive set of software 
processes is modeled.  
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6.5.3.1 The Mathematic Model of Software Semantics 
 

A semantic environment of a program in a given programming 
language is a logical model of a finite set of identifiers and their values 
changing over time along the execution of the program. The semantic 
environment constituting the behaviors of software is inherently a three 
dimensional structure known as the operations, memory space, and time.  

 According to Theorem 3.10, the behavioral space Ω of a program 
executed on a certain machine is a finite set of variables operated in a 3-D 
state space determined by a triple, Ω  (OP, T, S), where OP is a finite set of 
operations, T is a finite set of discrete steps of program execution, and S is a 
finite set of memory locations or their logical representations by identifiers of 
variables. 

According to Definition 6.45, the set of variables of a program, S, plays 
an important role in semantic analysis, because they are the objects of 
software behavioral operations and the carriers of program semantics. 
Variables can be classified as free and system variables. The former are user 
defined and the latter are language provided. From a functional point of 
view, variables can be classified into object representatives, control 
variables, result containers, and address locaters. The life spans or scopes of 
variables can be categorized as persistent, global, local, and temporal. The 
persistent variables are those that their life span are longer than the program 
that generates them, such as data in a database or files in distributed 
networks. 

A new mathematical operator introduced in deductive semantics is the 
partial differential of sets on the basis of Boolean differential, which is used 
to facilitate the instantiation of abstract semantics into concrete ones. 
      

Definition 6.58 Given two sets X and V, X ⊆ V, a partial differential of 
X on V with elements x, x ∈ X, denoted by ∂V/∂x, is an elicitation of 
interested elements from V as specified in X, i.e.: 
 

        ,   

     

∂ = ∩ ∈ ⊆
∂
=

V X V x X V
x

X

           (6.41)    

 
The partial differential of sets can be easily extended to double, triple, 

or, more generally, multiple partial differentials as defined below.  
 
Definition 6.57 A multiple partial differential of X1, X2, …, and Xn on  

V with elements 1 2 nand1 2 nx X , x X , ...,  x X∈ ∈ ∈ , denoted by 
n

1  ... 2 n

V
x x x
∂

∂ ∂ ∂
, is 
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a Cartesian product of all partial differentials that select interested elements 
from V as specified in X1, X2, …, and Xn, respectively, i.e.: 
 

                                  
n

1

...
  ... 1 2 n

2 n

V = X  X X
x x x
∂ × × ×

∂ ∂ ∂
         (6.42)    

 
where , ...,1 2 nX ,X X   V.⊆  

For example, 
2

x y
∂ × ∈ ∧ ∈ ∧ ⊆
∂ ∂

V = X Y,  x X  y Y X, Y  V  and 
3

x y 
V =

z
∂

∂ ∂ ∂
 

× × ∈ ∧ ∈ ∧ ∈ ∧ ⊆X Y Z,  x X  y Y z Z X, Y, Z  V . 
 
On the basis of the definitions of software behavioral space and partial 

differential of sets, the semantic environment of software can be introduced 
as follows.    

 
Definition 6.60 The semantic environment Θ of a program on a certain 

target machine is its run-time behavioral space Ω(OP, T, S) projected onto 
the Cartesian plane determined by T and S, i.e.: 

 

                               

2

2

,  
 

( , , )
 

    

t T s S
t s

OP T S
t s

T S

∂ ΩΘ = ∈ ∧ ∈
∂ ∂
∂ Ω=
∂ ∂
= ×

               (6.43) 

 
where, T is a finite set of discrete steps of program execution, S is a finite set 
of memory locations or their logical representations by identifiers of 
variables. 
  

As indicated in Definition 6.60, the semantic environment of a program 
is a dynamic entity over time, because following each execution of a 
statement in the program, the semantic environment Θ, particularly the set of 
values V of the variables S may be changed as a result of the operation of the 
statement.  

A generic semantic function is developed below, which can be used to 
derive a specific and concrete semantic function for a given statement, 
process, or program at different composing levels by mathematical 
deduction.   
 

Definition 6.61 A semantic function of a program ℘, fθ(℘), is a 
function that maps the semantic environment Θ into a finite set of values V 
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determined by a Cartesian product on a finite set of executing steps T and a 
finite set of variables S, i.e.: 

 
                fθ(℘) = f: T × S → V 

            = 11 12 1

1 1

m

n n nm

v v v

v v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⊥ ⊥ ⊥ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠⎟⎜ ⎟

1 2 m

0

1

n

s s s
t
t

t

               (6.44) 

 
where T = {t0, t1, …, tn},  S = {s1, s2, …, sm}, and V is a finite set of values 
v(ti, sj), 0 ≤ i ≤ n, and 1 ≤ j ≤ m.  
 

In Eq. 6.44, all values of v(ti, sj) at t0  are undefined for a program as 
denoted by the bottom symbol ⊥, i.e.,  ( ,  ) ,  jv 0 s 1 j m= ⊥ ≤ ≤ . However, for a 

statement or a process, it is usually true that  ( , )jv 0 s ≠ ⊥  dependent on the 

context of previous statement(s) or the initialization of the system.         
According to Definition 6.61, the semantic environment and the 

domain of a semantic function can be illustrated by a semantic diagram 
[Wang, 2006a] as described below.  

 
Definition 6.62 A semantic diagram is a sub-Cartesian-plane in the 

semantic environment Θ that forms the domain of the semantic function for a 
composed process P with fθ(P) = f: TP × SP → VP. 

 
The semantic diagram fθ(P) as defined in Definition 6.62 can be 

illustrated in Fig. 6.14, where SP is the set of variables of process P.  
 

 

     

 t

   s

tP 

Θ (P)   

0 

P 
SP 

 
 
Figure 6.14 The semantic diagram of a process 
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The semantic diagram can be used to analyze complex semantic 
relations, and to demonstrate semantic functions and their semantic 
environments. Observing Fig. 6.14, the flowing properties of semantic 
function for composed processes can be derived. 

 
6.5.3.2 Deductive Semantics of Programs at Different Levels of 
            Compositions 
  

It is noteworthy that deductive semantics introduces only a universal 
semantic function as given in Definition 6.61, rather than adopting multiple 
concrete semantic functions as the conventional approaches do. In deductive 
semantics, any particular concrete semantic function is a deduced 
instantiation of the universal abstract semantic function. This is why it is 
named deductive semantics, and this avoids the trouble in other exhaustive 
approaches where a new semantic function has to be particularly defined 
from time to time whenever additional instruction is introduced in a given 
language.            

According to the architectural model of programs as described in 
Section 5.5.1, the semantics of a program in a given language can be 
described and analyzed at various composition levels, such as those of 
statement, process, and system from the bottom up.  
 

Definition 6.63 The semantics of a statement p, θ(p), on a given 
semantic environment Θ is a double partial differential of the semantic 
function fθ(p) on the sets of variables S and executing steps T, i.e.: 
 
              θ (p) = 2

( )f p
t s θ
∂
∂ ∂

 

= 
# ( ) # ( )

0 1
( , )

T p S p

p i j
i j

v t sR R
= =

 

= 
1 2 m#{s , s , ..., s }1

0 1
( , )p i j

i j
v t sR R

= =

 

 

Corollary 6.4 The variables of two arbitrary processes P and Q, SP and 
SQ, in the semantic environment Θ  possess the following properties: 
 

  a) The entire set of variables: S = Sp ∪ SQ            (6.45)  
  b)  Global variables: SG ⊆ Sp ∩ SQ          (6.46) 
  c)  Local variables: SL = S - SG, SL ⊆ Sp ⊕ SQ ,  

           where SLp = SL \ SQ and SLq = SL \ Sp    (6.47) 
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          = 01 02 0

11 12 1

m

m

v v v

v v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

1 2 m

0

0 1

s s s
t

(t , t ]

      (6.48) 

 
where t denotes the discrete time immediately before and after the execution 
of p during (t0, t1], and # is the cardinal calculus that counts the number of 
elements in a given set, i.e., n = #T(p) and m=#S(p).    

 
In Definition 6.63, the first partial differential selects all related 

variable S(p) of the statement p from Θ. The second partial differential 
selects a set of discrete steps of p’s execution T(p) from Θ. According to 
Definition 6.63, the semantics of a statement can be deduced onto a semantic 
function that results in a 2-D matrix with the changes of values of all 
variables over time of program execution. 

On the basis of Definitions 6.61 and 6.63, semantics of any statements 
in a given programming language can be analyzed using Eq. 6.48 via a 
deductive process.       
 

Example 6.24 Analyze the semantics of Statement 3, p3, in the 
following program entitled sum. 
 

      void sum; 
{ 
  (0)  int x, y, z; 
  (1)  x = 8; 
  (2)  y = 2; 
  (3)  z := x + y; 
} 

 
According to Definition 6.63, the semantics of Statement p3 is as 

follows: 
 

 
 

 
 

    
                     
 
 
                             
(6.49) 
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This example shows how the concrete semantics of a statement can be 
derived on the basis of the generic and abstract semantic function of 
deductive semantics. 

In semantic analysis, the changed part of the semantic environment Θ, 
known as the semantic effect as defined below, is particularly interested, 
which is the embodiment of software semantics. 
 

Definition 6.64 The semantic effect of a statement p, θ* (p), is the 
resulting changes of values of variables by its semantic function θ(p) during 
the time interval immediately before and after the execution of p, ∆t = (ti, 
ti+1], i.e.: 
 

  

# ( )

1
1

# ( )

1 1
1

*  = ( ( , ) ( , ))

( , ) ( , ) | ( , ) ( , )

S p

p i j p i j
j

S p

p i j p i j p i j p i j
j

(p) v t s v t s

v t s v t s v t s v t s

R

R

θ +
=

+ +
=

⊕

= < → ≠ >

      (6.50) 

 

where → denotes a transition of values for a given variable.  
 
Example 6.25 For the same statement p3 as shown in Example 6.24, 

determine its semantic effect θ*(p3).   
 

According to Eq. 6.50, the semantic effect θ*(p3) is:  
 

3

3 3 3 3

3 3 3 3

# ( )

3 2 3 2 3
1

#( , , )

2 3 2 3
1

*( ) = ( , ) ( , ) | ( , ) ( , )

           = ( , ) ( , ) | ( , ) ( , )

S p

p j p j p j p j
j

x y z

p j p j p j p j
j

p v t s v t s v t s v t s

v t s v t s v t s v t s

R

R

θ
=

=

< → ≠ >

< → ≠ >

 

                          =    
3 32 3{ ( , ) ( , ) 10 }< = ⊥ → = >p pv t z v t z  

 
It can be seen in Examples 6.24 and 6.25 that deductive semantics can 

be used not only to describe the abstract and concrete semantics of 
programs, but also to elicit and highlight their semantic effects. 

According to Theorem 5.7 as well as Definitions 5.51 and 5.53, a 
program or a process is composed by individual statements with given rules 
of compositions. Therefore, the definitions and mathematical models of 
semantics at the statement level can be extended onto the higher levels of 
program hierarchy systematically.    
 

Definition 6.65 The semantics of a process P, θ(P), on a given 
semantic environment Θ is a double partial differential of the semantic 
function fθ(P) on the sets of variables S and executing steps T, i.e.: 
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               (6.51) 

 
where

kpV , 1≤ k ≤ n-1, is a set of values of local variables that belongs to 
processes Pk, and VG is a finite set of values of global variables.    
 

On the basis of Definition 6.65, the semantics of a program at the top-
level composition can be deduced to the combination of semantics of a set of 
processes, each of which can be further deduced to the composition of all 
statements’ semantics as described below.                       
 

Definition 6.66 The semantics of a program ℘, θ(℘), on a given 
semantic environment Θ, is a combination of the semantic functions of all 
processes θ(Pk), 1≤ k ≤ n, i.e.: 
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where #K(℘) is the number of processes or components in the program.   
 

It is noteworthy that Eq. 6.52 will usually result in a very large matrix 
of semantic space, which can be quantitatively predicated as follows. 
 

Definition 6.67 The semantic space of a program SΘ(℘) is a product 
between the number of variables #S(℘) and the number of executing steps 
#T(℘), i.e.: 
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The semantic space of a program provides a useful measure for 

software complexity. Due to the tremendous size of the semantic space, both 
program composition and comprehension are innately a hard problem in 
terms of complexity and cognitive difficulty. 

 
6.5.3.3 Properties of Software Semantics 
 

Observing the formal definitions and mathematical models of deductive 
semantics developed in previous sections, a number of common properties of 
software semantics may be elicited, which are useful for explaining the 
fundamental characteristics of software semantics.    

One of the most interesting characteristics of program semantics is its 
invariance against different executing speeds as described in the following 
theorem.  
      

 
Theorem 6.2 states that, for most nonreal-time or relatively timed 

programs, different executing speeds or simulation paces will not alter the 
semantics of the software system. This explains why a programmer may 
simulate the run-time behaviors of a given program that may be executing at 
a speed of up to 109 times faster than that of human beings. It also explains 
why computers with different system clock frequencies may correctly run the 
same program and obtain the same behavior.     

A fundamental question in programming language and software 
engineering theories is what the least complete set of instructions for 
programming is. As discussed in Sections 5.2.1 and 5.4, the meta instructions 
shared by all programming languages can be classified into three categories: 
a) Internal operations, such as memory manipulation and assignments; b) 
External operations, such as input/output, event handling, and human-
machine interactions; and c) Basic control structures (BCS’s) [Wang, 

 
The 19th Law of Software Engineering 

 
Theorem 6.2 The asynchronicity of program semantics states that the 
semantics of a relatively timed program is invariant with the changes of 
executing speed, as long as any absolute time constraint is met. 
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2005a/06c/06h/06f], such as the jump, branch, and iteration constructs as 
summarized in Tables 5.2, 5.14, and 5.15. Based on the above exploration, 
the sets of sufficient meta instructions and their algebraic compositional rules 
have been elicited in Theorems 4.6 and 4.7, respectively. According to these 
theorems, the questions on the least complete set of instructions in 
programming can be formally answered below.         

      

 
Theorem 6.3 indicates that the necessary and sufficient conditions of 

program compositionality in a given language are that all the meta 
instructions (Table 4.8) and the fundamental BCS’s (Table 5.16) must be 
implemented in the language. In case of nonreal-time programming 
languages, the requirement for the four special BCS’s, BCS’s #10 through 
#13, may be waived. However, it is helpful to be aware of the whole set of 
software compositional rules for both ordinary and real-time software 
systems.  

 
It is noteworthy that some of the BCS’s as shown in Table 5.16 were 

used to be treated as basic instructions rather than compositional rules in 
conventional programming and formal techniques. However, according to 
Theorems 4.3, 4.8, and 6.3, there is a need to distinguish the semantic roles 
of statements (the minimum semantic unit of a language) and BCS’s (the 
compositional rules of the language). 

 
Definition 6.68 The behavior of a computational statement is a set of 

observable actions or changes of status of objects operated by the statement.    
 

According to Theorem 3.10, the behavioral space of software Ω is three 
dimensional; while as given in Definition 6.58, the semantic environment Θ 
is two dimensional. Therefore, to a certain extent, semantic analysis is a 
projection of the 3-D software behaviors into the 2-D semantic environment 
Θ as shown in Fig. 6.15. 

 
The 20th Law of Software Engineering 

 
Theorem 6.3 The least complete set of instructions in programming 
states that a program is composable with sufficient descriptive power in a 
given language iff both the sufficient sets of meta instructions (P, 
Theorem 4.6) and compositional rules (R, Theorem 4.7) are rigorously 
defined.   
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Figure 6.15 Relationship between software behavior space and the semantic 
environment  
 
 

 
6.6 Semantics of RTPA 
 

 
 
The theory of deductive semantics developed in Section 6.5.3 will be 
systematically applied to formally and rigorously describe the semantics of 
the RTPA meta processes and the process relations (operations) [Wang, 
2002a/02b/03c/06a/07a]. This section extends the coverage of semantic rules 
of programming languages to a complete set of features that encompasses 
both basic computing operations and their algebraic composition rules. 
Because RTPA is a mathematical modeling language based on process 
algebra that covers a comprehensive set of computing and programming 
requirements as summarized in Section 4.5.1 and Theorem 6.3, any formal 
semantics that is capable to process RTPA is powerful enough to express the 
semantics of any programming language.  
 
 
6.6.1 SEMANTICS OF RTPA META PROCESSES   
 

Meta processes of RTPA are most fundamental computational 
operations elicited from basic computing requirements, based on them 
complex processes can be composed. RTPA identified 17 meta processes 
such as assignment, system control, event/time handling, memory, and I/O 
manipulation. The meta processes and their syntaxes have been given in 
Table 4.8 with detailed descriptions in Section 4.6.4 [Wang, 2002a]. 

As shown in Table 4.8, each meta process is a basic operation on one or 
more operands such as variables, memory elements, or I/O ports. Based on 
Definition 6.63, the deductive semantics of the set of RTPA meta processes 
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will be defined in the following subsections, except that of the system 
process, §, which will be presented in Section 6.3.3.    

  
6.6.1.1 The Assignment Process  

 
Definition 6.69 The semantics of the assignment process, θ(yRT := 

xRT), in the given semantic environment Θ is a double partial differential of 
the semantic function fθ(yRT := xRT) on the sets of variables S and executing 
steps T, i.e.: 
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where the size of the matrix is #T • #S.   
 
6.6.1.2 The Evaluation Process  

 
Definition 6.70 The semantics of the evaluation process, θ( expT → 

T), in the given semantic environment Θ is a double partial differential of the 
semantic function fθ(θ( expT → T) on the sets of variables S and executing 
steps T in the following two forms, i.e.: 
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or 
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where T(expBL) is the Boolean evaluation function on expBL that results in T 
or F.  

 
In general, T(expT) is the cardinal or numerical evaluation function 

on expT that results in T = {N, Z, R, B} as given in Definition 4.88a through 
4.88e, respectively. 
 
6.6.1.3 The Addressing Process 

 
Definition 6.71 The semantics of the addressing process, θ(idS ⇒ ptrP), 

in the given semantic environment Θ is a double partial differential of the 
semantic function fθ(idS  ⇒ ptrP) on the sets of variables S and executing 
steps T, i.e.: 
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where π(idS)H is a function as given in Definition 4.41 that associates a 
declared identifier idS to its hexadecimal memory address located by the 
pointed ptrP.  
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6.6.1.4 The Memory Allocation Process 
 

Definition 6.72 The semantics of the memory allocation process, θ(idS 
⇐ MEM[ptrP]RT), in the given semantic environment Θ is a double partial 
differential of the semantic function fθ(idS ⇐ MEM[ptrP]RT) on the sets of 
variables S and executing steps T, i.e.: 
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where π(idS)H is a mapping function as given in Definition 4.41 that 
associates an identifier idS to a memory block starting at a hexadecimal 
address located by the pointed ptrP. The ending address of the allocated 
memory block, ptrP+size(RT)-1, is dependent on a machine implementation 
of the size of a given variable in type RT.   
 
6.6.1.5 The Memory Release Process 

 

Definition 6.73 The semantics of the memory release process, θ(idS  
MEM[⊥]RT), in the given semantic environment Θ is a double partial 
differential of the semantic function fθ(idS  MEM[⊥]RT) on the sets of 
variables S and executing steps T, i.e.: 
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6.6.1.6 The Read Process 
 

Definition 6.74 The semantics of the read process, 
θ(MEM[ptrP]RT xRT), in the given semantic environment Θ is a double 
partial differential of the semantic function fθ(MEM[ptrP]RT xRT) on the 
sets of variables S and executing steps T, i.e.: 
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6.6.1.7 The Write Process 

 
Definition 6.75 The semantics of the write process, 

θ(MEM[ptrP]RT xRT), in the given semantic environment Θ is a double 
partial differential of the semantic function fθ(MEM[ptrP]RT xRT) on the 
sets of variables S and executing steps T, i.e.: 
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6.6.1.8 The Input Process 

 
Definition 6.76 The semantics of the input process, 

θ(PORT[ptrP]RT  xRT), in the given semantic environment Θ is a double 
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partial differential of the semantic function fθ((PORT[ptrP]RT xRT) on the 
sets of variables S and executing steps T, i.e.: 
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6.6.1.9 The Output Process 

 
Definition 6.77 The semantics of the output process, θ(xRT  

PORT[ptrP]RT), in the given semantic environment Θ is a double partial 
differential of the semantic function fθ(xRT  PORT[ptrP]RT) on the sets of 
variables S and executing steps T, i.e.: 
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6.6.1.10 The Timing Process 
 

Definition  6.78  The  semantics  of  the  timing  process,   θ(@tTM 
@ §tTM), in the given semantic environment Θ is a double partial differential 

of the semantic function fθ(@tTM @ §tTM) on the sets of variables S and 
executing steps T, i.e.: 
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               (6.63) 

 
where TM represents the three timing types as shown in Table 4.7, i.e. TM = 

{yy:MM:dd, hh:mm:ss:ms, yy:MM:dd:hh:mm:ss:ms}. 
 

6.6.1.11 The Duration Process 
 
Definition 6.79 The semantics of the duration process, 

θ(@tTM ∆ §tTM+∆dZ), in the given semantic environment Θ is a double 

partial differential of the semantic function fθ(@tTM ∆ §tTM+∆dN) on the sets 
of variables S and executing steps T, i.e.: 
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where TM = {yy:MM:dd, hh:mm:ss:ms, yy:MM:dd:hh:mm:ss:ms}. 
 
6.6.1.12 The Increase Process 
 

Definition 6.80 The semantics of the increase process, θ(↑(xRT)), in the 
given semantic environment Θ is a double partial differential of the semantic 
function fθ(↑(xRT)) on the sets of variables S and executing steps T, i.e.: 
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where the run-time type RT = {N, Z, B,  H, P, TM}.    
 
6.6.1.13 The Decrease Process 

 
Definition 6.81 The semantics of the decrease process, θ(↓(xRT)), in 

the given semantic environment Θ is a double partial differential of the 
semantic function fθ(↓(xRT)) on the sets of variables S and executing steps T, 
i.e.: 
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where the run-time type RT = {N, Z, B,  H, P, TM}.    
 
6.6.1.14 The Exception Detection Process 

 
Definition 6.82 The semantics of the exception detection process, 

θ(!(@)eS), in the given semantic environment Θ is a double partial 
differential of the semantic function fθ(!(@)eS)) on the sets of variables S and 
executing steps T, i.e.: 
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Eq. 6.67 indicates that the semantics of exception detection is the 

output of a string @eS to a designated port PORT[ptrP]S, where the pointer 
ptrP points to a CRT or a printer. Therefore, the semantics of exception 
detection can be described based on the semantics of output as defined in 
Definition 6.77, i.e.: 
 
           θ ((!(@eS)) =θ (@eS  PORT[ptrP]S)               (6.68) 
 
6.6.1.15 The Skip Process 

 
Definition 6.83 The semantics of the skip process, θ(⊗), in the given 

semantic environment Θ is a double partial differential of the semantic 
function fθ(⊗) on the sets of variables S and executing steps T, i.e.: 
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where Pk is a process P at a given embedded layer k in a program with  P0 at 
the outermost layer, and  denotes the jump process relation and its 
semantics will be formally defined in Section 6.6.2.2. 
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According to Definition 6.83, the skip process ⊗ has no semantic effect 
on the current process Pk at the given embedded layer k in a program, such as 
a branch, loop, or function. However, it do have semantic effect on internal 
control structures that redirects the system to jump to execute an upper-layer 
process Pk-1 in the embedded hierarchy. Therefore, skip is also known as exit 
or break in programming languages.       

  
6.6.1.16 The Stop Process 
 

Definition 6.84 The semantics of the stop process, θ ( ), in the given 
semantic environment Θ is a double partial differential of the semantic 
function fθ( ) on the sets of variables S and executing steps T, i.e.: 

 

                                 

2

# ( §) # ( §)

0 1

1 2

0 1

( ) ( §)

( §)
 

( , )

  ( , )

\
P

T P S P

i j
i j

i j
i j

§

§ P

S

P

f P
t s

v t s

v t s

S
S S

R R

R R

θ

θ θ

= =

= =

⊥

∂=
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

§ P

0

0 1

S S
t

(t , t ]

                                     (6.70) 

 
where the stop process  does nothing but returns the control of execution to 
the system. The semantics of jump, , will be formally described in 
Section 6.6.2.2.  

 
  
6.6.2 SEMANTICS OF RTPA PROCESS RELATIONS 
 

Section 6.6.1 presented formal definitions of the meta processes of 
RTPA for software system modeling. According to Theorem 6.3, via the 
composition of multiple meta processes by the 17 process relations, complex 
architectures and behaviors of software systems, in the most complicated 
case, a real-time system, can be sufficiently described [Wang, 2002a].  

 
Detailed descriptions of syntaxes of RTPA process relations have been 

described in Table 4.9. On the basis of Definition 6.65, the semantics of the 
RTPA process relations will be formally defined and analyzed in the 
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following subsections, except that of the three process dispatch relations 
which will be presented in Section 6.6.3. 

 
6.6.2.1 The Sequential Process Relation  
 

Definition 6.85 The semantics of the sequential relations of processes, 
θ(P→Q), in the given semantic environment Θ is a double partial differential 
of the semantic function fθ(P→Q) on the sets of variables S and executing 
steps T, i.e.: 
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where PQ indicates a concatenation of these two processes over time, and in 
the simplified notation of the matrix, VP = v(tP, sP), 0 ≤ tP ≤ nP, 1 ≤ sP ≤ mP; 
VQ = v(tQ, sQ), 0 ≤ tQ ≤ nQ, 1 ≤ sQ ≤ mQ; and VPQ = v(tPQ, sPQ), 0 ≤ tPQ ≤ nPQ, 1 
≤ sPQ ≤ mPQ.        

 
In Eq. 6.71, the first partial differential selects a set of related variables 

in the sequential processes P and Q, S(P ∪ Q). The second partial differential 
selects a set of time moments T( PQ ). The semantic diagram of the 
sequential process relation as defined in Eq. 6.71 is illustrated in Fig. 6.16 in 
the semantic environment Θ . 
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Figure 6.16 The semantic diagram of the sequential process relation 
 
 The following example shows the physical meaning of Eq. 6.71 and 
how the abstract syntaxes and their implied meanings are embodied onto the 
objects (variables) and their dynamic values in order to obtain the concrete 
semantics in deductive semantics.               
 

Example 6.26 Analyze the semantics of two simple sequential 
processes P and Q in the following program: 
 

 void sequential_sum; 
   { 

          (0)  int x, y, z; 
     {// P  
        (1)  x = 2; 
        (2)  y = 8; 
       (3)  z := x + y; 
     } 
     {// Q 
       (4)  z := x + y + z; 
       (5)  print z; 
     } 

             } 
 

According to Definition 6.85, the semantics of the above program can 
be analyzed as follows:      
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where PORT[CRTP]N denotes a system monitor of type N located by the 
pointer CRTP;  the semantics of P and Q are shown in the intervals [t0, t3] and 
(t3, t5], respectively. 

 
6.6.2.2 The Jump Process Relation 

 
Definition 6.86  The  semantics  of  the  jump  relations  of  processes, 

θ(P Q), in the given semantic environment Θ is a double partial 
differential of the semantic function fθ(P Q) on the sets of variables S and 
executing steps T, i.e.: 
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where π(QS)H is a system addressing function of the system that directs the 
program control flow to execute the new process Q, which is physically 
located in a different memory address at addrH = π(QS)H.    

 
The semantic diagram of the jump process relation as defined in Eq. 

6.73 is illustrated in Fig. 6.17 in the semantic environment Θ. 
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Figure 6.17 The semantic diagram of the jump process relation 
 

 
The jump process relation is an important process relation that forms a 

fundamental part of many other processes and constructs. For instance, the 
jump process relation has been applied in expressing the semantics of the 
skip and stop processes in Section 4.1. 

 
 

6.6.2.3 The Branch Process Relation 
 
Definition 6.87 The semantics of the branch relations of processes, 

θ( expBL = T → P | ~ → Q), abbreviated by θ(P | Q), in the given semantic 
environment  Θ  is  a  double  partial  differential  of  the  semantic  function 
fθ(P | Q) on the sets of variables S and executing steps T, i.e.: 
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where δ(expBL) is the evaluation function on the value of expBL, δ(expBL) ∈ 
{T, F}.  

 
The semantic diagram of the branch process relation as defined in Eq. 

6.74 is illustrated in Fig. 6.18 in the semantic environment Θ(θ( expBL = T 

→ P | ~ → Q). 
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Figure 6.18 The semantic diagram of the branch process relation 
 
6.6.2.4 The Switch Process Relation 

 
Definition 6.88 The semantics of the switch relations of processes, 

θ( expiRT → Pi | ~ → ∅), abbreviated by θ(Pi | ∅), in the given semantic 
environment Θ is a double partial differential of the semantic function fθ( Pi | 
∅) on the sets of variables S and executing steps T, i.e.: 
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where VG is a set of global variables shared by P0, P1, and Pn-1. 

 
The semantic diagram of the switch process relation as defined in Eq. 

6.75 is illustrated in Fig. 6.19 in the semantic environment Θ( expiRT → Pi | 
~ → ∅). 
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Figure 6.19 The semantic diagram of the switch process relation 
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6.6.2.5 The While-Loop Process Relation 
 

Definition 6.89 The semantics of the while-loop relations of processes, 
θ(

exp =

*( )PR
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), in the given semantic environment Θ is a double partial 

differential of the semantic function fθ(
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) on the sets of variables S and 

executing steps T, i.e.: 
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where ∅ denotes exit, and δ(expBL) is the evaluation function on the Boolean 
expression,  δ(expBL) ∈ {T, F}. 
 

The semantic diagram of the while-loop process relation as defined in 
Eq. 6.76 is illustrated in Fig. 6.20 in the semantic environment Θ. 
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Figure 6.20 The semantic diagram of the while-loop process relation 
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6.6.2.6 The Repeat-Loop Process Relation 
 
Definition 6.90 The semantics of the repeat-loop relations of 

processes, θ(
exp =

( )PR+
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), in the given semantic environment Θ is a double 

partial differential of the semantic function fθ(
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variables S and executing steps T, i.e.: 
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The semantic diagram of the repeat-loop process relation as defined in 

Eq. 6.77 is illustrated in Fig. 6.21 in the semantic environment Θ . 
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Figure 6.21 The semantic diagram of the repeat-loop process relation 
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6.6.2.7 The For-Loop Process Relation 
 
Definition 6.91 The semantics of the for-loop relations of processes, 

θ(
n

i =1
R
N

P(i)), in the given semantic environment Θ is a double partial 

differential of the semantic function fθ(
n
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P(i)) on the sets of variables S and 

executing steps T, i.e.: 
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The semantic diagram of the for-loop process relation as defined in Eq. 

6.78 is illustrated in Fig. 6.22 in the semantic environment Θ. 
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Figure 6.22 The semantic diagram of the for-loop process relation 
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6.6.2.8 The Function Call Process Relation 
 

Definition 6.92 The semantics of the function call relations of 
processes, θ(P  Q), in the given semantic environment Θ is a double 
partial differential of the semantic function fθ(P  Q) on the sets of variables 
S and executing steps T, i.e.: 
 

                           

1 2 2 3

2

2 2

# ( ) # ( ) # ( ) # ( )

0 1 0 1

# ([ ] ( ] ( ]) # ( )

0 1

( ) ( )
 

( )  ( )
  

( , )   ( , )

 ( , )
0 1

T P S P T Q S Q

P i j Q i j
i j i j

T t ,t t ,t t ,t S P Q

i j
i j

1P 1PQ

2Q 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
v V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

⊥ ⊥ ⊥

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

−=
−

P Q PQ

0

0 1

1 2

S S S
t

(t , t ]
(t , t ] PQ

3P 3PQV V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠2 3(t , t ]

    (6.79) 

 
The semantic diagram of the procedure call process relation as defined 

in Eq. 6.79 is illustrated in Fig. 6.23 in the semantic environment Θ. 
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Figure 6.23 The semantic diagram of the function call process relation 
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6.6.2.9 The Recursive Process Relation 
 

Definition 6.93 The semantics of the recursive relations of processes, 
θ(P P), in the given semantic environment Θ is a double partial differential 
of the semantic function fθ(P P) on the sets of variables S and executing 
steps T, i.e.: 
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The semantic diagram of the recursive process relation as defined in 

Eq. 6.80 is illustrated in Fig. 6.24 in the semantic environment Θ. 
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Figure 6.24 The semantic diagram of the recursive process relation 
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6.6.2.10 The Parallel Process Relation 
 
Definition 6.94 The semantics of the parallel relations of processes, 

θ(P || Q), in the given semantic environment Θ is a double partial differential 
of the semantic function fθ(P || Q) on the sets of variables S and executing 
steps T, i.e.: 
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           (6.81) 

 
where t2 = max(#T(P), (#T(Q)) is the synchronization point between two 
parallel processes.  
 

The semantic diagram of the parallel process relation as defined in Eq. 
6.81 is illustrated in Fig. 6.25 in the semantic environment Θ. 
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Figure 6.25 The semantic diagram of the parallel process relation 
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It is noteworthy that parallel processes P and Q are interlocked. That is, 
they should start and end at the same time. In case t1 ≠ t2, the process 
completed earlier should wait for the completion of the other. The second 
condition between parallel processes is that the shared resources, in particular 
variables, memory space, ports, and devices, should be protected. That is, 
when a process operates on a shared resource, it is locked to the other 
process until the operation is completed. A variety of interlocking and 
synchronization techniques, such as semaphores, mutual exclusions, and 
critical regions, have been proposed in real-time system techniques [Liu, 
2000; McDermid, 1991].     

 
6.6.2.11 The Concurrent Process Relation 

 
Definition 6.95 The semantics of the concurrent relations of processes, 

θ(P ∯  Q), in the given semantic environment Θ is a double partial differential 
of the semantic function fθ(P ∯  Q) on the sets of variables S and executing 
steps T, i.e.: 
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         (6.82) 

 
where comRT is a set of inter-process communication variables that are used 
to synchronize P and Q executing on different machines based on 
independent system clocks.   
 

The semantic diagram of the concurrent process relation as defined in 
Eq. 6.82 is illustrated in Fig. 6.26 in the semantic environment Θ. 
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Figure 6.26 The semantic diagram of the concurrent process relation 

 
6.6.2.12 The Interleave Process Relation 

 
Definition 6.96 The semantics of the interleave relations of processes, 

θ(P ||| Q), in the given semantic environment Θ is a double partial differential 
of the semantic function fθ(P ||| Q) on the sets of variables S and executing 
steps T, i.e.: 
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         (6.83) 

 
The semantic diagram of the interleave process relation as defined in 

Eq. 6.83 is illustrated in Fig. 6.27 in the semantic environment Θ. 
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Figure 6.27 The semantic diagram of the interleave process relation 
 
6.6.2.13 The Pipeline Process Relation 

 
Definition 6.97 The semantics of the pipeline relations of processes, 

θ(P >> Q), in the given semantic environment Θ is a double partial 
differential of the semantic function fθ(P >> Q) on the sets of variables S and 
executing steps T, i.e.: 
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where 

oPS and 
iQS denote a set of n one-to-one connections between the 

outputs of P and inputs of Q, respectively, as follows: 
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0
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k
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=
=                (6.85) 

 
The semantic diagram of the pipeline process relation as defined in Eq. 

6.84 is illustrated in Fig. 6.28 in the semantic environment Θ. 
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Figure 6.28 The semantic diagram of the pipeline process relation 

 
6.6.2.14 The Interrupt Process Relation 

 
Definition 6.98 The semantics of the interrupt relations of processes, 

θ(P  Q), in the given semantic environment Θ is a double partial differential 
of the semantic function fθ(P  Q) on the sets of variables S and executing 
steps T, i.e.: 

 

             

2

2 2

# ( ) # ( ) # ( ) # ( )

0 1 0 1

# ( ' '') # ( )

0 1

'

(   ) (   )
 

( )  ( )
  

( , )   ( , )

 ( , )

[ ,

T P S P T Q S Q

P i j Q i j
i j i j

T P Q P S P Q

i j
i j

1P 1PQ

2PQ 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂
∂ ∂=
∂ ∂ ∂ ∂

=

=

⊥ ⊥
− −

=

P Q PQ

0 1

1 2 int

S S S int
t t ]

(t ,t ]
(t

'

''

3Q 3PQ

4PQ 4

5P 5PQ

V V
V V

V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

2 3

3 4 int

4 5

, t ]
(t ,t ]
(t ,t ]

            (6.86) 

 
The semantic diagram of the interrupt process relation as defined in Eq. 

6.86 is illustrated in Fig. 6.29 in the semantic environment Θ. In Fig. 6.29, 
C( int ) and C’( 'int ) are the interrupt and interrupt-return points, 
respectively. 
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Figure 6.29 The semantic diagram of the interrupt process relation 
 
 
6.6.3 SEMANTICS OF SYSTEM AND SYSTEM PROCESS 

 DISPATCHING  
 

The generic mathematical model of program systems has been modeled 
in Theorem 5.7 in Section 5.5.1. According to Theorem 5.7 and Definitions 
6.63 and 6.65, the semantics of system at the top level of a program can be 
deduced  onto  a  dispatch  mechanism  of  a  finite  set  of  processes  based 
on time-, event-, and interrupt-dispatching.       
 
6.6.3.1 The System Process 
 

Definition 6.99 The semantics of the system process in RTPA, §, is an 
abstract logical model of the executing platform with a set of parallel 
dispatched processes based on internal system clock, external events, and 
system interrupts, i.e.: 
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where the semantics of the parallel relations has been given in Definition 
6.94, and those of the system dispatch processes will be described in the 
following subsections. 
 
6.6.3.2 The Time-Driven Dispatching Process Relation 

 
Definition 6.100 The semantics of the time-driven dispatching 

relations of processes, θ(@tkTM t Pk), in the given semantic environment Θ 
is a double partial differential of the semantic function fθ(@tkTM t Pk) on the 
sets of variables S and executing steps T, i.e.: 

 

         

1

 

2

2

# ( ) # ( )

0 1

# ( )

1
0

1

1

(@  P ) (@  P )
 

                         (@ ( ))
 

                         (@  ( , ))

                         @

TM TM

TM

TM

TM

k k

k

k k k k k k

k k

T P S P

k P i j
i j

T P

i

n

k
n

k

t f t
t s

t f P
t s

t v t s

t

R R

R

R

R

θ

θ

θ

= =

=

=

=

∂
∂ ∂

∂= →
∂ ∂

= →

= →
1

1

1

# ( )

1

# ( ) # ( )

0 1

 ( , )

                            | ...

                            | @  ( , )

...

( )
                         

TM

TM
TM

n n

n

S P

P i j
j

T P S P

n P i j
i j

k

k

1 P

v t s

t v t s

@t
@t V

R

R R

δ

=

= =

⊥ ⊥

→

−=

1 nP P

0 1

1 2

1

@ S S

[t , t ]
(t , t ]

(t

t

nn P@t V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠n, t ]

            (6.88) 

 

where (@tkTM) = (@tkN) is the evaluation function as defined in Eq. 
4.88b.  

© 2008 by Taylor & Francis Group, LLC



500   Part II Theoretical Foundations of SE 

The semantic diagram of the time-driven dispatching process relation as 
defined in Eq. 6.88 is illustrated in Fig. 6.30 in the semantic environment Θ. 
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Figure 6.30 The semantic diagram of time-driven dispatch relation 

 
6.6.3.3 The Event-Driven Dispatching Process Relation 

 
Definition 6.101 The semantics of the event-driven dispatching 

relations of processes, θ(@ekS e Pk), in the given semantic environment Θ is 
a double partial differential of the semantic function fθ(@ekS e Pk) on the sets 
of variables S and executing steps T, i.e.: 
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The semantic diagram of the event-driven process relation as defined in 

Eq. 6.89 is illustrated in Fig. 6.31 in the semantic environment Θ. 
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Figure 6.31 The semantic diagram of the event-driven dispatch relation 
 
6.6.3.4 The Interrupt-Driven Dispatching Process Relation 

 
Definition 6.102 The semantics of the interrupt-driven dispatching 

relations of processes, θ(@intkS i Pi), in the given semantic environment Θ 
is a double partial differential of the semantic function fθ(@intkS i Pi) on the 
sets of variables S and executing steps T, i.e.: 
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        (6.90) 

 
The semantic diagram of the interrupt-driven process relation as 

defined in Eq. 6.90 is illustrated in Fig. 6.32 in the semantic environment Θ. 

© 2008 by Taylor & Francis Group, LLC



502   Part II Theoretical Foundations of SE 

     

 t

   s Θ (@intkS ↳Pk) 

0    t2  …   tn 

Pn 

P1 

   t1 

 … 

 … 

 

SP1 

SPn 

 

@intiS 

 
 
Figure 6.32 The semantic diagram of the interrupt-driven dispatch relation 
 

Semantics plays an important role in language processing, formal 
methods, and software engineering theories. This section has presented a 
rigorous treatment of RTPA deductive semantics, which enables a new 
approach towards deductive reasoning of software semantics at all 
composing levels of program hierarchy. Deductive semantics has greatly 
simplified the description and analysis of the semantics of complicated 
software systems implemented in programming languages or specified in 
formal notations. Deductive semantics can be used to define both abstract 
and concrete semantics of large-scale software systems, facilitate software 
comprehension and recognition, support tool development, enable semantics-
based software testing and verification, and explore the semantic complexity 
of software systems. 

 
 

 

6.7 Linguistic Perceptions on 
       Software Engineering 
 

 
 
Because software engineering is the application of information technologies 
in communicating between professionals and customers, architects and 
software engineers, programmers and computers, as well as computing 
systems and their environments, linguistics and formal language theories play 
important roles in software engineering. This section takes a comparative 
approach to explore the common and special characteristics and features of 
natural and programming languages. It analyzes how the formal language 
theories extends the study of natural languages, and how linguistics may 
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improve the understanding of programming languages and their work 
products – software.               
 
 
6.7.1 COMPARATIVE ANALYSIS OF NATURAL AND 
         PROGRAMMING LANGUAGE THEORIES  

 
It is interesting to compare the features of programming languages and 

those of natural ones. A summary of the comparative analysis of 
programming and natural languages is provided in Table 6.11 on the basis of 
the discussions in preceding sections. Intuitively, it is expected that a 
programming language would be a small subset of natural languages. 
Surprisingly, this hypothesis is only partially true at the morphology 
(lexicon) and semantic levels. However, the syntax of programming 
languages is far more complicated than those of natural languages. 
 

Table 6.11 
Comparative Analysis of Natural and Programming Language Theories 

 

No. Category Natural language  Programming language 

1 Phonetics Small N/A 

2 Phonology Complex N/A 

3 Morphology 

(lexis) 

Very large  

(> 60,000 words) 

Small (< 1,000 instructions 
/ reserved words) 

4 Syntax  Simple  

(< 100 rules, Fig. 6.3) 

Very complicated 

(> 1,000 rules) 

5 Semantics Very complex (5-D) Simple (2-D) 

6 Grammar Context sensitive Context free 

7 Applications Thought, communications Computing, system control 

 
It can also be seen in Table 6.11 that the semantics of programming 

languages is much simpler than that of natural languages, which is 
determined by the basic objectives of applications that should be suitable for 
limited machine intelligence. However, for achieving such simple and 
precise semantics in programming languages, a very complex and rigorous 
syntax and grammatical rules have to be adopted. 

More generally, it is noteworthy that there is no clear-cutting between 
syntax and semantics in both natural and programming languages as stated in 
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Theorem 6.1. In other words, syntactic and semantic rules are equivalent and 
interchangeable in linguistics. A simple syntax will require for a complex 
semantics, while a complex syntax will result in a simple semantics.  

 
 

6.7.2 PRINCIPLES OF PROGRAMMING LANGUAGE 
         DESIGN 
    

A variety of programming languages have been designed and proposed 
in the last five decades, either procedural or object-oriented, assemble or 
high-level, general purpose or special usages [Louden, 1993]. For example, 
FORTRAN was seen as focused on execution efficiency, COBLE was 
emphasized on natural language like readability, Pascal was to provide a 
structured language for maintaining complexity, and C++ and Java are 
designed for object-orientation and more structural encapsulation of language 
components. All of them may be perceived as instances derived on the basis 
of the formal language theory discussed in previous subsections.  

A number of common principles shared in programming language 
design can be elicited from existing and historical programming languages 
[Hoare, 1966/73; Wirth, 1974; Horowitz, 1984; Mitchell, 1996]. This 
subsection describes the basic principles and generic criteria for 
programming language design, which may be used to evaluate and appreciate 
the features of different existing and future programming languages.      
 
6.7.2.1 Abstraction and Complexity Control 
 

Abstraction is a primitive design principle of programming languages. 
It is also a basic engineering principle for controlling design complexity in 
software engineering, since any professional language itself is an abstract 
symbolic system for describing and exchanging notions. The abstractive 
power of programming languages helps programmers to denote real-world 
applications with mathematical-based architectural and behavioral models, 
which can then be embodied by executable code. 

 
6.7.2.2 Efficiency 
 

Efficiency is a ubiquitous requirement for programming languages.  
Efficiency can be classified into programming efficiency, language processor 
implementation efficiency, as well as target code time and memory 
efficiency.  
 Programming efficiency is the innate characteristic of programming 
language that depends on the expressiveness, writeability, and readability of 
the language. These features involve both the express power on data 
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architectures and behavioral processes. A structural or object-oriented 
methodology for building complex structures from basic components and 
architectures are also necessary. 
 Language processor implementation efficiency refers to the 
implementability and complexity of compilers or interpreters for a given 
language. Some special grammar rules and run-time supporting features of 
programming languages may dramatically increase the implement 
complexity and efficiency. 

Target code efficiency is closely linked with tool implementing 
technologies and their efficiency. The basic criteria for code efficiency can 
be evaluated by time, space, or both. Usually the time and space efficiencies 
of code may be contradictory to each other in a given environment. 
Therefore, tradeoffs between them are often required, and almost all modern 
compilers provide options on optimizing a required feature during compiling.                    
 
6.7.2.3 Expressivity 
 

Expressivity is the principle for language descriptivity and its 
preciseness. Expressivity of languages can be classified as those for 
architecture and data manipulation, behaviors and processes manipulation, 
and I/O and environment interaction manipulation. A common model for 
expressivity of programming languages developed in RTPA is the 
expressions of object architectures and behavioral processes [Wang, 2002a]. 
The former can be described generically by CLMs, and the latter can be 
described by a set of 17 meta processes and their algebraic relations. Since 
both CLMs and processes of RTPA are defined on the basis of a small set of 
algebraic laws and operators, the system models specified in RTPA are both 
precise and expressive.       
 
6.7.2.4 Simplicity 
 

Simplicity is the principles for enabling writeability, readability, and 
efficiency. The successful story of RISC (Reduced Instruction Set 
Computing) technology in microinstruction level [Marshall, 1989; 
Bhandarhar and Clark, 1991] has proven that a smaller and essential 
instruction set can be more efficient in computing and programming. 
According to Theorem 4.8, an important finding of the work in developing 
RTPA [Wang, 2002a] is that the basic set of behavioral instructions for any 
programming language includes only 17 meta processes and 17 process 
relations, where a meta process is a basic instruction in computing. 
Therefore, simplicity is an important design principle of programming 
languages that drive language designers and researchers to seek the core and 
essential expressive constructs in computing and programming.              
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6.7.2.5 Uniformity 
 

Uniformity is a principle for language instructions’ consistency and 
generality of appearance and behaviors. Similar instructions should adopt 
similar appearance and behavior; dissimilar instructions should not be easily 
confused. Basic control structures should be implemented in unified syntax 
and implies consistent semantics. 
 
6.7.2.6 Orthogonality 
 

Orthogonality is a principle of language design which requires that all 
language constructs should behave the same in any context. The 
orthogonality of programming languages enables different constructs to be 
freely composed in applications with a predictable behavior. For example, all 
instructions or data objects should behave independently and context-freely 
in either sequential or embedded program components.            
 
6.7.2.7 Comprehensibility and Readability 
 

Comprehensibility is the feature of how understandable of a program 
and its readability. With the increasing complexity of large-scale system 
development, code reviews, and legacy system reengineering, 
comprehensibility or readability has gained more and more attention than 
writeability among language designers and researchers in software 
engineering. Hence, C.A.R. Hoare asserted that “The readability of programs 
is immeasurably more important than their writeability [Hoare, 1973].” 

 
 

6.7.3  CHARACTERISTICS OF PROGRAMMING 
          LANGUAGES  
 

The architectural characteristics of programming and natural languages 
have been contrasted in Table 6.11. This subsection reviews the basic 
requirements for programming and the characteristics of programming 
languages from a linguistic perspective.  
 
6.7.3.1 Fundamental Requirements for Programming 
  

The basic elements for computing have been identified in Section 5.2.1. 
For supporting and implementing the basic computing requirements, the 
necessary expressive power of programming languages is as follows:  
 

      •  Arithmetical operations 
       •  Logic operations 
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       •  Data and memory manipulations   
       •  Inputs/outputs manipulations   
       •  Events timing and processing 
       •  Interrupt and parallel dispatching of processes 
 
 Observing Table 6.3 it can be seen that although natural languages can 
be rich, complex, and powerfully descriptive, they share the common and 
basic mechanisms, such as ‘to be (|=),’ ‘to have (|⊂),’ and ‘to do (|>).’ 
Programming languages presented a comprehensive set of instructions on 
describing system actions and behaviors, such as the sequential, branch, 
iterative, recursive, concurrent, parallel, and interruptive process relations 
[Wang, 2005a/06c/06h/06f]. However, ‘to be (|=)’ is not adequately 
represented in programming languages. This results in a vital weakness and a 
lot of ambiguity in programming languages in describing architectures of 
software and its components.        

The 17 meta processes of RTPA and their composition rules known as 
the 17 process relations provide a sufficient and comprehensive descriptive 
power. According to Theorem 4.8, only binary orthogonal combination of 
the meta processes and process relations may result in up to 2,312 
programming instructions, which is rich enough than any programming 
language to describe architectures and behaviors of software systems.                  

 
6.7.3.2 Characteristics of Programming Languages   

 
The characteristics of programming languages, perceived from a 

linguistic point of view, can be described as follows: 
    

      • An artificial language 
      •  Limited alphabet and grammar 
      •  To be learnt as a second (or nth, n > 2) language 
      •  Only a written language     
      • No tenses and timing 

        •  No person (presumed ‘I’ or the computer)     
       • Context free   

      • Objects are typed    
        •  Language and tool integration 
        •  Designed to manipulate abstract objects  

  
 It is noteworthy that there is a cognitive and expressive gap between 
the context-free programming languages and the context-sensitive natural 
languages. Therefore, a fundamental issue is how a real-world problem and 
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its solution(s) in a context-sensitive manner may be described by a relatively 
inadequate programming language. Because the context cannot be freely 
removed without loss of useful information, programming languages have to 
imply the context of a program in data objects and related semantic 
environment. This forms a fundamental constraint on automatic code 
generation by machines, because no machine can recognize implied and 
inexplicitly expressed semantics in a program. This is one of the key reasons 
for why software engineering is still a labor (programmer) intensive 
discipline. RTPA presents a context-expressive software notation system, 
where the programming context or the semantic environment for a given 
problem is explicitly described by a system architectural model with 
encapsulated data objects in terms of a set of CLMs. Based on RTPA, 
intelligent and automatic code generation systems have been successfully 
implemented for software engineering as presented in Section 15.4.2.    
 
 
 
6.8 Summary 
 

 
 
This chapter has demonstrated that formal language theories play an 
important role in computing theories, without it computing and software 
engineering theories are not complete. Language is an oral and/or written 
symbolic system for thought, self-expression, and communication. 
Linguistics is the discipline that studies human or natural languages. This 
chapter has extended linguistics to programming languages and 
professional notation systems known as formal languages.    

A comparative approach has been adopted to explore the common and 
special characteristics of human and programming languages. This chapter 
has analyzed not only how linguistics may improve the understanding of 
programming languages and their work products – software, but also how 
formal language theories extend the study of natural languages.  

This chapter has explored the linguistics foundations of software 
engineering and analyzed the expressive means and their rigorous treatment 
in software engineering. Classic thought in linguistics, such as syntaxes, 
semantics, grammars, and linguistic analyses, has been reviewed. Formal 
treatment of language elements and their compositions from the bottom up 
have been described. Syntaxes and semantics of programming languages and 
their analyses have been presented. Semantics of RTPA have been formally 
described on the basis of deductive semantics. Comparative analyses of 
natural and programming languages, as well as linguistics perceptions on 
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software engineering, have been discussed. As a result, the linguistic 
foundations of software engineering have been established.   
 
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Linguistics Foundations of Software Engineering, 
readers have achieved the following strategic aims with the knowledge 
architecture as summarized below. 
 

 
Chapter 6. Linguistics Foundations of SE  

 
■ Fundamentals of Linguistics  
     •  Taxonomy of linguistics                        
     •  Syntaxes 
     •  Semantics                                               
     •  Grammars 
     •  Formal analysis of syntaxes 
 
■  Formal Language Theory 
     •  Alphabets                                               
     •  Strings 
     •  Expressions                                           
     •  Grammar theories                                         
     •  Languages                                              
     •  BNF and EBNF 
 
■  Syntax of Programming Languages 
     •  Lexical analyses                                    
     •  Syntax definitions and descriptions   
     •  Syntactical analyses                               
     •  Syntactical analyses of RTPA   
 
■  Semantics of Programming Languages  
     •  Taxonomy of semantics 
         - Target semantics  
         - Operational semantics  
         - Denotational semantics   
         - Axiomatic semantics  
         - Algebraic semantics  
         - Deductive semantics  
 

     •  Denotational semantics 
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         - Syntactic and semantic domains of denotational semantics  
         - Description of syntactic domains of SPL   
         - Semantic analysis using denotational semantics  
         - Semantics of programs in SPL 
 

     •  Deductive semantics 
         - The mathematical model of software semantics  
         - Deductive semantics of programs at different levels of 
            compositions  
         - Properties of software semantics 
 
■  Semantics of RTPA 
     •  Semantics of RTPA meta processes  
         - The assignment process  
         - The evaluation process  
         - The addressing process  
         - The memory allocation process  
         - The memory release process  
         - The read process  
         - The write process  
         - The input process  
         - The output process  
         - The timing process  
         - The duration process  
         - The increase process  
         - The decrease process  
         - The exception detection process  
         - The skip process  
         - The stop process 
 

     •  Semantics of RTPA process relations   
         - The sequential process relation  
         - The jump process relation  
         - The branch process relation  
         - The switch process relation  
         - The while-loop process relation  
         - The repeat-loop process relation  
         - The for-loop process relation  
         - The function call process relation  
         - The recursive process relation  
         - The parallel process relation  
         - The concurrent process relation  
         - The interleave process relation  
         - The pipeline process relation  
         - The interrupt process relation 
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     •  Semantics of system and process dispatching 
         - The system process  
         - The time-driven dispatch process relation  
         - The event-driven dispatch process relation  
         - The interrupt-driven dispatch process relation 
 
■  Linguistic Perceptions on Software Engineering  
     •  Comparative analysis of natural and programming languages 
     •  Principles of programming language design 
     •  Characteristics of programming languages 
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• The need centered in software engineering is to efficiently facilitate 
communications among multiple stakeholders, such as those between 
professionals and customers, architects and software engineers, 
programmers and computers, as well as computing systems and their 
environments. Therefore, linguistics and formal language theories play 
important roles in computing and software engineering. 

 
• The basic function of languages is both to communicate information 

and to express abstract human behaviors.  
 
• It is recognized that the ways to express human and system behaviors 

can be classified into three categories: to be, to have, and to do in natural 
languages. All mathematical means and forms, in general, are abstract 
description and manipulation of these three categories of human and system 
behaviors and common rules. 

 
• Natural languages are context-sensitive, while programming 

languages are context-free. Therefore, the descriptive power of 
programming languages is inherently limited than that of the needs for 
expressing and solving natural-world problems. 
    

• Most fundamental problems in computing and software engineering 
may stem from the removal or implication of the computing environments 
and data objects. Therefore, a much natural and context-expressive 
programming language and related compiling technology are yet to be 
sought. 
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• An important discovery in modern linguistics is the existence of the 
universal grammar (UG) among human languages. UG and grammars of 
natural languages can be formally described and analyzed using formal 
language theories. A typical UG is the Deductive Grammar of English 
(DGE) as established in Section 6.2.4.  

 
• Although natural languages can be rich, complex, and powerfully 

descriptive, their functions can be classified into three fundamental 
categories known as ‘to be (|=),’ ‘to have (|⊂),’ and ‘to do (|>).’   

 
• In software engineering, formal language theories are reoriented to 

express software specification and design notions, rather than focussing on 
language generation and recognition.   
 

• A programming language can be designed and generated from the 
bottom up according to a set of lexes and syntaxes. Reversely, the language 
can be recognized, analyzed, and reduced from the top down via lexical and 
syntactic analyses. Software engineering puts emphases on language 
recognition, cognition, and its expressiveness rather than language 
generation.                        

 
• Semantics of a programming language can be described by its 

behavioral equivalence to another language. Semantics can also be 
described by a set of predefined executable functions in machine 
languages. Another approach to specify the semantics of a programming 
language is by mathematical definitions known as formal semantics. 

 
• According to deductive semantics, the carriers of software 

semantics are a finite set of variables declared in a given program. 
Therefore, program semantics can be reduced onto the changes of values of 
these variables.   

 
• The behavior of a computational statement is a set of observable 

actions or changes of status of objects operated by the statement.    
 
• Semantic analysis is a deductive process that projects the 3-D 

software behaviors into the 2-D semantic environment. 
 
• Programming languages vs. natural languages: It was expected 

that a programming language would be a small subset of natural languages. 
Surprisingly, this hypothesis is only partially true to the morphology 
(lexicon) and semantics, because the syntax of programming languages is far 
more complicated that those of natural languages. 
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• Syntax vs. semantics of programming languages: Syntactic and 

semantic rules are equivalent and interchangeable. A simple syntax requires 
for a complex semantics, while a complex syntax results in a simple 
semantics.  

 
• Deductive semantics is a formal software semantics that deduces the 

semantics of a program in a given programming language from a generic 
abstract semantic function to the concrete semantics, which are embodied 
onto the changes of status of a finite set of variables constituting the semantic 
environment of computing. 

• The advantage of deductive semantics is that it introduces 
only a universal semantic function rather than adopting multiple 
concrete semantic functions as the conventional approaches do. In 
deductive semantics, any particular concrete semantic function is a 
deduced instantiation of the universal abstract semantic function. This 
avoids the trouble in other exhaustive approaches where new semantic 
functions have to be particularly defined whenever additional 
instructions are introduced in a given language.            

• Deductive semantics can be used not only to describe the 
abstract and concrete semantics of programs, but also to elicit and 
highlight their semantic effects. 

 
• Historically, language-centered programming had been the 

dominant methodology in computing and software engineering. However, 
this should not be taken for granted as the only approach to software 
engineering, because the expressive power of programming languages is 
inadequate to deal with complicated software systems. In addition, the 
rigorousness and level of abstraction of programming languages are too low 
in modeling the architectures and behaviors of software systems. Therefore, 
the recognition of the need for mathematical modeling of both software 
system architectures and static/dynamic behaviors, as well as the support 
of automatic code generation systems, is profoundly important.                             
 
 

FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Fundamentals of Linguistics 
 

• Linguistics is the discipline that studies the nature and use of 
languages. The central issue of linguistics is grammar, the rules of a language 
and how to generate, form, recognize, and interpret the language.  
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• Linguistics is one of the important foundations of computing and 
software engineering because languages are the basic means of human 
communication and tools of thinking and expression.  

 
 • The basic function of languages is to express abstract human 
behaviors and to communicate information. Any human language, natural or 
artificial, is a sequential or 1-D symbol stream of syntactical blocks, which, 
from top down, are paragraphs, sentences, phrases, words, and letters. 
 

• Syntax is a domain of linguistics that studies sentence formation and 
structures. Syntax of languages is multi-dimensional (n-D). 

 
• Lexical elements in a language can be classified into the categories 

of lexical, functional, phrasal, and relational. 
 
• Semantics is a domain of linguistics that studies the interpretation of 

words and sentences, and analysis of their meanings. Semantic analysis and 
comprehension is a deductive cognitive process. The semantics of a 
sentence is comprehended till all elements of the sentence can be reduced to 
either a real-world image or a primitive abstract concept, and the logical 
relations of parts of the sentence are clarified. 

 
• A grammar is a set of common rules that integrates phonetics, 

phonology, morphology, syntax, and semantics of a given language. The 
grammar for the multi-dimensional syntax of languages is hierarchical and 
recursive. The basic properties of natural language grammars are generality, 
parity, universality, mutability, and inaccessibility. 

 
• The universal grammar (UG) is a system of categories, mechanisms, 

and constraints shared by all human languages. UG is perceived as innate in 
the brain based on recent neurolinguistic and psycholinguistic studies. 

 
• A paradigm of UG is the rigorous definition of the English grammar 

by the deductive grammar (DGE) at the sentence level. Any valid English 
sentences can be derived on the basis of DGE.     
 
Formal Language Theory 
 

• A programming language is a special notation system for describing 
and specifying instructive computing information on both architectural (data) 
and behavioral (process) aspects of a software system.    

 
• Formal languages are rigorously defined theories and rules of 

programming languages to specify, analyze, generate, and recognize 
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computational languages. Formal language theories study the language 
elements such as alphabets, strings, expressions, languages, and grammars. 

• An alphabet is a nonempty finite set of symbols or letters.  

• A string (word) over an alphabet is a finite sequence of 
symbols defined on the alphabet. The closure of an alphabet ∑* is a 
power set of the given alphabet.  

• An expression is a string on an alphabet or a number of strings 
concatenated by a set of special symbols known as operators.  

• A regular expression is a special kind of strings consisting of 
single symbols on a given alphabet, or composed of single symbols by 
the empty string ∅, union ∪ , repeat *, and parentheses ( ). 
 
• A language is a set of expressions and strings over an alphabet that 

are formed following certain properties and rules known as grammar. A 
regular language over an alphabet ∑ is a set of regular expressions on ∑*. 
A language is regular if and only if it is accepted by a finite automaton. A 
context-free language Lf is a language generated by a context-free grammar 
Gf, i.e., Lf = L(Gf). 

 
• A production p is a function that produces an ordered pair (α, β), 

i.e., p:  α → β, where α and β is a terminal, nonterminal, or their 
combinations. A production with all terminals on its RHS is a final product 
with its semantics or physical meaning defined, while a product with at least 
one nonterminal on its RHS is an intermediate product with its semantics 
pending on further deduction.  

 
• Chomsky Grammars: Based on the types of production rules 

adopted in a grammar, formal grammars can be classified as Type 0 through 
Type 3 from the bottom up.  

• A Type 0 grammar, G0, is a grammar that has no restrictions on 
its productions.  

• A Type 1 grammar, G1, is a grammar that satisfies: ∀p ∈ G1, p: 
α → ∅ ∨ (p: α → β ⇒ |α| ≤ |β |).  

• A Type 2 grammar, G2, is a grammar that satisfies: ∀p ∈ G2, p: 
A → β.  

• A Type 3 grammar, G3, is a grammar that satisfies: ∀p ∈ G3, p: 
s0 → ∅ ∨ p: A → a ∨ p: A → aB where s0 is the start symbol and a is a 
single terminal. 
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• A context of a production is a certain configuration of all symbols in 
the strings and expressions of a production.  

• A context-sensitive grammar Gs is constrained by: ∀p ∈ Gs, p: 
αAα’ → αβα’, where αXα’ is the context, and X is a nonterminal that 
can be replaced in the given context.  

• A context-free grammar Gf is constrained by: ∀p ∈ Gf,  p: A 
→ β.  

• A regular grammar Gr is a grammar that is constrained by: ∀p 
∈ Gr,  p: S0 → ∅ ∨ p: A → a ∨ p: A → aB.    
 
• Levels of grammars: A higher level grammar imposes stronger 

restrictions on its production rules than those of the lower level grammars, 
i.e., G3 (Gr) ⊆ G2 (Gf) ⊆ G1 (Gs) ⊆ G0.   

 
• An LL(k) grammar is a class of context-free grammars Gf = (∑, s, T, 

R), where the first L defines that the parsing is from left to right, and the 
second L specifies that next production is derived by left-most derivation, 
and k, k ≥ 1, denotes that at most k-symbol looking ahead into the unmatched 
part of the input string is required in order to uniquely determine the next 
production.          

 
• An LR(k) grammar is a class of context-free grammars Gf = (∑, s, T, 

R), where the L defines that the parsing is from left to right, and the R 
specifies that next production is derived by right-most derivation in reverse, 
and k, k ≥ 0, denotes that at most k-symbol looking ahead into the unmatched 
part of the input string is required in order to uniquely determine the next 
production.          

 
 • A Backus-Naur form (BNF) is defined by a 5-tuple: BNF  (∑, T, 
V, P, S). An extended BNF (EBNF) adopts an extended set of metasymbols 
S’ = { |, ( )*, ( )+, [ ]}. BNF/EBNF are a recursive notation for describing the 
productions of a context-free grammar. 
 
Syntax of Programming Languages 
 

• The syntactic processing of programs encompasses lexical and 
syntactical analyses. 

 
• The lexical structure of a programming language is the structures of 

its lexemes, such as strings or words, known as tokens in language 
processing. 
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• Tokens of a programming language can be classified into three 
categories that represent program entities of reserved words, reserved 
symbols (operators and separators), and identifiers (variables and 
constants).  

• Lexical analyses are conducted by a scanner or a lexical 
analyzer.  

• Lexical analysis breaks down a source code into a finite 
sequence of individual tokens; for each of them its language property is 
identified.        
 
• The syntax of a programming language is its grammatical rules for 

constructing legal instructions.  

• Grammar rules of a language that constrain and direct a 
syntactic analysis of a parser can be described by BNF, EBNF, syntax 
diagrams, or RTPA.  

• Syntactical analyses are conducted by the parser or syntactical 
analyzer.  

• Syntactical analysis techniques can be classified into top-down 
and bottom-up parsing that adopt the LL(k) or LR(k) grammar, 
respectively.  
 
• Top-down parsing is a class of parsing techniques directed by an 

LL(k) grammar that matches an input string to a given syntax tree in a 
preorder, i.e., from the root of the syntax tree to the leftmost nodes. 

• Recursive-descent parsing is a top-down parsing technique 
that derives a parsing tree according to a set of left-recursive grammar 
rules. 

• Predictive parsing is a restricted form of recursive-descent 
parsing where the backtracking is eliminated in a top-down parsing by 
adopting an LL(1) grammar.   
 
• Bottom-up parsing is a class of parsing techniques that derives a 

parse tree for an input string from the leaves to the root, in order to reduce 
the string to the start symbol of production rule.  

 
• RTPA syntactical analyses: Most of the RTPA syntax for software 

system specification and modeling can be specified by a set of about 300 
LL(k) grammar rules in EBNF.  
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• Special grammar rules of RTPA are described by syntactic 
predicate in the form of <syntactic entity> => <production>, which is a 
selective backtracking to recognize language constructs that cannot be 
distinguished without seeing all or most of the construct.  

• On the basis of the EBNF grammar rules, the RTPA parser and 
type checker are implemented using ANTLR. 

 
Semantics of Programming Languages 
 

• The semantics of a programming language is the behavioral 
meanings that constitute what an instructional statement of the language is to 
do. The semantics of a program in a given programming language is the 
logical consequences of an execution of the program that results in the 
changes of values of a finite set of variables in the underlying computing 
environment.  

 
• Formal semantics of programming languages can be classified into 

five categories known as operational semantics, denotational semantics, 
axiomatic semantics, algebraic semantics, and deductive semantics. 

• Operational semantics adopts a virtual machine, whose 
operation is well-defined, to describe the semantics of a programming 
language by its equivalent behaviors executing by the virtual machine.    

• Denotational semantics adopts functions to describe the 
semantics of a programming language, in which the function describes 
semantics by associating semantic values to syntactically legal 
constructs.    

• Axiomatic semantics adopt effective assertions to describe the 
semantics of a programming language, in which the assertions of effect 
by executing an instruction is deduced to the values of data 
manipulated by the instruction.  

• Algebraic semantics adopt abstract algebra to describe the 
semantics of a programming language, in which data objects and 
operations are defined by algebraic axioms and deduced by abstract 
algebraic laws. 
 
• Deductive semantics is a formal software semantics that deduces the 

semantics of a program in a given programming language from a generic 
abstract semantic function to the concrete semantics, which are embodied 
onto the changes of status of a finite set of variables constituting the semantic 
environment of computing. 
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• A semantic environment of a program in a given programming 
language is a logical model of a finite set of identifiers and their values 
changing over time along the execution of the program.  

 
• The behavioral space Ω of a program executed on a certain machine 

is a finite set of variables operated in a three-dimensional state space 
determined by a finite set of operations O, a finite set of memory locations or 
their logical representations by identifiers of variables S, and a finite set of 
discrete steps of program execution T. 

 
• The semantic environment Θ of a program on a certain target 

machine is its run-time behavioral space Ω projected onto the Cartesian plane 

determined by T and S, i.e.,
2

T S
t s
∂ ΩΘ = = ×
∂ ∂

.      

     

• A semantic function of a program ℘, fθ(℘), is a finite set of values 
V determined by a Cartesian product on a finite set of variables S and a finite 
set of executing steps T, i.e.,  fθ(℘) = f: T × S → V, where T = {t0, t1, …, tn}, 
S = {s1, s2, …, sm}, and V is a set of values v(ti, sj), 0 ≤ i ≤ n, and 1 ≤ j ≤ m.  

 
• A semantic diagram is a sub-Cartesian-plane in the semantic 

environment Θ that forms the domain of the semantic function for a 
composed process P with  fθ(P) = f: TP × SP → VP. 

 
• The semantics of a statement p, θ(p), in a given semantic 

environment Θ is a double partial differential of the semantic function fθ(p) 
on the sets of variables S and executing steps T, i.e.: 
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• The semantic effect of a statement p, θ* (p), is the resulted changes 

of values of variables by its semantic function θ(p) during the time interval 
immediately before and after the execution of p, ∆t = (ti, ti+1], i.e.: 
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• The semantics of a process P, θ(P), in a given semantic environment 

Θ is a double partial differential of the semantic function fθ(P) on the sets of 
variables S and executing steps T, i.e.: 
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where

kpV , 1≤ k ≤ n-1, is a set of values of local variables that belongs to 
processes Pk, and VG is a finite set of values of global variables.    
 

• The semantics of a program ℘, θ(℘), in a given semantic 
environment Θ, is a combination of the semantic functions of all processes 
θ(Pk), 1≤ k ≤ n, i.e.: 
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• The semantic space of a program SΘ(℘) is a product of #S(℘) 

variables and #T(℘) executing steps, i.e.: 
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• Usage of deductive semantics: a) To define both abstract and 

concrete semantics of large-scale software systems; b) To facilitate software 
comprehension and recognition; c) To support tool development; d) To 
enable semantics-based software testing and verification; and e) To explore 
the semantic complexity of software systems. 
 

• The semantics of a program are invariant with the changes of 
executing speed, as long as any absolute time constraint is met.  

 
• A program is composable in a given language iff both sufficient sets 

of meta instructions and BCS’s are rigorously defined.   
 
• Semantics of RTPA: Deductive semantics can be applied to derive 

and interpret the semantics of the 17 meta processes and the 17 process 
relations of RTPA, which covers an essential and sufficient set of 
fundamental computing requirements in programming and software 
engineering.          
 
Linguistics Perceptions on Software Engineering 
 

• Programming languages vs. natural languages:  Although the 
lexicon and semantics of a programming language are a small subset of 
natural languages, the syntax of programming languages are far more 
complicated that those of natural languages. 

 
• Language design principles elicited from existing and historical 

programming languages are abstraction, efficiency, expressivity, simplicity, 
uniformity, orthogonality, comprehensibility, and readability, which are used 
to evaluate and appreciate the features of different existing and future 
programming languages.      

 
• The limitations of conventional software specification and compiling 

technologies make programming hard and complicated, because the objects 
(O), actions (B), and contexts (T, S) are separated, implied, and inexplicitly 
expressed. This is the fundamental constraint on code generation that can 
not be implemented by machines automatically, and dominates software 
engineering as still a labor-intensive discipline. 
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Questions and  
Research Opportunities  
 

 
 
6.1 What are the roles of linguistics and formal language theories in 

programming and software engineering? 
 

6.2 Discuss why the language-centered programming convention in 
computing and software engineering must not be taken for 
granted. What would be the alternative approaches to software 
engineering? 

 
6.3 According to the HAMSD model provided in Theorem 1.4, 

discuss whether mathematical modeling of software system 
architectures and static/dynamic behaviors, as well as automatic 
code generation systems would be the silver bullets for software 
engineering. 

 
6.4 It is recognized that the ways to express human and system 

behaviors can be classified into three categories: to be, to have, 
and to do in natural languages. All mathematical means and 
forms, in general, are abstract description and manipulation of 
these three categories of human and system behaviors and 
common rules.  

 

Referring to Table 4.6, discuss the compatibility and differences 
between natural languages, programming languages, and 
denotational mathematical structures in their expressive power 
and level of abstraction.       

 
6.5 Referring to Fig. 6.2, how is the deductive process of linguistic 

analyses conducted in natural languages from the 1-D language 
sentence to the 5-D semantics? 

 
6.6  What are the Universal Grammar (UG) and its basic properties?  
 
6.7 Why may any valid English sentence be derived by the generic 

schema on the basis of the Formal English Grammar (FEG)? 
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6.8 What are the relationship and compatibility between syntaxes and 
semantics of natural languages? Is the compatibility also 
applicable to programming languages?            

 
6.9 What are the different orientations of formal language theories for 

computing and software engineering?     
 
6.10 What is the hierarchical structure of objects under study in formal 

language from the bottom up?   
 
6.11 What are the restrictions imposed to a general expression in order 

to obtain a regular expression?    
 
6.12 What is an LL(k) grammar and what does the first L, second L, 

and k stands for, respectively? 
 
6.13 What is an LR(k) grammar and what does L, R, and k stands for, 

respectively? 
 
6.14 Summarize the following grammars and their relationships in a 

table based on Corollaries 6.1 and 6.2:  
 

     •  Chomsky grammar types G0, G0, G0, and G3; 
     •  The context-sensitive grammar Gs, the context-free 

grammar Gf, and the regular grammar Gr; 
     •  The LL(k) grammar and the LR(k) grammar 

 
6.15 What are the extensions of EBNF on BNF, and how do these 

extensions improve the express power of BNF notations?    
 
6.16 Referring to Table 6.5, describe the relationship between EBNF 

notations and their mathematical semantics in RTPA.   
 
6.17 Summarize the four forms of formal semantics, such as 

operational semantics, denotational semantics, axiomatic 
semantics, and algebraic semantics, as well as their methods and 
usages.  

 
6.18 What is a semantic function? What are the differences between an 

abstract and a concrete semantic function? 
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6.19 What are deductive semantics and its generic abstract semantic 
function? What are the advantages of deductive semantics against 
conventional semantic theories?    

 
6.20  Explain the relationship between a semantic environment and a 

semantic diagram as defined in deductive semantics.     
 
6.21  Figs. 6.2 and 6.15 show the nature of semantic analyses for 

natural and programming languages, respectively. Analyze the 
similarity and differences between them.  

 
6.22  Using the following program entitled sum as given in Example 

6.24, analyze the semantics of Statements (0) through (3) using 
deductive semantics:     

    

   void sum; 
   { 
          (0)  int x, y, z; 
          (1)  x := 8; 
          (2)  y := 2; 
          (3)  z := x + y; 
   } 
 
6.23 Draw a semantic diagram for the following composed processes 

which is a sequential relation between P and a while-loop for Q: 
 

exp =

*( )P QRθ →
F

BL T

 

 
6.24  Theorem 6.3, the least complete set of instructions in 

programming, states that a program is composable with sufficient 
descriptive power in a given language iff both the sufficient sets 
of meta instructions (P, Theorem 4.6) and compositional rules 
(R, Theorem 4.7) are rigorously defined.   

 
  Try to prove Theorem 6.3 on the basis of Theorems 5.7 and 4.8. 
 
6.25  What are the syntactic and semantic differences between the roles 

of statements (meta processes) and BCS’s (process relations)? 
 
6.26 Comparatively analyze the linguistic complexities of 

programming languages and natural languages in the following 
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aspects: lexis, syntax, semantics, grammar, and applications. 
Identify in which aspects a programming language would be far 
more complicated than a natural language. 

 
6.27  Read the following classic article in software engineering:  
 

C.A.R. Hoare (1981), The Emperor’s Old Clothes, the 

The 1980 Turing Award Lecture, Communications of 

the ACM, 24(2), pp. 75-83. 
 

Discuss the following topics in a group: 
 
                     •  About the author. 

• What are the ‘new clothes’ of the emperor in software 
engineering?  
•  Identify your own examples of promising technical hoaxes 

that were popular in software engineering but disappeared 
shortly. 

      •  What conclusions of the article interested you? Why? 
      •  Your arguments or counter-points on any of the conclusions 

derived in this article.       
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Knowledge Structure 
 

 
 Classic information theory 

     •  Shannon’s definition of information 
     •  The physical meaning of classic information  
     •  Domain of classical information theory  
     •  Subjectivity of classical information theory  

 Contemporary informatics  

     •  Information: the third essence of nature 
     •  Measurement of information  
     •  From machine informatics to cognitive informatics  

 Informatics laws of software  

     •  What constrains software? 
     •  Equivalence between information-matter-energy 
     •  Informatics laws and properties of software 

 Information theories for software engineering 

     •  The informatics metaphor of software 
     •  Informatics laws that constrain software behaviors  
     •  The informatics attributes of software quality 
 

 

Learning Objectives 
 

 
     • To know the essences of the classical information theory. 
     • To understand contemporary information theory and the measurement of  

information. 
• To be aware of the emergence of cognitive informatics based on contemporary 

informatics.   
     • To understand the 19 informatics laws and fundamental properties of software. 
     • To understand the cognitive functional complexity of software.  
     • To be able to apply informatics in software engineering, particularly the 

information metaphor and informatics laws. 
 
 
 
 
 
 

7. Information Science Foundations of SE 

© 2008 by Taylor & Francis Group, LLC



Chapter 7  Information Science Foundations of SE    529 
 

“A little information, when shared, can go a long way.” 
 

BBC World (2005) 
 

“A fundamental discovery in computer science is that software  
as a unique entity is not constrained by any law and principle known in the 

physical world. However, software obeys the laws of informatics.” 
 

“Cumulativeness is the most significant attribute of information that mankind 
relies on in evolution.” 

 
Yingxu Wang (2002) 

 
 
 

7.1  Introduction 
 

 
 

t is recognized that matter, energy, and information are the three 
essences of the natural and the abstract worlds according to the 
Information-Matter-Energy (IME) model [Wang, 2003a/2006a] as 

presented in Theorem 1.2. In a modern society, information plays more and 
more important roles because it is the only link between the physical 
(external) and the abstract (internal) worlds in human life, and the top-level 
requirement for achieving fundamental human esteems.  

Information is the product of either natural or machine intelligence. 
Informatics, the science of information, studies the nature of information, its 
processing, and ways of transformation between information, matter, and 
energy. Informatics has developed from the classic information theory 
[Hartley, 1928; Shannon, 1948/49a/49b/51/59; Shannon and Weaver, 1949; 
Bell, 1953; Goldman, 1953; Reza, 1961], contemporary informatics [Chaitin, 
1977/04;  Zhong, 1996; Nielsen and Chuang, 2000; David, 2002; Wang, 
2002d/03b], to cognitive informatics [Wang, 2002d/02e/03a/03b/06b/06j/ 
07a/07b; Wang and Wang, 2006; Wang and Kinsner, 2006; Wang et al. 
2002a/06] in the past half century.  

A fundamental discovery in computer science and software engineering 
was that software as a unique entity is not constrained by any law and 
principle known in the physical world [McDermid, 1991; Hartmanis, 1994; 
Wang, 2006a]. Hence, it is curious to query the following: 
 

       •  What are the constraints that software obeys? 
 
Software in informatics is perceived as instructive and behavioral 

information. Referring to the abstractive levels of human knowledge and 

I 
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information as given in the HAMSD model (Fig. 1.3) in Section 1.2.4, 
software is information at Level 4 (special notation systems) and/or Level 5 
(mathematics). Therefore, software possesses all the properties of 
information and may be formally treated by informatics theories.   

This chapter attempts to demonstrate that software obeys the laws of 
informatics [Wang, 2006a/06b/07a]. As a logical consequence, it explores 
the following important issue:  

 
      • What are the laws of informatics that constrain software in 

software engineering? 
 

In order to answer this fundamental question, this chapter examines the 
informatics properties and laws of software and software engineering. In the 
remainder of this chapter, the information science foundations of software 
engineering will be presented from classic, contemporary, to cognitive 
informatics. Section 7.2 briefly reviews classic information theories and its 
perception on information as probability-based properties of signals and 
channels. Section 7.3 presents contemporary informatics and current 
perception on information in the Information Technology (IT) and software 
industries. Section 7.4 explores a comprehensive set of informatics laws that 
constrain the behaviors of software. Then, Section 7.5 describes information 
science for software engineering and applications of informatics in software 
engineering. 
 
 
 
7.2 Classic Information Theory 
 

 
 
Information theory, system theory, and cybernetics were regarded as the 
major three theories invented in the 1940s, which have greatly influenced 
related research, industrial applications, and human life since the second half 
of the 20th century. The classic information theory is regarded to be founded 
by Claude E. Shannon during 1948-1949 [Shannon, 1948/49a/49b/51/59; 
Shannon and Weaver, 1949], while the term information was first adopted by 
Hartley in 1928 [Hartley, 1928], and extensively studied by Bell and 
Goldman in 1953, respectively [Bell, 1953; Goldman, 1953]. Conventional 
information theory was modeled based on probability theory, and was 
focused on information transmission rather than information itself [Reza, 
1961; Kolmogorov, 1965].  
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7.2.1 SHANNON’S PERCEPTION ON INFORMATION  
 
 In the early 1940s, it was thought that increasing the transmission rate 
of information over a communication channel increased the probability of 
errors. Shannon surprised the communication theory community by proving 
that this was not true as long as the communication rate was below the 
capacity of a channel, where the channel capacity is constrained by its noise 
characteristics.  
 In the classic information theory, Shannon [Shannon, 
1948/49a/49b/51/59] defines information as a probabilistic measure of the 
variability of messages that can be obtained from a message source 
[Shannon, 1948/59]. In other words, the physical meaning of information is 
the prediction of variability of any kind of signals that can be sent via 
transmission channels.  
 
 Definition 7.1 Information is a weighted probabilistic measure of the 
variability of messages (signals) that is expected from a message source via a 
transmission channel. 
  

Definition 7.2 The information variability of the ith sign in a message, 
Ii, is determined by its unexpectedness, i.e.: 
       

                       2
1

  [bit]i
i

I log
p

=            (7.1) 

 
where pi is the probability that the ith sign is transmitted. The unit of 
information is bit, shortened from ‘binary digit.’ 
 
 On the basis of Definition 7.2, the total information variability of a 
given signal system can be derived below. 
 
 Definition 7.3 The total information variability transmitted by a source 
or sender, I, is the weighted sum of the probability of all its n possible signs 
Ii, 1 ≤ i ≤ n, known as the alphabet, in the message, i.e.: 
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Example 7.1 For a binary source that has an alphabet of two equally 
likely signs, i.e.,  p1 = p2 = 0.5, its total information variability, I, is:  

 

      

1
2

1

1log
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0.5 log
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= 1   [bit]
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2
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I  p
p=
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∑

∑                    (7.3) 

 
 The classic information theory perceived that information is any kind of 
signals that can be sent via transmission channels where the signals’ 
probability is predictable. It is noteworthy in this theory: a) If the statistical 
probability of any sign in the message is either pi = 0 or unknown, which is 
often the case, then there is no definition of information; and b) When pi = 1, 
there is no information may be received.         

It is noteworthy that for the above binary system, the information 
variability is always 1 bit. In other words, I is a measure of information 
variability rather than that of information quantity. Therefore, I is not 
proportional to the sizes of messages, according to Eq. 7.2. On the basis of 
the classical information measurement, no matter how many bit messages 
have been transmitted, the value of the I will not change for a given 
transmission system. This result may be surprisingly contradictory to the 
common sense of information in contemporary informatics and in the IT 
industry.  

However, the most important contribution of classic information theory 
is the identification of the fundamental information unit bit. It indicates that 
the foundation of information is a binary digit. Therefore, any other kind of 
complex information can then be reduced to the measurement of bit. This 
forms a common foundation for both contemporary informatics and 
computer science as discussed in Theorem 5.1.                                
 
 
7.2.2 THE PHYSICAL MEANING OF CLASSIC 
         INFORMATION 
 

An important concept that links the classic information theory with 
physics is entropy [Shannon, 1951; Brillouin, 1953; Cutnell and Johnson, 
1998; Witold, 2007b]. Entropy is an inherent property of both concrete and 
abstract information systems that drifts them to disorder.        
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7.2.2.1 The Concept of Entropy 
 

Entropy is not a physical entity in the concrete world but a measure of 
the extent of chaos of a given system. Entropy is the concept studied 
intensively in thermodynamics [Cutnell and Johnson, 1998].   

 
Definition 7.4 Entropy is the extent of the trend of a system towards 

complete disorder or randomization.  
 
Definition 7.5 The quantity of information entropy Hi of a message 

source is determined by the average weighted information variability I 
transmitted by the source, i.e.: 
      

    

1
- log    [bit]

i

n

i 2 i
i

H I 

p p
=

=

= •∑
           (7.4) 

 
Eq. 7.4 shows that entropy may be measured by the information 

variability. In other words, the nature of information variability is entropy.  
Actually, Shannon initially used entropy to denote the information variability 
of signal systems and channels. 

It is found that the maximum entropy of a given source occurs if the 
probabilities of all signals are equal [Shannon, 1948].  
 
7.2.2.2 The Laws of Thermodynamics 
 

A thermodynamic system is the collection of objects on which attention 
on energy transformation is being focused with respect to the surrounding 
environment. Energy is an inherent property of matter and systems, which 
exists in various forms, such as heat, mechanical (kinetic or potential) 
energy, chemical energy, and radiant energy,  
 

Definition 7.6 Thermodynamics is the branch of physics built upon the 
fundamental laws obeyed by energy in the forms of heat and work and their 
transformation.  
 

Thermodynamics treats temperature as the statistical measure of the 
thermal status of a system. A basic principle of thermal equilibrium states the 
status of a system there is no flow of heat within it. Because all forms of 
energy may be degraded to heat, the rules that apply to heat transformations 
may be used to describe energy changes and exchanges in systems.  

The three laws of thermodynamics are the basic theories that govern 
exchanges of energy. Although these laws may be expressed in a number of 
ways, the most common descriptions are provided in this subsection [Cutnell 
and Johnson, 1998].      
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The second law of thermodynamics that deals with natural tendency of 
heat can be described as follows [Cutnell and Johnson, 1998].   
   

 
The second law of thermodynamics is the most profound law in all of 

science, which shows that energy during its forms change tends to become 
degraded to scattered states in which the capacity for useful work diminishes. 
Although, the total energy of a system is always conservative according to 
the first law, the second law reveals that the ability of the energy to be 
utilized for useful work continuously decreases. 

Since entropy is a measure of the disorder, the random property of 
energy and the second law may be explained by the natural tendency for 
entropy to increase in a transformation system. In thermodynamics, the 
thermal entropy is defined as follows.  

 
Definition 7.7 The thermal entropy Ht is a function of the state or 

condition of a system. For a reversible process, the change in the entropy ∆H 
can be defined by the heat Q divided by the temperature T in Kelvins, i.e.: 

 

Lemma 7.1 The first law of thermodynamics, conservation of energy, 
states that energy can be neither created nor destroyed, so that the total 
input of energy Ei in any transformation must equal the total output of 
energy Eo, i.e.: 
 

∑ Ei ≡ ∑ Eo                                            (7.5) 
 

Eq. 7.5 can also be expressed by perceiving the change of internal 
energy ∆E due to heat Q and work W, i.e.:  
   

  ∆E  = Q - W                                       (7.6) 
 
where a positive or negative Q represents the system gains or loses heat, 
and a positive or negative W denotes a system does the work or receives 
the work, respectively. 
     

 

Lemma 7.2 The second law of thermodynamics, the heat flow statement, 
states that heat flows spontaneously from a substance at a higher 
temperature to a substance at a lower temperature, and does not flow 
spontaneously in the reversed direction.  
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         [ / ]t
QH J K
T

∆ =              (7.7) 

 
It is noteworthy that the unit of thermal entropy Ht in thermodynamics 

is a Joule per Kelvin [J/K], while in informatics the information entropy Hi is 
defined as a pure quantity with the unit of bit. 
 With the introduction of thermal entropy, Lemma 7.2 can be revised as 
follows [Cutnell and Johnson, 1998].  
 

 
Because entropy can be interpreted in terms of order and disorder, 

when an irreversible process occurs and the entropy of the universe 
increases, the energy available for doing work decreases.    
 

 
The third law may also be described as that it is not possible to lower 

the temperature of any system to absolute zero in a finite number of steps. 
The third law of thermodynamics emphasizes the prevalence of disorder in 
almost all natural states and systems, because ideal crystallization is rarely 
achievable and the temperature of absolute zero is unattainable.    
 
7.2.2.3 Transformation between Information Entropy and Thermal 
            Entropy 
 

According to the second law of thermodynamics, the information 
entropy and the thermal entropy in a system is conservative. Hence, an 

 

Corollary 7.1 The second law of thermodynamics, the heat flow 
statement, states that: 
 

(a) Entropy of the universe ∆Hu does not change when a 
reversible process occurs, i.e.: ∆Hu = 0, and 

(b) Entropy of the universe ∆Hu increases when an irreversible 
process occurs, i.e.: ∆Hu > 0.  

 

 

Lemma 7.3 The third law of thermodynamics, the state of maximum 
order, states that a perfect crystal at a temperature of absolute zero 
possesses zero entropy, i.e.: 

 

0
lim 0tT

H
→

=                  (7.8) 

 
where the unit of temperature of T is in Kelvin. 
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extended view of the second law of thermodynamics can be perceived as 
follows. 

 

 
Eq. 7.9 indicates that for the decrease of the thermal entropy of a 

system, the information entropy has to be increased, and vice versa. 
Therefore, the information entropy is also perceived as the negative entropy. 
 
 
7.2.3 DOMAIN OF CLASSIC INFORMATION THEORY 
 

Although classic information theory was intended to be applied in a 
very broad area, the domain of it mainly encompasses communication and 
coding theories. The former studies models of communication channels, 
noises, and signal processing. The latter deal with data encoding, decoding, 
compression, protection, and encryption. 
      The structure of the domain of classical information theory can be 
described as follows: 
       

     •  Communication theories 
             •  Models of communication channels 
          •  Noise behaviors 

     •  Signal processing 
     •  Coding theories 

          •  Data compression 
          •  Data protection 
          •  Data encryption 

 
Classic information theory is good at answering two fundamental 

questions in communication theory: a) What is the ultimate transmission rate 
of communication? and b) What is the maximum rate of data compression?   

For the former, Shannon revealed that the ultimate transmission rate of 
a channel is the maximum channel capacity. For the latter, Shannon 

 

Corollary 7.2 The extended 2nd law of thermodynamics states that in any 
system, the sum of the information entropy Hi and the thermal entropy Ht 
is a constant, i.e.: 
 
                         kt |Ht | + ki Hi = ε    [bit]         (7.9) 
 
where kt, ki, ε  are positive constants for a given system, and the unit of kt 
is Kelvin per Joule (K/J).  
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answered that the maximum data compression rate is the entropy 
(information) of the data [Shannon, 1948]. In addition to being the 
foundation of communication theory, classic information theory has also 
found a wide range of applications in algorithm complexity analysis in 
computer science, functional and information sizes measurement in software 
engineering, and statistic mechanisms in physics. 
 
 
7.2.4 SUBJECTIVITY OF CLASSIC INFORMATION 
         THEORY 
 

It is noteworthy that classic information theory is not about the measure 
of information itself rather than its variability or entropy. A dilemma in the 
conventional information theory is that the measurement of the variability or 
entropy of information is dependent on the receiver’s subjective judgment. 
According to classic information theory, information is the message that one 
does not expect and does not know. Therefore, a subjective criterion has been 
introduced into the objective measurement of information. This results in that 
the same message represents varying information for different observers 
depending on their degrees of awareness of the message. Further, whenever 
one reads the same message later, the information that one may obtain 
degrades over time because of the loss of uncertainty.       
 For instance, the following assertions that were thought to be true 
according to classic information theory may be doubtable: 
       
         • If the contents of a message are already known, there is no 

expected information.  
     • The same message may have information for some people, and no 

information for others, dependent on their previous knowledge 
about the expected message. 

     • Every time, when one reads the same message, the information 
that one may get is different and decreasing.     

     •  Information of a message is dependent on the probability 
distribution of all signs in the alphabet, but not the size of the 
message. 

 
 Information is perceived as entropy of signals on the basis of statistical 
probability. The subjective nature of entropy deems there is no information if 
the probability of a sign in a message is 1. In both cases when the probability 
of signals is indeterminable or 0, the entropy or information is undefined.     

Alternative information theories have been proposed to improve the 
classical theory, such as nonprobability-based theory [Chaitin, 1977/04; 
Nielsen and Chuang, 2000; David, 2002], decision theory [Berger, 1990; 
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Edwards and Fasolo, 2001; Carlsson and Turban, 2002; Wang, 2005b/05e; 
Wang and Ruhe, 2007], and belief theory [Kramosil, 2001]. 

 
 

 
7.3 Contemporary Informatics 
 

 
 

The domain of informatics has been extended in the last decades along with 
the development in computer science and in the IT industry. Conventional 
informatics treats information as a probabilistic measure of the variability or 
uncertainty of messages that can be received from a source. It was focused 
on information transmission rather than information itself. However, 
contemporary informatics tends to regard information as entities of messages, 
rather than a measurement of the messages’ probability properties as that of 
the classic information theory [Chaitin, 1977/04; Zhong, 1996; Nielsen and 
Chuang, 2000; David, 2002; Wang, 2002d/03b; Wang and Patel, 2004]. The 
new perception is found better to explain the theories and practices in the IT 
and computer/software industries, because it treats information as any aspect 
of the natural world that can be abstractly represented and mentally 
processed [Wang, 2002d/03b].  

This section first explores the nature of information in contemporary 
informatics and the measurement of information. Then, it discusses the 
transition of information science from machine informatics to cognitive 
informatics, and from external informatics to internal informatics inside the 
brain.       

 
 

7.3.1 INFORMATION: THE THIRD ESSENCE OF 
         NATURE 

 

According to the IME model (Theorem 1.2), information is recognized 
as the third essence of the natural world supplementing to matter and energy 
[Wang, 2003a], because the primary function of the human brain is 
information processing. 
 It is observed that in applied computing and software sciences as well 
as in the IT industries, the term information has a much more practical and 
concrete meaning that focuses on data and knowledge representation, storage 
and processing. With this orientation, information is regarded as an entity of 
messages, rather than a measurement or metric of the messages’ variability. 
With this perspective, the definition of information has been shifted from the 
classical informatics to the contemporary informatics as follows [Wang, 
2002d/03b].  

© 2008 by Taylor & Francis Group, LLC



Chapter 7  Information Science Foundations of SE    539 

 Definition 7.8 Information in contemporary informatics is defined as 
any property or attribute of the natural world that can be generally abstracted, 
quantitatively represented, and mentally processed.  
  

From Definition 7.8 it can be seen that the intension and extension of 
information have been shifted from the probability of messages to organized 
data that represent the messages, knowledge, and/or abstracted real-world 
entities. With this new orientation, information is regarded as an independent 
and essential entity in modeling the natural world, particularly its abstract 
aspect. 
 
 
7.3.2 MEASUREMENT OF INFORMATION  
 

With the new orientation as discussed in Section 7.3.1, information is 
regarded as an entity of messages, rather than a measurement of the 
variability of messages. From this perspective, a definition of information 
can be derived as follows [Wang, 2003b].  

 
Definition 7.9 The measurement of information, Ik, is defined by the 

cost of code to abstractly represent a given size of internal message M in the 
brain in a digital system based on k, i.e.: 
 

                                                  
⎡ ⎤

:

  log
k k

k

I f M S

M

= →

=
           (7.10) 

 
where Ik is the content of information in a k-based digital system, and Sk the 
measurement scale based on k. The unit of Ik is the number of k-based digits.   
 

Eq. 7.10 is a generic measure of information sizes. When a binary 
digital representation system is adopted, i.e., k = b = 2, it becomes the most 
fundamental one for the meta-level representation of information.   
 

 

 

The 19th Principle of Software Engineering 
 
Theorem 7.1 The primitive form of information states that the most 
fundamental form of information that can be represented and processed is 
binary digit where k = b = 2, i.e.: 
 

        ⎡ ⎤
⎡ ⎤2
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b b

b

I f M S

M
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Theorem 7.1 indicates that any form of information in the physical 
(natural) and abstract (mental) worlds can be unified on the basis of bits. This 
is the informatics foundation of modern digital computers and natural 
intelligence. 

Note that the bit here is a concrete and deterministic unit, and it is no 
longer probability-based as in conventional information theories [Shannon, 
1948; Bell, 1953]. In a certain extent, computer science and engineering is a 
branch of contemporary informatics that studies machine representation and 
processing of external information; while cognitive informatics is a branch of 
contemporary informatics that studies internal information representation and 
processing in the brain (see Chapter 9).        

 
 Example 7.2 According to Eq. 7.10, for given messages M1 = 2 bits 
and M2 = 230 bits, their information contents can be determined, respectively, 
as follows: 
 

⎡ ⎤
⎡ ⎤

1 2 1

2

log

log 2

1   [ ]

bI M

bit

=

=

=
 

 

and  
 

⎡ ⎤2 2 2

30
2

log

log 2

30   [ ]

bI M

bit

=

⎡ ⎤= ⎢ ⎥
=

 

  
 The results show that messages M1 and M2 contain, respectively, 1 bit 
and 30 bits information. In other words, information Ib1 = 1 bit and Ib1 = 30 
bits may represent messages in sizes of 2 or 230 bits, respectively.    

With the new perception on information according to Definitions 7.8 
and 7.9, it is natural and intuitive to perceive IT as any technology that can 
be used for the processing of information. In the same way, an information 
system can be defined as an abstract representation system for information 
elicitation, acquisition, storage, manipulation (adding, deleting, updating), 
production, presentation, searching, and retrieving. 
 
 
7.3.3 FROM MACHINE INFORMATICS TO COGNITIVE 
         INFORMATICS  
 

According to the IME model, the information theories discussed in 
Sections 7.2 and 7.3 so far can be collectively classified as external 
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informatics. Complementary to it, there is a whole range of new research 
areas known as cognitive informatics [Wang, 2002d/02e/03a/03b/06b/06j/ 
07a/07b; Wang and Wang, 2006; Wang and Kinsner, 2006; Wang et al. 
2002a/06]. The emerging discipline of cognitive informatics developed 
recently forms a profound interdisciplinary study of cognitive and 
information sciences. Cognitive informatics is a cutting-edge 
interdisciplinary research area that tackles the fundamental problems of 
modern informatics, computation, software engineering, artificial 
intelligence, cognitive science, neuropsychology, and life sciences. Almost 
all of the hard problems yet to be solved in the above areas share a common 
root in the understanding of mechanisms of natural intelligence and cognitive 
processes of the brain.  

Cognitive informatics is perceived as a new frontier that explores the 
internal information processing mechanisms of the brain, and their 
engineering applications in computing and the IT industry. This subsection 
briefly introduces the historical development of informatics from the classical 
information theory and contemporary informatics, to cognitive informatics. 
The domain of cognitive informatics and its interdisciplinary nature are 
explored. Further details will be extensively described in Chapter 9.  
 
7.3.3.1 Cognitive Informatics  
 

The development of classical and contemporary informatics, the cross 
fertilization between computer science, software engineering, cognitive 
science and neuropsychology, has led to a whole range of extremely 
interesting new research areas known as cognitive informatics. Cognitive 
informatics is the transdisciplinary study of cognitive and information 
sciences that investigates into the internal information processing 
mechanisms and processes of the natural intelligence – human brains and 
minds. Cognitive informatics is a branch of information and computer 
science that studies computing by cognitive methodologies; and studies 
cognitive science by informatics and computing theories. 

The first- and second-generation informatics put emphases on external 
information processing, which overlook the fundamental fact that human 
brains are both the original sources and final consumers of information, and 
any information must be cognized by the brain before it can be understood. 
This observation leads to the establishment of the third-generation 
informatics, a term coined as cognitive informatics [Wang, 2002d, Wang et 
al., 2002a]. 

In many disciplines of human knowledge, almost all of the hard 
problems yet to be solved share a common root in the understanding of the 
mechanisms of the natural intelligence and the cognitive processes of the 
brain. This leads to the study on cognitive informatics, and the query on the 
nature of information processing in the brain, such as information 
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acquisition, representation, memory, retrieve, generation, and 
communication. Via an interdisciplinary approach and with the support of 
modern information and neural science technologies, mechanisms of the 
brain and the mind will be systematically explored in cognitive informatics. 
 The relationship between the internal and external informatics can be 
illustrated in Fig. 7.1. In cognitive informatics, the brain is perceived as the 
last thing in the world yet to be explored, where special recursive intelligent 
power of the brain is required. This makes cognitive informatics unique in 
distinguishing it from other natural sciences. 
 

  Cognitive 
   Informatics

Modern 
Informatic

      Classic 
   Informatics

Internal, 
Brain-based 

External, 
Computer-based

External, 
Channel-based 

 
 
Figure 7.1 Relationship between the three-generation informatics 

 
7.3.3.2 Perspective on Information in Cognitive Informatics  
 
 Definition 7.10 Information in cognitive informatics is defined as the 
abstract artifacts and their relations that can be modeled, processed, stored, 
and processed by human brains. 
  
 The measurement of information in cognitive informatics is similar to 
Definition 7.9 as given in Section 7.3.2. However, the basic unit of 
information, bit, in cognitive informatics corresponds to a single synaptic 
connection between neurons in the brain [Wang, 2003b; Wang et al., 2003].  
 

Definition 7.11 The measurement of cognitive information, Ic, is 
defined by the cost of number of synaptic links to abstractly represent a given 
size of internal message X in the brain in a binary relational system, i.e.: 
 

       
⎡ ⎤2

:

  log      [ ]
c cI f X S

X bit

= →

=
         (7.12) 
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where Sc is the cognitive measurement scale based on number of synapses, 
and the unit of information, Ic, is a bit.  
 

According to Theorem 7.1, the most fundamental form of information 
that can be represented and processed is bit. Any form of information in the 
physical (natural) and abstract (mental) worlds can be unified on the basis of 
bit. Both internal and external information share the same basic type in 
information representation.  
 
7.3.3.3 The Role of Information in Mankind Evolution 
 

It is recognized that the basic evolutional need of mankind is to 
preserve both the species’ biological traits and the cumulated 
information/knowledge bases [Wang, 2005f/07a]. For the former, the gene 
pools are adopted to pass human trait information via DNA from generation 
to generation. However, for the latter, because acquired knowledge cannot be 
inherited between generations or individuals, various information means and 
systems are adopted to pass cumulated human information and knowledge.  

Therefore, to a certain extent, mankind relies very much on information 
for evolution than that of genes, because the basic characteristic of the human 
brain is information processing. In other words, the ability to cumulate and 
transfer information from generation to generation plays the vital role in 
mankind evolution for both individuals and the species. This distinguishes 
human beings from other species in natural evolution, where the latter cannot 
systematically pass acquired information from generation to generation in 
order to enable it to grow cumulatively and exponentially [Wang, 2005f].  

Further discussion on the role of information and its accumulation in 
societies will be discussed in Chapter 13 on sociological foundations of 
software engineering.                                        
 

  
 
7.4  Informatics Laws of Software 
 

 
 
A fundamental finding in computer science and software engineering is that 
software is not constrained by physical laws and properties because it is not a 
physical entity at all. Therefore, the study on what constrains software is a 
fundamental query yet to be explored in software engineering theories. It is 
also one of the key objectives of this book.  

© 2008 by Taylor & Francis Group, LLC



544   Part II  Theoretical Foundations of SE 
 

This section explores the informatics properties and laws of software 
and software engineering. The informatics laws of software may help to 
understand the nature of the objects studied in software science and 
engineering, and the unique constraints and methodologies that distinguish 
software engineering from other engineering disciplines.  
 
 
7.4.1 EQUIVALENCE BETWEEN I-M-E 
 

Before exploring the informatics properties of software, the 
equivalence between information, matter, and energy, as well as potential 
transformability among them, is explained in the following subsections.  
 
7.4.1.1 Equivalence of Matter and Energy   
 

According to the theory of special relativity discovered by Albert 
Einstein (1879 - 1855), one of the most enlightening results in modern 
physics is that mass and energy are equivalent. Einstein revealed that a 
moving object obeys the following mass-energy relation.  

 

 
The discovery on the transformability between matter and energy 

indicates that a gain or loss of mass can be regarded equally well as a loss or 
gain of energy, respectively.  

A special case of Eq. 7.13 is when the object is at rest, i.e., v = 0. Under 
this condition, the static energy of the object Eo is obtained as:     
 

Eo = mc2            (7.14)         
 

Eq. 7.14 is Einstein’s then famous equation known as the mass-energy 
relation [Cutnell and Johnson, 1998].  

 

Lemma 7.4 (Einstein‘s Theory of Special Relativity): The total energy E 
of the moving object is related to its mass m and speed v by the following 
equation: 
 

2

2 21 ( / )
mcE

v c
=

−
       (7.13) 

 
where c is the speed of light, a universal constant, that is measured to be 
199,782,458 m/s.  
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In this sense, matter may be regarded as a special case of energy, and 
the loss of mass during nuclear reactions is transformed into awesome 
energy. This explains why the apparent discrepancy between energy input 
and output in nuclear reactions does not contradict the first law of 
thermodynamics (Lemma 7.1), because the release of tremendous amounts of 
energy in nuclear transformations such as fission or fusion is accounted for 
by the loss of mass during these reactions and the conversion of this mass to 
energy. 

 
Another special case of Eq. 7.13 is that when the object is traveling at v 

= c. This results in the maximum energy of the object Emax = ∞, which 
indicates that no object with mass may travel at a speed as the same as light c 
in a vacuum, because as v approaches c, the kinetic energy becomes infinite. 
Hence an infinitive amount of work would have to be done to enable the 
object to reach c.  
      

Inversely, the transformation of energy into matter has also been 
observed in experimental physics. In which, the pair production of the 
particles known as an electron and a positron can be generated by a high 
energy gamma ray when it hits the nucleus of an atom [Cutnell and Johnson, 
1998].   
 
7.4.1.2 Transformation between Matter, Energy, and Information   
 
 Information in cognitive informatics is deemed as the generic abstract 
artefacts that can be modeled, processed, and stored by human brains. 
Theories of cognitive informatics provide a new perception on information 
and informatics – the science of information – in the following aspects:    
 
      • Information is the 3rd essence in modeling the world. 

      • Any product and/or process of human mental activities results in 
information. 

     • Information, matter, and energy may be transferred between each 
other. 

      • Software obeys the laws of modern informatics and cognitive 
informatics.   

 
The perceived transformability among I-M-E can be illustrated by Fig. 

7.2, where all generic functions f1 through f6 obey the following corollary.   
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 I

   M  E
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f4f2

f5

f1

f6

 
 
Figure 7.2 The transformability between I-M-E 
 
 

 
Albert Einstein revealed Functions f5 and f6, the relationship between 

matter (m) and energy (E), in the form E = mC2, where C is the speed of 
light. It is a great curiosity to explore what the remaining relationships and 
forms of transformation between I-M-E will be. In a certain extent, 
contemporary informatics is the science to seek possible solutions for f1 to f4. 
A clue to explore the relations and transformability is believed in the 
understanding of the natural intelligence and its information processing 
mechanisms [Wang, 2002d/03a/03b]. 

 
Corollary 7.3 The transformability between I-M-E states that, according 
to the IME model, the three essences of the world are predicated to be 
transformable between each other as described by the following generic 
functions f1 to f6: 

 
     I = f1 (M)                     (7.15a) 
     M = f2 (I) ≟  f1 

-1(I)                     (7.15b) 

     I = f3 (E)                     (7.15c)  
     E = f4 (I) ≟  f3 

-1(I)                     (7.15d) 
 

     E = f5 (M)                     (7.15e) 
     M = f6 (E) = f5 

-1(E)                       (7.15f) 
 
where a question mark on an equal sign denotes a hypothesis on the 
existence of such an inverse function. 
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It is expected that any breakthrough in this area will significantly push 
forward the development of the next generation theories and technologies in 
informatics, computing, software, and cognitive sciences. 

 
 

7.4.2 INFORMATICS LAWS AND PROPERTIES OF 
         SOFTWARE 
 

This subsection explores the informatics laws that constrain software 
by investigating the properties and principles of cognitive informatics. The 
properties and laws of information are helpful to explain the nature of 
information science and IT technology, which are tackling a wide range of 
fundamental problems in the interdisciplinary area between conventional 
natural sciences and modern informatics-based sciences, particularly, in the 
area of computing and software engineering. 

A set of 19 informatics properties of software has been identified as 
follows [Wang, 2006a]: 

   
   1)  Abstraction   
   2)  Generality    
   3)  Cumulativeness 
   4)  Dependency on cognition 
   5)  Multi-dimensional behavioral space   
   6)  Sharability  
   7)  Physically dimensionless   
   8) Weightless    
   9)  Transformability between I-M-E  
   10)  Multiple representation forms   
   11)  Multiple carrying media  
   12)  Multiple transmission forms    
   13)  Dependency on media   
   14)  Dependency on energy   
   15)  Wearless and time dependency 
   16)  Conservation of information entropy and thermal entropy    
   17)  Information-based quality attributes 

 18)  Susceptible to distortion 
 19)  Scarcity 

  
The following subsections provide detailed description of these 

properties of information and their applications in understanding the 
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informatics laws that constrain software, software behaviors, and software 
engineering processes. Some of them may seem intuitive, but they are so 
profound in describing the axiomatic theory of informatics foundations of 
software engineering. 
 
7.4.2.1 Abstraction  
 

Property 7.1 Abstraction: Information is abstract artifacts that is 
elicited from physical entities in the natural world, or is created for 
representing relations between the entities or the entities and abstract mental 
objects. Information can be attributes, status, characteristics, structures, and 
dynamic processes of real-world entities, as well as relations between them. 
New information may be derived based on existing information and their 
relations in the abstract world. 
 
 Therefore, although it can be recorded, transformed, and 
communicated, information  is  the  product  of  the  brain  and  it  exists  in  
the  abstract world. Theorem 1.2 on the IME model presented in Section 1.2 
and the Object-Attribute-Relation (OAR) model of internal information 
representation in the brain presented in Section 9.4 [Wang, 2007g] provide a 
generic view about the abstractive property of information and its 
relationship with the real-world entities. 

    
7.4.2.2 Generality  

 
Property 7.2 Generality: According to Property 7.1 (abstraction) and 

the OAR model [Wang, 2007g], it can be derived that sources of information 
are widely general. Information can be elicited from objects, attributes, and 
their relations. Any physical entity in the universe is the source of 
information, and any abstract artifact (object) is the crystallization of 
information. Therefore, information is formed by the combination between 
physical entities, abstract objects, and relations between them, i.e.:         
 

      • Abstraction of physical entities and their attributes 

      • Relations between physical entities 

      • Relations between physical entities and abstract objects 

      • Relations between abstract objects 
 

Hence, to a certain extent, contemporary informatics studies the sources 
and initiation of information, as well as the creation and perception of 
information by human cognitive processes.  
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7.4.2.3 Cumulativeness  
 

Property 7.3 Cumulativeness: The physical world is conservative. 
According to the natural law of conservation, matter and energy can neither 
be reproduced nor destroyed (while they may be transformed). However, 
information is not conservative but cumulative, because information may be 
created, destroyed, and reproduced. Cumulativeness is the most significant 
attribute of information that mankind relies on in evolution. 
 
7.4.2.4 Dependency on Cognition  
 

Property 7.4 Dependency on cognition: Information should be 
recognized and consumed by human brains or other intelligent systems by a 
cognitive process before it can be effectively retained, retrieved, and used. 
According to the OAR model [Wang, 2007g], information is represented 
internally by its relations with existing information and knowledge in the 
brain. Without cognition and comprehension, there is no information and 
knowledge, also no access and retrieval of them. 
 
7.4.2.5 Multi-Dimensional Behavioral Space 
 

Property 7.5 Multi-dimensional behavior space: Information, as that of 
semantics of natural languages (Lemma 6.2), can be generically modeled by 
a 5-tuple encompassing the subject (J), behavior (B), object (O), time (T), 
and space (S), i.e.:  
 

 I = (J, B, O, T, S)          (7.16) 
 
where behavior B is a set of observable actions, operations, or changes of 
status.  
 

When the subject J and object O are obvious or they are implied, the 
information related to J and O, IJ, can be simplified as a triple as shown 
below: 
 

   IJ  = (BJ , T, S)          (7.17) 
 
where BJ is the behavior of J.  

 
Therefore, software as instructive information, Is, can be modeled in a 3-

dimensional behavioral space Ω, i.e.: 
 

           Is = Ω 
                               = (OP, T, S)                         (7.18)   
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where OP is a finite set of operations or computational behaviors.    
     
7.4.2.6 Sharability 
 
 Property 7.6 Shareability: Information can be shared and reused by 
multiple users without loss in quantity and without degradation in quality. 
Information may be amplified or multiplied by broadcasting. The lossless 
reuse of existing information will usually result in the creation of new 
information.   

 
7.4.2.7 Physically Dimensionless 

 
 Property 7.7 Physically dimensionless: Related to Property 7.1 
(abstraction), information has no physical size and dimension. No matter 
how large or small the physical entities, their conceptual abstraction result in 
the same unit of information. Their abstract representations or the cognitive 
visual objects occupy a similar sight frame; only the resolutions may vary 
[Wang, 2003e; Wang and Wang, 2006]. 
 
7.4.2.8 Weightless  
 

Property 7.8 Weightless: A direct corollary based on Property 7.7 
(physically dimensionless) is that the weight of information, Wi, is always 
zero, i.e.: 
 

     Wi ≡ 0            (7.19) 
 
 This explains why an empty or full hard disk has the same weight; a 
blank or recorded tape has no difference in weight; and a memory chip 
storing all 0, all 1, or any combinations of 0s and 1s has the same weight. 
This property of information can also explain why one can afford to obtain a 
PhD degree without feeling any change of the weight of the brain, rather than 
the changes of its internal configurations. 
 
7.4.2.9 Transformability between I-M-E  
 

Property 7.9 Transformability between I-M-E: According to the IME 
model (Theorem 1.1), the three essences of the world are predicated to be 
transformable between each other as shown in Fig. 7.2. 

 
In Fig. 7.2, there are six possible relations between the three essences in 

the natural and information worlds. These relations can be described by the 
following generic functions f1 through f6 as given in Eqs. 7.16a through 7.16f.  

© 2008 by Taylor & Francis Group, LLC



Chapter 7  Information Science Foundations of SE    551 

7.4.2.10 Multiple Representation Forms  
 

Property 7.10 Multiple representation forms: Related to Property 7.1 
(abstraction) and Property 7.2 (generality), it is observed that information 
can be represented in multiple forms, such as analogue (audio, visual), 
abstract (written languages and notation systems), and digital. 
 

In the above classification, digitalization in information representation 
is the most generic and fundamental approach. The cognitive foundation of 
digitalization is that information is represented discretely or granularly in the 
brain with the basic unit as individual neurons. Therefore, the discrete 
representability is the foundation of information representation, storage, and 
processing. It is also the foundation of modern digital multimedia 
information engineering. 
 
7.4.2.11 Multiple Carrying Media 
 

Property 7.11 Multiple carrying media: Parallel to Property 7.10 
(multiple representation forms), information can be carried by various media, 
as listed in the following, and their combinations: electronic, electrical, 
magnetic, optical, mechanic, hydraulic, written, oral, and signs.  
 

It is noteworthy that a certain medium may carry one or more forms of 
information. Correspondingly, a given form of information may be carried by 
different media. 
 
7.4.2.12 Multiple Transmission Forms 
 

Property 7.12 Multiple transmission forms: In addition to that 
information may be represented in multiple forms (Property 10) and carried 
by various media (Property 11), its transmission can be conducted in multiple 
forms as well. The following is the possible transmission forms of 
information:                   
  

       a) Information passing:  1 - to - 1 
       b) Information broadcasting: 1 - to - n 
       c) Information gathering:   n - to - 1 
       d) Information networking:   n - to - m           (7.20) 
 
where 1 represents a single information source/receiver, n and m indicate 
multiple sources/receivers, and n and m can be the same.   
  

The fast development of the Internet indicates that the fourth form of 
information transmission, information networking, is the highest form of 
communication.     
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7.4.2.13 Dependency on Media 
 

Property 7.13 Dependency on media: Information can not exist 
without a storage medium. The types of media may be organic, physical, 
chemical, or the combinations of them as described in Property 7.11. 
Therefore, to some extent, information may be perceived as a change of 
status of the storage medium or matter. 
 
7.4.2.14 Dependency on Energy 

 
Property 7.14 Dependency on energy: All information processing 

tasks, such as acquisition, storage, retain, retrieve, and refresh, consume 
certain energy. There is no system that may process information without 
consuming energy. Therefore, in some extent, information may also be 
perceived as a change of status of energy on a given medium. 
 
7.4.2.15 Wearless and Time Dependency 
 

Property 7.15 Wearless and time dependency: The logic of formal 
information, such as special notation systems, mathematics, and philosophies 
as described at the abstract cognitive Levels 4 – 5 according to the HAMSD 
model in Section 1.2.4, does not wear out. Once the logic of a specific piece 
of information is true, it is always true and true forever.  

 
However, the timeliness of informal information, as described at the 

abstract cognitive Levels 1 – 2, is much shorter, i.e., such kind of information 
may be out of date quickly.   
 
7.4.2.16 Conservation of Information Entropy and Thermal Entropy  

 
Property 7.16 Conservation of information entropy and thermal 

entropy: According to the extended second law of thermodynamics 
(Corollary 7.2), the sum of the information entropy and the thermal entropy 
in a given system is conservative. In a physical system, entropy can be 
reduced by input of energy in order to maintain the order of the system. In 
neural and social systems, the order and the state of organization can be 
increased by inputting information. 
 
7.4.2.17 Information-Based Quality Attributes 
 

On the basis of the conventional product-based metaphor [ISO 9126, 
1991], the quality of software is perceived as a collection of external 
attributes, such as usability, availability, reliability, portability, and 
maintainability. Quality software is commonly considered as the software 
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that contains fewer bugs. However, the intension of the concept of quality 
itself has never been properly defined in software engineering. 

 
Property 7.17 Information-based quality attributes: To model the 

quality of software and information, a set of information-based quality 
attributes is identified as follows:    

 
     • Completeness 

   • Correctness 
   •  Consistency 
   • Properly represented (no mis-interpretation) 
   • Clearness (no ambiguity) 
   •  Feasible (can be implemented in technical and economical terms) 
   •  Verifiable (attributes specified can be measured)   

 
From this new angle, software quality can be defined as the 

achievement of the above inherent attributes for software architectures, static 
behaviors, and dynamic behaviors.  

Comparing the above two approaches towards software quality, it can 
be seen that the former is a set of external quality attributes, and the latter is a 
set of internal ones. The internal quality attributes should be focused and 
controlled first in software engineering. Otherwise, it would be too late to 
examine the external quality attributes, because this may only be carried out 
after a software system has already been built. 

 
7.4.2.18 Susceptible to Distortion  
 

Property 7.18 Susceptible to distortion: Unlike physical entities, 
information is more fragile and vulnerable subjected to distortion, decay, and 
destroy. Therefore, information should be treated more carefully. Fault-
tolerant and security techniques should be always adopted in dealing with 
information distortion.  

 
7.4.2.19 Scarcity 
 

Property 7.19 Scarcity: Information scarcity states that information 
when it is needed is always inadequate, constrained by its availability, 
awareness, and/or the cost and complexity to thoroughly search, acquire, and 
comprehend it. 
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According to the law of universal constraints as given in Theorem 3.1, 
any theory, method, or technology has its own limitations and constraints. To 
a certain extent, science and engineering are the searching of the maximum 
extent of general relations between entities, phenomena, and behaviors under 
a set of constraints.  
 
 
 
7.5 Information Theories for 
       Software Engineering 
 

 
 
Software is a product of human intelligence that is used as a set of instructive 
information to implement computing behaviors on a generic computer. In a 
modern society, information plays more and more important roles because it 
is the only link between the physical (external) and the abstract (internal) 
worlds in human life. In cognitive informatics, software is perceived as a 
type of instructive and behavioral information that describes a solution for 
the design and implementation of a computing system [Wang, 
2002g/03c/04b/05g/ 06a/07a].  

A fundamental finding in computer science and software engineering is 
that software, as a unique entity, is not constrained by any law and principle 
known in the physical world [McDermid, 1991; Hartmanis, 1994]. This 
section attempts to demonstrate that software obeys the laws of informatics 
[Wang, 2006a], because software is a kind of instructive and behavioral 
information that is used to communicate with computer servers to provide 
specified functionality for users of the computing system.  

 
 
7.5.1 THE INFORMATICS METAPHOR OF SOFTWARE 

 
Software, in daily life, is simply meant as anything flexible and without 

a physical dimension. In the IT industry, software is perceived broadly as a 
concrete product [Baker, 1972; ISO 9001, 1989/94; ISO 9126, 1991; 
Taguchi, 1986; Jones, 1986; SQPL, 1990; Dromey, 1995]. With the product 
metaphor, a number of manufacturing technologies and quality assurance 
principles were introduced into software engineering. However, the 
phenomenon, in which we are facing almost the same problems in software 
engineering as we dealt with 40 years ago, indicates a failure of the 
manufacture-based and mass-production-oriented metaphor, and related 
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technologies in software development. Therefore, the nature of software and 
how it may be effectively produced must be re-thought in software 
engineering.  

According to the informatics metaphor, software can be perceived as 
follows.  

                  
Definition 7.12 Software is a kind of coded and instructive information 

for a computing system that describes the expected architectures and 
behaviors of the system in a programming language and related design 
documentations.   

 
The above definition indicates a new way to explain the properties and 

laws that govern the behavior of software, which forms an important part of 
the informatics foundations of software engineering. Definition 7.12 also 
indicates that the current philosophy and methodology in organizing and 
managing software engineering and software development organizations as 
mass manufacturing and quality control processes are perhaps fundamentally 
mismatching. 

 
Software as instructive and behavioral information describes the 

following: 
 

• What are the abstract (or logical) models of objects in a given 
computing system?   

• What do we do with these objects? 
• How do we do with these objects? 

 
 The first question listed above implies that in software design we need 
to describe the abstract architecture of the system and its components by 
logical and algebraic modeling techniques. The last two questions indicate 
the requirements for describing the static and dynamic behaviors of the 
system as a set of interacting objects. It is perceived that the processes and 
techniques widely used in the publishing industry and the journalism industry 
are worth to be intensively studied and adopted in software engineering 
[Wang, 2004b], on the basis of the informatics metaphor.  

 
 

7.5.2 INFORMATICS LAWS THAT CONSTRAIN 
         SOFTWARE BEHAVIORS 
 

Adopting the informatics metaphor of software, a set of 19 properties 
and laws of information have been developed in Section 7.4, which are used 
to explain the fundamental characteristics of information and software 
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behaviors. The informatics laws indicate that, although software does not 
obey any physical laws of the natural world, it is indeed constrained by the 
informatics laws. Therefore, information science forms one of the 
foundations of software engineering and computing science.   

     

 
 The manufacture-based metaphor for software development has 
dominated the methodologies and technologies of software engineering in the 
last four decades. However, unsolved fundamental problems in software 
engineering indicate that the theoretical and empirical needs for investigating 
the informatics and other theoretical foundations of software engineering are 
yet to be explored.  
 
   
7.5.3 THE INFORMATICS ATTRIBUTES OF 
         SOFTWARE QUALITY  
 

As will be discussed in Section 8.2.4, quality is one of the basic 
engineering objectives in any engineering disciplines. However, the term 
quality, particularly software quality, is a very complicated and collective 
concept that has never been well defined and formalized. 

According to the informatics property 7.17 of software, the quality 
attributes of software can be classified as external and internal attributes. 
The internal quality attributes are those of a software system when it is 
treated as a white box. The seven information-oriented internal quality 
attributes of software as identified in Property 7.17 are extended in Table 7.1, 
encompassing completeness, no misinterpretation, consistency, exactness 
(nonambiguous), no confliction, feasibility (can be implemented in technical 
and economical terms), and verifiability (can be measured) [Wang, 2004b]. 

The external attributes of software quality are those of the product or 
system when it is treated as a black box, such as functionality, usability, 
availability, reliability, efficiency, portability, and maintainability [ISO 9126, 
1991; ISO 9000-1, 1994; ISO 9000-2, 1994; ISO 9000-3, 1991; ISO 9000-4, 
1993; ISO 9001, 1989; ISO 9001, 1994; ISO 9002, 1994; ISO 9003, 1994; 
ISO 9004-1, 1994; ISO 9004-2, 1991; ISO 9004-4, 1993; Jenner, 1995].  

 

 
The 21st Law of Software Engineering 

 

Theorem 7.2 The informatics laws of software state that software 
architectures, behaviors, and processes are constrained by the 19 
informatics laws of basic information properties. 
 

© 2008 by Taylor & Francis Group, LLC



Chapter 7  Information Science Foundations of SE    557 

Table 7.1 
Information-Oriented Quality Attributes of Software 

 

No Attribute Description 
1 Completeness Completeness is an information-oriented software quality 

attribute that states a software system should completely 
describe and implement the system requirements.  

2 No 
misinterpretation 

No misinterpretation is an information-oriented software 
quality attribute that states a software system should 
correctly describe and implement the system requirements.  

3 Consistency Consistency is an information-oriented software quality 
attribute that states a software system should accurately 
describe and implement the system requirements.  

4 Exactness Exactness is an information-oriented software quality 
attribute that states a software system should accurately and 
nonambiguously describe and implement the system 
requirements.  

5 No confliction No confliction is an information-oriented software quality 
attribute that states a software system should recognize and 
solve conflict system requirements.  

6 Feasibility Feasibility is an information-oriented software quality 
attribute that states a software system should be feasibly 
designed and implemented against known technical or 
financial constraints.  

7 Verifiability Verifiability is an information-oriented software quality 
attribute that states a software system should recognize and 
qualify any nonverifiable system requirements.  

 
A more formal treatment of quality theories and software quality based 

on the informatics metaphor will be presented in Chapter 8 on the 
engineering foundations of software engineering. Cognitive informatics as an 
emerging discipline and its applications in software engineering will be 
presented in Chapter 9 on cognitive informatics foundations of software 
engineering. 

 
 

 
7.6 Summary 
 

 
 
Information is the third essence of the natural world supplementing matter 
and energy. Informatics, the science of information, studies the nature of 
information, its processing, and ways of transformation between information, 
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matter, and energy. In a modern society, information plays more and more 
important roles because it is the only link between the physical (external) 
and the abstract (internal) worlds.  

Software is a type of instructive and behavioral information that 
describes a solution for the design and implementation of a computing 
system. According to the Hierarchical Abstraction Model of System 
Descriptivity (HAMSD), software can be categorized as information at 
abstraction Level 3 – special notation systems and/or Level 4 – mathematics. 

The manufacture-based metaphor for software development has 
dominated the methodologies of software engineering in the last three 
decades. A new informatics-based metaphor has been proposed in this 
chapter for software engineering. In this chapter, the nature of software has 
been examined, which helped to clarify the basic informatics characteristics 
of software. The informatics laws of software have been perceived as an 
important part of the foundations of software engineering and computer 
science. The information-based metaphor on software will result in the 
development of new software notations, processes, quality principles, 
verification techniques, and organizational methodologies in software 
engineering and in the IT industry. 

This chapter has explored the informatics nature of software and the 
information laws of software engineering. Classic information theories have 
been briefly reviewed. Contemporary informatics and current perception on 
information in the IT and software industries have been presented. A set of 
19 informatics laws that constrain the behaviors of software has been 
identified. Applications of informatics in software engineering have been 
described, which leads to the emerging area known as cognitive informatics 
that will be further investigated in Chapter 9. As a result, the information 
science foundations of software engineering have been established.   

 
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Information Science Foundations of Software 
Engineering, readers have achieved the following strategic goals with 
knowledge architecture as summarized below. 

 
 
Chapter 7. Information Science Foundations of SE  

 
■  Classic Information Theory 
     •  Shannon’s definition of information 
         - The concept of entropy   
         - The laws of thermodynamics  
         - Transformation between information entropy and thermal entropy  
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     •  Predicative measurement of information  
     •  Information and entropy  
     •  Domain of classical information theory  
     •  Subjectivity of classical information theory  
 
■  Contemporary Informatics  
     •  Information: the third essence of nature 
     •  Measurement of information  
     •  From machine to cognitive informatics  
         - Cognitive informatics   
         - Perspective on information in cognitive informatics   
         - The role of information in mankind evolution   
 
■  Informatics Laws of Software  
     •  Equivalence between information-matter-energy 
         - The equivalence of matter and energy  
         - Transformation between matter, energy, and information  
      

     •  Informatics laws and properties of software 
         - Abstraction  
         - Generality  
         - Cumulativeness  
         - Dependency on cognition  
         - Multi-dimensional behavioral space  
         - Sharability  
         - Physically dimensionless  
         - Weightless  
         - Transformability between I-M-E  
         - Multiple representation forms  
         - Multiple carrying media  
         - Multiple transmission forms  
         - Dependency on media   
         - Dependency on energy   
         - Wearless and time dependency  
         - Conservation of information entropy and thermal entropy    
         - Information-based quality attributes  
         - Susceptible to distortion 
 
■  Information Theories for Software Engineering 
     •  The informatics metaphor of software 
     •  Informatics laws that constrain software behaviors  
     •  The informatics attributes of software quality 
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SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• The IME model reveals that matter, energy, and information are the 
three essences of the natural and the abstract worlds. The relationships 
between IME and their transformations are one of the fundamental 
questions in cognitive informatics. It is believed that any breakthrough in this 
area will be profoundly significant towards the development of next 
generation technologies in informatics, computing, software, and cognitive 
sciences. 

 
• It is recognized that software is not constrained by the physical laws 

and principles discovered in the concrete world. However, software does 
obey the laws of informatics. A set of 19 informatics laws and properties of 
software has been identified.  
 

• The classic information theory is not about the measure of 
information rather than its variability or entropy. A dilemma in the 
conventional information theory is that the measurement of the variability or 
entropy of information is dependent on the receiver’s subjective judgment. 

 
• The most fundamental form of information that can be represented 

and processed is bit. Any form of information in the physical (natural) and 
abstract (mental) worlds can be unified on the basis of bits. This is the 
informatics foundation of modern digital computers and natural intelligence. 

 
• The development of classical and contemporary informatics, the cross 

fertilization between computer science, software engineering, cognitive 
science and neuropsychology, has led to a whole range of new research areas 
known as cognitive informatics. 

 
• Perceptions on Information: a) In classic informatics, information 

is defined as a probabilistic measure of the variability of messages which can 
be obtained from a message source. b) In contemporary informatics, 
information is defined as any property or attribute of the natural world that 
can be generally abstracted, quantitatively represented, and mentally 
processed. c) In cognitive informatics, information is defined as abstract 
artifacts and their relations that can be elicited, modeled, represented, stored, 
and processed by human brains.  
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FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Classic Information Theory 

 
• The classic information theory is founded by Shannon during 1948-

1949, while the term information was first adopted by Hartley in 1928, and 
extensively discussed by Bell and Goldman in 1953.  

 
• Conventional information theory was modeled based on probability 

theory and statistics. Information is defined as a probabilistic measure of the 
variability of message which can be obtained from a message source.  
 

• Information is a weighted probabilistic measure of the variability of 
messages (signals) that is expected from a message source via a transmission 
channel.  

 
• Entropy is the extent of the trend of a system towards complete 

disorder or randomization. Entropy is not a physical entity, but a measure of 
the extent of chaos of a given system, which is closely related to the classic 
concept of information. The quantity of information entropy Hi of a source 
is determined by the average weighted information variability I transmitted 
by the source. 

 
• The information variability, Ii, of the ith sign in a message is 

determined by its unexpectedness, i.e., 2
1

[bit]i
i

I log
p

= , where pi is the 

probability that the ith sign is transmitted.  
 
• The total information variability transmitted by a source or sender, 

I, is the weighted sum of the probability of all its n possible signs, known as 

the alphabet, in the message, i.e., 
1 1

- log  [bit]
n n

i i i 2 i
i i

I  p I p p
= =

= • = •∑ ∑ .  

   
• Thermodynamics is the branch of physics built upon the 

fundamental laws obeyed by energy in the forms of heat and work and in 
their transformation. The three laws of thermodynamics are the basic theory 
that governs exchanges of energy. 

 
• The 1st law of thermodynamics, conservation of energy, states that 

energy can be neither created nor destroyed, so that the total input of energy, 
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Ei, in any transformation must equal the total output of energy, Eo, i.e., ∑ Ei ≡ 
∑ Eo .       

                                     
• The 2nd law of thermodynamics, the heat flow statement, states 

that: (a) Entropy of the universe ∆Hu does not change when a reversible 
process occurs, i.e., ∆Hu = 0, and (b) Entropy of the universe ∆Hu increases 
when an irreversible process occurs, i.e., ∆Hu > 0.  

 
• The 3rd law of thermodynamics, the state of maximum order, 

states that a perfect crystal at a temperature of absolute zero possesses zero 
entropy, i.e., 

0
lim 0
T

H
→

= .   

 
• The extended 2nd law of thermodynamics states that in any system, 

the sum of the information entropy Hi and the thermal entropy Ht is a 
constant, i.e., kt Ht + ki Hi = ε, where kt, ki, and ε  are positive constants for 
a given system. In other words, the information entropy is also perceived as 
the negative entropy. 

 
• The classic information theory was used to study models of 

communication channels and coding/decoding systems. Alternative 
information theories have been developed in the last decades to extend the 
usage of classical informatics. 

 
Contemporary Informatics 
 
 • Information in contemporary informatics is defined as any property 
or attribute of the natural world that can be generally abstracted, 
quantitatively represented, and mentally processed.  
 
 • Contemporary informatics perceives that the implication and 
extension of information has been shifted from the probability of messages to 
the entity of messages that represents the messages, knowledge and/or 
abstracted real-world entities. With this new orientation, information is 
regarded as an independent and essential entity in modeling the natural 
world, particularly its abstract part. 
 

• The content of information in modern informatics is measured by 
the cost of code to abstractly represent a given size of message M in a digital 
system based on k [12], i.e., Ik = f: M → Sk = logk M, where Ik is the content 
of information in a k-based digital system, and Sk the measurement scale 
based on k. The unit of Ik is the number of k-based digits. A bit is defined as 
the measure of information when a binary digital representation system is 
adopted, i.e., k = b = 2.  
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• In modern informatics, IT is a technology that can be used for the 
processing of information, such as information acquisition, elicitation, 
storage, manipulation (adding, deleting, updating), production, presentation, 
searching, and retrieving. 
 
 • Cognitive informatics is the transdisciplinary study of cognitive and 
information sciences that investigates into the internal information processing 
mechanisms and processes of the natural intelligence - human brains and 
minds.  
 

• Information in cognitive informatics is defined as abstract artifacts 
and their relations that can be elicited, modeled, represented, stored, and 
processed by human brains.  
 
Informatics Laws of Software 
 

• The informatics laws of software state that software architectures, 
behaviors, and processes are constrained by the laws of informatics and 
mathematics. 

 
• According to the theory of special relativity of Albert Einstein 

(1879 - 1855), one of the most astonishing results is that mass and energy are 
equivalent. According to the IME model, the three essences of the world are 
predicated to be transformable between each other in cognitive informatics. 

 
• A set of 19 informatics laws and properties of software has been 

identified as follows:   
   
   1)  Abstraction   
   2)  Generality    
   3)  Cumulativeness 
   4)  Dependency on cognition 
   5)  Three-dimensional behavioral space   
   6)  Sharability  
   7)  Dimensionless   
   8) Weightless    
   9)  Transformability between I-M-E  
   10)  Multiple representation forms   
   11)  Multiple carrying media  
   12)  Multiple transmission forms    
   13)  Dependability on media   
   14)  Dependability on energy   
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   15)  Wearless and time dependency 
   16)  Conservation of information entropy and thermal entropy    
   17)  Informatics quality attributes 

 18)  Susceptible to distortion 
 19)  Scarcity 
 

• The principle of universal constraints states that both the natural 
world and the perceived abstract world are constrained by certain known or 
yet to be known restrictions and laws, due to the limitations of natural 
resources and/or human cognitive capability.  

 
Information Theories for Software Engineering 
 

• According to the cognitive information model, software can be 
perceived as a kind of coded and instructive information that describes the 
algebraic process logic of software system architectures and behaviors in 
computing.   

 
• The internal quality attributes of software systems are such as 

completeness, no misinterpretation, consistency, exactness, no confliction, 
feasibility, and verifiability. The external quality attributes of software 
system are such as functionality, usability, availability, reliability, efficiency, 
portability, and maintainability. 

 
• The nature of software is its   instructive characteristics and the 

information- and mathematics-based metaphors.      
 
 
 
Questions and  
Research Opportunities 
 

 
 
7.1 Referring to the Information-Matter-Energy model (IME, 

Theorem 1.1), discuss why information plays an important role in 
modeling software properties, behaviors, and software 
engineering theories and methodologies.  
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7.2  Why is software not constrained by any physical law and 
principle known in the concrete world? What is the impact of this 
discovery to software engineering theories and methodologies?  

 
7.3 What is the relationship between information in classic 

informatics and entropy in physics? 
 
7.4  Comparing Corollaries 7.1 and 7.2, discuss how the extended 2nd 

law of thermodynamics integrates information entropy and 
thermal entropy into a coherent framework.   

 
7.5  What are the perceptions of information in contemporary 

informatics and in the information, computer, and software 
industry?    

 
7.6  What is the perception of internal information in the brain as 

modeled in cognitive informatics? 
 
7.7 What is the role of information in mankind evolution?  
 
7.8  Why is it impossible to directly transfer acquired information and 

knowledge of a person on to the next generation or peers? What 
would be the indirect approaches to do so?       

 
7.9   What is the set of perceived transformability among I-M-E? 

Which pairs of transformations have been formally proven? Why 
will natural or machine intelligence play an important role in 
searching the remainder potential transformability? 

 
7.10  Try to summarize the 19 fundamental properties of information in 

a structured framework with categorizations.    
 
7.11  How to prove informatics Property 8 – information is weightless? 
 
7.12 The three dependencies of information, Property 4 – dependency 

on cognition, Property 13 – dependency on media, and Property 
14 – dependency on energy, reveal the relationships between 
information and human brain, hardware, and energy. Discuss if 
these three dependencies of information are always necessary in 
software engineering or there are exceptional options. 

 
7.13   The laws of informatics that are applicable to software and 

software engineering are identified as the 19 basic properties of 
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informatics. Based on the informatics laws and properties, try to 
discuss the following: 

 
   (a)  Doesn’t software obey any of the above information laws? 

   (b)  Does software obey any informatics laws (or basic 
properties) that were not identified in the given set? 

     (c)  Does software obey any physical laws of the world? 
 
7.14  What does the unit of information, bit, mean in classic, 

contemporary, and cognitive informatics? 
 
7.15  Theorem 7.1 states that the primitive form of information is the 

bit. Explain why this view forms a foundation to integrate both 
computer science and information science into a common 
framework. 

 
7.16   Comparing the three definitions of information in classic, 

contemporary, and cognitive informatics, try to analyze the 
evolution on intensions and extensions of the concept information 
and their applications in the IT industry.   

 
7.17   Summarize how information is measured in classical, 

contemporary, and cognitive informatics. 
 
7.18   Assuming the package of information is X = 240 bytes, answer the 

following questions:   
    

   (a) How many bits do you need to represent the information, X, 
in a computer in parallel? 

   (b)  If a neural cell is equivalent to 210 bits in parallel, how 
many neural cells do you need to represent X in the brain? 

 
7.19 What are the differences between the external and internal 

attributes of software? What are the information-oriented internal 
quality attributes of software?  

 
7.20  Read the following chapter in information systems:   
 

Robert G. Murdick (1986), Chapter 5, Data, 

Information, and Communication, MIS Concepts and 

Design, 2nd ed., pp. 140-177. 
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Discuss the following topics in a group or individually: 
 
                     •  About the author. 

      • What are the attributes and measure of information?  
      • What are the relationships between information, data, and 

software?  
      •  What conclusions of the article interested you? Why? 
      •  Your arguments or counter-points on any of the conclusions 

derived in this article.              
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rganizational foundations of software engineering incorporate 
multi-facet principles, transdisciplinary theories, and empirical 
knowledge for software engineering. Part III attempts to explore the 

organization and system metaphors toward software engineering. Three main 
threads are adopted in this part known as system science, cognitive 
informatics, and organizational theories at different levels in the domains of 
engineering science, management science, economics, and sociology. 

It is recognized in this part that the hidden reasons caused so many 
failures of large-scale software engineering projects are neither purely 
technical ones nor unsatisfied programming skills, but mainly because of 
both the organizational deficiency of nonoptimal labor allocation and the 
incorrect sequence of interlocked labor-duration-cost determination in 
coordinative work organization.            

The knowledge structure of Part III on Organizational Foundations of 
Software Engineering is as follows:  
 

      • Chapter  8.   Engineering Foundations of Software Engineering 
      • Chapter 9.  Cognitive  Informatics  Foundations  of  Software 

Engineering 
      • Chapter 10. System   Science   Foundations   of    Software 

Engineering 
      • Chapter 11. Management  Science  Foundations  of  Software 

Engineering 
             • Chapter 12. Economics Foundations of Software Engineering 
             • Chapter 13. Sociology Foundations of Software Engineering 
  

This part addresses the organizational and cognitive theories and 
methodologies of software engineering in a transdisciplinary approach.  The 
structural organization of software engineering perceives software as abstract 
systems. The fundamental view towards software engineering perceives 
software as a set of cognitive and intelligent behaviors. With system science 
theories as an overarching framework, the organizational theories for 
software engineering form a hierarchical structure in this part covering 
multidisciplinary foundations of engineering science, management science, 
economics, and sociology from the bottom-up. 

Chapter 8, Engineering Foundations of Software Engineering, presents 
the generic engineering principles and their applications in software 
engineering. Engineering is deemed as an important organizational 
methodology that emerged during the industrial revolutions. It helps to 
understand the nature, status, and problems of software engineering, as well 
as its future trends, based on comparative studies between the generic 
engineering principles and current software engineering practices. Key 
empirical knowledge and methodologies that may be learned from other 

O 
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matured engineering disciplines are discussed. Basic engineering principles 
commonly shared in most engineering disciplines are elicited on engineering 
objectives, organization, technology, professionalism, and domain 
characteristics. A comprehensive set of engineering principle for software 
engineering, such as engineering characteristics, division of labor, and 
professionalism for software engineering is derived. A formal coordinative 
work organization theory for engineering science in general and software 
engineering in particular is developed that reveals how software engineering 
projects may be optimally organized. Empirical methodologies for software 
engineering, such as case studies, experiments, trials, benchmarking, and 
standardization, are reviewed. 

Chapter 9, Cognitive Informatics Foundations of Software Engineering, 
introduces a new transdisciplinary field that studies the internal information 
processing mechanisms of the brain and their engineering applications. 
Large-scale software systems are highly complicated systems that mankind 
has ever handled or experienced before. Software is a unique abstract artifact 
that does not obey any known physical laws. However, it is recognized that 
software should be constrained by the laws of cognitive informatics, 
mathematics, and systems as explored in this book. Theories of cognitive 
informatics and its potential impacts on, and applications in, information-
based sciences and engineering disciplines, particularly in software 
engineering, are discussed. Cognitive informatics models of the brain, such 
as the Layered Reference Model of the Brain (LRMB), the cognitive models 
of memories, and the cognitive model of natural intelligence, are developed. 
The cognitive model of internal information presentation in the brain, 
particularly the Object-Attribute-Relation (OAR) model, is presented. This 
chapter describes the cognitive informatics and intelligent behavioral 
metaphor of software and software engineering. The cognitive informatics 
foundations that address the cognitive constraints of software engineering are 
described, which lead to the understanding and formal measurement of the 
cognitive complexity of software systems. 

Chapter 10, System Science Foundations of Software Engineering, 
provides a powerful means for dealing with complicated objects and 
phenomena in software engineering. Treating software engineering and large-
scale software projects via system engineering is also a promising trend in 
dealing with the problems, complexities, quality assurances, and human 
factors in software engineering. This chapter describes the system metaphor 
of software and software engineering, and explores theories of systems 
science, underlying principles, and modeling techniques of systems 
engineering. The classic system philosophies and system topology are 
described. A new mathematical structure of abstract systems known as 
system algebra is developed. Principles of system theories, such as generic 
architectures, equilibrium, synchronization, and dissimilation, are formally 
and rigorously treated. Applications of system theories and system 
engineering techniques in software engineering are described with formalized 
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software system models and formal explanations of many important software 
engineering phenomena as system engineering issues. 

Chapter 11, Management Science Foundations of Software 
Engineering, studies organizational behaviors, executive decision making, 
and resource optimization on given internal and external constraints in 
software engineering. Historically, software engineering has focused on 
programming methodologies, programming languages, and software 
development models. One of the critical areas to software engineering – 
organizational and management infrastructures – has been largely ignored. 
Management science foundations for software engineering encompass 
management principles, classical management thought, decision theories, and 
quality system theories beyond programming and technical aspects of 
software development. A set of organizational theorems and laws are 
formally derived. A theoretical framework of decision theories is developed 
with the mathematical models of decisions, the cognitive process of decision 
making, formal description of decision strategies, the extended game 
theories, and decision grid theory for a series of dynamic decision making. 
Quality systems are presented focusing on quality principles, quality 
assurance, and quality management systems. Then, the concept and 
methodology of process-based software engineering is developed in order to 
deal with complicated management issues in software engineering. 

Chapter 12, Economics Foundations of Software Engineering, studies 
how resources are efficiently used to develop software and how services are 
provided in software engineering. This chapter introduces fundamental 
principles and methodologies utilized in engineering economics and their 
applications in software engineering. It also introduces formal methodology 
into economic analysis and modeling. A set of formal economic models such 
as the production, costs, and market models is developed based on 
fundamental principles of microeconomics. The dynamic values of money 
and assets, as well as their patterns in cash flows, are formally modeled. 
Economic analysis methodologies for engineering decisions such as project 
costs, benefit-cost ratio, payback period, and rate of return are rigorously 
described. On the basis of the formal treatment of economic theories and 
principles, software engineering economics is presented on elements of 
software costs, software engineering project costs estimation, economic 
analyses of software engineering projects, and the software legacy 
maintenance cost model, which leads to the finding of the important 
phenomenon known as software maintenance crisis in software engineering.     

Chapter 13, Sociology Foundations of Software Engineering, 
investigates how a software engineering environment may be organized 
efficiently and effectively on certain group and social constraints. This 
chapter completes the final piece of the puzzle of the systematic theory on 
coordinative work organization at the highest level of scopes – the society 
level. It forms an important methodology for optimal allocation of labor, 
resources, and schedules for a given workload in a society in general, and in a 
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software engineering context in particular. This chapter presents a formal 
treatment of the sociological theories, models, and their applications in 
software engineering. Fundamental principles of sociology are reviewed, 
which covers social structures, social behaviors, and social norms. Social 
psychology such as fundamental human traits, collective behaviors, and the 
perceptual influence on them are described, which form the underlying 
theory for explaining the human factor in engineering systems and societies. 
Theories of social organization that provide an essential understanding for 
coordinative work organization at various levels of societies are presented. A 
formal model of social organization is developed based on a new 
mathematical model known as the complete organization tree. Sociology for 
software engineering is explored on social environment of software 
engineering, ergonomics for software engineering, and human factors in 
terms of human strengths, weaknesses, and uncertainty in the context of 
software engineering. The theoretical foundation of quality assurance in 
programming and software engineering is developed.  
 Part III will establish the organizational foundations of software 
engineering with engineering science, cognitive informatics, and system 
science at various scopes such as management science, economics, and 
sociology. Supplemented to Part II, this part will reveal that important 
aspects of software engineering theories are the organizational and cognitive 
theories. It will demonstrate that the profound causes that result in all the 
failures in software engineering history are not only pure technical reasons, 
but also organizational reasons due to the limitations of human cognitive 
capability.              
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Knowledge Structure 
 

 
 Generic engineering approaches 

     •  Engineering: a concept emerged from the industrial revolutions 
     •  Science and generic scientific method 
     •  Engineering vs. sciences 
     •  Fundamental goals and constraints of engineering  
     •  Generic engineering approaches 
     •  The generic engineering maturity model (GEMM) 

 Basic engineering principles 

     •  Principles of engineering organization            •  Principles of engineering technology 
     •  Principles of engineering management           •  Principles of engineering professionalism 

 Engineering principles for software engineering 

     •  The engineering characteristics of SE              •  Division of labor 
     •  Characteristics of SE in the engineering age   •  Unique principles of SE 
     •  Professionalism of SE  

 The theory of software engineering organization 

     •  The characteristics of coordinative work in engineering 
     •  Laws of work organization in SE 
     •  The mythical man-month explained 
     •  Decision optimization in SE 

 Empirical software engineering 

     •  SE case studies                                                •  SE experiments 
     •  SE trials                                                           •  SE benchmarking 
     •  SE standardization 
 

 

Learning Objectives 
 

 
     • To gain generic engineering principles. 

     • To know generic engineering approaches. 

     • To understand the essences of interpersonal coordination in engineering and the 
interchangeability between labor and time. 

     • To understand the laws of abstract work organization for engineering projects. 

     • To be able to apply the fundamental theories of engineering organization in 
software engineering. 

     • To be able to apply the empirical software engineering methods such as case 
studies, experiments, trials, benchmarking, and using standards.   

8. Engineering Foundations of SE 
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 “Software engineers are not just good programmers.” 
 

David L. Parnas  (1998 ) 
 

 “Large software systems are among the most complex systems  
engineered by man.” 

 
J.V. Guttag (2002) 

 
“It is this application of expertise that causes the fields of both bridge building and 

software development to be areas where engineering principles are applicable. 
                                        It is the cost of failure that makes these principles required.” 

 
R. Gisselquist (1998) 

 
 

8.1 Introduction 
 

 
 

ngineering is a set of applied scientific disciplines seeking solutions 
for complicated problems and systems that could not be done by 
individuals. The aim of engineering is to repetitively produce 

complicated artifacts in an efficient way on the basis of scientific theories 
and principles.  

The etymology of the words engineer and ingenuity comes from the 
same Latin root, ingenium, which means talent, genius, cleverness, or native 
ability. Thus, engineering may be perceived as an approach to both problem 
solving and industrial organization.   

 Engineering may also be deemed as a profession. The Accreditation 
Board for Engineering and Technology (ABET) defines engineering as “the 
profession in which a knowledge of the mathematical and natural sciences 
gained by study, experience, and practice is applied with judgment to 
develop ways to economically utilize the materials and forces of nature for 
the benefit of mankind [ABET, 1986].”     

 The basic task of scientists is to perform research that creates new 
knowledge, while the basic task of engineers is to perform design and 
development that result in new applications and products. Therefore, 
engineering is a methodology and process that converts theoretical concepts 
into useful applications to satisfy human needs. 

 
 Definition 8.1 Engineering is a technological and organizational 
methodology and approach by which human beings can repetitively plan, 
design, develop, produce, maintain, and/or use complicated artefacts, in 
rigorous, systematic, efficient, and refining processes, that cannot be done by 
individuals. 

E
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 Software engineering is a discipline that adopts engineering approaches 
to develop large-scale software with high productivity, low cost, controllable 
quality, and measurable development schedules. It is recognized that: “Large 
software systems are among the most complex systems engineered by man 
[Guttag, 2002].” Therefore, engineering approaches and generic engineering 
principles form an important part of the basic theoretical and empirical 
foundations of software engineering. However, the engineering metaphor in 
the term software engineering was vague from the very beginning, and it has 
rarely been well defined and explained in the literature.  

This chapter attempts to explore a set of generic engineering principles 
and their applications in software engineering, particularly the theory of 
coordinative work organization. It helps to understand the nature, status, and 
problems of software engineering, as well as its future trends, based on 
comparative studies between the generic engineering principles and current 
software engineering practices. Key empirical knowledge and methodologies 
that may be learned from the generic engineering principles will be 
discussed. Engineering principles for software engineering will be elicited on 
engineering objectives, organization, technology, professionalism, and 
domain characteristics.  

In the remainder of this chapter, the engineering foundations of 
software engineering will be presented as follows. Section 8.2 explores 
generic engineering approaches that may be learnt by software engineering.        
Section 8.3 discusses basic engineering principles commonly shared in most 
engineering disciplines. Section 8.4 describes the engineering principle for 
software engineering, such as engineering characteristics, division of labor, 
and professionalism for software engineering. Section 8.5 creates the 
coordinative work organizational theory for software engineering that reveals 
how software engineering projects may be optimally organized and what are 
the major reasons of historical failures in software engineering. Section 8.6 
reviews empirical methodologies for software engineering such as case 
studies, experiments, trials, benchmarking, and standardization.  
 
 

 
8.2 Generic Engineering 

Approaches 
 

 
 
The advances in sciences and the increases of economical demands led to the 
industrial revolutions during the 18th and 19th centuries. The wealth created 
by standardized and mass-produced products encouraged the exponential 
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growth in engineering in the 20th century. Then, the computer revolution 
brought the world entirely new fields of engineering, such as computer 
engineering, software engineering, information engineering, knowledge 
engineering, and intelligent engineering. 

 In order to explain the fundamental engineering principles of software 
engineering, let us review the historical development of matured engineering 
disciplines and elicit their common approaches and methodologies. This can 
be done in the following subsections by answering the following questions: 
a) What are the differences between science and engineering? b) What are 
the generic approaches to engineering? c) How have various engineering 
disciplines matured in history? and d) What are the generic principles of 
engineering? 

 
 

8.2.1 ENGINEERING: A CONCEPT EMERGED FROM 
         THE INDUSTRIAL REVOLUTIONS 
 

Engineering is a concept of industrial organization emerged from the 
industrial revolutions [Ure, 1835; Soanes and Stevenson, 2003]. The 
industrial revolutions were a time of drastic change and transformation from 
hand tools and hand made items to machine manufactured and mass 
produced goods.  

The first industrial revolution begun in England in the 1730s emerged 
from inventions and technology innovations in cotton weaving. Before the 
first industrial revolution in the early 18th century, England's economy was 
based on its cottage industry. Workers would buy raw materials from 
merchants and take it back to their cottages in order to produce goods at 
homes. It was usually owned and managed by one person or a family. Since 
the productivity of the cottage workers was low, goods were high in price 
and exclusive only to the wealthy people. Under the increasing demand for 
cotton cloth, the flying shuttle was invented in 1733 that resulted in the 
reduction of weaving time in half. This invention triggered the first industrial 
revolution. Inventions such as the spinning jenny and the water-powered 
frame helped the manufacture of cotton goods by dramatically improved 
productivity with machinery and mass production. In this way, the cottage 
industry had been inevitably replaced by the factory system. Mass production 
made usually expensive items affordable by less wealthy people. Therefore, 
the quality of life had been improved. In the meantime, steam engines were 
invented that provide stronger power than horses and enable a faster mode of 
transportation for people and resources.  

 The second industrial revolution in the beginning of the 19th century 
proved more drastic, not only in inventions, but also in social and 
organizational reforms as life with machinery had already been assimilated 
into society. The second industrial revolution utilized the power of electricity 
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based on Michael Faraday’s invention. Electricity improved life by supplying 
people with light as well as electricity to power machines. Communications 
have been improved by the telephone and telegraph. Radio waves were 
discovered that enabled messages to be sent over long distances in virtually 
no time. During the 1800's, over 70,000 chemical compounds were analyzed, 
and petroleum begun to be widely used as an alternate energy source. As a 
result, steam engines were replaced by the internal combustion engines. This 
allowed a person to own a car instead of using public transportation. Then, 
the airplane industry was born following the first flight of man-made aircraft 
by Orville and Wilbur Wright. 

 As the first industrial revolution was centered by machinery, power, 
and mass production, the second industrial revolution was characterized by 
electricity, transportation, and the internal combustion engine. Both industrial 
revolutions brought on more technology, power, and wealth followed by the 
third industrial revolution in the 20th century of computer and information, 
which is still going on and has already dramatically and fundamentally 
extended human’s capability, reachability, and cognitive power.  

 The characteristics of the industrial revolutions, such as machinery, 
mass production, energy, power systems, high-speed transportation, and 
telecommunications, were the cradle of the concept of engineering. As 
Andrew Ure (1835) observed in The Philosophy of Manufactures, the 
improvements in machinery in the industrial revolutions have a three-fold 
bearing: 

 
• “They make it possible to fabricate some products which, but 

for them, could not be fabricated at all.  

• “They enable an operative to turn out a greater quantity of 
work than he could before – time, labor, and quality of work 
remaining constant.   

• “They effect a substitution of labor comparatively unskilled, 
for that which is more skilled. 

 
Ure’s observation revealed the great achievement of the engineering 

approach to industrialization that resulted in extended human capability, 
improved productivity, and reduced skill requirement.  

The impacts of industrial revolutions and the industrialization of the 
economies can be described from the following five aspects [Macionis et al., 
1997]: 

 
      • New forms of energy 
      • The centralization of work in factories 
      • Manufacturing and mass production 
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      • Specialization and division of labor 
      • Wage labor and management as profession   

 

More generically, the industrial revolutions extended human physical 
capability by machines and power engines, while the new information 
revolution is focused on the extension of human intelligence, memory, and 
the capacity for information processing by computers, communication 
networks, and robots. 
 Contrary to the traditional individual-based production process, 
engineering is a methodology for enabling a group of people to work 
together to produce a complex product, or achieve a common goal, which 
could not be reached by individuals physically, technically, and/or 
economically. Therefore, the essence of engineering is the organizational 
methodology for enabling team work. Further details of this important 
concept will be discussed in Chapters 11 and 13 on management science and 
sociology foundations of software engineering.     
 
 
8.2.2 SCIENCE AND THE GENERIC SCIENTIFIC 
         METHOD 

 
Science is both an organized system for the systematic study of 

particular aspects of the dual world known as the natural and abstract world, 
and a process of inquiry for generating a body of knowledge towards them. 
Therefore, science is not only a set of systematic and formulated knowledge 
about the dual world, but also a generic method to explore it.  

    
Definition 8.2 Science is a systematic cognitive methodology for 

exploring and explaining the nature, for cumulating and organizing the 
knowledge obtained about it, and for applying the knowledge in solving 
engineering and technological problems.          

 
Science stresses an objective approach to the phenomena being studied, 

and scientific questions about nature tend to emphasizes how things occur 
rather than why they occur. It involves the application of the scientific 
method to problems formulated by trained minds in particular disciplines 
[Kuhn, 1970]. 

In a formal sense, the scientific method, according to Francis Bacon 
(1561 - 1626), can be generically described below.  
 

Definition 8.3 The generic scientific method refers to the model for 
research that involves the following sequence: 
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    a. Identifying the problem 

    b. Collecting data within the problem area (by observations, 
measurements, etc.) 

    c. Sifting the data for correlations, meaningful connections, and 
regularities 

 d. Formulating a hypothesis (a generalization), which is an 
educated guess that explains the existing data and suggests 
further avenues of investigation 

    e. Testing the hypothesis rigorously by gathering new data 

    f. Confirming, modifying, or rejecting the hypothesis in light of 
the new findings 

 

Scientists may be interested in different aspects of nature, but they use 
a similar intellectual approach to guide their investigation. Scientists must 
first formulate a problem to which they can then seek an answer. The answer 
generally involves an explanation relating to order or process in nature. The 
scientist is primarily interested in the mechanisms by which nature works 
rather than in questions of ultimate purpose. 
 Once a question has been raised, the scientist seeks answers by 
collecting data relevant to the problem. The data, which may consist of direct 
observations and measurements, or derived results, are carefully sifted for 
regularity and relationships. An educated guess, called a hypothesis, is then 
drawn up in order to place the data into a conceptual framework.        
    The hypothesis makes up the lattice-work upon which scientific 
understanding is structured. The hypothesis constitutes a generalization that 
describes the state of affairs within an area of investigation. Inductive logic is 
used to formulate a hypothesis (a generalization) from the particulars 
(specific) of the data. Since the scientific method involves such an inductive 
process at its very core, it is often described as the inductive method. 

A hypothesis must be both logical and testable. It is tested by 
constructing experiments and gathering new data, which in the end will 
either support or refute the hypothesis. An experiment must be reproducible, 
which means that other scientists must be able to repeat the experiment and 
get the same results. Once the experiments have been completed, the results 
must be weighted to see if the hypothesis should be accepted, modified, or 
rejected. Although scientists are very inquisitive and highly creative in the 
thought processes, their curiosity may be constrained by previous, long-
accepted views.  
  

Definition 8.4 The criteria that constitute a good hypothesis, Hg, can be 
defined as a 5-tuple with causality (C), originality (O), generality (G), 
predictability (P), and falsifiability (F), i.e.: 
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Hg  (C, O, G, P, F)               (8.1) 
 

where   
 

   (a)  C = true states that the hypothesis must be able to explain the 
causal relationship of existing data or observed phenomena.  

   (b)  O = true states that the hypothesis must be able to create a new 
relationship between two or more entities or phenomena.       

   (c)  G = true states that the hypothesis must be able to explain a set of 
similar phenomena rather than an individual instance. 

   (d)  P = true states that the hypothesis must be able to predicate new 
phenomena and their consequences on the basis of the defined 
causality.             

   (e)  F = true states that the predictability and causality of the 
hypothesis must be able to be proven true or false.  

 
Formal proofs and/or repeated confirmations of a hypothesis against the 

five criteria as defined in Definition 8.4 elevate it to the status of a theory.  

 
When a fundamental theory has been formally proven and/or repeatedly 

confirmed over a long period of time, it may be accepted as a scientific law. 
When a hypothesis is substantially contradicted by new findings, it is 
rejected to make way for new hypotheses.  

It is noteworthy that a hypothesis which withstands the rigor of present 
tests may have to be altered in the light of future evidences. In other words, a 
theory, or a proven hypothesis, is a relatively true explanation of a given set 
of phenomena in a given space and time. Absolutely true theories may only 
exist in the results of philosophy and mathematics.                       

 
 

8.2.3 ENGINEERING VS. SCIENCE 
 

In a speech, Richard Feynman (1963) perceived that “Science means, 
sometimes, a special method of finding things out. Sometimes it means the 

 

The 20th Principle of Software Engineering 
 

Theorem 8.1 The relationship between a hypothesis and a theory states 
that the necessary and sufficient conditions for a hypothesis Hg(C, O, G, 
P, F) to be proven as a theory T are iff it fulfills the following criteria, i.e.: 
 

Hg  T, iff C ∧ O ∧ G ∧ P ∧ F = T                 (8.2) 
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body of knowledge arising from the things found out. It may also mean the 
new things you can do when you have found something out, or the actual 
doing of new things. This last field is usually called technology [Feynman 
and Brown, 2000].”  

In the view of system philosophy, there is neither number two in 
sciences nor number one in engineering. The former is true because sciences 
are aimed at advancing the knowledge, where no reinvention or rediscovery 
is recognized. The latter is true because both engineering design and 
implementation are characterized by the polymorphism in a large solution 
space. It is impossible to prove if a given engineering solution is the best or 
optimistic both technically and economically. This is particularly true in 
software engineering. 

 
8.2.3.1 Science and Scientists  

 
Science is a process of inquiry for generating a body of knowledge. All 

sciences are characterized by a common method as a logic of inquiry in their 
quest for knowledge, such as tenacity, intuition, reference, rationalism, and 
empiricism. 
 W.I. Beveridge observed that “The curiosity of the scientist is usually 
directed toward seeking an understanding of things or relationships which the 
notices have no satisfactory explanations. Explanations usually consist in 
connecting new observations or ideas to accepted facts or ideas. An 
explanation may be a generalization which ties together a bundle of data into 
an orderly whole that can be connected up with current knowledge and 
beliefs. That strong desire scientists usually have to seek underlying 
principles in masses of data not obviously related may be regarded as an 
adult form or sublimation of curiosity [Beveridge, 1957].” Further, 
Beveridge wrote: “Scientists are cautious and conservative individuals, 
recognizing that most phenomena are multidetermined and that new evidence 
may necessitate replacing an old explanation with a better one.” 

 Christensen pointed out that the objectives of science are description, 
explanation, prediction, and control [Christensen, 1997]: 

  
     • Description: The portrayal of a phenomenon, fact, or mechanism 

by identifying variables, constants, and their relations and 
constraints.  

• Explanation: The determination of the cause of a given 
phenomenon that answers why the phenomenon exists and its 
occurring conditions.  

      •  Prediction: The ability to anticipate the occurrence of an event 
  based on the described knowledge and explained conditions.  
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     •  Control: The manipulation of the conditions that determine a 
phenomenon and the elimination of the influence of extraneous 
 conditions. Controlled inquiry is an absolutely essential process in 
 science because without it the cause of an effect could not be 
 isolated.   

 

 Scientists are professionals who investigate the universe around us and 
invent new ways of using its resources. All scientific work is carried out 
systematically and originally. Scientific approaches include experiment, 
observation, testing, exploration, classification, measurement, equipment, 
modeling, and development of theories [Beveridge, 1957; Sober, 1995]. 

 
8.2.3.2 Engineering and Engineers  

 
 Referring to Definition 8.1, engineering is an organizational approach 

by which human beings can repetitively plan, design, develop, produce, 
maintain, and/or use complicated artifacts in a rigorous, systematic, and 
refining process. Thus, an engineer is a professional who has a disciplined 
role with required skills in an engineering branch. 

 A. Eide and his colleagues thought [Eide et al., 1979] that “Both the 
engineer and scientist are thoroughly educated in the mathematical and 
natural sciences, but the scientist primarily uses this knowledge to acquire 
new knowledge, whereas the engineer applies the knowledge to design and 
develop usable devices, structures, and processes. In other words, the 
scientist seeks to know, the engineer aims to do.” In summary, scientists 
explore what is; engineers find out how to do. 

   
 Definition 8.5 An engineer is a professional who is regulated and 

experienced to practise engineering by using science, mathematics, and 
technology for creative design and implementation of applications, products, 
systems, and processes.  

 
 In the Computing Curricula – Software Engineering (CCSE), 
IEEE/ACM identify the following characteristics of engineers in general 
[IEEE/ACM, 2001/03; Wang, 2005h]:  
 

• “Engineers proceed a task by making a series of decisions, 
 carefully evaluating options, and choosing an approach at each 
 decision-point that is appropriate for the current task in the 
current context. Appropriateness can be judged by tradeoff 
analysis, which balances costs against benefits. 

•  “Engineers measure things, and when appropriate, work 
 quantitatively; they calibrate and validate their measurements; 
and they use approximations based on experience and empirical 
data. 
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    •  “Engineers emphasize the use of a disciplined process when 
 creating a design. 

•  “Engineers can have multiple roles: research, development, 
 design, production, testing, construction, operations, 
management, and others such as sales, consulting, and teaching. 

•  “Engineers use tools to apply process systematically. 
Therefore, the choice and use of appropriate tools is key to 
engineering. 

    • “Engineering disciplines advance by the development and 
 validation of principles, standards, and best practices. 

   •  “Engineers reuse designs and design artifacts.” 
  

According to Definitions 8.1 and 8.5, it can be seen that the domain of 
engineering and engineers is as broad as the demand of mankind. Engineers 
are trained to think in analytical and objective terms and to approach 
problems methodically and systematically. As Michel Sintzoff stated “The 
clear and structured representation of design knowledge and reasoning, on an 
industrial scale and for various domains, helps to solve the problem of 
generality in software engineering, which is akin to that of generality in 
artificial intelligence [Sintzoff, 1989].” 
 
8.2.3.3 Relationship between Science and Engineering  

 
The relationship between science and engineering can be analyzed from 

the aspects of the disciplines and the professions as shown in Fig. 8.1. The 
disciplines of science and engineering can be contrasted by their domains, 
although there is no clear cut way. In general, science transfers information 
about nature into knowledge and theories; while engineering embodies 
knowledge into methodologies and products. The differences between 
science and engineering in terms of objectives, methodologies, criteria, and 
embodied results are summarized in Table 8.1. 
 

Table 8.1 
Characteristics of Engineering and Science 

   

Discipline Major objectives Basic 
methodology 

Criteria Embodied results 

Science Knowledge  Inductive Originality Information, knowledge, 
and methodologies  

Engineering Products, skills, 
and applications 

Deductive Utility and 
efficiency 

Technologies, products, 
and know-how 
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The roles of scientists and engineers as different professions are also 
illustrated in Fig. 8.1. Scientists work on scientific research, and engineers 
apply scientific theories into industry by engineering development and by 
finding the ways for suitable mass production. Although there are overlaps 
between the roles of scientists and engineers, it is obvious that an engineer is 
not responsible for developing fundamental theories, and a scientist is not 
directly involved in manufacturing a product. 

      
 

Pure 
sciences 

Applied 
sciences 

Methodologies Products and 
services 

Natural and 
Engineering Science 

Fundamental 
research 

Applied 
research 

Design and 
development 

EngineeringScience 

Scientists 

Engineers

The discipline 

The profession 

 Organization for 
mass production 

 
Figure 8.1 Engineering vs. science 

 
 
8.2.4 FUNDAMENTAL GOALS AND CONSTRAINTS OF 
   ENGINEERING 
 
 Science and engineering disciplines share a number of common goals 
in their pursuits as Steven Weinberg, the 1979 Nobel Prize laureate, 
expressed: “Our job in physics is to see things simply, to understand a great 
many complicated phenomena, in terms of a few simple principles.” Science 
pursues originality, generality, and simplicity in principles and theories. In 
addition to the goals of science, engineering seeks efficiency, productivity, 
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and quality in implementation of scientific principles and theories into 
repetitive and mass production. 
 The three generic engineering goals can be described by a triangular 
Engineering Objective Model (EOM) as shown in Fig. 8.2 [Wang, 2006a]. In 
the EOM model, each of the three generic goals, efficiency, productivity, and 
quality, obeys a basic constraint for engineering organization and practice in 
terms of costs, time, and utility, respectively. It is found, unfortunately, the 
three basic goals in engineering are interlocked.  

In the EOM model, productivity is the principal objective and major 
purpose of any engineering discipline. The improvement of productivity is 
the key to achieve other engineering goals by technical innovation, i.e., by 
increasing δ as described in Eq. 8.2. For example, the innovation of 
automatic exchangers and stored program-controlled switching systems in 
the telecommunication industry in the 1940s and the 1990s have dramatically 
improved telephone handling capability, which eventually solved the 
telephone traffic crisis if it would still be handled manually. Therefore, it is 
inevitable that software engineering should set its paramount goal on the 
improvement of productivity by using automatic tools for software code 
generation. 
 

     Efficiency 
     (Costs, C) 

   Productivity 
      (Time, T) 

   Quality 
 (Utility, U)

 
 
Figure 8.2 The engineering objective model (EOM) 

 
The EMO model as shown in Fig. 8.2 demonstrates that the three basic 

engineering goals cannot be achieved at the same time in a given engineering 
context. That is, any goal among the three may be achieved in the costs of the 
remainder. A formal treatment of this observation is described in the 
following theorem.      
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 According to Theorem 8.2, the following conclusions may be predicted 
for a given engineering project: 

 
a) The shortening of time (T) and reduction of costs (C) will 

sacrifice the quality of expected result or its utility (U).   

b)  The reduction of time (T) and requiring of better result (U) will 
  increase costs (C).  

c) The reduction of costs (C) and requiring of better quality (U) will  
increase the production time (T).  

               
 In the EOM model, quality is a complicated term that will be formally 
modelled and analyzed in Section 11.4.1.  

Because software engineering is a specific branch of engineering 
disciplines, it obeys the same generic engineering rules as stated in Theorem 
8.2. The most fundamental categories of goals for software engineering are 
still productivity, efficiency, and quality, although there are various goals 
identified such as improve customer satisfaction, ensure quality, shorten time 
to market, decreasing costs and effort, improve process capability, enhance 
reliability/dependability/code stability, provide better services, minimum 
defects, estimate project accurately, and provide better maintainability.  
 
 
8.2.5 GENERIC ENGINEERING APPROACHES 
 

 As we discussed in Section 8.2.1, the engineering approaches and 
disciplines emerged during the industrial revolutions. Before the industrial 
revolutions, people produced goods as craftsmen in small or limited scales 
and they learnt things by doing. For improving productivity as well as 

 

The 22nd Law of Software Engineering 
 

Theorem 8.2 The conservation of basic engineering constraints states 
that the three basic constraints of engineering goals known as time (T), 
costs (C), and utility (U) are conservative in a given engineering context, 
i.e.: 

 
              ft(T-1) + fc(C-1) + fu(U)  

                 Uk
T C

δ= =
•

       (8.3) 

 
where both δ and k are a constant. 
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quality, and for lowering the requirements for skills in mass production, a 
generic industrial engineering approach [Eide et al, 1979; Wang and Patel, 
2000] had been formed as outlined below: 

 
    • To identify repeatable work processes; 

    • To identify standard and reusable components of products; 

    • To adopt division of labor (people are specialized in a defined  

 role in processes); 

    • To equip specialized tools for the roles and processes; 

    • To recognize management as a profession for organization of the 
 processes and for coordination of the roles.         

 
 The above key steps of a generic engineering approach form the basis 
of almost all existing engineering disciplines. Historically, every engineering 
discipline in the modern industries has been developed and matured in the 
same approach: first a kind of art, then a discipline of engineering.  
 For instance, in the early 19th century, watches were produced 
manually. Therefore, there were no identical watches. At this stage, the 
watchmakers were characterized as craftsmen rather than engineers. This 
resulted in low productivity and high price, and one would perhaps need to 
find the original watchmaker in order to have a watch fixed. In the middle 
and late 19th century, the industrial revolutions addressed some of the 
problems and introduced the approach to engineering. As a result in the 
watch manufacturing industry, watches could be mass produced by 
machines, and all watches were identical so that parts were interchangeable 
among watches of the same brand. At this stage, the traditional watch-smiths 
had become engineers who were responsible and skilled for one or limited 
production processes in watch manufacturing.   
 The generic industrial approach to engineering is also applicable to 
software engineering, although it has often been ignored in research and 
practice. 

 
 
8.2.6 THE GENERIC ENGINEERING MATURITY 
         MODEL (EMM) 
 

 Malcolm Gregory (1971) pointed out: “By examining the roots of 
engineering, we are able to ensure the broad flow of history and to view the 
present as a part of that flow. This helps us to put the present in its context 
and to take a better view of our goals, aspirations, and actions.” 
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 In order to answer how the existing engineering discipline matured, a 
generic engineering maturity mode may be created from the history of 
industrialization by comparing the differences between an engineer and a 
craftsman over time. Looking at the time dimension, engineering is a 
discipline matured from arts of craftsmen in terms of scale and rigor. When 
asking how the industrial revolutions had changed the traditional individual 
or family watchmakers, history tells us that the manual watchmakers had 
disappeared except a few that existed as a special profession. Similar 
evolution traces may be found in other traditional engineering disciplines.  

 
The history indicates a universal engineering maturity model of all 

engineering disciplines [Wang and Patel, 2000] as shown in Table 8.2, where 
the key characteristics of each maturity level have been identified. Based on 
the definitions in Table 8.2, the following theorem can be derived. 

 
Table 8.2 

The Engineering Maturity Model (EMM) 
   

Maturity 
Level 

Description Characteristics 

1 The  
emerging  
age 

• Being a branch of an existing discipline 
• Demands in sciences and/or industry have been identified 
• Common theories and foundations are forming 
• A group of professionals has been recognized 

2 The art  
age 

• Varying professional practices 
• Individual stamps and influences both design and 
   implementation 
• All processes are dependent on personal talent, art, and hobby 
• Work is skill/experience-based and doing by learning 
• Individual tends to be wizard for everything in all processes 
• Chasing new methods and/or technologies before their 
   validation has been proven        

3 The 
engineering 
age 

• Adoption of division of labor (specialization)  
• Established processes 
• Reinforced standards 
• Stable and regulated professional practices 
• Defined best practices 
• Well developed theories and foundations 
• Proven methods and technologies 

4 The  
post-
engineering 
age 

• Well defined processes 
• Well defined standards 
• Precisely defined professional roles within a discipline   
• Refined methods and technologies 
• Matured theories and foundations for relevant science branches 
• Giving birth of new disciplines 
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The EMM model of engineering maturity can be illustrated as shown in 

Fig. 8.3. Applying the EMM model, it may be found that some examples of 
existing engineering disciplines have already been at Level 4 – the post-
engineering age, such as civil engineering, mechanical engineering, and 
electrical engineering. Electronic engineering would be at Level 3 – the 
engineering age, since it is still under rapid development within the context 
of a wide range technical innovation. Biological engineering is an example of 
those at Level 1 – the emerging age of an engineering discipline.  

 

Emergence 

Time

Art

Engineering

Post engineering

Maturity 

 
 
Figure 8.3 The engineering maturity model (EMM) 

 
The EMM model can be taken as a reference for analyzing and 

organizing software engineering for a maturing engineering discipline. Based 
on the EMM model, we can predict that software engineering as a young 
engineering discipline is going to be matured in the same way: from art to 
engineering. Checking with the engineering maturity characteristics, software 
engineering is considered to be a good example of a Level-2 discipline in the 
art age, while it is under a transition toward Level 3 – the engineering age. 

 

 
The 21st Principle of Software Engineering 

 
Theorem 8.3 The Engineering Maturity Model (EMM) states that the 
applied engineering disciplines have four maturity levels known as the 
levels of emergence (L1), art (L2), engineering (L3), and post-engineering 
(L4), i.e.:    
 

       1 2 3 4:EMM L L L L⊆ ⊆ ⊆        (8.4) 
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8.3 Basic Engineering Principles 
 

 
 
The fundamental engineering objectives and the engineering approaches 
have been discussed in Section 8.2. This section elicits basic engineering 
principles, which focuses on those of engineering organization, technology, 
management, and professionalism. Applications of the basic engineering 
principles in software engineering will be explored in Section 8.4. A formal 
treatment of engineering organization in general and for software engineering 
in particular will be presented in Section 8.5 on the basis of the newly 
developed coordinative work organization theory [Wang, 2007d]. 
 
 
8.3.1 PRINCIPLES OF ENGINEERING ORGANIZATION 
 
 Engineering disciplines emerged and developed in the industrial 
revolutions share the following common principles in engineering 
organization: 
 

• Apply systematic processes 
• Adopt division of labor 
• Support co-operative work 
• Adopt quantitative measurement 
• Establish standards 
• Use tools and machinery 
• Plan actual schedule 
• Optimise resources allocation 
• Derive predictable outputs 
• Seek controllable quality 

 
 The essence of the above principles is the establishment of efficient 

engineering infrastructures and the rational forms of engineering 
organization. The key organizational principle of engineering invented in the 
industrial revolutions is division of labor, or limiting and specializing roles of 
labors in the whole production processes, which plays an important role in 
engineering organization. For instance, in electronic engineering an 
electronic engineer is not supposed to be specialized in all application areas 
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of electric engineering: from low to high frequency circuits, from analogue to 
digital circuits, from real-time systems to home appliances. Similarly, an 
automobile engineer is not supposed to be skilled in all areas of car 
manufacturing and maintenance, such as mechanical structures, engines, 
transmissions, electronic systems, micro-controllers, petrol, lighting, safety 
facilities, and bodies of vehicles. Therefore, for large-scale software 
development, what we need is highly skilled software engineers who are 
competitive for one or limited roles, rather than a person with all-round skills 
in the software engineering processes. This is what we may learn from the 
general principles of industry engineering. More rigorous treatment of 
engineering organization theories will be developed in Section 8.5.   
 
 
8.3.2 PRINCIPLES OF ENGINEERING TECHNOLOGY 
 
 The principles of engineering technology are elicited from a set of 
common processes and tactical approaches shared in all engineering 
disciplines. The technical principles of engineering are identified as follows 
[Wang, 2004c]: 

 
•  Identify rigorous foundations 
•  Apply established theories and methods 
•  Adopt specialized notation systems 
•  Improve visualization and tangibility 
•  Comparative study alternative methodologies 
•  Adopt matured technologies  
•  Identify repeatability in develop, design, and manufacturing 
•  Identify standard components 
•  Adopt mass production technologies  
•  Maximum reuse 
•  Adopt modeling and prototyping technologies  
•  Adopt measurement and metrics 
•  Reinforce rigorous testing and validation 
•  Improve compatibility and exchangeability 
•  Adopt quality assurance techniques 
•  Encourage technical innovation 
•  Pursue engineering elegance and efficiency 
•  Develop tools for self-sufficiency 
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  More than a half of the technical principles of engineering principles 
have not been systematically adopted and applied in software engineering. 
This indicates that software engineering is a very young discipline as an 
engineering profession. 
 
 
8.3.3 PRINCIPLES OF ENGINEERING MANAGEMENT 
  
 The principles of engineering management are at the center of all 
engineering principles, which establish guidelines for basic engineering 
organization, group collaboration, and support environments. The managerial 
principles of engineering are identified as follows [Wang, 2004c]:  

 
•  Recognize management roles 

•  Establish team work environment 

•  Understand the role of interpersonal coordination in groups 

•  Improve communications 

•  Ensure work product integration  

• Maintain project data and documentation  
 
 
8.3.4 PRINCIPLES OF ENGINEERING 
         PROFESSIONALISM 
 
 Richard Gisselquist believed that “producing software is an engineering 
endeavor at the level of responsibility and ethics. … Engineers do not 
celebrate until they can walk across the completed bridge, holding their 
children’s hands [Gisselquist, 1998].” This subsection discusses the 
principles of engineering professionalism in term of ethics.  
 According to Wright (2002), “Ethics is the study of the morality of 
human actions. It is the science of determining values in human conduct and 
of deciding what ought to be done in different circumstances and situations. 
Engineering ethics represents the attempts of professional engineers to define 
proper courses of action in their dealings with each other, with their clients 
and employees, and with the general public.”  
 Although ethical principles are nontechnical ones for a professional 
engineer, they are designed to coordinate the professional practice in a sector. 
The nine professional characteristics of engineering principles, as shown 
below, represent an important aspect of the nontechnical features of a 
matured engineering profession.  
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     • Establish laws and regulations 
     •  Accumulate patents and know-hows  
     •  Develop a code of ethics 
     •  Define proudness and responsibility for professionals 
     •  Identify a body of knowledge  
     •  Promote continuous professional education 
       •  Establish license or certificate schemes 
     •  Evaluate environment effects 
     •  Regulate safety roles  
 

  For establishing software engineering as a respected professional 
discipline, all above characteristics will attract much more attention in a 
modern society. Professional regulations in software engineering may be 
implemented by registration, certification, and/or licensing. There are a 
number of codes of ethics and professional practice for software engineering, 
which share similar principles and philosophies toward a cohesive way we 
act as software engineering professionals [IEEE/ACM, 1998]. 
 
 

 
8.4 Engineering Principles for 
        Software Engineering 
 

 
 

Engineering approaches to large-scale software development have been 
identified as established methodologies, processes, tools, standards, 
organization methods, management methods, and quality assurance systems. 
Interesting findings on what software engineering may learn from generic 
engineering principles are discussed in this section. 
 
 
8.4.1 THE ENGINEERING CHARACTERISTICS OF 
     SOFTWARE ENGINEERING 
 

 Analyzing the descriptions on generic engineering approaches and 
basic engineering principles in Sections 8.2 and 8.3, it can be seen that in 
order to identify a comprehensive set of characteristics of software 
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engineering, a comparative approach of thinking between existing 
engineering disciplines and software engineering may be inspirational. This 
subsection takes a comparative approach to software engineering, in order to 
perceive the nature and characteristics of software engineering and to 
understand what software engineering may learn from the generic 
engineering principles. 

It was a dilemma: “to be or not to be” on the combination of the two 
terms software and engineering. Software professionals have been arguing 
the term software engineering and its intensions and extensions for more than 
four decades since Friedrich Bauer proposed it in 1968 [Bauer, 1972/1976; 
Naur and Randell, 1969]. Yet still some fundamental questions remain, such 
as: a) Is software development an engineering discipline? and b) Are 
software developers engineering professionals? There were completely 
different assertions and opinions on the contradictory issues, and it is still 
confusing the academia, practitioners, and students in software engineering.  
  However, according to the EMM model presented in Theorem 8.3, the 
above myth is caused by a confusion of timely maturity in perceiving the 
software profession and software engineering. The rational answer to the 
question if software development is an engineering discipline is that although 
it is not at present and in the past, it will be and should be yes in the future.  
 As discussed in Sections 8.2 and 8.3, engineering is a set of disciplines 
seeking solutions for complicated problems and systems that could not be 
done by individuals. The key aim of engineering is to repetitively produce 
complex artifacts in an efficient way. Thus, to many professionals, 
engineering means systematic planning, teamwork, rigorous process, 
repeatability, and efficiency.  
 Software engineering is a maturing engineering discipline that adopts 
the generic engineering principles in the development of large-scale 
software, which could not be produced by individuals. Currently, software 
development is evolving from the laboratory-oriented and all-round-
programmer-based practice to an industry-oriented and process-based 
platform, and software developers are experiencing changes of roles from 
craftsmen to regulated professionals – the software engineers [Wang and 
King, 2000a; Wang and Patel, 2000]. The practices of the former are based 
on personal talents, tastes, and art, while those of the latter are based on 
disciplined processes and repeatable professional activities.                    
 
 
8.4.2 DIVISION OF LABOR  

 
 According to the generic engineering principles, one of the keys of 
software engineering organization and practice is division of labor, which is 
so obvious and so often to be ignored in current software engineering 
practice. For large-scale software development, what we need is highly 
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skilled software engineers who are competitive for one or limited roles, 
rather than a person with all-round skills in the software engineering 
processes.  

 
Table 8.3 

Roles of Software Engineers in Software Engineering 
 

No Category Roles 
1 Software engineering 

Organization 
 

1.1  Software organization manager 
1.2  Organizational software engineering process designer  
1.3  Software engineering environments and tools maintainer 
1.4  Legacy (delivered) systems manager 
1.5  System services monitor  
2 Software 

Development 
 

2.1  System architect 
2.2  Domain engineer 
2.3  Requirements capture engineer 
2.4  Programmer 
2.5  Software testing engineer 
2.6  System integration and configuration engineer   
2.7  Field trial engineer   
3 Software engineering 

project management 
 

3.1  Project manager 
3.2  Project planning and estimation engineer  
3.3  Project contract and requirements manager 
3.4  System analyst 
3.5  Quality assurance engineer 
3.6  Project configuration and document manager 
4 Customer support 

management 
 

4.1  Customer problems and requirements analyst 
4.2  Customer solution consultant 
4.3  Customer development coordinator  
4.4  Customer testing coordinator 
4.5  Technical trainer  
4.6  Maintenance and supporting engineer  
4.7  Technical menus author   
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 A software engineer is a professional whose role and skills are 
regulated by the software engineering discipline and processes. Examining 
the requirements for functions of software engineers in software engineering 
at the technical, managerial, and organizational categories, a variety of roles 
can be identified as shown in Table 8.3 [Wang and King, 2000a]. Observing 
Table 8.3, it can be found that a software engineer may be responsible for 
only one or limited role(s) rather than a master of all the skills in software 
engineering processes. This is what we may learn from the universal 
principles of industrial engineering, which is so obvious and so easy and so 
often to be ignored in practice. Therefore, the key is ‘division of work’, or 
limitation of the roles of a software engineer in the whole software 
development processes. Formal models of division of labor will be presented 
in Section 11.2 on management foundations of software engineering. 
 
 
8.4.3 CHARACTERISTICS OF SOFTWARE       
   ENGINEERING IN THE ENGINEERING AGE 
 

Conventional industries produce products from raw materials via 
engineering approaches; while the software industry produces software 
solutions for problems via software engineering. Software engineering is 
going to be a discipline that fully adopts engineering approaches, such as 
established methodologies, processes, tools, standards, organization methods, 
management methods, quality assurance systems and the like, in the 
development of large-scale software. The aims of software engineering are to 
improve productivity and quality, keep timeliness, prolong software life 
span, and maximum benefit in software development.  

Because software engineering is a young discipline, there is still some 
way to go for software engineering to be a matured engineering discipline. A 
fundamental issue we may learn from the generic principles of industrial 
engineering is there are still significant gaps in many important practices of 
software engineering in the engineering way, such as: 
 

      • Team-work oriented 
• Human-oriented programming and documentation rather than 

machine-oriented 
      • Following common roles rather than personal hobbies 

• Explicit description of roles, best practices, and regulated 
processes rather than leaving them loosely as personal experience 
or private knowledge 

• System test and validation should carried out independently from 
original developers or vendors 
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• Individual software engineers should be prepared to fit in specific 
processes rather than tend to be a master of all-round activities in 
development 

• Maximizing application and reuse of available components and 
tools in development rather than tends to be self-sufficient         

 
 A detailed analysis of characteristics of software engineering at 

different maturity ages is provided in Table 8.4. The information in Table 8.4 
shows that current software development practices and software engineering 
education are still located in-between the ages of art and engineering, 
because the center of education and practices is mainly craftsman-and-
laboratory-environment-oriented. For software engineering to evolve into a 
mature engineering age there is still much to do as described in the right-
hand column of Table 8.4. However, from a historical point of view, it is 
encouraging to see that software engineering, as an engineering discipline, 
has been matured to be between Level 2 and Level 3 as in the EMM model in 
just four decades. Some existing engineering disciplines, such as civil 
engineering and manufacturing engineering, would have taken hundreds of 
years to reach their current levels of maturity.     

 By recognizing the current status of software engineering as a 
discipline locating between Levels 2 and 3 according to the EMM scale, 
responsibilities of software engineering researchers and practitioners are to 
push forward software engineering to a matured engineering discipline by 
applying the generic engineering principles gained from other matured 
engineering disciplines.  
 
 
8.4.4 UNIQUE PRINCIPLES OF SOFTWARE 
         ENGINEERING 
 
 In addition to the generic principles of software engineering as 
discussed in the previous sections, unique domain specific principles of 
software engineering may be identified. These unique principles can be 
classified into the categories of cognitive characteristics and special problem-
domain characteristics of software engineering. 

The fundamental cognitive informatics principles of software 
engineering are those of its informatics properties, intelligent behaviors, 
denotational mathematics needs, and cognitive complexity. In Section 3.5.1 
eight fundamental cognitive characteristics of software engineering are 
identified. Detailed discussions of the basic cognitive characteristics of 
software engineering will be presented in Sections 9.5 and 9.6 [Wang, 
2004b/06a/07a].            
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The domain-specific principles of software engineering encompass the 
following basic characteristics that determine the difficulty of software 
development and require a broad knowledge structure for software engineers 
[Wang and Patel, 2000]:  

 
Table 8.4 

Characteristics of Software Engineering Practices at Different Levels of EMM 
   

No. Characteristics of  SE  
in the art age 

Characteristics of  SE  
in the engineering age 

1 Individual perceptions on software 
development activities 

Team perceptions on software development 
activities 

2 A programmer, as software 
developer, is a master of all skills 
needed for programming 

A software engineer skills for a single or 
limited development process(es) 

3 Final products reflect personal talent, 
art, hobby, and experience 

Final products are based on sound theory, 
proven methodologies, and best practices 

4 A software developer is a person who 
has multi-roles as of requirement 
analyst, designer, programmer, tester, 
and even the customer 

A software engineer is a person who has 
specific role in one of the processes as listed 
on the left   

5 Software product is a personal 
solution to an application 

Software product is a standard and regulated 
solution to an application 

6 Programming is personal interaction 
between the programmer and a 
computer 

Programming is a group interaction between 
all roles and processes including users 

7 Program is written for machines 
rather than for human reading 

Program is written for team members 
involved in all processes rather than only for 
machines  

8 Programmers are not trained in 
formal ways, but believe learning by 
doing 

Software engineers are trained in formal 
ways and following common rules  

9 Knowledge transfer in programming 
seemed to be hard, and design and 
implementation of software is 
regarded as personal experience 

Knowledge transfer is regulated and carried 
out by hierarchical processes at organization, 
project, and individual levels 

10 Problems to be solved are limited in 
small scale 

Problems to be solved are in large-scale and 
for complicated systems  

11 Program maintenance is relied on the 
original designer 

Software maintenance can be carried out 
independently from the original developers 

12 An individual virtually runs a 
program using one’s mental power 
for software validation 

Software validation is carried out by rigorous 
architecture design, testing, logical 
deduction, and review 

13 A programmer is self-sufficient and 
self-managed for all processes 

Software engineers are mutually related with 
a chain of processes 

14 Local availability of materials, tools, 
and solutions 

Global availability of materials, components, 
tools, and solutions  
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    • Intangible objects and work products, and intricate relations and 
interactions between them 

    • Problem domain is infinite, including all application areas of all 
existing engineering disciplines 

   • Software engineering is design-intensive opposed to repetitive 
 mass production 

      • Application development is one-off activity  

      • Development processes are stable and repetitive 

• A specific design and implementation of a software system is only 
one of all possible solutions for a real-world problem on the basis 
of tradeoffs and constraints 

• Software engineering needs new forms of denotational 
mathematics as identified in Section 4.5 that are different from 
current analytic ones 

 
 The most significant and unique characteristic of software engineering 
lays on the fact that its problem domain is infinitive, because it encompasses 
almost all other domains in the real world, from scientific problems and real-
time control to word processing and games. It is infinitely larger than the 
specific and limited problem domains of the other engineering disciplines. 
This stems from the notion of a computer as a universal intelligent machine, 
and is a feature fundamentally dominating the complexity in engineering 
design and implementation of varying software systems. 
 
 
8.4.5 PROFESSIONALISM OF SOFTWARE 

   ENGINEERING 
 

Via contrasting professional engineers and amateurs in software 
engineering, this subsection highlights professionalism as one of the 
important requirements for software engineers. Then, the software 
engineering ethics and professional practice as recommended by IEEE/ACM 
are summarized.  
 
8.4.5.1 Professionalism of Software Engineers 
  

There is a special phenomenon in software engineering that anybody 
who is able to use a programming language may claim that one can 
programming or even be a software engineer. This is just like that one who 
acquires reading and writing ability in a natural language may claim oneself 
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as a writer; or one who is able to build a simple shelter or doghouse may 
claim oneself as a civil engineer.  
 If knowing or even understanding a programming language is not 
enough to be a qualified software engineer, then what else is needed? The 
answers may be obtained by analyzing the differences between professionals 
and amateurs.  

Professional software engineers are persons with professional cognitive 
models and knowledge on software engineering. They are trained and 
experienced in:  

 
   • Fundamental knowledge governing software and software 

engineering practices  
      •  Proven algorithms 

        •  Problem domain knowledge  
        •  Problem solving experience  
        •  Programming languages 
        •  Program developing tools/environments 
        • Solid programming knowledge 

     • A global view on software development, including required 
 functionalities, exceptions handling, and fault-tolerance   

 
 However, amateurish programmers are persons who know only one or 
a couple of programming languages but lack fundamental knowledge, skills, 
and experience as those of professionals identified above. Amateurs may be 
characterized as follows in software engineering: 
 

          •  Possession of an ad hoc structure of programming knowledge 
          •  Eagerly trying what are directly required for a program 

• Tending to focus on details without a global and systematic view 
on software as a system 

 
 In discussing “what makes a good software engineer” in a panel, 
Marcia Finfer (1989) believed: “the answer, in my opinion, is simply the 
combination of both innate skill and significant experience in building real 
systems against a set of functional and performance requirements and a given 
budget and schedule.” This shows that professional experience is a primary 
factor of professional software engineers. Also, possession of fundamental 
principles of software engineering is essential towards excellence of software 
engineers.    
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 Software engineering encompasses theory, technology, practice, and 
application of software in computer-based systems. A central theme of 
software engineering education is to engender an engineering discipline in 
software engineers and students, enabling them to define and use processes, 
models, and metrics in software and system development.  

 
A software engineer as a professional must demonstrate the ability to 

analyze, design, verify, validate, implement, and maintain software systems, 
using appropriate quality assurance techniques/methods in all practices. They 
must possess the necessary team and communication skills to function in a 
typical software development environment. Engineering responsibility and 
practice have to be stressed, which includes conveying ethical, social, legal, 
economic, and safety issues. These concerns must be reinforced in advanced 
work with appropriate use of software engineering standards. Software 
engineers should also learn methods for technical and economic decision 
making, such as project planning and resource management. 

 
The social responsibility of software engineers above their personal and 

professional responsibilities is stressed by David Parnas. He wrote: “My 
view is that those of us who have received an extensive education from 
society have a debt to repay; we have to share our knowledge with that 
society when it can be of benefit to that society [Parnas, 1994].”   
 
8.4.5.2 Ethical Practice in Software Engineering 
 
 The Software Engineering Code of Ethics and Professional Practice 
was recommended by the IEEE/ACM Joint Task Force in 1998 [IEEE/ACM, 
1998]. The code requires that: “Software engineers shall commit themselves 
to making the analysis, specification, design, development, testing and 
maintenance of software a beneficial and respected profession.” 

   
In accordance with their commitment to the health, safety, and welfare 

of the public, software engineers shall adhere to the following eight aspects 
of ethics as shown in Table 8.5. 

  
Professionalism of software engineers is mainly reflected in 

professional practice, professional judgment, public responsibility, and 
product responsibility. They are specified in the IEEE/ACM Software 
Engineering Code of Ethics and Professional Practice [IEEE/ACM, 1998] as 
follows.  
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Table 8.5 
A Summary of IEEE/ACM Software Engineering Code of Ethics and 

Professional Practice [IEEE/ACM, 1998] 
 

No. Principle of 
Ethics 

Description 

1 Public Software engineers shall act consistently with the public interest 

2 Client and 
employer 

Software engineers shall act in a manner that is in the best 
interests of their client and employer consistent with the public 
interest 

3 Product Software engineers shall ensure that their products and related 
modifications meet the highest professional standards possible 

4 Judgment Software engineers shall maintain integrity and independence in 
their professional judgment 

5 Management Software engineering managers and leaders shall subscribe to and 
promote an ethical approach to the management of software 
development and maintenance 

6 Profession Software engineers shall advance the integrity and reputation of 
the profession consistent with the public interest 

7 Colleagues Software engineers shall be fair to and supportive of their 
colleagues 

8 Self Software engineers shall participate in lifelong learning regarding 
the practice of their profession and shall promote an ethical 
approach to the practice of the profession 

 

 Professional practice of software engineers: Acting software 
engineering ethically; promoting public awareness; extending software 
engineering knowledge by life-long learning; supporting other engineers 
practicing the ethics; putting the professional interest above private ones; 
obeying all laws governing their work; avoiding false, speculative, vacuous, 
deceptive, misleading, or doubtful descriptions of work products; taking 
responsibility for detecting, correcting, and reporting errors in software and 
associated documents; avoiding associations with businesses and 
organizations conflicting with this code; and reporting violations of the 
ethics. 

 Professional judgment of software engineers: Tempering technical 
judgments to human values; endorsing work products cautiously; 
maintaining objective judgment when evaluating work products; and 
avoiding conflict interest. 

 Public responsibility of software engineers: Accepting full 
responsibility for one's own work; moderating all parties' interests with the 
public good; maintaining software's safety, quality, and protecting the     
environment; disclosing any actual or potential danger to the public caused 
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by software, its installation, maintenance, support or documentation; being 
encouraged to volunteer professional skills to good causes; and contributing 
to public education concerning the discipline. 
 Product responsibility of software engineers: Striving for high quality, 
acceptable cost and a reasonable schedule; ensuring proper and achievable 
objectives for a project; ensuring the use of an appropriate methodology; 
working to follow professional standards; ensuring the understanding of 
project specifications; reviewing and approving specifications; proving 
realistic estimates of cost, scheduling, personnel, quality and outcomes on a 
project; ensuring adequate testing, debugging, and review of software and 
related documents; ensuring adequate documentation of a software system; 
respecting the privacy and information security; being careful to use only 
accurate data; and maintaining the integrity of data and information. 
 
 

 
8.5 The Theory of Software 
        Engineering Organization 
 

 
 
In his classic book on The Mythical Man-Month, Frederick Brooks presents a 
well-known empirical study on the myths of the relationship between labor 
(number of persons) and time (duration in months) in software engineering 
[Brooks, 1975/95]. However, in the last chapter of the book, Brooks has still 
left the conclusions open: “Propositions of the mythical man-month: true or 
false?” 

From a more generic management science point of view, the 
convention to measure the project workload by a product of labor and time 
known as person-month really caused more problems than it explained, 
because workload is a common and complicated phenomenon existing not 
only in software engineering, but also in project management and economical 
decision making in all engineering disciplines.                                     
 
 
8.5.1 BASIC PROPERTIES OF COORDINATIVE WORK 
         IN ENGINEERING  
   
 This subsection formally analyzes the properties of coordinative work 
and the age-old myth on project workload or effort in term of person-month. 
Mathematical models that explain the equivalence and transformability 
between labor and time in work organization are systematically developed, 
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which rigorously describes the conditions of the interchangeability of basic 
elements in a coordinative workload [Wang, 2006g/07d].              
 
8.5.1.1 The Mechanisms of Coordinative Workload and Effort   
 

Definition 8.6 The workload W of a coordinative project is determined 
by a product of the number of labor L and the duration T needed or spent in a 
project, i.e.:     
 

  W = L • T  [PM]            (8.5) 
 
where the unit of labor is person (P), the unit of duration is month (M), and 
as a result the unit of workload is person-month (PM).        
 
 There are numerous myths on the simple relationship between labor 
and duration defined in Eq. 8.5 in empirical studies, because a number of 
fundamental questions on the nature of the hybrid product of workload in PM 
remain [Brooks, 1975/95; Wang, 2006g/07d]. For example, how many 
persons and how many months are needed for a given W? Are 1.0P • 10.0M 
= 10.0P • 1.0M = 10.0PM?  

 
All the empirical questions in applications on the nature of coordinative 

workload can be reduced to the following fundamental problems. 
 

Question 8.1 Whether labor L or duration T is arbitrarily determinable 
for a given workload W in a coordinative work?  
 

Question 8.2 Are labor L and duration T interchangeable for a given 
workload W in collaborative work organization?                   
 
 The following lemma answers Question 8.1. Theorem 8.4 will provide 
formal explanations for Question 8.2.   
     

 

 

Lemma 8.1 The generic form of workload W carried out by more than 
one person is always supplemented by an inevitable overhead h, i.e.:   

 
      W  = L • T1 (1+h)    [PM]       (8.6) 

 
where h is called the interpersonal coordination overhead in a multiple 
personal project, and T1 is the time needed to complete the work by only 
one person.   
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According to Lemma 8.1, the workload W defined in Eq. 8.5 is a special 
case where the project only involves a single person ideally and therefore 
there is no interpersonal coordination overhead h. 
 
8.5.1.2 The Rate of Interpersonal Coordination  
 

It is observed that many factors may affect the workload of a 
coordinative project [Mooney, 1947; Gray, 1989; Hardy and Phillips, 1998; 
Huseman and Miles, 1988; Huxham, 1996; Pasquero, 1991; Roberts and 
Bradley, 1991; Wang, 2007d; Wood and Gray, 1991], such as 
documentation, swap between roles in a project, and interactions to other 
groups in the organization. However, a macro indicator known as the 
interpersonal coordination rate r is a unique factor that distinguishes a single 
person project and a multiple-person coordinative project. Therefore, the role 
of r is the key to solve the myths on coordinative work organization.    
 

Definition 8.7 Interpersonal coordination activities are tasks that can 
not be done by an individual, such as communication, meeting, 
synchronization, peer review of work products, standardization, supervision, 
and quality assurance. 

 
The effort on interpersonal coordination activities as a necessary 

overhead of a coordinative project can be collectively analyzed by the extra 
time spent by individuals in the project.   

        
Definition 8.8 The interpersonal coordination rate r is an average ratio 

of the time spent on interpersonal coordination activities tr and the total 
working time of a person T in a given project, i.e.: 

 

          rtr
T

=               (8.7)   

  
According to Definition 8.8, an empirical method for collecting and 

calculating r on the basis of work time distributions is provided in Ex. 8.19.    
The average rate of interpersonal coordination r has a scope of 0 (0%) 

through 1.0 (100%), where r = 0 means there is no interpersonal coordination 
and r = 100% means all time has been spent on interpersonal coordination. 
These are the two extremes that constrain a coordinative work.   

For instance, in software engineering, a wide variety of factors may 
affect the interpersonal coordination rate. Ten major factors, such as the 
scope of project, importance, difficulty, complexity, domain knowledge 
requirement, experience requirement, special process needed, schedule 
constraints, budget constraints, and other process constraints, have been 
identified in [Wang and King, 2000a] as summarized in Table 8.6, where a 
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set of sample weights for the coordination factors for a specific project is also 
given as an example. 
 

Table 8.6  
Key Factors Affecting the Rate of Interpersonal Coordination in  

Software Engineering  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  Note: High = 10, Medium = 5, and Low = 1  

 
When the weight for each project factor is determined on a 

measurement scale of 1 through 10, the interpersonal coordination needed for 
the given project can be empirically determined as follows:   
 

    

10

1
100

i
r i

w
tr
T

== ∝
∑

            (8.8) 

 
Eq. 8.8 indicates that the empirical range of r in software engineering is 

0.001 ≤ r < 0.999, or r is between 0.1% to 99.9%. For example, with the 
particular layout of a project as given in Table 8.6, the average interpersonal 
coordination rate r is proportional to: 

 
10

1 (10 5 10 10 1 5 5 10 1 5)/100
100

0.62

i
i

w
r == = + + + + + + + + +

=

∑
 

 

Scope of  Weight (wi) No. Factors of project 
High Medium Low 

1  Scope √   

2  Importance  √  

3  Difficulty   √   

4  Complexity  √   

5  Domain knowledge requirement    √ 
6  Experience requirement  √  

7  Special process needed  √  

8  Schedule constraints √   

9  Budget constraints   √ 
    10  Other process constraints  √  
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Real-world project data collected in recent surveys in the software 
industry show r is between 12.5% to 47.8% [Wang, 2007d]. Higher rate of r 
is also reported up to 70.0% at IBM [McCue, 1978]. The data also indicate 
that r may vary in different processes of software engineering, ranging 
averagely from 49.3% in the design process, 30.8% in the coding process, 
60.0% in the integration/testing process, and 47.8% in the maintenance 
process, respectively. It is noteworthy that different development 
methodologies may affect the calibration of r. For instance, r = 30.2% for 
projects organized according to conventional waterfall models, and it may be 
up to 50.2% when projects are organized by extreme programming or agile 
processes. 

 
8.5.1.3 The Overhead of Interpersonal Coordination  
 

Definition 8.9 The number of interpersonal coordination, n, needed in 
a group of size L, L ≥ 2, is determined by the number of pairwise 
coordination in the group, i.e.: 

 

                            

2
L

! =
2 ! ( 2) !

( 1)
2

C Ln  
L

L  L -

=
−

= i
         (8.9) 

 

 
where L is the number of labor in the group. In addition, a possible k-nary 
coordination, k > 2, within the group can be treated as multiple pairwise 
ones. 
 

 

 
Lemma 8.2 The overhead of interpersonal coordination h in a multiple 
personal project (L > 1) is proportional to both the number of pairwise 
relations n and the average rate of time spent in each pair of coordination 
r, i.e.: 

 

        ( 1)
2

h r n

L L
r

= •

−= •
      (8.10) 

 
where multiple personal relations in the project can be treated as the 
combinations of multiple pairwise relations.              
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Lemma 8.2 indicates that the interpersonal coordination overhead h is a 
function of r and L, i.e., h(r, L), which represents the efficiency of the 
transformation between labor and time in a coordinative project. For a given 
r for a coordinative project, the more the persons involved in the project, the 
faster the overhead for coordination increases. For instance, according to Eq. 
8.10, if there are three persons, i.e., L = 3, in a coordinative project where r = 
0.4, the interpersonal overhead h = 1.2; for L = 10, h = 18; and for L = 1,000, 
h = 199,800. Obviously, h = 0 if a project is with only one person.  

 
Typical overheads, h(r, L), for interpersonal coordination are provided 

in Table 8.7 determined by Eq. 8.10. With the data derived in Table 8.7, 
Lemma 8.2 can be illustrated by the 13 curves as shown in Fig. 8.4, where 
the first curve h(0.001, L) is very close to zero. It is noteworthy that Lemma 
8.2 is a generic model that is valid for the domains 0 < r ≤ 100% and 1 ≤ L ≤ 
∞ for any coordination project.  

 
Table 8.7 

Overhead of Interpersonal Coordination h(r, L) 
 

L [P] 1 2 3 4 5 6 7 8 9 10 

n 0 1 3 6 10 15 21 28 36 45 

R h(r, L) 

0.001 0 0.001 0.003 0.006 0.01 0.015 0.021 0.028 0.036 0.045 

0.01 0 0.01 0.03 0.06 0.1 0.15 0.21 0.28 0.36 0.45 

0.05 0 0.05 0.15 0.3 0.5 0.75 1.05 1.4 1.8 2.25 

0.1 0 0.1 0.3 0.6 1 1.5 2.1 2.8 3.6 4.5 

0.2 0 0.2 0.6 1.2 2 3 4.2 5.6 7.2 9 

0.3 0 0.3 0.9 1.8 3 4.5 6.3 8.4 10.8 13.5 

0.4 0 0.4 1.2 2.4 4 6 8.4 11.2 14.4 18 

0.5 0 0.5 1.5 3 5 7.5 10.5 14 18 22.5 

0.6 0 0.6 1.8 3.6 6 9 12.6 16.8 21.6 27 

0.7 0 0.7 2.1 4.2 7 10.5 14.7 19.6 25.2 31.5 

0.8 0 0.8 2.4 4.8 8 12 16.8 22.4 28.8 36 

0.9 0 0.9 2.7 5.4 9 13.5 18.9 25.2 32.4 40.5 

1.0 0 1 3 6 10 15 21 28 36 45 
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Figure 8.4 Overhead of interpersonal coordination when r ∈ {0.001 … 1} 

 
8.5.1.4 The Nature of Coordinative Work in Engineering   
 

Definition 8.10 The actual time T spent in a multi-person project is 
determined by the ideal average time spent on work by a single person T1 and 
the total overhead of interpersonal coordination h, i.e.: 
 

1

1

(1 )

( 1)
(1 )

2

T T h

L L
T r

= +

−= + •
           (8.11)              

 
where the more the persons involved, the longer the duration of the project.      
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 Replacing T in Eq. 8.5 with the above expression, the inherent nature of 
coordinative work and the generic form of the actual workload in a 
coordinative project can be revealed by the following law. 
 

 
This is the first fundamental finding on laws of coordinative work 

organization [Wang, 2007d]. The 23rd Law of software engineering 
(Theorem 8.4) reveals that the ideal workload W1 defined in Eq. 8.12 is a 
special case where the project only involves one person ideally and therefore 
there is no interpersonal coordination overhead (h = 0). Although, some other 
types of overhead may exist in various projects, h(r, L) is the unique property 
found only in coordinative projects. 

It is noteworthy that the generic coordinative workload model 
developed in Theorem 8.4 is development-cycle/structure independent, 
because it is only a function of W(r, L). The theory fits all three forms of 
system organizations in serial, parallel, and hybrid structures at both the 
unit/process level and the whole project level, because a hybrid structure of 
work organization can be analyzed segmentally where each segment is a 
simple serial or parallel structure.  

In the context of software engineering, since a software project 
organized by any process model falls into one of the three basic system 
structures, the project as a whole or as a set of segmented processes obeys the 
same laws. Theorem 8.4 is also applicable to any real-world instance or 
specific case that uses the waterfall model, incremental model, or process 
models, because various model adoptions may only change the instance 

 

 The 23rd Law of Software Engineering 
 

Theorem 8.4 The coordinative workload in engineering states that the 
actual workload W of a coordinative project is a function of the average 
interpersonal coordination rate r and the number of labor L in the project, 
i.e.: 
 

                           
1

1

1

(1 )

(1 )

( 1)
(1 )   [PM]

2

W L T

L T h

W h

L L
W r

= •

= • +

= +

−= + •

                    (8.12) 

 
where T1 is the indicational duration needed to complete the work by 
only one person, and W1 is the ideal workload without the interpersonal 
overhead h or that of a single person project.      
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values of the interpersonal coordination rate r rather than the law itself. In 
addition, the following empirical observations and heuristic principles in 
software and system engineering such as: a) The Brooks’ principle that states 
“Adding people in a late project make it later [Brooks, 1975/95],” and b) The 
Schonberger’s observation on “Why Projects are Always Late [Schonberger, 
1981],” are specific evidences supporting the generic work organization 
theory.                    
 
 
8.5.2 LAWS OF WORK ORGANIZATION IN SOFTWARE 
         ENGINEERING 
 

Based on the understanding of the nature of coordinative workload in 
engineering projects and the key role of interpersonal coordination rate in 
team work, a set of laws for engineering organization in general and for 
software engineering organization in particular will be established in this 
subsection.      

 
8.5.2.1 The Laws of Incompressibility of Software Engineering 
Workload 
 

Observing Theorem 8.4 it can be seen that the ideal workload W1 of a 
project is the minimum workload in coordinative tasks, and it cannot be 
reduced no matter how many persons are involved via any kind of labor 
allocation.  

 

 
Proof: According to Theorem 8.4, W = W1(1+h). (a) In a multi-person 

project, because h > 0 by any kind of labor allocation, therefore W > W1.  (b) 
In a single-person project, since h = 0, therefore, W ≥ W1 = Wmin. 

  

 

The 22nd Principle of Software Engineering 
 

Theorem 8.5 The incompressible workload states that a given ideal 
workload W1 in software engineering can not be compressed by any kind 
of labor allocation, i.e.: 

 

  W ≥ W1 = Wmin      (8.13) 
 
and in the best case when there is only one person involved, the minimum 
workload W = W1 = Wmin  may be reached. 
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Theorem 8.5 indicates that via coordination in a multi-personal project 
the duration of the project may be reduced, but the total workload cannot be 
reduced because the minimum workload for a given project is reached at 
Wmin = W1. In other words, although labor and time may be interchangeable, 
the minimum workload for a given project is a constant. Therefore, the total 
workload in any type of coordinative labor allocation will be larger than the 
minimum. 

 
8.5.2.2 The Law of Interchangeability between Labor and Time in 
            Software Engineering 
 

On the basis of Theorems 8.4 and 8.5, the mathematical model of the 
interchangeability between labor and time can be formally derived as 
follows.   

 

 
Proof: Solving Eq. 8.12 for T obtains the above conclusion. 
 
The 24th Law of software engineering indicates that the duration of a 

coordinative project  is  a  function  of  labor  L  and  the  interpersonal 
coordination  rate  r  for  the  given  project.  In case where r is a variable in 
dynamic project organization, such as in different processes of a software 
engineering project, each individual process can be treated as a subproject 
with a constant r, or simply, a mathematical mean of r for all processes may 
be adopted.  

 

 
The 24th Law of Software Engineering  

 
Theorem 8.6 The interchangeability of labor and time (ILT) states that, 
for a given workload W, labor L and duration T are transformable under 
the following condition: 
 

1

1 2

1

( 1)
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2
1 1( 1)
2 2

1 2( )
2

WT
L

L LW r
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W rL rL
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       (8.14) 
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8.5.2.3 The Laws of the Shortest Duration of Coordinative Work in 
            Software Engineering 

 

 
Proof: Because T(r, L) as given in Eq. 8.14 is a deferential function on 

L when r is known for a certain project, it reaches the minimum Tmin when its 
derivative equals to zero, i.e.:       

 

1

1 2

1 2( ( ))
2

1 2( )
2
0

T W rL r
L L L

W r
L

∂ ∂= − +
∂ ∂

= −

=

           (8.17) 

 
Eq. 8.17 yields 

2
2 0r
L

− = , i.e., the optimum labor allocation is: 

  

     
0
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r

r
r
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         (8.18) 

 
where L0 will be rounded to the ceiling of an integer, i.e., the minimum 
number of persons needed for a given project. 

   
This is the second fundamental finding on laws of coordinative work 

organization [Wang, 2007d]. The 25th Law of software engineering 
(Theorem 8.7) reveals, for the first time, that the optimal labor allocation in 

 

The 25th Law of Software Engineering  
 

Theorem 8.7 The shortest duration of coordinative work states that there 
exists the shortest duration Tmin under the optimum labor allocation L0 
for a given ideal workload W1 with a certain interpersonal coordination 
rate r, i.e.: 

         

min 0

1 0
0

0

{ | }

1 2     ( )   [ ]                    (8.15)
2

1.414 , 0   [ ]                             (8.16)
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engineering project organization is not related to the size or the ideal 
workload of a given project as conventional empirical studies suggested. 
Surprisingly, it is merely determined by the interpersonal coordination rate 
for the project. The 25th Law had hardly been realized in empirical studies in 
management science and system engineering [Brooks, 1975/79; Schonberger, 
1981], because of the vital need for a long chain of insightful reasoning that 
seamlessly transforms Eq. 8.5 through Eq. 8.18.           

 
Although other factors as identified earlier may influence the shortest 

duration Tmin in a certain project, Theorem 8.7 provides insight on 
coordinative work allocation out of all the trivial factors that have hidden the 
key truth of rational work organization for decades since the establishment of 
management science [Tayler, 1911] and system science [Klir, 1992].   

 
As a result of a complicated long-chain reasoning, Theorems 8.4 

through 8.7 reveal and prove mathematically the existence and predictability 
of the minimum of project duration determined by the optimum labor 
allocation under certain group coordination rate r. Although there were 
empirical observations on the minimum, such as Brooks’ work (1975), 
rigorous mathematical explanation has not been created for this profound 
phenomenon in management science [Tayler, 1911], system engineering 
[Klir, 1992], and operations theories [Schmenner and Swink, 1998].  

 
It is noteworthy that the same work coordination laws and 

mathematical formulae may be used at subproject or individual process levels 
as well as at the whole project level. In the former case, the labor L does not 
necessarily be treated as a constant in the entire lifecycle of the given project. 
There are two ways to deal with L’s flexibility: a) Whenever L needs to be 
different in a certain process of a project, the workload of this process may 
be recalculated by the same law in the same mathematical form. b) In the 
planning phase, L may be deemed as an average of labor allocations in the 
entire lifecycle of the project.           

 
A set of typical data between actual duration and actual workload 

against different labor allocations, subjected to the ideal workload W1 = 
10.0PM, is shown in Table 8.8. Any other specific cases can be determined 
by applying Eqs. 8.16 and 8.15.    

 
In Table 8.8, the optimum labor allocation L0 for each T(r, L) curve is 

shaded where T reaches its minimum. The curves and trends of actual project 
durations against different labor allocations are illustrated in Fig. 8.5 known 
as the Pigeon Diagram. The curves indicate that a given optimum labor 
allocation L0 for each curve will determine a certain minimum on the curve 
corresponding to the shortest project duration Tmin.   
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Table 8.8 
Actual Time T(r, L) and Actual Workload W(r, L) Distribution   

 

L [P] 1 2 3 4 5 6 7 8 9 10 

T(0) [M] 10 5 3.33 2.5 2 1.67 1.43 1.25 1.11 1 

E(0)[PM] 10 10 10 10 10 10 10 10 10 10 

T(0.001) 10 5.01 3.34 2.52 2.02 1.7 1.46 1.29 1.15 1.05 

E(0.001) 10 10.02 10.03 10.08 10.1 10.2 10.22 10.32 10.35 10.5 

T(0.01) 10 5.05 3.4 2.65 2.2 1.92 1.73 1.6 1.51 1.45 

E(0.01) 10 10.1 10.2 10.6 11 11.52 12.11 12.8 13.59 14.5 

T(0.05) 10 5.25 3.8 3.25 3 2.92 2.93 3 3.11 3.25 

E(0.05) 10 10.5 11.4 13 15 17.52 20.51 24 27.99 32.5 

T(0.1) 10 5.5 4.29 4 4 4.18 4.43 4.75 5.11 5.5 

E(0.1) 10 11 12.87 16 20 25.1 31 38 46 55 

T(0.2) 10 6 5.28 5.5 6 6.68 7.44 8.25 9.1 10 

E(0.2) 10 12 15.84 22 30 40.1 52.1 66 81.9 100 

T(0.3) 10 6.5 6.27 7 8 9.19 10.44 11.75 13.1 14.5 

E(0.3) 10 13 18.81 28 40 55.14 73.08 94 117.9 145 

T(0.4) 10 7 7.26 8.5 10 11.69 13.44 15.25 17.09 19 

E(0.4) 10 14 21.78 34 50 70.14 94.08 122 153.81 190 

T(0.5) 10 7.5 8.25 10 12 14.2 16.45 18.75 21.1 23.5 

E(0.5) 10 15 24.75 40 60 85.2 115.2 150 189.9 235 

T(1) 10 10 13.2 17.5 22 26.72 31.46 36.25 41.1 46 

E(1) 10 20 39.6 70 110 160.32 220.2 290 369.9 460 

 
Theorem 8.7 and the pigeon diagram reveal that the key hidden reasons 

that cause so many failures of large-scale software engineering projects are 
neither technical issues nor inadequate programming skills, but mainly 
because of the nonoptimal organization of coordinative work in complicated 
projects. In other words, nonoptimal labor allocation and/or incorrect order 
of project labor-duration determination are the black hole that results in the 
unexpected wastage of huge extra workload or resources in software 
engineering.                
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Figure 8.5 The pigeon diagram: actual time against number of labors  
                  (W1 = 10PM)  

 
Example 8.1 Assuming the ideal workload of a software engineering 

project is expected to be W1 = 10.0PM and the organization has 1 to 10 
persons available, determine the optimum allocation of labor L0 and the 
shortest expected duration Tmin for this project according to the 25th Law, 
given the average interpersonal coordination rate r = 10%. 

Applying the 25th Law (Theorem 8.7), the optimum labor allocation is 
obtained as follows:     
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Replacing L0 in Eq. 8.15 with the instantiation value L0(r), the shortest 
duration of the project can be determined as follows:       
 

min 1 0
0

1 2(  - )
2
0.5 10.0 (0.1 5.0 - 0.1 2/5.0)

5.0 0.8

4.0 [M]

T W rL r
L

= +

= • • • +

= •

=

      

 
The above solutions indicate that, for a project with an expected 

10.0PM workload by one person, the optimum labor allocation and shortest 
possible duration implemented by a coordinative project are 5.0 persons for 
4.0 months, respectively, under r = 10%. This results in a real workload of W 
= 5.0P • 4.0M = 20.0PM by the coordinative team, where the gain is the 
reduction of project duration from 10.0M to 4.0M.       

 
Example 8.2 Comparatively reanalyze Example 8.1 for a given average 

interpersonal coordination rate r = 50%.  
The optimum solution yielded for the same project with ideally 10.0PM 

workload under r = 50% is to spend 7.5 months by 2.0 persons, which needs 
an expected workload W = 2.0P • 7.5M = 15.0PM.        

 
On the basis of Theorem 8.7, an important corollary may be derived 

below, which clarifies the myth that whether labor L or duration T in a 
coordinative project is arbitrarily determinable as mentioned in the beginning 
of this section. 

 

 
This is the third fundamental finding on laws of coordinative work 

organization [Wang, 2007d]. Corollary 8.1 indicates that the conventional 
common sense which believed that labor L or duration T in a coordinative 
project is arbitrarily determinable [Brooks, 1975/79; Boehm, 1981; Gantt, 
1919; Tayler, 1911] would be a risky organizational practice that could easily 
result in a lot of waste of both resources and time without awareness in large 

 

Corollary 8.1 An optimal work organization must be carried out in the 
following order for a given coordinative project: 

 
a) To determine the optimum labor allocation L0 (Eq. 8.16); 
b) To obtain the shortest duration of the coordinative work Tmin 

under L0 (Eq. 8.15). 
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coordinative engineering projects. Further analysis will be shown in Example 
8.5 in Section 8.5.3. 
 
 
8.5.3 THE MYTHICAL MAN-MONTH EXPLAINED  
 

According to the organization laws of software engineering, it is proven 
that the trade-off between labor and time is possible under certain conditions 
as given in Theorem 8.7 and Corollary 8.1. This subsection analyzes the 
equivalence or the exchange rate between labor and time in coordinative 
work organization.        
 

Definition 8.11 The maximum gain of time ∆T of a multi-person 
project is the difference between the time needed when only one person is 
allocated for the project and the shortest time Tmin when labor is optimally 
allocated at L0, i.e.:  

 
    ∆T = T1 - Tmin                  (8.19) 

 
Definition 8.12 The maximum increment of labor ∆L of a multi-person 

project is the difference between the optimum allocated number of persons L0 
and the smallest group where L1 = 1, i.e.:  

 
                       0 1 1= ,   1L  L  - L L∆ ≡                (8.20) 
 

 
The physical meaning of Eq. 8.21 is how many expected months may 

be gained or shortened in the schedule of a coordinative project by adding 
per labor into the project. It also explains how many months may be delayed 
if a person is withdrawn from the project. 

 

The 23rd Principle of Software Engineering 
 

Theorem 8.8 The exchangeability from labor to time states that the 
exchange rate from labor to time γL∼T in a coordinative work organization 
is determined by the ratio between the increment of time ∆T and the 
increment of labor ∆L, i.e.: 

 

                            
1

0 1
 [M/P]

-

L T

min

T
L 

T - T
L L

γ ∆=
∆

=

∼
           (8.21) 
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Example 8.3 The exchange rate from labor to time γL∼T as given in 
Example 8.1 can be determined as follows: 

 

1

0 1-
10.0-4.0

=   
5.0-1.0

1.5  [M/P]

min
L T

T - T
L L

γ =

=

∼

 

 
The result shows that around the optimum labor allocation point, the 

increment of persons is most effective to progress a project. For this given 
example, the increment of each person can reduce the project duration for 1.5 
months.  

 
The physical meaning of Eq. 8.22 is how many persons’ work is 

equivalent to a monthly increase/decrease in the project duration. 
 
Example 8.4 The exchange rate from time to labor γT∼L as given in 

Example 8.3 can be determined as follows: 
 

          

0 1

1

-

5.0-1.0
=   

10.0-4.0
= 0.67  [P/M]

T L
min

L L
T - T

γ =∼

      

 
The result shows that, in the most effective case, an action to allow an 

extra month in the schedule is equivalent to the reducing of 0.67 person in 
the whole project lifecycle.       

Comparing Eqs. 8.21 and 8.22, it can be observed that the two 
exchange rates are reciprocal. This leads to the following corollary.  

 

The 24th Principle of Software Engineering 
 

Theorem 8.9 The exchangeability from time to labor states that the 
exchange rate from time to labor γT∼L in a coordinative work organization 
is determined by the ratio between the increment of labor ∆L and the 
increment of time ∆T, i.e.: 

 

 
0 1

1 min

 -  [P/M]

T L
L
T 

L L
T - T

γ ∆=
∆

=

∼
                   (8.22) 
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Theorems 8.4 through 8.9 and related corollaries have answered the 

fundamental questions in coordinative work organization raised in the 
beginning of this section by rigorous reasoning and inferences. As a result, 
the insightful nature and inherent mechanisms of the problems in 
coordination work organization are systematically revealed and explained. 
 
 
8.5.4 DECISION OPTIMIZATION IN SOFTWARE 
         ENGINEERING 

 
On the basis of the work coordination theory and laws presented in 

preceding sections, a number of decision optimization strategies may be 
derived towards the following objectives:  

 
(a) The optimal labor allocations and the shortest project duration;  

   (b)  The lowest workload and costs;  

   (c)  The lowest overhead of interpersonal coordination. 
 
8.5.4.1 Optimization of Project Organization for the Shortest Duration   

 

 
In the software industry, time to market is always a priority. Therefore, 

the shortest duration optimization strategy as provided in Corollary 8.3 is as 
practically important as that of the cost optimization strategy that will be 
described in the next subsection.             

Table 8.8 and Fig. 8.5 described a small scale software engineering 
project with W1 = 10.0PM. The case study on a large-scale project with W1 = 
100.0PM is summarized in Table 8.9. The optimal labor allocation L0 for 
each T(r, L) curve is shaded where T reaches its minimum.                 

 

Corollary 8.3 The strategy for optimizing a project for the shortest 
duration is to set the project at the expected workload Wexp(L0, Tmin). 
 

 
Corollary 8.2 Labor and time are bidirectionally interchangeable or 
transformable in coordinative work organization under the constraints of 
Theorems 8.4 through 8.9, i.e.:  

 
          1

L T T Lγ γ−=∼ ∼                 (8.23) 
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Table 8.9 
Actual Time and Actual Workload Distribution (W=100PM) 

 

L [P] 1 2 3 4 5 6 7 8 9 10 20 30 50 100 

T (0) 100 50 33 25 20 17 14.3 12.5 11 10 5 3.33 2.00 1 

T(0.001) 100 50 33 25 20 17 15 13 12 11 6 4.8 4.5 6 

T(0.01) 100 51 34 27 22 19 17 16 15 14.5 14.5 18 27 51 

T(0.05) 100 53 38 33 30 29 29 30 31 33 53 76 125 249 

T(0.1) 100 55 43 40 40 42 44 48 51 55 100 148 247 496 

T(0.2) 100 60 53 55 60 68 73 86 91 100 195 293 492 991 

T(0.5) 100 75 83 100 120 142 165 188 211 235 480 728 1227 2476 

T(1) 100 100 132 175 220 267 315 363 411 460 955 1452 2452 4951 

 

When W1 = 100.0PM, the curves of actual project durations against 
different labor allocations are illustrated in Fig. 8.6. The optimum labor 
allocation for each curve can be found where T(r, L) reaches its minimum.                 

Observing Table 8.9 and Fig. 8.6, it is noteworthy that no matter how 
large a software engineering project is, the optimum labor allocations are 
mainly ranged within 1 through 10 persons. Any other solutions are not an 
optimal labor allocation, because they do not result in the shortest project 
duration, rather than create a dramatically large actual workload. 

This is the forth fundamental finding of the laws of coordinative work 
organization [Wang, 2007d] that leads to the following theorem. 
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Figure 8.6 Actual time against number of labors when W1 = 100PM  
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Proof: Reformatting Eq. 8.16 the following expression is obtained:    

        

        2
0

2r
L

=            (8.25) 

 
For a required L0 > 20.0P implies r < 0.005. Because an interpersonal 

coordination rate r less than 0.5% is impossible for carrying out any software 
engineering project, no project can be organized economically, efficiently, 
and technically sound in any form with more than 20.0 persons. 

Ignoring the above natural constraints as described in Theorem 8.10, 
i.e., adding more labor into a maximum labor allocated project, will result in 
an exponentially increased actual workload as shown in the trends of the 
curves in Figs. 8.5 and 8.6, or in other words, a project failure in reality.  

This is the fifth fundamental finding on laws of coordinative work 
organization. The truth has been evidenced by numerous failed projects in 
software engineering that involve hundreds of programmers in a single 
project [Brooks, 1975/95; Schonberger, 1981].   
 

 
This corollary is a direct extension of Theorem 8.10. Usually, setting of 

Tmin ≥ 10.0M is safe for W1 ≥ 100.0PM.          
It is noteworthy that Theorem 8.10 has ruled out the technical and 

economic feasibility for organizing large-scale software engineering project 
with a single large group. Therefore, the rational solution for real-world 
large-scale projects organization in software engineering is to adopt multi-

 

The 25th Principle of Software Engineering 
 

Theorem 8.10 The constraint on group size in coordinative work states 
that there exists an upper limit of group size Smax in coordinative work 
organization in software engineering, i.e.: 

 

Smax = max (L0(r))    
       = 20 [P]       (8.24) 

 

Therefore, large projects must be partitioned into multiple parallel groups 
that each of the groups obeys the same natural constraint.        

 

 

Corollary 8.4 A large software engineering project, W1 ≥ 100.0PM, with 
a higher coordination rate r, cannot be economically and feasibly 
completed with less than Tmin = 5.0 M.  
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groups in a hierarchical structure, rather than simply increasing the size of a 
single group. The only possible clue to do so is to divide the whole project 
into clearly partitioned and isolated parallel subprojects, provided that each 
of those subprojects should still obey the constraint on group sizes as given 
in Theorem 8.10.  

Further discussions on large-scale project organization may be referred 
to Chapters 10 through 13, particularly Section 10.3.5 on System 
Organization Trees, Section 12.6.2 on the Formal Economic Model of 
Software Engineering Costs (FEMSEC), and Section 13.5.2 on Theory for 
Large-Scale Software Engineering Project Organization. These chapters 
explain how large-scale projects may be organized by hierarchical structures 
according to theories of system science, management science, economics, 
and sociology. Special attention may be paid to Law 45 on FEMSEC 
(Theorem 12.3), Law 47 on organizational coordination efficiency (Theorem 
13.3), and Law 48 on time-oriented optimization for large-scale project 
organization (Theorem 13.4).  
 
8.5.4.2 Optimization of Project Organization for the Lowest Effort /Cost 
 

Using the data provided in Table 8.8, the curves of actual workloads 
with varying overhead rates against different number of labors are illustrated 
in Fig. 8.7.  

Observing Fig. 8.7, it can be seen that all curves obey Theorem 8.5 that 
states Wmin = W1, i.e., the minimum effort/cost can only be reached when the 
project is carried out by one person.   

 

 
According to Theorem 8.5 and Corollary 8.5, it is noteworthy that the 

group work in engineering organization is actually a generic mechanism and 
structure that allows the trading of time by labor as stated in the following 
corollary.      

 

 

Corollary 8.5 The strategy for optimizing a project for the lowest 
effort/costs is to set the project at Wmin(L1, T1). 
 

 

Corollary 8.6 Coordinative work organization by groups in engineering 
may gain time or shorten the project duration by using more man power, 
but cannot reduce the minimum project costs due to the natural constraint 
stated in Theorem 8.5, i.e., Wmin = W1(L1, T1). 
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Figure 8.7 Actual effort against number of labors when W1 = 10PM  

 
 
Actually, most coordinative engineering projects enable organizers to 

pursue an optimization strategy for both the shortest project duration and the 
minimum costs at the same time. In this generic case, the optimal strategy is 
still Wexp as stated below. 
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Example 8.5 In Example 8.1, the optimal work allocation has been 

determined as exp 0 min 5.0 4.0 20.0 [PM]W L T= • = • = . When the number 
of persons for this project is subjectively allocated by L = 9.0P, what will be 
the amount of the real workload W? How much effort would have been 
wasted due to this nonoptimal labor and time allocation?  

 
According to Eqs. 8.14 and 8.12, the duration T and the real workload 

W of this project for given L = 9.0P and r = 0.1 can be determined, 
respectively, as follows:       
 

1
1 2(  - )
2
0.5 10 (0.1 9.0 - 0.1 2/9.0)

5.0 1.02

5.1 [M]

T W rL r
L

= +

= • • • +

= •

=

 

                 

                              9.0 5.1

45.9 [PM]

W L T= •

= •

=

 

 
According to Corollary 8.7, due to the nonoptimal labor and time 

allocation in this coordinative project, the effort wasted, ∆W, can be expected 
as follows: 
 

      
exp

45.9 - 20.0

25.9 [PM]

W W W∆ = −

=

=

 

 

Corollary 8.7 The strategy for optimization of a coordinative project for 
both the shortest project duration and the minimum costs is to set the 
project at Wexp(L0, Tmin). Otherwise, the waste of effort ∆W can be 
determined as: 

    

                       
 

exp

0 min= ( ) ( )   [PM]

W W W

L T L T

∆ = −

• − •
     (8.26) 

 
where W is the realized workload due to a nonoptimal work allocation.   
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The above example demonstrates that, due to the exponential curves of 
W(r, L) as shown in Fig. 8.7, the average interpersonal coordination rate r is 
really the black hole that may consume a huge extra workload when the 
group size is not optimally determined in software engineering.     

     
8.5.4.3 Optimization of Project Organization by Controlling the 
            Interpersonal Coordination Rate     
 

It is noteworthy, in Examples 8.1 and 8.2, that the interpersonal 
coordination rate r may significantly affect the optimization results of a 
project plan. A complicated engineering project, particularly in software 
engineering, may be easily turned to a failure due to bad organizational 
decisions with a nonoptimal labor allocation as stated below.  

 

 
A rule of thumb in optimal decision making by controlling r may be 

derived from the data shown in Table 8.10. 
 

        
 
Observing Table 8.10 and Fig. 8.6, it is noteworthy that no matter how 

large a software engineering project is, the optimum labor allocations are 
mainly ranged within 1.0 through 20.0 persons (Theorem 8.10). Any other 
solution is not an optimum labor allocation, because they do not result in the 
shortest project duration rather than a creation of a dramatically large actual 
workload.  

 

 
The 26th Principle of Software Engineering 

  

Theorem 8.11 The risk of nonoptimal work organization states that the 
risks R due to irrational decisions of work organization are proportional 
to the coordination rate r in a project. That is, the higher the r, the higher 
the risk under nonoptimal labor allocation: 
 

                   r∝R               (8.27) 
 

 
Corollary 8.8 The higher the interpersonal coordination rate r, the longer 
the possible shortest development duration, and the higher the total actual 
effort; and vice versa.        
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Table 8.10 
The Optimum Labor Allocation and the Shortest Duration Minimum   

 

r L0 Tmin Wmin E1 
1.0 1.41 9.15 12.90 10.00 
0.9 1.49 8.90 13.26 10.00 
0.8 1.58 8.67 13.70 10.00 
0.7 1.69 8.30 14.03 10.00 
0.6 1.83 7.95 14.55 10.00 
0.5 2.00 7.50 15.00 10.00 
0.4 2.24 7.00 15.68 10.00 
0.3 2.58 6.25 16.13 10.00 
0.2 3.16 5.32 16.81 10.00 
0.1 4.47 4.00 17.88 10.00 

0.05 6.32 2.93 18.52 10.00 
0.01 14.14 1.35 19.09 10.00 

0.001 44.59 0.45 20.07 10.00 
0 ∞ 0 ∞ 10.00 

 

 
Corollary 8.9 proves there is the natural constraint on the upper limit of 

group size, L0, in software engineering project organization as stated in 
Theorem 8.10. No matter how much resources one would dispatch, the 
maximum team size of a software engineering project is constrained by the 
natural laws revealed in Theorems 8.4 through 8.11.                     

This section has addressed an age-old problem on coordinative project 
and group organization and optimization across many disciplines such as 
management science, operations theories, system science, software 
engineering, economics, and sociology. Conventional work has been focused 
on empirical studies of project planning and scheduling, and the inherent 
nature of the problem was hidden by too many trivial factors. This is the first 
time that it has been revealed that the interpersonal coordination rate in group 

 

Corollary 8.9 The optimal labor allocation in an individual software 
engineering project L0 is ranged between 10 to 3 persons corresponding 
to the constrained coordination rate 1% ≤ r ≤ 20%, i.e.: 

 

 
 

 

0

0 max

= 3 [P],   = 20%

= 10 [P],   = 1%
min max

min

L r

L r
−

−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
   (8.28) 
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is the black hole that has resulted in the failures of so many large-scale 
projects due to the exponential growing of unexpected actual workload under 
nonoptimal labor and work allocation. Based on the Wang’s laws and 
theorems of rational work organization theories, a wide range of applications 
in optimal software engineering organization may be conducted, such as the 
decision optimization strategies in engineering coordination, and the 
determination of the best labor allocation, the shortest duration, and the 
lowest effort (cost) in project organization. 

 
 

 
8.6 Empirical Software Engineering 
 

 
 
It is recognized that software engineering requires both theoretical and 
empirical research. The former focuses on foundations and basic theories of 
software engineering; whilst the latter concentrates on fundamental 
principles, tools/environments, and best practices. The primary 
methodologies for empirical studies in software engineering encompass case 
study, experiment, trial, benchmarking, and standardization. These empirical 
methodologies may usually involve surveys and statistical analysis 
technologies as well.    
 
 

8.6.1 SOFTWARE ENGINEERING CASE STUDIES   
 

Case study is the first primary method for empirical studies in software 
engineering.  

 
Definition 8.13 A case study is an intensive investigation and analysis 

of a particular technology, project, organization, or environment based on 
information obtained from a variety of sources such as interviews, surveys, 
documents, test or trial results, and archival records.         

  
Case studies link a theory to practice, which allow conclusions to be 

drawn about the suitability of a given method on real-world problems in 
industrial scales. They also enable inductive inferences on a general theory 
based on a set of empirical data and applications. 
 Case studies may be used to validate a theory or method by empirical 
tests. They are also useful for providing a counter instance for a generally 
accepted principle. However, the drawback of case studies as an empirical 
method in software engineering is the difficulties of data collection and the 
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generalization of findings via limited cases, particularly when they are 
positive but nonexhaustive.       
 
 
8.6.2 SOFTWARE ENGINEERING EXPERIMENTS   
   

Science as we know it today may be dated from the introduction of the 
experimental method during the Renaissance. It is a common means, in any 
scientific and engineering discipline, to gain empirical knowledge by 
conducting laboratorial and industrial experiments. The validation of 
empirical theories and best practices is by repetition and testing [Christensen, 
1997]. 

 
Definition 8.14 Experiment is a fundamental research approach to 

identify causal relationships among variables under a controllable 
environment.  
 
 Rene Dubos perceived [Beveridge, 1957]: “The experiment serves two 
purposes, often independent one from the other: it allows the observation of 
new facts, hitherto either unsuspected, or not yet well defined; and it 
determines whether a working hypothesis fits the world of observable facts.” 
 A major advantage of the experimental approach is that a causal 
relationship can be inferred with a high degree of control over irrelevant 
variables by either eliminating their influence or holding their influence 
constant. Another advantage is the ability to manipulate precisely one or 
more variables at one time in order to identify a possible causality.     
 The disadvantage of experiment is that laboratory findings are obtained 
in an artificial environment which precludes the generalization to a real-
world situation. Hence, more in vivo experiments and in-field trials need to 
be adopted as described in the following subsection.  
 Experiment is seen vital for validating and assessing software 
engineering methodologies and techniques. Victor Basili and his colleagues 
promoted the experimental approach to software engineering [Basili et al., 
1986/91]. Lawrence Votta and Adam Porter [Votta and Porter, 1995] 
proposed three types of experiments in software engineering as follows: 
 
      •  Individual vs. groups 
      •  Students vs. professional software developers 
      •  In vitro vs. in vivo studies 
 
where in vitro means in a controlled environment and in vivo stands for the 
way it really happens. 
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 A generic software engineering experiment may be carried out in the 
following process: experimental design, conduct the experiment and collect 
data, result analysis, and interpretation results. Similar to this experimental 
process, Pierre Bourque and Alain Abran developed an experimental 
framework for software engineering research [Bourque and Abran, 1996]. 
The framework provides a model of software engineering experiment, which 
consists of the phases of experiment definition, planning, operation, 
interpretation, and field testing. 
 The experimental framework begins with definition of the problem and 
hypothesis of the experiment. The design of the experiment and measurement 
criteria is conducted in the planning phase. When the goal and hypothesis are 
defined and methods and measures are selected, the experiment can then be 
carried out in the operation phase. The experimental results are described and 
analyzed in the interpretation phase, no matter whether the results are either 
positive or negative in validating the hypothesis. A well designed software 
engineering experiment may result in new findings, theories, models, lessons 
learned or validation of a method or tool. The early phases of experiment 
may be carried out in laboratories or development centers. Then, field testing 
is necessary to examine the theory, method, or model in the industrial setting 
of software development organizations.    
  Systematic elimination, or vary one thing at a time, is a widely 
accepted principle in carrying out experiments. W.I.B. Beveridge observed 
that “It is when experiments go wrong that we find things out [Beveridge, 
1957],” because a search for the unknown factor in an experiment may lead 
to an interesting discovery. Therefore he suggested that “A good maxim for 
the research man is: look out for the unexpected.” This truth of the matter 
also lies in Pasteur’s famous saying: “In the field of observation, chance 
favors only the prepared mind.” 
 
 
8.6.3 SOFTWARE ENGINEERING TRIALS  
 

When a system is newly developed and tested, trial should be carried 
out in parallel with existing system before a decision may be made for 
putting the new system into operation as the main and active system. 
Statistics show that problems and failures may intensively occur during the 
turn over between the existing and new system, because of both technical and 
operational reasons. 

 
Definition 8.15 System trial is a technology in empirical software 

engineering for safely putting a new system into operation.  
 

© 2008 by Taylor & Francis Group, LLC



634   Part III  Organizational Foundations of SE 
 
 The organization of software engineering trial is demonstrated in Fig. 
8.8. Parallelism and output comparison between the new and old systems are 
key techniques for trials. Therefore, it is unwise to throw away the existing 
system and cease traditional practices before it is for sure that the new system 
is working as specified and expected in the field. Otherwise, there will be no 
back-up system and users could not resume the conventional practice 
whenever the new system should fail.  
 

 

Figure 8.8 The architecture of software engineering trials 
  

A typical procedure for system trial in empirical software engineering 
is provided in Fig. 8.9 [Wang, 2004c]. The six steps of trial should be 
followed carefully, particularly for the two evaluations when switching the 
new system from the back-up state to the active state, and when the old 
system is going to be shutdown and the traditional practices are going to be 
ceased. 

 

 
Figure 8.9 The procedure of software engineering trials 
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 It is noteworthy that the criteria for retiring the old or existing system 
are threefold: a) The trial is completed and the new system can produce the 
same output under the same operational conditions in site; b) The 
performance of the new system is satisfied; c) The users have been trained 
and have already been used to the new system. The trial and old system 
retirement procedure is particularly vital for safety-critical and real-time 
systems in software engineering. 
    Pilot or preliminary experiment is a typical way of engineering trial, 
which uses a small scale experiment at the laboratory to seek an indication as 
to whether a full scale field experiment is warranted. A pilot project is often 
applied in software engineering to test a new technology, architecture, tool, 
or system platform. 
 
 
8.6.4 SOFTWARE ENGINEERING BENCHMARKING  

 
 Software engineering benchmarking is one of the important 

methodologies in software process engineering [Dutta et al., 1998; Wang, 
2001e; Wang et al., 98b/99b/01; Wang and King, 2000a/00b; Chiew and 
Wang, 2002]. Benchmarking and benchmark-based process improvement is a 
cutting-edge technology in empirical software engineering for adaptive and 
relative process improvement. 

  
Definition 8.16 A benchmark of a software engineering process system 

is a set of statistical reference data that represents the average performance 
and industrial norms of a set of processes in software engineering practices.  

 
The key value of the software engineering benchmarking technologies 

is the establishment of the industrial norms and the quantitative measurement 
of common and best practices in different regions. On the basis of the 
benchmarks, software organizations are able to determine their current 
positions in a region, and to compare their practices against peers in the same 
sector. One of the major application areas of software engineering 
benchmarking is benchmark-based process improvement. Another 
application area of benchmarking is to enable software development 
organizations to compare and better manage their process improvement 
activities through benchmarking analysis.  

A European process benchmark is developed by IBM (Europe) in the 
later 1990s, which encompasses 7 software engineering processes. Then, a 
series of worldwide surveys have been conducted by the author in order to 
establish a set of comprehensive benchmarks according to the Software 
Engineering Process Reference Model (SERPM) [Wang et al., 1998b/99a; 
Wang and King, 2000a] that consists of 51 processes characterized by 444 

© 2008 by Taylor & Francis Group, LLC



636   Part III  Organizational Foundations of SE 
 
Base Process Activities (BPAs). This section describes the design and 
establishment of the two software engineering process benchmarks. 

  
8.6.4.1 The IBM European Benchmarks on Software Engineering 
            Practices   
 

 The IBM European benchmarks on software engineering provide seven 
high-level processes known as those of the organization, process, quality, 
methods, technology, planning, and measurements [IBM, 1996/97]. All 
processes defined in the benchmark are performed slightly above level 5 in 
the scale of 1 to 10, except the measurement process, as shown in Fig. 8.10.      

In collaboration with IBM (Europe), the Center for Software 
Engineering at the Swedish Product Engineering Research Institute (IVF) 
conducted a national benchmarking survey to derive a national benchmark of 
software engineering practices for the Swedish software industry [IBM and 
IVF, 1997; Wang et al., 1998b/99b/99c/01]. The national benchmarks of 
software engineering practices are established against the seven IBM 
processes as illustrated in Fig. 8.10.  

Generally, almost all processes of the Sweden software industry have 
been performed above level 5. Particularly the performances of the 
organization, quality, and measurement processes have exceeded the 
European benchmarks. The average performance level of all benchmarked 
processes is 5.2. The overall average value is used as a general national 
benchmark, where if a software development organization has a total mean 
process performance higher than 5.2, it has reached and/or exceeded the 
national norm in software development practices. 
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Figure 8.10 IBM (Europe) benchmark of software engineering practices   
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 It is interesting to find that the Swedish national benchmarks are quite 
close  to  the  European  ones.  The  average  difference  of  all  processes  is 
only -0.6%. This means the software engineering practices in the Swedish 
software industry have generally reached the best European practice level. 
Magnified gaps between the two benchmarks are shown by the Gr curve, 
which indicates the strengths and weaknesses of the Swedish software 
industry against the IBM European benchmarks. 
 
8.6.4.2 The SEPRM Benchmarks on Software Engineering Processes 
 

 The IBM European benchmarks described in preceding subsection 
covered only 7 processes. There is thus a need to develop a comprehensive 
set of software engineering process benchmarks based on the SEPRM model 
[Wang et al., 1998b/99a; Wang and King, 2000a], which covers 51 processes 
characterized by quantitative process attributes [Wang, 2001e; Wang et al., 
98b/99b/00b/01]. A high-level hierarchical structure of the SEPRM 
framework is shown in Fig. 11.22 and detailed descriptions of the process 
model will be given in Table 11.22.  

 SEPRM is a comprehensive software process model which possesses a 
superset of software engineering processes identified in current process 
models and standards such as CMM [Humphrey, 1988/89/95; Paulk et al., 
1991/93/95], ISO 9001 [ISO 9001, 1989/94; ISO 9000-3, 1991], ISO/ICT 
15504 [ISO/ICT, 2000; Dorling, Wang, et al., 1999]. SEPRM supports both 
goal-oriented and benchmark-based process establishment, assessment, and 
improvement. 
 The SEPRM software engineering process benchmarks derived based 
on a series of worldwide surveys [Wang et al., 1998b/99b] are shown in Fig. 
8.11, where the number of a process corresponds to the serial number of 
processes in SEPRM as given in Table 11.22. 

 Based on the SEPRM benchmarks, the target capability levels for 
benchmark-based process improvement can be divided into three categories 
such as the basic, competitive, and advanced levels.    
 

 Definition 8.17 The basic level is the minimum level of process 
capability that a software organization should achieve in order to develop 
quality software according to the SEPRM benchmarks.  

 
The basic level is suitable as a target for initial software organizations 

that are in the early stages of software process establishment and 
improvement. 

    
Definition 8.18 The competitive level is an average level of process 

capability that ordinary software organizations have reached in software 
development according to the SEPRM benchmarks.  
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Figure 8.11 The SEPRM software engineering process capability benchmarks 

  
The competitive level is suitable as a target for the established software 

organizations that pursue a stable software engineering process system and 
systematic process improvement.         

 
Definition 8.19 The advanced level is the highest level of process 

capability that has been achieved by the top 10% of software development 
organizations according to the SEPRM benchmarks.  

 
The advanced level is suitable as a target for the experienced software 

organizations that aim at optimizing existing process systems and producing 
high quality software for complicated and/or mission-critical systems.              

One of the major application areas of software engineering 
benchmarking is the benchmark-based process improvement. Although the 
conventional goal-based process improvement technologies have been 
widely accepted, its philosophy of “the higher the better” has been 
questioned in practice. Particularly it is found that the determination of target 
capability levels for a specific organization tends to be virtual, infeasible, and 
sometimes overshot in the goal-based improvement approach. Benchmark-
based process assessment and improvement [Wang, 2001e; Wang et al., 
98b/99b/01; Wang and King, 2000a/00b; Chiew and Wang, 2002] provides a 
new approach to adaptive and relative process improvement based on a 
philosophy of “with a competitive margin just above the benchmarks.” 
According to the benchmark-based process improvement method, the target 
capability levels of given software processes may be set relative to the 
benchmarks of the software industry, rather than to the virtually highest 
capability level as in a goal-based process approach.       
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 Another application area of software engineering benchmarking is to 
enable software development organizations to compare and better manage 
their process improvement activities through benchmarking analysis. The key 
value of the software engineering benchmarking technologies is the 
establishment of the industrial norms and the quantitative measurement of 
common and best practices in different regions. On the basis of the 
benchmarks, software organizations are able to determine their current 
positions in a region, and to compare their practices against peers in the same 
sector. 

 
8.6.5 SOFTWARE ENGINEERING STANDARDIZATION  
 

Standardization is an attempt to regulate, integrate, and optimize 
existing methodologies and best practices in engineering research and in the 
industry. This subsection presents three categories of software engineering 
standards: the software development standards, software quality standards, 
and software engineering process standards.            

Considering that a variety of software process models have been 
developed by international, national, professional, and industrial institutions 
in recent decades, standardization is a timely strategic action in this 
discipline. Standards are often arrived, however, at as the result of trade-offs 
between cutting-edge development and existing ones that are widely 
accepted as good practices. The active international standardization bodies in 
areas of software engineering, software process, and software quality are The 
International Organization for Standardization (ISO), and The Institute of 
Electrical and Electronics Engineers (IEEE).  

 Software engineering standards are not only records of best practices, 
but also means for reconciling successful practices with the underlying 
principles of the profession [Wang, 2001b]. Therefore, software engineering 
standards should be best practices validated by successful patterns of 
applications and rooted rationalized fundamental software engineering 
principles.   
 
8.6.5.1 Software Development Standards 
 

Historically, the standards for software engineering were focused on 
software development standards in the 1980s. Such standards include IEEE 
STD 1016 – Recommended Practice for Software Design Description, IEEE 
STD 830 – Guide to Software Requirements, IEEE STD 1012 – Software 
Verification and Validation Plans, IEEE STD 829 – Software Test 
Documentation, and IEEE STD 1008 – Software Unit Testing [IEEE, 
1983/89; James, 1998]. 
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 In the 1990s, the effort of international software engineering 
standardization has been shifted to software quality and software engineering 
processes standards, which represents the new focus and industrial needs. 
        
8.6.5.2 Software Quality Standards 
 

 Software quality system standardization is covered by the research 
inherent in the ISO Technical Committee (TC) 176 on quality management, 
quality assurance, and generic quality systems. A major serial standard 
developed by ISO TC176 is ISO 9000 (1987/91/93/94). ISO 9000 was 
published in 1987 and revised in 1994. ISO 9000 has been recognized 
worldwide for establishing quality systems. It is designed for quality 
management and assurance, which specifies the basic requirements for 
development, production, installation, and service at system and product 
levels. ISO 9000 provides a management organization approach, a product 
management system, and a development management system based on 
quality system principles. 

 Within the ISO 9000 suite, ISO 9001 and ISO 9000-3 are applicable to 
software quality systems for certifying the processes, products, and services 
within a software development organization according to the ISO 9000 
model. ISO 9001 aims to set minimum requirements for a general quality 
management system. According to recent surveys [Wang and King, 2000b] 
the ISO 9001 model is the most popular quality system model in the global 
software industry. However, because ISO 9001 treats software development 
processes in the same way as any mass manufacturing system, its suitability 
to the creative and design-intensive software development processes is still 
uncertain.  

 ISO 9001 models a software quality system in 3 subsystems, 20 Main 
Topic Areas (MTAs), and 177 Management Issues (MIs) [ISO 9001, 1994; 
Jenner, 1995]. ISO 9001 provides a one-dimensional checklist-based 
software quality system assessment method. On the basis of feedback from 
both industries and researchers, a significant trend in ISO 9000/9001 revision 
(2000) is to shift from a check-list based quality system standard to a 
process-oriented one. The new version of ISO 9001 will include a process 
model based on Deming’s Plan-Do-Check-Act cycle for product, service, and 
management processes. Also, ISO 9001:2000 will merge the 1994 versions 
of ISO 9001, ISO 9002, and ISO 9003 into a single and integrated standard. 
The 20 MTAs of ISO 9001 will be re-organized into 21 processes that are 
categorized into four primary processes: management responsibility, 
resource management, product realization, and measurement, analysis and 
improvement. New requirements in ISO 9001:2000, such as customer focus, 
establishment of measurable objectives, continual improvement, and 
evaluation of training effectiveness, are added for enabling quality process 
assessment and improvement.        
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 Another important software quality standard is ISO 9126 – Software 
Product Evaluation – Quality Characteristics and Guidelines for Their Use 
[ISO 9126, 1991]. ISO 9126 extends principles of quality control to software 
and summarizes the major characteristics and attributes of software quality.  
For an overview of ISO 9126 software quality model refer to Table 11.19.  

 ISO 9126 adopted a black-box philosophy that represents the 
customer’s view of software products and systems. Further investigations 
[Dromey, 1995] argued that the ISO 9126 model has been focused only on 
the external attributes of software quality. Substantial internal attributes of 
software quality, such as of architecture, reuse description, coding styles, test 
completeness, run-time efficiency, resource usage efficiency, and exception 
handling, have not been modeled. In other words, the internal quality 
attributes of software may be characterized by the software engineering 
process-oriented standards and models. This observation explores an 
interesting connection between the process standardization and quality 
standardization in software engineering.  
 
8.6.5.3 Software Engineering Process Standards             
 

A number of software engineering standards and models have been 
developed in the last decade, such as TickIT [DTI, 1987; TickIT, 1987], ISO 
9001 [ISO 9001, 1989/94], CMM [Humphrey, 1988/89/95; Paulk et al., 
1991/93/95], ISO/IEC 12207 [ISO/IEC 12207, 1995], ISO/IEC 15504 
[ISO/IEC 15504, 2000]. In addition, a number of regional and internal 
models have been adopted. According to a recent worldwide survey [Wang 
and King, 2000], ISO 9001 is the most popular standard in software 
engineering followed by CMM and ISO/IEC 15504. Some regional, internal, 
and industry sectors’ process models, such as Trillium, also share a 
significant part of application in the software industry. 

The process-related standards are developed within the international 
and professional standardization organizations such as the ISO/IEC 
JTC1/SC7 software/system engineering subcommittee and the IEEE. 
Significant standards coming forward are inter alia, ISO/IEC 12207 (1995) 
on Software Life Cycle Processes, ISO/IEC 15288 (1999) on System Life 
Cycle Processes, and ISO/IEC 15504 (2000) on Software Process 
Assessment and Capability Determination.     

 Major trends in software engineering process standardization have been 
considered to integrate the existing process-related standards and models, but 
standardization may also cover new process areas in software engineering. 
For instance, ISO/IEC 15504 is to align its process dimension to ISO/IEC 
12207. In addition, extension for ISO/IEC 15504 has been proposed to cover 
some system life cycle processes, such as acquisition processes and broader 
system environment processes [Dorling, Wang et al., 1999; Wang and King, 
2000a].  
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 It is noteworthy that the list of software engineering standards is 
continuously expanding. As the evolution of software engineering theories, 
methodologies, and practices gets faster, more and more areas are expected 
to be covered by efforts in software engineering standardization. Candidate 
examples might be new standards for system requirement definition, domain 
knowledge infrastructures, software architectures/frameworks, and software 
engineering notations. 
 
 
 
8.7 Summary 
 

 
 
Engineering is a technological and organizational methodology and 
approach by which human beings can repetitively plan, design, develop, 
produce, maintain, and/or use complicated artefacts, in rigorous, systematic, 
efficient, and refining processes, that cannot be done by individuals. 

Engineering is a process that converts theoretical concepts into useful 
applications to satisfy human needs. Engineering approaches and generic 
engineering principles form a part of the basic theoretical and empirical 
foundations of software engineering.  

Software engineering is a discipline that adopts engineering 
approaches to develop large-scale software with high productivity, low cost, 
controllable quality, and measurable development schedules. Engineering 
principles for software engineering can be elicited on engineering objectives, 
organization, technology, professionalism, and domain characteristics. 
 This chapter has explored the generic engineering principles and 
engineering professionalism. The organizational theory for software 
engineering has developed, which reveals how software engineering projects 
may be optimally organized. A set of empirical methodologies for software 
engineering, such as case studies, experiments, trials, benchmarking, and 
standardization, has been described. As a result, the engineering 
foundations of software engineering have been established.   
 
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, on Engineering Foundations of Software 
Engineering, readers have achieved the following strategic aims with the 
knowledge architecture as summarized below. 
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Chapter 8. Engineering Foundations of SE  

 
■ Generic Engineering Approaches 
       •  Engineering emerged from the industrial revolutions 
       •  The generic scientific method 
       •  Engineering vs. sciences 
       •  Fundamental goals and constraints of engineering  
       •  Generic engineering approaches 
       •  The generic engineering maturity model (EMM) 
 
■ Basic Engineering Principles 
       •  Principles of engineering organization 
       •  Principles of engineering technology 
       •  Principles of engineering management   
       •  Principles of engineering professionalism 
 
■ Engineering Principles for Software Engineering 
       •  The engineering characteristics of software engineering 
       •  Division of labor 
       •  Characteristics of software engineering in the engineering age 
       •  Unique principles of software engineering 
       •  Professionalism of software engineering  
 
■ The Theory of Software Engineering Organization 
       •  The characteristics of coordinative work in engineering 
            - The mechanisms of coordinative workload and effort  
            - The rate of interpersonal coordination   
            - The overhead of interpersonal coordination  
            - The nature of coordinative work in engineering  
 

       •  Laws of work organization in software engineering 
            - The laws of incompressibility of software engineering workload 
    - The laws of interchangeability between labor and time in 
               software engineering  
            - The laws of the shortest duration of coordinative word in 
               software engineering  
 

       •  The mythical man-month explained 
 

       •  Decision optimization in software engineering 
            - Optimization of project organization for the shortest duration   
            - Optimization of project organization for the lowest effort/cost  
            - Optimization of project organization by controlling the 
               interpersonal coordination rate   
 

© 2008 by Taylor & Francis Group, LLC



644   Part III  Organizational Foundations of SE 
 
■ Empirical Software Engineering 
       •  Software engineering case studies  
       •  Software engineering experiments  
       •  Software engineering trials 
       •  Software engineering benchmarking 
            - The IBM European benchmarks on software engineering 
               practices  
            - The SEPRM benchmarks on software engineering processes  
 

       •  Software engineering standardization 
            - Software development standards   
            - Software quality standards   
            - Software engineering process standards  
 
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• Engineering is a concept of industrial organization emerged from the 
industrial revolution. Large software systems are among the most complex 
systems engineered by man. 

 
• Engineering approaches to large-scale software development are 

those of established methodologies, processes, tools, standards, organization 
methods, management methods, and quality assurance systems.  

 
• Every engineering discipline in the modern industries has been 

developed and matured in the same approach. The generic engineering 
approach is characterized by the following activities: a) To identify 
repeatable work processes; b) To identify standard and reusable components 
of products; c) To adopt division of labor; d) To equip specialized tools for 
the roles and processes; and e) To recognize management as a profession for 
organization of the processes and for co-ordination of the roles.         

 
• Engineering disciplines emerged and developed in the industrial 

revolutions share the following common principles for engineering 
organization: a) Apply systematic processes; b) Adopt division of labor; c) 
Support co-operative work; d) Adopt quantitative measurement; e) Establish 
standards; f) Use tools and machinery; g) Plan actual schedule; h) Optimise 
resources allocation; i) Derive predictable outputs; and j) Seek controllable 
quality. 
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• The coordinative work organization theory (Theorem 8.4 through 
8.11) for engineering project organization in general, and for software 
engineering project organization in particular, reveals that a set of key 
factors in coordinative engineering organization, such as the optimal labor 
allocation, the shortest project duration, the minimum expected 
workload/effort/costs, and the interchangeability between labor and time, is 
constrained by natural laws and a certain sequence for their determinations.    

 
• The generic form of workload in coordinative work is always 

supplemented by an inevitable overhead, which is determined by the 
interpersonal coordination rate r in a multi-person project that formally 
and systematically explains the mythic man-month in software engineering 
(Theorem 8.7 and the Pigeon diagram).   

 
• It is recognized that any theory, method, or technology has its own 

limitations and constraints. Therefore, to a certain extent, science and 
engineering are the searching of the maximum extent of general relations 
between entities, phenomena, and behaviors under a set of constraints.         

 
 

FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Generic Engineering Approaches 
 

• The great achievement of the engineering approach to 
industrialization results in extended human capability, improved 
productivity, and reduced skill requirement. The industrial revolution 
extended human physical capability by machines and engines. The 
information revolution is focused on the extension of human intelligence, 
memory, and the capacity for information processing by computers, 
communication networks, and robots. 

 
 • The essence of engineering is the organizational methodology for 
enabling coordinative team work in order to produce a complex product, or 
achieve a common goal, which could not be reached by individuals 
physically, technically, and/or economically. 
 

• Science is a process of inquiry for generating a body of knowledge. 
The objectives of science are description, explanation, prediction, and control 
of category of objects under study. Engineering is an approach by which 
human being can repetitively plan, design, develop, produce, maintain, 
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and/or use complicated artifacts in a rigorous, systematic, and refining 
process. 

 
• Scientists explore what is; while engineers find out how to do. 

Science transfers information about nature into knowledge and theories; 
while engineering embodies knowledge into methodologies and products. 

 
• The criteria that constitute a good hypothesis in scientific study are 

causality, originality, generality, predictability, and falsifiability. 
 
• Sciences pursue originality, simplicity, and generality in principles 

and theories. In addition to the goals of sciences, engineering seeks 
efficiency, productivity, and quality in implementation of scientific principles 
and theories into repetitive and mass production. 

 
• The law of conservation of basic engineering constraints, states 

that the three basic constraints of engineering objectives known as time (T), 
costs (C), and utility (U) are conservative in a given engineering context (Eq. 
8.12). 

 
• The engineering maturity model (EMM) of applied engineering 

disciplines states that there are four levels of engineering maturity, known as 
the phases of emergence, art, engineering, and post-engineering, in the 
evolution of any engineering discipline.  

 
Basic Engineering Principles 
 
 • The fundamental engineering principles can be classified into the 
principles of engineering objectives, organization, technology, management, 
and professionalism.  
 

• A significant part of the common engineering principles has not been 
systematically adopted and implemented in software engineering yet.  
 
Engineering Principles for Software Engineering 
 

• Special characteristics of software engineering are identified as:  

a) Intangible objects and work products, and intricate 
relations and interactions between them;  

b) Problem domain is infinite including all application areas 
of all existing engineering disciplines;  
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c) Software engineering is design intensive opposed to 
repetitive production;  

d) Application development is one-off activity;  

e) Development processes are stable and repetitive;  

f) A software design and implementation is only one of all 
possible solutions for a real-world problem on the basis of 
tradeoffs and constraints; 

g) Software engineering needs new forms of descriptive 
mathematics that are different from current analytic ones. 

 
The Theory of Software Engineering Organization 
 

• The coordinative workload in engineering states that the actual 
workload W of a coordinative project is a function of the average 
interpersonal coordination rate r and the number of labor L in the project 
(Theorem 8.4). 
 

• The incompressible workload states that a given ideal workload W1 
in software engineering can not be compressed by any kind of labor 
allocation, i.e.: W ≥ W1 = Wmin (Theorem 8.5). 
 

• The interchangeability of labor and time (ILT) states that, for a 
given workload W, labor L and duration T are transformable under the 
condition of Eq. 8.14 (Theorem 8.6). 

 
• The shortest duration of coordinative work states that there exists 

the shortest duration Tmin under the optimum labor allocation L0 for a given 
ideal workload W1 with a certain interpersonal coordination rate r (Theorem 
8.7) 
 

• An optimal work organization must be carried out in the following 
order for a given coordinative project: a) To determine the optimal labor 
allocation L0 (Eq. 8.16); and b) To obtain the shortest duration of the 
coordinative work Tmin under L0 (Eq. 8.15). 
 

• Labor and time are bidirectionally interchangeable or transfor-
mable in coordinative work organization under the constraints of Theorems 
8.4 through 8.9. 
 

• The constraint on group size in coordinative work states that there 
exists an upper limit of group size Smax in coordinative work organization in 
software engineering, i.e., Smax = max (L0(r)) = 20 [P]. Therefore, large 
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projects must be partitioned into multiple parallel groups that each of the 
groups obeys the same natural constraint. (Theorem 8.10)       
 

• The strategy for optimization of a coordinative project for both the 
shortest duration and the lowest cost is to set the project at Wexp(L0, Tmin). 
Otherwise, the waste of effort ∆W can be determined as 

exp 0 min = ( ) ( ) [PM]W W W L T L T∆ = − • − • , where W is the realized 
workload due to a nonoptimal work allocation (Corollary 8.7).   
 

• The risk of nonoptimal work organization states that the risks R 
due to irrational decisions of work organization are proportional to the 
coordination rate r in a project. That is, the higher the r, the higher the risk 
under nonoptimal labor allocation, i.e., r∝R  (Theorem 8.11). 
 
Empirical Software Engineering 

 
• Theoretical software engineering focuses on foundations and basic 

theories of software engineering; whilst empirical software engineering 
concentrates on heuristic principles, tools/environments, and best practices. 
The primary methodologies for empirical software engineering are case 
study, experiment, trial, benchmarking, and standardization.  

 
• A case study is an intensive investigation and analysis of a particular 

technology, project, organization, or environment based on information 
obtained from a variety of sources such as interviews, surveys, documents, 
test or trial results, and archival records.         
 

• Experiment is a fundamental research approach to identify causal 
relationships among variables under a controllable environment.  
 

• System trial is a technology in empirical software engineering for 
safely putting a new system into operation. 

 
• A benchmark of a software engineering process system is a set of 

statistical reference data that represents the average performance and 
industrial norms of a set of processes in software engineering practices. 

 
• Standardization is an attempt to regulate, integrate, and optimize 

existing methodologies and best practices in engineering research and in the 
industry. This subsection presents three categories of software engineering 
standards: the software development standards, software quality standards, 
and software engineering process standards.            
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Questions and  
Research Opportunities 
 

 
 
8.1  What is engineering and why did it emerge from the industrial 

revolutions? 
 

8.2  What are the differences between science and engineering in 
terms of their objectives, methodologies, criteria, and embodied 
results? 

 
8.3  Compare and contrast the generic engineering approaches and the 

generic scientific method. 
 
8.4  What are the generic engineering principles? How can software 

engineering learn from them?  
 
8.5  What is the nature of software engineering? Is software 

engineering unique or special in relation to the other engineering 
disciplines? 

  
8.6  Is software development an engineering discipline? Are software 

developers engineering professionals? May both answers to the 
first two questions not be the same?     

 
8.7  According to the EMM model (Theorem 8.3), discuss the 

following: a) Why should software engineering be considered as 
an engineering discipline even if it is immature at the given time? 
b) What will software engineering lead to (give birth) when it is 
matured?       

 
8.8  Can software engineering methodologies and approaches be 

applied to other engineering disciplines? Try to provide an 
example. 

 
8.9 Following Ex. 8.4, discuss how to implement the generic 

engineering principles in software engineering. 
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8.10  What is the fundamental difference between the objects under 

study in traditional engineering disciplines and software 
engineering? 

 
8.11  In Section 3.5.1 eight fundamental cognitive characteristics of 

software engineering are identified. Choose one of them and 
explain its impact on the engineering of software development.     

 
8.12  The three constraints of the basic objectives of engineering, 

known as Time (T), Costs (C), and Utility (U), are conservative in 
a given engineering context according to Theorem 8.2. When the 
duration of a software project should be reduced, what would be 
the consequences on the other constraints?          

 
8.13  According to Theorems 8.4 and 8.7, explain the organizational 

reasons of a significantly high failure rate of software engineering 
projects in history? 

 
8.14  When 6 programmers work together in a project team, what is the 

number of pairwise relations n? If the number of programmers is 
increased to 30, what is the impact on n?   

 
8.15  How can programmer group(s) be optimally organized in large-

scale software engineering projects? Discuss the situations with 
less than 10 and more than 20 persons in a group, respectively.       

 
8.16  What are the profound factors that constitute coordinative team 

work in software engineering? 
 
8.17   Whether labor L or duration T is arbitrarily determinable for a 

given workload W in a coordinative software engineering project? 
What is the law that constrains the determination of them?        

 
8.18  Are time T and labor L interchangeable for a given workload W in 

software engineering? If so, what would be the constraints for the 
interchangeability between them? 

 
8.19 The average interpersonal coordination rate r (Definition 8.8) 

can be determined as follows: r = t’ / (t + t’), where t is the total 
time an individual used on pure software development tasks; t’ is 
the total time one spent in work that is not directly used in 
software development such as meetings, discussions, 
communications, learning, training, travel, in site testing, services, 
etc.  
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Fill in the following form using your data during work, practice, 
or study (if you are a student), and analyze your findings.         

 

No. Process Method (conventional) 
r (0.5% – 100%) 

Method (Agile or XP) 
r (0.5% – 100%) 

1 Design  
2 Coding  
3 Integration and testing  
4 Maintenance  
5 Average   
6 Size of the project (PM)    

 
8.20 Assume the ideal workload of a software engineering project is 

expected to be W1 = 100.0PM, the organization has up to 30 
persons available, and the average interpersonal cooperation rate r 
= 20%. 

          
(a) According to the ILT Law (Theorem 8.6), determine the 

optimal allocation of labor L0 and then the shortest expected 
project duration Tmin for this project.  

 
(b) What is the expected workload Wexp that this project may 

achieve under the optimal labor allocation and the shortest 
project duration as obtained in (a)? 

 
(c) When the number of persons for this project is subjectively 

allocated as L = 25P, what would be the resulted real 
workload (W)?  

 
(d) How much effort would be wasted in solution (c) due to the 

nonoptimal labor and time allocation? (Hint: Consider ∆W 
= W – Wexp).  

 
8.21   According to Theorem 8.6, given W1 = 6.0PM, Wmin = 12.0PM, 

and r = 0.5, when 10 persons are subjectively allocated to a 
project, how much effort would be wasted in this project due to 
the nonoptimal labor and time allocation?  

 
8.22   What is the black hole in coordinative work organization that 

would result in the unexpected wastage of huge extra workload 
and resources in software engineering? 
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8.23   According to Law 25 (Theorem 8.7), explain why the key reasons 

that cause so many failures of large-scale software engineering 
projects are not purely technical ones, but mainly organizational 
reasons that result in nonoptimal coordinative work organization 
in complicated software engineering projects.  

 
8.24   Why should an optimal work organization be determined in the 

rational order from the optimal labor allocation L0 to the shortest 
project duration Tmin? What would be the consequences if this law 
is not obeyed in project planning and organization?   

 
8.25   Five empirical methodologies for software engineering, known as 

cases studies, experiments, trials, benchmarking, and 
standardization, have been discussed in Section 8.6. Try to 
develop a table to compare the advantages and disadvantages of 
these empirical methodologies in software engineering research 
and practice. 

 
8.26  How to implement division of labor in software engineering? 
 
8.27   According to the procedure of software engineering trials, explain 

why a software system trial should be divided into four phases, 
and what the conditions of each transition to the next phase are. 

 
8.28   Given a heuristic principle of software engineering, such as 

review/inspection or system engineering, which empirical 
method(s) you would like to use in order to validate it in software 
engineering. Why? 

 
8.29      Why do ethics and professionalism play important roles in 

software engineering? 

 
8.30  Discuss the following software engineering situations that require 

good ethical judgment of a software engineer [Vliet, 2000]: 
 

Suppose you are testing a part of a big software system. You find 
quite a few errors and you are certainly not ready to deliver. 
However, your manager is pressing you. The schedule has already 
slipped by quite a few weeks. Your manager in turn is pressed by 
his boss. The customer is eagerly awaiting delivery of the system. 
Your manager suggests that you should deliver the system as is, 
continue testing, and replace the system by a better version within 
the next month.  
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      • How would you react to this scheme? 
      • Would you simply give up? 
      • Argue with your manager? 
      • Go to his boss? 
      • Go to the customer? 

 
8.31 An argument on software engineering is that because both 

professionals and amateurs can write programs, programming has 
no scientific foundations. Do you agree with this observation? 
Why?     

 
8.32   Read the following classic article in software engineering: 
 

David L. Parnas (1995), On ICSE’s ‘Most Influential’ 

Papers, ACM Software Engineering Notes, 20(3), pp. 

29-32. 
 

Discuss the following topics in a group: 
 
                     •  About the author. 

• What are the major problems in software engineering 
research according to the author?  

•  What is the relationship between proven theories and 
empirical methodologies of software engineering? 

      •  What conclusions of the article interested you? Why? 
      •  Your argument(s) or counter-points on any of the 

conclusions derived in this article. 
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Knowledge Structure 
 

 

 Cognitive informatics  

     •  Cognitive philosophy                                •  Neural informatics foundations of the brain 
     •  The emergence of cognitive informatics    
     •  The theoretical framework of cognitive informatics 

 Cognitive informatics models of the brain  

     •  The Layered Reference Model of the Brain (LRMB)  
     •  Cognitive properties of internal information 
     •  Natural intelligence vs. artificial intelligence  
     •  The cognitive model of the brain  

 Cognitive informatics of knowledge representation  

     •  The Hierarchical Neural Cluster (HNC) model of memory 
     •  The Object-Attribute-Relation (OAR) model of internal information representation 
     •  The extended OAR model of the brain 
     •  The cognitive mechanisms of long-term memories 
     •  The memory capacity of human brain 

 Cognitive informatics for software engineering  

     •  Cognitive informatics properties of SE                             •  SE psychology 
     •  The cognitive foundation of software comprehension      •  SE skills and experiences 

 Cognitive complexity of software  

     •  The relative cognitive weights of generic software structures  
     •  Psychological experiments on the cognitive weights  
     •  Calibration of the relative cognitive weights of BCS’s 
 

 

Learning Objectives 
 

      

   •    To understand the need for extending informatics to the study of the brain –  
a profound problem shared by almost all science and engineering disciplines.  

   •     To be aware of the neural informatics foundation of cognitive informatics.       
   •  To recognize the theoretical framework of cognitive informatics.    
   •  To understand the cognitive informatics models of the brain (i.e., LRMB, 

intelligence model of the brain, logical model of the brain).  
   •  To understand the cognitive models of internal knowledge representation   

(i.e., HNC, OAR, EOAR).   
   •  To appreciate the cognitive informatics foundations of software engineering 

for addressing the cognitive constraints of software engineering. 
   •  To understand the cognitive complexity of software and the relative 

cognitive weights of BCS’s.   
 

 

9. Cognitive Informatics Foundations of SE 
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 “Knowingness is a cognition, so is unknowingness.” 
 

Confucian (551 – 479BC) 

 
 “I think, therefore I am” 

 
Rene Descartes (1596-1650) 

 
 “Elaborate apparatus plays an important part in the science of today, but I 

sometimes wonder if we are not inclined to forget that the most important instrument 
in research must always be the mind of man.” 

 
W.I.B. Beveridge (1957) 

 
 

9.1 Introduction 
 

 
 

n Chapter 7, it is reviewed that information science or informatics has 
developed from the classical information theory, contemporary 
informatics, to cognitive informatics in the past half century. Cognitive 

informatics is coined by Yingxu Wang in 2002 in the IEEE First 
International Conference on Cognitive Informatics (ICCI’02) [Wang, 2002d; 
Wang et al. 2002a]. Since then, it has been widely received as an emerging 
cutting-edge discipline that forges links between computing, cognitive 
psychology, information science, and software engineering.  
 It is identified that information is the product of either natural 
intelligence or machine intelligence, and the third essence of the natural and 
the perceived world. In computing, software engineering, informatics, 
intelligence science, and psychology, almost all hard problems yet to be 
solved share a common root in the understanding of the mechanisms of 
natural intelligence and the cognitive processes of the brain. This leads to the 
emerging discipline of research known as cognitive informatics [Wang, 
2002d/02e/03a/03b/06b/06j/07a/07b; Wang and Wang, 2006; Wang and 
Kinsner, 2006; Wang et al. 2002a/06]. 

Cognitive informatics is the transdisciplinary study of cognitive and 
information science that investigates into the internal information processing 
mechanisms and processes of the natural intelligence – human brains and 
minds.  

The study on cognitive informatics is triggered by the fundamental 
wonder of mankind to understand the brain – a quest is certainly as long as 
the human history itself. Studies of the brain were originally conducted in the 

I 
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domain of philosophy and psychology. Though, it is noteworthy that 
psychology was a part of philosophy in the early phase development of 
natural sciences [Leahey, 1980; Wilson and Keil, 2001]. Psyche means spirit 
or soul in both Greek and Latin. In 2500BC, the ancient Egyptians believed 
that the heart was the true seat of intelligence. It was not until 450BC, Greek 
physician Alcmaeon found that the brain is the central organ of sensations 
based on anatomic dissections of animals.  

Psychological thoughts can be traced back to Plato and Aristotle in 400 
to 320BC [Plato, 1961/75; Aristotle, 1925]. Plato (428-347BC), Greek 
philosopher, observed that philosophy begins in human wonder, a powerful 
desire to understand the world, not merely to act in it as animals do. Aristotle 
(394-322 BC), a quester for the nature, perceived psychology as the study of 
the soul, ‘the form of a natural body having life potentially within it,’ which 
differentiates the animate world from the inanimate one. However, Aristotle 
had also believed till 335BC that the organ of thought and sensation is the 
heart, and the brain is a radiator to cool it. After nearly half a century, 
Herophilus and Erasistratus first dissected a human body and found the 
nervous system of the brain in 300BC.  

Psychology, as we know it, began with Rene Descartes (1596-1650), 
who in 1649 proposed that the brain functions like a machine [Descartes, 
1979]. Descartes had also created a framework for thinking about mind and 
body for philosophers and psychologists. Then, after about 200 years, 
Wilhelm Wundt (1832-1920) found psychology as a science discipline by 
initiating a link between physiology and philosophy via an experimental 
approach in 1873 [Wundt, 1873].                   
 The study on cognitive informatics is also rooted in the quests in life 
science, natural intelligence, and their interactions with machines and 
artificial intelligence. 
   

Definition 9.1 A living organism is a physicochemical structure and 
process that possesses a high degree of complexity and is capable of self-
regulation, metabolism, and perpetuates itself through time.       
 

The primarily attributes of living organisms are featured as the 
following general characteristics [Fried and Hademenos, 1999]:     
 

• Movement: The motions within the organisms or locomotion of 
the organisms through its environment. 

• Irritability: The capacity to respond in a characteristic manner to 
stimuli in the internal or external environment.    

• Growth: The ability to increase their mass of living materials by 
assimilating new materials from the environment.     
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• Adaptability: The tendency to undergo or institute changes in 
their structure, function, or behavior that improve their capacity to 
survive in a particular environment.      

• Reproduction: The ability to reproduce new individuals like 
themselves.  

• Lifecycle: The existence of a clear lifecycle and life span for a 
given generation.  

 
According to the IME model (Theorem 1.2), information theories 

discussed in Chapter 7 can be classified as the external informatics. 
Complementary to it, there is a whole range of new research areas known as 
cognitive informatics that studies the mechanisms of internal informatics 
inside the brain.  

 
Leveson stated that “If our problems in building and interacting with 

complex systems are really rooted in intellectual manageability and human 
limits in managing complexity, then we will need to stretch these limits to 
build ever more complex systems [Leveson, 1995].” Large-scale software 
systems are highly complicated systems that humans have ever been handled 
or experienced before. Software is a unique abstract artifact that does not 
obey any known physical laws. However, it is recognized that software 
should be constrained by the laws of cognitive informatics, mathematics, and 
systems as explored in this book. This section explores theories of cognitive 
informatics and its potential impacts on, and applications in, information-
based sciences and engineering disciplines, particularly software engineering. 
The mathematical and system foundations of software engineering are 
presented in Chapters 4 and 10, respectively.        
 

This chapter describes the cognitive informatics and intelligent 
behavioral metaphor of software and software engineering. In the remainder 
of this chapter, the cognitive informatics foundations of software engineering 
will be presented in five sections. Section 9.2 introduces the new 
transdisciplinary field of study known as cognitive informatics. Section 9.3 
develops cognitive informatics models of the brain, such as the layered 
reference model of the brain, the cognitive models of memories, and the 
cognitive model of natural intelligence. Section 9.4 explores the cognitive 
model of internal information presentation in the brain, particularly the 
object-attribute-relation model. Section 9.5 presents the cognitive informatics 
foundations of software engineering, which leads to the understanding and 
formal measurement of the cognitive complexity of software systems in 
Section 9.6. 
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9.2 Cognitive Informatics 
 

 
 
Cognitive informatics is the science for brain and natural information 
processing. A profound problem in natural and engineering sciences is 
cognitive informatics, which studies the mechanisms and processes of the 
brain in information processing, and the understanding of the natural 
intelligence. The cognitive informatics foundations are shared by 
multidisciplinary studies, such as philosophy, psychology, computing, 
software science (engineering), informatics, neuroscience, neurobiology, 
mathematics, and linguistics. 
 
 

9.2.1 COGNITIVE PHILOSOPHY 
 

It is interesting to note that philosophers all over the world shared 
similar perceptions towards cognition, information, and the natural 
intelligence. A historical story is told of two Chinese philosophers walking 
around a lake and seeing fishes swimming and jumping lively and freely in 
the water. The following dialogue took place (Zhuang Tsui, 369BC - 286BC, 
Chuang Tsui • Outer Chapters, Chapter 17, Autumn Water): 

 
Philosopher A:   “The fishes must be very happy because they 

are lively playing in the lake. 
Philosopher B:   “Well, you are not a fish. How do you know that 

they are happy? 
Philosopher A:   “Then, you are not me. How do you know that I 

don’t know the feeling of the fishes. 
Philosopher B:   “Just as I am not you, I don’t know you; You are 

not a fish, therefore you don’t know the feeling 
of the fishes. 

Philosopher A:   “As you claim that I don’t know something, you 
implied you know what I know. Therefore, I am 
able to perceive what the meaning of the fishes’ 
behavior is. 

 
 This is a perfect situation to demonstrate the objectives of the study in 
cognitive informatics – how human beings acquire, process, interpret, and 
express information by using the brain, and how the minds of different 
individuals are understood.  
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 Rene Descartes (1596-1650), French philosopher and mathematician, 
believed that the commonly accepted knowledge would be doubtful because 
of the subjective nature of human senses. He attempted to rebuild human 
knowledge structure using the fundamental concept known as 'cogito ergo 
sum' (I think, therefore I am). He once wrote:  

 
“If you would be a real seeker after truth, it is necessary that at 
least once in your life you doubt, as far as possible, all things 
[Descartes, 1979].” 

 
 The subjectivity of the perceived world as Descartes expressed has 
been formally described in Theorem 1.2 known as the generic worldview in 
the IME model.  
 The brain is perhaps the last thing in the natural world yet to be 
explored and understood.  One of the most interesting findings in cognitive 
informatics is that so many science and engineering disciplines, such as 
informatics, computing, software engineering, and cognitive sciences, share a 
common root problem – how the natural intelligence processes information.                             
 Along with the development of natural sciences, particularly 
psychology, cognitive science, and cognitive informatics, there are a number 
of significant scientific discoveries as shown in Table 9.1, which shed light 
on the nature of human beings and, in the same time, blow on human self-
esteem [Leahey, 1980; Wang, 2003b]. 
 

Table 9.1 
Scientific Discoveries Impacting on Human Esteem 

 

No. Time Theory Description 
The 
1st 
blow 

1473-
1543 

Universe view   

(Nicholas Copernicus) 

 

 

Human beings did not live at the center of the 
universe. 

The 
2nd 
blow 

1809-
1882 

Evolution 

(Charles Darwin) 

 

 

Human beings were part of nature – being 
animals like any other species. 

The 
3rd 
blow 

1856-
1939 

Nonconsciousness 

(Sigmund Freud) 

 

 

The human ego is not master in its own house, 
since many human behaviors are determined by 
nonconscious life functions. 

The 
4th 
blow 

2003 Partial autonomous 

(The author of this 
book) 

Human beings do not fully behave 
autonomously. The natural intelligence can be 
classified into those of reflective, perceptive, 
cognitive, and instructive, where the reflective 
and instructive intelligence are external event-
driven and environment-dependent.    
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 In Table 9.1, Darwin’s finding from the viewpoint of cognitive 
informatics is that the human brain at the basic level has no difference from 
other animal species. However, it possesses the following advantages as 
presented in Theorems 9.1 and 9.2 [Wang, 2003b; Wang and Wang, 2006].  

 

 
Although Freud’s theory indicates that many fundamental human 

behaviors are nonconscious and there was no direct access and control on 
them by the conscious minds [Freud, 1895], psychology and cognitive 
science still maintain a common belief that an individual human being is at 
least autonomous and behaves purely on own desires and motivations. 
However, this assertion may be doubt in cognitive informatics.   
 The basic life function of the human brain is information processing. 
Although the brain may be stimulated by both external and internal 
information, the internal information is previously acquired from external 
sources. The willingness-driven mechanism of human behaviors was thought 
to be purely determined by internal information and conditions such as goals, 
desires, and emotions. Based on this perception, an individual may be 
considered as an autonomous human being. However, all willingness-driven 
behaviors as the nonconscious life functions as identified by Freud are 
synthetically dependent on the historically cumulated external events, 
information, status, and current internal physiological and subconscious 
conditions. That is, the universal causality on the study of human brains and 
cognitive behaviors can still be preserved, even some of the willingness-
driven cause-effects are not so obvious due to long-term and indirect 
feedback in the human memory [Wang, 2003b].                                              
 The willingness-, event- and time-driven life functions and their 
cognitive processes may be formally described by RTPA [Wang, 2002a], 

 

The 26th Law of Software Engineering 
  
Theorem 9.1 The quantitative advantage of human brain states that the 
magnitude of the memory capacity of the brain is tremendously larger 
than that of the closest species.  

 

 

The 27th Law of Software Engineering 
  
Theorem 9.2 The qualitative advantage of human brain states that the 
possession of the abstract layer of memory and the abstract reasoning 
capacity makes human brain profoundly powerful on the basis of the 
quantitative advantage. 
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which provides an expressive mathematical means for rigorously describing 
the meta cognitive life-functions such as abstraction, search, quantification, 
categorization, and memorization, as well as higher cognitive life-functions 
such as recognition, imagination, comprehension, inference, learning, and 
problem solving. 

 This section shows the philosophical differences between cognitive 
informatics and AI research. The philosophy of AI is based on the principle 
of Turing tests for evaluating functional equivalence between machine and 
human intelligence. AI attempts to answer how a computer can do what a 
human being does [Wang, 2002d]. However, before the fundamental 
mechanisms of natural intelligence are well understood, AI would be a 
search in dark without theoretical references.       

The philosophy of cognitive informatics is autonomic and 
supplementary computing that explores theories and techniques addressing:   
 

    • What are the fundamental mechanisms of natural intelligence of 
the brain?  

    • How does internal information be represented, processed, and 
utilized?  

    • What can a computer do while human beings cannot?  

    •    What can a computer do better than human beings?    

    •   What will be the next generation architectures of computers that    
may learn from the human brains and natural intelligence? 

 
 In recent genome research people expect that the decoding and probing 

of human genomes will solve almost all problems and answer almost all 
questions about the myths of the natural intelligence. Although the aim is 
important and encouraging, computer scientists would doubt this promising 
prediction. This is based on the basic reductionism of science and the 
following observations: Although the details of computer circuitry are fully 
observable at the bottom level, i.e., at the gate even the molecular level, only 
seeing computers as the low-level structures would not help explaining the 
mechanisms of computing rather than get lost in an extremely large number 
of interconnected similar elements, if the high-level functional architectures 
and logical mechanisms of computers were unknown.  

This is one of the motivations of this chapter to investigate into the 
cognitive informatics models of the brain at the system logical and functional 
levels. Another motivation is, according to the functional model of the brain, 
genes may only explain things at the level of inherited life functions, rather 
than at the level of acquired life functions, because the letter cannot be 
directly represented in genes in order to be inherited. Therefore, high-level 
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cognitive functional models of the brain are yet to be sought to explain the 
fundamental mechanisms of the natural intelligence. 
 
 
9.2.2 NEURAL INFORMATICS FOUNDATIONS OF  
         THE BRAIN 
 

The brain is the organizing and processing center of the nervous 
system. It receives impulses from the spinal cord and 12 pairs of cranial 
nerves arising in the sensory organs and other organs. It develops appropriate 
responses and sends forth these responses by motor neurons. The brain 
consumes about 25% of all the oxygen used in the body and is extremely 
sensitive to oxygen or glucose deprivation. 

 
Definition 9.2 Neural Informatics (NeI) is a new interdisciplinary 

enquiry of the biological and physiological representation of information and 
knowledge in the brain at the neural level and their abstract mathematical 
models. 
 

Neural informatics is a branch of cognitive informatics, where memory 
is recognized as the foundation and platform of any natural or artificial 
intelligence [Wang and Wang, 2006; Wang, 2007a/07g]. This subsection 
briefly introduces the basic unit of the brain known as the neurons and their 
mechanisms. Then, it describes the physiological structures of the brain and 
its functional lobes.   
 
9.2.2.1 Neurons and Synapses 
 

Nerve cells are called neurons or nerve fibers. Neurons may be 
classified into three groups: 
 

• Sensory neurons: They carry impulses from receptors to the 
Central Nervous System (CNS, including brain and spinal cord). 
Receptors detect external or internal changes and send the 
information to the CNS in the form of impulses. 

•  Motor neurons: They carry impulses from the CNS to effectors 
(muscles or glands). This allows a person to respond to the 
messages that the brain or spinal cord has received. 

•  Interneurons: They are located entirely within the CNS and 
connect sensory and motor neurons. 
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Neurons that transmit impulses to other neurons (or effectors) do not 
actually touch one another. The junction between two neurons or between a 
neuron and its effecter muscle or gland is the synapse as shown in Fig. 9.1.  
The small gap or space between the axon of one neuron and the dendrites or 
cell body of the next neuron is called the synaptic cleft. On arriving at the 
synaptic knobs (terminal end) of the axon, the impulse stimulates the release 
of chemical substances called neurotransmitters. Neurotransmitters swiftly 
diffuse across the synaptic cleft and change the permeability of the next 
neuron. This causes depolarization and generates an electrical impulse which 
in turn is carried by the neuron’s axon to the next synapse. 

 
 

 
 
Figure 9.1 Synaptic transmission 

 
An important function of the presence of synapses is that they ensure 

one-way transmission of impulses in the neural networks. A nerve impulse 
cannot go backward across a synapse because neurotransmitters can only be 
released by a neuron’s axon. 

 
There are two types of neuron effects known as the excitatory and 

inhibitory, respectively. As shown in Fig. 9.2, transmitter chemicals from 
neurons A and B are both excitatory; while that of C is inhibitory. Although 
neither A nor B is capable of causing sufficient depolarization to initiate an 
action potential in neuron D, when neurons A and B fire at the same time, a 
sufficient amount of transmitter chemical is released to cause depolarization 
of the postsynaptic membrane. The production of an action potential in 
neuron D requires the sum of two or more excitatory neurons, which is 
known as the summation mechanism of input signals. 
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Figure 9.2 Summation of input signals in neural networks 

 
It is noteworthy that almost all cells in the body have a lifecycle in 

which they reproduce themselves via divisions. This mechanism allows 
human trait information to be transferred to offspring through genes (DNA) 
replications during cell reproduction. However, it is observed that the most 
special mechanism of neurons is that they are the only type of cells in human 
body that does not go through reproduction but remains alive throughout the 
entire human life [Thomas, 1974; Fried and Hademenos, 1999; Kandel et al., 
2000]. The advantage of this mechanism is that it enables the physiological 
representation and retention of acquired information and knowledge to be 
memorized permanently in long-term memory. But the vital disadvantage of 
this mechanism is that it does not allow acquired information to be 
physiologically passed on to the next generation, because there is no DNA 
replication among memory neurons. This special mechanism of neurons in 
the brain explains not only the foundation of memory and memorization, but 
also the wonder why acquired information and knowledge cannot be passed 
and inherited physiologically through generation to generation. 

 
9.2.2.2 Physiological Structure of the Brain 

 
The brain is divided into three major portions, as shown in Fig. 9.3, 

encompassing the brain stem (an extension of the spinal cord), the 
cerebellum, and the large folded cerebrum sitting atop the brain stem. 
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   1. Cerebrum  2.Hypothalumus  3. Pituitary gland  4. Pons  5. Medulla oblongata   
6. Cerebellum  7. Frontal lobe  8. Parietal lobe  9. Occipital lobe  10. Temporal lobe  

 
Figure 9.3 Structure of the Brain 
 

The major components of the brain and their functions can be described 
as follows:      
     

• Cerebrum: The cerebrum is a storage of information accumulated 
from senses such as hearing, sight, etc. 

• Hypothalamus: The hypothalamus regulates temperature and 
glandular secretions. 

• Cerebellum: The cerebellum regulates motor impulses that 
stimulate or inhibit skeletal muscles. 

• Medulla oblongata: The medulla oblongata regulates heartbeat 
and blood pressure. 

 
The functions of the four lobes of the brain as shown in areas 7 through 

10 in Fig. 9.3 can be described as follows:      
 

•  Frontal lobe: It controls higher layer cognitive processes such as 
abstract reasoning, motor processing, and aspects of personality.   

•  Parietal lobe: It controls somatosensory sensation processing 
such as those of skin and muscles, as well as senses of space and 
motion.      

•  Occipital lobe: It controls vision and visual processing.      

•  Temporal lobe: It controls auditory processing and languages.  
 

The brain is divided into the left and right hemispheres. Studies show 
that each hemisphere of the brain controls different functions. The left 
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hemisphere controls speech, logic, calculations, writing, and mathematics. 
The right hemisphere controls artistic conceptions and spatial perceptions 
discriminating shapes and forms. Information travels from one side to the 
other through the links between the two hemispheres known as the corpus 
callosum. 

 
9.2.2.3 Cognitive Models of Memories 
 

 Memory is the foundation for maintaining a stable state of an animate 
system. It is the foundation for any form of natural and machine intelligence. 
Without memory intelligence cannot exist. This subsection explores types of 
human memory, their cognitive models, and their neurophysiological 
foundations.  

 
9.2.2.3.1 The Magnitude of Human Brain 
 

 It is perceived that the elementary function and mechanism of the brain 
as a hierarchical neural network is quite simple, but its magnitude is 
extremely high [Turing, 1950; Kleene, 1956; Rabin and Scott, 1959; Widrow 
and Lehr, 1990; Kotulak, 1997; Leahey, 1997; Gabrieli, 1998; Matlin, 1998; 
Payne and Wenger, 1998; Harnish, 2002]. This is a common phenomenon of 
the naturally grown intelligence, which uses tremendous number of highly 
recurrent but simple elements to implement highly complex intelligent 
mechanisms and concurrent behaviors.  

A comparison between the brain capacities of human and those of 
many other species, as shown in Fig. 9.4, can be served as an explanation of 
the above assumption [Smith, 1993; Kotulak, 1997; Pinel, 1997; Rosenzmeig 
et al., 1999].     

 

1 0 0 ,0 0 0

1 0 ,0 0 0
5 0 .1

0

2 0 ,0 0 0

4 0 ,0 0 0

6 0 ,0 0 0

8 0 ,0 0 0

1 0 0 ,0 0 0

1 2 0 ,0 0 0

H u m a n M o n k e y M o u s e F r u i t  f l y

N o .  o f  n e u r a l  
c e l l s  ( M i l l io n )

 
 
 Figure 9.4 Brain capacities of human beings and other animals 

  
Fig. 9.4 shows that the human brain contains about 100 billion (100 × 

109) neurons. Further investigations reveal that each of them, in average, 
possesses thousands of synapses connecting to other neurons. Comparing the 
human brain and those of other animals, the magnitude of capacity of the 
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human brain highlights a significant difference. This is one of the evidences 
that indicates the memory capacity is the key to distinguish humans from 
other species.       

 The trend of growth and the magnitude of human neurons in the brain 
are shown in Fig. 9.5 [Marieb, 1992; Smith, 1993; Pinel, 1997; Rosenzmeig 
et al., 1999]. Conventionally, long-term memory is perceived as static and 
fixed in adult brains [Marieb, 1992; Smith, 1993; Pinel, 1997; Sternberg, 
1998]. This is based on the observation that the capacity of adult brains has 
already reached a stable state and would not grow continuously. However, 
latest discoveries in neuroscience and cognitive informatics indicate that 
long-term memory is dynamically reconfiguring, particularly at the lower 
levels of the neural clusters [Baddeley, 1990; Squire et al., 1993; Gabrieli, 
1998; Solso, 1999; Wang and Wang, 2006]. Otherwise, the mechanisms of 
memory establishment, enhancement, and evolution, that are functioning 
everyday in the brain, cannot be explained. 
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Figure 9.5 Trend of growth of the human brain 
  
The two perceptions above are actually not contradictory. The former 

observes that the macro-number of neurons will not increase significantly in 
an adult brain. The latter perceives that information and knowledge should be 
physically and physiologically represented in long-term memory by newly 
grown synapses between the existing neurons.   
 
9.2.2.3.2 Taxonomy of Human Memories 

 
 Types and structures of memories in the human brain have attracted a 

lot of interest since psychology was emerged as an independent discipline 
nearly 130 year ago. In 1890, William James identified that there are three 
components in human memory [James, 1890]: 

 
             •  The after-image 
             •  The primary memory 
             •  The secondary memory 
   

© 2008 by Taylor & Francis Group, LLC



670   Part III  Organizational Foundations of SE 

 The after-image memory proposed above is considered a relatively 
narrow concept because there are other sensorial inputs to the memory, such 
as hearing and touch. Thus, the after-image was gradually replaced by the 
concept of sensory memory. Therefore, contemporary theories on memory 
classification [Baddeley, 1990; Smith, 1993; Squire et al., 1993; Gabrieli, 
1998] can be commonly described as follows:  

   
         •  The sensory memory 

               •  The short-term memory 
               •  The long-term memory  
 

 Examining the above types of memory it may be seen that there is a 
lack of an output-oriented memory, because the sensory memory is only an 
input-oriented buffer. A new type of memory called the action buffer 
memory is introduced recently [Wang, 2002d/2007g; Wang and Wang, 
2006], which denotes the memory functions for the output-oriented actions, 
skills, and behaviors, such as a sequence of movement and a pre-prepared 
verbal sentence. Therefore, according to cognitive informatics, the logical 
architecture of memories in the brain can be classified into the following 
categories: 

 
       •  The sensory buffer memory (SBM) 

               •  The short-term memory (STM) 
               •  The long-term memory (LTM)  

         •  The action buffer memory (ABM) 
 

 
 

 
The 27th Principle of Software Engineering 

  
Theorem 9.3 The Cognitive Model of Memory (CMM) states that the 
architecture of human memory is parallel configured by the Sensory 
Buffer Memory (SBM), Short-Term Memory (STM), Long-Term 
Memory (LTM), and Action-Buffer Memory (ABM), i.e.: 
 

                               CMM   SBM 
                                      || STM 
                                      || LTM                                  
      || ABM       (9.1) 
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9.2.2.3.3 Functional Models of Memories 
 
A set of functional models of SBM, STM, LTM, and ABM in CMM is 

presented below for explaining the architectures, functions, and behaviors of 
memories in the brain. 
 
(a) The Sensory Buffer Memory 
 

 The sensory buffer memory (SBM) is an input-oriented temporary 
memory.      

 
 Model 9.1 The functional model of SBM is a set of queues 

corresponding to each of the sensors of the brain.  
 

 The capacity of SBM is quite small. Some psychological experiments 
reported that the capacity of SBM is about 7±2 digits [Miller, 1956]. 
However, this type of memory was confusedly called the short-term memory 
according to Miller [Miller, 1956; Smith, 1993]. The basic mechanism of 
SBM is that the contents stored in it can only last for a short moment until 
new information arrives to the same sensory. When the new information 
arrives, the old one in the buffered queue should either be moved into STM 
or be replaced by the new one. This explains why the SBM seems to be 
rather small.  
 
(b) The Short-Term Memory  
 

 The short-term memory (STM) is the working memory of the brain. 
Information lasting period in STM is about 24 hours [Wang and Wang, 
2006], although some literature considered it is only a few minutes to a few 
hours [Baddeley, 1990; Smith, 1993; Sternberg, 1998). Out of this time span, 
the information will be either moved into the long-term memory or removed 
(forgot) or replaced from STM.    

 
 Model 9.2 The functional model of STM is a set of stacks.    
 
 This model explains why people can remember better the events and 

information gained in early morning and later evening [Smith, 1993; 
Sternberg, 1998]. The former is true because the stacks are relatively empty, 
so that sufficient working space is available. The latter can be proved based 
on the mechanism of stacks, in which the information buffered last is on the 
top of STM that gain the priority to be processed and memorized first.   
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(c) The Long-Term Memory 
 

 The long-term memory (LTM) is the permanent memory that human 
beings rely on for retaining acquired information in terms of facts, 
knowledge, and skills. LTM is apparently unlimited, because of its enormous 
neurons (at 100 • 109 level), and much more potential synapses connections 
(at 108,432 level), which will be further analyzed in Section 9.4.5.    

 
 Model 9.3 The functional model of LTM is hierarchical neural 

clusters with partially connected neurons via synapses.  
 
 The structure of LTM is dynamic and partially interconnected neural 

networks as shown in Figs. 9.4 and 9.5, where a connection between two 
neurons by a synapse represents a relation.       

 Although the number of neurons in LTM was perceived as static and it 
made no change in an adult’s brain [Marieb, 1992; Smith, 1993; Pinel, 1997; 
Sternberg, 1998] as shown in Fig. 9.5, the connections between the neurons 
in the form of synapses in LTM are dynamic and lively reconfiguring, 
particularly at the lower levels or on leaves of the neural clusters. This fits 
the observations in neural science and explains the mechanisms of memory 
establishment, evolution, and the effects of learning.      

 
(d) The Action Buffer Memory  
 

 Supplementary to the input-oriented SBM, the action buffer memory 
(ABM) is an output-oriented temporary memory. 

      
 Model 9.4 The functional model of ABM is a set of parallel queues, 

each of them representing a sequence of actions or a process.  
 

 ABM has not been reported in the literature before and is discovered in 
[Wang, 2002d/2007g; Wang and Wang, 2006]. Detailed mechanism of ABM 
will be explained in Section 9.3.4, where the ABM will be put into the 
context of the dynamic memory model. 
 
9.2.2.3.4 Neurophysiological Foundations of Memories 
  

Because information and knowledge have to be represented 
physiologically in the brain at the bottom level, the functional models of 
memories, such as LTM, STM, SBM, and ABM, should be physically 
identified and mapped to physiologically organs in the brain. The major 
organ that accommodates memories in the brain is the cerebrum or the 
cerebral cortex [Baddeley, 1990; Squire et al., 1993; Smith, 1993; Gabrieli, 
1998; Sternberg, 1998; Solso, 1999; Wang and Wang, 2006] as shown in 
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Table 9.2. Particularly, the association and premotor cortex in the frontal 
lobe, the temporal lobe, sensory cortex in the frontal lobe, visual cortex in the 
occipital lobe, primary motor cortex in the frontal lobe, supplementary motor 
area in the frontal lobe, and procedural memory in the cerebellum. 
 

Table 9.2 
Neural Physiological Foundations of Memories 

 

Memory Corresponding part in the cerebrum 
LTM • Association cortex in the frontal lobe 

• Premotor cortex in the frontal lobe 
STM • The temporal lobe 
SBM • Sensory cortex in the frontal lobe 

• Visual cortex in the occipital lobe  
ABM • Primary motor cortex in the frontal lobe 

• Supplementary motor area in the frontal lobe 
• Procedural memory in cerebellum 

 
 In Table 9.2, the relations between memories and their corresponding 
parts in the cerebral cortex and lobes are established. LTM as the largest and 
dynamic memory of the brain is mainly located at the association cortex in 
the frontal lobe of the cerebrum.  

The CMM model and the mapping of the four types of human memory 
onto the physiological organs in the brain reveal a set of fundamental 
mechanisms of neural informatics. The theories of cognitive informatics and 
neural informatics explain a number of important questions in the study of 
natural intelligence. Enlightening results derived in cognitive informatics and 
neural informatics are listed below, which will be explained throughout this 
chapter:  

 
a)  LTM establishment is a subconscious process during sleeping 

(See Theorem 9.10);  

    b)  The general acquisition cycle of LTM is equal to or longer than 
24 hours (See Model 9.8);  

    c)  The mechanism of LTM establishment is to update the entire 
memory of information represented as an OAR model in the brain 
(See Theorem 9.11);  

    d)  Eye movement and dreams play an important role in LTM 
creation.  

 
The latest development in cognitive informatics and neural informatics 

has led to the determination of the magnitude and expected capacity of 
human memory, which will be presented in Section 9.4.5.  
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9.2.3 THE EMERGENCE OF COGNITIVE 
         INFORMATICS 

 
 It is recognized that the brain and natural intelligence are centric on 
information processing [Wang, 2002d/2003b/2007a; Wang et al., 2006]. The 
information metaphor is widely adopted in cognitive science, following the 
dominations of structuralism, functionalism, associationism, connectionism, 
and behaviorism [Leahey, 1997].    

N. Stillings and M.H. Feinstein assumed that “the human mind is a 
complex system that receives, stores, retrieves, transforms, and transmits 
information [Stillings and Feinstein, 1987].” R. Harre perceived that 
cognitive science is the study of cognitive phenomena [Harre, 2002], while 
Michael Dawson considered “the central assumption for cognitive science is 
information processing [Dawson, 1998].” In summary, contemporary 
cognitive science is the study of the brain, the mind, and intelligent behavior 
that blends anthropology, computer science, psychology, neuroscience, 
linguistics, sociology, and philosophy. 

 Cognitive informatics is a cutting-edge and interdisciplinary research 
area that tackles the common root problems of modern informatics, 
intelligent science, computing, software engineering, AI, cognitive science, 
knowledge science, and neuropsychology. This subsection explores the 
emerging discipline of cognitive informatics. Cognitive informatics studies 
the internal information processing mechanisms and natural intelligence of 
the brain. The historical development of informatics from the classical 
information theory, contemporary informatics, to cognitive informatics, has 
been reviewed in Chapter 7.   

 
Definition 9.3 Cognitive Informatics (CI) is a transdisciplinary enquiry 

of natural and machine intelligence, and their products in terms of 
information, knowledge, and behaviors.     

 
Cognitive informatics is a new frontier that attempts to solve problems 

in two interconnected areas in a bi-directional and multidisciplinary 
approach. In one direction, cognitive informatics uses cognitive science 
theories to investigate informatics, computing, and software engineering 
problems, such as information and knowledge representation in the brain, the 
nature of computing, cognitive complexity of software, abstraction of 
software, and system behaviors. In the other direction, cognitive informatics 
uses computing theories and formal mathematical means to investigate 
cognitive science problems, such as memory, learning, and thinking.  

 Cognitive informatics is a discipline that forges links between a number 
of natural science and life science disciplines with informatics and computing 
science. The relationship between cognitive informatics and other natural 
sciences can be perceived as shown in Fig. 9.6. 
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Figure 9.6 Relationship between cognitive informatics and related science 
disciplines 

 
 Fig. 9.6 shows that the foundations of cognitive informatics are based 

on multidisciplinary knowledge, such as those of informatics, natural 
sciences, and humanity. These foundations can be classified into three 
categories as shown in Table 9.3.  

 
Table 9.3 

Foundations of Cognitive informatics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
 

Category 
No. 

Category of 
sciences 

Discipline of sciences 

1 Informatics  
1.1  Modern information theory 
1.2  Computing theory 
1.3  Software science 
1.4  Artificial intelligence  
2 Natural sciences   
2.1  Cognitive science 
2.2  Neurobiology 
2.3  Psychology 
2.4  Physiology 
2.5  Mathematics 
3 Humanity  
3.1  Philosophy 
3.2  Linguistics 
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9.2.4 THE THEORETICAL FRAMEWORK OF 
         COGNITIVE INFORMATICS 
 

Cognitive informatics is a discipline that forges links between a number 
of natural science and life science disciplines with informatics and computing 
science. The structure of the theoretical framework of cognitive informatics 
is described in Fig. 9.7, which encompasses the fundamental theories of 
cognitive informatics, denotational mathematics for cognitive informatics, 
and the key application areas of cognitive informatics.  
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Figure 9.7 The theoretical framework of cognitive informatics 
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9.2.4.1 The Fundamental Theories of Cognitive informatics 
 

The fundamental theories of cognitive informatics are developed in ten 
aspects resulting in the basic and transdisciplinary research in cognitive 
informatics [Wang, 2002d/07a], which encompass the Information-Matter-
Energy (IME) model, the Layered Reference Model of the Brain (LRMB), 
the Object-Attribute-Relation (OAR) model of information representation in 
the brain, the cognitive informatics model of the brain, Natural Intelligence 
(NI), Neural Intelligence (NeI), the cognitive informatics laws of software, 
the mechanism of human perception processes, the cognitive processes of 
formal inferences, and the formal knowledge system. The remainder of this 
chapter and related parts throughout the book explains these fundamental 
theories of cognitive informatics and their interrelationships.    

The denotational mathematics is an important part of the theories of 
cognitive informatics as introduced in Section 4.5, which provides rigorous 
and expressive means for formal reasoning in cognitive informatics studies. 
Three new types of denotational mathematics, concept algebra [Wang, 
2006e], system algebra [Wang, 2006d], and RTPA [Wang, 2002a], are 
created for cognitive informatics to enable rigorous treatment of knowledge 
representation and manipulation in a formal and coherent framework.  

The new structures of contemporary mathematics have extended the 
abstract objects under study in mathematics to a higher level on concepts, 
behavioral processes, and systems. RTPA has been intensively discussed in 
related sections of Chapters 4 and 6. System algebra will be presented in 
Chapter 10. Concept algebra may be referred to Chapter 15 and [Wang, 
2004e]. A wide range of applications of the denotational mathematics in the 
context of cognitive informatics has been identified [Wang, 2002b/03c/06j]. 

 
 
9.2.4.2 The Domain of Cognitive Informatics 
 

The key application areas of cognitive informatics can be divided into 
two categories [Wang, 2007a]. One category of applications, A2, A4, and A5 
as shown in Fig. 9.7, uses informatics and computing techniques to 
investigate cognitive science problems, such as memory, learning, and 
reasoning. The other category including the remainder areas uses cognitive 
theories to investigate problems in informatics, computing, and 
software/knowledge engineering. Cognitive informatics focuses on the nature 
of information processing in the brain, such as information acquisition, 
representation, memory, retrieve, generation, and communication. Through 
the interdisciplinary approach and with the support of modern information 
and neuroscience technologies, mechanisms of the brain and the mind may 
be systematically explored within the framework of cognitive informatics. 
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 Cognitive informatics covers a whole range of interdisciplinary 
research in subject areas including NI, autonomic computing, and NeI, as 
shown in Table 9.4. 
 

Table 9.4 
Subject Areas of Cognitive informatics 

 

 No. Category Description 
  1 Natural Intelligence 

(NI) 
 

1.1  Informatics models of the brain 
1.2  Cognitive processes of the brain 
1.3  Internal information processing mechanisms 
1.4  Theories of natural intelligence 
1.5  Intelligent foundations of computing   
1.6  Descriptive mathematics for NI 
1.7  Abstraction and means  
1.8  Ergonomics  
1.9  Informatics laws of software 
1.10  Knowledge representation 
1.11  Models of knowledge and skills 
1.12  Language acquisition 
1.13  Cognitive complexity of software 
1.14  Distributed intelligence 
1.15  Computational intelligence 
1.16  Emotions/motivations/attitudes 
1.17  Perception and consciousness 
1.18  Hybrid (AI/NI) intelligence 
2 Autonomic 

Computing (AC) 
 

2.1  Imperative vs. autonomic computing 
2.2  Reasoning and inferences 
2.3  Cognitive informatics foundations of AC 
2.4  Memory models    
2.5  Informatics foundations of software engineering 
2.6  Fuzzy logic 
2.7  Knowledge engineering 
2.8  Pattern recognition 
2.9  Agent technologies 
2.10  Artificial intelligence 
2.11  Software agent systems 
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2.12  Decision theories 
2.13  Problem solving 
2.14  Machine learning 
2.15  Intelligent Internet techniques  
2.16  Web contents cognition 
2.17  Nature of software 
2.18  Quantum computing 
3 Neural informatics 

(NeI) 
 

3.1  Neural informatics foundations of information processing   
3.2  Cognitive models of the brain 
3.3  Functional modes of the brain 
3.4  Neural models of memory 
3.5  Neural networks 
3.6  Neural computation 
3.7  Cognitive linguistics 
3.8  Neuropsychology 
3.9  Bioinformatics 
3.10  Biosignal processing  
3.11  Cognitive signal processing 
3.12  Gene analysis 
3.13  Gene expression 
3.14  Neural signal interpretation 
3.15  Visual information representation     
3.16  Visual information interpretation    
3.17  Sensational cognitive processes 
3.18  Human factors in systems 

 
 
 
9.3  Cognitive Informatics Models of 
        the Brain 
 

 
 
The human brain is the most complicated organ in the universe and is 
constantly the frontier yet to be explored in an interdisciplinary approach. 
Investigation into the brain and its cognitive mechanism is a unique and the 
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hardest problem in science that requires recursive and introspective mental 
power to explore the brain by the brain.   

This section develops the cognitive informatics models of the brain. 
One of the focuses of this section is the relationship between the inherited 
life functions and the acquired life functions. Another focus is the memory-
based theory of intelligence, which deems that the memory mechanisms are 
the foundation for any kind of natural intelligence. Without the establishment 
of a unified memory model, studies on the brain will never form a coherent 
theory.  
 
 
9.3.1 THE LAYERED REFERENCE MODEL OF THE 
         BRAIN (LRMB) 
 

A variety of life functions and their cognitive processes have been 
identified in cognitive informatics, cognitive neuropsychology, cognitive 
science, and neurophilosophy. Based on the advances of research in 
cognitive informatics and related fields, this subsection presents a Layered 
Reference Model of the Brain (LRMB) [Wang et al, 2006] that explains the 
functional mechanisms and cognitive processes of the natural intelligence. In 
order to formally and rigorously describe a comprehensive and coherent set 
of mental processes and their relationships, the hierarchical LRMB model is 
established, which encompasses 39 cognitive processes at six layers known 
as the sensation, memory, perception, action, meta cognitive, and higher 
cognitive layers from the bottom up.  

The following subsections discuss each of these six layers of cognitive 
processes and interactions between the layers in the context of the cognitive 
model of the brain as a real-time intelligent system. 
 
9.3.1.1 The Architecture of LRMB 
 
 LRMB can be described as shown in Fig. 9.8. At the top level, the 
hierarchical life functions of the brain, the natural intelligent system (NI-
Sys), can be divided into two categories: the subconscious and conscious 
subsystems. The former known as the NI operating system (NI-OS) 
encompasses the layers of sensation, memory, perception, and action (Layers 
1 to 4). The latter known as the NI applications (NI-App) includes the layers 
of meta and higher cognitive functions (Layers 5 and 6). 

         The subconscious layers of the brain represented by NI-OS are 
inherited, fixed, and relatively mature when a person was born. Therefore, 
the subconscious cognitive function layers are not directly controlled and 
accessed by the conscious life function layers. This is why it used to be 
called the nonconscious life functions in psychology literature [Smith, 1993; 
Leahey, 1997; Payne and Wenger, 1998; Sternberg, 1998; Reisberg, 2001]. 
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The conscious layers of the brain, represented by NI-App, are acquired, 
highly plastic, programmable, and can be controlled intentionally based on 
willingness (motivations), goals, and inferences. Although cognitive 
informatics puts more emphases on exploring the conscious NI-App, the 
interactions of NI-App with NI-OS profoundly shape the theory of LRMB.  
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Figure 9.8 The Layered Reference Model of the Brain (LRMB) 
 

A formal description of the high-level architecture of the LRMB model 
using RTPA is presented in Fig. 9.9. Detailed descriptions of individual 
layers of LRMB will be presented in the following subsection and may be 
referred to [Wang et al., 2006].   
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9.9 Formal description of the LRMB model of the brain 
 

The Layered Reference Model of the Brain (LRMB) 
 

§LRMBST  §NI_Sys                   // The Natural Intelligent system 
                   =    NI_OS                    // The sub conscious NI operating system 
                      || NI_App                  // The conscious NI applications  
                   = (   Layer1_Sensation 
                        || Layer2_Memory  
                        || Layer3_Perception   
                        || Layer4_Action   
                      ) 
                   || (    Layer5_Meta_Cognitive_Functions   
                        || Layer6_Higher_Cogntive_Functions   
                      ) 
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9.3.1.2 The Functional Layers of LRMB     
 

Based on the architectural framework of LRMB, the six layers of 
cognitive processes of the brain and their relationships are descried below.  

 
9.3.1.2.1 Layer 1: The Sensation Layer  

 
Definition 9.4 The sensation layer of LRMB is a subconscious layer of 

life functions of the brain for detecting and acquiring cognitive information 
from the external world via physical and/or chemical means. 

 
The sensation layer encompasses all input-oriented senses such as 

vision, audition, smell, tactility, and taste. The sensation layer is associated 
with a set of input-oriented temporary memory, known as SBM, as modeled 
in Section 9.2.2.3.  
 
 Definition 9.5 Sensation is a set of cognitive processes of the brain at 
the subconscious life functional layer that forms the interfaces between the 
internal and external worlds for information detection, transformation, and 
acquisition. 
 

Sensations are mental states caused by the stimulation of sensory 
organs affected by either real-world entities or energy as well as their 
changes of statuses in the external world. The sensational cognitive processes 
at Layer 1 of LRMB encompass the basic cognitive life functions of vision, 
audition, smell, tactility, and taste as described in Table 9.5 [Wang et al, 
2006; Wang, 2005c]. Tactility can be further divided into senses of  therme, 
pressure, weight, pain, and texture; while taste can be categorized as that of 
salt, sweet, bitter, sour, and pungency. 

 
9.3.1.2.2 Layer 2: The Memory Layer 
 

Definition 9.6 The memory layer of LRMB is the fundamental layer of 
life functions of the brain functioning to: a) Retain and store information 
about both the external and internal worlds; b) Maintain a stable state of an 
animate system; c) Provide a working space of abstract inference; and d) 
Buffer programmed actions and motions to be executed by the body. 
 

It is recognized that the natural intelligence is memory-based [Wang, 
2002d/07a; Wang and Wang, 2006], and the memory layer is a 
fundamentally important part of the subconscious life functions. According 
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to neural informatics as discussed in Section 9.2.2, the memory of brain 
encompasses the following types of memories: SBM, STM, LTM, and ABM, 
where LTM is the key to understand the mechanism of the natural 
intelligence. 

 
Definition 9.7 Memory is a set of cognitive processes of the brain at the 

subconscious life function layer that retains the external or internal cognitive 
information in various memories of the brain, particularly in LTM. 

 
The memory layer is the fundamental layer of life functions of the brain 

for maintaining a stable state of an animate system. The major means of 
interaction between the conscious and subconscious layers of LRMB are all 
forms of memories and the information retained in them. 

 
9.3.1.2.3 Layer 3: The Perception Layer 

 
Definition 9.8 The perception layer of LRMB is a subconscious layer 

of life functions of the brain for maintaining conscious life functions and for 
browsing internal abstract memories in the cognitive models of the brain.  

 
The cognitive functions of the perception layer can be considered as the 

thinking engine of the brain and the kernel of the natural intelligence. 
Perception may also be considered as the sixth sense, supplementary to the 
five external sensations at Layer 1, known as vision, audition, smell, tactility, 
and taste, which implements self consciousness inside the abstract memories 
of the brain. Therefore, the perception layer is a core part of the subconscious 
life functions.  

 
Definition 9.9 Perception is a set of internal sensational cognitive 

processes of the brain at the subconscious life function layer that detects, 
relates, interprets, and searches internal cognitive information in the mind. 

 
The cognitive processes of perception encompass the self-

consciousness, attention, emotions, attitude, sense of spatiality, and sense of 
motion as shown in Table 9.5. Perception is the internal sensory layer of the 
brain that almost all cognitive life functions rely on it. Perception is also an 
important cognitive function at the subconscious layers that determines 

© 2008 by Taylor & Francis Group, LLC



684   Part III  Organizational Foundations of SE 

personality. In other words, personality is a faculty of all subconscious life 
functions and experience cumulated via conscious life functions.                 

 
9.3.1.2.4 Layer 4: The Action Layer 
 

Definition 9.10 The action layer of LRMB is a subconscious layer of 
life functions of the brain for output-oriented actions and motions that 
implement human behaviors such as a sequence of movement and a pre-
prepared verbal communication.  
 

The action layer is a part of the subconscious life functions. The action 
layer encompasses all motor control and execution functions such as looking, 
reading, and writing as shown in Table 9.5. Supplemented to the input-
oriented SBM, ABM is an output-oriented temporary memory. The 
functional model of ABM is a set of parallel queues, each of them 
representing a sequence of actions, or a process. ABM was first identified in 
[Wang, 2002d; Wang and Wang 2006]. The action and the sensation layers 
form a closed-loop for implementing various life functions, particularly the 
cognitive life functions at the conscious layers.  
 

Definition 9.11 Actions are a set of subconscious cognitive processes 
of the brain at the subconscious life function that executes both bodily 
(external) or mental (internal) actions via the motor systems of the body or 
the perceptional engine of the brain. 
 

Note that there are mental perceptual actions inside the brain via the 
thinking engine of the mind. This observation is significant to explain how 
perceptive and thinking processes are carried out in the abstract or 
information world of the brain.   

 
9.3.1.2.5 Layer 5: The Meta Cognitive Process Layer 
 

Definition 9.12 The meta cognitive process layer of LRMB is a 
conscious layer of life functions of the brain that carries out the fundamental 
and elementary cognitive processes commonly used in higher cognitive 
processes. 
 

The meta cognitive process layer is a part of the conscious life 
functions that can be controlled directly by the conscious mind (or the 
thinking engine) as mental applications.  
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Definition 9.13 A meta cognitive function is a fundamental and 
elemental cognitive process of the brain at the conscious life function layer 
that is commonly used (or applied) to support the higher layer cognitive life 
functions.  
 

The meta cognitive functions at Layer 5 of LRMB encompass the basic 
cognitive processes of identify object, abstraction, concept establishment, 
search, categorization, memorization, selection, qualification, quantification, 
and comparison as shown in Table 9.5.        
 
9.3.1.2.6 Layer 6: The Higher Cognitive Process Layer 
 

Definition 9.14 The higher cognitive process layer of LRMB is a 
conscious layer of life functions of the brain that carries out a set of specific 
cognitive processes under the support of the meta cognitive processes. 

 
 The higher cognitive process layer is a part of the conscious life 
functions. More complicated and colorful life functions can be implemented 
by serial, parallel, and interleaved combinations of these cognitive processes 
in LRMB. 
 

Definition 9.15 A higher cognitive function is an advanced cognitive 
process of the brain at the conscious life function layer that is developed and 
acquired to carry out commonly recurring life functions under the support of 
the meta cognitive process.   

 
The higher cognitive functions at Layer 6 of LRMB include 16 

processes such as recognition, imagery, comprehension, learning, deduction, 
induction, abduction, analogy, decision making, problem solving, 
explanation, analysis, synthesis, creation, planning, and modeling as shown 
in Table 9.5.  

 
9.3.1.3 The Configuration of the Cognitive Processes of LRMB 
 

In a summary, LRMB models 39 cognitive processes as shown in Table 
9.5, which are categorized into the six layers and two subsystems. It is a great 
curiosity to explore the insides and processes of the brain and to explain its 
fundamental mechanisms by a set of cognitive processes. Formal descriptions 
of particular cognitive processes of LRMB in RTPA may be referred to 
[Wang, 2007h/07i; Wang and Gafurov, 2003; Chiew and Wang, 2004; Wang 
and Ruhe, 2007]. A comprehensive collection of detailed description of all 
the LRMB processes will be presented in Cognitive Informatics: A 
Transdisciplinary Field Exploring Natural and Artificial Intelligence [Wang, 
2007j].         
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Table 9.5 
Classification of Cognitive Processes in LRMB 

 

Subconscious Processes Conscious Processes 
Layer 1 Layers 2-4 Layer 5 Layer 6 

Sensational 
cognitive 
processes   

Subconscious 
cognitive 
processes 

Meta cognitive 
processes 

Higher cognitive 
Processes 

1.1 Vision 2.0 Memory 5.1 Identify object 6.1 Recognition 
1.2 Audition 3.0 Perception 5.2 Abstraction 6.2 Imagery 
1.3 Smell    3.1 Self- 

   consciousness 
5.3 Concept  
      establishment 

6.3 Comprehension 

1.4 Tactility    3.2 Attention 5.4 Search 6.4 Learning 
  - Therme    3.3 Emotions 5.5 Categorization 6.5 Deduction 
  - Pressure    3.4 Attitudes 5.6 Memorization 6.6 Abduction 
  - Weight    3.5 Sense of 

         spatiality 
5.7 Selection 6.7 Induction 

  - Pain    3.6 Sense of 
         motion 

5.8 Qualification 6.8 Analogy 

  - Texture   4.0 Actions 5.9 Quantification 6.9 Decision making 
1.5 Taste  5.10 Comparison 6.10 Problem solving 
  - Salt   6.11 Explanation 
  - Sweet   6.12 Analysis 
  - Bitter   6.13 Synthesis 
  - Sour   6.14 Creation 
  - Pungency     6.15 Modeling 
   6.16 Planning 

 
 

9.3.2 COGNITIVE PROPERTIES OF INTERNAL 
         INFORMATION 

 
Almost all modern disciplines of science and engineering deal with 

information and knowledge. However, the three fundamental concepts of 
data, information, and knowledge are conventionally perceived quite 
differently in literature [Debenham, 1989; McDermid, 1991]. Data are 
directly acquired raw information, usually a quantitative abstraction of 
external objects and/or their relations. Information is meaningful data, or the 
subjective interpretation of data. Then, knowledge is the consumed 
information related to existing knowledge in the brain.                         

 Based on the investigations in cognitive informatics, particularly the 
research on the object-attribute-relation model and the mechanisms of 
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internal information representation, the above empirical classification of the 
cognitive levels of data, information, and knowledge may be revised. A 
cognitive informatics perception on the relationship among data (sensational 
inputs), actions (behavioral outputs), and their internal representations such 
as knowledge, experience, and skill, are that all of them are cognitive 
information. The taxonomy of cognitive information is determined by the 
types of inputs and outputs of information to and from the brain as described 
below.   
 

Definition 9.16 The Cognitive Information Model (CIM) classifies 
cognitive information into four categories known as knowledge, behavior, 
experience, and skill, according to the types of input and output as either 
information (I) or action (A), i.e.:  

 
a) Knowledge  K: I → I             (9.2) 
b) Behavior   B: I → A             (9.3) 
c) Experience  E: A → I             (9.4) 
d) Skill   S: A → A             (9.5) 

 
The CIM model provided in Definition 9.16 can be illustrated as shown 

in Table 9.6. According to Table 9.6, for a given cognitive process, if both 
I/O are abstract information, the internal information acquired is knowledge; 
if both I/O are empirical actions, the type of internal information is skill; and 
the remainder combinations between action/information and information/ 
action produce experience and behaviors, respectively. Note in Table 9.6 that 
behaviors are a new type of cognitive information modeled inside the brain, 
which embodies an abstract input to an observable behavioral output [Wang 
et al., 2004; Wang, 2007a].          
 

Table 9.6 
The Cognitive Information Model (CIM) 

 

 

 
It is noteworthy that the approaches to acquire knowledge/instructions 

and experience/skills are fundamentally different. Although knowledge or 
behaviors may be acquired directly or indirectly, skills and experiences can 

Type of output  

Information Action 

Ways of 
acquisition 

Information Knowledge (K) Behavior (B) Direct or indirect Type 
of 

input Action Experience (E) Skill (S) Direct only 
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only be obtained directly by hands-on activities. Further, the storage 
locations of the abstract information are different, where knowledge and 
experience are stored as abstract relations in LTM, while behaviors and skills 
are stored as wired neural connections in ABM. 

The cognitive informatics theory developed in this section explains 
why people have to make the same mistakes in order to gain empirical 
experiences and skills, and why experience transfer is so hard and could not 
be gained by indirect reading. The cognitive informatics theories on 
classification of internal information will be used to explain a wide range of 
phenomena of learning and practices in software engineering in Section 9.5.  

According to Table 9.6, the following law on information manipulation 
and learning for both human and machine systems can be derived.        

 

 
Theorem 9.4 lays an important foundation for learning theories and 

pedagogy [Wang et al., 2004; Wang, 2007a]. Theorem 9.4 indicates that 
learning theories and their implementation in autonomic and intelligent 
systems should study all four categories of cognitive information 
acquisitions, particularly behaviors, experience, and skills rather than only 
focusing on knowledge.  

Based on Theorem 9.4, the following corollaries on cognitive 
information acquisition can be derived.  

           

 

 

 

Corollary 9.1 All the four categories of information can be acquired 
directly by an individual.     
 

 

Corollary 9.2 Knowledge and behaviors can be learnt indirectly by 
inputting abstract information; while experience and skills must be learnt 
directly by hands-on or empirical actions. 
 

 

The 28th Law of Software Engineering 
 
Theorem 9.4 The generic forms of cognitive information state that there 
are four categories of internal information I in the brain known as 
knowledge (Ik), behaviors (Ib), experience (Ie), and skills (Is), i.e.:  
 
                                       ( , , , )k b e s=I I I I I                                       (9.6) 
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To a certain extent, software engineering deals with instructive 
behaviors and their relations with knowledge, experience, and skills 
according to the CIM model.  

 
 

9.3.3 NATURAL INTELLIGENCE VS. ARTIFICIAL  
         INTELLIGENCE 
 

Cognitive informatics adopts a compatible perspective on natural 
intelligence and artificial intelligence. It is logical to believe that natural 
intelligence should be fully understood before artificial intelligence can be 
scientifically studied. This subsection explores the nature of intelligence and 
the equivalence between natural and artificial intelligence. In this view,       
conventional machines are invented to extend human physical capability, 
while modern information processing machines such as computers, 
communication networks, and robots are developed for extending human 
intelligence, memory, and the capacity for information processing [Wang, 
2006b/07a]. Therefore, any machine that may implement a part of human 
behaviors and actions in information processing has possessed some extent 
of intelligence. 
 
9.3.3.1 The Nature of Intelligence  

 
Intelligence is a driving force or an ability to acquire and use 

knowledge and skills, or to reason in problem solving. It was conventionally 
deemed that only human beings and advanced species possess intelligence. 
However, the development of computers, robots, and autonomic systems 
indicates that intelligence may also be created or implemented by machines 
and man-made systems.          

  

Definition 9.17 Intelligence, in the narrow sense, is a human or a 
system ability that transforms information into behaviors; and in a broad 
sense, it is any human or system ability that autonomously transfers the forms 
of abstract information among data, information, knowledge, and behaviors 
in the brain.                

 
In the above definition, the four abstract objects can be defined as 

follows based on Definition 9.16. 
 

Definition 9.18 The abstract objects in the brain such as data (D), 
information (I), knowledge (K), and behavior (B) can be formally modeled as 
follows: 

 

     
min: log ,  = 2d k kD r M S M k→ =                 (9.7) 

     : ,  i iI r D C r→ ∈R                   (9.8) 
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where C is a concept as given in Definition 15.3, R is the set of process 
relations as defined in Theorem 4.7, and the behavior B is equivalent to a 
program℘ or a set of interacting processes as given in Definition 5.53.    

 
With the clarification of the intension and extension of the generic 

concept, intelligence, the terms of natural and artificial intelligence can be 
derived below.   
 
 Definition 9.19 Natural intelligence (NI) is a system of intelligent 
behaviors possessed or embodied by the brains of human beings and other 
advanced species.     
 

Definition 9.20 Artificial intelligence (AI) is a system of intelligent 
behaviors possessed or implemented by machines or man-made systems.     
 
9.3.3.2 Taxonomy of Intelligence  

 
Intelligence can be formally modeled as a set of functions that transfers 

a pair of abstract objects in the brain or systems as given in Definitions 9.17 
or 9.18.  

 

 

   

The 29th Law of Software Engineering 
 
Theorem 9.5 The nature of intelligence states that intelligence I can be 
classified into four forms called the perceptive intelligence Ip, cognitive 
intelligence Ic, instructive intelligence Ii, and reflective intelligence Ir as 
modeled below:      
 

         
  p

 c

i

r

:   (Perceptive)

    || :   (Cognitive)
    || :    (Instructive)
    || :   (Reflective)

D I

I K
I B
D B

→

→
→
→

I I

I

I

I

              (9.11) 
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According to Theorem 9.5 and Definitions 9.17, the narrow sense of 
intelligence is corresponding to the instructive and reflective intelligence; 
while the broad sense of intelligence includes all four forms of intelligence, 
particularly the perceptive and cognitive intelligence. 

It is recognized [Wang, 2006b/2007a] that the basic approaches to 
implement intelligence can be classified as shown in Table 9.7. Observing 
Table 9.7, software for computation is the third approach to simulate and 
implement the natural intelligence by programmed logic. This indicates that 
the nature of software is the simulation and execution of partial human 
behaviors, and the extension of human capability, reachability, persistency, 
memory, and information processing speed.  
 

Table 9.7 
Approaches to Implement Natural Intelligence and Artificial Intelligence 

 

No. Means Approach Category 
1  Biological organisms   Naturally grown  NI 
2  Silicon automata Wired AI 
3  Computing systems Programmed AI 
4  Other (in future)  Hybrid    NI + AI 

 
9.3.3.3 The Model of Natural Intelligence  

 
On the basis of the conceptual models developed in previous 

subsections, the mechanisms of natural intelligence can be described by a 
generic intelligence model (GIM) as given below. 

 
Definition 9.21 The Generic Intelligence Model (GIM) describes the 

mechanisms of the natural intelligence, as shown in Fig. 9.10, according to 
Theorem 9.5 on the nature of intelligence. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.10 The Generic Intelligence Model (GIM) 

 

  K 
LTM 

 Ii 

Stimuli 

   I 
STM

  D 
SBM 

  B 
ABM

Enquiries 

Behaviors 
 Ir 

 Ip – Perceptive intelligence  

  Ic 

 Ip 

 Ic – Cognitive intelligence   Ii – Reflective intelligence  
 Ii – Instructive intelligence  
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In the GIM model as shown in Fig. 9.10, different kind of intelligence 
is described as a driving force that transfers between a pair of abstract objects 
in the brain such as data (D), information (I), knowledge (K), and behavior 
(B). 

It is noteworthy that each abstract object is physically stored in a 
particular type of memories as defined in Section 9.2.2.3 according to the 
CMM model given in Theorem 9.3. This is the neural informatics foundation 
of natural intelligence, and the physiological evidences of why natural 
intelligence can be classified into four forms as given in Theorem 9.5.        

According to the GIM model, as well as Theorems 3.3 and 3.4, the 
natural and machine (artificial) intelligence share the same cognitive 
informatics foundation. In other words, they are compatible. Therefore, the 
studies on natural intelligence and artificial intelligence may be unified into a 
common framework.            
 
9.3.3.4 Measurement of Intelligence 
 

The measurement of intelligent capability of humans and systems can 
be classified into three categories known as intelligent quotation, intelligent 
equivalence, and intelligent capability as described in the following 
subsections. 

 
9.3.3.4.1 Intelligent Quotient 

 
The first measurement for mental intelligence is proposed in 

psychology known as the intelligent quotient based on the Stanford-Binet 
intelligence test [Binet, 1905; Terman and Merrill, 1961; Pinneau, 1961; 
Mackintosh, 1998]. Intelligent quotient is determined by six subtests where 
the passing of each subtest is counted for two equivalent months of mental 
intelligence. 

  
Definition 9.22 The mental age Am in an intelligent quotient test is the 

sum of a base age Ab and an extra equivalent age ∆A, i.e.: 
 

        
 

max

max

2
12

  [ ]
6

m b

sub

sub

A A A
nA

nA yr

= + ∆

= +

= +

                    (9.12) 

 
where Ab is the maximum age Amax gained by a testee who passes all six 
subtests required for an certain age, and ∆A is determined by the number of 
passed subtests beyond Amax as merits, i.e., nsub.    
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Definition 9.23 Intelligent quotient (IQ) is a ratio between the mental 
age Am and the chronological (actual) age Ac, multiplied by 100, i.e.: 
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                  (9.13) 

 
Example 9.1 For a 9 year-old boy and 6.75 year-old (6 year and 9 

month) girl, if they both pass all six subtests at the 7-year level, plus 12 
subtests partially passes in higher age levels, what are their IQs, respectively?                

 
As given above, for the boy: Ac1 = 9, Amax1 = 7, and nsub1 = 12; and for 

the girl: Ac2 = 6.75, Amax2 = 7, and nsub2 = 12. Their IQs, IQ1 and IQ2, can be 
determined according to Eq. 9.12 as follows: 

    

       

max

1

1
6 100
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9
100.0
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c
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A

+
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max

2

1
6 100

127
6 100
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sub

c
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A

+
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=

                    

 
According to Definition 9.12, an IQ score above 100 supposes a gifted 

intelligence. However, the measure is only sensitive to children but not 
sensitive to adults, because the differences between the mental and 
chronological ages for adults are not clear naturally. Another drawback in the 
IQ test is that the norms or benchmarks of the mental ages for determining IQ 
are not easy to objectively define, especially for adults, and were considered 
highly subjective. Third, the IQ test does not cover all forms of intelligence 
as defined in Theorem 9.5, particularly the instructive and reflective 
intelligent capabilities.    
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9.3.3.4.2 The Turing Test 
 

The second measurement for comparative intelligence is proposed by 
Alan Turing based on the Turing test [Turing, 1950].  

 
Definition 9.24 The Turing intelligence equivalence ET is a ratio of 

conformance or equivalence evaluated in a comparative test between a 
system under test and an equivalent human-based system, where both 
systems are treated as a black box and the testers do not know which is the 
tested system, i.e.:  

 
    

 100%
+

c
T

c u

TE
T T

= •                   (9.14) 

 
where Tc is the number of conformable results between the two systems a 
tester evaluated, and Tu the number of unconformable results. 
 

Turing tests with the layout above are informally defined based on 
empirical experiments and subjective judgements of conformance by testers. 
The standard real human intelligent system as the reference system in the test 
is difficult to be defined and it is instable. Also, not all forms of intelligence 
may be tested by the black box settings such as the cognitive and reflective 
intelligent capabilities. 

 
9.3.3.4.3 Wang’s Intelligent Capability Metrics 
 

Based on the investigation into the nature of intelligence and the GIM 
intelligence model [Wang, 2006b/06j/07a], a comprehensive measurement on 
human and system intelligence is proposed by the author known as the 
Wang’s intelligent capability metrics as defined below [Wang, 2007i]. 

 
Definition 9.25 The Intelligent Capability CI is an average capability of 

the perceptive intelligence (Cp), cognitive intelligence (Cc), instructive 
intelligence (Ci), and reflective intelligence (Cr), i.e.: 

 
       p c i r

  
+ + + 

4I

C C C C
=C                     (9.15) 

 
where CI ≥ 0 and CI = 0 represents no intelligence. 
 
 In Definition 9.25, the four forms of intelligent capabilities can be 
measured individually according to the following methods given in 
Definitions 9.26 through 9.29. 
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Definition 9.26 The perceptive intelligent capability Cp is the ability to 
transfer a given number of data objects or events Nd into a number of 
information objects in term of derived or related concepts, Ni, i.e.:   

  
                i  

d
p

NC
N

=                              (9.16) 

 
The perceptive intelligent capability is directly related to the association 

capability of a testee. The higher the ratio of Cp, the higher the capability of 
perceptive intelligence. If there is no concept that may be linked or derived 
for a given set of data or event, there is no perceptive intelligent capability.     
  

Definition 9.27 The cognitive intelligent capability Cc is the ability to 
transfer a given number of information objects Ni in terms of associated 
concepts into a number of knowledge objects Nk in terms of relations 
between concepts, i.e.:   

  
                k  

i
c

NC
N

=                              (9.17) 

 
Definition 9.28 The instructive intelligent capability Ci is the ability to 

transfer a given number of information objects Ni in terms of associated 
concepts into a number of behavioral actions Nb in terms of number of 
processes at LRMB Layers 5 and 6, i.e.:   

  
                b

  

i
i

NC
N

=                              (9.18) 

 
Definition 9.29 The reflective intelligent capability Cr is the ability to 

transfer a given number of data objects or events Nd into a number of 
behavioral actions Nb in terms of number of processes at LRMB Layers 5 and 
6, i.e.:   

  
                b

  

d
r

NC
N

=                              (9.19) 

 
 On the basis of Definitions 9.25 through 9.29, a benchmark of average 
intelligent capabilities can be established with large set of test samples. Then, 
a particular testee’s relative intelligent capability or intelligent merit may be 
derived based on the benchmark. 
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Definition 9.30 The relative intelligent capability ∆CI is the difference 
between a testee’s absolute intelligent capability CI and a given intelligent 
capability benchmark 

IC , i.e.: 
 

                         
 

b bi k

d i i d
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4

I I I

I
N NN N

N N N N

∆ =
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C C C

C
       (9.20) 

 
9.3.3.5 Theory of Learning and Knowledge Acquisition 
 

According to the CIM model described in Section 9.3.3, the forms of 
information acquisition and learning of both humans and machine systems 
are determined by the taxonomy and cognitive properties of internal 
information inside the brain as stated in the following theorem.  
 

 
Theorem 9.6 indicates that learning theories and their implementations 

in autonomic and intelligent systems should study all four categories of 
cognitive information acquisition, particularly behaviors, experience, and 
skills rather than only focusing on knowledge.           
 

 
According to the object-attribute-relation (OAR) model (see Model 

9.8), the result of knowledge acquisition or learning can be embodied by the 
updating of the existing OAR in the brain. In other words, learning is a 
dynamic composition of the existing OAR in LTM and the currently created 
sub-OAR as expressed below.     

 

Corollary 9.3 Knowledge and behaviors can be learnt indirectly by 
inputting abstract information; while experience and skills must be learnt 
directly by hands-on or empirical actions. 
 

 

The 28th Principle of Software Engineering 
 
Theorem 9.6 The generic forms of learning state there are sufficiently 
four categories of learning L known as those of knowledge (Lk), 
behaviors (Lb), experience (Le), and skills (Ls), i.e.: 
 
                                            ( , , , )k b e s=L L L L L          (9.21) 
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9.3.4 THE COGNITIVE MODEL OF THE BRAIN 

 
As argued in the beginning of Section 9.2, although plenty of 

observations and studies on the brain at physiological and psychological 
levels have been cumulated, there is a lack of the functional model of the 
brain at the top level that provides a whole picture of the brain and natural 
intelligence.  

This subsection develops the cognitive models of the brain and natural 
intelligence by studying relationships between the inherited and acquired life 
functions in the six layers of LRMB and between the memory components of 
the brain. It is found that the brain and the natural intelligence can be 
formally treated as a real-time information processing system [Wang and 
Wang, 2006] at the functional level in cognitive informatics with the 
framework of LRMB. 

 
 Model 9.5 The Real-Time Intelligent System Model of the brain, NI-

Sys, can be described as a real-time natural intelligent system with an 
inherited operating system (thinking engine) NI-OS and a set of acquired life 
applications NI-App, i.e.: 
 
              NI-Sys    NI-OS  
                                || NI-App         (9.23) 
 
where NI-OS represents the inherited life functions, NI-App the developed 
life functions, and || a parallel relation.                

 
The relationship between NI-OS and NI-App has been illustrated in Fig. 

9.8, where the Level 1 through Level 4 life functions belong to NI-OS, and 
Level 5 and Level 6 life functions are a fundamental part of NI-App.  

 

The 29th Principle of Software Engineering 
 
Theorem 9.7 The representation of learning results states that the 
internal memory in the form of the OAR structure can be updated by a 
conjunction between the existing OAR and the newly created sub-OAR 
(sOAR), i.e.: 
 

                              OAR’ ST  OARST ∪ sOAR’ST  
                                            = OARST ∪ (Os, As, Rs)                          (9.22) 
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The characteristics of NI-OS have been observed as follows [Wang and 
Wang, 2006]:    

 
      •  Inherited  
      •  Wired (by neural networks) 
      •  Working subconsciously and automatically 
      •  A real-time system 
      •  Person-independent, common and similar 
      •  Highly parallel and fault-tolerant 

         • With event/time/interrupt/goal/inference-driven mechanisms 
 

In contrary to the NI-OS, the characteristics of NI-App have been 
identified as follows [Wang and Wang, 2006]:     
   

       •  Acquired 
       • Partially wired (frequently used functions) and partially 

programmed (temporary functions)  
      •  Working consciously 
      •  Can be trained and programmed 

       •  Person-specific  
  

The goal-driven and inference-driven mechanisms are unique features 
of natural intelligence systems on top of the event-, time-, and interrupt-
driven imperative computing mechanisms. The former are autonomously 
determined by internal states and willingness such as emotions, desires, and 
rational reasoning. A systematical comparison of the natural intelligent 
behaviors and the conventional imperative computer behaviors will be 
provided in Section 15.4.1 toward the development of software science and 
autonomic computing. Because the inference-driven behaviors have been 
modeled in Section 3.3, the goal-driven behaviors are described below.   
 

Definition 9.31 A goal, denoted by @gkST in the system type ST, is a 
triple, i.e.:   
 

       @gkST = (P, Ω, Θ)           (9.24) 
 
where P = {p1, p2, …, pn} is a nonempty finite set of purposes or motivations, 
Ω is a set of constraints for the goal, and Θ is the environment of the goal.   
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Therefore, a goal-driven behavior is a cognitive process that is 
determined by an internal goal in the forms of emotions, desires, willingness, 
and/or results of rational reasoning. 

On the basis of Model 9.5, the functional model of the brain is 
illustrated in Fig. 9.11 [Wang and Wang, 2006], which shows that the brain 
consists of the NI-Sys (NI-OS || NI-App), LTM, STM, SBM (connected with 
a set of sensors), and ABM (connected with a set of servos). In Fig. 9.11 the 
kernel of the brain is the natural intelligence system (NI-Sys), which is the 
thinking engine of the brain as described in the LRMB model. 
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Figure 9.11 The functional model of the brain 
 

Based on Fig. 9.11 and the CMM model, Model 9.5 can be extended as 
follows.  

 
Model 9.6 The functional model of the brain, BRAIN, as a real-time 

system and a high-level logical model of the brain, describes the functional 
configuration of the brain and how the NI-Sys interacts with the memory 
system, i.e.: 
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Eq. 9.25 indicates that although the thinking engine NI-Sys is 
considered the center of the natural intelligence, the memories are essential to 
enable the NI-Sys to properly function, and to keep temporary and stable 
results stored and retrievable.  

The corresponding biological organ of NI-OS in neurophysiology is the 
thalamus – a switching center located above the midbrain, which possesses 
tremendous amounts of connections to almost all parts of the brain, 
especially cerebral cortex, eyes, and visual cortex [Smith, 1993; Leahey, 
1997; Payne and Wenger, 1998; Sternberg, 1998]. Thalamus, the 
physiological organ corresponding to NI-OS, has nearly matured when a 
person is born. However, the NI-App is a set of acquired functions, in forms 
of knowledge and skills, wired and stored in the LTM in cerebral cortex. 

NI-Sys interacts with LTM and STM in a bi-directional way, which 
forms the basic functionality of the brain as a thinking machine. STM 
provides working space for the NI-Sys, and LTM stores both cumulated 
information (knowledge) and wired and usually subconscious procedures 
(skills). It is also noteworthy that ABM plays an important role in the brain to 
plan and implement human behaviors [Wang and Wang, 2006].  

 The NI-Sys communicates with the external world through inputs and 
outputs (I/Os). The former are sensorial information, including vision, 
audition, touch, smell, and taste. The latter are action and behaviors of life 
functions, such as looking, speaking, writing, and driving. The actions and 
behaviors generated in the brain, either from NI-OS or NI-App, are buffered 
in the ABM before they are executed and outputted to implement the 
predetermined actions and behaviors.  
   Unlike a computer, the brain works in two approaches: the internal 
goal- and inference-driven processes (in NI-OS), and the external event-, 
time-, and interrupt-driven processes (in NI-App). The external information 
and events are the major sources that drive the brain, particularly for NI-App 
functions. In this case, the brain may be perceived as a passive system, at 
least when it is conscious, that is controlled and driven by external 
information. Even the internal willingness, such as goals, desires, and 
emotions, may be considered as derived information based on originally 
external information. 

It is noteworthy that the subconscious life functions determine the 
majority of human behaviors and cognitive processes. Although Sigmund 
Freud identified the psychological effects of sex-related desires of human 
beings [Freud, 1895; Leahey, 1997], the other more important subconscious 
life functions as modeled in LRMB as shown in Table 9.5 were probably 
oversimplified [Wang et al., 2006]. Therefore, a study on the subconscious 
behaviors of the brain and their mechanisms may be the key to understand 
how the brain works. 

The LRMB reference model and the functional model of the brain 
establish the foundation for explaining and analyzing the cognitive 
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mechanisms of the brain. Based on them, the age-old problem of the 
relationship between the brain and the mind can be explained, where the 
brain is both an information processing organ and a real-time controller of 
the body; while the mind is an abstract model of oneself and a thinking 
engine. The mind, as a virtual model of a person in the brain, is partially 
programmed and partially wired. The former is evolved for the flexibility of 
life functions, while the latter is formed for the efficiency of frequently 
conducted activities, such as eating, writing, and driving.         
  

Definition 9.32 The relationship between the brain and the mind can be 
analogized by: 

 
      Brain : mind = computer : program           (9.26)  

 
The existence of the virtual model of human beings, the mind, can be 

proven by the following mental phenomena: (a) If one keeps eyes closed, one 
may still imagine or ‘see’ everything you learned and remembered, 
particularly, the visual information, such as the hands and legs. (b) It is 
reported that patients who lost a leg or arm may think or feel, from time to 
time, that they still have it as before, because the original cognitive model 
about the organ at the lower layer of the brain may not be eliminated 
whenever it had been physiologically created. However, the low-level model 
may be bypassed or patched at higher layer by conscious cognitive processes.  

 
 

 
9.4 Cognitive Informatics Models of 
       Knowledge Representation 
 

 
 
Types and structures of memories have been formally modeled in Section 
9.2.2, and the cognitive models of the brain have been formally described in 
Section 9.3. This section examines the cognitive informatics models of 
information and knowledge and their internal representation in the brain. A 
set of cognitive models will be developed such as the hierarchical neural 
cluster model of memory and the object-attribute-relation model of internal 
knowledge representation, which leads to the explanation of the forms of 
learning result representation and the estimation of the memory capacity of 
the brain.  
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9.4.1 THE HIERARCHICAL NEURAL CLUSTER (HNC) 
          MODEL OF MEMORY 
 

In contrary to the traditional container metaphor, the human memory 
mechanism can be described by a relational metaphor [Wang et al., 2003; 
Wang and Wang, 2006]. The new metaphor perceives that memory and 
knowledge are represented by the connections between neurons in the brain, 
rather than the neurons themselves as information containers. Therefore, the 
cognitive model of human memory, particularly LTM, can be modelled as 
follows. 
 

Model 9.7 The functional model of LTM is a set of Hierarchical 
Neural Clusters (HNC) with partially connected neurons via synapses. 
  

The HNC model can be illustrated as shown in Fig. 9.12, where the 
LTM consists of dynamic and partially interconnected neural networks, 
where a connection between a pair of neurons by a synapse represents a 
relation between two cognitive objects. The hierarchical and partially 
connected neural clusters are the foundation for permanent and dynamic 
information and knowledge representation in LTM. 

 

 
 
Figure 9.12 LTM: hierarchical and partially connected neural clusters 
 

 
9.4.2 THE OBJECT-ATTRIBUTE-RELATION (OAR) 
         MODEL OF INTERNAL INFORMATION 
         REPRESENTATION 

 
 It is recognized that at the fundamental level, the brain models 

information by only four meta types [Wang, 2007f; Wang and Wang, 2006]: 
object, attribute, and relation, as shown in Table 9.8. However, the 
magnitude of connections among them is extremely high, which can be on 
the order of 108,432 bits according to a recent study [Wang et al., 2003] 
described in Section 9.4.5.  
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Table 9.8 
The Meta Cognitive Models of the Brain 

 

Cognitive 
models 

Description Mathematical 
abstraction 

Object The abstraction of external entities 
and/or internal concepts 

Set, tuple, concept algebra 

Attribute  Detailed properties and characteristics 
of an object      

Set, tuple, concept algebra  

Relation Connections and relationships between 
any pair of object-object, object-
attributes, and attribute-attribute  

Concept algebra, relational 
algebra, combinational logic   

 
 Based on this observation, an object-attribute-relation model of human 

memory is developed below, which presents a generic memory model of the 
brain [Wang, 2007f].  

 
Model 9.8 The Object-Attribute-Relation (OAR) model of LTM can be 

described as a triple, i.e.: 
 

                                OAR  (O, A, R)                                  (9.27) 
 
where O is a set of objects identified by unique symbolic names, i.e.:  
 

                  O  {o1, o2, …, oi, …, on}                  (9.28) 
 
 For each given object oi, 1≤ i ≤ n, Ai is a set of attributes for 
characterizing the object, i.e.:  
 

                  Ai  {Ai1, Ai2, …, Aij, …, Aim}                 (9.29) 
 
 Logically, each Ai may be defined by one of the following set of 
generic attributes and/or specific attributes: 
  

         Ai  physical attributes 
    | chemical attributes 
    | cognitive attributes (image, sound, touch, smell, taste) 
    | economical attributes 
    | time-related attributes  
    | space-related attributes 
    | categories 
    | specifications 
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    | measurements  
    | usages 
    | other specific attributes            (9.30) 

 
 For each given oi, 1≤ i ≤ n, Ri is a set of relations between oi and other 
objects or attributes of other objects, i.e.: 
 

                        Ri  {Ri1, Ri2, …, Rik, …, Riq}                 (9.31) 
 
where Rik is a relation r between two objects, oi and oi’, and their attributes Aij 

and Ai’j, 1 ≤  i ≤  n, 1 ≤  j ≤  m, i.e.:         
 

                      Rik  r (oi , oi’) 
                     | r (oi, Ai’j)  
                     | r (Aij, oi’)  
                     | r (Aij, Ai’j),  1≤ k ≤ q         (9.32)    
  

Typically, Ri may be defined by one of the following set of generic 
relations and/or specific ones: 
 

             Ri  categories  
      | types 

          | entities (real-world objects) 
          | artifacts (abstract concepts) 

          | others                 (9.33) 
 
where | denotes an alternative relation between defined items. 

 

 

     O1 
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 A12
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 A2j A1i
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   r(O1, O2)

  r(A11, A21)
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    r(O1, A2j)     r(O2, A1i)

 
 

Figure 9.13 The OAR model of internal knowledge representation 
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An illustration of the OAR model between two objects is shown in Fig. 
9.13. The relations between objects can be established via pairs of object-
object, object-attribute, and/or attribute-attribute. The connections could be 
highly complicated, while the mechanism is so simple that it can be deducted 
to the physiological links of neurons via synapses in LTM. 
 
 Example 9.2 The OAR model for representing an object tree, t, in 
LTM of the brain can be expressed as follows:      
 

t  (O, A, R)                             
                          = (t, At, Rt)                      
 
where 
                o  t = tree  

 

   At  sign 
          | real world reference (image) 
          | other sensorial attributes (sound, touch, smell, and taste) 
          | shape (category) 
          | phonetics (/tri:/) 
          | plant (category) 
          | having a trunk (specific attribute 1) 
          | with leaves (specific attribute 2) 
          | green (specific attribute 3) 
          | … 
 

    Rt  forest 
          | wood 
          | environment 
          | furniture 
          | house 
          | bird 

 | … 
 
It is noteworthy as in the OAR model that the internal information and 

knowledge is presented by the relations in the brain. The relational metaphor 
is totally different from the traditional container metaphor in 
neuropsychology and computer science, because the latter perceives that 
memory and knowledge are stored in individual neurons or memory cells and 
the neurons or cells function as containers. 

Although the number of neurons in the brain is limited, the possible 
relations between them may result in an explosive number of combinations 
that represent knowledge in the human memory. Therefore, the OAR model 
is capable to explain the fundamental mechanisms of human memory 
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creation, retention, and processing. It also explains why the cortex of the 
brain is twisted like spaghettis, because this physical configuration allows 
and increases possible synaptic links between different physiological groups 
of neurons that represent logically different internal knowledge and 
information. The establishment of an unusual synaptic link between such 
logically long-distance but physiologically nearby neurons indicates the 
mechanism of creation or invention.     

 
 
9.4.3 THE EXTENDED OAR MODEL OF THE BRAIN 

 
 The OAR model developed in Section 9.4.2 provides an abstract 

conceptual model of LTM and the logical representation of knowledge and 
learning results [Wang, 2007f]. Mapping it onto the cognitive structure of the 
brain, an extended OAR model, EOAR, can be derived below and illustrated 
in Fig. 9.14 [Wang and Wang, 2006].  
 

 Model 9.9 The Extended OAR model of the brain, EOAR, states that the 
external world is represented by real entities (REs), and the internal world by 
virtual entities (VEs) and objects (Os). The internal world can be divided into 
two layers known as the image layer and the abstract layer.  
 
 

                                              The internal world
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Figure 9.14 The EOAR model of the brain 
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The virtual entities are direct images of the external real-entities located 
at the image layer. The objects are abstract artifacts located at the abstract 
layer. There are meta objects (O) and derived objects (O'). The former are 
objects directly corresponding to the virtual entities; the latter are objects that 
are derived internally and have no direct connection with the virtual entities 
or images of the real-entities.  

According to EOAR, there are two inference spaces in the brain: the 
concrete space and the abstract space. The former is the memory space for 
visual reasoning; the latter for abstract reasoning. Objects in both spaces can 
be further extended into a network of object, attributes, and relations 
according to the OAR model.          

The abstract space is an advanced property of the human brain. Other 
species have no such abstract layer in their brains. This can be proved by the 
following test with a cat for instance. One may communicate with one’s cat 
by a concrete real entity. However, if you want your cat to pay attention to an 
entity in the distance by pointing your finger at it, the cat will never 
understand your intention but simply look at your finger perplexedly! Thus, 
animals have no indirect or abstract thinking capability in addition to 
inherited reflective capability. In other words, the abstract space and the 
abstract inference capability is a unique power of human brains. The other 
advantage of the human brain is the tremendous capacity of LTM in cerebral 
cortex as described in Theorems 9.1 and 9.2.  

 

 
It is noteworthy that the cognitive model of the brain is looped. This 

means that an internal virtual entity is not only abstracted from the real-entity 
as shown in the left-hand side in Fig. 9.14, but also eventually connected to 
the entities in the right-hand side. This is the foundation of thinking, 
reasoning, and other high-level cognitive processes, in which internal 
information has to be related to the real-world entities, in order to enable the 
mental processes to be embodied and meaningful. 

The EOAR model can be used to describe information representation 
and its relation to the external world. The external world is described in 
terms of real entities whereas the internal world is represented by virtual 
entities and objects. The internal world in its turn consists of two layers: the 

 
The 30th Principle of Software Engineering 

 
Theorem 9.8 The principal intelligent advantages state that, on the basis 
of two principal advantages known as the qualitative properties (Theorem 
9.1) and quantitative properties (Theorem 9.2), humans gain the power as 
the most intelligent species in the world. 
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image and abstract layers. Virtual entity is an image of the real entity in 
internal world and located at the image layer. Objects in the abstract layer are 
grouped into two classes: the meta and derived objects. Meta objects have 
direct relations to virtual entities, while derived objects are represented 
internally in the abstract space without direct relations to the virtual entities.  

 The EOAR model reveals that the natural intelligence is memory-
based. The EOAR model can be applied to explain the mental processes and 
cognitive mechanisms as identified in the LRMB model as developed in 
Section 9.3.1. 

 
  
9.4.4 THE COGNITIVE MECHANISMS OF LONG-TERM 
         MEMORY 
  

 In studying the mechanisms of generic computing machines, Allan 
Turing found that the basic functionality for computing might mimic the 
following fundamental capabilities of human brains [Turing, 1936/50]: 

 
       • A limited-length memory tape   

     • A simple addressing capability for searching information in 
the memory  

       • Inputs (read) from the memory tape  
       • Outputs (write) to the memory tape 
 
 This finding revealed that intelligence is memory-based. Further, it 

indicates that computing, a high-level artificial intelligence, can be divided 
into a sequence of simple memory manipulations, such as addressing, 
reading, and writing. Turing’s findings can also be used to explain the natural 
intelligence in cognitive informatics and neuropsychology. 

 It is observed that the capacity of association cortex, the physiological 
organ of LTM, has increased dramatically as mankind evolved over time. 
This provides a foundation for retaining and manipulating information and 
knowledge in the brain.  

On the basis of the cognitive models of the brain developed in the 
preceding subsection, the cognitive mechanisms and properties of human 
memory, particularly LTM, can be systematically examined and analyzed. 
This subsection demonstrates that based on the cognitive models of the brain 
and memories, a wide range of natural intelligent phenomena and their 
mechanisms may be formally explained. 
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9.4.4.1 Cognitive Properties of LTM 
 

 
 It is noteworthy that LTM cannot be sorted because it is so complicated 
and it uses spatial synapse connections to represent information. Therefore, 
accesses to information in LTM have to be carried out by content-sensitive 
and thread-based search. Comparing computer memory and LTM, it can be 
seen that the former may be fast and randomly accessed by address-sensitive 
mechanisms, while the latter is far more stable and robust. In addition, for a 
given object, LTM can be accessed through multiple paths. This is one of the 
cognitive foundations for reasoning and imagination. 

 Potential approaches to represent information in LTM may be 
implemented as follows: 

 
    a) A set of new synaptic links: To represent new information as 

relations with existing objects. In this case, no new neuron is 
needed to be allocated. 

      b)  New neurons and synaptic links: To represent new information at 
the leave of a neural cluster. In this case, new neurons belongs to 
an existing subcluster need to be allocated, and more synaptic 
links need to be generated within this cluster.            

      c)  A new neural cluster: To represent a large set of coherent new 
information such as systematical knowledge learned in a new 
course by new neural clusters. In this case, significant numbers of 
new neurons and their clustering are needed. This is may be 
implemented by allocating a set of spare neurons in LTM [Squire 
et al., 1993; Gabrieli, 1998; Payne and Wenger, 1998]. Therefore 
the total memory capacity of adult brain will not be significantly 
changed rather than reallocated. 

 
It can be seen that the third case identified above is the most difficult 

situation in learning and memorization where a set of totally new knowledge 

 

Corollary 9.4 The cognitive properties of LTM are identified as follows:  
     

      •  It’s directed  
          •  New relations (synaptic connections) can be generated 
          •  It can be reconfigured  
          •  It can be traversed or searched 

     •  It contains loops allowing searches may be carried out from an 
arbitrary node    

          •  It cannot be sorted 
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has to be physiologically represented and memorized. This explains why the 
productivity of creative work such as that of software engineering is 
conservative as stated in Theorem 1.7, because the allocation of neurons and 
the growing rate of synapses are constrained by natural laws.      
 

 
9.4.4.2 When is Memory Created in LTM? 

 
The investigation of this fundamental issue can be started by examining 

the following questions: Why do all mammals need sleep? What is the 
cognitive mechanism of sleeping?     

Sleep as an important physiological and psychological phenomenon 
was perceived as innate, and few hypotheses and theories have been 
developed to explain the reason. This subsection explores the role of sleep in 
LTM establishment. 

It is observed that when complicated and highly abstract subjects are 
taught in a class, students tend to get sleepy. The common sense explanation 
for this phenomenon is because of boredom or being tired. However, 
according to Theorem 9.9 and the following lemma, it is a natural and 
protective action of the brain, which tries to create a sleeping or nap period to 
remove information that occupies STM into LTM, in order to release more 
STM space for a current and complicated subject.  

 

 
Lemma 9.1 logically explains the following common phenomena: a) 

All mammals, including human beings, need to sleep; b) When sleeping, the 
blood supply to the brain reaches the peak, at about 1/3 of the total 
consumption of the entire body. However, during daytime the brain just 
consumes 1/5 of the total blood supply in the body [Smith, 1993; 
Rosenzmeig et al., 1999; Maquet, 2001; Stickgold et al., 2001]; and c) 

 
Lemma 9.1 Information memorization in LTM, as a process to create 
synaptic relations between neurons according to the OAR model, is 
functioning subconsciously during sleep.  

 

 

The 30th Law of Software Engineering 
 

Theorem 9.9 The dynamic properties of neural clusters state that the 
LTM is dynamic. New neurons (to represent objects or attributes) are 
assigning, and new synaptic connections (to represent relations) are 
creating and reconfiguring all the time in the brain. 
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According to the NI-Sys model, human beings are naturally a real-time 
intelligent information processing system. Since the brain is busy during day-
time, it is logical to schedule the functions of LTM establishment at night, 
when more processing time is available, and fewer interruptions occur due to 
external events.    

 
Lemma 9.1 is supported by the following observations and 

experiments. 
 

Experiment 9.1 A group of UK scientists observed that stewardesses 
serving long-haul flights had bad memory in common [Wilson and Frank, 
1999]. An initial explanation about the cause of this phenomenon was that 
the stewardesses have been crossing time zones too frequently.  

Actually, the above hypothesis is only a partially correct explanation. 
According to Lemma 9.1, the memory problems of stewardesses are caused 
by the lack of quality sleep during night flights. As a consequence, the LTM 
could not be properly established.  

 
Based on Lemma 9.1, the cognitive informatics theory of sleep can be 

derived as follows. 

 
Theorem 9.10 describes an important finding on one of the fundamental 

mechanisms of the brain and the cognitive informatics meaning of sleep. Of 
course, there are obvious physiological purposes of sleep as well, such as 
resting the body and saving energy.     

 
It was commonly believed that the heart is the only organ in the human 

body that never takes a rest during the entire life. Corollary 9.5 reveals that 
so does the brain. The nonresting brain is even more important than the heart 
because the latter is subconsciously controlled and maintained by the former.  

 

The 31st Principle of Software Engineering 
 
Theorem 9.10 The cognitive mechanism of sleep states that sleeping is a 
subconscious process for LTM establishment, i.e.: 

        

              Cognitive purpose of sleep = LTM establishment   (9.34) 
                                                                                              

 
Corollary 9.5 Lack of sleep results in bad memory, because the memory 
in LTM cannot be properly established.  

 

© 2008 by Taylor & Francis Group, LLC



712   Part III  Organizational Foundations of SE 

   

 
9.4.4.3 How is Memory Created in LTM? 

 
Sleep is recognized as a subconscious process in cognitive informatics. 

Its cognitive and psychological purpose is to build and update LTM. LTM is 
updated by searching and analyzing the contents of STM and selecting useful 
(i.e., the most frequently used) information. 

 

 
Based on Theorem 9.12, the relationship between memorization 

(especially that of LTM) and learning becomes apparent. That is, learning is 
to gain knowledge or acquire skills, where the results of learning are retained 
in LTM or ABM, respectively.  

 
Corollary 9.6 The subconscious cognitive processes of the brain, NI-OS, 
do not sleep throughout human life.  

 

 

The 31st Law of Software Engineering 
 

Theorem 9.11 The establishment cycle of LTM states that the cycle of 
LTM establishment requires at least 24 hours, i.e.: 

 

        LTM establishment cycle ≥ 24  [hrs]             (9.35) 
 

where the 24-hour cycle includes any kind of combinations of awake, 
asleep, and siesta.   
 

 

The 32nd Principle of Software Engineering 
 

Theorem 9.12 The mechanism of LTM establishment states that the entire 
memory of information represented as an OAR model in the brain is 
updated by incorporating the sub-OARs formed in STM based on the 
following selective criteria:  
 

    a) A new sub-OAR in STM was more frequently used in the previous 
24 hours;  

    b)  A new sub-OAR in STM was related to the existing OAR in LTM 
at a higher level of the neural cluster hierarchy;  

    c)  A new sub-OAR in STM was given special attention so that it 
obtained a higher retention weight.  
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9.4.5 THE MEMORY CAPACITY OF HUMAN BRAINS  
  
According to the OAR model as shown in Figs. 9.13 and 9.14, 

information is represented in the brain by relations, which is a logical model 
of the synaptic connections among neurons. Therefore, the capacity of 
human memory is not only dependent on the number of neurons, but also the 
synaptic connections among them. This mechanism may result in a huge 
space of exponential combination to represent and retain information in 
LTM. This also explains why the magnitude of neurons in an adult brain 
seems stable, however, a tremendous amount of information can be 
remembered through out the entire life of a person. 

On the basis of the OAR model, a mathematical model for estimating 
the upper limit of human memory capacity can be derived [Wang et al., 
2003]. 

 
Model 9.10 The human memory capacity model states that, assuming 

there are n neurons in the brain, and in average there are s synaptic 
connections between a given neuron and a subset of the rest of them in the 
brain, the magnitude of the brain's memory capacity Cm can be expressed by 
the following mathematical model: 

 

                                              n

!   [bit]
!( )!

Cs
mC

n
s n s

=
−

                                (9.36)               

  
where n is the total number of neurons, and s the number of average partial 
connections between neurons via synapses. 
 

Model 9.10 indicates that the age-old memory capacity problem in 
cognitive science and neuropsychology can be reduced to a classical 
combinatorial problem, with the total potential relational combinations, Cs

n , 
among all neurons (n = 1011) and their average synaptic connections (s = 103) 
[Marieb, 1992; Pinel, 1997; Gabrieli, 1998]. Therefore, the parameters of Eq. 
9.32 can be determined as shown below: 
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Eq. 9.37 provides a mathematical explanation of the OAR model, 

which shows that the number of connections among neurons in the brain can 
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be derived by the combination of a huge base and a large number of potential 
synaptic connections.   

The above model seems a simple problem intuitively. However, it turns 
out to be extremely hard to calculate and is almost intractable using a typical 
computer, because of the exponential complexity or the recursive 
computational costs for such large n and m. However, using approximation 
theory, and a computational algorithm [Wang et al., 2003], Eq. 9.37 is solved 
and the result is obtained as:  
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 Eq. 9.38 reveals that the magnitude of the memory capacity of the brain 
may reach an order as high as 108,432 bits according to the OAR model. This 
forms the quantitative foundation of the natural intelligence. The finding on 
the magnitude of the human memory capacity reveals an important 
mechanism of the brain. That is, the brain does not create new neurons to 
represent new information, instead it generates new synapses between the 
existing neurons in order to represent new information. The observation in 
neurophysiology that the number of neurons is kept stable rather than 
continuous increasing in adult brains [Marieb, 1992; Pinel, 1997; 
Rosenzmeig et al, 1999] is observed evidences for supporting the relational 
model of information representation in human memory.  

It is interesting to contrast the memory capacities between modern 
computers and human beings. The capacity of computer memory (mainly the 
hard disks) has been increased dramatically in the last few decades from a 
few kB to several GB (109 byte), even TB (1012 byte). Therefore, with an 
intuitive metaphor that 1 neuron = 1 bit, optimistic vendors of computers and 
memory chips perceived that the capacity of computer memory will, sooner 
or later, reach or even exceed the capacity of human memory [Sabloniere, 
2002]. However, according to the finding reported in this subsection, the 
ratio, r, between the brain memory capacity (Cb) and the projected computer 
memory capacity (Cc) in the next ten years is as follows [Wang, et al., 2003]: 
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This indicates that the memory capacity of a human brain is equivalent 
to at least 108,419 modern computers. In other words, the total memory 
capacity of computers all over the world is far more less than that of a single 
human brain. Eq. 9.39 also shows the power of the OAR mechanism and 
configuration of the brain, which uses only 100 billion neurons and their 
relational combinations to represent and store up to 108,432 bit information 
and knowledge.            

The tremendous difference of memory magnitudes between human 
beings and computers demonstrates the efficiency of information 
representation, storage, and processing in human brains. Computers store 
data in a direct and unconsumed manner; while the brain stores information 
by relational neural clusters. The former can be accessed directly by explicit 
addresses and can be sorted; while the latter may only be retrieved by 
content-sensitive search and matching among neuron clusters where spatial 
connections and configurations themselves represent information. 

Investigation into the cognitive models of information and knowledge 
representation in the brain and the capacity of the memory have been 
perceived to be one of the fundamental research areas that help to reveal the 
mechanisms and the potential of the brain. The result developed in this 
subsection has demonstrated that the magnitude (upper limit) of human 
memory capacity is excessively higher than those of computers in an order 
that we never realized. This new factor has revealed the tremendous 
quantitative gap between the natural and machine intelligence. The finding of 
this subsection has also indicated that the next generation computer memory 
systems can be built according to the relational OAR model rather than the 
traditional container metaphor, because the former is more powerful, flexible, 
efficient, and is capable of generating a mathematically unlimited memory 
capacity by using limited number of neurons in the brain or hardware cells in 
the next generation computers. 

 
   
 
9.5  Cognitive Informatics for 
        Software Engineering 
 

 
 
The cognitive constraints of software engineering have been identified in 
Section 1.3.2 as one of the primary constraints of software engineering, 
which refer to those of intangibility, complexity, indeterminacy, diversity, 
polymorphism, inexpressiveness, inexplicit embodiment, and unquantifiable 
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quality measures. On the basis of improved understanding of the cognitive 
properties of software as intelligent behaviors, this section describes the 
cognitive informatics principles of software engineering, which encompass 
cognitive constraints on software productivity, software engineering 
psychology, the cognitive foundation of software comprehension, software 
engineering skills and experiences, and software agent systems. 
 
 
9.5.1 COGNITIVE CONSTRAINTS ON SOFTWARE 
         PRODUCTIVITY 
 

According to Theorem 1.6, conservative productivity is a basic 
constraint of software engineering due to cognitive complexity and due to the 
cognitive mechanism in which abstract artifacts need to be represented 
physiologically in the brain via growing synaptic neural connections.  

The fact that before any program is composed, an internal abstract 
model must be created inside the brain [Wang, 2007a; Wang and Wang, 
2006] reveals the most fundamental constraint of software engineering, i.e., 
software is generated and represented in the brain before it can be transferred 
into the computer. Because the growth of the human neural system is 
naturally constrained, as described by the 24-hour law in Theorem 9.11, it is 
very hard to dramatically improve the productivity of software development. 

According to the statistics of software engineering literature [Boehm, 
1987; Dale and Zee, 1992; Jones, 1981/1986; Livermore, 2005], the average 
productivity of software development was about 1,300 LOC/person-year in 
the 1970s, 2,500 LOC/person-year in the 1980s, and 3,000 LOC/person-year 
in the 1990s, where management, quality assurance, and supporting activities 
are included, and LOC is the unit of the symbolic size of software in terms of 
Line of Code. It is obvious that the productivity in software engineering has 
not been increased remarkably in the last four decades independent of 
programming language development. In other words, no matter what kind of 
programming language is used, as long as they are for human programming, 
there is no difference in principle. This assertion can be proved by asking the 
following question: Have you ever known an author in literature who is 
productive because he/she writes in a specific natural language? 

Productivity of software development is the key among all the 
cognitive, time, and resources constraints in software engineering. The other 
constraints can be overcome as a result of the improvement of software 
engineering productivity.  
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All theories and approaches explored throughout this book put 

emphases on this ultimate goal of software engineering. The most significant 
and unique characteristic of software engineering lays on the need for the 
contemporary denotational mathematics in order to rigorously and explicitly 
model the architectures and behaviors of software systems and to reduce the 
cognitive complexity of software engineering, which are challenging the 
limitation of human cognitive capacity in large scale software development.    
 
 
9.5.2 SOFTWARE ENGINEERING PSYCHOLOGY 
 
 Software engineering psychology is a part of the domain of cognitive 
informatics. It is perceived that the nature of software and software 
engineering is in many ways closer to cognitive psychology than engineering 
and technology, because software is intangible and complicated abstract 
artifacts created by human brains [Weinberg, 1971; Wang, 2004b]. The best 
software often takes advantages of human creativity.  
 There are two types of programmers in a psychological view: the 
realistic and idealistic ones. The former may be suitable for coding, testing, 
and quality control; while the latter may be good at solution seeking, Graphic 
User Interface (GUI) design, and carrying out tasks as system analysts. For 
both above categories, the following psychological requirements for software 
engineers are important in software engineering:  
 

     • Abstract-level thinking 
    • Imagination of static descriptions in terms of dynamic behaviors    

       • Organization capability 
       •  Cooperation and team working attitude 
       • Long-term focus of attentions 
       • Preciseness 

 

Lemma 9.2 The key approaches to improve software development 
productivity are:  
 

a)  To explicitly express software architectures and behaviors in 
denotational mathematics;  

b)  To investigate the theories of rational software engineering 
organization; and  

c)  To design tools that lead to automatic software code 
generation based on the denotational system models.  
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       •  Reliability 
       • Expressive capability in expressions and communications 
  

There is a special phenomenon in software engineering that anybody 
who is able to use a programming language may claim that one can 
programming or even be a software engineer. This is just like that one who 
acquires reading and writing skills in a natural language may claim oneself as 
a writer; or one who is able to build a simple shelter or doghouse may claim 
oneself as a civil engineer.  
 It is stressed that knowing a programming language is not enough to be 
a qualified software engineer. So what else is needed? The following 
characteristics of software engineering practice may be considered as the 
basic requirements: 
 

• How to reuse proven software components into a well defined 
architecture  

 •  How to conform with standards and empirical best practice 
 •  How to organize a coherent team in engineering approach 

 •  How to control a complicated software engineering process 
 

 Hence, it is interesting to contrast and analyze the differences between 
professionals and amateurs in software engineering. Professional software 
engineers are persons with professional cognitive models and knowledge on 
software engineering. They are trained with:  

 
    • Fundamental knowledge that governs software and software 
 engineering practices  
    •  Basic principles and laws of software engineering 
    •  Proven algorithms 

       •  Problem domain knowledge  
       •  Problem solving experience  
       •  Program developing tools / environments 
        • Solid programming skills in multiple programming languages 

• A global and insightful view on system development, including 
its required functionalities as well as exception handling and 
fault-tolerance strategies   

 
 However, amateurish programmers are persons who know only one or 
a couple of programming languages but lack awareness and training as those 
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professionals identified above. Amateurs may be characterized as follows in 
their software engineering knowledge structure: 
 

         •  Ad hoc structure of programming knowledge 
         •  Limited programming experience and skills 

•  Eager to try what is directly required before a system architecture 
is designed 

    • Tend to focus on details without a global and systematic view 
 

The key difference between professionals and amateurs is whether their 
knowledge and skills are wired or temporarily programmed in the brain. 
Professional software engineers possess wired skills in the brain for 
programming, and with a global view on software development. They focus 
not only on required functions, but also on exceptions handling and fault-
tolerance in implementing the required functions. However, amateur 
programmers possess ad hoc programming knowledge, eager to try what is 
directly required, and tend to focus on details without a global and systematic 
view. 
 
 
9.5.3 THE COGNITIVE FOUNDATION OF SOFTWARE 
         COMPREHENSION 
 
 Comprehension is the action or capability of understanding. 
Comprehension is a higher cognitive process of the brain that searches 
relations between a given object or attribute and other objects, attributes, and 
relations in LTM, and establishes a representational model for the object or 
attribute by connecting it to appropriate clusters of memory. It is recognized 
that although knowledge and information are powerful, before any 
information can be possessed and processed it should be comprehended 
properly.  
 Comprehension can be modeled as a cognitive process that can be 
carried out by the following steps:  
 

    a) To search relations from real entities to virtual entities and/or 
existing objects and attributes.  

    b)  To build a partial or adequate OAR model of the entity. 

    c)  To wrap up the OAR model by classifying and connecting it to 
appropriate clusters of the LTM. 

    d)  To memorize the new OAR model and its connections in LTM. 
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The above cognitive process of comprehension is informally described 
in Fig. 9.15. As shown in Fig. 9.15, the first step to comprehend a given real 
entity or concept is to search the corresponding virtual entity and its relations 
to objects in the abstract layer. Depending on the results of the search for 
relations, the next step can be different. The ideal search result is that 
adequate relations have been found. In this case, comprehension is almost 
reached. The other possible result is that a partial comprehension or 
incomprehension is obtained when a partial OAR model is built, or a very 
low level of comprehension is reached. A partial OAR model is a sub-OAR 
model, where no sufficient relations have been found. In an extremely case, 
for a totally new concept in comprehension, probably only an ID of the 
concept is existent. These different outcomes in comprehension indicate that 
everything is comprehensible; only the extent of comprehension is varying in 
a range from 100% to 0%. 
 If the findings are sufficient then the brain builds a sub-OAR model for 
the given object (box 7). When the model is built it needs to be connected to 
the most appropriate cluster in the entire OAR of the brain (box 8). Only 
after this step is comprehension achieved.  
 However, if the findings are not adequate after the search, the brain 
builds a partial OAR model with limited information and requires further 
actions to obtain additional information from external resources (box 10). For 
example, if one could not recall or do not know the meaning of a given word 
by existing knowledge, one may look for it in a dictionary or encyclopedia. 
The search from external resources may be a repetitive process. For instance, 
if one cannot find the meaning of the word in the dictionary, then someone 
may be asked for its meaning. 

After searching several times in external resources, the brain checks 
again whether findings are adequate (box 11). If so, Steps 7 to 9 will be 
repeated. Otherwise, it is regarded that an incomprehension has been 
achieved (box 12) at this given moment, but still the results are remembered 
in LTM. In this situation a sub-OAR model is stored and it may be simply an 
ID for an unknown concept for future comprehension. For example, when 
reading one may come across a completely new word, and one could neither 
find it from any dictionary nor from other resources. Then, the word may 
simply be remembered by rote without knowing its meaning. One may 
remember it like “the word has seven letters”, “it starts with letter k”, “and it 
resembles the word …” etc, but without any significant attribute. For another 
example, when one looks at an abstract painting, one may see that some parts 
of the picture resemble a hand and other parts resemble something else, but 
what the whole picture expresses cannot be understood. In both examples the 
brain may still able to build a partial OAR model with a few insignificant 
attributes and relations based on the limited clues. The final step in the 
comprehension process is to memorize the OAR model in LTM by which the 
comprehension process is completed.  
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Figure 9.15 The cognitive model of the comprehension process 
    

On the basis of the explanation of the comprehension process of the 
brain, a formal description of the cognitive process of comprehension in 
RTPA is presented in Fig. 9.16. The relationship between the comprehension 
process and other meta cognitive processes, such as search, memorization, 
and knowledge representation, is also identified in the process.  

 
Definition 9.33 Program comprehension is a cognitive process to 

understand a given software system in dimensions of architecture, static 
behaviors, and dynamic behaviors, and their relationships.  

 
Program comprehension is a cognitive process to understand a given 

software system in terms of the architecture, static behavior, and dynamic 
behavior dimensions as well as their relationships and interactions. The 
comprehension of software architectures can be supported by concept algebra 
and system algebra [Wang, 2006e/06d], which focuses on data objects and 
frameworks of a software system. The comprehension of software static and 
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dynamic behaviors can be supported by RTPA, which focuses on individual 
behaviors and the interactions between computing actions and the data 
objects. 

 

 
Figure 9.16 Formal description of the comprehension process in RTPA 

 
 
9.5.4 SOFTWARE ENGINEERING SKILLS AND          
   EXPERIENCES 
 
 As revealed in Theorem 9.4 and Table 9.6, although knowledge can be 
acquired indirectly in learning, experiences and skills must be obtained 
directly by empirical actions.  

The Cognitive Process of Comprehension 
 
Comprehension (I:: TheConceptS;  
                          O:: OAR(TheConceptS)ST, LcomprehensionN)   
{ 
  oS := TheConceptS 
  → (  
           ScopeS := ImageLayerOfLTMS 
                      Search (I:: oS, ScopeS;  O:: ArST, RrST) 
       || ScopeS := AbstartcLayerOfLTMS  
                      Search (I:: oS, ScopeS;  O:: ArST, RrST) 
      ) 
  → ArST = {a1, a2, …, an}  
  → RrST = {o1, o2, …, om}  
  → (   (ArST ⊆  AmetaST) ∧ (RrST  ⊆ OmetaST) ∧ (ArST  = φ ∨ RrST  = φ)  
             → PL1S: OAR(oS)ST = {oS, ArST, RrST}  
        |  ~  
             → ScopeS := ExternalResourcesS 
              Search (I:: oS, ScopeS; O:: A′rST, R(rST)  
               (    (ArST ⊆ Ameta) ∧ ( (RrST ⊆ Ometa) ∧ (ArST  = φ ∨ RrST  = φ)  
                      PL1S 
                |  ~  
                     → OAR(oS)ST = {oS, ArST, RrST}  
               ) 
       ) 
    Memorization (OAR(oS)ST)  

   → 

n

1
R
i=

(OAR(RiST)ST = {oiS,  AiST ∪ oiS,  RiST ∪ oiS}  

}  
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In discussing “what makes a good software engineer” in a panel, 
Marcia Finfer (1989) believed: “the answer, in my opinion, is simply the 
combination of both innate skill and significant experience in building real 
systems against a set of functional and performance requirements and a given 
budget and schedule.” This shows that professional experience is a primary 
factor of software engineers, where an experience of problem complexity 
beyond 5,000LOC as given in Definition 1.2 is a necessary benchmark. Also, 
the possession of fundamental principles and laws of software engineering is 
essential towards excellent software engineers.    

The acquisition of professional skills may be described by a cognitive 
process. For example, in a complex building, if a newcomer is guided 
through once, he or she may still have difficulty to manage to remember the 
ways in the beginning. Because an abstract model of the building has yet to 
be built in his/her LTM by wired neural networks, which takes time (see the 
24-hour law in Theorem 9.11). The acquisition of skills for driving is another 
example that explains skill acquisition according to cognitive informatics 
principles. 

 It is observed that programming skills and software engineering 
experiences can not be transferred directly from person to person without 
hands on practice. Therefore, it is curious to seek what made skill and 
experience transfer hard in software engineering below.  

The means of experience repository in software engineering can be 
categorized into the following types: 
 

      • Best practices 
      •  Know-how 
      •  Lessons learnt 
      •  Failure reports 
      •  New technology trial reports  

 
 All the above items of software engineering experience seem to be hard 
to gain indirectly by reading. The major cognitive reasons explaining these 
phenomena can be described as follows:  
 

• The brain has no direct skill or experience transfer mechanism. 
Before it is acquired and possessed, any skill has to be 
physiologically modeled in the ABM, and any experience has to 
be reprogrammed into an action process in ABM.   

    • The only way for skill and experience acquisition is learn by 
doing, or trial and error. People, usually, have to make the same 
mistakes, at least to simulate them, in order to learn and remember 
a specific experience. 
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• Each brain is unique as described in Theorem 1.2, because of 
individual physiological differences, cognitive style differences, 
personality differences, and learning environment differences. 

 
 Therefore, although computers, as external or extended memory and 
information processing systems for the brain, provide a new possibility for 
people to learn things faster than ever, the internal representation of abstract 
knowledge or active behaviors such as skills and experiences must still rely 
on wired inter-connections among neural clusters and obey the same 
cognitive laws of the brain as described in Theorems 9.4 through 9.11.     
 
 
9.5.5 SOFTWARE AGENT SYSTEMS 

 
Definition 9.34 A software agent is an intelligent software system that 

autonomously carries out robotistic and interactive applications based on 
goal-driven mechanisms [Wang, 2003d/07f].  
 

The theoretical foundation of agent systems is cognitive informatics. 
Because a software agent may be perceived as an application-specific virtual 
brain according to Theorems 3.4 and 9.5, functions of an agent are mirrored 
human behaviors. The fundamental characteristics of agent-based systems 
are autonomic computing, goal-driven action-generation, and self-learning.  
 Machine perception is a basic capability required for a software agent 
system, where perception refers to the capability for thinking and interpreting 
data and information acquired from external world and events based on 
existing internal knowledge and how the data and information may be 
transformed into behaviors based on cognition [Matlin, 1994; Chorafas, 
1998].  

LRMB [Wang et al., 2006] may be used as a reference model for agent-
based technologies. This is a fundamental view toward the formal description 
and modeling of the architectures and behaviors of agent systems, which are 
designed to do something repeatable in context, to extend human capability, 
reachability, and/or memory capacity.  

It is found that both human and software behaviors can be described by 
a 3-D representative model comprising action, time, and space. For agent 
system behaviors, the three dimensions are known as mathematical 
operations, event/process timing, and memory manipulation [Wang, 2003d]. 
The 3-D behavioral space of agents can be formally described by RTPA 
[Wang, 2002a] that serves as an expressive notation system for describing 
thoughts and notions of dynamic system and human behaviors as a series of 
actions and cognitive processes. 

Recent research reveals that the foundations of agent technologies 
[Wang, 2007f] are rooted in cognitive informatics theories and autonomic 
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computing methodologies. Along with the latest development of cognitive 
informatics and autonomic computing, self-organizing, self-managing and 
non-imperative autonomic agent systems are emerging. An autonomic agent 
system is an intelligent software system that takes rational actions in the 
pursuit of its agenda via goal-, inference-, and event-driven behaviors. 
Because cognitive informatics investigates the internal information 
processing mechanisms and processes of the brain and natural intelligence, 
its research results underpin engineering applications of autonomic agent 
systems. 
 
 
 
9.6 Cognitive Complexity of 
        Software 
 

 
 
One of the central problems in software engineering is its inherited 
complexity. Since software is the product of human intelligence, cognitive 
informatics plays an important role in understanding the fundamental 
characteristics of software complexity.  

The existing measures for software complexity can be classified into 
two categories: the macro and the micro measures of software complexity. 
Two major macro complexity measures of software were proposed by Basili 
and Kearney, respectively. The former considered software complexity as 
‘the resources expended [Basili, 1980a/80b].’ The latter perceived that the 
complexity is the extent of difficulty in programming [Kearney et al., 1986]. 

 The micro measures are based on program code disregarding comments 
and stylistic attributes. This type of measures typically depends on program 
sizes, program flow graphs, or module interfaces such as Halstead’s software 
science metrics [Halstead, 1977] and the cyclomatic complexity of McCabe 
[McCabe, 1976]. However, Halstead’s software science purely calculates the 
numbers of operators and operands, but does not consider the internal 
structures of software components; while McCabe’s cyclomatic measure 
focuses on the internal structures of software flow graphs without 
considering the data objects and I/O structures of software systems.  

 In cognitive informatics, it is found that the functional complexity of 
software in design and comprehension is dependent on three fundamental 
factors known as the internal processes, inputs, and outputs as modeled in 
the system theory in Section 10.5.5. The new measure for software cognitive 
complexity is a measure of cognitive and psychological complexity of 
software as a human intelligent artifact. The cognitive complexity measure 
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takes into account both internal process structures of a software system and 
the I/O data objects under its processing [Wang, 2005j/06c; Shaw and Wang, 
2003].  

This section describes the complexity of software by examining the 
cognitive weights of BCS’s in software systems as modeled in Section 5.4.1. 
A new concept of software cognitive complexity is introduced, which 
provides a foundation for cross-platform analysis of complexities, sizes, and 
comprehension efforts of software specifications and implementations in the 
phases of design, implementation, and/or maintenance in software 
engineering.  
  
  
9.6.1 THE RELATIVE COGNITIVE WEIGHTS OF 
         GENERIC SOFTWARE STRUCTURES  
                         
 To design and comprehend a given program, the focuses are naturally 
put on the control logic of a software system represented by BCS’s and the 
behaviors they may operate on the data objects. BCS’s are a set of essential 
flow control mechanisms that are used for building logical architectures of 
software, as described in Section 5.4.1, independent of programming 
languages.  
      
 Definition 9.35 The cognitive weight of software is the extent of 
difficulty or relative time and effort for comprehending the function and 
semantics of a given program.  
 
 It is almost impossible to measure the cognitive weights of a program at 
statement level because of their variety and language dependency. However, 
it is found that it is feasible if the focus is put on the BCS’s of the software 
systems [Wang, 2005j], because there are only ten BCS’s in programming no 
matter what kind of programming language is used. Detailed definitions of 
the BCS’s and their syntaxes may be referred to Section 5.4.1 and Table 9.9.       
  

Definition 9.36 The relative cognitive weight of a BCS, wBCS(i), 1 ≤ i ≤ 
10, is the relative time or effort spent on comprehending the function and 
semantics of a BCS against that of the sequential BCS.  
 

  
( )

( ) ,   1 10
(1)

BCS
BCS

BCS

t i
w i i

t
= ≤ ≤           (9.40) 

 
where tBCS(1) is the relative time spent on the sequential BCS.  
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Table 9.9 
The Relative Cognitive Weights of BCS’s 
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Definition 9.37 The unit of cognitive weight of BCS’s, CU, is the 
relative time spent on the sequential BCS, i.e.:  
 

          
(1)

(1)
(1)

1   [CU]

BCS
BCS

BCS

t
w

t
=

=
           (9.41) 

 
 The ten categories of BCS’s described above are profound architectural 
attributes of software systems. These BCS’s and their variations are modeled 
and illustrated in Table 9.9, where their equivalent cognitive weights 
(wBCS(i)) for determining a component’s functionality and complexity are 
defined based on a set of psychological experiments in cognitive informatics 
[Wang, 2005j].  
 
 
9.6.2 PSYCHOLOGICAL EXPERIMENTS ON THE 
         COGNITIVE WEIGHTS   
 

The method of the psychological experiments [Osgood, 1953; Wang, 
2005j] for calibrating the relative cognitive weights of the ten BCS’s is based 
on the axiom that the relative time spent on comprehending the function and 
semantics of a BCS is proportional to the relative cognitive weight of effort 
for the given BCS.  

Although different persons may comprehend the set of the ten BCS’s in 
different speeds according to their experience and skill in a given 
programming language, the relative effort or the relative weight spent on 
each type of the BCS’s are statistically stable, assuming the relative weight of 
the sequential BCS is one CU according to Definition 9.36.           

         
Definition 9.38 The generic psychological experimental method for 

establishing a benchmark of the cognitive weights of the ten BCS’s can be 
conducted in the following steps:    
 

a) Record the start time T1 in mm:ss. 
b) Read the given program Test_1:      

 

int Test1 (int A=1, B=2) { 
              return A + B;  

     }             
c) Answer: A + B = ? 
d) Record the end time T2 in mm:ss. 
e) Calculate the relative cognitive weight of the sequential 

construct BCS1 according to Eq. 9.40, i.e., tBCS(1) = (T2 – T1), 
and wBCS(1) = tBCS(1) / tBCS(1) ≡ 1.  
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Applying the generic experimental method as given in Definition 9.38 
by simply replacing the testing program in Step (b), a set of cognitive 
psychological experiments can be carried out on the ten BCS’s by empirical 
studies in software engineering [Wang, 2005j]. The following are examples 
adopted in the experiments.         
 

Experiment 9.2 The relative cognitive weights of the branch BCS 
(ITE), wBCS(2), is determined using the following program in Java:        
 

    int Test2 (int A=2, B=3) {  
                if A >= B 
                          return A - B  
                          else return B - A 

    }               (9.42) 
 
Experiment 9.3 The relative cognitive weights of the for-loop BCS 

(Ri), wBCS(6), is determined using the following program in Java:        
 

    int Test4 (int A=2, B=3) {  
                for (int i=0; i<3; i++) { 
                     A := A + i  
                }       
                   return A + B 

    }               (9.43) 
 
 
9.6.3 CALIBRATION OF THE RELATIVE COGNITIVE 
         WEIGHTS OF BCS’S   
 

The cognitive psychological experiments as designed in the previous 
subsection have been carried out in undergraduate and graduate classes in 
software engineering. Based on 126 experiment results, the equivalent 
cognitive weights of the ten fundamental BCS’s are calibrated as 
summarized in Table 9.9.     

 
On the basis of the calibrated cognitive weights of BCS’s, the cognitive 

complexity of software can be rigorously analyzed. Detailed methodology for 
measuring the cognitive complexities of software will be provided in Section 
10.7 with comparative studies against existing software complexity 
measures.      
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9.7 Summary 
 

 
 
Cognitive informatics (CI) has been recognized as a new frontier that 
studies internal information processing mechanisms and processes of the 
brain, and their applications in computing and the IT industry. Cognitive 
informatics has been described as a profound transdisciplinary research field 
that tackles the common root problems of modern informatics, computation, 
software engineering, AI, cognitive science, nueropsychology, and life 
sciences.  

Large-scale software systems have been recognized as highly 
complicated systems that mankind has ever handled or experienced. 
Although software as a unique abstract artifact does not obey any known 
physical laws, it is constrained by the laws of informatics, cognitive 
informatics, mathematics, and systems.  

This chapter has described the cognitive informatics and intelligent 
behavioral metaphor of software and software engineering. The theories of 
cognitive informatics and its potential impacts on, and applications in, 
information-based sciences and engineering disciplines, particularly software 
engineering, have been explored. As a result, the cognitive informatics 
foundations of software engineering have been established.   
 
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Cognitive Informatics Foundations of Software 
Engineering, readers have achieved the following strategic goals with the 
knowledge structure as summarized below. 
 
 

 
Chapter 9. Cognitive Informatics Foundations of SE 
 

■ Cognitive Informatics  
       •  Cognitive philosophy                                 
       •  Neural informatics foundations of the brain 
            - Neurons and synapses  
            - Physiological structure of the brain  
            - Cognitive models of memories  
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       •  The emergence of cognitive informatics    
       •  The theoretical framework of cognitive informatics 
            - The fundamental theories of cognitive informatics  
            - The domain of cognitive informatics  
 
■ Cognitive Informatics Models of the Brain  
       •  The layered reference model of the brain (LRMB)  
            - The structure of LRMB  
            - Cognitive layers of LRMB   
            - The configuration of the cognitive processes of LRMB  
 

       •  Cognitive properties of internal information 
       •  Natural intelligence vs. artificial intelligence  
            - The nature of intelligence  
            - Taxonomy of intelligence  
            - The model of natural intelligence  
            - Measurement of intelligence  
            - Theory of learning and knowledge acquisition  
 

       •  The cognitive model of the brain  
            - The functional model of the brain  
            - The cognitive mechanisms of the brain  
 
■ Cognitive Informatics of Knowledge Representation  
       •  The hierarchical neural cluster (HNC) model of memory 
       •  The object-attribute-relation (OAR) model of internal information 
           representation 
       •  The extended OAR model of the brain 
       •  The cognitive mechanisms of long-term memories 
       •  The memory capacity of human brain 
 
■ Cognitive Informatics for Software Engineering  
       •  Cognitive informatics properties of SE                              
       •  SE psychology 
       •  The cognitive foundation of software comprehension       
       •  SE skills and experiences 
 
■ Cognitive Complexity of Software  
       •  The relative cognitive weights of generic software structures  
       •  Psychological experiments on the cognitive weights  
       •  Calibration of the relative cognitive weights of BCS’s 
       •  Measurement of cognitive complexity of software 
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SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• The quantitative advantage of human brain: The magnitude of the 
memory capacity of the brain is tremendously larger than that of the closest 
species.  

 
• The qualitative advantage of human brain: The possession of the 

abstract layer of memory and the abstract reasoning capacity makes human 
brain profoundly powerful on the basis of the quantitative advantage. 

 
• Cognitive Models of Memories: Memory is the foundation for 

maintaining a stable state of an animate system. It is also the foundation for 
any form of natural and machine intelligence. 

• Latest discoveries in neuroscience and cognitive informatics 
indicate that LTM is dynamically reconfiguring, particularly at the 
lower levels of the neural clusters. This explains the mechanisms of 
memory establishment, enhancement, and evolution that are 
functioning everyday in the brain. 

• A new type of memory known as ABM is identified recently 
that denotes the memory functions for the output-oriented actions, 
skills, and behaviors, such as a sequence of movement and a pre-
prepared verbal sentence. 

 
• LTM: The HNC model indicates that the LTM is dynamic. New 

neurons (to represent objects or attributes) are assigning, and new 
connections (to represent relations) are creating and reconfiguring all the 
time in the brain. 

• Knowledge in LTM, as synaptic connections between neurons 
according to the OAR model, is dynamically grown during sleeping.  

 
• Properties of LRMB: The subconscious layers of the brain 

represented by NI-OS are inherited, fixed, and relatively mature when a 
person is born. Therefore, the subconscious cognitive function layers are not 
directly controlled and accessed by the conscious life function layers. The 
conscious layers of the brain, represented by NI-App, are acquired, highly 
plastic, programmable, and can be controlled intentionally based on 
willingness, goals, and inferences.  
 

• Inherited and acquired brain functions: According to the logical 
model of the brain, genes may only explain things at the level of inherited 
brain functions, rather than at the level of acquired brain functions, because 
the latter cannot be directly represented by genes in order to be inherited; 
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instead they should be represented as internal knowledge, behaviors, 
experience, and skills.  

 
• Intelligence, in the narrow sense, is a human or a system ability that 

transforms information into behaviors; and in a broad sense, it is any human 
or system ability that autonomously transfers the forms of abstract 
information between data, information, knowledge, and behaviors in the 
brain.  

• Natural intelligence I can be classified into four forms called 
the perceptive intelligence (Ip: D → I), cognitive intelligence (Ic: I → 
K), instructive intelligence (Ii: I → B), and reflective intelligence (Ir: D 
→ B), where D stands for data. 

 
     • The representation of learning results: The consequence of 
learning is represented by a updating of the internal memory in the form of 
the OAR structure by a conjunction between the existing OAR and the newly 
created sub-OAR (sOAR). 
 

• Cognitive mechanisms of the brain: a) LTM establishment is a 
subconscious process; b) The long-term memory is established during 
sleeping; c) The general acquisition cycle of LTM requires at least 24 hours; 
e) The mechanism of LTM establishment is to update the entire memory of 
information represented as an OAR model in the brain; and f) Eye movement 
and dreams play an important role in LTM creation. 
 

• The human memory capacity model of the brain: Assuming there 
are n neurons in the brain, and in average there are s connections between a 
given neuron and a subset of the rest of them in the form of synapses, the 
magnitude of the brain's memory capacity can be determined with the total 
potential relational combinations Cs

n , among all neurons (n = 1011) and their 
average synapses (s = 103), which results in 108,432 bits. 

• The tremendous difference of memory magnitudes between 
human beings and computers demonstrates the efficiency of 
information representation, storage, and processing in the human 
brains. Computers store data in a direct and unconsumed manner; while 
the brain stores information by relational neural clusters. The former 
can be accessed directly by explicit addresses and can be sorted; while 
the latter may only be retrieved by content-sensitive search and 
matching among neuron clusters where spatial connections and 
configurations themselves represent information. 
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• Cognitive informatics properties of software engineering: The fact 
that before any program is composed, an internal abstract model must be 
created inside the brain reveals the most fundamental constraint of software 
engineering, i.e., software is generated and represented in the brain before it 
can be transferred into a computer. Because the growth of the human neural 
system is naturally constrained as described by the 24-hour law, it is very 
hard to dramatically improve the productivity of software development. This 
is identified as one of the basic constraints of software engineering known as 
conservative productivity due to the cognitive mechanism in which abstract 
artifacts need to be represented physiologically in the brain via growing 
synaptic neural connections.  

 
• The cognitive complexity weights of software are a new functional 

complexity measure based on the ten BCS’s in programming. The relative 
cognitive weight of a BCS, wBCS, is the relative time or effort spent on 
comprehending the function and semantics of a BCS against that of the 
sequential BCS. The calibrated wBCS(Sequence, branch, switch, while-loop, 
repeat-loop, for-loop, function call, recursion, parallel, interrupt) = (1, 3, 4, 
7, 8, 7, 7, 11, 15, 22). 
 

• Psychological requirements for software engineers: a) Abstract-
level thinking; b) Imagination of dynamic behaviors with static descriptions; 
c) Organization capability; d) Cooperative attitude in team work; e) Long-
term focus of attentions; f) Preciseness; g) Reliability; and h) Expressive 
capability in communication. 
  
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Cognitive informatics 
 

• Cognitive informatics (CI) is a transdisciplinary enquiry of natural 
and machine intelligence, and their products in terms of information, 
knowledge, and behaviors.    

• Cognitive informatics covers a whole range of interdisciplinary 
research in subject areas including natural intelligence (NI), 
autonomic computing (AC), and neural informatics (NeI). 

• The theories of cognitive informatics and neural informatics 
explain a number of important questions in the study of NI. 
Enlightening results derived in cognitive informatics have led to the 
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determination of the magnitude and expected capacity of human 
memory.   

 
• Neural Informatics (NeI) is a new interdisciplinary enquiry of the 

biological and physiological representation of information and knowledge in 
the brain at the neuron level and their abstract mathematical models. 

• Neural informatics is a branch of cognitive informatics, where 
memory is recognized as the foundation and platform of any natural or 
artificial intelligence. 

 
Cognitive informatics models of the brain 
 

• The human brain is the most complicated organ in the universe and 
is constantly the frontier yet to be explored in an interdisciplinary approach. 
Investigation into the brain and its cognitive mechanism is a unique and the 
hardest problem in science that requires recursive and introspective mental 
power to explore the brain by the brain.  
 

• The Cognitive Models of Memory (CMM): CMM states that the 
architecture of human memory is parallel configured by the Sensory Buffer 
Memory (SBM), Short-Term Memory (STM), Long-Term Memory (LTM), 
and Action-Buffer Memory (ABM). 
 

• The Layered Reference Model of the Brain (LRMB): LRMB 
encompasses 39 cognitive processes at six layers known as the sensation, 
memory, perception, action, meta cognitive, and higher cognitive layers from 
the bottom up.  

• The hierarchical life functions of the brain, the natural 
intelligent system (NI-Sys), can be divided into two categories: the 
subconscious and conscious subsystems. The former known as the NI 
operating system (NI-OS) encompasses the layers of sensation, 
memory, perception, and action (Layers 1 to 4). The latter known as the 
NI applications (NI-App) includes the layers of meta and higher 
cognitive functions (Layers 5 and 6). 

     

• Sensation is a set of cognitive processes of the brain at the 
subconscious life functional layer that forms the interfaces between the 
internal and external worlds for information detection, acquisition, and 
input into the brain. The sensation layer of LRMB is a subconscious 
layer of life functions of the brain for detecting and acquiring cognitive 
information from the external world via physical and/or chemical 
means. 
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• Memory is a set of cognitive processes of the brain at the 
subconscious life function layer that retains the external or internal 
cognitive information in various memories of the brain, particularly in 
LTM. The memory layer of LRMB is the fundamental layer of life 
functions of the brain functioning to: a) retain and store information 
about both the external and internal worlds; b) maintain a stable state of 
an animate system; c) provide a working space of abstract inference; 
and d) buffer programmed actions and motions to be executed by the 
body. 

• Perception is a set of internal sensational cognitive processes of 
the brain at the subconscious life function layer that detects, relates, 
interprets, and searches internal cognitive information in the mind. The 
perception layer of LRMB is a subconscious layer of life functions of 
the brain for maintaining conscious life functions and for browsing 
internal abstract memories in the cognitive models of the brain.  

• Action is a set of subconscious cognitive processes of the brain 
at the subconscious life function that executes both bodily (external) or 
mental (internal) actions via the motor systems of the body or the 
perceptional engine of the brain. The action layer of LRMB is a 
subconscious layer of life functions of the brain for output-oriented 
actions and motions that implement human behaviors such as a 
sequence of movement and a pre-prepared verbal sentence.  

• A meta cognitive function is a fundamental and elemental 
cognitive process of the brain at the conscious life function layer that is 
commonly used (or applied) to support the higher layer cognitive life 
functions. The meta cognitive process layer of LRMB is a conscious 
layer of life functions of the brain that carries out the fundamental and 
elementary cognitive processes commonly used in higher cognitive 
processes. 

• A higher cognitive function is an advanced cognitive process 
of the brain at the conscious life function layer that is developed and 
acquired to carry out commonly recurring life functions under the 
support of the meta cognitive process. The higher cognitive process 
layer of LRMB is a conscious layer of life functions of the brain that 
carries out a set of specific cognitive processes under the support of the 
meta cognitive processes. 

 
• The Cognitive Information Model (CIM): CIM classifies cognitive 

information into four categories, according to their types of I/O information, 
known as knowledge (K: I → I), behavior (B: I → A), experience (E: A → I), 
and skill (S: A → A), where I stands for information and A for actions. 
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• The CIM model lays an important foundation for learning 
theories and pedagogy. It reveals that software engineering deals with 
instructive behaviors and their relations with knowledge, experience, 
and skills.  
 
• The generic forms of cognitive information: There are four 

categories of internal information I in the brain known as knowledge (Ik), 
behaviors (Ib), experience (Ie), and skills (Is), i.e., ( , , , )k b e s=I I I I I .                                      
All the four categories of information can be acquired directly by an 
individual. However, knowledge and behaviors can be learnt indirectly based 
on abstract information. Instead, experience and skills must be learnt directly 
by hands-on or empirical actions. 

 
• Intelligence: Natural intelligence (NI) is a system of intelligent 

behaviors possessed or implemented by the brains of human beings and other 
advanced species; Artificial intelligence (AI) is a system of intelligent 
behaviors possessed or implemented by machines or man-made systems.     

 
• Measurement of Intelligence: There are three methods for 

measuring the natural and artificial intelligence.   

• Intelligent quotient (IQ) is a ratio between the mental age Am 
and the chronological (actual) age Ac, multiplied by 100, where Am is 
the sum of a base age Ab and an extra equivalent age ∆A. 

• Turing intelligence equivalence ET is a ratio of conformance 
or equivalence evaluated in a comparative test between a system under 
test and an equivalent human-based system, where both systems are 
treated as a black box and the testers do not know which the tested 
system is. 

• Wang’s intelligent capability metric CI is a normalized sum of 
abilities of the perceptive intelligence (Cp), cognitive intelligence (Cc), 
instructive intelligence (Ci), and reflective intelligence (Cr).  

• The perceptive intelligent capability Cp is the ability to transfer 
a given number of data objects or events Nd into a number of 
information objects in term of derived or related concepts Ni.  

• The cognitive intelligent capability Cc is the ability to transfer a 
given number of information objects Ni into a number of knowledge 
objects Nk.  
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• The instructive intelligent capability Ci is the ability to transfer 
a given number of information objects Ni into a number of behavioral 
actions Nb.  

• The reflective intelligent capability Cr is the ability to transfer a 
given number of data objects or events Nd into a number of behavioral 
actions Nb.  

• The relative intelligent capability ∆CI is the difference 
between a testee’s absolute intelligent capability CI and a given 
intelligent capability benchmark 

IC . 

      
• Theory of learning: The generic forms of learning L can be 

classified into those of knowledge (Lk), behaviors (Lb), experience (Le), and 
skills (Ls), i.e., ( , , , )k b e s=L L L L L . 
 

• The functional model of the brain: A high-level logical model of 
the brain describes the functional configuration of the brain and how the NI-
Sys interacts with the memory system. It revealed that intelligence is 
memory-based. 

 
Cognitive informatics models of knowledge representation 

 
• The cognitive informatics model for internal knowledge 

representation: The functional model of LTM is a set of Hierarchical 
Neural Clusters (HNC) with partially connected neurons via synapses. In 
contrary to the traditional container metaphor, the human memory 
mechanism can be described by a relational metaphor, in which memory and 
knowledge are represented by the connections between neurons in the brain, 
rather than the neurons themselves as information containers.  

 
• The Object-Attribute-Relation (OAR) model:  The OAR model of 

LTM can be described as a triple, i.e., OAR =  (O, A, R), where O is a set of 
objects identified by unique symbolic names, A is a set of attributes for 
characterizing the object, and R is a set of relations between oi and other 
objects or attributes of other objects. 

 
• The Extended OAR Model (EOAR) of the brain: EOAR states that 

the external world is represented by real entities, and the internal world by 
virtual entities and objects. The internal world can be divided into two layers 
known as the image layer and the abstract layer. 
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• The EOAR model can be used to describe information 
representation and its relation to the external world. It can also be 
applied to explain the mental processes and cognitive mechanisms as 
identified in the LRMB model. 

 
• The principal intelligent advantages state that, on the basis of two 

principal advantages known as the qualitative properties and quantitative 
properties, humans gain the power as the most intelligent species in the 
world. 

 
Cognitive informatics for software engineering 
 

• Productivity of software development is the key among all the 
cognitive, time, and resources constraints in software engineering. The other 
constraints can be overcome as a result of the improvement of software 
engineering productivity. All theories and approaches explored throughout 
this book put emphases on this ultimate goal of software engineering. 

• The key approaches to improve software development 
productivity are:  

 
     a) To explicitly express software architectures and behaviors in 

denotational mathematics;  

     b) To investigate the theories of rational software engineering 
organization; and  

     c) To design tools that lead to automatic software code 
generation based on the denotational system models.  

 
 • Software engineering psychology:  There  are  two  types  of 
programmers: the realistic and idealistic ones. The former may be suitable 
for coding, testing, and quality control; while the latter may be good at 
solution seeking, GUI design, and carrying out tasks as system analysts.  
 

• Psychological requirements for software engineers: abstract-level 
thinking; imagination of static descriptions in terms of dynamic behaviors; 
organization capability; cooperation and team working attitude; long-term 
focus of attentions; preciseness; reliability; and expressive capability in 
communications. 
 

• Program comprehension: It is a cognitive process to understand a 
given software system in dimensions of architecture, static behaviors, and 
dynamic behaviors, and their relationships.  
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• The cognitive process of comprehension:  a) To search 
relations from real entities to virtual entities and/or existing objects and 
attributes; b) To build a partial or adequate OAR model of the entity;  c) 
To wrap up the OAR model by classifying and connecting it to 
appropriate clusters of the LTM; d) To memorize the new OAR model 
and its connections in LTM. 

 
 • Software engineering skills and experiences:  All software 
engineering experience and skills, such as best practices, know-how, lessons 
learnt, failure reports, and new technology trial results, are hard to gain 
indirectly, because: a) The brain has no direct experience or skill transfer 
mechanism, hence it has to be physiologically acquired from the external 
world; b) The only way to gain experience is learn by doing, or trial and 
error. Hence people have to make the same mistakes, at least to simulate 
them, in order to learn and remember them; c) Each brain is unique because 
of individual physiological differences, cognitive style differences, 
personality differences, and environment differences. 
 

• A software agent is an intelligent software system that autonomously 
carries out robotistic and interactive applications based on goal-driven 
mechanisms. The theoretical foundation of agent systems is rooted in 
cognitive informatics theories and autonomic computing methodologies, 
particularly the LRMB model and denotational mathematics. 

• Along with the latest development of cognitive informatics and 
autonomic computing, self-organizing, self-managing and non-
imperative autonomic agent systems are emerging. An autonomic 
agent system is an intelligent software system that takes rational 
actions in the pursuit of its agenda via goal-, inference-, and event-
driven behaviors.  

 
 
Cognitive complexity of software 
 

• The cognitive complexity weights of software: One of the central 
problems in software engineering is the inherited complexity.  

• The cognitive weight of software is the extent of difficulty or 
relative time and effort for comprehending the function and semantics 
of a given program.  

• It is almost impossible to measure the cognitive weights of a 
program at statement level because of their variety and language 
dependency. However, it is found that it is feasible if the focus is put on 
the BCS’s, the control logic of software systems, because there are only 
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ten BCS’s in programming no matter what kind of programming 
language is used.  

 
• Software cognitive complexity provides a foundation for cross-

platform analysis of complexities, sizes, and comprehension efforts of 
software specifications and implementations in the phases of design, 
implementation, and/or maintenance in software engineering. Detailed 
theories will be completed in Section 10.7.    

 
 

 
Questions and  
Research Opportunities 
 

 
 
9.1 What is cognitive informatics? How has it emerged from classic 

and contemporary informatics – the science of information?     
  

9.2   What are the relationships of cognitive informatics with NI, AI, 
and cognitive science? 

 
9.3  Summarize the fundamental theories of cognitive informatics, 

particularly the laws and principles for software engineering 
stated in the theorems of this chapter.  

 
9.4   On the basis of the Software Engineering Constraint Model 

(SECM, Theorem 1.5), discuss why cognitive informatics plays 
an important role in building the foundations for software 
engineering. 

 
9.5  Why is denotational mathematics a coherent part of the theoretical 

framework of cognitive informatics? 
    
9.6   Discuss how cognitive informatics may be used in explaining 

fundamental software engineering issues such as software 
comprehension and software experience/skill transformation. 

 
9.7 What are the qualitative and quantitative advantages of the human 

brain with regard to the other species?       
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9.8 Explain the roles of synapses in the neural networks of the brain 
according to the Hierarchical Neural Clusters (HNC) model and 
the logical model of OAR.        

 
9.9  According to NeI and the OAR model, try to logically explain 

why brain neurons are the only type of cells in human body that 
does not go through reproduction rather than remains alive 
throughout the entire human life.                 

 
9.10  On the basis of the OAR model, try to explain the physiological 

and logical mechanisms of creation or invention. 
 
9.11  Why acquired information and knowledge cannot be passed on 

and inherited through genes? How may highly professional skills 
that are acquired throughout a person’s life be passed on to peers 
or next generation?         

 
9.12   According to the HNC model and the properties of LTM, discuss 

why human memory can be searched based on content-sensitive 
mechanisms, but cannot be sorted internally.   

 
9.13 Which form of cognitive information is with inputs of data and 

outputs of actions that can be both directly and indirectly 
acquired?  

 
9.14 What are the forms of intelligence? Are the natural and machine 

intelligence different? Why?  
 
9.15 Why is memory the foundation of both the natural and machine 

intelligence? Can a form of intelligence exist without memory? 
Why? 

     
9.16 What is the taxonomy of human memories? Why should the 

action buffer memory be considered as an independent category 
of memory? Without it what kind of life functions cannot be 
carried out?       

 
9.17   According to the Layered Reference Model of the Brain (LRMB), 

why can the natural intelligence be reduced and described by 6 
layers and 39 fundamental cognitive processes? 

 
9.18   Given a goal to find a certain restaurant, explain how the task 

may be carried out by composing multiple LRMB processes at 
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different layers. A block diagram may be used to represent your 
answer.    

 
9.19   According to the LRMB model, try to suggest any possible basic 

process(es) that is not modeled in LRMB and cannot be 
composedly described by multiple fundamental processes 
identified in it. 

 
9.20 Define the four categories of information one deals with in 

software engineering according to Theorem 9.4 and the Cognitive 
Information Model (CIM). 

 
9.21   The CIM model classifies cognitive information into four 

categories, according to their types of I/O information, known as 
knowledge (information, information), behavior (information, 
action), experience (action, information), and skill (action, 
action). 

According to CIM, what is the category of a program or a 
software system? What is the category of a programmer’s 
acquired ability for programming?      

9.22  Why may the functional model of the brain be treated as a real-
time intelligent system? 

 
9.23 Discuss what the fundamental mechanisms of natural intelligence 

of the brain are, and how internal information is represented, 
processed, and utilized.  

9.24  What will be the next generation architectures of computers that 
may learn from the human brains and natural intelligence? 

 
9.25   Discuss what can a computer do while human beings cannot? 

What can a computer do better than human beings?    

9.26   How do a faculty of subconscious and conscious life functions 
interact in the brain? 

 
9.27  Where is the thinking engine? Or where is the organ in the brain 

that physiologically drives thinking and perception? 
 
9.28   How is the thinking engine triggered or directed? 

9.29   Are all thinking mechanisms consciously or intentionally 
controllable? 
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9.30   How can consciousness be the product of physiological and 
mental processes of the brain? 

 
9.31 Explain why experience transfer is very difficult in programming 

and software engineering on the basis of Corollary 9.2.    
 
9.32 According to Theorem 9.5 and the GIM model, explain why 

programming may be considered, to some extent, as a process to 
create machine intelligence.     

 
9.33  Why do all mammals need sleep? What is the cognitive 

mechanism of sleeping?     
 
9.34 When is memory established in the long-term memory? What are 

the roles of sleep in memory creation? What does the 24-hour law 
(Theorem 9.11) explain?    

 
9.35   According to the OAR model, the entire knowledge maintained 

and represented in the brain is a hierarchical OAR structure. Try 
to use the OAR model to explain the following mechanisms: 

 
(a) How is existing knowledge extended or updated in the OAR 

with Aext, Oext, and/or Rext? 
 

(b) How is new knowledge created in the OAR with Anew, 
Onew, and/or Rnew? 

 
9.36  Why is software productivity, as that of any other creative work, 

is conservative that forms a basic constraint for software 
engineering?  

 
9.37 Why has software productivity not been significantly improved in 

software engineering in the last four decades? What are key 
approaches to improve software development productivity by 
dealing with the cognitive complexity of software engineering? 

 
9.38  According to the cognitive model of the comprehension process, 

explain why no comprehension is logically a comprehension.   
 
9.39  Referring to Experiment 9.3, try to design an psychological 

experiment for calibrating your relative cognitive weight of the 
while-loop BCS, i.e., wBCS(4). Then, compare your result with 
Table 9.9.  
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9.40  According to the experiment method provided in Definition 9.38 
and the detail test programs reported in [Wang, 2005j], try to 
conduct a complete set of the psychological experiments for 
calibrating the relative cognitive weights of all ten BCS’s in a 
group and analyze your results with Table 9.9.  

 
9.41  Read the following classic article in software engineering:  
 

John L. McCarthy (1987), Generality in Artificial 

Intelligence, The 1971 Turing Award Lecture, 

Communications of the ACM, 30(12), pp. 1029-1035. 
 
Discuss the following topics in a group: 

 
                     •  About the author. 

• What was the generality of AI according to the author in the 
1970s?  

• What is the relationship between AI and cognitive 
informatics (CI)?  

      •  What conclusions of the article interested you? Why? 
      •  Your arguments or counter-points on any of the conclusions 

derived in this article.              
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Knowledge Structure 
 

 

 System philosophies  

     •  The system metaphor for modeling complex entities  
     •  Holism                                                           •  Systematic thinking 

 Abstract systems and system topology  

     •  Mathematical models of abstract systems 
     •  Taxonomy of systems                                    •  Magnitudes of systems 

 System algebra  

     •  Algebraic relations of systems                      •  Algebraic operations of systems 
 Principles of system science 

     •  System fusions                                               •  System functions and behaviors 
     •  Work done by systems                                  •  The maximum output of systems 
     •  System equilibrium and organization            •  System synchronization and coordination 
     •  System dissimilation 

 Software system engineering 

     •  The abstract model of computing systems    •  The hierarchical model of software systems 
     •  The ISO/IEC 15288 system engineering model for SE 
     •  SE phenomena as system engineering problems 

 The complexity theory of software systems 

     •  Computational complexity                             •  Control flow complexity 
     •  Cognitive complexity of software systems    •  Software cognitive complexity analysis 
     •  Cohesion and coupling complexity of software systems 
 

 

Learning Objectives 
 

      

   •  To know the system philosophy for dealing with complex entities and   
objects in software engineering.  

   •  To understand the concept of abstract systems and their topology as a  
mathematical model for general and concrete systems.    

   •  To understand the new mathematical structure of system algebra for 
modeling and manipulating abstract and software systems. 

   •  To gain knowledge on fundamental system principles and their formal 
explanations, particularly system gains and abstract work done by systems.   

   •  To understand the abstract model of generic computing systems and the 
hierarchical model of generic software systems. 

   •  To understand the complexity theory of software systems, particularly 
cognitive complexity analyses for software engineering. 

   •     To be able to explain software engineering phenomena by system theories.     
 

10. System Science Foundations of SE 
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 “Problems that are created by our current level of thinking can’t be 
 solved by that same level of thinking.” 

 
Albert Einstein (1879-1956) 

 
“The more science becomes divided into specialized disciplines, the more important  

it becomes to find unifying principles.” 
 

Herman Haken (1977) 
 
 

10.1 Introduction 
 

 
 

ystem theories are one of the three emerging sciences, with 
information science (covered in Chapter 7) and cybernetics (covered 
and extended in Chapter 9), developed in the 1940s. System science 

and its application in systems engineering are a branch of knowledge that 
studies the top-level objects and phenomena in the physical, information, and 
social worlds, namely systems, across all science and engineering disciplines.  

The concept of systems can be traced back to the 17th Century when 
Rene Descartes (1596-1650) noticed the interrelationship among scientific 
disciplines as systems. Descartes developed analytic geometry that integrated 
algebra, geometry, and physics on the same mathematical foundation. Then, 
the general system notion was founded by Ludwig von Bertalanffy in the 
1920s [von Bertalanffy, 1952]. 

 
Definition 10.1 An abstract system is a collection of coherent and 

interactive entities that possesses stable functions and clear boundary with 
external environment. 

  
         This chapter treats systems as discrete entities and studies the generic 
rules and theories of abstract systems. Systems treated as continuous systems 
may be referred to synergetics [Haken, 1977/83; Haken et al., 1995], 
hypercycle theory [Eigen and Schuster, 1979], and dissipative structures 
[Prigogine and Stengers, 1984/97]. 

The classic theories at the system level developed in the 20th century 
are as follows:  

 
      • Information theory (C.E. Shannon, 1948) 

     •  Cybernetics (N. Wiener, 1948) 
          •  Systems theory (L. von Bertalanffy, 1952)  

S
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With a similar point of view, management science, economics, and 
sociology, which will be explored in Chapters 11, 12, and 13, respectively, 
are special branches of system science that study objects and phenomena at 
different levels of human coordinative work and social organizations.         

Because software engineering is one of the most complicated systems 
that humans have ever dealt with, it is naturally an ideal testbed for 
evaluating existing system theories and their enhancements. Treating 
software engineering and large-scale software project via system engineering 
is also a promising trend in dealing with the problems, complexities, quality 
assurances, and human factors in software engineering. 

This chapter describes the system metaphor of software and software 
engineering. It explores theories of systems science, as well as underlying 
principles and modeling techniques of system engineering. Applications of 
system theories and system engineering methodologies in software 
engineering are discussed, and interesting software engineering phenomena 
as system engineering issues are addressed. In the remainder of this chapter, 
the system science foundations of software engineering will be presented in 
six sections. Section 10.2 presents classic system philosophies and the ways 
of system thinking for modeling complex entities. Section 10.3 introduces a 
new mathematical structure of abstract systems known as system algebra. 
Section 10.4 describes principles of system theories with a formal and 
rigorous treatment. Section 10.5 discusses properties of abstract systems such 
as generic architectures, equilibrium, synchronization, and dissimilation. 
Section 10.6 applies system theories and system engineering techniques into 
software engineering. The systematical perception on software and software 
system models is presented in Section 10.7. 
 
 
 
10.2 System Philosophies 
 

 
 
Many preeminent scientists working in different disciplines intend to 
recognize that nature is a coherent system with perfect harmony and integrity 
[Ellis and Fred, 1962]. Rene Descartes (1596-1650) first proposed the notion 
of system in his investigation into analytic geometry. Ludwig von Bertalanffy 
found the generic system theory on the basis of his study in biologic systems 
[von Bertalanffy, 1952], which is then extensively studied in [Hall and 
Fagan, 1956; Boulding, 1956/74; Ashby, 1956/58a/62/70/72; Rapoport, 
1962; Schedrovitzk, 1962; Makridakis and Faucheux, 1971/73; Bunge, 
1978/81; Gaines, 1972/78/84; Takahara and Takai, 1985; Klir, 2001].  
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Steven Weinberg wrote: ‘Our job in physics is to see things simply, to 
understand a great many complicated phenomena, in terms of a few simple 
principles.’ The system philosophy is based on the observation that the 
nature is built by a small number of basic components and particles, and 
governed by a limited set of basic laws. Even all living things are configured 
by almost the same cells, chromosomes, and DNAs.      
 
 In Philosophy of Physics (1936), Max Planck expressed: 
 

“Modern physics has taught us that the nature of any system 
cannot be discovered by dividing it into its component parts and 
studying each part by itself, since such a method often implies the 
loss of important properties of the system. We must keep our 
attention fixed on the whole and on the inter-connection between 
the parts. … The whole is never equal simply to the sum of its 
various parts.”  
 

This is an excellent representation of the basic philosophy of system 
science theory, which suggests that systems must be viewed as a whole with 
each part linking to all the other parts. 
 
 

10.2.1 THE SYSTEM METAPHOR FOR MODELING 
           COMPLEX ENTITIES  
 

The discipline of system science is an inquiry into the general 
principles and rules commonly shared by different kinds of systems. The 
system metaphor is one of the most widely used concepts and notions in 
almost all disciplines of science, engineering, and society. Whenever an 
object of study is getting complicated, the system metaphor can be adopted 
as a powerful modeling and analysis means to deal with the complexity of 
the object under investigation.   

A system can be as small as two dependent components or as large as 
the universe. The scopes and magnitudes of systems may vary extremely 
from a few components to billions of components. According to the system 
philosophy, the universe may be defined as a system of all systems. 
Otherwise, the readers might have difficulties to answer: Where is the 
boundary of the universe? What are things outside the universe? 

 

              

 

Lemma  10.1 The principle of generic constraints states that any system 
is constrained by a set of common conditions, properties, and rules, 
which are obeyed by all components inside the system, but not by those 
outside it. 
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The generic system theory treats everything as a system, and it 
perceives that a system belongs to other super system(s) and contains more 
subsystems. A generic system can be described recursively in a hierarchical 
structure as illustrated in Fig. 10.1   

  

 

Figure 10.1 A hierarchical view of system structures  
 
For example, the hierarchical levels of living systems of the universe 

can be decomposed into the following layers from bottom up:    
  

      •  Cell  
        •  Organ 
        •  Organism / individual 
        •  Group / team 
        •  Organization 
        •  Society / community 
        •  Supranational system / earth 
              • The universe 
 

Based on Fig. 10.1, the following lemma on system abstraction can be 
derived.  
  

 
 

 

      System 

…

 Super system

 Subsystem 1  Subsystem n Subsystem 2 

The current level 
of abstraction 

 

Lemma  10.2 The generality principle of system abstraction states that a 
system can be represented as a whole in a given level k of abstraction and 
reasoning without knowing the details at levels below k. 
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10.2.2 HOLISM 
 

The word holism is originated from Greek holos meaning the whole. 
Holism is a philosophical view that perceives a phenomenon and system with 
wholeness in an integrated, synthetic, and systematic approach. Holism was 
well entrenched in Greek philosophy as well as in the classic Chinese 
philosophy of Taoism.    

The most influential statement of holism is as follows:  
 

“The whole is more than the sum of its parts.”  
 

That has been widely accepted since Aristotle’s time in 400BC [Klir, 
2001]. According to holism, complex organisms and systems as a whole 
possess special properties when its elements and their interactions reach or 
beyond a certain critical mass, which cannot be found from any of the 
individual elements.                  

Albert Einstein (1879-1956) once pointed out:  
 

      “Problems that are created by our current level of thinking 
cannot be solved by that same level of thinking.” 

  
Bertrand Russell, British philosopher and logician, presented similar 

thought in the 1960s, concerning that problems about the whole of a given 
order of logic have to be solved in a higher order of logic. Russell also 
proposed for using objects and classes to describe the logical world in 1900 
[Russell, 1961], which is considered the philosophical foundation of modern 
object-oriented technology in software engineering. 

Taking the systematic view on entities and their relations in a system as 
a whole, a common problem known as “local maximum” may be avoided in 
the development of knowledge. As it is said there is no number two in 
sciences, while there is no number one in engineering. The rational is that 
sciences do not recognize a repetitive discovery or reinvention, but 
engineering cannot prove or claim, in technical and economical terms, 
whether a specific design or implementation is the best or the optimal 
solution among a large number of potential ones. This is particularly true in 
software engineering. 

 
 

10.2.3 SYSTEMATIC THINKING 
 
The principle of systematic thinking extends the system philosophy to 

strategic and tactic applications in sociology, management science, 
economics, engineering, and everyday life. To illustrate this philosophy, the 
following historic story about King Qi’s horse racing may be taken as an 
example. About 2000 years ago, King Qi collected the best horses in his 
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kingdom. He liked horse racing very much and he expected to win every 
time. However, once he lost to Ji Tian, a wizard of that time.  

 
The horses were categorized in three classes, i.e., for the King: K1, K2, 

and K3; and for Tian: T1, T2, and T3. If they were raced in the way: K1 – T1, 
K2 – T2, and K3 – T3, there was no surprise that the King had have to win, as 
illustrated in Fig. 10.2, because he possessed the best horses in each class.  

 

T3

K3

T2

K2

K1
T1

0

1

2

3

4

5

6

7

P e r f o r m a n c e 

Game 1 Game 2 Game 3  
 

Figure 10.2 Horse Racing: King Qi vs. Ji Tian – System strategy (I) 
 

However, the wizard Ji Tian won using the following systematical 
strategy as shown in Fig. 10.3. Tian dispatched his third class horse (T3) 
against King Qi’s first class (K1), and of course allowed the King to win the 
first race. Then, in the following two races, Tian used his first (T1) and 
second (K2) class horses against the King’s second (K2) and third (K3) class 
horses, respectively. Eventually, Tian won the three-match game for the first 
time in the history of the kingdom.  

 
  

T2
K3

T1
K2

T3

K1

0
1
2
3
4
5
6
7

P e r f o r m a n c e 

  Game 1                                Game 2                               Game 3               
 

 

Figure 10.3 Horse Racing: King Qi vs. Ji Tian – System strategy (II) 
                                 

This story tells a useful operational strategy in system theory, which 
has then been taken as an excellent paradigm of systematic thinking. 
However, readers will find that the contemporary system theories in system 
science and engineering are far more complicated and abstract than the story.      
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10.3 Abstract Systems and System 
         Topology 
 

 
 

This section creates the mathematical models of abstract systems and 
explores their properties, structures, and behaviors. The topological 
properties of abstract systems universally shared by all systems, such as 
system sizes, magnitudes, and complexities, are analyzed. The structural 
properties of abstract systems are studied on the hierarchical architectures. 
As a result, the universal system organization tree is introduced.  
 
 
10.3.1 MATHEMATICAL MODELS OF ABSTRACT 
           SYSTEMS  
   

This subsection introduces the concept of abstract systems [Wang, 
2006d] and describes how the properties of abstract systems may be formally 
modeled and studied. 

Abstract systems can be classified into two categories known as the 
closed and open systems. Most practical and useful systems in nature are 
open systems in which there are interactions between the system and its 
environment. However, in order to develop the theoretical framework of 
abstract systems, the closed systems in which there is no interaction with 
external environment will be introduced first in the following subsection.  
 
10.3.1.1 The Mathematical Model of Closed Systems 
 

The axiom of the abstract system theory is based on the OAR model 
[Wang and Wang, 2006; Wang, 2007g] as defined in Chapter 9, in which the 
architecture of a system object Os can be modeled by a set of attributes A and 
a set of binary relations R among the attributes, i.e.: 

 
         Os = (A, R)             (10.1)           

                    
Encompassing both architectures and behaviors of a system on the basis 

of Eq. 10.1, an abstract closed system without interactions with the 
environment can be formally described as follows.  

 
Definition 10.2 A closed systemS  is a 4-tuple, i.e.: 
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     S  = (C, R, B, Ω)           (10.2) 
where  
 

• C is a nonempty set of components of the system, C = {c1, c2, …, 
cn}. 

• R is a nonempty set of relations between pairs of the components 
in the system, R = {r1, r2, …, rm}, R ⊆ C × C.   

     • B is a set of behaviors (or functions), B = {b1, b2, …, bp}. 
     • Ω is a set of constraints on the memberships of components, the 

conditions of relations, and the scopes of behaviors, Ω = {ω1, ω2, 
…, ωq}. 

 

An abstract closed system, S  = (C, R, B, Ω), can be illustrated as shown 
in Fig. 10.4.    
 

 
 
 
 

 R1

 R2

  S  
 U 

  C1   B1

  Ω1

  R1

 C2   B2

  Ω2

  R2

 
 

Figure 10.4 The abstract model of a closed system 
 

 

 Definition 10.3 The maximum number of binary relations nr = #R 
between all pairs of the nc = #C components in a closed system S  = (C, R, B, 
Ω) can be determined as follows: 
 
                             nr = #R 
      = #(C × C) 
      = nc

2            (10.5) 

 

Lemma 10.3 A closed system S  = (C, R, B, Ω) is an asymmetric 
(directed) and reflective system because the relations R in it are 
constrained by the following rules: 
 

  (a) ∀a, b ∈ C ∧ a ≠ b ∧ r ∈ R,  r(a, b)  r(b, a)            (10.3) 
        (b) ∀c ∈ C, r(c, c) ∈ R            (10.4) 
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if all reflective self-relations are ruled out in nr, the partially connected 
relations n’r is obtain as:       
 
       ' ( 1)r c cn n n= −             (10.6) 
  
 
10.3.1.2 The Mathematical Model of Open Systems 
 

Most practical systems in the real world are not closed. That is, they 
need to interact with the external world known as the environment Θ in order 
to exchange energy, matter, and/or information. Such systems are called open 
systems. Typical interactions between an open system and the environment 
are inputs and outputs. 

 
Observe that the relations of a closed system are defined on the 

Cartesian product of internal components. For an open system that has 
interactions with external environment, the set of relations R needs to be 
extended to include both internal relations Rc and external (input/output) 
relations Ri and Ro, i.e.: 

 
    R = Rc ∪ Ri ∪ Ro           (10.7) 

 
Based on the above discussion, an abstract open system can be defined 

below.  
 

Definition 10.4 An open system S is a 7-tuple, i.e.: 
 

      S  = (C, R, B, Ω, Θ)       
      = (C, Rc, Ri, Ro, B, Ω, Θ)         (10.8) 
 
where the extensions of entities beyond the closed system are as follows:     
 

     • Θ is the environment of S with a nonempty set of components CΘ 
outside C, i.e., CΘ ∩ C = ∅ . 

         • Rc ⊆ C × C is a set of internal relations.  
         • Ri ⊆ CΘ × C is a set of external input relations.  
         •  Ro ⊆ C × CΘ is a set of external output relations.         
 

An abstract open system, S  = (C, Rc, Ri, Ro, B, Ω, Θ), can be illustrated as 
shown in Fig. 10.5.   
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Figure 10.5 The abstract model of an open system 

 
Example 10.1 A digital clock, Clock, can be described as an open 

system S1 as follows: 
 

             Clock  = S1(C1, Rc
1, Ri

1, Ro
1, B1, Ω1, Θ1) 

 
where 
 

• The set of components:     
C1 = {Processor, Keypad, LEDs, ClockPulse} 
 

         • The set of internal relations:    
Rc

1 ⊆ C1 × C1 = {Input (Keypad, Processor),  
                           Tick (ClockPulse, Processor),  
                           Output (Processor, LEDs)} 
 

         • The set of input relations:   
Ri

1 ⊆ CΘ1 × C1 = {SetTime (User, Keypad)}  
 

         • The set of output relations:   
Ro

1 ⊆ C1 × CΘ1 = {ShowTime (LEDs, User)}  
        

     • The set of behaviors:      
B1 = {SetTime, ShownTime, Tick} 
 

     • The set of constraints:     
Ω1 = {Time = hh × mm × ss} 
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     • The environment:     
Θ1 = {User}  

 
where the behaviors of the digital clock system defined in B1 can be further 
refined by a set of processes in RTPA.     

 
Example 10.2 The alarm subsystem, Alarm, of a digital clock can be 

described as an open system S2 as follows: 
 

               Alarm  = S2(C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2) 

 
where 
 

• The set of components:     
C2 = {Processor, Keypad, LEDs, Bell} 
 

         • The set of internal relations:    
Rc

2 ⊆ C2 × C2 = {Input (Keypad, Processor),  
                            AlarmCheck (Time, Alarm),  
                            AlarmRelease (Keypad, Processor),  

                   Output (Processor, LEDs), 
                   Ring (Processor, Bell)} 
 

         • The set of input relations:   
Ri

2 ⊆ CΘ2 × C2 = {SetAlarm (User, Keypad)}  
 

         • The set of output relations:   
Ro

2 ⊆ C2 × CΘ2 = {ShowAlarm (LEDs, User)}     
     

     • The set of behaviors:      
B2 = {SetAlarm, ShownAlarm, CheckAlarm, Ring, AlarmRelease} 
 

     • The set of constraints:     
Ω2 = {Alarm = hh × mm} 
 

     • The environment:     
Θ2 = {User}  

 
where the behaviors of the alarm system defined in B2 can be further refined 
by a set of processes in RTPA. 
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 Definition 10.5 The total number of potential binary relations nr in an 
open system S(C, Rc, Ri, Ro, B, Ω, Θ) is determined by the numbers of 
internal relations Rc, and external relations Ri and Ro, i.e.:  
 
                               nr = #Rc + #Ri + #Ro 
        = nc

2 + 2 #C • #CΘ               (10.13) 
 

According to Definitions 10.3 and 10.4, it is apparent that either a 
closed or an open system may result in a huge number of relations nr when 
the number of components possessed in them is considerably large. 
 
 
10.3.2 TAXONOMY OF SYSTEMS 
 

Systems as complex entities may be classified into various categories 
according to the key characteristics of their components (C), relations (R), 
behaviors (B), constraints (Ω), and/or environments (Θ). A summary of the 
system taxonomy is shown in Table 10.1. 
 There are combined categories of systems that fall in two or more 
categories, such as a dynamic nonlinear system and a discrete fuzzy social 
system. The types of systems may also classified by their magnitudes, which 
will be discussed in Section 10.3.3.  

Detailed definitions of system classifications and their characteristics 
are described in the following subsections.     
 
10.3.2.1 Concrete and Abstract Systems 
  

Definition 10.6 A concrete system is a real and specific system with 
natural entities and certain functions. 
  

Definition 10.7 An abstract system is a virtual or theoretical system 
that is modeled by mathematics or computing simulations.  

 

Lemma 10.4 An open system S(C, Rc, Ri, Ro, B, Ω, Θ) is an asymmetric 
and reflective system because its relations Rc, Ri, and Ro are constrained 
by the following rules: 
 

(a) ∀a, b ∈ C ∧ a ≠ b ∧ r ∈ Rc, r(a,b)  r(b,a)            (10.9) 
(b) ∀c ∈ C, r(c, c) ∈ Rc            (10.10) 
(c) ∀a ∈ C ∧ ∀x ∈ CΘ ∧ r ∈ Ri,  r(x,a)  r(a,x)          (10.11) 
(d) ∀a ∈ C ∧ ∀x ∈ CΘ ∧ r ∈ Ro,  r(a,x)  r(x,a)          (10.12) 
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Table 10.1 
Taxonomy of Systems 

 

Key Characteristics No System 

Components 
(C) 

Relations 
(R) 

Behaviors  
(B) 

Environment 
(Θ) 

1 Concrete Natural or real 
entities   

   

2 Abstract Mathematical 
or virtual 
entities   

   

3 Physical Natural entities    
4 Social Humans    
5 Finite #(C) ≠ ∞    

6 Infinite #(C) = ∞    

7 Closed  Ri = ∅ ∧  
Ro = ∅ 

  

8 Open  Ri  ≠ ∅ ∧  
Ro ≠ ∅ 

 

9 Static   Invariable  
10 Dynamic   Variable  
11 Linear   Linear functions  
12 Nonlinear   Nonlinear functions  
13 Continuous    Continuous functions  
14 Discrete   Discrete functions  
15 Precise   Precise functions  
16 Fuzzy   Fuzzy functions  
17 Determinate   Response predictable 

to same stimulates    
 

18 Indeter-
minate 

  Response 
unpredictable to same 
stimulates    

 

19 White-box Observable Transparent Observable  
20 Black-box Unobservable Non- 

transparent 
of internal 
relations    

Observable  

21 Intelligent   Autonomic Adaptive 
22 Non-

intelligent 
  Imperative Nonadaptive 

23 Maintainable Fixable  Recoverable  
24 Non- 

maintainable 
Nonfixable  Nonrecoverable  
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 An abstract system is usually used as a theoretical model of concrete 
systems, particularly for the purpose of formal treatment and the study of the 
generic properties shared by all concrete systems. In this view, a concrete 
system is an application or special case of the abstract system.  

Observing the taxonomy of systems as given in Table 10.1, it can be 
seen that although there are numerous and various systems for different 
purposes in the real-world, their abstract models, categories, and properties 
are limited. This is the theoretical and empirical foundation for the 
establishment of system algebra as a generic mathematical means for the 
formal treatment of real-world systems as presented in Section 10.4 [Wang, 
2006d].  
            
10.3.2.2 Physical and Social Systems 
  

Definition 10.8 A physical system is a natural and nonhuman system in 
which physical entities interact for certain purposes. 

 
Definition 10.9 A social system is an organized human system in which 

groups of people interact for certain social purposes.  
 
The physical systems can be mechanical, chemical, thermodynamic, 

electrical, and biological. The social systems such as social organizations, 
economic systems, and man-machine hybrid system are the most complicated 
and dynamic systems. The modeling and analysis of economical and social 
systems, as well as their applications in software engineering, will be 
presented in Chapters 12 through 13, respectively.            
 
10.3.2.3 Finite and Infinite Systems 
 

Definition 10.10 The finite system is a system with a certain number of 
components, i.e.: 

  
      nc = #C < ∞ ⇒ S(C, Rc, Ri, Ro, B, Ω, Θ) is finite       (10.14) 
 
Definition 10.11 The infinite system is a system with an unlimited 

number of components, i.e.: 
  
      nc = #C = ∞ ⇒ S(C, Rc, Ri, Ro, B, Ω, Θ) is infinite       (10.15) 
 
The ultimate concrete infinite system in the physical world is the 

universe, because as defined, anything that anybody may ever identify is 
included in the universal system.  
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Definition 10.12 The universe U is an infinite system with unlimited 
sets of components U, as well as unlimited relations RU, behaviors BU, and 
constraints ΩU, i.e.:  

 
U = (U, RU, BU, ΩU)        (10.16) 

 
where U encompasses any component c ever identifiable in the physical 
world, i.e., ∀ c, c ∈ U. 

 
There are many infinite abstract systems characterized by an infinite 

component set, such as the system with relations between a set of all natural 
numbers, or that of all points between [0, 1].   

 

      

 
Definition 10.13 The empty system O is the smallest finite system in 

which the sets of components C∅, relations R∅, behaviors B∅, and constraints 
Ω∅ are empty, i.e.:  

 
      O = (C∅, R∅, B∅, Ω∅)   

   = (∅, ∅, ∅, ∅)               (10.17) 
 

Definition 10.14 A finite system is a system between U(U, RU, BU, ΩU) 
and O(∅, R∅, B∅, Ω∅), which is characterized by 0 < #C < ∞. 

 

 
 

 

Lemma 10.5 There is only one physical infinitive system, i.e., U (U, RU, 
BU, ΩU), but multiple abstract or mathematical infinitive systems exist.   
 

 

Lemma 10.6 The evaluation criterion for whether a given system is 
infinite is that if the set of components CU is infinitive. 
 

 

Corollary 10.1 The evaluation criterion for whether a given system is 
empty is that if the set of components C∅ is empty. 
 

 

Lemma 10.7 There is only one empty system in both the physical and 
abstract worlds, i.e., O(C∅, R∅, B∅, Ω∅). 
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10.3.2.4 Closed and Open Systems 

   
The definitions of closed and open systems have been given in 

Definitions 10.2 and 10.4. According to the definitions, it is hardly find any 
practical usage of a closed system except its theoretical value as a primitive 
model of systems.  

Although in physics there are ideal theoretical models of closed 
systems, such as an isolated kinematical system and an adiabatic chamber 
with idea gas, there is no concrete closed system except the universe. 
Actually, in mathematical senses, there are only two concrete closed systems, 
the universal and empty systems, as described in the following theorem.         

 

 
The universal system U(CU, RU, BU, ΩU) is closed because there is no 

external environment outside U. The empty system O(C∅, R∅, B∅, Ω∅) is 
closed because there are no relations both internal and external.  
  

    

    
10.3.2.5 Static and Dynamic Systems 
 

Definition 10.15 A static system is a system that its behaviors are 
invariable over time or with the change of the environment. 

 

Corollary 10.2 The relationship between the infinitive universal system 
and the empty system O is complementary, i.e.: 

 
   =U O            (10.18a) 

or 
           =O U                (10.18b) 
 

 

Corollary 10.3 There are only two concrete closed systems in the 
physical world that are the universal system U(CU, RU, BU, ΩU) and the 
empty system O(C∅, R∅, B∅, Ω∅). 
 

 

Lemma 10.8 A closed system is conservative and there is always a 
unique static stable state. 
 

 

Lemma 10.9 An open system is anticonservative and in which at least 
one dynamic equilibrium state exists.  
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Definition 10.16 A dynamic system is a system that its behaviors are 
variable over time or with the change of the environment. 

  
10.3.2.6 Linear and Nonlinear Systems 
 

Definition 10.17 A linear system is a system that its behaviors are 
modeled by linear functions. 

 
Definition 10.18 A nonlinear system is a system that its behaviors are 

modeled by nonlinear functions. 
 

10.3.2.7 Continuous and Discrete Systems   
  

Definition 10.19 A continuous system is a system that its behaviors are 
modeled by continuous functions. 
  

Definition 10.20 A discrete system is a system that its behaviors are 
modeled by discrete or digital functions. 

 

 
10.3.2.8 Precise and Fuzzy Systems   
  

Definition 10.21 A precise system is a system that its behaviors are 
modeled by precise functions. 
  

Definition 10.22 A fuzzy system is a system that its behaviors are 
modeled by fuzzy logic. 

  
Some works in fuzzy theories prefer to call a precise system as a crisp 

system. From a point of view in the time dimension, precise verses fuzzy 
systems may better represent the cognitive or theoretical maturity towards a 
target system under study. That is, in the beginning, a system under study 
may be fuzzy, but in the end, as understanding improves along theoretical 
and technical advances, it becomes precise. Also, there exists a unified 
membership function in extended set theory [Wang, 2007a] that treats the 
precise, fuzzy, and rough sets and their membership functions as its special 
cases.                

 

Corollary 10.4 Continuous and discrete systems are equivalent because 
any continuous system can be simulated by a discrete system on the basis 
of behavioral equivalence.         
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10.3.2.9 Determinate and Indeterminate Systems 
 
Definition 10.23 A determinate system is a system that its behaviors 

are predictable for the same stimulus from the environment. 
  
Definition 10.24 An indeterminate system is a system that its behaviors 

are unpredictable for the same stimulus from the environment due to internal 
states, memory, and long-term feedback.  
 
10.3.2.10 White-Box and Black-Box Systems 

 
Definition 10.25 A white-box system is a system that both its internal 

architectures including the components and their relations, and external 
behaviors are transparent to and observable from the environment. 

 
Definition 10.26 A black-box system is a system that only a part of its 

behaviors are observable from the environment, but the components and their 
relations are not transparent. 

 
10.3.2.11 Intelligent and Nonintelligent Systems 

 
Definition 10.27 An intelligent system is a system that its behaviors are 

determined autonomously by internal goals and motivations, and it is 
adaptive to the environment through learning and cumulated knowledge. 

  
Definition 10.28 A nonintelligent system is a system that its behaviors 

are determined by imperative instructions, and has no ability to adapt to the 
environment. 

 
10.3.2.12 Maintainable and Nonmaintainable Systems 

 
Definition 10.29 A maintainable system is a system that its conditions, 

functions, or performance can be recovered or resumed after malfunctions or 
unsatisfied performances by maintenance or service during its lifecycle. 

  
Definition 10.30 A non-maintainable system is a system that its 

conditions, functions, or performance cannot be recovered or resumed due to 
malfunctions and degrading, or its maintenance and service are infeasible 
technically or economically, during its lifecycle. 
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10.3.3 MAGNITUDES OF SYSTEMS   
 
Abstract and real-world systems may be very small or extremely large 

[Rosen, 1977; Qian et al, 1990]. Therefore, a formal model of system 
magnitudes is needed to classify the size properties of systems and their 
relationship with other basic system attributes. In order to derive such a 
model, a set of measures on system sizes, magnitudes, and complexities is 
introduced in this subsection. 

   
10.3.3.1 System Sizes, Magnitudes, and Complexities  

 

Definition 10.31 The size of a system Ss is the number of components 
encompassed in the system, i.e.: 

 

    
#s

c

S C
n

=
=

               (10.19) 

  

Definition 10.32 The magnitude of a system Ms is the number of 
asymmetric binary relations among the nc components of the system 
including the reflexive relations, i.e.: 

 

                        
2

= #

= #( )
s r

c

M R n

C C

n

=

×

=

       (10.20) 

           

If all self-reflective relations are ruled out in nr, the pure number of 
binary relations M’s in the given system is determined as follows:       
 

       

 

2

'
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s s c

c c

c c

M M n

n n

n n

= −

=

=

          (10.21) 

 

Lemma 10.10 The pure number of binary relations M’s equals to exactly 
two times of the number of pairwise combinations among nc, i.e.: 
 

        

 

 

2

' ( - 1)

( - 1)
2

2
2 C c

s c c

c c

n

M n n

n n

=

= •

= •

                   (10.22) 

 

where the factor 2 represents the asymmetric binary relation r, i.e., arb ≠ 
bra.   
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The magnitude of a system determines its complexity. The complicities 
of systems can be classified based on if they are fully or partially connected. 
The former is the theoretical upper-bound complexity of systems in which all 
components are potentially interconnected with each other in all n-nary ways, 
1 ≤ n ≤ nc = #C. The latter is the more typical complexity of systems where 
components are only pairwisely connected.              

  
Definition 10.33 The complexity of a fully connected system Cmax is a 

closure of all possible n-nary relations R*, 1 ≤ n ≤ nc, among all components 
of the given system nc = #C, i.e.: 
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       (10.23) 

 
where Cmax is also called the maximum complexity of systems. 
 
 According to Eq. 10.23, the closure of all possible n-nary relations R* 
may easily result in an extremely huge degree of complexity for a system 
with few components. For example, when nc = 10, Cmax = 2100. This explains 
why most of the real-world systems are really too hard to be modeled and 
handled. 

It is noteworthy that almost all functioning systems are partially 
connected, because a fully connected system may not represent or provide 
anything meaningful. Therefore, the complexity of partially connected 
systems can be simplified as follows. 

 
Definition 10.34 The complexity of a partially connected system Cr is 

determined by the number of asymmetric binary relations M’s of the system, 
i.e.: 
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                       (10.24) 

 
where Cr is simply called the relational complexity of systems. 
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10.3.3.2 Taxonomy of System Magnitudes 
 

The taxonomy of system magnitudes [Wang, 2006d] can be classified 
at seven levels known as the empty, small, medium, large, giant, immense, 
and infinite systems from the bottom up. A summary of the relationships 
between system magnitudes, sizes, internal relations, and complexities can be 
described in the system magnitude model as shown in Table 10.2.        

 
Table 10.2 

The System Magnitude Model 
 

Level Category Size of 
systems 

 
(Ss = nc)

Magnitude  
of systems 

 
(Ms = nr = nc

2) 

Relational  
complexity of 

systems 
 

( ( 1))r c cC n n= −
 

Maximum 
complexity of 

systems 

(Cmax = 
2

2 cn ) 

1 The empty 
system (O) 0 0 0

 
- 

2 Small system [1, 10] [1, 102] [0, 90] [2, 2100] 

3 Medium system (10, 102] (102, 104] (90, 
0.99 • 104]

(2100, 210,000] 

4 Large system (102, 
103]

(104, 106] (0.99 • 104, 
0.999 • 106]

∞ 

5 Giant system (103, 
104]

(106, 108] (0.999 • 106, 
0.9999 • 108]

∞ 

6 Immense system (104, 
105]

(108, 1010] (0.9999 • 108,
0.99999 •1010]

∞ 

7 The infinite 
system (U) 

 
∞ 

 
∞

 
∞

   
∞ 

 
Table 10.2 indicates that the complexity of a small system may easily 

be out of control of human cognitive manageability. This leads to the 
following theorem. 

 

 

 

The 32nd Law of Software Engineering 
  

Theorem 10.1 The holism complexity of systems states that within the 7-
level magnitudes of systems, known as the empty, small, medium, large, 
giant, immense, and infinite systems, almost all systems are too 
complicated to be cognitively understood or mentally handled as a whole, 
except small systems or those that can be decomposed into small systems.  
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According to Theorem 10.1, the basic principle for dealing with 
complicated systems is system decomposition or modularity, in which the 
complexity of a lower level subsystem must be small enough to be 
cognitively manageable. Details of system decomposition theories and the art 
of system architectures will be developed in the following sections.                      
 
 

10.3.4 HIERARCHICAL ARCHITECTURES OF 
           SYSTEMS 
 

The hierarchical architecture of systems is very much in line with the 
notion of system philosophy and the hierarchical abstraction of systems that 
perceive a given system possesses certain subsystems and belongs to certain 
super system(s). From an organizational point of view, a system can be 
perceived as a closure at a certain level of hierarchical architecture of the 
abstract or conceptual world. Therefore, a system may be a part of a larger 
system at the top level except U, or consists of a number of smaller systems 
at the lower level except O. For example, a computer is an electronic 
information processing system, which may belong to a larger networked 
system, and at the same time it may contain a number of subsystems such as 
those of hardware, software, file management system, etc.    

It has been empirically observed that the tree-like architecture is a 
universal hierarchical prototype of systems across disciplines of not only 
science and engineering, but also sociology and living systems. This 
subsection explores the theories behind the universal phenomena in system 
science, which explain why systems have to adopt tree structures in 
organization, and what the advantages of hierarchical trees in system 
organizations are.       

The discussion may be started from analyzing the underlying reasons 
that force systems to take hierarchical structures. They are: 

 
     •  The complexity of an unstructured system can easily grow out of 

control. 

     • The efficiency of an unstructured system can be very low.       

     • The gain of system by coordination may diminish when the 
overhead for doing so is too high in unstructured systems. 

 
For example, according to the system magnitude model given in Table 

10.2, when an unstructured group is getting too large, say nc ≥ 100, its 
relative complexity Cr = 9,999, and its absolute complexity can be as high as 
Cmax = 210,000. It is obviously too complicated to be controllable. It is also an 
indirect proof of the coordinative work organization theory about the limit of 
group sizes as given in Theorem 8.10.  
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This example demonstrates the need for a suitable hierarchical structure 
for dealing with the complexities of large-scale systems. The most ideal 
structure of organized systems is known as the complete tree.                  
 

Definition 10.35 A complete n-nary tree Tc(n, N) is a normalized tree 
in which each node of Tc can have at most n children, each level k of Tc from 
top-down can have at most nk nodes, and all levels have allocated the 
maximum number of possible nodes, except on the rightmost subtrees and at 
the leave level where there are N nodes, N ≤ nk.     

 

It is noteworthy in Definition 10.35, a tree said to be complete means 
that all levels of the tree have been allocated the maximum number of 
possible nodes, only two types of exceptions are allowed at the leave level 
and the rightmost subtress. The advantage of complete trees is that the 
configuration of any complete n-nary tree Tc(n, N) is determined by only two 
attributes: the unified fan-out n and the number of leave nodes N at the 
bottom level. For instance, two complete trees Tc1(n1, N1) = Tc1(2, 3) and 
Tc2(n2, N2) = Tc1(2, 7) are as shown in Fig. 10.6.   

    1     3 

 Tc1(2, 3) 

    5     6     7     4     2 

 Tc2(2, 7) 

 
Figure 10.6 Growth of complete binary trees 

 
Definition 10.36 A normalized system is a hierarchically structured 

system where no direct interconnections between nodes belong to different 
subtrees, and communications between such nodes should be coordinated 
through a common higher-level parent node.       

 

                 The 33rd Law of Software Engineering 
 

Theorem 10.2 The generic topology of normalized systems states that 
systems tend to be normalized into a hierarchical structure in the form of 
a complete n-nary tree.   
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Systems are forced to be with tree-like structures in order to maintain 
equilibrium, evolvability, and optimal predictability. The advantages of tree 
structures of systems can be formally described in the following corollary.  

 
 
10.3.5 THE SYSTEM ORGANIZATION TREE 
  

Based on the model of complete trees, the topology of normalized 
systems can be implemented by a system organization tree. A structural 
model of the system organization tree is presented in this subsection for 
formally describing the hierarchical architectures of normalized systems. 
 

Definition 10.37 A System Organization Tree (SOT) is an n-nary 
complete tree in which all leave nodes represent a component and the 
remainder, all nodes beyond the leave level, represent a subsystem.  

 
For instance, a ternary SOT, SOT(n, N) = SOT(3, 24), is shown in Fig. 

10.7. Since an SOT is a complete tree, when the leaves (components) do not 
reach the maximum possible numbers, the right most leaves and subtrees of 
the SOT will be left open. 

According to Definition 10.37, SOT is an ideal model that implements 
the topology of a normalized system where: a) No direct interconnections 
between nodes of different subtrees; and b) Communication needs between 
those nodes belong to different subtrees may go through a common higher-
level parent node known as the manager node. A set of useful topological 
properties of SOT is identified as summarized in the following corollary 
[Wang, 2006d].    

 

Corollary 10.5 Advantages of the normalized tree architecture of systems 
are as follows: 
      

(a)  Equilibrium: Looking down from any node at a level of the 
system tree, except at the leave level, the structural property of 
fan-out or the number of coordinated components are the same 
and evenly distributed.         

(b)  Evolvablility: A normalized system does not change the 
existing structure for future growth needs.      

(c)  Optimal predictability: There is an optimal approach to create 
a unique system structure Tc(n, N) determined by the attributes 
of the unified fan-out n and the number of leave nodes N at 
the bottom level.     
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  S111   S112   S113   S121   S122   S123   S131   S132   S133   S221   S222  S223   S321   S322   S323   … 

  S11   S12   S13   S21   S22   S23   S31   S32   S33 

   S1    S2    S3 

    S 

  …   …   … 

     
Figure 10.7 A ternary system organization tree SOT(3, 24) 
 

 

 

Corollary 10.6 An n-nary system organization tree SOT(n, N) with the 
total number of leaves nodes N possesses the following properties: 

 
   (a) The maximum number of fan-out of any node fon :   

 

0fon n L= =               (10.25)  
 

   (b) The maximum number of nodes at a given level k, nk: 
 

  nk = nk               (10.26)  
 

   (c) The depth of the SOT, d:   
 

                log
log

Nd
n

⎡ ⎤= ⎢ ⎥⎢ ⎥⎢ ⎥
             (10.27)  

 
   (d) The maximum number of nodes in the SOT, NSOT:   

 

      
0

d
k

SOT
k

N n
=

= ∑               (10.28)  

 

   (e) The maximum number of components (on all leaves) in the SOT, N:   
 

        dN n=               (10.29)  
 

(f) The maximum number of subsystems (nodes except all leaves) in the SOT, 
Nm:   

           
-1

1
- -1

d
k

m SOT
k

N N N n
=

= = ∑             (10.30)  
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It is noteworthy that the determination of the fan-out n, which 
represents the optimal size of a group in an organization (L0), is not arbitrary 
according to Theorem 8.7. The optimization of n will be discussed in 
Sections 11.2 and 13.4.2. A wide range of applications of SOT in optimizing 
system organizations has been found. An SOT can be used to model and 
analyze the architectures and efficiencies of system organizations, for 
examples, in management science (Section 11.2) and sociology (Section 
13.4).  
 
 
10.3.6 SYSTEM COHESION AND COUPLING 
 

Cohesion and coupling are a pair of important properties of systems. 
Both cohesion and coupling of a system can be described as a relative ratio 
of internal and external relations of the system, where the concept of the 
border of the system is used to distinguish whether a given relation is internal 
or external.               
 
10.3.6.1 The Border of Systems   
 

The border of a system in topology is a closure that can be described by 
the intersections of the interior and the exterior of the system.       
 

Definition 10.38 The interior of a system S, IN, is a set of components 
CS that are fully included in S, i.e.: 
 

IN(S) = {c | c ∈ CS}         (10.31) 
 
Definition 10.39 The exterior of a system S, ET, is a set of components 

C’S that are excluded in S but are related or interacting with S, i.e.: 
 

   ET(S) = {x | x ∈ C’S ∧ x ∉ CS ∧ r(x, c) ∈ Ri
S ∧ r(c, x) ∈ Ro

S}    (10.32) 
 
where Ri

S and  Ro
S  represent the sets of input and output relations of systems.   

 
The exterior of a system is also called the environment.  
In a normalized system, there must be no component that belongs to 

more than one system.   
 

Definition 10.40 The border of a system S, B(S), is a closure of all 
internal components that separate the interior and exterior of the system, i.e.: 

  
             B(S) = IN(S) ∩ ET(S)  
                     = {CS* | CS E S}                 (10.33) 
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According to Definition 10.40, an open system is fused together by the 
internal relations and is linked with the environment by the external relations 
cross the border in both ways. Therefore, cohesion and coupling of a system 
can be defined based on the relative ratio of these relations as analyzed in the 
following subsections.  
 
10.3.6.2 System Cohesion and Coupling   
 

Assume #Rc(S) is the number of internal relations of system S, #Ri(S) 
the number of input relations, #Ro(S) the number of output relations, and 
#R(S) the total number of both internal and external relations. Then, system 
cohesion and coupling can be defined below, respectively.  

  
Definition 10.41 The cohesion of a system S, CH(S), is defined as a 

ratio between its number of internal relations #Rc(S) and the total relations of 
the system #R(S), i.e.: 
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Definition 10.42 The coupling of a system S, CP(S), is defined as a 

ratio between its number of external relations #Ri(S) + #Ro(S) and the total 
relations of the system #R(S), i.e.: 
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     (10.35)                    

 
It is noteworthy that system cohesion and coupling are not independent. 

The relationship between them can be described in the following corollary. 
 

 
The above corollary can be proven based on Definitions 10.41 and 

10.42 as given below.  

 

Corollary 10.7 The cohesion and coupling of any open system S are 
complementary, i.e.: 
 

         CH(S) + CP(S) = 100%              (10.36)  
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Therefore, when either cohesion or coupling of a given system is 

known, the other one can be determined as a complement according to Eq. 
10.36.   

 
 

 
10.4 System Algebra 
 

 
 
The mathematical models of abstract systems have been established in 
Section 10.3. On the basis of the discussions on the notions, metaphors, 
philosophies, and topology of systems, this section presents a new 
mathematical structure known as system algebra [Wang, 2006d], which 
provides a denotational means for the manipulation of abstract systems and 
the analysis of complex systems. System algebra is also the foundation for 
the formal treatment of principles and properties of abstract systems in 
Section 10.5.                 
 

Definition 10.43 System algebra is an abstract mathematical structure 
that provides an algebraic treatment of abstract systems and rules of 
relational and algebraic operations for forming complex systems. 

 
 
10.4.1 RELATIONAL OPERATIONS OF SYSTEMS 
  

This subsection describes the relational operations of abstract systems, 
which provides a formal treatment of system equivalence and comparability. 
The relations between closed and open systems are analyzed separately. 
Then, relations and equivalence between them will be discussed.  
 
10.4.1.1 Algebraic Relations of Closed Systems 
 

Relationships between two systems can be equivalent, independent, 
being subsystem, and being super system. The evaluations of these four types 
of relationships can be carried out based on the following definitions.   
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Definition 10.44 Two systems 1S and 2S are equivalent, denoted by =, 
if all sets of components, relations, behaviors, and constraints are identical, 
i.e.:  

 
       C1 = C2 ∧ R1 = R2 ∧ B1 = B2 ∧ Ω1 = Ω2  ⇒  

                1S (C1, R1, B1, Ω1) = 2S (C2, R2, B2, Ω2)     (10.38) 
 

Definition 10.45 Two systems 1S and 2S  are independent, denoted 
by R , if their component sets are disjoint, i.e.:  

 
    C1 ∩ C2 = ∅ ⇒  

          1S (C1, R1, B1, Ω1) R  2S (C2, R2, B2, Ω2)     (10.39) 
 

It is noteworthy that, by definition, there is no related or overlapped 
closed systems.  

 
Definition 10.46 A subsystem 'S  is a system that is encompassed in 

another system S , denoted by , i.e.: 
 
     'S (C’, R’, B’, Ω’)  S (C, R, B, Ω) ⇔  

C’ ⊆ C ∧ R’ ⊆ R ∧ B’ ⊆ B ∧ Ω’ ⊆ Ω         (10.40) 
 
The above definition indicates that a subsystem of a given closed 

system is a coherent component of the system where the component’s 
relations, behaviors, constraints, and environment are integrated into the 
system.       

 
Definition 10.47 A super system S  is a system that encompasses one 

or more subsystems S’, denoted by , i.e.: 
 
      S (C, R, B, Ω)  'S (C’, R’, B’, Ω’) ⇔  

C’ ⊆ C ∧ R’ ⊆ R ∧ B’ ⊆ B∧ Ω’ ⊆ Ω          (10.41) 
 

According to Definition 10.47 the composition of systems can be 
carried out when all four sets in the tuple that determine a system or 
subsystem are merged. Further discussion on the mechanisms of system 
compositions will be presented in Section 10.4.2.  
 
10.4.1.2 Algebraic Relations of Open Systems 
 

Relationships between two open systems can be equivalent, 
independent, overlapped, related, being subsystem, and being super system. 
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The evaluations of these relationships can be carried out based on the 
following definitions.        
 

Definition 10.48 Two open systems S1 and S2 are equivalent, denoted 
by =, if all sets of components, relations, behaviors, constraints, and 
environments are identical, i.e.:  

 
    C1 = C2 ∧ Rc

1
 = Rc

2 ∧ Ri
1

 = Ri
2 ∧ Ro

1 = Ro
2  ∧ B1 = B2  ∧ Ω1 = Ω2  ∧ Θ1 = Θ2   

                            ⇒ S1 (C1, Rc
1, Ri

1, Ro
1, B1, Ω1, Θ1) = 

                                 S2 (C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2)       (10.42) 

 
Definition 10.49 Two open systems S1 and S2 are independent, denoted 

by R , if both their component sets and external relation sets are disjoint, i.e.:  
 

             C1 ∩ C2 = ∅ ∧ Ri
1

 ∩ Ri
2 = ∅ ∧ Ro

1 ∩ Ro
2 = ∅ ⇒ 

                        S1 (C1, Rc
1, Ri

1, Ro
1, B1, Ω1, Θ1) R  

              S2 (C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2)       (10.43) 

 
Definition 10.50 Two open systems S1 and S2 are overlapped, denoted 

by Π, if their component sets are overlapped, i.e.:  
 

              C1 ∩ C2 ≠ ∅ ⇒ 
             S1 (C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1) Π 
 S2 (C2, Rc

2, Ri
2, Ro

2, B2, Ω2, Θ2)       (10.44) 
 
Definition 10.51 Two open systems S1 and S2 are related, denoted by 

R, if there is at least a coupled I/O relation satisfying ∀a ∈ C1, ∀b ∈ C2,  r(a, 
b) ∈ Ro

1 ∩ Ri
2  or  r(b, a) ∈ Ro

2 ∩ Ri
1, i.e.:  

 
                      Ro

1 ∩ Ri
2 ≠ ∅  ∨ Ro

2 ∩ Ri
1 ≠ ∅ ⇒ 

                     S1 (C1, Rc
1, Ri

1, Ro
1, B1, Ω1, Θ1)R  

             S2 (C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2)       (10.45) 

 
Definition 10.52 A subsystem S’ is a system that is encompassed in 

another system S, denoted by , i.e.: 
 

              S’(C’, Rc’, Ri’, Ro’, B’, Ω’, Θ’)  S(C, Rc, Ri, Ro, B, Ω, Θ) ⇔ 
                     C’ ⊆ C ∧ Rc’⊆ Rc ∧ Ri’⊆ Ri ∧ Ro’⊆ Ro ∧  
                      B’⊆ B ∧ Ω’ ⊆ Ω  ∧ Θ’ = Θ                 (10.46) 
 
The above definition indicates that a subsystem of either an open or 

closed system is an open system. In other words, the decomposition of any 
system results in multiple open subsystems.    
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Definition 10.53 A super system S is a system that encompasses one or 
more subsystems S’, denoted by , i.e.: 

 
              S’(C’, Rc’, Ri’, Ro’, B’, Ω’, Θ’)  S(C, Rc, Ri, Ro, B, Ω, Θ) ⇔ 

                     C’ ⊆ C ∧ Rc’⊆ Rc ∧ Ri’⊆ Ri ∧ Ro’⊆ Ro ∧  
                     B’⊆ B ∧ Ω’ ⊆ Ω  ∧ Θ’ = Θ         (10.47) 

 
According to Definition 10.53 the composition of two or more open 

systems can be carried out when all seven sets in the tuple that determine a 
system or subsystem are merged. Further discussion on system composition 
will be presented in Section 10.4.2.  

 
10.4.1.3 Relations between Closed and Open Systems 
 
 The previous subsections analyzed the relations of closed systems and 
open systems separately. However, it is noteworthy that closed and open 
systems are transformable, when the environment of open systems is treated 
as a super system.  

 
Based on the definitions of closed systems (Eq. 10.2) and open systems 

(Eq. 10.8), the above notion can be described in the following theorem and 
corollaries.   

 

 
According to Theorem 10.3, the following properties of equivalence 

between closed and open systems can be derived.       
 

 
The 33rd Principle of Software Engineering 

 
Theorem 10.3 The equivalence between open and closed systems states 
that an open system S and a closed systemS (  S CΘ = E S ) in the same 
context is transformable when their environments SΘ  and SΘ  are taken 
into consideration, respectively, i.e.:    
 

   S

S

 = S

S =  

S

S

⎧⎪ Θ⎪⎪⎨⎪ Θ⎪⎪⎩
          (10.48) 
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10.4.2 ALGEBRAIC OPERATIONS OF SYSTEMS 
 

System algebra provides a powerful means to manipulate abstract 
systems as a mathematical entity. A set of algebraic operations on systems, 
such as system conjunction, disjunction, difference, composition, and 
decomposition, is defined in the following subsections based on algebraic 
rules. 
 
10.4.2.1 System Conjunction 
 

An operation on incremental union of multiple sets of relations is 
introduced first as a preparation before defining system conjunction.   
  

Definition 10.54 An incremental union  of two sets of relations R1 
and R2 from different systems S1 and S2 are a normal union of A1 and A2 plus 
a newly generated  incremental set ∆R12, i.e.: 

 
                 R = R1  R2 
                    = R1 ∪ R2 ∪ ∆R12,   R1 E S1, R2 E S2, ∆R12 E S      (10.51) 
 

where E denotes a special membership relation of a set in a system. 
 
 Eq. 10.51 reveals an important property of systems relations, known as 
the incremental union, which indicates that the merge of two systems results 
in new relations and/or behaviors (functions).  

    

Corollary 10.8 Any subsystem kS  of a closed system S is an open 
system S, i.e.: 
 

        ∀ kS ⊆S  ⇒  Ri
k ≠ ∅ ∧ Ro

k ≠ ∅ ∧ Θk = Cs \ Ck ≠ ∅        (10.49) 
 

 
Corollary 10.9 Any supersystem S of a given set of n open systems kS , 
plus their environments Θk, 1 ≤ k ≤ n, is a closed system, i.e.:    
 

    ∀ kS , Θk, 
1
( )

n

k k
k

S S
=

= Θ ⇒ Ri
S = ∅ ∧ Ro

S = ∅ ∧ ΘS = ∅    (10.50) 
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Definition 10.55 The conjunction of two closed systems 1S  and 2S , 
denoted by , results in a super system S that is formed by union of both sets 
of  components and constraints, as well as incremental union of both sets of 
relations and behaviors, respectively, i.e.:  
 
          1S (C1, R1, B1, Ω1)  2S (C2, R2, B2, Ω2)  
           S (C1 ∪ C2, R1  R2, B1  B2, Ω1 ∪ Ω2) 
           =S (C1 ∪ C2, R1 ∪ R2 ∪ ∆R12, B1 ∪ B2 ∪ ∆B12, Ω1 ∪ Ω2) 
                =S (C, R, B, Ω)                       (10.52) 
 

 
The discovery in Theorem 10.4 reveals that the mathematical 

explanation of system gains is the newly generated relations ∆R12 and/or 
behaviors ∆B12 during the conjunction of two systems or subsystems. The 
empirical awareness of this key system property has been intuitively or 
empirically described in the literature in system engineering for centuries. 
However, Theorem 10.4 is the first rigorous explanation of the mechanism of 
system gains during the incremental system conjunctions and compositions.  

Theorem 10.4 may be used to predict the maximum numbers of newly 
established relations and behaviors when two systems are conjoined. 
According to Eq. 10.53, the maximum incremental or system gain equals to 
the number of by-directly interconnection between all components in both S1 

and S2, i.e., 2(#C1 • #C2). It is noteworthy that if C1 and C2 are disjoint, there 
is no incremental gain in system conjunctions. 

More generally, Theorem 10.4 and Definition 10.55 can be extended to 
open systems as below.  

                    
Definition 10.56 The conjunction of two open systems S1 and S2, 

denoted by , results in a super system that is formed by incremental 
conjunctions of both sets of relations and behaviors, respectively, as well as 

 

The 34th Law of Software Engineering 
 

Theorem 10.4 The system gain of functionality states that system 
conjunction or composition between two systems S1 and S2 creates new 
relations ∆R12 and/or new behaviors (functions) ∆B12 that are solely a 
property of the newly established super system S, which can be 
determined by the sizes of the two intersected component sets #C1 and 
#C2, i.e.:  
 

       ∆R12 = #R - (#R1 + #R2) 
           = (#(C1 + C2))2 - ((#C1)2 +(#C2)2) 
                = 2 (#C1 • #C2)                          (10.53) 
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simple conjunctions of sets of components, constraints, and environments, 
i.e.:  

 
           S1(C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1)  S2(C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2) 

                      S(C1 ∪ C2, Rc
1 ∪ Rc

2 ∪ ∆Rc
12, Ri

1 ∪ Ri
2, Ro

1 ∪ Ro
2, 

                             B1 ∪ B2 ∪ ∆B12, Ω1 ∪ Ω2, Θ1 ∪ Θ2)        
            = S(C, Rc, Ri, Ro, B, Ω, Θ)         (10.54) 

 
The operation of open system conjunction is illustrated in Fig. 10.8, 

where the generation of the new relations ∆Rc
12 = ∆Rc

1 + ∆Rc
2 in S after the 

conjunction of S1 and S2 can be observed.      
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 Ω21

 R21

 C22  B22

 Ω22

 R22

    

Ri
21

Ri
22

 Ro
21 

 Ro
22 

 Rc
22Rc

21

  Ri
1 

  Ri
2

  Ro
2 

  Ro
1 

 Θ1  Θ2

  Θ 
 S

∆Rc
1 

∆Rc
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Figure 10.8 The conjunction of two open systems 

 
Example 10.3 According to Definition 10.56, the conjunction of the 

two open systems S1(Clock) and S2(Alarm) as given in Examples 10.1 and 
10.2 results in a new system S(Alarm_Clock) as follows: 

 
              S(C, Rc, Ri, Ro, B, Ω, Θ) = S1(C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1)   
                                                         S2(C2, Rc

2, Ri
2, Ro

2, B2, Ω2, Θ2) 
                            = S(C1 ∪ C2, Rc

1 ∪ Rc
2 ∪ ∆Rc

12, Ri
1 ∪ Ri

2, Ro
1 ∪ Ro

2, 
                           B1 ∪ B2 ∪ ∆B12, Ω1 ∪ Ω2, Θ1 ∪ Θ2)        
where 
  

• The set of components:     
C = C1 ∪ C2  
    = {Processor, Keypad, LEDs, ClockPulse} ∪  
       {Processor, Keypad, LEDs, Bell} 
    = {Processor, Keypad, LEDs, ClockPulse, Bell} 
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        • The set of internal relations:    
Rc = Rc

1 ∪ Rc
2 ∪ ∆Rc

12 

       = {Input(Keypad, Processor),  
         Tick(ClockPulse, Processor),  
         Output(Processor, LEDs) 
        } ∪ 
        {Input(Keypad, Processor),  
          AlarmCheck(Time, Alarm),  
          AlarmRelease(Keypad, Processor),  

Output(Processor, LEDs),  
Ring(Processor, Bell) 

                          } ∪ 
                          {Select(Clock, Alarm)}      //  ∆Rc

12 
       = {Input(Keypad, Processor),  
         Tick(ClockPulse, Processor),  
         AlarmCheck(Time, Alarm),  
         AlarmRelease(Keypad, Processor),  

                           Output(Processor, LEDs),  
                           Ring(Processor, Bell), 
                           Select(Clock, Alarm) 
                          } 

         • The set of input relations:   
Ri = Ri

1 ∪ Ri
2  

     = {SetTime(User, Keypad), SetAlarm(User, Keypad)} 

         • The set of output relations:   
Ro = Ro

1 ∪ Ro
2  

     = {ShowTime(LEDs, User), ShowAlarm(LEDs, User)}       

     • The set of behaviors:      
B = B1 ∪ B2 ∪ ∆B12 

   = {SetTime, ShownTime, tick} ∪  
      {SetAlarm, ShownAlarm, CheckAlarm, Ring, AlarmRelease} ∪ 
      {SelectClock, SelectAlarm}               //  ∆B12 

     • The set of constraints:     
Ω = Ω1 ∪ Ω2 

      = {Time = hh × mm × ss, Alarm = hh × mm} 

     • The environment:     
Θ = Θ1 ∪ Θ2  
    = {User}  
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Note that newly generated relations Select(Clock, Alarm), as well as 
behaviors SelectClock and SelectAlarm in system S(Alarm_Clock), do not 
belong to either subsystem S(Clock) or S(Alarm).      

 
10.4.2.2 System Difference 
 

Definition 10.57 The difference between a closed system S and a 
subsystem 1S , denoted by , results in a subsystem 2S  that is formed by 
the differences of sets of components and constraints, difference of sets of 
relations minus both R1 and ∆R12, and difference of sets of behaviors minus 
both B1 and ∆B12, i.e.:  

 
                 S (C, R, B, Ω)  1S (C1, R1, B1, Ω1) 
                  2S (C \ C’

1, R \ (R’
1 ∪ ∆R12), B \ (B1 ∪ ∆B12), Ω \ Ω1)   

              = 2S (C2, R2, B2, Ω2)          (10.55) 
 

where C’
1 ⊆ C1  ∧ C’

1 ∩ C2  = ∅ and R’
1 ⊆ R1  ∧ R’

1 ∩ R2  = ∅. 
 
According to Definition 10.57, a difference of a subsystem from a 

system S will result in the removal of not only the given subsystem but also 
all interrelations and incremental behaviors between the subsystem and other 
subsystem in S.  

It is noteworthy that if there is an overlap between two subsystems 
inS , the operation of system difference will only remove C’

1 and R’
1, which 

are only the disjoint subsets of C1 and R1, respectively.  
More generally, Definition 10.57 can be extended to open systems as 

follows.  
 
Definition 10.58 The difference between an open system S and a 

subsystem S1, denoted by , results in an open subsystem S2 that is formed 
by the differences of sets of components, input relations, output relations, 
and constraints, difference of sets of internal relations minus both Rc’

1 and 
∆Rc

12, and difference of sets of behaviors minus both B1 and  ∆B12, i.e.:  
 
            S(C, Rc, Ri, Ro, B, Ω, Θ)  S1(C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1)  
           S2(C \ C’

1, Rc \ (Rc’
1 ∪ ∆Rc

12), Ri \ Ri
1, Ro \ Ro

1, 
                           B \ (B1 ∪ ∆B12), Ω \ Ω1, Θ \ Θ’

1)        
=  S2(C2, Rc

2, Ri
2, Ro

2, B2, Ω2, Θ2)        (10.56) 
 
where C’

1 ⊆ C  ∧ C’
1 ∩ C2  = ∅, Rc’

1 ⊆ Rc
1  ∧ Rc’

1  ∩ Rc
2  = ∅, and Θ’

1 ⊆ Θ1  ∧ 
Θ’

1 ∩ Θ2  = ∅. 
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As shown in Eq. 10.56, the operation of system difference will only 
remove the disjoint subsets, i.e., C’

1, Rc’
1, and/or Θ’

1 from S, respectively.       
 An open system difference S    S1 = S2 is illustrated in Fig. 10.9.  
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Figure 10.9 The difference of two open systems (S  S1 = S2) 
 

Example 10.4 According to Definition 10.58, the difference of the two 
open systems S(AlarmClock) and S2(Alarm) as given in Examples 10.1 and 
10.2 results in a new subsystem S1(Clock) as follows: 

 
           S1(C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1) = S(C, Rc, Ri, Ro, B, Ω, Θ)  
                                                                S2(C2, Rc

2, Ri
2, Ro

2, B2, Ω2, Θ2) 
                     = S1(C \ C’

2, Rc \ (Rc’
2 ∪ ∆Rc

12), Ri \ Ri
2, Ro \ Ro

2, 
                             B \ (B2 ∪ ∆B12), Ω \ Ω2, Θ \ Θ’

2)         
 
where 

• The set of components:     
C1 = C \ C’

2 
    = {Processor, Keypad, LEDs, ClockPulse, Bell} \ {Bell} 
    = {Processor, Keypad, LEDs, ClockPulse} 

        • The set of internal relations:    
Rc

1 =  Rc \ (Rc’
2 ∪ ∆Rc

12), 
       = {Input(Keypad, Processor),  
         Tick(ClockPulse, Processor),  
         AlarmCheck(Time, Alarm),  
         AlarmRelease(Keypad, Processor),  

                           Output(Processor, LEDs),  
                           Ring(Processor, Bell), 
                           Select(Clock, Alarm) 
                          } \ 
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        {AlarmCheck(Time, Alarm),  
          AlarmRelease(Keypad, Processor),  

                           Ring(Processor, Bell) 
                          } ∪ 
                          {Select(Clock, Alarm)} 

       = {Input(Keypad, Processor),  
         Tick(ClockPulse, Processor),  
         Output(Processor, LEDs) 
        } 

         • The set of input relations:   
Ri

1 = Ri \ Ri
2  

      = {SetTime(User, Keypad)} 

         • The set of output relations:   
Ro

1 = Ro \ Ro
2  

     = {ShowTime(LEDs, User)}       

     • The set of behaviors:      
B1 = B \ {B2 ∪ ∆B12} 
     = {SetTime, ShownTime, tick, SetAlarm, ShownAlarm, 
          CheckAlarm, Ring, AlarmRelease, SelectClock,  
          SelectAlarm 
        } \  
        {SetAlarm, ShownAlarm, CheckAlarm, Ring, AlarmRelease, 
          SelectClock, SelectAlarm 
        } 
     = {SetTime, ShownTime, tick}  

     • The set of constraints:     
Ω1 = Ω \ Ω2 

         = {Time = hh × mm × ss} 

     • The environment:     
Θ1  = Θ \ Θ’

2  
      = {User} 
  

Note that within the given system S, since there is an overlap between 
the two subsystems S1 and S2, the difference operation may only remove the 
disjoint subset C’

2, Rc’
2, and Θ’

2 from S.      

  
10.4.2.3 System Composition 
 

System composition is the most complicated system operation that 
integrates two or more systems into a super system with a hierarchical 
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architecture. It is noteworthy that only open systems may be composed, or a 
closed system should be transformed into an open system before it can be 
composed.    

There are three basic forms of system compositions known as: parallel 
(||), serial (→), and nested ( ) compositions as shown in Fig. 10.10. 
Complex system compositions can be represented by a combination of these 
three basic forms. The syntaxes and semantics of these three system 
composition rules have been defined in RTPA in Section 4.6.5 and Section 
6.6.2, respectively. 
 

No Form of 
composition 

Syntax Example 

1 Parallel S1 ||  S2 S  S1 || S2 || … || Sn 
 
 
 
             S1                                 S2                         …                           Sn 
 

 

2 Serial S1 → S2 S  S1 → S2 → … → Sn 
 
 
             S1                                 S2                         …                           Sn 
 

 
3 Nested S1  S2 S  S1  S2  …  Sn 

 
        …                                                    S1             

 

 
            …                                            S2 
 
 
 
              …                                      Sn 

 

                      

                      … 

       

                 … 

 

            … 

 

 
Figure 10.10 Basic forms of system compositions 
 

Definition 10.59 The composition of two open systems S1 and S2, 
denoted by , is an integration of both systems into a super system S at a 
given level of the system hierarchy by one of the compositional relations Rc = 
{||, →, }, i.e.:  

 
             S(C, R, B, Ω ,Θ)   

S1(C1, R1, B1, Ω1, Θ1)  S2(C2, R2, B2, Ω2, Θ2)    (10.57) 
 

© 2008 by Taylor & Francis Group, LLC



788   Part III  Organizational Foundations of SE 

where  ∈ Rc. 
 
Eq. 10.57 can be extended to n-nary compositions as given below:   
  
              S(C, R, B, Ω ,Θ)  S1 12 S2 23 … n-1,n Sn      (10.58) 

 
where ij ∈ Rc. 

 
According to Definition 10.59, a system can be integrated from the 

bottom up by a series of compositions level by level in a system hierarchy.        
 
Example 10.5 A composed system S(C, R, B, Ω ,Θ) as given in Fig. 

10.11 can be formally described below. 
 

   S1  S2   Sx 

S11   S12 S13 S21 S22

  S

   Sx1 

 Sx11    S111   S11x  … 

 …

 
 
Figure 10.11 The hierarchical organization chart of system compositions 
 

             S(C, R, B, Ω ,Θ)   S1 
|| S2 
|| … 
|| Sx 

 
in which the subsystems of S can be refined as follows:  
 

                  S1      S11 
|| S12 
|| S13 

                 =    (   S111 
             || … 
             || S11x 
           )  

|| S12 
|| S13 
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                S2  S21 → S22 
 
                Sx  Sx1  Sx11 

 
where ||, →, and  denote the parallel, serial, and embedded (function call) 
relations, as defined in Section 4.6.5 in RTPA, respectively.       
 

In the hierarchical organization chart of systems as shown in Fig. 
10.11, the labeling convention is defined below.  

 
Definition 10.60 The labeling convention of nodes in the system 

organization chart is that each node is labeled by d digits where d is the depth 
of the node in the hierarchy. The configuration of the d digits is as follows: a) 
The last digit is always the series number of the nodes at the same level and 
belongs to the same parent; and b) The remainder of the proceeding digit(s) 
are the identification label of the node’s parent.  
                          

Note that x represents a digit that is flexible and will be instantiated for 
a specific case. Also, an x that appears in different places may be different.    

For simplifying system architectures, system compositions should obey 
the following rules.    

 

 
For example, subsystems S111 and S13 should communicate through 

commonly shared system S1 rather than directly link by themselves; 
subsystems S13 and S22 should communicate through commonly inherited 
system S. These rules ensure that coordination between functions of different 
system/subsystems can be carried out via standard interfacing mechanisms, 
and a strict system hierarchical can be maintained.  

 

Lemma 10.11 The following architectural rules of a normalized system 
should be maintained in system compositions:      
 

Rule 1. Direct relations between subsystems at different levels of 
the hierarchy are not allowed.            
 

Rule 2. Direct relations between components of different 
subsystems are not allowed.            
 

Rule 3. Communications across systems and subsystems should be 
through commonly inherited higher-level system(s) in the system 
hierarchy. 
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10.4.2.4 System Decomposition 
 

System decomposition is an inverse operation of system composition 
that breaks up a system into two or more subsystems. It is noteworthy both 
open and closed systems can be decomposed, and all of them result in open 
subsystems.    

 
Definition 10.61 The decomposition of an open systems S, denoted by 

, is to break up S into two subsystems at the same level of the system 
hierarchy by one of the compositional relations Rc = {||, →, }, i.e.:  

 
             S(C, R, B, Ω ,Θ)   

S1(C1, R1, B1, Ω1, Θ1)  S2(C2, R2, B2, Ω2, Θ2)    (10.59) 
 
where  ∈ Rc. 
 

Eq. 10.59 can be extended to n-nary decompositions as given below:    
 
              S(C, R, B, Ω ,Θ)  S1 12 S2 23 … n-1,n Sn      (10.60) 

 
where ij ∈ Rc. 

Similarly, the decomposition of a closed system can be defined below.     
 
Definition 10.62 The decomposition of a closed system S , denoted by 

, is to break up S  into two subsystems at the same level of the system 
hierarchy by one of the compositional relations Rc = {||, →, }, i.e.:  

 
              S (C, R, B, Ω)   

  1S (C1, R1, B1, Ω1)  2S (C2, R2, B2, Ω2)     (10.61) 
 
where  ∈ Rc. 

 
Eq. 10.61 can be extended to n-nary decompositions of closed systems 

as given below:    
 
            S (C, R, B, Ω)  1S  12 2S  23 … n-1,n nS       (10.62) 

 
where ij ∈ Rc. 

 
According to Definitions 10.61 and 10.62, either an open or a closed 

system can be resolved from the top down by a series of decompositions 
level by level in the system hierarchy.        
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System decomposition can be illustrated by the same diagram as shown 
in Fig. 10.11. The only difference between system composition and 
decomposition is that the former is a bottom-up operation, while the latter is 
a top-down operation. 

 
 

10.5 Principles of System Science 
 

  
  
The theories of system science have evolved from classic to contemporary 
with I. Prigogine’s dissipative structure theory [Prigogine and Stengers, 
1984/97], H. Haken’s synergetics [Haken, 1977/83], and M. Eigen’s 
hypercycle theory [Eigen and Schuster, 1979]. Then, the field has shifted on 
proposals of systematology [Klir, 2001], complex systems theory [Ashby, 
1958; Simon, 1965; Zadeh, 1973; Gaines, 1977/76], fuzzy theories [Zadeh, 
1965/82; Pedrycz, 1981; Gaines, 1983; Negoita, 1989], and chaos theories 
[Prigogine and Stengers, 1984/97; Ford, 1986; Skarda and Freeman, 1987].  

The abstract system theory supporting by system algebra is developed 
in 2006 [Wang, 2006d] is the latest attempt to provide a formal and rigorous 
treatment of abstract systems, their properties, and principles. This section 
describes fundamental principles of system science on the basis of abstract 
system theories and system algebra. A comprehensive set of system 
phenomena and principles, such as system fusions, system functions and 
behaviors, work done by systems, the maximum output of systems, system 
equilibrium and organization, system synchronization and coordination, and 
system dissimilation, are formally explained by the abstract system theories.            
 
 
10.5.1 SYSTEM FUSIONS 
 

Systems are needed because of the special and self-productive 
properties known as the fusion effect, which is not possessed by any of its 
parts or components before compositions. 

  
Definition 10.63 The fusion effect of a system is a self-productive 

property of systems that only appears when the system functions coherently 
as a whole.  

 
The fusion effect can be quantitatively analyzed using Law 34 of 

system gain of functionality as stated in Theorem 10.4. Based on Law 34, the 
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following corollaries on system fusion during system compositions are 
derived. 

 

 
The critical mass and the curve of system fusion effect can be 

illustrated as shown in Fig. 10.12. An important phenomenon in system 
fusion is the mutation of system functions triggered by the critical mass Qcm.      
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Figure 10.12 System fusion and the critical mass 
 

 
Definition 10.64 The behavior of system mutation can be formally 

modeled as a system function f(q), i.e.: 

   
Lemma 10.12 The system fusion principle states that the fusion effect of 
systems is generated by either increments of quantity in C or increments 
of diversity in R. 
 

 
The 35th Law of Software Engineering 

   
Theorem 10.5 System mutation states that the gradual increment of 
quantities, e.g., ∆C or ∆R, in a system beyond the point of the critical 
mass Qcm triggers the abrupt generation of functionality (quality) Fcm of 
the system. 

 

Corollary 10.10 There exists a threshold that triggers the fusion effect of 
systems known as the critical mass Qcm, which is the minimum quantity 
for obtaining or implementing the system fusion effect over the 
incremental of quantity. 
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( ) 0,  

( ) ( ),  
cm

cm cm

f q q Q

f q f q q Q

⎧ = <⎪⎪⎪⎨⎪ = ≥⎪⎪⎩
               (10.63) 

 
where fcm(q) is the active system behavior that is system- or context-specific. 
 

Example 10.6 The following examples show, respectively, how 
quantitative or diverse increments generate the fusion effects in systems. 

 
(a) A voltage evaluator as a circuit system: The output is triggered by 

the gradual increment of its input Vi , i.e.: 
 

0,  2.5v
( )

1,  2.5v
i

i

V
S voltage_evaluator

V

<⎧⎪⎪= ⎨⎪ ≥⎪⎩
 

 

(b) A water molecular as a chemical system: The resulting compound 
gains a set of new chemical and physical properties that are not possessed by 
its individual component molecules, i.e.: 

 

    S(water_molecular) = 2H + O ⇒ H2O  
 
 

10.5.2 SYSTEM FUNCTIONS AND BEHAVIORS 
 
There was an attempt in system theories to describe the behaviors of all 

systems or a category of systems by a single mathematical model. Because of 
the extreme complexity and wide variety of systems, this aim seems 
impossible to be achieved. However, as described in Sections 10.3 and 10.4, 
the generic mathematical models for the architectures of abstract systems do 
exist.  

Although homogeneously structured systems may implement different 
behaviors, heterogeneously structured systems may implement identical 
behaviors. To this extent, computers and software engineering are a generic 
system engineering platform to implement a wide range of system behaviors 
by homogeneous and/or heterogeneous system architectures. 

The behaviors of systems vary greatly at the application level. 
However, there are only a finite set of meta behaviors shared by all the 
applications at the fundamental level in both physical and intelligent systems. 
These meta behaviors can be modeled by a set of 17 meta processes in 
RTPA. The 17 meta processes can be composed by a set of 17 process 
relations to built the architectures and behaviors of larger components and 
complex systems. In other words, computing systems or human behaviors 
can be described and implemented by a set of processes based on 
compositions of the meta processes and their algebraic relations [Wang, 
2002a/03c].                        
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On the basis of Theorem 4.6, the set of 17 meta processes P in 
computing have been defined in Section 4.6.4 as follows:  

 
          P = {:=, , ⇒, ⇐, , , , | , | , @ , , ↑, ↓, !, , ⊠ , §}    (10.64) 

 
According to Theorem 4.7, the set of 17 algebraic process operations  

R in computing have been defined in Section 4.6.5 as follows:  
 

  R =  

 {→, , |, |…|, 
*R , R+

,
iR , , , ||, ∯ , |||, », ,  t,  e,  i}  (10.65) 

 
The syntaxes and semantics of each of the above meta processes and 

algebraic process operations may be referred to Sections 4.6, 5.4, and 6.6, 
respectively. Formal descriptions of system behaviors in RTPA may be 
referred to Sections 4.8, 5.5, and Appendix K. In addition, formal description 
of human behaviors in RTPA may be referred to the examples in Fig. 9.16 
and Fig. 11.10.     
  
  
10.5.3 WORK DONE BY SYSTEMS 
 

This subsection introduces the concept of abstract work done by a 
system that is an extension and generalization of the concept of work in 
kinematics, electricity, and thermodynamics.          

  
 Definition 10.65 The abstract work done by a system S, W(S), is its 

output of utility U in term of the implemented number of functions F, i.e.:  
 

( )    [F]W S U=          (10.66)     
 
where the functions of U can be perceived as energy spent in Joule in 
physical systems, information generated or processed in bit in intelligent 
systems, or tasks conducted in person-hour in human-based systems. 
 

Definition 10.66 The power of a system S, P(S), is the work done by 
the system per unit time, i.e.: 
 

( )
( )  

=  [F/hr]

W S
P S

t
U
t

=
         (10.67)     

 

© 2008 by Taylor & Francis Group, LLC



Chapter 10 System Science Foundations of SE   795 

Definition 10.67 The efficiency of a system η is the ratio between the 
average output work oW and the average input work iW of the system, i.e.: 
 

        = 100%     o

i

W 
W

η •           (10.68) 

 
Definition 10.68 The overhead of a system ϖ is the ratio of average 

internal loss of work in the system, i.e.: 
 

          
= 100% - 

= (1 - ) 100%     o

i

W
W

ϖ η

•
         (10.69) 

 
where η and ϖ  are complementary, i.e.: η +ϖ  = 100%.    
 

 

 
Eq. 10.71 indicates that, although a system’s capability to carry out a 

work is more powerful than any of its components, the total work done by 
the system cannot exceed the sum of all its components because the existence 
of the overhead ϖ > 0, or no system or its components may reach an 
efficiency η ≥ 100%.  

There was a myth on an ideal system in conventional systems theory 
that supposes the work done by the ideal system W(S) may be greater than 

 

Corollary 10.11 The ideal system utility states that no system S may 
reach the efficiency η(S) that equals to or greater than 100%, i.e.: 
 
                                   S ⇒ η(S) ≥ 100%             (10.70) 
 

 

The 36th Law of Software Engineering 
 
Theorem 10.6 The system gain of work states that work done by a system 
is always greater than any of its components, but must not greater than 
the sum of those of its components, i.e.: 
 

        1
( ) ( ),      100%

( ) max( ( )),  

n

i
i

i i S

W S W C

W S W C C E

η
=

⎧⎪⎪ ≤ ≤⎪⎪⎨⎪⎪ > ∈⎪⎪⎩

∑          (10.71) 
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the sum of all its components W(ei), i.e., 
1

( ) ( )
n

i
i

W S W C
=

≥ ∑ . According to 

Theorem 10.6 and Corollary 10.11, this ideal system utility is impossible to 
achieve.  

 
 

10.5.4 THE MAXIMUM OUTPUT OF SYSTEMS 
 

The output work of systems is dependent on the architectural types of 
the systems. The basic structures of system compositions are serial, parallel, 
and hybrid as analyzed below. 
 

Definition 10.69 A serial system Ss is a specially structured system that 
can be described as a pair, i.e.: 
 

             Ss = (Cs, Rs)          (10.72) 
 
where Cs is a set of components, i.e., Cs = (C1, C2,  …, Cn), and Rs is a serial 
relation between all components, i.e., Rs = C1 ∧ C2  ∧ … ∧ Cn. 
 

 
The bottleneck principle can be described by the bucket effect of serial 

systems, which states that the capacity of a bucket is determined by the 
shortest piece that the bucket is made of. This is a vivid example to explain 
the behavior of serial systems.   

    
Definition 10.70 A parallel system Sp is a specially structured system 

that can be described as a pair, i.e.: 
 

             Sp = (Cp, Rp)          (10.74) 
 
where Cp is a set of components, i.e., Cp = {C1, C2,  …, Cn}, and Rp is a 
parallel relation between all components, i.e., Rp = C1 ∨ C2  ∨ … ∨ Cn. 

 

The 34th Principle of Software Engineering 
 
Theorem 10.7 The bottleneck principle of systems states that the output 
work of a serial system W(Ss) is determined by the least powerful 
component of the system, i.e.:         

    
       W(Ss) = min (W(Ci ) | Ci ∈ Cs ∧ 1 ≤ i ≤ n))         (10.73) 
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A complex system with hybrid architectures of serial and parallel 

components can be analyzed separately by the sum of a number of parallel 
subsystems of serial components, or a number of serial subsystems of parallel 
components.   

 
   

10.5.5 SYSTEM EQUILIBRIUM AND ORGANIZATION 
 

A set of components may form a system because of their coherent 
organization towards a common goal of the system. Self-organization is a 
universal property of systems with the characteristic of equilibrium.        

In Principles of the Self-Organizing System (1962), Ashby wrote:  
 

“We start with the fact that systems in general go to 
equilibrium. Now most of a system's states are non-equilibrial 
… . So in going from any state to one of the equilibria, the 
system is going from a larger number of states to a smaller. In 
this way, it is performing a selection, in the purely objective 
sense that it rejects some states, by leaving them, and retains 
some other state, by sticking to it. ” 

  
10.5.5.1 The Generic IPO Model of Systems 
  

The functional architecture of any open system can be described by its 
input, output, and the internal behaviors in terms of processes of the system, 
IPO, as shown in Fig. 10.13.  
 

Figure 10.13 The generic IPO system model  
 

 

The 35th Principle of Software Engineering 
 

Theorem 10.8 The linear sum principle of systems states that the output 
work of a parallel system W(Sp) is a sum of the work done by all its 
components less the overhead ϖ of the system, i.e.:          

   

     
n

1
( ) ( ) - ,   ,   > 0p i i p

i
W S W C C Cϖ ϖ

=
= ∈∑        (10.75) 

 

       

 Input 
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 Process 
     (P) 

 Output 
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The architecture of a system with feedback, IPOf, is shown in Fig. 
10.14. The feedback for a system can be positive or negative. The former, 
IPOf+, is a self-stimulated system; while the latter, IPOf -, is a self-regulated 
system for autonomously maintaining system equilibrium and self-
organization.  

Figure 10.14 The positive/negative feedback systems IPOf+ or IPOf- 
 

Definition 10.71 The negative feedback of a system is a feedback that 
is proportional to the output of the system and its effect is to reduce or 
regulate the aggregative tendency of the system.  

 
Feedback is a universal phenomenon that exists not only in physical 

systems, but also in advanced systems such as biological, physiological, 
economical, and social systems. The observation of negative and positive 
feedback among neurons in the brain via synapses may be referred to [Smith, 
1993; Kotulak, 1997; Pinel, 1997; Rosenzmeig et al., 1999]. The effect of 
negative feedback in economics will be discussed in Section 12.2.2 on 
economic equilibriums.   

        
10.5.5.2 Laws of System Equilibrium and Organization 

 
It is empirically observed that system equilibriums and self-

organization exist when the negative feedback of a system is proportional to 
its aggregative effects in the system.    
  

Definition 10.72 The equilibrium of a system is a stable state where the 
effects of all components in terms of their abstract work form a zero-sum, 
i.e.:  

 

     
1

( ) ( ) 0
n

i
i

W S W C
=

= =∑          (10.76) 

 
where W(S) is the total work done by the system, and such a system is called 
a zero-sum system. 

       

 Input  Process 

 Feedback 

 Output 

f+ / f-
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Example 10.7 The following phenomena are system equilibriums in 
different disciplines: 

   
a) Newton’s 1st law in kinematics: The sum of all work done by forces 

F in a circle of movement d is zero, i.e.:       
 

       
1

0
n

i i
i

Fd
=

=∑         (10.77)  

 
b) Energy conservation: The sum of all forms of energy E in a system 

is zero, i.e.:            
 

        
1

0
n

i
i

E
=

=∑           (10.78) 

 
c) Kirchhoff’s rule in electricity: The sum of all potentials P in a closed 

circuit system is zero, i.e.:             
 

        
1

0
n

i
i

P
=

=∑           (10.79) 

 
d) Economic equilibrium: The effect of all demands D and supplies S 

on the price P in a market is a zero-sum, i.e.:       
 

       
1
( ( ) ( )) 0

n

i i
i

P D P S
=

+ =∑                         (10.80) 

 

 
Definition 10.73 System organization is a process to configure and 

manipulate the system approaching to a stable and ordered state with an 
internal equilibrium. 

 

                 The 37th Law of Software Engineering 
 

Theorem 10.9 Conservative work of equilibrium systems states that the 
sum of all types of work is always zero in an equilibrium system, i.e.: 
 

1
( ) 0

n

i
i

W C
=

=∑             (10.81) 

 

where W(Ci) is the abstract work of a system component Ci.    
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System organizations can be classified as self-organization or hetero-
organization. The mechanisms of system self-organization are analyzed 
below.    
 

Definition 10.74 Let f(x) be a continuous and deferential function of a 
system defined in a domain [a, b]. Then, the minimum of f(x), fmin(x), satisfies 
the following condition: 

 
         f(x) - fmin(x) > 0,  x, xmin ∈ [a, b], x ≠ xmin      (10.82) 

 
There may be multiple minimums for a given function f(x) in different 

subdomains of [a, b], such as fmin(x1 | x1 ∈ (a1, b1)), fmin(x2 | x2 ∈ (a2, b2)), and 
fmin(xk | xk ∈ (ak, bk)). Among those, the minimum of minimums is called the 
global minimum, fmin(xg), i.e.:   

 
min( | min( ),1 )g g if x x x i k= ≤ ≤                   (10.83) 

 
The remainders are called local minimums.  

 

 
Since negative feedback is the only means to regulate the states of a 

system, the following conclusions can be derived.    

 

                 The 38th Law of Software Engineering 
 

Theorem 10.10 The condition of self-organization states that the 
necessary and sufficient condition of self-organization is the existence of 
at least one minimum on the state curve of a system f(x), which satisfies 
the following requirements: 

 
 ' (  |  ( )) = 0 

''(  |  ( )) 0
min min

min min

f x x a, b

f x x a, b

⎧ ∈⎪⎪⎪⎨⎪ ∈ ≠⎪⎪⎩
           (10.84) 

 
Or equivalently 
 

 
 ' (  |  ( )) = 0 

''(  |  ( ))< 0

''(  |  ( ))> 0 

min min

min

min

f x x a, b

f x x x a, b

f x x x a, b

⎧⎪ ∈⎪⎪⎪⎪ < ∈⎨⎪⎪⎪ > ∈⎪⎪⎩

           (10.85) 

 
where f ’(x) and f ’’(x) are the first and second order derivatives of f(x) on 
(a, b).   
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10.5.6 SYSTEM SYNCHRONIZATION AND 
           COORDINATION 
    

A system reaches the maximum output when it is synchronized over 
time, unified on a common goal, or coordinated among individual efforts. 
This assertion can be illustrated in Fig. 10.15, where  1 2and S S denote the 
vectors of efforts or work done by components S1 and S2 in the system S.   

      

1S

2S

S0

 
 
Figure 10.15 System synchronization and coordination 
 

 
The synchronization principle described in the 39th Law proves from 

another angle that the work of a system may not exceed the sum of its 
components as revealed in Theorem 10.6. 
 

 

Corollary 10.12 The functional condition of self-organization system is 
the existence of the negative feedback mechanism that is proportional to 
the incremental or aggressive effects of the system. 
 

 

                            The 39th Law of Software Engineering 
 

Theorem 10.11 System synchronization states that a system reaches its 
maximum utility maxS  when all components’ efforts  1 2and S S are 
synchronized, i.e.:  

  

              
 

 

1 2

max 1 2| | | |

S S S

S S S

⎧⎪ = +⎪⎪⎨⎪ = +⎪⎪⎩

                    (10.86) 
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Science and engineering methodologies are rational because they 

usually adopt the Category (a) conditions in Corollary 10.13 when the 
constraints and all possible solutions are known. However, social and 
psychological systems often adopt a Category (b) condition when there is no 
rational or apparent optimal solution available. The latter is also in line with 
the basic axiom of science, minimizing energy consumption, in searching 
rational or arbitrary solutions.     
 
 

10.5.7 SYSTEM DISSIMILATION 
 
Dissimilation is a universal property of any system such as physical, 

economic, living, or social systems. According to system topology, there are 
maintainable and nonmaintainable systems. The properties of dissimilation of 
both types of systems are analyzed in the following subsections, respectively.     

  
10.5.7.1 Dissimilation of Nonmaintainable Systems 

 
Definition 10.75 Dissimilation is the tendency that a system undergoes 

an apparent or hidden destructive change against its original purposes or 
designed functions.   

 
System dissimilation can be analyzed on the basis of how systems 

maintain their functional availability and against the loss of it. 
  

 Definition 10.76 The availability of a system α(t) can be the designed 
utility, function, efficiency, or reliability of the system.  

 
Definition 10.77 The dissimilation of a nonmaintainable system Dnm is 

determined by its degradation of availability over time during its lifecycle T, 
i.e.:    
 

 
-(1 - ),  0t T

nmD k e t T= ≤ ≤         (10.87) 
 
where k is a positive constant called the initial availability of the system.   

 

Corollary 10.13 A dynamic system tends to synchronize on a certain 
state where it is stable or dynamically equilibrial that satisfies one of the 
following conditions: 

 
 a)  The rational condition:   The apparent best equilibrium condition; 

or   
 b) The arbitrary condition: The first meet or most conventional 

equilibrium condition.       
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Definition 10.78 The rate of dissimilation δ of a nonmaintainable 
system can be derived as follows: 

 

       
-

-

( )

(1 - )

- ,  0

nm

t T

t T

dD t
dt

dk e
dt

ke t T

δ =

=

= < ≤

         (10.88) 

 
The trend of dissimilation of a nonmaintainable system Dnm and its rate 

δ are shown in Fig. 10.16, where the curves are normalized with k = 1. The 
unit of δ uses a different scale from that of Dnm in order to better plot the 
lower curve.  
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Figure 10.16 System dissimilation (nonmaintainable system, T = 20) 
 

It can be seen in Fig. 10.16 that a system is exponentially dissimilating 
during its lifecycle, and the rate of dissimilation reaches the maximum in the 
last period of its lifecycle.              
 

 
Theorem 10.12 indicates that any concrete system has a certain 

lifecycle, in which dissimilation is being undergone since it has been put into 
operation. 

 

The 40th Law of Software Engineering 
 

Theorem 10.12 System dissimilation states that any system tends to 
undergo a continuous degradation that leads to the eventual loss of its 
designed utility and against its initial purposes to form the system.     
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When considering the development or building period as part of the 
lifecycle of a system, the dissimilation of a nonmaintainable system during 
this period is negative, because of the continuous effort of development. 

 
Definition 10.79 The dissimilation of a nonmaintainable system during 

the development period D’nm is determined as follows:  
 

    
- - '' (1 - ),  ' 0t T

nmD k e T t= ≤ ≤         (10.89) 
 
where T ’ may be different from T.  
 

 Therefore, in the entire lifecycle of a nonmaintainable system, T ’ + T, 
the trend of dissimilation is shown in Fig. 10.17, where t = 0 is the time that 
the system is put into operation.     
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Figure 10.17 The entire lifecycle of system dissimilation (nonmaintainable 
system, T = T’ = 20) 
 
10.5.7.2 Dissimilation of Maintainable Systems 
 

The dissimilation property of maintainable systems can be derived 
based on those of nonmaintainable systems, if the maintenance effect is 
treated as a recovery of the original availability of the system. Therefore, the 
dissimilation during the whole lifecycle of a maintainable system is given in 
Fig. 10.18. 

 

Corollary 10.14 The most critical period of system dissimilation is its 
exiting period. During this period the rate of dissimilation of the system 
will be exponentially increased.   
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Figure 10.18 The entire lifecycle of system dissimilation (maintainable system, 
T = 20) 
 

Definition 10.80 The dissimilation of a maintainable system Dm is 
determined as follows: 

 

      
 

 

- - '

-

(1 - ),  ' 0

(1 - ),  ( 1) , 0

t T

m t T

k e T t
D

k e nT t n T n

⎧ ≤ <⎪⎪⎪= ⎨⎪ ≤ < + ≥⎪⎪⎩
      (10.90) 

 
where T is the maintenance cycle, and n is the number of operation period. 
    

System dissimilation may be considered as an inversed process of 
system fusion as described in Section 10.5.1. The property of system 
dissimilation can be used to explain a wide range of phenomena in systems, 
such as system availability, efficiency, reliability, and the trends of systems 
during the entire lifecycle. For example, the discovery of the phenomena of 
software maintenance crisis in software development organizations [Wang, 
2005d], which will be described in Sections 12.6.5 and 14.3.3, is a direct 
application of the principle of system dissimilation.                   

  
 
 
10.6 Software System Engineering 
 

 
 
Software systems are a category of the most complicated systems in the 
abstract world interacting with the concrete-world. Therefore, software 
engineering is an important discipline that may be used to test the theories of 
system science as developed in the previous sections. 
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This section describes the abstract model of computing systems and the 
hierarchical model of software systems, as well as corresponding work 
products in software engineering. The ISO/IEC 15288 system engineering 
model for software engineering is introduced. Then, a set of common and 
frequently observed phenomena in software engineering is explained as 
typical system engineering issues. Software system complexity as well as 
cohesion and coupling will be formally modeled in Section 10.7. 

     
 
10.6.1 THE ABSTRACT MODEL OF COMPUTING 
           SYSTEMS 
 

According to Definition 5.65, the abstract model of a generic 
computing system, GCS, has been modeled in Section 5.6.1 as the common 
architecture of operating systems. The GCS system, §, is an abstract logical 
model of the executing platform denoted by a set of parallel computing 
resources as given in Eq. 5.87. 

 
The abstract computing system as defined in Eq. 5.87 can be illustrated 

in Fig. 10.19, where the GCS § controls all the computing resources of an 
abstract target machine. The system is logically abstracted as a set of 
processes and underlying resources, such as memory, ports, and the system 
clock. A process is dispatched and controlled by the system §, which is 
triggered by various external, timing, or interrupt events [Wang, 2005l]. 
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Figure 10.19 The abstract model of the Generic Computing System (GCS) 
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10.6.2 THE HIERARCHICAL MODEL OF SOFTWARE 
           SYSTEMS 
 

According to Theorem 10.2, the hierarchical architecture is one of the 
universal system principles that software system architectures obey as well. 
Actually, abstract systems need much more explicit architectural design and 
description than that of concrete systems, because the former are inexplicit 
and nonself-expressive.          
 
10.6.2.1 The Hierarchical Structure of Software Systems 
 

A hierarchical structure of software systems [Wang, 2005l] can be 
described in Fig. 10.20. The generic layered model shows that a software 
system can be decomposed from top down at seven levels known as those of 
the system, subsystem, component (class, or pattern), function (method), 
statement, data model (structure), and target code. The layered 
decomposition of software systems can be perceived as a stepwise refinement 
process that transfers a system into target code.                
 

L7 A software system 

  L6  Subsystems 

   L5  Components/classes/patterns 

    L4  Functions/methods 

   L3  Statements 

    L2  Data models/structures 

  L1  Target code 

 
 

Figure 10.20 The layered model of software systems 
 
10.6.2.2 The Hierarchical Structure of Software Engineering Processes 
              and Work Products 
 

As that of software system architectures, software engineering 
processes and their work products can also be described by a hierarchical 
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system model. The layered system model of software engineering processes 
and corresponding work products and documentation [Wang, 2005l] are 
shown in Fig. 10.21. The clarification of the work products or results of each 
layered process are helpful to establish job expectations, quality standards, 
and process transition criteria in software engineering organization.   

 

 

  P7  Delivery  
        and  
        maintenance 

  P1  Requirement 
        analysis 

  P2  System 
        specification 

  P3  System 
        design  

  P4  Detailed  
        design   

  P5  Coding 

  P6  System 
         integration 
         and test 

       Processes        Work Products 

  • User requirements 
  • System requirements and constraints 

  • System specifications 
  • System test criteria 

  • System architecture 
  • System static and dynamic behaviors 

  • Module architectures 
  • Module static and dynamic behaviors 

  • Source code at module level 
  • Test results at module level 

  • Source code at system level 
  • Target code and configurations 
  • Test results at system level

  • Target code and deployment configuration 
  • Installation and operation manuals 
  • Maintenance log 

 
 

Figure 10.21 Work products of software engineering processes  
 
 
10.6.3 THE ISO/IEC 15288 SYSTEM ENGINEERING 
           MODEL FOR SOFTWARE ENGINEERING 
 

It has been seen in the previous subsections that software systems are 
highly complex abstract systems that need to adopt system theories in their 
entire lifecycle such as design, modeling, implementation, and maintenance. 
This section presents a paradigm of software system models, the ISO/IEC 
15288 System Engineering Model of Software Engineering [ISO/IEC, 1999].  
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ISO 15288 describes a software development organization by a four-
level hierarchical process model known as the processes of enterprise, 
project, technology, and agreement. Within each process, there are a number 
of defined activities as shown in each column of Table 10.3.    

 
Table 10.3 

The ISO/IEC 15288 System Engineering Model of Software Engineering 
 

No Enterprise  
processes  

Project  
processes 

Technical  
processes 

Agreement 
processes 

1 Enterprise environment 
management 

Project  
planning 

Stakeholder require-
ments definition 

Acquisition 

2 Investment management Project  
assessment 

Requirements 
analysis 

Supply 

3 System lifecycle 
management 

Project  
control 

Architectural  
design 

 

4 Resource management Decision making Implementation  
5 Quality management Risk management Integration  
6  Configuration 

management 
Verification  

7  Information 
management 

Transition  

8   Validation  

9   Operation  

10   Maintenance  
11   Disposal  

 
In ISO/IEC 15288, the behavioral processes of a software development 

organization can be classified as intra- and inter-organizational processes. 
The relationship between these two types of organizational processes is 
illustrated in Fig. 10.22 [ISO/IEC, 1999].     
 

 

 Enterprise processes 

 Project processes 

 Technical processes

 Enterprise processes 

 Project processes 

 Technical processes 

  Agreement  

   processes 

 Organization 1  Organization 2

Figure 10.22 The system model of intra- and inter-organization processes 
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ISO/IEC 15288 provides a generic process model that treats a software 
development organization and its software engineering processes as a system. 
ISO/IEC 15288 provides an extended process system for software 
engineering, which encompasses not only conventional software processes, 
but also system processes integrating an extended scope of stakeholders 
involved in software engineering.           
 
 
10.6.4 SOFTWARE ENGINEERING PHENOMENA AS 
           SYSTEM ENGINEERING PROBLEMS 
 
       Systems theories and philosophies are considered as a cure to many 
unwise practices in software engineering [Wang, 2005l]. Some typical 
phenomena in software engineering practice that are typical system 
engineering problems are presented below.  
 

   a) New is beautiful: This is a software engineering phenomenon that 
practitioners chase anything claimed new and fancy in practice, 
such as programming languages, models, tools, and environments. 
This shows no confidence in the existing methodologies and 
tools, no patience to get familiar with the existing knowledge, and 
no awareness of necessary domain knowledge built-up 
requirements. From the system science point of view, this practice 
ignores engineering experience accumulation needs and wastes 
resources on various languages where there is no theoretical 
difference in their descriptive power for programming. 

 
   b)  Fundamental research left behind industrial practices: Scientists 

in software engineering are busy explaining a great many 
complicated phenomena in a numerals different techniques. A few 
researchers concentrate on the fundamental theories and the order 
of knowledge for software engineering. This allows software 
engineering probably to be the first engineering discipline that is 
led by practitioners rather than scientists. 

 
   c)  Overlooked coordinative work organization as the key software 

engineering technology: The whole spectrum of the software 
engineering system encompasses technology, organization, and 
management. According to Theorem 8.7, it is recognized that the 
coordinative work organization theory is the top-level technology 
for software engineering. Without it, pure focuses on technical 
issues in software engineering such as programming languages 
and testing tools would lead to a significant loss of effort, 
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resources, and time into the black hole of inappropriate 
engineering project organization. Therefore, emphases must be 
put on the systematical view towards software engineering 
constraints and solutions, before any detailed technical decisions 
are made.  

 
   d)  Product lifespan is too short: Nobody prepared for a durable 

design and implementation that may last for a few decades, if not 
for a few hundred years. It was reported that the current owner of 
a historical building in Shanghai received a letter for its 100th 
anniversary survey from a UK construction company in 1998. 
The reaction of the owner was astonished: ‘Somebody had still 
remembered us!’ Even though the owners of the building had 
changed so many times, the architects still kept the record of the 
entity and their responsibility. Is this a shame on the software 
engineering community? Can one find all design and testing 
documents for a system conducted ten years ago? Is it ethical 
when a vendor tries to stop supporting existing systems, 
environments, or languages that numerous legacy systems rely 
on? 
 

    e)  Local maximum is often adopted::  According to systems theory, 
optimization of a component of a system may not improve the 
performance of the whole system. Instead, it is even harmful for 
the system. For instance, a fax control system consists of the fax 
machine, transmission lines, switching systems, signaling 
systems, code error monitoring, and the flow control software. 
The system’s performance would get worse when the 
transmission speed is increased. Instead, the fax system may reach 
a better performance by decreasing the speed of the modem. 
Therefore, global tradeoffs in a software system should always be 
maintained.  

 
   f)  Pentium inside? Most PCs nowadays have a label on it – Pentium 

inside! This is simply because one cannot not feel too much 
difference in speed and performance whatever if there is a 
Pentium processor inside or not! Although the CPU speed in a PC 
has improved 104-106 times in the last decades, the speed of 
external buses, peripheral devices, and communication modems 
have not been significantly matched up. As a result, the 
processing speed of PCs as a system has not been enhanced 
significantly. Sometime, it has even been getting worse when 
using the scroll bar or marking multiple pages, it may be too fast 
to be able to get the pages stopped on the place that one wishes. 
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   g)  Views on software systems – pessimism vs. optimism: Almost all 
doctors are astonished that human beings are relatively much 
more robust than biological and physiological principles may 
suggest. Fortunately, so are software systems. In principle, a 
software system may go wrong by only a single bit error, and for 
some of them the programmers have no control because they are 
dependent on run-time situations, such as dynamic memory 
allocations and external interferences. However, there are still 
more and more software systems, especially mission-critical ones, 
running correctly day and night via systematic exception 
detection, handling, and fault-tolerant techniques. 

  
   h)  The software maintenance crisis: Software maintenance crisis is 

an inherited type of software crisis that happens when the demand 
for legacy software maintenance largely exceeded the capability 
that the software industry can provide, or when the costs of legacy 
software maintenance predominantly override the investment in 
new software development. Detailed description and solutions on 
software maintenance crisis may be referred to Section 14.3.3. 
[Wang, 2005d]. 

  
   i)  Synchronization by process-based software engineering: 

Software engineering may adopt the principle of system 
synchronization in its organizational infrastructure, known as 
process-based software engineering. Detailed techniques and 
explanations will be proved in Section 14.2.2.           

 
   j)  Measuring the tendency of programmers: The productivity of 

software engineering is conventionally measured based on the 
symbolic size of programs as defined below. 

 
Definition 10.81 The productivity ρ of software development is 

determined by the symbolic size of programs Ss developed per person p per 
month t, i.e.:  

 

               [LOC/PM]sS
p t

ρ =
•

       (10.91) 

  
where the unit of Ss is LOC, and the unit of  p • t is person-month (PM). 
  

Since the above simple absolute measure of ρ assumes a philosophy of 
the higher the better, programmers are encouraged to develop larger physical 
sized program or longer code for a certain required function. This is a typical 
practice that results from an imbalanced measurement system in software 
engineering. Just like Tom Clancy wrote about the ancient Roman bridges: 
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 “The Roman bridges of antiquity were very inefficient 
structures. By modern standards, they used too much stone, and as 
a result, far too much labor to build. Over the years we have learned 
to build bridges more efficiently, using fewer materials and less 
labor to perform the same task.”  

 
 Therefore, a countermeasure known as coding efficiency as defined 
below needs to be adopted supplemented to the symbolic size measure in 
software engineering.  

 
Definition 10.82 Coding efficiency e in software implementation is 

measured by the ratio of functional size Sf  and symbolic size Ss, i.e.:  
 

 [FO/LOC]f

s

S
e

S
=         (10.92) 

 
where the functional size of software Sf is equivalent to the cognitive 
complexity of software Cc in the unit of function-object (FO), which will be 
presented in Section  10.7.3.  

 
When the measure of implementation efficiency is introduced into the 

software engineering processes, the tendency of over-sized software, so 
called fat-ware, in software engineering can be effectively rectified [Wang 
and King, 2000a; Wang, 2003f].  

The discussions in this section show that system theories and 
philosophies are an ideal cure to many unwise practices in software 
engineering that were not conform with fundamental system principles. 
Therefore, system science and engineering methodologies [Hall, 1967; Bate 
et al., 1993; Harauz, 1997; Wang, 2006d/2007d] will play an increasingly 
significant role in software engineering.  
 
 
 
10.7 The Complexity Theory of 
         Software Systems 
 

 
 
Applying the system complexity theories developed in Section 10.3.3, the 
symbolic and functional complexities of software, as well as cohesions and 
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couplings of software systems can be formally analyzed using a set of system 
level measurements in software engineering.     

Although computational complexities, particularly algorithm 
complexities, are one of the focuses in computer science, software 
engineering is particularly interested in the functional complexity of large 
scale and real-world software systems.  

The computational complexity of algorithms puts emphases on the 
computability and efficiency of typical algorithms of massive data processing 
and high throughput systems, in which computing efficiency is dependent on 
and dominated by the problem sizes in terms of their number of inputs such 
as those in sorting and searching. However, there are more generic 
computational problems and software systems that are not dominated by this 
kind of input sizes rather than by internal architectural and operational 
complexities such as problem solving and process dispatching. This shows 
the differences of focuses or problem models in the complexity theories of 
software engineering and conventional computing.  

 

 
In software engineering, a problem with very high computational 

complexity may be quite simple for human comprehension, and vice versa. 
According to cognitive informatics, human beings may comprehend a large 
cycle of iteration, which is the major issue of computational complexity, by 
looking at only the beginning and termination conditions, and one or a few 
arbitrary internal loops with inductive inferences. However, humans are not 
good at dealing with functional complexities such as a long chain of 
interrelated operations, very abstract data objects, and their consistency. 
Therefore, the system complexity of large-scale software is the focus of 
software engineering. 
 
 

10.7.1 COMPUTATIONAL COMPLEXITY 
 

Computational complexity theory is a well established area in 
computing [Hartmanis and Stearns, 1965; Hartmanis, 1994; Lewis and 
Papadimitriou, 1998] that studies: a) The taxonomy of problems in 

 

The 36th Principle of Software Engineering 
 

Theorem 10.13 The orientation of software engineering complexity 
theories states that the complexity theories of computation and software 
engineering are different. The former is focused on  the problems of high 
throughput complexity that are computing time efficiency centered; while 
the latter puts emphases on the problems of functional complexity that are 
human cognition time and workload oriented.  
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computing and their solvabilities; and b) Complexities and efficiencies of 
algorithms for a given problem. Computational complexity centered by the 
algorithm complexity can be modeled by its time or space complexity, 
particularly the former, proportional to the sizes of problems.  
 
10.7.1.1 Taxonomy of Computational Problems  
 

Computational complexity theories study the solvability in computing. 
The solvable problems are those that can be computed by polynomial-time 
consumption. The nonsolvable problems are those that cannot be solved in 
any practical sense by computers due to excessive time requirements. 

The taxonomy of problems in computation can be classified into the 
following classes. The class of solvable problems that are polynomial-time 
computational by deterministic Turing machines are called the class P 
problems. The class of problems that are polynomial-time computational by 
nondeterministic Turing machines are called the class NP problems. The 
class of problems that their answers are complementary to the NP problems 
are called the NP complementary (coNP) problems. The subclass of NP 
problems, which serves as a meta problem where other NP problems may be 
reduced to them in polynomial time, is called the NP-complete (NPc) 
problems. There is a special class of problems that can be reduced to known 
NP problems in polynomial time, which are usually referred to as the NP-
hard (NPh) problems [Hartmanis and Stearns 1965; McDermid, 1991; Lewis 
and Papadimitriou, 1998].      

The relationship among various classes of problems in computation can 
be illustrated as shown in Fig. 10.23. It is noteworthy that there are certain 
problems that are unsolvable or with unknown solvability in computing, but 
they might be solvable by human brains.           
 

 

  P 
 NP coNP

Solvable

 Solvability unknown

 Unsolvable

NPh

NPccoNPc

 
 

Figure 10.23 Taxonomy of problems in computing 
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10.7.1.2 Time Complexity of Algorithms  
 

The time complexity of an algorithm for a given problem is measured 
in software engineering as an estimation of its computational complexity. 
The time complexity of an algorithm can be estimated by analyzing the 
number of dominant operations in the algorithm, where each of the dominant 
operations is assumed to take an identical unit of time in operation.    
 
 Definition 10.83 The dominant operations in an algorithm are those 
statements within iterative structures that are proportional to the size of the 
problem or the number of inputs n of the algorithm. 

 
Definition 10.84 For a given function f(x), its asymptotic function fa(x) 

is a function that satisfies: 
 

                   |f(x)| ≤ k|fa(x)|, x > b       (10.93) 
 
where k and b are a positive constant.    

 
Definition 10.85 If a function f(x) has an asymptotic function fa(x), the 

function f(x) is said to be of order of fa(x), denoted by: 
 

                        f(x) = O(fa(x))        (10.94) 
 

where O is known as the big O notation.   
 
Definition 10.86 For a given size of a problem n, the time complexity 

Ct(n) of an algorithm for solving the problem is a function of the maximum 
required number of dominant operations O(fa(n)), i.e.:  
            

                      Ct(n) = O(fa(n))       (10.95) 
    
where fa(n) is called the asymptotic function of Ct(n). 
     
 It is noteworthy in Definition 10.86 that the maximum number of 
dominant operations Ct(n) indicates the worst case scenario. An average case 
complexity is a mathematical expectation of Ct(n). 
 

Example 10.8 According to Definition 10.86, the time complexity 
Ct(n) of the following functions f1(n) through f4(n) can be estimated as 
follows:    
  
            • f1(n) = 5n3 + 2n2 - 6   ⇒ Ct1(n) = O(fa1(n)) = O(n3) 
            • f2(n) = 3n                   ⇒ Ct2(n) = O(fa2(n)) = O(n) 
            • f3(n) = 4log2 n + 10      ⇒ Ct3(n) = O(fa3(n)) = O(log2 n) 
            • f4(n) = 2 + 8                 ⇒ Ct4(n) = O(fa4(n)) = O(ε) 
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where ε is a positive constant. 
 

Typical asymptotic functions of algorithm and programs are shown in 
Fig. 10.23, where the computational loads in term of processing time of 
different functions may grow polynomially or exponentially as the size of 
problem n, usually the number of input items, increasing. If an algorithm can 
be reduced to a type of function with polynomial complexity, it is always a 
computable problem; otherwise, it would be a very hard problem, particularly 
in the worst case when n is large.       
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    Figure 10.24 Typical asymptotic functions of software time complexities 
    
10.7.1.3 Space Complexity of Algorithms  
 

Definition 10.87 The space complexity of an algorithm for a given 
problem is the maximum required space for both working memory w and 
target code memory o, i.e.: 

 
Cm(n) = O(f(w+o))    
          ≈ O(f(w))          (10.96) 

 
where w refers to the memory for data objects under processing such as 
input/output and intermediate variables, and o refers to the memory for 
executable code.    
 

Because the target code memory is static and determinable, algorithm 
space complexity is focused on the dynamic working memory complexity. 
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10.7.2 SYMBOLIC AND CONTROL FLOW 
           COMPLEXITIES  
 

Software system complexities may also be measured by two popular 
and simple methods known as the symbolic complexity [Wang, 2001d/03f] 
and the control flow complexity. The former is also known as the Lines of 
Code (LOC) [Halstead, 1977; Albrecht and Gaffney, 1983], while the latter 
is also called the McCabe cyclomatic complexity [McCabe, 1976].       

 
10.7.2.1 Symbolic Complexity of Software Systems  

 
The most simple and direct forward complexity measure of software 

systems is the symbolic complexity that can be represented by the number of 
lines of statements in a programming language.    

     
Definition 10.88 The symbolic complexity of a software system S, 

Cs(S), is the linear length of its static statements measured in the unit of Lines 
of Code (LOC), i.e.: 

 

        
1

( ) ( )   [LOC]
cn

s s
k

C S C k
=

=∑         (10.97) 

 
where Cs(k) represents the symbolic complexity of component k in S.    
 

In the measure of symbolic complexity of software, variables, data 
objects declarations, and comments are not considered as a valid line of 
instructions, and an instruction separated in multiple lines is usually counted 
as a single line.   

 
10.7.2.2 Control Flow Complexity of Software Systems  

 
Another approach to measure the code complexity of software systems 

can be via its control structures based on the Control Flow Graph (CFG) as 
described in Section 5.4.1. When a program is abstracted by a CFG, well-
defined graph theory may be used to analyze its complexity properties. In the 
remainder of this section, Euler’s theorem is introduced and how it is used to 
model the complexity of CFGs is described. Then, the relationship between 
Euler’s theorem and McCabe cyclomatic complexity is discussed.  
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The proof of Lemma 10.13 may refer to Lipschutz and Lipson (1997).    
The McCabe cyclomatic complexity [McCabe, 1976] of a software 

system can be determined by applying Euler’s theorem onto the CFGs of 
software systems. 
 

Definition 10.89 The cyclomatic complexity of a software system S, 
Cr(S), is determined by the number of regions contained in a given CFG GS, 
r(GS), provided that G is connected, i.e.: 
 
        Cr(S) = r(GS)  
                                      = e - n + 2          (10.99) 
 
where, e is the number of edges in GS representing branches and cycles, n  
number of nodes in GS where a block of sequential code may be reduced to a 
single node.  

It can be observed that Eq. 10.99 is derived property of Euler’s theorem 
as provided in Lemma 10.13, which shows that the physical meaning of the 
McCabe cyclomatic complexity is the number of regions in a CFG of a 
software system. 

      
 Example 10.9 The cyclomatic complexity of the program MaxFinder 
as given in Example 5.14 can be determined by using Eq. 10.99 on the CFG 
as shown in Fig. 5.19 as follows: 
   

   Cr(S) = e - n + 2 
                   = 7 – 6 + 2 
                  = 3  
 

Observing Fig. 5.19, it may be found that the result Cr(S) = r(GS) = 3 
is the number of regions in the CFG, providing there is always a region by 
linking the first node to the last node in the CFG. This finding indicates that 
the calculation as required in Eq. 10.99 can be omitted; instead, a simple 
count of the number of regions in GS is enough.                

 

Lemma 10.13 Euler’s theorem states that the following formula holds for 
the numbers of nodes n, of edges e, and of regions r for any connected 
planar graph or map G:          
 

                                           n – e + r = 2                 (10.98) 
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Further, it may also be seen in Fig. 5.19 that the result Cr(S) = r(GS) = 
3 is the number of BCS’s in the program or its formal specification, 
providing a single sequential BCS is always taken into account by one. This 
finding reveals that the drawing of a CFG for a given program or component 
is not necessary in the cyclomatic analysis. In other words, r(CFG) equals to 
the numbers of BCS’s in a program [Wang, 2003f]. 

 
Incorporating the above findings with Definition 10.89, the following 

corollary is obtained. 
 
 

 
 
10.7.3 THE COGNITIVE COMPLEXITIES OF 
           SOFTWARE SYSTEMS    
 

According to Theorem 10.13 on the orientations of complexity theories 
of computation and software engineering, the complexities of an abstract 
system can be classified as the symbolic, relational, architectural, 
operational, and functional complexities. This subsection describes the 
cognitive complexity of software systems that is a special type of software 
functional complexity defined as a product of the architectural and 
operational complexities of software systems.       

 
10.7.3.1 The Operational Complexity of Software Systems  
 

In Section 9.6.3 a set of calibrated cognitive weights of BCS’s has been 
derived based on a series of psychological and cognitive experiments [Wang, 
2005j]. The calibrated cognitive weights for the ten fundamental BCS’s are 
illustrated in Fig. 10.25, where the relative cognitive weight of the sequential 
structure is assumed one, i.e., w1 = 1.                      
  

 

Corollary 10.15 The cyclomatic complexity of a connected software 
system Cr(S) can be determined by any of the following three methods:      
 
      Cr(S) = e - n + 2       // Method 1      
       = r(CFG)  // Method 2    
                                                                           = #(BCS)    // Method 3       (10.100) 
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Note:  1 – sequence, 2 – branch, 3 – switch, 4 – for-loop, 5 – repeat-loop,  
          6 – while-loop, 7 – functional call, 8 – recursion, 9 – parallel, 10 - interrupt       

 
Figure 10.25 The relative cognitive weights of BCS’s of software systems 
 

According to the generic mathematical model of programs as modeled 
in Theorem 5.7, a software system can be rigorously described by a complex 
process P with a composed operation of n meta statements pi and pj, 1 ≤ i < 
n,  j = i+1, based on certain composing relations rij known as the ten BCS’s 
as shown in Fig. 10.25, i.e.:  
              
 
 

 (10.101) 
                   

 
 

Therefore, the sum of the cognitive weights of all rij represents the 
operational complexity of a software system. 

There are two structural patterns of BCS’s in a software system: the 
sequentially and the embedded related BCS’s. In the former, all the BCS’s 
are in a linear layout in S, therefore the operational complexity of S is a sum 
of the cognitive weights of all linear BCS’s. In the latter, some BCS’s are 
embedded in others in S, hence the operational complexity of S is a product 
of the cognitive weights of inner BCS’s and the weights of outer layer 
BCS’s. In general, the two types of BCS architectural relations in S may be 
combined in various ways. Therefore, a general method for calculating the 
operational complexity of software can be derived as follows. 
 
 Definition 10.90 The operational complexity of a software system S, 
Cop(S), is determined by the sum of the cognitive weights of its n linear 
blocks composed by individual BCS’s, where each block may consist of q 

1

1

1 12 2 23 3 1,

(   ), 1

(...((( )  )  ) ...  )

n

i ij j
i

n n n

P p r p j i

p r p r p r p

R
−

=

−

= = +

=

© 2008 by Taylor & Francis Group, LLC



822   Part III  Organizational Foundations of SE 

layers of embedded BCS’s, and within each of the layer there are m linear 
BCS’s, i.e.: 
 

           
,
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       (10.102) 

 
If there is no embedded BCS in any of the nc components in Eq. 

10.102, i.e., q = 1, then Eq. 10.102 can be simplified as follows: 
 
 

                  1

1 1

( ) = ( )

( , )   [F]

c

c k

n

op op k
k
n m

k i

C S C C

w k i

=

= =

=

∑

∑ ∑
        (10.103) 

 
where w(k, BCS) is given in Fig. 10.25.   
 

Definition 10.91 The unit of operational complexity of software 
systems is a single sequential operation called a function F, i.e.: 

 
    ( ) = 1 [F] #(SeqOP( )) = 1opC S S⇔         (10.104) 

  
With the cognitive weight of sequential process relation defined as one 

unit of operational function of software systems, complex process relations 
can be analyzed.  
 

Example 10.10 The operational complexity of the algorithm of In-
Between Sum, IBS_AlgorithmST, as given in Fig. 10.26, can be analyzed as 
follows: 
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Figure 10.26 The IBS algorithm (a) specified in RTPA  

 
It is noteworthy that for a fully sequential software system where only 

w(sequence) = 1 [F] is involved, its operational complexity is reduced to the 
symbolic complexity.  

 

 
Corollary 10.16 presents an important finding on the relationship 

between conventional symbolic complexity and the operational complexity 
of software. It indicates that the symbolic measure is oversimplified so that it 
cannot represent the real functional complexities and sizes of software 
systems. Case studies summarized in Table 10.4 show that algorithms or 
programs with similar symbolic complexities may possess widely different 
functional complexities in terms of the operational and cognitive 
complexities.               
 
10.7.3.2 The Architectural Complexity of Software Systems  
 

The architectural complexity of a software system is proportional to its 
number of global and local data objects such as inputs, outputs, data 
structures, and internal variables.     

IBS_AlgorithmST ({I:: AN, BN}; {O:: IBSResultBL, IBSumN})   
{ 
       MaxN := 65535 
       → (   ? (0 < AN < maxN) ∧ (0 < BN < maxN) ∧ (AN < BN)      
                  → IBSumN := ((BN - 1) * BN) / 2) - (AN * (AN + 1) / 2) 
                  → IBSResultBL := T  
              | ? ~                                         
                     → IBSResultBL := F 
                     → !(@’AN and/or BN out of range, or AN ≥ BN’) 
             ) 
} 

 

Corollary 10.16 The symbolic complexity Cs(S) is a special case of the 
operational complexity Cop(S), where the cognitive weights of all kinds of 
BCS’s, wi(BCS), are simplified as always one, i.e.: 
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Definition 10.92 The architectural complexity of a software system S, 
Ca(S), is determined by the number of data objects at the system and 
component levels, i.e.:           
 

            

1 1

( ) OBJ( ))

OBJ( ) + OBJ( )  [O]
CLM C

a

n n

k k
k k

C S S

CLM C
= =

=

= ∑ ∑
   (10.106) 

 
where OBJ represents a function that counts the number of data objects in a 
given CLM (number of global variables) or components (number of local 
variables).          
 

Definition 10.93 The unit of architectural complexity of software 
systems is a single data object, modeled either globally or locally, called an 
object O, i.e.: 

 
     ( ) = 1 [ ] #(OBJ( )) = 1aC S O S⇔          (10.107) 

 
There are special system input architectures known as the high 

throughput or pipeline system, in which a large even infinite number of 
similar inputs and/or outputs are operated. In this case, the architectural 
complexity of such pipeline systems will be defined as a relative equivalent 
constant rather than an absolute infinite as follows.  

 
Definition 10.94 The equivalent architectural complexity of a high 

throughput or infinite pipeline system S with repetitive data objects, C’a(S), is 
treated as a constant of three based on cognitive theory of inductive 
inferences.         
 

In the above definition, C’a(S) is determined on the basis of cognitive 
informatics where the inductive inference effort of a large or infinite series of 
similar patterns is equivalent to three, typically the first and the last items 
plus an arbitrary one in the middle. For instance, the equivalent number of 
the data object in the set {X[1]N, X[2]N, …, X[n]N} is counted as three rather 
than n.   
   

Example 10.11 The architectural complexity of the MaxFinder 
component as given in Example 5.14 can be determined as follows: 

 
( ) = OBJ( )

= #(inputs) + #(outputs) + #(local variables)

= 3+1+1

= 5   [O]

aC MaxFider MaxFider
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Example 10.12 The CLM SysClockST given below encompasses 7 
objects, therefore its architectural complexity is Ca(SysClockST) = 7 [O].   

 
     SysClockST ≙   SysClockS :: 

                               ( <§t : N |  0 ≤ §tN  ≤ 1M>, 
                             <CurrentTime : hh:mm:ss:ms  | 00:00:00:000  ≤ 
                                                                      CurrentTime hh:mm:ss:ms ≤ 23:59:59:999>, 
                             <Timer : ss  | 0 ≤ Timerss ≤ 3600>, 
                             <MainClockPort : B | MainClockPortB = FFF0H >, 
                             <ClockInterval : N | TimeIntervalN = 1ms>, 
                             <InterruptCounter : N |  0 ≤ InterruptCounterN  ≤ 999> 
                                           ) 

 
10.7.3.3 The Cognitive Complexity of Software Systems  
 

How the functional sizes of software systems may be modeled and 
measured is an age-old problem in software engineering. The concepts of 
function point [Albrecht and Gaffney, 1983] and MaCabe’s cyclomatic 
complexity [McCabe, 1976] are proposed for measuring the functional 
complexity of software. However, in the former, it is not well defined what 
the physical meaning of a unit function point is. In the latter, only the internal 
loop architectures of a system are considered; the throughput of the system in 
terms of data objects and other internal architectures such as sequences, 
branches, and embedded constructs are excluded. 

This subsection introduces the cognitive complexity of software 
systems as a fundamental measure of the functional sizes of software. It is 
empirically observed that the functional size of a software system is not only 
determined by its operational complexity, but also determined by its 
architectural complexity. That is, software functional size is proportional to 
its cognitive complexity, which is a product of its operational and 
architectural complexities.  

According to Definition 6.58, the semantic function of a program ℘, 
fθ(℘), is a finite set of values V determined by a Cartesian product on a finite 
set of variables S and a finite set of executing steps T, i.e.: 

 
 

                  fθ(℘) = f: T × S → V 

            = 11 12 1

1 1

m

n n nm

v v v

v v v
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t

                    (10.108) 

 
where T = {t0, t1, …, tn}, S = {s1, s2, …, sm}, and V is a set of values v(ti, sj), 0 
≤ i ≤ n, and 1 ≤ j ≤ m.  
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Therefore, the semantic space of a program can be illustrated by a two 
dimensional plane as shown in Fig. 10.26.     

    

 

        0   1   2   3   4   n…

1 

2 

3 

m 

op

    s 

 
 

Figure 10.26 The semantic space of software systems 
 
Observing Fig. 10.26 and Eq. 10.108, it can be seen that the complexity 

of a software system, or its semantic space, is determined not only by the 
number of operations, but also by the number of data objects. This leads to 
the formal description of the cognitive complexity of software systems.            
 

 
Theorem 10.14, the 41st Law of software engineering, indicates that the 

more the architectural data objects and the higher the operational complicity 
onto these objects, the higher the cognitive complexity and the larger the 
functional size of the system. 

 
Definition 10.95 The unit of cognitive complexity of software systems 

is a single sequential operation onto a single data object called a function-
object FO, i.e.: 

 

The 41st Law of Software Engineering 
  

Theorem 10.14 The cognitive complexity of software states that the 
cognitive complexity of a software system S, Cc(S), is a product of its 
operational complexity Cop(S) and its architectural complexity Ca(S), i.e.:  
 

                
1 1
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•

1[F] 1[O]

1   [FO]

f op aC C C=

= •

=

                   (10.110) 

 

According to Theorem 10.14, the physical meaning of software 
cognitive complexity is how many function-object [FO] are equivalent for a 
given software system.  
 
 

10.7.4 SOFTWARE SYSTEM COMPLEXITY ANALYSIS 
 
In this subsection, the cognitive complexity of software systems with its 

operational and architectural complexities are compared with conventional 
system complexity measures such as time, cyclomatic, and symbolic (LOC) 
complexities. A set of case studies is carried out in order to examine the 
measurability and accuracy of various complexity and size measures for 
software systems. This subsection demonstrates that the cognitive complexity 
is the most sensitive measure for denoting the real complexities and 
functional sizes of software systems. 

 
10.7.4.1 Comparative Case Studies on the Complexity Models of 
              Software Systems    

 

For self containment, all the RTPA specifications of the four cases are 
presented in Examples 10.13 through 10.15, except that the IBS_Algorithm 
(a) has been given in Fig. 10.26.             

 

Example 10.13 The formal specification of the In-Between Sum (IBS) 
algorithm in RTPA, IBS_AlgorithmST, can be given in two approaches as 
specified in Figs. 10.26 (Algorithm (a)) and 10.28 (Algorithm (b)), 
respectively. Obviously, Algorithm (a) is more efficiently designed.    

Figure 10.28 The IBS algorithm (b) specified in RTPA  

IBS_AlgorithmST ({I:: AN, BN}; {O:: IBSResultBL, IBSumN})    
{ // Specification (b) 
      MaxN := 65535 
       → (  ? (0 < AN < maxN) ∧ (0 < BN < maxN) ∧ (AN < BN)  
→ IBSumN := 0     

                   → IBSumN := 
1

1
(  + )

B

i A
IBSum iR

−

= +

N

N N
N N  

                   → IBSResultBL := T  
             | ? ~                                         
                     → IBSResultBL := F 
→ !(@’AN and/or BN out of range, or AN ≥ BN’) 
            ) 
} 
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Example 10.14 The algorithm, MaxFinderST, is formally described in 
RTPA as shown in Fig. 10.29. Its function is to find the maximum number 
maxN from a set of n inputted integers {X[1]N, X[2]N, …, X[n]N}.  

             

 

MaxFinderST ({I:: X[0]N, X[1]N, …, X[n-1]N }; {O:: maxN })  
{ 
    XmaxN := 0                                           

     → 
n -1 

i 0 
R
N

N=
(                                                  

                    ? X[i N]N > XmaxN                         
                       → XmaxN := X[i N]N             
                   )             
     → maxN := XmaxN              
} 

 
Figure 10.29 The MaxFinder algorithm specified in RTPA 
 

 Example 10.15 The Self-Index Sort algorithm [Wang, 1996], 
SIS_SortST, can be formally described in RTPA as shown in Fig. 10.30.  
 

 

 SIS_SortST({I:: X[iN] Array }; {O:: X[siN] Array, SISResultBL)    

 { // <Input:: X[iN] : Array | 0 ≤ iN ≤ nN -1, 0 ≤ X[iN] N ≤ mN-1, mN > nN> 
    // <Output:: X[siN] : Array | 0 ≤ siN ≤ nN -1,  xs0≤ xs1 ≤ , ..., ≤ xsi ≤ ,..., ≤ xsn-1> 

    // <CLM:: SS[jN] : Array | 0 ≤ jN ≤ mN –1, 0 ≤ mN ≤ maxN> 
 
    // Initialization                     

       
1

0

m

j
R
−

=
SS[jN]N := 0       

  
    // Self-index sorting           

        →  
1

0

n

i
R
−

=
(↑ (SS[X[iN]N]N) 

  
    // Compression           
       → iN := 0 
   

       → 
1

0

m

j
R
−

=
 ( 

[ ] 0

[ ] 0

ss j

ss j
R

≤

>
 ( X[iN] N := jN 

                                         → ↓(SS[jN]N) 
                                         → ↑(iN) 
                                        )  
                       ) 
     → SISResultBL := T 
}  

 
Figure 10.30 The SIS_Sort algorithm specified in RTPA 
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According to the definitions given in Sections 10.7.1 through 10.7.3, 
the typical complexities of software systems, known as the time complexity, 
cyclomatic complexity, symbolic complexity, and the cognitive complexity 
with the operational complexity and the architectural complexity, can be 
systematically analyzed as summarized in Table 10.4.  

  
Table 10.4 

Comparative Measurement of Software System Complexities 
 

System Time 
complexity 

(Ct [OP]) 

Cyclomatic 

complexity 

(Cm [-]) 

Symbolic 

complexity 

(Cs [LOC]) 

Operational 

complexity 

(Cop [F]) 

Architectural 

complexity 

(Ca [O]) 

Cognitive 

complexity 

(Cc [FO]) 

IBS (a) ε 1 7 13 5 65 

IBS (b) O(n) 2 8 34 5 170 

MaxFinder O(n) 2 5 115 5* 575 

SIS_Sort O(m+n) 5 8 163 11* 1,793 

 
   * The equivalent objects as defined in Definition 10.94       

 
Observing Table 10.4 it is noteworthy that the first three measurements, 

namely the time, cyclomatic, and symbolic complexities, cannot actually 
reflect the real complexity of software systems in design, representation, 
cognition, and/or comprehension in software engineering.  

 
     • Although the four example systems are with similar symbolic 

complexities, their operational and cognitive complexities are 
greatly different. This indicates that the symbolic complexity 
cannot be used to represent the operational or functional 
complexity of software systems.   

     • Symbolic complexity does not represent the throughput or the 
input size of problems.       

     • Time complexity does not work well for a system where is no 
loop and dominant operations, because theoretically in this case 
all statements in linear structures are treated as zero no matter 
how long they are. In addition, time complexity cannot 
distinguish the real complexities of systems with the same 
asymptotic function, such as in Case 2 (IBS (b)) and Case 3 
(Maxfinder).              
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     • The cognitive complexity is a more objective measure of software 
system complexities and sizes, because it represents the real 
semantic complexity by integrating both the operational and 
architectural complexities in a coherent measure. For example, the 
difference between IBS(a) and IBS(b) can be successfully 
captured by cognitive complexity. However, symbolic and 
cyclomatic complexities cannot identify the functional differences 
very well.   

          
10.7.4.2 The Symbolic vs. Cognitive Sizes of Software Systems 
 

On the basis of the complexity models developed so far, the sizes of 
software systems can be quantitatively analyzed by measures of the symbolic, 
cognitive functional, and relational sizes modeled by the corresponding 
complexity measures, respectively.  
  

According to the generic system complexity theory discussed in Section 
10.3.3, when a system is treated as a black box, the relational complexity of 
the system can be estimated by the maximum possible pairwise relations 
between all components in the system.   
 

Definition 10.96 The relational complexity of software system S, Cr(S), 
is the maximum number of relations nr among components, i.e.:           
 

     
( )

( - 1)   [R]
r r

c c

C S n

n n

=

=
       (10.111) 

 
where the unit of the relational complexity is the number of relations R.  
 

It is noteworthy that Cr(S) provides the maximum potential or the upper 
limit of internal relational complexity of a given software system. 

 
The relationship among the symbolic, relational, and operational 

complexities of software systems is plotted in Fig, 10.31 in the logarithmic 
scale. As shown in Fig. 10.31, the symbolic complexity of software Cs(S) is 
the lower bound of the functional complexity of software and it is linearly 
proportional to the number of statements n, i.e., O(n). The relational 
complexity Cr(S) is the upper bound of functional complexity of software in 
the order of O(n2). Therefore, the real cognitive functional complexity 
represented by the operational complexity Cop(S) is bounded between the 
curves of the symbolic and relational complexities. 
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Figure 10.31 The relational and symbolic complexities as the upper/lower 
bounds of functional complexity of software systems 
 

Fig. 10.31 indicates that the floor of the operational complexity Cop(S) 
of software systems is determined by the symbolic complexity Cs(S) when 
only sequential relation is considered between all adjacent statements in a 
given program, and all weights of the sequential relational operations in 
computing are simplified to one. The ceiling of the operational complexity 
Cop(S) is determined by the relational complexity Cr(S), when all potential 
relations among the components (statements) in computing are considered. 
 

 
According to Corollary 10.16 and Fig. 10.29 it can be seen that the real 

complexity and size of software systems are greatly underestimated when the 
conventional symbolic size measurement (LOC) is adopted, because it 
represents the minimum functional complexity of software. Therefore, the 
functional size of software systems measured by the cognitive complexity as 
described in Theorem 10.14, the 41st Law of software engineering, should be 
adopted to measure the actual sizes and complexities of software systems.  

 
10.7.5 COHESION AND COUPLING COMPLEXITIES OF 
           SOFTWARE SYSTEMS  
 

The preceding subsections in Section 10.7 have focused on the 
measurements of software complexities and sizes within a software 

 

Corollary 10.17 The operational complexity Cop(S) of a software system 
S is constrained by the lower bound of the symbolic complexity Cs(S) and 
the upper bound of the relational complexity Cr(S), i.e.: 

 

   O(n) ≤ Cop(S) ≤ O(n2)         (10.112) 
 

where n is the number of statements in S. 
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component. This subsection examining a larger scope where the focus is put 
on the relational complexity among components in software systems. 
Software system cohesion and coupling are introduced as a pair of higher-
level relational complexities of software systems based on the system theory 
developed in Section 10.3.6. Then, properties and generic rules of software 
system cohesion and coupling are analyzed.  

 
10.7.5.1 Cohesion of Software Systems 
 

The relations between a given software system S and other systems can 
be categorized into internal relations (Rc(S)) and external relations (Ri(S), 
Ro(S)). The former are relations between components belonging to S; the 
latter are those between components within and outside S.  

 
Definition 10.97 The cohesion of a software system S, CH(S), is a ratio 

of the system’s number of internal relations #Rc and its total number of 
internal and external relations #Rc + #Ri + #Ro, i.e.:   
 

                     
  

#( ) = 100%
# +# + #

c

c i o
RCH S

R R R
•    (10.113)                    

 
where 0% ≤ CH(S) ≤ 100%. 

 
It is expected that the higher the system cohesion, the better the 

architectural design. However, CH(S) = 100% is not a practical system 
because it indicates that S is a closed system. 
  

If a system may be decomposed into multiple subsystems, each 
subsystem may be analyzed in the same way as defined in Eq. 10.113.    
     
 

 

 

Corollary 10.18 Properties of software system cohesion are as follows:   
 
    •  Nonnegative:        ∀S, CH(S) ≥ 0               (10.114a) 
    • Normalized domain:      ∀S, 0% ≤ CH(S) ≤ 100%    (10.114b) 
    •   Null if Rc is empty:          ∃S, Rc = ∅ ⇒ CH(S) = 0%        (10.114c) 

    •  Full if Ri ∪ Ro is empty:   ∃S, Ri ∪ Ro
 = ∅ ⇒  

                                                       CH(S) = 100%                     (10.114d) 
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10.7.5.2 Coupling of Software Systems  
 

Definition 10.98 The coupling of a software system S, CP(S), is a ratio 
of the system’s number of external relations #Ri + #Ro and its total number of 
internal and external relations #Rc + #Ri + #Ro, i.e.:   
 

                       
  

# + #( ) = 100%
# + # + #

i o

c i o
R RCP S

R R R
•    (10.115)                    

 

where 0% ≤ CP(S) ≤ 100% and a lower value of CP(S) indicates a better 
architectural design. 
 

 
The relationship between the cohesion and coupling of software 

systems is constrained by the same complement law as described in Section 
10.3.6. Therefore, when either cohesion or coupling of a software system is 
known, the other can be determined. 

 
10.7.5.3 Comparative Analysis of Software System Cohesions and 
              Couplings  
 

Reusing the examples and data shown in Table 10.4, the cohesions and 
couplings of the four given systems can be calculated as given in Table 10.5 
using Eqs. 10.113 and 10.115.   

 

Table 10.5 
Measurement of Software System Cohesions and Couplings 

 

External relations System Internal 
relations 

(#Rc) 
Input 

relations 
(#Ri) 

Output 
relations 

(#Ro) 

Total  
relations 

(#R) 

System 
cohesion 
(CH(S) 

[%]) 

System 
coupling 
(CP(S) 

[%]) 

IBS 7 2 2 11 63.6 36.4 
ATM-PIN 23 1 3 27 85.2 14.8 
MaxFinder 5 n 1 n+6 ∼0 ∼100 
SIS_Sort 8 n n+1 2n+9 ∼0 ∼100 

 

Corollary 10.19 Properties of software system coupling are as follows:   
 

    •  Nonnegative:         ∀S, CP(S) ≥ 0       (10.116a) 
    •  Normalized domain:       ∀S, 0% ≤ CP(S) ≤ 100%   (10.116b) 
    •  Null if Ri ∪ Ro is empty:   ∃S, Ri ∪ Ro = ∅ ⇒  
                                                                     CP(S) = 0%            (10.116c) 
    •  Full if Rc is empty:        ∃S, Rc

 = ∅ ⇒ CP(S) = 100%   (10.116d) 
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In Table 10.5, there are a category of software systems that may be 
classified as a pipeline system such as a data processing system and a data 
sort system. The size of inputs and/or outputs n of such systems as those of 
the MaxFinder and SIS-Sort system is often flexible and indeterminable 
before run-time. In this case, the cohesion and coupling can be redefined as a 
limit below.  

 
Definition 10.99 The limits of cohesion and coupling of software 

systems with indeterminable variable #Ri and #Ro are treated as functions 
CH(S, n) and CP(S, n) as n approaching ∞, i.e.: 

 

             

  

#lim ( , ) = lim ( 100%)
# +# + #

lim ( ) 100%

0%

c

c i on n

n

RCH S n
R R R
c

c cn

→∞ →∞

→∞

•

= •
+

=

  (10.117)                    

     

         

  

# + #lim ( , ) = lim ( 100%)
# + # + #

lim ( ) 100%

100%

i o

c i on n

n

R RCP S n
R R R
cn

c cn

→∞ →∞

→∞

•

= •
+

=

  (10.118)                    

 
where c and k are a positive constant. 

 
Eqs. 10.117 and 10.118 explain the nature of pipeline systems, where 

the cohesions of such systems are approaching 0, while their couplings are 
equivalent to 100%.          

Software system coupling is usually too high to be efficiently handled 
in ad hoc system designs. Therefore, the normalized system decomposition 
rules and the system organization tree structures developed in Sections 10.3.4 
and 10.3.5 should be adopted as guidelines in the architectural designs of 
software systems. 

 

 

 
The 37th Principle of Software Engineering 

 
Theorem 10.15 The normalized software system architectures states that 
components of different subsystems should not be coupled directly, rather 
than be invoked through their top layer components shared in the same 
subsystem.  
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Theorem 10.15 can be illustrated in Fig. 10.32 that shows valid and 
invalid couplings in structured programming. According to Theorem 10.15, 
if there is a need to couple two components belonging to different 
subsystems, the coupling of them should be done through their common 
parent nodes in the system hierarchical architecture. This forms the basic 
principle of software system modularization.    

 

  

  S111   S112   S113   S121   S122   S123   S131   S132   S133   S221   S222  S223 

  S11   S12   S13   S21   S22   S23 

   S1    S2 

    S 

  …   … 

Invalid 
coupling

Valid 
coupling

Valid 
coupling

 
 
Figure 10.32 The normalized system architecture for component couplings 
 

 
 
 
10.8 Summary 
 

 
 
In this chapter, an abstract system has been modeled as a collection of 
coherent and interactive entities that possesses stable functions and a clear 
boundary with external environment. The generic rules and theories of 
abstract systems and their applications in concrete systems have been 

 

Corollary 10.20 In order to reduce system complexity and maintain a 
manageable cognitive handling ability, the coupling among components 
of a software system should be implemented through their common 
parent node (the super system) rather than by direct links between them. 
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developed. It has been identified that, to some extent, management science, 
economics, and sociology may be perceived as a special branch of system 
science that study objects and phenomena at different levels of human work 
and social organizations.         

Because software engineering is one of the most complicated system 
engineering areas, it has naturally been identified as the ideal testbed for 
evaluating existing system theories and their enhancements. Treating 
software engineering and large-scale software project via system engineering 
has formed a promising trend in dealing with the problems, complexities, and 
human factors in software engineering. 

This chapter has presented a systematic view towards software 
engineering. The theories of systems science, as well as underlying principles 
and modeling techniques of systems engineering, have been explored. A new 
mathematical structure, process algebra, has been developed to model and 
manipulate abstract and concrete systems, particularly software systems. 
Applications of system theories and system engineering methodologies in 
software engineering have been discussed. As a result, the system science 
foundations of software engineering have been established.   
 
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, System Science Foundations of Software 
Engineering, readers have achieved the following strategic goals with the 
knowledge structure as summarized below. 
 
 

 
Chapter 10. Systems Science Foundations of SE 

 
■ System philosophies  
       •  The system metaphor for modeling complex entities  
       •  Holism                                                           
       •  Systematic thinking 
 
■ Abstract systems and system topology  
       •  Mathematical models of abstract systems 
           - The mathematical model of closed systems   
           - The mathematical model of open systems 
 

       •  Taxonomy of systems      
           - Concrete and abstract systems   
           - Physical and social systems   
           - Finite and infinite systems   
           - Closed and open systems  
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           - Static and dynamic systems   
           - Linear and nonlinear systems   
           - Continuous and discrete systems   
           - Precise and fuzzy systems   
           - Determinate and indeterminate systems   
           - White-box and black-box systems   
           - Intelligent and nonintelligent systems   
           - Maintainable and nonmaintainable systems   
                               

       •  Magnitudes of systems 
           - System sizes, magnitudes, and complexities  
           - Taxonomy of system magnitudes  
        

       •  Hierarchical architecture of systems 
       •  The system organization tree 
       •  Systems cohesion and coupling 
           - The border of systems  
           - System cohesions and coupling  
 
■ System algebra  
       •  Relational operations of systems  
           - Algebraic relations of closed systems  
           - Algebraic relations of open systems  
           - Relationships between closed and open systems  
                      

       •  Algebraic operations of systems 
           - System conjunction   
           - System difference  
           - System composition  
           - System decomposition   
 
■ Principles of system science 
       •  System fusion and mutation                                              
       •  System functions and behaviors 
       •  Work done by systems                                  
       •  The maximum output of systems 
       •  System equilibrium and organization   
           - The generic IPO model of systems  
           - Laws of system equilibrium and organization  
 

       •  System synchronization and coordination 
       •  System dissimilation 
           - Dissimilation of nonmaintainable systems    
           - Dissimilation of maintainable systems    
 
■ Software system engineering 
       •  The abstract model of computing systems    
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       •  The hierarchical model of software systems 
            - The hierarchical structure of software systems    
             - The hierarchical structure of software engineering processes and 
               work products    
 

       •  The ISO/IEC 15288 system engineering model for SE 
       •  SE phenomena as system engineering problems 
 
■ The complexity theory of software systems 
       •  Computational complexity  
            - Taxonomy of computational problems  
            - Time complexity of algorithms    
            - Space complexity of algorithms    
           

       •  Symbolic and Control flow complexities 
            - Symbolic complexity of software systems  
            - Control flow complexity of software systems  
 

       •  Cognitive complexity of software systems 
            - The operational complexity of software systems    
            - The architectural complexity of software systems    
            - The cognitive complexity of software systems    
 

       •  Software cognitive complexity analysis 
            - Comparative case studies on the complexity models of software 
               systems    
            - The symbolic vs. functional sizes of software systems    
 

       •  Cohesion and coupling complexity of software systems 
            - Cohesion of software systems    
            - Coupling of software systems    
            - Analysis of software system cohesion and coupling    
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• An abstract system is an algebraic model of generic systems that 
encompasses a collection of coherent and interactive entities and possesses 
stable functions and a clear boundary with external environment. 

 
• The principle of generic constraints states that any system is 

constrained by a set of common conditions, properties, and rules, which are 
obeyed by components inside the system, but not by those outside the 
system. 
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• Continuous and discrete systems are equivalent because any 
continuous system can be simulated by a discrete system on the basis of 
behavioral equivalence.      

    
• The holism complexity of systems states that within the 7-level 

magnitudes of systems, known as the empty, small, medium, large, giant, 
immense, and infinite systems, almost all systems are too complicated to be 
cognitively understood or mentally handled as a whole, except small systems 
or those can be decomposed into small systems.   
 

• The generic topology of systems tends to normalized into a 
hierarchical structure in the form of a complete n-nary tree.   

                  
• Advantages of the normalized tree architecture of systems are as 

follows: 
      

    a)  Equilibrium: Looking down from any node at a level of the 
system tree, except at the leave level, the structural property of 
fan-out or the number of coordinated components are the same 
and evenly distributed.         

    b)  Evolvablility: A normalized system does not change the existing 
structure for future growth needs.      

    c)  Optimal predictability: There is an optimal approach to create a 
unique system structure Tc(n, N) determined by the attributes of 
the unified fan-out n and the number of leave nodes N at the 
bottom level.     

 
• The cohesion and coupling of any open system are complementary, 

i.e., CH(S) + CP(S) = 100%.     
 

• The equivalence between open and closed systems states that an 
open system S is equivalent to a closed systemS , and vice versa, when it is 
conjoined with its environment SΘ or SΘ , respectively. 

 
• The following architectural rules of a normalized system should be 

maintained in system compositions: a) Direct relations between subsystems 
at different levels of the hierarchy are not allowed; b) Direct relations 
between components of different subsystems are not allowed; and c)          
Communications across systems and subsystems should be through 
commonly inherited higher-level system(s) in the system hierarchy. 
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• The system fusion principle states that the fusion effect of systems is 
generated by either increments of quantity in the set of components C or 
increments of diversity in the set of relations R.  

 
• There exists a threshold that triggers the fusion effect of systems 

known as the critical mass Qcm, which is the minimum quantity for obtaining 
or implementing system fusion over the increment of quantity. 
 

• The principle of system gain of work states that work done by a 
system is always greater than that of any of its components, but at most 
equals the sum of those of its components. 
 

• The equilibrium of a system is a stable state where the effects of all 
components in term of their abstract work form a zero-sum. 

 
• The equilibrium system work states that the sum of all types of 

work is always zero in an equilibrium system, i.e., 
1

( ) 0
n

i
i

W C
=

=∑ , where 

W(Ci) is the abstract work of a component Ci in the system. 
 

• The necessary and sufficient mathematical condition of self-
organization is the existence of at least one minimum on the state curve of 
a system f(x). 

 
• The functional condition of self-organization of a system is the 

existence of the negative feedback mechanism that is proportional to the 
incremental or aggressive effects of the system. 
 

• A dynamic system tends to synchronize on a certain state where it is 
stable or dynamically equilibrium that satisfies one of the following 
conditions: a) The rational condition: The apparent best equilibrium 
condition; or b) The arbitrary condition: The first met or most conventional 
equilibrium condition.   
 

• System dissimilation states that any system tends to undergo a 
continuous degradation that leads to the eventual loss of its designed utility 
and against its initial purposes to form the system.     
 

• The orientation of software engineering complexity theories states 
that the orientations of complexity theories of computation and software 
engineering are different. That is, the former is focused on  the problems of 
high throughput complexity that are computing time efficiency centered; 
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while the latter puts emphases on the problems of functional complexity that 
are human cognition time and workload oriented. 

• In software engineering, a problem with very high computational 
complexity may be quite simple for human comprehension, and vice versa. 
According to cognitive informatics, human beings may comprehend a large 
cycle of iteration, which is the major issue of computational complexity, by 
looking at only the beginning and termination conditions, as well as one or a 
few arbitrary internal loops with inductive inferences. However, humans are 
not good at dealing with functional complexities such as huge numbers of 
interrelated operations and very abstract data objects. Therefore, the system 
complexity of large-scale software is the focus of software engineering. 

• The symbolic complexity Cs(S) is a special case of the operational 
complexity Cop(S), where the cognitive weights of all kinds of BCS’s, 
wi(BCS), are simply treated as one (Corollary 10.16).  

• This is an important finding on the relationship between 
conventional symbolic complexity and the operational complexity of 
software. It indicates that the symbolic measure is oversimplified so 
that it cannot represent the real functional complexities and sizes of 
software systems. In other words, algorithms or programs with similar 
symbolic complexities may possess widely different functional 
complexities in terms of the operational and cognitive complexities.               

 
• The cyclomatic complexity of a connected software system Cr(S) can 

be determined by any of the following three methods: a) Cr(S) = e - n + 2; b) 
Cr(S) = r(CFG); or  c) Cr(S) = #(BCS).  

• The advantage of the third method is that it does not require 
for transforming a given program into a CFG. 

• The McCabe cyclomatic complexity is a directly derived 
property of CFGs based Euler’s theorem in graph theory, which is 
used for determining regions for a given connected planar graph with 
know topology.    
 
• Comparative studies show that the time, cyclomatic, and symbolic 

complexities cannot actually reflect the real complexity of software systems 
in design, representation, cognition, and/or comprehension.  

• Symbolic complexity does not correlate to the operational or 
functional complexity of software systems. Symbolic complexity does 
not represent the throughput or the input size of problems.       

© 2008 by Taylor & Francis Group, LLC



842   Part III  Organizational Foundations of SE 

• Time complexity does not work well for a system where there 
are no loops and dominant operations. Time complexity cannot 
distinguish the real complexities of systems with the same asymptotic 
function.              

• The cognitive complexity is a more objective measure of 
software system complexities and sizes, because it represents the real 
semantic complexity by integrating both the operational and 
architectural complexities in a coherent measure.  

 
• The operational complexity Cop(S) of a software system S is 

constrained by the lower bound of the symbolic complexity Cs(S) and the 
upper bound of the relational complexity Cr(S), i.e., O(n) ≤ Cop(S) ≤ O(n2), 
where n is the number of statements in S.  

• It indicates that the real complexities and sizes of software 
systems are used to be greatly underestimated when the conventional 
symbolic size measurement (LOC) is adopted, because it represents 
only the minimum functional complexity of software.  

• The cognitive complexity results in more actual measurement 
of the functional sizes of software systems.  

 
• The normalized software system architectures state that 

components of different subsystems should not be coupled directly, rather 
than be invoked through their top layer components in the same subsystem. 

 
• In order to reduce system complexity and maintain a manageable 

cognitive handling ability, the coupling among components of a software 
system should be implemented through their common parent node (the super 
system) rather than by direct links between them. 
 
  
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
System philosophies 
 

• The system philosophy is based on the observation that the nature is 
built by a small number of basic components and particles, and governed by 
a limited set of basic laws. Even all living things is configured by almost the 
same cells, chromosomes, and DNAs.   

    
• The discipline of system science is an inquiry into the general 

principles and rules commonly shared by different kinds of systems. The 
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system metaphor is one of the most widely used concepts and notions in 
almost all disciplines of science, engineering, and society.  
 
System Abstraction  
 

• The generality principle of system abstraction states that a system 
can be represented as a whole in a given level k of reasoning without 
knowing the details at levels below k. 
 

• Abstract systems can be classified into two categories known as the 
closed and open systems. Most practical and useful systems in nature are 
open systems in which there are interactions between the system and its 
environment. 

• A closed systemS  is a 4-tuple, i.e.,S  = (C, R, B, Ω), where C is 
a nonempty set of components of the system; R is a nonempty set of 
relations between pairs of the components in the system, R ⊆ C × C; B 
is a set of behaviors (or functions); and Ω is a set of constraints on the 
memberships of components, the conditions of relations, and the scopes 
of behaviors. 

• An open system S is a 7-tuple, i.e., S  = (C, R, B, Ω, Θ) = (C, Rc, 
Ri, Ro, B, Ω, Θ), where Θ is the environment of S with a nonempty set of 
components CΘ outside C; Rc ⊆ C × C is a set of internal relations; Ri ⊆ 
CΘ × C is a set of external input relations; and  Ro ⊆ C × CΘ is a set of 
external output relations.         

 
System topology 
 

• Systems as complex entities may be classified into various categories 
according to key characteristics of their components (C), relations (R), 
behaviors (B), constraints (Ω), and/or environments (Θ). 

• A concrete system is a real and specific system with natural 
entities and certain functions. 

• An abstract system is a virtual or theoretical system that is 
modeled by mathematics or computing simulations. 

 
• The size of a system Ss is the number of components encompassed in 

the system, i.e., Ss = #C = nc. 
 
• The magnitude of system Ms is the number of asymmetric binary 

relations among the nc components of the system including the reflexive 
relations, i.e., Ms = #R = nc

2. 
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• The taxonomy of the magnitudes of systems can be classified at 
seven levels, from bottom up, known as: 
  

• The empty system: (Ss = 0, Ms = 0) 

• Small system: (1 ≤ Ss ≤ 10, 1 ≤ Ms ≤ 100) 

• Medium system: (10 < Ss ≤ 100, 100 < Ms ≤ 104) 

• Large system: (102 < Ss ≤ 103, 104 < Ms ≤ 106) 

• Giant system: (103 < Ss ≤ 104, 106 < Ms ≤ 108) 

• Immense system: (104 < Ss ≤ 105, 108 < Ms ≤ 1010) 

• The infinite system: (Ss = ∞, Ms = ∞) 
 

• A System Organization Tree (SOT) is an n-nary complete tree in 
which all leave nodes represent a component and the remainder, all nodes 
beyond the leaves, represent a subsystem. 

 
• The cohesion of a system S, CH(S), is defined as a ratio between its 

number of internal relations #Rc(S) and the total relations of the system 
#R(S). 

 
• The coupling of a system S, CP(S), is defined as a ratio between its 

number of external relations #Ri(S) + #Ro(S) and the total relations of the 
system #R(S).  
 

• The relationship between cohesion and coupling of any open system 
S are complementary, i.e., CH(S) + CP(S) = 100%.     

 
System Algebra 

 
• System algebra is an abstract mathematical structure that provides an 

algebraic treatment of abstract systems as well as their relations and 
operation rules for forming complex systems. 
 

• System relationships in system algebra can be equivalent, 
independent, overlapped, related, being subsystem, and being super system.  

• Two systems S1 and S2 are equivalent, denoted by =, if all sets 
of components, relations, behaviors, constraints, and environments are 
identical. 

• Two systems S1 and S2 are independent, denoted by R , if both 
their component sets and external relation sets are disjoint. 
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• Two systems S1 and S2 are overlapped, denoted by Π, if their 
component sets are overlapped.  

• Two systems S1 and S2 are related, denoted by R, if either the 
sets of their input relations or output relations are overlapped. 

• A subsystem S’ is a system that is encompassed in another 
system S, denoted by . 

• A super system S is a system that encompasses one or more 
subsystems S’, denoted by . 
 
• System operations in system algebra are system conjunction, 

disjunction, difference, composition, and decomposition as defined below. 

• The conjunction of two open systems S1 and S2, denoted by , 
results in a super system that is formed by incremental conjunctions 
of both sets of relations and behaviors, respectively, as well as simple 
conjunctions of sets of components, constraints, and environments. 

• The difference between an open systems S and an open 
subsystem S1, denoted by , results in an open subsystem S2 that is 
formed by the differences of sets of components, input relations, output 
relations, and constraints, difference of sets of internal relations minus 
both  Rc

1 and  ∆Rc
12, as difference of sets of behaviors minus both B1 

and  ∆B12. 

• The composition of two open systems S1 and S2, denoted by , 
is an integration of both systems into a super system S at a given level 
of the system hierarchy by one of the compositional relations Rc = {||, 
→, }. 

• The decomposition of an open systems S, denoted by , is to 
break up S into two subsystems at the same level of the system 
hierarchy by one of the compositional relations Rc = {||, →, }. 

 
System principles 
 

• The system gain of functionality states that system conjunction or 
composition between two systems S1 and S2 creates new relations ∆R12 
and/or new behaviors (functions) ∆B12 that are solely a property of the 
newly established super system S, which can be determined by the sizes of 
the two intersected component sets #C1 and #C2. 
 

• The fusion effect of a system is a self-productive property of systems 
that only appears when the system functions collectively as a whole.  
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• System mutation states that the gradual increment of quantity of a 
system, i.e., ∆C or ∆R, in a system beyond the point of the critical mass Qcm 
triggers the abrupt generation of functionality (quality) Fcm of the system. 
 

• The abstract work done by a system S, W(S), is its output of utility 
U in term of number of functions F implemented, i.e., ( )  [F]W S U= .   

• The bottleneck principle of systems states that the output work 
of a serial system W(Ss) is determined by the least powerful component 
of the system. 

• The appreciation principle of systems states that the output 
work of a parallel system W(Sp) is a sum of the work done by all its 
components less the overhead of the system ϖ.          

 
• System organization is a process to configure and manipulate the 

system into or approaching to a stable and ordered state with an internal 
equilibrium. 
 

• System synchronization states that a system reaches its maximum 
utility maxS  when all components’ efforts 1 2and S S are synchronized. 
 

• Dissimilation is the tendency that a system undergoes in an apparent 
or hidden destructive change against its original purposes or designed 
functions. System dissimilation can be analyzed on the basis of how systems 
maintain their functional availability and against the loss of it, which can be 
the designed utility, function, efficiency, or reliability of the system. 

• The dissimilation property of maintainable systems can be 
derived based on those of nonmaintainable systems, if the maintenance 
effect is treated as a recovery of the original availability of the system. 

 
Software System engineering 
 

• The Generic Computing System (GCS) is an abstract logical model 
of the executing platform, which controls a set of processes and underlying 
resources, such as memory, ports, and the system clock. A process is 
dispatched and controlled by the system that is triggered by various external, 
timing, or interrupt events. 
 

• The hierarchical structure of software systems shows that a 
software system can be decomposed from the top down at seven levels 
known as those of the system, subsystem, component (class, or pattern), 
function (method), statement, data model (structure), and target code. The 
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layered decomposition of software systems can be perceived as a stepwise 
refinement process that transfers a system into target code.                
 

• Software engineering processes and their work products can be 
described by the layered system model of software engineering processes and 
corresponding work products and documentation. The clarification of the 
work products and results of each layered process is helpful to establish job 
expectations, quality standards, and process transition criteria in software 
engineering organization.           
 

• Many phenomena in software engineering practice can be identified 
as typical system engineering problems, such as: a) New is beautiful; b) 
Fundamental research left behind industrial practices; c) Overlooked 
coordinative work organization as the key software engineering technology; 
d) Product lifespan is too short; e) Local maximum is often adopted; f) 
Pentium inside? g) Views on software systems – pessimism vs. optimism; h) 
The software maintenance crisis; i) Synchronization by process-based 
software engineering; and j) Measuring the tendency of programmers. 

 
The complexity theory of software systems 
 

• Although computational complexities, particularly algorithm 
complexities, are one of the focuses in computer science, software 
engineering is particularly interested in the functional complexity of large 
scale and real-world systems.  
 

• Computational complexity theories study the solvability in 
computing. The solvable problems are those that can be computed by 
polynomial-time consumption. The nonsolvable problems are those that 
cannot be solved in any practical sense by computers due to excessive time 
requirements. 

• The time complexity of an algorithm for a given problem is 
measured as an estimation of the number of dominant operations in the 
algorithm, where each of the dominant operations is assumed to take an 
identical unit of time in operation.    

• The space complexity of an algorithm for a given problem is 
the maximum required space for both working memory and target code 
memory. Because the target code memory is a constant and 
determinable, software space complexity is focused on the working 
memory complexity. 
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• The symbolic complexity of a software system S, Cs(S), is the linear 
length of its static statements measured in the unit of lines of code (LOC).  

 
• The cyclomatic complexity of a software system S, Cr(S), is 

determined by the number of regions contained in the CFG, r(CFG), 
provided that CFG is connected according to Euler’s theorem, i.e., Cr(S) = 
r(CFG) = e - n + 2, where, e is the number of edges in CFG representing 
branches and cycles, n  number of nodes in CFG where each node is 
equivalent to a block of sequential code. 

• The cyclomatic complexity Cr(S) can be determined by three 
methods such as: a) Cr(S) = e - n + 2; b) Cr(S) = r(CFG); or  c) Cr(S) 
= #(BCS). The advantage of the third method is that it does not require 
for transforming a given program into a CFG. 

 
• The cognitive complexity of a software system S, Cc(S), is a product 

of the operational complexity Cop(S) and the architectural complexity 
Ca(S). The unit of cognitive complexity is function-objects [FO].   

• The operational complexity of a software system S, Cop(S), is 
determined by the sum of the cognitive weights of its n linear blocks 
composed by individual BCS’s, where each block may consist of q 
layers of embedded BCS’s, and within each of the layers there are m 
linear BCS’s. The unit of operational complexity is functions [F].   

• The architectural complexity of a software system S, Ca(S), is 
determined by the number of data objects at the system and component 
levels. The unit of architectural complexity is objects [O].   

 

• The cohesion of a software system S, CH(S), is a ratio of the 
system’s number of internal relations #Rc and its total number of internal and 
external relations #Rc + #Ri + #Ro.  

 

• The coupling of a software system S, CP(S), is a ratio of the 
system’s number of external relations #Ri + #Ro and its total number of 
internal and external relations #Rc + #Ri + #Ro.    

 

• In order to reduce system complexity and maintain a manageable 
cognitive handling ability, the coupling among components of a software 
system should be implemented through their common parent node (the super 
system) rather than by direct links between them. 
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Questions and 
Research Opportunities 
 

 
 
10.1 The slogan of system science and philosophy is: “The whole is 

more than the sum of its parts.” Discuss on which condition(s) it 
is true and on which condition(s) it may be false.     

    
10.2 Why do more and more researchers believe software engineering 

should adopt the system engineering approach? How may system 
science play an important role in software engineering?       

 
10.3 According to system philosophy, explain why there is no number 

two in sciences, while there is no number one in engineering. 
 
10.4 According to Definitions 10.5 and 10.3, discuss what the 

differences between an open system and a closed system are.   
 
10.5 Why are almost all real-world systems open systems? Is the 

empty system an open or closed system? What is that of the 
universe system?           

 
10.6  Thy to prove that the universal system U(CU, RU, BU, ΩU) is a 

closed system. 
 
10.7   Try to prove that the empty system O(C∅, R∅, B∅, Ω∅) is a closed 

system. 
 
10.8 What are the five basic characteristics or criteria based on that 

system taxonomy may be classified? 
 
10.9 What are the differences between system sizes and system 

magnitudes?   
 
10.10 What is the seven-level taxonomy of system scales based on 

system sizes and magnitudes? Why may systems easily grow very 
large and complicated?    
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10.11 Given a software system with 20 components, calculate the size, 
magnitude, and relative complexity of the system according to the 
system magnitude model. Then, determine the category of the 
system in the seven-level hierarchy of system magnitudes. 

 
10.12 Redo Ex. 10.11 assuming a software system with 300 components 

and discuss what techniques may be adopted to deal with the 
complexity of such a system. 

 
10.13  Why should the generic system topology be a hierarchical 

structure based on the complete n-nary tree? What are the 
advantages of the normalized system architecture?  

 
10.14   An advanced property of the complete n-nary tree Tc(n, N) is that 

it is uniquely determinable by only two attributes: the number of 
fan-out of the tree n and the total number of leaves N. Try to 
determine the architecture of two complete n-nary trees, Tc1(n1, 
N1) = (3, 20) and Tc2(n2, N2) = (4, 30), based on the given values. 

 
10.15  According to Corollary 10.5, what are the underlying reasons that 

force systems to take hierarchical tree structures? 
 
10.16 Apply the system organization theories to analyze the following 

issues: 
 

    a) Given a system S with 8 components (at the leave level), try 
to determine the structure of a complete ternary tree for 
system organization. 

    b) When 5 additional components are included into S, what 
changes need to be made in the ternary organization tree? 

 
10.17   Draw a diagram to denote the growth of a system organization 

tree from SOT(3, 5) to SOT(3, 14). 
   
10.18   Draw a diagram for the system organization tree SOT(5, 30), and 

determine its structural attributes according to Corollary 10.6. 
 
10.19 Given a normalized system organization tree SOT( fon , N) = 

SOT(4, 20), where N is the number of employees, and fon is the 
average fan-out of groups, how many managers are needed in this 
organization? What is the depth of the normalized organization 
tree? 
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10.20  According to Corollary 10.6, all properties of an n-nary system 
organization tree SOT( fon , N) are uniquely determined when the 
total number of leave nodes N and the average fan-out fon  are 
given. For a system SOT( fon , N) = SOT(3, 18), try to determine 
the following properties:  

 
        a)  The maximum number of fan-out of any node fon .   

         b)  The maximum number of nodes at a given level k, nk. 

         c)  The depth of the SOT, d.   

         d)  The maximum number of nodes in the SOT, NSOT.   

    e) The maximum number of components (on all leaves) in the 
SOT, Ne.   

    f)  The maximum number of subsystems (nodes except all 
leaves) in the SOT, Nm.   

 
10.21 What are the values of cohesion and coupling of a closed system?   
 
10.22 What are the values of cohesion and coupling of an empty 

system?   
 
10.23 What are the conditions that convert a closed system to an open 

system, and vice versa?       
 
10.24 What is the mathematical model of incremental union , and how 

may it be used to explain the system gains during system 
conjunction and composition?      

 
10.25 According to the law of system maximum gain, discuss why the 

conventional description of system gains, 
1

( ) ( )
n

i
i

W S W C
=

≥ ∑ , is 

incorrect?  
 
10.26 What would necessarily be sacrificed when systems gain new 

functionality from composition of multiple components? 
 
10.27 What is the condition of system equilibrium? Try to provide an 

example for a particular equilibrium system.    
 
10.28 What are the conditions of system self-organization? Try to 

provide an example for a particular self-organized system.    
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10.29 What is system dissimilation? What are the differences between 
dissimilations of maintainable and nonmaintainable systems? 

 
10.30  What are your suggestions for implementing the system’s 

maximum output in software engineering organization?       
  
10.31 On the basis of system theories, try to identify a software 

engineering problem that is a system engineering issue rather than 
a technical issue.        

 
10.32  Comparatively analyze the symbolic complexity and operational 

complexity of the formal model QueueST as given in Fig. 4.8.   
 
10.33  According to the definition of software cognitive complexity, 

explain why the functional complexity of software is not a simple 
measure rather than a complex one as a product of software 
architectural and operational complexities.           

 
10.34 Calculate the cognitive complexity of the formal model QueueST 

as given in Figs. 4.7 and 4.8. 
 
10.35    Using the data presented in Table 10.4, explain why programs 

with widely different functional/cognitive complexities would not 
be distinguished by the measure of symbolic complexity.   

 
10.36  Why is the symbolic complexity Cs(S) treated as a special case of 

the operational complexity Cop(S)? What is the general case of 
problems? What is the basic assumption that has been simplified 
in the symbolic complexity?     

 
10.37  According to Corollary 10.17 and Fig. 10.31, explain why the real 

relational and functional complexities of software systems have 
been totally underestimated by the measure of the symbolic 
complexity.   

 
10.38   Comparatively analyze the following methodologies for software 

complexity measurements, and discuss their advantages, 
disadvantages, and usages (application areas) in a table: 

 
      •  Computational (time) complexity 

      •  Symbolic complexity (in LOC) 

      •  Cyclomatic complexity 

      •  Cognitive complexity 
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10.39 Why may the cohesion and coupling complexities be treated as 
the system-level relational complexity measure for software 
systems, particularly component-based system?   

 
10.40  According to Theorem 10.15, explain why direct coupling is 

prohibited in structured programming and normalized system 
architectures.   

 
10.41 Read the following classic article in system science:  
 

George J. Klir (1988), System Profile: The emergence 

of System Science, System Research, 5(2), pp.145-156. 
 

Discuss the following topics in a group: 
 
                     •  About the author. 

      • How did system science emerge? 
• Why would system science and engineering be the next 

focus in software engineering?  
      •  What conclusions of the article interested you? Why? 
      •  Your arguments or counter-points on any of the conclusions 

derived in this article.              
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Knowledge Structure 
 

 
 Principles of management science 

     •  Classic management thought 
     •  Architecture of management science 
     •   Fundamental theory of management science 

 Decision theories 

     •  The mathematical model of decision making 
     •  Decision making processes 
     •  Static decision making strategies 
     •  Game theory 
     •  Decision grid theory 

 Quality systems 

     •  Quality principles 
     •  Quality control and assurance 
     •  Quality management systems 

 Software engineering management 

     •  Taxonomy of SE management 
     •  The SE process reference model (SEPRM)  
 

 

Learning Objectives 
 

      

   • To be aware of fundamental principles and architecture of management 
science. 

   •   To understand theories of management science, particularly the gains of 
management and division of labor.          

   •  To understand decision theories for engineering management and the 
structure of decision strategies and processes. 

   •  To know game theories and the decision grid theory for dynamic and series 
decision making. 

   •  To understand quality system theories and quality principles for software 
engineering. 

   •   To  be  able  to  apply  management  theories  to  software  engineering 
organization, management, and quality assurance.    

 

 
 
 

11. Management Science Foundations of SE 
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“Doing the best you can with the resources at your disposal  
is an age-old problem.” 

 
J. Lawrence, Jr. and B. Pasternack (2002) 

 
“Poor management can increase software costs more rapidly than any other factor.” 

 
Barry Boehm (1981) 

 
  
 

11.1 Introduction 
 

 
 

anagement science studies how organizations may be operated 
efficiently, effectively, and profitably on certain constraints of 
resources and environments. Management is one of the important 

techniques and professions that emerged in the industrial revolutions in 
which it was found that management was needed when people worked 
together to achieve a result not possible by individuals acting alone. 
Management science as a discipline developed on the basis of a field of study 
known as operations research that proliferated during World War II.    
  

 Definition 11.1 Management science is the discipline that studies 
organizational behaviors, executive decision making, and resource 
optimization on given internal and external constraints. 

 
The objects of study in management science are work, people, 

resources, and processes. The focal point of management science is 
productivity and quality. The basic principles of management science are 
organization, coordination, planning, forecasting, scheduling, and quality 
assurance. Therefore, formal and empirical theories of coordination, decision 
making, and quality are the major pursuits of management science.   

A profound theory for management science is the formal work 
organization theory as developed in Chapter 8 represented by Theorems 8.4 
through 8.11. Wang’s coordinative work organization theory reveals the 
nature and laws behind human coordination in group work and the 
approaches for engineering project optimizations. Therefore, it plays a 
fundamental role in building the formalized theoretical framework of 
management science.        

Historically, software engineering has focused on programming 
methodologies, programming languages, software development models, and 
tools. Areas now thought critical to software engineering – organizational 

M 
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and management infrastructures – have been largely ignored. Although the 
managerial foundations of software engineering had not been widely 
recognized in software engineering studies and education, this is not to say 
that management science has not strongly influenced the formation of 
software engineering as a discipline. In tracing the history of software 
engineering, it has been found that many of the important concepts of 
software engineering, such as specification, requirement analysis, design, 
testing, process, and quality were borrowed from or inspired by the methods 
and practices developed in management science and other engineering 
disciplines. 

Early software project organization was mostly ad hoc. There were no 
established processes or best practices. Those that managed or oversaw the 
work were not traditionally trained managers, rather they could be thought of 
as accidental managers, who were in charge because they were the best 
programmers.  As it turns out, the skills required for managers do not usually 
come hand-in-hand with those for writing good software. It becomes evident 
that software projects follow the same classic project phases as other 
‘traditional’ projects: analysis, design, implementation, and testing. This 
becomes increasingly evident as software becomes more pervasive 
throughout all industries, and software projects are now accountable to non-
software managers. This has led to increased attention on software project 
management and organization methodologies as the author and his colleague 
wrote [Wang and King, 2000a]:   

 
        “In the software industry, the central role is no longer that of 
the programmers, because project managers and corporate 
management also have critical roles to play.  As programmers require 
programming technologies, the software corporation managers seek 
organization and decision making methodologies, and the project 
managers seek management and software quality assurance 
methodologies. These needs have together formed the modern 
domain of software engineering which to summarize includes three 
important aspects: development methodology, organization, and 
management.” 

 
Therefore, beyond programming and technical aspects of software 

development, software engineering deals with questions of organization and 
management infrastructures. The work of the project manager is to balance 
competing demands for project scope, time, cost, risk, and quality; they must 
satisfy stakeholders with differing needs and expectations and meet identified 
requirements. 
 In the remainder of this chapter, the management science foundations 
of software engineering will be presented in four sections. Section 11.2 
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reviews classic management thought, formalizes a set of empirical principles 
of management science, and introduces the work coordination and 
organization theory and laws developed by Wang. Section 11.3 presents a 
comprehensive set of decision theories, especially the latest development of 
the formal game theory and decision grid theory, which may be used for 
dynamic decision making in complex real-world applications when a series 
of interlinked decisions are needed. Section 11.4 describes quality systems 
for management, in which a formal treatment of quality and its assurance is 
provided. Section 11.5 deals with complicated management issues in 
software engineering by introducing the approach of process-based software 
engineering.  
 
 
 
11.2 Principles of Management 
         Science 
 

 
 
The development of management as a scientific discipline can be traced back 
to the work of Frederick Taylor on the improvement of operations in 
production in the 1890s [Taylor, 1911]. Henry Gantt studied project 
scheduling and developed the control chart in the 1900s, known as Gantt 
Chart [Gantt, 1919], for minimizing interrelated job completion times. In the 
1920s, William Shewhart introduced statistics into management and 
developed the control charts for statistical process and quality control 
[Shewhart, 1939]. In the 1930s, John von Neumann and his colleagues 
studied strategies in competitive situations known as game theory [von 
Neumann and Morgenstern, 1980; Osborne and Rubinstein, 1994; Myerson, 
1997]. In the 1950s, project scheduling was well studied and the Program 
Evaluation and Review Technique (PERT) [Dougherty and Stephens, 1984; 
Hagstrom, 1988; Schmenner and Swink, 1998] and Critical Path Method 
(CPM) [Kelley, 1961; Schonberger, 1981] were developed. Queuing theory 
was developed by E. Erlang and John Little in the 1910s and the 1960s, 
respectively [Little, 1961; Ramaswami and Wirth, 1997]. Various 
programming methods were proposed to solve optimization problems for a 
given objective and a number of constraints such as linear programming in 
the 1940s [Murty, 1983], nonlinear programming and dynamic programming 
in the 1950s and later [Bertsekas, 1995; Donnelly et al., 1998; Schmenner 
and Swink, 1998]. Philip Crosby, Edwards Deming, Genichi Taguchi, and 
Joseph Juran worked on quality systems and developed a number of quality 
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control principles and methodologies in the 1970s and the 1980s [Crosby, 
1977; Deming, 1982/86; Taguchi,1986; Juran, 1988/89; Juran et al, 
1962/80]. 
 
 
11.2.1 CLASSIC MANAGEMENT THOUGHT  
 

Frederick Taylor’s work on Principles of Scientific Management 
published in 1911 inaugurates management as a formal branch of human 
inquiry on group work and industrial engineering [Taylor, 1911]. Then, 
classic management thought was further developed in Henri Fayol’s work on 
General and Industrial Management in 1929 [Fayol, 1929], and James 
Mooney‘s work on The Principle of Organization in 1947 [Mooney, 1947].  

 
Henri Fayol was interested in the basic principles of management on 

determining “soundness and good working order [Fayol, 1929].” Based on 
experience as the manager of a large coal company in France, Fayol 
proposed a framework for the art of management with the following 
principles:     

  
     • Division of labor: Work can be divided into the smallest 

feasible elements to take advantage of gain from 
specialization.   

     • Parity of authority and responsibility: Sufficient authority must 
be delegated to each jobholder for carrying out assigned job 
responsibility. 

     • Unity of command: An employee must receive orders from and 
be accountable to only one superior.  

     • Unity of direction: Activities with the same purpose must be 
organized together and operated under an integrated plan.   

     • Team work: Employees must be encouraged to unite their 
effort, goals, and interest with those of the organization. The 
general interest of the organization takes precedence over 
those of individuals. 

     • Fair remuneration: Pay must be based on achievement of 
assigned job objectives.    

     • Order: Each job and its relationship to other jobs must be 
clearly defined. 

© 2008 by Taylor & Francis Group, LLC



Chapter 11  Management Science Foundations of SE    861 

     • Equity: Established rules and agreements must be enforced 
fairly.  

     • Stability of personnel: Employees must be encouraged to 
establish loyalty to the organization via a long-term 
commitment.   

     • Initiative: Employees must be encouraged to exercise 
independent judgment within their job authority.    

 
James Mooney views organization as the technique of relating specific 

duties or functions in a coordinated whole. Therefore, management is to 
devise an appropriate organization [Mooney, 1947]. The classical 
management thought believed that natural laws of organization and 
management existed. The objective of management science is to seek the 
laws and principles for business, industry, and system organization and 
management. However, despite of a variety of empirical principles and 
heuristic strategies, a few formal theories and laws has been developed in 
contemporary management science on the basis of the classic thought of 
management as reviewed in the beginning of this section.                   
 
 
11.2.2 ARCHITECTURE OF MANAGEMENT SCIENCE  
 

Definition 11.2 Management is a coordination process that organizes 
activities and efforts of a group to achieve goals and results not possible by 
individuals.        

 
11.2.2.1 Functions of Management 
 

The functions of management identified in management science are 
planning, organizing, controlling, and optimizing as shown in Fig. 11.1. A 
manager is responsible for: a) Planning the process, labor, time, resource 
allocation, and quality requirements of a work; b) Organizing various inputs 
via the processes to produce certain product or service; c) Controlling 
individual and process outputs in terms of productivity, costs, and quality; 
and d) Optimizing the input allocations and organizational objectives via 
feedback of processes and customers.   
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Figure 11.1 The functions of management 

 
Definition 11.3 Planning is a management process for organization, 

coordination, and estimation of project time and related labor and resource 
allocation.  
 

Planning is required at all levels of management from the strategic 
level, the technical level, to the operating level. The work products of 
planning are objectives, decisions, people and resources allocations, and the 
implementation processes.  

The basic techniques for project planning are as follows: 
 
     • Partition a given task into detailed subtasks 
     •  Analyze interrelationships between the subtasks, identify parallel 

and/or serial relations and constraints 
     •  Estimate time needed for completing each subtask 
     • Decide on the sequence of work allocation (scheduling) 
     • Define outputs (deliverables) of each task and subtasks 
     •  Assign personnel for each task and subtask 
     •  Allocate resources to each task and subtask 

 
Planning in management encompasses forecasting and scheduling. 

Formal descriptions of theories and laws on project planning, forecasting, 
and decision making will be discussed in Sections 11.2.3 and 11.3. The 
concept of scheduling is briefly introduced below.    

 
Planning 

 
Organizing 

 
Controlling 

 
Optimizing 

 
Management 
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Definition 11.4 Scheduling is a management process that maps the 
planned activities onto the time axis in a parallel or serial structure or their 
combinations. 
  

Project planning and scheduling focus on the overall synchronization 
and coordination of all processes, tasks, and people working on them. Plans 
and schedules enable project managers and members to check if any activity 
is started and/or completed on time and within the scope of allocated 
resources. Without scheduling, one may realize that a project is late when all 
planned time and resources have been consumed. 

Formal descriptions of theories and laws on project scheduling have 
been provided in Section 8.5. It is noteworthy that there are natural laws that 
constrain the allocation of labor and time for a given project. In other words, 
the optimal allocation of labor, time, and resources is not arbitrary and 
simply empirical; certain laws and natural constraints exist as described in 
Section 8.5, particularly by Theorems 8.2, 8.4, and 8.7.  

 
Definition 11.5 Organizing is a management process that coordinates 

and allocates essential means, such as labor, resources, and processes, in 
order to implement a planned work. 

 
Organizing methodologies play a central rule in management because 

organization is the major means of management. The fundamental 
requirement for organization, and theories of optimal allocation of labor and 
time will be discussed in Section 11.2.3.       
 

Definition 11.6 Controlling is a management process that monitors and 
ensures the planned work process and outcomes in operation conforming to 
predefined requirements, standards, and schedules. 

 
 Controlling is a management process parallel with the production or 

operation process. When a nonconforming result is identified in the 
operation, the process should be reviewed and the causality should be 
identified. The establishment of a quality system is the key methodology for 
project and organizational controlling in management. Some recurring and 
systematic inconformity in process may indicate the need to adjust the 
planned process, technology, labor allocation, and/or the initial schedule.              
 

Definition 11.7 Optimizing is a management process that continuously 
improves the results of an organization or project in terms of higher 
productivity, better quality, more accurate scheduling, more efficient process, 
and lower costs. 
 

J. Lawrence, Jr. and B. Pasternack (2002) provided a best explanation 
of management optimizing that says: “Doing the best you can with the 
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resources at your disposal … .” Management always seeks the optimal 
solutions, products, services, and systems. Various linear/nonlinear 
programming models, decision theories, and process improvement methods 
are developed to support the management activities towards system 
optimization, which will be described in the remainder of this chapter.          
 
11.2.2.2 The System Model of Management 
 

It is noteworthy that, although there are various objectives in 
management, the key objective of management science is not management 
but work. That is, management science studies how human work may be 
done coordinately, efficiently, qualitatively, and profitably in a systematic 
approach [Wang, 2006l/06d/07d].     

Management science as a system science can be described in Fig. 11.2. 
In the management system, managers organize and coordinate the production 
or service processes to transfer the inputs into expected outputs. As shown in 
Fig. 11.2, the inputs of a management system encompass three essences 
known as labor, time, and resources; while the outputs of a management 
system encompass other three essences known as productivity, profit/cost, 
and quality.     

 

 
Figure 11.2 Structure of a management system  
 
 
11.2.3 FUNDAMENTAL THEORY OF MANAGEMENT 
           SCIENCE 
 

Although management has been recognized before the establishment of 
management science, the foundation of management science is still mainly 
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Time Profit (costs) 
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empirical. Prior to discussing detailed management theories, this section 
formally examines the fundamental requirement for management in groups, 
organizations, societies, economies, businesses, and academic research. This 
leads to the management laws of gain of management and gain of division of 
labor [Wang, 2005i]. 
 
11.2.3.1 Why Management is Needed in Work Organization? 
    

Based on empirical intuition, management has been recognized as a 
necessary overhead in work organization. The primitive task of management 
is to synchronize the work of a group of people. In an experiment on 
rebuilding Stonehenge by not using modern tools in England, the project 
involved hundreds of volunteers. One of the key findings in the project is 
that a manager is needed as a chanteyman for synchronizing the team. 
Otherwise, no matter how many people push and pall the huge stone, it will 
not be moved for an inch.  

However, a number of fundamental questions remain unexplained in 
management science. For instances: Why is management universally needed 
in work organization? What are the natural laws behind this generic 
phenomenon? What are the optimal organizational forms in industry and 
engineering?                

The answers to the above questions may be sought by studying and 
analyzing the nature of working groups of people [Wang, 2005i]. 

 
Definition 11.8 A natural group is a working group of people with 

peers in which work is carried out via temporal pairwise coordination when 
work has to be done by any pair of the peers.       

 
Definition 11.9 A managed group is a working group of people with 

peers and a manager, in which work is carried out via one-to-many 
coordination by the manager. 

 
Definition 11.10 The size of a group n is the number of people working 

together toward a common goal in production or service.          
 

Definition 11.11 The number of interpersonal coordination C2(n) 
needed in a natural group of size n, n ≥ 3, can be determined by: 

 

                                 
2

2 n( ) = 2  

( 1)
CC n   

n  n -=

i

i
         (11.1) 

 
where a coordination between peers a and b is asymmetric, i.e., a r b ≠ b r a.        
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When all possible forms of interpersonal coordination in a group is 
considered, i.e., taking into account of all possible combinations of k

nC  for 
any k, 0 ≤ k ≤ n, the total number of interpersonal coordination C(n) is 
obtained as follows: 

         

                           0
1

( ) = 2  

2

C
n

k
n

k
n

C n   
=

+=

∑i          (11.2) 

 
Eq. 11.2 results in a geometrical progression series that is exponentially 

increasing with the size of group n. The complexity is easily to be out of 
control considering that a ten-person group yields C(10) = 211 = 2,048 
possible forms of required coordination. 

 
Definition 11.12 The number of interpersonal coordination Cm(n) 

needed in a managed group of size n, n ≥ 3, can be determined by: 
 

                                       Cm(n) = n + 1                  (11.3) 
 
where the addition person is the manager.  

 
Definition 11.13 The management gain ∆m(n) of a managed group 

over a natural group is the difference between the coordination efforts 
needed in these two organization forms, i.e.:     

       

                                
2

2

( ) = ( ) ( )

( 1)  ( 1)

2 1

mm n   C n C n

n  n - n

n n

∆ −

= − +

= − −

i        (11.4) 

 
Definition 11.14 The management efficiency e(n) of a managed group 

over a natural group is a ratio between the management gain and the 
coordination efforts without management, i.e.:     

       

                                  

2

2

( )
( ) =   100%

( )
( )

(1 )  100%
( )
n+1(1 )  100%
( 1)

m

m n
e n   

C n
c n
c n

n  n -

∆

= −

= −

i

i

i
i

        (11.5)
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Eqs. 11.1 through 11.5 indicate that management is needed because it 
helps to reduce the complexity of working group organization. The benefit of 
management in terms of the management gain ∆m(n) and the management 
efficiency e(n) are illustrated in Fig. 11.3. It is obvious that 

2lim ( ) lim ( 2 1)
n n

m n n n
→∞ →∞

∆ = − − =∞  and 1lim ( ) lim (1 ) 100%
n n

e n
n→∞ →∞

= − •  =  

100% [Wang, 2005i]. 
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Figure 11.3 Gain and efficiency of management 

 
11.2.3.2 The First Principle of Management 
 

On the basis of the discussions in previous subsection, the relationships 
among interpersonal coordination in a natural group (Eq. 11.1) and a 
managed group (Eq. 11.3), as well as the management gain (Eq. 11.4) and 
the management efficiencies (Eq. 11.5), can be quantitatively analyzed as 
shown in Table 11.1. This result formally establishes the following principle 
for management science [Wang, 2005i].  
 

Table 11.1 
Gains of Efficiency by Management 

 

N 1 2 3 4 5 10 20 30 50 100 
C2(n) 0 2 6 12 20 90 380 870 2450 9900 
Cm(n) 2 3 4 5 6 11 21 31 51 101 

∆m(n) - - 2 7 14 79 359 839 2399 9799 

e(n)% - - 33.3 58.0 70.0 87.8 94.5 96.4 97.9 99.0 
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It is empirically observed that management is a necessary overhead of 

any human-based system. Management functions like a switching center for 
a group as a system. Without the management, individual component of the 
system cannot work properly and efficiently.            

The natural function of management is system synchronization. 
Although the basic elements of management are planning, organization, 
control, and optimization, the essence of all management principles is system 
synchronization, which is also identified as one of the fundamental principles 
of system science [Wang, 2005l] as described in Chapter 10, as well as in 
economics [Marshall, 1938].  
 
11.2.3.3 Gains from Division of Labor 
 

The advantage of division of labor, also known as specialization of 
skills, has been observed empirically by Confucius (551 – 479BC) in ancient 
bureaucracy, Adam Smith in economics in 1776 [Smith, 1776], and 
Frederick Taylor in management science in 1911 [Taylor, 1911]. Therefore, 
it is perceived that division of labor is the fifth great invention of Chinese 
civilization to the world in classic management science and sociology in 
addition to the four great technical inventions known as typography, papyrus, 
powder, and compass.  

Adam Smith (1723-1790), the proposer of the invisible hand in 
economics, investigated the advantages of specialization during the industrial 
revolutions [Smith, 1776; Cannan, 1994]. He observed the operation of a pin 
factory as follows:         
 

“One workman could scarce, perhaps, with his utmost industry, 
make ten pin in a day, and certainly could not make twenty.” 

 
However, when pin making has become specialized in the factory, said 

he: 
  

“One man draws out the wire, another straightens it, a third cuts 
it, a fourth points it, a fifth grinds it at the top for receiving the 
head, …” 

 

The 42nd Law of Software Engineering 
 
Theorem 11.1 The gain of management states that management is 
required to reduce the complexity of working group organization, to 
improve the efficiency of groups, and to simplify the forms of 
interpersonal coordination. 
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As a result, Smith estimated that ten workers, working in the team in 
the factory, could produce 48,000 pins a day in the above specialized 
process. That would be at least 240-fold improvement of productivity than 
these same ten people could produce while working alone. 

Based on this observation, Smith found three distinct advantages of 
specialization as follows: 

 
     • The workers get good at their jobs – better than they would be if 

they went from one function to another. 

     •  They do not waste time shifting from one task to another. 

     • Tools or machines may be invented or purchased for the 
specialized and repetitive work.  

 
Smith’s observation on specialization has then been adopted as one of 

the important principles for improving productivity. It is then called division 
of labor by Marshall in Principles of Economics [Marshall, 1938]. This 
principle is generally true because if all of us got really good at something 
and concentrated on that one specialty, we could produce much more than we 
could if we tried to do everything ourselves.                                   

Specialization or division of labor can be implemented in two ways. 
One way is to use different people to conduct different processes. The other 
is to repetitively conduct a particular process by one person, and then repeat 
the next process by the same person. According to cognitive informatics, the 
latter approach can also save the overhead of cognitive complexity and 
mental power between the switching of working processes [Wang, 2007j]. 
Exercise 11.35 provides an interesting example for testing the gain of 
division of labor in the second approach.                      

The remainder of this subsection explores the natural laws behind the 
well known phenomenon of division of labor in many areas of human 
coordinative work organization.     
 

Definition 11.15 Division of labor (DOL), or specialization on a 
specific subtask in a process, is a work organization method in which a task 
is divided into a sequence of multiple subtasks, and a person is only 
specialized in a repeatable subtask. 

 
Work organization by DOL can be illustrated in Fig. 11.4. The first 

advantage of DOL is that it results in higher productivity and better quality 
when a work involves only a limited number of subtasks. The second 
advantage of DOL is that it eases work planning, because labor allocation, 
replacement, and training are simplified when work is divided into simple 
and limited basic processes. 

© 2008 by Taylor & Francis Group, LLC



870   Part III  Organizational Foundations of SE 
 

To formally explain the potential gains of DOL, the differences of 
relative effort of an individual spent in specialized work allocation and 
natural work allocation can be comparatively analyzed below [Wang, 2005i]. 

 
DOL work allocation 

P’1 

↓ 
P’2 

↓ 
… P’n 

↓ 
Subtask-level repetition (Tj) 

 
 
   Task:      Ti = (Ti1 , Ti2 , …, Tin ) 
   Subtask:   Tj = (T1j , T2j , …, Tkj )  

1 2 … n 

P1  → 1 T11 T12 … T1n 

P2  → 2 T21 T22 … T2n 

… … … … … … 

 
Natural  
work 

allocation 

Pk  → 

 
Whole 

task-level 
repetition 

(Ti) k Tk1 Tk2 … Tkn 

 
Figure 11.4 Division of labor: labor specializes (repeats) at the subtask-level  
 

Definition 11.16 The natural work allocation is a form of loosely 
coupled work organization that requires an invariable effort E(1) with a 
relative value 1, i.e.:   

   
                                                     (1) = 1E               (11.6) 
 

Definition 11.17 The specialized work allocation Edol(1) is a work 
organization method that allocates tasks via DOL, which results in the saving 
of effort proportional to times of repetition k in an inversed exponential rate 
determined by a constant e/c, i.e.:     

       

                                               1(1) = ( )kdol
eE   
c

−          (11.7) 

 
where e = 2.72 and c is determined empirically based on the skilled rate of 
repetition for a given task in the range of 1 < c < e.  

 
Based on Eqs. 11.6 and 11.7, the gain of DOL can be illustrated in Fig. 

11.5 where c = 2.5. When the relative effort of natural work allocation is set 
as one, the advantage of DOL is an inversed exponential curve that decreases 
proportionally to the number of task repetitions k.            

 
Definition 11.18 The effort of natural work allocation of a group E(k) 

is proportional to the number of persons k who is working on the task, i.e.:   
   

                                                
( ) =   (1)E k  k E

k=

i
         (11.8) 
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Figure 11.5 Gains of division of labor 
 
 

Definition 11.19 The effort of specialized work allocation of a group 
Edol(k) is proportional to the repetitive times k in an inversed exponential rate 
determined by a constant e/c, i.e.:     

 

                       
-11

1
( ) =

( )

k

dol ki
E k   e

c
=
∑                  (11.9) 

 
where c, c < e, is determined empirically based on the specialization rate of a 
repetitive task. 
 

When the relative values of both E(k) and Edol(k) are determined, the 
gain of DOL can be described by a ratio or a relative difference between 
them.         

 
Definition 11.20 The gain from DOL, g(k), by specialized work 

allocation over the natural work allocation is a ratio between the work efforts 
needed for these two organizational forms, i.e.:     
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Definition 11.21 The relative gain from DOL gr(k) of a specialized 
work allocation over the natural work allocation is a ratio between the 
relative difference and the work efforts needed without DOL, i.e.:     
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On the basis of Eqs. 11.10 and 11.11, the simulation results and curves 

of gains of DOL in forms of the absolute gain g(k) and relative gain gr(k)% 
are shown in Table 11.2 and Fig. 11.6, respectively, where c = 2.5. 

 
 Table 11.2  

Gains of Division of Labor 
 

k 1 2 3 4 5 6 7 8 9 10 20 50 100 
E(k) 1 2 3 4 5 6 7 8 9 10 20 50 100 

Edol(k) 1 1.92 2.76 3.53 4.24 4.89 5.49 6.04 6.54 7 9.93 11.87 12.1 
g(k) 1 1.04 1.09 1.13 1.18 1.23 1.28 1.32 1.38 1.43 2.01 4.21 8.26 

gr(k)% 0 4 8 11.8 15.2 18.5 21.6 24.5 27.3 30 50.4 76.3 87.9 
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Figure 11.6 Gains of division of labor (e/c = 1.09) 
 
When a higher skill rate in specialization is used, i.e., e/c = 2.72, the 

curves of gains via DOL as shown in Fig. 11.6 are increased sharply. In other 
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words, the higher the skill rate via specialization and repetition in a task, the 
larger the gains via DOL. 
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Figure 11.7 Gains of division of labor (e/c = 2.72) 
 
11.2.3.4 The Second Principle of Management 
 

Based on the discussions in Section 11.2.3.3, this subsection derives the 
second principle of management on the benefit of division of labor in work 
organization [Wang, 2005i].  
 

 

The 43rd Law of Software Engineering 
  
Theorem 11.2 The gain of division of labor states that the relative gain 
gr(k) via division of labor in work organization is proportional to the 
repetitive times k at specialized subtask-level, i.e.: 
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where c is a positive constant, 1 < c < e. 
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The fundamental principles of management as described in both 
Theorems 11.1 and 11.2 [Wang, 2005i] can be applied in any field of human 
coordinative work organization. Law 43 can be extended to division of work 
for multiple subtasks conducted by a single person. That is, as shown in Figs. 
11.5 through 11.6, when there are n subtasks needed to be repeated for k 
times by one person, Tij, 1 ≤ i ≤ n, 1 ≤ j ≤ k, the person may carry out the 
work  by  repeating  each  subtask  Tj = (T1j , T2j , …, Tkj ), 1 ≤ j ≤ k, in order 
to save effort and time.         
 

 
11.2.3.5 Wang’s Work Organization Theory for Coordinative Work 
              Management     
 

As revealed in Section 11.2.2.2, the ultimate object under study in 
management science is human work rather than management. Therefore, the 
theoretical framework for management science is the laws and principles 
developed so far in Section 11.2.3 [Wang, 2005i] and the formal coordinative 
work organization theory [Wang, 2007d] as presented in Section 8.5. Human 
coordination in groups and projects is a widely generic phenomenon studied 
in large-scale engineering organization in management science, system 
science, and software engineering [Brooks, 1975; Klir, 1992; Ritzer, 1983]. 
Coordinative work is needed when separated individuals cannot carry out a 
given work or solve a certain problem. Therefore, a theory of coordinative 
work organization is at the center of management and system sciences.  

Despite of a whole spectrum of empirical studies on the age-old 
problems that observed the influence and impact of the extent of human 
coordination to work performance [Fayol, 1929; Mooney, 1947; Ritzer, 
1983/93], there was a lack of a rigorous theory of coordinative work 
organization and management, and the inherent nature of the problem was 
hidden by too many trivial factors.          

The work described in Section 8.5 developed a generic theory of 
coordinative work organization based on intensive studies in the complicated 
software engineering environment. The basic properties and characteristics of 
coordinative work and their mathematical models are established, which 
explains the transformability between labor and time in coordinative work 
and the role of the overhead for interpersonal coordination. A set of Wang’s 
laws of abstract work organization is derived in Theorems 8.4 through 8.11, 
which provide a foundation for rigorously analyzing the work duration and 

 

Corollary 11.1 By adopting division of work, a single person can gain 
the advantage of division of labor by repetitively working on the same 
subtask, when a task can be decomposed into a series of subtasks. 
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effort in coordinative project organization. The laws have been revealed, for 
the first time, that the interpersonal coordination rate in groups is the black 
hole that has resulted in the failures of so many large-scale projects due to 
the exponential growing of unexpected actual workload under nonoptimal 
labor and work allocation.  

On the basis of the coordinative work organization theory, a set of 
decision optimization strategies can be derived towards optimal project 
organization for the best labor allocation, the shortest project duration, and 
the lowest effort. The exchangeability and its constraints between labor and 
time in work organization are formally explained.  
 
 
 
11.3 Decision Theories 
 

 
 
Decision making is one of the basic cognitive processes of human brains 
[Wang et al., 2006; Wang and Ruhe, 2007d], by which a preferred option or 
a course of actions is chosen from among a set of alternatives based on 
certain criteria. Decision theories are widely applied in a number of 
disciplines encompassing cognitive science, computer science, management 
science, economics, sociology, psychology, political science, and statistics. A 
number of decision strategies have been proposed from different angles and 
application domains such as the maximum expected utility and Bayesian 
method. However, there is still a lack of a fundamental and mathematical 
decision model and a rigorous cognitive process for decision making.  

In this section, a decision making process is modeled as a sequence of 
Cartesian-product based selections. A rigorous description of the 
fundamental decision process in RTPA is presented. Different decision 
making strategies are comparatively analyzed. The result shows these 
strategies can be well fit in the formally described decision process. The 
cognitive process of decision making may be applied in a wide range of 
decision-based systems, such as cognitive informatics, software agent 
systems, expert systems, and decision support systems.  

A decision making process chooses a preferred option or a course of 
actions from among a set of alternatives on the basis of given criteria or 
strategies [Simon, 1960; Wilson and Keil, 2001; Wang and Ruhe, 2007d]. 
Decision making is one of the 39 fundamental cognitive processes modeled 
in LRMB [Wang et al., 2006]. The study on decision making is interested in 
multiple disciplines, such as cognitive informatics, cognitive science, 
computer science, psychology, management science, economics, sociology, 
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political science, and statistics [Wald, 1950; Berger, 1990; Pinel, 1997; 
Matlin, 1998; Payne and Wenger, 1998; Edwards and Fasolo, 2001; Hastie, 
2001; Wilson and Keil, 2001; Wang et al., 2006]. Each of those disciplines 
has emphasized on a special aspect of decision making. It is recognized that 
there is a need to seek an axiomatic and rigorous model of the cognitive 
decision-making process in the brain, which may be served as the foundation 
of various decision making theories. This approach is based on the basic 
understanding that, although the cognitive capacities of decision makers may 
be greatly varying, the core cognitive processes of the human brain share 
similar and recursive characteristics and mechanisms [Wang et al., 2006; 
Wang and Ruhe, 2007]. 

Decision theories can be categorized into two paradigms: the 
descriptive and normative theories. The former is based on empirical 
observation and on experimental studies of choice behaviors; and the latter 
assumes a rational decision-maker who follows well-defined preferences that 
obey certain axioms of rational behaviors. Typical normative theories are the 
expected utility paradigm [Osborne and Rubinstein, 1994] and the Bayesian 
theory [Wald, 1950; Berger, 1990]. W. Edwards and B. Fasolo proposed a 
19-step decision making process [Edwards and Fasolo, 2001] by integrating 
Bayesian and multi-attribute utility theories. W. Zachary and his colleagues 
[Zachary et al., 1982] perceived that there are three constituents in decision 
making known as the decision situation, the decision maker, and the decision 
process. Although the cognitive capacities of decision makers may be greatly 
varying, the core cognitive processes of the human brain share similar and 
recursive characteristics and mechanisms [Wang, 2003a; Wang and Gafurov, 
2003; Wang et al., 2006; Wang and Ruhe, 2007]. 

An overview of the taxonomy and classification of decision theories 
and related rational strategies that will be discussed in this section can be 
illustrated as shown in Fig. 11.8. Fig. 11.8 can be used as a guideline for 
studying the whole framework of decision theories that will be extended in 
the following subsections.       
 
 
11.3.1 THE MATHEMATICAL MODEL OF DECISION 
           MAKING 
 
 Decision making as one of the fundamental cognitive processes of 
human beings is widely used in determining rational, heuristic, and intuitive 
selections in complex scientific, engineering, economical, and management 
situations, as well as in almost each procedure of daily life. Since decision 
making is a meta mental process, it occurs every few seconds in the thinking 
courses of human minds consciously or subconsciously.   
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Figure 11.8 Overview of decision theories and decision strategies 
 

This subsection explores the nature of selection, decision, and decision 
making, and their mathematical models. A rigorous description of decision 
making and its strategies is developed. 
 
11.3.1.1 The Principle of Choices 
 

The philosophy of the axiom of choice [Lipschutz, 1964] is adopted to 
describe decision theories, which identifies the following three essences for 
decision making known as the decision goals, a set of alternative choices, 
and a set of selection criteria or strategies. According to this theory, decision 
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makers are only the engine or executive of a decision making process. If the 
three essences of decision making are defined, a decision making process 
may be rigorously carried out by either a human decision maker or by an 
intelligent system. This is a cognitive foundation for implementing expert 
systems, agent systems, and decision supporting systems [Wang et al., 2006; 
Wang, 2007a].    
 

Definition 11.22 Let I be a nonempty indexing set, S be a collection of 
sets, {Ai | i ∈ I} be a collection of disjoint sets, Ai ⊆ S, and Ai ≠ ∅. A choice 
function c can be described as: 
 
            c: {Ai | i ∈ I}  → Ai                        (11.13) 
 
where c(Ai) = ai, ai ∈ Ai ⊆ S, U the universal set, I a set of natural numbers, 
and Ai is called the set of alternatives.    

 

 
In addition to the axiom of choice, the additive and multiplicative 

principles of choices given below are useful when solving composed 
decision problems.  
 

 

 

Lemma 11.1 The axiom of choice selection states that there exists a 
choice function for any nonempty collection S of nonempty disjoint sets 
of alternatives Ai ⊆ S, i ∈ I [Lipschutz, 1964]. 
  

 

Lemma 11.2 The additive principle of choices states that the number of 
choices between two arbitrary sets of alternatives A or B is the sum of all 
alternatives provided in them, i.e.: 
 

  #( ) # #A B A B∨ = +          (11.14)  
 

 

Lemma 11.3 The multiplicative principle of choices states that the 
number of choices between two arbitrary sets of alternatives A and B is 
the product of the number of all alternatives provided in both of them, 
i.e.: 
 

  #( ) # #A B A B•∧ =           (11.15)  
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11.3.1.2 Decisions and Decision Making 
 
 On the basis of the axiom and function of choice, a decision can be 
rigorously defined as follows.          
 

Definition 11.23 A decision d is a selected alternative a ∈A from a 
nonempty set of alternatives A, A ⊆ U, based on a given set of criteria C, 
i.e.: 
 

           d = f (A, C)  
                = f: A × C → A,  A ⊆ U, A ≠ ∅             (11.16) 
 
where × represents a Cartesian product. 
 
 It is noteworthy that the choice criteria C can be a simple one or a 
complex one. The latter is the combination of a number of joint criteria 
depending on multiple factors.   
 
 Definition 11.24 Decision making is a process of decision selection 
from available alternatives against the chosen criteria for a given decision 
goal.  
 
 According to Definition 11.24, the number of possible decisions, n, can 
be determined by the sizes of A and C, i.e.: 
  

     n = #A  •  #C                        (11.17) 
 

where # is the cardinal calculus on sets, and A ∩ C = ∅.     
  

Eq. 11.17 indicates that in case #A = 0 and/or #C = 0, no decision may 
be derived for the given case.   

The above definitions provide a generic and fundamental mathematical 
model of decision making, which reveal that the factors determining a 
decision are the alternatives A and criteria C for a given decision making 
goal. A unified theory on fundamental and cognitive decision making can be 
developed based on the axiomatic and recursive cognitive process elicited 
from the simplest decision-making categories as shown in Table 11.3. 
 
11.3.1.3 Strategies and Criteria for Decision Making 
 
 According to Definition 11.24, the outcome of a decision making 
process is determined by the decision-making strategies selected by decision 
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makers, when a set of alternative decisions has been identified. It is obvious 
that different decision making strategies require different decision selection 
criteria. There is a great variation of decision-making strategies developed in 
traditional decision and game theories, as well as cognitive science, system 
science, management science, and economics.  

The taxonomy of strategies and corresponding criteria for decision 
making may be classified into four categories known as intuitive, empirical, 
heuristic, and rational as shown in Table 11.3 [Wang and Ruhe, 2007]. It is 
noteworthy in Table 11.3 that the existing decision theories provide a set of 
criteria (C) for evaluating alternative choices for a given problem. 
 As summarized in Table 11.3, the first two categories of decision 
making, intuitive and empirical, are in line with human intuitive cognitive 
psychology and there is no specific rational model for explaining those 
decision criteria. The rational decision making strategies will be described 
by two subcategories, the static and dynamic strategies and criteria, in 
Sections 11.3.3 and 11.3.4, respectively. The heuristic decision-making 
strategies are frequently used by human beings as a decision maker. Details 
of the heuristic decision-making strategies may be referred to cognitive 
psychology and AI [Matlin, 1998; Payne and Wenger, 1998; Hastie, 2001].           

It is interesting to observe that the most simple decision making theory 
can be classified into the intuitive category, such as arbitrary and preference 
choices based on personal propensity, hobby, tendency, expectation, and/or 
common senses. That is, not necessarily to be an expert, a layperson may still 
be able to make important and perhaps wise decisions every day, even every 
few seconds. Therefore, the elicitation of the most fundamental and core 
process of decision making shared in human cognitive processes is yet to be 
sought. Recursive applications of such a core process of decision making will 
be helpful to solve complicated decision problems in the real-world.  
 
11.3.1.4 The Structure of Rational Decision Making 
 

According to Table 11.3, rational and complex decision making 
strategies can be classified into the static and dynamic categories. Most 
existing decision-making strategies are static because the changes of 
environments of decision makers are independent of the decision makers’ 
activities. Also, different decision strategies may be selected in the same 
situation or environment based on the decision makers’ values and attitudes 
towards risk and their prediction on future outcomes. When the environment 
of a decision maker is interactive with his/her decisions or the environment 
changes according to the decision makers’ activities and the decision 
strategies and rules are predetermined, this category of decision making 
needs are classified into the category of dynamic decisions, such as games 
and decision grids [von Neumann and Morgenstern, 1980; Osborne and 
Rubinstein, 1994; Wang, 2005b/05e]. 
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Table 11.3 
Taxonomy of Strategies and Criteria for Decision Making 

 

No.     Category Strategy Criterion 
1 Intuitive   
1.1  Arbitrary Based on the most easy or familiar choice  
1.2  Preference  Based on propensity, hobby, tendency, or 

expectation 
1.3  Common senses Based on axioms and judgment   
2 Empirical   
2.1  Trial and error Based on exhaustive trial 
2.2  Experiment Based on experiment results 
2.3  Experience Based on existing knowledge 
2.4  Consultant Based on professional consultation 
2.5  Estimation Based on rough evaluation 
3 Heuristic   
3.1  Principles Based on scientific theories  
3.2  Ethics Based on philosophical judgment and belief 
3.3  Representative Based on common rules of thumb 
3.4  Availability Based on limited information or local maximum  
3.5  Anchoring Based on presumption or bias and their 

justification 
4 Rational   
4.1 Static   
4.1.1  Minimum cost Based on minimizing energy, time, money 

4.1.2  Maximum benefit Based on maximizing gain of usability, 
functionality, reliability, quality, dependability   

4.1.3  Maximum utility Based on cost-benefit ratio  
4.1.3.1    - Certainty Based on maximum probability, statistic data 
4.1.3.2    - Risks Based on minimum loss or regret 
    - Uncertainty   
4.1.3.3       - Pessimist Based on maximin 
4.1.3.4       - Optimist Based on maximax  
4.1.3.5       - Regretist Based on minimax of regrets  
4.2 Dynamic   
4.2.1  Interactive events Based on automata 
4.2.2  Games Based on conflict 
4.2.2.1    - Zero sum Based on ∑ (gain + loss) = 0 
4.2.2.2    - Non zero sum Based on ∑ (gain + loss) > 0 
4.2.3  Decision grids Based on a series of choices in a decision grid 
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Definition 11.25 The dynamic strategies and criteria of decision 
making are those that all alternatives and criteria are dependent on both the 
environment and the effect of the historical decisions made by the decision 
maker. 
 

Classic dynamic decision making methods are decision trees 
[Friedman, 1996; Edwards and Fasolo, 2001]. A new theory of decision grids 
is developed in [Wang, 2005b] for serial decision makings. Decision making 
under interactive events and competition is modeled by games [von 
Neumann and Morgenstern, 1980; Osborne and Rubinstein, 1994; Wang, 
2005b/05e]. Wang (2005e) presents a formal model of games, which 
rigorously describes the architecture or layout of games and their dynamic 
properties and behaviors. 

Decision making is the process of constructing the choice criteria (or 
functions) and strategies and using them to select a decision from a set of 
possible alternatives. In this view, existing decision theories are about how a 
choice function may be created for finding a good decision. Different 
decision theories provide different choice functions.  

An overview of the classification of decisions and related rational 
strategies has been provided in Fig. 11.8. It can be seen that games are used 
to deal with the most complicated decision problems, which are dynamic, 
interactive, and under uncontrollable competitions. Decision models may 
also be classified among other points of views such as structures, constraints, 
degrees of uncertainty, clearness and scopes of objectives, difficulties of 
information processing, degrees of complexity, utilities and beliefs, ease of 
formalization, time constraints, and uniqueness or novelty. 
 
 

11.3.2 DECISION MAKING PROCESSES 
 
 Decision making is one of the fundamental cognitive processes 
modeled in LRMB [Wang et al., 2006]. The decision making process can be 
explained based on the OAR model, OAR  = (O, A, R), as developed in 
Section 9.4.2, where O is a given set of objects identified by an abstract 
name, A is a set of attributes for characterizing the object, and R is a set of 
relations between the object and other objects or attributes of them. 
 
11.3.2.1 The Cognitive Process of Decision Making   
 
 On the basis of the LRMB [Wang et al., 2006] and OAR [Wang, 
2007g] models developed in Chapter 9, the cognitive process of decision 
making may be informally described by the following procedures: 
 

    a) To comprehend the decision making problem, and to identify the 
decision goal in terms of an Object (O) and its attributes (A).   
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    b) To search in the abstract layer of LTM for alternative solutions 
(A) and criteria or useful decision strategies (C).  

 c) To quantify A and C, and determine if the search should be going 
on. 

    d) To build a set of decisions by using A and C as obtained in above 
searches. 

    e) To select the preferred decision(s) on the basis of satisfaction of 
decision makers. 

    f) To represent the decision(s) in a new sub-OAR model. 

    g) To memorize the sub-OAR model in LTM. 
 
 A detailed cognitive process model of decision making is shown in Fig. 
11.9, where a double-ended rectangle block represents a function call that 
involves a predefined process as provided in the LRMB model. 
 The first step is to understand the decision-making problem. According 
to the cognitive process of comprehension [Wang and Gafurov, 2003], the 
object (goal) of decision will be identified, and an initial sub-OAR model 
will be created. The object, its attributes, and known relations are retrieved 
and represented in the sub-OAR model. Then, alternatives and strategies are 
searched, which result in two sets of Ai and C, respectively. The results of 
search will be quantified in order to form a decision as defined in Eq. 11.16, 
i.e., d = f: A × C → A, where  i ∈ I,  A ⊆ S, and A ≠ ∅.   
 When the decision d is derived, the initial sub-OAR model will be 
updated with d and related information. Then, the decision maker may 
consider whether the decision is satisfied according to the current states of 
nature and personal judgment. If yes, the sub-OAR model for the decision is 
memorized in the LTM. Otherwise, the decision-making process has to be 
repeated until a satisfied decision is found, or the decision maker chooses to 
quit with no satisfied decision. During the decision making process, the 
mental states of the decision maker, the global OAR model in the brain, 
changes from time to time. Although the state of nature will not be changed 
in a short period during decision making, its perception may be changed with 
the effect of the updating OAR model. 

The process of decision making is a higher-layer cognitive process 
defined at Layer 6 of LRMB. The decision making process interacts with 
other processes underneath this layer such as Search, Representation and 
Memorization; and the processes at the same layer such as Comprehension, 
Qualification, Quantification, and Problem solving. Relationships between 
the decision-making process and other related processes have been described 
in Section 9.3.1 [Wang et al. 2006]. 

© 2008 by Taylor & Francis Group, LLC



884   Part III  Organizational Foundations of SE 
 

  

Search (Alternatives 
of choices - A) 

Representation 
(OAR) 

Begin 

Identify 
(Object - O)

Identify 
(Attributes - A)

Search (Criteria of 
choices - C) 

Evaluate 
(Adequacy of C) 

Select (Decision - d)
d = f (A, C) 

Evaluate 
(Satisfaction of d)

Memorize 
(OAR) 

End 

Yes 

No 

Yes 

Yes 

No 

Quantify (A) Quantify (C) 

No Evaluate 
(Adequacy of A)

 
 

Figure 11.9 The cognitive process of decision making 
 
11.3.2.2 Formal Description of the Decision Making Process   
 
 On the basis of the cognitive model of decision making as described in 
Fig. 11.9, a rigorous cognitive process can be specified using RTPA [Wang, 
2002a]. RTPA is designed for describing the architectures, static, and 
dynamic behaviors of software systems as well as human cognitive behaviors 
and sequences of actions.  
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 The formal model of the cognitive process of decision making in RTPA 
is presented in Fig. 11.10. According to the LRMB and OAR models of 
internal knowledge representation in the brain, the result of a decision in the 
mind of the decision maker is a new sub-OAR model, or an updated version 
of the global OAR model of knowledge in the human brain. 
 

The Decision Making Process 
 

Decision_Making (I:: OS; O:: OAR(dS)ST)  
{ //  I. Form decision goal(s)  

 Identify (O)                 // The decision making goal 
 Identify (A)                 // Sub decision making goals 

→ {  
Satisfication of As   

R
=

T

F
(  Search (A) 

                                                  Quantify (A) 
                                                  Evaluate (A) 
                                               ) 

     || 
Satisfication of C   

R
=

T

F
   (  Search (C) 

                                                  Quantify (C) 
                                                  Evaluate (C) 
                                               ) 
    }  
   
//  II. Select decisions    
→ d = f: A × C → A                     // Refers to Eq. 11.6  

 Evaluate (d) 

→ (  s(d) ≥ k                           // k: a satisfaction threshold     
            Memorize (OARST) 
           → ⊗ 
      |  ~                                     // Otherwise 

           →  (   GiveUpBL = F           

                         DMP_Process(I:: OS; O:: OAR(d)ST) 
                  |  ~                                 
                        → ⊗ 
                 ) 
      ) 
 
//  III. Represent decisions 
    → R = <d, A, C>                  // Form new relation on d 
    → OARST = <O, A, R>        // Form new OAR model for d  
} 

 
Figure 11.10 The RTPA definition of the cognitive process of decision making 
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As shown in Fig. 11.10, a decision-making process is started by 
defining the goal of decision in terms of the object and attributes. Then, an 
exhaustive search of the alternative decisions (A) and useful criteria (C) are 
carried out in parallel. The searches are conducted in both the brain of a 
decision maker internally, and through external resources based on the 
knowledge, experiences, and goal expectation. The results of searches are 
quantitatively evaluated until the searching for both A and C is satisfied. If 
nonempty sets are obtained for both A and C, the n decisions in d have 
already existed as determinable by Eq. 11.17.  

 
One or a number of suitable decisions are selected from the set of d by 

decision makers via evaluating the satisfaction levels. Satisfied decisions will 
be represented in a sub-OAR model, which will be added to the entire 
knowledge of the decision maker in LTM by the process of memorization.  
 
 
11.3.3 STATIC DECISION MAKING STRATEGIES 
 
 In the previous section it has been seen that the strategies and selection 
criteria are vital in a decision making process, particularly for making 
rational and complex decisions [Simon, 1960; Wang and Ruhe, 2007]. The 
rational strategies and criteria for decision making can be classified into 
static and dynamic decisions. This section describes common static decision 
making strategies and their evaluation criteria. The dynamic ones will be 
discussed in the following sections.    
 

Definition 11.26 A static strategy and criterion of decision making is 
an evaluation and selection method for which all alternatives A and criteria C 
are determinable and only one optimal decision ai ∈A is expected for a given 
situation. 
  
 Let us consider three typical static decision making strategies known as 
decision making under certainty, risks, and uncertainty. The latter may be 
further divided into the pessimistic, optimistic, and regret decision making 
under uncertainty according to Fig. 11.8.               
  

It is noteworthy that practical decisions for a given problem are usually 
made under partial certainty, empirical estimation, or heuristic prediction, 
because not all required information is available, no suitable decision 
strategy is aware of, and/or no acceptable cost to thoroughly search all 
possible alternatives. This observation can be formally described as the 
principle of bounded rationality [Simon, 1957] in decision making.   
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A convenient technique to represent the conditions for a decision is 

using a matrix called payoff table, which lists the value of utilities or costs of 
all alternative decisions against different situations known as the states of 
nature.                      

 
 Definition 11.27 A payoff table is a 2-D matrix as shown in Table 11.4 
that quantifies the utility, value, or level of satisfaction, uij, for each given 
pair of alternative ai and situation sj, where 1 ≤ i ≤ n, and 1 ≤ j ≤ k. 
  

Table 11.4 
The Structure of a Payoff Table  

 

Situation (S) 
Alternative (A)      

s1 s2 ... sk 

a1 u11 u12 ... u1k 
a2 u21 u22 ... u2k 
... ... ... ... ... 
an un1 un1 ... unk 

 
 Example 11.1 Consider a decision making problem for a software 
engineering project. This project is designed with three alternative 
Architectures a1 to a3. Each architecture would be implemented in different 
Results s1 to s4 that are predictable or unpredictable in various situations.  

The payoff table of this project with utilities (gains) in k$ can be 
described as shown in Table 11.5.  
 

Table 11.5 
The Payoff Table of a Software Engineering Project  

 

Situation (S) 
Alternative (A) Result 1 

(s1) 
Result 2 

(s2) 
Result 3 

(s3) 
Result 4 

(s4) 

Architecture (a1) 100 10 40 60 

Architecture (a2) -10 50 200 30 

Architecture (a3) 50 20 5 130 

 

Lemma 11.4 The principle of bounded rationality states that a decision-
maker in a real-world situation will never have all information necessary 
for making an optimal decision. 
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The following subsection will take the above software engineering 
project as an example to illustrate how a wide range of decision making 
strategies and criterion can be used in the decision making process. 

 
11.3.3.1 Decision Making under Certainty   
 

Decision making under certainty is an ideal situation where all 
necessary information and strategies are available, and the outcomes are 
objectively determinable.     

 
 Definition 11.28 A decision making under certainty dmax or dmin is a 
selection of an certain alternative ai among A that meets a given criterion C 
which is either the maximum of utility or profit max(ui), and the minimum of 
costs or effort min(ei), i.e.: 
 
    dmax = f: A × C → A 
                                            = {ai  | max (ui) ∧ ai ∈ A}       (11.18a) 
or 
 
      dmin = f: A × C → A 
                                            = {ai  | min (ei) ∧ ai ∈ A}      (11.18b) 
  
 Example 11.2 Consider the software engineering project given in 
Example 11.1. When the criterion C is to take the maximum utility, and the 
project will definitely achieve Result 4 under the certain situation, which 
system architecture should be selected for this project?    
  

The answer under the given conditions is direct forward according to 
Eq. 11.18a since the criterion C is to maximize the project gain, i.e.:     
 
        dmax = f: A × C → A 
                                       = {ai | max (u14, u24, u34)} 
                                       = {a3 | u34 = 130} 
 
 The solution indicates that the optimal decision for this given project 
with the maximum criterion is (a3, s4), which will result in a maximum 
project gain umax = u34 = $130,000. 
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11.3.3.2 Decision Making under Uncertainty   
 
 Definition 11.29 A decision making under uncertainty is a selection of 
an alternative ai among A that meets a given criterion C, when the 
probability of each possible situation is unknown.    

 
The strategies for decision making under uncertainty can be divided 

into three categories known as the optimistic, pessimistic, and regret 
decisions.     
 
11.3.3.2.1 Optimistic Decision Making under Uncertainty   
 

When the occurrence probabilities of possible future situations or states 
of the nature are unknown, one of the solutions in decision making is based 
on an optimistic or aggressive strategy to try to gain the maximum utility or 
to spend the minimum cost.               

  
 Definition 11.30 An optimistic decision making under uncertainty 
dmaximax or dminimin yields a decision with the maximum-maximum strategy for 
utility or a minimum-minimum strategy for cost, respectively, i.e.:   
 

      dmaximax = f: A × C → A 
                                   = {ai  | max (max (uij  | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)}  (11.19a) 
or 
 
      dminimin  = f: A × C → A 
                                   = {ai  | min (min (uij  | 1 ≤ i ≤ n) | 1 ≤ j ≤ k )}  (11.19b) 
 
 Example 11.3 Consider the software engineering project given in 
Example 11.1. A maximax or an optimistic uncertainty decision can be made 
based on the project gains for different architecture-result combinations as 
shown in Table 11.6.   
 

Table 11.6 
Maximax Decision Making for the Software Engineering Project  

 

Situation (S) 
Alternative (A) Result 1 

(s1) 
Result 2 

(s2) 
Result 3 

(s3) 
Result 4 

(s4) 

Criterion  
(maximax 

utility) 

Architecture (a1) 100 10 40 60  

Architecture (a2) - 10 50 200 30 u23 = $200k  

Architecture (a3) 50 20 5 130  
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According to Eq. 11.19a, the maximax decision under uncertainty is as 
follows:     
 
       dmaximax = f: A × C → A 
                                   = {ai  | max (max (uij  | 1 ≤ i ≤ 3) | 1 ≤ j ≤ 4)} 
                                   = {ai  | max (u11, u23, u34)} 
                                   = {a2  | u23 = 200} 
 
 The solution indicates that the optimal decision for this given project 
with the maximax criterion is (a2, s3) that will result in a maximum project 
gain umax = u23 = $200,000. 
  

It is noteworthy that, by choosing this solution, there is a risk to lose 
$10,000 if the uncertain project outcomes turn out to be Result 1 with u21. A 
more conservative but safe decision without any loss for this project may be 
made based on another decision strategy as discussed in the next subsection.                    

 
11.3.3.2.2 Pessimistic Decision Making under Uncertainty   
 

When the occurrence probabilities of possible future situations or states 
of the nature are unknown, another solution in decision making is based on a 
conservative or pessimistic strategy to try to gain the maximum utility or to 
spend the minimum cost.               
 

Definition 11.31 A pessimistic decision making under uncertainty 
dmaximin or dminimax yields a decision with the maximum-minimum strategy for 
utility or a minimum-maximum strategy for cost, i.e.:   
 
       dmaximin = f: A × C → A 
                                   = {ai  | max (min (uij  | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)}  (11.20a) 
 
or 
 
      dminimax  = f: A × C → A 
                                   = {ai  | min (max (uij  | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)}  (11.20b) 

 
 Example 11.4 Consider the software engineering project given in 
Example 11.1. A maximin or a pessimistic uncertainty decision can be made 
based on the project gains for different architecture-result combinations as 
shown in Table 11.7.   
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Table 11.7 
Maximin Decision Making for the Software Engineering Project  

 

Situation (S) 
Alternative (A) Result 1 

(s1) 
Result 2 

(s2) 
Result 3 

(s3) 
Result 4 

(s4) 

Criterion  
(maximin 

utility) 

Architecture (a1) 100 10 40 60 u12 = $10k 

Architecture (a2) - 10 50 200 30  

Architecture (a3) 50 20 5 130  

  
According to Eq. 11.20a, the maximin decision under uncertainty is as 

follows:     
 

       dmaximax = f: A × C → A 
                                   = {ai  | max (min (uij  | 1 ≤ i ≤ 3) | 1 ≤ j ≤ 4)} 
                                   = {ai  | max (u12, u21, u33)} 
                                   = {a1  | u12 = 10} 
 
 The solution indicates that the conservative decision for this given 
project with the maximin criterion is (a1, s2), which will result in a maximin 
project gain umax = u12 = $10,000. 
 It is noteworthy that, by choosing this solution, there is a chance to lose 
the opportunity gain of $200,000 if the uncertain project outcomes turn out to 
be Result 3 with u23. However, in any case, this decision can prevent the 
project from a negative result.  
 
11.3.3.2.3 Minimum Regret Decision Making under Uncertainty   
 
 As discussed in the proceeding subsection, when the conservative 
strategy is taken, a decision under uncertainty may result in a loss of a better 
opportunity. The loss of an opportunity gain or an opportunity save of costs 
is called a regret. A strategy exists for minimizing the regret in decision 
making under uncertainty.                    
 
 Definition 11.32 A regret rij is the loss of the best opportunity by 
selecting a conservative decision under uncertainty, i.e.:   
 
           rij  = umaxj - uij , 1 ≤ j ≤ k, 1 ≤ i ≤ n      (11.21) 
 
 Definition 11.33 A minimum regret decision making under uncertainty 
dminimax yields a decision with the minimum-maximum regret strategy for 
utility gain or cost save, i.e.:   
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      dminimax  = f: A × C → A 
                                   = {ai  | min (max (rij  | 1 ≤ i ≤ n)}                      (11.22) 
 
 Example 11.5 Consider the software engineering project given in 
Example 11.1. A minimax regret decision under uncertainty can be made 
based on the regret rij determined by Eq. 11.22 for different architecture-
result combinations as shown in Table 11.8.   

 
Table 11.8 

Minimax Regret Decision Making for the Software Engineering Project  
 

Situation (S) 
Alternative (A) Result 1 

(s1) 
Result 2 

(s2) 
Result 3 

(s3) 
Result 4 

(s4) 

Criterion  
(minimax 

regret) 

Architecture (a1) 0 40 160 70  

Architecture (a2) 110 0 0 100 r21 = $110k  

Architecture (a3) 50 30 195 0  

umaxj 100 50 200 130  

  
According to the above regret payoff table and Eq. 11.22, the minimax 

regret decision under uncertainty is as follows:     
 
       dminimax  = f: A × C → A 
                                   = {ai  | min (max (rij  | 1 ≤ i ≤ n)} 
                                   = {ai  | min (r13, r21, r33)} 
                                   = {a2  | r21 = 110} 
 
 The solution indicates that the decision for this given project with the 
minimax regret criterion under uncertainty is (a2, s1), which will result in a 
minimum regret for possible lost opportunities rmin  = r21 = $110,000. 
 
11.3.3.3 Decision Making under Risks 
 

The previous subsections deal with decisions where the probabilities of 
future situations are uncertain or their probabilities are assumed to be 
identical. When the future situations or the states of the nature for a given 
problem are individually predictable, i.e., the probabilities or likelihoods are 
known, the risk for a decision can be better estimated. In this case, decision 
making process will be directed based on the weights of probabilities for 
each payoff.            
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 Definition 11.34 A decision making under risk is a selection of an 
alternative ai among A that meets a given criterion C, when the likelihood or 
probability of each possible situation is known or can be predicated.    

 
Decision making under risk can be carried out by two strategies based 

on the analysis of the maximum expected utility or maximax utility 
probability.    
 
11.3.3.3.1 Decision Making under Risk with Maximum Expected Utility    
 
 The criterion for a decision making under risk can be based on the 
maximum expected utility of alternatives. 
 
 Definition 11.35 An expected utility EU is a weighted sum of all 
utilities uj for each decision alternative based on known probabilities for each 
possible situation pj, i.e.:   
 

                                     
=1

= ,  1
k

i ij j
j

EU  u   p i n≤ ≤∑ i        (11.23) 

 
 Definition 11.36 A decision making under risk with maximum expected 
utility dmaxEU yields a decision with the maximum expected utilities of all 
alternatives, i.e.:   
   

                  dmaxEU  = f: A × C → A 
                                     = {ai  | max (EUi  | 1 ≤ i ≤ n)}     (11.24) 
 
 Example 11.6 Consider the software engineering project given in 
Example 11.1. A decision under risk with maximum expected utility can be 
made based on the EUs determined by Eq. 11.23 for different decision 
alternatives as shown in Table 11.9.   
 

Table 11.9 
Decision Making based on the Maximum Expected Utility for  

the Software Engineering Project  
 

Situation (S) 
Alternative (A) Result 1

(s1)  
[p1 = 0.2]

Result 2
(s2) 

[p2 = 0.5]

Result 3
(s3) 

[p3 = 0.2]

Result 4
(s4) 

[p4 = 0.1]

 
Expected 

Utility 
(EU)  

Criterion  
(Maximum 

EV) 

Architecture (a1) 100 10 40 60 EU1 = 39  

Architecture (a2) - 10 50 200 30 EU2 = 66 EUmax = 66 

Architecture (a3) 50 20 5 130 EU3 = 34  
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After the expected utilities for all three alternatives are obtained as 
shown in Table 11.9, the best decision with the maximum expected utility 
can be determined according to Eq. 11.24 as follows:     
 
                       dmaxEU  = f: A × C → A 
                                   = {ai  | max (EUi  | 1 ≤ i ≤ n)}                                    
                                   = {ai  | man (EU1, EU2, EU3)} 
                                   = {a2  | EU2 = 66} 
 
 The solution indicates that the decision under risk for this given project 
with the maximum expected utility criterion is Architecture a2 that will result 
in a maximum weighted sum EU2  = $66,000. 
 Decision making under risk with the maximum expected utility dmaxEU 
can be described by a backward-inducted decision tree as shown in Fig. 
11.11. The decision tree provides another approach to derive the maximum 
expected utility in two steps [Friedman, 1996]. First, the individual weighted 
utilities of all the alternatives are calculated according to Eq. 11.23, which 
yields EUi, 1 ≤ i ≤ 3, represented by the three middle nodes. Then, the 
maximum utility EUmax is selected from these three middle nodes according 
to Eq. 11.24, which yields node A represented by decision d2 with EUmax = 
66.   
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 d2 

 d3 

p1 = 0.2 
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p4 = 0.1 
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 EU3 = 34

d2 | EUmax=66 

 

Figure 11.11 A decision tree based on the strategy of maximum expected 
utility 
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11.3.3.3.2 Decision Making under Risk with Maximax Utility Probability    
 
 Observing the strategy presented in Section 11.3.3.3.1, it can be seen 
that the decision based on expected values are dominated by the largest 
probability of situations or the states of nature. Therefore, a simplified 
method of decision making under risk with maximum probability can be 
derived without calculation of the expected values.     
 
 Definition 11.37 A decision making under risk with maximum utility of 
maximum probability dmaximax-p yields a decision with the maximum utility of 
the maximum probability of outcome of all alternatives, i.e.:   
   
            dmaximax-p = f: A × C → A 
                          = {ai  | max (uij  | (max (pj  | 1 ≤ j ≤ k)), 1 ≤ i ≤ n}    (11.25) 
 
 Example 11.7 Consider the software engineering project given in 
Example 11.1. A decision under risk with maximum utility of maximum 
probability can be made based on Eq. 11.25 for different decision alternatives 
as shown in Table 11.10.   
 

Table 11.10 
Decision Making based on the Maximax Utility Probability for  

the Software Engineering Project  
 

Situation (S) 
Alternative (A) Result 1

(s1)  
[p1 = 0.2]

Result 2
(s2) 

[p2 = 0.5]

Result 3
(s3) 

[p3 = 0.2]

Result 4
(s4) 

[p4 = 0.1]

Criterion 
(Maximax  utility) 

 

Architecture (a1) 100 10 40 60  

Architecture (a2) - 10 50 200 30 u22 = 50 

Architecture (a3) 50 20 5 130  

  
According to Eq. 11.25, the expected values for all three alternatives 

are obtained as shown in Table 11.10. The best decision with the maximum 
expected values can be determined as follows:     
 
        dmaximax-p = f: A × C → A 
                               = {ai  | max (uij  | (max (pj  | 1 ≤ j ≤ k)), 1 ≤ i ≤ n} 
                               = {ai  | max (u12, u22, u32)} 
                               = {a2  | u22 = 50} 
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 The solution indicates that the decision under risk for this given project 
with the maximax probability based utility is Architecture a2 that will result 
in a maximum possible utility u22  = $50,000. 
 
 
11.3.4 GAME THEORY 
 

In Section 11.3.3 we explored a wide range of the decision making 
strategies known as the static strategies, because, although the environment 
of decision makers may change, its changes are independent of the decision 
makers’ activities or expectations. Also, different decision strategies may be 
selected in the same situation or environment based on the decision makers’ 
values and attitudes towards risk and their predictions on future outcomes.   

In classic decision and operations theories [Bronson and Naadimuthu, 
1997], although the states of nature or environment may be both 
deterministic or nondeterministic, its state of nature as an outcome of the 
environment will not be changed or affected by the decision maker’s actions. 
In other words, there are natural rules but no adaptive competitors in the 
static decision making processes. However, more decision making situations 
are dynamic rather than static, where the decision maker is under competition 
in games. 
 

Definition 11.38 A game is a decision process under competition 
where opponent players or opponent groups of players compete for the 
maximum gain or a success state in the same environment according to the 
same predetermined rules of the game. 
 

Games traditionally deal with probability-based static payoff tables. 
However, this method is found inadequate to deal with the dynamic 
behaviors of games and to rigorously determine the outcomes of games. This 
section presents a formal treatment of games by a set of mathematical models 
on both of the layout and behaviors of games [Wang, 2005e]. 
 
11.3.4.1 The Formal Model of Games 
 

The architecture or layout of a game can be formally described by the 
following mathematical model, where the behaviors of the game are modeled 
by a series of matches between the players.  

  
Definition 11.39 A formal game G is a 4-tuple, i.e.: 

 
   G = (P, D, M, S)         (11.26) 

where     
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      •  P is a finite set of players P = {p1, p2, …, pn}, and n is the number 
of players, n ≥ 2. 

 
• D is a finite set of decisions for certain moves, D = {d1, d2, …, 

dk}, k ≥ 1. All players in G have the same number of alternative 
decisions.      

 
     • M is a finite set of matches between player, M = {m1, m2, …, mq}, 

q ≥ 1.      
     
     • S is a finite set of cumulated scores for each players, S = {s1, s2, 

…, sn}.     
 

For a generic game, the matches, which represent the behaviors of the 
game, can be further described below.    

 
Definition 11.40 A match m ∈ M of a game G = (P, D, M, S) is a 

function that maps a set of n decisions made by each player into a set of n 
scores S for each of the players, i.e.: 
 

                   m = fm : D1 × D2 × … × Dn → S       (11.27) 
 
A match corresponds to an individual block preset in a given payoff 

table of the game. A set of matches in the given game is constrained by a set 
of generic rules [Wang, 2005e]. 
 

 

 

Lemma 11.5 In a formal game G = (P, D, M, S), the following generic 
rules for matches should be obeyed in order to yield stable and 
predictable game behaviors and scores: 
 

  Rule (a): All players are supposed to pursue the maximum gains 
on the basis of the same predefined payoff table.  

 
  Rule (b): Whenever the first player initiates a move in a specific 

set of matches, the remaining moves (actions) of all 
players in the set of matches are determined according to 
Rule (a).  

 
  Rule (c): Each match preset in the payoff table may only be used 

once in the set of matches. 
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The above rules form the constraints of formal games and make a game 
to be deterministic and its outcomes of all sets of matches are predictable. 
Rules (a) and (b) guarantee that all matches of a game are determinable on 
the basis of the given payoff table. Rule (c) assurances that a set of matches 
in a game is finite and the number of matches in the set is a constant.      
 

 
Example 11.8 An n × k = 2 × 2 game G1 = (P, D, M, S) can be formally 

described according to Definition 11.39 as follows: 
 
      •  Players  P = {a, b}, n = 2 

• Decisions D = {d1, d2}, k = 2      
     • Scores  S = {sa, sb}     
     • Matches  M = {m11, m12, m21, m22}, nm = kn = 22 = 4 

 
where letting a1 and a2 be the alternative decisions of player A, and b1 and b2 
the alternative decisions of player B, the four matches can be determined 
according to Eq. 11.31 as shown below: 
 

mab = Da : Db → S(sa : sb) 
m11 = a1 : b1 → 0 : 0 
m12 = a1 : b2 → -1 : 1 
m21 = a2 : b1 → -2 : 2 
m22 = a2 : b2 → 3 : -3 

 
The above matches can be represented by a payoff table as shown in 

Table 11.11.         
 

Table 11.11 The Payoff Table of M = {m11, m12, m21, m22} 
 

 b1 b2 
a1 0 : 0 -1 : 1 
a2 -2 : 2 3 : -3 

  

 

Lemma 11.6 The number of individual matches nm in a set of matches for 
a given game G = (P, D, M, S) is determined by:  

 
            nm  = kn              (11.28) 

 
where n is the number of players in a game, and k is the number of 
alternative decisions (moves) defined in the game for each player.  
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This is the static architecture or layout of the game G1. Its dynamic 
behaviors on the basis of the layout will be discussed in the following 
subsections. 
 
11.3.4.2 Properties of Games 
 

This subsection analyzes the common properties of formal games that 
may be interesting for all players. The properties of formal games can be 
used to predicate possible outcomes of games and to select optimal strategies 
or moves in games.         

When a game G is set according to Definitions 11.39 and 11.40, the 
properties of G, such as the number of matches, the number of sets of 
matches, and the winner, are determined. Game theory may be used to 
predict and select the optimal combination of individual strategies. However, 
the score for any individual strategy in G has already been fixed according to 
the payoff table. 
 

 
According to Theorem 11.3 [Wang, 2005e], game theory may be used 

to predict and select the optimal combinations of individual strategies for a 
player in a given game G. However, the optimal strategies may not 
necessarily result in a win situation rather than a minimal loss in some cases, 
because the scores for individual moves and their combination strategies in G 
are determined by the settings of the game. 

 

 
The objective of decision makers in a game is to make the score of a 

player to the maximum. However, according to Corollary 11.2, max(si) may 
not mean a winning score due to the settings of a given game.  

 

            The 38th Principle of Software Engineering 
 

Theorem 11.3 The properties of games state that a formal game G is 
deterministic and conservative. That is, once the game G = (P, D, M, S) is 
set, the properties of G are determined and predictable, but not 
changeable by any player in the game. 
 

 

Corollary 11.2 The outcomes of a formal game G = (P, D, M, S) are 
constrained by the settings of the game. Although an individual strategy 
may result in the maximum gain, the final score of a player in a whole set 
of games is fixed by the payoff table in a particular match, which may not 
necessarily result in a win situation. 
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Definition 11.41 A set of matches is a series of matches in a game G = 
(P, D, M, S) in which all players may use each pair of their alternative 
strategies only once. 

 

 

 
Lemmas 11.7 through 11.8 can be used to determine the properties and 

attributes of any given game. The attributes of typical games can be 
predicated using theses lemmas as shown in Table 11.12. 
 

Table 11.12 Attributes of Typical Games 
 

n k  ⇒  ( nm = kn  |  ns = n • k  |  q = nm nm = nkn+1  ) 
 1 2 3 4 

2 1 2 2 4 4 16 9 6 54 16 8 128 
3 1 3 3 8 6 48 27 9 243 64 12 768 
4 1 4 4 16 8 128 81 12 972 256 16 4096 
5 1 5 5 32 10 320 243 15 3645 1024 20 20480 

 
It can be seen in Table 11.12 that the complexity of games is 

explosively increasing. This explains why games are so complicated and 
difficult to be modeled and formally treated on the basis of conventional 
game theory [von Neumann and Morgenstern, 1980; Osborne and 

 

Lemma 11.7 The total sets of matches ns in a game G = (P, D, M, S), in 
which all players may use each pair of their alternative strategies only 
once determined according to the current move of opponent and the rule 
of the maximum gains based on the given layout of the game, can be 
determined by:   
 

                ns = n • k            (11.29) 
 

where k is the number of alternative decisions (moves) defined in the 
game, and n is the number of players.    
  

 

Lemma 11.8 The total number of matches q of a game G = (P, D, M, S) 
is determined by the number of sets of matches nm and number of 
matches in each set ns, i.e.: 
 

             

= s m

n

n+1

q  n • n

 nk • k

n • k  

=

=

          (11.30) 
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Rubinstein, 1994; Bronson and Naadimuthu, 1997]. For example, when the 
number of players n = 5 and the number of alternative strategies of each 
player k = 4, the total number of matches of the game may easily exceeded 
20,000. However, the formal game theory developed in this section is able to 
analyze any games no matter how large n and k would be based on the 
generic mathematical model of abstract games [Wang, 2005e].                

Since games with multiple players can be divided into a number of 
pairwise games, the following sections will focus on binary games as shaded 
in Table 11.12.     
      

Definition 11.42 A binary game G = (P2, D, M, S2) is a game with only 
two players n = 2, where P2 = {p1, p2} and S2 = {s1, s2}. It will simply called 
a game in the remainder of this section.    
 
 The attributes of binary games are shown in the first row of Table 
11.12. The properties and dynamic behaviors of binary games can be 
analyzed in the categories of zero-sum and nonzero-sum games. 
 
11.3.4.3 Behaviors of Zero-Sum Games 

 
Definition 11.43 A zero-sum game is a game where the total scores of 

all n players in the game is zero, i.e.: 
 

       
1

0
n

i
i

s
=

=∑           (11.31) 

 
In the case of a binary game, Eq. 11.31 can be expressed as follows: 
 

    s1  = - s2           (11.32) 
 

where Eq. 11.32 models a decision making situation that is known as one 
player’s gain is another’s loss.         

 

 
Example 11.9 The game G1 = (P, D, M, S) as shown in Example 11.8 

and Table 11.11 is a zero-sum game. The properties and behaviors of G1 can 
be formally analyzed according to Eqs. 11.31 through 11.33 as follows: 

 

Lemma 11.9 The condition for a zero-sum game is iff that each of the nm 
individual matches is zero-sum, i.e.: 

 
             0,  1q ms q n= ≤ ≤             (11.33) 
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The properties of game G1 = (P, D, M, S) are: 
 
            • Number of sets of matches: ns = n • k = 2 • 2 = 4 
            • Number of matches in a set: nm = kn = 22 = 4 
            • Total number of matches in the game:  
          3 = 2 2 16n+1

s mq  n • n n • k  •= = =  
 

The behaviors of game G1 = (P, D, M, S) can be described by the four 
sets of matches as illustrated in Fig. 11.12. 
  

               

1:1 3: 3 2:2 0:0

2:2 0:0 1:1 3: 3

0:0 1:1

1 2 2 1 1

2 1 1 2 2

1 1

                                                        :

Set 1: 0 : 0

Set 2: 0 : 0

Set 3: 

a bs s

a b a b a

a b a b a

b a

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯ →

⇒

⇒
3: 3 2:2

3: 3 2:2 0:0 1:1

2 2 1

2 2 1 1 2

0 : 0

Set 4: 0 : 0

b a b

b a b a b

− −
⎯⎯ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

⇒

     

 
Figure 11.12 Sets of matches in the zero-sum game G1 
 

 

 
According to Corollary 11.3, the results of all possible sets of matches 

for a given zero-sum game can be predicated using Eq. 11.34. For instance, 
the final score of Example 11.9 can be calculated according to Eq. 11.34 as 
follows:  

   
Corollary 11.3 The scores of a 2 × k formal game G, sa : sb, is 
predetermined by the settings of the payoff table, i.e.: 

 

                
=1 =1 =1 =1

=1 =1 =1 =1

 :  = ( ) : ( )

( ) : (- )

ij ij

ij ij

k k k k
a b

a b
i j i j

k k k k
a a

i j i j

s s s s

s s=

∑∑ ∑∑

∑∑ ∑∑
          (11.34) 

 
where k is the number of alternative decision strategies and k is the same 
for all players.  
 

 

Lemma 11.10 The final scores of all sets of matches of formal games G 
are the same, no matter who moves first and which strategy (decision 
alternative) is selected for the first move. 
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11 12 21 22

11 12 21 22

=1 =1 =1 =1
:  = ( ) : ( )

( ) :

  ( )

(0 1 2 3) :

  (0 1 2 3)

0 : 0

ij ij

k k k k
a b

a b
i j i j

a a a a

b b b b

s s s s

s s s s

s s s s

= + + +

+ + +

= − − +

+ + −

=

∑∑ ∑∑

 

 
Example 11.10 For a 2 × 3 game G2 = (P, D, M, S) with the following 

payoff table, try to determine its properties and behaviors. 
 

Table 11.13 
The Payoff Table of G2 = (P, D, M, S) 

 

 b1 b2 b3 
a1 0 : 0 100 : -100 200 : -200 
a2 -300 : 300 0 : 0 -100 : 100 
a3 500 : -500 -200 : 200 0 : 0 

  
The properties of G2 = (P, D, M, S) are: 
 

            • Number of sets of matches: ns = n • k = 2 • 3 = 6 

            • Number of matches in a set: nm = kn = 32 = 9 

            • Total number of matches in the game:  
          3= 2 3 54n+1

s mq  n • n n • k  •= = =  
 

The above properties can also be obtained from Table 11.13.  
According to Corollary 11.3, the final scores of G2 = (P, D, M, S) are as 

follows:  
 

     
11 12 13 21 22 23 31 32 33

11 12 13 21 22 23 31 32 33

=1 =1 =1 =1
 :  = ( ) : ( )

( ) :

  ( )

(0 100 200 300 0 100 500 200 0) :

  (0 100 200 300 0 100 500 2

ij ij

k k k k
a b

a b
i j i j

a a a a a a a a a

b b b b b b b b b

s s s s

s s s s s s s s s

s s s s s s s s s

= + + + + + + + +

+ + + + + + + +

= + + − + − + − +

− − + + + − +

∑∑ ∑∑

00 0)

200 : -200

+

=
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The behaviors of G2 = (P, D, M, S) can be modeled by the 54 detailed 
matches in the following 6 sets as shown in Fig. 11.13.    

 

0:0 500:-500 -200:200 100:-100

200:-200 0:0 -300:300

1 1 3 2 1

3 3 2 1

                                                              :

Set 1: 

           ,  ,  

 

a bs s

a b a b a

b a a b

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

0:0 -100:100

-300:300 500:-500 -200:200 100:-100

0:0 200:-200 0:0

2 2 2 3

2 1 3 2 1

1 1 3 2 2

          ,                200 : -200

Set 2: 

           , ,  ,  

a b a b

a b a b a

b a b a b

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

-100:100 0:0

-200:200 100:-100 0:0 500:-500

0:0 200:-200 300:300

2 3 3 3

3 2 1 1 3

3 1 2 1

           ,                200 : -200

Set 3: 

           ,  ,  

 

a b a b

a b a b a

b a a b

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯→

⇒

0:0 -100:100

500:-500 -200:200 100:-100 0:0

-300:300 -100:100 0:0

2 2 2 3

1 3 2 1 1

2 3 2 2

          ,                200 : -200

Set 4: 

          ,  ,  

    

a b a b

b a b a b

a b b a

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

200:-200 0:0

100:-100 0:0 500:-500 -200:200

0:0 300:300 200:-200

3 1 3 3

2 1 1 3 2

2 1 3 1

       ,                200 : -200

Set 5: 

           ,  ,  

     

b a b a

b a b a b

a b b a

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⇒

-100:100 0:0

200:-200 0:0 500:-500 -200:200

100:-100 0:0 -300:300

3 2 3 3

3 1 1 3 2

1 3 3 1 2

      ,                200 : -200

Set 6: 

           , ,  ,  

    

b a b a

b a b a b

a a b b a

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⇒

0:0 -100:100
2 2 3 2       ,                200 : -200b a b a⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⇒

 

 
Figure 11.13 Sets of matches of the 2 × 3 zero-sum game G2  

 

 
Therefore, the final score predicated for Example 11.9, sa : sb = 0 : 0, 

shows a tied game; while that of Example 11.10, sa : sb = 200 : -200, indicates 
that Player A wins. 

 

Corollary 11.4 The scores of a given game G, sa : sb, can be evaluated as 
follows: 
 

                         
 

 

: Player A won

 = : Tied

: Player B won

a b

a b

a b

s s

s s

s s

⎧⎪ >⎪⎪⎪⎪⎨⎪⎪⎪ <⎪⎪⎩

          (11.35) 
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11.3.4.4 Behaviors of Nonzero-Sum Games 
 
A more general type of games is nonzero-sum games, where all players 

involved share a certain pie with a fixed size. From this view, the zero-sum 
game discussed in previous subsection is a special case of nonzero-sum 
games where the size of the pie is zero.                
  

Definition 11.44 A nonzero-sum game is a game where the total scores 
of all players in the game is a positive nonzero value, i.e.: 

 

             
1

0
n

i
i

s
=

>∑          (11.36) 

 
A group on a common project or a set of partners bidding for a contract 

is typical examples of nonzero-sum games.   
 The most interesting property of decision making in nonzero-sum 
games is that there is an ideal state of result known as the win-win situation.          
 

Definition 11.45 A win-win game is a game in which all players gain a 
satisfied score constrained by Eq. 11.36. 

 

 
According to Lemma 11.11, if all the competitive players in a nonzero-

sum game are coordinated, i.e., a superset of partnership is established in the 
game, every party may gain a certain benefit.    

 

 

 

              The 39th Principle of Software Engineering 
 

Theorem 11.4 The conditions of win-win decisions state that a win-win 
decision can be achieved when the following condition of a nonzero-sum 
game is satisfied: 

 

  
1

1 n

i
s i

s
n

σ
=

≥ ∑             (11.37) 

 
where σ is the sum of the game that is a positive nonzero constant, si is 
the expected score of player i, and ns is the number of sets of matches in 
the game.   
 

 

Lemma 11.11 A win-win game can only exist in nonzero-sum games.  
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Based on Theorem 11.4 [Wang, 2005e], a win-win game may satisfy all 
players when the constant sum σ is large enough as described by Eq. 11.37.  
 

Example 11.11 Given a 2 × 2 nonzero-sum game G3 = (P, D, M, S) 
with the following payoff table and σ = 100, try to determine its properties 
and behaviors. 

 
Table 11.14 

The Payoff Table of G3 = (P, D, M, S) 
 

 b1 b2 
a1 70 : 30 20 : 80 
a2 60 : 40 90 : 10 

 
The properties of G3 = (P, D, M, S) are: 

 
            • Number of sets of matches: ns = n • k = 2 • 2 = 4 

            • Number of matches in a set: nm = kn = 22 = 4 

            • Total number of matches in the game:  
          3= 2 2 16n+1

s mq  n • n n • k  •= = =  
 

According to Theorem 11.4, the final scores of G3 = (P, D, M, S) are as 
follows:  
 

                       
11 12 21 22

11 12 21 22

=1 =1 =1 =1
:  = ( ) : ( )

( ) :

  ( )

(70 20 60 90) :

  (30 80 40 10)

240 : 160

ij ij

k k k k
a b

a b
i j i j

a a a a

b b b b

s s s s

s s s s

s s s s

= + + +

+ + +

= + + +

+ + +

=

∑∑ ∑∑

 

 
This result indicates that the four sets of matches defined by G3 will 

result in the average score in each match as 60 : 40, in which Players A and 
B share the σ = 100. This can be proved by the following four sets of 
matches as shown in Fig. 11.14. 
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20:80 90:10 60:40 70:30

60:40 70:30 20:80 90:10

1 2 2 1 1

2 1 1 2 2

                                                              :

Set 1: 240 : 160

Set 2: 2

a bs s

a b a b a

a b a b a

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⇒

⇒
70:30 20:80 90:10 60:40

90:10 60:40 70:30 20:80

1 1 2 2 1

2 2 1 1 2

40 : 160

Set 3: 240 : 160

Set 4: 240 : 160

b a b a b

b a b a b

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⇒

⇒

 

 
Figure 11.14 Sets of matches of the 2 × 2 nonzero-sum game G3  
           

It may be observed that for a given game in a certain context, it would 
appear to be competitive between conflict interests of players. However, at a 
higher level of an enlarged scope of the given game, it may be perceived 
differently as noncompetitive for all parties involved. Based on this 
systematical view, the following corollary for management attitude and skills 
can be derived. 

 
 
11.3.5 DECISION GRID THEORY 
 

Traditional decision theories have been focused on static and single 
decision making techniques. However, a wide range of problems and real-
world challenges require a series of dynamic decision makings. There is a 
lack of coherent theoretical framework for such kind of decision making 
requirements. Especially, there is a need for a theory that deals with the 
issues when a mistake or multiple mistakes are made in a decision chain such 
as: How can mistakes be recovered? What are the consequences or costs of 
mistakes in decision chains?     

This section introduces a new decision and operations theory, known as 
the decision grids [Wang, 2005b], for modeling and supporting dynamic and 
sequential decision making. The mathematical models of decision grids are 
introduced and their properties are rigorously described. The formal 
treatment of serial decision makings with both limited and unlimited trials are 
modeled by decision grids. This new theory can be applied in a wide range of 
serial and dynamic decision making situations in management science, 
operations studies, cognitive science, sociology, economy, software 
engineering, systems engineering, political science, statistics, as well as 
everyday lives. 

 

Corollary 11.5 The art of management, to a certain extent, is to create a 
win-win environment for all members, partners, and parent organizations 
involved in a game context.     
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11.3.5.1 The Formal Model of Decision Grids 
 

Definition 11.46 A decision grid is a directed network of a series of 
decisions over time where each decision possesses only two possible 
outcomes, right or wrong, where the effort spent to make a right decision is 
assumed to be identical with that of a wrong decision. 

 
A decision grid is illustrated as shown in Fig. 11.15.  

 

  0
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 2 

 0 
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-2 

-3 

-4 

1 63 4 2 
 4 

10987 16 1511 12 13 14

1 2 3 4 8765 11 12 13 14 15 16 9

E 

  t 
 (times 
  of 
  trials) 

5

10

 Success  
 state 

  w

   r
… 

… 
Dmin = 4 

 
Figure 11.15 A decision grid DG1 with (Dmin = 4)   

 
Definition 11.47 The formal model of a decision grid DG is a 4-tuple, 

i.e.: 
 

DG = (T, D, E, S)         (11.38) 
 

where     
 

      •  T is a finite or infinite set of trials T = {t1, t2, …, tn}, and n is the 
time points of trials where n may be infinitive. 

 
• D is the decision distance of a series of decision trials, D = ti - t0 = 

ti, 1 ≤ i ≤ n.     

• E is the effort of a specific trial towards the success state in the 
grid, 0 ≤ E ≤ n.  

 
• S is a finite or infinite set of success states of the grid, S = {s1, s2, 

…, sk}, 1 ≤ k ≤ n.  
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Example 11.12 A decision grid DG1 with the minimum effort of four 
right decisions to achieve the success state, as shown in Fig. 11.15, can be 
defined as follows: 
 

          DG1 = (T, D, E, S)     
 

where 
 

              •  T = {t1, t2, …, t16, …, tn}, n = ∞  
           •  D = ti = 4 

•  0 ≤ E ≤ n 
             •  S = {s1, s2, …, sk}, 1 ≤ k ≤ n  
 

Observing the decision grid DG1 = (T, D, E, S), the effort E spent in a 
right or wrong decision is treated as equivalent. That is, a combined effort of 
a wrong decision followed by a right decision, or vice versa, results in no 
effect towards the success state, except that time for two trials has been lost. 

Decision grids can be classified into categories of unlimited and limited 
grids according to the scope of times for allowable trials. 

 
Definition 11.48 When the allowable times of trials t in a decision grid 

are infinitive, the decision grid is called an unlimited decision grid; 
otherwise, it is a limited decision grid.  

 
The unlimited decision grid is a suitable model for the series of 

decisions toward a success state no matter how many trials are needed, such 
as an experimental process, a research project, or a person’s pursuit towards 
a goal in life. The limited decision grid is a serial decision model for a short 
period of trials, such as a student towards a degree, an assessment process, or 
a deadline-specific process. The following subsections discuss the properties 
and decision processes of unlimited decision grid first. Most of the properties 
of unlimited decision grids will be found applicable to limited decision grids.                           
 
11.3.5.2 Serial Decision Making with Unlimited Trials          
 

Definition 11.49 The decision distance Dt in a decision grid is the 
number of decisions made from the initial state t0 towards a success state ti 
over time by any path in the decision grid, i.e.: 
 

 0t i

i

D t t

t

= +
=

        (11.39) 

 

It is noteworthy that in a decision grid the decision distance Dt from the 
initial decision point d(0, 0) to another decision d(t, e) at certain trial point t 
is a constant, which is not dependent on the paths or the combination of any 
series of right/wrong decisions.   
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Theorem 11.5 reveals an interesting property of decision grids that the 

decision distance, or number of decisions needed towards a success goal, is 
always equal to ti no matter how the right and wrong decisions are 
interleaved. This can be proven by observing Fig. 11.15.  

 
Example 11.13 In Fig. 11.15 the decision distances of D8 and D16  are: 

 

            
8

6 2

8

r wD d d= +

= +

=

 

and 
 

  
16

10 6

16

r wD d d= +

= +

=

 

 
Different combinations of dr and dw in the above cases will result in 

multiple paths towards D8 or D16. However, the decision distance Dt remains 
constant. 

 
  

 

 

The 40th Principle of Software Engineering 
 
Theorem  11.5 The properties of decision grid state that the decision 
distance Dt in a decision grid is a constant that is determined by the 
number of decision trials ti spent in the time series, i.e.: 
 

      
t i

r w

D t

d d

=

= +
           (11.40) 

 
where dr and dw represent numbers of right and wrong decisions, 
respectively.         

 

 

Corollary 11.6 The shortest decision distance Dmin between the initial 
state d(0, 0) and the success state d(tmin, Dmin) in a decision grid is a series 
of pure successful decisions where no wrong decision has been made, 
i.e.:      
 

      = min min rD t d=           (11.41) 
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Example 11.14 For the given decision grid as shown in Fig. 11.15, the 
shortest decision distance Dmin is:    
 

= 4
min min

r

D t

d

=

=
 

 

 
Observing that in the decision grid as shown in Fig. 11.15, any number 

of continuous or separated wrong decisions dw should be recovered by the 
same number of right decisions d’r, before the success state is achieved, i.e.: 
 

'r wd d≡         (11.43) 
 

Therefore, replacing dr with Drmin + d’r in Eq. 11.40, the following 
relation can be obtained:     

 

      min

min

( ' )

2

t r w

r w

w

D d d

D d d

D d

= +

= + +

= +

      (11.44) 

 
Solving Eq. 11.44, the allowable number of wrong decisions for a 

given decision grid is obtained as follows: 
 

        min

2
t

w
D Dd −=        (11.45) 

 

 

 

Corollary 11.7 The last decision dn of a successful series of decisions Sr 
is always a right decision, i.e.: 
 

0 1( , ,..., ) rightr n nS d d d d∀ = ⇒ ≡          (11.42) 
 

 

Corollary 11.8 The  maximum  number  of  allowable  wrong  decisions 
dw-max in a decision series that may achieve the success state in a given 
decision grid is determined by the times of trials ti (or Dt) and the 
minimum decision distance Dmin, i.e.: 
 

    - 
 = 

2
i min

w-max
t D

d ⎡ ⎤
⎢ ⎥
⎢ ⎥

                  (11.46) 
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Definition 11.50 The allowable rate of wrong decisions rw in a 

decision series that eventually achieves the success state in a decision grid is 
a ratio between the number of wrong decisions and the total times of trials ti, 
i.e.: 
 

   100%w
w

i

d
r

t
•=        (11.48) 

 
Definition 11.51 The relative cost of wrong decisions Cw is the relative 

difference between the total number of decision trials ti and the minimum 
decision distance Dmin, i.e.:      

       -i min
w

i

t D
C

t
=        (11.49) 

 
where Cw is usually represented in a percentage form. 
 

Definition 11.52 The efficiency of decisions er is the ratio between the 
minimum decision distance Dmin and the total number of decision trials spent 
ti, i.e.:      
 

1
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r

i

w

De
t

C

=

= −
       (11.50) 

 
where er is usually represented in a percentage form. 
 

The properties of the above five attributes of decision grids, in terms of 
the maximum number of allowable wrong decisions (Eq. 11.46), the 
minimum number of required right decisions (Eq. 11.47), the allowable rate 

 

Corollary 11.9 The minimum number of required right decisions dr-min in 
a decision series that may achieve the success state in a given decision 
grid is a complement number of dw-max to the given times of trials ti, i.e.: 
 

                   

=  - 
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 + 
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of wrong decisions (Eq. 11.48), the relative cost of wrong decisions (Eq. 
11.49), and the efficiency of decisions (Eq. 11.50), can be illustrated in Fig. 
11.16. Detailed data for generating the curves of Fig. 11.16 are given in 
Table 11.15. It can be seen that, when ti = 100, for given Dmin = 4, the 
efficiency of decisions er may drop to zero percent, and on other hand, the 
relative cost due to multiple wrong decisions Cw may increase to nearly 100 
percent.    

                

0
10
20
30
40
50
60
70
80
90

100

4 5 6 7 8 9 10 12 14 16 20 50 100
t

Pr
op

er
tie

s 

Cw (%)

rw (%)

dr-min

dw-max

er (%)

 
 
Figure 11.16 Properties of decision grid (Dmin = 4)   

 
Table 11.15 

Properties of Decision Grid (Dmin = 4) 
 

T 4 5 6 7 8 9 10 12 14 16 20 50 100 
Cw (%) 0 20 33.3 42.9 50 55.6 60 66.7 71.4 75 80 92 96 
rw (%) 0 20 16.7 28.6 25 33.3 30 33.3 35.7 37.5 40 46 48 

dr 4 4 5 5 6 6 7 8 9 10 12 27 52 
dw 0 1 1 2 2 3 3 4 5 6 8 23 48 

er (%) 100 80 66.7 57.1 50 44.4 40 33.3 28.6 25 20 8 4 

 
Based on Fig. 11.16 and Table 11.15, the following corollary can be 

derived.    
 

 

Corollary 11.10 The later the wrong decision is corrected, the higher the 
cost of the decision series; The earlier the wrong decision is corrected, the 
more efficient of a decision series.  
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The essence of Corollary 11.10 is a formal description of the empirical 
wisdoms in everyday life, such as Shakespeare’s “all is well that ends well,” 
and the antonym's “a good kick off is worth a half of the success.”        

It is noteworthy that Fig. 11.16 shows that the allowable rate of wrong 
decisions rw towards the success state will not exceed 50% no matter how 
large ti is. This observation leads to the following theorem [Wang, 2005b].    

 

 
According to Theorem 11.6 and Fig. 11.16, it is impossible to win a 

game by random decisions, because the probability of wrong or right 
decisions in random, when ti is large enough, is exactly 50%. However, the 
allowable rate of wrong decisions rw(%) for any series of decisions is always 
below 50%. 

It is intuitive that both time and effort have been lost when any wrong 
decision is made in the decision grid. The following corollary provides a 
quantitative explanation of how worse this could be when multiple wrong 
decisions have been made in a decision process.   

 
The result of Corollary 11.11 can be illustrated as shown in Fig. 11.17. 

The curves show that, when the number of wrong decisions increases, 
although there is still changes to reach the success state in a decision grid if 
dw ≤ dw-max, the loss of time is close to 100%, and the loss of effort is 

 

                                  The 41st Principle of Software Engineering 
 

Theorem 11.6 The random series of unlimited trials states that random 
decisions, or equal probability right and wrong trials, will not lead to a 
success in any series of decisions under unlimited trials.  
 

 

Corollary 11.11 A wrong decision results in both losses of time tl and 
effort El, which can be estimated by the relative differences between the 
number of decision trials and the minimum decision distance Dmin (or 
tmin), i.e.:  
 

     ( )  =  - l i mina t t t           (11.51) 
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hundreds even thousands times higher than that of the best decision series 
where no wrong decision had been introduced. 
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Figure 11.17 Time and effort losses of wrong decisions in decision grid (Dmin 
= 4)   

 
Example 11.15 A new software engineering project is expected to be 

completed by three processes in the best case that involves three continuous 
right decisions at the beginning of each process. Draw a decision grid for this 
project and analyze the seven decision attributes on the following cases: 
 

    Case 1:  The maximum times of trials should be no more than 3 
times. 

    Case 2:  The maximum times of trials should be no more than 9 
times.  

    Case 3:  If 5 wrong decisions have been made in this project, what is 
the earliest completion time in terms of number of trials?  

 
A decision grid DG2 = (T, D, E, S) for the given software engineering 

project is described in Fig.11.18. It is noteworthy that according to Theorem 
11.5, the interesting property of the decision grid is that the decision distance 
D from the initial decision point d(0, 0) to another decision d(ti, e) at any 
given trial ti is a constant, which is not dependent on the path or the 
combinations of dr and dw. 

Solutions for Case 1 through Case 3 can be derived as shown 
respectively in Table 11.16, where an appropriate equation for each decision 
attribute of the decision grid is referred. Note that data provided in the square 
brackets are given from the problem.   
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Figure 11.18 A decision grid DG2 with (Dmin = 3)   
 
11.3.5.3 Serial Decision Making with Limited Trials          
 

Serial decision making under limited trials can be modeled by a limited 
decision grid, where the maximum number of decision trials ti is a finite 
constant. The limited decision grid is suitable for dealing with serial 
decisions of a time constrained process. The seven attributes and related 
theorems and corollaries for unlimited decision grids developed in Section 
11.3.5.2 are also applicable to limited decision grids. 

 
Table 11.16 

Properties of the Decision Grid DG2 
 

Attributes of DG2 
Attribute Symbol 

 

Case 1 
 

Case 2 
 

Case 3 
 

Remark 

Minimum distance or 
minimum times of trials 

Dmin  = 
         tmin

[3] [3] [3] Given 

Maximum trials (distance) Dt [3] [9] 13 Eq.11.44 
Max. no. of allowable 
wrong decisions 

dw-max 0 3 [5] Eq.11.46 

Min. no. of required right 
decisions 

dr-min 3 6 8 Eq.11.47 

Allowable rate of wrong 
decisions 

rw (%) 0 33.3 38.5 Eq.11.48 

Relative cost of wrong 
decisions  

Cw (%) 0 66.7 76.9 Eq.11.49 

Efficiency of decisions er (%) 100 33.3 23.1 Eq.11.50 
Time loss in decisions tl (trials) 0 6 10 Eq.11.51 
Effort loss in decisions El (%) 0 200 330 Eq.11.52 

 

     Note: Data in square brackets [x] are given.  
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For decision making under unlimited trials modeled by an unlimited 
decision grid, there is always a next chance to achieve the success state no 
matter how many wrong decisions have been made and what are their costs 
in terms of time and effort. However, decision making with limited trials 
modeled by a limited decision grid is constrained by the maximum number of 
trials one may try, or the maximum wrong decisions one may make.  

According to Corollary 11.7, the maximum number of allowable wrong 
decisions is determined by a certain ti. Therefore, for a given limited decision 
grid, once the number of wrong decisions made dw is larger than the 
maximum allowable mistakes, the decision series should be considered over, 
because there is no more chance to reach the success state.    

                     

 
Example 11.15 can also be used to analyze a series of decision making 

cases under limited trials with a limited decision grid. 
 

 
It can be seen that both Theorems 11.6 and 11.7 rule out the success 

possibility of random decision series in either unlimited or limited trials. In a 
limited decision series, the relative cost and efficiency of the decision series 
are much worse. 

This section shows that decision grids are a powerful means and 
methodology for dealing with dynamic and serial decision makings with 
limited or unlimited trials. Decision grids can be applied in a wide range of 
serial and dynamic decision making situations in management science, 
operation studies, sociology, economy, software engineering, systems 
engineering, as well as everyday lives. 

 

 

The 42nd Principle of Software Engineering 
 

Theorem 11.7 The random series of limited trails states that random 
decisions, or equal probability right and wrong trials, will not lead to a 
success in any series of decisions under limited trials. 
 

 

Corollary 11.12 For a given limited decision grid, the following 
condition determines a failure of a decision series under limited trials ti, 
i.e.: 

        
> 

 - 
= 
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d d
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          (11.53) 

 

© 2008 by Taylor & Francis Group, LLC



918   Part III  Organizational Foundations of SE 
 

 
11.4 Quality Systems 
 

 
 

As discussed in Section 8.2.4, quality is one of the fundamental objectives of 
engineering. In modern industrial organization, quality has become a major 
concern of management in virtually all sectors of industries, services, 
government, health care, and education. 

This section reviews classic thought on quality in management science 
and explains new perceptions and formal treatment of quality and quality 
systems. Then, it discusses what constitutes a quality control system, and 
what are the necessary conditions and basic quality assurance techniques to 
implement it. Typical quality management systems will be described, which 
covers total quality management, the ISO 9000 quality system, and the ISO 
9126 quality attributes.        

 
 

11.4.1 QUALITY PRINCIPLES 
 

Studies on quality and quality control principles may be traced back to 
Shewhart in 1939, when the method for statistical quality control was 
proposed [Shewhart, 1939]. However, quality as one of the essences of 
management science was perceived differently. Philip Crosby focused on 
quality that conforms to requirements [Crosby, 1977]. Edwards Deming said 
quality is how well something meets customers’ needs [Deming, 1992/86]. 
Joseph Juran perceived quality as fit for use [Juran, 1988/89; Huran et al., 
1962/80]. Genichi Taguchi viewed quality as the closeness to an ideal state 
that implements maximum well-being to the society and users [Taguchi, 
1986].  

 
Definition 11.53 Quality Q is the totality of features and characteristics 

of a product or service that bear on its ability to satisfy stated or implied 
needs.  

 

Although quality as a term is vague, nobody doubts its importance. 
Quality before quantity has been a basic principle in management science.  
 
11.4.1.1 Attributes of Quality    

 

Garvin identified eight attributes known as dimensions of quality that 
break down the abstract concept of quality into detailed characteristics 
[Garvin, 1987]. The eight dimensions, according to Garvin, are as follows: 

 

• Performance: Primitive operating characteristics of a product, 
service, or system.   
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     • Features: The secondary or extra characteristics.   
     • Reliability: Consistency of performance within a given period.   
     • Conformance: The degree of performance and features meets 

specific requirements and standards.             
     • Durability: The lifespan of a product or service.   
     • Serviceability: Post sale/delivery technical support and 

maintenance.       
     • Aesthetics: The appearance or inner attribute of beauty in design, 

production, or service.  
• Perception of excellence: Implied quality carried by reputation or 

brand name.                
 
It is interesting to compare the attributes of quality identified in 

management science and software engineering as shown in Table 11.17.  
 

Table 11.17 
Comparison of Quality Concept in Management Science and 

Software Engineering 
 

Quality attributes No 
Management 

science  
Software engineering 

Detailed attributes   

1 Performance and 
features 

Functionality Suitability, accuracy, 
interoperability, and security 

2 Reliability Reliability Maturity, fault tolerance, and 
recoverability 

3 Conformance Conformance to requirements 
(not included in ISO 9126)   

Functionality against standards  

4 Durability  Validated period of 
functionality 

5  Usability Understandability, learnability, 
and operability   

6  Efficiency Time behavior, and resource 
behavior 

7 Serviceability Maintainability Analyzability, changeability, 
Stability, and testability 

8  Portability Adaptability,  installability, 
conformance, and 
replaceability 

9 Aesthetics  Appearance or inner attributes 
of appreciation   

10 Perception on 
excellence 

 User satisfaction 
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The quality attributes of software engineering shown in Table 11.17 are 
adopted from ISO 9126 (1991), which will be extensively described in 
Section 11.4.3. Both disciplines cover the quality attributes such as 
functionality, reliability, conformance, and maintainability. It indicates that 
management science has strongly influenced the perception on quality in 
software engineering. However, software engineering overlooked the 
subjective attributes of aesthetics and perception on excellence identified in 
management science. These subjective attributes may be as equally important 
as those of the other attributes, because software engineering is dealing with 
complicated creative artifacts and customers always have the final say on 
quality of a software system. There are three special features in software 
engineering known as usability, efficiency, and portability. These features 
indicate the unique concerns on quality in software engineering.            

Because customers are decisive in evaluating the quality of a system or 
service, surveys on customer feedback are important techniques and a 
necessary process in any quality control system.             
 
11.4.1.2 Formal Models of Quality    
 

Quality is a generic measure of the degree of excellence of a product or 
service against a given standard. More specifically, quality is a common 
attribute of any product or service that characterizes the quantity of both 
utility and durability of the product or service. Therefore, the general view on 
quality can be defined as follows [Wang, 2001b].             
  

Definition 11.54 Quality Q is a generic and collective attribute of a 
product, a service, or a system that is proportional to both its average utility 
U and the available duration T of the utility, i.e.: 

 
Q = U • T   [Fh]                                    (11.54) 

 
where the unit of utility is function (F), and the unit of duration is hour (h), 
and these result in the unit of quality as Function-hour or shortly Fh.      

 
According to Definition 11.54, for a given product, service, or system, 

there is no quality if there is a lack of either utility (U = 0) or availability of 
the utility (T = 0).  

Quality defined in Definition 11.54 is the average quality. A more 
generic form of quality that represents the dynamic aspect of quality when 
the utility is a function of time is given below. 

 
Definition 11.55 A generic dynamic utility function U(t) is an inversed 

exponential function over time, i.e.: 
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   ( ) (1 )   [F]t TU t U e −= −                 (11.55) 
 
where both U and T are a positive constant.   

 
With the above definition of U(t) in the curve as that is shown in Fig. 

10.15, the value of the dynamic quality can be determined by the following 
lemma.         

 

 
Lemma 11.12 shows that the integrated quality of a dissimilating utility 

system or product is always smaller than that of constant utility.     
The quality formulae defined by Eqs. 11.54 and 11.56 are an absolute 

value. In practice, a relative measure of quality may provide more 
information when a standard or benchmark on the quality of a given system 
or product is available.               
 

Definition 11.56 The relative quality q(t) is a relative degree of 
difference between the quality of a product, a service, or a system and the 
standard or benchmark S for the expected quality, i.e.: 

 

   
0

-
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S
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When U(t) = U is a positive constant, a special case of the relative quality is 
as follows:   

 

Lemma 11.12 The integrated quality with dynamic utility, Q(t), is an 
integral of the utility function U(t) over the entire lifecycle of the utility 
[0, T], i.e.: 
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                    (11.56) 

 
where U is the initial quality of the product, service, or system.   
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- 
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Q Sq t
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U  T S
S
•

=

=
                 (11.58) 

 
The utility of a product or a system described in Eq. 11.55 can be 

classified as external and internal utility. The external utility encompasses 
the quality attributes of the product or system when it is treated as a black 
box, such as functionality, usability, availability, reliability, efficiency, 
portability, and maintainability. The internal utility encompasses the quality 
attributes of the product or system when it is treated as a white box, such as 
completeness, correctness, consistency, clearness (no ambiguity), feasibility 
(can be implemented in technical and economical terms), and verifiability 
(can be measured).   

 

 
Corollary 11.13 indicates that the control, assurance, and improvement 

of quality must be carried out systematically on multiple attributes of the 
target product, service, or system.          
 

 
Quality is closely related to the cost of a product or service in two 

ways. One is the perception on benefit of quality as described below.  
 
Definition 11.57 The benefit of a product or a system B is the quality 

gained per unit cost (C) in terms of resources, labor, and time, i.e.: 
 

=   

=   [Fh/$]

Q
B 

C
U •T

C

                          (11.59) 

 
The other is the principle of the quality-cost relationship known as the 

quality funnel principle [Bain, 1962]. 

 

Corollary 11.13 Quality is a collective attribute of a product, service, or 
system. 
       

 

Corollary 11.14 Quality is implemented incrementally via each 
individual in every process. 
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If the whole process of manufacture or service can be divided into the 

processes of design, implementation, and application, the costs of quality can 
be classified into three corresponding phases known as the prevention costs, 
the appraisal costs, and the failure costs.              
 Because software engineering is a specific branch of the engineering 
discipline, it obeys the generic engineering rules as stated in Corollaries 
11.13 through 11.15. Among a wide variety of goals identified in Theorem 
8.2 on conservation of basic engineering constraints, productivity, efficiency, 
and quality are recognized as the most fundamental categories of goals in 
software engineering.   
 
 
11.4.2 QUALITY CONTROL AND ASSURANCE 
 

According to Corollary 11.13, quality is a collective attribute of a 
product, service, or system. Therefore, the control and management of 
quality must focus not only on individual attributes but also on the 
integration of an entire system. Therefore, quality control and assurance are 
not only individual techniques but also a fundamental infrastructure system 
for an organization.          

 
11.4.2.1 Quality Control Systems  
 

A generic quality control system encompasses five subsystems known 
as quality definition, implementation, appraisal, postmortem, and prevention. 
The five subsystems of the quality control system are illustrated in Fig. 
11.19. Fig. 11.19 also describes the sequence of implementation and cyclic 
operation of these five subsystems.   

 
Definition 11.58 The quality definition subsystem is responsible to 

identify, partition, and quantify the attributes and characteristics of the 
products or services produced or provided in an organization.  

 
For the establishment of a new quality control system, the quality 

definition phase is the most crucial one. If this phase can not be achieved, no 
quality control system may be implemented.        

 

 

Corollary 11.15 The quality funnel principle states that the nearer to the 
start of the production process, the lower the cost of quality.   
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Figure 11.19 The configuration of a generic quality control system  
 
Definition 11.59 The quality implementation subsystem distributes 

quality attributes identified in phase one into individual processes and job 
functions. 

 

Through training and tools support, each individual in a given process 
should understand both job functions and quality responsibilities with 
corresponding expected standards. 

 
Definition 11.60 The quality appraisal subsystem is a set of evaluation 

techniques against the quality standards for each process and each attribute of 
a given product, service, or system.   

 
Definition 11.61 The quality postmortem subsystem is a feedback 

subsystem that helps to identify existing or potential problems in the process 
or quality standards on the basis of operating data on current performance. 
 

Definition 11.62 The problem prevention subsystem is an adaptive 
process that prevents recurrent problems or failures from happening through 
improvement of the current processes and quality standards.  

 
Simulations and pilot trials are typical techniques in the phase of 

problem prevention.      
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11.4.2.2 Quality Assurance Techniques 
 

Typical quality assurance techniques in quality control systems can be 
classified into definitive, implemental, appraisable, postmortem, and 
preventive corresponding to the quality control system model as shown in 
Fig. 11.19. Effective techniques for quality assurance are quality audit, 
quality review, quality measurement, and formal verification/validation.     

  
Definition 11.63 Audit is an empirical quality assurance technique that 

uses professional auditors to monitor the quality of products and services on 
the basis of statistical quality control and review techniques.  

 
Quality audit may be carried out in forms of sampling-based statistical 

analysis and review. The former is suitable for physical products and mass 
production systems; the latter is widely used for information-based artifacts 
and services. 

 
Quality review is a special audit technique for information-based work 

products such as system designs, plans, software, and documents. Quality 
review is an effective technique for quality assurance in software 
engineering.  
 

Definition 11.64 Measurement is a quantitative quality assurance 
technique that evaluates the conformance of products and services against 
predefined standards or benchmarks. 

 
A major problem in software quality assurance is that there lacks a 

comprehensive and coherent set of quantitative measures and benchmarked 

 
The 43rd Principle of Software Engineering 

 
Theorem 11.8 The conditions of quality control state that the necessary 
conditions for implementing a quality control system for a given product, 
service, or system are that all attributes of its quality can be: 

 
a) Abstractly identified 

b) Quantitatively defined, and  

c) Independently measurable. 
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standards for each of the basic attributes of software and software 
engineering processes. Taking the automobile industry as an example, each 
and all of the attributes of a car, at a number of thousands level, have been 
systematically identified and quantitatively defined. Based on this well-
defined quality system, each car out of a production line can be guaranteed 
for the same quality as the standard specified. However, the lack of the 
measurability in software engineering is the fundamental barrier that prevents 
the software industry from achieving a predictable and stable quality in 
software engineering as its counterparts in other industries. 

                           
Definition 11.65 Verification and validation is a formal quality 

assurance technique that applies mathematical models, logical inference 
tools, and simulation systems into quality control of products and services.  
 

It is noteworthy that all practical quality assurance techniques, no 
matter formal or empirical and quantitative or qualitative, require the 
establishment of a quality system, which satisfies the conditions as identified 
in Theorem 11.8 for implementing a quality control system.        

 
Corollary 11.16 forms the foundation of total quality management, 

which will be discussed later in this chapter.            
 
With the influence of W.E. Deming in the 1940s, the concept of quality 

circles originated in Japan in 1962 on the basis of the statistical quality 
control theory.  

 
Definition 11.66 The quality circle is a four-phase repetitive process 

for quality improvement that encompasses the phases of problem 
identification, finding solutions, implementation of the solutions, and 
evaluation.   

  
In the 1980s, the quality circles are evolved to be the cycle of plan, do, 

check, and act as shown in Fig. 11.21, which is known as the Deming circle.     

 
Corollary 11.16 A quality control system should be designed and 
implemented as a whole, because any individual quality assurance 
technique, no matter how effective, can not solve the problem alone in a 
given quality system.  
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Figure 11.20 The Deming cycle: plan-do-check-action  

 
 
11.4.3 QUALITY MANAGEMENT SYSTEMS 
 

In the preceding sections it has been observed that quality control and 
assurance are a management activity at the system level. This section 
introduces three well-found quality management systems: the total quality 
management, the ISO 9000 quality system, and the ISO 9126 quality system.                
 
11.4.3.1 Total Quality Management (TQM) 
 

Total quality management has been a main stream methodology in 
quality management since the 1970s [Deming, 1982; Buckland et al., 1991; 
EFQM, 1993; Dunn and Ullman, 1994]. Total quality management extends 
the concept of quality control from the product to the process, from the 
physical objects to human beings who produce them, from individuals to the 
entire organization, and from manufacturing to culture in which quality is 
treated as an integral part of every job function in the organization.  

  
David Garvin summarized three principles of quality known as: a) To 

set objectives on continuous improvement in quality; b) To focus on the 
processes that produce products and services; and c) To implement 
employee’s involvement in quality improvement [Garvin, 1991]. These 
principles cover the essences of total quality management.    
 

Definition 11.67 Total Quality Management (TQM) is a systematical 
management methodology that states quality of products and services of an 
organization depends on a systematical management of the organization’s 
culture, attitude, and operations through all members’ involvement.  

(c) 
Check 

(a) 
Plan 

(d) 
Act 

(b) 
Do 
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TQM adopts all proven quality control techniques such as statistical 
quality control, process system, continuous improvement, all employees’ 
involvement, and customer feedback. TQM encompasses a set of key 
elements such as ethics, integrity, trust, training, teamwork, leadership, 
recognition, and communication. Among the eight elements, ethics, integrity, 
and trust are the foundation of the TQM framework. Training enables every 
member of the organization to be integrated into the TQM system. 
Teamwork and leadership are basic organizational techniques at project or 
department level. Recognition is the means of motivation for everybody 
involved. Finally, communication is the essential foundation for system 
synchronization in order to decrease the overhead of interpersonal 
coordination. 
 
11.4.3.2 The ISO 9000 Quality System  
 

The ISO 9000 quality system has been discussed in Section 8.6.5. A 
hierarchical  structure  of  the  ISO 9001  framework  is  shown  in  Table 
11.18.  

What is software quality and how to measure it? This is a fundamental 
issue in software engineering for which the formal models of quality as 
developed in Section 11.4.1 may provide an answer. Usually, quality 
software is perceived as the software that meets users’ needs. However, for 
the same application system, users’ needs may be different and informally 
described. Therefore, the quality of software is difficult to be verified 
according to this definition. Another definition perceives quality software as 
the software that contains fewer bugs. However, bugs as an internal feature 
of software are difficult to identify and measure in practice.  

According to the formal model of quality as described in Section 
11.4.1.2, software quality can be perceived as follows. 

  
Definition 11.68 Software quality is a set of inherent internal and 

external characteristics of a software system that show relative advantages 
over similar systems or indicate a conformance to a standard.  

 
The central idea of this definition is to recognize that the quality of 

software (not quality software) is a relative concept that can be referred to as 
‘higher’ or ‘better’.  

The design philosophy behind ISO 9001 is a generic quality system 
perception on software engineering. Although this philosophy has been 
proven successful in the conventional manufacturing industries, there is still 
a need for supporting evidence of its effectiveness and impact on the design-
intensive software engineering and nonconventional software industries. It 
appears likely that software engineering is sufficiently unique as an 
engineering discipline in that it relies upon special foundations and applies a 
different philosophy as discussed in Chapter 3. Therefore, further studies on 
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common features and differences between conventional mass manufacturing 
and software engineering are still expected.  

 
Table 11.18  

Structure of the ISO 9001 Framework 
  

ID. Subsystem Main Topic Area (MTA) 
SS1 Organization 

management              
 

MTA1.1  Management responsibility 
MTA1.2   Quality system 
MTA1.3  Document and data control 
MTA1.4  Internal quality audits 
MTA1.5  Corrective and preventive action 
MTA1.6  Quality system records 
MTA1.7  Training 
SS2 Product 

management  
 

MTA2.1  Product management  
MTA2.2  Control of customer-supplied product 
MTA2.3  Purchasing  
MTA2.4  Handling, storage, packaging, preservation, and 

delivery 
MTA2.5  Control of nonconforming product 
SS3 Development 

management 
 

MTA3.1  Contract reviews 
MTA3.2  Process control 
MTA3.3  Design and development control 
MTA3.4  Inspection and testing 
MTA3.5                  Inspection and test status 
MTA3.6  Control of inspection, measuring, and test 

equipment 
MTA3.7  Statistical techniques 
MTA3.8  Servicing and software maintenance  

 
11.4.3.3 The ISO 9126 Quality System  
 

ISO 9126 extends principles of quality control to software engineering 
and summarizes the major characteristics and attributes of software quality 
[ISO 9126, 1991] as shown in Table 11.19. ISO 9126 develops a collective 
way to perceive software quality. According to the philosophy of ISO 9126, 
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software quality is a set of qualitative characteristics and attributes. ISO 9126 
provides a software quality model by defining 6 software quality 
characteristics and 20 attributes, which are intended to be exhaustive. 

 
Table 11.19 

ISO 9126 Software Quality Model 
 

No. Quality characteristics Quality attribute  
1 Functionality  
1.1  Suitability 
1.2  Accuracy  
1.3  Interoperability 
1.4  Security 
2 Reliability  
2.1  Maturity  
2.2  Fault tolerance 
2.3  Recoverability  
3 Usability   
3.1  Understandability 
3.2  Learnability 
3.3  Operability   
4 Efficiency  
4.1  Time behavior 
4.2  Resource behavior 
5 Maintainability  
5.1  Analyzability 
5.2  Changeability 
5.3  Stability 
5.4  Testability  
6 Portability   
6.1  Adaptability 
6.2  Installability 
6.3  Conformance 
6.4  Replaceability 

 
The major quality characteristics identified in ISO 9126 are described 

below: 
 

•  Functionality: The characteristics that a system can provide 
specified services that meet users’ requirements.          
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     • Reliability: The probability that a system will fulfill the service 
during a given period when ever a user demands. 

     • Usability: The characteristics that a system is ready and easy for 
use when a user needs its service. 

     • Efficiency: The characteristics that a system uses minimum 
resources and provides timely response to an application. 

     •  Maintainability: The probability that a system can be restored, 
within a given time after a failure, to provide the originally 
specified services. 

     •  Portability: The characteristics that a system is capable of running 
on different target machines, operating systems, and network 
platforms. 

 
Software quality may be characterized by external and internal 

attributes. External quality characteristics are those that can be evaluated 
when executing the software; and internal quality characteristics are those 
that are evaluated by inspecting the internal features of the software. The 
former is user-oriented and may be verified by black-box testing techniques. 
However, the latter is oriented to developers and maintainers, and may be 
verified by white-box testing techniques.   

ISO 9126 focuses only on external characteristics of software quality. 
Substantial internal attributes of software quality, such as of architecture, 
reuse description, coding styles, test completeness, run-time efficiency, and 
resource usage efficiency, have not been modeled.  

Another gap in ISO 9126’s quality characteristic set is the lack of 
exception handling capability requirements for software as stated in Theorem 
5.3, which is an important attribute of software quality that identifies the 
unexpected circumstances and conditions of a system, and specifies how the 
system should behave under such conditions. Design for exception handling 
capability of software is recognized as a good indicator to distinguish naive 
and professional software engineers and system analysts, even though a 
customer has not explicitly requested this kind of built-in software quality.       

Further, it is found that the concept of software quality might be 
different between vendor-specified (common system) software and user-
specified (applications) software. For the former, quality refers to the 
software that provides much more usability and higher dependability at a 
comparable price; while for the latter, quality means the software that meets 
users’ requirements and runs with fewer failures. Also, it is considered that 
we need to distinguish the quality of software according to its developing 
processes. For example, we may identify the design quality, implementation 
quality, test quality, and maintenance quality of a software system, rather 
than pursuing a hybrid concept of the quality of software.    

© 2008 by Taylor & Francis Group, LLC



932   Part III  Organizational Foundations of SE 
 

Generally, the philosophy behind current software quality standards is 
based on a generic quality system perception on software development. 
Although this philosophy has been proven successful in conventional 
manufacturing industry, there is still a need for supporting evidence of its 
effectiveness and impact on the design-intensive software engineering and 
the nonconventional software industry. 

  
 
 
11.5 Software Engineering 
        Management 
 

 
 
As analyzed in Sections 8.5 and 11.2.3, the key difference between 
knowledge-based and labor-intensive engineering projects is determined by 
the factor of interpersonal coordination rate r. A high degree of interpersonal 
coordination in a creative software development project, for example, r > 
50%, would dramatically changed the behavior of such projects. Therefore, 
the coordinative work organization theories and laws, management 
methodologies, decision theories, and quality system theories presented in 
preceding sections lay the foundation for software engineering project 
management and quality assurance.           
 
 
11.5.1 TAXONOMY OF SOFTWARE ENGINEERING 
           MANAGEMENT 
 

The managerial foundations of software engineering are cross fertilized 
by researches in management science, systems theory, and quality system 
principles. A brief structure of the management foundations of software 
engineering is summarized in Table 11.20.  

The basic theories for software engineering management listed in Table 
11.20 are sociology, anthropology, semiotics, linguistics, and psychology. 
Sociology concerns organizational theory; anthropology addresses 
organizational culture; semiotics relates to the theories of communication and 
knowledge; linguistics studies language theory; and psychology concerns 
human behavior and learning.    

The system science foundations for software engineering management 
encompass abstract systems theory, system design and analysis, system 
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modeling and simulation. Systems theory is a common foundation for 
management science and many other engineering disciplines. Systems theory 
as presented in Chapter 10 has provided interdisciplinary and strategic 
solutions that are qualitative and quantitative, organized and creative, 
theoretical and empirical for a wide range of problems.   
 

Table 11.20 
Structure of Managerial Foundations of Software Engineering 

 

No Category Subcategory 
1 Basic theories  
1.1  Sociology  
1.2  Anthropology 
1.3  Semiotics 
1.4  Linguistics 
1.5  Psychology 
2 System science  
2.1  Abstract systems theory 
2.2  System design and analysis 
2.3  System modeling and simulation 
3 Management theories  
3.1  Strategic planning 
3.2  Operational theory 
3.3  Decision theory 
3.4  Organization methods 
3.5  Management economics 
4 Quality system principles  
4.1  Total Quality Management (TQM) 
4.2  Business process reengineering 
4.3  The Deming circle: Plan-Do-Check-Act (PDCA) 

  
 Management science is a scientific approach to solving system 
problems in the field of management. It encompasses operational theory 
[Fabrycky et al. 1984], decision theory [Keen and Morton, 1978; Steven, 
1980; Wang and Ruhe, 2007], organization methods [Radnor, 1970; Kolb, 
1970], strategic planning [Anthony, 1965; Khaden and Schultzki, 1983; 
William, 1991], quality theories [Shewhart, 1939; Crosby, 1977; Deming, 
1992/86; Juran, 1988/89; Huran et al., 1962/80; Taguchi, 1986], and 
management economics [Richardson, 1966]. Management science provides 
management with a variety of decision aids and rules.  

A set of quality system principles has been developed in management 
science. The important quality management philosophies that are applicable 
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to software engineering organization and management are TQM [Deming, 
1982; EFQM, 1993; Dunn and Ullman, 1994], business process 
reengineering [Schein, 1961; Johansson et al., 1993; Thomas, 1994; Wang 
and King, 2000a], and the Deming Circle [Deming, 1982].  

Studies on organization and management of software engineering have, 
over time, covered methodologies for project management, project 
estimation, project planning, software quality assurance, configuration   
management, requirement/contract management, document management, and 
human resource management. Table 11.21 provides a summary of the 
software engineering organization and management methodologies in 
practice. It may be seen that software engineering management and 
organization methodologies have intensively influenced by management 
science and system science. However, one of its outstanding characteristics is 
the very high interpersonal coordination rate in organization and 
management, which makes software engineering unique and requires special 
care for dealing with the cognitive and organizational constraints according 
to the cooperative work organization theory presented in Section 8.5 [Wang, 
2007].              
 

Table 11.21 
Classification of Software Engineering 

Organization and Management Methodologies 
 

No. Category Typical Methods 
1 Project management 

methods 
Methods of metric-based, productivity-oriented, quality-
oriented, schedule-driven, standard process models, 
benchmark analysis, checklist / milestones, etc. 

2 Project estimation/ 
planning methods 

Methods of coordinative work organization, symbolic kLOC 
metric, COCOMO model, the function-points, program 
evaluation and review technique (PERT),  critical path 
method (CPM), Gantt chart, etc. 

3 Software quality 
assurance methods 

Methods of quality manual / policy, process review, process 
audit, peer review, inspection, defect prevention, 
subcontractor quality control, benchmark analysis, process 
tracking, etc. 

4 Configuration 
management methods 

Methods of version control, change control, version history 
record, software component library, reuse library, system file 
library, etc. 

5 Requirement/ 
contract management 
methods 

Methods of system requirement management, software 
requirement management, standard contractual procedure, 
subcontractor management, purchasing management, etc. 

6 Document 
management methods 

Methods of document library, classification, access control, 
maintenance, distribution, etc. 

7 Human resource 
management methods 

Methods of position criteria, career development plan, 
training, experience exchange, domain knowledge 
development, etc.    
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11.5.2 THE SOFTWARE ENGINEERING PROCESS 
           REFERENCE MODEL (SEPRM)   
 

The Software Engineering Process Reference Model (SEPRM) [Wang 
et al. 1998b/99a; Wang and King 2000a] identifies a superset of processes 
and BPAs that covers the domains of current process models and new areas 
for software engineering environment and supporting tools. The philosophy 
of SEPRM is to provide a comprehensive and integrated software 
engineering process system reference model. SEPRM demonstrates a unified 
process system framework for Process-Based Software Engineering (PBSE), 
in which all current process models can be located. 

SEPRM develops a basis against which process capability levels 
between existing process models can be systematically and quantitatively 
compared. It also allows transformation between process capability levels 
within different process models, and it enables software development 
organizations to relate their process capabilities to a range of different 
process models. 

The following subsections describe the process model, process 
capability model, and process assessment method of SEPRM. 
 
11.5.2.1 The SEPRM Process Model 
 

SEPRM provides a hierarchical software engineering process 
framework with 3 process subsystems, 12 process categories, 51 processes, 
and 444 Base Process Activities (BPAs). The structure of the SEPRM 
process model is shown in Fig. 11.21 [Wang and King, 2000a].  

 
       

PS.1  
Organisation Process 
Subsystem  

PS.2 
Development  
Process Subsystem 

PS.3 
Management  
Process Subsystem 

PC2.1 Software 
engineering 
methodologies

The Software Engineering Process Reference Model 
SEPRM 

PC2.2 
Software 
development

PC2.3 Software 
development 
environment 

PC1.3  
Customer 
service 

PC1.2 
Organisational 
process 

PC1.1    
Organisation 
structure 

PC3.1    
Software 
quality assurance 

PC3.2 
Project 
planning 

PC3.3  
Project 
management

PC3.4         Contract 
and requirement 
management 

PC3.5 
Document 
management

PC3.6 
Human resource 
management 

 

Figure 11.21 The hierarchical structure of SEPRM 
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The 51 processes of SEPRM and the configuration of the 444 BPAs in 
the process system are shown in Table 11.22.  
 

Table 11.22 
The SEPRM process model 

  

ID. Process  
Serial No. 

Subsystem Category / Process Identified 
BPAs 

1  Organization  81 

1.1   Organization structure processes 13 
1.1.1 1  Organization definition  7 
1.1.2 2  Project organization 6 
1.2   Organization processes 26 
1.2.1 3  Organization process definition 15 
1.2.2 4  Organization process improvement 11 
1.3   Customer service processes 39 
1.3.1 5  Customer relations 13 
1.3.2 6  Customer support 12 
1.3.3 7  Software/system delivery 11 
1.3.4 8  Service evaluation 6 
2  Development  115 
2.1   Software engineering methodology 

processes  
23 

2.1.1 9  Software engineering modeling                 9 
2.1.2 10  Reuse methodologies                7 
2.1.3 11  Technology innovation               7 
2.2   Software development processes 60 
2.2.1 12  Development process definition  12 
2.2.2 13  Requirement analysis 8 
2.2.3 14  Design 9 
2.2.4 15  Coding 8 
2.2.5 16  Module testing 6 
2.2.6 17  Integration and system testing 7 
2.2.7 18  Maintenance 10 
2.3   Software engineering infrastructure 

processes 
32 

2.3.1 19  Environment 7 
2.3.2 20  Facilities 15 
2.3.3 21  Development  support  tools  4 
2.3.4 22  Management  support  tools 6 
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3  Management  248 
3.1   Software quality assurance (SQA) 

processes  
78 

3.1.1 23  SQA process definition  17 
3.1.2 24  Requirement review 5 
3.1.3 25  Design review 4 
3.1.4 26  Code review  3 
3.1.5 27  Module testing audit 4 
3.1.6 28  Integration and system testing audit 6 
3.1.7 29  Maintenance audit 8 
3.1.8 39  Audit and inspection 6 
3.1.9 31  Peer review 10 
3.1.10 32  Defect control 10 
3.1.11 33  Subcontractor’s quality control 5 
3.2   Project planning processes  45 
3.2.1 34  Project plan  20 
3.2.2 35  Project estimation 7 
3.2.3 36  Project risk avoidance 11 
3.2.4 37  Project quality plan 7 
3.3   Project management processes  55 
3.3.1 38  Process management  8 
3.3.2 39  Process tracking 15 
3.3.3 40  Configuration management  8 
3.3.4 41  Change control 9 
3.3.5 42  Process review 8 
3.3.6 43  Intergroup coordination 7 
3.4   Contract and requirement 

management processes  
42 

3.4.1 44  Requirement management  12 
3.4.2 45  Contract management 7 
3.4.3 46  Subcontractor management 14 
3.4.4 47  Purchasing management 9 
3.5   Document management processes  17 
3.5.1 48  Documentation  11 
3.5.2 49  Process database/library 6 
3.6   Human resource management 

processes  
11 

3.6.1 50  Staff selection and allocation  4 
3.6.2 51  Training 7 

Total  3 51 444 
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11.5.2.2 The SEPRM Process Capability Model  
 

Parallel to the SEPRM process dimension, the process capability model 
describes another dimension of SEPRM that provides an assessment 
framework for each process defined in the process model.  

The SEPRM process capability model consists of a practice 
performance scale, a process capability scale, and a process capability scope. 
A practice performance rating scale for the BPAs in SEPRM is defined in 
Table 11.23. It employs a four-level scale for evaluating a BPA’s existence 
and performance. The rating thresholds provide a set of quantitative 
measurement for rating a BPA’s performance with the scale. 

 
Table 11.23 

Performance Rating Scale of the BPAs  
 

Scale Description Rating threshold 
5 (F) Fully adequate 90% - 100% 
3 (L) Largely adequate 70% - 89% 
1 (P) Partially adequate 35% - 69% 
0 (N) Not adequate 0 – 34% 

 
There are three types of process capability scales: the pass-threshold-

based, process-management-oriented, and process-oriented as shown in 
Table 11.24. The SEPRM process capability model is designed for directly 
rating and characterizing the performance of a process within context, rather 
than to indirectly evaluate the management maturity level for a process.  

SEPRM develops a six-level software process capability model as 
shown in Table 11.24, with a set of defined criteria for rating the capability 
of a process. Table 11.24 shows that, in SEPRM, a process as an independent 
unit is assessed in the organization, project, and individual contexts against 
the six level process capability criteria. In order to relate the process 
capability criteria to the performance of BPAs in a process, there is an 
additional threshold for assessing a process. This is the average performance 
of the BPAs. Thus, based on both the software process capability model and 
the BPA performance threshold, an SEPRM process capability scale is 
described in Table 11.25.  

It can be seen in Table 11.25 that there are four criteria that a process 
has to fulfill at each capability level. The first three are oriented to a process 
as a whole; while the last one is oriented to BPAs contained in a process. 
Therefore, the capability of a software development organization to operate a 
given process is determined by the maximum level i that a process achieved 
for fulfilling all four criteria for that level.         

© 2008 by Taylor & Francis Group, LLC



Chapter 11  Management Science Foundations of SE    939 

Table 11.24 
The SEPRM Process Capability Model 

  

Process Capability Criteria Capa-
bility 
Level 

 
CL[i] 

Description  
 

Organization 
Scope 

Project Scope Individual 
Scope 

CL[0] Incomplete C[0,1] 
No process system 
reference model 

C[0,2] 
No defined and repeatable process 
activities 

C[0,3] 
Ad hoc 

CL[1] Loose C[1,1] 
There are defined 
processes at some 
extent  

C[1,2] 
There are limited process activities 
defined and conducted  

C[1,3] 
Varying 

CL[2]  Integrated C[2,1] 
There is a process 
system reference 
model established  

C[2,2] 
There are relatively complete process 
activities defined and aligned to 
organization reference model 

C[2,3] 
Generally 
process-based 

CL[3] Stable C[3,1] 
There is a repeatable 
process system 
reference model 

C[3,2] 
There are complete process activities 
derived from organization reference 
model  

C[3,3] 
Repeatedly 
process-based 

CL[4] Effective C[4,1] 
There is a proven 
process reference 
system model 

C[4,2] 
- There are completed process activities 
  derived from organization reference 
  model 
- Performances of processes are 
  monitored 

C[4,3] 
Rigorously 
process-based  

CL[5] Refining C[5,1] 
There is a refined 
and proven process 
system reference 
model 

C[5,2] 
- There is a completed derived process  
   model 
- Performances of processes are 
  quantitatively monitored and fine-tuned  

C[5,3] 
Optimistic 
process-based 

 
Table 11.25 

The SEPRM Process Capability Scale 
  

Process Capability Criteria Capability 
Level 

(CL[i]) 

Description  
 Organization 

Scope 
Project  
Scope 

Individual 
Scope 

BPA  
Average 

Performance 
Threshold  

CL[0] Incomplete C[0,1] 
No 

C[0,2] 
No 

C[0,3] 
No 

C[0,4] 
0 – 0.9 

CL[1] Loose C[1,1] 
Achieved 

C[1,2]  
Achieved 

C[1,3] 
Achieved 

C[1,4] 
1.0 – 1.9 

CL[2]   Integrated C[2,1]  
Achieved 

C[2,2] 
Achieved 

C[2,3] 
Achieved 

C[2,4] 
2.0 – 2.9 

CL[3] Stable C[3,1] 
Achieved 

C[3,2] 
Achieved 

C[3,3] 
Achieved 

C[3,4] 
3.0 – 3.9 

CL[4]  Effective C[4,1] 
Achieved 

C[4,2] 
Achieved  

C[4,3] 
Achieved 

C[4,4] 
4.0 – 4.9 

CL[5] Refining C[5,1] 
Achieved  

C[5,2] 
Achieved  

C[5,3] 
Achieved 

C[5,4] 
5.0 
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The SEPRM process assessment results are reported at the six levels 
with a decimal value. This means it has the potential to distinguish the 
process capability at tenth-sublevels. This approach enables a software 
development organization to fine-tune its process system in continuous 
process improvement.    
 
11.5.2.3 The SEPRM Process Capability Determination Methodology 
 

Using the formal definitions of the SEPRM process model and process 
capability model as developed in previous subsections, we can now consider 
how to apply the latter to the former for the assessment of process capability 
at practice, process, project, and organization levels. This activity is called 
process capability determination.  

The SEPRM process capability determination methodology can be 
described as an algorithm as shown bellow. 

 
 

Algorithm 11.1 The SEPRM Process Capability Determination Algorithm  
 
Assume: NPC(SUBSYS)    - Number of process categories in a  
                                                                         process subsystem 
               NPROC(SUBSYS,PC)    - Number of processes in a category  
               NBPA(SUBSYS,PC,PROC)  - Number of BPAs in a process 
               BPA(SUBSYS,PC,PROC)  - A BPA index  
               CL                                  - A capability level 
               PCLproc(SUBSYS,PC,PROC)  - A process capability level 
               PCLproc                  - Capability level of a project  
Input:      Sample indicators of BPA and processes existence and performance 
Output:   A process profile: PCLproc[SUBSYS,PC,PROC], and a project process  
               capability level: PCLproj 
Begin 
 
// Step 1: Initialization 
    // Define numbers of processes in each process subsystem and category according to  
       [Wang and King 2000]  
    // Define numbers of BPAs in each process [Wang and King 2000] 
 
// Step 2: Practice performance rating 
 
   for  SUBSYS := 1 to 3 do                        // the process subsystem index   
          for  PC := 1 to NPC(SUBSYS)  do                       // the process category index 
                 for  PROC :=1 to Nproc(SUBSYS, PC) do    // the process index  
                        begin 
                            PP(SUBSYS, PC, PROC) := 0; 
    

                            for  BPA := 1 to NBPA(SUBSYS, PC, PROC) do    
                                                                                     // The BPA index 
                                   begin   
                                       // Assess a BPA according to Table 11.23, and  
                                       // record performance rating in BPA(SUBSYS, PC, PROC) 
                                       case BPA(SUBSYS, PC, PROC) 
                                               F:  // Fully adequate  
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                                                    PP(SUBSYS, PC, PROC) :=  
                                                         PP(SUBSYS, PC, PROC) + 5; 
                                               L:  // Largely adequate 
                                                    PP(SUBSYS, PC, PROC) :=  
                                                         PP(SUBSYS, PC, PROC) + 3; 
                                               P:  // Partially adequate 
                                                    PP(SUBSYS, PC, PROC) :=  
                                                         PP(SUBSYS, PC, PROC) + 1; 
                                               N:  // Not adequate 
                                                    PP(SUBSYS, PC, PROC) :=  
                                                         PP(SUBSYS, PC, PROC) + 0; 
                                               NA: // Does not apply 
                                                      PP(SUBSYS, PC, PROC) :=  
                                                           PP(SUBSYS, PC, PROC) + 5; 
                                               end; 
                                      end; 
end;   
 
// Step 3: Process capability determination 
 
   for  SUBSYS := 1 to 3 do           // the process subsystem index   
          for  PC := 1 to NPC(SUBSYS)  do                               // the process category index 
                 for  PROC :=1 to Nproc(SUBSYS, PC) do            // the process index  
                        // 3.1 Assess each process against the six level  
                        // process criteria as defined in Table 11.24        

  CLPROC(SUBSYS, PC, PROC) :=  
         max { i | (C[i,j] are fulfilled) ^  j=1,2,3}; 

    
                        // 3.2 Assess mean BPA performance according to Table 11.25 

  CLBPA(SUBSYS, PC, PROC) := PP(SUBSYS, PC, PROC) / 
                                                                                NBPA(SUBSYS,PC,PROC); 
 
                        // 3.3 Determine process capability levels        

  CL(SUBSYS, PC, PROC) := 
          min {CLPROC(SUBSYS,PC,PROC)+0.9,           
                  CLBPA(SUBSYS,PC,PROC)}; 

 
                        // 3.4 Save process capability profile        

  PCLproc(SUBSYS,PC,PROC) := CL(SUBSYS,PC,PROC); 
 
// Step 4: Project capability determination 
 
   k := 51;                                   // Number of PROCs defined in SEPRM  
   CL := 0; 
   for  SUBSYS := 1 to 3 do                                   // the process subsystem index   
          for  PC := 1 to NPC(SUBSYS)  do                         // the process category index 
                 for  PROC :=1 to Nproc(SUBSYS, PC) do      // the process index  
                        // Calculate cumulated process capability value   
                        CL := CL + PCLproc(SUBSYS, PC, PROC); 
 
   // Derive capability level of the project 
   PCLproj := CL / k;                                                       // Calculate project capability level 
 

End                
       

     
Figure 11.22 The SEPRM Process Assessment Algorithm and Method  
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An SEPRM assessment according to Algorithm 11.1 is carried out in 
four steps: 
 

a) Initialization: This step is designed to specify the numbers of BPAs 
defined in SEPRM. For obtaining a detailed configuration of BPAs in the 
SEPRM process model, reference may be made to Appendix C in [Wang and 
King, 2000]. 

 
b) BPA performance rating: In this step, all BPAs for each process are 

rated according to the definitions of practice performance scale in Table 
11.23. The basic function of this step is to count the total values of the rated 
BPAs within individual processes.  

 
c) Process capability determination: This step first derives both the 

process capability ratings by the process criteria (Table 11.24) and the BPA 
performance criteria (Table 11.25). Next, the capability level of the process 
is determined by taking into account both of the first three criteria (the 
qualitative score) and the fourth criterion (the quantitative score) according 
to the definitions in Table 11.25. Then, a process capability profile of an 
SEPRM assessment is created.  

 
d) Project process capability determination: In the final step, the 

algorithm derives a process capability level for a software project based on 
all processes’ capability levels derived in Step (c). The project capability 
level will be reported with the addition of a process capability profile. 

  
SEPRM establishes a comprehensive and unified process system 

reference model that serves as an infrastructure for software engineering 
organization via PBSE. The development of SEPRM was based on the 
inspirations derived from existing process models and experience in 
empirical software engineering. From this we have gained improved 
understanding on software engineering and on software process system 
modeling as a key for organization and implementing software engineering. 
The SEPRM process model is supported by a set of industrial benchmarking 
data, and its process capability model is independently operational at levels 
of organization, project, and individual software engineers. SEPRM enables 
a derived process capability level to be transformed into other process 
models. It also allows, for the first time, capability levels from different 
process models to be related, transformed, and compared [Wang and King, 
2000a]. 
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11.6 Summary 
 

 
 
Management science is the discipline that studies organizational behaviors, 
executive decision making, and resource optimization on given internal and 
external constraints. Management is both an organizational methodology and 
a profession, which is needed when people work together to achieve a result 
not possible by individuals acting alone. Management science encompasses 
operational theories, work organization, decision making, and quality 
systems. It studies the objects of work, people, resources, and processes, with 
emphases on productivity and quality.  

It is recognized that, beyond programming and technical aspects of 
software development, software engineering deals with problems of 
organisation and management infrastructures. The work of software project 
managers is to balance competing demands for project scope, time, cost, risk, 
and quality. Therefore, they must satisfy stakeholders with differing needs 
and expectations and meet identified requirements constrained by the laws of 
work organization and management. 

This chapter has discussed the roles of management in software 
engineering and the underpinning theoretical and empirical foundations. A 
set of classic management thought has been reviewed, and the fundamental 
principles and laws of management science have been formalized. On the 
basis of the management theories, two threads have been taken in this chapter 
on decision theories and quality principles. A structure of decision theories 
on static, dynamic, and serial decision making in complex management 
contexts, especially the formal game theory and decision grid theory, has 
been presented. Quality systems and principles for management have been 
rigorously discussed. Applications of management science and complicated 
management issues in software engineering have been described via the 
approach of process-based software engineering (PBSE). As a result, the 
management science foundations of software engineering have been 
established.   
 
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Management Science Foundations of Software 
Engineering, readers have achieved the following strategic goals with the 
knowledge structure as summarized below. 
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Chapter 11. Management Science Foundations of SE 
 

■ Principles of Management Science 
       •  Classic management thought 
       •  Architecture of management science 
           - Functions of management  
           - The system model of management   
 

       •  Fundamental theory of management science 
           - Why is management needed in work organization?  
           - The first principle of management  
           - Gains from division of labor   
           - The second principle of management  
 

       •  The coordinative work organization theory and laws 
  
■ Decision Theories 
       •  The mathematical model of decision making 
           - The principle of choices  
           - Decisions and decision making  
           - Strategies and criteria for decision making  
           - The structure of rational decision making  
 

       •  Decision making processes 
           - The cognitive process of decision making    
           - Formal description of the decision making process    
 

       •  Static decision making strategies 
           - Decision making under certainty    
           - Decision making under uncertainty    
           - Decision making under risks    
 

       •  Game theory 
           - The formal model of games      
           - Properties of games     
           - Behaviors of zero-sum games     
           - Behaviors of nonzero-sum games     
 

       •  Decision grid theory 
           - The formal model of decision grids      
           - Serial decision making with unlimited trials  
           - Serial decision making with limited trials  
 
■ Quality Systems 
       •  Quality principles 
           - Attributes of quality  
           - Formal models of quality  
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       •  Quality control and assurance 
           - Quality control systems  
           - Quality assurance techniques  
 

       •  Quality management systems 
           - Total quality management (TQM)  
           - The ISO 9000 quality system  
           - The ISO 9126 quality system  
 
■ Software Engineering Management 
       •  Taxonomy of SE management 
       •  The SE process reference model (SEPRM)  
           - The SEPRM process model  
           - The SEPRM capability model  
           - The SEPRM capability determination methodology 
 

       •  The coordinative work organization theory and laws for SE  
           (Section 8.5)   

       •  The Formal Economic Model for SE Costs (Section 12.6.2) 
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• Although there are various objectives in management, the key 
objective of management science is not management but work. That is, 
management science studies how human work may be done coordinately, 
efficiently, qualitatively, and profitably in a systematic approach.     
 

• Management science is a system science. In the management 
system, managers organize and coordinate the production or service 
processes to transfer the inputs into expected outputs. As shown in Fig. 11.2, 
the inputs of a management system encompass three essences known as 
labor, time, and resources; while the outputs of a management system also 
encompass three essences known as productivity, profit/cost, and quality.     
 

• It is noteworthy that there are natural laws that constrain the 
allocation of labor and time for a given project. In other words, the optimal 
allocation of labor, time, and resources is not arbitrary and simply empirical; 
certain laws and constraints exist as described in Section 8.5, particularly by 
Theorems 8.2, 8.4, and 8.7.  
 

• The natural function of management is system synchronization. 
Although the basic elements of management are planning, organization, 
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control, and optimization, the essence of all management principles is system 
synchronization, which is also identified as one of the fundamental principles 
of system science. 

 
• The factors determining a decision are the alternatives A and 

criteria C for a given decision making goal. A unified theory on fundamental 
and cognitive decision making can be developed based on the axiomatic and 
recursive cognitive process elicited from the simplest decision-making 
categories. 
 

• The taxonomy of strategies and corresponding criteria for decision 
making may be classified into four categories known as intuitive, empirical, 
heuristic, and rational. 

 
• The principle of bounded rationality states that a decision-maker in 

a real-world situation will never have all information necessary for making 
an optimal decision. 

• It is noteworthy that practical decisions for a given problem are 
usually made under partial certainty, empirical estimation, or heuristic 
prediction, because not all required information is available, no suitable 
decision strategy is aware of, and/or no acceptable cost to thoroughly 
search all possible alternatives. 

 
• The art of management, to a certain extent, is to create a win-win 

environment for members, partners, and parent organizations involved in a 
game context.     
 

• Quality is a collective attribute of a product, service, or system. 

• Quality is implemented incrementally via each individual in 
every process.  

• A major problem in software quality assurance is that there 
lacks a comprehensive and coherent set of quantitative measures and 
benchmarked standards for each of the basic attributes of software and 
software engineering processes. The lack of the measurability in 
software engineering is the fundamental barrier that prevents the 
software industry from achieving a predictable and stable quality in 
software engineering as its counterparts in other industries. 

 
• The conditions of quality control states that the necessary 

conditions for implementing a quality control system for a given product, 
service, or system are that all attributes of its quality can be: a) abstractly 
identified; b) quantitatively defined, and c) independently measurable. 
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• A quality control system should be designed and implemented as a 

whole, because any individual quality assurance technique, no matter how 
effective, can not solve the problem alone in a given quality system.  
 

• The fundamental principles and formal models for software 
engineering organization and management: 

  •  The coordinative work organization theory and laws (Chapter 

       8). 

•  The system organization trees (SOTs, Chapter 10)  

• The principle of management gains  

• The principle of gains of division of labor 

• The quality models and the principle of quality control systems   

• The infrastructure of process-based software engineering   

• The Formal Economic Model of SE Costs (FEMSEC, Chapter 
   12) 

 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Principles of management science 
 

• Classic management thought and methodologies can be traced 
back to the work of Frederick Taylor on operations studies in production, 
Henry Gantt on project scheduling and the Gantt Chart, William Shewhart on 
statistical quality control, John von Neumann on game theory, linear 
programming in the 1940s, Program Evaluation and Review Technique 
(PERT) in 1950s, nonlinear programming and dynamic programming in the 
1950s, Critical Path Method (CPM) in 1960s, E. Erlang and John Little on 
queuing theory, Philip Crosby, Edwards Deming, Genichi Taguchi, and 
Joseph Juran on quality systems and quality control principles. 
 

• Management is a coordination process that organizes activities and 
efforts of a group to achieve goals and results not possible by individuals.        
 

• The functions of management are planning, organizing, controlling, 
and optimizing. 
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• Planning is a management process for organization, 
coordination, and estimation of project time and related labor and 
resource allocation.  

• Scheduling is a management process that maps the planned 
activities onto the time axis in a parallel or serial structure or their 
combinations. 

• Organizing is a management process that coordinates and 
allocates essential means, such as labor, resources, and processes, in 
order to implement a planned work. 

• Controlling is a management process that monitors and ensures 
the planned work process and outcomes in operation conforming to 
predefined requirements, standards, and schedule. 

• Optimizing is a management process that continuously 
improves the results of an organization or project in terms of higher 
productivity, better quality, more accurate scheduling, more efficient 
process, and lower costs. 
 
• The organization forms in management: 

• A natural group is a working group of people with peers in 
which work is carried out via temporal pairwise coordination when 
work has to be done by any pair of the peers.       

• A managed group is a working group of people with peers and 
a manager, in which work is carried out via one-to-many coordination 
by the manager. 
 
• The number of interpersonal coordination C2(n) needed in a natural 

group of size n, n ≥ 3, can be determined by: 
 

                                 
2

2 n( ) = 2  

( 1)
CC n   

n  n -=

i

i
 

 
• The number of interpersonal coordination Cm(n) needed in a 

managed group of size n, n ≥ 3, can be determined by: 
 

                                       Cm(n) = n + 1  
 

• The first principle of management: The gain of management states 
that management is required to reduce the complexity of working group 
organization, to improve the efficiency of groups, and to simplify the forms 
of interpersonal coordination. 
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• The second principle of management: Division of labor (DOL), or 
specialization on a specific subtask in a process, is a work organization 
method in which a task is divided into a sequence of multiple subtasks, and a 
person is only specialized in a repeatable subtask. 

 
• The natural work allocation is a form of loosely coupled work 

organization that requires an invariable effort E(1) with a relative value 1, 
i.e., (1) = 1E  .               

 
• The specialized work allocation Ed(1) is a work organization method 

that allocates tasks via DOL, which results in the saving of effort 
proportional to times of repetition k in an inversed exponential rate 
determined by a constant e/c, i.e., 1(1) = ( )kd

eE   
c

− , where c is determined 

empirically based on the skilled rate of repetition for a given task, 1 < c < e.  
 
• The gain of division of labor states that the relative gain gr(k) via 

division of labor in work organization is proportional to the repetitive times k 
at specialized subtask-level (see Theorem 11.2). 

 
Decision theories 
 

• Decision making is one of the basic cognitive processes of human 
brains, by which a preferred option or a course of actions is chosen from 
among a set of alternatives based on certain criteria. 
 

• A decision d is a selected alternative a ∈A from a nonempty set of 
alternatives A, A ⊆ U, based on a given set of criteria C, i.e., d = f: A × C → 
A.  
  

• Decision making is a process of decision selection from available 
alternatives against the chosen criteria for a given decision goal.  

 
• The number of possible decisions, n, can be determined by the sizes 

of A and C, i.e., n = #A  •  #C.  
 

• Rational and complex decision making strategies can be classified 
into the static and dynamic categories.  

• Most existing decision-making strategies are static decisions 
because the changes of environments of decision makers are 
independent of the decision makers’ activities. Also, different decision 
strategies may be selected in the same situation or environment based 
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on the decision makers’ values and attitudes towards risk and their 
prediction on future outcomes.  

• When the environment of a decision maker is interactive with 
his/her decisions or the environment changes according to the decision 
makers’ activities and the decision strategies and rules are 
predetermined, this category of decision making needs is classified into 
the category of dynamic decisions, such as games and decision grids.  

• The dynamic strategies and criteria of decision making are 
those that all alternatives and criteria are dependent on both the 
environment and the effect of the historical decisions made by the 
decision maker. 

 
• The cognitive process of decision making can be carried out by the 

following procedures: 
 

    a) To comprehend the decision making problem, and to identify the 
decision goal in terms of an Object (O) and its attributes (A).   

    b) To search in the abstract layer of LTM for alternative solutions 
(A) and criteria or useful decision strategies (C).  

    c) To quantify A and C, and determine if the search should go on. 

    d) To build a set of decisions by using A and C as obtained in above 
searches. 

    e) To select the preferred decision(s) on the basis of satisfaction of 
decision makers. 

    f) To represent the decision(s) in a new sub-OAR model. 

    g) To memorize the sub-OAR model in LTM. 
 

• A static strategy and criterion of decision making is an evaluation 
and selection method for which all alternatives A and criteria C are 
determinable and only one optimal decision ai ∈A is expected for a given 
situation. 

• A decision making under certainty dmax or dmin is a selection 
of a certain alternative ai among A that meets a given criterion C which 
is either the maximum of utility or profit max(ui), and the minimum of 
costs or effort min(ei). 

• An optimistic decision making under uncertainty dmaximax or 
dminimin yields a decision with the maximum-maximum strategy for 
utility or a minimum-minimum strategy for cost, respectively.   
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• A pessimistic decision making under uncertainty dmaximin or 
dminimax yields a decision with the maximum-minimum strategy for utility 
or a minimum-maximum strategy for cost.   

• A minimum regret decision making under uncertainty 
dminimax yields a decision with the minimum-maximum regret strategy 
for utility gain or cost save.   

 
• A decision making under risk with maximum expected utility 

dmaxEU yields a decision with the maximum expected utilities of all 
alternatives.   
 

• A decision making under risk with maximum utility of maximum 
probability dmaximax-p yields a decision with the maximum utility of the 
maximum probability of outcome of all alternatives. 
 

• The dynamic strategies and criteria of decision making are those 
that all alternatives and criteria are dependent on both the environment and 
the effect of the historical decisions made by the decision maker. 

 
• In classic decision theories, although the states of nature or 

environment may be deterministic or nondeterministic, its state of nature as 
an outcome of the environment will not be changed or affected by the 
decision maker’s actions. In other words, there are natural rules but no 
adaptive competitors in the static decision making processes. However, more 
decision making situations are dynamic rather than static, where the decision 
maker is under competition in games. 

 
• A game is a decision process under competition where opponent 

players or opponent groups of players compete for the maximum gain or a 
success state in the same environment according to the same predetermined 
rules of the game.  

• Games are traditionally dealt with probability-based static 
payoff tables. However, this method is found inadequate to deal with 
the dynamic behaviors of games and to rigorously determine the 
outcomes of games.  
 
• A formal game G is a 4-tuple, i.e., G = (P, D, M, S), where P is a 

finite set of n players, n ≥ 2; D is a finite set of k decisions for certain moves, 
k ≥ 1. M is a finite set of q matches between player, q ≥ 1; and S is a finite set 
of cumulated scores for each player.     
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• A match m ∈ M of a game G = (P, D, M, S) is a function that 
maps a set of n decisions made by each player into a set of n scores S 
for each of the players, i.e., m = fm : D1 × D2 × … × Dn → S.         

• The number of individual matches nm in a set of matches for a 
given game G = (P, D, M, S) is determined by nm  = kn, where n is the 
number of players in a game, and k is the number of alternative 
decisions (moves) defined in the game for each player.  

• The total sets of matches ns in a game G = (P, D, M, S), in 
which all players may use each pair of their alternative strategies only 
once determined according to the current move of opponent and the 
rule of the maximum gains based on the given layout of the game, can 
be determined by ns = n • k, where k is the number of alternative 
decisions (moves) defined in the game, and n is the number of players.    

• The total number of matches q of a game G = (P, D, M, S) is 
determined by the number of sets of matches nm and number of matches 
in each set ns, i.e., = .n+1

s mq  n • n n • k  =  
 
• A zero-sum game is a game where the total scores of all n players in 

the game is zero. 
 
• The condition for a zero-sum game is iff that each of the nm 

individual matches is zero-sum. 
 
• The scores of all sets of matches of formal games G are the same, no 

matter who moves first and which strategy (decision alternative) is selected 
for the first move. 

 
• A nonzero-sum game is a game where the total scores of all players 

in the game is a positive nonzero value. 
 

• A decision grid is a directed network of a series of decisions over 
time where each decision possesses only two possible outcomes, right or 
wrong, where the effort spent to make a right decision is considered to be 
identical with that of a wrong decision. 

• Decision grids can be applied in a wide range of serial and 
dynamic decision making situations. 
 
• The formal model of a decision grid DG is a 4-tuple, i.e., DG = (T, 

D, E, S), where T is a finite or infinite set of n trials and n is the time points 
of trials where n may be infinitive; D is the decision distance of a series of 
decision trials, D = ti - t0 = ti, 1 ≤ i ≤ n; E is the effort of a specific trial 
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towards the success state in the grid, 0 ≤ E ≤ n; and S is a finite or infinite set 
of success states of the grid, S = {s1, s2, …, sk}, 1 ≤ k ≤ n.  
 

• When the allowable times of trials t in a decision grid are infinitive, 
the decision grid is called an unlimited decision grid; otherwise, it is a 
limited decision grid. 

 
• The properties of decision grid state that the decision distance Dt in 

a decision grid is a constant that is determined by the number of decision 
trials ti spent in the time series, i.e., Dt = ti = dr + dw, where dr and dw 
represent numbers of right and wrong decisions, respectively. 

 
• The later the wrong decision is corrected, the higher the cost of the 

decision series. The earlier the wrong decision is corrected, the more 
efficient of a decision series. 

 
• The random series of unlimited trials or equal probability right and 

wrong trials will not lead to a success in any series of decisions under 
unlimited trials. 

 
• The random series of limited trials or equal probability right and 

wrong trials will not lead to a success in any series of decisions under limited 
trials. 

 
Quality theories 
 

• Quality is the totality of features and characteristics of a product or 
service that bear on its ability to satisfy stated or implied needs. Quality 
before quantity is a basic principle in management science.  

 
• The Garvin’s eight dimensions of quality are performance, 

features, reliability, conformance, durability, serviceability, aesthetics, and 
perception of excellence.                

 
• The external quality attributes of software: functionality, 

reliability, conformance to requirements, usability, efficiency, 
maintainability, and portability. 

 
• The internal quality attributes of software: completeness, 

correctness, consistency, clearness (no ambiguity), feasibility (can be 
implemented in technical and economical terms), and verifiability (can be 
measured).   
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• Quality is a generic measure of the degree of excellence of a product 
or service against a given standard. More specifically, quality is a common 
attribute of any product or service that characterizes the quantity of both 
utility and durability of the product or service. 

• Quality Q is a generic and collective attribute of a product, a 
service, or a system that is proportional to both its average utility U and 
the available duration T of the utility, i.e., Q = U • T [Fh], where the 
unit of utility is function (F), and the unit of duration is hour (h), and 
these result in the unit of quality as Function-hour or shortly Fh.      

• The dynamic value of quality Q(t) is an integral of the utility 
function U(t) on the entire lifecycle of the utility [0, T]. 

• The relative quality q(t) is a relative degree of difference 
between the quality of a product, a service, or a system and the standard 
or benchmark S for the expected quality. 
 
• The benefit of a product or a system B is the quality gained per unit 

cost (C) in terms of resources, labor, and time. 
 
• The quality funnel principle states that the nearer to the start of the 

production process, the lower the cost of quality.   
 
• A generic quality control system encompasses five subsystems 

known as quality definition, implementation, appraisal, postmortem, and 
prevention.  

• The quality definition subsystem is responsible to identify, 
partition, and quantify the attributes and characteristics of the products 
or services produced or provided in an organization.  

• The quality implementation subsystem distributes quality 
attributes identified in phase one into individual processes and job 
functions. 

• The quality appraisal subsystem is a set of evaluation 
techniques against the quality standards for each process and each 
attribute of a given product, service, or system.   

• The quality postmortem subsystem is a feedback subsystem 
that helps to identify existing or potential problems in the process or 
quality standards on the basis of operating data on current performance. 

• The problem prevention subsystem is an adaptive process that 
prevents recurrent problems or failures from happening through 
improvement of the current processes and quality standards. 
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• Typical quality assurance techniques in quality control systems can 
be classified into definitive, implemental, appraisable, postmortem, and 
preventive corresponding to the quality control system model. 

• Audit is an empirical quality assurance technique that uses 
professional auditors to monitor the quality of products and services on 
the basis of statistical quality control and review techniques.  

• Review is a special audit technique for information-based work 
products such as system designs, plans, software, and documents. 
Quality review is an effective technique for quality assurance in 
software engineering. 

• Measurement is a quantitative quality assurance technique that 
evaluates the conformance of products and services against predefined 
standards or benchmarks. 

• Verification and validation is a formal quality assurance 
technique that applies mathematical models, logical inference tools, and 
simulation systems into the quality control of products and services. 
 
• Total Quality Management (TQM) is a systematical management 

methodology that states quality of products and services of an organization 
depends on a systematical management of the organization’s culture, attitude, 
and operations through all members’ involvement.  

 
Software engineering management 
 

• Software quality is a set of inherent internal and external 
characteristics of a software system that show relative advantages over 
similar systems or indicate a conformance to a standard. 
 

• Exception handling capability is a necessary attribute of software 
quality, which identifies the unexpected circumstances and conditions of a 
system, and specifies how the system should behave under such conditions. 

• Design for exception handling capability of software is 
recognized as a good indicator to distinguish naive and professional 
software engineers and system analysts, even for a customer who has 
not explicitly required for this kind of built-in software quality.       
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• The concept of software quality might be different between vendor-
specified (common system) software and user-specified (applications) 
software. For the former, quality refers to the software that provides much 
more usability and higher dependability at a comparable price. While for the 
latter, quality means the software that meets the user’s requirements and runs 
with fewer failures.  

 
• There is a need to distinguish the quality of software according to its 

developing processes, such as design quality, implementation quality, test 
quality, and maintenance quality of a software system. 

 
• The philosophy behind current software quality standards is based 

on a generic quality system perception on software development. Although 
this philosophy has been proven successful in conventional manufacturing 
industry, there is still a need for supporting evidence of its effectiveness and 
impact on the design-intensive software engineering and the nonconventional 
software industry.  
 

• Studies of software engineering organization and management 
have, over time, covered methodologies for project management, project 
estimation, project  planning, software quality assurance, configuration   
management, requirement/ contract management, document management, 
and human resource management. 
 

• The Software Engineering Process Reference Model (SEPRM) 
identifies a superset of processes for software engineering. SEPRM provides 
a hierarchical software engineering process framework with 3 process 
subsystems, 12 process categories, 51 processes, and 444 Base Process 
Activities (BPAs). SEPRM demonstrates a unified process infrastructure for 
PBSE. 

 
• The process capability model of SEPRM describes an assessment 

framework for each process defined in the process model. The SEPRM 
process capability model consists of a practice performance scale, a process 
capability scale, and a process capability scope. 

 
• The process capability determination methodology of SEPRM is 

modeled in four steps: a) Initialization, b) BPA performance rating, c) 
Process capability determination, and d) Project process capability 
determination. 
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Questions and 
Research Opportunities 
 

 
 
11.1 What are the nature and functions of management? Why is the 

basic object under study in management science not management 
but human work? How may this metaphor influence your view 
towards the nature of management science?           

 
11.2   Explain the system model of management.   
 
11.3   Discuss why management is needed in groups and organizations.   
 
11.4  Why is management universally needed in work organization? 

What are the natural laws behind this generic phenomenon?  
 
11.5  According to Theorem 11.1, explain what the gain of 

management is.  
 
11.6  According to Theorem 11.2, explain what the gain of division of 

labor is.  
 
11.7  Referring to Theorems 8.4 through 8.11, discuss how the 

coordinative work organization theory may play a fundamental 
role in management science.   

 
11.8 Given the ideal workload of a software engineering project is 

expected to be W1 = 36PM, find the optimum labor allocation and 
the shortest project durations for r1 = 10% and r2 = 50% 
according to Theorem 8.7.    

 
11.9  Redo Exercise 11.7 for W1 = 360PM.  
 
11.10   Compare the results obtained in Exercises 11.7 and 11.8. Then, 

analyze and discuss which laws (as stated in Theorems 8.4 
through 8.11) apply to the phenomena you observed. 

 
11.11  Why should a manager of a large-scale software engineering 

project be cautious when the labor allocation is above 20 persons 
for the project?  
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11.12  Referring to the System Organization Tree (SOT) as presented in 

Section 10.3.5, discuss what are the optimal organizational forms 
for software engineering projects and groups? 

 
11.13  What is a decision and what is the nature of decision making?   
 
11.14  Based on Table 11.3, summarize the features and usages of the 

categories of intuitive, empirical, heuristic, and rational decision 
makings. 

 
11.15  Summarize and contrast the formulae of static decisions in the 

three categories, i.e., decisions under certainty, uncertainty, and 
risk.       

 
11.16  How may game theories be used in dynamic decision making? 
 
11.17  What are the basic properties of games and why may games be 

extremely complicated?    
 
11.18  What are the conditions for zero-sum and nonzero-sum games?   
 
11.19  What are the applications of nonzero-sum game principles in 

management science and software engineering?    
 
11.20  How may decision grid theory be used in dynamic decision 

making? 
 
11.21  What are the basic properties of decision grids?    
 
11.22  Why will random decisions, or equal probability right and wrong 

trials, not lead to a success in any series of decisions under limited 
or unlimited trials? 

 
11.23  What is the nature (physical meaning) of quality? How to 

quantitatively and rigorously express the generic model of 
quality?    

 
11.24  Describe the architecture of a generic quality control system.  
 
11.25  What are the three conditions for quality control?   
 
11.26  What are the four basic quality assurance techniques? 
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11.27 Referring to the philosophical and engineering considerations as 
presented in Chapter 4 and Chapter 8, discuss whether software 
quality technologies are necessarily the same as those of 
conventional manufacturing industries. 

 
11.28   What are the fundamental management issues in software 

engineering in addition to the technical, cognitive, systematical, 
and economical issues?    

 
11.29  According to Theorem 8.2, conservation of basic engineering 

constraints, explain why the basic objectives of software 
engineering such as time, costs, and utility are conservative and 
interlocked.  

 
11.30  According to the 1st principle of management, Theorem 11.1, 

discuss how gains of management may be applied and 
implemented in software engineering. 

 
11.31  According to the 2nd principle of management, Theorem 11.2, 

discuss how gains of division of labor may be applied and 
implemented in software engineering. 

 
11.32  An important software engineering management principle is 

known as the process parallelism as adopted in SEPRM, which 
states there is a need to identify a management process for each 
technical processes in software engineering. Based on this 
principle, try to identify the management techniques in the 
processes parallel with the software processes of system design 
and testing.          

 
11.33 Referring to the organizational and management theories 

presented in this chapter, discuss what kinds of decision 
optimizations may be implemented in each process of software 
engineering. 

 
Hint: Use a table with the schema as follows: processes | work 
products | optimization strategies | decision methods 

 
11.34 The process assessment method of SEPRM has been given in 

Algorithm 11.1. Try to translate the informal description of 
Algorithm 11.1 into a formal model described in RTPA.  

 
11.35  The following experiment is designed to empirically prove the 

2nd principle of management (Theorem 11.2) – gains of division 
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of labor – by carrying out a text editing task for the given page 
below in an ordinary sequential way and a categorized way.  

 
                  All typos underlined in the following page should be correct by 

corresponding capital letters. Record your time while editing in 
methods (a) and (b) as given below, i.e., t1 and t2, respectively.  

 
    a) Correct the typos in the given page sequentially line by line.       

    b)  Correct the typos in the given page word by word vertically 
in three passes: The first pass checks for all F’s, the second 
pass for all S’s, and the third pass for all E’s. 

 
Then, calculate the gain of the simulated division-of-labor using 

the following formula: 1 2

1
100%dol

t t
G

t
−= • .       

 
11.36 Read the following classic article in software engineering:  
 

Software Engineering Foundations: 
A Software Science Perspective 

 
Part I. Principles and Constraints of Software Engineering  
1. Introduction    
2. Principles of software Engineering 
                   

Part II. Theoretical foundations of Software engineering 
3. Philosophical Foundations of software engineering 
4. Mathematical foundations of Software engineering  
5. Computing foundations of software Engineering 
6. Linguistics Foundations of Software engineering  
7. Information Science foundations of software Engineering 
 

Part III. Organizational Foundations of software Engineering 
8. Engineering foundations of software engineering 
9. Cognitive Informatics Foundations of Software engineering 
10. System Science foundations of software engineering 
11. Management Science foundations of software Engineering  
12. Economics Foundations of Software Engineering   
13. Sociology foundations of software engineering   
 

Part IV. Perspectives on Software Science 
14. Retrospect on software engineering 
15. Prospect on software Science 
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Frederick P. Brooks (1987), No Silver Bullet – Essence 

and Accident in Software Engineering, IEEE 

Computer, 20(4), pp.10-19. 
 

Discuss the following topics in a group or individually: 
 
                     •  About the author. 

• What are the basic constraints of software engineering 
according to the author in the 1980s?  

•  Are the author’s conclusions too pessimistic? What would 
be the possible ‘silver bullet(s)’ in the future? 

      •  What conclusions of the article interested you? Why? 

      •  Your arguments or counter-points on any of the conclusions 
derived in this article.              
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Knowledge Structure 
 

 

 Fundamental principles of economics 

     •  Basic axioms of economics 
     •  Economic equilibrium between demands and supplies 
     •  The behaviors of market systems 

 Economic models 

     •  Production models                                          •  Cost models 
     •  Market models 

 Dynamic values of money and assets 

     •  Dynamics of money                                        •  Dynamics of asset’s values 
     •  Cumulative values of cash flows 

 Economic analyses 

     •  Project cost analyses                                       •  Project benefit-cost analyses 
     •  Project payback period analyses                     •  Project rate of return analyses 

 Software engineering economics 

     •  Elements of SE costs 
     •  SE project costs estimation using FEMSEC 
     •  SE project costs estimation using COCOMO 
     •  Economic analyses of software projects 
     •  The software legacy cost model 
 

 

Learning Objectives 
      

   • To gain knowledge on fundamental principles of economics and behaviors 
of economic systems interacting between demands and supplies. 

   •  To understand basic economic models such as those of production, cost, 
market, equilibrium, benefit-cost ratio, payback period, and rate of return. 

   •  To know dynamics of money, assets, investments, and cash flows, as well as 
their cumulative values over time. 

   •  To understand the architecture of software engineering economics and the 
unique features of software and software engineering. 

   •     To  understand  the  formal  economic  model  of  software engineering costs 
          (FEMSEC).  
   •     To  become familiar  with  software  engineering  economic analyses  and 
          cost/effort estimations.  
   •     To  understand  the  software  legacy  maintenance  cost  model  in   software  
          engineering.  
 

12. Economics Foundations of SE 
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 “Economists are not easy to follow …, when they talk theory, even their fellow 
economists have difficulty understanding what they are saying. In fact, there is a 

theory that if all the economists in the world were laid out end to end,  
they still would not reach a conclusion.” 

 
Stephen L. Slavin (1988) 

 
“Although a good deal of progress has been made in software cost estimation, a great 

deal remains to be done.” 
 

Barry Boehm (1984) 

 
 

12.1 Introduction 
 

 
 

conomics studies how people and resources are organized efficiently, 
effectively, and profitably for gaining the maximum for individuals, 
organizations, and the societies. Fundamental economic structures are 

the underlying forces of socialization and social organization. In turn, the 
fundamental economic structures are determined by the current and 
predominantly highest level of unsatisfied fundamental human needs [Wang, 
2005d/05k]. Therefore, a successful software engineer requires certain 
knowledge of economics in addition to science and engineering.  
 

Definition 12.1 Economics is the study of how resources are used to 
produce and distribute commodities and how services are provided in 
society. 
 

Economics can be classified as microeconomics and macroeconomics. 
The former studies the behaviors of individual agents and industrial markets. 
The latter studies broad aspects of the economy, such as overall employment, 
export, and prices in a national or global scope.     

A universal quantitative measure of commodities and services in 
economics is money.    

 
Definition 12.2 Money is a generic representation of value and utility 

in terms of quantity of products, quality of services, and effort in production 
and services.  

 
Therefore, in a certain extent, economics can be perceived as the 

science of money, or the production, consumption, and transfer of wealth.  

E
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Definition 12.3 Engineering economics is a branch of microeconomics 
dealing with engineering related economic decisions. 
 

This chapter presents a transdisciplinary study on economics, its 
formalization, and its engineering application. The first part of this chapter 
presents classic thought of economics. A mathematical model of economical 
equilibrium is developed for formally and quantitatively explaining Adam 
Smith’s genius hypothesis of the invisible hand proposed in 1776 [Smith, 
1776; Cannan, 1994]. The equilibrium theorem can also be applied to more 
complicated multivariable equilibrium problems that conventional economic 
theories could not explain. 

The second part of this chapter derives the theories and principles of 
software engineering economics. A set of economic models of software 
engineering and their formal description is provided. The applications of 
economic analysis and problem solving methodologies in a variety of 
software project decision making contexts are discussed. This leads to the 
development of the law of software legacy maintenance costs, and the 
finding of a hidden but significant phenomenon in software engineering 
known as the Software Maintenance Crisis (SMC) [Wang, 2005d], in which 
the maintenance costs overrun development costs at an exponential speed in 
the software development organizations. The complete model of MSC and 
possible solutions will be provided in Chapter 14.   

This chapter introduces fundamental principles and methodologies 
utilized in engineering economics and their applications in software 
engineering. It also introduces formal methodology into economic analysis 
and modeling. A set of formal economic models will be developed based on 
fundamental principles of microeconomics. In the remainder of this chapter, 
the economic foundations of software engineering will be presented in five 
sections. Section 12.2 reviews fundamental principles of economics.  Section 
12.3 develops a set of formal economic models such as the production, costs, 
and market models. Section 12.4 discusses the dynamic values of money and 
assets, and their growth patterns. Section 12.5 describes economic analysis 
methodologies on engineering decisions such as project costs, benefit-cost 
ratio, payback period, and rate of return. On the basis of the formal treatment 
of economic theories and principles, Section 12.6 presents software 
engineering economics, particularly the theories and laws behind it, such as 
elements of software costs, software engineering project costs estimation, 
economic analyses of software engineering projects, and the software legacy 
maintenance cost model. As foundations for this chapter, the laws for optimal 
work and labor allocation have been discussed in Chapters 8 and 11 on 
engineering and management science foundations of software engineering, 
respectively.    
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12.2 Fundamental Principles of 
         Economics 
 

 
 
This section reviews the classic thought in economics with a formal 
treatment. Basic axioms of economics and the principle of resource scarcity 
are formally described. Based on the axioms, the profit-driven law of 
demands and supplies and the equilibrium between demands and supplies are 
quantitatively explained. The law of economic equilibrium is derived that 
rigorously describes the adaptive mechanisms of market systems, and serves 
as a formal proof of Adam Smith’s genius hypothesis of invisible hand 
proposed in 1776 [Smith, 1776]. 
 
 
12.2.1 BASIC AXIOMS OF ECONOMICS  
 

The entire theory of economic is based on a number of basic axioms, 
which are fundamental models of economics, such as generic constraints of 
resource scarcity, unlimited demanding behaviors of consumers, profit-
driven behaviors of producers, and the conservative behaviors of market 
systems [Slavin, 1988; Cannan, 1994; Brue, 2001; Wang, 2005d]. This 
subsection explains these basic axioms and fundamental models that are 
shared by both macro and micro economics.   

       
12.2.1.1 Demand vs. Supply 

 
Demand and supply are a pair of fundamental concepts of economics. 

They are also the foundation for engineering resources management and 
organization.       

 
 Definition 12.4 Demand is the required quantities for a product or 
service that consumers are willing and able to buy at a given range of prices. 
 
 Demands are the fundamental driving force of market systems and the 
predominant reason behind almost all economic phenomena. The market 
response to a demand is called supply.     
 
 Definition 12.5 Supply is the required quantities for a product or 
service that producers are willing and able to sell at a given range of prices. 
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Demands and supplies are the fundamental behaviors of dynamic 
market systems, which form the context of economics.     
 
12.2.1.2 The Principle of Resource Scarcity 
 

The most basic yet important principle of economics is the recognition 
of a pair of contradictive phenomena [Slavin, 1988], resource scarcity vs. 
unlimited human demands, in human activities and the society.  
 

 
The principle of resource scarcity forms a fundamental constraint to 

demands and supplies in the market system. The entire economic theory is 
oriented to the coordination and balancing of this pair of interacting 
phenomena. With this view, economics may be seen as a science that studies 
how the unlimited human demands may be met under the generic constraint 
of resource scarcity.                         

 
12.2.1.3 The Law of Market Conservation 
 

 

 

Lemma 12.1 The principle of resource scarcity states that the total 
resources at a given time RΣ(t), or the means of production represented by 
their values, such as land Vl(t), building Vb(t), materials Vm(t), labor Vlb(t), 
and capital Vc(t), are constrained by a constant of nature k(t), which is 
always inadequate to meet the ever growing total demands DΣ(t). 
 

   RΣ(t) = Vl(t) + Vb(t) + Vm(t) + Vlb(t) + Vc(t)  
   = k(t) 
   < DΣ(t)                  (12.1) 
 

 
Lemma 12.2 The law of market conservation states that the prices of 
goods or services in a market system behave conservatively and 
complementally to the quantities of demands and supplies, i.e.: 
 

                                  

 

 

 

 

D
P

S

D
P

S

↑ →⎧⎪⎪ → ↑⎪⎪ ↓ →⎪⎪⎪⎨⎪ ↓ →⎪⎪ → ↓⎪⎪ ↑ →⎪⎪⎩

         (12.2) 
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The behaviors of prices responding to the changes of demands and 
supplies as stated in Lemma 12.2 can be illustrated in Fig. 12.1.   
 

Figure 12.1 Behaviors of prices influenced by demands and supplies 

 
12.2.1.4 The Law of Maximizing Profits 
  

  
According to Lemma 12.3, the consumer and supplier behaviors in the 

market driven by the ultimate profit motivation are primarily influenced by 
the price as described below.  
 

 

 

Lemma 12.3 The ultimate objective of markets, and of the producers and 
consumers in them, is to pursue the maximum profit Pmax, or in other 
words, to maximize the revenues Rmax and to minimize the costs Cmin at 
the same time, i.e.: 
 
       Pmax(t) = Rmax(t) - Cmin(t)               (12.3) 
 

S(t) 

    P(t) 

Q(t) 

D(t)

0 

 
Lemma 12.4 The law of maximizing profit states that the demands and 
supplies of goods or services in a market system are driven by the 
tendency to maximize profits leveraged by the changes of prices, i.e.: 
 

                                  
 

 

D
P

S

D
P

S

→ ↓⎧⎪⎪ ↑ →⎪⎪ → ↑⎪⎪⎪⎨⎪ → ↑⎪⎪ ↓ →⎪⎪ → ↓⎪⎪⎩

         (12.4) 
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The behaviors of demands of consumers and supplies of producers 
responding to the changes of price as stated in Lemma 12.4 can be illustrated 
in Fig. 12.2.   
 

Figure 12.2 Behaviors of demands and supplies influenced by prices 
 
           
12.2.2 ECONOMIC EQUILIBRIUM BETWEEN 
           DEMANDS AND SUPPLIES    
 

On the basis of Lemma 12.4, it can be seen that both demands and 
supplies are price-driven to meet the ultimate economic goals of consumers 
and producers.  

 

 
 However, it should be emphasized that the market is a bi-directional 
interacting system. That is, the price not only influences demands and 
supplies (Lemma 12.4), but also is influenced by the demands and supplies 
(Lemma 12.2). Therefore, the entire mechanisms of a market system and the 
behaviors of the closed-circle interactions among demands, supplies, and 
prices are known as the economic equilibrium.      

The equilibrium between demands and supplies in a given market at a 
given point of time can be illustrated by Fig. 12.3. Fig.12.3 provides a 
unified equilibrium model for explaining the equilibrium mechanism of 
prices as a result of interactions between demands and supplies in a market. 
    

Definition 12.6 Equilibrium of demand and supply e is a point of 
quantity Qe(t) where the demand D(t) equals to the supply S(t), i.e.:        

D(t)

    Q(t) 

P(t) 

S(t) 

0 

 
Lemma 12.5 Price P(t) is an important leverage in the market to 
autonomously adjust the equilibrium of demands and supplies, known as 
the invisible hands, according to Adam Smith (1776).    
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                      e = {Qe(t) | D(t) = S(t)}                  (12.5) 
 
where the price at e, Pe(t), is called the equilibrium price.   

  

Figure 12.3 The equilibrium between demands D(t) and supplies S(t)  
 

The equilibrium as describe by Eq. 12.5 and illustrated in Fig. 12.3 
demonstrates that the total quantities of demands as outputs and supplies as 
inputs in a market system determine the equilibrium point and the 
equilibrium price. At the same time, the price also enforces feedbacks to 
influence the equilibrium quantities between the demands and supplies.  

 

 
That is, Lemma 12.5 only reveals part of the truth about the 

mechanisms of economic equilibrium in a market system.     
It is noteworthy that conventional economics textbooks provide an 

upside-down model to explain equilibrium where the curves of D(t) and S(t) 
as shown in Figs. 12.1 and 12.3 are confusingly interchanged [Sepulveda et 
al., 1984; Slavin, 1988; Frank, 1997; Park et al., 2001]. This convention has 
made the formal treatment of economic equilibrium very difficult. 

The next subsection formally describes the mechanisms of economic 
equilibrium in a market system that provides a rigorous explanation of Adam 
Smith’s invisible hand hypothesis.        
 
 

12.2.3 THE BEHAVIORS OF MARKET SYSTEMS    
 
According to Corollary 10.11, the functional condition of any self-

organization system is the existence of the negative feedback mechanism that 
is proportional to the incremental or aggressive effects of the system. The 

S(t) 

    P(t) 

Q(t) 
[QD, QS] 

D(t)

   Qe(t)  

 Pe(t) 

0 

 

Corollary 12.1 The equilibrium mechanism interacting between the 
quantities of demands, supplies, and the prices of them in a market 
system is the invisible hand.      
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market systems as a special type of self-organization systems obey the same 
law. That is, the adaptive equilibrium of market systems as a result of 
interactions between demands and supplies is rooted in the negative feedback 
mechanisms between their quantities and prices. 

 
Definition 12.7 The equilibrium model of market systems is a negative 

feedback system, in which the increase or decrease of price in the market will 
result in a negated feedback, and so do the changes of quantities of demands 
and supplies on prices, which intend to resist the tendency of deviating from 
the current equilibrium. 

 
Based on Definition 12.7 and Lemmas 12.2 and 12.4, the entire 

behaviors of market systems are constrained by the following theorem 
[Wang, 2005d].    

 
Theorem 12.1 indicates that Lemmas 12.2 and 12.4 are mutually 

reflexive. Each of them represents an aspect of the entire mechanisms of the 
market systems. The consequence of an economic equilibrium may be 
described by the following corollary.       
 

 

 

The 44th Law of Software Engineering 
 

Theorem 12.1 The adaptive economic equilibrium states that a market 
with autonomic interactions between demands D and supplies S is a self-
regulated and self-adaptive system, where any change in demand, supply, 
or both will be autonomously adjusted via the leverage of price P to an 
equilibrium, i.e.: 
 

   

     

  

 

  

 

Market conservation Maximizing profits[ ] [ ]
Lemma 12.xx Lemma 12.xx

D D
P P

S S

D D
P P

S S

↑ → ↓ →⎧ ⎫⎪ ⎪⎪ ⎪→ ↑ ⇒ → ↓⎪ ⎪⎪ ⎪→ →↓ ↑⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪↓ → ↑ →⎪ ⎪⎪ ⎪→ ↓ ⇒ → ↑⎪ ⎪→ →⎪ ⎪↑ ↓⎪ ⎪⎪ ⎪⎩ ⎭

+

 

 

Corollary 12.2 The result of interactions between dynamic demands and 
supplies, through the leverage of prices, results in an automatic 
stabilization of the market at a new equilibrium that is close to the current 
equilibrium price.   
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Theorem 12.1 and Corollary 12.2 are a rigorous enhancement [Wang, 
2005d] of Adam Smith’s hypothesis of the invisible hand. These laws will be 
explained in the following subsections with both simple and complex modes 
of economic equilibriums.  
 
12.2.3.1 Simple Modes of Economic Equilibriums 
  

There are four simple modes that may drive a market away from an 
equilibrium considered in conventional economics. They are demand 
increase E(D+), demand decrease E(D-), supply increase E(S+), and supply 
decrease E(D-). Theorem 12.1 can be applied to each of the above modes and 
situations as analyzed below. 

 
Mode 1. Demand Increase E(D+)  
 
The reactions of the equilibrium mechanism to an event of demand 

increase, E(D+), can be described by the following reactions: 
 
   1)   Demand is increased D ↑ as an event. 

   2) Price P is increased due toD ↑  according to the law of scarcity 
(Lemma 12.1).    

   3)  Parallel to Reaction 2, quantity of supply is increased SQ ↑  
according to the law of maximizing profits (Lemma 12.4).   

   4)  Price P is decreased following S ↑ in Reaction 3 according to the 
law of market conservation (Lemma 12.2).     

   5)  Price P is regulated to a newly established P’e that is close to Pe 
due to synthetic result of the effect and negative feedback 
according to the law of economic equilibrium (Theorem 12.1).         

 
The above chain of feedback reactions can be formally described by 

Eq. 12.6 and illustrated by Fig. 12.4.  
 
                

  

 

( +) = 'e
P

E D D P
S P

→ ↑ →
↑ → ⇒→→ ↑ → ↓

        (12.6) 
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Figure 12.4 The equilibrium mechanism of Mode 1: E(D+) 
 
On the basis of Fig. 12.4, the newly established equilibrium P’e, and the 

increment of price ∆P can be predicated as follows. 
 

 
Example 12.1 Assume that two shifted equilibriums of a market system 

are affected by demand increases resulting in the following effects (Pe1, P’1, 
P’’1) = (20, 36, 10) and (Pe2, P’2, P’’2) = (30, 40, 8). The newly established 
equilibriums can be predicated as: 
 

 1 1
1

' '''
2

36 10
2

$23

e
P PP +=

+=

=

 

S(t) 

    P(t) 

Q(t) 

D(t)

 Qe 

 Pe 
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   e 

5’ 
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  Q’ 

   P’  

   P’’  

 

The 44th Principle of Software Engineering 
 

Theorem 12.2 The predictability of new equilibrium states that a newly 
established equilibrium on price P’e is determined by the effect P’ and 
feedback effect P’’ of the driving forces deviating from the current 
equilibrium, i.e.:      

 
   

                    
 

 

' - ''' ''
2

' '' ,  ' '
2

e

e

P PP P

P P P P

= +

+= >
   (12.7) 

 

and the increment of price caused by the shifting of equilibriums is: 
 

             
 

'

' ''
,  ' '

2

e e

e e

P P P

P P
P P P

∆ = −

+= − >
   (12.8) 

 

where ∆P may be positive or negative that represents a upward or 
downward shifting of the current equilibrium price, respectively. 
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and 
 2 2

2
' '''

2
40 8

2
$24

e
P PP +=

+=

=

 

 
The increments in the above situations are: 

 
1 1 1'

23 20

= $3

e eP P P∆ = −

= −  

 
and  

2 2 2'

24 30

= -$6

e eP P P∆ = −

= −  

 
It can be proven that Theorem 12.2 can be applied to any other mode of 

market equilibriums.  
 
Mode 2. Demand Decrease E(D-)  
 
The reactions of the equilibrium mechanism to an event of demand 

decrease, E(D-), are formally described as follows: 
 

         
  

 

( ) = 'e
P

E D- D P
S P

→ ↓ →
↓ → ⇒→→ ↓ → ↑

               (12.9) 

 
The chain of feedback reactions as described in Eq. 12.9 can be 

illustrated as shown in Fig. 12.5. 
  

Figure 12.5 The equilibrium mechanism of Mode 1: E(D-)  
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Mode 3. Supply Increase E(S+)  
 

The reactions of the equilibrium mechanism to an event of supply 
increase, E(S+), are formally described as follows: 

 

      
  

 

( ) = 'e
P

E S S P
S P

→ ↓ →
+ ↑ → ⇒→→ ↑ → ↑

      (12.10) 

 

The chain of feedback reactions as described in Eq. 12.10 can be 
illustrated as shown in Fig. 12.6.  

Figure 12.6 The equilibrium mechanism of Mode 1: E(S+)   
 
Mode 4. Supply Decrease E(S-)  

 
The reactions of the equilibrium mechanism to an event of supply 

decrease, E(S-), can be formally described as follows: 
 

        
  

 

( ) = 'e
P

E S- S P
S P

→ ↑ →
↓ → ⇒→→ ↓ → ↓

      (12.11) 

 

The chain of feedback reactions as described in Eq. 12.11 can be 
illustrated as shown in Fig. 12.7. 
  

Figure 12.7 The equilibrium mechanism of Mode 1: E(S-) 
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12.2.3.2 Complex Modes of Economic Equilibriums 
 

Observing the driving causes of market systems, there are four 
additional complex modes based on the above simple modes, which could 
not be accurately dealt with conventional economics theories. They are 
compound demand/supply increases E(D+, S+), compound demand increase 
and supply decrease E(D+, S-), compound demand decrease and supply 
increase E(D-, S+), and compound demand decrease and supply decrease 
E(D-, S-).  

Theorem 12.1 can still be applied in each of the complex modes and 
situations as follows.   

 
Mode 5. Compound Demand/Supply Increases E(D+, S+) 
 
The reactions of the equilibrium mechanism to a compound event of 

demand/supply increases, E(D+, S+), are formally described by Eq. 12.12. 
The chain of feedback reactions described in Eq. 12.12 can be illustrated by 
combining Figs. 12.4 and 12.6. 

 

   E(D+, S+) =   

 

  

 

'e

P
D

S P
P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↓
↑ → →→ ↑ → ↑

      (12.12) 

 
Mode 6. Compound Demand Increase/Supply Decrease E(D+, S-) 

 
The reactions of the equilibrium mechanism to a compound event of 

demand increase/supply decrease, E(D+, S-), are formally described by Eq. 
12.13. The chain of feedback reactions described in Eq. 12.13 can be 
illustrated by combining Figs. 12.4 and 12.7. 

 

  E(D+, S-) =   

 

  

 

'e

P
D

S P
P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↑
↓ → →→ ↓ → ↓

     (12.13) 

 
Mode 7. Compound Demand Decrease/Supply Increases E(D-, S+) 

 
The reactions of the equilibrium mechanism to a compound event of 

demand decrease/supply increases, E(D-, S+), are formally described by Eq. 
12.14. The chain of feedback reactions described in Eq. 12.14 can be 
illustrated by combining Figs. 12.5 and 12.6. 
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   E(D-, S+) =   

 

  

 

'e

P
D

S P
P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↓
↑ → →→ ↑ → ↑

     (12.14) 

 
Mode 8. Compound Demand/Supply Decreases E(D-, S-).  
 
The reactions of the equilibrium mechanism to a compound event of 

demand/supply decreases, E(D-, S-), are formally described by Eq. 12.15. 
The chain of feedback reactions described in Eq. 12.15 can be illustrated by 
combining Figs. 12.5 and 12.7. 

 

  E(D-, S-) =   

 

  

 

'e

P
D

S P
P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↑
↓ → →→ ↓ → ↓

     (12.15) 

 
12.2.3.3 The Adaptive Equilibrium Mechanisms of Market Systems  
 

The eight modes of equilibrium mechanisms described so far are 
summarized in Table 12.1.    

 
Theorems 12.1 and 12.2 as well as related mathematical models derived 

in this section are actually a formal proof of Adam Smith’s hypothesis of 
invisible hand proposed in 1776 [Smith, 1776] with the enhancement in 
Theorem 12.2.     

  

 

 

 

Corollary 12.3 The adaptive equilibrium mechanism of market systems 
described in Theorem 12.1 and Modes 1 through 8 is the invisible hand, 
which self-regulates and self-organizes the equilibrium of quantities and 
prices affected by the interactions between demands and supplies. 
     

 

Corollary 12.4 Equilibrium market is a conservative system. Once an 
equilibrium is established in a market, the price may gradually wave 
around and slowly shifting from Pe, but may not be increased or 
decreased abruptly and dramatically. 
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Table 12.1 
Adaptive Equilibrium Behaviors of Market Systems 

 

Mode Event

No. Symbol D S 

Chain of Feedback Reactions Illustration 

1 E(D+) ↑  
  

 

'e
P

D P
S P

→ ↑ →
↑ → ⇒→→ ↑ → ↓

 Fig. 12.4  

2 E(D-) ↓  
  

 

'e
P

D P
S P

→ ↓ →
↓ → ⇒→→ ↓ → ↑

 Fig. 12.5 

3 E(S+)  ↑ 
  

 

'e
P

S P
S P

→ ↓ →
↑ → ⇒→→ ↑ → ↑

 Fig. 12.6 

4 E(S-)  ↓ 
  

 

'e
P

S P
S P

→ ↑ →
↓ → ⇒→→ ↓ → ↓

 Fig. 12.7 

      

5 E(D+, S+) ↑ ↑ 
  

 

  

 

'e

P
D

S P
P

P
S

S P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↓
↑ → →→ ↑ → ↑

 

Fig. 12.4 

& 

Fig. 12.6 

6 E(D+, S-) ↑ ↓ 
  

 

  

 

'e

P
D

S P
P

P
S

S P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↑
↓ → →→ ↓ → ↓

 

Fig. 12.4 

& 

Fig. 12.7 

7 E(D-, S+) ↓ ↑ 
  

 

  

 

'e

P
D

S P
P

P
S

S P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↓
↑ → →→ ↑ → ↑

 

Fig. 12.5 

& 

Fig. 12.6 

8 E(D-, S-) ↓ ↓ 
  

 

  

 

'e

P
D

S P
P

P
S

S P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↑
↓ → →→ ↓ → ↓

 

Fig. 12.5 

& 

Fig. 12.7 
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12.3 Economic Models 
 

 
 
To explain the relations among a great variety of economic phenomena and 
their behaviors, a set of economic models such as the production model, cost 
model, and market model will be studied in this section.  
 
 

12.3.1 PRODUCTION MODELS 
 

Production models study the forms of production systems and their 
efficiencies between the input and output. The most important production 
model in economics is productivity.           
  

Definition 12.8 The productivity, or the average product, P , is a ratio 
between the total output O and the variable input or labor Iv, i.e.: 
 

      
v

O
P

I
=           (12.16) 

 
 Productivity is a macro measure of an economic system. In order to 
find the efficiency of economic input of a production system per unit of 
labor, the marginal product at the micro level is introduced below.  
 

Definition 12.9 The marginal product P∆  is a ratio between the 
incremental output and the incremental input, i.e.: 

 

    
v

O
P

I∆
∆=
∆

          (12.17) 

 
Specialization efficiency was found in the industrial revolutions that 

productivity or marginal product can be increased by adding specialized 
labor in the incremental input in a certain range. However, overhead of 
specialization may diminish the return of variable input, when ∆Iv is large 
enough. This observation leads to the following lemma.       

    

  

 

Lemma 12.6 Law of diminishing returns states that specialization 
efficiency is over turned by overhead of using more variable input.     
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12.3.2 COST MODELS 
 

Costs of production systems can be classified as the fixed and variable 
costs. The former such as those of buildings and machines are invariant with 
the output or scale of production even though if there is no output the same 
fixed costs still exist. The latter are proportional to output in a production 
system such as those of materials and labor. Therefore, labor and its rational 
organization are the most important and value-adding essence in production.            

    
Definition 12.10 Total cost of a production system C is the sum of 

fixed cost cf and variable cost cv, i.e.: 
 
           C =  cf + cv         (12.18) 

  
The total cost is an absolute value in production. In economic analyses, 

the relative cost against output, or the average cost, is more meaningful in 
cost analyses. 
 

Definition 12.11 The average cost in production C  is the unit cost per 
product, i.e.: 

 

             +

+

f v

f v

v

C
C

O
c   c  

O
c   c
P I

=

=

=
•

       (12.19) 

 
Definition 12.12 Marginal cost C ∆ is the ratio between the 

incremental total cost and incremental output, i.e.: 
 

     
+f v

v

CC
O

c   c
P I

∆

∆

∆=
∆

∆
=

• ∆

         (12.20) 

 
Eqs. 12.19 and 12.20 indicate that the average cost or marginal cost 

may be reduced by increasing productivity or decreasing variable costs on 
labor or materials. Eq. 12.20 also indicates that the increase of ∆O will result 
in the increases of ∆cv. The tradeoffs between ∆O and ∆cv, therefore, form 
the economical scale problem.            
 

Definition 12.13 The economical scale of production is the maximum 
output that yields the minimum average cost under a certain productivity, i.e.: 
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         min
max

C
C

O
=         (12.21) 

 
A typical relationship between maxO and minC  can be illustrated in Fig. 

12.8.     
 

    

 
 O 

Omax 

C min 

  C  

0 
 

Figure 12.8 The economical scale of production  
 
 
12.3.3 MARKET MODELS 
 

Definition 12.14 The market is an economic domain in which buyers 
and sellers exchange commodity and services. 
 
 Markets in economics can be classified into a spectrum of categories 
such as those of perfect competitive, monopolistically competitive (with 
product differentiation), oligopoly, and monopoly. The perfect competition 
market and oligopoly are the two extreme forms of markets, where the 
former is the most healthy and efficient market.      
 
 Definition 12.15 A perfect competitive market is a free-entry market 
where many sellers supply identical products or services so that none of them 
may dominantly influence the market prices.      
 
 In the perfect competitive market, a supplier is forced by competitors to 
operate at maximum efficiency rather than to manipulate a higher price in 
order to make profits. Therefore, the perfect competitive market is the most 
consumer-friendly market.          
 
   Definition 12.16 A monopolistic market is a market where only a sole 
supplier provides a good or service without any close substitutes.      
 

Although the demand is decided by buyers, a monopoly in the market 
may be formed based on one of the following conditions: a) A controller of 
an essential resource; b) A holder of a government franchise; c) A creator of 
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a new market, or a pioneer getting a market first; d) A founder of de facto 
industrial standard; and e) An inventor and entrepreneur of a widely 
applicable product or service.                

Real-world markets are operating in between the perfect competitive 
and monopolistic market modes. Usually, the large-scale and global 
industries are oligopolistic, local utility industries are monopolistic, and the 
remainder is perfect competitive or semi-competitive. 
 The markets may also be classified as surplus and shortage markets, 
which can be illustrated by the interactions of demands and supplies over 
time as shown in Fig. 12.9, where: 
 

a) A surplus market:  ti’ < ti  ⇒ S’(ti) > D(ti)  
b) A shortage market:   ti’’ > ti ⇒ S’’(ti) < D(ti)                    (12.22) 

 
The former is also known as the buyer-market and the latter the seller-

market dependent on whether the demand occurs after the supply (S’(t)) or 
before it (S’’(t)). 

 
Figure 12.9 Surplus vs. shortage markets  
 
 

 
12.4 Dynamic Values of Money and 
         Assets 
 

 
 
A basic concept of economics is that the values of physical assets and their 
denoted representation in terms of money are a relative quantity. Both of 
their values change over time, or more rigorously, their value is a function of 

QD, QS 

  t 

S’(t)

  ti 

 QD 

0 

S’’(t) D(t)

 t’i  t’’i 

 QS’’ 

 QS’ 
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time and the interest rate. This section describes the dynamics of money and 
assets. The techniques for determining the values of various cash flows in 
any given point of time are presented.                   
 
 
12.4.1 DYNAMICS OF MONEY   
 

Since money has been recognized as a generic representation or 
measure of the value of any goods, services, and assets, the study of its 
dynamics is to analyze the factors and mechanisms that influence the value of 
money. 
 

Definition 12.17 The dynamic value of money or an asset, V(t), is its 
present worth P projected at a given point of time t for a given average or 
predicated interest rate i during [0, t], i.e.: 

 
                V(t) = f(P, i, t)          (12.23) 

 
For totally n interest calculation periods, the simple interest I that is 

earned only on principal P during each interest period is: 
 

                                I(n) = (P • i ) • n        (12.24) 
                           
where the dimension of time is simplified into a serial discrete interest 
periods n.  

 
The value at end of the nth interest period, V(n), or the future value 

F(n), for a given average interest i can be determined as follows: 
 

                 V(n) = F(n)  
                             =  f(P, i, n)         

         = P + I(n) 
         = P + (P • i • n)  
         = P (1 + i • n)        (12.25) 

 
A more advanced interest calculation method is known as the 

compound interest that is recursive accumulation of the interest based on 
each end of the n given periods as the future value F(n), i.e.: 

 
                                     F(n) = P(1+i)n         (12.26) 

 
An inverse function of Eq. 12.26 determines the present value P of a 

future value F(n) for given periods n and interest i, i.e.: 
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                                   P = F(n) 1
(1 )ni+

        (12.27) 

 
 
12.4.2 DYNAMICS OF ASSET’S VALUES 
 
 As that of money discussed in the preceding subsection, values of 
assets possess a dynamic property too.      
  

Definition 12.18 For a given asset, the continuous decreasing of value 
over time is known as depreciation. 
 

The depreciation of assets can be classified as: a) Physical depreciation 
that refers to the reduction in asset’s capacity to perform its intended service 
due to physical impairment; b) Functional depreciation that refers to 
obsolescence; c) Economic depreciation that refers to the total values lost 
during the life span of an asset; and d) Accounting depreciation that refers to 
a systematic allocation of the initial cost of an asset in parts over time.  

The physical, functional, and economic depreciations are equivalent to 
the concept of system dissimilation discussed in Section 10.5.7. The 
accounting depreciation may be used for booking investment costs or for tax 
purposes. 

       
Definition 12.19 Assume an asset provides an equal amount of utility 

or service in each year of its life-span n, the linear depreciation of the asset 
in each year D is:      
 

             D = P - S
n

         (12.28) 

 
where P is the initial value of the asset, and S the salvage value by the year 
end of n. 
 

Therefore, the real value of the asset in year k, Va(k), 0 ≤ k ≤ n, can be 
determined as: 
 

      Va(k) = P - kD        

     
( )

P - SP - k
n

P n - k kS
n

=

+=
       (12.29) 

 
where, particularly, Va(0) = P and Va(n) = S.    
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There are a number of nonlinear depreciation methods that enables a 
faster early depreciation by inverse exponential models, so that the costs of 
initial investment can be distributed or recovered in the early phase of 
projects. Details may be referred to [Park et al., 2001; Sepulveda et al., 
1984].    
 
 

12.4.3 CUMULATIVE VALUES OF CASH FLOWS 
 

Cumulated values of a series of cash flows can be derived as a sum of 
individual payments at the same point of time [Park et al., 2001; Sepulveda et 
al., 1984], such as at present or at the end of n period in the future .           
 
12.4.3.1 The Uniform Payment Series 
 

Definition 12.20 The uniform payment series is a series of identical 
payments A at the end of each period by a fixed frequency.         

 
The cumulated present value PΣ(A) of a uniform series payments A is 

given by Eq. 12.30 below: 
 

(1+ ) -1
( )

(1 )

n

n
i

P A A 
i iΣ =
+

       (12.30) 

 
Inversely, the equivalent value of uniform payment A at present is:          

   
(1 )

( )
(1+ ) -1

n

n
i i

A P A  
iΣ
+=        (12.31) 

 
where A is called the capital recovery factor for denoting the periodical 
return of an initial investment PΣ(A) .   
 

The cumulated future value FΣ(A) of a uniform series A is given by Eq. 
12.32 below: 

 
(1+ ) -1

( )
ni

F A A 
iΣ =         (12.32) 

 
Inversely, the equivalent value of uniform payment A in a given year in the 
future is:          

   

( )
(1+ ) -1n

iA F A  
iΣ=        (12.33) 
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where A is called the sinking fund factor for denoting the periodical payment 
for a given accumulated fund in the future FΣ(A) .   

It is noteworthy that the cumulative present and future values are still 
obeying the relationship as described in Eq. 12.34, i.e.: 

          
                                     FΣ (A) = PΣ(A) (1+i)n        (12.34) 
 
 Eq. 12.34 can be proved by replacing PΣ(A) and FΣ(A) in the above 
equation by Eq. 12.30 and Eq. 12.32, respectively.       
 
12.4.3.2 The Linear Gradient Payment Series 
 

Definition 12.21 A linear gradient payment series is a series of linearly 
increased payments G by a fixed frequency.         

 
The linear gradient series G is illustrated in Fig. 12.10.  

 

0 1 2  n-1 n

(n-2)G

 2G
  G

(n-1)G

3

  0 

 
 

Figure 12.10 Linear gradient series  
 

The cumulated present value PΣ(G) of a linear gradient series G is 
given below: 

 

    2
(1+ ) -  -1

( )=
(1+ )

n

n
i i n

P G G
i iΣ

•        (12.35) 

 
where G is the increment factor and G can be positive or negative to 
implement a linear gradient increase or decrease in the series. 

       
12.3.3.3 The Geometric Gradient Payment Series     
 

Definition 12.22 A geometric gradient payment series is a series of 
nonlinearly increased payments g by a fixed frequency.         

 
The geometric gradient series g is illustrated in Fig. 12.11.  
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0 1 2 n-1 n

 A1(1+g) 
  A1

 …

A1(1+g)2

 0 

3

A1(1+g)n-1

 
 
Figure 12.11 Geometric gradient series  

 
The cumulated present value PΣ(g) of a geometric gradient series g is 

given below: 
 

  

-

1
1-(1+ ) (1 )

( )=
-

n ng i
P g A

i gΣ
+        (12.36) 

 
where g is the growth rate and g can be positive or negative to implement a 
geometric gradient increase or decrease in the series. 
  

In a more generic situation, the cash flows may be a composite series 
formed by the combination of the primitive series as discussed in the 
previous subsections. In this case, the cumulated value can be calculated as 
the sum of individual component series. Further discussions may be referred 
to [Park et al., 2001; Sepulveda et al., 1984]. 
 
              
 
12.5 Economic Analyses 
 

 
 

This section develops a set of algorithms for dynamic cost and investment 
analysis that can be used in economic analyses for software engineering 
projects. The algorithms provide numerical solutions for values of cost and 
investment in present (P) and future (F), cumulative present value (P Σ ) and 
future value (R Σ ), return-period (n) and return-rate (ρ). By applying these 
algorithms, complicated mathematical problems in dynamic cost and 
investment estimation in software engineering can be solved easily. The 
algorithms are useful not only for project managers to plan and analyze 
software development costs, but also for customers to estimate investment 
benefit and risk of software projects. 
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12.5.1 PROJECT COSTS ANALYSES 
 

The concepts of the dynamic values of money and assets have been 
introduced in Section 12.4. Fundamental expressions for comparing the 
values of cost/investment over time are provided. This subsection 
demonstrates applications of the dynamic value theory in project economic 
analyses.  

 
Example 12.2 An engineering project is predicted to yield different 

cash flows as given in Table 12.2. Assuming the initial investment P = 
$100,000, and interest rate i = 10%, analyze the cumulated payback value PΣ 
of each cash flow. 
 

Table 12.2 
Cash Flows of a Project 

 

End of year 0 1 2 3 
Cash flow 1 (Random, k$) -100 30 60 50 

Cash flow 2 (Uniform, k$) -100 46 46 46 

Cash flow 3 (Linear gradient, k$) -100 0 80 160 

Cash flow 4 (Geometric gradient, k$) -100 25 25 • 1.5 25 • 1.52 

 
 a) Cash Flow 1: According to Eq.12.27, PΣ is determined as follows:          
 

                    

1 2 3
1 1 1(1) (2) (3)

(1 ) (1 ) (1 )
100 30k 0.9091 60k 0.8264 50k 0.7513

100 27,273 49,584 37,566

$14, 423

P P F F F
i i iΣ = + + +

+ + +
= − + • + • + •

= − + + +

=

 

 
 b) Cash Flow 2: According to Eq.12.34, PΣ(A) is determined as 

follows: 
          

3

3

(1+ ) -1
( )

(1 )

1.1 -1100 46, 000
0.1 1.1

100 46, 000 2.4869

$14,397

n

n
i

P A P A 
i iΣ = +
+

= − + •
•

= − + •

=
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c) Cash Flow 3: According to Eq.12.35, PΣ(G) is determined as 
follows:          

 

  2

3

2 3

(1+ ) -  -1
( )= +

(1+ )

1.1 - 0.1 3 -1
100 80,000

0.1 1.1
100 186,320

$86,320

n

n
i i n

P G P G
i iΣ

•

•= − + •
•

= − +

=

 

 
Another way to calculate PΣ(G) for Cash Flow 3 is using Eq. 12.27 as 

that for Cash Flow 1, and the same result will be yielded as shown below. 
However, when the series is very long, the above solution is more efficient.     

       

1 2 3
1 1 1

(1) (2) (3)
(1 ) (1 ) (1 )

100 0 80, 000 0.8264 160, 000 0.7513

100 186, 320

$86,320

P P F F F
i i iΣ = + + +

+ + +
= − + + • + •

= − +

=

 

 
d) Cash Flow 4: According to Eq.12.36, PΣ(g) is determined as 

follows:          
 

                            

  

-

1

3 -3

1-(1+ ) (1 )
( )= +

-
1-(1+1.5) 1.1

= 100 + 25, 000
0.1-1.5

100 191,773

$91.773

n ng i
P g P A

i gΣ
+

•− •

= − +

=

 

 
 
12.5.2 PROJECT BENEFIT-COST ANALYSES   
 

Analyses of benefit-cost ratios are usually based on the preset values P. 
However, when project life spans are different, the analysis can be based on 
annual values A. 
 

Definition 12.23 The total benefit of a project B is the sum of its 
benefits Bk of year k, 0 ≤ k ≤ n, in the view of its present values, i.e.:  
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B = 
0 (1 )

n
k

k
k

B
i= +∑            (12.37) 

 
where i is the sponsor’s interest or discount rate. 
 

Definition 12.24 The total costs of a project C is the sum of its costs Ck 
of year k, 0 ≤ k ≤ n,  in the view of its present values, i.e.:  

 
     C = 

0 (1 )

n
k

k
k

C
i= +∑   

                                        = C0 + C′                     (12.38) 
 

where Ck includes all capital expenditures C0 and annual operating costs C′. 
 
 When both the total benefit and cost are known, the benefit-cost ratio of 
a project can be determined as follows.  
 

Definition 12.25 Benefit-cost ratio BC of a project is a ratio between 
the total benefit B and the total cost C, i.e.: 

 

                                      

0

BC =
B
C

B
C C

= ′+

         (12.39) 

 
A variation of BC known as the net benefit-cost ratio B′C is defined as 

below: 
    

                                     0

0

'B'C =

'

B C
C

B
C

−

=
         (12.40) 

 
where B′ = B - C′ is the net benefit. 
 

Definition 12.26 The economic evaluation criterion to accept a project 
is that its benefit-cost ratio is larger than one, i.e.: 

 
             BC  > 1        (12.41) 

or 
B′C > 1        (12.42) 

 
Eqs. 12.41 and 12.42 imply B > C or B′ > C0, respectively.  
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     According to Definition 12.26, an evaluation of BC or B′C for a given 
project may result in three outcomes as follows: 
 

           
1,  a desirable project

1,  a risky project

1,  an unacceptable project

BC

⎧⎪>⎪⎪⎪⎪=⎨⎪⎪⎪<⎪⎪⎩

     (12.43) 

 
 
12.5.3 PROJECT PAYBACK PERIOD ANALYSES  
 

Definition 12.27 The payback period ρ of a project is the expected 
point of time n at which the initial investment P will be recovered by the 
revenues of the project PΣ  for a given interest rate i, i.e.: 

 
                                             ρ = {n | P = PΣ(n)}           (12.44) 
 

The accurate solution of Eq. 12.44 can be derived by constructing a 
function f(n) as follows:    
  

        f(n) = P - PΣ(n)   

            =   
(1+ ) -1

-
(1 )

n

n
i

P A 
i i+

 

                                                   = 0                   (12.45) 
 
where PΣ is assumed as a uniform series of annual payback. In general, PΣ  
can be a cumulated present value of any kind of cash flows.  
 

Because Eq. 12.45 needs to be solved by a numerical algorithm, a 
simple estimation of payback period in practical engineering economic 
analysis may be calculated by linear interpolation as follows: 
  
                                          ρ ={n | P = PΣ(n)}  

                                             ≈ ⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎣ ⎦

  

  

- ( )
( ) - ( )
P P n

n
P n P n

Σ

Σ Σ
+          (12.46) 

 
where ⎣ ⎦n  and ⎣ ⎦n  are the floor and ceiling of the turning point in a year n, 
respectively, where the cumulated payback ⎣ ⎦( )P nΣ before n is less than P, 
but the following year will yield a ⎡ ⎤( )P nΣ  greater than P.  
 

Example 12.3 The payback periods of Cash Flows 1 and 3 as given in 
Example 12.2 and Table 12.2 can be calculated as follows:      
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 (a) Cash Flow 1: 
 

    ρ1 ={n | P = PΣ(n)} 

                                            

⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎣ ⎦

  

  

- ( )
( ) - ( )

100,000 76,875
2

114, 423 76, 875
23,1252
37,548

2 0.62

2.62 [year]

P P n
n

P n P n
Σ

Σ Σ
≈ +

−= +
−

= +

= +

=

   

 
(b) Cash Flow 3: 
 

⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎣ ⎦

  

  
2

- ( )
( ) - ( )

100, 000 66,112
2

186, 320 66,112
33, 8882
120,208

2.28 [year]

P P n
n

P n P n
ρ Σ

Σ Σ
≈ +

−= +
−

= +

=

 

 
 
12.5.4 PROJECT RATE OF RETURN ANALYSES  

 
In engineering economic analysis, γ  is a useful indication of the speed 

of payback.  
 
Definition 12.28 The rate of return γ of a project is the equivalent 

interest rate yield by a cash flow PΣ for recovering the initial investment P 
for a given period n, i.e.:  

 
                                                γ = {i | P = PΣ }           (12.47) 

 
The accurate solution for Eq. 12.47 can be derived by constructing a 

function f(i) as follows:    
  

         f(i) = P - PΣ   

           =   
(1+ ) -1

-
(1 )

n

n
i

P A 
i i+

 

                                                   = 0                   (12.48) 
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where PΣ is assumed as a uniform series of annual payback. In general, PΣ  
can be a cumulated present value of any kind of cash flows.  

 
Because Eq. 12.48 needs to be solved by a numerical algorithm, in 

practical engineering economic analysis, the rate of return γ can be 
approximately estimated as the inverse of ρ, i.e.: 
  

                                          1 100%γ
ρ

= •         (12.49) 

 
The rate of return is usually compared with the bank interest i in 

economic analyses. The evaluation criteria of γ can be set as given below: 
 

           
,  a desirable project

,  a risky project

,  an unacceptable project

i

i

i

γ

⎧⎪>⎪⎪⎪⎪=⎨⎪⎪⎪<⎪⎪⎩

      (12.50) 

 
 Example 12.4 Using the same data as given and/or derived in 

Examples 12.2 and 12.3, determine the rates of return for Cash Flows 1 and 
3. 

 
(a) Cash Flow 1: As obtained in Example 12.3, ρ1 = 2.62 year. 
According to Eq. 12.49 the rate of return γ1 can be determined as 
follows:   
 

                                          

1
1

1 100%

1 100%
2.62
38.17%

γ
ρ

= •

= •

=

 

 
(b) Cash Flow 3: The rate of return γ3 for ρ3 = 2.28 year is as follows:   
 

                                          

3
3

1 100%

1 100%
2.28
43.86%

γ
ρ

= •

= •

=

 

 
 A case study on economic analyses of a software engineering project 
will be provided in Section 12.6.4. 
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12.6 Software Engineering 
         Economics 
 

 
 
Software engineering economics is a branch of applied microeconomics that 
studies how resources are used to produce software systems and services and 
how optimistic decisions may be made for software engineering projects. 
This section describes elements of software costs, economic analyses, 
problem solving methods, and their applications in a variety of software 
engineering project decisions. 
 
 
12.6.1 ELEMENTS OF SOFTWARE ENGINEERING 
           COSTS  
 

Prior to developing the cost and revenue models of software 
engineering, the taxonomy of software costs is presented. Then, the cost 
elements of system and application software are comparatively analyzed. 

 
12.6.1.1 Analysis of Software Engineering Costs 
 

The costs of software engineering projects can be classified into the 
categories of fix cost, variable cost, development cost, service cost, and 
competition cost as shown in Table 12.3. Mapping these cost elements into 
software engineering processes, they can be described as the design, 
production, and service costs.  

 
The conventional cost models in economics consider only the fixed 

costs and variable costs as discussed in Section 12.3.2, which are oriented to 
the manufacturing industry characterized by mass production. For software 
engineering projects in the software industry, more cost categories need to be 
explored, such as the development costs and service costs. Also, the 
differences between the cost models of system and application software need 
to be distinguished, where system software are operating systems and 
fundamental system tools such as language compliers, database management 
systems, and network/communication software; while application software 
are those of user developed built on top of the system software.          
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Table 12.3 
Elements of Software Costs 

 

No. Category Cost element System 
software 

Application 
software 

Process 

1 Fixed costs    
1.1  Land and buildings   
1.2  Equipment   
1.3  Office facilities   
1.4  IT systems   
2 Variable costs    
2.1  Labor   
2.2  Materials   
2.3  Manual and 

Documentation 
  

Production 
costs 

3 Development 
costs 

   

3.1  Requirement analysis   
3.2  Feasibility study    
3.3  Specification   
3.4  Design   
3.5  Implementation   
3.6  Test   
3.7  Quality assurance   
3.8  Process improvement   
3.9  Tools     

Design 
costs 

4 Service costs    
4.1  Maintenance   
4.2  Distribution   
4.3  Support   
4.4  Training   
4.5  Trial   
4.6  Localization   
5 Competition 

costs 
   

5.1  Advertisement   
5.2  Free promotions   
5.3  Special discounts   
5.4  Standardization   

Service 
costs 
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12.6.1.2 Analysis of Software Engineering Revenues 
 

The elements of software revenues in software engineering can be 
analyzed as shown in Table 12.4. It is noteworthy that, although the cost 
models of system and application software are quite similar, their revenue 
models are fairly different.       
 

Table 12.4 
Elements of Software Revenues 

 

No. Category System 
software 

Application 
software 

1 Licenses   
2 Rents   
3 Certifications   
4 Development   
5 Training   
6 Service   

 
According to the revenue models of software, it is obvious that system 

software may create much higher revenues than those of application software 
systems.        
 
 

12.6.2 SOFTWARE ENGINEERING PROJECT COSTS 
           ESTIMATION USING FEMSEC  
 

The cost of a software engineering project is usually perceived as a 
linear function of the size of a given project. However, according to the 
coordinative work organization theory as developed in Section 8.5, software 
project cost is more directly related to the expected workload of projects, 
which is dominated by the property of interpersonal coordination rate 
required for the project. Further, the allocations of labor and time for a 
project cannot be carried out freely, but are constrained by certain laws as 
stated in Theorems 8.4 and 8.7. The workload-based approach to software 
engineering project cost determination will be formalized in this subsection 
by the Formal Economic Model of Software Engineering Cost (FEMSEC) 
[Wang, 2007d], and will be compared with the COCOMO approach in 
Section 12.6.3.      

                                   
12.6.2.1 The FEMSEC Model of Software Engineering Costs  
 

It recognized that the cost of a software engineering project is not 
simply a linear function of the size of the project rather than a complicated 
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function related to the expected workload, the form of labor allocation, and 
whether the shortest project duration is achieved. A rational and rigorous 
treatment of the software engineering cost determination and estimation can 
be derived on the basis of the coordinative work organization theory as 
developed in Section 8.5, which results in the following formal economic 
model of software engineering costs.  

 

  
The procedure to determine an expected project cost according to the 

FEMSEC model given in Theorem 12.3 can be illustrated in Fig. 12.12.  
 

 

 

Estimated 
size  ( pS ) 

Ideal 
workload 

(W1) 

Expected 
project cost 

(C) 

Average 
salary 
(CL) 

Shortest 
expected  
duration 

(Tmin) 

Optimal labor
Allocation 

(L0) 

Expected 
workload 

(W) 

   Average 
    productivity 

   (ρ) 

Empirical 
project 

database 
(PDB) 

Real project 
data 

(C’, W, W1, 
pS , ρ, T, CL) 

 
Figure 12.12 Illustration of the FEMSEC model 

 

The 45th Law of Software Engineering 
 

Theorem 12.3 The Formal Economic Model of Software Engineering 
Cost (FEMSEC) states that, on the basis of the workload-driven project 
organization laws (Theorems 8.4 and 8.7), the expected project cost C 
can be rigorously determined with the optimal labor allocation L0 and the 
shortest duration Tmin by the following 6 steps: 
  
    1) Estimate the project size pS  
    2) Determine the ideal workload W1 
    3)  Allocate the optimal labor L0  
    4) Determine the shortest duration Tmin  
    5) Determine the expected workload W  
    6) Determine the expected project cost C      
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In the FEMSEC model, some of the steps require the availability of 
empirical and historical data of a specific organization, such as project size 

pS , average productivity ρ, and average salary CL. The completion of each 
project will generate a new set of historical data, which will then be used to 
update the historical database. In case the historical data are not available in a 
certain organization, the sector’s benchmarks may be used as an initial base. 
 
12.6.2.2 The FEMSEC Method for Software Engineering Project Costs 
              Determination   

 
The following subsections formally describe the mathematical models 

for each of the six steps in the rational project costs determination process of 
FEMSEC.   
  
12.6.2.2.1 Project Size Estimation  
 

Knowing the size of a software engineering project is the starting point 
of cost estimation. Project sizes are usually represented by the symbolic size 
Ss of software systems in the unit of thousand lines of code (kLOC).  

 
Definition 12.29 Project size can be estimated by a weighted average 

of its symbolic size, pS , as follows:  
      

      1 =  (  + 4  + )   [kLOC]
6p max exp minS S S S        (12.51) 

 
where Sexp is the most likely expectation of the size of the project, Smax and 
Smin are the maximum or minimum expectation, respectively.  
 
 In Eq. 12.51, it can be seen that the weighted average size estimation 
give a higher weight to the most likely expectation. The size estimation 
model as defined in Definition 12.29 is a fairly accurate technique when 
empirical data are available on similar projects as references. 
 However, the empirical comparability is not always available at the 
whole project level in software engineering. Therefore, a more generic 
approach to size estimation is to use the strategy of division and conquer as 
described below.  
 

Definition 12.30 Assuming a software system encompasses n 
subsystem, and each subsystem consists of m components, the size of this 
project can be estimated as a sum of the weighted average of estimated sizes 
of all components, ijS , i.e.:                                 
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        =1 =1

=1 =1

 = 

1(  ( ( ) + 4 ( ) + ( ))   [kLOC]
6

n m

p ij
i j
n m

max exp min
i j

S S

S i, j S i, j S i, j=

∑ ∑

∑ ∑
 

                    (12.52) 
 

Since smaller components are easier to be estimated and more similar 
references exist, the sum of component level estimations is much more 
accurate than the one-level estimations as described in Definition 12.29.         
 
12.6.2.2.2 Ideal Workload Determination  
 

Once the size of a given project is obtained as discussed in the previous 
subsection, the workload can be determined on the basis of software 
productivity benchmarks of a specific organization or the software industry. 

 
Definition 12.31 The ideal workload of a software project is 

determined by the ratio of the estimated project size pS and the software 
productivity ρ in terms of kLOC/PY, i.e.: 

 

               1 12   [PM]pS
W

ρ
= •          (12.53) 

 
where a typical benchmark is ρ = 3,000 LOC/PY where management, quality 
assurance, and supporting activities are considered [Boehm, 1987; Dale and 
Zee, 1992; Jones, 1981/86; Livermore, 2005], and the units PY and PM stand 
for person-year or person-month, respectively.  
 
12.6.2.2.3 Optimal Labor Allocation  
 

According to Theorem 8.7 and the pigeon diagram as shown in Fig. 
8.5, the optimal labor allocation, L0, for a given ideal workload is solely 
determined by the rate of interpersonal coordination r of the project when 
multiple persons are working on it,  i.e.: 

        

       0
1.414   [ ]L P

r
⎡ ⎤= ⎢ ⎥
⎢ ⎥

       (12.54) 

 
In software engineering, the coordination rate is within the scope 

1% 90%r≤ ≤ . Applying Eq. 12.54, this results in the optimal labor 
allocation for a software engineering project is constrained by the scope of: 
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                 015 1   [ ]L P≥ ≥         (12.55) 
 

Therefore, the team organization forms for very large-scale projects 
have to adopt hierarchical multi-group structures, provided that each such 
group must still obey the same law for group size limitation and optimization. 
Detailed organizational strategies for multi-group large-scale projects are 
described in the system and social organization theories presented in Sections 
10.3.5 (The system organization tree) and 13.4.2 (The formal model of social 
organization), respectively.  
 
12.6.2.2.4 The Shortest Duration Determination 
 

After the ideal workload W1 and the optimal labor allocation L0 are 
determined, the duration of a software engineering project or subproject (if 
multi-groups are needed) is ready to be derived. 
       According to Theorem 8.7, the shortest duration of a given project is 
determined by the following formula:           
 

min 0

1 0
0

1.414{ | }

1 2( )
2

T T L L
r

W rL r
L

⎡ ⎤= = = ⎢ ⎥
⎢ ⎥

= − +
         (12.56) 

 
The duration Tmin can also be determined by using a set of the pigeon 

diagrams as show in Fig. 8.5.      
 
12.6.2.2.5 Expected Workload Determination 
 

When the optimal labor allocation and shortest duration of the project is 
determined via the methods provided in Sections 12.6.2.2.1 through 
12.6.2.2.4, the expected effort or real workload of the project can be 
obtained. 
  

According to Theorem 8.4, the expected workload is determined by the 
product of the optimal labor allocation L0 and the shortest project duration 
Tmin, i.e.: 
 

       

exp 0 min

0 1 0
0

2
1 0 0

= 

1 2( )
2

1
( 2)   [PM]

2

W L •T

L • W rL r
L

W rL rL

= − +

= − +

               (12.57) 
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Empirical workload estimations that are not based on the optimal labor 
allocation and the shortest project duration may result in a significant loss of 
effort, thus a much more expensive project, as shown in Example 8.5.      

 
12.6.2.2.6 Expected Project Cost Determination 
 

On the basis of the expected workload of software engineering project 
obtained in the preceding subsection, the cost of the given project can be 
determined as follows.                  
  

Definition 12.32 The expected cost of a software project C is a product 
of the expected workload W [PM] and the average cost of labor CL [$/PM], 
i.e.:     

        
   exp exp

0

= 

  [$]
L

min L

C W •C

L •T •C=
        (12.58) 

 
Example 12.5 Given the estimated size of a software engineering 

project is pS = 2,000LOC, determine the expected cost of this project, with 
the historical data or benchmarks r = 8.0%, ρ = 3.0kLOC/PY, and CL = 
$80,000/PY.        

 
According to the FEMSEC model, the cost of the given software 

project can be analyzed as follows: 
 
a) Ideal workload determination (Eq. 12.53) 
 

                    

  

 

1 12

2,000= 12
3,000

= 8.0  [PM]

pS
W

ρ
= •

•   

 
b) Optimal labor allocation (Eq. 12.54)  

 

        
 

0
1.414  

1.414=  = 5.0    [ ]
0.08

L
r

P

⎡ ⎤= ⎢ ⎥
⎢ ⎥
⎡ ⎤
⎢ ⎥
⎢ ⎥
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c) The shortest duration determination (Eq. 12.56) 
 

min 1 0
0

8.0(0.08 5.0 0.08 2/ 5.0)

2.9   [ ]

1 2( )
2
0.5

M

T W rL r
L

• • − +

=

= − +

=      

  
d) Expected workload determination (Eq. 12.57) 

        

                   
exp 0 min

2.9

14.5

= 

= 5.0

  [PM]

TW L •

•

=

  

 
e) Cost Determination (Eq. 12.58) 

        

      
exp exp= 

14.5 80, 000/12

$96,666.66   [$]

L•C W C

•=

=

   

 
Example 12.6 For a large-scale software engineering project with pS = 

10,000LOC and r = 8.0%, determine the expected cost of this project 
according to the FEMSEC model with the same benchmarks as given in 
Example 12.5.  

 
a) Ideal workload determination (Eq. 12.53) 
 

                    

  

 

1 12

10,000= 12
3,000

= 40.0  [PM]

pS
W

ρ
= •

•   

 
b) Optimal labor allocation (Eq. 12.54)  

 

        
 

0
1.414  

1.414=  = 5.0    [ ]
0.08

L
r

P

⎡ ⎤= ⎢ ⎥
⎢ ⎥
⎡ ⎤
⎢ ⎥
⎢ ⎥
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c) The shortest duration determination (Eq. 12.56) 
 

min 1 0
0

40.0(0.08 5.0 0.08 2/ 5.0)

14.4   [ ]

1 2( )
2
0.5

M

T W rL r
L

• • − +

=

= − +

=      

  
d) Expected workload determination (Eq. 12.57) 

        

                   
exp 0 min

14.4

72.0

= 

= 5.0

  [PM]

TW L •

•

=

  

 
e) Cost Determination (Eq. 12.58) 

        

      
exp exp= 

72.0 80, 000/12

$480, 000.00   [$]

L•C W C

•=

=

   

 
The above examples show that the key to reduce software project cost 

is to improve the productivity ρ. However, Theorem 1.6 states that ρ is 
constrained by the conservative human cognitive capability. Therefore, the 
only rational way is to improve automation rate in software development, 
i.e., to adopt automatic and intelligent software code generation systems 
[Wang, 2007a].  

 

 
Theorem 12.4 indicates that no matter how tough it is, intelligent and 

automatic software code generation systems should be developed and 
implemented in the future of software engineering, in order to release human 
labor, the low-tech means of programming, in the high-tech discipline of 
software engineering. A pilot automatic code generation system will be 

 

The 45th Principle of Software Engineering 
 
Theorem 12.4 The ultimate objective of software engineering states that 
automatic code generation is the only silver bullet to overcome the 
natural constraints on conservative software development productivity, to 
reduce software development costs, and to improve software quality as a 
result of reduced human involvement and uncertainty.    
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discussed in Chapter 15 on intelligent code generation [Tan, Wang, and 
Ngolah, 2006].    
 
 
12.6.3 SOFTWARE ENGINEERING PROJECT COSTS 
           ESTIMATION USING COCOMO  
 

COCOMO, standing for Constructive Cost Model, is proposed by 
Barry Boehm in 1981 and revised in 2000 [Boehm, 1981/84; Boehm et al., 
2000]. The COCOMO model is an empirical software cost model using 
multiple weighted nonlinear approximation techniques calibrated on the basis 
of 63 software projects.          

 
12.6.3.1 The Conceptual Model of COCOMO  
 

The basic concept of COCOMO is that the software project cost is 
determined by a number of factors and attributes. Therefore, empirical 
calibrations of these attributes based on historical data may be useful to 
predicate those of future projects.        

 
Definition 12.33 The cost factors of software projects identified in 

COCOMO are software size, effort, duration, and multiple cost drivers. Their 
relationships are perceived as follows:                 
 

Cost = f(size, effort, duration, cost drivers)       (12.59)  
 
It is noteworthy that some of the cost factors in Eq. 12.59 may not 

independent of each other. In other words, some of the factors are derivatives 
of others. For example, both effort and duration are derived quantities of 
project size. Further, effort is determined by the duration for a given project.               

The cost drives of software projects can be classified into four 
categories known as the product, computer, personnel, and project attributes. 
Fifteen cost attributes in the four categories have been identified [Boehm, 
1981/84] as summarized in Table 12.5. 

Boehm (1981/84) identified three different project types known as the 
development modes. They are the organic, semidetached, and embedded 
modes as described below: 

  
• The organic mode is a type of project with a small team, 

experienced programmers, and familiar in-house 
environment in which the size of project is less than 50 
kLOC.  
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Table 12.5 
The Cost Driver Attributes of COCOMO 

 

Cat. No. Serial No. Category Attributes 
1  Product attributes  
1.1 1  Required software reliability 
1.2 2  Database size 
1.3 3  Product complexity 
2  Computer attributes  
2.1 4  Execution time constraint 
2.2 5  Main storage constraint 
2.3 6  Virtual machine volatility 
2.4 7  Computer turnaround time 
3  Personnel attributes  
3.1 8  Analyst capability 
3.2 9  Applications experience 
3.3 10  Programmer capability 
3.4 11  Virtual machine experience 
3.5 12  Programming language 

experience 
4  Project attributes  
4.1 13  Modern programming 

practices 
4.2 14  Use of software tools 
4.3 15  Required development 

schedule 

 
• The embedded mode is a type of project with tight 

constraints such as hardware, environment, timing, and 
performance.  

• The semi-detached mode is a type of project that lies 
between the organic and embedded modes in which the size 
of project is between 50-300kLOC.   

 
The estimations of software engineering project costs by COCOMO 

can be carried out at three levels known as the basic level, intermediate level, 
and detailed level using different approximate curves and models. 
 
12.6.3.2 The Basic COCOMO Model 
 

The basic COCOMO model provides a rough estimation of software 
project effort for small, simple, and repetitive projects [Boehm, 1981/84]. 
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Definition 12.34 The software project effort WM in the basic 
COCOMO model is determined by the following empirical curve that is 
proportional to the size of the software KDSI and project type weights k and 
C, i.e.:           

  
                                   WM = C (KDSI)k        (12.60) 
 
where WM stands for the project effort in work-month, k and C are the 
project type or development mode constants, and KDSI is thousands of 
delivered source instructions.  

 
12.6.3.3 The Intermediate COCOMO Model 
 

The intermediate COCOMO model considers more effort factors in a 
software project affected by the 15 cost driver attributes as shown in Table 
12.5 [Boehm, 1981/84]. 

 
Definition 12.35 The software project effort WM in the intermediate 

COCOMO model is determined by the following empirical curve that is 
proportional to the size of the software KDSI and project type weights ei, C, 
and EM, i.e.:           
 
                             WM = C(WDSI) 

                                    = 
15

1
( ) ie

j
j

C KDSI EM
=
∏ ,   i ∈ {1, 2, 3}       (12.61)                                                    

 
where WDSI denotes the weighted delivered source instructions; C the 
project type or development mode constants; ei exponent used for the ith 
project type where i ∈ {1, 2, 3} represents the type of organic, embedded, or 
semi-detached, respectively; and EMj are effort multiplier determined by the 
jth cost driver attribute within the range of 0.7 (very low complexity) to 1.66 
(very high complicity). 

 
12.6.3.4 The Detailed COCOMO Model 
 

The detailed COCOMO model is similar to the intermediate one, but 
the life cycle of a project is divided into four phases known as the phases of 
product design, detailed design, coding/unit test, and integration/test. Each 
phase will be iteratively calculated by Eq.12.61 with different project type 
weights C, ei, and EM [Boehm, 1981/84].           
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12.6.3.5 The COCOMO II Model 
 

COCOMO II [Boehm et al., 2000] is a revision of the 1981 version of 
COCOMO. A software costs and effort analysis in COCOMO II still starts 
from the estimation of the size of the project in unit of thousand source lines 
of code (kSLOC). It is noteworthy that the counting methods for SLOC are 
greatly varying, and the result is highly dependent on programming 
languages.        

COCOMO II adopts a set of five scale drivers to replace the 
development modes known as the project types. The scale drivers are 
precedentedness, development flexibility, architecture/risk resolution, team 
cohesion, and process maturity. The exponent used in the effort equation is 
determined by the scale drivers. COCOMO II extends the cost drivers from 
15 to 17 to weight the effort required to complete a project. 
 

Definition 12.36 The effort E of a software project in COCOMO II is 
estimated by the following empirical approximation, i.e.:   
  
              E = 2.94 EAF • (kSLOC)C   [PM]        (12.62) 
 
where EAF stands for effort adjustment factor derived from the 17 cost 
drivers, C is an exponent determined by the five scale drivers. 

 
The unit of project effort E is supposed to be person-month (PM). 

However, it is not clear how a set of pure quantities in Eq. 12.62 may be 
transferred into a physical unit PM according to the convention of dimension 
analysis.            
 

When the project effort is determined in terms of person-month (PM), 
the project duration D may be estimated as follows. 

 
Definition 10.37 The duration D of a software project can be estimated 

by the following empirical approximation, i.e.:   
 
               D = 3.67 • ESE   [M]         (12.63) 
 
where SE is the schedule exponent derived from the five scale drivers, and 
the unit of project duration is month (M). 
 

Note that the effort E is a product of project duration D and number of 
persons N working in the project, i.e., E = DN. Then, N, the average staffing 
in COCOMO II, can be estimated as follows. 
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Definition 10.38 The average staffing N of a software project is the 
number of persons needed in the project, which can be determined by the 
following empirical approximation, i.e.:   
 
           N = E / D   [P]          (12.64) 
 
where the unit of average staffing is number of persons (P). 
 

It is noteworthy that the duration D is estimated first in the COCOMO 
approach and the basic assumption is that the simple product of duration and 
number of persons results in the effort of the project. Therefore, the duration 
of a project may be determined first, and then to seek how many 
programmers are needed.  

However, theoretically, the effort product E = DN is not a linear 
function according to Law 23 and Law 25 of software engineering proven in 
Theorems 8.4 and 8.7. In other words, a person is not simply equivalent to a 
month in the hybrid product of person-month according to Theorems 8.8 and 
8.9. A rule of thumb is that the more the persons are involved in a project, 
the less the contribution per person to the collective person-months. A more 
rigorous treatment of project duration and the equivalency between labor and 
time in the mythical man-month is provided in Sections 12.6.2, 8.5, and 
13.5.2.      

 
 

12.6.4 ECONOMIC ANALYSES OF SOFTWARE 
           PROJECTS  
 

The software project costs determined by the FEMSEC and COCOMO 
models, presented in Sections 12.6.2 and 12.6.3, respectively, focused on the 
operational cost in economics. There are additional costs such as office, 
facilities, and developing environment. A complete economic analysis of 
software engineering project taking into account all of the categories of 
developing costs is provided in this subsection.  

          
12.6.4.1 Estimations of Costs and Revenues of Software Projects 
 

The economic data of an engineering project can be classified into 
categories of costs, revenues, and other derived cash flows. With a set of 
sample data on a project of a new software development organization as 
given in Table 12.6, economical analyses can be carried out based on the 
theories of engineering economics developed in Section 12.5 for this 5-year 
software engineering project.  

On the basis of the raw figures of the software project as described in 
Table 12.6, the derived costs, benefit-cost ratio, return period, and return rate 
of this project are calculated in the following subsections, which also explain 
how the derived data of Table 12.6 are obtained.   
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Table 12.6 
Estimations of Costs and Revenues of a Software Project 

 

Cat. No Serial 
No 

Category Item Sample 
value ($) 

Equivalent 
present value of 

5-year 
operation ($) 

I A COSTS  (3,370,000) (5,546,824) 
1.1 A1  (2,590,000) (2,590,000) 

1.1.1 a Land 1,000,000 1,000,000 
1.1.2 b Buildings 800,000 800,000 
1.1.3 c Equipment 500,000 500,000 
1.1.4 d Installation 100,000 100,000 
1.1.5 e Patent and 

License fees 
60,000 60,000 

1.1.6 f Legal fees  30,000 30,000 
1.1.7 g Start-up costs 30,000 30,000 
1.1.8 h Operating capital 50,000 50,000 
1.1.9 i 

Capital (fixed) 
costs 

Contingency 
costs 

20,000 20,000 

1.2 A2 Operating 
costs 

A2 = A21 + A22 (780,000)
[Annual]

(2,956,824) 
[5 years] 

1.2.1 A21  (640,000) - 
1.2.1.1 j Labor 600,000 - 
1.2.1.2 k Material 30,000 - 
1.2.1.3 l 

Direct costs 

Utilities 10,000 - 
1.2.2 A22  (140,000) - 

1.2.2.1 m Administrative 
costs 

30,000 - 

1.2.2.2 n Selling costs 20,000 - 
1.2.2.3 o Other 10,000 - 
1.2.2.3 p 

Overhead costs 

Depreciation of c 80,000 303,264 
II B  (2,300,000)

[Annual]
(8,718,840) 

[5 years] 
2.1 q Sales 1,600,000 - 
2.2 r 

REVENUES 

Service incomes 700,000 - 
 

III C Net income (before taxes) =  
B - A + p 

-990,000 3,475,280 

IV D Net taxable income = C - p -1,070,000 3,172,016 
V E Net income (after taxes) =  

D(1 - t)  [Tax rate t = 20%] 
-1,070,000 2,537,613 

VI F Net revenues (after taxes) = E + p -1,070,000
[year 1]

2,840,877 
[year 5] 
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12.6.4.2 Cumulated Value of Operating Costs    
 

According to Definition 12.30, the cumulated present value PΣ for the 
first five-year revenues of the project can be determined as follows: 

 

   
5

5

(1+ ) -1
( )

(1 )
(1+0.1) -1

$780,000
0.1(1 0.1)

$780,000 3.7908

$2,956,824

n

OP n
i

P C A 
i i

 

Σ =
+

= •
+

= •

=

     

 
where the interest rate i is assumed at 10%. 
 

This result is shown in Line A2 of Table 12.6. Note that the capital 
costs as shown in Line A1 of Table 12.6 are a set of one-off investment 
committed in year 1 of the project.     

 
12.6.4.3 Cumulated Present Value of Revenues     
 

The cumulated value of revenues of this project in the first five years 
can be conducted similarly as that of the cumulated operating costs below. 

 

  

(1+ ) -1
( )

(1 )
$2, 300, 000 3.7908

$8,718, 840

n

n
i

P R A 
i i

 

Σ =
+

= •

=

     

 
This result is shown in Line B of Table 12.6.   

 
12.6.4.4 Annual and Cumulated Depreciations of Equipment 
 

The depreciation of the fixed capitals, particularly equipment, 
buildings, and land, can be quantitatively analyzed. There are special 
regulations for land and building depreciations [Park et al., 2001]. Assuming 
only equipment is depreciated in this project and the salvage value of all 
equipment of this project is $100,000, the annual depreciation of this project 
can be determined according to Definition 12.19, i.e.: 
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                   $500,000 - $100,000
5

$80,000

P - SD
n

=

=

=

  

              
The cumulated value of annual equipment depreciations in five years 

can be derived according to Definition 12.30: 
 

       5

5

(1+ ) -1
( )

(1 )
(1+0.1) -1

$80, 000
0.1(1 0.1)

$80, 000 3.7908

$303,264

n

n
i

P D A 
i i

 

Σ =
+

= •
+

= •

=

 

 
D and PΣ(D) are shown in Line p of Table 12.6, respectively.          

 
12.6.4.5 Project Benefit-Cost Ratios 
 

The benefit-cost ratio BC is a useful indicator of the economical 
feasibility of a software engineering project. The total benefit (revenue) and 
cost of the given software engineering project for the first five years are 
summarized in Table 12.6. According to Definition 12.25, the benefit-cost 
ratio of this project can be determined as follows: 

 

                                  8,718, 840
5,546, 824
1.57

BBC
C

=

=

=

         (12.65) 

 
Because the project yields a benefit-cost ratio BC = 1.57 > 1, it fulfills 

the economical criterion for an acceptable project as provided in Definition 
12.26. In other words, this project is a profit-making project.  

 
12.6.4.6 Project Payback Periods 
 

Observing Table 12.6 it can be seen that this project is a uniform series 
of cash flow as illustrated below, where A’ denotes the net revenue of each 
year that is yielded by A’ = A - Cop.     
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 1  2

 …

  0  5
n

A = 2,300k

Cop = -780k 

P = -2,590k 

A’ = A-Cop  
     = 1,520k 

 
 
Figure 12.13 The cash flow of the software engineering project  

 
According to Eq.12.30, PΣ(A’) of each year in the project life span can 

be determined as follows: 
          

1
1

'( ')
1
1,520k / 1.1

$1,381, 818

AP A
iΣ =

+
=

=

 

 
2 2

2

2

(1+ ) -1
( ') '

(1 )

1.1 -1
1,520k

0.1 1.1
1,520k 1.7355

$2,637,960

n

n
i

P A A  
i iΣ =
+

= •
•
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          Similarly, 3( ') $3,780, 088P AΣ = , 4( ') $4, 818,248P AΣ = , and 5( ')P AΣ =  
$5,762, 016  are obtained. 

It is apparent that the floor of payback year ⎣ ⎦n = 1 for this project. 
Therefore, the payback period ρ can be determined below according to Eq. 
12.46: 

 
      ρ ={n | P = PΣ(n)}  

                                            

⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎣ ⎦

  

  

( ) - ( )
( ) - ( )

2,590,000 - 1, 381,8181
2,637,960 - 1, 381,818
1,208,182

1
1,256,142

1.96 [year]

P n P n
n

P n P n
Σ

Σ Σ
≈ +

= +

= +

=
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12.6.4.7 Project Rate of Return 
 

Based on the analysis result of the previous subsection, the rate of 
return of this project can be derived according to Eq.12.49 as follows: 

 

                                          

1 100%

1 100%
1.96
51.03%

γ
ρ

= •

= •

=

 

 
It indicates that this project’s rate of return is much higher than given 

interest rate at 10%. Therefore, this is a profitable software project that the 
initial investment may be recovered less than two years (ρ = 1.96 years).    
 
 
12.6.5 THE SOFTWARE LEGACY COST MODEL 
 

A special phenomenon in software engineering economics is known as 
the software legacy maintenance costs. A software legacy maintenance cost 
model can be quantitatively described based on the relationship between the 
development cost and maintenance cost in a software development 
organization.  

 
12.6.5.1 Development Costs vs. Maintenance Costs  

  
Definition 12.39 The development cost Cd is the marginal cost 

determined as follows:  
 

        Cd = k • np • nd        (12.66)   
 
where np is the average number of projects completed per year, nd is the 
average number of developers per project, and k is the average cost per 
person.   
 

Definition 12.40 The maintenance cost Cm is a cumulated cost over 
time t as follows:   
 

       Cm(t) = k • nm • NL    
              = k • nm • t • np       (12.67)   

 
where NL is the number of existing legacy systems, and nm is the average 
number of maintainers per legacy project, and t is time in year.   
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Definition 12.41 The total costs C of software engineering is the sum 
of development cost Cd and maintenance cost Cm, i.e.: 

   
        C = Cd + Cm        (12.68)   

     
12.6.5.2 The Software Legacy Maintenance Cost Model 

 
Definition 12.42 The ratio of the maintenance cost Cm in the total costs 

C, rm, is the rate of percentage as follows: 
 

        100%
+
m

m
d m

Cr
C    C  

= •       (12.69)   

 
Example 12.7 Assume a software development organization develops 

and completes three new systems each year (np), the number of development 
persons needed per system is ten (nd), and the number of maintenance 
persons needed per delivered (legacy) system is three (nm). Let all the 
delivered (legacy) systems have a lifespan of 20 years.  

The development cost Cd, the maintenance cost Cm, the total cost C, and 
the ratio of maintenance cost rm% for the legacy systems produced by this 
organization over 20 years can be determined according to Eqs. 12.66 
through 12.69 as shown in Table 12.7.  

 
Using the data obtained in Table 12.7, the curves of relative costs and 

the ratios of legacy maintenance cost can be plotted as shown in Fig. 12.14.   
   

Table 12.7 
Ratio of Maintenance Costs in a Software Development Organization 

 

n (year) 0 1 2 3 4 5 6 7 8 9 10 15 20 
Cd 30 30 30 30 30 30 30 30 30 30 30 30 30 
Cm 0 9 18 27 36 45 54 63 72 81 90 135 180 

Cd+m 30 39 48 57 66 75 84 93 102 111 120 165 210 

rm (%) 0 23.1 37.5 47.4 54.5 60 64.3 67.7 70.6 73 75 81.8 85.7 
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Figure 12.14 The Software Legacy Maintenance Cost (SLMC) model 
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It is noteworthy that the SLMC curves as shown in Fig. 12.14 are based 
on application software projects. For system software developers, the curves 
Cm and rm% can be increased much faster than those of the trends in Fig. 
12.14, because the maintenance effort would be multiple times higher when a 
large number of users cumulated for a system software such as operating 
systems and database management systems. 

 
 

  
It can be observed in Fig. 12.14 that the year t0 in which the 

maintenance cost overtakes the development cost in the given organization is 
at t0 ≈ 3.4 year. More formally, it can be determined as follows. 

  

  
Example 12.8 Using the data provided in Table 12.7, the overtaken 

time ny for the software development organization as given in Example 12.7 
can be estimated below: 

 
     to ={t | Cm = Cd}  

                                            

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎣ ⎦

  

  

( ) - ( )
( ) - ( )

30-273
36-27

3 0.33

3.33 [year]

m m

m m

C t C t
t

C t C t
≈ +

= +

= +

=

   

 
Corollary 12.5 The overtaken time to in which the maintenance cost 
exceeds the development cost in a software development organization can 
be determined using the following expression, i.e.: 

 

                  
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎣ ⎦
  

  

= { = }

( ) - ( )
 [year]

( ) - ( )

0 m d

m m

m m

t t | C   C

C t C t
t

C t C t
≈ +

           (12.70) 

 

 

              The 46th Principle of Software Engineering 
 

Theorem 12.5 The exponential Software Legacy Maintenance Costs 
(SLMC) states that the ratio of maintenance cost Cm in a software 
development organization, rm%, tends to exponentially increase over time 
t, and it is proportional to the total number of legacy systems NL that the 
organization produced. 
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The fairly short overtaken time due to maintenance costs domination in 
the software industry indicates a real crisis on legacy maintenance in 
software engineering and for the modern information-based society. 

 
Based on the SLMC model, a corollary on an important phenomenon 

called Software Maintenance Crisis can be derived, which will be further 
analyzed in Section 14.3.3.       

 
 

 
12.7 Summary 
 

 
 
Economics is the study of how resources are used to produce and distribute 
commodities and how services are provided in society. Engineering 
economics is a branch of microeconomics dealing with engineering related 
economic decisions. Fundamental economic structures are the underlying 
forces of socialization and social organization. In turn, the fundamental 
economic structures are determined by the current and predominantly highest 
level of unsatisfied fundamental human needs.  

Software engineering economics is a branch of applied 
microeconomics that studies how resources are used to produce software 
systems and services and how optimal decisions may be made for software 
engineering projects. Therefore, a successful software engineer requires 
certain knowledge of economics in addition to science and engineering.  

This chapter has introduced fundamental principles and methodologies 
utilized in engineering economics and their applications in software 
engineering. It has also applied formal methodology into economic analysis 
and modeling. The first part of this chapter has reviewed classic thought and 
principles of economics, and a number of empirical economic models have 
been formalized with rigorous mathematical models. The second part of this 
chapter has been focused on the theories and principles of software 
engineering economics. Formal economic models for software engineering 
have bee developed such as the cost models and the FEMSEC model of 
software engineering. Applications of economic analysis and problem 
solving methodologies in a variety of contexts of software project decision 
making have been discussed. This has led to the development of the law of 
software legacy maintenance costs, and the finding of a hidden but 
significant phenomenon in software engineering known as the Software 
Maintenance Crisis (SMC). As a result, the economics foundations of 
software engineering have been established.   
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ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Economics Foundations of Software 
Engineering, readers have achieved the following strategic goals with the 
knowledge structure as summarized below. 
 

 
Chapter 12. Economics Foundations of SE  

 
■ Fundamental Principles of Economics 
      •  Basic axioms of economics 
          - Demand vs. supply  
          - The principle of resource scarcity   
          - The ultimate objective of markets  
          - The law of maximizing profit 
          - The unlimited demanding behaviors of consumers 
          - The profit-driven behaviors of producers 
          - The law of market conservation 
  
      •  Economic equilibrium between demands and supplies 
      •  The behaviors of market systems 
          - Simple modes of economic equilibriums   
          - Complex modes of economic equilibriums 
          - The adaptive equilibrium mechanisms of market systems 
          - The formal model of the invisible hand    
 
■ Economic Models 
      •  Production models 
      •  Cost models 
      •  Market models 
 
■ Dynamic Values of Money and Assets 
      •  Dynamics of money 
      •  Dynamics of asset’s values 
      •  Cumulative values of cash flows 
          - The uniform payment series  
          - The linear gradient payment series   
          - The geometric gradient payment series   
 
■ Economic Analyses 
      •  Project cost analyses 
      •  Project benefit-cost analyses 
      •  Project payback period analyses 
      •  Project rate of return analyses 
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■ Software Engineering Economics 
      •  Elements of software engineering costs 
          - Analysis of software engineering costs  
          - Analysis of software engineering revenues  
 

      •  Software engineering project costs estimation using FEMSEC 
          - The FEMSEC model of software engineering costs  
          - The FEMSEC method for software engineering project costs 
             determination  

      •  SE project costs estimation using COCOMO 
          - The conceptual model of COCOMO  
          - The basic COCOMO model  
          - The intermediate COCOMO model  
          - The detailed COCOMO model  
          - The COCOMO II model  
 

      •  Economic analyses of software projects 
          - Estimations of costs and revenues of software projects  
          - Cumulated value of operating costs  
          - Cumulated present value of revenues  
          - Annual and cumulated depreciations of equipment  
          - Project benefit-cost ratios  
          - Project payback periods  
          - Project rate of return  
 

      •  The software legacy maintenance cost model 
          - Development costs vs. maintenance costs  
          - The software legacy maintenance cost model  
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• The theoretical framework of economics is based on a number of 
basic axioms, which form the fundamental models of economics, such as 
generic constraints of resource scarcity, the ultimate objective of markets, 
unlimited demanding behaviors of consumers, profit-driven behaviors of 
producers, and the law of market conservation.  

 
• The most basic yet important principle of economics is the 

recognition of a pair of contradictive phenomena, resource scarcity vs. 
unlimited human demands, in human activities and the society.  
 

• The equilibrium model of market systems is a negative feedback 
system, in which the increase or decrease of price in the market will result in 
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a negated feedback, and so do the changes of quantities of demands and 
supplies on prices, both which intends to resist the tendency of deviating 
from the current equilibrium. 

 
• The adaptive economic equilibrium states that a market with 

autonomic interactions between demands and supplies is a self-regulated and 
self-organized system, where any change in demand, supply, or both will be 
autonomously adjusted to an equilibrium (Theorem 12.1). 

• The result of interactions between dynamic demands and 
supplies, through prices result in an automatic stabilization of the price 
at a new equilibrium that is close to the current equilibrium.   

• There are four simple modes that may drive a market away 
from an equilibrium considered in conventional economics. They are 
demand increase E(D+), demand decrease E(D-), supply increase 
E(S+), and supply decrease E(D-). 

• There are four complex modes based on the above simple 
modes, which could not formally modeled in conventional economics 
textbooks. They are compound demand/supply increases E(D+, S+), 
compound demand increase and supply decrease E(D+, S-), compound 
demand decrease and supply increase E(D-, S+), and compound 
demand decrease and supply decrease E(D-, S-).  

• The adaptive equilibrium mechanism is applicable to both 
simple and compound modes and situations as described above. 
 
• The adaptive equilibrium mechanism of market systems as 

described in Theorem 12.1 is the invisible hand, which self-regulates and 
self-organizes the equilibrium of quantities and prices affected by the 
interactions between demands and supplies. 

 
     • Equilibrium market is a conservative system. Once an equilibrium is 
established in a market, the price may gradually waving around and slowly 
shift from Pe, but may not be increased or decreased abruptly and 
dramatically. 
 

• A set of algorithms is provided for numerical solutions of cost and 
investment in present (P), future (F), cumulative present value (P Σ ), future 
value (R Σ ), return-period (n), and return-rate (ρ). By applying these 
algorithms, complicated mathematical problems in dynamic cost and 
investment estimation in software engineering can be solved easily. They are 
useful not only for project managers to plan and analyze software 
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development costs, but also for customers to estimate investment benefit and 
risk of software projects. 

 
• The differences between the cost models of system and application 

software need to be distinguished, where system software are operating 
systems and fundamental system tools such as language compliers, database 
management systems, and network/communication software; while 
application software are those of user developed built on top of the system 
software.          

 
• The software revenue models between system and application 

software are quite different, although their cost models are fairly similar. 
That is, system software may create much higher revenues than those of 
application software systems.        
 

• The cost of a software engineering project is not a linear function 
of the size of the project. It is more directly related to the given workload in 
terms of person-month.   

 
• The Formal Economic Model of Software Engineering Cost 

(FEMSEC) reveals that the cost of a software engineering project is not 
simply determined by the size of the project, but is a complicated function 
related to the expected workload, form of labor allocation, and if the shortest 
project duration is achieved. 

• The optimal labor allocation, L0, for a given project is solely 
determined by the interpersonal coordination rate r, i.e., 

0
1.414    [ ]L P

r
⎡ ⎤= ⎢ ⎥⎢ ⎥

. 

• The shortest duration of a given project is determined by: 

min 0 1 0
0

1 2{ | } ( )
2

T T L L W rL r
L

= = = − + .    

• The expected workload is determined by the product of the 
optimal labor allocation L0 and the shortest project duration Tmin, i.e.: 

2
exp 0 min 1 0 0

1 = ( 2) [PM]
2

W L •T W rL rL= − + . 

• The expected cost of a software project C is a product of the 
expected workload Wexp [PM] and the average cost of labor CL [$/PM], 
i.e.: exp exp 0 = [$].L min LC W •C L •T •C=  

 
• The ultimate objective of software engineering states that 

automatic code generation is the only silver bullet to overcome the natural 
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obstacles of the conservative software development productivity, in order to 
reduce software development costs and to improve software quality as a 
result of reduced human involvement and uncertainty.    
 

• The Software Legacy Maintenance Costs (SLMC) model states that 
the fairly short overtaken time due to maintenance costs domination in the 
software industry indicates a real crisis on legacy maintenance in software 
engineering and for the modern information-based society. According to the 
SLMC model, a corollary on an important phenomenon called Software 
Maintenance Crisis will be derived in Chapter 14.       
 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Fundamental principles of economics 
 

• Demands and supplies are the fundamental behaviors of dynamic 
market systems, which form the context of economics.     

• Demand is the required quantities for a product or service that 
consumers are willing and able to buy at a given range of prices. 

• Supply is the required quantities for a product or service that 
producers are willing and able to sell at a given range of prices. 

 
• Resource scarcity states that the total resources at a given time or the 

means of production represented by their values, such as land, building, 
materials, labor, and capital, are constrained by an invariable nature, which is 
always inadequate to meet the ever growing total demands. 
 

• The law of market conservation states that the prices of goods or 
services in a market system behave conservatively and complementally to the 
quantities of demands and supplies. 

 
• The ultimate objective of markets, and of the producers and 

consumers in them, are to pursue the maximum profit Pmax, or in other words, 
to maximize the revenues Rmax and to minimize the costs Cmin at the same 
time. 

 
• The law of maximizing profit states that the demands and supplies 

of goods or services in a market system are driven by the tendency to 
maximize profits leveraged by the changes of prices. 
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• Equilibrium of demand and supply e is a point of quantity Qe(t) 
where the demand D(t) equals to the supply S(t), i.e., e = {Qe(t) | D(t) = S(t)}, 
where the price at e, Pe(t), is called the equilibrium price.   

 
• The equilibrium mechanism interacting between the quantities of 

demands, supplies, and the prices of them in a market system is the invisible 
hand.    

   
• The predictability of new equilibrium states that a newly 

established equilibrium on price P’e is determined by the effect P’ and 
feedback effect P’’ of the driving forces deviating from the current 
equilibrium.      
 
Economic models 
 

• A set of economic models, such as the production model, cost model, 
and market model, is derived to explain the relations among a great variety of 
economic phenomena and their behaviors. 

 
• Product models: Productivity, or the average product, P , is a ratio 

between the total output O and the variable input or labor Iv. 

• The marginal product P∆  is a ratio between the incremental 
output and the incremental input. 

• Law of diminishing returns states that specialization 
efficiency is over turned by overhead of using more variable input. 

  
 • Cost models: Total cost of a production system C is the sum of fixed 

cost cf and variable cost cv. 

• The average cost in production C  is the unit cost per product. 

• Marginal cost C∆ is the ratio between the incremental total 
cost and incremental output. 

• The economical scale of production is the maximum output that 
yields the minimum average cost under a certain productivity. 
 
• The market models: The market is an economic domain in which 

buyers and sellers exchange commodity and services. 

• A perfect competitive market is a free-entry market where 
many sellers supply identical products or services, so that none of them 
may dominatingly influence the market prices.      
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• A monopolistic market is a market where only a sole supplier 
provides a good or service without any close substitutes.      

• Real-world markets are operating in between the perfect 
competitive and monopolistic market modes. Usually, the large-scale 
and global industries are oligopolistic, local utility industries are 
monopolistic, and the remainder is perfect competitive or semi-
competitive.  

 
Dynamic values of money and assets 
 

• A basic concept of economics is that the values of physical assets and 
their denoted representation, money, are a relative quantity. Both of their 
values change over time, or more rigorously, their value is a function of time 
and the interest rate.  

 
• The dynamic value of money, V(t), is its present worth P projected 

at a given point of time t for a given average or predicated interest rate i 
during [0, t], i.e., V(t) = f(P, i, t). 

• The value with simple interest at end of nth interest payment 
period, V(n), or the future value F(n), for a given average interest i can 
be determined by V(n) = F(n) = P (1 + i • n). 

• The value with compound interest that considers the interest 
based at each given period of n periods is the future value F(n) at the 
end of each period, i.e., F(n) = P(1+i)n. 
 
• The dynamic value of assets: For a given asset, the continuous 

decreasing of value over time is known as depreciation. 

• The depreciation of assets can be classified as: a) Physical 
depreciation that refers to the reduction in asset’s capacity to perform 
its intended service due to physical impairment; b) Functional 
depreciation that refers to obsolescence; c) Economic depreciation that 
refers to the total values lost during the life span of an asset; and d) 
Accounting depreciation that refers to a systematic allocation of the 
initial cost of an asset in parts over time. 
 
• Cumulated values of a series of cash flows can be derived as a sum 

of individual payments at the same point of time, such as at present or at the 
end of n period in the future. 

• The uniform payment series is a series of identical payments A 
at the end of each period by a fixed frequency.                   
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• A linear gradient payment series is a series of linearly 
increased payments G by a fixed frequency.         

• A geometric gradient payment series is a series of nonlinearly 
increased payments g by a fixed frequency.         

  
• In a generic situation, the cash flows may be a composite series 

formed by the combination of the primitive series as discussed in the 
previous subsections. In this case, the cumulated value can be calculated as 
the sum of individual component series.  

 
Economic analysis 
 

• Economic analyses cover cost and investment in present (P), future 
(F), cumulative present value (P Σ ), future value (R Σ ), return-period (n), 
and return-rate (ρ).  
 

• Benefit-cost ratio BC of a project is a ratio between the total benefit 
B and the total cost C, i.e., BC = B/C. 

• The economic evaluation criterion to accept a project is that 
its benefit-cost ratio is larger than one, i.e., BC > 1, where BC = 1 or 
BC < 1 represents a risky or unacceptable project, respectively. 

 
• The payback period ρ of a project is the expected point of time n at 

which the initial investment P will be recovered by the revenues of the 
project PΣ  for a given interest rate i, i.e., ρ = {n | P = PΣ(n)}. 

 
• The rate of return γ of a project is the equivalent interest rate yield 

by a cash flow  PΣ  for recovering the initial investment P for a given period 
n, i.e., γ = {i | P = PΣ }.     
 
Software engineering economics 
 

• Software Engineering Costs Analyses: The conventional cost 
models in economics consider only the fixed costs and variable costs, which 
are oriented to the manufacturing industry characterized by mass production. 
For software engineering projects, more cost categories need to be studied, 
such as the development costs and service costs.  
 

• The Formal Economic Model of Software Engineering Cost 
(FEMSEC) states that, on the basis of the workload-driven project 
organization laws (Theorems 8.4 and 8.7), the expected project cost C can be 
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determined rigorously with the optimal labor allocation L0 and the shortest 
duration Tmin in the following 6 steps: 
  
         1) Estimate the project size pS  
         2) Determine the ideal workload W1 
         3)  Allocate the optimal labor L0  
         4) Determine the shortest duration Tmin  
         5) Determine the expected workload W  

   6) Determine the expected project cost C 
 

• The COCOMO Model: The cost factors of software projects 
identified in COCOMO are software size, effort, duration, and multiple cost 
drivers. Their relationships are perceived as Cost = f (size, effort, duration, 
cost drivers). 

• The basic COCOMO model: The software project effort WM 
in the basic COCOMO model is determined by the following empirical 
curve that is proportional to the size of the software KDSI and project 
type weights k and C, i.e., WM = C (KDSI)k, where WM stands for the 
project effort in work-month, k and C are the project type or 
development mode constants, and KDSI is thousands of delivered 
source instructions.  

• The Intermediate COCOMO Model: The software project 
effort WM in the intermediate COCOMO model is determined by the 
following empirical curve that is proportional to the size of the software 
KDSI and project type weights ei, C and EM, i.e., WM = C(WDSI) = 

15

1
( ) ie

j
j

C KDSI EM
=
∏ , i ∈ {1, 2, 3}, where WDSI denotes the weighted 

delivered source instructions; C the project type or development mode 
constants; ei exponent used for the ith project type where i ∈ {1, 2, 3} 
represents the type of organic, embedded, or semi-detached, 
respectively; and EMj are effort multiplier determined by the jth cost 
driver attribute with the range of 0.7 (very low complexity) to 1.66 
(very high complicity). 

• The Detailed COCOMO Model: The detailed COCOMO 
model is similar to the intermediate one, but the life cycle of a project is 
divided into four phases known as the phases of product design, 
detailed design, coding/unit test, and integration/test. Each phase will 
be iteratively calculated as those in the intermediate model with 
different project type weights C, ei, and EM.            
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• The COCOMO II Model: COCOMO II adopts a set of five 
scale drivers to replace the development modes or known as the project 
types. The scale drivers are precedentedness, development flexibility, 
architecture/risk resolution, team cohesion, and process maturity.  

• The effort E of a software project is estimated by the following 
empirical approximation, i.e., E = 2.94 EAF • (kSLOC)E [PM], where 
EAF stands for effort adjustment factor derived from the 17 cost 
drivers, E is an exponent determined by the five scale drivers, and the 
unit of project effort is person-month (PM). 

• The duration D of a software project can be estimated by the 
following empirical approximation, i.e., D = 3.67 • ESE  [M], where SE 
is the schedule exponent derived from the five scale drivers, and the 
unit of project duration is month (M). 

• The average staffing N of a software project is the number of 
persons needed in the project, which can be determined by the 
following empirical approximation, i.e., N = E / D [P], where the unit of 
average staffing is number of persons (P). 
 
•  It is noteworthy that the duration D is estimated first in the 

COCOMO approach and the axiom is that the simple product of duration and 
number of persons results in the effort of the project. 
 

• The software project costs determined by the FEMSEC and 
COCOMO models focused on the operational cost in economics. There are 
additional costs such as office, facilities, and developing environment. A 
complete economic analysis of software engineering project that takes into 
account of all the categories of developing costs is provided in Section 
12.6.4. 

 
• The software legacy maintenance cost model can be quantitatively 

described by the relation between the development cost and maintenance cost 
in a software development organization. 

 
• The exponential Software Legacy Maintenance Costs (SLMC) states 

that the ratio of maintenance cost Cm in a software development organization, 
rm%, tends to exponentially increase over time t, and it is proportional to the 
total number of legacy systems NL that the organization produced. 
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Questions and 
Research Opportunities 
 

 
 
12.1 Explain the axioms of economics on: a) The principle of resource 

scarcity; b) The law of market conservation; c) The ultimate 
objective of markets; and d) The law of maximizing profit.    

 
12.2 What is an economic equilibrium? Try to use system theory 

(Theorems 10.9 and 10.10) to explain that the economic 
equilibrium or the market behavior is conservative.    

 
12.3 What is the mathematical model of Adam Smith’s hypothesis of 

the invisible hand?   
 
12.4 Given a shifted equilibrium of a software market that is affected 

by demand increases results in the following effects (Pe, P’, P’’) 
= ($100, $80, $160).  

 
        (a) Predicate what is the newly established equilibrium P’e. 

   (b) Analyze what the increment of price ∆P is caused by the 
shifts of equilibriums. 

 
12.5  Draw a diagram to show the chain of reactions of the economic 

equilibrium mechanism in Mode 5 – Compound Demand 
Increase/Supply Increase E(D+, S+) as formally described in the 
following formula:   

 

              E(D+, S+) =   

 

  

 

'e

P
D

S P
P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↓
↑ → →→ ↑ → ↑

  

 
12.6  Draw a diagram to show the chain of reactions of the economic 

equilibrium mechanism in Mode 6 – Compound Demand 
Increase/Supply Decrease E(D+, S-) as formally described in the 
following formula:   
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              E(D+, S-) = 
  

 

  

 

'e

P
D

S P
P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↑
↓ → →→ ↓ → ↓

  

 
12.7  Draw a diagram to show the chain of reactions of the economic 

equilibrium mechanism in Mode 7 – Compound Demand 
Decrease/Supply Increase E(D-, S+) as formally described in the 
following formula:   
 

              E(D-, S+) = 
  

 

  

 

'e

P
D

S P
P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↓
↑ → →→ ↑ → ↑

 

 
     

12.8  Draw a diagram to show the chain of reactions of the economic 
equilibrium mechanism in Mode 8 – Compound Demand/Supply 
Decreases E(D-, S-) as formally described in the following 
formula:   

 

              E(D-, S-) = 
  

 

  

 

'e

P
D

S P
P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↑
↓ → →→ ↓ → ↓

     

 
12.9 What are the three basic factors that uniquely determine the 

dynamic value of a given amount of money for a given time?    
 
12.10 How may depreciation be used to represent and predict the 

dynamic value of assets?  
 
12.11  Calculate the cumulated present value of Cash Flow 4 as given in 

Table 12.2 using the simple sum of present equivalent values of 
individual future paybacks according to Eq. 12.27.   

 
12.12   Determine the payback period ρ of Cash Flow 4 as given in Table 

12.2. 
 
12.13   Determine the rate of return γ of Cash Flow 4 as given in Table 

12.2. 
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12.14 Calculate the benefit-cost ratio BC of Cash Flow 4 as given in 

Table 12.2 assuming where the costs of the project is the initial 
investment plus $20,000 operating cost per year. Then, assess if 
the project is economically acceptable. 

   
12.15 What are the differences of the cost models of application and 

system software in the categories of design, production, and 
services?     

 
12.16   For a software engineering project, given the estimated size pS = 

2,000LOC, interpersonal coordination rate r = 20.0%, 
productivity ρ = 3.0kLOC/PY, and average salary CL = 
$80,000/PY, analyze and determine the expected cost of this 
project according to the FEMSEC model (Theorem 12.3 and Fig. 
12.12). 
  

12.17  Compare your programming experience and the theoretical result 
using FEMSEC as derived in Ex. 12.16, and explain the impact of 
the interpersonal coordination rate r on software engineering 
project efforts and costs. 

 
12.18   Re-analyze Example 12.6 assuming that the whole project is 

divided into three lightly-coupled parallel subprojects, therefore 
each subproject can be conducted independently by an individual 
subgroup. Then, discuss the impact of different organizational 
forms on project duration and costs. 

 
12.19   Try to draw a block diagram for the COCOMO II model, and 

compare it with the Formal Economic Model of Software 
Engineering Cost (FEMSEC) as given in Fig. 12.12.  

 
12.20   On the basis of Exs. 12.16 and 12.19, analyze how software effort 

and costs are derived from FEMSEC and COCOMO II, 
respectively, and what their advantages and disadvantages are.  

 
12.21   Recalling the 45th law as stated in Theorem 12.3, analyze if the 

COCOMO methodology is in line with the theoretical constraints. 
Why?  

 
12.22   How may the FEMSEC model be used to economic optimization 

for software engineering projects?  
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12.23  Why should the ultimate objective of software engineering be put 
on automatic code generation tools rather than programmer-based 
development? 

 
12.24 Refers to Section 12.6.4, what is the whole framework and major 

categories in software engineering economic analyses according 
to engineering economics? How is conventional software costs 
estimation classified in the framework?     

 
12.25  Try to conduct a complete economic analysis for a software 

engineering project as described in Section 12.6.4, where all items 
of raw data are doubled as given in Table 12.6.  

  
12.26   Based on the Software Legacy Maintenance Costs (SLMC) model 

as stated in Theorem 12.5, explain what a software maintenance 
crisis in the software industry is.   

 
12.27 Read the following classic article in software engineering:  
 

Barry Boehm (1984), Software Engineering Economics, 

IEEE Trans. on Software Engineering, 10(1), pp. 4-12. 
 

Discuss the following topics in a group or individually: 
 
                     •  About the author. 

• What is the architecture of software engineering economic 
according to the author in the 1980s?  

      •  What is the software cost model proposed in this article? 
      •  What are the differences between software engineering 

economics and the generic engineering economics? What 
makes software engineering economics unique?    

      •  What conclusions of the article interested you? Why? 
      •  Your arguments or counter-points on any of the conclusions 

derived in this article.              
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Knowledge Structure 
 

 

 Principles of Sociology 

     •  Social Structures 
     •  Social Behaviors 
     •  Social Norms 

 Social Psychology 

     •  The Fundamental Human Traits 
     •  Human Perceptions and Behaviors 
     •  Collective Behaviors 

 Theory of Social Organization 

     •  Classic Thought of Social Organization 
     •  The Formal Model of Social Organization 
     •  The Formal Model of Socialization 

 Sociology and Software Engineering 

     •  Social Organization of SE 
     •  Theory for Large-Scale SE Project Organization 
     •  Human Factors in SE 
 

 

Learning Objectives 
 

 

 

     
     

   • To gain knowledge on fundamental principles of sociology in terms of social 
structures, behaviors, and norms. 

   •  To understand the fundamental human traits in social contexts and 
engineering. 

   •  To know human collective behaviors and the driving force of motivation and 
attitudes. 

   •   To understand the model of social organization and its applications in 
software engineering. 

   •  To understand the formal model of socialization and interactions between 
sociology, economics, and human basic needs. 

   •  To understand the social environment and principle of diversity for software 
engineering. 

   •  To be familiar with the theory and laws of large-scale software engineering 
project organization. 

   •   To be aware of human factors (strengths, weakness, and uncertainty) and 
ergonomics of software engineering.  

 

13. Sociology Foundations of SE 
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“What I myself do not wish will never be imposed to others.”  
 

Confucius (551 – 479BC) 

 
“From a long-life-span system perspective, the current generation who enters 

 a society of the nth generation, which was designed by the (n-1)th generation, will be 
responsible for the design of such a system for the (n+1)th generation .” 

 
Yingxu Wang (2003) 

 
 

13.1 Introduction 
 

 
 

ociology studies how a human society may be organized efficiently 
and effectively on certain constraints of resources and environments. 
The objects of study in sociology are human societies. Therefore, to 

some extent, it may be perceived that management science is the 
microsociology while sociology is the macro management science. In both 
fields, the theories of system science and methodologies of system 
organizations play important roles in formalization of the theoretical 
frameworks of them. 
 

Definition 13.1 Sociology is a branch of science that studies the 
structure, organization, operation, and development of human societies.      

 
A human society is constructed by individuals, groups, organizations, 

and sectors from the bottom up [Wiggins et al., 1994; Macionis et al., 1997]. 
A group is the basic social unit formed by two or more persons working 
towards a particular purpose. The group is needed because of the 
interdependency among members when a given work cannot be carried out 
by a single individual limited by the scarcity of either resources or functions.  

Various types of social organizations have been formed as results of 
historical, political, and/or economical processes. However, few natural laws 
have been sought in sociology. This chapter presents a rigorous treatment of 
social organization in the engineering context. The coordinative work 
organization theory developed in Chapter 8 can be directly applied in 
sociology to explain group mechanisms and behaviors. Organizational 
psychology and collective social behaviors within groups and organizations 
will be explored, which helps to explain how structures of groups and 
organizations may impact people’s behaviors, productivity, and performance 
in software engineering.  

S
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Theories and methodologies of work organization [Wang, 2007d] have 
been one of the main thread across Chapters 8, 10, 11, 12, and 13 from 
engineering science, system science, management science, and economics 
foundations to sociology foundations. The final piece of the puzzle of the 
systematic theory on coordinative work organization will be completed in 
this chapter at the highest level of scopes in work organization – the society 
level – towards large-scale software engineering project organization. The 
abstract work organization theory will provide a systematic methodology for 
optimal allocation of labor, resources, and schedules for a given workload in 
a society in general, and in a software engineering context in particular.                                           

 
This chapter presents a formal treatment of the sociological theories, 

models, and their applications in software engineering. In the remainder of 
this chapter, the sociology foundations of software engineering will be 
presented in four sections. Section 13.2 reviews fundamental principles of 
sociology, which covers social structures, social behaviors, and social norms. 
Section 13.3 explores social psychology such as the fundamental human 
traits, collective behaviors, and the perceptual influence on them, which form 
the underlying theory for explaining the human factor in engineering systems 
and societies. Section 13.4 develops theories of social organization that 
provide an essential understanding on coordinative work organization at 
various levels of societies. Based on the sociological models and theories, 
Section 13.5 extends sociology into the domain of software engineering. It 
explores the social organization of software engineering and ergonomics for 
software engineering, and explains how human strengths, weaknesses, and 
uncertainty may be dealt with in the context of software engineering. The 
coordinative work organization theory at the system level will be completed 
towards large-scale software engineering project organization. Then, the 
theoretical foundation of quality assurance in creative work such as 
programming and software engineering is developed.  
 
    
 
13.2 Principles of Sociology 
 

 
 
Sociology studies structures and behaviors of human societies. Sociology 
may be perceived as system science at the most complicated level of human 
societies and their organization. This section describes social structures, 
behaviors, and norms of human societies, and their basic principles. 
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13.2.1 SOCIAL STRUCTURES  
         

A society is a huge organized human system in which people are 
grouped, coordinated, interconnected, and interacted by a variety of 
organizations. A society as a whole is constructed by individuals, groups, 
organizations, and sectors from the bottom up as shown in Fig. 13.1.  

 
Figure 13.1 The hierarchical structure of a society 
 

Social structures study the hierarchical architectures of societies at 
different levels and their social characteristics and interactions. This section 
focuses on the taxonomy and static structures. More formal treatment of 
groups and organizations will be discussed in Section 13.4 on theories of 
social organization.   

   
13.2.1.1 Individuals  
 

An individual is the bottom level and basic social unit of a society. The 
individuals are the most dynamic factor and the underlying driving force of a 
society.          
  

Definition 13.2 An individual is a single human being that forms the 
basic social unit of a society.  

 
When the behavior of individuals is studied, sociology puts emphases 

on relationships and interactions of individuals and related social structures; 
while social psychology focuses on human traits, characteristics, and 
behaviors. This section describes the former. The latter will be discussed in 
Section 13.3.    

Sectors 

Organizations 
 

Groups 

Individuals 

The 
Society
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13.2.1.2 Groups   
 

When multiple individuals work together towards a particular goal or 
interact intensively, a permanent or temporary group is formed.  

 
Definition 13.3 A group is a formal or informal social unit formed by 

two or more persons working towards a particular purpose.  
 

A group is the second level unit of a society, or a subsystem of the 
society according to system theory as discussed in Chapter 10. The 
individuals of a group are interdependent and they are identified with a single 
identity of that of the group.  

When a number of individuals are treated as a whole, both internal 
relationships and external interactions of the group with the environment 
need to be studied. 

The importance of studies on groups is well explained by Kurt Lewin 
in 1948 [Lewin, 1948; Zander, 1979].   

   
“Although the scientific investigations of group work are but a 

few years old, I don’t hesitate to predict that group work – that is, 
the handling of human beings not as isolated individuals, but in the 
social setting of groups – will soon be one of the most important 
theoretical and practical fields.” 

 

 
The basic architectures of groups in term of interrelationships among 

members can be classified into the forms of serial, parallel, star, network, 
hierarchical, and their combinations. 

Work groups strongly influence the overall behaviors and performance 
of members. The cohesive bounds that keep members of a group together are 
identified as the bounds of membership, goals, norms, and external 
oppressions [Wiggins et al., 1994]. Lemma 13.1 explains that the 
interdependency is the essential natural force that keeps a group together.           
                 
13.2.1.3 Organizations  

 
An organization is a superset of groups and the third-level subsystem of 

the society from the bottom-up. 

 

Lemma 13.1 A group is needed because of the interdependency among 
members when a given work cannot be carried out by an individual 
limited by either resource dependency or functional dependency.   
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Definition 13.4 An organization is a formal and stable social unit 
formed by one or more groups of people working towards a particular 
purpose.  
 

A group is formed because of the extended needs for either the resource 
dependency or the functional dependency. When the scale of a group is 
increasing to a certain extent, internal coordination and synchronization 
between members in the group will be the dominant problem. This problem 
forces a large group to adopt more structured forms of organization.  

More formal treatment of groups and organizations will be discussed in 
Section 13.4 on theories of social organization.   

           
13.2.1.4 Sectors  
 

A sector is a functional level of the hierarchical societies, where 
multiple organizations associate and interact due to their dependency and/or 
similarity.   

  
Definition 13.5 A sector is a distinct branch of a society with multiple 

organizations that produce the same category of products or provide the same 
category of services.  
 

Sectors are a macro categorization of organizations. A sector may 
geographically cross large areas in the scope of a country even of the world. 
The top-level sectors of an economy can be classified into the primary, the 
secondary, and the tertiary sectors as described in Table 13.1.  
 

Table 13.1 
Main Sectors of the Economy 

 

No. Sector Description Example 
1 Primary Collects or produces materials 

directly from the natural 
environment 

The mining, agriculture, 
forestry industry  

2 Secondary Manufactures goods from raw 
materials  

The tools, petroleum, and 
automobiles industry  

3 Tertiary Provides services for the society Bank, education, food 
services  

 
It is noteworthy that, in the postindustrial society, a fourth major sector 

emerging in the underpinning economy is the information sector. This trend 
will be analyzed in Section 13.4.         

© 2008 by Taylor & Francis Group, LLC



1040   Part III  Organizational Foundations of SE 
 
13.2.1.5 Societies  
          

A society is the top level structure in the hierarchy of human 
organizations. Societies at the top level may be studied by the mechanisms 
and behaviors of lower level structures. 

 
Definition 13.6 A society is the community of people in which 

members of it are geographically connected and socially integrated with 
common customs, organizations, and values.     
 

There are different societies constrained by the economic structures and 
their levels of development. The economic structures in turn are driven by 
the fundamental human needs and demands. The relationships and 
interactions between the human needs, economic structures, and social types 
will be discussed in Section 13.4.2 on the formal socialization model of 
human societies.  

 
 

13.2.2 SOCIAL BEHAVIORS  
 

The dynamic aspect of human societies is their social behaviors. The 
study of social behaviors can be carried out hierarchically via social 
functions, relations, roles, and systems from the bottom up in a society.         
      
13.2.2.1 Social Functions and Relations  
 

Social functions are the minimum functional components of a society. 
The behaviors of a dynamic society can be modeled by a huge set of 
interacting functions.         

  
Definition 13.7 A social function F is a set of tasks and/or actions 

within a society that can be carried out by individuals.     
 
 High-level social functions can be divided into two categories: public 
functions and private functions. The former can be any job function in an 
organization or company. The latter can be such as family members and 
friends.       
 

Definition 13.8 A social relation R is a function between two or more 
persons, p, in a society, i.e.: 

 
R(p) = r :  p → P            (13.1) 

 
where P is all the individuals,  p ∈ P, in the given society.   
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Social relations provide a constructive force for the building of a 
society. A person’s membership in a society is highly indicated by the 
person’s internal relations with other members in the society.     
 
13.2.2.2 Social Roles  
  

The conception of oneself is dependent on the roles that one performs 
in a society. In his work on The Study of Man [Linton, 1936], Robert Linton 
proposed the role theory. The role theory analogizes a person as an actor who 
plays an assigned role in accordance with a script specified by culture and the 
society. According to Linton, a role is a set of social expectations that apply 
to the behavior of specific categories of people in particular contexts. With 
the understanding of the roles, we can predicate who does what, when, and 
where in a given society. Glen Elder extended the role theory to a life-course 
framework in 1975 that explains the roles of members of a society according 
their ages and life stages [Elder, 1975].                                 
          

Informally, a social role can be defined as follows. 
                

Definition 13.9 A social role is a set of coherent social functions that is 
represented by a title of a category and is expected to be conformed in the 
society. 
 

More formally, the social roles of a person are given below.    
  
Definition 13.10 The social roles SR of a person p is a relation between 

the person p and a set of social functions F, F ⊆ F, i.e.: 
 

  SR(p) = f : p → F          (13.2) 
 
where F is a subset of all defined social functions F. 

  
In 1922, Robert Park pointed out that it is in roles that we come to 

know ourselves as sociological man [Park, 1922]. A social role can be public 
or private such as an engineer and a father. The functions, tasks, and 
expectations for a given role may be well defined. For example, a software 
engineer is a professional whose roles and skills are regulated by the 
software engineering discipline and processes. Examining the requirements 
for functions of software engineers in software engineering at the technical, 
managerial, and organizational levels, a variety of roles can be identified as 
shown in Table 13.2 [Wang and King, 2000a].  
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Table 13.2  
Roles of Software Engineers in Software Engineering 

 

No. Category Roles 
1 Software engineering 

organization 
 

1.1  Software development organization manager 
1.2  Organizational software engineering process designer  
1.3  Software engineering environment and tools 

maintainer 
1.4  Delivered systems manager 
1.5  System services monitor  
2 Software development  
2.1  System architect 
2.2  Domain engineer 
2.3  Requirements capture engineer 
2.4  Programmer 
2.5  Software testing engineer 
2.6  System integration and configuration engineer   
2.7  Field trial engineer   
3 Software engineering  

project management 
 

3.1  Project manager 
3.2  Project planning and estimation engineer  
3.3  Project contract and requirements manager 
3.4  System analyst 
3.5  Quality assurance engineer 
3.6  Project configuration and document manager 
4 User supporting 

mechanisms 
 

4.1  User problems and requirements analyst 
4.2  Customer solution consultant 
4.3  User development coordinator  
4.4  User testing coordinator 
4.5  Technical trainer  
4.6  Maintenance and supporting engineer  
4.7  Technical menus author   

 
A significant finding in observing Table 13.2 is that a software 

engineer may be responsible for only one or limited role(s) rather than a 
master of all the skills in software engineering processes. This is one of the 
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fundamental principles of engineering that is so obvious and so often to be 
ignored in practice. This is what we learnt from the universal principles of 
industrial engineering methodologies. 

In a modern society, a person usually takes multiple roles from family, 
groups, organizations, and the society. It is interesting to observe the 
switching among the roles of individuals, as well as the influence and 
interference between them, in organizational sociology of engineering and 
science.                
  
13.2.2.3 Social Systems   
               

Contemporary social theories view human societies as a system. 
Therefore, system theories developed in Chapter 10 may be applied in the 
rigorous treatment and quantitative analyses of human societies.      
 

Definition 13.11 A society is a dynamic human system that is 
interacting not only among members of the society via social relations, but 
also between the society, other societies, and the natural environment.    
  

There are various types of societies characterized by the structures of 
economies of the societies. From a historical point of view, according to the 
economic structures underpinning the societies, human societies have 
evolved through five phases known as the hunting/gathering, 
horticultural/pastoral, agrarian, industrial, and postindustrial societies.        

As social relations adhere people to people in a society, social roles 
adhere people to social functions. Therefore, social relations and social roles 
are the fundamental mechanisms in the construction of society. Because both 
social relations and social roles can be 1-to-1, 1-to-n, n-to-1, and n-to-m, the 
natural structures of human societies are hierarchical trees and networks.      
 
 
13.2.3 SOCIAL NORMS   
 

Norms are the shoulds of a society for regulating social behaviors that 
members of the society share and are expected to conform. Social norms can 
be considered from the aspects of cultures and values.      

 
13.2.3.1 Cultures  
 

A culture refers to a shared way of life [Macionis et al., 1997]. The 
custom of a social unit is a set of traditional and widely accepted habits of 
social behaviors shared by the members of the unit through long-term 
interactions. 
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Definition 13.12 The culture of a society is the collected ideas, 
customs, behaviors, and values shared by members of the unit.  

 
Culture shapes what individuals do and influences individuals’ 

behaviors and personality. The basic components shared by different cultures 
are symbols, language, value, norms, and material objects.          

Languages play an important role in cultures because they are the 
media of cultures and the means of transmission from person to person and 
from generation to generation. Two anthropologists and linguistics, Edward 
Sapir and Benjamin Whorf, observed that people perceive the world through 
the cultural lens of language known as the Sapir-Whorf hypothesis [Sapir, 
1929; Whorf, 1941].          
  
13.2.3.2 Values  
 

Values are guidelines of a culture shared by people for social judgment 
and behavioral normalization.  
  

Definition 13.13 Values of a social unit are a set of ethical principles or 
standards shared by the unit that are used to judge and normalize social 
behaviors. 
 

In 1970, Robin Williams identified the top nine central values of typical 
North America people [Williams, 1970] as follows:  

 
• Equal opportunity  
• Achievement/success  
• Activity/work  
• Material comfort  
• Practicality/efficiency  
• Progress  
• Science  
• Democracy/free enterprise  
• Freedom  

 
It is noteworthy that cultures are a dynamic entity undergoing 

continuous changes via cultural invention, discovery, and diffusion. Due to 
technological and economical advances, such as new communication 
techniques, travel, and migration, a global culture is emerging that is formed 
from a conjunction of traditionally different cultures [Macionis et al., 1997]. 
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13.2.3.3 Socialization  
 

Although each individual experiences a different life, statistically, the 
life courses of all individuals are similar in a society. That is because the 
current generation of individuals enters a given society predesigned and 
normalized by the earlier generations. Although they have no chance to 
shape the existing society, they are able to transfer it for the general welfare 
of the next generation. This is the historical view of socialization [Wang, 
2005k].                    
 

Definition 13.14 Socialization is a conforming process that a person is 
integrated into a society at various levels of its hierarchy by adopting certain 
roles, relations, cultures, customs, value systems, and norm behaviors. 

 
A society is an invisible network with unwritten rules, norms, and 

standards established well before a young person’s entry. No matter observed 
or not, people feel the socialization stress and synchronization pressure at 
work. Therefore, social psychologists believe that travel is one of the best 
releases for people because travel enables one to temporarily escape from the 
invisible social networks.                               
 
13.2.3.4 The Social Philosophy of Confucianism  
 

Confucianism, created by Confucius (551 – 479BC), a Chinese 
philosopher, educationist, and sociologist, is a crystallization of the Chinese 
social philosophy and ethical values during a five thousand year civilization. 
The essences of Confucianism may be summarized by the nine key words: 
humaneness, integrity, ritual, righteousness, loyalty, piety, tolerance, 
introspectiveness, and gentlemanliness. The essential values of Confucianism 
establish a set of unified and stable social norms as explained below:            

 

     •  Humaneness (ren, in Chinese) is the norm of social attitude and 
justice. A best interpretation of humaneness is by the words of 
Confucius: “What I myself do not wish will never be imposed to 
others.” 

     • Integrity or honesty (xin) is the norm of social values.     
     •  Ritual or politeness (li) is the norm of personal behavior.  
     •  Righteousness (yi) is the norm of ethical values.  
     • Loyalty (zhong) is the norm of socialization.   
     •  Piety (xiao) is the norm of family relationship, particularly 

towards seniors.   
     •  Tolerance (ren rang) is the norm of interpersonal relationships.    
     •  Introspectiveness (zi xing) is the norm of inner purity.    
     •  Gentlemanliness (junzi) is the norm of morals.    
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It is not a surprise at all that accurate counterparts of concepts and 
values of North America values and Confucianism may be found in other 
civilizations, cultures, or languages. This observation leads to the following 
lemma. 

      
The identification of a common set of values may be helpful to 

normalize individual and collective behaviors in an organization, especially a 
software development organization in software engineering that produces 
information products for a global market. 
 
  

 
13.3 Social Psychology 
 

                         
 
Social psychology is a branch of psychology that studies social interactions 
and their effects on human behaviors [Wiggins et al., 1994]. Because the 
basic objects under study in sociology are individual human beings and their 
interactions, social psychology is the key to understand a wide range of 
complicated social phenomena and the driving forces underpinning them. 

This section explores the fundamental human traits and the basic needs 
of individuals in a society. Motivations and attitudes are studied in order to 
understand the natural drives and constraints of human social behaviors. The 
characteristics of collective behaviors of individuals are analyzed in the 
social context.  

The study on human traits forms the foundation of sociology, because 
every individual’s social behavior is driven and constrained by those 
axiomatic human traits and characteristics and the derived needs based on 
them. The study on human traits also forms the foundation for engineering 
organization.      

  
 
13.3.1 THE FUNDAMENTAL HUMAN TRAITS  
      

Human traits and needs are the fundamental force underlying almost all 
phenomena in human task performances, engineering organizations, and 

 

Lemma 13.2 The union of all proven social norms from different 
societies, or at least their intersection, represents a set of univeral values 
of humanity. 
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societies. This subsection explores the cognitive foundations of human traits 
and cognitive properties of human factors in engineering. The fundamental 
traits of human beings are identified, and the hierarchical model of basic 
human needs is formally described. The characteristics of human factors and 
their influences in engineering organizations and socialization are explored. 
Based on the models of basic human traits, needs, and their influences, the 
driving forces behind the human factors in engineering and society are 
revealed. A formal model of human errors in task performing is derived, and 
case studies of the error model in software engineering are presented. 

 
13.3.1.1 Axiomatic Human Traits  
 

The basic evolutional need of humans is the tendency to maximize the 
inclusive fitness of individuals and the whole mankind.        
 

Definition 13.15 Egoism is a social behavior of human beings in which 
individuals put their own interests first in decision makings.  

 
Both sociologists and economists believe that egoism drives most of the 

behaviors of individuals. However, statistically, all individual behaviors as a 
whole form the natural force towards the development and welfare of the 
entire society.  

The basic forms of egoism of individuals are to maximize personal 
lifespan, profit, pleasure, esteem, power, and information, and to minimize 
costs, energy consumption, and inconvenience. It is noteworthy that most 
forms of egoism are dependent on the cooperation or recognition of others or 
the society. This basic constraint is the sociological foundation of altruism.                       

 
Definition 13.16 Altruism is a social behavior in which individuals 

sacrifice their own interests for the welfare of a group or society. 
 

Altruism can be explained by the term of inclusive fitness as defined 
below. 
 

Definition 13.17 The inclusive fitness of human beings is their own 
reproductive success and those of generically related individuals [Fried and 
Hademenos, 1999].  
 

 

 

Lemma 13.3 Egoism is constrained by altruism; and the implementation 
of altruism is dependent on the natural egoism.   
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Lemma 13.3 provides an explanation of the relationship between 
egoism and altruism. Based on Lemma 13.3, the following theorem can be 
derived. 

 

 
The history indicates that evolution favors species like human beings 

and other organisms that are able to seek the maximum inclusive fitness. 

 
13.3.1.2 The Hierarchical Model of Basic Human Needs 
 

As an individual, the basic biological need of humans is a stable inner 
environment regulated by a mechanism known as homeostasis.   

 
Definition 13.18 Homeostasis is an adaptive biological mechanism of 

the human body that maintains a relatively constant state in order to live and 
function. 
 

At the psychological level, Sigmund Freud perceived that humans are 
motivated by internal tension states known as drives that build up until they 
are released. The basic drives that Freud identified are self-preservation, sex, 
and aggression. However he focused only on the last two drives later in his 
theory [Freud, 1895; Leahey, 1980].       

Clark Hull proposed the drive-reduction theory that states motivation 
stems from a combination of drive and reinforcement of unfulfilled needs 
[Hull, 1943]. The primary drives are innate drives such as hunger, thirst, and 
sex; the secondary drives are acquired drives such as studying, socializing, 
and earning money.        

The hierarchy of human needs is identified by Abraham Maslow at five 
levels known as the needs of physiological, safety, social, esteem, and self-
actualization from the bottom up [Maslow, 1962/70]. The five basic levels of 
human needs are described in Table 13.3. Except those at Level 5, most 
needs identified by Maslow as shown in Table 13.3 are deficiency needs, 
which are a need generated by a lack of something. The Level 5 needs for 
self-actualization can be perceived as a growth needs. 

 

 
                 The 46th Law of Software Engineering 

 
Theorem 13.1 The basic essences for evolution state that the basic 
evolutional needs of mankind are to preserve both the species’ biological 
traits via gene pools, and the cumulated knowledge via various 
information systems.  
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Table 13.3 
Maslow’s Hierarchy of Needs 

 

Level Category Needs Description 
1 Physiological  Needs for biological maintenance such as 

food, water, sex, sleep etc.  
2 Safety Needs for physical and social security, 

protection, and stability such as shelter 
3 

Lower order 
needs 

Belongingness Needs for love, affection, socialization 
4 Esteem   Needs for respect, prestige, recognition, and 

self-satisfaction   
5 

Higher order 
needs 

Self-actualization  Need to express oneself, grow, and to fulfill   
one’s maximum potential toward success           

 
On the basis of the needs taxonomies of Maslow, Hull, and Freud, a 

formal human needs hierarchy model is provided in Definition 13.19, Fig. 
13.2, and Table 13.4. 
 

Definition 13.19 The Human Needs Hierarchy (HNH) model is a 
hierarchical model that encompasses five-level fundamental human needs 
known from the bottom-up as N0 – physiological needs, N1 – psychological 
needs, N2 – cognitive needs, N3 – social needs, and N4 – self-expressive 
needs. 

              
Figure 13.2 The Human Needs Hierarchy (HNH) model 
 

The HNH model can be illustrated as shown in Fig. 13.2. Detailed 
explanations of each of the basic needs are provided in Table 13.4. 

   Social

Cognitive needs 
 

Psychological needs 

Physiological needs 

Self- 
expressive 
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Table 13.4 
The Human Needs Hierarchy (HNH) Model 

 

Level Basic Needs Description 
N0 Physiological  Needs for maintaining homeostasis, such as food, water, 

clothes, sex, sleep, and shelter  
N1 Psychological Needs for feeling safe, comfortable, and wellbeing 
N2 Cognitive Needs for satisfaction of curiosity, knowledge, pleasure, 

and interaction with the environment 
N3 Social Needs for work, socialization, respect, prestige, esteem, 

and recognition   
N4 Self-expressive   Need to express oneself, grow, and to fulfill one’s 

maximum potential toward success           

 

 
Definition 13.20 The predominant need of an individual is the needs at 

the lowest unsatisfied level of the HNH model. 
 

Maslow suggests that human needs should be satisfied level by level. 
That is, the lower level needs should be satisfied before any higher level need 
comes into play [Maslow, 1970]. This observation leads to the following 
corollary.                     

 

 
Understanding of the nature of basic human needs is not only useful in 

predicating motivations of human beings in a given context, but also 
important in identifying the driving forces for the approach of engineering 
organization, the types of societies, and the corresponding economic 
structures.               
 
 
13.3.2 HUMAN PERCEPTIONS AND BEHAVIORS 
 

Perception is the third layer of human cognitive processes modeled in 
LRMB as developed in Chapter 9. This subsection presents a rigorous 

 

Corollary 13.1 When multiple needs of a person are unsatisfied at a 
given time, satisfaction of the most predominant need is most pressing. 
 

 

Lemma 13.4 The lower the level of a need in the HNH hierarchy, the 
more concrete or material-oriented the need. In other words, the higher 
the level of a need, the more virtualized or perception-oriented the need.  
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treatment of human perceptual processes such as emotions, motivations, and 
attitudes, and their influences on human behaviors [Wang, 2007i]. A set of 
mathematical models and cognitive processes is developed. The interactions 
and relationships between motivation and attitude are formally described. 
Applications of the mathematical models of motivations and attitudes in 
software engineering are demonstrated. 
 According to Definition 9.9, perception is a set of sensational cognitive 
processes at the subconscious cognitive function layers such as emotion, 
motivation, and attitudes. Perception may be considered as the sixth sense of 
human beings that almost all cognitive life functions rely on it.  
 
13.3.2.1 Emotions 
 

Emotions are a set of states or results of perception that interprets the 
feelings of human beings on external stimuli or events in the binary 
categories of pleasant or unpleasant.  

 
Definition 13.21 An emotion is a personal feeling derived from one’s 

current internal status, mood, circumstances, historical context, and external 
stimuli.         
 

Emotions are closely related to desires and willingness. A desire is a 
personal feeling to possess an object, to conduct an interaction with the 
external world, or to prepare for an event to happen. A willingness is the 
faculty of conscious, deliberate, and voluntary choice of actions. 

According to the study of Fischer and his colleagues [Fischer et al., 
1990], the taxonomy of emotions can be described as shown in Table 13.5.  
 

Table 13.5 
Taxonomy of Emotions 

 

Level Description 
Supper level Positive (pleasant) Negative (unpleasant) 
Basic level Joy Love Anger Sadness Fear 

Sub-category 
level 

Bliss,  
pride, 
contentment 
 

Fondness, 
infatuation 

Annoyance, 
hostility, 
contempt, 
jealousy 

Agony, 
grief,  
guilt, 
loneliness 

Horror, 
worry 

 
It can be observed that human emotions at the perceptual layer may be 

classified into only two opposite categories: pleasant and unpleasant. 
Various emotions in the two categories can be classified at five levels 
according to its strengths of subjective feelings as shown in Table 13.6, 
where each level encompasses a pair of positive/negative or 
pleasant/unpleasant emotions.    
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Table 13.6 
The Hierarchy of Emotions 

 

Level 
(Positive/Negative) 

Description 

0 No emotion - 
Comfort Safeness, contentment, fulfillment, trust 1 Week 

emotion  Fear Worry, horror, jealousy, frightening, threatening 
Joy Delight, fun, interest, pride  2 Mediate 

emotion  Sadness Anxiety, loneliness, regret, guilt, grief, sorrow, 
agony 

Pleasure Happiness, bliss, excitement, ecstasy   3 Strong 
emotion Anger Annoyance, hostility, contempt, infuriated, 

enraged 
Love Intimacy, passion, amorousness, fondness, 

infatuation 
4 Strongest 

emotion 
Hate Disgust, detestation, abhorrence, bitter   

 
Definition 13.22 The strength of emotion |Em| is a normalized measure 

of how strong a person’s emotion on a scale of 0 through 4, i.e.: 
 

0 ≤ |Em| ≤ 4          (13.3)  
 
An organ known as the hypothalamus in the brain is supposed to 

interpret the properties or types of emotions in terms of pleasant or 
unpleasant [Smith, 1993; Leahey, 1997; Sternberg, 1998].  

 
Definition 13.23 Letting Te be a type of emotion, ES the external 

stimulus, IS the internal perceptual status, and BL the Boolean values true or 
false, the perceptual mechanism of hypothalamus can be described as a 
function, i.e.: 

 
                                    Te : ES × IS → BL          (13.4) 
 

It is interesting that sometime the same event or stimulus ES may be 
explained in different types due to the difference of the real-time context of 
the perceptual status IS of the brain. For instance, walking from home to 
office may be interpreted as a pleasant activity for one who likes physical 
exercises, but the same walk due to a car breakdown will be interpreted as 
unpleasant. 

 
 
 

© 2008 by Taylor & Francis Group, LLC



Chapter 13  Sociology Foundations of SE    1053 
 

  
Although there are various emotional categories in different levels, the 

binary emotional system of the brain provides a set of pairwise universal 
solutions to express human feelings. For example, anger may be explained as 
a default solution or generic reaction for an emotional event when there was 
no better solution available; otherwise, delight will be the default emotional 
reaction. 
 
13.3.2.2 Motivations 
 

Motivation is an innate potential power of human beings that energizes 
behavior. It is motivation that transforms thought (information) into action 
(energy). In other words, human behaviors are the embodiment of 
motivations. Therefore, any cognitive behavior is driven by an individual 
motivation.   
 

Definition 13.24 A motivation is a willingness or desire triggered by an 
emotion to pursue a goal or a reason for triggering an action.  
 

As described in the LRMB model [Wang et al., 2006], motivation is a 
cognitive process of the brain at the perception layer that explains the 
initiation, persistence, and intensity of personal emotions and desires, which 
are the faculty of conscious, deliberate, and voluntary choices of actions.  

Motivation is a psychological and social modulating and coordinating 
influence on the direction, vigor, and composition of behavior. This 
influence arises from a wide variety of internal, environmental, and social 
sources, and is manifested at many levels of behavioral and neural 
organizations. 

The taxonomy of motives can be classified into two categories known 
as learned and unlearned [Wittig, 2001]. The latter is the primary motives 
such as the survival motives (hunger, thirst, breathing, shelter, sleep, 
eliminating), and pain. The former is the secondary motives such as the need 
for achievement, friendship, affiliation, dominance of power, and relief from 
anxiety.    
 

Definition 13.25 The strength of motivation M is a normalized measure 
of how strong a person’s motivation is on a scale of 0 through 100, i.e.: 

 
  0 ≤ M ≤ 100           (13.5)  

 

Corollary 13.2 The human emotional system is a binary system that 
interprets or perceives an external stimulus and/or internal status as 
pleasant or unpleasant.  
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where M = 100 is the strongest motivation and M = 0 is the weakest 
motivation.  
 

It is observed that the strength of a motivation is determined by 
multiple factors [Westen, 1999; Wang, 2007d] such as: 

 
    a) The absolute motivation |Em|: The strength of the emotion.  
 
    b) The relative motivation E - S: A relative difference or inequity 

between the expectancy of a person E for an object or an action 
towards a certain goal and the current status S of the person. 

 
    c)  The cost to fulfill the motivation C: A subjective assessment of 

the effort needed to accomplish the expected goal. 
 
Therefore, the strength of a motivation can be quantitatively analyzed 

and estimated by the subjective and objective motivations and their cost as 
described in the following theorem [Wang, 2007d]. 
 

 
In Theorem 13.2, the strength of a motivation is measured in the scope 

of [0 … 100], i.e., 0 ≤ M ≤ 100. When M > 1, the motivation is considered 
being a desired motivation. The higher the value of M, the stronger the 
motivation.  

According to Theorem 13.2, in the  software engineering context, the 
rational action of a manager of a group is to encourage individual emotional 
desire, and  the expectancy of the programmer, and to decrease the required 
effort for the employees by providing additional resources or adopting 
certain tools.      

 
              The 47th Principle of Software Engineering 

 

Theorem 13.2 The strength of motivations states that a motivation M is 
proportional to both the strength of emotion |Em| and the difference 
between the expectancy of desire E and the current status S, of a person, 
and is inversely proportional to the cost to accomplish the expected 
motivation C, i.e.: 

 

          2.5 | |  ( - )mE E S
M

C
• •=               (13.6) 

 
where 0≤ |Em| ≤ 4, 0 ≤ (E,S) ≤ 10, and 1 ≤ C ≤ 10.  
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It is noteworthy that motivation is only a potential mental power of 

human beings, and a strong motivation will not necessarily result in a 
behavior or action. The condition for transforming a motivation into a real 
behavior or action is dependent on multiple factors, such as values, social 
norms, expected difficulties, availability of resources, and the existence of 
alternative goals.  

The motivation of a person is constrained by the attitude and decision 
making strategies of the person. The former is the internal (subjective) 
feasibility of the motivation, and the latter is the external (social) feasibility 
of the motivation as discussed in Section 11.3. Attitude and decision making 
will be analyzed in the following subsections.  
 
13.3.2.3 Attitudes  
 

As described in the previous section, motivation is the potential power 
that may trigger an observable behavior or action. Before the behavior is 
performed, it is judged by an internal regulation system known as the 
attitude.  

The following humor tells an interesting coincidence between attitudes 
and behaviors: 
 

Let A, B, ..., Z be assigned a percentage 1%, 2%, .., 26%, 
respectively. The importance of the following words or phrases may be 
described by the sum of the percentages of the letters contained in 
them, i.e.: 

 
  ∑ (‘KNOWLEDGE’) = (11+14+15+23+12+5+4+7+5)% = 96% 
  ∑ (‘HARD WORK’) = (8+1+18+4+23+15+18+11)% = 98% 
  ∑ (‘ATTITUDE’) = (1+20+20+9+20+21+4+5)% = 100% 
 

The above results interestingly “prove” a common saying that 
attitude is more important than knowledge or hard work.    

 
Psychologists perceive attitude in various ways. R. Fazio describes an 

attitude as an association between an act or object and an evaluation [Fazio, 
1986]. A. Eagly and S. Chaiken define attitude as a tendency of a human to 
evaluate a person, concept, or group positively or negatively in a given 
context [Eagly and Chaiken, 1992]. More recently, Arno Wittig describes 
attitude as a learned evaluative reaction to people, objects, events, and other 

 

Corollary 13.3 There are super strong motivations toward a resolute goal 
by a determined expectancy of a person at any cost.  
 

© 2008 by Taylor & Francis Group, LLC



1056   Part III  Organizational Foundations of SE 
 
stimuli [Wittig, 2001]. The remainder of this subsection presents a rigorous 
definition and a formal model of attitude.              

 
Definition 13.26 An attitude is a subjective tendency towards a 

motivation, an object, a goal, or an action based on an intuitive evaluation of 
its feasibility. 

 
The modes of attitudes can be positive or negative, which can be 

quantitatively analyzed using the following definition. 
  
Definition 13.27 The mode of an attitude A is determined by both an 

objective judgment of its conformance to the social norm N and a subjective 
judgment of its empirical feasibility F, i.e.: 

 

    
1,  

0,  

N F
A

N F

= ∧ =⎧⎪⎪= ⎨⎪ = ∨ =⎪⎩

T T

F F
          (13.7) 

 
where A = 1 indicates a positive attitude; otherwise, it indicates a negative 
attitude. 
  
13.3.2.4 The Motivation/Attitude-Driven Behavioral Model  

 
This section discusses the relationship between a set of interlinked 

perceptual psychological processes such as emotions, motivations, attitudes, 
decisions, and behaviors. A motivation/attitude-driven behavioral model will 
be developed for formally describing the cognitive processes of motivation 
and attitude.    

It is observed that motivation and attitude have considerable impact on 
behavior and influence the way a person thinks and feels [Westen, 1999]. A 
reasoned action model is proposed by Martin Fishbein and Icek Ajzen in 
1975 that suggests human behavior is directly generated by behavioral 
intensions, which are controlled by the attitude and social norms [Fishbein 
and Ajzen, 1975]. An initial motivation before the judgment by an attitude is 
only a temporal idea; with the judgment of the attitude, it becomes a rational 
motivation [Wang and Wang, 2006; Wang, 2007i], also known as the 
behavioral intention. 

The relationship between an emotion, motivation, attitude, and 
behavior can be formally and quantitatively described by the 
Motivation/Attitude-Driven Behavioral (MADB) model as illustrated in Fig. 
13.3 [Wang, 2007i]. In the MADB model, motivation and attitude have been 
defined in Eqs. 13.6 and 13.7. It is noteworthy that, as shown in Fig. 13.3, a 
motivation is triggered by an emotion or desire. The rational motivation, 
decision, and behavior can be quantitatively analyzed according to the 
following definitions.  
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Figure 13.3 The model of motivation/attitude-driven behavior (MADB)  
 
Definition 13.28 A rational motivation Mr is a motivation regulated by 

an attitude A with a positive or negative judgment, i.e.:       
 

       
 

2.5 | |   ( - )
 

r

m

M M A

E E S
A

C

=

•=

i

i
i

        (13.8)  

 

Definition 13.29 A decision for confirming an attitude, Da, for 
executing a motivated behavior is a binary choice on the basis of the 
availability of time T, resources R, and energy P, i.e.: 

 

            
 

1,   = 

0,  = a

T R P
D

T R P

∧ ∧⎧⎪⎪= ⎨⎪ ∨ ∨⎪⎩

T

F
        (13.9)  

 

Therefore, the formal model of MADB can be described as follows, 
where a behavior is determined by a product of the strength of motivation 
and the approval of the decision by a positive attitude.  

 

 
 

Lemma 13.5 A behavior B driven by a motivation Mr and an attitude is a 
realized action initiated by a motivation M and supported by a positive 
attitude A and a positive decision Da toward the action, i.e.: 
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, 
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F
     (13.10)  
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The MADB model presented in Lemma 13.5 and Fig. 13.3 provides a 
formal explanation of the mechanism and relationship between motivation, 
attitude, and behavior. The model can be used to describe how the motivation 
process drives human behaviors and actions, and how the attitude as well as 
the decision making process help to regulate the motivation and determines 
whether the motivation should be implemented.    

The techniques and models of more rational decision making processes 
may be referred to Section 11.3 on decision making theories.      
 
 
13.3.3 COLLECTIVE BEHAVIORS  
 

Organizational psychology studies collective behaviors within groups 
and organizations, and how structures of them impacts people’s behaviors, 
productivity, and performance. Psychological experiments indicate that 
individual’s behavior may vary in a group influenced by the interactions with 
other members of the group, which is identified as collective behaviors 
[Zander, 1979; Wiggins et al., 1994].  

 
Definition 13.30 A collective behavior is an integrated behavior of a 

group in which individuals’ behaviors are influenced in different ways by the 
group.         

 
Collective behaviors are one of the most important social properties of 

groups and organizations. It is perceived in sociology that any human social 
behavior may be compared and analyzed against the social norms, which 
forms a qualitative or quantitative standard for the behavior [Wiggins et al., 
1994].         

 

 
This subsection describes observable phenomena of collective 

behaviors such as social conformity, social synchronization, coaction, 
coordination, groupthink, group polarization, social dilemmas, and social 
loafing. Two social effects attached to social loafing are the free-rider and 
sucker effects.          
                          
13.3.3.1 Social Conformity   
 

Individuals intend to adjust their behavior or actions, which reflect their 
thought, to the common goal and norms of a group that they involve and 
think belong to. This social phenomenon is called conformity. 

 

Lemma 13.6 Individuals’ behavior in the social context is measurable 
and analytical in term of performance against the social norms.   
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Definition 13.31 Social conformity is a social phenomenon in which an 
individual’s behavior is approached to a social norm or standard in forms of 
ethical values, role expectations, and laws. 
 

Conformity may be explained by the principle of minimum energy 
consumption, especially when there is no obvious or intuitive best choice.               
 
13.3.3.2 Social Synchronization  

 
Individuals intend to set their behavior or actions to the timing of the 

group. This social phenomenon is called synchronization [Wang, 2005k/05l]. 
 
Definition 13.32 Social synchronization is a social phenomenon in 

which an individual’s behavior is timed to a social norm of a group. 
 

Synchronization is a special type of social conformity. Synchronization 
may be explained by the principles of system synchronization and minimum 
energy consumption, because synchronization contributes to the maximum 
output of a group. 

 
13.3.3.3 Coactions  
          

It is found that in temporary social situations and informal groups 
where no or little coordination is required, people still influence each other 
when their actions or tasks are identical or have similarity.  
  

Definition 13.33 A coaction is a social phenomenon in which the 
identical or similar actions or tasks are carried out by different individuals 
with little interaction. 

 
Coaction influences the performance of individuals because it puts the 

individual in a social context. The phenomena of coaction indicate there is a 
natural law, as described below, which constrains collective social behaviors 
of human beings even in a noncohesive social context and a highly 
temporary and random social relation.             

 

 

 

Lemma 13.7 An autonomous synchronization tendency between 
individuals exists in any permanent or temporary social context where 
people automatically adjust to conjunctive goals and cooperative timing.  
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The coaction influences on individual’s performance can be positive or 
negative. The former can be a higher expectation, an awareness of difference, 
and a learning of better practice; while the latter can be a distraction or 
disappointment.            
 
13.3.3.4 Coordination  
          

Coaction discussed above is an ad hoc cooperation in an informal 
group where there is no common goal as well as predefined means of 
cooperation and communication. In contrary to coaction, coordination 
happens in a formal group where common goals as well as means of 
cooperation and communications exist.                

    
Definition 13.34 A coordination is a social phenomenon in which the 

identical or similar action or task is carried out via intensive interactions 
between different individuals. 

 
Coordination may influence the performance of individuals 

dramatically in a group context. Organizational theories of work coordination 
and efficiencies of group coordination have been extensively studied in 
Section 8.5, 10.5, and 11.2.3 in engineering science, system science, and 
management science, respectively. 

 
13.3.3.5 Groupthink  
 

Groupthink and group polarization are two preventable social 
phenomena of collective behaviors [Janis, 1971].  

 
Definition 13.35 Groupthink is a social phenomenon in which the 

decision-making process within a highly cohesive group is dominated by 
group consensus that restrains critical thinking of members in the group. 

 
Groupthink may occur in a highly cohesive group where decisions are 

made by the group and individuals lose their ability to critically evaluate 
situations or information. Groupthink symptoms identified by Irving Janis in 
1971 include illusion of invulnerability, illusion of morality, stereotypes of 
outsiders, pressure for conformity, self-censorship, and illusion of unanimity 
[Janis, 1971].      

 
Groupthink acting as a filter of critical ideas may result in another 

social phenomenon known as group polarization that turns a group to a 
positive-feedback system.        
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Definition 13.36 Group polarization is a social phenomenon in which 
group members intend to shift toward the extreme of an already preferred 
position of the group. 
 

The tendency of group polarization is a powerful positive-feedback 
mechanism that may result in an instable status of a social unit or system. 
According to system theories discussed in Chapter 10, the behaviors of a 
positive-feedback system are sometime unpredictable even destructive. The 
art of leadership for a group, to some extent, is to prevent the polarization 
situation from happening.  

 

 
The rule of thumb is that, in a group polarization situation, the one who 

hesitates in the group is perhaps the wiser one. Therefore, Lemma 13.8 
indicates that the negative-feedback mechanism is not only suitable for a 
natural system, but also applicable to social groups and social systems, 
particularly for software engineering organization.         
 
13.3.3.6 Social Dilemmas 
 

Definition 13.37 The social dilemma is a social phenomenon in which 
members of a group face a conflict choice between the maximization of 
group’s interests by cooperative actions and the maximization of own 
individual’s interests by noncooperative actions.  

 
The collective behaviors of social dilemmas have been identified by 

many sociologists and social psychologists since 1985 [Komorita and Barth, 
1985; Coleman, 1990]. If only egoism is adopted in a society, the social 
dilemma may exist forever. However, when altruism is recognized to balance 
egoism as described in Lemmas 13.3, social dilemmas may be resolved 
systematically.        
 
13.3.3.7 Social Loafing 
 

The collective behavior known as social loafing was first identified in 
Max Ringelmann’s experiments on rope-pulling before World War I [Kravits 
and Martin, 1986]. The same experiment was replicated by Alan Ingham et 
al. in 1974. This collective phenomenon is then termed as social loafing by 
Latane and his colleagues in 1979 based on extended studies [Latane et al., 
1979; Hardy and Latane, 1986].  

 

Lemma 13.8 A weighting system that encourages and appreciates 
negative or hesitant feedback towards a current group’s position is a 
stable system.  
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Definition 13.38 Social loafing is a social phenomenon in which exists 
the tendency for people to work less hard on a cooperative task in a group 
than they do individually. 

 
Three independent experiments on the efficiency of coordinated group 

tasks as shown in Table 13.7 reveal similar patterns of efficiency decreasing 
when more persons are involved in collective group tasks. These are the main 
evidences of social loafing. However, it can also be scientifically explained 
by Theorem 8.4 on coordinate overhead and efficiency. 
 

Table 13.7 
Experiments on Efficiency of Coordinated Group Work 

 

A group Collective tasks An 
individual 2 persons 3 persons 2-6 persons 8 persons 

Force (lb.) 130 352 546 Rope-
pulling1 Efficiency 100% 90.3% 52.5% 
Rope-pulling2 100% 90% 85%  
Cheerleaders3 100% 92%  

 
  Note:  Experiment 1 is based on Max Ringelmann [Kravits and Martin, 1986] 
                      Experiment 2 is based on Alan Ingham et al. in 1974. 

           Experiment 3 is based on Hardy and Latane in 1986. 
 
A typical collective behavior of social loafing is the free-rider effect 

[Kerr, 1983].         
 

Definition 13.39 The free-rider effect is a social phenomenon in which 
exists the tendency for a member of a group to act noncooperatively based on 
the assumption that one’s individual cooperative action may not be necessary 
because others will do for the interests of the group. 
 

Another social loafing phenomenon is identified by Jackson and 
Harkins (1985) known as the sucker effect.   
 

Definition 13.40 The sucker effect is a social phenomenon in which 
exists the tendency for a member of a group to act noncooperatively based on 
the assumption that others may take advantage of one’s individual 
cooperative contribution to the group.  
 

Social loafing may happen in a group where tasks are parallel allocated 
and the sum of all parallel capacity is much larger than the workload of the 
group, for instance, a group of porters and a team of programmers. More 
rigorous discussion on cooperative work organization [Wang, 2007d] at the 
system level will be presented in Sections 13.4.2 and 13.5.2. 
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13.4 Theory of Social Organization 
 

 
 
Studies in sociology are mainly empirical and observation-based as described 
in the preceding sections. This section presents a formal treatment of social 
organization on the basis of classical thought in sociology. A mathematical 
model of social organization is developed known as the organization trees. 
Then, a formal model of socialization is established that explains the 
inherited interrelationships and interactions between the basic human needs, 
economic structures, and social types. An important finding based on the 
formal models of socialization is that the social type and underpinning 
economic structure of the postindustrial society is transitioning towards a 
new type of society called the information society driven by the current 
highest level of unsatisfied human needs. This indicates that software science 
and engineering will play more and more important roles in human society 
development and evolution. 
 
  
13.4.1 CLASSIC THOUGHT OF SOCIAL 
           ORGANIZATION 
 

From a geographical point of view, a society is formed by individuals, 
families, communities, districts, areas, provinces, and countries from the 
bottom up. From a functional point of view, a society is formed by 
individuals, groups, organizations, sectors, and the whole economy. This 
subsection reviews the classical thought on socialization and the 
conventional forms of social organization.              
 
13.4.1.1 Principles of Social Organization  
 

According to Definition 13.4, an organization is a social entity in 
which a number of groups of people are interconnected and interacting 
toward common goals. An organization can be formal or informal, permanent 
or temporary, large or small, public or private, etc. A summary of the types 
of organizations is provided in Table 13.8.             
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Table 13.8 
Taxonomy of Organizations 

 

No Method of categorization Types of organizations 

1 Social status    Formal, informal  
2 Life span   Permanent, temporary  
3 Size Large, medium, small  
4 Ownership Public, private, collective   
5 Sector Industry, services, government  
6 Purpose Utilitarian, normative, coercive 
7 Membership criteria Open, closed  
8 Business mode Proprietorship, partnership, corporation 
9 Commercial status  Profit, nonprofit 

10 Operating scope Global, national, regional  

 
The performance of an organization is determined by both its internal 

model and its external environment. 
 
Definition 13.41 An organizational environment is the external 

constraints of a society that affect the operation of an organization.  
 
Typical environment constraints for an organization are resources, 

technologies, politics, population patterns, and the economy.   
 

13.4.1.2 Classic Models of Social Organization 
 

There are various organizational models and methodologies, such as 
bureaucracy, division of labor, and system organization. System science and 
system models as discussed in Chapter 10 have provided a formal approach 
for in social studies, and will be discussed further in Section 13.4.2. This 
subsection focuses on the conventional approaches of social organization, 
i.e., bureaucracy and division of labor.   
 
13.4.1.2.1 Bureaucracy 
 

Bureaucracy is originated from the classical forms of public 
administration in which governments are operated by civil servants known as 
bureaus.       
 

Definition 13.42 Bureaucracy is a classical organizational model of 
society in which decisions are made from the top-down. 
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Practical social organizational structures and methodologies were 
introduced 2,500 year ago in oriental civilizations. The Chinese philosopher 
and educationist, Confucius (551 – 479BC), proposed that government 
officers should be systematically selected from the most talented and 
educated men by civil service examinations. Since then, similar social 
organizations have been adopted all over the world at almost all levels from 
governments to businesses. Therefore, Confucius’ bureaucracy may be 
perceived as the earliest sociological inventions of the ancient Chinese 
civilization.       

In modern sociology, Max Webber elicited the basic characteristics of 
bureaucratic organization in The Theory of Social and Economic 
Organization [Weber, 1947]. He identified the following characteristics:      
specialization, hierarchical structures, rule of law, professional competence, 
impersonality, and formal documentation.      
 Formal documentation is considered as the central methodology of 
bureaucracy because written and historical files form a systematic archival 
system that guides the stable operation of an organization. Based on this it is 
said that the center of bureaucracy is not people but paperwork [Macionis et 
al., 1997].                
 It is noteworthy that bureaucratic organization is designed to improve 
efficiency. However, it may be alienated in many situations to be inefficient 
as explained by Parkinson’s laws [Parkinson, 1957] and Peter’s law below 
[Peter and Hull, 1969].  
 

 
 However, the difficulty is, in many situations, the effort ad duration of 
a non-repetitive task is very difficult to be estimated and predicated. In such 
cases, a payment system based on the completion of the task rather than the 
time spent on it will be more efficient.           
 

 
Peter’s law indicates that the maximum competitive level of a person in 

the hierarchy of a bureaucratic system is n-1, where n is the highest level the 
person ever achieved without further promotion. 

The alienation of bureaucratic organizations is an example of system 
dissimilation in sociology as presented in Theorem 10.12.  

 

Lemma 13.9 The Parkinson’s law states that work intends to expand to 
fill the time available for its completion.  
 

 

Lemma 13.10 The Peter‘s law states that bureaucrats rise to their level of 
incompetence in a bureaucratic system.  
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13.4.1.2.2 Division of Labor  
 

Work organization by division of labor and specialization was adopted 
in bureaucracy [Confucius, 551-479BC]. Division of labor was introduced 
into industry and mass manufacturing during the industrial revolution [Smith, 
1776; Tayler, 1911], which forms the important characteristics of 
industrialization [Warner and Low, 1947]. Instead of working in a cottage 
economy fashioning a product through all the processes individually, 
industrialized mass production demands specialization. The advantages of 
division of labor are higher productivity and lower entry skills. It is formally 
presented in Theorem 11.2 that when people are repetitively working on 
subtasks in a process, the productivity can be greatly improved [Wang, 
2005k].                              

 
Mcdonaldization is identified as a modern type of division of labor in 

work organization. The basic organizational principles revealed from 
Mcdonaldization are efficiency, quantification, uniformity, and automation 
[Ritzer, 1983/93]. Ritzer observed that the most unreliable element in the 
Mcdonaldization process is human beings, because people are unstable, 
sometimes letting their minds wander, or simply trying something 
nonstandard. This factor may be eliminated by using automatic tools and 
standard process regulations. 

 
Sectors are a macro type of division of labor in a society, where labors 

are allocated by their organizations oriented to different kinds of products or 
services. Professionalism is another type of division of labor in postindustrial 
societies, where people are specialized in various highly skilled disciplines. 

 
 

13.4.2 THE FORMAL MODEL OF SOCIAL 
           ORGANIZATION 
 

Empirical and practical social organizations have been formed as 
results of historical, political, and economical processes. However, a few 
natural laws had been sought in sociology in order to understand the 
fundamental constraints of human societies. Toward this aim, this subsection 
presents a set of formal sociological models on the basis of system theory 
and the System Organization Tree (SOT) as developed in Section 10.3.5. A 
rigorous treatment of social organization in engineering is developed. Based 
on the sociological models, the theories and laws behind coordinative work 
organizations at the social organization and the top system level are revealed, 
which will be used as the foundation for large-scale software engineering 
project organization.               
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13.4.2.1 The Formal Organization Tree 
 

The most common organizational structures in science and nature are 
tree-type architectures [Pattee, 1978; Wang, 2005k]. The complete n-nary 
tree has been described in Section 10.3.5 as a normalized tree in which each 
node of it can have at most n children, and all subtrees and nodes except the 
the rightmost subtrees and leaves have the maximum number of possible 
nodes. In other words, a tree that is said to be complete means that all levels 
of the tree have been allocated the maximum number of possible nodes; only 
the leave-level nodes and the rightmost subtrees may be exceptional. 

 
Definition 13.43 A normalized Organization Tree (OTn) is a complete 

n-nary tree in which all leave nodes represent employees and the remainder 
represent managers. When the leaves (employees) do not reach in the 
maximum possible numbers in the OT, the right most leaves and associated 
subtrees will be left open. 
 

A ternary OT, OT3, is given in Fig. 13.4. The important properties of 
OTs have been studied in Section 10.3.5, particularly Corollary 10.6 [Wang, 
2005k/05l], which are recited in Lemma 13.11 below for self-containment of 
this section on formal organization trees.   

One of the advanced characteristics of OTs are that their structural and 
functional properties are highly predictable as stated in Corollary 13.4. 

  

   E1    E2    E3    E4    E5    E6    E7    E8    E9   E13   E11   E15   E22   E23   E24   … 

  M21   M22   M23   M24   M25   M26   M27   M28   M29 

 M11  M12  M13 

  M1 

  …   …   …   … 

  … 

   Figure 13.4 A normalized organization tree (n = 3) 
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Definition 13.44 The organizational overhead rOT(n) of an n-nary 

organization tree OTn is determined by the ratio between the number of 
management Nm and the total members of OTn, NOT, i.e.: 

 

 
Lemma 13.11 A normalized n-nary organization tree OTn with the total 
number of leave nodes Ne, possesses the following properties: 

 
    a) The optimal number of fan-out of any node fon :   

 

  fon n=               (13.11)  
 

    b) The maximum number of nodes at a given level k, nk: 
 

nk = nk              (13.12)  
 

    c) The depth of the OT, d:   
 

           log
log

eNd
n

⎡ ⎤= ⎢ ⎥⎢ ⎥⎢ ⎥
            (13.13)  

 
    d) The maximum number of nodes in OT, NOT:   

 

      
0

d
k

OT
k

N n
=

= ∑               (13.14)  

 
    e) The maximum number of employees (on all leaves) in OT, Ne:   

 

        d
eN n=               (13.15)  

 
f) The maximum number of managers (nodes except all leaves)  
    in OT, Nm:   

           
-1

0
-

d
k

m OT e
k

N N N n
=

= = ∑             (13.16) 

 
Corollary 13.4 An OT( fon , Ne) is fully determinable iff its number of 
employees (leaves) Ne and the optimal number of fan-out of 
groups fon are given.  
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Definition 13.45 The organizational efficiency eOT(n) of an n-nary 
organization tree OTn is determined by the ratio between the number of 
employees Ne and the number of management Nm, i.e.: 

 

              -1
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∑
     (13.18) 

 

The theory of OT provides a mathematical model for formally 
analyzing the architectures of social organizations and their efficiency. The 
applications of OT are demonstrated in the following subsection. 
 
13.4.2.2 Formal Models of Social Organization 
 

 
Lemma 13.12 indicates that when the importance of organizational 

efficiency overpasses the initial purposes of a group for sharing resources and 
functions, an organization with multiple groups is required. 

Theorem 8.10 as well as Corollaries 8.41 and 8.7 developed in Chapter 
8 on optimal project team organization reveal there are natural laws 
constraining the size of groups for a given workload. Based on Theorem 
8.10, the optimal sizes of groups with acceptable efficiency are constrained 
by the following theorem. 

 

 

 

Lemma 13.12 An organization is needed when the size of a group is too 
large that it exceeds the optimal size of the group, and therefore is no 
longer efficient.    
 

 

                  The 47th Law of Software Engineering 
 

Theorem 13.3 The organizational coordination efficiency states that the 
natural constraints for social organization that forces the architecture of 
large groups to be evolved and adapted to tree-form hierarchical 
structures in an organization is the need to maintain acceptable 
coordinating efficiency at each level of the organization tree.       
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This law forces the architecture of large groups to be reformed to tree-
type hierarchical structures of groups in order to maintain acceptable 
coordinating efficiency [Wang, 2005k/05l/07d]. 

 

 
Corollary 13.5 can be proven by Theorem 8.10. A set of typical data 

between the expected duration and expected workload against different labor 
allocations is given in the pigeon diagram as shown in Fig. 8.5, where the 
trends of expected project durations against different labor allocations and 
the interpersonal coordination rate r in the group are illustrated.  

Generally, for a certain ideal workload W1(r), the corresponding 
optimal labor allocation L0 and the shortest duration Tmin can be determined 
according to Theorem 8.7. Theorem 8.7 provides a solution to determine the 
average optimal fan-out fon of OTs. On the basis of Theorem 8.7, an optimal 
organization tree can be determined according to the following corollary. 

  

 

Corollary 13.6 The optimal architecture of a normalized organization 
tree, OT(r, Ne) for an organization with Ne members on the first line (the 
leaves of the tree) and a given average interpersonal coordination rate r is 
determined as follows: 

 
    a)  The average optimal fan-out of the OT, fon : 

 

  0
1.414

, 0   [ ]fo Gn n L r P
r

⎡ ⎤= = = ≠⎢ ⎥
⎢ ⎥

         (13.20) 

 

    b)  Number of optimal groups (subprojects) of the OT, NG:   
 

   = e
G

fo

NN
n
⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥

                      (13.21) 

 

        c)  Depth of the OT, dOT:  
 

      
 

log log = = 
log log

e e
OT

fo o

N Nd
n L

⎡ ⎤ ⎡ ⎤
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                (13.22) 
 

 

Corollary 13.5 The optimal architecture of large-scale organizations, by 
which an optimized structure can be maintained at each level of its 
hierarchy, is an OT where the average optimal fan-out of a node fon or 
the size of the group nG, is larger than 3 and smaller than 10, i.e.: 

 
         3 10fo Gn n≤ = ≤            (13.19) 

 
where fon is the optimum labor allocation.    
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Example 13.1 Given an organization with Ne  = 100 employees in the 
first line and the work cooperation rate r = 10%, analyze the optimal 
architecture of the organization tree OT1 for this organization.  

According to Corollary 13.6, the optimal architecture of the 
organization tree can be derived as follows: 
 

(a) The average optimal fan-out of OT1:  
 

            0
1.414

= 5.0 [P]
0.1fon L ⎡ ⎤= = ⎢ ⎥

⎢ ⎥
 

 
(b) Number of optimal groups of OT1:   
 

           
 = 

100.0= 20.0
5.0

e
G

fo

NN
n
⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥
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⎢ ⎥

       

 

(c) Depth of OT1:  
 

  0

log = 
log 
log100.0 2.0 3.0
log 5.0 0.70

e
OT

Nd
L

⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

 

 
Referring to Fig. 13.4, readers may draw a diagram of the organization 

tree based on the derived characteristics of OT1.    
 
Example 13.2 What is the optimal architecture of the OT of a large 

organization with Ne  = 100,000 employees in the first line given L0  = 10.0P?  
According to Corollary 13.6, the characteristic of OT2 can be derived as 

follows: 
 

    a)  The average optimal fan-out of OT2:     fon = L0  = 10.0P 
    b)  Number of optimal groups of OT2:  NG = 104   
    c)  Depth of OT2:      dOT2 = 5  

 
Example 13.3 Given a country with a billion people in the working 

force at the leave level, i.e., Ne = 1 • 109, what is the optimal architecture of 
the organization tree OT3 when the average optimal fan-out fon = 10? What 
is the number of managers required for optimal organization in OT3? What is 
the ratio or overhead of management of OT3?     
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According to Corollary 13.6, the characteristic of OT3 can be derived as 
follows: 
 

    a)  Number of optimal groups of OT3:  NG: = 108   
    b)  Depth of OT3:      dOT3  = 9  
    c)  Number of managers of OT3:   According to Eq. 13.16, 
 

   
-1 8 9 9

8

0 0

10 1010 1 10
10

d
k k

m fo
fok k

N n
n= =

= = ≈ = = •∑ ∑  

 d) Ratio of management of OT3:   
  

                       1 1
10

m
OT3

fo

N
r

L n
= ≈ = . 

 
It is noteworthy that the more advance development in a society, the 

smaller the optimal group size fon due to higher coordination among people; 
therefore, the larger the ratio of management in the total population.       
 
 
13.4.2.3 Coordinative Work Organization 
 

The preceding subsections discussed the optimal structures of social 
organizations in the form of normalized organization trees. This subsection 
describes the structures of work organization and allocation on the basis of 
the theory of the maximum output of abstract system in Section 10.5.4. 
Major methods of work organizations are serial and parallel structures, as 
well as their combinations known as hybrid structures. 
 
13.4.2.3.1 Serial Structures    

 
Definition 13.46 A serial work organization is a work allocation 

structure in which a given work is decomposed into a series of tasks and each 
task is allocated to a person or a group.    
 

The serial structure of work organization can be illustrated in Fig. 13.5, 
where W and Wos are the input and output work of a serial system.       
 

 
 
                W1                   W2              …             Wn 
 

 Wos W 

 
 

Figure 13.5 The serial structure of work organization 
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13.4.2.3.2 Parallel Structures 
 

Definition 13.47 A parallel work organization is a work allocation 
structure in which a given work is done repetitively or jointly by multiple 
persons or group. 

 
The parallel structure of work organization can be illustrated in Fig. 

13.6, where W and Wop are the input and output work of a parallel system.    
      
 

 

 
 
 

  Wop 
W

 W1

 W2

 Wn

 …

 
 

 
Figure 13.6 The parallel structure of work organization 

 

Lemma 13.13 The output work of a serial work organization Wos equals 
to the minimum work done by the least capable unit Wmin, i.e.:     

 

     
min

min( | 1 )os iW W i n

W

= ≤ ≤

=
         (13.23) 

 

 

Corollary 13.7 The capacity of a serial work system is determined by the 
least capable unit Wmin known as the bottleneck. 
  

 
Corollary 13.8 The key to optimal serial work organization is there is no 
bottleneck in the social system, i.e.: 

 

    minos iW W W W= = =                         (13.24) 
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Recalling the discussion on the phenomena of social loafing in Section 
13.3.3, it may be seen that the parallel organization of work in a group may 
allow it to happen. This is formally described as in Corollary 13.11. 

 

      

         Complex work organizations may adopt a hybrid structure of serial and 
parallel organizations.  
 
13.4.3 THE FORMAL MODEL OF SOCIALIZATION 
 

Not only task performances and engineering organizations are 
influenced by the fundamental human factors and needs. The forms of 
societies and their organizations are indirectly determined by the basic 
human needs as well. 

There are various types of societies corresponding to different 
economic structures and their levels of development. The relationships 
between the basic human needs, economic structures, and social types can be 
explained by the following model. 

 

Lemma 13.14 The output work of an n parallel work organization Wop is 
equal to the sum of work done by each unit Wi, i.e.:     

 

    
1

n

op i
i

W W
=

=∑           (13.25) 

 

 

Corollary 13.9 The capacity of a parallel work system is dominated by 
the most capable unit Wmax known as the critical unit.  
 

 

Corollary 13.11 The necessary condition of social loafing is that a group 
is parallel organized, where the output work of a unit Wj is zero, i.e.: 

  

   
1

' ( ) -
n

op i j
i

W W W
=

= ∑                  (13.27) 

where 1 ≤ j ≤ n. 

 

Corollary 13.10 The key to optimal parallel work organization is not to 
over-allocated work capacity in any unit of the system, i.e.:     

 

    
1

n

op i
i

W W
=

=∑           (13.26) 
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Definition 13.48 The Formal Socialization Model (FSM) is a relational 
model that describes the relationships between the basic human needs, 
economic structures, and social types, as shown in Fig. 13.7. 

 
 

Basic human 
Needs 

Economic  
structures 

Type of 
societies 

Benchmarks 
 

N0:  
Physiological 

E0: 
Primitive (foods) 

 S0: 
 Hunting/ 
 catching 

0

max( | 0 4)

    
iE i

E

≤ ≤

=
 

N1: 
Psychological 

E1: 
Primary (foods & 
               materials) 

 S1: 
 Agrarian/ 
 pastoral 

1

max( | 0 4)

    
iE i

E

≤ ≤

=
 

N2: 
Cognitive 

E2: 
Secondary (goods & 
tools) 

 S2: 
 Industrial 2

max( | 0 4)

    
iE i

E

≤ ≤

=
 

N3: 
Social 

E3: 
Tertiary (services & 
               social security) 

 S3: 
 Post-  
 industrial 

3

max( | 0 4)

    
iE i

E

≤ ≤

=
 

N4: 
Self-
expressive 

E4: 
Information (knowledge 
& intelligent services) 

 S4: 
 Information 4

max( | 0 4)

    
iE i

E

≤ ≤

=
 

 
Figure 13.7 The Formal Socialization Model (FSM) of human societies 

 
The FSM model reveals that natural rules exist between the types of 

society, the underlying economic structures, and the dominant sector in the 
economy, because both social architectures and economic structures are 
driven by the current level of predominantly unsatisfied fundamental human 
needs.  

There are various types of societies corresponding to different 
economic structures and their levels of development. The relationships 
between the basic human needs, economic structures, and social types can be 
described below by Lemma 13.15. 
 

 
Lemma 13.15 The type of society 

iST , 0 i 4≤ ≤ , is determined by the 
dominated sector 

iET of the corresponding economic structure, which is 
constituted by the current level of predominately unsatisfied human needs 

iNT , 0 i 4≤ ≤ , i.e.:     
         

   i i

i

S E

N

T  = max (T )

= max (T ), 0 i 4≤ ≤
         (13.28) 
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Example 13.4 According to Statistics Canada, Catalogue Nos. 93-151 
(1986) and 93-327 (1991), the Canadian economic structures during 1870 to 
1991 are shown in Table 13.9.  
 

Table 13.9 
The Canadian Statistics of Social Development 

  

Sector (%) Year 
Primary 

(E1) 
Secondary 

(E2) 
Tertiary 

(E3) 
1991 4.6 16.5 75.0 
1961 12.8 24.7 58.2 
1870 41.2 22.4 36.0 

 
Based on Lemma 13.15, it can be determined that the dominant type of 

economy and corresponding types of society in years 1870, 1961, and 1991 
in Canada are as follows: 

 
 

a) In 1870:  
 

i iS E

1

1

T (1870) = max (T ), 0 i 4

= E  (Primary economy dominated)

S  (Argrarian society)

≤ ≤

⇒

 

 
b) In 1961:  

 

 
i iS E

3

3

T (1961) = max (T ), 0 i 4

= E  (Tertiary economy dominated)

S  (Postindustrial society)

≤ ≤

⇒

 

 
c) In 1991:  

 

                      
i iS E

3

3

T (1991) = max (T ), 0 i 4

= E  (Stronger tertiary economy dominated)

S  (Postindustrial society, and a trend 

       to the information society)

≤ ≤

⇒
 

 
It is noteworthy that the trend of socialization according to Lemma 

13.15 may be predicated that the emerging information-based economy will 
drive the society into a new era, the information society, where the major 
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sector of the information society will be information processing related and 
intelligent services providing professions.  

 

 
The fundamental driving forces for this trend are that the higher level 

human needs built upon the satisfied lower-level ones, such as cognitive 
(N2), social (N3), and self-expressive (N4) needs, will be the new focus of 
post-industrialized societies. Because all N2 through N4 needs are based on 
information and intelligent services when the material level needs are 
satisfied, the form of economy and type of society will be evolved into the 
information-oriented society naturally.               
 
 
 

 
13.5 Sociology and Software 
         Engineering 
 

 
 
As discussed in Section 13.4.3 the type of society and the associated 
economy is evolving towards the information-oriented ones in order to 
satisfy the higher-level human needs in the postindustrial society. As a 
logical consequence, the fundamental theories and techniques for information 
processing, such as software engineering, computing, information science, 
and cognitive informatics, will be increasingly important over time. 

This section explores the applications of sociology in software 
engineering, and discusses how software engineering may be scientifically 
and efficiently organized.              

 
 

13.5.1 SOCIAL ORGANIZATION OF SOFTWARE 
           ENGINEERING   
 

Theorems 13.1 through 13.3 developed in preceding sections provide 
the theoretical foundation for software engineering organization. Optimal 

 

Corollary 13.12 The next type of society after post-industrialization is the 
information society driven by the current level of predominantly 
unsatisfied social and self-expressive needs and the underlying 
information-oriented economy. 
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social and project organization of a software enterprise can be designed and 
implemented using the quantitative analysis techniques of organization trees.          

 
13.5.1.1 The Role of the Information Economy in Postindustrial Societies 

 
The top-level application of sociology in software engineering is the 

identification of the central role of all information-related theories and 
techniques in modern societies.  

According to the formal socialization model (FSM), the information 
sector will be the fourth main sector following the primary, secondary, and 
ternary sectors, in order to meet the current highest level of unsatisfying 
human needs. Therefore, the new economy is information- and knowledge-
based economy, and the future type of society after the post-industrialization 
is the information society. Thus, it can be predicated that software 
engineering and computing will play an increasingly important role in the 
transition of the new economy.              

 
13.5.1.2 Maximizing Strengths of Individual Motivations in Software 
               Engineering   

 
Sociology provides a rich theoretical basis for perceiving insights into 

the organization of software engineering. It is noteworthy that in a software 
organization, according to Theorem 13.2, the strength of a motivation of 
individuals M is proportional to both the strength of emotion Em and the 
difference between the expectancy E and the current status S of a person. At 
the same  time,  it  is  inversely  proportional  to  the  cost  to accomplish the 
expected motivation C. The job of management at different levels of the 
organization tree is to encourage and improve Em and E, and to help 
employees to reduce C.      
 

Example 13.5 In software engineering project organization, the 
manager and programmers may be motivated to the improvement of software 
quality in different extents. Assuming the following factors as shown in 
Table 13.10 are collected from a project on the strengths of motivations to 
improve the quality of a software system, analyze how the factors influence 
the strengths of motivations of the manager and the programmers, 
respectively. 

   
Table 13.10 

Motivation Factors of a Project 
 

Role Em C E S 
The manager 4 3 8 5 
Programmers 3.6 8 8 6 
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According to Theorem 13.2, the strengths of motivations of the 
manager M1 and the programmer M2 can be estimated using Eq. 13.6, 
respectively:    

 

  

1
2.5  | |   ( - )

( )

2.5  4  (8 - 5)
3

10.0

mE E S
M manager

C
=

=

=

i i

i i  

 
and 

  2
2.5  3.6  (8 - 6)

( )
8

2.3

M programer =

=

i i
 

 
The results show that the manager has much stronger motivation to 

improve the quality of software than that of the programmer in the given 
project. Therefore, the rational action of the manager is to encourage the 
expectancy of the programmers or to reduced the required effort for the 
programmers by providing additional resources or adopting additional 
development tools. 
 
13.5.1.3 Social Environments of Software Engineering   
 

According to social psychology discussed in Section 13.3, social 
environment, such as culture, ethical norms, and attitude, greatly influences 
people’s motivation, behavior, productivity, and quality toward coordinative 
work. The chain of individual motivation in a software organization can be 
illustrated as shown in Fig. 13.8. 

 

Basic 
human 
needs 

of 
individuals 

 
Organizational 

objectives 

Behavior 

Attitude 

Motivation Productivity

The social environment of software engineering 

Quality 

  Figure 13.8 The chain of motivation in a software organization  
  

Cultures and values of a software development organization help to 
establish a set of ethical principles or standards shared by individuals of the 
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organization for judging and normalizing social behaviors. The identification 
of larger set of values and organizational policy towards social relations may 
be helpful to normalize individual and collective behaviors in the software 
development organization that produces information products for a global 
market. 

Another condition for supporting creative work of individuals in a 
software development organization is to encourage diversity in both ways of 
thinking and work allocation. It is observed in social ecology that a great 
diversity of species and a complex and intricate pattern of interactions among 
the populations of a community may confer greater stability on an ecosystem. 
 

Definition 13.49 Diversity refers to the social and technical differences 
of people in working organizations.         
 

Diversity includes a wide range of differences between people such as 
those of race, ethnicity, age, gender, disability, skills, educations, experience, 
values, native language, and culture.       

The principle of system mutation indicates that if the number of 
components of a system reaches a certain level – the critical mass, then the 
functionality of the system may be dramatically increased as stated in 
Theorem 10.5 in Section 10.5.2. That is, the increase of diversity in a system 
is the condition to realize the system fusion effect, which results in a totally 
new system.    

 

 
13.5.1.4 Ergonomics for Software Engineering   
 

The term ergonomics was proposed by Wojciech Jastrzebowski in 
1857. It is derived from the Greek words ergos (work) and nomos (study of) 
[Salvendy, 2006].  

 
Definition 13.50 Ergonomics is a branch of engineering and behavioral 

science that studies human efficiency in different working environments.    
 

Ergonomics is the science of work such as abilities, limitations, and 
characteristics of human beings and their adaptation to the working 
environment. Ergonomics can be divided into two overlapped branches 
known as the industrial ergonomics and human factors. The former focuses 

 

Lemma 13.16 The diversity lemma states that the more diverse the 
workforce in an organization (particularly the creative software industry), 
the higher the opportunity to form new relations and connections that 
leads to the gain of the system fusion effect. 
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on engineering biomechanics, or the physical aspects of human capabilities, 
such as force, posture, and repetition. The latter study engineering 
psychology, or the mental aspects of human capability, such as the strengths 
and weaknesses of human brain in the working environment.  

In general, ergonomics aims at fitting tasks, processes, tools, and 
environments to people, in order to improve productivity, quality, and safety 
[Chaffin and Andersson, 1984]. Applications of ergonomics can be found in 
a wide range of engineering disciplines, industrial psychologists, 
occupational physicians, industrial hygienists, safety monitors, and quality 
engineers. 

Recent emphases of human factors research have been put on 
improving the ways of information usages known as information design.  

 
  Definition 13.51 Information design is a branch of ergonomics that 
studies the design of signs, symbols, and instructions of information and 
software systems in order to enable their meaning can be quickly and safely 
comprehended. 

 
Virtually everyone has experienced the frustration of using computer 

software that doesn't work the way they expect it to. For the majority of end 
users of computer programs, if the system is not working they have no 
recourse but to call for technical help, or find creative ways around system 
limitations, using those parts that are usable, and circumventing the rest or 
increasing stress levels by using a substandard system. Often the problems in 
systems could have been avoided, if a more complete understanding of the 
users' tasks and requirements had been present from the start. The 
development of easily usable human-computer interfaces is a major issue for 
ergonomists today.  
 
 
13.5.2 THEORY FOR LARGE-SCALE SOFTWARE 
           ENGINEERING PROJECT ORGANIZATION   
 

Comparatively analyzing the results shown in Examples 12.6 and 12.5, 
it can be observed that for large-scale software engineering projects as given 
in Example 12.6, a more efficient organizational form is to break the project 
up into n lightly-coupled parallel subprojects as that of Example 12.5, where 
n = 5, and each subproject is dealt with by an independent subgroup. Based 
on this organizational strategy, an n-fold shorter project duration may be 
achieved under the same level of workload and project costs. This leads to an 
important law of software engineering organization as stated in Theorem 
13.4. 

The 48th law of software engineering as stated in Theorem 13.4 
presents the theoretical foundation of the empirical principles of division and 
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conquer, modularization, and system decomposition in software engineering. 
It is a natural extension of Theorem 8.10 in the contexts of large-scale 
systems and social environments, which completed the entire theory of 
coordinative work organization in system/management science in general and 
in software engineering in particular. Theorem 13.4 also indicates that the 
much balanced the partitions among the subsystems, the more efficient the 
gain for reducing project duration in large-scale software development in 
software engineering.             

The following examples demonstrate how Theorem 13.4 explains the 
differences between the organizational forms of the structured multi-group 
projects and the unstructured large-single-group projects in software 
engineering.   

 
Example 13.6 Assume the large-scale project as given in Example 12.6 

is divided into five lightly-coupled parallel subprojects, and each subproject 
can be conducted independently by an individual subgroup that obeys the 
generic constraint on group size in coordinative work (Theorem 8.10). Then, 
discuss the effects and impacts of this organizational form on project 
duration and costs. 

 
When the large-scale project given in Example 12.6 is evenly 

partitioned into five parallel subjects, the analysis results of each of them are 

 

The 48th Law of Software Engineering 
  

Theorem 13.4 Time-oriented optimization for large-scale project 
organization states that in order to further reduce the shortest duration 
Tmin of an entire large-scale project constrained by Theorem 8.7, the 
optimal form of organization is to evenly partition the whole project into 
n lightly-coupled parallel subprojects that may be conducted by 
independent groups with a shorter duration Ti

min, 1 ≤ i ≤ n, so that an 
average n-fold time deduction can be gained, i.e.:       
 

                                       
min min

1

min

1

1

n
i i

i
T T

n

T
n

ϖ

=
=

= +

∑
                                (13.29) 

 

where min
iT is the average shortest duration of all subsystem, and ϖ is a 

positive overhead needed for system integration or composition.   
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the same as those obtained in Example 12.5. The results are closely met with 
the predications as those directly derived on the basis of Theorem 13.4, i.e.: 

 

min min
1

1 114.4 14.4
5 10
2.9 1.4

4.3  [M]

iT T
n

ϖ= +

= • + •

= +

=

 

      
where the integration overhead is assumed as 10% of the shortest project 
duration of the whole project before partition.   

The above comparative study also demonstrates that the linear partition 
of a large-scale project and the form of n-group OT organization may reduce 
the project duration up to n times without change the entire project workload 
and total costs. In other words, OT/SOT is an ideal organizational 
mechanism for large-scale project and society-level organizations, which 
enables labor to be traded with time in the system infrastructure of OT/SOT.  

Therefore, Law 25 (Theorem 8.7) and Law 48 (Theorem 13.4), or the 
coordinative work organization theory and the social system organization 
theory in terms of OT/SOT, provide a complete theoretical framework for 
explaining the age-old mythical man-month at the group level and the system 
level, respectively. 

                 

 

 
Example 13.7 Suppose, in order to reduce the project duration, the 

large-scale project given in Example 12.6 is not partitioned into multiple 

 

Corollary 13.13 Large-scale projects should always be organized as a 
structured system in the form of OT or SOT because it enables 
complicated work to be done in a linear predictability in terms of effort 
and costs while gaining greatly for up to n-fold reduction of project 
duration. 

 

   

Corollary 13.14 In large-scale projects organization, project duration 
cannot be reduced in a single-group structure by increasing the size of the 
group contingently, because nonoptimal man-powered groups against the 
laws of group size constraints (Theorems 8.7 and 8.10) will result in an 
exponential incremental of project duration, expected workload, and 
costs. 
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subprojects as Theorem 13.4, Corollary 13.13, and Corollary 13.14 
suggested, but is subjectively organized with an extended group of L = 25.0P 
deviated from the optimal allocation L0 = 5.0P. What would be the 
consequences of this irrational decision?        

 
According to the FEMSEC model and Example 12.6, the above project 

can be analyzed below:   
The expected duration T can be estimated using Eq. 12.56, i.e.: 
 

1

40.0 (0.08 25.0 0.08 2/25.0)

40.0   [ ]

1 2( )
2
0.5

M

T W rL r
L

• • − +

=

= − +

=      

  
The expected workload can be estimated using Eq. 12.57, i.e.: 

        

                   40.0

1, 000.0

= 

= 25.0

  [PM]

TW L •

•

=

  

 
The total cost can be estimated using Eq. 12.58, i.e.: 

        

      
= 

1, 000.0 80, 000/12

$6,666,667.00   [$]

L•C W C

•=

=

   

 
According to Corollary 8.5, the wasted effort and budget would be as 

high as the follows, respectively:  
 

exp

=1,000.0 72.0

928.0   [PM]

W W W∆ = −

−

=

 

 
exp

= 6,666,667.0 480, 000.0

6,186,667.0  [PM]

C C C∆ = −

−

=

 

 
These results have already indicated a mission impossible for this given 

project in the irrational organization form. Nevertheless, the results could 
have been worse if r of the project were higher. This is why it is identified in 
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Theorem 1.5 that the key problems of software engineering are not only pure 
technical issues rather than organizational and cognitive issues.          
 
 
13.5.3 THE HUMAN FACTORS IN SOFTWARE 
           ENGINEERING   
 

The human factors are not only a constantly important constraint in 
almost all disciplines of science and engineering, but also the most active and 
dynamic factors to be considered. Nevertheless, human beings themselves 
are directly the object of study in a number of disciplines such as 
psychology, cognitive science, ergonomics, sociology, cognitive informatics, 
medical science, neuroscience, and natural intelligence.    

       
Definition 13.52 The human factors are the roles and effects of humans 

in a system that introduces additional strengths, weaknesses, and uncertainty.  
 

13.5.3.1 Taxonomy of Human Factors  
  

There are numerous human factors identified in science, engineering, 
sociology, psychology, and everyday life. The taxonomy of human factors in 
engineering can be classified into human strengths, weaknesses, and 
uncertainties as shown in Table 13.11. 

 
Table 13.11 

Taxonomy of Human Factors 
 

No Category Basic factor 
1 Strengths Natural intelligence, autonomic behaviors, complex decision-

making, highly skilled operations, intelligent senses, perception 
power, complicated human coordination, adaptivity 

2 Weaknesses Low efficiency, slow reactions, error-prone, tiredness, and 
distraction  

3 Uncertainties Productivity, accuracy, reaction time, persistency, reliability, 
attitude, performance, and motivation to try uncertain things 

 
Widely varying productivities are one of the major factors of human 

beings, particularly in creative work such as software development. It is 
found that the productivity of human creative work is conservative. That is, 
the creative productivity is independent from languages and processes; 
however, it depends on human cognitive, physiological, and psychological 
capabilities.                   
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Definition 13.53 Conservative productivity is a basic constraint of 
software engineering due to cognitive complexity and due to the cognitive 
mechanism in which abstract artifacts need to be represented physiologically 
in the brain via growing synaptic neural connections. 
 

Human psychology, such as motivations and attitudes, influences 
human factors very much [Fischer et al., 1990; Eagly and Chaiken, 1992; 
Wang, 2007i]. The great variety of human psychological and cognitive 
capacity influenced by motivations, attitudes, focuses, and attentions are the 
major reasons of human uncertainties on productivity, accuracy, reaction 
time, persistency, and task performance.  
 
13.5.3.2 Types of Human Errors  
 

It is a fact that people do make mistakes, and fortunately, most of them 
may be corrected by additional undo or redo actions. However, in safety- or 
mission-critical contexts, the impact of human errors can be catastrophic, 
such as in the nuclear and chemical industries, rail and sea transports, and 
aviation. 

 
Definition 13.54 A human error is an error of human caused by wrong 

actions and inappropriate behaviors.      
 

Christopher Wickens and his colleagues identified a long list of reasons 
that cause operator errors in systems, such as inattentiveness, poor work 
habits, lack of training, poor decision making, personality traits, social 
pressure [Wickens et al., 1998]. The Systematic Human Error Reduction and 
Prediction Approach (SHERPA) proposed by D. Embry in 1986 identified 
sixteen potential psychological errors [Embry, 1986]. J. Reason developed a 
similar system in 1987 known as the Generic Error Modeling System 
(GEMS) [Reason, 1987/90]. The set of human behavioural errors identified 
in SHERPA are as follows:    
 

      •  Action omitted 
      •  Action too early 
      •  Action too late 
      •  Action too much 
      •  Action too little 
      •  Action too long 
      •  Action too short 
      •  Action in wrong direction 
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      •  Right action on wrong object 
      •  Wrong action on right object 
      •  Misalignment 
      •  Information not obtained/transmitted 
      •  Check omitted 
      •  Check on wrong object 
      •  Wrong check 
      •  Check mistimed 
 
A comparative study of the above work indicates that there is still a 

need to seek a more logical taxonomy of human errors, which will be 
developed in the next subsection.  

 
13.5.3.3 The Mathematical Model of Human Errors  

 
A formal behavioral model of human errors [Wang, 2005f] is derived 

in this subsection according to Theorem 3.10 on human and system 
behaviors as developed in Section 3.4.2.  

 
Definition 13.55 A human behavior B is constituted by four basic 

elements known as the object (O), action (A), space (S), and time (T), i.e.: 
 

        B = (O, A, S, T) 
                      = O × A × S × T      (13.30) 

 
Any incorrect configuration of any of these four elements results in a 

human error in task performance. Therefore, there are 16 modes of human 
errors on the basis of the combinations of these four basic elements, which 
form the Behavioral Model of Human Errors (BMHE) as shown in Table 
13.12. 

Corresponding to Table 13.12, a Human Error Tree (HET) is illustrated 
in Fig. 13.9. It is noteworthy that the identification of the object is the most 
important task in a chain of actions, because it is obvious that a correct action 
in a correct location at a correct time but on a wrong object is still an error 
action. Observing Fig. 13.9 and Table 13.12, it may be found that for a 
human operator, there is only 1/16 chance to get a given action or behavior to 
be correct, but there are 15/16 chance to get it wrong. That is, the 
probabilities of human success p(+) and human error p(-) in performing a 
specific task, respectively, are:   
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1( ) 6.25%
16
15( ) 73.75%
16

p

p

⎧⎪⎪ + = =⎪⎪⎪⎨⎪⎪ − = =⎪⎪⎪⎩

      (13.31)             

 
 

Table 13.12 
The Behavioral Model of Human Errors (BMHEs) 

  

No. Objects Behavior Space Time Error Mode 

0 T T T T  Mode 0: Correct action 

1 T T T F  Mode 1: Wrong timing 

2 T T F T  Mode 2: Wrong place 

3 T T F F  Mode 3: Wrong timing and place 

4 T F T T  Mode 4: Wrong action  

5 T F T F  Mode 5: Wrong action and timing 

6 T F F T  Mode 6: Wrong action and place 

7 T F F F  Mode 7: Wrong action, place and timing 

8 F T T T  Mode 8: Wrong object 

9 F T T F  Mode 9: Wrong object and timing 

10 F T F T  Mode 10: Wrong object and place 

11 F T F F  Mode 11: Wrong object, place and timing 

12 F F T T  Mode 12: Wrong object and action 

13 F F T F  Mode 13: Wrong object, action and timing 

14 F F F T  Mode 14: Wrong object, action and place 

15 F F F F  Mode 15: All wrong 

 
 
The BMHE and HET models indicate that the natural rate of human 

errors in performing tasks would be very high. Fortunately, a well trained 
human being is fault-tolerant when performing tasks and a well established 
engineering process is fault-tolerant too. The major means for fault-tolerant 
in task performing is checking and rechecking. By adopting all checking and 
monitoring techniques in each step of HET, the error ratio as shown in Eq. 
13.31 can be greatly decreased. 
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Figure 13.9 The model of Human Error Tree (HET) 
 
13.5.3.4 The Random Properties of Human Errors   
 

On the basis of various fault-tolerant measures and referring to Fig. 
13.9, the following statistical properties of human errors may be observed. 

 
Properties (a) through (c) reveal the random nature of human errors on 

object, action, space, and time during performing tasks in a group.  

 

Lemma 13.17 The statistical properties of human errors are as follows: 
 
    a) Oddness: Although individuals make different errors in 

performing tasks, the chance of making a single error for a 
given task is most of the cases than that of multiple errors. 

    b)  Independence: Different individuals have different error 
patterns in performing the same task. 

    c)  Randomness: Most of the different individuals make the same 
error in different times in performing tasks. 
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13.5.3.5 The Theoretical Foundation of Quality Assurance in  
              Creative Work 
 

The findings as stated in Lemma 13.17 and Corollary 13.15 form a 
theoretical foundation for fault-tolerance and quality assurance in software 
engineering. They indicates that human errors mat be prevented from 
happening or be corrected after their presence as soon as possible in a 
coordinative group context by means of peer reviews.     

           
 

     
Example 13.8 A software engineering project is under development by 

a group of four programmers. Given the individual error rates of the four 
group members as: re(1) = 10%, re(2) = 8%, re(3) = 20%, and re(4) = 5%, 
estimate the error rate of the final software system by adopting the following 
quality assurance techniques: (a) Pairwise reviews between Programmers 1 
vs. 2 and Programmers 3 vs. 4; and (b) 4-nary reviews between all group 
members. 

 

 a) The pairwise reviews between Programmers 1–2 and 
Programmers 3–4 will result in the following error rates Re1 and 
Re2:  

 
2

1
1

( )

10%  8%

0.8%

e e
k

R r k
=

=

=

=

∏
i  

 

                 The 49th Law of Software Engineering 
 

Theorem 13.5 The n-fold error reduction structure states that the error 
rate of a work product can be reduced up to n folds from the average 
error rate of individuals re in a coordinative group via n-nary peer reviews 
based on the random nature of error distributions and independent nature 
of error patterns of individuals, i.e.: 

 

         
1

( )
n

e e
k

R r k
=

= ∏            (13.32) 

 

 

Corollary 13.15 The random nature of human errors during performing 
tasks in a group is determined by the statistical properties that the 
occurrences of the same errors by different individuals are most likely at 
different times.  
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 b) The 4-nary reviews between Programmers 1 through 4 will yield 

the following error rate Re3:  
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Theorem 13.5 and Example 13.8 explain why multiple peer reviews 

may greatly reduce the probability of error in program development and 
software engineering. Theorem 13.5 is also applicable in the academic 
community where quality peer-reviewed results may virtually prevent most 
mistakes in a final article before its publication. 

 
In software engineering quality assurance, a four-level quality 

assurance system is needed for certain critical software functions and 
projects as shown in Table 13.13. 
 

 
Table 13.13 

The Four-Level Quality Assurance System of Software Engineering 
  

Level Checker Means 
1 Programmer Self checking, module-level testing  
2 Senior member Peer review, module-level testing   
3 Tester / quality engineer System-level testing, audit, review, quality evaluation 
4 Manager Quality review, delivery evaluation, customer survey   

 
Example 13.9 For a given program reviewed according to the four-

level quality assurance system as shown in Table 13.13, assuming re(10) = 
10%, re(2) = 5%, re(3) = 2%, and re(4) = 10%, estimate the quality of the 
final result of this program. 
 

According to Eq. 13.32, the 4-nary quality assurance system can yield 
an expected error rate Re4:  
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 The results indicate that the error rate of the above system has been 
significantly reduced from initial 100bugs/kLOC to 1bugs/kLOC. This 
demonstrates that the hierarchical organizational form for software system 
reviews can greatly increase the quality of software development and 
significantly decrease the requirement for individual capability and error 
rates in software engineering. 
   
 
 
13.6 Summary 
 

 
 
Sociology studies the structure, organization, operation, and development of 
human societies. The objects under study in sociology are human societies 
and social relations. Therefore, to some extent, it may be perceived that 
management science is the microsociology, while sociology is the macro 
management science. In both fields, the theories of system science and 
methodologies of system organizations play an important role in 
formalization of the theoretical framework of sociology. 

This chapter has presented a rigorous treatment of social 
organization in the engineering context. A human society has been 
constructed by individuals, groups, organizations, and sectors from the 
bottom up. Theories and methodologies of coordinative work organization 
have been served as one of the main threads across chapters from 
engineering science, system science, management science, and economics 
foundations to sociology foundations. The final piece of the puzzle of the 
cooperative work organization theory has been completed in this chapter 
at the highest level of scopes in work organization, which provides a 
systematic methodology for optimal allocation of labor, resources, and 
schedules for a given workload in a society in general, and in a software 
engineering context in particular. 

Social psychology such as the fundamental human traits, collective 
behaviors, and the perceptual influence on them have been presented, which 
form the underlying theory for explaining the human factors in engineering 
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systems and societies. Theories of social organization have provided an 
essential understanding for coordinative work organization at various levels 
of societies with the new structure of the social organization trees. Then, 
sociology has been extended into the domain of software engineering, where 
social organization and ergonomics for software engineering have been 
analyzed that explains how human strengths, weaknesses, and uncertainty 
may be dealt with in the context of software engineering. As a result, the 
sociology foundations of software engineering have been established. 

  
 
ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Sociology Foundations of Software Engineering, 
readers have achieved the following strategic goals with the knowledge 
structure as summarized below. 
 

 
Chapter 13. Sociology Foundations of SE 

 
■ Principles of Sociology 
     •  Social Structures 
         - Individuals  
         - Groups  
         - Organizations  
         - Sectors  
         - Societies  
 

     •  Social Behaviors 
         - Social functions and relations    
         - Social roles  
         - Social systems    
 

     •  Social Norms 
         - Cultures  
         - Values  
         - Socialization  
         - The social philosophy of Confucianism  
 
■ Social Psychology 
     •  The Fundamental Human Traits 
         - Axiomatic human traits  
         - The hierarchical model of basic human needs  
 

     •  Human Perceptions and Behaviors 
         - Emotions  
         - Motivations  
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         - Attitudes  
         - The motivation/attitude-driven behavioral model  
 

     •  Collective Behaviors 
         - Social conformity  
         - Social synchronization  
         - Coactions  
         - Coordination  
         - Groupthink  
         - Social dilemmas  
         - Social loafing  
 
■ Theory of Social Organization 
     •  Classic Thought of Social Organization 
         - Principles of social organization  
         - Classical models of social organization   
 

     •  The Formal Model of Social Organization 
         - The formal organization tree  
         - Formal models of social organization  
         - Coordinative work organization  
 

     •  The Formal Model of Socialization 
 
■ Sociology and Software Engineering 
     •  Social Organization of Software Engineering 
         - The role of the information economy in postindustrial societies     
         - Maximizing strengths of individual motivations in software 
            engineering     
         - Social environments of software engineering   
 

     •  Ergonomics for Software Engineering 
     •  Human Factors in Software Engineering 
         - Taxonomy of human factors  
         - Types of human errors  
         - The mathematical model of human errors  
         - The random properties of human errors  
         - The theoretical foundation of quality assurance in  creative work  
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• There are various types of societies characterized by the underpinning 
structures of their economies. According to the foundational economic 
structures, human societies have evolved through five phases known as the 

© 2008 by Taylor & Francis Group, LLC



Chapter 13  Sociology Foundations of SE    1095 

hunting/gathering, horticultural/pastoral, agrarian, industrial, and 
postindustrial societies.        

 
• A group is needed because the interdependency among members 

when a given work cannot be carried out by separated individuals limited by 
their resource dependency or functional dependency. 
 

• When the scale of a group increases to a certain extent, internal 
coordination and synchronization between members in the group will 
become the dominant problem. This problem forces a large group to adopt 
more complicated structural forms, which extend the group into an 
organization.  
 

• As social relations adhere people to people in a society, social roles 
adhere people to social functions. Because both social relations and roles can 
be 1-to-1, 1-to-n, n-to-1, and n-to-m, the natural structures of human societies 
are hierarchical trees and networks. 

      
• The human emotional system is a binary system that interprets or 

perceives an external stimulus and/or internal status as pleasant or 
unpleasant. 

• Although there are various emotional categories at different 
levels, the binary emotional system of the brain provides a set of 
pairwise universal solutions to express human feelings. For example, 
anger may be explained as a default solution or generic reaction for an 
emotional event when there is no better solution available; otherwise, 
delight will be the default emotional reaction. 

 
• Motivation is a psychological, social modulating and coordinating 

influence on the direction, vigor, and composition of behaviors. This 
influence arises from a wide variety of internal, environmental, and social 
sources, and is manifested at many levels of behavioral and neural 
organizations. 

 
• The strength of a motivation is determined by multiple factors such 

as: a) The absolute motivation |Em|: it is the strength of the emotion. b) The 
relative motivation E - S: it is the relative difference or inequity between the 
expectancy of a person E for an object or an action towards a certain goal 
and the current status S of the person. c) The cost to fulfill the motivation C: 
A subjective assessment of the effort needed to accomplish the expected 
goal. 
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• The theorem of strength of motivations states that a motivation M is 
proportional to both the strength of emotion |Em| and the difference between 
the expectancy of desire E and the current status S, of a person, and is 
inversely proportional to the cost to accomplish the expected motivation C, 
i.e., 2.5 | |  ( - )mE E S

M
C

• •= , where  0 ≤ |Em| ≤ 4, 0 ≤ (E, S) ≤ 10, and 1 ≤ C 

≤ 10. 
 
• The relationship between an emotion, motivation, attitude, and 

behavior can be formally and quantitatively described by the 
Motivation/Attitude-Driven Behavioral (MADB) model. It states that a 
behavior B driven by a motivation Mr and an attitude is a realized action 
initiated by a motivation M and supported by a positive attitude A and a 
positive decision Da toward the action, i.e.: 
 

      
 

2.5 | |   ( - )
,        1

, 

m
r a a

E E S
M D A D

CB
otherwise

⎧⎪⎪ = >⎪⎪= ⎨⎪⎪⎪⎪⎩

i i
i i iT

F
      

 
• A motivation is only a potential mental power of human beings, and a 

strong motivation will not necessarily result in a behavior or action. The 
condition for transforming a motivation into a real behavior or action is 
dependent on multiple factors, such as values, social norms, expected 
difficulties, availability of resources, and the existence of alternative goals.  

 
• The motivation of a person is constrained by the attitude and 

decision making strategies of the person. The attitude is the internal 
(subjective) feasibility of the motivation, and the decision making 
strategies is the external (social) feasibility of the motivation.  

 
• A society is a dynamic human system that is interacting not only 

among members of the society via social relations, but also between the 
society, other societies, and the natural environment.    

 
• Socialization is a conforming process that a person is integrated into 

a society at various levels of its hierarchy by adopting certain roles, relations, 
cultures, customs, value systems, and norm behaviors. 

 
• The identification of a common set of values is helpful to normalize 

individual and collective behaviors in an organization, especially a software 
development organization in software engineering that produces information 
products for a global market. 
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• The basic essences for evolution state that the basic evolutional 
needs of mankind are to preserve both the species’ biological traits via gene 
pools, and the cumulated knowledge via various information systems. 
 

• The lower the level of a need in the HNH hierarchy, the more 
concrete or material-oriented the need. In other words, the higher the level 
of a need, the more virtualized or perception-oriented the need.  

 
• Understanding of the nature of basic human needs is not only useful 

in predicating motivations of human beings in a given context, but also 
important in identifying the driving forces for the approach of engineering 
organization, the types of societies, and the corresponding economic 
structures.    

 
• An autonomously synchronization tendency between individuals 

exists in any permanent or temporary social context where people 
automatically adjust to conjunctive goals and cooperative timing. 
 

• A weighting system that encourages and appreciates negative or 
hesitant feedback towards a current group’s position is a stable social 
system. 
 

• Social loafing may happen in a group where tasks are parallel 
allocated and the sum of all parallel capacity is greater than the workload of 
the group. 
 

• Empirical and practical social organizations have been formed as 
results of historical, political, and economical processes. However, a few 
natural laws had been sought in sociology in order to understand the 
fundamental constraints of human societies. Toward this aim, a set of formal 
sociological models has been developed on the basis of system theory and 
the System Organization Tree (SOT). A rigorous treatment of social 
organization in engineering is developed. Based on the sociological models, 
the laws and principles behind coordinative work organization are revealed. 
Some of the results are particularly useful for software engineering 
organization.     
 

• The organizational coordination efficiency states that the natural 
force of social organization that requires the architecture of large groups to 
be evolved and adapted to tree-form hierarchical structures in an organization 
is the need to maintain acceptable coordinating efficiency at each level of the 
organization tree. 

 
• The optimal architecture of large-scale organizations, by which an 

optimal structure can be maintained at each level of its hierarchy, is an OT 
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where the average optimal fan-out of a node fon or the size of the group nG is 
larger than 3 and smaller than 10, i.e., 3 10fo Gn n≤ = ≤ , where fon is the 
optimum labor allocation.    
 

• The capacity of a series work system is determined by the least 
capable unit Wmin known as the bottleneck. The key to optimal serial work 
organization is there is no bottleneck in the social system. 
 

• The capacity of parallel work system is dominated by the most 
capable unit Wmax known as the main unit. The key to optimal parallel work 
organization is there is no over-allocated work capacity. 

 
• The Formal Socialization Model (FSM) is a relational model that 

describes the relationships between the basic human needs, economic 
structures, and social types. 

• The type of society
iST , 0 i 4≤ ≤ , is determined by the 

dominant sector 
iET of the corresponding economic structure, which is 

constituted by the current level of predominately unsatisfied human 
needs 

iNT , 0 i 4≤ ≤ , i.e.,
i i iS E NT  = max (T ) = max (T ), 0 i 4.≤ ≤ . 

• The next type of society after post-industrialization is the 
information society driven by the current level of predominantly 
unsatisfied social and self-expressive needs and the underlying 
information-oriented economy. 
 
• The fundamental driving forces for this trend are that the higher 

level human needs built upon the satisfied lower-level ones, such as 
cognitive (N2), social (N3), and self-expressive (N4) needs, will be the new 
focus of post-industrialized societies. Because all N2 through N4 needs are 
based on information and intelligent services when the material level needs 
are satisfied, the form of economy and type of society will be evolved into 
the information-oriented society naturally. 

 
• The diversity lemma states that the more diverse the workforce in an 

organization (particularly the creative software industry), the higher the 
opportunity to form new relations and connections that leads to the gain of 
the system fusion effect. 

 
• The random feature of human errors: The following phenomena 

reveal the random nature of human errors on object, action, space, and time 
in performing tasks in a group: 
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    a) Although individuals make different errors in performing tasks, 
the chance of making a single error for a given task is most of the 
cases than that of multiple errors. 

    b)  Different individuals have different error patterns in performing 
tasks. 

    c)  Most of the different individuals make the same error in different 
times in performing tasks. 

 
• In software engineering quality assurance, a hierarchical quality 

assurance system is needed at four levels known as those of programmers, 
senior members, testers/quality engineers, and managers. 
 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Principles of sociology 
 

• A society is a huge organized human system in which people are 
grouped, coordinated, interconnected, and interacted by a variety of 
organizations. A society as a whole is constructed by individuals, groups, 
organizations, and sectors from the bottom up. 

 
• Social structures study the hierarchical architectures of societies at 

different levels and their social characteristics and interactions. 

• An individual is a single human being that forms the basic 
social unit of a society. 

• A group is a formal or informal social unit formed by two or 
more persons working towards a particular purpose.  

• An organization is a formal and stable social unit formed by 
one or more groups of people working towards a particular purpose.  

• A sector is a distinct branch of a society with multiple 
organizations that produce the same category of products or provide the 
same category of services.  

• A society is the community of people in which members of it 
are geographically connected and socially integrated with common 
customs, organizations, and values.     
 
• Social behaviors can be studied hierarchically via social functions, 

relations, roles, and systems from the bottom up in a society.         
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• A social function F is a set of tasks and/or actions within a 
society that can be carried out by individuals.     

• A social relation R is a function between two or more persons, 
p, in a society, i.e., R(p) = g :  p → P, where P is all the individuals,  p 
∈ P, in the given society.   

• A social role is a set of coherent social functions that is 
represented by a title of a category and is expected to be conformed in 
the society. The social roles RL of a person p is a relation between the 
person p and a set of social functions F, F ⊆ F, i.e., RL(p) = f : p → F, 
where F is a subset of all defined social functions F. 

 
• Social norms are the ‘shoulds’ of a society for regulating social 

behaviors that members of the society share and are expected to conform. 
Social norms can be considered from the aspects of cultures and values.      

• The culture of a society is the collected ideas, customs, 
behaviors, and values shared by members of the unit.  

• Values of a social unit are a set of ethical principles or 
standards shared by the unit that are used to judge and normalize social 
behaviors. 

• The union of all proven social norms from different societies, 
or at least their intersection, represents a set of univeral values of 
humanity. 

 
Social psychology 
 

• Social psychology is a branch of psychology that studies social 
interactions and their effects on human behaviors. Because the basic studying 
objects of sociology are individual human beings and their interactions, 
social psychology is the key to understand a wide range of complicated 
social phenomena and the driving forces underpinning them. 

 
• The study on human traits forms the foundation of sociology, 

because every individual’s social behavior is driven and constrained by those 
axiomatic human traits and characteristics and the derived needs based on 
them. The study on human traits also forms the foundation for engineering 
organization.      

• Human traits and needs are the fundamental force underlying 
almost all phenomena in human task performances, engineering 
organizations, and societies. 
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• The basic evolutional need of humans is the tendency to maximize 
the inclusive fitness of individuals and the whole mankind.        

• Egoism is a social behavior of human beings in which 
individuals put their own interests first in decision makings.  

• Altruism is a social behavior in which individuals sacrifice 
their own interests for the welfare of a group or society. 

• Relationship: Egoism is constrained by altruism; and the 
implementation of altruism is dependent on the natural egoism.   
 
• The Hierarchical Model of Basic Human Needs: As an individual, 

the basic biological need of humans is a stable inner environment regulated 
by a mechanism known as homeostasis. Homeostasis is an adaptive 
biological mechanism of the human body that maintains a relatively constant 
state in order to live and function. 

• The Maslow hierarchy of human needs is identified at five 
levels known as the needs of physiological, safety, social, esteem, and 
self-actualization from the bottom up.  

• The Human Needs Hierarchy (HNH) model is a hierarchical 
model that encompasses five levels of fundamental human needs 
known from the bottom-up as N0 – physiological needs, N1 – 
psychological needs, N2 – cognitive needs, N3 – social needs, and N4 – 
self-expressive needs. 
 
• The predominant need of an individual is the needs at the lowest 

unsatisfied level of the HNH model. When multiple needs of a person are 
unsatisfied at a given time, satisfaction of the most predominant need is most 
pressing. 

 
• Perception is a set of sensational cognitive processes at the 

subconscious cognitive function layers such as emotion, motivation, and 
attitudes. Perception may be considered as the sixth sense of human beings 
that almost all cognitive life functions rely on it. 

• An emotion is a personal feeling derived from one’s current 
internal status, mood, circumstances, historical context, and external 
stimuli.         

• A motivation is a willingness or desire triggered by an emotion 
to pursue a goal or a reason for triggering an action. 
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• An attitude is a subjective tendency towards a motivation, an 
object, a goal, or an action based on an intuitive evaluation of its 
feasibility. 
 
• Organizational psychology studies collective behaviors within 

groups and organizations, and how structures of them impact people’s 
behaviors, productivity, and performance.  

 
• A collective behavior is an integrated behavior of a group in which 

individuals’ behaviors are influenced in different ways by the group.         

• Individuals’ behavior in the social context is measurable and 
analytical in term of performance against the social norms.   

• Social conformity is a social phenomenon in which an 
individual’s behavior is approached to a social norm or standard in 
forms of ethical values, role expectations, and laws. 

• Social synchronization is a social phenomenon in which an 
individual’s behavior is timed to a social norm of a group. 

• A coaction is a social phenomenon in which the identical or 
similar actions or tasks are carried out by different individuals with 
little interaction. 

• A coordination is a social phenomenon in which the identical 
or similar action or task is carried out via intensive interactions between 
different individuals. 

• Groupthink is a social phenomenon in which the decision-
making process within a highly cohesive group is dominated by group 
consensus that restrains critical thinking of members in the group. 

• Group polarization is a social phenomenon in which group 
members intend to shift toward the extreme of an already preferred 
position of the group. 

• Social dilemma is a social phenomenon in which members of a 
group face a conflict choice between the maximization of group’s 
interests by cooperative actions and the maximization of own 
individual’s interests by noncooperative actions.  

• Social loafing is a social phenomenon in which exists the 
tendency for people to work less hard on a cooperative task in a group 
than they do individually. 

• The free-rider effect is a social phenomenon in which exists 
the tendency for a member of a group to act noncooperatively based on 
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the assumption that one’s individual cooperative action may not be 
necessary because others will do for the interests of the group. 

• The sucker effect is a social phenomenon in which exists the 
tendency for a member of a group to act noncooperatively based on the 
assumption that others may take advantage of one’s individual 
cooperative contribution to the group.  

 
• The Parkinson’s law states that work intends to expand to fill the 

time available for its completion. 
 
• The Peter’s law states that bureaucrats rise to their level of 

incompetence in a bureaucratic system. 

 
Theory of social organization 
 

• From a geographical point of view, a society is formed by 
individuals, families, communities, districts, areas, provinces, and countries 
from the bottom-up. From a functional point of view, a society is formed by 
individuals, groups, organizations, sectors, and the whole economy.  

 
• The performance of an organization is determined by both its 

internal model and its external environment. 

• An organizational environment is the external constraints of a 
society that affect the operation of an organization.  
 
• There are various organizational models and methodologies, such as 

bureaucracy, division of labor, and system organization. System science and 
system models as discussed in Chapter 10 have provided a formal approach 
in social studies. 

• Bureaucracy is a classical organizational model of society in 
which decisions are made from the top-down. 

• Division of labor was introduced into industry and mass 
manufacturing during the industrial revolution, which forms the 
important characteristics of industrialization 

        
• The Formal Organization Tree: A normalized organization tree 

(OTn) is a complete n-nary tree in which all leave nodes represent employees 
and the remainder represent managers. When the leaves (employees) are not 
reached in the maximum possible numbers in the OT, the right most leaves 
will be left open. 
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• An OT is fully determinable iff its number of employees 
(leaves) Ne and the optimal number of fan-out fon are given. The OT 
provides a mathematical model for formally analyzing the 
architectures of social organizations and their efficiency. 

• An organization is needed when the size of a group is too large 
that it exceeds the optimal size of the group, and therefore is no longer 
efficient.    

• The organizational efficiency eOT(n) of an n-nary organization 
tree OTn is determined by the ratio between the number of employees 
Ne and the number of management Nm, which is approaching n when 
the size of the organization is large enough.  
 
• Cooperative Work Organization: The structures of work 

organization and allocation can be organized on the basis of the theory of the 
maximum output of abstract system. 

• A series work organization is a work allocation structure in 
which a given work is decomposed into a series of parts and each part 
is allocated to a person or a group.    

• A parallel work organization is a work allocation structure in 
which a given work is done repetitively or jointly by multiple persons 
or group. 

 
Sociology for software engineering 
 

• Social organization of software engineering:  Cultures and values 
of a software development organization help to establish a set of ethical 
principles or standards shared by individuals of the organization for judging 
and normalizing social behaviors.  

• The identification of larger set of values and organizational 
policy towards social relations may be helpful to normalize individual 
and collective behaviors in the software development organization that 
produces information products for a global market. 

• Another condition for supporting creative work of individuals in 
a software development organization is to encourage diversity in both 
ways of thinking and work allocation.  

• Diversity refers to the social and technical differences of people 
in working organizations. Diversity includes a wide range of 
differences between people such as those of race, ethnicity, age, 
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gender, disability, skills, educations, experience, values, native 
language, and culture.       

• The principle of system mutation indicates that if the number 
of components of a system reaches a certain level – the critical mass, 
then the functionality of the system may be dramatically increased. 
That is, the increase of diversity in a system is the condition to realize 
the system fusion effect, which results in a totally new system.    
 
• Ergonomics is a branch of engineering and behavioral science that 

studies human efficiency in working environment. Ergonomics is the science 
of work such as abilities, limitations, and characteristics of human beings and 
their adaptation to the working environment.  

• Ergonomics can be divided into two overlapped branches 
known as the industrial ergonomics and human factors. The former 
focuses on engineering biomechanics, or the physical aspects of human 
capabilities, such as force, posture, and repetition. The latter studies 
engineering psychology, or the mental aspects of human capability, 
such as the strengths and weaknesses of human brain in the working 
environment.  

• Information design is a branch of ergonomics that studies the 
design of signs, symbols, and instructions of information and software 
systems in order to enable their meaning can be quickly and safely 
comprehended. 

 
• The human factors are the roles and effects of humans in a system 

that introduces additional strengths, weaknesses, and uncertainty.  

• The human factors are a constantly important constraint in 
almost all disciplines of science and engineering, even the most active 
and dynamic factors to be considered. Nevertheless, human beings 
themselves are directly the object of study in a number of disciplines 
such as psychology, cognitive science, ergonomics, sociology, 
cognitive informatics, medical science, neuroscience, and natural 
intelligence. 

• Conservative productivity is a basic constraint of software 
engineering due to cognitive complexity and due to the cognitive 
mechanism in which abstract artifacts need to be represented 
physiologically in the brain via growing synaptic neural connections. 
 
• The Behavioral Model of Human Errors (BMHE): A human error 

is a human operator error caused by wrong actions and inappropriate 
behaviors.      
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• A human behavior B is constituted by four basic elements 
known as the object (O), action (A), space (S), and time (T), i.e., B = 
(O, A, S, T). Any incorrect configuration of any of these four elements 
results in a human error in task performance.  

• Therefore, there are 16 modes of human errors on the basis of 
the combinations of these four basic elements. 

• The random nature of human errors in performing tasks in a 
group is the statistical phenomenon that the occurrences of the same 
errors by different individuals are most likely at different times.  
 
• The theoretical foundation of quality assurance in creative work: 

The n-fold error reduction by reviewing states that the error rate of a work 
product can be reduced up to n folds of the average error rate of individuals 
re in a group via n-nary peer reviews based on the random nature of error 
distributions and independent nature of error patterns of individuals, i.e., 

1
( )

n

e e
k

R r k
=

= ∏ . 

 
 • The hierarchical review system in software engineering can greatly 
increase the quality of software and decrease the requirement for individual 
capability and error rates in software engineering. 
 
 
 
Questions and 
Research Opportunities 
 

 
 
13.1  Why may sociology be perceived as a special type of system 

science of human organizations?     
 
13.2  Why are group studies one of the centers of sociology?   
 
13.3  What are the natural forces and needs that expand groups into 

organizations?          
 
13.4  Why can a society be modeled as a set of social functions, roles, 

and relations? 
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13.5  What are the roles of cultures and value systems in forming social 
norms? 

 
13.6  Why do software development organizations need to identify a 

common set of values in order to normalize individual and 
collective behaviors in software engineering? 

 
13.7  What are the axiomatic human traits and their relationships? 
 
13.8 What is Maslow’s hierarchy of basic human needs? 
 
13.9 What is the Human Needs Hierarchy (HNH) model and what are 

its differences from Maslow’s hierarchy of needs? 
 
13.10  Why does the human emotional system tend to be a binary 

system? 
 
13.11  According to Theorem 13.2, explain what determines the strength 

of human motivations. 
 
13.12  What determines the mode of human attitudes? 
 
13.13  According to the Motivation/Attitude-Driven Behavior (MADB) 

model, explain why an observable behavior is a result of long- 
chain social and psychological reasoning.       

 
13.14 Use a table to describe the eight categories of collective behaviors 

such as social conformity, social synchronization, coaction, 
coordination, groupthink, group polarization, social dilemmas, 
and social loafing.   

 
13.15  Why is a weighting system that encourages and appreciates 

negative or hesitant feedback towards the current position of the 
group a stable system? 

  
13.16 What are the conditions of social loafing and how to avoid it?  
 
13.17 What are the classic models of social organization? 
 
13.18 What is Parkinson’s law in social organization? How may it be 

formally explained by using the coordinative work organization 
theory developed in Chapter 8? (Hint: Consider the unlimited or 
unconstrained interpersonal coordination rate.)     
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13.19 Use an organization tree (OT) to explain when a group has to be 

expanded into an organization.   
 
13.20  For an OT(r, Ne) = OT(10%, 100) as given in Example 13.1, draw 

a structural diagram for it in the form of a complete 5-nary tree. 
 
13.21  According to Corollary 13.6, determine the optimal structures of a 

OT(r, Ne) = OT(20%, 30), and draw a structural diagram for it. 
 
13.22  Given a software development organization with L = Ne = 100 

employees in the first line and r = 20%, analyze the optimal 
architecture of the normalized organization tree (OT) for the 
following architectural attributes: 

 
         a) The average optimal fan-out fon  

         b)  Number of optimal groups NG               

         c)  Depth of the organization tree d 

    d) The maximum number of managers required for the 
software company Nm.  

 
13.23  Draw the diagram of the organization tree OT(10, 10,000) based 

on the derived architectural attributes as obtained in Ex.13.22.    
 
13.24 What are the optimal architectural attributes of an organization 

with OT( fon , Ne) = OT(10, 10,000)?  
 
13.25 What are the optimal architectural attributes of a country with 100 

million people in the working force at the leave level, i.e., 
OT( fon , Ne) = OT(20, 100,000,000)?  

 
13.26  The complete theory of engineering work organization at the 

group and system levels, respectively, can be presented by Law 
25 (Theorem 8.7) and Law 48 (Theorem 13.4), i.e., the 
coordinative work organization theory and the social system 
organization theory in terms of OT/SOT. Try to summarize their 
mathematical models and physical meanings in software 
engineering context.    

 
13.27  On the bases of Theorem 13.4, Corollaries 13.13/13.14, and 

Example 13.7, discuss why are the key problems of software 
engineering not only pure technical issues rather than 
organizational issues.          
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13.28  An usual practice in the software industry is to layoff a manager 
when there is a financial crisis, because it’s thought that such a 
decision is most directly and financially effective and efficient to 
get out of the crisis.  

 
According to Theorem 13.3 and corollary 13.5, explain why the 
above decision is not a rational action rather than one that may 
worsen the situation.  

 
13.29  According to the Formal Socialization Model (FSM), explain why 

the next form of society after the post industrial society is the 
information society. What is the role of software industry and 
software engineering in the information society?       

 
13.30  Discuss the roles of individual motivation and cultural diversity in 

the social environments of software engineering.     
 
13.31  What are the characteristics and effects of human factors in 

systems where humans are part of them?     
 
13.32 Should human beings be encouraged or limited to be incorporated 

into system solutions? Why?     
 
13.33 What is the Behavioral Model of Human Errors (BMHE) and how 

may it be used to explain the techniques in quality assurance for 
creative work such as software engineering review and 
inspection?      

 
13.34 Read the following chapter in social psychology:  
 

James A. Wiggins et al. (1994), Chapter 4, Social 

Relationships and Groups, Social Psychology, 5th ed., 

McGraw-Hill Inc, NY.   
 

Discuss the following topics in a group or individually: 
 
                     •  About the author. 

                        • Which factor plays a key role in groups: social relationship 
or interpersonal cooperation? Why?  
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      •  When a group is getting too large, what kind of structural 
changes should be made? What is the main reason that 
drives the changes? 

      •  What conclusions of the article interested you? Why? 

      •  Your arguments or counter-points on any of the conclusions 
derived in this article.              
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oftware engineering is immature because it lacks a theoretical 
framework with underpinning foundations. A vast volume of 
empirical knowledge has been documented in software engineering 

without efficient and intensive theoretical processing and refinement. 
Therefore, the formal documentation of software engineering theories and 
fundamental body of knowledge is the key towards the maturity of software 
engineering. This book is devoted as a rational attempt to establish the formal 
and coherent theoretical framework of software engineering for its maturity. 

The knowledge structure of Part IV on Perspectives on Software 
Science is as follows:  
 

      • Chapter 14. Retrospect on Software Engineering 
      • Chapter 15. Prospect on Software Science 

 
This part addresses the theoretical and empirical framework of software 

science and engineering. The preceding chapters of this book have revealed 
that almost all the fundamental problems that could not be solved in the last 
four decades in software engineering stemmed from the lack of coherent 
theories in the form of software science. The objective of this part is to 
demonstrate how software science may be established on the basis of the 
theoretical foundations about it, the empirical observations on it, and the 
transdisciplinary knowledge gained from other much matured disciplines.  

Chapter 14, Retrospect on Software Engineering, wraps up the entire 
framework of theoretical and empirical foundations of software engineering. 
On the basis of the first three parts of this book on principles, constraints, 
theoretical foundations, and organizational foundations of software 
engineering, this chapter moves the focus onto the entire picture. It studies 
the infrastructure of software engineering and discusses the organization of 
the software industry, particularly the organizational structure and 
methodologies of the software industry, and the hidden phenomenon of 
software maintenance crisis in software engineering. The formalized 
principles and laws of software engineering developed throughout this book 
are summarized, which form the essential body of knowledge for excellent 
software engineers and researchers.  

Chapter 15, Prospect on Software Science, presents a perspective on the 
emergence of software science complementing to software engineering. The 
former is the theoretical inquiry of software and the laws constraining it; 
while the latter is the empirical study of engineering methodologies and 
techniques for software development and software industry organization. It is 
recognized that without theoretical physics there would be no matured 
applied physics; and without dynamics there would be no matured 
mechanical engineering. So it is with software science and software 
engineering. The formal structure of generic knowledge systems for all the 
science and engineering discipline is described first. Based on the generic 
knowledge system model, the theoretical framework of software engineering 

S
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knowledge towards software science is modeled. Potential impacts of 
software science theories and methodologies on computing and conventional 
software engineering are discussed. New trends in software science and 
engineering are presented.    

Part IV will wrap up this book by a retrospect on the coherent 
framework of software engineering theories, and a prospect on the structure 
of the emerging software science. This part reveals that software engineering 
encompasses not only a wider domain of empirical applications, but also a 
richer set of theoretical essences that are closer to the root of human 
knowledge in terms of mathematics, philosophy, cognitive informatics, 
computation, sociology, and system science. In software science and matured 
software engineering, denotational mathematics, intelligent code generation, 
hyper-programming, and rational work organization methodologies will play 
the most significant roles in this discipline.          
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Knowledge Structure 
 

 
 Infrastructures of software engineering    

     •  The process infrastructure of software engineering 
     •  Process-based software engineering (PBSE)  

 Software industry organization    

     •  The nature of the software industry 
     •  Principles of software industry organization 
     •  A perspective on the software maintenance crisis 

 Essential knowledge towards excellent software engineers 

     •  Basic constraints of software engineering 
     •  Empirical principles of software engineering 
     •  Laws of software engineering  
     •  Formal principles of software engineering 

 Impact of the theoretical foundations to software engineering  

     •  The cognitive model of multidisciplinary knowledge 
     •  Expected impacts of Wang’s laws and theorems for software engineering 
     •  Students’ feedback 
 

 

Learning Objectives 
 

 

 
 

     

   •     To understand the process infrastructure of software engineering. 

   •  To understand the basic methodologies for software industry organization. 

   •  To know how to organize process-based software engineering. 

   •    To know how to organize distributed time-shared development in software 
engineering. 

   •    To be familiar with the knowledge structure for excellent software engineers, 
which encompasses empirical and formal principles and laws for software 
engineering. 

   •     To know the cognitive model of multidisciplinary knowledge. 

   •     To be aware of the impact of the theoretical foundations for software 
          engineering. 
 
 

14. Retrospect on Software Engineering 
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 “An investment in learning software engineering principles is a particularly  
good investment for a software professional to make because that knowledge will last 

a whole career – not be half obsolete within three years.” 
 

Steve McConnell (1999)  
 

“All objects in nature and their relations are constrained by invariable laws,  
no matter one observed them or not at a given time.” 

 
Yingxu Wang (2004) 

 
“We shall do a much better programming job, provided that we approach  

the task with a full appreciation of its tremendous difficulty, provided that we stick to 
modest and elegant programming languages, provided  

that we respect the intrinsic limitations of the human mind and  
approach the task as very humble programmers.”  

 
Edsger W. Dijkstra (1930 - 2002) 

 
 
 

14.1 Introduction 
 

 
 

istorically, software engineering has been perceived as a branch of 
computer science. Following the systematical study of this book, it 
is revealed that software engineering encompasses not only a wider 

domain of empirical applications, but also a richer set of theoretical essences 
that are closer to the root of human knowledge in terms of mathematics, 
philosophy, cognitive informatics, computation, sociology, and system 
science. 

Software engineering was immature because it lacks a coherent 
theoretical framework and solid foundations. A vast volume of empirical 
knowledge has been documented without further theoretical processing and 
refinement. The formal documentation of software engineering theories and 
the fundamental body of knowledge in this book is a systematic attempt to 
establish the formal and coherent knowledge framework of software 
engineering towards a matured discipline. 

On the basis of the first three parts of this book on principles, 
constraints, theoretical foundations, and transdisciplinary foundations of 
software engineering, this chapter moves the focus onto the entire picture, 
which explores the infrastructure of software engineering and discusses the 
organization of the software industry. Then, in order to wrap up this book, 
this chapter provides a retrospect on software engineering theories and 

H 

© 2008 by Taylor & Francis Group, LLC



1118   Part IV  Perspectives on Software Science   
 
foundations, and reviews what readers have achieved so far in acquiring 
essential knowledge toward excellent software engineers and researchers. 
The impacts of the interdisciplinary foundations for software engineering are 
discussed, and students’ feedback on this book in the form of lecture notes is 
reported. The theoretical framework of software engineering presented in this 
book encompasses the fundamental principles and constraints of software 
engineering, theoretical foundations of software engineering, and 
transdisciplinary foundations of software engineering.  

In the remainder of this chapter, the retrospect on software engineering 
will be presented in five sections. Section 14.2 establishes the infrastructure 
of software engineering, particularly the process framework of software 
engineering and process-based software engineering. Section 14.3 explores 
the organizational structure and methodologies of the software industry, 
where hidden phenomenon in software engineering called the software 
maintenance crisis is identified and analyzed. Section 14.4 reviews the 
essential knowledge developed in this book towards excellent software 
engineers. The impact of the theoretical framework of software engineering 
in research and practice is discussed in Section 14.5.    
 
 

14.2 Infrastructures of Software 
         Engineering 
 

 
 
A recent trend in empirical software engineering is the shift from a focus on 
laboratory-oriented software engineering to a more industry-oriented view of 
software engineering processes. This complements preceding ideas about 
software engineering in terms of organization and process-orientation. From 
the domain coverage point of view, many of the existing software 
engineering approaches have mainly concentrated on the technical aspects of 
software development. Important areas of software engineering, such as the 
organizational and managerial infrastructures, have been left untouched. As 
software systems increase in scales, issues of complexity and professional 
practices become involved. Software development as an academic or 
laboratory activity has to engage with software development as a key 
industrialized process.  

This expanded domain of software engineering exposes the limitations 
of existing methodologies that often address only individual sub-domains. 
There is, therefore, a demand for an overarching approach that provides a 
basis for theoretical and practical infrastructures capable of accommodating 
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the whole range of modern software engineering practices and requirements. 
One approach is provided by process-based software engineering [Wang, 
2001c; Wang and Bryant, 2002]; part of the more general trend towards a 
focus on the process infrastructure. Typical approaches and techniques for 
the establishment, assessment, and improvement of software engineering 
process systems are introduced in the following subsections, and further 
details may be referred to [Wang and King, 2000a]. 
 
 
14.2.1 THE PROCESS INFRASTRUCTURE OF 
           SOFTWARE ENGINEERING 
 

As the scale of software increases continually at an ever faster rate, 
greater complexity and professional practices become critical. Software 
development is no longer solely a black art or laboratory activity; instead, it 
has moved inexorably toward a key industrialized engineering process. In 
software engineering, the central role is no longer that of the programmers; 
project managers and corporate management have critical roles to play. As 
programmers use programming technologies, software corporation managers 
seek organizational and strategic management methodologies, and project 
managers seek professional management and software quality assurance 
methodologies. These developments have resulted in a modern, expanded 
domain of software engineering which includes three important aspects: 
development methodology, organization and infrastructure, and management. 

Understanding the need to examine the software engineering process 
follows naturally from the premise that has been found to be true in other 
engineering disciplines, that is, that better products result from better 
processes. For the expanded domain of software engineering, the existing 
methodologies that cover individual subdomains are becoming inadequate. 
Therefore, an overarching approach is sought for a suitable theoretical and 
practical infrastructure to accommodate all the modern software engineering 
practices and requirements. An interesting approach, which is capable of 
accommodating the complete domain of software engineering, has been 
recognized and termed the software engineering process. Research into and 
adoption of the software engineering process paradigm will encompass all 
the approaches to software engineering.  

Generally, a process may be described as a set of linked activities that 
takes an input and transform it to create an output. The software engineering 
process as a system is no different; it takes a software requirement as its 
input, while the software product is its output.  

 
Definition 14.1 A software engineering process is a set of sequential 

practices that are functionally coherent and reusable for software engineering 
organization, development, and management. 
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The software engineering process is usually referred to as the software 
process, or simply the process.  As such it is part of a more general trend that 
focuses on process, pushing structure and product into the background 
[Wang and King, 2000a]. 

To model the software engineering processes, a number of software 
process system models have been developed in the last decade. The variety 
and proliferation of software engineering process research and practices 
characterize the software engineering process as a young subdiscipline of 
software engineering that still needs integration and fundamental research.  
Studies  in  the  software  process  reflect  a  current  trend  that  shifts  from 
controlling  the  quality  of  the  final  software  product  to  the  optimization 
of  the  processes  that  produce  the  software.  It is also understood  that the 
software engineering process, rather than the software products themselves, 
can be well established, stabilized, reused, and standardized. 

The technical and organizational infrastructures of software 
engineering rely on the software engineering processes. The processes of 
software engineering are complex systems as described by various process 
models and standards such as CMM [Humphrey, 1988/89/95; Paulk et al., 
1991/93/95], ISO 9001 [ISO 9001, 1989/94; ISO 9000-3, 1991], 
BOOTSTRAP [Koch 1993; Haase et al. 1994; Kuvaja et al. 1994], ISO/IEC 
15504 [ISO/ICT, 2000; Dorling, Wang et al., 1999], and SEPRM [Wang et 
al., 1998b/99a; Wang and King, 2000a]. These models collected a set of 
processes ranging from 18 to 51. This section comparatively explores current 
process models and the relationships among them. 

CMM was initially developed as an assessment model for software 
engineering management capabilities. As such it was expected that it would 
provide useful measures of organizations bidding or tendering for software 
contracts. However, it was soon realized that the concept of process for 
software engineering had more utility than that of capability assessment. 
Software development organizations may use the process model as an 
infrastructure for internal process organization and improvement. As a result 
of this deeper understanding, new practices in process-based software 
engineering have been emerging in the last decade. This may be considered 
as one of the important inspirations arising from CMM and related research. 
 In the software industry, software development is commonly perceived 
as a one-off activity. On the other hand, one of the most interesting findings 
in software engineering practices is that the processes of software 
development are relatively stable, repeatable, and reusable. Therefore, 
software engineering processes can be adopted as the infrastructure for 
software engineering. This leads to the development of the concept and 
technology known as process-based software engineering. 
 The Software Engineering Process Reference Model (SEPRM) was 
developed in 1998 [Wang et al., 1998b/99a; Wang and King, 2000a], which 
provides a comprehensive process framework of 51 processes and 444 base 
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practice activities for software engineering. SEPRM is an integration and 
extension of the major process models of CMM, ISO 9001, BOOTSTRAP, 
and ISO/IEC 15504 as shown in Fig. 14.1. The process framework and 
capability model of SEPRM has been presented in Section 11.5.2, which 
encompasses three process subsystems known as the organization, 
engineering, and management processes.      

 
 
                           
                        ISO / IEC            Bootstrap       
                          15504                           
                                                              
       CMM                                                   ISO 9001        
                                                                               
                                         
                                      SEPRM                                   
                                Reference Model  
      

 
 
Figure 14.1 The role of the SEPRM reference model for software engineering 
 
 
14.2.2 PROCESS-BASED SOFTWARE ENGINEERING 
           (PBSE)  
 

Software engineering is a discipline that has emerged from computer 
science and is based on interdisciplinary theoretical and empirical 
methodologies. Initial approaches developed thus far have concentrated on 
technical aspects of software engineering, such as programming 
methodologies, software development models, and formal methods, while a 
cutting-edge approach, process-based software engineering, has been formed 
[Wang and Bryant, 2002] in the last decades for integrating the modern 
domain of software engineering. 

 
Definition 14.2 Process-Based Software Engineering (PBSE) is an 

organizational methodology for software engineering, by which the 
infrastructure of software engineering, encompassing the three process 
subsystems of organization, development, and management, is integrated by 
a well-defined process reference model.         

 
This expanded view of the domain exposes the limitations of 

conventional approaches, methodologies, and tools; but this is not to imply 
that the wealth of experience that they embody should be jettisoned. On the 
contrary, we would advocate the development of an inclusive and integrative 
approach that offers a suitable theoretical and practical infrastructure capable 
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of accommodating both new demands and existing expertise: Hence the 
process-oriented view. 

The software process approach towards software engineering 
encompasses systematic, organizational, and managerial infrastructures for 
software engineering. It is necessary to expand the horizons of software 
engineering in this way because of the rapidly increasing complexity and 
scale demanded by software products. The need to ensure software quality 
and to increase productivity also provides impetus for PBSE. 

 
14.2.2.1 The Organization Model of PBSE 

 
In software engineering process research, it has been assumed that a 

process system should have already existed in a software development 
organization so that a process assessment and improvement project could be 
carried out directly. However convenient this assumption is, it is not true that 
the majority of software organizations have formal and definable processes.  

In reality, a process assessment project starts by the mapping of a 
software organization’s existing processes to a process model that has been 
chosen for the assessment. The usual cases are that a software development 
organization has only some loose and informal practices, rather than a 
defined and coherent process system. This scenario leads to the observation 
that rigorous PBSE has to start from process establishment rather than 
process assessment in a software development organization. Therefore, the 
right order of events in achieving software engineering process excellence in 
an organization is first, process establishment; second, process assessment; 
and then process improvement as shown in Fig. 14.2. 

 
Figure 14.2 Software engineering process system establishment    

  

Process system
improvement 

Process system 
assessment 

Process system establishment 

The software engineering process  
reference model 

Process 
system 
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For modeling a process system, processes are elicited and integrated 
from the bottom up. Processes in the development subsystem are first 
analyzed and modeled. Corresponding to the development processes, the 
management processes are then deployed as measures to support and control 
the development processes. The third step is to design the organization 
processes, which are the top-level management processes oriented to the 
whole software development organization, and which are applicable to all 
software engineering projects within the organization.  

It is generally considered that there would be a number of parallel 
development and management processes for individual projects within a 
software development organization. For the purpose of controlling a process 
system, software engineering processes are implemented and activated top 
down, from the organization level to the project level. Therefore, the 
relationship between the organization, management, and development 
processes can be further refined [Wang and King, 2000a; Wang and Bryant, 
2002] as shown in Fig. 14.3. 

 
 
                                                                                                                                           Organization’s        
                                                                                       Organization                              process reference      
                                                                                           process                                           model 
                                                                                                                                                                (OPRM)        

             organization bus     

                 process bus                                                                                 ......       

                    

                              Management                                    Management                                                   Management   
    Project’s            process  1              Project’s             process  2                             Project’s             process  n           
    tailored                                            tailored                                                            tailored           
    process                                            process                                                            process  
    model  1            Development        model  2             Development                        model  n            Development 
    (PTPM 1)          process  1              (PTPM 2)            process  2                             (PTPM n)           process  n            
                                       
 
                                     
                                 Project  1                                          Project  2                         ......                         Project  n 

 

Figure 14.3 Practices in process-based software engineering 
 
Fig. 14.3 shows the common practices in organizing a software 

engineering process system. It is noteworthy that there is only one 
organization process subsystem in a software development organization, 
which will be based on the Organization’s Process Reference Model 
(OPRM).  

 
Definition 14.3 A process reference model is an established, validated, 

and proven software engineering process model that consists of a 
comprehensive set of software processes and reflects the benchmarked best 
practices in the software industry.  
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At the top level, a software development organization may adopt an 
existing international standard or an established process model as its OPRM; 
or, it can develop a specific organization-oriented OPRM based on the 
existing models and the organization’s own practices and experiences in 
software engineering. The OPRM plays a crucial rule in the regulation, 
coordination, and standardization of an organization’s software engineering 
practices.  

At project level, a number of parallel development and management 
processes may exist based on the individual Project’s Tailored Process 
Model (PTPM), which are derived models of the OPRM reference model. In 
Fig. 14.3, the process reference model OPRM is the key for empirical PBSE. 
If an OPRM is well established in an organization, the PTPMs at project 
level can easily be derived. 

In PBSE, the OPRM reference model could, and usually should, be 
tailored or adapted to a specific project according to the nature of the project, 
taking into account application domain, scope, complexity, schedule, 
experience of project team, reuse opportunities identified and/or resources 
availability, and so on. For a PTPM of an individual project, the management 
and development processes should be one-to-one designed and synchronized. 
Tailoring of a PTPM from a comprehensive OPRM makes the software 
project leaders’ tasks dramatically easier. Using this approach, project 
organization and conduct can be effectively performed within an 
organization’s unified software engineering process infrastructure. 
 
14.2.2.2 Software Engineering Process System Establishment 
 

An initial and fundamental step in PBSE is process system 
establishment. The major aim of process establishment is to build up a 
software engineering process reference model for a software development 
organization. When a process system is established and experienced, 
improvement can be initiated effectively via process assessment and 
benchmarking.  

 
14.2.2.2.1 Procedure to Derive a Software Project Process Model 
 

There are three basic steps for deriving a software project process 
model. Referring to the illustration of PBSE methodologies in Fig. 14.3, the 
procedure to derive a process model at the project level is explored in the 
following subsections.   
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(a) Select and Reuse a Process System Reference Model at Organization 
      Level   
 

The most efficient way to establish a process system is to reuse a 
standard or well-accepted process model. In selecting an existing process 
model as an organization’s reference model, one of the key issues is that the 
reference model should be reasonably comprehensive in order to enable an 
easy derivation of working process models at project level. Another issue is 
that the reference model should be able to serve many purposes in software 
engineering such as multi-type process assessment, improvement, training, 
and internal standardization. The third issue is the flexibility of the reference 
model, i.e., the selected reference model should allow incorporation of the 
host organization’s experience and special needs into the reference model 
and derived models.       

When an organization’s process system is determined, the next step is 
to uphold it as the organization’s official and unified software engineering 
platform. Based on this, various process models should be derived for 
different projects. 
 
(b) Derive a Process Model at Project Level 
 

Before commencing a new project, the first thing that a project manager 
needs to do is to derive the project’s process model as the infrastructure for 
the project. The project process model will serve as a blueprint for 
organizing all activities that are going to be enacted within the scope of the 
project, including technical, managerial, organizational, customer, and 
supporting activities. 

A checklist of factors for consideration in deriving a project process 
model from the chosen reference model is shown in Table 14.1. When all 
factors are weighted by high (H), medium (M), or low (L), a rating for what 
kind of project process model is needed can be determined according to Eqs. 
14.1 and 14.2.  

Assuming that Si is the ith weight for factor i and n is the number of 
total factors, the average score, S, or the level of requirement for a derived 
model is defined as:    

 

   
1

1 n

i
i

S S
n =

= ∑             (14.1) 

 

According to the average score S, the type of derived model determined 
by the weighted factors can be estimated as follows:     

 

           
> 3, the need is for a  project process model
= 3, the need is for a  project process model
< 3, the need is for a  project process model

complete
S medium

light

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

    (14.2) 
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Table 14.1 
Determining Type of Derived Process Models for a Project 

 

Weight No Project Factor 

H       M L 

Score 

1 Importance  a          S1 = 5 
2 Difficulty     a S2 = 1 
3 Complexity  a   S3 = 5 
4 Size  a  S4 = 3  
5 Domain knowledge requirement   a  S5 = 3 
6 Experience requirement a   S6 = 5 
7 Special process needed   a S7 = 1 
8 Schedule constraints  a  S8 = 3 
9 Budget constraints a   S9 = 5 

10 Other process constraints a   S10 = 5 
Total  25 9 2      S = 3.6 

 
      Note:  H = High (5), M = Medium (3),  L = Low (1). 

 
For instance, applying Eq. 14.1 to the weights of the ten factors as 

shown in Table 14.1 results in an estimated average score S = 3.6. According 
to Eq. 14.2, the project process model has to be a relatively complete model 
that covers almost related process areas modeled in the reference model.    

 
Note the factors shown in Table 14.1 are examples for demonstrating 

how the type of project process model may be determined in a formal way. It 
is by no means exhaustive. Therefore, readers may add, delete, and/or modify 
the factors in order to make them suitable for their specific projects. 

   
 (c) Apply the Derived Project Process Model 
 

When a project process system model is derived, the next step is to 
accept, as a common platform, the process model at both project and 
individual levels, and to apply the project process model to all activities 
within the project scope.  

 
It can be seen that the reference model approach to implement software 

engineering provides project managers with a means to derive and organize a 
project process model in a consistent and transparent manner. It also provides 
software engineers and others in a software project with a clear picture of 
their roles, interactions, and relationships to each other.        
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14.2.2.2.2 Methods for Deriving a Software Project Process Model 
 

To establish a process model for a software project, three types of 
methods may be introduced. They are process model tailoring, extension, and 
adaptation, ordered increasingly according to their technical difficulty in 
applications.   

 
(a) Process Model Tailoring  

 
Definition 14.4 Process model tailoring is a model customization 

method for making a process model suitable for a specific software project 
by eliminating unnecessary processes.  

 
Model tailoring is the simplest method to derive a project process 

model from a comprehensive organizational process reference model. The 
only technique is to delete what is not needed in order to establish a specific 
software project based on an understanding of both the reference model and 
the nature of the project.   

 
(b) Process Model Extension  
 

Definition 14.5 Process model extension is a model customization 
method for making a process model suitable for a specific software project 
by adding additional processes.     

 
Model extension requires a project manager capable of integrating new 

processes, adopted from either process models or best practices repositories, 
into the current project process model or organizational process reference 
model. When new processes are introduced, a validation phase is needed for 
monitoring their fitness and performance in the whole process system.         

 
(c) Process Model Adaptation  
 

Definition 14.6 Process model adaptation is a model customization 
method for making a process model suitable for a specific software project 
by modifying, updating, and fine-tuning related processes.  

 
Model adaptation is useful when a project manager is experienced with 

respect to one process reference model and prepared to monitor the 
performance of adapted processes during a project life span. All of the above 
three approaches for process model derivation and establishment can be used 
individually or together to derive an effective project process model for 
software engineering. 
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14.2.2.3 Software Engineering Process System Assessment 
 

It is believed that if one cannot measure a process system, one cannot 
improve it. Therefore, Software Process Assessment (SPA) is critical for 
process improvement. Various methodologies for SPA have been developed 
in the last decade. This section describes the integrated SPA framework of 
SEPRM, and demonstrates that current process models, such as CMM, ISO 
9001, BOOTSTRAP, and ISO/IEC 15504, can be perfectly fitted into this 
framework. 
 
14.2.2.3.1 Process Assessment Methods against Different Reference Systems    
 

From the viewpoint of reference systems there are four types of 
assessment methods: model-based, standard-based, benchmark-based, and 
integrated (model-and-benchmark-based) assessment.  

 
(a) Model-Based Assessment  

 
Definition 14.7 Model-based assessment is an SPA method by which a 

software development organization is evaluated against a specific process 
and capability model, and according to a specific capability determination 
method provided by the model.  

 
Model-based assessment is a kind of absolute assessment approach. 

Using this approach, a software development organization is evaluated 
against a fixed process framework and a defined capability scale. The 
assessment result reports a capability level of a software development 
organization against the capability scale of the model. CMM and 
BOOTSTRAP are examples of model-based assessment methodologies.  

 
(b) Standard-Based Assessment  
 

Definition 14.8 Standard-based assessment is an SPA method by 
which a software development organization is evaluated against a specific 
process and capability model defined by a standard, and according to a 
specific capability determination method provided in the standard.  

 
Standard-based assessment is a special type of model-based assessment 

method. It also provides an absolute assessment approach by which a 
software development organization’s process capability is rated against a 
defined capability scale. ISO/IEC 15504 and partially ISO 9001 are examples 
of standard-based assessment methodologies.  
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(c) Benchmark-Based Assessment  
 

Definition 14.9 Benchmark-based assessment is an SPA method by 
which a software development organization is evaluated against a set of 
benchmarks of software processes, and according to a specific capability 
determination method.  
 

Benchmark-based assessment is a kind of relative assessment approach. 
By this approach a software development organization is evaluated against a 
set of benchmarks. Thus, the assessment result associated with a software 
development organization’s capability level may be presented in three 
relative levels: below, equal, or above the benchmark of each process.  
 
(d) Integrated Assessment  

 
  Definition 14.10 Integrated assessment is a kind of composite model-

based and benchmark-based SPA method in which a software development 
organization is evaluated against both a benchmarked process model and a 
capability model, and according to a specific capability determination 
method provided in the model. 

 
The integrated assessment method inherits the advantages of both 

absolute and relative SPA methods as described in this section. Using the 
integrated assessment method, a software development organization can be 
evaluated against both a benchmark and an absolute capability scale at the 
same time. The SEPRM model is such an integrated SPA model. Another 
advantage of the integrated assessment method is its ability to provide a 
quantitative guide for software process improvement.  

 
14.2.2.3.2 Process Assessment Methods Based on Different Model 
                 Structures 
       

From the viewpoint of model framework structures, there are three 
types of assessment methods. They are: checklist-based assessment, 1-D 
process-based assessment, and 2-D process-based assessment, as illustrated 
in Fig. 14.4. 

Fig. 14.4 shows that a 2-D process model allows all processes to be 
performed and rated at any process capability level. A 1-D process model is a 
special case of 2-D models, where a group of processes is defined and rated 
at a certain capability level. For example, according to the 1-D process 
model, processes 7 – 13 in Fig. 14.4 can only be performed, and therefore 
rated at level  3  or  below.  Similarly,  the  checklist-based  process  model  
is  a simpler 1-D process model, where all processes are defined and rated at 
a single level with equal importance.  
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Figure 14.4 Structures of process assessment models 

 
(a) Checklist-Based Assessment  

 
Definition 14.11 Checklist-based assessment is an SPA method that is 

based on a pass/fail checklist for each practice and process specified in a 
process model. 

 
A checklist-based assessment model is the simplest assessment 

methodology. This kind of method is only suitable for SPA. It is not much 
help in step-by-step process improvement. The ISO 9001 model provides a 
checklist-based assessment method.  

 
(b) 1-D Process-Based Assessment 

 
Definition 14.12 1-D-based assessment is an SPA method that 

determines a software development organization’s capability from a set of 
processes in a single process dimension.   

 
The 1-D assessment is an extension of the checklist-based assessment. 

This type of model is suitable for process improvement in project or 
organization scopes while, at the same time, being relatively weak in detailed 
process scope simply because processes have been grouped and pre-allocated 
at specific capability levels as shown in Fig. 14.4. CMM and BOOTSTRAP 
are examples of 1-D assessment models. 

An issue presenting in such methods is that there are no widely 
accepted criteria prescribing how a set of software processes are grouped and 
mapped onto different capability levels. In principle, the processes defined in 
a model would be practiced at any capability level. That is, software 
processes in practice have no inherited capability levels; only the software 
development organizations and the people who are performing the processes 
can be measured by capability levels.  
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(c) 2-D Process-Based Assessment  

 
Definition 14.13 2-D process-based assessment is an SPA method that 

employs both process and capability dimensions in a process model, and 
derives process capability by evaluating the process model against the 
capability model.  

 
The 2-D assessment method enables every process in the process 

dimension to be performed and evaluated against the capability dimension at 
all levels. This is a flexible approach to software process assessment, 
although effort spent in a 2-D process assessment would be much higher than 
that of a 1-D or checklist assessment. This type of model is suitable for 
process improvement from process scope to project and organization scopes 
because it provides precise measurement for every process at all the 
capability levels. ISO/IEC 15504 and SEPRM are examples of 2-D 
assessment models. 

 
Conventionally, 1-D methods were considered to have provided a 

process dimension in process assessment. By comparing this with the 2-D 
assessment methods described above and in Fig. 14.4, it may be predicted 
that there is another kind of 1-D process assessment model which 
implements only the capability dimension, while leaving the process 
dimension open for a software development organization or the process 
model providers to design and implement. This would provide a level of 
flexibility in software process assessment and standardization. 

 
14.2.2.4 Software Engineering Process System Improvement 
 

Software engineering process system improvement is the goal of 
process assessment, acting on issues found in an assessment and enhancing 
the performances of processes in the process system. This section attempts to 
describe major philosophies in Software Process Improvement (SPI) and 
alternative SPI methodologies.  
 
14.2.2.4.1 Software Process Improvement Philosophies 

 
There are various philosophies underpinning SPI. Key categories of 

SPI philosophy are goal-oriented process improvement, benchmark-based 
process improvement, and continuous process improvement. This subsection 
discusses philosophies behind the process improvement methodologies. The 
usability of various SPI approaches and their relationships are also 
commented upon.         
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(a) Goal-Oriented Process Improvement  

 
Definition 14.14 Goal-oriented process improvement is an SPI 

approach by which process system capability is improved by moving towards 
a predefined goal, usually a specific process capability level.   

 
This approach is simple, and is the most widely adopted philosophy in 

software engineering. For example, ISO 9001 provides a pass/fail goal with a 
basic set of requirements for a software process system. CMM, ISO/IEC 
15504, and SEPRM provide a 5/6-level capability scale that enables software 
development organizations to set more precise and quantitative improvement 
goals.    

 
(b) Benchmark-Based Process Improvement  

 
Definition 14.15 Benchmark-based process improvement is an SPI 

approach by which process system capability is improved by moving towards 
an optimum combined profile according to software engineering process 
benchmarks, rather than a maximum capability level.  

 
This is a realistic and pragmatic philosophy for process improvement. It 

is argued that in order to maintain sufficient competence, a software 
organization does not need to push all its software engineering processes to 
the highest level because it is neither necessary nor economic. This 
philosophy provides alternative thinking to the idea “the higher the better for 
process capability” as is presented in the goal-oriented process improvement 
approach.  

Using the benchmark-based improvement approach, an optimized 
process improvement strategy identifies a sufficient (the minimum required) 
and economic target process profile, which provides an organization with 
sufficient margins of competence in every process. It does not necessarily set 
them all at the highest level of a capability scale.     

  
(c) Continuous Process Improvement  

 
 Definition 14.16 Continuous Process Improvement is an SPI approach 

by which a process system’s capability is required to be improved all the 
time, and toward ever higher capability levels.  

  
This is considered an oriental philosophy that accepts no top limits or 

discrete goals because “ideal” standards are continuously changing. It is this 
assumption that change is normal that is in tune with modern management 
theory. Continuous process improvement has been proven effective in 
engineering process optimization and quality assurance. Using this approach, 
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SPI is a continuous, spiral-like procedure. The Deming Circle, plan-do-
check-act, is a typical component of this philosophy.    

 In continuous process improvement there is no end to process 
optimization, and all processes are supposed to be improved all the time. 
There is a criticism that the goals for improvement are not explicitly stated in 
this philosophy. Therefore, when adopting continuous process improvement, 
top management should make clear the current goals, as well as the short, 
middle, and long-term ones.   

 Generally, goal-oriented methodologies will still constitute the 
mainstream in SPI. However, 2-D process models provide more precise 
process assessment results, and the benchmark-based process models provide 
empirical indications of process attributes, benchmark-based improvement 
will gain wider application. Also, the continuous process improvement 
approach will provide a basis for sustainable long-term strategic planning.       
 
14.2.2.4.2 Software Process Improvement Methodologies 

  
The above discussion on the philosophies for process improvement 

yields the basis for an investigation of possible software process 
improvement methodologies. There are two basic SPI methods – assessment-
based and benchmark-based process improvement. The former improves a 
process system from a given level in a defined scale to a next higher level; 
the latter provides improvement strategies by identifying gaps between a 
software development organization’s process system and a set of established 
benchmarks. In addition, a combined approach may be adopted.      
 
(a) Model-Based Improvement  

 
Definition 14.17 Model-based improvement is an SPI method by which 

a process system can be improved by basing its performance and capability 
profile on a model-based assessment. 

  
Using this idea, the processes inherent in a software development 

organization are improved according to a process system model with step-by-
step suggestions. CMM and BOOTSTRAP are examples of such a model-
based process improvement methodology. 
 
(b) Standard-Based Improvement  

 
Definition 14.18 Standard-based improvement is an SPI method in 

which a process system can be improved by basing its performance and 
capability profile on a standard-based assessment.  

© 2008 by Taylor & Francis Group, LLC



1134   Part IV  Perspectives on Software Science   
 

Using this approach, the processes inherent in a software development 
organization are improved according to a standardized process system model. 
ISO/IEC 15504 provides a standard-based improvement method.  However, 
it is noteworthy that ISO 9001 is probably not suitable because it lacks a 
process improvement model and a step-by-step improvement mechanism 
[Wang and King, 2000a]. 
 
(c) Benchmark-Based Improvement  

 
Definition 14.19 Benchmark-based improvement is an SPI method in 

which a process system can be improved by basing its performance and 
capability profile on a benchmark-based assessment.  
 

Benchmark-based improvement is a kind of relative improvement 
approach. Using this approach, the processes inherent in a software 
development organization are improved according to a set of process 
benchmarks. It provides an optimized and economical process improvement 
solution. SEPRM is the first benchmarked model for enabling benchmark-
based process improvements [Wang et al., 1998b/99a; Wang and King, 
2000a].  

 
(d) Integrated Improvement  

 
Definition 14.20 Integrated improvement is a combined model-based 

and benchmark-based SPI method in which the process system can be 
improved by basing its performance and capability profile on an integrated 
model-based and benchmark-based assessment.  

 
The integrated process improvement method inherits the advantages of 

both absolute and relative SPI methods. Using the integrated improvement 
method, the processes of a software development organization are improved 
according to a benchmarked process system model. SEPRM is designed to 
support integrated model- and benchmark-based process improvement.  

 
 

 
14.3 Software Industry Organization 
 

 
 
Although Brooks perceived that there is “no silver bullet in software 
engineering [Brooks, 1987],” software engineering itself has already been a 
silver bullet for other engineering disciplines. This is because, as discussed in 
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Section 10.5.2, the most powerful means for describing complex system 
behaviors and relations is software and supporting denotational mathematics. 

 Therefore, the IT industry in general, and the software industry in 
particular, is gaining its profound importance in the information society. 
However, the organizational theories and methodologies for the software 
industry, as an important part of software engineering in the large, have been 
almost overlooked in this discipline.  

This subsection explores the nature of the software industry, and 
describes fundamental principles of software industrial organization. 
Important methodologies of software industrial organization are proposed on 
the basis of the engineering, system, management, and economics 
foundations of software engineering developed throughout this book. 
 
 
14.3.1 THE NATURE OF THE SOFTWARE INDUSTRY 
 
 Software engineering in the large has been organized with the mass 
production metaphors in the industry, which analogizes the machine-building 
origins of manufacture engineering and the system of mass production by 
interchangeable parts that grew out of them. 

 In the Dagstuhl Seminar Series #9635 on History of Software 
Engineering held in Germany in August 1996 [Aspray et al., 1996], the 
organizers, W. Aspray, R. Keil-Slawik, and D.L. Parnas, identified the 
characteristics and idiosyncracies of computer science in general and 
software engineering in particular as follows:        
 

     • Highly innovative and rapidly changing field with no broadly 
recognized core of material that every practitioner must know. 

       • Few results are supported by empirical or comparative studies. 

     • Work within the field older than 3–4 years is rarely 
acknowledged or referenced. 

     •  Old problems are given new names and old solutions overlooked. 

     •  Evolution of the discipline is tightly coupled to economic and 
 societal demands. 

 •  There is a need for interdisciplinary work comprising, e.g., 
 mathematics, psychology, business, or management science,  

•  Continuing debate about whether there should be a discipline 
 called software engineering, and if so, whether this should be 
 treated as another discipline among the set of traditional 
 engineering disciplines. 
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 Barry Boehm classified software engineering problems into two areas 
[Boehm, 1976/83]: a) Detailed design and coding of systems software by 
experts in a relatively economics-independent context; and b) Requirements 
analysis, design, text, and maintenance of application software by technicians 
in an economics-driven context. The former is the domain for software 
scientists whilst the latter is for software engineers. Boehm thought that, 
although those scientific principles available to support software engineering 
address problems in Area (a), the most pressing software engineering 
problems are in Area (b).  

 Michael Mahoney wrote: “That the search continues after twenty five 
years suggests that software may be fundamentally different from any of the 
artifacts or processes that have been the object of traditional branches of 
engineering: it is not like machines, it is not like masonry structures, it is not 
like chemical processes, it is not like electric circuits or semiconductors 
[Aspray, et al., 1996].” 

 Further, Stuart Shapiro identified the uniqueness of software 
engineering [Aspray et al., 1996]:  

 
"Misconceptions of the nature of engineering aside, though, 

computing and software appear fundamentally different from other 
areas of technological practice owing to their wide ranging applicability. 
Computers are general-purpose problem-solving devices and their wide 
utility is a function of this. However, their utility in a specific context is 
due to the software which turns them into special-purpose problem-
solving devices. Software can play this role because it is abstract and 
thus unusually malleable. With this abstractness, however, comes a 
complexity which challenges both the cognitive processes of the 
individual and the degree to which the software development process 
can be automated. 

"Because computer systems span a virtually limitless number of 
problem domains but must function within specific ones, fundamental 
problem-solving processes are of exceptional concern in computing and 
this is one reason for the seeming inadequacy of any one model of 
professional activity. Moreover, this irreducible tension between 
specificity and generality marks both software development techniques 
as well as software applications. Software technologists must find a 
balance between sophisticated and powerful context-dependent 
features  usable in a narrow domain and less sophisticated and 
powerful features amenable to more general usage. This is one reason 
why a software 'industrial revolution' seems quite unlikely, as it 
suggests the difficulty of producing high-level yet widely usable 
standard software components.” 
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 According to economics, in a normal market where equivalent 
alternatives exist, either increasing price or lowering quality will result in a 
loss of market share of the producer. Whilst if monopoly exists in a market, a 
producer may behave so without affecting its market share. The software 
market, particularly the system software one, is basically a monopolistic 
market. Therefore, the minimization of price and assurance of quality are 
difficult to be guaranteed, at least at the same time. 

 The software market is a sector of the information processing market, 
where standardization and human cognitive familiarity play an important 
role in market share. Therefore, international or industrial standards, as well 
as intellectual properties, are important virtual capitals in the software 
industry.       
 
 
14.3.2 PRINCIPLES OF SOFTWARE INDUSTRY 
           ORGANIZATION   
 

With the understanding of the uniqueness of the software industry as 
discussed in Section 14.3.1, this subsection attempts to explore the basic 
principles of software industry organization and useful organizational forms 
for the software industry, such as separation of software designers, builders, 
and quality assurors in software engineering, as well as the new trend of 
software engineering known as Distributed Time-Shared Development 
(DTSD). 
 
14.3.2.1 Basic Principles of Software Industrial Organization 
 

The key organization principles for the software industry are as 
follows: 
 

     •  To improve productivity 

     • To practice specialization or division of labor  

     • To deal with the labor-time interlock constraint  
    

The basic forms of software industrial organizations [Baker, 1972; 
Aron, 1983; Perry et al., 1994; ISO 9001, 1989/94; Schael, 1998; Wang and 
Bryant, 2002; Wang, 2007d] can be summarized in Table 14.2. 

The major organizational methodology for the software industry is 
PBSE as presented in Section 14.2. Based on a generic software engineering 
process model such as SEPRM [Wang et al., 1998b/99a; Wang and King, 
2000a], software engineering activities and processes at personal, project 
(team), and enterprise levels can be well organized in the three essential 
aspects of software technology, organization, and management.  
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Table 14.2 
Forms of Software Industrial Organization 

 

No Form of Organization  Category of Organization 

1 Programmer teams 
2 Chief programmers 
3 Coordinative work organization 

Project oriented 

4 Division of work/roles 
5 Architecture centered 
6 Component based development 
7 Production lines 
8 Process-based SE (PBSE) 

Process oriented 

 
14.3.2.2 Separation of Software Designers, Builders, Quality Assurors, 
              and Maintainers in Software Engineering 
 
 Major current strategic problems in the software industry may be 
identified as follows: 
 

• Referees are also players: All the responsibilities in software 
design, implementation, and quality assurance are carried out by 
the same organization, even the same engineer or group. As a 
consequence of this confused and overlapped allocation of 
responsibilities, whenever time, budget, or skills are limited, 
quality tends to be the first victim in a software engineering 
project under this form of organization.  

 
• Too high requirements and responsibility are put onto the 

shoulders of customers: The fact that is often overlooked in 
software engineering is that customers may not be able to 
understand and evaluate the requirements, functionality, quality, 
reliability, and complete correctness of complex software systems. 
Therefore in software engineering it is unwise to rely on 
customers for complete or thoughtful system requirements. It is 
also unwise to let or to agree by any party that customers should 
ensure the sole responsibility for testing and evaluating a new 
software system. 

 
In order to solve the above inherited problems, a separation of roles in 

the software industry is necessary. As shown in Table 14.3, the software 
industry is ideally split into four sectors known as the organizations of 

© 2008 by Taylor & Francis Group, LLC



   Chapter 14  Retrospect on SE   1139 
 
software designers, software builders, software quality assurors, and software 
maintainers with totally separated and explicitly designated roles and 
responsibilities. 
 

Table 14.3 
Specialization of Roles and Responsibilities in Software Engineering 

 

No Category of 
Profession  

Work Allocation Category of 
Organization  

1 Software architects  
and system analysts 

- Expertise on domain knowledge 
- Acquire requirements 
- Provide professional and feasible 
   solutions 
- Define architectural and functional 
   specifications 
- Define conformance criteria 

Software designers 

2 Programmers - Refine a specification into detailed 
  design 
- Coding 
- Module testing 
- System integration and testing 
- Internal quality control 
- Trial a system  

Software builders 

3 Software testers  
and inspectors  

- Design test cases 
- Test acceptance 
- Test quality 

Software quality  
assurors  

4 Maintainers and  
technical supporters  

- Knowledge on legacy systems 
- System maintenance 
- System updating 
- System reengineering   

Software maintainers 

 
14.3.2.3 Distributed Time-Shared Development in Software Engineering 
 

Distributed time-shared development is a new approach of division of 
labor in the time-dimension in contrary to division of labor in the functional 
or specialization dimension. 
 

Definition 14.21 Distributed Time-Shared Development (DTSD) is a 
software engineering methodology that geographically allocates software 
development work broadly distributed in time zones with a wide-area 
Intranet. 
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This methodology takes advantages of geographically allocated project 
teams distributed in different time zones, but interconnected through a wide-
area Intranet and supported by remote execution capabilities. Well organized 
and synchronized DTSD projects may gain time greatly in development, 
because DTSD provides a virtual 24-hour software development organization 
with the teams deployed in two or three countries globally.      
 
 
14.3.3 A PERSPECTIVE ON THE SOFTWARE 
           MAINTENANCE CRISIS 
 

Although the software crisis has been predicted since the 1950s before 
the establishment of software engineering as a discipline, experts perceive it 
differently. Some of them may still doubt if it has ever existed; the rest may 
claim that we were able to cope with the crisis via software engineering 
techniques in the last decades. Despite the continuous argument on the 
generic software crisis, the author perceives there is a real and hidden crisis 
in software engineering and the software industry known as the software 
maintenance crisis. 

 
One of the important findings according to the economic models of 

software engineering as developed in Chapter 12 is the tendency for software 
maintenance crisis in the software industry [Wang, 2005d]. The economical 
and technical reasons behind the software maintenance crisis will be 
explored and possible solutions will be presented in this subsection from a 
software industry organizational perspective. 

  
14.3.3.1 The Mathematical Model of Software Maintenance Crisis 

 
The Software Legacy Maintenance Cost (SLMC) model developed in 

Section 12.6.5 and Theorem 12.5 on the exponential growth of maintenance 
costs reveals that the ratio of maintenance cost Cm in a software development 
organization, rm%, tends to exponentially increase over time, and it is 
proportional to the number of legacy systems NL that the organization has 
produced. 
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Definition 14.22 Software Maintenance Crisis (SMC) is a phenomenon 
that happens when the demand for software maintenance exceeded the 
capability that a software development organization can provide, or when the 
costs of legacy software maintenance predominantly override the investment 
for new software development.  

 
Based on Theorem 12.5 and Definition 14.19, the following theorem on 

software maintenance crisis can be derived.     
 

 
A wide range of economic behaviors of the software industry may be 

explained on the basis of Theorems 14.1 and Theorem 12.5. For example, it 
explains why the usual lifespan of software systems is quite short, why 
software venders are voluntarily upgrading their systems from time to time, 
why a user would not expect to use a software system for a few decades, and 
why so many new software companies have been establishing while so many 
famous software brands have faded away in last decades. 

 
14.3.3.2 Reasons behind Software Maintenance Crises 
 

According to Law 39 of software engineering as stated in Theorem 
10.10, it can be explained that SMC is actually a special phenomenon of 
software organization dissimilation in software engineering. The reasons 
behind SMC can be analyzed from the technical, economical, psychological, 
and sociological aspects as summarized in Table 14.4. 

 
 

 
 The 48th Principle of Software Engineering 

 
Theorem 14.1 The mechanism of Software Maintenance Crisis (SMC) 
states that a software development organization may face a situation 
known as the software maintenance crisis, in which the ratio of the 
maintenance costs rm% is approaching 100% of the total costs that the 
organization spent. 
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Table 14.4  
Causal Analysis of Software Maintenance Crises 

 

No Technical Economical Psychological Sociological 

1 Lack suitable 
maintenance 
process  

The SLMC 
model 
(Theorem 
12.5) 

Unappreciated task   High risk 

2 Difficulty in 
knowledge/ 
experience 
transfer 

Long 
lifespan 

Higher cognitive 
complexity (work 
products of previous 
processes are not available 
or lost) 

Intricate 
impacts 

3 Low document 
availability  

Low 
depreciation 

Existence of possible 
retire options during the 
course of maintenance 

Wide scope of 
needs 

4 Urgent when 
maintenance is 
required  

High 
retirement 
costs     

Need knowledge of 
obsolete technology      

High liability 

5 Randomness and 
unpredictability 

 Risky task  

 
 
14.3.4.3 Solutions to Software Maintenance Crisis  
 

The following solutions may be taken to deal with the SMC problems 
in software engineering and in the software industry.  

   
a) Enhance technologies: i) To enhance software lifecycle 

processes to include software maintenance and retirement; ii) To 
increase depreciation of software systems; iii) To adopt a public agent 
acting like a library to store all code and documents of commercial 
software systems. Whenever the maintenance services can not continue 
as caused by an SMC, the design documentation and code will become 
a public resource. This measure will help to deal with document losses 
in individual organizations caused by programmer turnover, application 
migration across platforms, outsourced development, ceased 
maintenance, and shut downs of businesses. 

 
 b) Software industry reorganization: iv) To create a new 

affiliated service industry to maintain the legacy systems as that of 
garages for the automobile industry; v) To establish software insurance 
agencies who take responsibility for supporting any interrupted service 
of vendors. 
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c) Honor the responsibility: The current abnormal practice for 
releasing the liability in the software industry is either by shutting down 
the business (or change names of companies), or by forcing users to 
retire existing systems. Therefore, measures (i) through (v) proposed 
above should be adopted for establishing a more responsible software 
industry.  

         
Learning from the automobile industry, one of the rational solutions to 

the problems of SMC may be derived below.  
 

 
When the society is highly dependent on the functionality of various 

software systems, the risks and impacts of SMC are too high to be ignored. 
Considering that the automobile industry and related maintenance garages 
have created a significant industrial sector for the societies on the wheels, a 
software maintenance sector will create a significant amount of important 
services in societies of the information era. 

 
 

 
14.4 Essential Knowledge towards 
         Excellent Software Engineers 
 

 
 
Steven McConnell (1999) wrote: “An investment in learning software 
engineering principles is a particularly good investment for a software 
professional to make because that knowledge will last a whole career – not 
be half obsolete within three years.”       
 

 

Corollary 14.1 There is a need of a sector in the software industry, 
known as the professional software legacy maintainers or “software 
garages.” 
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Figure 14.5 Summary of the architecture of this book 
 
 The preceding chapters of this book have systematically explored the 
principles of software engineering in a rigorous and transdisciplinary 
approach. The principles of software engineering are formally documented as 
a comprehensive set of theorems and laws. This section summarizes the 
theoretical framework of software engineering principles and laws, which 
form the fundamental, durable, and enlightening knowledge for researchers 
and practitioners in software engineering.        

As a summary of the architecture of this book, the key subject areas of 
software engineering foundations are highlighted in Fig. 14.5. Throughout 
this book, new theories for software engineering and related fields are 
developed, and formal treatments of existing theories and empirical practice 
are presented. This demonstrates the bidirectional impact of this work on the 
transdisciplinary investigation into the theoretical foundations of software 
engineering.                          
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14.4.1 BASIC CONSTRAINTS OF SOFTWARE 
           ENGINEERING   
 

The essential knowledge on the 14 basic constraints of software 
engineering as developed in Chapter 1 can be summarized in Table 14.5. 
Further details and explanations of these constraints may be referred to 
Section 1.3.     

 
Table 14.5 

Basic Constraints of Software Engineering 
 

No Constraints Description Remark 

1 Cognition A set of innate cognitive attributes of software and the 
nature of the problems in software engineering that create 
the intricate relations of software objects and make 
software engineering inheritably difficult. 

Def. 1.8 

1.1 Intangibility 

 

 

Software is abstract artifacts which is not constituted by 
physical objects or presence, and is difficult to be defined 
or expressed.     

Def. 1.9 

1.2 Complexity Software is innately complex and its intricate internal 
connections and external couplings make it extremely 
difficult to be expressed or cognized.    

Def. 1.10 

1.3 Indeterminacy 

 

 

The events, behaviors, or their sequence of occurring in a 
software system are not fully determinable on the basis of 
a given algorithm during design time; Instead, some of 
them may only be determined until run-time. 

Def. 1.11 

1.4 Diversity The great variety of software in types, styles, 
architectures, behaviors, platforms, application domains, 
implementation techniques, usability, reliability, and 
quality.        

Def. 1.12 

1.5 Polymorphism The approaches and styles of both software design and 
implementation are multifaceted and polyglottic. 

Def. 1.13 

1.6 Inexpressive- 

     ness 

Software architectures and behaviors are inherently 
difficult to be expressed, modeled, represented, and 
quantified both formally and rigorously.    

Def. 1.14 

1.7 Inexplicit 
embodiment 

Architectures and behaviors of software systems should 
be explicitly described by coherent symbolic notations in 
order to be processed and executed by computers.           

Def. 1.15 

1.8 Unquantifi-
able quality 
measures 

The model of software quality has intricate facets and is 
difficult to be quantitatively modeled and measured.  

Def. 1.16 
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2 Organization A set of coordinative and managerial requirements for 
software engineering that enables coordinative work to be 
efficiently carried out among a group of software 
engineers with different roles. 

Def. 1.17 

2.1 Time 
dependency 

Almost all organizational issues in software engineering, 
such as software development scheduling, business goal 
of time to market, and labor allocation, are dependent on 
time. 

Def. 1.18 

2.2 Conservative 
productivity 

Abstract artifacts and their relations in system designs 
need to be represented physiologically in the brain via 
growing synaptic connections, which is constrained by 
natural laws and its speed is not consciously controllable. 

Def. 1.19 

2.3 Labor-time 
interlock 

The nature of software project organization is dominated 
by the extremely high interpersonal coordination rate, 
which prevents the workload (effort) from free 
decomposition into a sum of products of arbitrary amount 
of labor and periods of time. 

Def. 1.20 

3 Resources The development costs and budgets, human resources, 
and the supporting and operating platforms of hardware. 

Def. 1.21 

3.1 Costs Software engineering costs are incurred from both 
necessary and futility costs, and from both development 
and maintenance costs.             

Def. 1.22 

3.2 Human 
dependency 

All software engineering activities and processes are 
human-based and constrained by basic human traits, 
cognitive and creative capabilities, as well as motivations 
and attitudes. 

Def. 1.23 

 3.3 Hardware 
dependency 

Software behaviors and functionality can only be 
embodied via the computing platform and related 
interactive I/O devices. 

Def. 1.24 

 
 
14.4.2 EMPIRICAL PRINCIPLES OF SOFTWARE 
           ENGINEERING   
 

Empirical  software  engineering  principles  are  a  set  of  fundamental 
and  heuristic  theories  for  software  engineering.  The  essential  knowledge 
on the 31 empirical principles of software engineering as developed in 
Chapter 2 can be summarized in Table 14.6. Further details and explanations 
of these empirical and heuristic principles may be referred to Section 2.2 
through 2.4.     
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Table 14.6 
Empirical Principles of Software Engineering 

 

No Principle Description Remark 

1 Abstraction To elicit essential properties of a set of objects while 
omitting inessential details of them. 

Def. 2.3 

2 Decomposition 
and 
modularization 

To partition and divide the functions of a software 
system into individual modules or components.   

Def. 2.4 

3 Information 
hiding 

To mask and simplify unnecessary information of 
software at a given level from the lower level details. 

Def. 2.5 

4 Engineering 
approach 

To adopt the proven generic engineering methodology 
and practice in software development and its 
organization.  

Def. 2.6 

5 Professionalism To recognize the competence or skills expected for a 
professional software engineer gained in training and 
practice. 

Def. 2.7 

6 Tools and 
environments 

To adopt software development tools and software 
engineering supporting environment in order to 
facilitate efficient organization of coordinative work or 
extend human physical and intelligent capability in 
software development. 

Def. 2.8 

7 Documentation To represent system design and architectures, record 
work products, maintain traceability of serial decisions, 
log problems and maintenance solutions, and enable 
postmortem analysis. 

Def. 2.9 

8 Stepwise 
refinement 

To deductively extend a conceptual model of the 
requirement for a given software system by a series of 
expatiated and incremental specifications at increased 
degrees of details.    

Def. 2.10 

9 Prototyping To evaluate or validate a design and feasibility of a 
required system based on the implementation of a 
prototype of the system. 

Def. 2.11 

10 Adopting 
engineering 
notations 

To abstract, denote, and model user requirements and 
system specifications expressively and explicitly. 

Def. 2.12 

11 Process 
modeling 

To deal with organizational and managerial issues in 
software engineering as well as software behaviors.        

Def. 2.13 

12 Reuse To adopt higher-level building blocks, such as 
algorithms, methods, processes, patterns, frameworks, 
in order to improve efficiency, productivity, and quality 
of software engineering.       

Def. 2.14 

13 Measurements To elicit generic software attributes, quantify their Def. 2.15 
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and metrics measurement, and unify their metrics.    

14 Cognitive 
complexity 
control 

To deal with the innate difficulty in both architectural 
and behavioral design and implementation of software 
systems by a variety of means such as abstraction, 
modularization, descriptive notations, stepwise 
refinement, and prototyping.            

Def. 2.16 

15 Formal 
requirement 
specification 

To formally and rigorously specify customers’ 
nonprofessional requirements for a software system in 
order to avoid any misinterpretation and ambiguity, and 
to eliminate any conceptual gaps and inconsistency.         

Def. 2.17 

16 Systematic 
quality 
assurance 

To systematically tackle software quality as multiple 
faceted; therefore, a systematic tackle is needed on all 
attributes and their quantitative measurements.        

Def. 2.18 

17 Review and 
inspection 

To find and eliminate software design and 
implementation defects via reading and examining the 
work products by peer or more experienced reviewers.    

Def. 2.19 

18 Management 
engineering 

To recognize the crucial facet of software engineering 
for the need of a suitable theory for organizing and 
coordinating large groups in large-scale projects.            

Def. 2.20 

19 Acquiring 
domain 
knowledge 

To acquire four aspects of domain knowledge such as: 
a) the nature of a problem, b) the environment and 
context of the problem, c) current customer practice for 
dealing with the problem, and d) existing regulations 
and constraints in the application area, before a system 
design for the given problem may proceed. 

Def. 2.21 

20 Customer 
involvement 

To involve all stakeholders, particularly the end users 
of a software system, throughout the entire lifecycle of 
the system by customer reviews and joint meetings.      

Def. 2.22 

21 Feasibility 
analysis 

To rigorously estimate and evaluate both technical and 
economical feasibilities of a given software project 
before the later-phase processes may be continued.     

Def. 2.23 

22 Improve 
comprehensi- 

bility 

To explicitly and expressively describe the intangible 
problem and its solution with improved 
understandability, readability, and cognitive capability.   

Def. 2.24 

23 Exception 
handling 

To consider system design and specification not only 
customer required functions for a given system, but also 
all possible exceptions that may drive the system into 
illegal state(s) in the entire state space of the system.        

Def. 2.25 

24 Divide-and-
Conquer 

To suppose if a complex system may be divided into 
multiple components, the individual components of the 
system will be easier to be dealt with than the whole 
system. 

Def. 2.26 

25 Explicit 
embodiment 

To deal with the implicitness and inexpressiveness in 
software engineering by introducing more powerful 

Def. 2.27 
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descriptive means at a higher level of abstraction and 
precision.           

26 Establishing 
theoretical 
foundations 

To elicit rigorous theories and generic laws once there 
are a wide variety of observed phenomena and 
alternative practices. 

Def. 2.28 

27 Architecture and 
behavior 
modeling 

To understand software system models are a hybrid 
model where both architectures and behaviors should 
be coherently described. 

Def. 2.29 

28 Standardization To integrate, regulate, unify, and optimize existing 
principles, best practices, and industrial norms into 
standards. 

Def. 2.30 

29 Systems 
engineering 

To adopt system science theories and approaches to 
deal with complicated architectures and behaviors of 
software.      

Def. 2.31 

30 Engineering 
organization 

To recognize that the organization issue is as important 
as that of pure technical and the cognitive issues in 
software engineering. 

Def. 2.32 

31 Cognitive 
engineering 

To be aware that the cognitive complexity is the 
dominant problem in almost all processes of software 
design, implementation, and maintenance, which should 
be tackled by cognitive informatics theories. 

Def. 2.33 

 
 
14.4.3 LAWS OF SOFTWARE ENGINEERING   
 

A law of software engineering is a proven statement of a causality 
between a deducted result and its formal conditions. The essential knowledge 
on laws of software engineering developed in this book can be summarized 
in Table 14.7 highlighted by the 50 Wang’s laws. Further details and 
explanations of these set of laws of software engineering may be referred to 
previous chapters using the links provided under the title of each law.  

 
Table 14.7 

Laws of Software Engineering   
 

No Law Description Mathematical model 

1 The 
characteristics 
of theoretical 
and empirical 
problems 

 

Software engineering problems must be 
treated by both theoretical and 
empirical methodologies. The former is 
characterized by abstract, inductive, 
mathematics-based, and formal-
inference-centered studies; while the 
latter is characterized by concrete, 
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(Theorem 1.1) deductive, data-based, and 
experimental-validation-centered 
studies. 

2 The 
Information-
Matter-Energy 
(IME) 
model 
 
(Theorem 1.2) 

The natural world (NW) which forms the 
context of human intelligence and 
software science is a dual world: one 
aspect of it is the physical world (PW), 
and the other is the abstract world (AW), 
where matter (M) and energy (E) are 
used to model the former, and 
information (I) to the latter, where p, a,
and n are functions that determine a 
certain PW, AW, or NW, respectively. 

||ˆ

( , ) || ( )

( , , )

NW PW AW

M E I

I M E

=

=

=

p a

n

 

3 Abstract 
objects under 
study 

 

(Theorem 1.3) 

The nature of software stems from 
intangibility of the abstract objects 
under study, intricate inner connections 
of software systems, adaptive 
interactions to external events and 
environments, and the cognitive 
complexity to explicitly describe them. 

 

4 Explicit 
descriptivity 

 

(Theorem 1.4) 

Only a higher-level abstract, precise, 
and rigorous means is adequate to 
express an object at a given level of 
abstraction, where denotational 
mathematics is the top-level abstraction 
means. 

 

5 The basic 
constraints of 
SE 
 

(Theorem 1.5) 

Software engineering faces the 
cognitive, organizational, and resources 
constraints. 

 

 

6 Conservative 
productivity 

 

(Theorem 1.7) 

Software productivity is physiologically 
constrained by the growing speed of 
synaptic connections inside the brain, 
because before any creative artifact is 
generated externally, it must be created 
and represented physiologically inside 
the brain by the synaptic connections. 

 

7 Universal 
constraints 

 

(Theorem 3.1) 

Both the natural world and the perceived 
abstract world are constrained by certain 
known restrictions and laws, or by those 
yet to be known due to both current 
limitations of natural resources and/or 
human cognitive capability. 

 

8 Law of  
causality 

 

A condition must be both necessary and 
sufficient to qualify as a cause, where 
the necessary condition is a condition 
that must be present in order for the 
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(Theorem 3.3) effect to occur, while the sufficient 
condition is a condition that will always 
produce the effect. 

9 Inclusive 
intelligent 
capability 
 

(Theorem 3.5) 

Artificial intelligence (AI) is a subset of 
natural intelligence (NI). 

                              

AI  ⊆  NI    

10 Behavior 
space of 
software 
 

(Theorem 3.11) 

The software behavior space Ω is 
innately three-dimensional, which can 
be described by a Cartesian product of 
computational operations OP, time T, 
and memory space S.     

Ω  = OP × T × S                      

11 Utility of 
mathematics 

 

(Theorem 4.1) 

Denotational mathematics is the means 
and rules to rigorously and explicitly 
express design notions and conceptual 
models on abstract architectures and 
complex interactive behaviors at the 
highest level of abstraction and in the 
largest scope of systems. 

 

12 Cumulative 
Relational 
Model (CRM) 
of processes 
 

(Theorem 4.3) 

A process P is the basic unit of an 
applied computational behavior that is 
composed by a set of statements si, 1 ≤ i 
≤ n-1, with left-associated cumulative 
relations, where si ∈ P and rij ∈ R. 

1

1

1 12 2 23 3 1,

 (   s ), 1

(...((( )  s )  s ) ...  s )

n

i ij j
i

n n n

s r j i

s r r r

R
−

=

−

= = +

=

P

 

13 Express power 
of algebraic 
modeling 

 

(Theorem 4.8) 

The express power of RTPA states that 
the total number of the possible 
computational operations N is a set of 
combinations between two arbitrary 
meta processes P1, P2 ∈ P composed by 
each of the process relations R ∈ R in 
RTPA.  

#

2
#=

17!=17 • 
2!(17-2)!

=17 • 136

=2,312

C• P
RN 

 

14 Essential 
facets of 
software 
system 
modeling  
 

(Theorem 4.9) 

Software systems can be formally 
specified by its architectures, static 
behaviors, and dynamic behaviors with 
multiple-level refinements. 

 

15 The root of 
computing 
and 
information 
science 

(Theorem 5.1) 

The most fundamental data object 
model shared in both computing and 
information science is binary digits 
(bits). 

 

16 Domain Letting Dm, Dl, and Du be the domains of Du ⊆ Dl ⊆ Dm 
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constraints of 
data objects 

 

(Theorem 5.6) 

mathematical (logical), language 
defined, or user defined, respectively, 
the following relationship between the 
domains of an identifier in programming 
is always held.    

17 The generic 
mathematical 
model of 
programs 

 

(Theorem 5.7) 

A software system or a program ℘is a 
set of complex embedded cumulative 
relational processes Pk dispatched by 
system-level events ek . 
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18 Tradeoff 
between 
syntaxes and 
semantics 
 
(Theorem 6.1) 

In the DGE system, the complexities of 
the syntactic rules (or grammar) Csyn and 
of the semantic rules Csem are inversely 
proportional, i.e.: 

1
syn

sem
C

C
∝  

19 Asynchroni-
city of 
program 
semantics 
 

(Theorem 6.2) 

The semantics of a relatively timed 
program is invariant with the changes of 
executing speed, as long as any absolute 
time constraint is met. 

 

20 The least 
complete  
set of 
instructions 
in 
programming 
 

(Theorem 6.3) 

A program is composable with 
sufficient descriptive power in a given 
language iff both the sufficient sets of 
meta instructions (P, Theorem 4.6) and 
compositional rules (R, Theorem 4.7) 
are rigorously defined.   
 

 

21 Informatics 
laws of 
software 
 

(Theorem 7.2) 

Software architectures, behaviors, and 
processes are constrained by the 19 
informatics laws of basic information 
properties. 

 

22 Conservation 
of basic 
engineering 
constraints 
 

(Theorem 8.2) 

The three basic constraints of 
engineering goals known as time (T), 
costs (C), and utility (U) are 
conservative in a given engineering 
context, where both δ and k are a 
constant. 

ft(T-1) + fc(C-1) + fu(U)  

= Uk
T C•

 

= δ 
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23 Coordinative 
workload in 
engineering  

 

(Theorem 8.4) 

The actual workload W of a 
coordinative project is a function of the 
average interpersonal coordination rate r 
and the number of labor L in the project, 
where T1 is the indicative duration 
needed to complete the work by only 
one person, and W1 is the ideal 
workload without the interpersonal 
overhead h or that of a single person 
project. 

1

1

1
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L T h

W h

L L
W r

= •

= • +

= +

−= + •

 

24 Interchange- 

ability of labor 
and time (ILT) 

 

(Theorem 8.6) 

For a given workload W, labor L and 
duration T are transformable under the 
condition as given in the mathematical 
model. 
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25 The shortest 
duration of 
coordinative 
work 

 

(Theorem 8.7) 

There  exists  the  shortest  duration Tmin 
under the optimum labor allocation L0 
for  a  given  ideal  workload  W1  with a 
certain interpersonal  coordination rate 
r. 
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26 Quantitative 
advantage of 
human brain 
 

(Theorem 9.1) 

The magnitude of the memory capacity 
of the brain is tremendously larger than 
that of the closest species. 

 

27 Qualitative 
advantage of 
human brain 
 

(Theorem 9.2) 

The possession of the abstract layer of 
memory and the abstract reasoning 
capacity makes the human brain 
profoundly powerful on the basis of the 
quantitative advantage. 

 

28 Generic forms 
of information 
 

(Theorem 9.4) 

There are four categories of internal 
information I in the brain known as 
knowledge (K), behaviors (B), 
experience (E), and skills (S). 

( , , , )k b e s=I I I I I  

29 The nature of 
intelligence 

 

(Theorem 9.5) 

Intelligence I is a capability that 
transfers between data, information, 
knowledge, and behaviors known as the 
perceptive intelligence Ip, cognitive 
intelligence Ic, instructive intelligence 
Ii, and reflective intelligence Ir.    

  p

 c

i

r

:   (Perceptive)

    || :   (Cognitive)
    || :    (Instructive)
    || :   (Reflective)

D I

I K
I B
D B

→

→
→
→

I I

I

I

I

 

30 Dynamic 
properties of 
neural clusters 

The LTM is dynamic. New neurons (to 
represent objects or attributes) are 
assigning, and new synaptic connections 
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(Theorem 9.9) 
(to represent relations) are creating and 
reconfiguring all the time in the brain. 

31 Establishment 
cycle of LTM 

 

(Theorem 9.11) 

The cycle of LTM establishment 
requires at least 24 hours, where the 24-
hour cycle includes any kind of 
combinations of awake, asleep, and 
siesta.   

LTM establishment  

        cycle ≥ 24  [hrs]   

32 Holism 
complexity of 
systems 

 

(Theorem 10.1) 

Within the 7-level magnitudes of 
systems, known as the empty, small, 
medium, large, giant, immense, and 
infinite systems, almost all systems are 
too complicated to be cognitively 
understood or mentally handled as a 
whole, except small systems or those 
that can be decomposed into small 
systems. 

 

33 Generic 
topology of 
normalized 
systems 
 

(Theorem 10.2) 

Systems tend to be normalized into a 
hierarchical structure in the form of a 
complete n-nary tree.   

 

34 System gain of 
functionality 

 

(Theorem 10.4) 

System conjunction or composition 
between two systems S1 and S2 creates 
new relations ∆R12 and/or new 
behaviors (functions) ∆B12 that are 
solely a property of the newly 
established super system S, which can 
be determined by the sizes of the two 
intersected component sets #C1 and #C2.
  

∆R12 = #R - (#R1 + #R2) 

        = (#(C1 + C2))2 –  

               ((#C1)2 +(#C2)2) 

        = 2 (#C1 • #C2)         

35 System 
mutation 

 

(Theorem 10.5) 

The gradual increment of quantity of 
system, i.e., ∆C or ∆R, in a system 
beyond the point of the critical mass Qcm 
triggers the abrupt generation of 
functionality (quality) Fcm of the system.

 

36 System gain of 
work 

 

(Theorem 10.6) 

Work done by a system is always 
greater than any of its components, but 
must not greater than the sum of those 
of its components 

1
( ) ( ),      100%

( ) max( ( )),  

n

i
i

i i S

W S W C

W S W C C E

η
=

⎧⎪⎪ ≤ ≤⎪⎪⎨⎪⎪ > ∈⎪⎪⎩

∑

 

37 Conservative 
work of 
equilibrium 
systems 
 

(Theorem 10.9) 

The sum of all types of work is always 
zero in an equilibrium system, where 
W(Ci) is the abstract work of a system 
component Ci.    

1
( ) 0

n

i
i

W C
=

=∑  
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38 Conditions of 
system self-
organization 

 

(Theorem 
10.10) 

The necessary and sufficient condition 
of self-organization is the existence of at 
least one minimum on the state curve of 
a system f(x), which satisfies the 
following requirements, where f ’(x) and 
f ’’(x) are the first and second order 
derivatives of f(x) on (a, b). 

 ' (  |  ( )) = 0 

''(  |  ( )) 0
min min

min min

f x x a, b

f x x a, b

⎧ ∈⎪⎪⎪⎨⎪ ∈ ≠⎪⎪⎩
 

 ' (  |  ( )) = 0 

''(  |  ( ))< 0

''(  |  ( ))> 0 

min min

min

min

f x x a, b

f x x x a, b

f x x x a, b

⎧⎪ ∈⎪⎪⎪⎪ < ∈⎨⎪⎪⎪ > ∈⎪⎪⎩
 

39 System 
synchroni-
zation 
 

(Theorem 
10.11) 

A system reaches its maximum utility 
maxS  when all components’ efforts 

1 2 and S S are synchronized. 

 

 

1 2

max 1 2| | | |

S S S

S S S

⎧⎪ = +⎪⎪⎨⎪ = +⎪⎪⎩

 

40 System 
dissimilation 
 

(Theorem 
10.12) 

Any system tends to undergo a 
continuous degradation that leads to the 
eventual loss of its designed utility and 
against its initial purposes to form the 
system.     

 

41 Cognitive 
complexity of 
software 

 

(Theorem 
10.14) 

The cognitive complexity of a software 
system S, Cc(S), is a product of the 
operational complexity Cop(S) and the 
architectural complexity Ca(S). 

 

                 

1 1

  
1

1

( ) ( ) ( )

{ ( , )}

{ OBJ( )

+ OBJ( )} [FO]

C k

CLM

C

f op a

n m

k i
n

k
k
n

k
k

S S C S C S

w k i

CLM

C

= =

=

=

= •

= •∑∑

∑

∑

 

42 Gain of 
management 

 

(Theorem 11.1) 

Management is required to reduce the 
complexity of working group 
organization, to improve the efficiency 
of groups (e(n)), and to simplify the 
forms of interpersonal coordination. 

2

2

( )
( ) =   100%

( )
( )

(1 )  100%
( )
n+1(1 )  100%
( 1)

m

m n
e n   

C n
c n
c n

n  n -

∆

= −

= −

i

i

i
i

 

43 Gain of 
division of 
labor 

 

(Theorem 11.2) 

The relative gain gr(k) via division of 
labor in work organization is 
proportional to the repetitive times k at 
specialized subtask-level, where c is a 
positive constant, 1 < c < e. 

-11

( ) - ( )
( ) =   100%

( )
( )

(1- )  100%
( )

1
( )

(1- )  100%

d
r

d
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E k
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c
k
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=

∑
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44 Adaptive 
economic 
equilibrium 

 

(Theorem 12.1) 

A market with autonomic interactions 
between demands D and supplies S is a 
self-regulated and self-adaptive system, 
where any change in demand, supply, or 
both will be autonomously adjusted via 
the leverage of price P to an 
equilibrium.                              

   

     

  

 

  

 

Market conservation Maximizing profits
[ ] [ ]

Lemma 12.xx Lemma 12.xx

D D
P P

S S

D D
P P

S S

↑→ ↓→⎧ ⎫⎪ ⎪⎪ ⎪→ ↑ ⇒ → ↓⎪ ⎪⎪ ⎪→ →↓ ↑⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪↓→ ↑→⎪ ⎪⎪ ⎪→ ↓ ⇒ → ↑⎪ ⎪→ →⎪ ⎪↑ ↓⎪ ⎪⎪ ⎪⎩ ⎭

+

 

45 Formal 
Economic 
Model of 
Software 
Engineering 
Cost 
(FEMSEC) 

 

(Theorem 12.3) 

On the basis of the workload-driven 
project organization laws, the expected 
project cost C can be rigorously 
determined with the optimal labor 
allocation L0 and the shortest duration 
Tmin by the following 6 steps: 
  

1) Estimate the project size pS  

2) Determine the ideal workload W1 

3) Allocate the optimal labor L0  

4) Determine the shortest duration Tmin  

5) Determine the expected workload W  

6) Determine the expected project  

     cost C      

1
= ( +4 + )[kLOC]

6p max exp minS S S S

  1 12   [PM]pS
W

ρ
= •  

0
1.414   [ ]L P

r
⎡ ⎤= ⎢ ⎥
⎢ ⎥

 

min 1 0
0

1 2( )
2

T W rL r
L

= − +

1

2
0 0

1
2

   ( 2) [PM]

W W

rL rL

=

− +

0  [$]min LC L •T •C=  

46 Basic essences 
for evolution 

 

(Theorem 13.1) 

The basic evolutional needs of mankind 
are to preserve both the species’ 
biological traits via gene pools, and the 
cumulated knowledge via various 
information systems. 

 

47 Organiza-
tional 
coordination 
efficiency 

 

(Theorem 13.3) 

The natural constraints for social 
organization that forces the architecture 
of large groups to be evolved and 
adapted to tree-form hierarchical 
structures in an organization is the need 
to maintain acceptable coordinating 
efficiency at each level of the 
organization tree.      

 

48 Time-oriented 
optimization 
for large-scale 
project 
organization 

 
(Theorem 13.4) 

Time-oriented optimization for large-
scale project organization states that in 
order to further reduce the shortest 
duration Tmin of an entire large-scale 
project constrained by Theorem 8.7, the 
optimal form of organization is to 
evenly partition the whole project into n 
lightly-coupled parallel subprojects that 
may be conducted by independent 
groups with a shorter duration Ti

min, 1 ≤ i 
≤ n, so that an average n-fold time 

min min
1

min

1

1

n
i i

i
T T

n

T
n

ϖ

=
=

= +

∑
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deduction can be gained. 

49 The n-fold 
error 
reduction 
structure 

 

(Theorem 13.5) 

The error rate of a work product can be 
reduced up to n folds from the average 
error rate of individuals re in a 
coordinative group via n-nary peer 
reviews based on the random nature of 
error distributions and independent 
nature of error patterns of individuals. 

1
( )

n

e e
k

R r k
=

= ∏  

50 Power of 
multi-
disciplinary 
knowledge 

 

(Theorem 14.2) 

The ratio of knowledge space Ω
Σ 

between the knowledge of an expert 
with coherently m disciplinary 
knowledge KΣ  and that of a group of m 
experts with separated individual 
disciplinary knowledge K

m
 is shown in 

the mathematical model, where n is the 
number of average knowledge objects or 
concepts in the disciplines. 

2

m
2

i=1

2

2

( , )

( )!
2!( -2)!

( )!
2!( -2)!

( )

C
C

m

m n

n

K
m n

K

mn
mn

m n
n

mn
m

mn

Σ
Σ

•

Ω =

=

=

≈ =

∑  

 
 
14.4.4 FORMAL PRINCIPLES OF SOFTWARE 
           ENGINEERING   
 

Formal principles of software engineering are a systematical elicitation 
and formalization of new and conventional heuristic principles for software 
engineering. The essential knowledge on theoretical principles of software 
engineering developed in this book can be summarized in Table 14.8, 
highlighted by the 51 Wang’s principles. Further details and explanations of 
these theoretical principles may be referred to previous chapters using the 
links provided under the title of each principle.  
 

Table 14.8 
Formal Principle of Software Engineering   

 

No Principle Description Mathematical model 

1 Polymorphous 
solutions  

 

(Theorem 1.6) 

The solution space SS of software 
engineering for a given problem is a 
product of the number of possible 
design options Nd and the number of 
possible implementation options Ni. 

d iSS N N= •  
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2 Formalization 
of principles 

 

(Theorem 2.1) 

The empirical principles for software 
engineering are heuristic and data-
based; while the formal principles for 
software engineering are rigorous and 
mathematics-based, which are elicited 
and refined from the empirical 
principles. 

 

3 Validation of 
abstract 
propositions 

 

(Theorem 3.2) 

The abstract and information-based 
propositions and work products, such as 
a design or a specification of a system, 
is bounded by logical verifications, 
mathematical proofs, systematical 
reviews, behavioral simulations and 
tests, and/or in field trials. 

 

4 Compatible 
intelligent 
capability 
 

(Theorem 3.4) 

Natural intelligence (NI) and artificial 
intelligence (AI) are compatible by 
sharing the same mechanisms of 
intelligent capability. 

                              

AI  ∝  NI 

5 Deductive 
inference 

 

(Theorem 3.6) 

Given an arbitrary nonempty set X, let 
p(x) be a proposition for ∀x ∈ X, a 
specific conclusion on ∃a ∈ X, p(a) can 
be drawn as in the mathematical models.  

∀x ∈ X, p(x)  ∃a ∈ X, p(a) 

or 

(∀x ∈ X, p(x) ⇒ q(x))   

(∃a ∈ X, p(a) ⇒ q(a)) 

6 Inductive 
inference 

 

(Theorem 3.7) 

If ∃a, k, succ(k) ∈ X, p(a) and p(k) ⇒ 
p(succ(k)) are three valid propositions, 
then a generic conclusion on ∀x ∈ X, 
p(x) can be drawn as in the 
mathematical models. 

 

  

((∃a ∈ X, p(a)) ∧  

(∃k, succ(k) ∈ X, (p(k) ⇒ 
p(succ(k))))   ∀x ∈ X, p(x)  

or 

((∃a ∈ X, p(a) ⇒ q(a)) ∧ 
(∃k, succ(k) ∈ X, ((p(k) ⇒ 
q(k)) ⇒ (p(succ(k)) ⇒ 
q(succ(k)))))   

∀x ∈ X, p(x) ⇒ q(x)        

7 Abductive 
inference 

 

(Theorem 3.8) 

Based on a general implication ∀x ∈ X, 
p(x) ⇒ q(x), a specific conclusion on ∃a 
∈ X, p(a) can be drawn as in the 
mathematical models. 

  

(∀x ∈ X, p(x) ⇒ q(x))   

(∃a ∈ X, q(a) ⇒ p(a))    

or 

(∀x ∈ X, p(x) ⇒ q(x) ∧ r(x) 
⇒ q(x))  (∃a ∈ X, q(a) ⇒ 
(p(a) ∨ r(a)))            

8 Analogical 
inference 

 

Based on a specific predicate ∃a ∈ X, 
p(a), a similar specific conclusion can 
be drawn iff ∃x ∈ X, p(x) as in the 

∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a) 
 ∃b ∈ X ∧ b ≠ a, p(b)    

or 
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(Theorem 3.9) mathematical models. 
 
               

(∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a) 
⇒ q(a))  (∃b ∈ X ∧ b ≠ a, 
p(b) ⇒ q(b)) 

9 Necessary and 
sufficient 
conditions of 
software usage 
 

(Theorem 3.10) 

Those that warrant the requirements for 
software solutions are the system  
behaviors of repeatability, 
programmability, and run-time 
determinability. 

 

 

10 Principle of 
abstraction 

 

(Theorem 4.2) 

Given an arbitrary set X and any 
property p, there is a set A such that the 
elements of A are exactly those members 
of X which have the property p. 

A = {a | a ∈ X ∧ p(a)}          

11 Primary types 
of 
computational 
objects 
 

(Theorem 4.4) 

The RTPA type system T encompasses 
17 primitive types elicited from 
fundamental computing needs.  

 

T = {N, Z, R, S, BL, B, H, P, TI, D, 
DT, RT, ST, @eS, @tTM, 
@int ,ⓢsBL}                                

12 Type 
equivalence 
 

(Theorem 4.5) 

Two types T1 and T2 are equivalent, iff 
the domain of type T1 is either identical 
to or a subset of that of T2. 

 

T1(x) = T2(y) ⇒  T1(x)  T2(y)  

or 

T1(x) ⊆ T2(y) ⇒  T1(x)  T2(y) 

13 Meta software 
processes 
 

(Theorem 4.6) 

The RTPA meta process system P 
encompasses 17 fundamental 
computational operations elicited from 
the most basic computing needs.   

P = {:=, , ⇒, ⇐, , , , 

| , | , @, , ↑, ↓, !, ⊗, , §}    

14 Software 
composing 
rules 
 

(Theorem 4.7) 

The RTPA process relation system R 
encompasses 17 fundamental algebraic 
and relational operations elicited from 
basic computing needs. 

R = {→, , |, |…|…, 

*R , R+
,

iR , , , ||, 

∯ , |||, », , t, e, i} 

15 The primitive 
computational 
behaviors 
 

(Theorem 5.2) 

The most fundamental computational 
operations are logical, arithmetic, and 
memory access operations on bits. 

 

16 Nature of 
requirements 
and 
specifications 

 

(Theorem 5.3) 

Requirement elicitation focuses on 
desired functions of a system δ, while 
system specification focuses on the 
entire behavioral space of the system Ω, 
including both δ and the undesired but 
potential system transitions represented 
by δ  in the behavioral space. 

SΩ  = # #δ δ+  

     = #S • #∑         
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17 The 
weaknesses of 
automata 

 

(Theorem 5.4) 

Automata and FSMs as a system 
composition and modeling method built 
on event-driven mechanisms are 
inadequate to model the complete basic 
computational requirements, particularly 
the lack of the descriptive power for: 
 

a) System architectures and data objects 
    modeling; 
 

b) Nonevent-driven transitional process  
     modeling; 
 

c) Detailed behavioral descriptions; 
 

d) Mathematical operations and 
    processing of complicated languages. 

 

18 Fundamental 
computational 
capabilities 

 

(Theorem 5.5) 

The essential capabilities for 
computation are as follows:   
• A memory for storing bit information; 
 

• A simple addressing capability for 
  accessing information in the memory; 
 

• Read/write operations for retrieving or 
   updating the memory;  
 

• A conditional and quantitative 
   evaluation capability for interpreting 
   the inputted information;   
 

• A stored-information-driven 
   mechanism for determining the next 
   step.  

 

19 Primitive form 
of information 
 

(Theorem 7.1) 

The most fundamental form of 
information that can be represented and 
processed is binary digit where k = b = 
2.   

⎡ ⎤
⎡ ⎤2

:

   log

log  [ ]

b b

b

I f M S

M

M bit

= →

=

=

 

20 Relationship 
between a 
hypothesis 
and a theory 
 

(Theorem 8.1) 

The necessary and sufficient conditions 
for a hypothesis Hg(C, O, G, P, F) to be 
proven as a theory T are iff it fulfills the 
following criteria. 
 

Hg  T, iff  C ∧ O ∧ G ∧ P ∧ 
F = T     

21 Engineering 
Maturity 
Model (EMM) 
 

(Theorem 8.3) 

The applied engineering disciplines 
have four maturity levels known as the 
levels of emergence (L1), art (L2), 
engineering (L3), and post-engineering 
(L4).   

1 2 3 4:EMM L L L L⊆ ⊆ ⊆  

22 Incompre-  
ssible 
workload 
 

A given ideal workload W1 in software 
engineering can not be compressed by 
any kind of labor allocation, and in the 
best case when there is only one person 
involved, the minimum workload W = 

W ≥ W1 = Wmin 
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(Theorem 8.5) W1 = Wmin  may be reached. 

23 Exchange- 

ability from 
labor to time 
 

(Theorem 8.8) 

The exchange rate from labor to time 
γL∼T in a coordinative work organization 
is determined by the ratio between the 
increment of time ∆T and the increment 
of labor ∆L.               

1

0 1
  [M/P]

-

L T

min

T
L 

T - T
L L

γ ∆=
∆

=

∼

 

24 Exchange-
ability from 
time to labor 
 

(Theorem 8.9) 

The exchange rate from time to labor 
γT∼L in a coordinative work organization 
is determined by the ratio between the 
increment of labor ∆L and the increment 
of time ∆T. 

0 1

1 min

 - 
  [P/M]

T L
L
T 

L L
T - T

γ ∆=
∆

=

∼

 

25 Constraint on 
group size in 
coordinative 
work 
 

(Theorem 8.10) 

There exists an upper limit of group size 
Smax in coordinative work organization 
in software engineering. Therefore, 
large projects must be partitioned into 
multiple parallel groups that each of the 
groups obeys the same natural 
constraint.        

Smax = max (L0(r)) = 20 [P]   

26 The risk of 
nonoptimal 
work 
organization 
 

(Theorem 8.11) 

The risks R due to irrational decisions 
of work organization are proportional to 
the coordination rate r in a project. That 
is, the higher the r, the higher the risk 
under nonoptimal labor allocation.     

r∝R  

27 Cognitive 
Models of 
Memory 
(CMM) 
 

(Theorem 9.3) 

The architecture of human memory is 
parallel configured by the Sensory 
Buffer Memory (SBM), Short-Term 
Memory (STM), Long-Term Memory 
(LTM), and Action-Buffer Memory 
(ABM).  

CMM   SBM 

             || STM 

             || LTM                         

             || ABM 

28 Generic forms 
of learnings 

 

(Theorem 9.6) 

There are sufficiently four categories of 
learning L known as those of knowledge 
(Lk), behaviors (Lb), experience (Le), 
and skills (Ls). 

( , , , )k b e s=L L L L L  

29 Representa- 
tion of 
learning 
results 

(Theorem 9.7) 

The internal memory in the form of the 
OAR structure can be updated by a 
conjunction between the existing OAR 
and the newly created sub-OAR. 

  

OAR’ ST  OARST ∪               
                  sOARST  
     = OARST ∪ (Os, As, Rs)      

30 Principal 
intelligent 
advantages 

 

(Theorem 9.8) 

On the basis of two principal advantages 
known as the qualitative properties 
(Theorem 9.1) and quantitative 
properties (Theorem 9.2), humans gain 
the power as the most intelligent species 
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in the world.  

31 Cognitive 
mechanism of 
sleeping 

(Theorem 9.10) 

Sleeping is a subconscious process for 
LTM establishment. 

        

 

Cognitive purpose of sleep 

    = LTM establishment 

32 Mechanism of 
LTM 
establishment 

 

(Theorem 9.12) 

The entire memory of information 
represented as an OAR model in the 
brain is updated by incorporating the 
sub-OARs formed in STM based on the 
following selective criteria:  
 
    a) A new sub-OAR in STM was 

more frequently used in the 
previous 24 hours;  

    b)  A new sub-OAR in STM was 
related to the existing OAR in 
LTM at a higher level of the 
neural cluster hierarchy;  

    c)  A new sub-OAR in STM was 
given special attention so that it 
obtained a higher retention 
weight.  

 

33 Equivalence 
between open 
and closed 
systems 
 

(Theorem 10.3) 

An open system S and a closed system 

S in the same context is transformable 
when their environments SΘ  and SΘ  

( S C SΘ = ⊄ ) are taken into 

consideration, respectively.     

S

S

 = S

S =  

S

S

⎧⎪ Θ⎪⎪⎨⎪ Θ⎪⎪⎩

 

34 The bottleneck 
principle of 
systems 

(Theorem 10.7) 

The output work of a serial system W(Ss) 
is determined by the least powerful 
component of the system. 

W(Ss) = min (W(Ci ) |  

            Ci ∈ Cs ∧ 1 ≤ i ≤ n)) 

35 The linear 
sum principle 
of systems 
 

(Theorem 10.8) 

The output work of a parallel system 
W(Sp) is a sum of the work done by all 
its components less the overhead of the 
system ϖ.        

n

1
( ) ( ) - ,

        ,   > 0

p i
i

i p

W S W C

C C

ϖ

ϖ
=

=

∈

∑  

36 Orientation of 
software 
engineering 
complexity 
theories 
 

(Theorem 
10.13) 

The complexity theories of computation 
and software engineering are different. 
The former is focused on the problems 
of high throughput complexity that are 
computing time efficiency centered; 
while the latter puts emphases on the 
problems of functional complexity that 
are human cognition time and workload 
oriented. 
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37 Normalized 
software 
system 
architectures 

(Theorem 
10.15) 

Components of different subsystems 
should not be coupled directly, rather 
than be invoked through their top layer 
components shared in the same 
subsystem.  

 

 

38 Properties of 
games 

 

(Theorem 11.3) 

A formal game G is deterministic and 
conservative. That is, once the game G = 
(P, D, M, S) is set, the properties of G 
are determined and predictable, but not 
changeable by any player in the game. 

 

39 Conditions of 
win-win 
decisions 

 

(Theorem 11.4) 

The states that a win-win decision can 
be achieved when the following 
condition of a nonzero-sum game is 
satisfied, where σ is the sum of the 
game that is a positive nonzero constant, 
si is the expected score of player i, and 
ns is the number of sets of matches in 
the game.   

1

1 n

i
s i

s
n

σ
=

≥ ∑  

40 Property of 
decision grids 

 

(Theorem 11.5) 

The decision distance Dt in a decision 
grid is a constant that is determined by 
the number of decision trials ti spent in 
the time series, where dr and dw 
represent numbers of right and wrong 
decisions, respectively.   

t i r wD t d d= = +  

41 Random 
series of 
unlimited 
trials 

(Theorem 11.6) 

Random decisions, or equal probability 
right and wrong trials, will not lead to a 
success in any series of decisions under 
unlimited trials. 

 

42 Random 
series of 
limited trials 
 

(Theorem 11.7) 

Random decisions, or equal probability 
right and wrong trials, will not lead to a 
success in any series of decisions under 
limited trials. 

 

43 Conditions of 
quality control 
systems 

 

(Theorem 11.8) 

The necessary conditions for 
implementing a quality control system 
for a given product, service, or system 
are that all attributes of its quality can 
be: 

      a) Abstractly identified 

      b) Quantitatively defined, and  

      c) Independently measurable. 
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44 Predictability 
of new 
equilibrium 

 

(Theorem 12.2) 

A newly established equilibrium on 
price P’e is determined by the effect P’ 
and feedback effect P’’ of the driving 
forces deviating from the current 
equilibrium, and the increment of price 
caused by the shifting of equilibriums is 
as shown in the mathematical models, 
where ∆P may be positive or negative 
that represents a upward or downward 
shifting of the current equilibrium, 
respectively. 
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45 Ultimate 
objective of 
software 
engineering 

 

(Theorem 12.4) 

Automatic code generation is the only 
silver bullet to overcome the natural 
obstacles of the conservative software 
development productivity, to reduce 
software development costs, and to 
improve software quality as a result of 
reduced human involvement and 
uncertainty. 

 

46 Exponential 
Software 
Legacy 
Maintenance 
Costs (SLMC) 
 

(Theorem 12.5) 

The ratio of maintenance cost Cm in a 
software development organization, 
rm%, tends to exponentially increase 
over time t, and it is proportional to the 
total number of legacy systems NL that 
the organization produced. 

 

47 Strength of 
motivations 

 

(Theorem 13.2) 

A motivation M is proportional to both 
the strength of emotion |Em| and the 
difference between the expectancy of 
desire E and the current status S, of a 
person, and is inversely proportional to 
the cost to accomplish the expected 
motivation C, where 0≤ |Em| ≤ 4, 0 ≤ 
(E,S) ≤ 10, and 1 ≤ C ≤ 10.  

2.5 | |  ( - )mE E S
M

C
• •=  

48 Mechanism of 
Software 
Maintenance 
Crisis (SMC) 
 

(Theorem 14.1) 

A software development organization 
may face a situation known as the 
software maintenance crisis, in which 
the ratio of the maintenance costs rm% is 
approaching 100% of the total costs that 
the organization spent. 

 

49 Rigorous 
levels of 
empirical and 
theoretical 
knowledge 

(Theorem 15.1) 

An empirical truth is a truth based on or 
verifiable by observations, experiments, 
or experiences. In contrary, a theoretical 
proposition is an assertion based on 
formal theories or logical inferences. 
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50 Necessary and 
sufficient 
conditions of 
IC 
 

(Theorem 15.3) 

The conditions of IC, CIC, are the 
possession of event Be, time Bt, and 
interrupt Bint driven computational 
behaviors. 

 

( , , )IC e t intC B B B=  

51 Necessary and 
sufficient 
conditions of 
AC 
 

(Theorem 15.3) 

The conditions of AC, CAC, are the 
possession of goal Bg and inference Binf 
driven computational behaviors, in 
addition to the event Be, time Bt, and 
interrupt Bi driven behaviors. 

             

( , , , , )AC g inf e t intC B B B B B=  

 
It is interesting to compare and contrast the above set of formal 

principles and those of the heuristic ones as summarized in Table 14.6 and 
presented in Chapter 2. The comprehensive set of the 50 Wang’s laws and 51 
Wang’s principles form the core of the theoretical framework of software 
engineering and the foundation towards a matured discipline. They are the 
crystallization of software engineering theories, which are exploratively 
elicited, carefully refined, and rigorously formalized from a vast set of 
empirical knowledge of software engineering and best software industrial 
practices.   

 
 
 

14.5 Impact of the Theoretical 
         Foundations to Software 
         Engineering 
 

 
 
The theoretical framework of software engineering developed throughout 
this book, as summarized in Section 14.4, provides a set of essential 
knowledge for excellent software engineers. This section introduces a set of 
cognitive principles of knowledge engineering. Based on them, the efforts 
and complexities for both knowledge and skill creation and acquisition are 
analyzed. Then, the expected impacts of the theoretical foundations of 
software engineering are discussed. A set of student feedback is reported that 
presents a fresh angle in perceiving the impacts of this book and related 
courses at both undergraduate and graduate levels. 
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14.5.1 THE COGNITIVE PRINCIPLES OF KNOWLEDGE 
           ENGINEERING 
 

This subsection creates a set of cognitive models of knowledge 
acquisitions and analyzes their complexities. This leads to the explanation 
why multidisciplinary knowledge is necessary and possible to be acquired by 
individuals. It is also helpful to explain why software engineering problems 
as a whole need to be investigated via the transdisciplinary approach.     
  
14.5.1.1 The Effort Model of Knowledge Creation and Acquisition     
 

According to the OAR model developed in Section 9.4.2, a knowledge 
is a relation between two or more abstract objects or concepts in long-term 
memory, while a behavior is a relation between a concept and an action in 
the action buffer memory. In other words, knowledge is meant what to be, 
while behaviors are meant what to do. Therefore, to some extent, Francis 
Bacon’s assertion (1561-1626) that “knowledge is power” may be expressed 
more accurately as “intelligence is power” on the basis of Theorem 9.9, 
because it is intelligence rather than knowledge that transfers information 
and motivations into actions and behaviors.             

It is amazing that human knowledge creation and development is so 
difficult where the solving of a hard problem always requires tremendous 
effort for years, decades, even centuries. However, once the knowledge is 
created, an ordinary effort may just be needed by individuals to understand 
and acquire it fairly quickly with no difficulty. This phenomenon in 
intelligence and knowledge science can be described more formally below.   

 

 
Eq. 14.3 can be explained by the cognitive informatics theories and the 

OAR model developed in Section 9.4.2. It is recognized that the creation of 
knowledge is a process that establishes a novel relation between two or more 
objects or concepts by searching and evaluating a vast space of possibilities 
in order to explain a set of natural phenomena or abstract problems. Because 
the memory capacity of the brain can be as high as 8,43210  bits as estimated in 
Section 9.4.5, the complexity in searching for new knowledge is necessarily 
infinitive, if not a short cut should be discovered by chance or extensive and 

 
Lemma 14.1 For a specifically new knowledge K, the effort spent in its 
creation Ec(K) is much greater than that of its acquisition Ea(K), i.e.:        

 

               Ec(K) >> Ea(K)     (14.3) 
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persistent thoughts. However, the acquisition of knowledge is to simply add a 
known relation in the LTM of an existing knowledge structure. This is why 
the speed for acquiring a given knowledge is relatively very high than that of 
knowledge creation.    

It is noteworthy that the speed for acquiring skills could be much 
slower than that of knowledge acquisition, because of the need for hands on 
actions and the creation of a permanent internal behavioral model in the 
action buffer memory. 
 

 
Another angle for analyzing the effort of creative work in software 

engineering is by estimating the workload according to the coordinative work 
organization theory in Section 8.4. For instance, based on the statistical data 
in authoring this book, the workload can be estimated below with the time 
spent known as T ≈ 10,000 hrs = 42.0 months, i.e.: 

   
    1 =     

= 1 42.0 42.0 [PM]

W   L  T•

• =
   

 
If this book were authored by multiple experts from 12 individual 

disciplines as covered in this book and resulting in the same degree of 
seamless coherency and consistency as that in this book, i.e., not an edited 
assembly of individual views toward software engineering, the effort 
according to Theorem 8.4, subject to r = 30%, would be the following: 

 

                  

1
( 1)

(1 )
2
12.0(12.0 1)

42.0 (1 0.3 )
2

873.6 [PM]

L L
W W r

−= + •

−= + •

=

 

 
The result is about 72.8 person-years when the given interpersonal 

coordination rate r = 30%, which indicates a mission virtually impossible! 
This example demonstrates that highly complicated problems may be 
feasibly and efficiently resolved by a single brain with enhanced and 
necessary multidisciplinary knowledge, rather than by a group of individuals. 
That is why a software engineering project should not involve too many 

 

Lemma 14.2 The effort of skill acquisition Ea(S) is much greater than that 
of knowledge acquisition Ea(K), i.e.: 
 

               Ea(S) >> Ea(K)     (14.4) 
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architects in early phase no matter how complicated it is. This is also the 
experience of the author gained in the creation of this book on 
transdisciplinary foundations of software engineering. 

 
14.5.1.2 The Complexity Model of Knowledge Creation    
 

According to the relational complexity theory of systems as developed 
in Section 10.3.3, the domain and magnitude of experts’ knowledge can be 
estimated based on the number of abstract objects or concepts and relations 
among them.     
 

Definition 14.23 The potential number of relations among the 
combination of knowledge from n disciplines, Cr(n), is in the order of n², i.e.:  
 
                                             Cr(n) = O(n²)                                                               
                                                       = n • (n-1)        (14.5) 
 
where it is assumed that a pairwise relation r is asymmetric, that is,  r(a, b) ≠ 
r(b, a), as given in Lemma 10.10.     
 

Example 14.1 Recall that this book elicited and integrated fundamental 
theories of 12 disciplines. Assuming each discipline has 1,000 concepts in 
average, the entire knowledge or the total number of consumed concepts that 
an expert needs to cohesively acquire within all the 12 disciplines, Cr(n), 
would turn up to be:    

 
Cr(n) = n • (n-1) 

            ≈ 12 • (12-1) • 106 
            = 1.32 × 108                (14.6) 

 
This figure shows that totally about 132 million new relations between 

multidisciplinary concepts need to be generated in the brain before the 
written of a book like this is possible.  

 
In other words, the relational complexity of the multidisciplinary 

knowledge system (Eq. 10.6) is huge enough to enable new concepts, 
principles, and theories to be created that may not belong to any individual 
disciplines but on their edges. This reveals the advantages of an expert or a 
reader who possesses multidisciplinary knowledge toward a set of intricate 
problems under study, particularly in software engineering.            
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Constrained by the cognitive, organizational, and resources limitations 
and their complicated interrelations, most fundamental problems in software 
engineering theories are not a trivial one. Many of the problems have well 
been known in the very beginning of the emergence of software engineering 
40 years ago; some of them may be traced back to more than 100 years in 
management science and even earlier in system philosophy. This is why 
Brooks classified these fundamental problems encountered in software 
engineering as the essential ones rather than the accidental ones [Brooks, 
1975/95]. If only empirical studies are conducted on these problems, perhaps 
many additional decades are still needed to find some theoretical solutions 
for them, such as Theorem 8.7 – the 23rd Law of software engineering on the 
optimal labor allocation and the shortest duration in cooperative work, and 
Theorem 10.6 – the 34th Law of software engineering on the conservation of 
system gains.  

 
14.5.1.3 The Cognitive Model of Knowledge Spaces of Multidisciplinary 
              Knowledge 

 
Most hard but interesting problems in research are on the edges of 

conventional disciplines. Therefore, transdisciplinary and multidisciplinary 
research are necessary. In addition, the maintaining of a global and holistic 
view is the key insight for fundamental research, which will be formally 
stated in Corollary 14.4. 

 

    
The above lemma can be proven on the basis of the OAR model for 

internal knowledge representation in the following theorem and related 
corollaries.    

 
Lemma 14.3 The impact of an expert with coherently m disciplinary 
knowledge KΣm is much greater than those of m experts with separated 
individual disciplinary knowledge Km, i.e.: 
 

                                             
1

m

m m
i

K KΣ
=

>>∑              (14.7) 
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Example 14.2 Reusing the data and context as given in Example 14.1, 
i.e., m = 12 and n = 1,000, with Eq. 14.8, the knowledge space of an expert 
with coherently 12 disciplinary knowledge can be determined as: Ω

Σ
(m,n) = 

Ω
Σ
(12, 1,000) = 12, i.e., 12 times greater than that of the same of the 12 

experts with separated individual disciplinary knowledge.     
 
 

 
Corollary 14.2 The ratio of knowledge space Ω

1
 between the knowledge 

of an expert with coherently m disciplinary knowledge KΣm
 and that of a 

single expert with one of the individual disciplinary knowledge K
1
 is:  

 

                               
1

1
2

2
2

( , )

C
C

m

m n

n

Km n
K

m

Σ

•

Ω =

= =
                            (14.9) 

 

where n is the number of average knowledge objects or concepts in a 
given discipline.   

 
 The 50th Law of Software Engineering 

 

Theorem 14.2 The power of multidisciplinary knowledge states that the 
ratio of knowledge space ΩΣ between the knowledge of an expert with 
coherently m disciplinary knowledge KΣm and that of a group of m 
experts with separated individual disciplinary knowledge Km is: 
 

                
2 2

m 2
2

i=1

( , )

( )!
2!( -2)! ( )

( )!
2!( -2)!C

C

m

m

m n

n

Km n
K

mn
mn mn

m n mn
n

m

Σ
Σ

•

Ω =

= = ≈

=

∑
               (14.8) 

          
where n is the number of average knowledge objects or concepts in the 
disciplines.  

© 2008 by Taylor & Francis Group, LLC



   Chapter 14  Retrospect on SE   1171 
 

Example 14.3 Similar to the settings of Example 14.2, applying 
Corollary 14.2 the knowledge space of a single multidisciplinary expert with 
coherently 12 disciplinary knowledge is Ω

1
(m, n) = Ω

1
(12, 1,000) = 122, i.e.,  

144 times greater than that of one of the 12 experts with separated individual 
disciplinary knowledge.     

 
Corollary 14.3 explains the usage of the transdisciplinary approach 

towards the establishment of the theoretical framework of software 
engineering. The following corollary explains which is more important in 
research and software engineering if there is a need to choose one from 
broadness and depth of individuals’ knowledge structures.  

 

 
Corollary 14.4 is perfectly in line with the philosophy of holism as 

discussed in Section 3.2 on philosophies of engineering sciences.   
 
 

14.5.2 EXPECTED IMPACTS OF WANG’S LAWS AND 
           THEOREMS TO SOFTWARE ENGINEERING    
 

Throughout the development of this book, it is observed that, because 
of its inherited complexity, wide applications, and both human and machine 
intelligent dependency, software engineering is not only a discipline that 
requires multidisciplinary knowledge, but is also an ideal testbed for 
evaluating existing theories and for developing new theories for the related 
disciplines.  

The closely related disciplines are such as scientific philosophy, 
mathematics, computer science, engineering science, linguistics, information 
science, cognitive informatics, system science, management science, 
economics, sociology, and natural/machine intelligence. This book 
demonstrates that a wide range of new or enhanced theories, methodologies, 
and techniques may be developed for those disciplines during the 
systematical investigations of the theoretical and transdisciplinary 
foundations of software engineering as shown in Table 14.9. In table 14.9, 

 

Corollary 14.4 In knowledge acquisition and knowledge engineering, 
broadness is more important than depth.  

 

Corollary 14.3 The more the interdisciplinary knowledge one acquires, 
the larger the knowledge space, and hence the higher the possibility for 
creation and innovation. 
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the expected impacts of the theoretical foundations of software engineering 
are classified as theories newly created, significantly advanced, and/or 
formalized from empirical observations. 

  
Table 14.9 

The Impact of Software Engineering Theories on Related Disciplines   
 

Impact Chapter
/Section 

Discipline Theory 
Newly 
created 

Significantly 
advanced 

Formalized 

1.3 The Information-Matter-
Energy (IME) model of SE 

   

1.3 Hierarchical Abstraction 
Model of System Descrip-
tivity (HAMSD) of SE 

   

1.3 Basic constraints of SE 
(cognitive/organizational/ 
resources) 

   

2.3 

Software 
engineering 

The unified framework of SE 
principles (31 principles)  

   

3.3 Formal inference 
methodologies 

   

3.4 The nature of software    

3.5 

Philosophy 

The Philosophy of software 
engineering 

   

  4.5 Denotational mathematics    

4.5 The big-R notation    

  4.6 Real-Time Process Algebra 
(RTPA) 

   

4.8 

Mathematics 

Notations of software 
engineering 

   

5.2 Essences of computing: Data 
objects/behaviors/ 
programs/resources modeling 
and manipulation  

   

5.2 Cognitive computers    

5.3 Formal type theory    

5.4 The abstract model of 
software and computing 
platforms   

   

5.5 

Computing 

The unified mathematical 
model of programs   
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6.2 The formal model of the 
Generic English Grammar 
(GEG)   

   

6.5 Deductive semantics of SE    

6.6 

Linguistics 

Deductive semantics of 
RTPA 

   

7.1 Bit: the common root of 
information science and 
computer science 

   

7.3 Role of information to 
mankind evolution 

   

7.4 

Information 
science 

Informatics laws of software    

8.2 The Engineering Objective 
Model (EOM) 

   

8.2 The Engineering Maturity 
Model (EOM) 

   

8.5 Coordinative Work 
Organization (CWO) theory  

   

8.5 Laws of software engineering 
organization   

   

8.5 

Generic 
engineering 

Formal model of the mythical 
man-month   

   

9.2 Cognitive informatics    

9.2 The Cognitive Model of 
Memory (CMM) 

   

9.3 The Layered Reference 
Model of the Brain (LRMB)  

   

9.3 The cognitive model of the 
brain  

   

9.3 Equivalence between NI and 
AI 

   

9.4 The OAR model of internal 
knowledge representation  

   

9.6 

Cognitive 
informatics 

Cognitive complexity of 
software 

   

10.3 Mathematical models of 
abstract systems 

   

10.3 System topology and 
magnitudes 

   

10.3 

System 
science 

System Organization Trees 
(SOTs) 
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10.3 System algebra    

10.5 The formal framework of 
system principles  

   

10.7 

 

Software system complexity 
theory 

   

11.2 Formal principles of 
management science 

   

11.3 Cognitive process of decision 
making 

   

11.3 The decision grid (DG) 
theory 

   

11.3 Formal game theory    

11.4 Formal model of quality    

11.5 

Management 
Science 

The process infrastructure of 
SE 

   

12.2 Fundamental laws of 
economics 

   

12.2 Formal models of economic 
equilibrium 

   

12.2 Mathematical model for the 
invisible hand (Adam Smith) 

   

12.6 Mathematical models of 
software engineering costs  

   

12.6 The Formal Economic Model 
of SE Costs (SEMSEC) 

   

12.6 Optimization of SE economic 
decisions 

   

12.6 

Economics 

The software legacy 
maintenance cost model 

   

13.2 Formalization of sociology 
principles  

   

13.3 The motivation/attitude-
driven behavioral model  

   

13.4 The formal model of social 
organization 

   

13.4 The formal organization tree 
(OT) 

   

13.5 Coordinative work 
organization theory for large-
scale SE projects  

   

13.5 

Sociology 

Mathematical model of    
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human errors  

13.5 

 

Quality assurance in creative 
work  

   

14.2 Infrastructure of SE    

14.3 Theory for software industry 
organizations 

   

14.3 Software maintenance crisis    

14.5 Cognitive principles of 
knowledge engineering 

   

15.2 The Formal Knowledge 
System (FKS) theory 

   

15.3 The framework of Software 
Science 

   

15.4 Autonomic computing    

15.4 Intelligent code generation    

15.4 

Software 
engineering 
and  
software 
science 
 

Hyper-programming    

 
Details of the newly developed theories have been reviewed in Section 

14.4. Further discussions and explanations may be referred to related 
chapters and sections throughout this book.        
 
 
14.5.3 STUDENTS’ FEEDBACK     
  

Graduate and undergraduate students majoring in software engineering 
at the University of Calgary have experienced the development of this book 
and its earlier versions in the form of lecture notes. The following feedback 
of graduate students from the graduate course on “Theoretical Foundations of 
Software Engineering” and “Empirical Foundations of Software 
Engineering” may reflect some of the influences of this work and its 
approach towards the rigorous treatment of software engineering foundations 
and theories, and the queries on fundamental laws underpinning software 
engineering organization and practice. 

The following citations are student feedback from the above courses in 
their own words:                
     

“I think the course provides an excellent understanding of the 
theoretical foundations of software engineering. The logical organization 
of the material and the well thought out presentations facilitated 
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learning and made the large amount of information manageable. There are 
three main themes of learning that I feel I gained from this course:   

“First, an understanding of the theoretical foundations of software 
engineering is invaluable to any new researcher. The opportunity to have a 
‘guided tour’ of the literature and to have highlighted not only the areas 
of inquiry that fall under each category or study but also to see the 
‘state of the art’ in terms of these fundamental areas was enlightening.  
It was particularly instructive to see how some of the core areas of 
software engineering are changing (e.g., computation) while other areas 
are spawning new avenues of inquiry (e.g., cognitive informatics).   

“Second, an appreciation for the multidisciplinary nature of the 
problematic area was also demonstrated. While some of the fundamental 
areas expressed this theme better than others it was evident from the 
readings that the software engineering problematic is an abstract area of 
inquiry that could benefit from new perspectives from its traditional 
strongholds but that emerging areas like cognitive informatics need to be 
multidisciplinary in order to garner the full appreciation needed for 
software engineering.  I find this theme particularly reassuring since I 
am in a related but separate field of study from software engineering but 
my research interests overlap many of the questions discussed in this 
course. 

“Finally, the readings from the software engineering literature 
highlighted a crucial role of the researcher that I was somewhat 
surprised and particularly pleased to observe.  That is, open critique of 
the field.  I think one of the key functions of the academic community is 
to provide a forum for open debate and critique of practices that are 
detrimental to the field and of course to provide evidence to the ill 
effects of such practices and offer alternative approaches based upon 
solid research. The readings of the Turing award winners were 
surprisingly critical of many of the current practices but despite these 
critiques the authors shared an optimism that I feel is well deserved. 

“If software engineering can continue to attract the caliber of 
researchers exemplified by the readings I have no doubt that many of 
the challenges highlighted in this course will be met. In addition, the 
opportunities that these challenges represent are extremely exciting for 
a new researcher like myself since they represent opportunities to make 
fundamental contributions to the field.” 

 
“In terms of impact I think that the most promise is held in the 

‘cognitive’ stream since I think this area of research seems to hold the 
greatest opportunity in terms of articulating the relationship between 
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energy-matter and information which serves as the basis for software 
engineering and many other areas of inquiry. This is certainly not meant 
to imply that similar impacts could not arise from the mathematical based 
approaches. In fact, I think that the findings in cognitive informatics 
approaches will drive the development of new forms of mathematical 
inquiry that better supports the needs of software engineering.”  
 

“From this course I learn to judge software standing on a relatively 
high level in critical thinking. Once I wondered how I put these theories 
into practice. After reading, thinking, and analyzing those lecture notes 
again and again, every time I have new findings. These theories indeed 
exist everywhere in the software industry. They propose the problems 
yet to be solved in this area; they extend software engineering to a 
larger scope; they expound essence of software in a philosophical way. 
Like building a house, whether it has a good foundation is very critical. 
This course set up a good foundation for my software engineering 
building. As a programmer, I would think about algorithm complexity and 
code complexity; as a designer, I would consider using specification 
language to describe system rigorously; as a project manager, I would 
specialize in coordination between systems, developers and users. I have 
acquired a clear sketch of software engineering in a top-down approach.” 
 

“In my particular case, as with any knowledge gain, I was once again 
reminded that “the more you know, the more you realize how little you 
know”. The course showed me that some of the problems or issues the 
software industry faces are rooted deeper than I thought.  

“I always blamed “bad” processes for most of the issues associated 
with software development. The information gained from the course 
allows me to see that some of the problems are a result of software 
being unable to follow the natural laws of the physical world. While I 
always knew that software development or software engineering activity 
was like no other discipline, I had no idea in how many ways it does not fit 
the traditional understanding of a given product’s or entity’s (our 
software system) relationship with the rest of the world.” 
 

“The classical papers provided an excellent appreciation for the 
discussions that have occurred and also pointed to emerging issues in the 
field.  I think insights into the emerging aspects of software engineering 
were also introduced throughout as part of the current ‘state-of-the-art’ 
in each of the fundamental areas. I found this particularly useful as a new 
researcher and I suspect that those practicing software engineering also 
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benefited from knowing the current state of affairs in the field in 
addition to the historical discussions. Interestingly, many of the 
fundamentals issues introduced by the classical authors still hold true 
today albeit in different forms and to varying degrees but it does point 
to the importance of addressing fundamental issues which solve a host of 
problems rather than simply addressing one problem that applies to only 
one situation under certain conditions. 

 “The first issue of interest was the strong theoretical base that is 
evidenced in the writings of each of these individuals. I find this 
somewhat surprising since even now a lot of the software engineering 
research is aimed at ‘practical’ problem solving and not more theoretical 
issues. I find this particularly interesting since while these individuals 
certainly eventually migrated towards academic careers they also had 
periods in industry, albeit often in research roles. This highlights a point 
often lost on many people not involved in research; that there is a need 
for solid research skills in both academia and industry. This sentiment 
was echoed in several of the papers in various forms such as a call for 
relevancy or for the need for closer ties by industry with the academic 
community. The classical papers also demonstrated one of the benefits of 
an emerging area of research, which is it attracts researchers from 
diverse backgrounds. These multiple perspectives and research 
backgrounds I think served the field well and the benefits of such 
approaches can be seen in more recent areas of inquiry like cognitive 
informatics which by design employs a multidisciplinary approach.”   
 

“The problems that we face and want to solve today can be traced 
to the foundations of software engineering. It is helpful for us to tackle 
the problems via revisiting the classical theories and practices in history. 
We can get good understanding about the nature of the current problems 
when we connect them to their headstreams in other disciplines in history 
and then try to find the solutions based on such understanding. From the 
point of view of history and tradition, it is possible for us to see some 
problems that have not appeared in our vision.  
 “With the perception of the history and tradition of software 
engineering, we can understand the ideas of pioneers and masters of the 
art more deeply. The development of theories, practices and technologies 
of software is no longer a set of broken fragments for us; they are now 
organic and vivid in our perception as a whole. Some mythical 
breakthroughs of technologies to us before are now logical and 
reasonable development of solutions for the original problems. Without 
this course, we could not have had such understanding and insight.  
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“One of the most important gains from the course is the methodology 
of research. Software engineering is not isolated from other disciplines, 
some of which have been well developed and some that are still not 
developed, but related tightly with other disciplines. The progress of 
other disciplines will potentially make contributions to software 
engineering and vice versa. This gives our researchers an opportunity to 
address some theoretical or practical problems of software engineering 
on the edge of investigation. The methodology of research in software 
engineering could be detailed in the following two steps: 
 

(a) Each current problem is or can be found to have originated from 
some historical problems. Revisiting the classical theories related 
with the problem can help generate a different vision and 
understanding to tackle the problem. 

 
(b) Nearly all the disciplines follow such a rule: the theories get 

developed when more and more theories and technologies that 
have already been developed in other disciplines are introduced 
into this area. So the hot spots of research are always on the 
edge.  

  
“The knowledge acquired from the course is very useful as it gives 

the students some insight into the foundations of software engineering 
and broadens their outlook. The knowledge enables the students to 
understand the theory of computation and other inter-related issues in 
software engineering. The different views from leading scientists in the 
area of computer science made the course a very interesting one. 

“Finally, I think the course highlights the wealth of opportunities 
that exist within software engineering to make fundamental contributions 
to research.  What more could a researcher ask for!?” 

 
 

 
14.6 Summary 
 

 
 

The theoretical framework of software engineering developed in this book 
reveals that software engineering not only encompasses a wider domain of 
empirical applications, but also possesses much more theoretical essences 
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that are closer to the root of human knowledge in terms of mathematics, 
philosophy, cognitive informatics, computation, economics, sociology, and 
system science. 

A vast volume of empirical knowledge has been cumulated in software 
engineering in the last four decades that is yet to be theoretically processed 
and refined. The formal documentation of software engineering theories and 
the fundamental body of knowledge presented in this book are the first 
attempt to establish the formal and coherent knowledge framework of 
software engineering towards a matured discipline. The theoretical 
framework of software engineering presented in this book encompasses the 
fundamental principles and constraints of software engineering, theoretical 
foundations of software engineering, and transdisciplinary foundations of 
software engineering. 

On the basis of the first three parts of this book on principles, 
constraints, theoretical foundations, and transdisciplinary foundations of 
software engineering, this chapter has put the focuses onto the entire 
infrastructure of software engineering and discussed the organization of the 
software industry. This chapter has also summarized the formalized body of 
knowledge towards software engineering. The impacts of the 
interdisciplinary foundations for software engineering have been discussed, 
and students’ feedback on this book in the form of lecture notes has been 
reported.  

 
 

ARCHITECTURAL SUMMARY OF KNOWLEDGE 
 

Through this chapter, Retrospect on Software Engineering, readers 
have achieved the following strategic goals with the knowledge structure as 
summarized below. 

 
 

Chapter 14. Retrospect on Software Engineering 
 

■ Infrastructures of software engineering    
       •  The process infrastructure of software engineering 
       •  Process-based SE (PBSE) 
           - The organizational model of PBSE 
           - Software engineering process system establishment  
           - Software engineering process system assessment  
           - Software engineering process system improvement  
  
■ Software industry organization    
       •  The nature of the software industry 
       •  Principles of software industry organization 
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           - Basic principles of software industrial organization 
           - Separation of software designer, builders, quality assurors, and 
              maintainers in software engineering 
           - Distributed time-shared development in software engineering 
 

       •  A perspective on the software maintenance crisis 
           - The mathematical model of software maintenance crisis 
           - Reasons behind software maintenance crises 
           - Solutions to software maintenance crisis  
 
■ Essential knowledge towards excellent software engineers 
       •  Basic constraints of software engineering 
       •  Empirical principles of software engineering 
       •  Laws of software engineering 
       •  Formal principles of software engineering 
 
■ Impact of the theoretical foundations to software engineering  
       •  The cognitive principle of knowledge engineering 
            - The effort model of knowledge creation and acquisition     
            - The complexity model of knowledge creation    
            - The cognitive model of knowledge spaces of multidisciplinary 
               knowledge 
 

       •  Expected impacts of Wang’s laws and theorems to SE 
       •  Students’ feedback 
 

 
 
SIGNIFICANT FINDINGS OF THIS CHAPTER 
 

• Process-Based Software Engineering (PBSE) is an organizational 
methodology for software engineering, by which the infrastructure of 
software engineering, encompassing the three process subsystems of 
organization, development, and management, is integrated by a well-defined 
process reference model.         
 
 • The process reference model can be tailored or adapted to a specific 
project according to the nature of a project determining by the project 
factors such as application domain, scope, complexity, schedule, experience 
of project team, reuse opportunities identified, and/or resources availability.  
 

• Tailoring of a PTPM from a comprehensive OPRM makes the 
software project leaders’ tasks greatly simplified. Using this approach, 
project organization and conduct can be effectively performed within an 
organization’s unified software engineering process infrastructure. 
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• The organizational theories and methodologies for the software 
industry, as important part of software engineering in the large, have been 
almost overlooked in this discipline. Towards a matured software 
engineering discipline, the nature of the software industry and the 
fundamental principles of software industrial organization need to be studied.  
 

 • The software market is a sector of the information processing market, 
where standardization and human cognitive familiarity play an important 
role in market share. Therefore, international or industrial standards, as well 
as intellectual properties, are important virtual assets in the software industry. 

       
• Major current strategic problems in the software industry are 

identified as follows:  

  a) Referees are also players: All the responsibilities in software 
design, implementation, and quality assurance are carried out by the 
same organization, even the same engineer or group. As a consequence 
of this confused allocation of responsibilities, when time, budget, or 
skills are limited, quality tends to be the first victim in a software 
engineering project under this form of organization.  

 b) Too high requirements and responsibility are put onto the 
shoulders of customers: The fact that is often overlooked in software 
engineering is that customers may not be able to understand and 
evaluate the requirements, functionality, quality, reliability, and 
complete correctness of complex software systems. Therefore in 
software engineering it is unwise to rely on customers for a complete or 
thoughtful system requirements. It also unwise to let or to agree by any 
party that customers should ensure the sole responsibility for testing 
and evaluating a new software system. 
 
• Distributed Time-Shared Development (DTSD) is a software 

engineering methodology that geographically allocates software development 
work broadly in distributed time zones with a wide-area Intranet. 
 

• The mechanism of Software Maintenance Crisis (SMC) states that a 
software development organization may face a situation known as the 
software maintenance crisis, in which the ratio of the maintenance costs rm% 
is approaching 100% of the total costs that the organization spent. 

 
• The major solutions to deal with the SMC problems in software 

engineering and in the software industry are:  

a) Enhance technologies such as: i) to enhance software lifecycle 
processes to include software maintenance and retirement; ii) to 
increase depreciation of software systems; iii) To adopt a public agent 
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acting like a library to store all code and documents of commercial 
software systems.  

b) Software industry reorganization such as: iv) To create a 
new affiliated service industry to maintain the legacy systems as that of 
garages for the automobile industry; and v) To establish software 
insurance agencies who take responsibility for supporting any 
interrupted service of vendors.  

c) Honor the responsibility and liability of the vendor. 
 

• The power of multidisciplinary knowledge states that the ratio of 
knowledge space ΩΣ  between the knowledge of an expert with coherently m 
disciplinary knowledge KΣ  and that of a group of m experts with separated 

individual disciplinary knowledge K
m
 is ( , )

m

K
m n m

K
Σ

ΣΩ = ≈ , where n is 

the number of average knowledge objects or concepts in the disciplines. 
 
• The ratio of knowledge space Ω

1
 between the knowledge of an 

expert with coherently m disciplinary knowledge KΣ  and that of an expert 

with individual disciplinary knowledge K
1
 is 2

1
1

( , )
K

m n m
K

ΣΩ = ≈ . 
 

• The more the interdisciplinary knowledge one acquires, the larger the 
knowledge space, and hence the higher the possibility for creation and 
innovation in software engineering.     

 
• In knowledge acquisition and knowledge engineering, broadness is 

more important than depth. 
 

• Through out the development of this book, it is observed that, 
because of its inherited complexity, wide applications, and both human and 
machine intelligence dependency, software engineering is not only a 
discipline that requires multidisciplinary knowledge, but is also an ideal 
testbed for evaluating existing theories and for developing new theories for 
the related disciplines.  
 
 
FUNDAMENTAL THEORIES DEVELOPED IN  
THIS CHAPTER 
 
Infrastructure of software engineering 
 

• As the scale of software increases continually at an ever faster rate, 
greater complexity and professional practices become critical, which requires 
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the studies on the infrastructure of software engineering in the form of 
process-based software engineering (PBSE).  

 
• A software engineering process is a set of sequential practices that is 

functionally coherent and reusable for software engineering organization, 
development, and management. It is usually referred to as the software 
process, or simply the process.  

 
• A process reference model is an established, validated, and proven 

software engineering process model that consists of a comprehensive set of 
software processes and reflects the benchmarked best practices in the 
software industry.  

 
• The organization model of PBSE: The common practices in 

organizing a software engineering process system are given in Fig. 14.3.  

• At the entire enterprise level, a common organization’s process 
reference model (OPRM) is established.  

• At project level, a number of parallel development and 
management processes may exist based on the individual project’s 
tailored process model (PTPM), which are derived models of the 
OPRM reference model. The OPRM process reference model is the key 
for empirical PBSE. If an OPRM is well established in an organization, 
the PTPMs at project level can easily be derived. For a PTPM of an 
individual project, the management and development processes should 
be one-to-one designed and synchronized. 

 
• Software Engineering Process System Establishment: An initial 

and fundamental step in PBSE is process system establishment. The major 
aim of process establishment is to build up a software engineering process 
reference model for a software development organization. When a process 
system is established and experienced, improvement can be initiated 
effectively via process assessment and benchmarking.        

• The three basic steps for deriving a software project process 
model are: a) Select and reuse a process system reference model at 
organization; b) Derive a process model at project level; and c) Apply 
the derived project process model. 

 
• Software Engineering Process System Assessment: From the 

viewpoint of reference systems there are four types of assessment methods:  
the model-based, standard-based, benchmark-based, and integrated (model-
and-benchmark-based) assessment. 
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• Software Engineering Process System Improvement: Process 
system improvement is the goal of process assessment, acting on issues 
found in an assessment and enhancing the effectiveness of processes in the 
process system. Key categories of process improvement methodologies are 
goal-oriented process improvement, benchmark-based process improvement, 
and continuous process improvement. 
 
Software industry organization 
 

• The overall organizational methodology for the software industry is 
PBSE. Based on a generic software engineering process model such as 
SEPRM, software engineering activities and processes at personal, project 
(team), and enterprise levels can be well organized in the three essential 
aspects of organization, development, and management.  

 
•  The key organization principles for the software industry are: a) To 

improve productivity, b) To practice specialization or division of labor; and 
c) To deal with the labor-time interlock constraint. 
  

• In order to solve the inherited problems, a separation of roles in the 
software industry is necessary. That is, the software industry is ideally split 
into four sectors known as the organizations of software designers, software 
builders, software quality assurors, and software maintainers with totally 
separated and explicitly designated roles and responsibilities. 

 
• Distributed Time-Shared Development (DTSD) is a new approach 

of division of labor in the time-dimension contrary to division of labor in the 
functional or specialization dimension. This methodology takes advantages 
of geographically allocated project teams distributed in different time zones, 
but interconnected through a wide-area Intranet and supported by remote 
execution capabilities. Well organized and synchronized DTSD projects may 
gain time greatly in development, because DTSD provides a virtual 24-hour 
software development organization with the teams deployed in two or three 
countries globally.      
 

• Software Maintenance Crisis (SMC) is a phenomenon that happens 
when the demand for software maintenance exceeds the capability that a 
software development organization can provide, or when the costs of legacy 
software maintenance predominantly override the investment for new 
software development.  

 
• There is a need of a sector in the software industry known as the 

professional software legacy maintainers or the software garages. 
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Essential knowledge towards excellent software engineers 
 

• Throughout this book, the theoretical and empirical foundations of 
software engineering have been explored in a rigorous and transdisciplinary 
approach. The principles of software engineering are formally documented as 
a comprehensive set of theorems and laws. This section summarizes the 
theoretical framework of software engineering principles and laws, which 
form the fundamental, durable, and enlightening knowledge for researchers 
and practitioners in software engineering.        

• The essential knowledge on the 14 basic constraints of 
software engineering on cognition, organization, and resources is 
summarized in Table 14.5. 

• The essential knowledge on the 31 empirical principles of 
software engineering is summarized in Table 14.6. 

• The essential knowledge on the 50 laws of software 
engineering is summarized in Table 14.7. 

• The essential knowledge on 51 formal principles of software 
engineering is summarized in Table 14.8. 

 
Impact of the theoretical foundations of software 
engineering 
 

• A formal and rational documentation of a comprehensive and 
essential body of software engineering knowledge with rigorous 
treatments.  
 

• Principles of knowledge engineering: The relationship between 
knowledge creation and acquisition is as follows:    

• For a specifically new knowledge K, the effort spent in its 
creation Ec(K) is far more than that of its acquisition Ea(K), i.e., Ec(K) 
>> Ea(K). 

• The effort of skill acquisition Ea(S) is far more than that of 
knowledge acquisition Ea(K), i.e., Ea(S) >> Ea(K). 

 
• This book demonstrates that a wide range of new or enhanced 

theories, methodologies, and techniques have been developed not only for 
software engineering, but also for the closely related disciplines such as 
scientific philosophy, mathematics, computer science, engineering science, 
linguistics, information science, cognitive informatics, system science, 
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management science, economics, sociology, and natural/machine 
intelligence. 
 
 

 
Questions and 
Research Opportunities 
 

 
 
14.1  What are the problems in software industry organization? How 

may the software industry be systematically organized? 
 
14.2 What is Process-Based Software Engineering (PBSE)? Why may 

process techniques be adopted as the infrastructure of software 
engineering?  

 
14.3  What are the basic organization principles for the software 

industry? 
 
14.4 Why is there a need to separate software designers, builders, 

quality assurors, and maintainers in software engineering? What 
are the main responsibilities of each of the four sectors?   

 
14.5 What is the Distributed Time-Shared Development (DTSD) 

technology in software engineering? What is the impact of DTSD 
on the software industrial organization?   

 
14.6  How is software maintenance crisis discovered and modeled?  
 
14.7 What are the main reasons behind software maintenance crises 

and potential solutions?  
 
14.8 What are the roles of the special sector in the software industry 

known as the software legacy maintainers? 
 
14.9 There is an argument that programming has no scientific 

foundations because both professionals and amateurs can write 
programs. Do you agree with this observation? Why?     

 
14.10 Why did Brooks consider there is no silver bullet for software 

development in the 1970s? Are those claims still true?  
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14.11 Why has software engineering been considered as silver bullet in 

other disciplines where large-scale software systems are needed? 
 
14.12 Identify some useful theories and techniques provided in this 

book that would be the potential silver bullets for software 
engineering. 

 
14.13 Consider what would be the potential silver bullet for software 

engineering after learning the transdisciplinary theories and 
methodologies for software engineering presented in this book. 

 
14.14  Summarize and describe how many metaphors of software and 

software engineering have been explored in this book, and 
provide a description for each of them.       

    
14.15 It’s believed that automatic code generation technologies may 

replace programmers in the future. Towards archiving this 
objective in software engineering, what are the potential impacts 
on the design means (denotational mathematics) and the 
implementation tools (compilers, programming environments, and 
testing systems)? 

 
14.16 Software engineering is dependent on multidisciplinary 

foundations. Summarize the closely related disciplines to software 
engineering as described in this book.  

 
14.17 Which laws of software engineering are you most interested in? 

why?    
 
14.18 Which formal principles of software engineering are you most 

interested in? why?    
 
14.19  According to Theorem 14.2 and Corollary 14.2, explain why the 

knowledge space of multidisciplinary experts may be m2 times 
greater than that of an expert with individual disciplinary 
knowledge.  

 
14.20  Why is broadness more important than depth (Corollary 14.3) in 

knowledge acquisition and knowledge engineering?  
 
14.21 May software engineering methodologies and approaches be 

exported and applied to other engineering disciplines? Can you 
provide an example? 
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14.22  Summarize the structure of knowledge on the transdisciplinary 

theoretical foundations of software engineering presented in this 
book in a hierarchical diagram, and describe their 
interrelationship and possible impacts on software engineering. 

 
14.23  What are the common characteristics of the pioneers in software 

engineering as reviewed in the classic articles listed in the last 
question of each chapter? 

 
14.24 Read the following classic article in software engineering:  
 

John Backus (1978), Can Programming be Liberated 

from the von Neumann Style? A Functional Style and 

its Algebra of Programs, The 1977 Turing Award 

Lecture, Communications of the ACM, 21(8), pp. 613-

641. 
 

Discuss the following topics in a group or individually: 
 
                     •  About the author. 

• What are the von Neumann architecture and programming 
styles based on it?  

•  What were the functional and algebraic styles proposed by 
the author? 

      •  What conclusions of the article interested you? Why? 
      •  Your arguments or counter-points on any of the conclusions 

derived in this article.              
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Knowledge Structure 
 

 

 The formal knowledge systems    

     •  The framework of formal knowledge 
     •  The roles of theoretical and empirical knowledge  

 A discipline of software science  

     • Software science: software engineering in the 21st century 
     • Architecture of software science 
     • Denotational mathematics for software science 

 Impact of software science on computing  

     • Autonomic computing 
     • Intelligent code generation 
     • Hyper-programming: New Faces of the Software Architectural Framework  

 Epilogue 
 

 

Learning Objectives 
 

 

 
 
  

     
     

   •  To understand the essences of the formal knowledge systems and its 
applications in software engineering. 

   •  To know the roles of theoretical and empirical knowledge in software 
engineering. 

   •  To recognize the emergence of the discipline of software science, and its 
relationship with software engineering. 

   •  To understand the theoretical structure of software science and the 
underpinning denotational mathematics. 

   •   To be aware of trends in future developments between the interactions of 
software science, software engineering, and computing. 

 

15. Prospect on Software Science 
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“If I have seen farther, it is because I have stood on the shoulders of giants.” 
 

 Isaac Newton (1643 - 1727) 
 

“Things that were valuable a decade ago will be valuable decades from now.  
The field is moving too fast to chase them. ”   

 
 Davis L. Parnas (1997) 

 
 
 

15.1 Introduction 
 

 
 

hroughout this book, software has been recognized as an entire range 
of very widely and frequently used objects and phenomena in human 
knowledge. As a logical consequence, the results of this book 

provide a foundation leading to the emergence of software science 
complementing to software engineering. The former is the theoretical inquiry 
of software and the laws constrain it; while the latter is the empirical study of 
engineering methodologies and techniques for software development and 
software engineering organization. 

The relationship between software science and software engineering 
can be analogized to those of theoretical physics and applied physics, or 
dynamics and mechanical engineering. Without theoretical physics there 
would be no matured applied physics; without dynamics there would be no 
matured mechanical engineering. So is software science with software 
engineering. The ultimate purpose of this book is an attempt to demonstrate 
that almost all the fundamental problems which could not be solved in the 
last four decades in software engineering simply stemmed from the lack of 
coherent theories in the form of software science. The vast cumulated 
empirical knowledge and industrial practice in software engineering have 
made this possible to enable the emergence of software science.                            
 Another aim of this concluding chapter is to demonstrate that 
researchers and practitioners are enabled to rationally predict the future 
trends in software engineering based on the theoretical foundations about it, 
the empirical observations on it, and the transdisciplinary knowledge gained 
from more matured disciplines. Therefore, to a certain extent, the theoretical 
and empirical theories developed in this book provide a predictability for the 
future developments and a foundation for explaining unknowns in software 
engineering.     
 In the remainder of this chapter, the perspectives on software science 
and engineering will be presented in three sections. Section 15.2 describes 

T
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the formal structure of generic knowledge systems, which provides a 
blueprint for organizing the theoretical framework of software engineering 
knowledge. Section 15.3 introduces the emerging discipline of theoretical 
software science as a natural extension of empirical software engineering. 
Then, Section 15.4 discusses potential impacts of software science on 
computing and applied software engineering, in the facets of autonomic 
computing, intelligent software code generation, and hyper-programming.    
 
 
 
15.2 The Formal Knowledge System 
 

 
 
The entire human knowledge can be classified as either empirical or formal 
knowledge. The former is the direct knowledge about the physical world, 
while the latter is the derived knowledge about both the physical and abstract 
worlds. A formal knowledge system is needed to maintain a stable, efficient, 
and rigorous inference base, in which only true or false conclusions may be 
derived and there is no gray area in between the conclusions of a rigorous 
inference. 

This section presents a framework of the formal knowledge system. 
The taxonomy of human knowledge as a formal system is reviewed. The 
roles of formal and empirical knowledge are contrasted. 
 
 
15.2.1 THE FRAMEWORK OF FORMAL KNOWLEDGE 
  

Mathematical thoughts provide a successful paradigm to organize and 
validate human knowledge, where once a truth or a theorem is established, it 
is true till the axioms or conditions that it stands for are changed or extended. 
A proven truth or theorem in mathematics does not need to be argued each 
time when one applies it as a basis of reasoning. This is the advantage and 
efficiency of formal knowledge in science and engineering. In other words, if 
any theory or conclusion may be argued from time-to-time based on a 
seemed wiser idea or a trade-off, it is an empirical result rather than a formal 
theory.         

The framework of Formal Knowledge System (FKS) of mankind 
[Wang, 2007a] can be described as shown in Fig. 15.1. The FKS framework 
shows the interrelationships between a comprehensive set of terms of formal 
knowledge, where the taxonomy of formal knowledge and their definitions 
are presented in Table 15.1. 
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The Formal Knowledge System 

Discipline Doctrine 

Theories 

Facts 
Laws 

Truths 

Algorithms 

Hypotheses Propositions 

     Theorems 

Arguments 

Concepts 

Rules 

Principles 

Methods 

Definitions 

Empirical verifications 

Formal proofs 
Lemmas 

Corollaries 

Statistical norms 

Case studies 

Instances 

Models 

Questions 

Phenomena 

 

Figure 15.1 The framework of Formal Knowledge System (FKS)  
 

The FKS system is centered by a set of theories. A theory is a statement 
of how and why certain objects, facts, or truths are related. An empirical 
truth is a truth based on or verifiable by observation, experiment, or 
experience. A theoretical proposition is an assertion based on formal theories 
or logical reasoning, which is a formalization of generic truth and proven 
empirical knowledge. According to Lemmas 14.1 and 14.2, theoretical 
knowledge may be easier to acquire when it is existed and proven. However, 
empirical knowledge is very difficult to be gained without hands-on practice. 

According to the FFK model, an immature discipline of science and 
engineering is characterized as that its body of knowledge is not formalized 
or is mainly empirical. When there is no theory in a field of human enquiry, 
the practice in it is risk-prone. Instead of a set of proven theories, the 
immature disciplines usually document a large set of observed facts, 
phenomena, and their possible or partially working explanations. In such 
disciplines, researchers and practitioners might be able to argue every 
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informal conclusion documented in natural languages from time-to-time 
probably for hundreds of years, until it is formalized and proven rigorously.  

 
Table 15.1 

Taxonomy of Formal Knowledge 
 

No Term Description 
1 Algorithm A generic and reusable method described by rules or processes in 

problem-solving. 
2 Argument A reason or a chain of reasons on the truth of a proposition or theory. 
3 Case study An applied study of a generic theory in a particular setting or 

environment. 
4 Concept A cognitive unit in reasoning by which the meaning and semantics of 

real-world or abstract entities may be represented and embodied. 
5 Corollary A proposition that follows from or appended to a theorem already 

proved.   
6 Definition An exact and usually formal description of a concept or fact as a basis of 

reasoning. 
7 Discipline A branch of knowledge that studies a category of objects with a set of 

doctrines, frameworks, theories, and methodologies. 
8 Doctrine A set of coherent theories. 
9 Empirical 

verification 
A proof of a truth, accuracy, or validity of a proposition or theory based 
on observation and experience.   

10 Factor A thing or relation that is observed or proven true. 
11 Hypothesis A proposed proposition as a basis for reasoning or investigation in order 

to prove its truth or falsity.  
12 Instance An example or particular case of a general phenomenon. 
13 Law A proven statement of a causality between a deducted phenomenon or 

variable and its conditions.    
14 Lemma A subsidiary or intermediate theorem in a chain of argument or proof.  
15 Method An established procedure or approach to solve a class of problems, or to 

carry out a kind of task. 
16 Model A description of an architecture, mechanism, and/or behavior of a system 

or process.  
17 Phenomenon An observed fact or state with known or unknown causality. 
18 Principle A generalized axiom or proposition that explains a wide range of cases 

or instances in a field of study. 
19 Proof An established fact or validated statement by evidences and arguments.  
20 Proposition A formal statement of an assertion of judgment or a problem.     
21 Question A doubt about the truth of a proposition, or a request for a solution to a 

problem.  
22 Rule A proposition that describes or prescribes allowable conditions and 

domains of a law or principle. 
23 Statistical A typical, average, or standard quality, quantity, or state of a 
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norm phenomenon or system based on a large set of observations and statistic 
analyses. 

24 Theorem A generic proposition expressed formally and established by means of 
accepted truths.     

25 Theory A system of generic and formalized principles, theorems, laws, relations, 
and models independent of objects to be explained or practices are to be 
based.       

26 Truth An established, proven, or accepted constant state of a term or 
proposition in reasoning that is either true or false.  

 
Software engineering is such an immature discipline in which a huge 

volume of empirical knowledge has been documented and nobody can prove 
whether this kind of knowledge is universally true or not; what their 
applicable axioms, conditions, and contexts are; and if they are coherent and 
complete. The formal documentation of software engineering theories and 
fundamental body of knowledge in this book is the first attempt to establish a 
formal theoretical framework of software engineering towards a matured 
discipline. 

The disciplines of mathematics and physics are successful paradigms 
that adopt the formal knowledge system. The advantages of FKS are its 
stability and efficiency. The former is a property of formal knowledge that 
once it is established and proven, users who refer to it will no longer need to 
reexamine or reprove it. The latter is a property of formal knowledge that is 
exclusively true or false that saves everybody’s time to argue a proven 
theory.  
 
 
15.2.2 THE ROLES OF FORMAL AND EMPIRICAL 
           KNOWLEDGE 

 
In contrasting the nature of empirical knowledge and theoretical 

knowledge, the following principle on software engineering knowledge can 
be derived below.  
 

 

 

The 49th Principle of Software Engineering 
 

Theorem 15.1 The rigorous levels of empirical and theoretical 
knowledge states that an empirical truth is a truth based on or verifiable 
by observations, experiments, or experiences. In contrary, a theoretical 
proposition is an assertion based on formal theories, logical, or 
mathematical inferences. 
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Based on Theorem 15.1, a corollary on application domains of 
theoretical and empirical knowledge is stated as follows. 

    

 
The differences of the validated domains between theoretical and 

empirical knowledge indicates the levels of refinements of different forms of 
knowledge and their reliability.     

Empirical knowledge answers how; while theoretical knowledge 
reveals why. Theoretical knowledge is a formalization of generic truth and 
proven empirical knowledge. Although the discovery and development of a 
theory or a law may take decades even centuries, its acquisition and 
exchange are much easier and faster with ordinary effort. However, empirical 
knowledge is very difficult to be gained. One may consider that a person can 
learn multiple scientific disciplines such as the fields covered in this book, 
but few think that a person may be an expert in multiple engineering 
disciplines such as in all areas of electrical, mechanical, chemical, and 
computer engineering. The reasons behind this are that each engineering area 
requires specific empirical knowledge, skills, and tools. All of them need a 
long period of training and practice to be an expert.                   

Huge empirical knowledge were created and disappeared over time. For 
example, there are tons of empirical knowledge on software engineering 
published each year in the last decades. However, those that would be 
included in a textbook on software engineering theories as proven and 
general truth, rather than specific cases partially working on certain given or 
nonspecified constraints, would be no more than a few handful pages. 

According to Corollary 15.1, the major risk of empirical knowledge is 
its uncertainty when applying in a different environment, even the same 
environment but at different time, because empirical knowledge and common 
sense are often error-prone. Consider the following examples: 

 
     • In early age of human civilization, people commonly believed that 

the earth is flat and mankind lived in the center of the universe, 
until Nicholas Copernicus (1473-1543) proven that these common 
senses were false in the early 16th century.  

     • Managers believed that the larger the project, the larger the team 
required. However, Theorem 8.7 (Law 23 of software 

 

Corollary 15.1 The validation scope of theoretical knowledge is 
universal in its domain such as ∀x ∈ S ⇒ p(x); while the validation scope 
of empirical knowledge is based on limited observations such as ∃x ∈ S 
⇒ p(x), where S is the domain of a problem x under study, and p a proven 
proposition or derived theory on x.      
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engineering) and Theorem 13.4 (Law 48 of software engineering) 
reveal that for a given workload, the optimal labor allocation and 
the shortest project period are constrained by natural laws. That 
is, putting more than the optimal number of persons into a group 
is not only counterproductive, but also dramatically increasing the 
real workload of the project – a major hidden reason of most 
failures in software engineering project organization. 

 
According to Theorem 3.1, all recurrent objects in nature and their 

relations are constrained by certain invariant laws, no matter one observed 
them or not at a given time. This is one of the essences that may be gained in 
this book. In software engineering, we were told to not use goto statement. 
According to Theorem 4.7, jump or goto statement is one of the 17 essential 
computational operations in process algebra for describing software system 
behaviors. We were told extreme or pairwise programming is the latest 
solution to software engineering. However, according to Theorem 8.11, 
pairwise working is only efficient and suitable for a certain small scope of 
software projects because in this approach the interpersonal coordination rate 
r is too high, which may result in a huge additional real workload for a large-
scale software project that may be risk prone.   

 
 

 
15.3 A Discipline of Software 
Science 
 

 
 
It is recognized that theoretical software engineering focuses on foundations 
and basic theories of software engineering; whilst empirical software 
engineering concentrates on heuristic principles, tools/environments, and 
best practices by case studies, experiments, trials, and benchmarking. 
Throughout this book it is noteworthy that, because software is the most 
abstract instructive information, software engineering is one of the most 
complicated branches of engineering, which requires intensive theoretical 
investigations rather than only empirical studies. The widely impacted and 
applicable objects and the complicated theories in software engineering lead 
to the emergence of a scientific discipline known as software science.   

This section provides perspectives on the emerging discipline of 
software science along with the maturity of software engineering theories 
and methodologies in fundamental research as presented throughout this 
book. The architecture and roadmap of software science will be presented. 
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The theoretical framework, mathematical foundations, and basic 
methodologies of   software science will be briefly introduced.                   

         
 
15.3.1 SOFTWARE SCIENCE: SOFTWARE 
           ENGINEERING IN THE 21ST CENTURY     
 

In the history of science and engineering, a matured discipline always 
gave birth to new disciplines. This generic evolutionary tendency has been 
formally described in the EMM model in Theorem 8.3. For instance, 
theoretical physics was emerged from general and applied physics, and 
theoretical computing was emerged from computer engineering. So will 
software science emerge and grow in the field of software, computer, 
information, knowledge, and intelligent engineering [Wang, 2007a].     
 

Definition 15.1 Software science is a discipline of human enquiry that 
studies the theoretical framework of software as instructive and behavioral 
information, which can be embodied and executed by generic computers in 
order to create expected system behaviors and machine intelligence.    

 
The discipline of software science enquiries the common objects in the 

abstract world such as software, information, data, knowledge, instruction, 
executable behavior, and their processing by natural and machine 
intelligence. In other words, software science studies instructive and 
behavioral information and the mechanism of its translation into system 
behaviors.  

The relationship between software science (SS) and software 
engineering (SE) can be analogized with those of theoretical physics (TP) 
and applied physics (AP) as follows: 

 
          SS : SE = TP : AP          (15.1) 

 
Software science is the theoretical inquiry of software as an entire 

range of very widely and frequently used objects and phenomena in human 
knowledge; while software engineering is the empirical study of engineering 
methodologies and techniques for software development and software 
industry organization applying theories of software science. Without 
theoretical physics there would be no matured applied physics; without 
dynamics there would be no matured mechanical engineering. So do software 
science with software engineering.  

Based on Definition 15.1 and Eq. 15.1, software engineering may be 
perceived as applied software science. Therefore, the intension of software 
engineering as provided in Definition 1.6 can be refined as follows.            
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Definition 15.2 Software engineering is an engineering discipline that 
applies software science theories and methodologies to efficiently, 
economically, and reliably organize and develop large-scale software 
systems.  
 

This book has revealed that almost all the fundamental problems that 
could not be solved in the last four decades in software engineering were 
simply stemmed from the lack of software science.                          

It is noteworthy that cognitive informatics perceives information as 
anything that can be inputted into and processed by the brain; while software 
science perceives software as any instructive information that can be 
executed and transformed into computational behaviors by computers. This 
forges a relationship between cognitive informatics and software science, 
which indicates that the former is the foundation for natural intelligence 
science, and the latter is the foundation for artificial intelligence science and 
software engineering.       
 
 
15.3.2 ARCHITECTURE OF SOFTWARE SCIENCE  
 

The architecture of software science can be classified into four 
categories namely theories and methodologies, denotational mathematics, 
cognitive informatics, and organizational theories as shown in Fig. 15.2. 

 
 

       

Concept algebra

Software Science 
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Intelligence science Coordinative work 
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System modeling 
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Figure 15.2 The architecture of software science   
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Theories and methodologies of software science encompass system 
modeling and refinement methodologies, computing theories, formal 
linguistic theories, and software code generation theories. Both imperative 
and autonomic computing theories as well as their engineering applications 
are explored in this category.          

Denotational mathematics for software science is the enquiry for its 
mathematical foundations in the forms of formal inference methodologies, 
concept algebra, system algebra, and RTPA. In the contemporary 
mathematics for software science and software engineering, concept algebra 
is designed to deal with the to be problems and knowledge manipulation. 
System algebra is developed to formally treat the to have problems in terms 
of dynamic relations and possessions beyond set theory. RTPA is adopted to 
formalize the to do problems such as system architectures, static and dynamic 
behaviors. Further discussion on denotational mathematics for software 
science will be presented in Section 15.3.3.                      

Cognitive informatics for software science encompasses intelligence 
science, neural informatics, knowledge science, and autonomic computing. 
Cognitive informatics helps to understand and explain the fundamental 
mechanisms of natural intelligence and its products in terms of information 
and knowledge. It also studies the software implementation of intelligent 
behaviors by autonomic computing. Advances in cognitive informatics will 
help to overcome the cognitive barriers and inherited complicities in software 
engineering, which is called the intellectually manageability by Dijkstra and 
the essential difficulties by Brooks in software engineering. The entire 
structure of cognitive informatics may be referred to Chapter 9, and the 
theory of autonomic computing will be extended in Section 15.4.1.       

Organizational theories of software science encompass coordinative 
work organization theories, management theories, economics theories, and 
system/sociology theories. The organizational facet of software science 
studies how large-scale software engineering projects may be optimally 
organized and what the underpinning laws are at different levels of 
complexities. The theoretical framework of software engineering 
organization has been outlined in Chapters 8 through 13 in this book.                      

 
 

15.3.3 DENOTATIONAL MATHEMATICS FOR 
           SOFTWARE SCIENCE 
 

It is recognized that many branches of mathematics were emerged in 
engineering sciences in order to meet their abstract, rigorous, and expressive 
needs. These phenomena may be conceived as that new problems require 
new forms of mathematics. Also, the history of sciences and engineering 
shows that the maturity of a new discipline mainly characterized by the 
maturity of its mathematical means that enables rigorous modeling and 
reasoning in the discipline. Conventional analytic mathematics are unable to 
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solve the fundamental problems inherited in software science/software 
engineering, cognitive informatics, intelligence science, and knowledge 
science. Therefore, contemporary denotational mathematical structures and 
means beyond mathematical logic are yet to be sought. 

As identified in Table 6.3, the descriptivity of humans and systems 
behaviors may be classified into three basic categories known as to be, to 
have, and to do. All mathematical means and forms, in general, are an 
abstract and formal description of these three categories of denotational 
needs and their rules as shown in Table 15.2.  
 

Table 15.2 
Denotational Mathematical Means for Software Science  

 

Mathematical  Means Function Category 
Conventional Denotational 

Identify objects and attributes To be  (|=) Logic Concept algebra 
Describe relations and possession To have (|⊂) Set theory System algebra 

Describe status and behaviors To do (|>) Functions RTPA 

 
In Table 15.2, the conventional and denotational mathematical means 

are contrasted. According to Table 15.2, the generic usage of mathematics is 
the means and rules to rigorously and generically express thought and 
notions at a higher-level of abstraction and rigor.     
 
15.3.3.1 Concept Algebra    
 

A concept is a cognitive unit [Ganter and Wille, 1999; Quillian, 1968; 
Wang, 2006e] by which the meanings and semantics of a real-world entity or 
an abstract entity may be represented and embodied based on the OAR model 
[Wang, 2007g].            
 

Definition 15.3 An abstract concept c is a 5-tuple, i.e.: 
  

                              ( , , , , )c i oc O A R R R            (15.2) 
where 
 

• O is a nonempty set of object of the concept, O = {o1, o2, …, om} 
= ÞU, where ÞU denotes a power set of a finite or infinite 
nonempty set of objects. 

• A is a nonempty set of attributes, A = {a1, a2, …, an} = ÞM, where 
M is a finite or infinite nonempty set of attributes. 

• Rc ⊆ O × A is a set of internal relations.  
• Ri ⊆ C′ × C is a set of input relations, where C′ is a set of external 

concepts.  
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• Ro ⊆ C × C′ is a set of output relations.         
 

A structural concept model of c = (O, A, Rc, Ri, Ro) can be illustrated in 
Fig. 15.3, where c, A, O, and R, R = {Rc, Ri, Ro}, denote the concept, its 
attributes, objects, and internal/external relations, respectively. 
 

Definition 15.4 Concept algebra is a new mathematical structure for 
the formal treatment of abstract concepts and their algebraic relations, 
operations, and associative rules for composing complex concepts and 
knowledge [Wang, 2006e].          
 

  Rc

  A

  O Ri  Ro Other Cs  Other Cs

   c 

 Θ 

 
 

Figure 15.3 The structural model of an abstract concept  
 

Concept algebra deals with the algebraic relations and associational 
rules of abstract concepts. The associations of concepts form a foundation to 
denote complicated relations between concepts in knowledge representation. 
The associations among concepts can be classified into nine categories, such 
as inheritance, extension, tailoring, substitute, composition, decomposition, 
aggregation, specification, and instantiation as shown in Fig. 15.4 [Wang, 
2006e]. In Fig. 15.4, R = {Rc, Ri, Ro}, and all nine associations describe 
composing rules among concepts, except instantiation that is a relation 
between a concept and a specific object.     

 
Definition 15.5 A generic knowledge K is a relation Rk that mapping a 

certain concept C into a set of n existing concepts Ci in the brain in the form 
of OAR, i.e.: 

 

                               : X
n

( )→k i
i=1

K = R C C                 (15.3) 

where Rk ∈  { , , , , , , , , } =
+

Γ ⇒ ⇒ ⇒⇒ . 
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+

  

  

 

Inheritance

 Extension

 Tailoring

Substitute

  Composition

 Decomposition

Aggregation

Specification
 

Instantiation 

⇒
-
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~

 
 
Figure 15.4 Concept association operations in concept algebra 

 
In Definition 15.5 the relation Rk is one of the concept operations 

defined in concept algebra [Wang, 2006e] that serves as the knowledge 
composing rules.     
 

Definition 15.6 A concept network CN is a hierarchical network of 
concepts interlinked by the set of nine associations ℜ defined in concept 
algebra, i.e.:   
 
                                    : X X→

n n

κ i j
i=1 i= j

CN = R C  C               (15.4) 

 
where Rk ∈ Γ. 

 
Because the relations between concepts are transitive, the generic 

topology of knowledge is a hierarchical concept network. The advantages of 
the hierarchical knowledge architecture K in the form of concept networks 
are as follows: a) Dynamic: The knowledge networks may be updated 
dynamically along with information acquisition and learning without 
destructing the existing concept nodes and relational links. b) Evolvable: The 
knowledge networks may grow adaptively without changing the overall and 
existing structure of the hierarchical network. A summary of the algebraic 
relations and operations of concepts defined in concept algebra is provided in 
Table 15.3. Further details may be referred to [Wang, 2006e].    

 

© 2008 by Taylor & Francis Group, LLC



1206   Part IV Perspectives on Software Science 

15.3.3.2 System Algebra    
 

Systems are the most complicated entities and phenomena in the 
physical, information, and social worlds across all science and engineering 
disciplines. System algebra is a new abstract mathematical structure that 
provides an algebraic treatment of abstract systems as well as their relations 
and operational rules for forming complex systems [Wang, 2006d]. 
 System algebra is created for the rigorous treatment of abstract systems 
and their algebraic relations and operations. A summary of the algebraic 
relations and operations of abstract systems defined in system algebra is 
provided in Table 15.3. Further descriptions of system algebra may be 
referred to Section 10.4 and [Wang, 2006d].  
 
15.3.3.3 RTPA    
 

A key metaphor in system modeling, specification, and description is 
that a software system can be perceived and described as the composition of 
a set of interacting processes. C.A.R. Hoare, R. Milner, and others developed 
various algebraic approaches to represent communicating and concurrent 
systems, known as process algebra [Hoare, 1978/85; Milner, 1989]. A 
process algebra is a set of formal notations and rules for describing algebraic 
relations of software processes. RTPA [Wang, 2002a/02b/03c/06a/07a] 
extends process algebra to time/event, architecture, and system dispatching 
manipulations in order to formally describe and specify architectures and 
behaviors of software systems.  

RTPA is a set of formal notations and rules for describing algebraic and 
real-time relations of software processes. A process in RTPA is a 
computational operation that transforms a system from a state to another by 
changing its inputs, outputs, and/or internal variables. A process can be a 
single meta-process or a complex process formed by using the process 
combination rules of RTPA known as process relations. 

RTPA models 17 meta processes P = {:=, , ⇒, ⇐, , , , | , 

| , @ , , ↑, ↓, !, , ⊠ , §} and 17 process relations R = {→, , |, |…|, 
*R , R+ ,

iR , , , ||, ∯ , |||, », ,  t,  e,  i}. 
Based on RTPA, an important finding about the nature of programs is 

that according to Theorem 5.7, the generic mathematical model of programs 
is a finite and nonempty set of cumulatively embedded relational processes 
between a current statement and all previous ones that formed the semantic 
context or environment of computing.  

The definitions, syntaxes, and formal semantics of RTPA may be 
referred to Sections 4.6, 4.7, and 6.6, respectively [Wang, 
2002a/02b/03c/06a/07a]. A summary of the meta processes and their 
algebraic operations in RTPA is provided in Table 15.3.  
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Table 15.3 
Taxonomy of Denotational Mathematics for Software Science and Engineering 
 

Real-Time Process Algebra (RTPA) Operations 
 

Concept 
Algebra

System 
Algebra Meta Processes Relational Operations 

Super/sub relation   / ≺   /  Assignment            := Sequence  → 

Related/independent  ↔ /   ↔ /  Evaluation  Jump                   

Equivalent  =  = Addressing          ⇒ Branch  | 

Consistent ≅   Memory allocation ⇐ Switch          |…|… 
Overlapped   Π Memory release While-loop *R  

Conjunction  +   Read                       Repeat-loop      R+   

Elicitation  *  Write                      For-loop      iR  

Comparison  ~  Input                     | Recursion     

Definition    Output                    | Procedure call    

Difference    Timing            @
 

Parallel        || 

Inheritance  ⇒  ⇒ Duration Concurrence   ∯  

Extension  +⇒   +⇒  Increase ↑ Interleave  ||| 

Tailoring ⇒  ⇒  Decrease  ↓ Pipeline    » 

Substitute ⇒  ⇒  Exception 
detection 

! Interrupt    

Composition     Skip     Time-driven dispatch    t 

Decomposition     Stop ⊠ Event-driven dispatch    e 

Aggregation/ 
generalization 

  System      § Interrupt-driven 
dispatch  

  i 

Specification         

Instantiation         

 
The three new structures of denotational mathematics have extended 

the abstract objects under study in mathematics from basic mathematical 
entities of numbers and sets to a higher level, i.e., concepts, systems, and 
behavioral processes. A wide range of applications of the denotational 
mathematics in the context of software science and engineering has been 
identified [Wang, 2002b; Wang, 2006d; Wang, 2006e]. 

Under the overarching structure of denotational mathematics and with 
the paradigms as shown in Table 15.3, novel mathematical forms and 
structures, new mathematical entities, engineering applications, and 
comparative studies on denotational and analytic mathematics will be sought 
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in order to develop a family of denotational mathematical structures for the 
needs in software science and engineering. This will be described in a 
succeeding volume of this series of books in software engineering.   

 
 

 
15.4 Impacts of Software Science on 
         Computing 
 

 
 
This book has revealed that almost all the fundamental problems that could 
not be solved in the last four decades in software engineering were simply 
stemmed from the lack of software science. The preceding chapters of this 
book present the impacts of the multidisciplinary theories and rigorous 
foundations on software engineering. As a consequence, the discipline of 
software science is emerging.                          

On the basis of the software science framework, this section explores 
how software science and the formalized theories of software engineering 
may influence the other disciplines synergized in this book, especially 
computer science and computing methodologies. This will be focused on 
three important emerging methodologies for computing known as autonomic 
computing, intelligent software code generation, and hyper-programming 
[Wang, 2007a].    
 
 
15.4.1 AUTONOMIC COMPUTING  
 

Recalling the discussions on basic computation models in Section 5.2, 
autonomic computing is introduced as the latest development in 
computational machines following automata, Turing machines, and von 
Neumann machines. The general-purpose computers may do anything unless 
a specific program is loaded. In other words, they are only a class of general 
behavioral servos of human instructions [Wang, 2003d/04a/07a]. However, 
autonomic computers are not only servos, but also instructors and goal-
driven controllers [IBM, 2001/06; Pescovitz, 2002; Kephart and Chess, 2003; 
Murch, 2004; Wang, 2003d/04a/07a/07b/07c/07e/07f].  

Autonomic computing is a mimicry and simulation of the natural 
intelligence possessed by the brain by using generic computers. This 
indicates that the nature of software in autonomic computing is the 
simulation and embodiment of human behaviors, and the extension of human 
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capability, reachability, persistency, memory, and information processing 
speed.  

Autonomic computing was first proposed by IBM in 2001, while the 
history towards autonomic computing, as long as computer science, has been 
reviewed in Section 5.2.5. IBM perceived that “Autonomic computing is an 
approach to self-managed computing systems with a minimum of human 
interference. The term derives from the body's autonomic nervous system, 
which controls key functions without conscious awareness or involvement 
[IBM, 2001].” Various studies on autonomic computing have been reported 
based on this proposal [Pescovitz, 2002; Kephart and Chess, 2003]. The 
cognitive informatics foundations of autonomic computing have been 
investigated in [Wang, 2003d/04a/07a/07f].  

 
Based on cognitive informatics theories [Wang, 2002a/03a/07b], 

autonomic computing is proposed as a new and advanced technology for 
computing built upon the routine, algorithmic, and adaptive systems as 
shown in Table 15.4 

 
Table 15.4  

Classification of Computing Methodologies and Systems 
 

Behavior (O)  
Constant Variable 

Constant Routine Adaptive  Event (I) 
Variable Algorithmic Autonomic 

Type of behavior Deterministic Nondeterministic 

 
The first three categories of computing techniques, such as routine, 

algorithmic, and adaptive computing, as shown in Table 5.4, are imperative. 
In contrast, the autonomic computing systems do not rely on imperative and 
procedural instructions, but are dependent on goal, perception, and inference 
driven mechanisms.  
 

Definition 15.7 An Imperative Computing (IC) system is a passive 
system that implements deterministic, context-free, and stored-program 
controlled behaviors.  
 

Definition 15.8 An Autonomic Computing (AC) system is an intelligent 
system that implements nondeterministic, context-dependent, and adaptive 
behaviors based on goal- and inference-driven mechanisms.  
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The following subsections explore the theoretical foundations and 
engineering paradigms of AC. 

 
15.4.1.1 From Imperative Computing to Autonomic Computing 
 

IC relies on stored programs that transfer a computer as a general 
behavioral implementing machine to different specific intelligent 
applications. However, AC is based on internal inference engines and goal-
driven mechanisms in order to implement autonomic and adaptive 
computing.  

The IC system is a traditional and passive system that implements 
deterministic, context-free, and stored-program controlled behaviors, where a 
behavior is defined as a set of observable actions of a given computing 
system. However, the AC system is an active system that implements 
nondeterministic, context-dependent, and adaptive behaviors. The AC 
systems do not rely on instructive and procedural information, but are 
dependent on internal status and willingness formed by long-term historical 
events and current rational or emotional goals. 

In its AC manifesto, IBM proposed eight conditions setting forth an AC 
system known as self-awareness, self-configuration, self-optimization, self-
maintenance, self-protection (security and integrity), self-adaptation, self-
resource-allocation, and open-standard-based [IBM, 2001]. Kinsner pointed 
out that the above characteristics indicate that IBM perceives AC as a 
mimicry of human nervous systems [Kinsner, 2007]. In other words, self-
awareness (consciousness) and nonimperative (goal-driven) behaviors are 
the main characteristics of AC systems [Wang, 2007c/07f].  

According to cognitive informatics, the eight characteristics of AC 
identified by IBM may be sufficient to identify an adaptive system rather 
than an autonomic system. Because adaptive behaviors can be implemented 
by IC techniques, but autonomic behaviors may only be implemented by 
nonimperative and intelligent means. This leads to the formal description of 
the conditions and basic characteristics of AC, and what distinguish AC 
systems from conventional IC systems.     

 

 

  

The 50th Principle of Software Engineering 
  

Theorem 15.2 The necessary and sufficient conditions of IC, CIC, are the 
possession of event Be, time Bt, and interrupt Bint driven computational 
behaviors, i.e.: 
 

          ( , , )IC e t intC B B B=          (15.5) 
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As an extension of IC, AC systems are constrained by the following 
theorem.  

 

 
Theorem 15.3 reveals the relationship between the computing 

capabilities of IC and AC systems, which can be stated as follows.         
  

 
As stated in Theorem 3.4, it is recognized that Artificial Intelligence 

(AI) is a subset of natural intelligence (NI) [Wang, 2007a]. Therefore, AC 
may also be referred to natural intelligence and human behaviors. According 
to the LRMB reference model [Wang et al., 2006], a systematical view 
towards the formal description and modeling of architectures and behaviors 
of AC systems is obtained, which explains the functional mechanisms and 
cognitive processes of the natural intelligence with 39 cognitive processes at 
six layers known as the sensation, memory, perception, action, meta, and 
higher cognitive layers from the bottom up. All fundamental goal-driven and 
perceptive inferring mechanisms of AC systems can be rigorously described 
and implemented based on LRMB. 
 
15.4.1.2 Behaviorism Foundations of Autonomic Computing 

 
Behaviorism is a doctrine of psychology and intelligence science that 

reveals the associations between a given stimulus and an observed response 
of NI or AI systems developed on the basis of associationism [Sternberg, 
1998]. Cognitive informatics classifies human and machine behaviors into 
four categories known as the perceptive behaviors, cognitive behaviors, 

 

The 51st Principle of Software Engineering 
  

Theorem 15.3 The necessary and sufficient conditions of AC, CAC, are 
the possession of goal Bg and inference Binf driven computational 
behaviors, in addition to the event Be, time Bt, and interrupt Bi  driven 
behaviors, i.e.: 
 

            ( , , , , )
( , )

AC g inf e t int

IC g inf

C B B B B B
C B B
=
=

                             (15.6) 

 

 

Corollary 15.2 The behavioral space of IC CIC is a subset of AC CAC. In 
other words, CAC is a natural extension of CIC, i.e.: 
 

      IC ACC C⊆         (15.7) 
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instructive behaviors, and reflective behaviors [Wang, 2007k]. This section 
investigates the behavioral spaces and the basic properties of IC and AC.   

On the basis of Theorem 15.2 and Definitions 5.65 on the Generic 
Computing System (GCS), the mathematical model of a generic IC system 
can be described as follows.    

 
Definition 15.9 The Imperative Computing System, §IC, is an abstract 

logical model of conventional computing platforms denoted by a set of 
parallel or concurrent computing resources and behaviors as shown in Fig. 
15.5.      
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Figure 15.5 The imperative computing system model 
 

Fig. 15.5 shows that an IC system §IC is the executing platform or the 
operating system that controls all the computing resources of an abstract 
target machine. The IC system is logically abstracted as a set of process 
behaviors and underlying resources, such as the memory, ports, the system 
clock, and system status. An IC behavior in terms of a process Pk is 
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controlled and dispatched by the system §IC, which is triggered by various 
external, system timing, or interrupt events [Wang, 2007k].  

AC extends the conventional behaviors of IC as discussed in the 
preceding subsection to more powerful and intelligent ones such as goal-
driven and inference-driven behaviors. According to Theorem 15.3, with the 
possessing of all the five forms of intelligent behaviors, AC has advanced 
closer to the basic intelligent power of human brains from conventional IC.         
 

Definition 15.10 A goal-driven behavior, denoted by g, is a machine 
cognitive process in which the kth behavior in term of process Pk is triggered 
by a given goal @gkST, i.e.:   

 

                          g
=1

@R
n

k k
k

g PST                 (15.8) 

 
where the goal @gkST is in the system type ST that denotes a structured 
description of the goal (Definition 9.30).  
 

Therefore, to some extent, AC is an intelligent goal-driven problem 
solving machines that searches a solution for a given problem or finds a path 
to reach a given goal [Rubinstein and Firstenberg, 1995; Chiew and Wang, 
2004]. There are two categories of problems in problem solving: a) The 
convergent problems where the goal of problem solving is given but the 
paths of problem solving may be known or unknown; and b) The divergent 
problems where the goal of problem solving is unknown, but the paths are 
either known or unknown. The combination of the above cases in problem 
solving can be summarized in Table 15.5. A special case in Table 15.5 is that 
when both the goal and path are known, the case is a solved instance of a 
given problem.   
 

Table 15.5  
Classification of Problems and Goals 

 

Type of 
problem 

Goal Path Type of solution 

Known Unknown Proof (Specific) Convergent 
Known Known Instance (Specific) 
Unknown Known Case study (Open-ended) Divergent 
Unknown Unknown Explorative (Open-ended) 

       
According to Theorem 15.3, inference capability is the second 

extension of AC on top of the capabilities of IC, which is a cognitive process 
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that reasons a possible causality from given premises based on known causal 
relations between a pair of cause and effect proven true by empirical 
arguments, theoretical inferences, or statistical regulations.  
 

Definition 15.11 An inference-driven behavior, denoted by  fnf, is a 
machine cognitive process in which the kth behavior in terms of process Pk is 
triggered by a given result of inference process @infkST, i.e.:   
 

                                inf
=1

@R ST
n

k k
k

inf P                     (15.9) 

 
Formal inferences can be classified into the deductive, inductive, 

abductive, and analogical categories [Wang, 2007a/07h]. On the basis of the 
definitions of the behavioral space of AC, a generic AC system may be 
rigorously modeled below.  
    

Definition 15.12 The AC System, §AC, is an abstract logical model of a 
computing platform denoted by a set of parallel or concurrent computing 
resources and behaviors as shown in Fig. 15.6.   

 
15.4.1.3 Cognitive Informatics Foundations of Autonomic Computing 

 
The theory and philosophy behind AC are cognitive informatics 

[Wang, 2002a/03a/07b/07f]. Cognitive processes of the brain, particularly 
the perceptive and inference cognitive processes, are the fundamental means 
for describing AC paradigms, such as robots, software agent systems, and 
distributed intelligent networks. In recent research in cognitive informatics, 
perceptivity is recognized as the sixth sense that serves the brain as the 
thinking engine and the kernel of the natural intelligence. Perceptivity 
realizes self-consciousness inside the abstract memories of the brain. Almost 
all cognitive life functions rely on perceptivity such as consciousness, 
memory searching, motivation, willingness, goal setting, emotion, sense of 
spatiality, and sense of motion.  
 A fundamental question in cognitive psychology is how consciousness 
can be the product of physiological processes in the brain. Similarly, the 
fundamental question for AC is how autonomic behaviors may be generated 
by nonimperative processes on generic computers. The cognitive models 
developed in this section reveal, as that of IC is controlled by stored-
programs, AC should be controlled by nonprocedural and/or learned 
cognitive processes by the machines. According to the CMM model 
(Theorem 9.3), an AC system can be implemented by mimicking the 
following abstract brain models.  

© 2008 by Taylor & Francis Group, LLC



Chapter 15  Prospect on Software Science   1215 
 

 

 §AC  Autonomic-SysIDS ::  

            {    <
-1

0

procn

i
R

=

N

N
 PiST>     // Processes   

               || <
-1

0

MEMn

addr
R

=

H

P
MEM[ptrP]RT>   // Memory 

           || <
-1

0

PORTn

ptr
R

=

H

P
PORT[ptrP]RT>   // Ports 

|| <§tTM>    // The system clock   

|| <
-1

0

en

k
R

=

N

N
@ekS ↳Pk>    // Event-driven behaviors 

|| <
-1

0

tn

k
R

=

N

N
@tkTM ↳Pk>    // Time-driven behaviors  

|| <
int -1

0

n

k
R

=

N

N
@intk  ↳Pk >  // Interrupt-driven behaviors   

|| <
-1

0

tn

k
R

=

N

N
@gkST ↳Pk>    // Goal-driven behaviors  

|| <
int -1

0

n

k
R

=

N

N
@infkST ↳Pk >  // Inference-driven behaviors   

|| <
-1

0

Vn

i
R

=

N

N
ViRT>     // System variables    

|| <
-1

0

Sn

i
R

=

N

N
SiBL>    // System statuses   

   }                 
 

Figure 15.6 The autonomic computing system model 
 
Definition 15.13 The cognitive informatics model of an AC system, 

ACS, is equivalent to the high-level logical model of the brain as given in 
Model 9.6, i.e.: 

 

                               

 

 

   _
            ||
           (  _
                || _
                )
             || (  
                ||
                ||
                ||
              )

ACS NI Sys
CMM

NI OS
NI App

LTM
STM
SBM
ABM

=

   

                        (15.10) 
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Eq. 15.10 indicates that although the thinking engine NI-Sys is 
considered the center of the natural intelligence, the memories are essential to 
enable the NI-Sys to properly functioning and to keep internal information 
and acquired knowledge stable and retrievable. 
 
15.4.1.4 Denotational Mathematics Foundations of Autonomic 
              Computing 

 
As that of IC is based on the mathematical foundation of Boolean 

algebra, the more intelligent capability of AC should be processed by more 
powerful mathematical structures known as denotational mathematics in the 
forms of system algebra [Wang, 2006d], concept algebra [Wang, 2006e], and 
RTPA [2002a] as described in Section 15.3. The three new structures of 
contemporary mathematics extend the abstract objects under study in 
mathematics from basic entities such as numbers and sets to complex ones 
such as concepts, systems, and behavioral processes as shown in Table 15.2.  

It is recognized that the intelligent inference capability of AC systems 
is based on the cognitive process of abstraction. Abstraction is not only a 
powerful means of philosophy and mathematics, but also a preeminent trait 
of the human brain identified in cognitive informatics studies [Wang, 
2007a/07h]. All formal logical inferences and reasoning, as described in 
Section 3.3, can only be carried out on the basis of abstract properties shared 
by a given set of objects under study. Detailed descriptions of the formal 
cognitive inference processes for AC may be referred to Section 3.3 [Wang, 
2007h], which can be used to simulate machine cognitions and the 
implementation of inference engines for AC systems on the basis of 
denotational mathematics. 
 
15.4.1.5 Intelligence Science Foundations of Autonomic Computing 

 
Intelligence is perceived as the driving force or the ability to acquire 

and use knowledge and skills, or to reason in problem solving. It was 
conventionally perceived that only human beings possess advanced 
intelligence. However, the development of computers, robots, and autonomic 
systems indicates that intelligence may also be created or implemented by 
machines and man-made systems. This is the intelligent behavioral 
foundation for designing and implementing AC systems.           

The Generic Intelligence Model (GIM) and the nature of intelligence 
have been described in Section 9.3.3. The GIM model and Theorem 9.4 
reveal that NI and AI share the same cognitive informatics foundations. In 
other words, they are compatible. Therefore, on the basis of Theorem 9.4, the 
studies on NI and AI may be unified into a common framework in the 
context of AC.  
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The intelligent behavioral foundations of AC as given in the GIM 
model provide a new paradigm of AC systems, in which an AC system may 
not only implement the reflective and instructive intelligence, but also 
implement the cognitive and perceptive intelligence according to the theory 
of the intelligent behavioral paradigm. 

 
 
15.4.2 INTELLIGENT CODE GENERATION 

 
One of the key objectives of software engineering is to increase the 

productivity of software development by intelligent code generation. That is, 
strategic software engineering methodologies and technologies should focus 
on how people may be released from coding rather than bound with it. 
However, it is recognized that software engineering, as one of the high-tech 
disciplines, is using the lowest-tech – human labor – in contingent software 
development [Wang, 2006a]. Software scientists and engineers were busy 
most of the time to study the approaches to help customers to develop 
specific software applications. Now, it seems to be the time to turn the focus 
on the basic needs of the discipline rather than on contingent and individual 
applications, i.e., theories, methodologies, and universal tools for automatic 
code generation for the entire range of applications in software engineering.       

According to the Engineering Objective Model (EOM) model as stated 
in Theorem 8.2, productivity is the principal objective and major purpose of 
any engineering discipline, particularly in software engineering [Bain, 1962; 
Wang, 2006a]. However, the productivity of software development has 
remained considerably low in the last four decades [Boehm, 1987; Dale and 
Zee, 1992; Jones, 1981/1986; Livermore, 2005], because it is found that 
human creative and cognitive productivity is conservative as stated in 
Theorem 1.6 and as described in Section 9.5.1 [Wang, 2007a]. Therefore, the 
improvement of software engineering productivity by technical innovation is 
the key to achieve other important engineering objectives such as quality and 
time-to-the-market. The automatic switching system revolutions in the 1940s 
and 1990s demonstrated how technical innovations have helped to improve 
productivity in the telecommunication industry [Wang and Patel, 2000]. 
Thus, it is inevitable that software science and engineering should set its 
paramount goal on the improvement of productivity in software development 
by automatic software code generators using cognitive and intelligent 
methodologies on the basis of rigorous mathematical models of software 
systems in denotational mathematics [Wang, 2006j]. 

In software engineering, automatic software generation has been 
recognized as a tough challenge, because of its inherent complexity and the 
lack of suitable mathematical means [McDermid, 1991; Brooks, 1975/95; 
Bjorner, 2000]. The investigation into intelligent and automatic software 
code generation will focus on theories, methodologies, supporting tools, and 
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environments for code generation. The latest advances in software 
engineering [McDermid, 1991;Pressman, 1992; Sommerville, 1996; Pfleeger, 
1998;  Peters and Pedrycz, 2000;  Vliet, 2000; Wang and King, 2000a; Wang 
and Patel, 2000; Broy and Denert, 2002; Wang and Bryant, 2002; Wang, 
2000/05a/05d/05f/05g/05h/05i/05j/05k/05l/06a/06c/06f/06g/06h/06i] and 
cognitive informatics [Wang, 2002a/2006c/2007a; Wang and Kinsner, 2006] 
have provided a rich set of theoretical foundations for the design and 
implementation of intelligent and automatic program generation systems on 
the basis of formal system models and semantics [Hoare, 1969; Scott and 
Strachey, 1971; Wegner, 1972; Ollongren, 1974; Dijktra, 1975/76; Guttag 
and Horning, 1978; Jones, 1980; Gries, 1981; Bjorner and Jones, 1982; 
Scott, 1982; Marcotty and Ledgard, 1986; Wikstrom, 1987; Schmidt, 
1988/94/96; Goguen et al., 1977/96; Wang, 2006a], particularly the latest 
development of the denotational mathematics known as system algebra, 
concept algebra, and RTPA [Wang, 2002a/05a/06d/06e/06f/06j/07a], as well 
as deductive semantics [Wang, 2006a]. 

A pilot C++ and Java code generation system based on RTPA has been 
designed and implemented [Tan, Wang, and Ngolah, 2006]. By the 
integration of denotational mathematics, deductive semantics, and cognitive 
models of formal inferences [Wang, 2007h], the mathematical and cognitive 
means will be adequate to design and implement an autonomic and intelligent 
software code generation system, which will seamlessly and autonomously 
transfer the mathematical model of a software system into code. As a result, 
the outcomes of this program will enable the release of human labor from the 
late-phase processes in software development. 

Therefore, intelligent code generators will lead to the development of 
cutting-edge techniques for the software industry in order to replace the 
intensive labor-dependent programming practice in software engineering.              
 
15.4.3 HYPER-PROGRAMMING: NEW FACETS OF THE 
           SOFTWARE ARCHITECTURAL FRAMEWORK 
 

As discussed in Section 10.6.2, the work products of different software 
engineering processes are different. How to integrate all these abstract work 
products into a coherent framework in order to improve software 
descriptivity and integrity is a critical need in software engineering. Hyper-
programming is a new software engineering methodology that intends to 
extend the descriptive power of multi-facet software architectures and 
behaviors, and to extend the scope of documentation to cover all software 
engineering processes and their workproducts in a coherent framework 
[Wang, 2005g; Huang and Wang, 2006; Wang et al., 2008].       

This section presents the hyper-programming methodology and tool for 
integrated and coherent software engineering documentation. A hyper-
programming tool is designed for automatically creating hyperlinks between 
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system conceptual models in UML, formal models in RTPA, and code in a 
programming language such as C++ and Java. The three types of design 
documents for a system in UML, RTPA, and C++ program are stored in a 
standard HTML file format. When a built-in hyperlink in a system model is 
clicked, the corresponding HTML page in the integrated file shows up. The 
hyper-programming method provides a powerful and convenient integration 
of traditionally separated system design documents by hyperlinks in a 
coherent environment. Under the support of the hyper-programming tool, 
programmers can traverse from any point of interested objects to any other 
one among the conceptual and formal models of systems as well as 
corresponding code. Therefore, the readability and maintainability of large-
scale software systems may be dramatically improved.  
 
 
15.4.3.1 The Architecture of Hyper-Programming 
 

Definition 15.14 A hyper-program is a new type of nonlinear 
framework for software description and documentation that integrates 
software architectures, behaviors, code, and related design workproducts into 
a coherent and multidimensional framework by bidirectional hyperlinks.   
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Figure 15.7 The architecture of hyper-programs 
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The major characteristics of a hyper-program are that its architecture is 
multidimensional rather than linear in program code documentation, and it 
integrates all design workproducts in software engineering processes, such as 
requirements analysis, system specification, system architecture, code, test 
cases, and system configuration/deployment in a coherent framework as 
shown in Fig. 15.7.              

It is recognized that system architects, programmers, maintainers, and 
customers need an integrated programming and documentation platform to 
read and check system consistency among all forms of design and 
implementation documents and intermediate work products in software 
engineering [Wang, 2005g]. This leads to the design of hyper-programming 
methodology [Huang and Wang, 2006; Wang et al., 2008] as shown in Fig. 
15.8, where LUR, LRU, LRC, and LCR denote the hyperlinks between UML-
RTPA, RTPA-UML, RTPA-C++, and C++-RTPA, respectively. 

 

UML 
Model 

RTPA 
Model 

C++ 
Code 

LUR LRC 

LRU LCR 
 

 
Figure 15.8 The integrated hyper-programming framework 

 
More formally, the hyperlinks can be defined below. 

 
Definition 15.15 A hyperlink is a pointer  in a hypertext that refers 

and transfers a term to another in the scope of the same document or separate 
documents. For instances: 

 

                        

UR UML RTPA

RU RTPA UML

RC RTPA C

CR C RTPA

L E E

L E E

L E E

L E E

++

++

 

 

 

 
                        (15.11) 

 
where and, ,  UML RTPA CE E E ++  are a syntactical entity in UML, RTPA, and 

C++, respectively.                   
 
The hyper-programming system is designed to automatically create 

hyperlinks between different levels of system documentation from the 
conceptual model and formal specification to code in the abstraction and 
refinement hierarchy of system design as stated in Theorem 1.3 [Wang, 
2005g]. Hyper-programming implements system documentation integration 
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by hyperlinks among UML class diagrams, RTPA specifications, and C++ 
source codes (or in other programming languages). 
 
15.4.3.2 Syntactic Relations between RTPA, UML, and C++  
 

This subsection comparatively analyzes the syntaxes of RTPA [Wang, 
2002a/02b/03c/07a], UML [Rumbaugh et al, 1998; OMG, 2005; Wang, 
2001a], and C++ [Stroustrup, 1986; Horstmann and Budd; 2004]. RTPA is 
used to formally and explicitly specify software systems in order to enhance 
the understandability of their architecture, semantics, and behaviours. The 
architecture of a C++ program can be outlined by RTPA as shown in Fig. 
15.9, which provides a formal description of the generic architecture of C++ 
programs.  
 

 

C++Program  { 
                                MacroDefinition 
                            ||  MainFunction 
                            ||  ClassImplementation 
                           }    
  

C++Program.Mainfunction  {  
                             DataStructureDeclaration 
                           || I/ODeclaration 
                           || ClassDeclaration 
                           || SystemFunction  
                         } 
 

C++Program.Mainfunction.ClassDeclaration  { 
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R
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                                             || 
1

n

i
R
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                                            } 
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R
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MethodsImplementation (iN) 

                                             } 
 

 
Figure 15.9 The formal model of a generic C++ program architecture 
 
(a) RTPA vs. C++ 

 
The focuses of hyper-programming are class declarations and 

implementations. Hyper-programming is designed to map between RTPA 
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class specifications and C++ class implementations. Class declaration, 
method declaration, and method implementation in C++ are mapped to 
corresponding RTPA syntactical entities in terms of processes.  

 
Class specifications in RTPA have been formalized in [Vu and Wang, 

2004; Wang and Huang, 2005]. In RTPA, the type suffix is used to denote 
type information of a given identifier. For example, xN means the identifier x 
is in the type integer, and an identifier suffixed by AC and CC denotes a class. 
For example, classIDAC and classIDCC are used to denote classes in types of 
abstract class AC and concrete class CC, respectively.  

 
(b) RTPA vs. UML 

 
A hyperlinked RTPA specification and C++ code is shown in Fig. 

15.10, where the bidirectional hyperlinks between class identifiers 
CivicFactoryCC and ArchitectureST in RTPA, and the class name 
CivicFactoryAC in C++ source code can be automatically created. Readers 
interested in the design and implementation of the system can traverse freely 
among system design models, specifications, and code in an integrated and 
coherent environment.    

 
The process specifications of static behaviors in RTPA are 

corresponding to the class method declaration and implementation in C++, 
respectively. A process declaration in the static behavior section in RTPA is 
mapped to a class/method declaration in a class, while a process definition in 
the static behaviors is mapped to a class/method implementation. Because 
UML is a diagram-based system modeling language [OMG, 2005], a UML 
diagram seems highly readable. However, its semantics is inaccurate and 
nonrigorous. Different persons may obtain different information and perceive 
different meanings from a UML model. UML diagrams may be used to 
describe the conceptual models of software systems for human 
communication, particulally for non-professional customers.  

 
The HTML format of UML class diagrams is adopted in hyper-

programming for inserting and processing the required hyperlinks. In the 
HTML format of the UML model, a class diagram is denoted by a group of 
three rectangle boxes with texts denoting the class name, attributes, and 
member methods, respectively. The text in the second or third box may be 
omitted for a specific case. 
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// Formal Specification in RTPA  
CivicFactoryCC  { 
    [LRU1 | LRC1]             Architecture: ST 
                                  || StaticBehaviors: ST 
                                  || DynamicBehaviors: ST 
                                 } 
 

CivicFactoryCC.ArchitectureST  { 
                              [LRU2 | LRC2]         <WheelObj : CivicWheelST>; 
                                                           <BodyObj : CivicBodylST>;   
                                                           … 
                                                         } 
 

CivicFactoryCC.StaticBehaviorsST  { 
   CreateFactory (<I:: FactoryNameS>; <O:: >)  
      [LRU3 | LRC3]            
  || CreateWheel (<I:: NumInstN>; <O:: CivicWheelInstST>)  
      [LRU4 | LRC4]            
  || CreateBody (<I:: ColorInstS>; <O:: CivicBodyInstST>)                      
      [LRU5 | LRC5]          
} 
 

HondaFactoryCC() : CivicFactoryCC 
     [LRU6 | LRC6]        { … }        
 
 

// Source Code in C++ 
class CivicFactoryCC { 
                 [LCR1]                 
         public: 
    void  CreateFactory(char FactoryNameS); 
    CivicWheelInstST  CreateWheel(int NumInstN); 
    CivicWheelInstST  CreateBody(char *ColorInstS); 
         private: 
          [LCR2]                 
    CivicWheel WheelObj; 
                     CivicBody   BodyObj; 
}; 
 

void CreateFactory (char FactoryNameS)    
{ …        [LCR3]               
} 
 

HondaWheel* CivicFactoryCC::CreateWheel (int NumInstN)    
{ …                                                  [LCR4]                 
   return WheelObj.CreateWheel (NumInstN); 
} 
 

HondaBody* CivicFactoryCC::CreateBody (char *ColorInstS)    
{ …                                                [LCR5]                 
   return BodyObj.CreateBody(*ColorInstS); 
} 
 

class HondaFactoryCC : public CivicFactoryCC 
{ …            [LCR6]                 
} 
 

 

Figure 15.10 Mapping between RTPA models and C++ code 
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The UML class diagram for a software pattern know as Civic factory 
with hyperlinks is shown in Fig. 15.11, where a hyperlink LURi in the UML 
model is corresponding to a reverse hyperlink in the RTPA specification 
LRUi. 

 
CivicFactoryCC [LUR1] 

CreateFactory() [[LUR3] 
CreateWheel() [LUR4]  
CreateBody() [LUR5]  

HondaFactoryCC [LUR6] 

CreateFactory()  
CreateWheel()  
CreateBody()  

Attributes [LUR2] 

 
   
Figure 15.11 Hyperlinks created in a UML class diagram 
 
15.4.3.3 The Framework of the Hyper-Programming Environment 
 
      A hyper-programming environment encompasses four major 
components, as shown in Fig. 15.12, which are the file scanners, the parsers, 
the hyperlink generator, and the hyperlinked file generator. 
 

UML file in 
HTML 

RTPA file in 
HTML 

C++ Source File 
In HTML 

The HTML 
file 

scanners 

The HTML 
file 

parsers 

The 
hyperlink 
generator 

Hyperlinked UML  
model 

Hyperlinked RTPA 
model 

Hyperlinked C++ 
model 

 

  Figure 15.12 The framework of the hyper-programming system 
 
(a) The File Scanners  
 
      There are three file scanners in hyper-programming for processing 
UML, RTPA, and C++ files. The C++ source file scanner is a preprocessor 
that separates a C++ source file into a list of syntactical tokens. The RTPA 
file scanner filters the HTML tags and translates the HTML escape 
characters into ASCII characters. It also translates the special hexadecimal 

© 2008 by Taylor & Francis Group, LLC



Chapter 15  Prospect on Software Science   1225 
 
characters into ASCII characters. The UML file scanner analyzes the HTML 
tags and separates class information from other HTML style tags. 
 
 (b) The Parsers 
 

Corresponding to the three file scanners, hyper-programming 
implements three parsers for each type of the input files in UML, RTPA, and 
C++ under the support of ANTLR [Parr, 2000]. The C++ parser analyzes 
each token and creates a set of class parser trees. An HTML node in the class 
tree includes the class name, method name, node type, file position, tag 
value, and reference tag value. The RTPA parser analyzes the inputted tokens 
and creates a set of class trees. Every node in the tree includes the same 
information as in the C++ parser. Similarly, the UML parser creates 
equivalent parser trees for the UML file in the HTML format. 

Hyperlinks are created based on syntactical equivalence in the three 
types of documents, such as identical names of classes/processes, 
methods/processes, and/or variables as shown in Figs. 15.9 and 15.10. For a 
given hyper node, the file positions include an identifier’s start and end 
positions, which are used to mark the location of an identifier in the token 
file. When a link needs to be generated, the start point is marked by <a> and 
the end point is marked by </a> in an HTML tag. If two links like [LRUi | 
LRCi]       need to be created for a certain identifier as shown in Fig. 15.9, the 
middle position of it is calculated. The first link is marked from the start 
position to the middle position; and second link is marked from the middle 
position to the end position. Different cursor styles are employed for the 
identifier that has been inserted in the bidirectional links. Identifiers in the 
RTPA file usually have two links: One is linked to UML diagram (LRUi), 
while the other is for the C++ source code (LRCi). 

The tag value of a node is used to generate HTML tag <a> name 
attribute, where the identifier enclosed by <a> tag can be referred by its name 
attribute. The reference tag value is used to generate the HTML tag <a> href 
attribute, where a click on the identifier will bring the user to the file position 
defined by the href attribute. Tag and reference tag are cross referenced. Tag 
value in the node of RTPA parser tree is used as the reference tag value in 
C++ parser node. Tag values in the node of C++ parser tree are used as 
reference tag value in RTPA parser node. Tag value in the node of UML 
class tree is used as the second reference tag value for the node of the RTPA 
parser. 

 
(c) The Hyperlink Generator  

 
The hyperlink generator utilizes class names in the indexed parser trees 

to create reference tags. For example, when a class name, method name, or 
node type is identical in the C++ and RTPA parser trees, the hyperlink 
generator will copy the tag value of the node in C++ parser tree to the 
reference tag value in the node of RTPA parser tree and update position 
indexed list at the same time.  

© 2008 by Taylor & Francis Group, LLC



1226   Part IV Perspectives on Software Science 

(d) The Hyper-Program Generator  
 

Hyper-programming generates HTML files with built-in hyperlinks. 
The C++ hyperlinked file generator scans a source file and compares the file 
pointer with file start position stored in the position indexed node list. If the 
current file position equals to the file start position stored in the list, it inserts 
the HTML <a> tag and corresponding attributes set for that tag. If the current 
file position equals to the file end position stored in the previous node it 
inserts an HTML </a> tag.  

Other two types of hyperlinked files in RTPA and UML use the same 
method. 
 
15.4.3.4 Applications of the Hyper-Programming System 
 
      The hyper-programming system has been successfully implemented as 
an integrated system programming and documentation tool [Huang and 
Wang, 2006]. An application case study of hyper-programming is 
demonstrated below.  

The Abstract factory is one of the popular software design patterns 
[Gamma et al., 1995; Vu and Wang, 2004; Huang and Wang, 2006]. A 
virtual Honda vehicle factory can be derived on the basis of the abstract 
factory, which consists of the UML model as shown in Fig. 15.13 with 
automatically generated hyperlinks. The virtual Honda factory builds two 
models called the Civic and Accord, respectively. A vehicle in the factory is 
composed by two components known as the wheel and body.  
 

 
 

Figure 15.13 UML class diagram with hyperlinks 
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When clicking on the name and member methods of the class, the 
system jumps to the corresponding syntactical entities in the RTPA 
specification. For example, if the method CreateBody in the class 
AccordFactory is clicked, the page as shown in Fig. 15.11 will show up. If 
one moves the mouse to the front part of AccordFactoryCC.CreateBody text 
and clicks on it the page listed in Fig. 15.13 will be returned. However, if the 
click is on the rear part of AccordFactoryCC.CreateBody, the C++ source 
code as implemented in Fig. 15.14 will be displayed. If one clicks the text 
with hyperlinks in C++ documentation, the corresponding RTPA 
specification is shown up appropriately to explain the design notions as 
shown in Fig. 15.15. 
 
 

 
 
Figure 15.14 C++ source code with hyperlinks 

 
Two pairs of the bidirectional hyperlinks, as shown in Fig. 15.8, have 

been built among UML, RTPA, and C++ in hyper-programming. The hyper-
programming methodology and tool provide a handy and easy environment 
for designers and users to create and integrate hyper-programming and 
design documentation in a coherent system. 
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Figure 15.15 RTPA specification with hyperlinks 
 
 
Frederick Brooks (1987) pointed out that there was “no silver bullet” in 

software engineering. However, recalling what Albert Einstein said that: 
“Problems that are created by our current level of thinking cannot be solved 
by that same level of thinking,” it may be perceived that the silver bullet for 
software engineering lies in software science, which provides the theoretical 
foundations and fundamental methodologies for software engineering.  

 
In the conclusion of this book, the author believes that readers have 

obtained a comprehensive and adequate set of theoretical and empirical 
foundations for software engineering on the basis of software science. Thus, 
the ideal pyramid structure and relationship between software science, 
software engineering education, and its practices/applications set forth in the 
beginning of this book as shown in Fig. 1.1 has been satisfactorily 
established. 
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15.5 Epilogue 
 

 
 
Throughout this book, I have used the third person mode in presentations, 
descriptions, discussions, and reasoning in order to maintain an objective 
view towards the investigation of theoretical and empirical foundations of 
software engineering. Now, I would like to communicate with readers in the 
mode of the first person at the end of this book.  

In Art of Scientific Investigation, W.I. Beveridge (1957) recalled that 
Claude Bernard (1813-1878) reportedly expressed: 

 
 
“Those who do not know the torment of the unknown cannot 
have the joy of discovery.” 
 
 
I would like to extend Bernard’s assertion in order to say that those 

who do not experience the torment of authoring a large volume book cannot 
know the cognitive complexity that one may face, the mental tenacity that 
one may need, the intensive satisfaction that one may gain, and the great joy 
that one may obtain. 

 I was greatly unsatisfied about the phenomenon that there was a lack of 
coherent theoretical foundations for software engineering and most people in 
this field were used to taking it for granted. The phenomenon that kids are 
able to programming and sometimes even do it better is an indication that the 
discipline of software engineering was immature. Based on the development 
of the coherent theories for software engineering in this book and new 
challenges discovered at the edge of the exploration, I wish readers will find 
that software engineering and software science will be better built on the 
basis of rigorous fundamental researches. 

  When I checked the electronic manuscript for the final time, I found 
that I have commutatively spent over 10,000 hours on this book in the last 
decade, and the final version of this book contains about 356,800 words. It is 
indeed a persistent effort that leads to the completion of this book, which 
reminds me what Louis Pasteur (1822-1895) described on his academic 
motivation [Beveridge, 1957]:  
 

 
“Let me tell you the secret that has led me to my goal. My only 
strength lies in my tenacity.” 
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Once working at Oxford University, C.A.R. Hoare told me that theories 
are durable while techniques are temporary. He is perfectly in line with 
Immanuel Kant (1724-1804) who believed: “There is nothing more practical 
than a good theory.” The message is that as long as the fast development of 
software engineering methodologies remains viable, software engineering 
techniques will need to evolve as quickly. However, what will be kept stable 
and durable are the fundamental principles and the formally documented 
theories and laws of software science and software engineering, which are 
crystallized during age-long elicitations, evaluations, verifications, and 
refinements. 

In concluding this book, I would like to quote what David L. Parnas 
expressed in his keynote in FSE/ESEC’97 in Zurich [Parnas, 1997]: 

 
 
“Things that were valuable a decade ago will be valuable decades from 
now. The field is moving too fast to chase them. ”   
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Appendix A 
 

MATHEMATICAL SYMBOLS, 
NOTATIONS, AND 
ABBREVIATIONS  

 
  
 

Mathematical 
symbols 

Description 

 Logic 

∧ Conjunction 
∨ Disjunction 
¬ Negation 
⇒ Implication 
⇔ Equivalence 
∀ Universal qualifier, for all, or for every 
∃ Existential quantifier, there exist 

 Connectives,  ∈ {∧, ∨,  ¬} 

 Set 
{…} A set  
(…) A pair or tuple 
<…> A sequence 
∅ The empty set 
U The universal set 
∈ Is member of set 
∪ Union of sets 
∩ Intersection of sets 
\ Deference 
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# Cardinal calculus, number of elements in a set 
⊂ Is subset 
⊆ Is subset or equal 
× Cartesian product 
⊕ Symmetric difference 

S  Complement of set S 
ÞS A power set of set S 
| … constraints or membership conditions of an element 

N Set of natural numbers [1, ∞]  
N0 Set of natural numbers [0, ∞]   
Z Set of integers   
R Set of real numbers   
B Set of binary bytes   
H Set of hexdecimals   

BL Set of Boolean variables (T, F)   
  

  Algebra 
 Definition 
≡ Equivalence 

 Yield 
 To be relation 

® Cumulated relation 
 Concatenation 

π Addressing function 
π-1 Memory allocation 
ο Composition of functions  
∑ Repeat sum 
∏ Repeat multiplication 

 R  Repeat a function (big-R calculus)  
⎣ ⎦ Bottom of a decimal, the nearest minimum integer 
⎡ ⎤ Ceiling of a decimal, the nearest largest integer 
⊥ Bottom, undefined  
~ Otherwise, else 
∝ Proportional to 
iff If and only if 

  RTPA 
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P The set of meta processes  
R The set of process relations (process operations) 
T The set of primitive types 
T An arbitrary type (T ∈ T) 
T* An arbitrary type for constant (T* ∈ T*) 
§ The system 
℘  A program 
P A process 
s A statement 

@ System event prefix 
 System status prefix 
 System interrupt point suffix 

Meta Processes P 
:= Assignment                   

 Evaluation 
⇒ Addressing          
⇐ Memory allocation 

 Memory release 
 Read                                 
 Write                                 

|  Input                     
|  Output                              
@ Timing              

 Duration 
↑ Increase 
↓ Decrease  
! Exception detection 
⊗ Skip     

 Stop 
§ System     

Process Relations R 
→ Sequence 

 Jump                             

| Branch 
| … | … Switch          

*R  While-loop 
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R+
 Repeat-loop                 

iR  For-loop                 

 Recursion   

 Function call  

|| Parallel                   

∯  Concurrence  

||| Interleave 
» Pipeline   

 Interrupt  
t Time-driven dispatch  
e Event-driven dispatch  
i Interrupt-driven dispatch  

Primitive types T 
N Natural number 
Z Integer   
R Real 
S String  

BL Boolean 
T, F Boolean constants 
B Byte   
H Hexadecimal 
P Pointer 

TI = hh:mm:ss:ms Time 
D = yy:MM:dd Date     

DT = yyyy:MM:dd: 
hh:mm:ss:ms 

Date/Time 

RT Run-time determinable type 
ST System architectural type 

@eS Event  
@tTM Timing 

@int  Interrupt 
sBL Status   

  System Algebra 
 /  Super/sub relation 

↔ /  Related/independent 
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= Equivalent 
Π Overlapped 

 Conjunction 

 Difference 

⇒ Inheritance 
+
⇒  Extension 
⇒  Tailoring 
⇒  Substitute 

 Composition 
 Decomposition 
 Aggregation/generalization 
 Specification 
 Instantiation 

  Concept Algebra 
 / ≺ Super/sub relation 

↔ /  Related/independent 
= Equivalent 
≅  Consistent 
+ Conjunction 
* Elicitation 
~ Comparison 

 Definition 
⇒ Inheritance 
+
⇒  Extension 
⇒  Tailoring 
⇒  Substitute 

 Composition 
 Decomposition 
 Aggregation/generalization 
 Specification 
 Instantiation 

Notations Description 

R The big-R nation 
§ A system 

O( ) Order of complexity 
Ξ Instruction set of a given language 
Ω Behavioural space, constraints of a system 
Θ Environment of a system 
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Θt Type environment 
O The empty system 

U The universal system 

  Formal Linguistics 
N Noun 
V Verb 
A Adjective 
Λ Adverb 
P Preposition 
τ Determiner 
δ Degree word 
κ Qualifier 
α Auxiliary 
γ Conjunction word 
¬ Negative 

NP Noun phrase 
VP Verb phrase  
AP Adjective phrase 
ΛP Adverb phrase 
PP Prepositional phrase 
CP Complement phrase 
|= To be 
|⊂ To have 
|> To do 

|>> … |> Indirect to do 
  EBNF 
S ::=  
   S1 S2 … Sn 

Serial 

S ::=  
   S1 [S2] … Sn 

Serial with option 

S ::=  
   (S1 S2 … Sn)* 

Repeat serial for 0 or more times     

S ::=  
   (S1 S2 … Sn)+ 

Repeat serial for 1 or more times     

S ::=  
   S1 | S2 | … | Sn 

Alternative 

S ::=  Alternative with option 
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  [S1 | S2 | … | Sn]  
S ::=  
 (S1 | S2 | … | Sn)*  

Repeat alternative for 0 or more times     

S ::=  
 (S1 | S2 | … | Sn)+  

Repeat alternative for 1 or more times     

Abbreviation Description 

ABM Action Buffer Memory 
AC Autonomic Computing  
ACM Association of Computing Machinery 
ADT Abstract Data Types 
AI Artificial Intelligence 
ANTLR ANother Tool for Language Recognizer 
ASQ American Society of Quality 
AST Abstract Syntax Tree 
ATM Automated Teller Machine 
BCS Basic Control Structure 
BIT Built-In Test 
BNF Backus-Naur Form 
BPA Base Process Activity 
CASE Computer-Aided Software Engineering 
CCITT International Telegraph and Telephone Consulting 

Committee (now ITU)  
CCS The Calculus of Communicating Systems 
CCSE Computing Curricula – Software Engineering 
CFG Control Flow Graph 
CH Cohesion 
CI Cognitive Informatics 
CIM Cognitive Information Model 
CLM Component Logical Model 
CMM Capability Maturity Model 
CMM Cognitive Model of Memory 
CNS Central Nervous System 
COCOMO Constructive Cost Model 
COTS Commercial Off-The-Shelf (software components) 
CP Coupling 
CPM Critical Path Method 
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CPU Central Processing Unit 
CSCW Computer-Supported Cooperative Work 
CSP Communication Sequential Processes 
CU Cognitive Unit 
CWO Cooperative Work Organization 
DMA Direct Memory Access 
DOL Division Of Labor 
DSS Decision Support System 
DTSD Distributed Time-Shared Development 
EBNF Extended Backus-Naur Form 
EMM Engineering Maturity Model 
FCFS First-Come-First-Served 
FIFO First-In-First-Out 
FKS Formal Knowledge System 
FO Function Object 
FSM Finite State Machine 
FSM Formal Socialization Model 
GIM Generic Intelligence Model 
GUI Graphic User Interface 
HAMSD Hierarchical Abstraction Model of System Descriptivity 
HNC Hierarchical Neural Cluster (model of memory) 
HNH Human Needs Hierarchy model 
HTML Hyper-Text Marking Language 
IC Imperative Computing 
ICM Intelligent Capability Metric 
IE Inference Engine 
IEC The International Electrotechnical Commission 
IEEE The Institute of Electrical and Electronics Engineers 
IME Information-matter-energy 
IPO Input-Process-Output model of systems 
IQ Intelligent Quotient 
ISO International Organization for Standardization 
ISR Interrupt Service Routine 
IT Information Technology 
ITU International Telecommunication Union 
LAN Local Area Network 
LDS Lift Dispatching System 
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LIFO Last-In-First-Out 
LOC Lines Of Code 
LRMB Layered Reference Model of the Brain 
LTM Long-Term Memory 
MODEM Modulator and demodulator 
MPMC Multi-Processor Multi-Clock 
MPSC Multi-Processor Single-Clock 
NeI Neural Informatics 
NI Natural Intelligence 
NI-App Natural Intelligent Applications 
NI-OS Natural Intelligent Operating System  
NI-Sys Natural Intelligent System  
OAR Object-Attribute-Relation 
OO Object-Orientation 
OOP Object-Oriented Programming 
OPRM Organization’s Process Reference Model 
OSI Open Systems Interconnection 
OT Organization Tree 
PBSE Process-Based Software Engineering 
PCB Process Control Blocks 
PE Perception Engine 
PERT Program Evaluation and Review Technique 
PTPM Project’s Tailored Process Model 
RCB Resource Control Block 
RPC Remote Procedure Call 
RTOS Real-Time Operating System 
RTOS+ Real-Time Operating System plus 
RTPA Real-Time Process Algebra 
SBM Sensory Buffer Memory 
SDL Specification and Description Language (ITU) 
SE Software Engineering 
SECM Software Engineering Constraint Model 
SEPRM Software Engineering Process Reference Model 
SESC Software Engineering Standardization Committee 

(IEEE) 
SLMC Software Legacy Maintenance Cost 
SMC Sequential Message Chart 
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SMC Software Maintenance Crisis 
SOT System Organization Tree 
SPA Software Process Assessment 
SPI Software Process Improvement 
SPL A Sample Programming Language 
SPSC Single-Processor Single-Clock 
SQA Software Quality Assurance 
SS Software Science 
STM Short-Term Memory 
TCP/IP Transmission Control Protocol/Internet Protocol 
TCSE IEEE Technical Council on Software Engineering  
TQM Total Quality Management 
TSS Telephone Switching System 
UG Universal Grammar 
UML Unified Modelling Language 
USB Universal Serial Bus 
VM Virtual Machine 
VNA von Neumann Architecture 
VNM Von Neumann Machine 
WA Wang Architecture 
WAN Wide Area Network 
YACC Yet Another Compiler-Compiler 
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CONSTRAINTS OF  
SOFTWARE ENGINEERING  

 
  
 

No Constraints Description Remark 

1 Cognition A set of innate cognitive attributes of software and the 
nature of the problems in software engineering that create 
the intricate relations of software objects and make 
software engineering inheritably difficult. 

Def. 1.8 

1.1 Intangibility 

 

 

Software is abstract artifacts which is not constituted by 
physical objects or presence, and is difficult to be defined 
or expressed.     

Def. 1.9 

1.2 Complexity Software is innately complex and its intricate internal 
connections and external couplings make it extremely 
difficult to be expressed or cognized.    

Def. 1.10 

1.3 Indeterminacy 

 

 

The events, behaviors, or their sequence of occurring in a 
software system are not fully determinable on the basis of 
a given algorithm during design time; Instead, some of 
them may only be determined until run-time. 

Def. 1.11 

1.4 Diversity The great variety of software in types, styles, 
architectures, behaviors, platforms, application domains, 
implementation techniques, usability, reliability, and 
quality.        

Def. 1.12 

1.5 Polymorphism The approaches and styles of both software design and 
implementation are multifaceted and polyglottic. 

Def. 1.13 

1.6 Inexpressive- 

     ness 

Software architectures and behaviors are inherently 
difficult to be expressed, modeled, represented, and 
quantified both formally and rigorously.    

Def. 1.14 

1.7 Inexplicit 
embodiment 

Architectures and behaviors of software systems should 
be explicitly described by coherent symbolic notations in 
order to be processed and executed by computers.           

Def. 1.15 
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1.8 Unquantifi-
able quality 
measures 

The model of software quality has intricate facets and is 
difficult to be quantitatively modeled and measured.  

Def. 1.16 

    

2 Organization A set of coordinative and managerial requirements for 
software engineering that enables coordinative work to be 
efficiently carried out among a group of software 
engineers with different roles. 

Def. 1.17 

2.1 Time 
dependency 

Almost all organizational issues in software engineering, 
such as software development scheduling, business goal 
of time to market, and labor allocation, are dependent on 
time. 

Def. 1.18 

2.2 Conservative 
productivity 

Abstract artifacts and their relations in system designs 
need to be represented physiologically in the brain via 
growing synaptic connections, which is constrained by 
natural laws and its speed is not consciously controllable. 

Def. 1.19 

2.3 Labor-time 
interlock 

The nature of software project organization is dominated 
by the extremely high interpersonal coordination rate, 
which prevents the workload (effort) from free 
decomposition into a sum of products of arbitrary amount 
of labor and periods of time. 

Def. 1.20 

    

3 Resources The development costs and budgets, human resources, 
and the supporting and operating platforms of hardware. 

Def. 1.21 

3.1 Costs Software engineering costs are incurred from both 
necessary and futility costs, and from both development 
and maintenance costs.             

Def. 1.22 

3.2 Human 
dependency 

All software engineering activities and processes are 
human-based and constrained by basic human traits, 
cognitive and creative capabilities, as well as motivations 
and attitudes. 

Def. 1.23 

 3.3 Hardware 
dependency 

Software behaviors and functionality can only be 
embodied via the computing platform and related 
interactive I/O devices. 

Def. 1.24 
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EMPIRICAL PRINCIPLES OF  
SOFTWARE ENGINEERING  

 
  
 

No Principle Description Remark 

1 Abstraction To elicit essential properties of a set of objects while 
omitting inessential details of them. 

Def. 2.3 

2 Decomposition 
and 
modularization 

To partition and divide the functions of a software 
system into individual modules or components.   

Def. 2.4 

3 Information 
hiding 

To mask and simplify unnecessary information of 
software at a given level from the lower level details. 

Def. 2.5 

4 Engineering 
approach 

To adopt the proven generic engineering methodology 
and practice in software development and its 
organization.  

Def. 2.6 

5 Professionalism To recognize the competence or skills expected for a 
professional software engineer gained in training and 
practice. 

Def. 2.7 

6 Tools and 
environments 

To adopt software development tools and software 
engineering supporting environment in order to 
facilitate efficient organization of coordinative work or 
extend human physical and intelligent capability in 
software development. 

Def. 2.8 

7 Documentation To represent system design and architectures, record 
work products, maintain traceability of serial decisions, 
log problems and maintenance solutions, and enable 
postmortem analysis. 

Def. 2.9 

8 Stepwise 
refinement 

To deductively extend a conceptual model of the 
requirement for a given software system by a series of 
expatiated and incremental specifications at increased 
degrees of details.    

Def. 2.10 
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9 Prototyping To evaluate or validate a design and feasibility of a 
required system based on the implementation of a 
prototype of the system. 

Def. 2.11 

10 Adopting 
engineering 
notations 

To abstract, denote, and model user requirements and 
system specifications expressively and explicitly. 

Def. 2.12 

11 Process 
modeling 

To deal with organizational and managerial issues in 
software engineering as well as software behaviors.        

Def. 2.13 

12 Reuse To adopt higher-level building blocks, such as 
algorithms, methods, processes, patterns, frameworks, 
in order to improve efficiency, productivity, and quality 
of software engineering.       

Def. 2.14 

13 Measurements 
and metrics 

To elicit generic software attributes, quantify their 
measurement, and unify their metrics.    

Def. 2.15 

14 Cognitive 
complexity 
control 

To deal with the innate difficulty in both architectural 
and behavioral design and implementation of software 
systems by a variety of means such as abstraction, 
modularization, descriptive notations, stepwise 
refinement, and prototyping.            

Def. 2.16 

15 Formal 
requirement 
specification 

To formally and rigorously specify customers’ 
nonprofessional requirements for a software system in 
order to avoid any misinterpretation and ambiguity, and 
to eliminate any conceptual gaps and inconsistency.         

Def. 2.17 

16 Systematic 
quality 
assurance 

To systematically tackle software quality as multiple 
faceted; therefore, a systematic tackle is needed on all 
attributes and their quantitative measurements.        

Def. 2.18 

17 Review and 
inspection 

To find and eliminate software design and 
implementation defects via reading and examining the 
work products by peer or more experienced reviewers.    

Def. 2.19 

18 Management 
engineering 

To recognize the crucial facet of software engineering 
for the need of a suitable theory for organizing and 
coordinating large groups in large-scale projects.            

Def. 2.20 

19 Acquiring 
domain 
knowledge 

To acquire four aspects of domain knowledge such as: 
a) the nature of a problem, b) the environment and 
context of the problem, c) current customer practice for 
dealing with the problem, and d) existing regulations 
and constraints in the application area, before a system 
design for the given problem may proceed. 

Def. 2.21 

20 Customer 
involvement 

To involve all stakeholders, particularly the end users 
of a software system, throughout the entire lifecycle of 
the system by customer reviews and joint meetings.      

Def. 2.22 

21 Feasibility 
analysis 

To rigorously estimate and evaluate both technical and 
economical feasibilities of a given software project 
before the later-phase processes may be continued.     

Def. 2.23 
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22 Improve 
comprehensi- 

bility 

To explicitly and expressively describe the intangible 
problem and its solution with improved 
understandability, readability, and cognitive capability.   

Def. 2.24 

23 Exception 
handling 

To consider system design and specification not only 
customer required functions for a given system, but also 
all possible exceptions that may drive the system into 
illegal state(s) in the entire state space of the system.        

Def. 2.25 

24 Divide-and-
Conquer 

To suppose if a complex system may be divided into 
multiple components, the individual components of the 
system will be easier to be dealt with than the whole 
system. 

Def. 2.26 

25 Explicit 
embodiment 

To deal with the implicitness and inexpressiveness in 
software engineering by introducing more powerful 
descriptive means at a higher level of abstraction and 
precision.           

Def. 2.27 

26 Establishing 
theoretical 
foundations 

To elicit rigorous theories and generic laws once there 
are a wide variety of observed phenomena and 
alternative practices. 

Def. 2.28 

27 Architecture and 
behavior 
modeling 

To understand software system models are a hybrid 
model where both architectures and behaviors should 
be coherently described. 

Def. 2.29 

28 Standardization To integrate, regulate, unify, and optimize existing 
principles, best practices, and industrial norms into 
standards. 

Def. 2.30 

29 Systems 
engineering 

To adopt system science theories and approaches to 
deal with complicated architectures and behaviors of 
software.      

Def. 2.31 

30 Engineering 
organization 

To recognize that the organization issue is as important 
as that of pure technical and the cognitive issues in 
software engineering. 

Def. 2.32 

31 Cognitive 
engineering 

To be aware that the cognitive complexity is the 
dominate problem in almost all processes of software 
design, implementation, and maintenance, which should 
be tackled by cognitive informatics theories. 

Def. 2.33 
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MODELS OF ENTITIES  
AND STRUCTURES OF 

SOFTWARE ENGINEERING  
 

  
 

No Model Description Remark 

1 IME 

 

The Information-Matter-Energy (IME) model is a general 
worldview, which reveals that human beings are living in 
a dual world, which can be modeled by information, 
matter, and energy. 

Def. 1.1 

2 Software The product properties (Sec. 1.2.1.2) 
The mathematical properties (Sec. 1.2.1.1) 
The Information properties (Def. 1.4, Def. 7.12) 
The intelligent behavioral properties (Def. 9.5) 
The cognitive complexity properties (Theorem 10.14) 
The system properties (Table 10.1) 

Def. 1.3 

3 Software 
engineering 

A discipline that adopts engineering approaches, such as 
established methodologies, processes, measurement, 
tools, standards, organisation methods, management 
methods, quality assurance systems and the like, in the 
development of large-scale software seeking to result in 
high productivity, low cost, controllable quality, and 
measurable development schedule.  

An engineering discipline that studies the nature of 
software, approaches and methodologies of large-scale 
software development, and the theories and laws behind 
software behaviors and software engineering practices. 

Def. 1.5 
 
 
 
 
 
 

Def. 1.6 

4 HAMSD The abstract levels of cognitive information of both the 
objects and their behaviors can be divided into five levels 
such as those of analogue objects, diagrams, natural 
languages, professional notations, and mathematics. 

Def. 1.7 

5 SECM The software engineering constraint model Fig. 1.4 
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6 Cumulative 
relation ® 

An ordered list of embedded relations where a relation Rij, 
j = i +1, 1 ≤ i < n-1, 1 < j ≤ n, is related to all previous 
relations R12 through Ri-1,j, i.e.: 
    

  ®(s1, s2, …, sn) = ( … ((R12) ο R23 ) ο … ) ο Rn-1,n   
                           = ( … ((s1R12s2)R23s3) … sn-1)Rn-1,n sn, 

      si ∈ Ξ, Rij ∈ R 

where Ξ is a set of predefined instructions in a given 
programming language, and R a set of designated 
compositional rules in the same language.      

Def. 4.21 

7 The big-R 
notation  

A generic mathematical operator that is used to denote: 
(a) a set of repetitive behaviors, or (b) a finite set of 
recurring architectural constructs in computing, in the 
following forms: 

             (a) 
exp =
R

F

BL T
P                  (b)  

i =1
R

n

N
P(iN)    

                 

where BL and N are the type suffixes of Boolean and 
natural numbers, respectively; T and F are the Boolean 
constants true and false, respectively.    

Def. 4.59 

8 A process P A composed  component  of  n  meta  statements si and sj, 
1 ≤ i < n, j = i + 1, according to certain composing 
relations rij, i.e.:  

           
1 12 2 23 3 1,(...((( )  )  ) ...  )n n nP s r s r s r s−=               

where rij is a set of process relations as defined in RTPA. 

Def. 4.64 

9 Cumulative 
Relational 
Model (CRM) 
of processes 

A process P is the basic unit of an applied computational 
behavior that is composed by a set of statements si, 1 ≤ i ≤ 
n-1, with left-associated cumulative relations, , i.e.: 

                
1

1

1 12 2 23 3 1,

 (   s ), 1

(...((( )  s )  s ) ...  s )

n

i ij j
i

n n n

P s r j i

s r r r

R
−

=

−

= = +

=

     

where si ∈ P and rij ∈ R. 

Theorem 
4.3 

10 The structure 
of RTPA 

An algebraic software engineering notation system 
encompassing six subsystems as follows: 
       RTPA   Meta processes         
                      || Process relations      
                      || System architecture models   
                      || Primary types      
                      || Abstract dada types   
                      || Specification refinement schemes 
 

Def. 4.66 

11 Primary types The RTPA type system T encompasses 17 primitive types Theorem 
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of RTPA elicited from fundamental computing needs, i.e.:  

T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST,  
                             @eS, @tTM, @int ,ⓢsBL}                          

4.4 

12 Meta 
processes of 
RTPA 

The RTPA meta process system P encompasses 17 
fundamental computational operations elicited from the 
most basic computing needs, i.e.:   

        P = {:=, , ⇒, ⇐, , , , | , | , @, , ↑, ↓,  

                  !, ⊗, , §}    

Theorem 
4.6 

13 Processes 
relations of 
RTPA 

The RTPA process relation system R encompasses 17 
fundamental algebraic and relational operations elicited 
from basic computing needs, i.e.: 

         R = {→, , |, |…|…, 
*R , R+

,
iR , , ,  

                  ||, ∯ , |||, », , t, e, i} 

Theorem 
4.7 

14 The express 
power of RTPA 

The total number of the possible computational operations 
N in RTPA is a set of combinations between two arbitrary 
meta processes P1, P2 ∈ P composed by each of the 
process relations R ∈ R in RTPA, i.e.:  
 

                            
#

2
#=

17!
= 17 • 

2!(17-2)!
= 17 • 136

= 2,312

C•N  
P

R

    

Theorem 
4.8 

15 A system 
model in 
RTPA 

An RTPA system model, §(SysIDST), encompasses the 
following three subsystems, i.e.: 
 
       §(SysIDST)   SysIDST.Architecture  
                             || SysIDST.StaticBehaviors  
                             || SysIDST.DynamicBehaviors  
 

where ST is the system type suffix.  

Def. 4.105 

16 Component 
Logical Model 
(CLM) 

An abstract model of a system architectural component 
that represents a hardware interface, an internal logical 
model, a data structure, and/or a common control 
structure of a system.                

Def. 4.106 

17 Finite State 
Machine 
(FSM) 

An FSM is a 5-tuple, i.e.: 

                            FSM  (∑, S, s, T, δ)   

Def. 5.1 

18 A Turing A TM is a 6-tuple, i.e.: Def. 5.4 
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Machine (TM)          TM  (∑, S, s, H, M, δ)   

19 von Neumann 
Architecture 
(VNA) 

A VNA of computers is a 5-tuple, i.e.: 

                    VNA  (ALU, CU, M, I/O, B)   

Def. 5.7 

20 Wang 
Architecture 
(WA) of 
computers 

A WA computer is a cognitive machine with a parallel 
structure encompassing an Inference Engine (IE) and a 
Perception Engine (PE), i.e.: 
 

WA  (IE || PE) 
       =  (   KMU     // The Knowledge Manipulation Unit   
             || BMU     // The Behavior Manipulation Unit 
             || EMU     // The Experience Manipulation Unit 
             || SMU      // The Skill Manipulation Unit  
            ) 
         || (   BPU      // The Behavior Perception Unit  
              || EPU      // The Experience Perception Unit 
            )   

Def. 5.10 

Fig. 5.7 

21 System 
memory model 

MEMST is a system architectural type ST with a finite 
linear space, i.e.: 

 

                  MEMST  [addr1H … addr2H]RT 

Def. 5.21 

22 System I/O 
port model 

PORTST is a system architectural type ST with a finite 
linear space, i.e.: 

 

                    PORTST  [ptr1H … ptr2H]RT 

Def. 5.22 

23 A type rule An assertion of the validity of the conclusion of a 
judgment on a type tΘ A  based on the inference of a 

number of n premise judgments t tΘ A , 0 ≤ p ≤ n, 

denoted by the following convention:    
 

t 1 t n

t

Θ  A , ..., Θ  A( )
Θ  A

=Premise s
Conclusion

 

                        

where the conclusion holds iff all of the premises are 
satisfied.  

Def. 5.32 

24 Abstract Data 
Type (ADT) 

An ADT is a logical model of data objects, which defines 
both the logical architecture and valid operations of the 
data object, with the following schema: 

 

          ADT_IDST  ADT_IDS :: 
                      (    Architecture          

                       || Static behaviors        
                    || Dynamic behaviors 
                                 )   

Def. 5.37 

25 Basic Control 
Structures 

A set of essential flow control mechanisms that are used Def. 5.39 
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(BCS’s) for constructing logical architectures of software systems, 
i.e.: 

       BCS’s ⊆ R = {→, |, |…|…, 
*R , R+

,
iR , , 

                               , || ( ∯ ), } 
                 

26 The generic 
mathematical 
model of 
programs 

A software system or a program ℘ is a set of complex 
embedded cumulative relational processes Pk dispatching 
by system-level events ek, i.e.: 

       
1

1

1 1

(@ )

[@ ( ( ) ( ) s ( ))], 1

m

k k
k
m n

k i ij j
k i

e P

e s k r k k j i

R
R R

=

−

= =

℘=

= = +

S  

S  

   

Theorem 
5.7 

27 A class A dynamic construct in object-oriented programming to 
build hierarchical architectures of a system as given in 
Eqs. 5.72 through 5.74. 

Def. 5.55 

28 A generic 
software 
pattern 

A generic pattern is formally described by the four-level 
hierarchical model, as shown in Fig. 5.26, known as the 
interfaces, implementations, instantiations, and 
associations among the interfaces, implementations, and 
instantiations. 

Def. 5.63 

29 The Generic 
Computing 
System (GCS) 

GCS, §, is an abstract logical model of the executing 
platform of a target machine denoted by a set of parallel 
or concurrent computing resources and processes as 
modeled in Eq. 5.87. 

Def. 5.65 

30 RTOS state 
transition 
diagram  

Refer to Fig. 5.42. Fig. 5.42 

31 Deductive 
Grammar of 
English (DGE) 

Refer to Figs. 6.3 and 6.4. Figs. 
6.3/6.4 

32 Type 0 
grammar G0 

A grammar that has no restrictions on its productions. 
 

Def. 6.22 

33 Type 1 
grammar G3 

A grammar that satisfies the following conditions: 
 

      ∀p ∈ G1,  p: α → ∅ ∨ (p: α → β ⇒ |α| ≤ |β |)        

Def. 6.23 

34 Type 2 
grammar G3 

A grammar that satisfies the following conditions: 
 

                ∀p ∈ G2,  p: A → β        

Def. 6.24 

35 Type 3 
grammar G3 

A grammar that satisfies the following conditions: 
 

        ∀p ∈ G3,  p: s0 → ∅ ∨ p: A → a ∨ p: A → aB  
 

where s0 is the start symbol, A and B are nonterminals, 
and a is a single terminal. 

Def. 6.25 
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36 Context-
sensitive 
grammar Gs 

A grammar that is constrained by the following condition: 
 

   ∀p ∈ Gs,  p: αAα’ → αβα’          
 

where αAα’ is the context, and A is a nonterminal symbol 
that can be replaced in the given context. 

Def. 6.26 

37 Context-free 
grammar Gf 

A grammar that is constrained by the following condition: 
 

      ∀p ∈ Gf,  p: A → β           
 

where p is context-independent. 

Def. 6.27 

38 Regular 
grammar Gr 

A grammar that is constrained by the following condition: 
 

        ∀p ∈ Gr,  p: s0 → ∅ ∨ p: A → a ∨ p: A → aB         

Def. 6.28 

39 LL(k) 
grammar 

A class of context-free grammars, where the first L 
defines that the parsing is from left to right, and the 
second L specifies that the next production is derived by 
left-most derivation, and k, k ≥ 1, denotes that at most k-
symbol looking ahead into the unmatched part of the 
input string is required in order to uniquely determine the 
next production.          

Def. 6.30 

40 LR(k) 
grammar 

A class of context-free grammars, where the letter L 
defines that the parsing is from left to right, and the letter 
R specifies that the next production is derived by right-
most derivation in reverse, and k, k ≥ 1, denotes that at 
most k-symbol looking ahead into the unmatched part of 
the input string is required in order to uniquely determine 
the next production.          

Def. 6.31 

41 Relations 
among 
grammars 

Summarize the following grammars and their 
relationships in a table basis of  
 

• Chomsky grammars type G0, G0, G0, and G3; 
• The context-sensitive Grammar Gs, the context-free 
   grammar Gf, and the regular grammar Gr; 
• The LL(k) grammar and the LR(k) grammar 

Corollaries 
6.1 and 
6.2  

 

42 Extended 
Backus-Naur 
form (EBNF) 

EBNF is a 5-tuple:  
 

                        EBNF  (∑, T, V, P, S’) 

Def. 6.37 

43 The semantic 
environment 
Θ 

The run-time behavioral space Ω projected onto the 
Cartesian plane determined by T and S, i.e.: 

 

                 

2

2

,  
 

( , , )
 

    

t T s S
t s

OP T S
t s

T S

∂ ΩΘ = ∈ ∧ ∈
∂ ∂
∂ Ω=
∂ ∂

= ×

      

 
where, T is a finite set of discrete steps of program 
execution, S is a finite set of memory locations or their 

Def. 6.60 
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logical representations by identifiers of variables. 

44 Deductive 
semantics of a 
statement p, 
θ(p) 

A double partial differential of the semantic function fθ(p) 
on executing steps T and the sets of variables S on Θ, i.e.: 
 

     θ (p) = 
2

( )f p
t s θ
∂

∂ ∂
 

              = 
# ( ) # ( )

0 1
( , )

T p S p

p i j
i j

v t sR R
= =

 

              = 
1 2 m#{s , s , ..., s }1

0 1
( , )p i j

i j
v t sR R

= =

 

              = 01 02 0

11 12 1

m

m

v v v

v v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

1 2 m

0

0 1

s s s
t

(t , t ]

 

  

where t denotes the discrete time immediately before and 
after the execution of p during (t0, t1], and # is the 
cardinal calculus that counts the number of elements in a 
given set, i.e., n = #T(p) and m=#S(p). 

Def. 6.63 

45 Deductive 
semantics of a 
process P, θ(P) 

A double partial differential of the semantic function fθ(P) 
on the sets of variables S and executing steps T on Θ, i.e.: 
 

θ(P)=
2

( )f P
t s θ
∂

∂ ∂
2 21

1
# ( ) # ( ) # ( ) # ( )1

1 0 1 0 1

{[ ( )]  [ ( )]}, 1
  

{[  ( , )]  [  ( , )]}
k k l l

k l

n

k kl l
k

T P S P T P S Pn

P i j kl P i j
k i j i j

f P r f P l k
t s t s

v t s r v t s

R

R R R R R

θ θ

−

=

−

= = = = =

∂ ∂= = +
∂ ∂ ∂ ∂

=

  

       

= 

1−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠⎟⎟

1

2

n

p G

p G

p G

V V

V V

V V

               

 
where

kpV , 1≤ k ≤ n-1, is a set of values of local 

variables that belongs to processes Pk, and VG is a finite 
set of values of global variables.    

Def. 6.65 

46 Deductive 
semantics of a 
program℘,  

θ (℘) 

A combination of the semantic functions of all processes 
θ(Pk), 1≤ k ≤ n, on Θ, i.e.: 
       

Def. 6.66 
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2# ( )

1
# ( )

1
# ( ) # ( )# ( )

1 0 1

( ) ( )
 

 ( )

[  ( , )]
k k

k

K

k
K

k
k

T P S PK

P i j
k i j

f
t s

P

v t s

R

R

R R R

θθ

θ

℘

=

℘

=

℘

= = =

∂℘ = ℘
∂ ∂

=

=

 

 

where #K(℘) is the number of processes or components 
in the program.   

47 Information 

(classic 
informatics) 

A weighted probabilistic measure of the variability of 
messages (signals) that is expected from a message source 
via a transmission channel. 
 
The total information variability transmitted by a source 
or sender, I, is the weighted sum of the probability of all 
its n possible signs Ii, 1 ≤ i ≤ n, known as the alphabet, in 
the message, i.e.: 
 

1

1

1

1log

- log    [bit]

n

i i
i
n

i 2
ii

n

i 2 i
i

I  p I

p
p

p p

=

=

=

= •

= •

= •

∑

∑

∑

 

Def. 7.1 

 

 

Def. 7.2 

48 Information 

(contemporary 
informatics) 

Any property or attribute of the natural world that can be 
generally abstracted, quantitatively represented, and 
mentally processed.  
 
The measurement of information, Ik, is defined by the cost 
of code to abstractly represent a given size of internal 
message M in the brain in a digital system based on k, i.e.: 
 

                             
⎡ ⎤

:

  log
k k

k

I f M S

M

= →

=
      

 

where Ik is the content of information in a k-based digital 
system, and Sk the measurement scale based on k. The unit 
of Ik is the number of k-based digits.   

Def. 7.8 
 

 

Theorem 
7.1 

49 Information 

(cognitive 
informatics) 

Abstract artifacts and their relations that can be modeled, 
processed, stored, and processed by human brains. 
 
The measurement of cognitive information, Ik, is defined 
by the cost of code to abstractly represent a given size of 
internal message X in the brain in a digital system based 
on k, i.e.: 
 

                    ⎡ ⎤: logk k kI f X S X= → =     

Def. 7.10 

 

Def. 7.11 
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where Ik is the content of information in a k-based digital 
system, and Sk the measurement scale based on k.  

50 The 
transformabi-
lity between  
I-M-E 

According to the IME model, the three essences of the 
world are predicated to be transformable between each 
other as described by the following generic functions f1 to 
f6: 

 

      I = f1 (M) 
      M = f2 (I) ≟  f1 

-1(I) 
      I = f3 (E) 
      E = f4 (I) ≟  f3 

-1(I) 
      E = f5 (M) 
      M = f6 (E) = f5 

-1(E) 
 

where a question mark on the equal sign denotes a 
hypothesis on the existence of such a reverse function. 

Corollary 
7.3 

51 Engineering 
Maturity 
Model  

(EMM) 

The applied engineering disciplines have four maturity 
levels known as the levels of emergence (L1), art (L2), 
engineering (L3), and post-engineering (L4), i.e.:    
 

                      1 2 3 4:EMM L L L L⊆ ⊆ ⊆    

Theorem 
8.3 

52 Abstract work 
organization 
model 

The actual workload W of a coordinative project is a 
function of the average interpersonal coordination rate r 
and the number of labor L in the project, i.e.: 
 

                          
1

1

1

(1 )

(1 )

( 1)
(1 )   [PM]

2

W L T

L T h

W h

L L
W r

= •

= • +

= +

−= + •

                    

 

where T1 is the indicational duration needed to complete 
the work by only one person, and W1 is the ideal 
workload without the interpersonal overhead h or that of a 
single person project. 

Theorem 
8.4 

53 The shortest 
duration of 
coordinative 
work 

There exists the shortest duration Tmin under the optimum 
labor allocation L0 for a given ideal workload W1 with 
certain interpersonal coordination rate r, i.e.: 

                  
min 0

1 0
0

0

{ | }

1 2    ( )   [ ]
2

1.414 , 0   [ ]         

T T L L

W rL r M
L

L r P
r

⎧⎪⎪ = =⎪⎪⎪⎪⎪⎪⎪ = − +⎨⎪⎪⎪⎪ ⎡ ⎤⎪ = ≠⎪ ⎢ ⎥⎪⎪⎩ ⎢ ⎥⎪

 

 

Theorem 
8.7 

54 The pigeon 
diagram 

The model of actual time against number of labors in 
software engineering projects. 

Fig. 8.5 

55 Optimal work It must be carried out in the following order for a given 
cooperative project: 

Corollary 
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organization  

a) To determine the optimum labor allocation L0 
(Eq. 8.16); 

 

b) To obtain the shortest duration of the 
cooperative work Tmin under L0 (Eq. 8.15). 

8.1 

56 Exchange-
ability from 
labor to time 

The exchange rate from labor to time γL∼T in a cooperative 
work organization is determined by the ratio between the 
increment of time ∆T and the increment of labor ∆L, i.e.: 

 

                           
1

0 1
 [M/P]

-

L T

min

T
L 

T - T
L L

γ ∆=
∆

=

∼   

Theorem 
8.8 

57 Exchange-
ability from 
time to labor 

The exchange rate from time to labor γT∼L in a cooperative 
work organization is determined by the ratio between the 
increment of labor ∆L and the increment of time ∆T, i.e.: 

 

                           
0 1

1 min

 - 
 [P/M]

T L
L
T 

L L
T - T

γ ∆=
∆

=

∼  

Theorem 
8.9 

58 Cognitive 
Models of 
Memory 
(CMM) 

The architecture of human memory is parallel configured 
by the Sensory Buffer Memory (SBM), Short-Term 
Memory (STM), Long-Term Memory (LTM), and 
Action-Buffer Memory (ABM), i.e.: 
 

                             CMM   SBM 
                                           || STM 
                                           || LTM                                  
         || ABM 

Theorem 
9.3 

59 SBM The functional model of SBM is a set of queues 
corresponding to each of the sensors of the brain. 

Model 9.1 

60 STM The functional model of STM is a set of stacks. 
 

Model 9.2 

61 LTM The functional model of LTM is hierarchical neural 
clusters with partially connected neurons via synopses.  

Model 9.3 

62 ABM The functional model of ABM is a set of parallel queues, 
each of them represents a sequence of actions or a 
process.  

Model 9.4 

63 NI-Sys A real-time natural intelligent system with an inherited 
operating system (thinking engine) NI-OS and a set of 
acquired life applications NI-App, i.e.: 
 

         NI-Sys    NI-OS  
                                        || NI-App  
 

where NI-OS represents the inherited life functions, NI-

Model 9.5 
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App the developed life functions, and || a parallel relation. 

64 BRAIN The functional model of the brain describes the functional 
configuration of the brain and how the NI-Sys interacts 
with the memory system, i.e.: 

 

               
 

 

_
            ||
           (  _
                || _
                )
             || (  
                ||
                ||
                ||
              )

BRAIN NI Sys
CMM

NI OS
NI App

LTM
STM
SBM
ABM

=

   

                          

Model 9.6 

65 Functional 
model of LTM 

A set of Hierarchical Neural Clusters (HNC) with 
partially connected neurons via synapses. 

Model 9.7 

66 OAR The Object-Attribute-Relation (OAR) model of LTM can 
be described as a triple, i.e.: 

 

                        OAR  (O, A, R)   

Model 9.8 

67 EOAR The Extended OAR model states that the external world is 
represented by real entities, and the internal world by 
virtual entities and objects. The internal world can be 
divided into two layers known as the image layer and the 
abstract layer. 

Model 9.9 

68 Human 
memory 
capacity model 

Assuming there are n neurons in the brain, and on average 
there are s connections between a given neuron and a 
subset of the rest of them in the form of synapses, the 
magnitude of the brain's memory capacity Cm can be 
expressed by the following mathematical model: 

 

         n
11

3 11 3

 

10 !   [bit]
10 !(10 10 )!

C
=

−

s
mC  

 
where n is the total number of neurons, and s the number 
of average partial connections between neurons via 
synapses. 

 

Model 
9.10 

69 Framework of 
cognitive 
informatics 

The theoretical framework of cognitive informatics Fig. 9.7 

70 LRMB The layered reference model of the brain  Table 9.5 

71 CIM The Cognitive Information Model (CIM) classifies 
cognitive information into four categories, according to 
their types of I/O information, known as knowledge, 
behavior, experience, and skill, i.e.:  

 

Def. 9.16 

Table 9.6 
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      a) Knowledge  K: I → I   
      b) Behavior   B: I → A   
      c) Experience  E: A → I  
      d) Skill  S: A → A   

72 Generic forms 
of cognitive 
information 

There are four categories of internal information I in the 
brain known as knowledge (Ik), behaviors (Ib), 
experience (Ie), and skills (Is), i.e.:  
 

                            ( , , , )k b e s=I I I I I                              

Theorem 
9.4 

73 Abstract 
information 
representation 

The abstract objects in the brain such as data (D), 
information (I), knowledge (K), and behavior (B) can be 
formally modeled as follows: 
 

      
min: log ,  =2d k kD r M S M k→ =   

      : ,  i iI r D C r→ ∈R    

      n

1
i=1

: ( ) ,  Xk i n kK r C C r+→ ∈R  

      

1

1

1 1

   (@ )

   [@ ( ( ) ( ) ( ))], 1,

m

k k
k

m n

k i ij j ij
k i

B

e P

e p k r k p k j i r

R
R R

=

−

= =

℘

=

= = + ∈R

     

 

where C is a concept as given in Definition 15.3, R is the 
set of process relations as defined in Theorem 4.7, and the 
behavior B is equivalent to a program℘. 

Def. 9.18 

74 The nature of 
intelligence 

Intelligence I can be classified into four forms called the 
perceptive intelligence Ip, cognitive intelligence Ic, 
instructive intelligence Ii, and reflective intelligence Ir as 
modeled below:      
 

                      
  p

 c

i

r

:   (Perceptive)

    || :   (Cognitive)
    || :    (Instructive)
    || :   (Reflective)

D I

I K
I B
D B

→

→
→
→

I I

I

I

I

    

Theorem 
9.5 

75 Generic 
Intelligence 
Model (GIM) 

GIM describes the mechanisms of the natural intelligence, 
as shown in Fig. 9.10. 

Def. 9.21 

76 Generic forms 
of learning 

There are sufficiently four categories of learning L known 
as those of knowledge (Lk), behaviors (Lb), experience 
(Le), and skills (Ls), i.e.: 
 

                            ( , , , )k b e s=L L L L L       

Theorem 
9.6 
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77 Relationship 
between the 
brain 

It can be analogized by: 
 

      Brain : mind = computer : program     

Def. 9.32 

78 A closed 
system 

A closed systemS  is a 4-tuple, i.e., S  = (C, R, B, Ω),  
where  
 

• C is a nonempty set of components of the system,  
   C = {c1, c2, …, cn}. 
• R is a nonempty set of relations between pairs of the 
   components in the system, R = {r1, r2, …, rm},  
   R ⊆ C × C.   
• B is a set of behaviors (or functions), B = {b1, b2, …, 
   bp}. 
• Ω is a set of constraints on the memberships of 
   components, the conditions of relations, and the scopes 
   of behaviors, Ω = {ω1, ω2, …, ωq}. 

Def. 10.3 

Fig. 10.4 

79 An open 
system 

An open system S is a 7-tuple, i.e.: 
 

                       S  = (C, R, B, Ω, Θ)     
                           = (C, Rc, Ri, Ro, B, Ω, Θ) 
 

where the extensions of entities beyond the closed system 
are as follows:     
 

• Θ is the environment of S with a nonempty set of 
   components CΘ outside C.  
• Rc ⊆ C × C is a set of internal relations.  
• Ri ⊆ CΘ × C is a set of external input relations.  
• Ro ⊆ C × CΘ is a set of external output relations.          

Def. 10.4 

Fig. 10.5 

80 Taxonomy of 
systems 

Taxonomy of Systems Table 10.1 

81 The universal 
system  U 

The universe U is an infinite system with unlimited sets of 
components U, as well as unlimited relations RU, 
behaviors BU, and constraints ΩU, i.e.:  

 

                      U = (U, RU, BU, ΩU)   
       

where U encompasses any component c ever identifiable 
in the physical world, i.e., ∀ c, c ∈ U. 

Def. 10.12 

82 The empty 
system  O 

The empty system O is the smallest finite system in which 
the sets of components C∅, relations R∅, behaviors B∅, 
and constraints Ω∅ are empty, i.e.:  

 

                      O = (C∅, R∅, B∅, Ω∅)   
                         = (∅, ∅, ∅, ∅)          

Def. 10.13 

© 2008 by Taylor & Francis Group, LLC



1308   Appendix D  Models of Entities and Structures of SE    

83 Size of a 
system 

The size of a system Ss is the number of components 
encompassed in the system, i.e.: 

 

                              #s cS C n= =     

Def. 10.31 

84 Magnitude of 
systems 

The magnitude of system relations Ms is the number of 
asymmetric binary relations among the nc components of 
the system including the reflexive relations, i.e.: 
 

2

= #

= #( )

s

r

c

M R
n

C C

n

=

×

=

 

Def. 10.32 

85 Holism 
complexity of 
systems 

The holism complexity of systems states that within the 7-
level magnitudes of systems, known as the empty, small, 
medium, large, giant, immense, and infinite systems, 
almost all systems are too complicated to be cognitively 
understood or mentally handled as a whole, except small 
systems or those decomposed into small systems.   

Theorem 
10.1 

Table 10.2 

86 A complete n-
nary tree Tc 

A normalized tree in which each node of Tc can have at 
most n children, the level k of Tc can have at most nk 
nodes, and at all levels expect the leave level, have the 
maximum number of possible nodes. 

Def.10.35 

87 Generic 
topology of 
normalized 
systems 

The generic topology of systems tends to be normalized 
into a hierarchical structure in the form of a complete n-
nary tree.  

Theorem 
10.2 

88 System 
Organization 
Tree (SOT) 

An n-nary complete tree in which all leave nodes 
represent a component and the remainder, all nodes above 
the leaves, represent a subsystem. 

Def. 10.37 

Fig. 10.7 

89 Hierarchical 
structure of 
software 
systems 

A hierarchical structure of software systems Fig. 10.20 

90 Hierarchical 
structure of SE 
products 

The hierarchical structure of software engineering 
processes and work products 

Fig. 10.21 

91 Big-O  
notation 

If a function f(x) has an asymptotic function fa(x), the 
function  f(x) is said to be of order of  fa(x), denoted by: 

 

                              f(x) = O(fa(x))    
  
where O is known as the big O notation. 

Def. 10.85 

92 Time 
complexity 

For a given size of a problem n, the time complexity of an 
algorithm for solving the problem is a function of the 
maximum required number of dominate operations Ct(n), 
i.e.:  
            

Def. 10.86 
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                           Ct(n) = O(fa(n))   
    

where O(fa(n)) is the order of the maximum number of the 
dominate operations c(n), and  fa(n) is called the 
asymptotic function of Ct(n). 

93 Space 
complexity 

The space complexity of an algorithm for a given problem 
is the maximum required space for both working memory 
w and target code memory o, i.e.: 
    

                          Cm(n) = O(f(w+o))    
                                    ≈ O(f(w))   
 

where w refers to the memory for data objects under 
processing such as input/output and intermediate 
variables, and o refers to the memory for executable code. 

Def. 10.87 

94 Symbolic 
complexity 

The symbolic complexity of a software system S, Cs(S), is 
the linear length of its statements measured in the unit of 
lines of code (LOC), i.e.: 
 

   
1

( ) ( )   [LOC]
cn

s s
k

C S C k
=

= ∑    

      

where Cs(k) represents the complexity of component k in 
S.    

Def. 10.88 

95 Cyclomatic 
complexity 

The cyclomatic complexity of a software system S, Cm(S), 

is determined by the number of regions contained in the 
CFG G, r(G), provided that G is connected, i.e.: 
             

                             Cm(S) = r(G)  

                                        = e - n + 2      
 

where, e is the number of edges in G representing 
branches and cycles, n  number of nodes in G where each 
node is equivalent to a block of sequential code. 

Def. 10.89 

96 Operational 
complexity 

The operational complexity of a software system S, 
Cop(S), is determined by the sum of the cognitive weights 
of its n linear blocks composed by individual BCS’s, 
where each block may consist of q layers of embedded 
BCS’s, and within each of the layers there are m linear 
BCS’s, i.e.: 
 

                   

,

1

1 11

( ) = ( )

= ( ( , , )    [F])

c

k jkc

n

op op k
k

mqn

k ij

C S C C

w k j i

=

= ==

∑

∑ ∑∏

      

Def. 10.90 

97 Architectural 
complexity 

The architectural complexity of a software system S, 
Ca(S), is determined by the number of data objects at the 
system and component levels, i.e.:           
     

Def. 10.92 
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1 1

( ) OBJ( ))

OBJ( ) + OBJ( )  [O]
CLM C

a

n n

k k
k k

C S S

CLM C
= =

=

= ∑ ∑
    

 

where OBJ is a function that counts the number of data 
objects in a given CLM (number of global variables) or 
components (number of local variables). 

98 Cognitive  
(functional) 
complexity 

The cognitive complexity of software states that the 
cognitive complexity of a software system S, Cc(S), is a 
product of the operational complexity Cop(S) and the 
architectural complexity Ca(S), i.e.:  
        

     

1 1

  
1 1

( ) ( ) ( )

{ ( , )}

{ OBJ( ) + OBJ( )}   [FO]

C k

CLM C

f op a

n m

k i
n n

k k
k k

S S C S C S

w k i

CLM C

= =

= =

= •

= •∑∑

∑ ∑

 

Theorem 
10.14 

99 Cohesion The cohesion of a software system S, CH(S), is a ratio of 
the system’s number of internal relations #Rc and its total 
number of internal and external relations #Rc + #Ri + #Ro, 
i.e.:   
 

              
  

#
( ) = 100%

# + # + #

c

c i o
R

CH S
R R R

•                 

 
where 0% ≤ CH(S) ≤ 100%. 

Def. 10.97 

100 Coupling The coupling of a software system S, CP(S), is a ratio of 
the system’s number of external relations #Ri + #Ro and 
its total number of internal and external relations #Rc + 
#Ri + #Ro, i.e.:   

          
  

# + #( ) = 100%
# +# + #

i o

c i o
R RCP S

R R R
•    

 

where 0% ≤ CP(S) ≤ 100% and a lower value indicates a 
better architectural design. 

Def. 10.98 

101 Framework of 
management 
systems 
 

The structure of a management system.  
 

Fig. 11.2 

102 Natural group A working group of people with peers in which work is 
carried out via temporal pairwise coordination when work 
has to be done by any pair of the peers.       

Def. 11.8 

103 Managed 
group 

A working group of people with peers and a manager, in 
which work is carried out via one-to-many coordination 
by the manager. 

Def. 11.9 
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104 Framework of 
decision 
theories 

The structure of decision theories. Fig. 11.8 

105 A decision A decision d is a selected alternative a ∈A from a 
nonempty set of alternatives A, A ⊆ U, based on a given 
set of criteria C, i.e.: 
 

        d = f (A, C)  
              = f: A × C → A,  A ⊆ U, A ≠ ∅      
 

where × represents a Cartesian product. 

Def. 11.23 

106 Taxonomy of 
decision 
making 

Taxonomy of strategies and criteria for decision making. 
 

Table 11.3 

107 Payoff table A payoff table is a 2-D matrix as shown in Table 11.4 that 
quantifies the utility, value or level of satisfaction, uij, for 
each given pair of alternative ai and situation sj, where 1 ≤ 
i ≤ n, and 1 ≤ j ≤ k. 

Def. 11.27 

108 Certain 
decision 

A decision making under certainty dmax or dmin is a 
selection of an certain alternative ai among A that meets a 
given criterion C which is either the maximum of utility 
or profit max(ui), and the minimum of costs or effort 
min(ei), i.e.: 
 

 dmax = f: A × C → A 
                         = {ai  | max (ui) ∧ ai ∈ A}    
or 
 

                  dmin = f: A × C → A 

                         = {ai  | min (ei) ∧ ai ∈ A}   

Def. 11.28 

109 Optimistic 
decision 

An optimistic decision making under uncertainty dmaximax 
or dminimin yields a decision with the maximum-maximum 
strategy for utility or a minimum-minimum strategy for 
cost, respectively, i.e.:   
 

      dmaximax = f: A × C → A 
                   = {ai  | max (max (uij  | 1 ≤ i ≤ n) | 1 ≤ j ≤ k) 
or 
      dminimin  = f: A × C → A 

                   = {ai  | min (min (uij  | 1 ≤ i ≤ n) | 1 ≤ j ≤ k )} 

Def. 11.30 

110 Pessimistic 
decision 

A pessimistic decision making under uncertainty dmaximin 
or dminimax yields a decision with the maximum-minimum 
strategy for utility or a minimum-maximum strategy for 
cost, i.e.:   
 

       dmaximin = f: A × C → A 

Def. 11.31 
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                   = {ai  | max (min (uij  | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)}  
or 
 

       dminimax  = f: A × C → A 

                    = {ai  | min (max (uij  | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)} 

111 Uncertain 
minimum 
regret  
decision 

A minimum regret decision making under uncertainty 
dminimax yields a decision with the minimum-maximum 
regret strategy for utility gain or cost save, i.e.:   
 

               dminimax  = f: A × C → A 
                            = {ai  | min (max (rij  | 1 ≤ i ≤ n)}     

Def. 11.33 

112 Risky decision 
with max. 
expected 
utility 

A decision making under risk with maximum expected 
utility dmaxEU yields a decision with the maximum expected 
utilities of all alternatives, i.e.:   
   
                dmaxEU  = f: A × C → A 

                            = {ai  | max (EUi  | 1 ≤ i ≤ n)} 

Def. 11.36 

113 Risky decision 
with max. 
utility of max. 
probability 

A decision making under risk with maximum utility of 
maximum probability dmaximax-p yields a decision with the 
maximum utility of the maximum probability of outcome 
of all alternatives, i.e.:   
   

 dmaximax-p = f: A × C → A 

               = {ai  | max (uij  | (max (pj  | 1 ≤ j ≤ k)), 1 ≤ i ≤ n} 

Def. 11.37 

114 A formal game A formal game G is a 4-tuple, i.e., G = (P, D, M, S),  
where     
 

• P is a finite set of players P = {p1, p2, …, pn}, and n is 
   the number of players, n ≥ 2. 
• D is a finite set of decisions for certain moves, D = {d1, 
   d2, …, dk}, k ≥ 1. All players in G have the same 
   number of alternative decision.      
• M is a finite set of matches between player, M = {m1, 
   m2, …, mq}, q ≥ 1.      
• S is a finite set of cumulated scores for each player, S 

   = {s1, s2, …, sn}.     

Def. 11.39 

115 Zero-sum 
game 

A zero-sum game is a game where the total scores of all n 
players in the game is zero, i.e.: 

 

                                   
1

0
n

i
i

s
=

=∑    

Def. 11.43 

116 Nonzero-sum 
game 

A nonzero-sum game is a game where the total scores of 
all players in the game is a positive nonzero value, i.e.: 

 

Def. 11.44 
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117 A decision  
grid 

The formal model of a decision grid DG is a 4-tuple, i.e., 
DG = (T, D, E, S), where     
 
• T is a finite or infinite set of trials T = {t1, t2, …, tn}, 
   and n is the time points of trials where n may be 
   infinitive. 
• D is the decision distance of a series of decision trials, 
  D = ti - t0 = ti, 1 ≤ i ≤ n.     
• E is the effort of a specific trial towards the success 
   state in the grid, 0 ≤ E ≤ n.  
• S is a finite or infinite set of success states of the grid,  
   S = {s1, s2, …, sk}, 1 ≤ k ≤ n.  

Def. 11.46 

118 Quality Quality Q is a generic and collective attribute of a 
product, a service, or a system that is proportional to both 
its average utility U and the available duration T of the 
utility, i.e.: 

 

                                Q = U • T   [Fh]                      
 

where the unit of utility is function (F), and the unit of 
duration is hour (h), and these result in the unit of quality 
as Function-hour or shortly Fh.      
 

Def. 11.54 

119 Integrated 
quality 

The integrated quality with dynamic utility, Q(t), is an 
integral of the utility function U(t) over the entire 
lifecycle of the utility [0, T], i.e.: 
    

                       
0

0
-

( ) ( )

(1 )

=  - (1 - )  [Fh]

T

T t T

T

Q t U t dt

U e dt

Q U e

−

=

= −

∫
∫    

                  

where U is the initial quality of the product, service, or 
system.   

Lemma 
11.12 

120 Benefit of 
quality 

The benefit of a product or a system B is the quality 
gained per unit cost (C) in terms of resources, labor, and 
time, i.e.: 

 

                                  =   

=   [Fh/$]

Q
B 

C
U •T

C

    

Def. 11.57 

121 Generic 
quality system 

A generic quality control system. Fig. 11.19 
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122 Equilibrium 
model of 
market 
systems 

A negative feedback system, in which the increase or 
decrease of price in the market will result in a negated 
feedback, and so do the changes of quantities of demands 
and supplies on prices, both which intend to resist the 
tendency of deviating from the current equilibrium. 

Def. 12.7 

123 E(D+) mode The reactions of the equilibrium mechanism to an event of 
demand increase, E(D+), can be described by the 
following chain of reactions: 

               

  

 

( +) = 'e
P

E D D P
S P

→ ↑ →
↑ → ⇒→→ ↑ → ↓

      

Mode 12.1 

124 E(D-) mode The reactions of the equilibrium mechanism to an event of 
demand decrease, E(D-), are formally described as 
follows: 

 

           
  

 

( ) = 'e
P

E D- D P
S P

→ ↓ →
↓ → ⇒→→ ↓ → ↑

 

Mode 12.2 

125 E(S+) mode The reactions of the equilibrium mechanism to an event of 
supply increase, E(S+), are formally described as follows:   
           

  

 

( ) = 'e
P

E S S P
S P

→ ↓ →
+ ↑ → ⇒→→ ↑ → ↑

 

Mode 12.3 

126 E(S-) mode The reactions of the equilibrium mechanism to an event of 
supply decrease, E(S-), can be formally described as 
follows: 
      
         

  

 

( ) = 'e
P

E S- S P
S P

→ ↑ →
↓ → ⇒→→ ↓ → ↓

  

Mode 12.4 

127 E(D+, S+) 
mode 

The reactions of the equilibrium mechanism to an 
compound event of demand/supply increases, E(D+, S+), 
are described as follows: 
 

         

 

  

 

( ,  ) = 'e

P
D

S P
E D S P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

+ + ⇒→→ ↓
↑ → →→ ↑ → ↑

 

Mode 12.5 

128 E(D+, S-) 
mode 

The reactions of the equilibrium mechanism to an 
compound event of demand increase/supply decrease, 
E(D+, S-), are described as follows: 
 

        

 

  

 

( ,  -) 'e

P
D

S P
E D S P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

+ = ⇒→→ ↑
↓ → →→ ↓ → ↓

 

Mode 12.6 

129 E(D-, S+) 
mode 

The reactions of the equilibrium mechanism to an 
compound event of demand decrease/supply increases, 
E(D-, S+), are described as follows: 

Mode 12.7 
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( -,  ) = 'e

P
D

S P
E D S P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

+ ⇒→→ ↓
↑ → →→ ↑ → ↑

 

130 E(D-, S-) 
mode 

The reactions of the equilibrium mechanism to an 
compound event of demand/supply decreases, E(D-, S-), 
are described as follows: 

 

           

 

  

 

( -,  -) = 'e

P
D

S P
E D S P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↑
↓ → →→ ↓ → ↓

 

Mode 12.8 

131 Equilibrium 
behaviors of 
market 
systems 

Adaptive equilibrium behaviors of market systems. 
 

Table 12.1 

132 Dynamic value 
of money 

The dynamic value of money or an asset, V(t), is its 
present worth P projected at a given point of time t for a 
given average or predicated interest rate i during [0, t], 
i.e.: 

 

                           V(t) = f(P, i, t)    

Def  12.17 

133 Linear 
depreciation of 
assents 

Assume an asset provides an equal amount of utility or 
service in each year of its life-span n, the linear 
depreciation of the asset in each year D is:      

                                      P - SD
n

=   

 

where P is the initial value of the asset, and S the salvage 
value by the year end of n.  

Def. 12.19 

134 Benefit-cost 
ratio 

Benefit-cost ratio BC of a project is a ratio between the 
total benefit B and the total cost C, i.e.: 

 

                         

0

BC =B
C

B
C C

= ′+

   

Def. 12.25 

135 Elements of 
software costs 

 

Elements of software costs. 
 

Table 12.3 

136 Elements of 
software 
revenues 
 

Elements of software revenues. 
 

Table 12.4 

137 FEMSEC The Formal Economic Model of Software Engineering 
Cost (FEMSEC) states that, on the basis of the workload-

Theorem 
12.3 
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driven project organization laws (Theorems 8.4 and 8.7), 
the expected project cost C can be determined optimally 
with the optimal labor allocation L0 and the shortest 
duration Tmin in the following 6 steps: 
  
    1) Estimate the project size pS  

    2) Determine the ideal workload W1 

    3)  Allocate the optimal labor L0  

    4) Determine the shortest duration Tmin  

    5) Determine the expected workload W  

    6) Determine the expected project cost C      

 

 

 

Fig. 12.12 

138 COCOMO The cost factors of software projects identified in 
COCOMO are software size, effort, duration, and 
multiple cost drivers. Their relationships are perceived as 
follows:                 
 

           Cost = f(size, effort, duration, cost drivers)   

Def. 12.33 

139 COCOMO II The effort E of a software project in COCOMO II is 
estimated by the following empirical approximation, i.e.:   
  

                   E = 2.94 EAF • (kSLOC)E   [PM]  
 

where EAF stands for effort adjustment factor derived 
from the 17 cost drivers, E is an exponent determined by 
the five scale drivers, and the unit of project effort is 
person-month (PM). 

Def. 12.36 

140 Overtaken 
time of legacy 
maintenance 
costs  

The overtaken time to in which the maintenance cost 
exceeds the development cost in a software development 
organization can be determined using the following 
expression, i.e.: 

 

              
⎣ ⎦

⎣ ⎦

⎡ ⎤ ⎣ ⎦

  

  

= { = }

( ) - ( )
 [year]

( ) - ( )

0 m d

m m

m m

t t | C   C

C n C n
n

C n C n
≈ +

    

Lemma 
12.5 

141 Group  A group is a formal or informal social unit formed by two 
or more persons working towards a particular purpose. 

Def. 13.3 

142 Organization An organization is a formal and stable social unit formed 
by one or more groups of people working towards a 
particular purpose.  

Def. 13.4 

143 Society A society is the community of people that members of it 
are geographically connected and socially integrated with 
common customs, organizations, and values.     

Def. 13.6 

144 Social 
relations 

A social relation R is a function between two or more 
persons, p, in a society, i.e.: 

 

                                 R(p) = g :  p → P      

Def. 13.8 
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where P is all the individuals,  p ∈ P, in the given society.  

145 Social roles The social roles RL of a person p is a relation between the 
person p and a set of social functions F, F ⊆ F, i.e.: 

 

                                  RL(p) = f : p → F   
 

where F is a subset of all defined social functions F. 

Def. 13.10 

146 Maslow 
hierarchy of 
human needs 

The Maslow hierarchy of human needs is at five levels 
known as the needs of physiological, safety, social, 
esteem, and self-actualization from the bottom up. 

Table 13.3 

147 Human Needs 
Hierarchy 
(HNH) 

The Human Needs Hierarchy (HNH) model is a 
hierarchical model that encompasses five levels of 
fundamental human needs known from the bottom-up as 
N0 – physiological needs, N1 – psychological needs, N2 – 
cognitive needs, N3 – social needs, and N4 – self-
expressive needs. 

Def. 13.19 

148 Formal model 
of emotion 

The strength of emotion |Em| is a normalized measure of 
how strong a person’s emotion on a scale of 0 through 4, 
i.e.: 

 

                                     0 ≤ |Em| ≤ 4 

Def. 13.22 

149 Formal model 
of motivation 

The strength of motivation M is a normalized measure of 
how strong a person’s motivation on a scale of 0 through 
100, i.e.:  
                                      

                                   0 ≤ M ≤ 100  
 

where M = 100 is the strongest motivation and M = 0 is 
the weakest motivation. 

Def. 13.25 

150 Formal model 
of attitude 

The mode of an attitude A is determined by both an 
objective judgment of its conformance to the social norm 
N and a subjective judgment of its empirical feasibility F, 
i.e.: 
 

                       1,  

0,  

N F
A

N F

= ∧ =⎧⎪⎪= ⎨⎪ = ∨ =⎪⎩

T T

F F
    

        

where A = 1 indicates a positive attitude; otherwise, it 
indicates a negative attitude.  

Def. 13.27 

151 Formal model 
of Behavior 

A behavior B driven by a motivation Mr and an attitude is 
a realized action initiated by a motivation M and 
supported by a positive attitude A and a positive decision 
Da toward the action, i.e.: 
           

 

2.5 | |   ( - )
,        1

, 

m
r a a
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M D A D

CB
otherwise

⎧⎪⎪ = >⎪⎪= ⎨⎪⎪⎪⎪⎩

i i
i i iT

F

    

Lemma 
13.5 

152 Normalized A normalized organization tree (OTn) is a complete n- Def. 13.43 
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organization 
tree 

nary tree in which all leave nodes represent employees 
and the remainder represent managers. When the leaves 
(employees) are not reached the maximum possible 
numbers in the OT, the right most leaves of it will be left 
open. 

153 Series work 
organization 

A series work organization is a work allocation structure 
in which a given work is decomposed into a series of 
parts and each part is allocated to a person or a group.    

Def. 13.46 

154 Parallel work 
organization 

A parallel work organization is a work allocation 
structure in which a given work is done repetitively or 
jointly by multiple persons or group. 

Def. 13.47 

155 Formal 
socialization 
model (FSM) 

The Formal Socialization Model (FSM) is a relational 
model that describes the relationships between the basic 
human needs, economic structures, and social types, as 
shown in Fig. 13.7. 

Def. 13.48 

156 Behavioral 
space  

A human behavior B is constituted by four basic elements 
known as the object (O), action (A), space (S), and time 
(T), i.e.: 

 

        B = (O, A, S, T) 

Def. 13.55 

157 BMHE The Behavioral Model of Human Errors (BMHEs). 
 

Table 
13.12 

158 HET The model of Human Error Tree (HET). 

The random nature of human errors in performing tasks 
in a group is the statistical phenomenon that the 
occurrences of the same errors by different individuals are 
most likely at different times. 

Corollary 
13.15 

Fig. 13.9 

159 Error 
reduction 
model of 
review 

The n-fold error reduction by reviewing states that the 
error rate of a work product can be reduced upto n folds 
of the average error rate of individuals re in a group via n-
nary peer reviews based on the random nature of error 
distributions and independent nature of error patterns of 
individuals, i.e.: 

 

                               
1

( )
n

e e
k

R r k
=

= ∏  

Theorem 
13.5 

160 DTSD 
programming 

Distributed Time-Shared Development (DTSD) is a 
software engineering methodology that geographically 
allocates software development work in broadly 
distributed time zones with a wide-area Intranet. 

Def. 14.21 

161 Software 
Maintenance 
Crisis (SMC) 

A phenomenon that happens when the demand for 
software maintenance exceeds the capability that a 
software development organization can provide, or when 
the costs of legacy software maintenance predominately 
override the investment for new software development.  

Def. 14.22 
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162 Framework of 
SE 

The theoretical framework of software engineering.   
 

Fig. 14.5 

163 Impact of SE The impact of software engineering theories on related 
disciplines.   

Table 14.9 

164 Formal 
knowledge  

Taxonomy of formal knowledge. Table 15.1 

165 Framework of 
Formal 
Knowledge 
Systems (FKS) 

The framework of Formal Knowledge System (FKS). Fig. 15.1 

166 Software 
Science 

Software science is a branch of knowledge that studies the 
theoretical framework of software as instructive and 
behavioral information, which can be embodied and 
executed by generic computers in order to create expected 
system behaviors and machine intelligence.    

Def. 15.1 

167 Framework of 
Software 
Science 

The Theoretical Framework of software science   
 

Fig. 15.2 

168 Denotational 
mathematics 
for SS 

Denotational mathematical means for software science.  
 

Table 15.2 

169 Abstract 
concept 

An abstract concept c is a 5-tuple, i.e., 
( , , , , )c i oc O A R R R , where 

 
• O is a nonempty set of object of the concept, O = {o1, 
    o2, …, om} = ÞU, where ÞU denotes a power 
   set of U. 
• A is a nonempty set of attributes, A = {a1, a2, …, an} = 
   ÞM. 
• Rc ⊆ O × A is a set of internal relations.  
• Ri ⊆ C′ × C is a set of input relations, where C′ is a set 
   of external concepts.  
• Ro ⊆ C × C′ is a set of output relations.         

Def. 15.3 

170 Concept 
algebra 

Concept algebra is a new mathematical structure for the 
formal treatment of abstract concepts and their algebraic 
relations, operations, and associative rules for composing 
complex concepts and knowledge 

Def. 15.4 

171 Generic 
knowledge 
model 

A generic knowledge K is an n-nary relation Rk among a 
set of n multiple concepts in C, i.e.: 
                    

                              : Xk i
i=1

K = R C  C→
n

( )    

where =U i
i=1

C  C
n , and  

Def. 15.5 
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Rk ∈ { , , , , , , , , }
+

ℜ ⇒ ⇒ ⇒⇒ = . 

172 Concept 
network 

A concept network CN is a hierarchical network of 
concepts interlinked by the set of nine associations ℜ 
defined in concept algebra, i.e.:   
 

                         : X X→
n n

κ i j
i=1 i= j

CN = R C  C    

 

where Rk ∈ R. 

Def. 15.6 

173 Taxonomy of 
denotational 
mathematics 

Taxonomy of denotational mathematics for software 
science and engineering 

Table 15.3 

174 Imperative 
Computing 
(IC) behaviors 

The necessary and sufficient conditions of IC, CIC, are the 
possession of event Be, time Bt, and interrupt Bint driven 
computational behaviors, i.e.: 
 

                 ( , , )IC e t intC B B B=     

Theorem 
15.2 

175 Autonomic 
Computing 
(AC) behaviors 

The necessary and sufficient conditions of AC, CAC, are 
the possession of goal Bg and inference Binf driven 
computational behaviors, in addition to the event Be, time 
Bt, and interrupt Bi  driven behaviors, i.e.: 
 

        ( , , , , )AC g inf e t intC B B B B B=     

Theorem 
15.3 

176 Imperative 
Computing 
System (ICS) 

The Imperative Computing System, §IC, is an abstract 
logical model of conventional computing platforms 
denoted by a set of parallel or concurrent computing 
resources and behaviors as shown in Fig. 15.5.      

Def. 15.9 

177 Autonomic 
Computing 
System (ACS) 

The AC System, §AC, is an abstract logical model of 
computing platform denoted by a set of parallel or 
concurrent computing resources and behaviors as shown 
in Fig. 15.6. 

Def. 15.12 

178 Cognitive 
model of ACS 

The cognitive informatics model of an AC system, ACS, is 
equivalent to the high-level logical model of the brain as 
given in Model 9.6, i.e.: 

 

                       
 

 

   _
            ||
           (  _
                || _
                )
             || (  
                ||
                ||
                ||
              )

ACS NI Sys
CMM

NI OS
NI App

LTM
STM
SBM
ABM

=

   

                    

Def. 15.13 
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179 Hyper-
programming 

A hyper-program is a new type of nonlinear framework 
for software description and documentation that integrates 
software architectures, behaviors, code, and related design 
workproducts into a coherent and multidimensional 
framework by bidirectional hyperlinks.         

Def. 15.14 

Fig. 15.7 
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Appendix E 
 

WANG’S LAWS OF  
SOFTWARE ENGINEERING  

 
  
 

No Law Description Mathematical model 

1 The 
characteristics 
of theoretical 
and empirical 
problems 

 
(Theorem 1.1) 

Software engineering problems must be 
treated by both theoretical and 
empirical methodologies. The former is 
characterized by abstract, inductive, 
mathematics-based, and formal-
inference-centered studies; while the 
latter is characterized by concrete, 
deductive, data-based, and 
experimental-validation-centered 
studies. 

 

2 The 
Information-
Matter-Energy 
(IME) 

model 

 
(Theorem 1.2) 

The natural world (NW) which forms the 
context of human intelligence and 
software science is a dual world: one 
aspect of it is the physical world (PW), 
and the other is the abstract world (AW), 
where matter (M) and energy (E) are 
used to model the former, and 
information (I) to the latter, where p, a,
and n are functions that determine a 
certain PW, AW, or NW, respectively. 

||ˆ

( , ) || ( )

( , , )

NW PW AW

M E I

I M E

=

=

=

p a

n

 

3 Abstract 
objects under 
study 

 
(Theorem 1.3) 

The nature of software stems from 
intangibility of the abstract objects 
under study, intricate inner connections 
of software systems, adaptive 
interactions to external events and 
environments, and the cognitive 
complexity to explicitly describe them. 

 

4 Explicit 
descriptivity 

 

Only a higher-level abstract, precise, 
and rigorous means is adequate to 
express an object at a given level of 
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(Theorem 1.4) abstraction, where denotational 
mathematics is the top-level abstraction 
means. 

5 The basic 
constraints of 
SE 

 
(Theorem 1.5) 

Software engineering faces the 
cognitive, organizational, and resources 
constraints. 
 

 

6 Conservative 
productivity 

 
(Theorem 1.7) 

Software productivity is physiologically 
constrained by the growing speed of 
synaptic connections inside the brain, 
because before any creative artifact is 
generated externally, it must be created 
and represented physiologically inside 
the brain by the synaptic connections. 

 

7 Universal 
constraints 

 
(Theorem 3.1) 

Both the natural world and the perceived 
abstract world are constrained by certain 
known restrictions and laws, or by those 
yet to be known due to both current 
limitations of natural resources and/or 
human cognitive capability. 

 

8 Law of  
causality 

 
(Theorem 3.3) 

A condition must be both necessary and 
sufficient to qualify as a cause, where 
the necessary condition is a condition 
that must be present in order for the 
effect to occur, while the sufficient 
condition is a condition that will always 
produce the effect. 

 

9 Inclusive 
intelligent 
capability 

 
(Theorem 3.5) 

Artificial intelligence (AI) is a subset of 
natural intelligence (NI). 
                              

AI  ⊆  NI    

10 Behavior 
space of 
software 

 
(Theorem 3.11) 

The software behavior space Ω is 
innately three-dimensional, which can 
be described by a Cartesian product of 
computational operations OP, time T, 
and memory space S.     

Ω  = OP × T × S                      

11 Utility of 
mathematics 

 
(Theorem 4.1) 

Denotational mathematics is the means 
and rules to rigorously and explicitly 
express design notions and conceptual 
models on abstract architectures and 
complex interactive behaviors at the 
highest level of abstraction and in the 
largest scope of systems. 
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12 Cumulative 
Relational 
Model (CRM) 
of processes 

 
(Theorem 4.3) 

A process P is the basic unit of an 
applied computational behavior that is 
composed by a set of statements si, 1 ≤ i 
≤ n-1, with left-associated cumulative 
relations, where si ∈ P and rij ∈ R. 

1

1

1 12 2 23 3 1,

 (   s ), 1

(...((( )  s )  s ) ...  s )

n

i ij j
i

n n n

s r j i

s r r r

R
−

=

−

= = +

=

P

 

13 Express power 
of algebraic 
modeling 

 
(Theorem 4.8) 

The express power of RTPA states that 
the total number of the possible 
computational operations N is a set of 
combinations between two arbitrary 
meta processes P1, P2 ∈ P composed by 
each of the process relations R ∈ R in 
RTPA.  

#

2
#=

17!=17 • 
2!(17-2)!

=17 • 136

=2,312

C• P
RN 

 

14 Essential 
facets of 
software 
system 
modeling  
 

(Theorem 4.9) 

Software systems can be formally 
specified by its architectures, static 
behaviors, and dynamic behaviors with 
multiple-level refinements. 

 

15 The root of 
computing 
and 
information 
science 
 

(Theorem 5.1) 

The most fundamental data object 
model shared in both computing and 
information science is binary digits 
(bits). 

 

16 Domain 
constraints of 
data objects 

 
(Theorem 5.6) 

Letting Dm, Dl, and Du be the domains of 
mathematical (logical), language 
defined, and user defined, respectively, 
the following relationship between the 
domains of an identifier in programming 
is always held.    

Du ⊆ Dl ⊆ Dm 

17 The generic 
mathematical 
model of 
programs 

 
(Theorem 5.7) 

A software system or a program ℘is a 
set of complex embedded cumulative 
relational processes Pk dispatched by 
system-level events ek . 

 
                                 

1

1

1

1

(@ )

    [@

      ( ( ) ( ) s ( ))],

        1

m

k k
k

m

k
k

n

i ij j
i

e P

e

s k r k k

j i

R
R
R

=

=

−

=

℘=

=

= +

S  

S  

 

18 Tradeoff 
between 
syntaxes and 
semantics 
 
(Theorem 6.1) 

In the DGE system, the complexities of 
the syntactic rules (or grammar) Csyn and 
of the semantic rules Csem are inversely 
proportional, i.e.: 

1
syn

sem
C

C
∝  
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19 Asynchroni-
city of 
program 
semantics 

 
(Theorem 6.2) 

The semantics of a relatively timed 
program is invariant with the changes of 
executing speed, as long as any absolute 
time constraint is met. 

 

20 The least 
complete set 
of instructions 

in 
programming 

 
(Theorem 6.3) 

A program is composable with 
sufficient descriptive power in a given 
language iff both the sufficient sets of 
meta instructions (P, Theorem 4.6) and 
compositional rules (R, Theorem 4.7) 
are rigorously defined.   
 

 

21 Informatics 
laws of 
software 

 
(Theorem 7.2) 

Software architectures, behaviors, and 
processes are constrained by the 19 
informatics laws of basic information 
properties. 

 

22 Conservation 
of basic 
engineering 
constraints 

 
(Theorem 8.2) 

The three basic constraints of 
engineering goals known as time (T), 
costs (C), and utility (U) are 
conservative in a given engineering 
context, where both δ and k are a 
constant. 

ft(T-1) + fc(C-1) + fu(U)  
= Uk

T C•
 

= δ 

23 Coordinative 
work load in 
engineering 

 
(Theorem 8.4) 

The actual workload W of a 
coordinative project is a function of the 
average interpersonal coordination rate r 
and the number of labor L in the project, 
where T1 is the indicational duration 
needed to complete the work by only 
one person, and W1 is the ideal 
workload without the interpersonal 
overhead h or that of a single person 
project. 

1

1

1

(1 )

(1 )

( 1)
(1 ) 

2
  [PM]

W L T

L T h

W h

L L
W r

= •

= • +

= +

−= + •

 

24 Interchange- 

ability of labor 
and time (ILT) 

 
(Theorem 8.6) 

For a given workload W, labor L and 
duration T are transformable under the 
condition as given in the mathematical 
model. 
 
    

1

1 2

1

( 1)
(1 )

2
1 1( 1)
2 2

1 2
( )

2

WT
L

L LW r
L

W rL rL
L

W rL r
L

=

−= + •

= − +

= − +
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25 The shortest 
duration of 
coordinative 
work 

 
(Theorem 8.7) 

There  exists  the  shortest  duration Tmin 
under the optimum labor allocation L0 
for  a  given  ideal  workload  W1  with a 
certain interpersonal  coordinative rate r.    

min 0

1 0
0

0

{ | }

1 2
( ) [ ]

2
1.414 , 0   [ ]    

T T L L

W rL r M
L

L r P
r

⎧⎪⎪ = =⎪⎪⎪⎪⎪⎪⎪ = − +⎨⎪⎪⎪⎪ ⎡ ⎤⎪ = ≠⎪ ⎢ ⎥⎪⎪⎩ ⎢ ⎥⎪
 

26 Quantitative 
advantage of 
human brain 

 
(Theorem 9.1) 

The magnitude of the memory capacity 
of the brain is tremendously larger than 
that of the closest species. 

 

27 Qualitative 
advantage of 
human brain 

 
(Theorem 9.2) 

The possession of the abstract layer of 
memory and the abstract reasoning 
capacity makes the human brain 
profoundly powerful on the basis of the 
quantitative advantage. 

 

28 Generic forms 
of information 

 
(Theorem 9.4) 

There are four categories of internal 
information I in the brain known as 
knowledge (Ik), behaviors (Ib), 
experience (Ie), and skills (Is).  

( , , , )k b e s=I I I I I  

29 The nature of 
intelligence 

 
(Theorem 9.5) 

Intelligence I is a capability that 
transfers between data, information, 
knowledge, and behaviors known as the 
perceptive intelligence Ip, cognitive 
intelligence Ic, instructive intelligence 
Ii, and reflective intelligence Ir.    

  p

 c

i

r

:   (Perceptive)

    || :   (Cognitive)
    || :    (Instructive)
    || :   (Reflective)

D I

I K
I B
D B

→

→
→
→

I I

I

I

I

 

30 Dynamic 
properties of 
neural clusters 

 
(Theorem 9.9) 

The LTM is dynamic. New neurons (to 
represent objects or attributes) are 
assigning, and new synaptic connections 
(to represent relations) are creating and 
reconfiguring all the time in the brain. 

 

31 Establishment 
cycle of LTM 

 
(Theorem 9.11) 

The cycle of LTM establishment 
requires at least 24 hours, where the 24-
hour cycle includes any kind of 
combinations of awake, asleep, and 
siesta.   

LTM establishment  
        cycle ≥ 24  [hrs]   

32 Holism 
complexity of 
systems 

 
(Theorem 10.1) 

Within the 7-level magnitudes of 
systems, known as the empty, small, 
medium, large, giant, immense, and 
infinite systems, almost all systems are 
too complicated to be cognitively 
understood or mentally handled as a 
whole, except small systems or those 
that can be decomposed into small 
systems. 
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33 Generic 
topology of 
normalized 
systems 

 
(Theorem 10.2) 

Systems tend to be normalized into a 
hierarchical structure in the form of a 
complete n-nary tree.   

 

34 System gain of 
functionality 

 
(Theorem 10.4) 

System conjunction or composition 
between two systems S1 and S2 creates 
new relations ∆R12 and/or new 
behaviors (functions) ∆B12 that are 
solely a property of the newly 
established super system S, which can 
be determined by the sizes of the two 
intersected component sets #C1 and #C2.
  

∆R12 = #R - (#R1 + #R2) 

        = (#(C1 + C2))2 –  

            ((#C1)2 +(#C2)2) 

        = 2 (#C1 • #C2)         

35 System 
mutation 

 
(Theorem 10.5) 

The gradual increment of quantity of 
system, i.e., ∆C or ∆R, in a system 
beyond the point of the critical mass Qcm 
triggers the abrupt generation of 
functionality (quality) Fcm of the system.

 

36 System gain of 
work 

 
(Theorem 10.6) 

Work done by a system is always 
greater than any of its components, but 
must not greater than the sum of those 
of its components 

1
( ) ( ),      100%

( ) max( ( )),  

n

i
i

i i S

W S W C

W S W C C E

η
=

⎧⎪⎪ ≤ ≤⎪⎪⎨⎪⎪ > ∈⎪⎪⎩

∑

 

37 Conservative 
work of 
equilibrium 
systems 
 

(Theorem 10.9) 

The sum of all types of work is always 
zero in an equilibrium system, where 
W(Ci) is the abstract work of a system 
component Ci.    

1
( ) 0

n

i
i

W C
=

=∑  

38 Conditions of 
system self-
organization 

 
(Theorem 
10.10) 

The necessary and sufficient condition 
of self-organization is the existence of at 
least one minimum on the state curve of 
a system f(x), which satisfies the 
following requirements, where f ’(x) and 
f ’’(x) are the first and second order 
derivatives of f(x) on (a, b). 

 ' (  |  ( )) = 0 

''(  |  ( )) 0
min min

min min

f x x a, b

f x x a, b

⎧ ∈⎪⎪⎪⎨⎪ ∈ ≠⎪⎪⎩
 

 ' (  |  ( )) = 0 

''(  |  ( ))< 0

''(  |  ( ))> 0 

min min

min

min

f x x a, b

f x x x a, b

f x x x a, b

⎧⎪ ∈⎪⎪⎪⎪ < ∈⎨⎪⎪⎪ > ∈⎪⎪⎩
 

39 System 
synchroni-
zation 
 

(Theorem 
10.11) 

A system reaches its maximum utility 
maxS  when all components’ efforts 

1 2 and S S are synchronized. 

 

 

1 2

max 1 2| | | |

S S S

S S S

⎧⎪ = +⎪⎪⎨⎪ = +⎪⎪⎩

 

40 System 
dissimilation 

 

Any system tends to undergo a 
continuous degradation that leads to the 
eventual loss of its designed utility and 
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(Theorem 
10.12) 

against its initial purposes to form the 
system.     

41 Cognitive 
complexity of 
software 

 
(Theorem 
10.14) 

The cognitive complexity of a software 
system S, Cc(S), is a product of the 
operational complexity Cop(S) and the 
architectural complexity Ca(S). 
 
                 

1 1

  
1

1

( ) ( ) ( )

{ ( , )}

{ OBJ( )

+ OBJ( )} [FO]

C k

CLM

C

f op a

n m

k i
n

k
k
n

k
k

S S C S C S

w k i

CLM

C

= =

=

=

= •

= •∑∑

∑

∑

 

42 Gain of 
management 

 
(Theorem 11.1) 

Management is required to reduce the 
complexity of working group 
organization, to improve the efficiency 
of groups (e(n)), and to simplify the 
forms of interpersonal coordination. 

2

2

( )
( ) =   100%

( )
( )

(1 )  100%
( )
n+1(1 )  100%
( 1)

m

m n
e n   

C n
c n
c n

n  n -

∆

= −

= −

i

i

i
i

 

43 Gain of 
division of 
labor 

 
(Theorem 11.2) 

The relative gain gr(k) via division of 
labor in work organization is 
proportional to the repetitive times k at 
specialized subtask-level, where c is a 
positive constant, 1 < c < e. 

-11

( ) - ( )
( ) =   100%

( )
( )

(1- )  100%
( )

1
( )

(1- )  100%

d
r

d

k

ki

E k E k
g k   

E k
E k
E k

e
c
k

=

=

=

∑

i

i

i
 

44 Adaptive 
economic 
equilibrium 

 
(Theorem 12.1) 

A market with autonomic interactions 
between demands D and supplies S is a 
self-regulated and self-adaptive system, 
where any change in demand, supply, or 
both will be autonomously adjusted via 
the leverage of price P to an 
equilibrium.                  

   

     

  

 

  

 

Market conservation Maximizing profits
[ ] [ ]

Lemma 12.xx Lemma 12.xx

D D
P P

S S

D D
P P

S S

↑→ ↓→⎧ ⎫⎪ ⎪⎪ ⎪→ ↑ ⇒ → ↓⎪ ⎪⎪ ⎪→ →↓ ↑⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪↓→ ↑→⎪ ⎪⎪ ⎪→ ↓ ⇒ → ↑⎪ ⎪→ →⎪ ⎪↑ ↓⎪ ⎪⎪ ⎪⎩ ⎭

+

 

45 Formal 
Economic 
Model of 
Software 
Engineering 
Cost 
(FEMSEC) 

 
(Theorem 12.3) 

On the basis of the workload-driven 
project organization laws, the expected 
project cost C can be rigorously 
determined with the optimal labor 
allocation L0 and the shortest duration 
Tmin by the following 6 steps: 
  

1) Estimate the project size pS  

2) Determine the ideal workload W1 
3) Allocate the optimal labor L0  
4) Determine the shortest duration Tmin  
5) Determine the expected workload W  
6) Determine the expected project  
     cost C      

1
= ( +4 + )[kLOC]

6p max exp minS S S S

  1 12   [PM]pS
W

ρ
= •  

0
1.414   [ ]L P

r
⎡ ⎤= ⎢ ⎥
⎢ ⎥

 

min 1 0
0

1 2( )
2

T W rL r
L

= − +

1

2
0 0

1
2

   ( 2) [PM]

W W

rL rL

=

− +

0  [$]min LC L •T •C=  
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46 Basic essences 
for evolution 

 
(Theorem 13.1) 

The basic evolutional needs of mankind 
are to preserve both the species’ 
biological traits via gene pools, and the 
cumulated knowledge via various 
information systems. 

 

47 Organiza-
tional 
coordination 
efficiency 

 
(Theorem 13.3) 

The natural constraints for social 
organization that forces the architecture 
of large groups to be evolved and 
adapted to tree-form hierarchical 
structures in an organization is the need 
to maintain acceptable coordinating 
efficiency at each level of the 
organization tree.       

 

48 Time-oriented 
optimization 
for large-scale 
project 
organization 

 
(Theorem 13.4) 

Time-oriented optimization for large-
scale project organization states that in 
order to further reduce the shortest 
duration Tmin of an entire large-scale 
project constrained by Theorem 8.7, the 
optimal form of organization is to 
evenly partition the whole project into n 
lightly-coupled parallel subprojects that 
may be conducted by independent 
groups with a shorter duration Ti

min, 1 ≤ i 
≤ n, so that an average n-fold time 
deduction can be gained. 

min min
1

min

1

1

n
i i

i
T T

n

T
n

ϖ

=
=

= +

∑
 

49 The n-fold 
error 
reduction 
structure 

 
(Theorem 13.5) 

The error rate of a work product can be 
reduced up to n folds from the average 
error rate of individuals re in a 
coordinative group via n-nary peer 
reviews based on the random nature of 
error distributions and independent 
nature of error patterns of individuals. 

1
( )

n

e e
k

R r k
=

= ∏  

50 Power of 
multi-
disciplinary 
knowledge 

 

(Theorem 14.2) 

The ratio of knowledge space Ω
Σ 

between the knowledge of an expert 
with coherently m disciplinary 
knowledge KΣ  and that of a group of m 
experts with separated individual 
disciplinary knowledge K

m
 is shown in 

the mathematical model, where n is the 
number of average knowledge objects or 
concepts in the disciplines. 

2

m
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Appendix F 
 

WANG’S  
FORMAL PRINCIPLES  

OF SOFTWARE ENGINEERING  
 

  
 

No Principle Description Mathematical model 

1 Polymorphous 
solutions  

 
(Theorem 1.6) 

The solution space SS of software 
engineering for a given problem is a 
product of the number of possible 
design options Nd and the number of 
possible implementation options Ni. 

d iSS N N= •  

2 Formalization 
of principles 

 
(Theorem 2.1) 

The empirical principles for software 
engineering are heuristic and data-
based; while the formal principles for 
software engineering are rigorous and 
mathematics-based, which are elicited 
and refined from the empirical 
principles. 

 

3 Validation of 
abstract 
propositions 

 
(Theorem 3.2) 

The abstract and information-based 
propositions and work products, such as 
a design or a specification of a system, 
are bounded by logical verifications, 
mathematical proofs, systematical 
reviews, behavioral simulations and 
tests, and/or in field trials. 

 

4 Compatible 
intelligent 
capability 

 
(Theorem 3.4) 

Natural intelligence (NI) and artificial 
intelligence (AI) are compatible by 
sharing the same mechanisms of 
intelligent capability. 
                              

AI  ∝  NI 

5 Deductive 
inference 

 

Given an arbitrary nonempty set X, let 
p(x) be a proposition for ∀x ∈ X, a 
specific conclusion on ∃a ∈ X, p(a) can 

∀x ∈ X, p(x)  ∃a ∈ X, p(a) 

or 
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(Theorem 3.6) be drawn as in the mathematical models.  (∀x ∈ X, p(x) ⇒ q(x))   

(∃a ∈ X, p(a) ⇒ q(a)) 

6 Inductive 
inference 

 
(Theorem 3.7) 

If ∃a, k, succ(k) ∈ X, p(a) and p(k) ⇒ 
p(succ(k)) are three valid propositions, 
then a generic conclusion on ∀x ∈ X, 
p(x) can be drawn as in the 
mathematical models. 

 
  

((∃a ∈ X, p(a)) ∧  
(∃k, succ(k) ∈ X, (p(k) ⇒ 
p(succ(k))))   ∀x ∈ X, p(x)  

or 
((∃a ∈ X, p(a) ⇒ q(a)) ∧ 
(∃k, succ(k) ∈ X, ((p(k) ⇒ 
q(k)) ⇒ (p(succ(k)) ⇒ 
q(succ(k)))))   

∀x ∈ X, p(x) ⇒ q(x)        
7 Abductive 

inference 

 
(Theorem 3.8) 

Based on a general implication ∀x ∈ X, 
p(x) ⇒ q(x), a specific conclusion on ∃a 
∈ X, p(a) can be drawn as in the 
mathematical models. 
  

(∀x ∈ X, p(x) ⇒ q(x))   

(∃a ∈ X, q(a) ⇒ p(a))         
or 
(∀x ∈ X, p(x) ⇒ q(x) ∧ r(x) 
⇒ q(x))  (∃a ∈ X, q(a) ⇒ 
(p(a) ∨ r(a)))            

8 Analogical 
inference 

 
(Theorem 3.9) 

Based on a specific predicate ∃a ∈ X, 
p(a), a similar specific conclusion can 
be drawn iff ∃x ∈ X, p(x) as in the 
mathematical models. 
 
               

∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a) 
 ∃b ∈ X ∧ b ≠ a, p(b)         

or 
 

(∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a) 
⇒ q(a))  (∃b ∈ X ∧ b ≠ a, 
p(b) ⇒ q(b)) 

9 Necessary and 
sufficient 
conditions of 
software usage 

 
(Theorem 3.10) 

Those that warrant the requirements for 
software solutions are the system 
behaviors of repeatability, 
programmability, and run-time 
determinability. 
 

 

10 Principle of 
abstraction 

 
(Theorem 4.2) 

Given an arbitrary set X and any 
property p, there is a set A such that the 
elements of A are exactly those members 
of X which have the property p. 

A = {a | a ∈ X ∧ p(a)}          

11 Primary types 
of 
computational 
objects 

 
(Theorem 4.4) 

The RTPA type system T encompasses 
17 primitive types elicited from 
fundamental computing needs.  

 

T = {N, Z, R, S, BL, B, H, P, TI, D, 
DT, RT, ST, @eS, @tTM, 
@int ,ⓢsBL}                                

12 Type 
equivalence 

Two types T1 and T2 are equivalent, iff 
the domain of type T1 is either identical 

T1(x) = T2(y) ⇒  T1(x)  T2(y)  
or 
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(Theorem 4.5) 

to or a subset of that of T2. 
 

T1(x) ⊆ T2(y) ⇒  T1(x)  T2(y) 

13 Meta software 
processes 

 
(Theorem 4.6) 

The RTPA meta process system P 
encompasses 17 fundamental 
computational operations elicited from 
the most basic computing needs.   

P = {:=, , ⇒, ⇐, , , , 

| , | , @, , ↑, ↓, !, ⊗, , §}    

14 Software 
composing 
rules 

 
(Theorem 4.7) 

The RTPA process relation system R 
encompasses 17 fundamental algebraic 
and relational operations elicited from 
basic computing needs. 

R = {→, , |, |…|…, 

*R , R+
,

iR , , , ||, 

∯ , |||, », , t, e, i} 

15 The primitive 
computational 
behaviors 

 

(Theorem 5.2) 

The most fundamental computational 
operations are logical, arithmetic, and 
memory access operations on bits. 

 

16 Nature of 
requirements 
and 
specifications 

 
(Theorem 5.3) 

Requirement elicitation focuses on 
desired functions of a system δ, while 
system specification focuses on the 
entire behavioral space of the system Ω, 
including both δ and the undesired but 
potential system transitions represented 
by δ  in the behavioral space. 

SΩ  = # #δ δ+  

     = #S • #∑         

17 The 
weaknesses of 
automata 

 
(Theorem 5.4) 

Automata and FSMs as a system 
composition and modeling method built 
on event-driven mechanisms are 
inadequate to model the complete basic 
computational requirements, particularly 
the lack of the descriptive power for: 
 

a) System architectures and data objects 
    modeling; 
b) Nonevent-driven transitional process  
     modeling; 
c) Detailed behavioral descriptions; 
d) Mathematical operations and 
    processing of complicated languages. 

 

18 Fundamental 
computational 
capabilities 

 
(Theorem 5.5) 

The essential capabilities for 
computation are as follows:   

  

• A memory for storing bit information; 
• A simple addressing capability for 
  accessing information in the memory; 
• Read/write operations for retrieving or 
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   updating the memory;  
• A conditional and quantitative 
   evaluation capability for interpreting 
   the inputted information;   
• A stored-information-driven 
   mechanism for determining the next 
   step.  

19 Primitive form 
of information 

 
(Theorem 7.1) 

The most fundamental form of 
information that can be represented and 
processed is binary digit where k = b = 
2.   

⎡ ⎤
⎡ ⎤2

:

   log

log  [ ]

b b

b

I f M S

M

M bit

= →

=

=

 

20 Relationship 
between a 
hypothesis 
and a theory 

 
(Theorem 8.1) 

The necessary and sufficient conditions 
for a hypothesis Hg(C, O, G, P, F) to be 
proven as a theory T are iff it fulfills the 
following criteria. 

 
 

Hg  T, iff  C ∧ O ∧ G ∧ P ∧ 
F = T     

21 Engineering 
Maturity 
Model (EMM) 

 
(Theorem 8.3) 

The applied engineering disciplines 
have four maturity levels known as the 
levels of emergence (L1), art (L2), 
engineering (L3), and post-engineering 
(L4).   

1 2 3 4:EMM L L L L⊆ ⊆ ⊆  

22 Incompre- 

ssible 
workload 

 
(Theorem 8.5) 

A given workload W1 in software 
engineering can not be compressed by 
any kind of labor allocation, and in the 
best case when there is only one person 
involved, the minimum workload W = 
W1 = Wmin  may be reached. 

W ≥ W1 = Wmin 

23 Exchange- 

ability from 
labor to time 

 
(Theorem 8.8) 

The exchange rate from labor to time 
γL∼T in a coordinative work organization 
is determined by the ratio between the 
increment of time ∆T and the increment 
of labor ∆L.               

1

0 1
  [M/P]

-

L T

min

T
L 

T - T
L L

γ ∆=
∆

=

∼

 

24 Exchange-
ability from 
time to labor 

 
(Theorem 8.9) 

The exchange rate from time to labor 
γT∼L in a coordinative work organization 
is determined by the ratio between the 
increment of labor ∆L and the increment 
of time ∆T. 

0 1

1 min

 - 
  [P/M]

T L
L
T 

L L
T - T

γ ∆=
∆

=

∼

 

25 Constraint on 
group size in 
coordinative 
work 

 

There exists an upper limit of group size 
Smax in coordinative work organization 
in software engineering. Therefore, 
large projects must be partitioned into 
multiple parallel groups that each of the 
groups obeys the same natural 

Smax = max (L0(r)) = 20 [P]   
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(Theorem 8.10) constraint.        
 

 
  

26 The risk of 
nonoptimal 
work 
organization 

 
(Theorem 8.11) 

The risks R due to irrational decisions 
of work organization are proportional to 
the coordination rate r in a project. That 
is, the higher the r, the higher the risk 
under nonoptimal labor allocation.     

r∝R  

27 Cognitive 
Model of 
Memory 
(CMM) 

 
(Theorem 9.3) 

The architecture of human memory is 
parallel configured by the Sensory 
Buffer Memory (SBM), Short-Term 
Memory (STM), Long-Term Memory 
(LTM), and Action-Buffer Memory 
(ABM).  

CMM   SBM 

             || STM 
             || LTM                         
             || ABM 

28 Generic forms 
of learnings 

 
(Theorem 9.6) 

There are sufficiently four categories of 
learning L known as those of knowledge 
(Lk), behaviors (Lb), experience (Le), 
and skills (Ls). 

( , , , )k b e s=L L L L L  

29 Representa- 

tion of 
learning 
results 
 

(Theorem 9.7) 

The internal memory in the form of the 
OAR structure can be updated by a 
conjunction between the existing OAR 
and the newly created sub-OAR. 

  

OAR’ ST  OARST ∪               
                  sOARST  
     = OARST ∪ (Os, As, Rs)      

30 Principal 
intelligent 
advantages 

 
(Theorem 9.8) 

On the basis of two principal advantages 
known as the qualitative properties 
(Theorem 9.1) and quantitative 
properties (Theorem 9.2), humans gain 
the power as the most intelligent species 
in the world.  

 

31 Cognitive 
mechanism of 
sleeping 

 
(Theorem 9.10) 

Sleeping is a subconscious process for 
LTM establishment. 

        
 

Cognitive purpose of sleep 
    = LTM establishment 

32 Mechanism of 
LTM 
establishment 

 
(Theorem 9.12) 

The entire memory of information 
represented as an OAR model in the 
brain is updated by incorporating the 
sub-OARs formed in STM based on the 
following selective criteria:  
 
    a) A new sub-OAR in STM was 

more frequently used in the 
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previous 24 hours;  

    b)  A new sub-OAR in STM was 
related to the existing OAR in 
LTM at a higher level of the 
neural cluster hierarchy; 

    c)  A new sub-OAR in STM was 
given special attention so that it 
obtained a higher retention 
weight.   

33 Equivalence 
between open 
and closed 
systems 

 
(Theorem 10.3) 

An open system S and a closed system 

S in the same context is transformable 
when their environments SΘ  and SΘ  

( S C SΘ = ⊄ ) are taken into 

consideration, respectively.    

S

S

 = S

S =  

S

S

⎧⎪ Θ⎪⎪⎨⎪ Θ⎪⎪⎩

 

34 The bottleneck 
principle of 
systems 

 
(Theorem 10.7) 

The output work of a serial system W(Ss) 
is determined by the least powerful 
component of the system. 

W(Ss) = min (W(Ci ) |  
            Ci ∈ Cs ∧ 1 ≤ i ≤ n)) 

35 The linear 
sum principle 
of systems 

 
(Theorem 10.8) 

The output work of a parallel system 
W(Sp) is a sum of the work done by all 
its components less the overhead of the 
system ϖ. 

n

1
( ) ( ) - ,   

         ,   > 0

p i
i

i p

W S W C

C E

ϖ

ϖ
=

=

∈

∑

 

36 Orientation of 
software 
engineering 
complexity 
theories 
 

(Theorem 
10.13) 

The complexity theories of computation 
and software engineering are different. 
The former is focused on  the problems 
of high throughput complexity that are 
computing time efficiency centered; 
while the latter puts emphases on the 
problems of functional complexity that 
are human cognition time and workload 
oriented. 

 

37 Normalized 
software 
system 
architectures 
 

(Theorem 
10.15) 

Components of different subsystems 
should not be coupled directly, rather 
than be invoked through their top layer 
components shared in the same 
subsystem.  
 

 

38 Properties of 
games 

 
(Theorem 11.3) 

A formal game G is deterministic and 
conservative. That is, once the game G = 
(P, D, M, S) is set, the properties of G 
are determined and predictable, but not 
changeable by any player in the game. 
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39 Conditions of 
win-win 
decisions 

 
(Theorem 11.4) 

A win-win decision can be achieved 
when the following condition of a 
nonzero-sum game is satisfied, where σ 
is the sum of the game that is a positive 
nonzero constant, si is the expected 
score of player i, and ns is the number of 
sets of matches in the game.   

1

1 n

i
s i

s
n

σ
=

≥ ∑  

40 Property of 
decision grids 

 
(Theorem 11.5) 

The decision distance Dt in a decision 
grid is a constant that is determined by 
the number of decision trials ti spent in 
the time series, where dr and dw 
represent numbers of right and wrong 
decisions, respectively.   

t i r wD t d d= = +  

41 Random 
series of 
unlimited 
trials 
 
(Theorem 11.6) 

Random decisions, or equal probability 
right and wrong trials, will not lead to a 
success in any series of decisions under 
unlimited trials. 

 

42 Random 
series of 
limited trials 

 
(Theorem 11.7) 

Random decisions, or equal probability 
right and wrong trials, will not lead to a 
success in any series of decisions under 
limited trials. 

 

43 Conditions of 
quality control 
systems 

 
(Theorem 11.8) 

The necessary conditions for 
implementing a quality control system 
for a given product, service, or system 
are that all attributes of its quality can 
be: 
     a) Abstractly identified 
     b) Quantitatively defined, and  
     c) Independently measurable. 

 

44 Predictability 
of new 
equilibrium 

 
(Theorem 12.2) 

A newly established equilibrium on 
price P’e is determined by the effect P’ 
and feedback effect P’’ of the driving 
forces deviating from the current 
equilibrium, and the increment of price 
caused by the shifting of equilibriums is 
as shown in the mathematical models, 
where ∆P may be positive or negative 
that represents a upward or downward 
shifting of the current equilibrium, 
respectively. 

 

 

' - ''
' ''

2
' ''

,  ' '
2

e

e
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45 Ultimate 
objective of 
software 
engineering 

Automatic code generation is the only 
silver bullet to overcome the natural 
obstacles of the conservative software 
development productivity, to reduce 
software development costs, and to 
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(Theorem 12.4) 

improve software quality as a result of 
reduced human involvement and 
uncertainty. 

46 Exponential 
Software 
Legacy 
Maintenance 
Costs (SLMC) 

 
(Theorem 12.5) 

The ratio of maintenance cost Cm in a 
software development organization, 
rm%, tends to exponentially increase 
over time t, and it is proportional to the 
total number of legacy systems NL that 
the organization produced. 

 

47 Strength of 
motivations 

 

(Theorem 13.2) 

A motivation M is proportional to both 
the strength of emotion |Em| and the 
difference between the expectancy of 
desire E and the current status S, of a 
person, and is inversely proportional to 
the cost to accomplish the expected 
motivation C, where 0≤ |Em| ≤ 4, 0 ≤ 
(E,S) ≤ 10, and 1 ≤ C ≤ 10.  

2.5 | |  ( - )mE E S
M

C
• •=  

48 Mechanism of 
Software 
Maintenance 
Crisis (SMC) 

 
(Theorem 14.1) 

A software development organization 
may face a situation known as the 
software maintenance crisis, in which 
the ratio of the maintenance costs rm% is 
approaching 100% of the total costs that 
the organization spent. 

 

49 Rigorous 
levels of 
empirical and 
theoretical 
knowledge 
 

(Theorem 15.1) 

An empirical truth is a truth based on or 
verifiable by observations, experiments, 
or experiences. In contrary, a theoretical 
proposition is an assertion based on 
formal theories or logical inferences. 

 

50 Necessary and 
sufficient 
conditions of 
IC 

 
(Theorem 15.3) 

The conditions of IC, CIC, are the 
possession of event Be, time Bt, and 
interrupt Bint driven computational 
behaviors. 
 

( , , )IC e t intC B B B=  

51 Necessary and 
sufficient 
conditions of 
AC 

 

(Theorem 15.3) 

The conditions of AC, CAC, are the 
possession of goal Bg and inference Binf 
driven computational behaviors, in 
addition to the event Be, time Bt, and 
interrupt Bi  driven behaviors. 
             

( , , , , )AC g inf e t intC B B B B B=  
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Appendix G 
 

THE TYPE SYSTEM OF 
SOFTWARE ENGINEERING  

 
  
 

No. Primitive 
Type 

Syntax for 
Variables  

Syntax for 
Constants 

Mathematical 
Domain 

1 Natural number N N* {0, ..., +∞} 
2 Integer   Z Z* {-∞, ..., +∞} 
3 Real R R* {-∞, ..., +∞} 
4 String  S S* {0, ..., #( S)} 
5 Boolean BL BL* {T, F} 
6 Byte 

  
B B* {0, ..., 256} 

7 Hexadecimal H H* {0, ..., +∞} 
8 Pointer P P* {0, ..., +∞} 
9 Time TI = 

Hh:mm:ss:ms
TI* = 
hh:mm:ss:ms
* 

hh ∈ {0, ..., 23}, 
mm, ss ∈ {0, ..., 59}, 
ms ∈ {0, ..., 999} 

10 Date 
 
 
  

D = 
Yy:MM:dd 

D* = 
yy:MM:dd* 

yy ∈ {0, ..., 99}, 
MM ∈ {1, ..., 12}, 
dd ∈ {1, ..., 31} 

11 Date/Time DT = 
yyyy:MM:dd: 
hh:mm:ss:ms 

DT* = 
yyyy:MM:dd: 
hh:mm:ss:ms
* 

yyyy ∈ {0, ..., 9999}, 
MM ∈ {1, ..., 12}, 
dd ∈ {1, ..., 31}, 
hh ∈ {0, ..., 23}, 
mm, ss ∈ {0, ..., 59}, 
ms ∈ {0, ..., 999} 

12 Run-time 
determinable 

RT – 
 

– 
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type 
13 System 

architectural 
type 

ST – 
 

– 
 

14 Event  @eS – @eS ∈ § 
15 Timing @tTM – @tTM ∈ § 
16 Interrupt @int  – @int  ∈ § 
17 Status   ⓢsBL – {T, F} 
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Appendix H 
 

META PROCESSES OF 
SOFTWARE ENGINEERING  

 
  
 

No. Meta Process Notation Syntax 

1 Assignment                  := yT := xT, T ∈ T 

2 Evaluation  expBL ∈ {T, F}, expN ∈ PN 

3 Addressing          ⇒ idT ⇒ MEM[ptrP] T 

4 Memory allocation ⇐ idT ⇐ MEM[ptrP] T 

5 Memory release  idT  MEM[⊥]T 

6 Read                               MEM[ptrP]T  xT 

7 Write                              xT  MEM[ptrP]T 

8 Input                     |  PORT[ptrP]T |  xT 

9 Output                           |  xT |  PORT[ptrP]T 

10 Timing  
            

@  @tTM @ §tTM 

TM =  yy:MM:dd     
       | hh:mm:ss:ms 
         | yy:MM:dd:hh:mm:ss:ms 

11 Duration  @tnTM ∆ §tnTM + ∆nTM 

12 Increase ↑ ↑(nT) 

13 Decrease  ↓ ↓(nT) 

14 Exception detection ! ! (@eS) 

15 Skip    ⊗ ⊗ 

16 Stop   

17 System     § §(SysIDS)  

 

© 2008 by Taylor & Francis Group, LLC



   Appendix I  Algebraic Process Relations of SE   1343 
 

 

Appendix I 
 

ALGEBRAIC  
PROCESS RELATIONS OF  

SOFTWARE ENGINEERING  
 

  
 

No. Process Relation Notation Syntax 
1 Sequence → P → Q 
2 Jump             P  Q 

3 Branch |   expBL = T → P 

| ~ → Q 

4 Switch          | … 
  … 
| … 

    expiT =  i  
       → Pi 

| ~ → ⊗ 

where T ∈ {N, Z, B, S} 

5 While-loop *R  

exp =
R

F

BL T
P 

6 Repeat-loop 
                R+

  P →
exp =
R

F

BL T
P 

7 For-loop            iR  

1

n

i
R
=

N

N
P(iM) 

8 Recursion    0

i n
R
=N N

PiM  PiM-1 

9 Function call   P  F 
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10 Parallel             || P | | Q 
11 Concurrence  ∯  P ∯Q 

12 Interleave ||| P ||| Q 
13 Pipeline   » P  » Q   
14 Interrupt   P  Q  
15 Time-driven dispatch  t @tiTM  Pi 
16 Event-driven dispatch  e @eiS  Pi  
17 Interrupt-driven dispatch  i @inti   Pi  
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Appendix J 
 

DEDUCTIVE SEMANTICS  
OF SOFTWARE ENGINEERING  

 
  
 

Meta Processes (RTPA) 

Notation Syntax Semantics 

Assignment 

:= 

yT := xT,  

  T ∈ T 

2

# (y  := x ) # (y  := x )

0 1

1 2

0 1

(y  := x ) (y  := x )
 

 ( , )

  ( , )

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

RT RT RT RT

RT RT RT RT

RT RT
RT
RT RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x x

R R

R R

θθ

0

0 1

x y
t

(t , t ]

 

Evaluation  

 

expBL ∈  
   {T, F},  

expN ∈ PN 

2

# ( ) # ( )

0 1

1 2

0 1

1 2

1 2'

( ( ) )

( ( ) )
 

 ( , )

  ( , )

( )
( )

BL BL BL BL

BL BL

BL BL

B BL BL
BL BL

T T
F F

T exp S exp

i j
i j

i j
i j

exp

exp

f exp
t s

v t s

v t s

exp
exp

R R

R R

θ

θ

δ

→ →

= =

= =

→
∂ →

∂ ∂

=

=

⎛ ⎞
⎜ ⎟⊥⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0 1(t , t ]
(t , t ]
(t , t ]
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2

# ( ) # ( )

0 1

1 2

0 1

1 2

( )

( )
 

 ( , )

  ( , )

( )
( )

T T T T

T T

T T

T T T

T T

T T

T exp S exp

i j
i j

i j
i j

exp

exp

f exp
t s

v t s

v t s

exp
exp
n n

R R

R R

θ

θ

δ

→ →

= =

= =

⊥

→
∂ →

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0 1(t , t ]
(t , t ]

 

Addressing  

⇒ 

idT ⇒ 
MEM[ptrP] T 2

# (id  ptr ) # (id  ptr )

0 1

1 2

0 1

)

( )

(id ptr )
 

( , )

  ( , )

(

S P S P

S P

S P

S P
S
S S H

 



T S

i j
i j

i j
i j

id ptr

f
t s

v t s

v t s

id
id id

R R

R R

θ

θ

π

⇒ ⇒

= =

= =

⊥

⇒

∂
⇒

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

id ptr
t

(t , t ]

 

Memory 
allocation 

⇐ 

idT ⇐ 
MEM[ptrP] T 2

# (id MEM[ptr ] ) # (id MEM[ptr ] )

0 1

1 3

0 1

(id MEM[ptr ] )

(id MEM[ptr ] )
 

( , )

  ( , )

( ) MEM[ ]

S P RT S P RT

S P RT
S
S S H P RT

S P RT

S P RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

id
id id ptr

R R

R R

θ

θ

π

⇐ ⇐

= =

= =

⊥ ⊥

⇐
∂ ⇐

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

id ptr MEM
t

(t , t ]

 

© 2008 by Taylor & Francis Group, LLC



   Appendix J  Deductive Semantics of SE   1347 
 

 

Memory 
release  

 

idT  
MEM[⊥]T 2

# ( MEM[ ] ) # ( MEM[ ] )

0 1

1 3

0 1

( ) MEM( )

( MEM[ ] )

( MEM[ ] )
 

 ( , )

  ( , )

( )

⊥ ⊥

⊥

⊥

S RT S RT

RT P RT
S S H P RT

S RT

S RT

T id S id

i j
i j

i j
i j

id ptr

id

f id
t s

v t s

v t s

id

R R

R R

θ

π

θ

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⊥ ⊥⎝ ⎠

0

0 1

id ptr MEM
t

(t , t ]
 

Read  

 

MEM[ptrP]T 
 xT 2

# (MEM[ptr ] x ) # (MEM[ptr ] x )

0 1

1 3

0 1

(MEM[ptr ] x )

(MEM[ptr ] x )
 

( , )

  ( , )

P RT RT P RT RT

P RT RT

P RT RT

RT P P RT
RT
RT P RT

 T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x ptr MEM[ptr ]
t

(t , t ]

 

Write  

 

xT  
MEM[ptrP]T 2

# (MEM[ptr ] x ) # (MEM[ptr ] x )

0 1

1 3

0 1

(x MEM[ptr ] )

(x MEM[ptr ] )
 

( , )

  ( , )

P RT RT P RT RT

RT P RT

RT P RT

RT P P RT
RT
RT P RT

 T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x ptr MEM[ptr ]
t

(t , t ]
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Input  

|  

PORT[ptrP]T 
|  xT 2

# (PORT[ptr ] x ) # (PORT[ptr ] x )

0 1

1 3

0 1

(PORT[ptr ] x )

(PORT[ptr ] x )
 

 ( , )

  ( , )

PORT[ ] PORT[ ]

P RT RT P RT RT

P RT RT

P RT RT

P P RT RT
P
P P RT P RT

 T S

i j
i j

i j
i j

f
t s

v t s

v t s

ptr
ptr ptr ptr

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜
⎝ ⎠

0

0 1

ptr PORT[ptr ] x
t

(t ,t ] ⎟

 

Output  

|  

xT |  
PORT[ptrP]T 2

# (x PORT[ptr ] ) # (x PORT[ptr ] )

0 1

1 3

0 1

(x PORT[ptr ] )

(x PORT[ptr ] )
 

( , )

  ( , )

RT P RT RT P RT

RT P RT

RT P RT

RT P P RT
RT
RT P RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x ptr PORT[ptr ]
t

(t , t ]

 

Timing  
@  

@tTM @ §tTM 

TM =  
yy:MM:dd     
       | 
hh:mm:ss:ms 
         | 
yy:MM:dd:hh:m
m:ss:ms 

2

# (@ t @§t ) # (@ t @§t )

0 1

1 2

0 1

(@ t @§t )

(@ t @§t )
 

( , )

  ( , )

§t
§t §t

TM TM TM TM

TM TM

TM TM

TM TM
TM
TM TM

T S

i j
i j

i j
i j

f
t s

v t s

v t s

R R

R R

θ

θ

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

§t @t
t

(t , t ]
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Duration  
 

@tnTM ∆ §tnTM 
+ ∆nTM 2

# (@ t §t ) # (@ t §t )

0 1

1 3

0 1

d

(@ t §t + d )

(@ t §t + d )
 

 ( , )

  ( , )

§t  
§t d §t

TM TM TM TM

TM TM Z

TM TM Z

N
TM N TM
TM
TM N TM N

T S

i j
i j

i j
i j

f
t s

v t s

v t s

d

R R

R R

θ

θ

∆ ∆

= =

= =

∆ ⊥

∆ ∆

∂ ∆ ∆
∂ ∂

=

=

∆⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟∆ + ∆⎝ ⎠

0

0 1

§t d @t
t

(t , t ]

 

Increase  

↑ 

↑(nT) 

2

# ( (x )) # ( (x ))

0 1

1 1

0 1

( (x ))

( (x ))
 

( , )

  ( , )

1

RT RT

RT

RT

RT
RT

RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x

R R

R R

θ

θ

↑ ↑

= =

= =

↑
∂ ↑

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟+⎝ ⎠

0

0 1

x
t

(t , t ]

 

Decrease  

↓ 

↓(nT) 

2

# ( (x )) # ( (x ))

0 1

1 1

0 1

-

( (x ))

( (x ))
 

( , )

  ( , )

1

RT RT

RT

RT

RT
RT

RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x

R R

R R

θ

θ

↓ ↓

= =

= =

↓
∂ ↓

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x
t

(t , t ]

 

© 2008 by Taylor & Francis Group, LLC



1350   Appendix J  Deductive Semantics of SE    

Exception 
detection 

! 

! (@eS) 
2

# (!(@e ) # (!(@e )

0 1

1 3

0 1

(!(@e )

(!(@e )
 

 ( , )

  ( , )

@
@ @

S S

S

S

P P S
S
S P S

S

T S

i j
i j

i j
i j

f
t s

v t s

v t s

e
e ptr e

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

@e ptr PORT(ptr )
t

(t , t ]

 

Skip  
⊗ 

⊗ 

1 1

1

1

1

2
1

# ( ) # ( )

0 1

1 2

0 1

( ) ( )

( )
 

( , )

  ( , )

\

⊗

k k k k

k k

k k

k k

k k

T P P S P P

i j
i j

i j
i j

P P

P P

S

P P

f P P
t s

v t s

v t s

S
S S

R R

R R

θ

θ θ

− −

−

−

−

−

= =

= =

⊥

∂=
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

k-1 kP P

0

0 1

S S
t

(t , t ]

 

Stop  

 

 

2

# ( §) # ( §)

0 1

1 2

0 1

( ) ( §)

( §)
 

( , )

  ( , )

\
P

T P S P

i j
i j

i j
i j

§

§ P

S

P

f P
t s

v t s

v t s

S
S S

R R

R R

θ

θ θ

= =

= =

⊥

∂=
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

§ P

0

0 1

S S
t

(t , t ]
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System  
§ 

§(SysIDS)  

int

-1

-1

-1

-1

2

2

0

0

0

0

(§) (§)
 

{  (@ )
 

                 || (@ )

                || (@ )

                }

{  (@ )

      

N

N

N

N

N

N

NT

BL F N

S

TM

S

S

 

 

 

 

e

t

e

n

i i
i

n

j j
j

n

k k
k

n

i i
SysShuntDown i

f
t s

f e P
t s

t P

int P

e P

R

R

R

R R

θ

θ

θ

=

=

=

= =

∂
∂ ∂

∂=
∂ ∂

=

int

-1

-1

0

0

               || (@ )

                     || (@ )

                     }

N

N

N

N

TM

S

 

 

tn

j j
j

n

k k
k

t P

int P

R

R
=

=

 

Process Relations (RTPA) 

Notation Syntax Semantics 

Sequence 
→ 

P → Q 2

2 2

# ( ) # ( )

0 1

# ( ) # ( )

0 1

# ( # ( )

0 1

( ) ( )
 

( ) ( )
  

 ( , )

    ( , )

 ( , )

T P S P

P i j
i j

T Q S Q

Q i j
i j

T PQ S P Q

i j
i j

1P 1PQ

2Q 2PQ

P Q f P Q
t s

f P f Q
t s t s

v t s

v t s

v t s

V V
V V

R R

R R

R R

θ

θ θ

θ

= =

= =

∪

= =

∂→ →
∂ ∂

∂ ∂= →
∂ ∂ ∂ ∂

= →

=

⎛ ⎞
⎜ ⎟⊥ ⊥ ⊥⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

=

P Q PQ

0

0 1

1 2

P P

s s s
t

(t , t ]
(t , t ]

V V⎛ ⎞
⎜ ⎟
⎝ ⎠

Q

Q PQV V
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Jump  

 
P  Q 

 

Branch  
| 

  expBL = T  

     → P 

| ~ → Q 

2

2

2

# ( ) # ( )

0 1

# ( ) # ( )

0 1

(  | ~ )

(  | ~ )
 

   ( )
 

   |  ~ ( )
 

    ( , )

   |  ~  ( , )

( )

RT

RT

BL

BL

BL
BL

T P S P

P i j
i j

T Q S Q

Q i j
i j

exp P Q

f exp P Q
t s

exp f P
t s

f Q
t s

exp v t s

v t s

exp

R R

R R

θ

θ

θ

θ

δ

= =

= =

⊥ ⊥ ⊥

→ →
∂ → →

∂ ∂
∂= →

∂ ∂
∂→

∂ ∂

= →

→

=

P Q PQ

0 1

1 2

exp S S S
(t , t ]
(t , t 2-T

F
2P PQ

3Q 3PQ

V V
- V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠1 2'

]
(t , t ]

 

 
 

2

2 2

# ( ) # ( ) # ( ) # ( )

0 1 0 1

# ( ) # ( )

0 1

( ) ( )
 

( ) ( )
  

( , )   ( , )

 ( , )

( )

 

H

S H

T P S P T Q S Q

P i j Q i j
i j i j

T PQ S P Q

i j
i j

1P 1PQ

3Q 3PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
Q

V V

R R R R

R R

θ

θ θ

θ

π

= = = =

∪

= =

⊥ ⊥

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

=
− − −
−

P Q PQ

0 1

1 2

2 3

S S S addr
[t , t ]
(t , t ]
(t , t ]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
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Switch  
   | … | … 

   expiT = i 

      → Pi 
| ~ → ⊗ 

where  

T∈{N, Z, B,S} 

0

i i
2

i i

2

  

2

1

2

# ( ) # ( )

  
0 1

( P  | ~ )

( P  | ~ )
 

= ( )
 

   | ... 

  | 1 ( )
 

  | ( )
 

=  ( , )

  | ...

  | 1

⊗

⊗

⊗

RT

RT

RT

RT

RT

RT

RT

0 0

0

n

T P S P

P i j
i j

i

exp

f exp
t s

exp 0 f P
t s

exp n f P
t s

exp n f
t s

exp 0 v t s

exp n

R R

θ

θ

θ

θ

θ

−

= =

=

→ →

∂ → →
∂ ∂

∂= →
∂ ∂

∂= − →
∂ ∂

∂= →
∂ ∂

= →

= − →
1 1

1

1

# ( ) # ( )

0 1
 ( , )

  |

(exp )

1

⊗RT

RT
RT

n n

n

0

n

T P S P

P i j
j

2 P G

2 P G

G

v t s

exp n

0 V V

n V V

n V

R R

δ

− −

−

−

=

⊥ ⊥ ⊥

= →

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟=
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

0 n-1

0

n-1

n

P P G

0 1

1 2

1 2

1 2

exp S S S

[t , t ]
(t , t ]

(t , t ]

(t , t ]

 

While-loop    

     
*R  exp =

R
F

BL T
P 

2

exp = exp =

2

exp =

# ( ) # ( )

0 1exp =

* *( ( )) ( ( ))
 

*( ( ))
 

* (  ( , ))

(exp )

(exp )

⊗

⊗

F F

BL T BL T

F

BL T

F

BL T

BL

T
F

T
F

BL

BL

T P S P

P i j
i j

P

P

P f P
t s

f P
t s

v t s

V

V

R RR

R R
R

θ

θ

θ

δ

δ

= =

∂
∂ ∂

∂=
∂ ∂

=

⎛
⎜ ⊥⎜
⎜
⎜
⎜= ⎜
⎜

−⎜

⎝

P

0 1

1 2

1 2'

3 4

4 5

4 5'

exp S
[t , t ]
(t , t ]
(t , t ]

(t , t ]
(t , t ]
(t , t ]

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟⎜ ⎟

⎠  
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Repeat-loop 

      R+
 

P → 

exp =
R

F

BL T
P 

2

exp = exp =

2

exp =

# ( ) # ( )

0 1exp =

'

( ( )) ( ( ))
 

( ( ))
 

* (  ( , ))

(exp )

(exp )

⊗

F F

BL T BL T

F

BL T

F

BL T

BL

T

T

BL

F

BL

P

T P S P

P i j
i j

P

P

V

P f P
t s

f P
t s

P v t s

V

V

R R

R R

R
R

θ

θ

θ

δ

δ

= =

⊥

∂+ +
∂ ∂

∂+=
∂ ∂

= →

−

=

−

P

0 1

1 2

2 3

2 3'

4 5

5 6

5 6

exp S
[t , t ]
(t , t ]
(t , t ]
(t , t ]

(t , t ]
(t , t ]
(t , t ] ⊗F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

   For-loop 

      
iR  1

n

i
R
=

N

N
P(iM) 

n n

n

n

2

i =1 i =1

2

k = 1
# ( ) # ( )

0 1k =1

( P(i)) ( P(i))
 

 ( ( ))
 

(  ( , ))

1
1

N N

N

N

N

Pk Pk

k

i

T S

P i j
i j

P

P

f
t s

f P
t s

v t s

V

n
n V

R R

R R

R
R

θ

θ

θ

= =

⊥

∂
∂ ∂

∂=
∂ ∂

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

P

0 1

1 2

n-2 n-1

n-1 n

k S
[t , t ]
(t , t ]

(t , t ]
(t , t ]

 

Function 
call 

    

P  F 

1 2 2 3

2

2 2

# ( ) # ( ) # ( ) # ( )

0 1 0 1

# ([ ] ( ] ( ]) # ( )

0 1

( ) ( )
 

( )  ( )
  

( , )   ( , )

 ( , )
0 1

T P S P T Q S Q

P i j Q i j
i j i j

T t ,t t ,t t ,t S P Q

i j
i j

1P 1PQ

2Q 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
v V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

⊥ ⊥ ⊥

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

−=
−

P Q PQ

0

0 1

1 2

S S S
t

(t , t ]
(t , t ] PQ

3P 3PQV V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠2 3(t , t ]
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  Recursion 

         

0

i n
R
=N N

(PiM  

             PiM-1) 

1

0

' 1

'

2

2 2

# ( ) # ( ) # ( ) # ( )

0 1 0 1

# ( ) # ( )

0 1

(  ) (  )
 

( )  ( )
  

( , )   ( , )

 ( , )

n

n

n

n

T P S P T P S P

i j i j
i j i j

T P S P

i j
i j

P

P

P

P

P

P P f P P
t s

f P f P
t s t s

v t s v t s

v t s

V
V

V

V
V

R R R R

R R

θ

θ θ

θ

−

−

= = = =

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

=

P

0 1

1 2

3 4

5 6

6 7

S
[t , t ]
(t , t ]

(t , t ]

(t , t ]
(t , t ]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Parallel  
     | | 

P | | Q 2

2 2

# ( ) # ( ) # ( ) # ( )

0 1 0 1

max(# ( ),# ( )) # ( )

0 1

1

(  || ) (  || )
 

( ) || ( )
  

( , ) ||  ( , )

 ( , )

T P S P T Q S Q
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Appendix K 
 

FORMAL MODEL OF THE 
ATM SYSTEM IN RTPA  

 
  
 
 
 
K.1 DESCRIPTION OF SYSTEM ARCHITECTURE 
 

 
 
§(ATM)    ATM.Architecture 
    || ATM.StaticBehaviors 
    || ATM.DynamicBehaviors 
 
 
1.1 ATM System Architecture 
 
ATM.Architecture    <ATMProcessor : ST | [1]> 
                                      || <SystemClock : ST | [1]> 
                                    || <CardReader : ST | [1]> 
                     || <Keypad : ST | [1]> 
                                      || <Monitor : ST | [1]> 
                    || <AccountDatabase : ST | [1]> 

                        || <CashBank : ST | [1]> 
          || <CashDisburser : ST | [1]> 

                  || <Events : ST> 
                  || <Status : ST> 
 
ATM.Architecture.EventsST   @SysInitialS 
             | @SysClock1msIntS 
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             | @‘PNN = 0’  
               | @‘PNN = 1’  
               | @’PNN = 2’  

| @’PNN = 3’  
| @’PNN = 4’  
| @’PNN = 5’   
| @’PNN = 6’  

              | @’PNN = 7’ 
             | @’PNN = 8’  

| @’ⓈCardEjectedBL := T’   

| @’ⓈCardReaderFaultBL = T’ 
| @’ⓈCashAvailableBL = F’  

| @’ⓈCashAvailableBL = T’  

| @’ⓈCashBankFaultyBL = T’ 

| @’ⓈCashDisbursedBL = T’  
| @’ⓈMonitorFaultBL = T’ 
| @’ⓈOperationTimeOutBL = T’ 
| @’ⓈServiceCompletedBL = T’   

| @’ⓈServiceCancelledBL = T’   

| @’ⓈSsytemFailureBL = T’ 

| @’ⓈSystemFailureBL := F’ 

| @’ⓈSysShutDownBL = T’   

| @’ⓈOperationTimeOutBL = T’ 
| @’ⓈValidAmountBL := T’ 
| @’ⓈValidAmountBL = F’  
| @’ⓈValidBalanceBL = F’  
| @’ⓈValidBalanceBL = T’  
| @’ⓈValidCardBL = F’ 

| @’ⓈValidCardBL = T’   
| @’ⓈValidPINBL := T’ 
| @’ⓈValidPINBL = F’  

 

© 2008 by Taylor & Francis Group, LLC



   Appendix K  Formal Model of the ATM System in RTPA   1361 
 

 

ATM.Architecture.StatusST   ⓈCardEjectedBL 

| ⓈCardReaderFaultBL 
| ⓈCashAvailableBL 

| ⓈCashBankFaultyBL  

| ⓈCashDisbursedBL 

| ⓈMonitorFaultBL 
| ⓈOperationTimeOutBL  

| ⓈServiceCompletedBL 

| ⓈServiceCancelledBL 

| ⓈSsytemFailureBL 
| ⓈSstShutDownBL 

| ⓈValidAmountBL   
| ⓈValidBalanceBL 
| ⓈValidCardBL 

| ⓈValidPINBL 
 
 
1.2 System CLM Schemas/Objects 
 
CardReaderST   CardReaderS :: 
                  (  <Data : N  |  0 ≤ DataN  ≤ 1000000>, 
          <Status : BL  | T = Normal ∧ F  = Faulty>, 
          <CardStatus : BL  | T = Inserted ∧ F  = NoCard>, 
          <CardEjectDriver : BL  | T = On ∧ F  = Off >, 
          <Port : B | PortB = FFF1H > 
                   ) 
 
KeypadST   KeypadS :: 
                   ( <Digits : N  |  0 ≤ DigitsN  ≤ 9>, 
          <EnterKey : BL  | T = Pressed ∧ F = Unpressed>, 
          <CancelKey : BL  | T = Pressed ∧ F = Unpressed>, 
          <Port : B | PortB = FFF2H > 
                    ) 
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MonitorST   MonitorS :: 
                   ( <Instruction : S  |  0 ≤ #(InstructionS)  ≤ 255>, 
          <Status : BL  | T = Normal ∧ F = Faulty>, 

     <Port : P  | PortP = FFF3H > 
  ) 

 
SysDatabaseST  SysDatabaseS  (<AccountNum : N |  

            0 ≤ AccountNumN  ≤ 1000000>):: 
        ( <Status : BL  | T = Active ∧ F  = Inactive>, 
    <PIN : N  | 000000 ≤ PINN  ≤ 999999>, 
         <Balance : N  | 0 ≤ BalanceN  ≤ 10000>, 
             <MaxAllowableWithdraw : N  | MaxAllowableWithdrawN = 500> 
            ) 
 
CashBankST   CashBankS :: 
                   ( <CashLevel : N | 0 ≤ CashLevelN  ≤ MaxLevelN>, 
          <Status : BL | T = Active ∧ F = Inactive> 
                     ) 
 
CashDisburserST  CashDisburserS :: 
           ( <Status : BL  | T = Normal ∧ F = Faulty>, 

<CashDisburseAmount : N | 5 ≤ CashDisburseAmountN  ≤ 500>, 
<CashDisburseDriver : BL  | T = On ∧ F = Off>, 

    <Port : B | PortB = FFF4H > 
            ) 
 
SysClockST  SysClockS :: 
           ( <§t : N |  0 ≤ §tN  ≤ 1M>, 

<CurrentTime : hh:mm:ss:ms  |  00:00:00:000  ≤ 
                                       CurrentTimehh:mm:ss:ms ≤ 23:59:59:999>, 

<Timer : ss  | 0 ≤ Timerss ≤ 3600>, 
    <MainClockPort : B | MainClockPortB = FFF0H>, 
    <ClockInterval : N | TimeIntervalN = 1ms>, 

<InterruptCounter : N | 0 ≤ InterruptCounterN ≤ 999> 
            ) 
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K.2 ATM STATIC BEHAVIORS 
 

 
 
2.1 ATM Static Behaviors 
 
ATM.StaticBehaviors  SysInitial (<I:: ( )>; <O:: ( )>) 
  | SysClock (<I:: ( )>; <O:: ( )> 

| Welcome (<I:: ( )>; <O:: AccountNumN, PNN, ⓈValidCardBL>) 
| CheckPIN (<I:: AccountNumN>; <O:: PNN, ⓈValidPINBL, 

                       ⓈServiceCancelledBL>)  
| CheckCashAmount (<I:: ( ) >;  <O:: AmountToWithdrawN, PNN, 

                                      ⓈValidAmountBL, ⓈServiceCancelledBL >)  
| VerifyAccount (<I:: AccountNumN, AmountToWithdrawN>;  

                                  <O:: PNN, AmountToWithdrawN, ValidBalanceBL, 
                                 ⓈServiceCancelledBL>) 

| VerifyCashAvailability (<I:: AmountToWithdrawN>;   
                                                <O:: PNN, ⓈCashAvailableBL, 

                                                ⓈServiceCancelledBL>) 
| DisburseCash (<I:: AccountNumN, AmountToWithdrawN>;  

                   <O:: PNN, ⓈCashDisbursedBL,    

                   ⓈServiceCompletedBL, ⓈServiceCancelledBL>) 

| EjectCard (<I:: ( )>; <O::  PNN, ⓈCardEjectedBL>) 
| SystemFailure (<I:: ( )>; <O:: ⓈSystemFailureBL, 

ⓈSysShutDownBL>) 
 
 
2.2 Refined ATM Static Behaviors  
 
2.2.1 System Initialization 
 

SysInitial (<I:: ( )>; <O:: ( )>)  
{ 

Initial ATM_CLMsST      
→ SysClock.§tN := 0     
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→ SysClock.CurrentTimehh:mm:ss:ms := CurrentTimehh:mm:ss:xx     
   → SysClock.InterruptCounterN := 0     
   → SysClock.TimerN := 0     
   → PNN := 1     
   → ⓈSystemFailureBL := F     
} 
 
2.2.2 System Clock 
 
SysClock (<I:: ( )>; <O:: ( )>)  
{  

↑(SysClock.InterruptCounterN)              // 1ms clock interrupt  
    → SysClock.InterruptCounterN = 999     // Set to 1 second    
         (  → SysClock.InterruptCounterN = 0 
          → ↑(SysClock.§tN)    
               → ↑(SysClock.CurrentTimehh:mm:ss)    
               → ↓ (SysClock.Timerss)    
               → SysClock.CurrentTimehh:mm:ss:ms = 23:59:59:xxx    
                       ( → SysClock.CurrentTimehh:mm:ss:ms := 00:00:00:xxx 
                         → SysClock.§tN := 0    
                       ) 
         ) 
} 
 
2.2.3 Transactional States  
 
// State 1 
Welcome (<I:: ( )>; <O:: AccountNumN, PNN, ⓈValidCardBL>)  
{ 

  
CardInserted

R
=

T

BL F
(  PORT(MonitorST.PortP).StatusBL  |⋗ MonitorStatusBL 

     → PORT(CardReaderST.PortP).StatusBL  |⋗  
                  CardReaderStatusBL 

                               → ( MonitorStatusBL = T ∧ CardReaderStatusBL = T   

                                           → ‘Welcome!’ |⋖  
  PORT(MonitorST.PortP).InstructionS 

                               → ‘Please insert your card.’  |⋖   
  PORT(MonitorST.PortP).InstructionS 
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                 → PORT(CardReaderST.PortP).StatusBL  |⋗  
                                      CardInsertedBL 
                            |  ~ 

                   → (   MonitorStatusBL = F   
                               → ! (@‘MonitorFaultBL = T’) 
                         |   CardReaderStatusBL = F 
                               → ! (@’CardReaderFaultBL = T’) 
                       ) 
                   → PNN := 8                    // To system failure   

                                  → ⊗ 
                             )  

→ Port(CardReaderST.PortP).DataN  |⋗ AccountNumN 
   →  ( SysDatabaseST(AccountNumN).StatusBL := T   

  →ⓈValidCardBL = T   
              → SysClockST.Timerss := 10           // To wait for PIN, 10s   
            → PINEnterTimesN  := 3      

   → PNN := 2                   // To check PIN again   
         |  ~ 

   →ⓈValidCardBL = F   
             → PNN := 7                   // To eject card   
        ) 
} 
 
 
// State 2 
CheckPIN(<I: AccountNumN>; <O::  PNN, 
                   ⓈValidPINBL,ⓈServiceCancelledBL>)  
{ 

   
DataEntered

R
=

T

BL F
( PORT(MonitorST.PortP).StatusBL  |⋗ MonitorStatusBL 

                            → Port (CardReaderST.PortP).StatusBL  |⋗  
                                        CardReaderStatusBL 
                           → ( SysClockIDS.Timerss ≠ 0 ∧ MonitorStatusBL = T 
                                                      ∧ CardReaderStatusBL = T   
                                    →  ‘Enter your PIN.’ |⋖   

      PORT(MonitorST.PortP).InstructionS 
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                               → PORT(KeypadST.PortP).EnterKeyBL |⋗  
DataEteredBL 

                       |  ~ 

             → ( SysClockIDS.Timerss = 0 

                        → ⓈTimeoutBL = T 

                          → ! (‘ⓈOperationTimeOutBL = T’) 
                          → PNN := 7               // To eject card   
                   | MonitorStatusBL = F   
                          → ! (@ ‘MonitorFaultBL = T’) 
                          → PNN := 8               // To system failure   
                   |  CardReaderStatusBL = F 
                          → ! (@ ’CardReaderFaultBL = T’) 
                          → PNN := 8              // To system failure   
                   ) 

                                  → ⊗ 
                         )  
           ) 

   → PORT(KeypadST.PortP).DataN |⋗ PINN 
  → (  PINN = SysDatabaseST(AccountNumN).PINN) 

              → ⓈValidPINBL := T 
              →  SysClockST.Timerss := 10             // Wait for amount enter   
              →  PNN := 3                    // To check cash amount 
        |  ~ 

         → ⓈValidPINBL = F  
              → ↓ (PINEnterTimesN)  
              →  ( PINEnterTimesN > 0  

                          →  ‘Wrong PIN. Do you want to try again?’ |⋖  
                                PORT(MonitorST.PortP).InstructionS 

                     →  
TimeOut

R
=

T

BL F
 (  ∆tN := §tN + 3      // Delay 3s 

     → TimeOutBL = T 
                                                        )   
                          → PORT(KeypadST.PortP).EnterKeyBL |⋗  
                                          EnterKeyPressedBL 
                          → PORT(KeypadST.PortP).CancelKeyBL |⋗  
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                                   CancelKeyPressedBL 
                          →  ( EnterKeyPressedBL = T 
                                       →  PNN := 2                // To retry PIN   

       |   CancelKeyPressedBL = T 

                                       → ⓈServiceCancelledBL  = T 
                                       →  PNN := 7           // To eject card   

              )  
|  ~ 

                           → ‘Invalid PIN.’ |⋖  PORT(MonitorST.PortP).InstructionS 

                          → ⓈValidPINBL  = F 
                           →  PNN := 7              // To eject card   

 ) 
        ) 
} 
 
 
// State 3 
CheckCashAmount (<I:: ()>; <O:: AmountToWithdrawN, PNN, 
                                    ⓈValidAmountBL,ⓈServiceCancelledBL>)  
{ 

DataEntered
R

=

T

BL F
 ( PORT(MonitorST.PortP).StatusBL |⋗ MonitorStatusBL 

                            → PORT(CardReaderST.PortP).StatusBL |⋗  
                                           CardReaderStatusBL 
                               → (   SysClockIDS.Timerss ≠ 0 ∧ MonitorStatusBL = T  
                                           ∧ CardReaderStatusBL = T   
                                           →  ‘Enter the amount you wish to withdraw  
                                                   ($5 … $500).’ |⋖   
                                                 PORT(MonitorST.PortP).InstructionS 
                               →  PORT(KeypadST.PortP).EnterKeyBL |⋗  
                                                 DataEteredBL 

                     |  ~ 

              → (  SysClockIDS.Timerss = 0 

                      → ⓈOperationTimeOutBL = T 
                      → ! (@ ‘OperationTimeOutBL = T’) 
                   → PNN := 7               // To eject card   
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                    | MonitorStatusBL = F   
                         → ! (@ ‘MonitorFaultBL = T’) 
                         → PNN := 8               // To system failure   
                    | CardReaderStatusBL = F 
                         → ! (@ ‘CardReaderFaultBL = T’) 
                         → PNN := 8               // To system failure   
                     ) 

                              → ⊗ 
                         )  
                   ) 

     → PORT(KeypadST.PortP).DataN |⋗ AmountToWithdrawN 
    → (   5 ≤ AmountToWithdrawN ≤ MaxAllowableWithdrawN 

               → ⓈValidAmountBL := T 
               →  PNN := 4       // To check balance of account 
         |  ~ 

          → ⓈValidAmountBL = F  
               → ‘Amount required is out of range.’ |⋖  
                     PORT(MonitorST.PortP).InstructionS 

               → 
TimeOut

R
=

T

BL F
 ( ∆tN := §tN + 3     // Delay 3s 

                         → TimeOutBL = T 
                                                )   
               → PORT(KeypadST.PortP).EnterKeyBL |⋗ EnterKeyPressedBL 

      → PORT(KeypadST.PortP).CancelKeyBL |⋗  
CancelKeyPressedBL 

               →  (  EnterKeyPressedBL = T 
                            →  SysClockST.Timerss := 10         // Reset timer   
                            →  PNN := 3               // To retry PIN   
                      | CancelKeyPressedBL = T 

                            → ⓈServiceCancelledBL  = T 
                            →  PNN := 7                    // To eject card   

      )  
           ) 
} 
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// State 4 
VerifyAccount ( <I:: AccountNumN, AmountToWithdrawN>;  

<O:: PNN, AmountToWithdrawN, ValidBalanceBL, 
ⓈServiceCancelledBL>)  

{ 
    PORT(MonitorST.PortP).StatusBL  |⋗ MonitorStatusBL 

    → Port (CardReaderST.PortP^).StatusBL |⋗ CardReaderStatusBL 
    → (  MonitorStatusBL = F 
              → ! (@‘MonitorFaultBL = T 
                      → PNN := 8                        // To system failure   

     → ⊗ 
          |  CardReaderStatusBL = F 
                → ! (@’CardReaderFaultBL = T’) 
                → PNN := 8                        // To system failure   

     → ⊗ 
        ) 
    → (   AmountToWithdrawN ≤ SysDatabaseST(AccountNumN).BalanceN) 

               → ⓈValidBalanceBL := T 
               →  PNN := 5                 // To check cash availability 
          |  ~ 

          → ⓈValidBalanceBL = F  
               →  ‘Account balance is insufficient to withdraw. Retry a new 
                     amount?’ |⋖ PORT(MonitorST.PortP).InstructionS 

               → 
TimeOut

R
=

T

BL F
 (  ∆tN := §tN + 3         // Delay 3s 

                            → TimeOutBL = T 
                                                )   
               → PORT(KeypadST.PortP).EnterKeyBL |⋗  EnterKeyPressedBL 

              → PORT(KeypadST.PortP).CancelKeyBL |⋗  
             CancelKeyPressedBL 
               →  (  EnterKeyPressedBL = T 
                            →  SysClockST.Timerss := 10       // Set timer   
                            →  PNN := 3                // To reenter amount   
                      |  CancelKeyPressedBL = T 

                            → ⓈServiceCancelledBL  = T 
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                            →  PNN := 7                      // To eject card   
                   ) 
         ) 
} 
 
 
// State 5 
VerifyCashAvailability ( <I:: AmountToWithdrawN>;  <O:: PNN, 
              ⓈCashAvailableBL, ⓈServiceCancelledBL>)  
{ 
    PORT(MonitorST.PortP).StatusBL  |⋗ MonitorStatusBL 

    → PORT(CardReaderST.PortP).StatusBL  |⋗ CardReaderStatusBL 
    → ( MonitorStatusBL = F 
          → ! (@‘MonitorFaultBL = T 
                    → PNN := 8                         // To system failure   

    → ⊗ 
         | CardReaderStatusBL = F 
               → ! (@’CardReaderFaultBL = T’) 
                → PNN := 8                              // To system failure   

     → ⊗ 
         ) 
    → ( CashBankST.StatusBL) = T 

               → (  CashBankST.CashLevelN ≥ AmountToWithdrawN  

                 → ⓈCashAvailableBL = T  
                           → PNN := 6                  // To disburse cash 
                      |  ~ 

            → ⓈCashAvailableBL = F  
→ ‘No sufficient cash available in this machine. Retry a  

  new amount?’ |⋖    
  PORT(MonitorST.PortP).InstructionS 

                            → 
TimeOut

R
=

T

BL F
 ( ∆tN := §tN + 3          // Delay 3s 

                                  → TimeOutBL = T 
                                                              )   
                            → PORT(KeypadST.PortP).EnterKeyBL |⋗  
                                    EnterKeyPressedBL 

© 2008 by Taylor & Francis Group, LLC



   Appendix K  Formal Model of the ATM System in RTPA   1371 
 

 

                            → PORT(KeypadST.PortP).CancelKeyBL |⋗  
                                    CancelKeyPressedBL 
                            →  ( EnterKeyPressedBL = T 
                                         →  SysClockST.Timerss := 10   // Set timer   
                                         →  PNN := 3         // To reenter amount   
                             |  CancelKeyPressedBL = T 

                                         → ⓈServiceCancelledBL  = T 
                                         →  PNN := 7                 // To eject card   

                 )  
               ) 
      |  ~ 
           → ( !( @‘CashBankFaultyBL = T’) 
           → PNN := 8                          // To system failure   
           → ⊗ 
    ) 
} 
 
 
// State 6 
DisburseCash ( <I:: AccountNumN, AmountToWithdrawN>;  
                           <O:: ⓈCashDisburseBL, PNN, ⓈServiceCompletedBL, 

                           ⓈServiceCancelledBL> )  
{ 
    PORT(MonitorST.PortP).StatusBL  |⋗ MonitorStatusBL 

    → PORT(CardReaderST.PortP).StatusBL  |⋗ CardReaderStatusBL 
    → (  MonitorStatusBL = F 
                → ! (@‘MonitorFaultBL = T’) 
                      → PNN := 8                         // To system failure   

     → ⊗ 
          |  CardReaderStatusBL = F 
                → ! (@‘CardReaderFaultBL = T’) 
                → PNN := 8                         // To system failure   

     → ⊗ 
         ) 
   → PORT(CashDisburserST.PortP).StatusBL |⋗  CashDisburserStatusBL 
    → ( CashDisburserStatusBL = T  

       → AmountToWithdrawN  |⋖  

© 2008 by Taylor & Francis Group, LLC



1372   Appendix K  Formal Model of the ATM System in RTPA 

                       PORT(CashDisburserST.PortP).CashDisburseAmountN 
                 → ⓈCashDisburseBL  |⋖  
                       PORT(CashDisburserST.PortP^).CashDisburseDriverBL 
                → ⓈCashDisburseBL = T 
                → CashBankST.CashLevelN - AmountToWithdrawN  

→ SysDatabaseST(AccountNumN).BalanceN  -  
AmountToWithdrawN  

               → ⓈServiceCancelledBL  = T          
                → PNN := 7                   // To eject card 
          |  ~ 

             → ⓈCashDisburseBL = F 
                 → ( !( @‘CashDisburserFaultyBL = T’) 

    → ‘System failure. Please use another machine.’ |⋖   
           Port (MonitorST.PortP).InstructionS 

                 →  PNN := 8                    // To eject card   
     → ⊗ 

          ) 
} 
 
 
// State 7 
EjectCard  (<I::( )>; <O::  PNN, ⓈCardEjectedBL>)  
{ 
   (  ⓈServiceCompletedBL = T   

         → ‘Please collect your card.’ |⋖  Port (MonitorST.PortP).InstructionS 
         → EjectCardBL := T   
         → EjectCardBL |⋗  PORT(CardReaderST.PortP).CardEjectDriverBL  

         → ⓈCardEjectedBL := T   
         →  PNN := 1   
    |  ⓈServiceCancelledBL = T   

         → ‘Please collect your card.’ |⋖  Port (MonitorST.PortP).InstructionS 
         → EjectCardBL := T   
         → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL  

         → ⓈCardEjectedBL := T   
         → PNN := 1  
    |  ⓈOperationTimeOutBL = T   
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         → ‘Service time out. Please collect your card.’ |⋖   
               PORT(MonitorST.PortP).InstructionS 
         → EjectCardBL := T   
         → EjectCardBL |⋗  PORT(CardReaderST.PortP).CardEjectDriverBL  

         → ⓈCardEjectedBL := T   
         → PNN := 1  
    | ? ⓈValidCardBL = F   

         → ‘Invalid Card.’ |⋖ PORT(MonitorST.PortP).InstructionS 
         → EjectCardBL := T   
         → EjectCardBL |⋗  PORT(CardReaderST.PortP).CardEjectDriverBL  

         → ⓈCardEjectedBL := T   
         → PNN := 1  
    |  ⓈValidPINBL = F   

         → ‘Invalid PIN.’ |⋖  PORT(MonitorST.PortP).InstructionS 
         → EjectCardBL := T   
         → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL  

         → ⓈCardEjectedBL := T   
         → PNN := 1  
} 
 
 
// State 8 
SystemFailure  (<I::( )>; <O:: ⓈSystemFailureBL, ⓈSysShutDownBL>)  
{ 
    ⓈSystemFailureBL = T 

→ ( !( @‘ⓈSystemFailureBL = T’) 

    → ‘System failure. Please use another machine.’ |⋖   
         PORT(MonitorST.PortP).InstructionS 
    → EjectCardBL := T   
    → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL  

    → ⓈCardEjectedBL := T   

    → ⓈSysShutDownBL := T 
    → ⊗ 
} 
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K.3 ATM DYNAMIC BEHAVIORS 
 

 
 
3.1 ATM Dynamic Behaviors 
 
ATM.DynamicBehaviors  
{ 
      §     
  || // Base level 
       (    SysInitial  
          | Welcome 
          | CheckPIN 
          | CheckAmount 
          | VerifyAccountBalance 
          | VerifyCashAvailability 
          | DisburseCash 
          | EjectCard 
          | SystemFailure 
       ) 
  ||  // Interrupt level   
      (   SysClock   
        || SysDiagnosis  
      ) 
} 
 
 
3.2 ATM Process Deployment 
 
ATM.ProcessDeployment   
{ // Basic level processes 
   @SysInitialS 
       ↳ ( SysInitial 

             ↳
SysShutDown

R
=

T

BL F
 ATMProcessDispatching 

             →  ⊠  
           ) 
   || // Interrupt level processes 
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     ⊙  @SysClock1msIntS 
          ( SysClock 
               ↳  SysDiagnosis 
             ) 
         ⊙  
} 
 
 
3.3 ATM Process Dispatch 
 
ATMProcessDispatch   
{  
   @‘PNN = 0’ →  ∅ 

| @‘PNN = 1’ ↳ Welcome  (<I:: ( )>; <O:: AccountNumN, PNN, 

                                      ⓈValidCardBL>) 

| @’PNN = 2’ ↳ CheckPIN (<I:: AccountNumN>; <O::  PNN, 

 ⓈValidPINBL, ⓈServiceCamcelledBL>) 

| @’PNN = 3’ ↳ CheckCashAmount (<I:: ( )>; <O:: AmountToWithdrawN, 

PNN, ⓈValidAmountBL, ⓈServiceCancelledBL>)  

| @’PNN = 4’ ↳ VerifyAccount  (<I:: AccountNumN, 
AmountToWithdrawN>; <O:: PNN, 
AmountToWithdrawN, ⓈValidBalanceBL, 

ⓈServiceCancelledBL>) 

| @’PNN = 5’ ↳ VerifyCashAvailability  (<I:: AmountToWithdrawN>;  

                              <O:: PNN, ⓈCashAvailableBL, ⓈServiceCancelledBL>) 

| @’PNN = 6’ ↳ DisburseCash  (<I:: AccountNumN, 

   AmountToWithdrawN>;  <O:: ⓈCashDisbursedBL, PNN, 

                               ⓈServiceCompletedBL, ⓈServiceCancelledBL>) 

| @’PNN = 7’ ↳ EjectCard  (<I:: ( )>; <O::  PNN, ⓈCardEjectedBL>) 

| @’PNN = 8’ ↳ SsytemFailure (<I:: ( )>; <O:: ⓈSystemFailureBL, 

                                                       ⓈSysShutDownBL>) 
} 
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