

SOFTWARE
ENGINEERING
FOUNDATIONS
A
SOFTWARE SCIENCE
PERSPECTIVE

© 2008 by Taylor & Francis Group, LLC

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401
E-mail: orders@crcpress.com

Accelerating Process Improvement Using
Agile Techniques
Deb Jacobs
ISBN: 0-8493-3796-8

Antipatterns: Identification, Refactoring,
and Management
Phillip A. Laplante and Colin J. Neill
IISBN: 0-8493-2994-9

Applied Software Risk Management:
A Guide for Software Project Managers
C. Ravindranath Pandian
ISBN: 0-8493-0524-1

The Art of Software Modeling
Benjamin A. Lieberman
ISBN: 1-4200-4462-1

Database and Applications Security: Integrating
Information Security and Data Management
Bhavani Thuraisingham
ISBN: 0-8493-2224-3

The Debugger’s Handbook
J.F. DiMarzio
ISBN: 0-8493-8034-0

Defining and Deploying Software Processes
F. Alan Goodman
ISBN: 0-8493-9845-2

Effective Software Maintenance and Evolution:
A Reuse-Based Approach
Stanislaw Jarzabek
ISBN: 0-8493-3592-2

Embedded Linux System Design and Development
P. Raghavan, Amol Lad, and Sriram Neelakandan
ISBN: 0-8493-4058-6

Flexible Software Design: Systems Development
for Changing Requirements
Bruce Johnson, Walter W. Woolfolk, Robert Miller
and Cindy Johnson
ISBN: 0-8493-2650-8

Global Software Development Handbook
Raghvinder Sangwan, Matthew Bass, Neel Mullick,
Daniel J. Paulish, and Juergen Kazmeier
ISBN: 0-8493-9384-1

The Handbook of Mobile Middleware
Paolo Bellavista and Antonio Corradi
ISBN: 0-8493-3833-6

Manage Software Testing
Peter Farrell-Vinay
ISBN: 0-8493-9383-3

Maximizing ROI on Software Development
Vijay Sikka
ISBN: 0-8493-2312-6

Process-Based Software Project Management
F. Alan Goodman
ISBN: 0-8493-7304-2

Reducing Risk with Software Process Improvement
Louis Poulin
ISBN: 0-8493-3828-X

The ROI from Software Quality
Khaled El Emam
ISBN: 0-8493-3298-2

Service Oriented Enterprises
Setrag Khoshafian
ISBN: 0-8493-5360-2

Six Sigma Software Development, Second Edition
Christine B. Tayntor
ISBN: 1-4200-4426-5

Software Engineering Quality Practices
Ronald Kirk Kandt
ISBN: 0-8493-4633-9

Software Requirements: Encapsulation,
Quality, and Reuse
Rick Lutowski
ISBN: 0-8493-2848-9

Software Sizing, Estimation, and Risk Management
Daniel D. Galorath and Michael W. Evans
ISBN: 0-8493-3593-0

Software Specification and Design: An
Engineering Approach
John C. Munson
ISBN: 0-8493-1992-7

Software Testing and Continuous Quality
Improvement, Second Edition
William E. Lewis
ISBN: 0-8493-2524-2

Strategic Software Engineering: An
Interdisciplinary Approach
Fadi P. Deek, James A.M. McHugh, and Osama M. Eljabiri
ISBN: 0-8493-3939-1

Successful Packaged Software Implementation
Christine B. Tayntor
ISBN: 0-8493-3410-1

Testing Code Security
Maura A. van der Linden
ISBN: 0-8493-9251-9

UML for Developing Knowledge Management Systems
Anthony J. Rhem
ISBN: 0-8493-2723-7

X Internet: The Executable and Extendable Internet
Jessica Keyes
ISBN: 0-8493-0418-0

Other Auerbach Publications in

Software Development, Software Engineering,

and Project Management

© 2008 by Taylor & Francis Group, LLC

http://www.auerbach-publications.com
orders@crcpress.com

SOFTWARE
ENGINEERING

FOUNDATIONS
A
SOFTWARE SCIENCE

PERSPECTIVE

YINGXU WANG

A Auerbach Publications
Taylor & Francis Croup

Boca Raton New York

Auerbach Publications is an imprint of the
Taylor & Francis Group, an informa business

© 2008 by Taylor & Francis Group, LLC

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2008 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑0‑8493‑1931‑0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse‑
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Wang, Yingxu.
Software engineering foundations: a software science perspective / Yingxu

Wang.
p. cm. ‑‑ (The crc series in software engineering ; v. 2)

Includes bibliographical references and index.
ISBN 978‑0‑8493‑1931‑0 (alk. paper)
1. Software engineering. I. Title.

QA76.758.W375 2007
005.1‑‑dc22 2007015773

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach‑publications.com

© 2008 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.auerbach-publications.com
http://www.taylorandfrancis.com

To my parents, wife, and daughters

Great knowledge sees all in one. Small knowledge

breaks down into the many.

Chuang Tzu (399 – 295 BC)

Problems that are created by our current level of thinking

 cannot be solved by that same level of thinking.

Albert Einstein (1879 – 1955)

 The more science becomes divided into specialized disciplines, the more

important it becomes to find unifying principles.

Herman Haken (1977)

© 2008 by Taylor & Francis Group, LLC

Summary of
Contents

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Information
 Foundations
 of SE

9. Cognitive Inf.
 Foundations
 of SE

1. Introduction

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

2. Principles
 of SE

8. Engineering
 Foundations
 of SE

3. Philosophical
 Foundations
 of SE

11. Management
 Science foundations
 of SE

12. Economics
 Foundations
 of SE

13. Sociology
 Foundations
 of SE

14. Retrospect
 on SE

15. Prospect on
 Software
 Science

10. System Science
 Foundations
 of SE

© 2008 by Taylor & Francis Group, LLC

viii Table of Contents

Summary of Contents

Software Engineering Foundations
A Software Science Perspective

Part I. Principles and Constraints of Software Engineering
1. Introduction
2. Principles of Software Engineering

Part II. Theoretical Foundations of Software Engineering
3. Philosophical Foundations of Software Engineering
4. Mathematical Foundations of Software Engineering
5. Computing Foundations of Software Engineering
6. Linguistics Foundations of Software Engineering
7. Information Science Foundations of Software Engineering

Part III. Organizational Foundations of Software Engineering
8. Engineering Foundations of Software Engineering
9. Cognitive Informatics Foundations of Software Engineering
10. System Science Foundations of Software Engineering
11. Management Science Foundations of Software Engineering
12. Economics Foundations of Software Engineering
13. Sociology Foundations of Software Engineering

Part IV. Perspectives on Software Science
14. Retrospect on Software Engineering
15. Prospect on Software Science

Bibliography

Appendixes

A. Mathematical Symbols, Notations, and Abbreviations
B. Constraints of Software Engineering
C. Empirical Principles of Software Engineering
D. Models of Entities and Structures of Software Engineering
E. Wang’s Laws of Software Engineering
F. Wang’s Formal Principles of Software Engineering
G. The Type System of Software Engineering
H. Meta Processes of Software Engineering
I. Algebraic Process Relations of Software Engineering
J. Deductive Semantics of Software Engineering
K. Formal Models of the ATM System in RTPA
L. List of Figures
M. List of Tables

Index

© 2008 by Taylor & Francis Group, LLC

Table of Contents ix

Table of Contents

Summary of Contents vii

Preface xxxv
Acknowledgments xlv
About the Author vlvii

Part I Principles and Constraints of Software

 Engineering
1

1 Introduction 5
 1.1 Overview 7
 1.1.1 Software Engineering: Status and Problems 10
 1.1.2 Myths on Software Engineering 12
 1.2 Characteristics of Software Engineering 14
 1.2.1 Perceptions on Software 15
 1.2.1.1 The Mathematical Metaphor of Software 16
 1.2.1.2 The Product Metaphor of Software 16
 1.2.1.3 The Informatics Metaphor of Software 17
 1.2.2 Perceptions on Software Engineering 18
 1.2.3 Software Engineering as an Engineering Discipline 21
 1.2.4 Hierarchy of Abstraction and Descriptivity in Software
 Engineering

23

 1.2.4.1 The Hierarchical Abstraction Model of System
 Descriptivity (HAMSD)

24

 1.2.4.2 Software Engineering Practice: Can Microtech
 be Used to Denote Nanotech?

26

 1.3 Basic Constraints of Software Engineering 28
 1.3.1 The Software Engineering Constraint Model 28
 1.3.2 Cognitive Constraints of Software Engineering 29
 1.3.2.1 Intangibility 30
 1.3.2.2 Complexity 30
 1.3.2.3 Indeterminacy 31

© 2008 by Taylor & Francis Group, LLC

x Table of Contents

 1.3.2.4 Diversity 32
 1.3.2.5 Polymorphism 32
 1.3.2.6 Inexpressiveness 33
 1.3.2.7 Inexplicit Embodiment 34
 1.3.2.8 Unquantifiable Quality Measures 35
 1.3.3 Organizational Constraints of Software Engineering 35
 1.3.3.1 Time dependency 36
 1.3.3.2 Conservative Productivity 36
 1.3.3.3 Labor-Time Interlock 37
 1.3.4 Resources Constraints of Software Engineering 38
 1.3.4.1 Costs 38
 1.3.4.2 Human Dependency 39
 1.3.4.3 Hardware Dependency 39
 1.4 Approaches to Software Engineering 40
 1.4.1 Programming Methodologies 41
 1.4.2 Software Development Models 41
 1.4.3 Automated Software Engineering 42
 1.4.4 Formal Methods 43
 1.4.5 Software Engineering Processes 43
 1.4.6 Theoretical Foundations of Software Engineering 44
 1.5 Transdisciplinary Foundations of Software Engineering 45
 1.5.1 Philosophical Foundations 45
 1.5.2 Mathematical Foundations 46
 1.5.3 Computing Foundations 46
 1.5.4 Linguistics Foundations 47
 1.5.5 Information Science Foundations 47
 1.5.6 Engineering Foundations 48
 1.5.7 Cognitive Informatics Foundations 48
 1.5.8 Systems Science Foundations 48
 1.5.9 Management Science Foundations 49
 1.5.10 Economics Foundations 49
 1.5.11 Sociology Foundations 50
 1.6 The Architecture of this Book 50
 1.7 Summary 55
 Questions and Research Opportunities 62

2 Principles of Software Engineering 67
 2.1 Introduction 69

2.2 Pioneer Pursuits of Principles for Software Engineering 70
 2.2.1 Parnas’ Principles of Software Engineering 71
 2.2.1.1 Information Hiding 71
 2.2.1.2 Modularization 72
 2.2.1.3 Engineering Approach 72

© 2008 by Taylor & Francis Group, LLC

Table of Contents xi

 2.2.1.4 Professional Responsibility 73
 2.2.1.5 Documentation 73
 2.2.2 Hoare’s Principles of Software Engineering 74
 2.2.2.1 Professionalism 74
 2.2.2.2 Vigilance 75
 2.2.2.3 Sound Theoretical Knowledge 75
 2.2.2.4 Using Tools 75
 2.2.2.5 Abstraction 75
 2.2.2.6 Structured Programming 76
 2.2.2.7 Readability 76
 2.2.3 Brooks’ Principles of Software Engineering 76
 2.2.3.1 Complexity 77
 2.2.3.2 Conformity 78
 2.2.3.3 Changeability 78
 2.2.3.4 Invisibility 78
 2.2.4 Wasserman’s Principles of Software Engineering 79
 2.2.4.1 Abstraction 79
 2.2.4.2 Methods and Notations 80
 2.2.4.3 Prototyping 80
 2.2.4.4 Modularity and Architecture 80
 2.2.4.5 Lifecycle and Process 81
 2.2.4.6 Reuse 81
 2.2.4.7 Metrics 81
 2.2.4.8 Tools and Integrated Environments 81

 2.2.5 IEEE SESC’s Principles of Software Engineering 82
 2.2.6 IEEE Software Magazine’s Principles of
 Software Engineering

83

 2.2.6.1 Reviews and Inspections 84
 2.2.6.2 Information Hiding 84
 2.2.6.3 Incremental Development 84
 2.2.6.4 User Involvement 85
 2.2.6.5 Automated Revision Control 85
 2.2.6.6 Internet Development 85
 2.2.6.7 Programming Languages Hall of Fame 85
 2.2.6.8 Capacity Maturity Model 86
 2.2.6.9 Object-Oriented Programming 86
 2.2.6.10 Component-Based Development 86
 2.2.6.11 Metrics and Measurement 87

2.3 A Unified Framework of Software Engineering Principles 87
 2.3.1 Elicitation of Fundamental Principles of Software
 Engineering

88

 2.3.2 The Unified Framework of Software Engineering
 Principles

90

 2.3.3 Description of the Fundamental Principles of Software 90

© 2008 by Taylor & Francis Group, LLC

xii Table of Contents

 Engineering
 2.3.3.1 Abstraction 90
 2.3.3.2 Decomposition/Modularization 92
 2.3.3.3 Information Hiding 93
 2.3.3.4 Engineering Approach 93
 2.3.3.5 Professionalism 94
 2.3.3.6 Tools and Environments 94
 2.3.3.7 Documentation 95
 2.3.3.8 Stepwise Refinement 96
 2.3.3.9 Prototyping 96
 2.3.3.10 Adopting Engineering Notations 97
 2.3.3.11 Process Modeling 98
 2.3.3.12 Reuse 98
 2.3.3.13 Measurements and Metrics 99
 2.3.3.14 Cognitive Complexity Control 100
 2.3.3.15 Formal Requirement Specification 101
 2.3.3.16 Systematic Quality Assurance 101
 2.3.3.17 Review and Inspection 102
 2.3.3.18 Management Engineering 102
 2.3.3.19 Acquiring Domain Knowledge 103
 2.3.3.20 Customer Involvement 104
 2.3.3.21 Feasibility Analysis 104
 2.3.3.22 Improving Comprehensibility 105
 2.3.3.23 Exception Handling 106
 2.3.3.24 Divide and Conquer 106
 2.3.3.25 Explicit Embodiment 107
 2.3.3.26 Establishing Theoretical Foundations 108
 2.3.3.27 Architecture and Behavior Modeling 108
 2.3.3.28 Standardization 109
 2.3.3.29 Systems Engineering 110
 2.3.3.30 Engineering Organization 110
 2.3.3.31 Cognitive Engineering 110

2.4 Software Engineering Principles as Measures to its
 Constraints

111

 2.4.1 Principles for Coping with the Cognitive Constraints 111
 2.4.2 Principles for Coping with the Organizational Constraints 114
 2.4.3 Principles for Coping with the Resource Constraints 115
 2.4.4 A Systematic View on Mapping between the Principles and
 Constraints

116

 2.5 Summary 118
 Questions and Research Opportunities 125

© 2008 by Taylor & Francis Group, LLC

Table of Contents xiii

Part II Theoretical Foundations of Software
 Engineering

129

3 Philosophical Foundations of Software Engineering 133
 3.1 Introduction 135

3.2 Philosophy of Sciences and Engineering 136
 3.2.1 The Natural World and the Abstract World 137
 3.2.2 The Basic Axioms about Nature 138
 3.2.3 Epistemology and Foundationalism 139
 3.2.4 Holism vs. Reductionism 141
 3.2.5 Positivism vs. Rationalism 142
 3.2.6 Empiricism and Objectivity 143
 3.2.7 Determinism vs. Indeterminism 145
 3.2.8 Natural Intelligence vs. Artificial Intelligence 145
 3.2.9 Ethical Philosophies of Engineering 147

3.3 Formal Inference Methodologies 148
 3.3.1 Logical Argumentations 148
 3.3.2 Deductive Inferences 150
 3.3.3 Inductive Inferences 151
 3.3.4 Abductive Inferences 153
 3.3.5 Analogical Inferences 154

3.4 The Nature of Software 155
 3.4.1 The Three Situations where Software is Needed 155
 3.4.2 The Behavioral Space of Software 156
 3.4.3 Properties of Software 157
 3.4.3.1 The Cognitive Properties of Software 158
 3.4.3.2 The Intelligent Behavioral Properties of Software 158
 3.4.3.3 The System Properties of Software 160
 3.5 Philosophy of Software Engineering 160
 3.5.1 The Cognitive Characteristics of Software Engineering 161
 3.5.1.1 The Abstraction and Intangibility of Software 161
 3.5.1.2 The Inherited Complexity and Diversity 161
 3.5.1.3 The Changeability or Malleability of Software 161
 3.5.1.4 The Difficulty of Establishing and Stabilizing
 Requirements

162

 3.5.1.5 The Requirement of Varying Problem Domain
 Knowledge

162

 3.5.1.6 The Indeterminacy and Polysolvability in Design 162
 3.5.1.7 The Polyglotics and Polymorphism in
 Implementation

163

 3.5.1.8 The Dependability of Interactions between
 Software, Hardware, and Humans

163

 3.5.2 The Nature of Software Engineering 163

© 2008 by Taylor & Francis Group, LLC

xiv Table of Contents

 3.5.2.1 Programming: Virtualization vs. Realization 163
 3.5.2.2 Problem Domains: Infinitive vs. Limited 164
 3.5.2.3 Effort Distribution: Design Intensive vs. Repetitive
 Production

164

 3.5.2.4 Implementation: Specificity vs. Generality 165
 3.5.2.5 Universal Logical Description vs. Domain-Specific
 Description

166

 3.5.2.6 Process Standardization vs. Product Standardization 166
 3.5.3 Software Engineering Validation Methodologies 166

3.6 Murphy’s Laws: The Practitioners’ Philosophy for Software
 Engineering

167

 3.6.1 Murphy’s Laws on General Engineering 168
 3.6.2 Murphy’s Laws on Software Engineering 169
 3.7 Summary 170
 Questions and Research Opportunities 177

4 Mathematical Foundations of Software Engineering 181
 4.1 Introduction 183
 4.2 Set Theory 185
 4.2.1 Sets and Properties 185
 4.2.1.1 Set Notations and Terminologies 185
 4.2.1.2 Set Operations 187
 4.2.1.3 Algebraic Laws of Sets 189
 4.2.2 Sequences and Ordered Sets 190
 4.2.2.1 Pairs and Tuples 190
 4.2.2.2 Sequences 191
 4.2.2.3 Lists 191
 4.2.2.4 Ordered Sets 192
 4.2.3 Relations 192
 4.2.3.1 Binary Relations 192
 4.2.3.2 Compositions of Relations 193
 4.2.3.3 Properties of Relations 194
 4.2.3.4 Cumulative Relations of Programs 195
 4.3 Algebra Systems 196
 4.3.1 Abstraction in Algebra Systems 196
 4.3.1.1 Abstract Algebra 196
 4.3.1.2 Boolean Algebra 196
 4.3.1.3 Process Algebra 197
 4.3.1.4 Concept Algebra 197
 4.3.1.5 System Algebra 198
 4.3.2 Functions 198
 4.3.2.1 Notations of Functions 198
 4.3.2.2 Inverse Functions 199
 4.3.2.3 Composition of Functions 199

© 2008 by Taylor & Francis Group, LLC

Table of Contents xv

 4.3.3 Algebraic Operations 200
 4.4 Mathematical Logic 201
 4.4.1 Propositional Logic 202
 4.4.1.1 Propositions 202
 4.4.1.2 Propositional Logic Operations 203
 4.4.1.3 Laws of Propositional Algebra and Logical
 Inferences

204

 4.4.2 Predicate Logic 205
 4.4.2.1 Taxonomy of Predicates 206
 4.4.2.2 Concept Construction with Predicate Logic 207
 4.4.2.3 Inferences in Predicate Logic 208
 4.5 Denotational Mathematics for Software Engineering 209
 4.5.1 Fundamental Elements in Modeling Software Systems 210
 4.5.2 The Need for Denotational Mathematics in Software
 Engineering

212

 4.5.2.1 Problems Yet to be Solved 212
 4.5.2.2 New Problems Require New Forms of
 Mathematics

212

 4.5.3 The Big-R Notation 214
 4.6 Real-Time Process Algebra (RTPA) 217
 4.6.1 The Process Metaphor of Software Systems 217
 4.6.1.1 Process Algebra 218
 4.6.1.2 Real-Time Process Algebra 219
 4.6.2 The Structure of RTPA 221
 4.6.3 The Type System of RTPA 222
 4.6.3.1 Primitive Types and the Type-Suffix Convention 222
 4.6.3.2 Definitions of the Primitive Types of RTPA 222
 4.6.3.3 Equivalence between Primitive Types 224
 4.6.4 Meta Processes of RTPA 225
 4.6.4.1 Structure of the RTPA Meta Processes 226
 4.6.4.2 Formal Description of the RTPA Meta Processes 227
 4.6.5 Process Relations and Algebraic Operations of RTPA 233
 4.6.5.1 Structure of the RTPA Process Relations 233
 4.6.5.2 Formal Description of the RTPA Process Relations 236
 4.7 The RTPA Methodology for Software System Modeling
 and Refinement

241

 4.7.1 The RTPA Methodology 242
 4.7.2 System Architecture Modeling and Refinement in
 RTPA

245

 4.7.2.1 The System Architecture 245
 4.7.2.2 The CLM Schema 246
 4.7.2.3 The CLM Objects 246
 4.7.3 System Static Behavior Modeling and Refinement 248
 4.7.3.1 System Static Behaviors 248

© 2008 by Taylor & Francis Group, LLC

xvi Table of Contents

 4.7.3.2 Process Schemas 248
 4.7.3.3 Process Implementation 249
 4.7.4 System Dynamic Behavior Modeling and Refinement 249
 4.7.4.1 System Dynamic Behaviors 249
 4.7.4.2 Dynamic Behaviors Deployment 250
 4.7.4.3 Dynamic Behaviors Dispatch 251
 4.8 RTPA: Notations for Software Engineering 252
 4.8.1 Modeling Component-Level Problems using RTPA 252
 4.8.1.1 Existing Approaches to ADT Specification 253
 4.8.1.2 Architectural Specification in RTPA 254
 4.8.1.3 Static Behavior Specification in RTPA 255
 4.8.1.4 Dynamic Behavior Specification in RTPA 255
 4.8.2 Modeling System-Level Problems using RTPA 256
 4.8.2.1 The Conceptual Model of the ATM 257
 4.8.2.2 Formal Description of the ATM Architectures 258
 4.8.2.3 Formal Description of the ATM Static Behaviors 259
 4.8.2.4 Formal Description of the ATM Dynamic
 Behaviors

260

 4.9 Summary 263
 Questions and Research Opportunities 271

5 Computing Foundations of Software Engineering 277
 5.1 Introduction 279
 5.2 Basic Computational Models 281
 5.2.1 Basic Operations in Computing 281
 5.2.2 Automata 284
 5.2.2.1 Automata and Finite State Machines (FSMs) 284
 5.2.2.2 Approaches to Describe FSMs 286
 5.2.2.3 Description of Software Behaviors by FSMs 288
 5.2.2.4 FSM Composition and Refinement 291
 5.2.2.5 Deterministic and Nondeterministic Automata 292
 5.2.2.6 Usage of Automata 293
 5.2.3 Turing Machines 294
 5.2.3.1 The Abstract Model of Computing 294
 5.2.3.2 Formal Description of Turing Machines 295
 5.2.3.3 The Nature of Computing 297
 5.2.4 von Neumann Machines 298
 5.2.4.1 The Stored-Program Concept 299
 5.2.4.2 The von Neumann Architecture of Computers 299
 5.2.5 Cognitive Machines 302
 5.2.5.1 The Wang Architecture of Computers 302
 5.2.5.2 Cognitive Computers 303
 5.3 Data Object Modeling and Manipulation 304
 5.3.1 Types and Data Structures 305

© 2008 by Taylor & Francis Group, LLC

Table of Contents xvii

 5.3.1.1 Type Systems of Programming Languages 305
 5.3.1.2 Primitive Types 307
 5.3.1.3 Derived and Advanced Types 310
 5.3.1.4 System Architectural Types 312
 5.3.2 Basic Data Modeling Techniques 314
 5.3.2.1 Identifiers 314
 5.3.2.2 Variables and Constants 317
 5.3.2.3 Expressions 318
 5.3.3 Formal Type Theory 319
 5.3.3.1 Type Rules 319
 5.3.3.2 Formal Type Systems 321
 5.3.3.3 Complex Type Rules for the RTPA Derived Types 321
 5.3.4 Abstract Data Types 324
 5.3.4.1 The Generic Model of ADTs 325
 5.3.4.2 Modeling Complex Data Structures and Component
 Architectures by ADTs

326

 5.3.4.3 Typical ADTs Modeled in RTPA 327
 5.4 Behavioral Modeling and Manipulation 331
 5.4.1 Internal Behaviors Modeling 332
 5.4.1.1 Basic Control Structures (BCS’s) 333
 5.4.1.2 Control Flow Graphs 333
 5.4.2 Iterative and Recursive Behaviors Modeling 335
 5.4.2.1 Formal Description of Iterations 336
 5.4.2.2 Formal Description of Recursions 339
 5.4.2.3 Comparative Analysis of Iterations and Recursions 342
 5.4.3 External and Interactive Behaviors Modeling 345
 5.4.3.1 Memory Manipulations 345
 5.4.3.2 Events Handling 350
 5.5 Program Modeling: Coordination of Computational
 Behaviors with Data Objects

351

 5.5.1 The Unified Mathematical Model of Programs 352
 5.5.1.1 The Abstract Model of Statements 352
 5.5.1.2 The Abstract Model of Processes 353
 5.5.1.3 The Abstract Model of Programs 353
 5.5.2 Programs Modeling at Component Level 355
 5.5.2.1 Algorithms 355
 5.5.2.2 Classes and Object-Orientation 356
 5.5.2.3 Patterns 361
 5.5.3 Programs Modeling at System Level – Frameworks 369
 5.6 Resources and Processes Modeling and Manipulation 373
 5.6.1 Abstract Models of Computing Systems 373
 5.6.2 Architectures of Operating Systems 376
 5.6.2.1 The Generic Architecture of Operating Systems 376
 5.6.2.2 The Unix™ and Linux™ Operating Systems 377

© 2008 by Taylor & Francis Group, LLC

xviii Table of Contents

 5.6.2.3 The Windows™ XP Operating Systems 378
 5.6.3 Computing Resources Manipulation 379
 5.6.3.1 Process Management 379
 5.6.3.2 CPU Scheduling 380
 5.6.3.3 Memory Management 381
 5.6.3.4 File System Management 382
 5.6.3.5 I/O System Management 382
 5.6.3.6 Communication Management 384
 5.6.3.7 Network Management 385
 5.6.4 Real-Time/Embedded Resources and Processes
 Manipulation

386

 5.6.4.1 The Architecture of RTOS+ 387
 5.6.4.2 The Task Scheduler of RTOS+ 388
 5.6.4.3 Process Dispatching of RTOS+ 389
 5.7 Summary 391
 Questions and Research Opportunities 403

6 Linguistics Foundations of Software Engineering 411
 6.1 Introduction 413
 6.2 Fundamentals of Linguistics 415
 6.2.1 Taxonomy of Linguistics 415
 6.2.2 Syntaxes 416
 6.2.3 Semantics 419
 6.2.4 Grammars 420
 6.2.4.1 Properties of Grammars 421
 6.2.4.2 The Universal Grammar 421
 6.2.4.3 The Deductive Grammar of Englis 422
 6.3 Formal Language Theory 425
 6.3.1 Alphabet 426
 6.3.2 Strings 426
 6.3.3 Expressions 428
 6.3.4 Grammar Theories 429
 6.3.4.1 Production Rules of Grammars 429
 6.3.4.2 Taxonomy of Grammars 429
 6.3.5 Languages 433
 6.3.6 BNF and EBNF 435
 6.4 Syntaxes of Programming Languages 437
 6.4.1 Lexical Analyses 438
 6.4.1.1 Taxonomy of Lexical Entities in Programming
 Languages

439

 6.4.1.2 Lexical Analysis of Programs 440
 6.4.2 Syntax Definitions and Descriptions 440
 6.4.3 Syntactical Analyses 442
 6.4.3.1 Basic Syntactical Analysis Techniques 442

© 2008 by Taylor & Francis Group, LLC

Table of Contents xix

 6.4.3.2 Description of Parsing Results by Syntax Trees 444
 6.4.4 Syntactical Analyses of RTPA 445
 6.4.4.1 Description of the RTPA Syntax in LL(k) 445
 6.4.4.2 Description of Special RTPA Grammar Rules by
 Syntactic Predicates

446

 6.4.4.3 Parsing RTPA Specifications 448
 6.5 Semantics of Programming Languages 449
 6.5.1 Taxonomy of Semantics 450
 6.5.1.1 Target Semantics 450
 6.5.1.2 Operational Semantics 451
 6.5.1.3 Denotational Semantics 451
 6.5.1.4 Axiomatic Semantics 451
 6.5.1.5 Algebraic Semantics 452
 6.5.1.6 Deductive Semantics 453
 6.5.2 Denotational Semantics 453
 6.5.2.1 Syntactic and Semantic Domains of Denotational
 Semantics

454

 6.5.2.2 Description of Syntactic Domains of the Sample
 Language SPL

456

 6.5.2.3 Semantic Analysis using Denotational Semantics 456
 6.5.2.4 Semantics of Programs in SPL 461
 6.5.3 Deductive Semantics 462
 6.5.3.1 The Mathematical Model of Software Semantics 463
 6.5.3.2 Deductive Semantics of Programs at Different
 Levels of Compositions

466

 6.5.3.3 Properties of Software Semantics 470
 6.6 Semantics of RTPA 472
 6.6.1 Semantics of RTPA Meta Processes 472
 6.6.1.1 The Assignment Process 473
 6.6.1.2 The Evaluation Process 473
 6.6.1.3 The Addressing Process 474
 6.6.1.4 The Memory Allocation Process 475
 6.6.1.5 The Memory Release Process 475
 6.6.1.6 The Read Process 476
 6.6.1.7 The Write Process 476
 6.6.1.8 The Input Process 476
 6.6.1.9 The Output Process 477
 6.6.1.10 The Timing Process 477
 6.6.1.11 The Duration Process 478
 6.6.1.12 The Increase Process 478
 6.6.1.13 The Decrease Process 479
 6.6.1.14 The Exception Detection Process 479
 6.6.1.15 The Skip Process 480
 6.6.1.16 The Stop Process 481

© 2008 by Taylor & Francis Group, LLC

xx Table of Contents

 6.6.2 Semantics of RTPA Process Relations 481
 6.6.2.1 The Sequential Process Relation 482
 6.6.2.2 The Jump Process Relation 484
 6.6.2.3 The Branch Process Relation 485
 6.6.2.4 The Switch Process Relation 486
 6.6.2.5 The While-Loop Process Relation 488
 6.6.2.6 The Repeat-Loop Process Relation 489
 6.6.2.7 The For-Loop Process Relation 490
 6.6.2.8 The Function Call Process Relation 491
 6.6.2.9 The Recursive Process Relation 492
 6.6.2.10 The Parallel Process Relation 493
 6.6.2.11 The Concurrent Process Relation 494
 6.6.2.12 The Interleave Process Relation 495
 6.6.2.13 The Pipeline Process Relation 496
 6.6.2.14 The Interrupt Process Relation 497
 6.6.3 Semantics of System and System Process Dispatching 498
 6.6.3.1 The System Process 498
 6.6.3.2 The Time-Driven Dispatching Process Relation 499
 6.6.3.3 The Event-Driven Dispatching Process Relation 500
 6.6.3.4 The Interrupt-Driven Dispatching Process Relation 501
 6.7 Linguistic Perspectives on Software Engineering 502
 6.7.1 Comparative Analysis of Natural and Programming
 Language Theories

503

 6.7.2 Principles of Programming Language Design 504
 6.7.2.1 Abstraction and Complexity Control 504
 6.7.2.2 Efficiency 504
 6.7.2.3 Expressivity 505
 6.7.2.4 Simplicity 505
 6.7.2.5 Uniformity 506
 6.7.2.6 Orthogonality 506
 6.7.2.7 Comprehensibility and Readability 506
 6.7.3 Characteristics of Programming Languages 506
 6.7.3.1 Fundamental Requirements for Programming 506
 6.7.3.2 Limitations of Programming Languages 507
 6.8 Summary 508
 Questions and Research Opportunities 522

7 Information Science Foundations of Software Engineering 527
 7.1 Introduction 529
 7.2 Classic Information Theory 530
 7.2.1 Shannon’s Perception on Information 531
 7.2.2 The Physical Meaning of Classic Information 532
 7.2.2.1 The Concept of Entropy 533
 7.2.2.2 The Laws of Thermodynamics 533

© 2008 by Taylor & Francis Group, LLC

Table of Contents xxi

 7.2.2.3 Transformation between Information Entropy and
 Thermal Entropy

535

 7.2.3 Domain of Classical Information Theory 536
 7.2.4 Subjectivity of Classic Information Theory 537
 7.3 Contemporary Informatics 538
 7.3.1 Information: The Third Essence of Nature 538
 7.3.2 Measurement of Information 539
 7.3.3 From Machine Informatics to Cognitive Informatics 540
 7.3.3.1 Cognitive Informatics 541
 7.3.3.2 Perspective on Information in Cognitive
 Informatics

542

 7.3.3.3 The Role of Information in Mankind Evolution 543
 7.4 Informatics Laws of Software 543
 7.4.1 Equivalence between I-M-E 544
 7.4.1.1 The Equivalence of Matter and Energy 544
 7.4.1.2 Transformation between Matter, Energy, and
 Information

545

 7.4.2 Informatics Laws and Properties of Software 547
 7.4.2.1 Abstraction 548
 7.4.2.2 Generality 548
 7.4.2.3 Cumulativeness 549
 7.4.2.4 Dependency on Cognition 549
 7.4.2.5 Multi-Dimensional Behavioral Space 549
 7.4.2.6 Sharability 550
 7.4.2.7 Physically Dimensionless 550
 7.4.2.8 Weightless 550
 7.4.2.9 Transformability between I-M-E 550
 7.4.2.10 Multiple Representation Forms 551
 7.4.2.11 Multiple Carrying Media 551
 7.4.2.12 Multiple Transmission Forms 551
 7.4.2.13 Dependency on Media 552
 7.4.2.14 Dependency on Energy 552
 7.4.2.15 Wearless and Time Dependency 552
 7.4.2.16 Conservation of Information Entropy and Thermal
 Entropy

552

 7.4.2.17 Information-based Quality Attributes 552
 7.4.2.18 Susceptible to Distortion 553
 7.4.2.19 Scarcity 553
 7.5 Information Theories for Software Engineering 554
 7.5.1 The Informatics Metaphor of Software 554
 7.5.2 Informatics Laws that Constrain Software Behaviors 555
 7.5.3 The Informatics Attributes of Software Quality 556
 7.6 Summary 557
 Questions and Research Opportunities 564

© 2008 by Taylor & Francis Group, LLC

xxii Table of Contents

Part III Organizational Foundations of Software

 Engineering
569

8 Engineering Foundations of Software Engineering 575
 8.1 Introduction 577

8.2 Generic Engineering Approaches 578
 8.2.1 Engineering: A Concept Emerged from the Industrial
 Revolutions

 579

 8.2.2 Science and the Generic Scientific Method 581
 8.2.3 Engineering vs. Science 583
 8.2.3.1 Science and Scientists 584
 8.2.3.2 Engineering and Engineers 585
 8.2.3.3 Relationship between Science and Engineering 586
 8.2.4 Fundamental Goals and Constraints of Engineering 587
 8.2.5 Generic Engineering Approaches 589
 8.2.6 The Generic Engineering Maturity Model (EMM) 590
 8.3 Basic Engineering Principles 593
 8.3.1 Principles of Engineering Organization 593
 8.3.2 Principles of Engineering Technology 594
 8.3.3 Principles of Engineering Management 595
 8.3.4 Principles of Engineering Professionalism 595

8.4 Engineering Principles for Software Engineering 596
 8.4.1 The Engineering Characteristics of Software Engineering 596
 8.4.2 Division of Labor 597
 8.4.3 Characteristics of Software Engineering in the
 Engineering Age

599

 8.4.4 Unique Principles of Software Engineering 600
 8.4.5 Professionalism of Software Engineering 602
 8.4.5.1 Professionalism of Software Engineers 602
 8.4.5.2 Ethical Practice in Software Engineering 604
 8.5 The Theory of Software Engineering Organization 606
 8.5.1 Basic Properties of Coordinative Work in Engineering 606
 8.5.1.1 The Mechanisms of Coordinative Workload and
 Effort

607

 8.5.1.2 The Rate of Interpersonal Coordination 608
 8.5.1.3 The Overhead of Interpersonal Coordination 610
 8.5.1.4 The Nature of Coordinative Work in Engineering 612
 8.5.2 Laws of Work Organization in Software Engineering 614
 8.5.2.1 The Law of Incompressibility of Software
 Engineering Workload

614

 8.5.2.2 The Laws of Interchangeability between Labor and
 Time in Software Engineering

615

© 2008 by Taylor & Francis Group, LLC

Table of Contents xxiii

 8.5.2.3 The Laws of the Shortest Duration of Coordinative
 Work in Software Engineering

616

 8.5.3 The Mythical Man-Month Explained 621
 8.5.4 Decision Optimization in Software Engineering 623
 8.5.4.1 Optimization of Project Organization for the
 Shortest Duration

 623

 8.5.4.2 Optimization of Project Organization for the
 Lowest Effort/Cost

626

 8.5.4.3 Optimization of Project Organization by
 Controlling the Interpersonal Coordination Rate

629

 8.6 Empirical Software Engineering 631
 8.6.1 Software Engineering Case Studies 631
 8.6.2 Software Engineering Experiments 632
 8.6.3 Software Engineering Trials 633
 8.6.4 Software Engineering Benchmarking 635
 8.6.4.1 The IBM European Benchmarks on Software
 Engineering Practices

636

 8.6.4.2 The SEPRM Benchmarks on Software Engineering
 Processes

637

 8.6.5 Software Engineering Standardization 639
 8.6.5.1 Software Development Standards 639
 8.6.5.2 Software Quality Standards 640
 8.6.5.3 Software Engineering Process Standards 641
 8.7 Summary 642
 Questions and Research Opportunities 649

9 Cognitive Informatics Foundations of Software Engineering 655
 9.1 Introduction 657
 9.2 Cognitive Informatics 660
 9.2.1 Cognitive Philosophy 660
 9.2.2 Neural Informatics Foundations of the Brain 664
 9.2.2.1 Neurons and Synapses 664
 9.2.2.2 Physiological Structure of the Brain 666
 9.2.2.3 Cognitive Models of Memories 668
 9.2.3 The Emergence of Cognitive Informatics 674
 9.2.4 The Theoretical Framework of Cognitive Informatics 676
 9.2.4.1 The Fundamental Theories of Cognitive
 Informatics

677

 9.2.4.2 The Domain of Cognitive Informatics 677
 9.3 Cognitive Informatics Models of the Brain 679
 9.3.1 The Layered Reference Model of the Brain (LRMB) 680
 9.3.1.1 The Architecture of LRMB 680
 9.3.1.2 The Functional Layers of LRMB 682
 9.3.1.3 The Configuration of the Cognitive Processes of 685

© 2008 by Taylor & Francis Group, LLC

xxiv Table of Contents

 LRMB
 9.3.2 Cognitive Properties of Internal Information 686
 9.3.3 Natural Intelligence vs. Artificial Intelligence 689
 9.3.3.1 The Nature of Intelligence 689
 9.3.3.2 Taxonomy of Intelligence 690
 9.3.3.3 The Model of Natural Intelligence 691
 9.3.3.4 Measurement of Intelligence 692
 9.3.3.5 Theory of Learning and Knowledge Acquisition 696
 9.3.4 The Cognitive Model of the Brain 697

9.4 Cognitive Informatics Models of Knowledge
Representation

701

 9.4.1 The Hierarchical Neural Cluster (HNC) Model of
 Memory

702

 9.4.2 The Object-Attribute-Relation (OAR) Model of Internal
 Information Representation

702

 9.4.3 The Extended OAR Model of the Brain 706
 9.4.4 The Cognitive Mechanisms of Long-Term Memory 708
 9.4.4.1 Cognitive Properties of LTM 709
 9.4.4.2 When is memory created in LTM? 710
 9.4.4.3 How is memory created in LTM? 712
 9.4.5 The Memory Capacity of Human Brains 713
 9.5 Cognitive Informatics for Software Engineering 715
 9.5.1 Cognitive Constraints on Software Productivity 716
 9.5.2 Software Engineering Psychology 717
 9.5.3 The Cognitive Foundation of Software Comprehension 719
 9.5.4 Software Engineering Skills and Experiences 722
 9.5.5 Software Agent Systems 724
 9.6 Cognitive Complexity of Software 725
 9.6.1 The Relative Cognitive Weights of Generic Software
 Structures

726

 9.6.2 Psychological Experiments on the Cognitive Weights 728
 9.6.3 Calibration of the Relative Cognitive Weights of BCS’s 729
 9.7 Summary 730
 Questions and Research Opportunities 741

10 System Science Foundations of Software Engineering 747
 10.1 Introduction 749
 10.2 System Philosophies 750
 10.2.1 The System Metaphor for Modeling Complex Entities 751
 10.2.2 Holism 753
 10.2.3 Systematic Thinking 753
 10.3 Abstract Systems and System Topology 755
 10.3.1 Mathematical Models of Abstract Systems 755
 10.3.1.1 The Mathematical Model of Closed Systems 755

© 2008 by Taylor & Francis Group, LLC

Table of Contents xxv

 10.3.1.2 The Mathematical Model of Open Systems 757
 10.3.2 Taxonomy of Systems 760
 10.3.2.1 Concrete and Abstract Systems 760
 10.3.2.2 Physical and Social Systems 762
 10.3.2.3 Finite and Infinite Systems 762
 10.3.2.4 Closed and Open Systems 764
 10.3.2.5 Static and Dynamic Systems 764
 10.3.2.6 Linear and Nonlinear Systems 765
 10.3.2.7 Continuous and Discrete Systems 765
 10.3.2.8 Precise and Fuzzy Systems 765
 10.3.2.9 Determinate and Indeterminate Systems 766
 10.3.2.10 White-Box and Black-Box Systems 766
 10.3.2.11 Intelligent and Nonintelligent Systems 766
 10.3.2.12 Maintainable and Nonmaintainable Systems 766
 10.3.3 Magnitudes of Systems 767
 10.3.3.1 System Sizes, Magnitudes, and Complexities 767
 10.3.3.2 Taxonomy of System Magnitudes 769
 10.3.4 Hierarchical Architectures of Systems 770
 10.3.5 The System Organization Tree 772
 10.3.6 System Cohesion and Coupling 774
 10.3.6.1 The Border of Systems 774
 10.3.6.2 System Cohesion and Coupling 775
 10.4 System Algebra 776
 10.4.1 Relational Operations of Systems 776
 10.4.1.1 Algebraic Relations of Closed Systems 776
 10.4.1.2 Algebraic Relations of Open Systems 777
 10.4.1.3 Relations between Closed and Open Systems 779
 10.4.2 Algebraic Operations of Systems 780
 10.4.2.1 System Conjunction 780
 10.4.2.2 System Difference 784
 10.4.2.3 System Composition 786
 10.4.2.4 System Decomposition 790
 10.5 Principles of System Science 791
 10.5.1 System Fusions 791
 10.5.2 System Functions and Behaviors 793
 10.5.3 Work Done by Systems 794
 10.5.4 The Maximum Output of Systems 796
 10.5.5 System Equilibrium and Organization 797
 10.5.5.1 The Generic IPO Model of Systems 797
 10.5.5.2 Laws of System Equilibrium and Organization 798
 10.5.6 System Synchronization and Coordination 801
 10.5.7 System Dissimilation 802
 10.5.7.1 Dissimilation of Nonmaintainable Systems 802
 10.5.7.2 Dissimilation of Maintainable Systems 804

© 2008 by Taylor & Francis Group, LLC

xxvi Table of Contents

 10.6 Software System Engineering 805
 10.6.1 The Abstract Model of Computing Systems 806
 10.6.2 The Hierarchical Model of Software Systems 807
 10.6.2.1 The Hierarchical Structure of Software
 Systems

807

 10.6.2.2 The Hierarchical Structure of Software
 Engineering Processes and Work Products

807

 10.6.3 The ISO/IEC 15288 System Engineering Model for
 Software Engineering

808

 10.6.4 Software Engineering Phenomena as System
 Engineering Problems

810

 10.7 The Complexity Theory of Software Systems 813
 10.7.1 Computational Complexity 814
 10.7.1.1 Taxonomy of Computational Problems 815
 10.7.1.2 Time Complexity of Algorithms 816
 10.7.1.3 Space Complexity of Algorithms 817
 10.7.2 Symbolic and Control Flow Complexities 818
 10.7.2.1 Symbolic Complexity of Software Systems 818
 10.7.2.2 Control Flow Complexity of Software Systems 818
 10.7.3 The Cognitive Complexities of Software Systems 820
 10.7.3.1 The Operational Complexity of Software
 Systems

820

 10.7.3.2 The Architectural Complexity of Software
 Systems

823

 10.7.3.3 The Cognitive Complexity of Software
 Systems

825

 10.7.4 Software System Complexity Analysis 827
 10.7.4.1 Comparative Case Studies on the Complexity
 Models of Software Systems

827

 10.7.4.2 The Symbolic vs. Cognitive Sizes of Software
 Systems

830

 10.7.5 Cohesion and Coupling Complexities of Software
 Systems

831

 10.7.5.1 Cohesion of Software Systems 832
 10.7.5.2 Coupling of Software Systems 833
 10.7.5.3 Comparative Analysis of Software System
 Cohesions and Couplings

833

 10.8 Summary 835
 Questions and Research Opportunities 849

11 Management Science Foundations of Software Engineering 855
 11.1 Introduction 857
 11.2 Principles of Management Science 859

© 2008 by Taylor & Francis Group, LLC

Table of Contents xxvii

 11.2.1 Classic Management Thought 860
 11.2.2 Architecture of Management Science 861
 11.2.2.1 Functions of Management 861
 11.2.2.2 The System Model of Management 864
 11.2.3 Fundamental Theory of Management Science 864
 11.2.3.1 Why Management is Needed in Work
 Organization?

865

 11.2.3.2 The First Principle of Management 867
 11.2.3.3 Gains from Division of Labor 868
 11.2.3.4 The Second Principle of Management 873
 11.2.3.5 Wang’s Work Organization Theory for
 Coordinative Work Management

874

 11.3 Decision Theories 875
 11.3.1 The Mathematical Model of Decision Making 876
 11.3.1.1 The Principle of Choices 877
 11.3.1.2 Decisions and Decision Making 879
 11.3.1.3 Strategies and Criteria for Decision Making 879
 11.3.1.4 The Structure of Rational Decision Making 880
 11.3.2 Decision Making Processes 882
 11.3.2.1 The Cognitive Process of Decision Making 882
 11.3.2.2 Formal Description of the Decision Making
 Process

884

 11.3.3 Static Decision Making Strategies 886
 11.3.3.1 Decision Making under Certainty 888
 11.3.3.2 Decision Making under Uncertainty 889
 11.3.3.3 Decision Making under Risks 892
 11.3.4 Game Theory 896
 11.3.4.1 The Formal Model of Games 896
 11.3.4.2 Properties of Games 899
 11.3.4.3 Behaviors of Zero-Sum Games 901
 11.3.4.4 Behaviors of Nonzero-Sum Games 905
 11.3.5 Decision Grid Theory 907
 11.3.5.1 The Formal Model of Decision Grids 908
 11.3.5.2 Serial Decision Grids with Unlimited Trials 909
 11.3.5.3 Serial Decision Grids with Limited Trials 916
 11.4 Quality Systems 918
 11.4.1 Quality Principles 918
 11.4.1.1 Attributes of Quality 918
 11.4.1.2 Formal Models of Quality 920
 11.4.2 Quality Control and Assurance 923
 11.4.2.1 Quality Control Systems 923
 11.4.2.2 Quality Assurance Techniques 925
 11.4.3 Quality Management Systems 927
 11.4.3.1 Total Quality Management (TQM) 927

© 2008 by Taylor & Francis Group, LLC

xxviii Table of Contents

 11.4.3.2 The ISO 9000 Quality System 928
 11.4.3.3 The ISO 9126 Quality System 929
 11.5 Software Engineering Management 932
 11.5.1 Taxonomy of Software Engineering Management 932
 11.5.2 The Software Engineering Process Reference Model
 (SEPRM)

935

 11.5.2.1 The SEPRM Process Model 935
 11.5.2.2 The SEPRM Capability Model 938
 11.5.2.3 The SEPRM Capability Determination
 Methodology

940

 11.6 Summary 943
 Questions and Research Opportunities 957

12 Economics Foundations of Software Engineering 963
 12.1 Introduction 965
 12.2 Fundamental Principles of Economics 967
 12.2.1 Basic Axioms of Economics 967
 12.2.1.1 Demand vs. Supply 967
 12.2.1.2 The Principle of Resource Scarcity 968
 12.2.1.3 The Law of Market Conservation 968
 12.2.1.4 The Law of Maximizing Profits 969
 12.2.2 Economic Equilibrium between Demands and Supplies 970
 12.2.3 The Behaviors of Market Systems 971
 12.2.3.1 Simple Modes of Economic Equilibriums 973
 12.2.3.2 Complex Modes of Economic Equilibriums 977
 12.2.3.3 The Adaptive Equilibrium Mechanisms of
 Market Systems

978

 12.3 Economic Models 980
 12.3.1 Production Models 980
 12.3.2 Cost Models 981
 12.3.3 Market Models 982
 12.4 Dynamic Values of Money and Assets 983
 12.4.1 Dynamics of Money 984
 12.4.2 Dynamics of Asset’s Values 985
 12.4.3 Cumulative Values of Cash Flows 986
 12.4.3.1 The Uniform Payment Series 986
 12.4.3.2 The Linear Gradient Payment Series 987
 12.4.3.3 The Geometric Gradient Payment Series 987
 12.5 Economic Analyses 988
 12.5.1 Project Cost Analyses 989
 12.5.2 Project Benefit-Cost Analyses 990
 12.5.3 Project Payback Period Analyses 992
 12.5.4 Project Rate of Return Analyses 993
 12.6 Software Engineering Economics 995

© 2008 by Taylor & Francis Group, LLC

Table of Contents xxix

 12.6.1 Elements of Software Engineering Costs 995
 12.6.1.1 Analysis of Software Engineering Costs 995
 12.6.1.2 Analysis of Software Engineering Revenues 997
 12.6.2 Software Engineering Project Costs Estimation using
 FEMSEC

997

 12.6.2.1 The FEMSEC Model of Software
 Engineering Costs

997

 12.6.2.2 The FEMSEC Method for Software
 Engineering Project Costs Determination

999

 12.6.3 Software Engineering Project Costs Estimation using
 COCOMO

1005

 12.6.3.1 The Conceptual Model of COCOMO 1005
 12.6.3.2 The Basic COCOMO Model 1006
 12.6.3.3 The Intermediate COCOMO Model 1007
 12.6.3.4 The Detailed COCOMO Model 1007
 12.6.3.5 The COCOMO II Model 1008
 12.6.4 Economic Analyses of Software Projects 1009
 12.6.4.1 Estimations of Costs and Revenues of Software
 Projects

1009

 12.6.4.2 Cumulated Value of Operating Costs 1011
 12.6.4.3 Cumulated Present Value of Revenues 1011
 12.6.4.4 Annual and Cumulated Depreciations
 of Equipment

1011

 12.6.4.5 Project Benefit-Cost Ratios 1012
 12.6.4.6 Project Payback Periods 1012
 12.6.4.7 Project Rate of Return 1014
 12.6.5 The Software Legacy Cost Model 1014
 12.6.5.1 Development Costs vs. Maintenance Costs 1014
 12.6.5.2 The Software Legacy Maintenance Cost Model 1015
 12.7 Summary 1017
 Questions and Research Opportunities 1028

13 Sociology Foundations of Software Engineering 1033
 13.1 Introduction 1035
 13.2 Principles of Sociology 1036
 13.2.1 Social Structures 1037
 13.2.1.1 Individuals 1037
 13.2.1.2 Groups 1038
 13.2.1.3 Organizations 1038
 13.2.1.4 Sectors 1039
 13.2.1.5 Societies 1040
 13.2.2 Social Behaviors 1040
 13.2.2.1 Social Functions and Relations 1040

© 2008 by Taylor & Francis Group, LLC

xxx Table of Contents

 13.2.2.2 Social Roles 1041
 13.2.2.3 Social Systems 1043
 13.2.3 Social Norms 1043
 13.2.3.1 Cultures 1043
 13.2.3.2 Values 1044
 13.2.3.3 Socialization 1045
 13.2.3.4 The Social Philosophy of Confucianism 1045
 13.3 Social Psychology 1046
 13.3.1 The Fundamental Human Traits 1046
 13.3.1.1 Axiomatic Human Traits 1047
 13.3.1.2 The Hierarchical Model of Basic Human Needs 1048
 13.3.2 Human Perceptions and Behaviors 1050
 13.3.2.1 Emotions 1051
 13.3.2.2 Motivations 1053
 13.3.2.3 Attitudes 1055
 13.3.2.4 The Motivation/Attitude-Driven Behavioral
 Model

1056

 13.3.3 Collective Behaviors 1058
 13.3.3.1 Social Conformity 1058
 13.3.3.2 Social Synchronization 1059
 13.3.3.3 Coactions 1059
 13.3.3.4 Coordination 1060
 13.3.3.5 Groupthink 1060
 13.3.3.6 Social Dilemmas 1061
 13.3.3.7 Social Loafing 1061
 13.4 Theory of Social Organization 1063
 13.4.1 Classic Thought of Social Organization 1063
 13.4.1.1 Principles of Social Organization 1063
 13.4.1.2 Classic Models of Social Organization 1064
 13.4.2 The Formal Model of Social Organization 1066
 13.4.2.1 The Formal Organization Tree 1067
 13.4.2.2 Formal Models of Social Organization 1069
 13.4.2.3 Coordinative Work Organization 1072
 13.4.3 The Formal Model of Socialization 1074
 13.5 Sociology and Software Engineering 1077
 13.5.1 Social Organization of Software Engineering 1077
 13.5.1.1 The Role of the Information Economy in
 Postindustrial Societies

1078

 13.5.1.2 Maximizing Strengths of Individual
 Motivations in Software Engineering

1078

 13.5.1.3 Social Environments of Software Engineering 1079
 13.5.1.4 Ergonomics for Software Engineering 1080
 13.5.2 Theory for Large-Scale Software Engineering Project
 Organization

1081

© 2008 by Taylor & Francis Group, LLC

Table of Contents xxxi

 13.5.3 The Human Factors in Software Engineering 1085
 13.5.3.1 Taxonomy of Human Factors 1085
 13.5.3.2 Types of Human Errors 1086
 13.5.3.3 The Mathematical Model of Human Errors 1087
 13.5.3.4 The Random Properties of Human Errors 1089
 13.5.3.5 The Theoretical Foundation of Quality
 Assurance in Creative Work

1090

 13.6 Summary 1092
 Questions and Research Opportunities 1106

Part IV Perspectives on Software Science 1111

14 Retrospect on Software Engineering 1115
 14.1 Introduction 1117
 14.2 Infrastructures of Software Engineering 1118
 14.2.1 The Process Infrastructure of Software Engineering 1119
 14.2.2 Process-Based Software Engineering (PBSE) 1121
 14.2.2.1 The Organizational Model of PBSE 1122
 14.2.2.2 Software Engineering Process System
 Establishment

1124

 14.2.2.3 Software Engineering Process System
 Assessment

1128

 14.2.2.4 Software Engineering Process System
 Improvement

1131

 14.3 Software Industry Organization 1134
 14.3.1 The Nature of the Software Industry 1135
 14.3.2 Principles of Software Industry Organization 1137
 14.3.2.1 Basic Principles of Software Industrial
 Organization

1137

 14.3.2.2 Separation of Software Designers, Builders,
 Quality Assurors, and Maintainers in Software
 Engineering

1138

 14.3.2.3 Distributed Time-Shared Development in
 Software Engineering

1139

 14.3.3 A Perspective on the Software Maintenance Crisis 1140
 14.3.3.1 The Mathematical Model of Software
 Maintenance Crisis

1140

 14.3.3.2 Reasons Behind Software Maintenance Crises 1141
 14.3.3.3 Solutions to Software Maintenance Crisis 1142
 14.4 Essential Knowledge towards Excellent Software
 Engineers

1143

 14.4.1 Basic Constraints of Software Engineering 1145

© 2008 by Taylor & Francis Group, LLC

xxxii Table of Contents

 14.4.2 Empirical Principles of Software Engineering 1146
 14.4.3 Laws of Software Engineering 1149
 14.4.4 Formal Principles of Software Engineering 1157
 14.5 Impact of the Theoretical Foundations on Software
 Engineering

1165

 14.5.1 The Cognitive Principles of Knowledge Engineering 1166
 14.5.1.1 The Effort Model of Knowledge Creation and
 Acquisition

1166

 14.5.1.2 The Complexity Model of Knowledge Creation 1168
 14.5.1.3 The Cognitive Model of Knowledge Spaces of
 Multidisciplinary Knowledge

1169

 14.5.2 Expected Impacts of Wang’s Laws and Theorems to
 Software Engineering

1171

 14.5.3 Students’ Feedback 1175
 14.6 Summary 1179
 Questions and Research Opportunities 1187

15 Prospect on Software Science 1191
 15.1 Introduction 1193
 15.2 The Formal Knowledge Systems 1194
 15.2.1 The Framework of Formal Knowledge 1194
 15.2.2 The Roles of Formal and Empirical Knowledge 1197
 15.3 A Discipline of Software Science 1199
 15.3.1 Software Science: Software Engineering in the 21st
 Century

1200

 15.3.2 Architecture of Software Science 1201
 15.3.3 Denotational Mathematics for Software Science 1202
 15.3.3.1 Concept Algebra 1203
 15.3.3.2 System Algebra 1206
 15.3.3.3 RTPA 1206
 15.4 Impacts of Software Science on Computing 1208
 15.4.1 Autonomic Computing 1208
 15.4.1.1 From Imperative Computing to Autonomic
 Computing

1210

 15.4.1.2 Behaviorism Foundations of Autonomic
 Computing

1211

 15.4.1.3 Cognitive Informatics Foundations of
 Autonomic Computing

1214

 15.4.1.4 Denotational Mathematics Foundations of
 Autonomic Computing

1216

 15.4.1.5 Intelligent Science Foundations of
 Autonomic Computing

1216

 15.4.2 Intelligent Code Generation 1217
 15.4.3 Hyper-Programming: New Facets of the Software 1218

© 2008 by Taylor & Francis Group, LLC

Table of Contents xxxiii

 Architectural Framework
 15.4.3.1 The Architecture of Hyper-Programming 1219
 15.4.3.2 Syntactic Relations between RTPA, UML, and
 C++

1221

 15.4.3.3 The Framework of the Hyper-Programming
 Environment

1224

 15.4.3.4 Applications of the Hyper-Programming System 1226
 15.5 Epilogue 1229

Bibliography 1231

Appendixes 1279
A. Mathematical Symbols, Notations, and Abbreviations 1279
B. Constraints of Software Engineering 1289
C. Empirical Principles of Software Engineering 1291
D. Models of Entities and Structures of Software Engineering 1295
E. Wang’s Laws of Software Engineering 1323
F. Wang’s Formal Principles of Software Engineering 1331
G. The Type System of Software Engineering 1339
H. Meta Processes of Software Engineering 1341
I. Algebraic Process Relations of Software Engineering 1343
J. Deductive Semantics of Software Engineering 1345
K. Formal Model of the ATM System in RTPA 1359
L. List of Figures 1377
M. List of Tables 1387

© 2008 by Taylor & Francis Group, LLC

Preface

oftware engineering is a discipline of engineering science that studies
the nature of software, approaches and methodologies of large-scale
software development, and theories and laws behind software
behaviors and software engineering practices.

Software engineering appears still to be a young and immature science
and engineering discipline characterized by a wide variety of segmented
knowledge, a lack of a theoretical framework, and a bountiful inefficient
industrial practice. To deal with the difficulties inherent in large-scale
software development, rigorous and transdisciplinary foundations of software
engineering are yet to be explored. A particular gap in the current software
engineering curriculum is the missing of a fundamental framework that
would provide students and practitioners for overarching, durable, and
transdisciplinary theories, in order to explain a great many complicated
phenomena and problems of software engineering in terms of a core set of
theoretical and organizational foundations.

This book attempts to set forth a comprehensive, coherent, and rigorous
framework of theoretical and empirical foundations of software engineering.
It covers a wide range of necessary foundations for software engineering,
such as those of philosophy, mathematics, computing, linguistics,
informatics, engineering science, cognitive informatics, systems science,
management, economics, and sociology.

It is recognized that two important reasons make software engineering
an ideal testbed for existing theories and methodologies in the forementioned
disciplines from mathematics to cognitive informatics, and from management
science to sociology. The reasons are:

 a) Software engineering is the latest and the most complicated
engineering branch that mankind has ever experienced.

b) Software engineering is inherently a transdisciplinary field in both
its theoretical foundations and empirical applications.

Constrained by the cognitive, organizational, and resources limitations

and their complicated interrelations, most problems in software engineering
are innately complicated. Many of them has been observed in the very
beginning of software engineering for 40 years, some of them may even be

S

© 2008 by Taylor & Francis Group, LLC

xxxvi Preface

traced back to more than a century ago in management science and system
philosophy.

Therefore, a rigorous book is expected to explore and address a set of
coherent and unified principles, foundations, theories, laws, models,
frameworks, and empirical methodologies of software engineering. These
have motivated the basic research into software engineering foundations as
presented in this book with a software science perspective.

The Objectives of this Book

The objectives of this book on foundations of software engineering are as
follows:

 • To explore the whole picture of software engineering, particularly
the theoretical and empirical knowledge accumulated so far in this
discipline, and the fundamental problems that the discipline faces.

 • To identify the fundamental cognitive, organizational, and
resource constraints to software engineering.

 • To reveal that all the fundamental problems in software
engineering are necessarily complicated theoretical problems
rather than only empirical ones.

 • To recognize the need for multi-facet and transdisciplinary
theories and empirical knowledge for software engineering.

 • To highlight that a rigorous and formal approach is needed to seek
the fundamental principles, laws, and their transdisciplinary
foundations required by the nature of the problems in software
engineering.

 • To recognize the need for a scientific and rational coordinative
work organization theory for software engineering.

 • To realize the inherent limitation of the historical programming-
language-centered approach to software engineering.

 • To recognize the need for mathematical modeling of both
software system architectures and static/dynamic behaviors,
supplemented with the support of automatic code generation
systems, to software engineering.

© 2008 by Taylor & Francis Group, LLC

Preface xxxvii

 • To understand that the ultimate goal of software engineering is
automated code generation, rather than intensive programmer-
centered practice. Therefore, any mathematical, theoretical, and
empirical means contributing towards this goal should give
significant attention.

 • To reveal that software engineering encompasses not only a wider
domain of empirical applications, but also a richer set of
theoretical essences that are closer to the root of human
knowledge in terms of mathematics, philosophy, cognitive
informatics, computation, sociology, and system science.

 • To predict the emergence of software science on the basis of the
transdisciplinary and theoretical studies on software engineering,
as well as the observation on the generic pattern of science and
engineering discipline maturity.

This book adopts a rigorous approach to explore the theoretical and

empirical foundations of software engineering. It is a great curiosity to
investigate into the transdisciplinary foundations of software engineering and
the laws and theories behind them. It is also a great joyance to see a wide
variety of complicated phenomena and empirical practices in software
engineering can perfectly fit in the proposed theoretical framework of
software science and engineering.

The Features of this Book

This book is characterized both as a comprehensive reference text for
practitioners and as a vade mecum for students. This book is self-contained
and only basic programming experience and software engineering concepts
are required. This book is designed and expected to appeal to students,
software engineers, scholars, and managers who are curious in exploring the
theoretical and empirical foundations and laws underpinning the fast
development of software engineering techniques and practice.

This book, as the first textbook on rigorous and transdisciplinary
theoretical foundations of software engineering, provides the following
features:

 • A holistic exploration of theoretical foundations of software

engineering

© 2008 by Taylor & Francis Group, LLC

xxxviii Preface

 • A coherent framework of software engineering theories and
methodologies

 • A clear knowledge structure and a coherently organized body of
knowledge for software engineering

 • In-depth comments on alternative methodologies and approaches
 • Plentiful references
 • Real-world problems and heuristic questions
 • Detailed guide and case studies for practitioners in the industry
 • An integration of latest research findings, new methodologies,

and their applications in the discipline of software engineering

This book is needed for the following reasons:

 • Software engineering is an immature and fast growing discipline.
Although a number of books are available on various technologies
in software engineering, a few of them has been rigorously
covering the theoretical and organizational foundations of it.
Now, it is the time to address this vital problem and to build a
solid foundation for software engineering.

 • It is recognized that software engineering depends on
 multidisciplinary foundations such as philosophy, computation,
mathematics, informatics, system engineering, management,
cognitive informatics, linguistics, and engineering economics.
There was a lack of effort that attempted to put all these together
and to explore the impact of the interdisciplinary approach to
software engineering.

 • Current software engineering is based on empirical practices,
while theoretical research and investigation into foundations of
software engineering have long been left behind. This book
attempts to synergize theories, principles, and best practices of
software engineering into a coherent framework.

This book is developed based on the author’s 30-year experience in

research, teaching, and industrial collaborations. This book is designed as an
essential text for software engineers, students, and managers. This book
provides a comprehensive and rigorous text addressing unified and integrated
principles, foundations, theories, laws, frameworks, methodologies, best
practices, alternative solutions, open issues for further research, and plentiful
resources of software engineering. The manuscript of this book in the form
of lecture notes has been successfully taught in several
graduate/undergraduate courses in the software engineering program of
University of Calgary for more than seven years.

© 2008 by Taylor & Francis Group, LLC

Preface xxxix

The Architecture of this Book

The theoretical and empirical foundations of software engineering presented
in this book encompass four parts and 15 chapters as shown in the following
architecture. The four parts of this book cover principles/constraints,
theoretical foundations, organizational foundations of software engineering,
as well as perspectives on software science, respectively.

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Information
 Foundations
 of SE

9. Cognitive Inf.
 Foundations
 of SE

1. Introduction

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

2. Principles
 of SE

8. Engineering
 Foundations
 of SE

3. Philosophical
 Foundations
 of SE

11. Management
 Science Foundations
 of SE

12. Economics
 Foundations
 of SE

13. Sociology
 Foundations
 of SE

14. Retrospect
 on SE

15. Prospect on
 Software
 Science

10. SystemScience
 Foundations
 of SE

© 2008 by Taylor & Francis Group, LLC

xl Preface

 Part I. Principles and Constraints of Software Engineering

It is recognized that software engineering requires both theoretical and
empirical research. The former focuses on foundations and basic theories of
software engineering, whilst the latter concentrates on heuristic principles,
methodologies, tools/environments, and best practices. Although software
engineering has accumulated a rich set of empirical principles, a few of them
have been refined and formalized in order to form coherent theories for
software engineering.

The knowledge structure of Part I on Principles and Constraints of
Software Engineering encompasses the following chapters:

 • Chapter 1. Introduction
 • Chapter 2. Principles of Software Engineering

Part I addresses the nature of software and software engineering. The

basic constraints to software engineering and the fundamental principles for
software engineering are systematically sought. A set of 14 basic constraints
is identified in Chapter 1 in three categories known as the cognitive
constraints, organizational constraints, and resource constraints. Then, a set
of 31 fundamental software engineering principles is elicited in Chapter 2.
The usages of the fundamental principles of software engineering are
perceived to be counter measures to tackle the basic constraints. Via mapping
the fundamental principles into the basic constraints of software engineering,
a unified framework of software engineering principles is established.

Part I will provide a whole picture of software engineering, particularly
the theoretical and empirical knowledge cumulated so far in this discipline,
and the fundamental problems the discipline faces. It establishes a solid basis
enabling readers to investigate into the theoretical and organizational
foundations of software engineering with formal, rigorous, and
transdisciplinary approaches in the remainder of this book.

Part II. Theoretical Foundations of Software Engineering

Theoretical software engineering studies the nature of software,
mathematical models of software architectures, mechanisms of software
behaviors, methodologies of large-scale software development, and laws
behind software behaviors and software engineering practices. Part II
attempts to present readers the philosophical, mathematical, computing,
linguistic, and informatics metaphors of software and software engineering.

© 2008 by Taylor & Francis Group, LLC

Preface xli

It is recognized that all the fundamental problems in software engineering are
complicated theoretical problems rather than only empirical ones. A rigorous
and formal approach is needed to seek the fundamental principles and laws
of software engineering, and their transdisciplinary foundations required by
the nature of the problems in software engineering.

The knowledge structure of Part II on Theoretical Foundations of
Software Engineering encompasses the following chapters:

 • Chapter 3. Philosophical Foundations of Software Engineering
 • Chapter 4. Mathematical Foundations of Software Engineering
 • Chapter 5. Computing Foundations of Software Engineering
 • Chapter 6. Linguistics Foundations of Software Engineering
 • Chapter 7. Information Science Foundations of Software
 Engineering

This part focuses on fundamental theories of software engineering with

the cross-fertilization among engineering philosophy, denotational
mathematics, computing theories, formal linguistics, and informatics. It is
noteworthy that, historically, language-centered programming had been the
dominant methodology in computing and software engineering. However, it
should not be taken for granted as the only approach to software engineering,
because the expressive power of programming languages is inadequate to
deal with complicated software systems. Further, the rigorousness and level
of abstraction of programming languages are too low in modeling the
dynamic architectures and behaviors of software systems. This is why a
bridge in mechanical engineering or a building in civil engineering was not
modeled or described by natural or artificial languages. This observation
leads to the recognition of the need for mathematical modeling of both
software system architectures and static/dynamic behaviors, supplemented
with the support of automatic code generation systems.

Part II will establish a coherent theoretical framework of software
engineering with a comprehensive set of formal principles and laws for
software engineering. New structures of denotational mathematics will be
developed to deal with the innate complexity of software systems. The
philosophical, informatics, and linguistic theories and laws that constrain
software and software engineering practice will be systematically derived.
On the basis of this part, the empirical framework of software engineering, in
terms of its organizational, system engineering, and cognitive informatics
foundations, will be presented in the next part.

© 2008 by Taylor & Francis Group, LLC

xlii Preface

Part III. Organizational Foundations of Software Engineering

Organizational foundations of software engineering incorporate multi-
facet and transdisciplinary theories and empirical knowledge for software
engineering. Part III presents the organizational and system metaphors
toward software engineering. Three main threads are adopted in this part
known as the system science, cognitive informatics, and organizational
theories at different levels in the domains of engineering, management
science, economics, and sociology. It is recognized in this part that the
hidden reasons caused so many failures of large-scale software engineering
projects are not only pure technical issues, but also organizational issues of
non-optimal labor allocation and the incorrect sequences of interlocked
labor-duration-cost determination.

The knowledge structure of Part III on Organizational Foundations of
Software Engineering encompasses the following chapters:

 • Chapter 8. Engineering Foundations of Software Engineering
 • Chapter 9. Cognitive Informatics Foundations of Software
 Engineering
 • Chapter 10. System Science Foundations of Software
 Engineering
 • Chapter 11. Management Science Foundations of Software
 Engineering

 • Chapter 12. Economics Foundations of Software Engineering
 • Chapter 13. Sociology Foundations of Software Engineering

This part addresses the organizational and cognitive theories and
methodologies of software engineering with a transdisciplinary approach.
With system science theories as an overarching framework, the
organizational theories for software engineering form a hierarchical structure
covering classic and contemporary thought of engineering science,
management science, economics, and sociology, from the bottom up.
Cognitive informatics is intensively studied in this part in order to address
the cognitive constraints of software engineering.
 Part III will establish the organizational foundations of software
engineering with engineering science, cognitive informatics, and system
science. Supplemented to Part II, this part will reveal that the particularly
important aspects of software engineering theories are the organizational and
cognitive theories. It will demonstrate that the profound causes that result in
all the failures in software engineering history are not only pure technical

© 2008 by Taylor & Francis Group, LLC

Preface xliii

issues, but also organizational issues due to the limitations of human
cognitive capability.

Part IV. Perspectives on Software Science

Software engineering is immature because it lacks a theoretical
framework with underpinning foundations. A vast volume of empirical
knowledge has been documented in software engineering without efficiently
and intensively theoretical processing and refinement. Therefore, a formal
documentation of software engineering theories and fundamental body of
knowledge is the key towards the maturing of software engineering. This
book is devoted as a rational attempt to establish the formal and coherent
theoretical framework of software engineering for its maturity.

The knowledge structure of Part IV on Perspectives on Software
Science encompasses the following chapters:

 • Chapter 14. Retrospect on Software Engineering
 • Chapter 15. Prospect on Software Science

This part attempts to reveal that almost all the fundamental problems

that could not be solved in the last four decades in software engineering
stemmed from the lack of coherent theories in the form of software science.
The objective of this part is to demonstrate how software science may be
established on the basis of the theoretical foundations about it, the empirical
observations on it, and the transdisciplinary knowledge gained from other
much matured disciplines.

Part IV will wrap up this book by a retrospect on the coherent
framework of software engineering theories, and a prospect on the structure
of the emerging discipline of software science. This part reveals that software
engineering encompasses not only a wider domain of empirical applications,
but also a richer set of theoretical essences that are closer to the root of
human knowledge. In this discipline, denotational mathematics, intelligent
code generation techniques, and coordinative work organization
methodologies will play significant roles in the theoretical framework of
software science and engineering.

The Readership of this Book

The readership of this book is intended to include graduate, senior-level
undergraduate students, and instructors in software engineering and

© 2008 by Taylor & Francis Group, LLC

xliv Preface

computer science; researchers and practitioners in software engineering; and
software engineers and managers in the software industry.

This book provides a comprehensive and rigorous text addressing
unified and integrated principles, foundations, theories, models, frameworks,
methodologies, empirical approaches, open issues for further research, and
comprehensive resources with bibliography and indexes.

One of the graduate students and an experienced full-time software
engineer commented on a course based on the manuscript of this book as
follows:

“This course sought to identify and explore the varied
knowledge and disciplines that form the foundations of software
engineering. While it is recognized that software engineering is a
discipline which branches from the work of computer science, it
should have, at its core, a broader and multidisciplinary base of
knowledge. There are two aspects that stand out when I reflect on
this course. The first is the exposure to the historical work of
software engineering, especially through the classic papers that I
had not previously encountered. The second is the concept of the
multidisciplinary foundations of software engineering, the first time
I have seen them gathered together and made explicit. I was
pleasantly surprised on the nature of the course, and am happy I
have had the chance to take this class. I had not considered the
implication that the foundations and roots of software engineering
were not established, defined, or understood.”

This book is self-contained and only basic programming experience
and software engineering concepts are required. This book is designed and
expected to appeal to students, developers, scholars, and managers because
software engineering theories and methodologies are leading the agenda in
the light of the information era.

This book may be used for a one-semester or two-semester course on
Theoretical Foundations of Software Engineering at undergraduate or
graduate level. In the case of a one-semester course, Parts I, II, IV, and
Chapter 8 are recommended. For graduate courses, this book may be tailored
flexibly. The chapters in Part II may be composed for a graduate course on
Theoretical Software Engineering in computer science and/or software
engineering programs. The chapters in Part III may be selected for a course
on Organizational Foundations of Software Engineering for graduate
students majoring in software engineering. Some chapters of this book may
also be selected for graduate seminars on abstract systems, formal theories of
management science, computational psychology, and/or theoretical
foundations of engineering economics.

© 2008 by Taylor & Francis Group, LLC

Acknowledgments

This work is carried out in collaboration with IEEE Technical Council on
Software Engineering (TCSE), IEEE Software Engineering Standard
Committee (SESC), the Steering Committee of the IEEE International
Conference on Cognitive Informatics (ICCI), the International Journal of
Cognitive Informatics and Natural Intelligence (IJCINI), Canadian Advisory
Committee (CAC) to ISO JTC1/SC7 on Software and System Engineering,
Natural Science and Engineering Research Council (NSERC), Canadian
Innovation Foundation (CFI), IEEE Canadian Committee for Conferences on
Computer and Software Engineering Education, Alberta Informatics Circle
(iCore), IBM, NORTEL, BC-Telus, the IEEE Southern Alberta Section, and
the Calgary Software Quality Interest Group. The author would like to
acknowledge their support to this fundamental research program.

The author would like to acknowledge the inspiration from the work of
Friedrich L. Bauer, Edsger W. Dijkstra, Tony C.A.R. Hoare, David L.
Parnas, Ole-Johan Dahl, Frederick P. Brooks, Jeff Kramer, Barry Boehm,
Geoff Dromey, Victor Basili, Nancy G. Leveson, Ian Sommerville, John
McDermid, and Dines Bjoner.

I would like to thank my colleagues Witold Kinsner, Witold Pedrycz,
Dilip Patel, Shushma Patel, Graham King, Jeffrey Tsai, Philip Sheu, Du
Zhang, Yiyu Yao, Vijay Sood, Christine Chan, Colette Rolland, Tom
Mainbaum, Franck Barbier, Mou Hu, Jichao Ban, Keith Chan, Motoei
Azuma, Chaochen Zhou, Fuqing Yang, Bo Zhang, Junliang Chen, Jifeng He,
Yixin Zhong, Ronald H. Johnston, Chan Wirasinghe, Guenther Ruhe, Len T.
Bruton, Om P. Malik, Raj M. Rangayyan, Jim W. Haslett, Abu Sesay, Henry
Leung, Mike R. Smith, Laurence E. Turner, and Franck Maurer, for many
enjoyable discussions and fruitful research collaborations.

I would like to acknowledge all students who attended courses SENG
609.19, SENG 523, SENG 609.26, and SENG 609.27 at undergraduate and
graduate levels at the University of Calgary in the last seven years and
witnessed the development of the theories and foundations of software
engineering as presented in this book. I would like to thank two of the PhD
candidates in my Theoretical and Empirical Software Engineering Research
Center (TESERC), Peter Tan and Cyprian Ngolah, for their teaching

© 2008 by Taylor & Francis Group, LLC

xlvi

assistantship for the above courses and work on the development of
supporting tools for Real-Time Process Algebra (RTPA).

I would like to thank my publisher Rich O’Hanley, editors John
Wyzalek and Karen Simon, for their professional advice and support. I
would like to acknowledge the practical assistance and valuable help of Dr.
Jingzhou Li, Angela Rundle, Ella Gee, Lisa Fleece, Huiling Yang, Janelle
McConnell, Jihua Ma, and Siyuan Wang.

Yingxu Wang

© 2008 by Taylor & Francis Group, LLC

About the Author

Yingxu Wang is Professor of Software Engineering
and Cognitive Informatics, Director of Theoretical
and Empirical Software Engineering Research Center
(TESERC), and Director of International Center for
Cognitive Informatics (ICfCI) at the University of
Calgary. He received a PhD in Software Engineering
from the Nottingham Trent University, UK, in 1997,
and a BSc in Electrical Engineering from Shanghai
Tiedao University in 1983. He was a Visiting
Professor in the Computing Laboratory at Oxford
University during 1995, and has been a full professor

since 1994.
Prof. Wang is a Fellow of WIF, a P. Eng of Canada, a Senior Member

of IEEE, and a member of ACM, ISO/IEC JTC1, the Canadian Advisory
Committee (CAC) for ISO, the Advisory Committee of IEEE Canadian
Conferences on Electrical and Computer Engineering (CCECE), and the
National Committee of Canadian Conferences on Computer and Software
Engineering Education (C3SEE). He is the founder and steering committee
chair of the annual IEEE International Conference on Cognitive Informatics
(ICCI). He is the founding Editor in Chief of the International Journal of
Cognitive Informatics and Natural Intelligence (IJCINI), Editor of CRC book
series in Software Engineering, and Editor in Chief of IGI book series on
Advances in Cognitive Informatics and Natural Intelligence. He has
accomplished a number of European Union, Canadian, and industry-funded
research projects as principal investigator and/or coordinator, and has
published over 300 papers, including more than 50 journal papers, and 12
books in software engineering and cognitive informatics. He has served on
numerous editorial boards and program committees, and as guest editors for
a number of academic journals. He has won dozens of research achievement,
best paper, and teaching awards in the last 30 years, particularly the IBC 21st
Century Award for Achievement “in recognition of outstanding contribution
in the field of Cognitive Informatics and Software Science,” and the National
Zhan Tianyou Young Scientist Prize (one of the first ten winners) in China in
1994.

The author can be reached at yingxu@ucalgary.ca or
yingxu.wang@ieee.org. For further details, see: http://www.enel.ucalgary.ca/
People/wangyx/Books/SEF.

© 2008 by Taylor & Francis Group, LLC

http://www.enel.ucalgary.ca
http://www.enel.ucalgary.ca
mailto:yingxu@ucalgary.ca
mailto:yingxu.wang@ieee.org

PRINCIPLES AND

CONSTRAINTS OF
SOFTWARE ENGINEERING

I. Fundamental
 Principles of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

 1. Introduction 2. Principles of
 Software Engineering

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

PART I

2 Part I Principles and Constraints of SE

oftware engineering is an engineering discipline that studies the
nature of software, approaches and methodologies of large-scale
software development, and the theories and laws behind software

behaviors and software engineering practices. The nature of software
engineering and its theories and methodologies are determined by the nature
of the objects under study, software, and the needs for adequate and
denotational mathematical, theoretical, and methodological means for this
discipline. Although software engineering has accumulated a rich set of
empirical and heuristic principles, a few of them have been refined and
formalized in order to form coherent theories for software engineering.

It is recognized that software engineering requires both theoretical and
empirical research. The former focuses on foundations and basic theories of
software engineering, whilst the latter concentrates on fundamental
principles, tools/environments, and best practices.

The knowledge structure of Part I on Principles and Constraints of
Software Engineering is as follows:

 • Chapter 1. Introduction
 • Chapter 2. Principles of Software Engineering

This part addresses the nature of software and software engineering.

The basic constraints to software engineering and the fundamental principles
for software engineering are systematically studied. A set of 14 basic
constraints is identified in Chapter 1 in three categories known as the
cognitive constraints, organizational constraints, and resource constraints.
Then, a set of 31 fundamental software engineering principles are elicited in
Chapter 2. The usages of the fundamental principles of software engineering
are perceived to be counter measures to tackle the basic constraints. Via
mapping the fundamental principles into the basic constraints of software
engineering, a unified framework of software engineering principles is
established.

Chapter 1, Introduction, presents fundamental concepts, structures, and
constraints of software engineering, and explores the problem domain of
software engineering. The essences of software as instructive and behavioral
information, the fundamental problems, and basic constraints of software
engineering are identified. The approaches to software engineering are
explored in the context of how the basic problems of software engineering
are coped with. Then, the construction of theoretical and transdisciplinary
foundations of software engineering is presented as a strategic approach
towards software engineering. The architecture of this book, as well as
interrelationships and dependency between the four parts and 15 chapters of
this book, is systematically overviewed.

Chapter 2, Principles of Software Engineering, surveys the vast
literature of software engineering in order to elicit and summarize the pioneer
pursuits of software engineering principles in the last four decades. A

S

© 2008 by Taylor & Francis Group, LLC

 Part I Principles and Constraints of SE 3

comprehensive set of fundamental principles for software engineering is
identified, which provides a whole picture for understanding the theories and
foundations of software engineering. Based on the survey and comparative
study, a unified framework of 31 software engineering principles is
developed, which may be adopted as powerful measures for tackling the
basic constraints to software engineering.

Part I will provide an overarching framework of software engineering
by reviewing the theoretical and empirical knowledge accumulated in this
discipline. It will also identify the fundamental problems the discipline faces.
This part will establish a solid basis enabling readers to investigate into the
theoretical and organizational foundations of software engineering with
formal, rigorous, and transdisciplinary approaches in the remainder of this
book.

© 2008 by Taylor & Francis Group, LLC

Chapter 1

INTRODUCTION

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

1. Introduction

1.1 Overview 1.5 Transdisciplinary Foundations of SE
1.2 Characteristics of SE 1.6 The Architecture of This Book
1.3 Basic Constraints of SE 1.7 Summary
1.4 Approaches to SE

2. Principles of
 Software
 Engineering

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

6 Part I Principles and Constraints of SE

Knowledge Structure

 What is Software Engineering?

 • What is Software?
 • What is Software Engineering?
 • What is the Status of Software Engineering as an Engineering Discipline?

 Characteristics of Software Engineering

 • The Nature of Software
 • Perceptions on Software Engineering
 • Software Engineering as an Engineering Discipline
 • Hierarchy of Abstraction and Descriptivity in Software Engineering

 Basic Constraints of Software Engineering

 • The Software Engineering Constraint Model
 • Cognitive Constraints of Software Engineering
 • Organizational Constraints of Software Engineering
 • Resources Constraints of Software Engineering

 Approaches to Software Engineering

 • Programming Methodologies • Software Development Models
 • Automated Software Engineering • Formal Methods
 • Software Engineering Processes • Theoretical Foundations of Software Engineering

 Transdisciplinary Foundations of Software Engineering

 • Philosophical Foundations • Mathematical Foundations
 • Computing Foundations • Linguistics Foundations
 • Information Science Foundations • Engineering Foundations
 • Cognitive Informatics Foundations • Systems Science Foundations
 • Management Science Foundations • Economics Foundations
 • Sociology Foundations

 The Architecture of this Book

Learning Objectives

 • To view software engineering as a scientific and engineering discipline.

 • To be aware of the nature of software and the characteristics of software
engineering.

 • To understand the fundamental constraints of software engineering.

 • To be aware of the approaches to software engineering.

 • To appreciate the needs for seeking the transdisciplinary foundations of
software engineering.

 • To understand the architecture of this book.

1. Introduction

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 7

 “There is nothing more practical than a good theory.”

Immanuel Kant (1724-1804)

“If our problems in building and interacting with complex systems are really rooted
in intellectual manageability and human limits in managing complexity,

 then we will need to stretch these limits to build ever more complex systems.”

N.G. Leveson (1997)

“Software engineering education can, and must, focus on fundamentals.”

David L. Parnas (1998)

1.1 Overview

oftware engineering is an increasingly important discipline that
studies the nature of software, approaches and methodologies for
large-scale software development, and the theories and laws behind

software behaviors and software engineering practices.
Software, the object under study in software engineering, is a unique

abstract structure, which will be rigorously treated by the mathematics,
product, information, system, cognitive informatics, and intelligent
behavioral metaphors throughout this book. As a result, the theoretical and
transdisciplinary foundations of software engineering will be established in
line with what Kant (1724 – 1804) asserted: “There is nothing more practical
than a good theory.”

Fundamental problems yet to be explored in software engineering are
identified, inter alia, as follows:

 • What is the nature of software?
 • What are the basic constraints of software engineering?
 • What are the mathematical means required in software

engineering?
 • What are the engineering approaches to software engineering?

• Why have more than half of software engineering projects failed
in the history? Is this a theoretical, organizational, or operational
problem?

• What are the attributes of software quality and whether can they
be quantitatively measured?

S

© 2008 by Taylor & Francis Group, LLC

8 Part I Principles and Constraints of SE

 • Is time and labor interchangeable in software engineering? If so,
what are the constraints for the interchangeability between them?

 • How is a project team optimally organized in large-scale software
engineering projects?

 • How may the software industry be systematically organized?

None of the fundamental issues shown above would be pursued solely

by empirical means or simply following common senses in practice. A
rigorous and theoretical approach is needed to seek the fundamental
principles and laws of software engineering and their transdisciplinary
foundations. This is required by the nature of problems of software
engineering, which may be classified into two categories known as the
theoretical and empirical problems as shown in Table 1.1. For instance, a
generic program model and an abstract work organization methodology are
theoretical problems, while a specific application and a given data structure
are empirical ones.

Table 1.1

Theoretical vs. Empirical Problems in Software Engineering

Category of problems Typical means Typical methodology
Theoretical Abstract,

mathematics-based
Inductive,
formal inferences

Empirical Concrete,
data-based

Deductive,
experimental validation

Table 1.1 contrasts the basic characteristics of these two categories of

problems in terms of their typical means and methodologies. According to
Table 1.1, the criteria to distinguish theoretical and empirical problems
under study in software engineering can be derived in the following theorem.

The theme of this book is set forth on the enquiry of both theoretical

and empirical problems in software engineering, particularly the former,
where most of the key problems remain.

The 1st Law of Software Engineering

Theorem 1.1 Software engineering problems must be treated by both
theoretical and empirical methodologies. The former is characterized by
abstract, inductive, mathematics-based, and formal-inference-centered
studies; while the latter is characterized by concrete, deductive, data-
based, and experimental-validation-centered studies.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 9

The objectives of this book on foundations of software engineering are
as follows:

 • To explore the whole picture of software engineering, particularly
the theoretical and empirical knowledge accumulated so far in this
discipline, and the fundamental problems that the discipline faces.

 • To identify the fundamental cognitive, organizational, and
resource constraints to software engineering.

 • To reveal that all the fundamental problems in software
engineering are complicated theoretical problems rather than only
empirical ones.

 • To recognize the need for multi-facets and transdisciplinary
theories and empirical knowledge for software engineering.

 • To highlight that a rigorous and formal approach is needed to
seek the fundamental principles, laws, and their transdisciplinary
foundations required by the nature of the problems in software
engineering.

 • To recognize the need for a scientific and rational work
organization theory for software engineering.

 • To realize the inherent limitation of the historical programming-
language-centered approach to software engineering.

 • To recognize the need for mathematical modeling of both
software system architectures and static/dynamic behaviors,
supplemented with the support of automatic code generation
systems, to software engineering.

 • To understand that the ultimate goal of software engineering is
automated code generation, rather than intensive programmer-
centered practice. Therefore, any mathematical, theoretical, and
empirical means helping towards this goal should give significant
attention.

 • To predict the emergence of software science on the basis of the
transdisciplinary theoretical studies on software engineering, as
well as the observation on the generic patterns of engineering
discipline maturity.

This book will reveal that software engineering encompasses not only a

wider domain of empirical applications, but also a richer set of theoretical
essences that are closer to the root of human knowledge in terms of
mathematics, philosophy, cognition, informatics, computation, sociology,
and system science.

© 2008 by Taylor & Francis Group, LLC

10 Part I Principles and Constraints of SE

1.1.1 SOFTWARE ENGINEERING: STATUS AND
 PROBLEMS

Any matured science and engineering discipline has a stable pyramid
structure among its foundations, education, and practices/applications. So
will software engineering, with the ideal logical structure as shown in Fig.
1.1.

Figure 1.1 Relationship between software engineering foundations, education,
and practices/applications

However, the current status of software engineering as a discipline

demonstrates an upside down pyramid, where the whole field is driven by
industrial practice and technical innovations. Theories and fundamental
research in software engineering, particularly the laws that constrain software
behaviors and software engineering practice, have been left behind or
overlooked, if not been ignored or perceived inexist. As a consequence,
software engineering educators had no solid and durable theoretical
framework to base in teaching. Instead, they were busy explaining an
extremely wide variety of practices, techniques, and tools as in a fashion
industry.

It is observed by McDonnell in 1999 that the average half-life of most
software engineering techniques is only about two to three years
[McConnell, 1999]. That is, after every year, 15% to 25% techniques one has
acquired in software engineering practice will be obsolete. What a young
field where techniques had never been durable!

The special phenomenon in software engineering, in which we are still
facing the same problems as those identified in the very beginning of
software engineering four decades ago [Bauer, 1972/1976; Naur and Randell,
1969, Ashenhurst and Graham, 1987], indicates that the current software
engineering theories, foundations, and mathematical means are inadequate,

 Software engineering education

SE practices/
applications

Foundations of software engineering

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 11

and the current empirical approach toward programming is insufficient. It
also indicates that the problems and the objects of our study in software
engineering are fundamentally complicated and unique, which require new
forms of mathematics and new theories different from those that deal with
entities in the physical world or in the conventional engineering disciplines
[McDermid, 1991; Pressman, 1992; Sommerville, 1996; Pfleeger, 1998;
Peters and Pedrycz, 2000; Vliet, 2000; Wang and King, 2000a; Wang and
Patel, 2000; Broy and Denert, 2002; Wang and Bryant, 2002; Wang,
2000/05a/05d/05f/05g/05h/05i/05j/05k/05l/06a/06c/06f/06g/06h/06i].

The profound uniqueness of the discipline of software science and
engineering lies on the fact that its objects under study are located in a dual
world as described below and formalized in Theorem 1.2 [Wang,
2002d/2003a/2006a].

Definition 1.1 The general worldview, as shown in Fig. 1.2, reveals
that the natural world (NW) is a dual world encompassing both the physical
(concrete) would (PW) and the abstract (perceived) would (AW).

According to the IME model [Wang, 2004b/06b/2007a], information

plays a vital role in connecting the physical world with the abstract world.
Models of the natural world have been well studied in physics and other
natural sciences. However, the modeling of the abstract world is still a
fundamental issue yet to be explored in cognitive informatics, computing,
software science, knowledge engineering, brain sciences, and cognitive
informatics. Especially, the relationships between I-M-E and their

The 2nd Law of Software Engineering

Theorem 1.2 The Information-Matter-Energy (IME) model states that
the natural world (NW) which forms the context of human intelligence
and software science is a dual: one aspect of it is the physical world
(PW), and the other is the abstract world (AW), where matter (M) and
energy (E) are used to model the former, and information (I) to the latter,
i.e.:

||ˆ

(,) || ()

(, ,)

NW PW AW

M E I

I M E

=

=

=

p a

n

 (1.1)

where || denotes a parallel relation, and p, a, and n are functions that
determine a certain PW, AW, or NW, respectively.

© 2008 by Taylor & Francis Group, LLC

12 Part I Principles and Constraints of SE

transformations are deemed as one of the fundamental questions in science
and engineering.

 I

 EM

 The abstract world (AW)

The physical world (PW)

 The natural world
 (NW)

Figure 1.2 The IME model of the general worldview

Corollary 1.1 indicates that although the physical world PW(M, E) is

the same to everybody, the natural world NW(I, M, E) is unique to different
individuals, because the abstract world AW(I), as a part of it, is subjective
depending on the information that individual obtains and perceives.

Software is a special type of behavioral information of computing and a
means of interaction between the abstract world and the physical world. The
nature of software makes software engineering a unique discipline, which is
innately the most complicated engineering branch that human ever
experienced, and inherently the most overarching transdisciplinary field in
both theories and applications. These are also the reasons that set forth
software engineering as an ideal testbed for existing theories and
methodologies of a wide range of science and engineering disciplines from
mathematics to cognitive informatics, and from management science to
sociology.

1.1.2 MYTHS ON SOFTWARE ENGINEERING

A variety of myths exist on perceiving software engineering from both
academics and practitioners. Some of the common ones can be described as
follows:

Corollary 1.1 The natural world NW(I, M, E), particularly the part of the
abstract world AW(I), is deemed diversely by individuals because of the
differences of perceptions and mental contexts among them.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 13

 • Software engineering has no theoretical foundation since
mathematics had not played a central role in programming.

 • Software engineering is not an engineering discipline rather than
a branch of art, because there were few scientific laws to follow.

• Everybody can do programming; Kids even do it better
sometimes.

 • When one can get a program run in a programming language that
displays the classical greeting “Hello world,” one is then
confident to claim that he/she is a programmer.

• Do we need software engineering? Whether software engineering
is a faculty of empirical best practices or a system of essential
theories?

It is observed that quite a few people who major in software

engineering have never experienced the impact of sizes of problems in
software development, where the complexity threshold for understanding the
true problems in software engineering is considered 5,000 Lines Of Code
(LOC) to 10,000 LOC [Wang and King, 2000a]. Note that LOC here is
treated as a unit rather than the measure, which is identified as the symbolic
size of software. When the symbolic sizes of problems are below a few
hundreds LOC, programmers or students may doubt whether software
engineering theories and methodologies should be applied in the
development processes. However, if the sizes of problems are above the
threshold, practitioners will always complain there is a lack of theories and
methodologies that may provide strategic and specific help for both
programmers and managers.

Software engineering theories and methodologies are developed for
dealing with complexity and intellectual challenges in large-scale software
development. According to cognitive psychology and empirical statistics
[Wang, 2001d/03f/05j/06c; Wang and King, 2000a], the size threshold of
complexity in software development is given below.

Definition 1.2 A general complexity threshold of software engineering

is empirically set according to the symbolic size of software systems, S0, as
follows:

 S0 ≥ 5,000 [LOC] (1.2)

where LOC is the unit of the symbolic size of software.

The complexity threshold is equivalent to 100-page source code in a
typical high-level programming language and related documentation, which
is above one person-year workload according to average software productivity

© 2008 by Taylor & Francis Group, LLC

14 Part I Principles and Constraints of SE

[Boehm, 1987; Dale and Zee, 1992; Jones, 1981/1986; Livermore, 2005].
Taking this threshold as a benchmark of system size or cognitive complexity
in software system development, one may realize that only a few students
who graduated from computer science or software engineering have already
been trained on problems in the order of complexity beyond this threshold.
 Therefore, the primary aim of software engineering theories and
technologies is to facilitate students, software engineers, and managers to
deal with the fundamental problems generated by the inherent complexity of
software development, such as:

 • How to design and implement a software system that one is not
able to do by only oneself?

 • How to cope with the development of a software system in which
one does not completely know or understand the whole system
and parts produced by other team members?

Strategic answers to the above questions will be sought in the

remainder of this chapter and throughout this book.
This chapter presents fundamental concepts, structures, and constraints

of software engineering. In the remainder of this chapter, Section 1.2
presents a set of basic concepts and characteristics of software engineering.
Section 1.3 identifies fundamental problems and basic constraints of software
engineering. The approaches to software engineering are explored in Section
1.4 in the context of how the basic problems in software engineering are
coped with. Based on the preceding introductory sections, the construction of
theoretical and transdisciplinary foundations of software engineering is
presented in Section 1.5 as a strategic approach towards software
engineering. Section 1.6 describes the architecture of this book, as well as
interrelationships and dependency between the four parts and 15 chapters of
this book.

1.2 Characteristics of Software
 Engineering

As introduced in Section 1.1, there are a variety of perceptions, even myths,
toward the nature of software and software engineering from both academics
and practitioners. In order to understand the fundamental characteristics of

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 15

software and software engineering, this section explores the metaphors of
software, and the intensions and extensions of the term software engineering.

1.2.1 PERCEPTIONS ON SOFTWARE

Software, in daily life, is simply meant as anything flexible and without
a physical dimension. Software or a program system is a frequently referred
concept and a widely applied human creative artifact in both the software
industry and the information society. The engineering discipline for software
development, software engineering, has emerged for four decades since
Friedrich Bauer proposed the term in 1968 [Bauer, 1972/1976; Naur and
Randell, 1969]. However, from the point of view of the development
lifecycle of science and engineering disciplines, which may typically evolve
hundreds of years, software engineering is still an infant. In software
engineering, we are still searching a suitable mathematical means that may be
used for modeling the nature of software, and seeking an understanding on
what laws constrain software behaviors and software engineering processes.
 A computer program means the code in a programming language
physically or the algorithms plus typed data logically. Software is an
integration of the program code with design and supporting documentations
and intermediate work products, such as original requirements, system
specification, system design and decision rationales, code configuration, test
cases and results, maintenance mechanisms, and user manuals.
 Observing the above list of software work products, a definition of
software can be given as follows.

Definition 1.3 Software is an intellectual artefact that provides a
solution for a repeatable computing application, which enables existing tasks
to be done easier, faster, and smarter, or which provides innovative
applications for the industries and everyday life.

The nature of software has been perceived quite differently in research
and practice of computing and software engineering. The following
perceptions on the nature of software can be found in the literature:

 • Software is a mathematical entity
 • Software is a concrete product
 • Software is a set of behavioral information

The following subsections describe the three-type perceptions on

software known as the mathematical, product, and informatics metaphors.

© 2008 by Taylor & Francis Group, LLC

16 Part I Principles and Constraints of SE

1.2.1.1 The Mathematical Metaphor of Software

The mathematical metaphor of software is adopted by many computer
scientists who perceive software as a stored programmed logic on computing
hardware [von Neumann, 1963; Dijkstra, 1976; Cries, 1981; Lewis and
Papadimitriou, 1988; Hartmanis, 1994] or simply as a mathematical entity
[Hoare, 1969/1986; Scott and Strachey, 1971; Hoare et al., 1987; Wang,
2005a].

A general taxonomy of the usages of computational mathematics can be
derived on the basis of their relations with natural languages. It is recognized
that languages are the means of thinking. Although they can be rich,
complex, and powerfully descriptive, natural languages share the common
and basic mechanisms, such as to be, to have, and to do [Wang,
2003b/06d/06e/06f/06h/06j/07a]. All mathematical means and forms, in
general, are an abstract description of these three categories of human or
system behaviors and their common rules. Taking this view, mathematical
logic may be perceived as the abstract means for describing ‘to be,’ set
theory for describing ‘to have,’ and algebras, particularly process algebra, for
describing ‘to do.’
 This is a fundamental view toward the formal description and modeling
of human and system behaviors in general, and software behaviors in
particular, because a software system can be perceived as a virtual agent of
human beings created to do something repeatable, to extend human
capability, reachability, and/or memory capacity. The author found that both
human and software behaviors can be described by a three-dimensional
representative model comprising action, time, and space. For software
system behaviors, the three dimensions are known as mathematical
operations, event/process timing, and memory manipulation [Wang,
2002a/02b/02c].

A powerful concept introduced by C.A.R. Hoare in formal methods is
the process [Hoare, 1986]. With this concept, the behaviors of a software
system can be perceived as a set of processes composed with given rules
defined in a particular process algebra. It is found that a process can be
formally modeled by a set of cumulative relational statements [Wang,
2006f/06h]; further, a program can be formally modeled by a set of
cumulative relational processes. The cumulative relational models of
processes and programs will be described in Sections 4.6.1 and 5.5.1,
respectively.

1.2.1.2 The Product Metaphor of Software

Software is conventionally deemed as a concrete product in software

engineering and the IT industry [Baker, 1972; ISO 9001, 1989/94; ISO 9126,
1991; Taguchi, 1986; Jones, 1986; SQPL, 1990; Dromey, 1995]. With the

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 17

product metaphor, a number of manufacturing technologies and quality
assurance principles were introduced into software engineering. However,
the phenomenon, in which we are facing almost the same fundamental
problems in software engineering as we dealt with four decades ago,
indicates a failure of the manufacture-based and mass-production-oriented
metaphor and related technologies in software development. Therefore, we
have to examine the nature of software and how we produce software in
software engineering.

The primary technical deficiencies in the software industry are the
inadequate of abstractive and precise description means for software
architectures and behaviors, and the perplexity of labor organization in large
groups and large-scale projects. The former refers to the current practice that
uses less expressive and inaccurate means to describe more abstract and
complicated software systems. The latter refers to the extremely high rate of
interpersonal coordination and coupling that dramatically changes the nature
of large-scale project organization. Both of them are rooted deeply in the
theoretical deficiency of software engineering and the overlooking of the
unique need of software engineering that are so fundamentally different from
conventional engineering disciplines and manufacturing industries.

The descriptive power and abstraction means needed in software
engineering will be discussed in Section 1.2.4, while theories and solutions
for the organizational issues in software engineering will be developed in
Chapters 8, 10, 11, and 13, respectively, on the engineering, system science,
management science, and sociology foundations of software engineering.

1.2.1.3 The Informatics Metaphor of Software

As shown in the IME model given in Theorem 1.2 and Fig. 1.2,

information is the third essence in modeling the natural world supplementing
to matter and energy. According to cognitive informatics theory [Wang,
2002d/02e/03a/03b/06b/06j/07a/07b; Wang and Wang, 2006; Wang and
Kinsner, 2006; Wang et al. 2002a/06], information is any property or
attribute of entities in the natural world that can be abstracted, digitally
represented, and mentally processed.

Software is both behavioral information to designers and instructive
information to computers. With the informatics metaphor, the definition of
software may be revised as follows.

Definition 1.4 Software is a specific solution for computing in order to

implement a certain architecture and obtain a set of expected behaviors on a
universal computer platform for a required application.

 For software engineering to become a matured engineering discipline
like others, it must establish its own laws and theories, which are perceived

© 2008 by Taylor & Francis Group, LLC

18 Part I Principles and Constraints of SE

to be mainly relied on by denotational mathematics [Wang,
2002a/05a/06d/06e/06f/06j/07a] and cognitive informatics [Wang,
2002d/02e/03a/03b/06b/06j/07a/07b; Wang and Wang, 2006; Wang and
Kinsner, 2006; Wang et al. 2002a/06].

The informatics metaphor provides a new approach to study the nature
and basic properties of software in software engineering, which forms an
important part of the cognitive informatics foundations of software
engineering that will be described in Chapters 7 and 9. In conventional
engineering disciplines, the common approach moves from abstract to
concrete, and the final product is the physical realization of an abstract
design. In software engineering, however, the approach is reversed. The final
software product is the virtualization and abstraction, by binary streams, of a
set of original real-world requirements. The only tangible part of a software
implementation is its storage media or its run-time behaviors. This is
probably the most unique and interesting feature of software engineering.

In software design we need to describe the abstract architecture of the
system and its components by logical and algebraic modeling techniques, and
their static and dynamic behaviors in terms of actions and processes. In
software system behaviors description and specification, the architectures of
software refer to frameworks and patterns. Software static behaviors are
those that can be determined at design-and-compile time, and dynamic
behaviors are those that are indeterministic until run-time.

In recognizing that software is a special abstract system of behavioral
and instructive information, the processes and techniques widely used in the
publishing industry and the journalism industry are worthy to be intensively
studied and adopted in software engineering.

Further discussions on the nature of software and software engineering
on the cognitive, intelligent behavioral, and system properties of software
will be presented in Section 3.4 on the philosophical views of software.

1.2.2 PERCEPTIONS ON SOFTWARE ENGINEERING

Before the identification of what knowledge is required for software
engineering, an understanding of what is meant by ‘software engineering’ is
needed in the first place. Readers need to know why the engineering
approach seems to fit well with the goals of software development
[McDermid, 1991; Pressman, 1992; Sommerville, 1996; Pfleeger, 1998;
Peters and Pedrycz, 2000; Vliet, 2000; Wang and King, 2000a; Wang and
Patel, 2000; Broy and Denert, 2002; Wang and Bryant, 2002; Wang,
2000/05a/05d/05f/05g/05h/05i/05j/05k/05l/06a/06c/06f/06g/06h/06i].

The term software engineering was initially proposed by Friedrich L.
Bauer at the 1968 NATO conference on Software Engineering [Bauer, 1976;

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 19

Naur and Randell, 1969]. In his paper, Bauer defined software engineering
as:

“The establishment and use of sound engineering principles in
order to obtain economical software that is reliable and works
efficiently on real machines.”

Bauer introduced software engineering as a solution to the so called

software crisis. However, he did not explain what the sound engineering
principles are and which of them are applicable to software engineering. That
is why, after 38 years, professionals are still arguing what software
engineering is and whether it makes sense to speak the engineering of
software development.

Later, in 1990, IEEE Standard 610.12 defines software engineering as
follows [IEEE 610.12, 1990]:

 (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software; that is, the application of engineering to software.

 (2) The study of approaches as in (1).

The nature of problems in software engineering has been addressed by

D.L. Parnas (1972/78), F.P. Brooks (1975/87), C.A.R. Hoare (69/75/85), B.
Boehm (1976/81/83), J.A. McDermid (1991), Y. Wang
(2004b/04c/05a/06c/06g/06h/06i), Y. Wang and G. King (2000a), Y. Wang
and D. Patel (2000), and Y. Wang and A. Bryant (2002). A summary of
fundamental characteristics of software engineering is listed below:

 • Inherited complexity and diversity
 • Difficulty of establishing and stabilizing requirements
 • Changeability or malleability of software
 • Abstraction and intangibility of software
 • Requirement of various problem-domain knowledge
 • Nondeterministic and polysolvability in design
 • Polyglotics and polymorphism in implementation
 • Dependability of interactions between software, hardware, and

humans

The following humour known as the ‘cat theory’ had been presented at
NASA’s web site [NASA, 2000]:

© 2008 by Taylor & Francis Group, LLC

20 Part I Principles and Constraints of SE

 • Mechanical engineering is like looking for a black cat in a
lighted room.

 • Chemical engineering is like looking for a black cat in a dark
room.

 • Software engineering is like looking for a black cat in a dark
room in which there is no cat.

 • System engineering is like looking for a black cat in dark room
in which there is no cat and one yells, “I got it!”

The humour cat was posted in the 1990s and represented the statuses of
relative maturities of different engineering disciplines. Why is the cat in the
mechanical or chemical rooms? Because these disciplines have already
developed rigorous theoretical frameworks and suitable mathematical means,
but the other disciplines did not. Therefore, lack of theoretical foundations is
the same situation that challenges software engineering and system
engineering characterized as immature science and engineering disciplines.

Along with the research and practices of software engineering, and the
speedy growing of the software industry, the definition of software
engineering has further evolved. In 1991, J.A. McDermid provided an
extended definition of software engineering as follows [McDermid, 1991]:

“Software engineering is the science and art of
specifying, designing, implementing and evolving – with
economy, timeliness and elegance – programs, documentation
and operating procedures whereby computers can be made
useful to man.”

This is a representative of the second-generation definitions of software
engineering. Comparing the first- and second-generation definitions of
software engineering, it can be seen that the former perceived software
engineering as a method for software development while the latter implied
that software engineering is both science and art for programming. Bearing
in mind that the intention is to better represent trends and to recognize
software engineering as an engineering discipline while deemphasizing the
uncontrollable and unrepeatable aspects of programming as an art, the third-
generation definition of software engineering can be represented by the
following [Wang and King, 2000a].

Definition 1.5 Software engineering is a discipline that adopts

engineering approaches, such as established methodologies, processes,
measurement, tools, standards, organisation methods, management methods,
quality assurance systems and the like, in the development of large-scale
software seeking to result in high productivity, low cost, controllable quality,
and measurable development schedule.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 21

In order to analyze the differences between the three generations of
definitions, a comparison of the intensions and extensions of these
perceptions on software engineering is listed in Table 1.2. The table shows
how the understanding of software engineering can be greatly improved by
contrasting the perceived nature of software engineering as well as its means,
aims, and attributes.

Table 1.2
Contrast of Representative Definitions of Software Engineering

Generation Nature Means Object
under study

Attributes of
aims

1
(Bauer,
1968)

A method Generic engineering
principles

Program • Economy
• Reliability
• Efficiency

2

(McDermid,
1991)

A science
and art

Life cycle methods:
 • specification
 • design
 • implementation
 • evolving

Program and
document

• Economy
• Timeliness
• Elegance

3

(Wang and
King, 2000)

An engineering
discipline

Engineering approaches:
 • methodologies
 • processes
 • measurements
 • tools
 • standards
 • organizational methods
 • management methods
 • quality assurance systems

Large scale
software

• Productivity
• Quality
• Cost
• Time

It is noteworthy that the perceived nature, means, and aims together

with the attributes of their definitions of software engineering have been
evolved over time. The first-generation definition proposed software
engineering as a method or approach to software development; the second-
generation definition focused on scientific methods and art for programming.
The third-generation definition portrays software engineering as an
engineering discipline for large-scale software development in an
industrialized context.

1.2.3 SOFTWARE ENGINEERING AS AN
 ENGINEERING DISCIPLINE

To many professionals engineering means systematic planning,
teamwork, rigorous process, repeatability, and efficiency. Software
professionals have been arguing the term “software + engineering” and its
implication for four decades since Friedrich Bauer first proposed it in 1968
[Bauer, 1976]. Yet, still some fundamental questions remain, such as:

© 2008 by Taylor & Francis Group, LLC

22 Part I Principles and Constraints of SE

a. Is software development an engineering discipline?
b. Are software developers engineers or craftsmen?

There were completely different assertions and opinions on the above

key issues of “to be or not to be” that is still confusing the academics,
practitioners, and students in software engineering and in the software
industry.

In investigating these fundamental problems, the author finds that the
myths were caused by a confusion of time in perceiving software
development as, or as not, an engineering discipline. A rational answer to the
question whether software development is an engineering discipline is ‘not’
at present and in the past, and it is going to be and should be ‘yes’ in the
future. Currently, software development is evolving from the laboratory-
oriented and all-round-programmer-based practice to an industry-oriented
and process-based platform, and software developers are experiencing
changes of roles from craftsmen to regulated professionals – the software
engineers. The practices of the former are based on personal talents, tastes,
and art, while those of the latter are based on theoretical foundations,
disciplined processes, and repeatable professional activities.

With an evolution point of view, software engineering is actually a
young discipline, which is located in the art age and is in a transition to the
engineering age, though there is still some way to go for software
engineering to be a matured engineering discipline.

IEEE/ACM identified the following characteristics of software
engineering in the Computing Curricula – Software Engineering (CCSE)
[IEEE/ACM 2003; Wang, 2005h]:

 • “Engineers carry out a task by making a series of decisions,
carefully evaluating options, and choosing an approach at each
decision-point that is appropriate for the current task in the
current context. Appropriateness can be judged by tradeoff
analysis, which balances costs against benefits.

 • “Engineers measure things, and when appropriate, work
quantitatively; they calibrate and validate their measurements;
and they use approximations based on experience and empirical
data.

 • “Engineers emphasize the use of a disciplined process when
creating a design.

 • “Engineers can have multiple roles: research, development,
design, production, testing, construction, operations,
management, and others such as sales, consulting, and teaching.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 23

 • “Engineers use tools to apply process systematically.
Therefore, the choice and use of appropriate tools are key to
engineering.

 • “Engineering disciplines advance by the development and
validation of principles, standards, and best practices.

 • “Engineers reuse designs and design artifacts.”

Many scientists perceived that software engineering is not only a subset

of computer science [Parnas, 1995/96/97/98; Hartmanis, 1994], because it is
a much broader field than computer science, which encompasses
denotational mathematics, engineering foundations, cognitive informatics
foundations, system science foundations, and organizational foundations.
Further, the objects under study in software engineering are not only
computers and computational data objects, but also behavioral information,
knowledge representation, and machine and natural intelligence, which are
more fundamental at the root of human knowledge than computing [Wang,
2004b/04c/05a/06c/06g/06h/06i]. Further details will be discussed
throughout this book, particularly in Chapter 5.

Therefore, more rigorously, the definition of software engineering can
be revised as follows.

Definition 1.6 Software engineering is an engineering discipline that

studies the nature of software, approaches and methodologies of large-scale
software development, and the theories and laws behind software behaviors
and software engineering practices.

The perception as presented in Definition 1.6 on software engineering
may be treated as a guideline in the search of software engineering theories
and foundations towards a matured engineering discipline as adopted in this
book.

1.2.4 HIERARCHY OF ABSTRACTION AND
 DESCRIPTIVITY IN SOFTWARE ENGINEERING

It is recognized that software engineering seems using low-tech means
to deal with high-tech problems [Wang, 2005g]. Consider that the accuracy
of micrometer technologies is at the level of 10-6m, while that of nanometer
technologies is at the level of 10-9m. If one asks whether a microtechnique
may be used to denote, measure, or process a nanotechnical product,
mechanical or electronic engineers will tell that is impossible! However,
software engineers are still attempting to do so by using inadequate means
and tools to deal with more complicated software systems. Various graphical
blocks and arrows are proposed to denote more intricate system architectures

© 2008 by Taylor & Francis Group, LLC

24 Part I Principles and Constraints of SE

and dynamic behaviors of software systems. At the mean time, academics
and practitioners in software engineering seem to be use to the practice. It is
believed that both the inadequate techniques and the undoubted attitude form
the profound problems of software engineering and are the fundamental
reasons of almost all difficulties and failures in industrial practice in software
engineering.

This observation leads to the following question: What kind of
descriptive means does software engineering need? The answer is abstraction
according to Theorem 1.2. Abstraction is a powerful and fundamental mental
function of human beings that most of the higher cognitive processes of the
brain are relied on [Wang et al., 2006; Wang, 2007h]. Abstraction is also the
most fundamental principle of mathematics [Lipschutz, 1964]. Abstract
objects exist only in the brain as a concept or idea but not exist in the real
world as a physical or concrete entity. However, the sources of abstract
objects are reflections of real world entities, phenomena, and their relations.
Abstraction is a powerful key to reduce complexity in creative work such as
software engineering. It is a software engineering principle for eliciting
essential properties of a set of objects while omitting inessential details of
them.

1.2.4.1 The Hierarchical Abstraction Model of System Descriptivity
 (HAMSD)

According to the IME model as stated in Theorem 1.2, there are two
categories of objects under studies in science and engineering known as the
concrete entities in the real world and the abstract objects in the information
world. In the latter, an important part of the abstract objects are human and/or
system behaviors, which are planned or executed actions onto the real-world
entities and abstract objects.

In Section 1.2.1 software is described as both the abstraction of real-
world objects and their relations in its architectural aspect, and the
abstraction of the executable behaviors that the system is expected. A
hierarchical abstraction model of system descriptivity of human knowledge
can be defined below and illustrated in Fig. 1.3.

Definition 1.7 The Hierarchical Abstraction Model of System
Descriptivity (HAMSD) states that the abstract levels of cognitive
information of both the objects and their behaviors can be divided into five
levels such as those of analogue objects, diagrams, natural languages,
professional notations, and mathematics.

Because software is the abstraction of both real-world objects and their

relations, and the expected and executed behaviors of a system that, in turn,
are real or expected human behaviors (see Theorem 3.4), the means and
nature of software obeys the same HAMSD model as shown in Fig. 1.3.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 25

The abstract levels of objects or knowledge modeled in the HAMSD
model can be explained in Table 1.3. According to Fig. 1.3 and Table 1.3,
there are five abstract levels and related descriptive means. The higher the
abstraction level of an object, the more complex the description means. In
software engineering the objects under study are system and interactive
behaviors in the abstract world, rather than concrete entities in the real world,
which is located at abstraction levels L3 to L5. This is a fundamental
difference between software engineering and other engineering disciplines.
This can be formally described in the 3rd law of software engineering.

Abstract levels of
objects

Means of
description

Objects
under study

L1
Analogue objects

System/human

behaviors
in the abstract world

(Corresponding to

Abstraction L3 to L5)

L4
Professional notations

L5
Mathematics

M3 Languages
 syntaxes
 and semantics

M5 Formal notations
 with rigor syntax
 and semantics

Entities

in the physical world

(Corresponding to
Abstraction L1 to L2)

L3
Natural languages

M1 Images, icons,
 pictures

M4 Symbolic notations
 with syntax and
 semantics

↑ Explanation

(Increased
intuition)

↓ Abstraction
(Increased
descriptive

power)

L2
Diagrams

M2 Blocks, lines,
 arrows, blue prints,
 schematics

Figure 1.3 The hierarchical abstraction model of system descriptivity
(HAMSD) for software engineering

Table 1.3
Abstract Levels of Knowledge and Cognitive Information

Level Category Description
L1 Analogue objects Real-world entities, empirical artifacts
L2 Diagrams Geometric shapes, abstract entities, relations
L3 Natural languages Empirical methods, heuristic rules
L4 Professional

notations
Special notations, rigorous languages, formal
methods

L5 Mathematics
(philosophy)

High-level abstraction of objects, attributes,
and their relations and rules, particularly those
that are time and space independent

© 2008 by Taylor & Francis Group, LLC

26 Part I Principles and Constraints of SE

There are two approaches for system description as shown in Fig. 1.3

known as abstraction and explanation. The former enables system analysts to
increase the descriptive power in terms of expressiveness, preciseness, and
rigorous; while the latter helps users to increase the intuitiveness of
understanding and comprehension because the means of description is much
closer to the real world images and analogue objects directly acquired by the
sensors of the brain. Detailed discussion of the cognitive foundations of
notation systems may be referred to Chapter 9.

1.2.4.2 Software Engineering Practice: Can Microtech be Used to
 Denote Nanotech?

Contrary to physical, mechanical, and geometrical designs in the
concrete world, software design is carried out in the abstract world where
only things that can be embodied are blocks, lines, or arrows, which show
connections or relations between architectural and/or behavioral components
at different levels. In other words, software behaviors, particularly the
dynamic aspect, are inexpressible by conventional means of diagrams.

For instance, geometry is the ultimate form of graphical reasoning and
is more rigorous than any software block diagrams and class diagrams.
However, even for that, algebraic geometry had to be developed to deal with
more complicated structures in dynamics in order to enable more powerful
inferences in geometrical analyses.

To prove Corollary 1.2, one may try to read a cartoon after erasing all

dialogues and explanations. It is obvious that one cannot obtain too much
accurate information from it. It may be worse that different persons may

Corollary 1.2 The expressive power of icons and diagrams are
inadequate in software engineering because they make software design
and specifications vague.

The 3rd Law of Software Engineering

Theorem 1.3 The abstract objects under study state that the nature of
software stems from intangibility of the abstract objects under study,
intricate inner connections of software systems, adaptive interactions to
external events and environments, and the cognitive complexity to
explicitly describe them.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 27

perceive different information and meanings from the same picture. This is
totally unacceptable in engineering design.

Why may visual means be used adequately in system designs in
mechanical engineering and civil engineering, but not adequately in software
engineering? It is because the objects under study of the former are
physically and geographically located at Level 1 according to the HAMSD
model, while those of the latter are abstract objects located at Level 3 or
above in HAMSD.

It is recognized that architectures of software are complex interrelated
objects with functional variables and constraints. Behaviors of software are
embedded relational processes [Wang, 2006h]. These types of abstract and
complicated entities may only be expressed without implication by
professional notation systems at Level 4 or mathematical means at Level 5
according to the HAMSD model, because only more abstract and precise
means are powerful enough to express an object at a lower level of
abstraction. This leads to the 4th law of software engineering.

According to Theorem 1.4, software architectures and behaviors cannot

be explicitly expressed by diagrams, because the abstraction level of the
latter is lower than the former. However, diagrams can be used to express
and denote physical architectures and designs, because the abstraction levels
of the physical objects are lower than the means. This explains that, although
visualization is a powerful means to form a mental image and conceptual
representation of a design by means of diagrams and pictures in other
engineering disciplines, it is inadequate in software engineering.

The descriptive power of formal notation systems in software

engineering lies in its adequacy for describing abstract objects, their
relations, behaviors, and for enabling rigorous inferences based on formally
defined composing rules in terms of formal syntaxes and semantics.

 The 4th Law of Software Engineering

Theorem 1.4 The explicit descriptivity states that only a higher-level
abstract, precise, and rigorous means is adequate to express an object at
a given level of abstraction, where denotational mathematics is the top-
level abstraction means.

Corollary 1.3 Symbolic notations and mathematics are the key means for
expressing and embodying software behaviors, because they are at higher
level abstraction and therefore with more powerful descriptivity.

© 2008 by Taylor & Francis Group, LLC

28 Part I Principles and Constraints of SE

Although diagrams are widely used to represent abstract physical designs,
they are not suitable for expressing and embodying more abstract and
intricately interconnected entities like software systems, because using
graphical means in system specification and refinement is just like using
conventional microtechniques to denote and measure nanotechnologies.

Therefore, in software engineering, graphical means may be used to
describe rough conceptual models of software systems for assisting human
comprehension, but not for the precise specifications of system architectures
and behaviors in system modeling and execution. Lessons learnt from all the
failures in the last four decades indicate, no matter how convenient it might
appear to be, intuitive comprehension should not be an excuse to stick at any
graphical and visual means for rigorously describing complicated software
architectures and behaviors. This is what Theorems 1.3 and 1.4 reveal and
suggest. The fade away of many historical graphical means such as flow
charts and state diagrams is evidence to support the HAMSD theory. Further
explanation of the need of formal inference means in software engineering
will be described in Section 3.3 on formal inference methodologies.

1.3 Basic Constraints of Software
 Engineering

Software engineering is a unique and probably the most complicated
engineering discipline that has ever been faced by mankind. The constraints
of software engineering are inherent due to its intangibility, complexity,
diversity, and human dependency. The study of the fundamental constraints
of software engineering is helpful to: a) Understand the fundamental
problems in software engineering, b) Guide the development of software
engineering theories and methodologies, and c) Evaluate newly proposed
software engineering theories, principles, and techniques.

1.3.1 THE SOFTWARE ENGINEERING CONSTRAINT
 MODEL

One of the discoveries on the nature of software engineering reveals
that software engineering is characterized as an organizational challenge
supplemented to the cognitive and resources challenges [Dijkstra, 1965;
Wang, 2004b/06a]. A comprehensive set of 14 basic constraints of software

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 29

engineering are identified, which can be classified into three categories
known as follows:

 • The cognitive constraints: such as intangibility, complexity,
indeterminacy, diversity, polymorphism, inexpressiveness,
inexplicit embodiment, and unquantifiable quality measures.

 • The organizational constraints: such as time dependency,
conservative productivity, and labor-time interlock.

 • The resources constraints: such as costs, human dependency, and
hardware dependency.

 The relationships between the three categories of basic constraints of
software engineering can be described by the Software Engineering
Constraint Model (SECM) as shown in Fig. 1.4. In SECM, the first eight
constraints can be perceived as cognitive and technical constraints in
software engineering, whilst the last six are considered as business
constraints on organizational limitations or resources scarcity in software
engineering.

In the following subsections, we examine each of the basic constraints
of software engineering according to the classifications of the SECM model.

1.3.2 COGNITIVE CONSTRAINTS OF SOFTWARE
 ENGINEERING

Definition 1.8 The cognitive constraints of software engineering are a
set of innate cognitive attributes of software and the nature of the problems
in software engineering that create the intricate relations of software objects
and make software engineering inheritably difficult.

All cognitive constraints of software engineering stem from

intangibility, intricate inner connections, and the cognitive difficulty of
software and their systems. The following subsections describe each of the
eight cognitive constraints of software engineering.

The 5th Law of Software Engineering

Theorem 1.5 The basic constraints of software engineering state that
software engineering faces the cognitive, organizational, and resources
constraints.

© 2008 by Taylor & Francis Group, LLC

30 Part I Principles and Constraints of SE

C3
Indeterminacy

C4
Diversity

C14
Hardware

dependency

C12
Costs

Software Engineering Constraints

C10
Conservative
productivity

C1
Intangibility

C2
Complicity

C6
Inexpressive-

ness

C7
Inexplicit

embodiment

C8
Unquantifiable

quality

C9
Time

dependency

C13
Human

dependency

C5
Polymorphism

C11
Labor-time
interlock

Cognitive
constraints

Organizational
constraints

Resources
constraints

Figure 1.4 The Software Engineering Constraint Model (SECM)

1.3.2.1 Intangibility

Definition 1.9 Intangibility (C1) is a basic constraint of software
engineering that states software is an abstract artifact which is not constituted
by physical objects or presence, and is difficult to be defined or expressed.

 The intangibility of software refers to all aspects of software and its
development. That is, none of the software engineering processes, such as
problem representation, requirements description, design, and
implementation, is tangible.

1.3.2.2 Complexity

Definition 1.10 Complexity (C2) is a basic constraint of software
engineering that states software is innately complex and its intricate internal
connections and external couplings make it extremely difficult to be
expressed or cognized.

The complexity of software refers to the complexities of its
architectures, behaviors, and environments. The architectural complexity is
the innate complexity of a software system with its data objects and their

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 31

external/internal representations. The behavioral complexity is the
complexity of a software system with its processes and their inputs/outputs.
The environmental complexity is the complexity of a software system with its
platform, related interacting processes, and users.

The most unique feature of software complexity is its intricate
interconnection among components, functions, operations, and data objects.
A small change in one place may result in multiple and unpredictable
consequences in other places. This type of problem propagation due to
intricate interconnection and coupling is a major challenge for system
architects, programmers, and managers.

The integration of a large-scale software system may easily result in a
situation where no single person in the team may understand the system. The
project leader and system architect may lack the knowledge of sufficient
details about the implementation of the system, whilst the programmers may
lack the knowledge of global view that treats the system as a whole with the
interfaces to other subsystems and components. This is a great challenging
and critical phase to human comprehension capability that often results in
major failures after almost all resources have been exhausted in large-scale
software projects.

In Chapters 9 and 10 we will introduce the concept of cognitive
complexity of software, which provides a quantitative measure that reveals
the cognitive functional complexity of software systems.

1.3.2.3 Indeterminacy

Definition 1.11 Indeterminacy (C3) is a basic constraint of software
engineering that states the events, behaviors, or their sequence of occurrence
in a software system are not fully determinable on the basis of a given
algorithm during design time. Instead, some of them may only be
determinable until run-time.

The indeterminacy constraint indicates that, in general, a large portion

of software behaviors and/or their sequence of occurrence are unpredictable
at design time or compile time. Although the behavior space and all possible
events are determinable during design time, the order of events and the
behaviors triggered by the chain of events will be greatly varying at run-time.
Therefore, indeterminacy makes software design, implementation, and
testing extremely difficult, because it results in an extremely large behavior
space for the given software system and its complete verification and through
testing are impossible sometimes.

Dijkstra discussed the special case of indeterminacy in automata where
a given even to a finite state machine in a context may trigger no action
because the machine cannot decide explicitly which action should be
executed based on the given input and current state of the machine [Dijkstra,

© 2008 by Taylor & Francis Group, LLC

32 Part I Principles and Constraints of SE

1968b/1975]. This kind of phenomena occurs in operating system, agent
systems, complier design, and real-time systems, where additional
information or an arbitrary decision needs to be adopted in the machine.

1.3.2.4 Diversity

Definition 1.12 Diversity (C4) is a basic constraint of software
engineering that states the great variety of software in types, styles,
architectures, behaviors, platforms, application domains, implementation
techniques, usability, reliability, and quality.

The characteristic of software domain dependency dominates the
cognitive complexity of software engineering and the knowledge
requirement for architects and programmers who design and implement a
software system.
 The diversity of software also refers to its types. A wide variety of
software systems can be classified into the following categories: system
software, tools (compilers, code generators, communication/networking
software, database management systems, and test software), and
application software. The latter can be further categorized into transaction
processing software, distributed software, real-time software, databases, and
web-based software.

1.3.2.5 Polymorphism

Definition 1.13 Polymorphism (C5) is a basic constraint of software
engineering that states the approaches and styles of both software design and
implementation are multifaceted and polyglottic.

Definition 1.13 indicates that the possible solution space of software

engineering can be very large because both design and implementation have
a great many options as shown in Fig. 1.5. According to the problem solving
theory in cognitive informatics, software design and development is an open-
end problem, which is similar to a creation process, where both possible
solutions and paths that lead to one of the solutions are unknown and highly
optional.

As that of the polysolvability for design, the polymorphism of software
implementation refers to the cognitive phenomenon that approaches to
implement a given design are not necessarily single. Many factors influence
the solution space such as programming languages, target machine
languages, coding styles, data models, and memory allocations. Any change
among these factors may result in a different implementation of a software
system.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 33

Figure 1.5 Polymorphism of the software solution space for a given problem

On the basis of Theorem 1.6, a basic engineering principle can be

derived as follows.

The polymorphic characteristic of the solution space of software

engineering contributes greatly to the complexity of both theories and
practices of software engineering.

1.3.2.6 Inexpressiveness

Software system requirements and specifications need to be essentially
expressed in three aspects known as the architecture, static behaviors, and
dynamic behaviors of the system.

 The 1st Principle of Software Engineering

Theorem 1.6 Polymorphous solutions state that the solution space SS of
software engineering for a given problem is a product of the number of
possible design options Nd and the number of possible implementation
options Ni, i.e.:

d iSS N N= • (1.3)

Corollary 1.4 It is hard to prove technically and/or economically a
certain software system is the optimal solution rather than a sound one
constrained by the size of the solution space. This is known as the no
number one principle in engineering.

© 2008 by Taylor & Francis Group, LLC

34 Part I Principles and Constraints of SE

Definition 1.14 Inexpressiveness (C6) is a basic constraint of software
engineering that states software architectures and behaviors are inherently
difficult to be expressed, modeled, represented, and quantified both formally
and rigorously.

As discussed in Section 1.2, software represents a set of instructive
behavioral information. Unless the behaviors and the underpinning
architecture can be expressed rigorously and explicitly, no developer and
machine may understand the requirement correctly and completely.
Therefore, a new type of denotational mathematics is needed for system
specification and refinement, which will be introduced in Chapter 4.

In addition, a specification of a software system is innately a moving
target. No practical methodology may suggest customers to fix and freeze
their requirements in order to get the system implemented.

1.3.2.7 Inexplicit Embodiment

Because software is intangible, the only way to make it embodied is to
adopt expressive means such as formal notations, programming languages,
and special diagrams.

Definition 1.15 Inexplicit embodiment (C7) is a basic constraint of

software engineering that states architectures and behaviors of software
systems should be explicitly described by coherent symbolic notations in
order to be processed and executed by computers.

 Any notation or diagram that cannot explicitly describe the architecture
and behaviors of software systems, or that highly depends on human
interpretation or imagination for implied instructions, is inadequate.
According to the explicit criterion, diagram-based techniques may be useful
for describing conceptual models of software systems particularly for
nonprofessionals, but it is unlikely to be an expressive and rigorous basis for
future automatic code generation systems, because too much design and
implementation information are implied rather than explicitly expressed.
Machines will be capable to carry out translations or compilations between
explicit specifications and code in order to improve software productivity.
However, no machine may help to extend inadequate system specifications
or to comprehend inexplicit system designs implied in the software
architectural and behavioral information.

A denotational mathematical means for describing software
engineering work products in the entire lifecycle will be introduced in
Chapter 4.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 35

1.3.2.8 Unquantifiable Quality Measures

Determined by the complexity, diversity, and polymorphism constraints
discussed earlier, the quality of software is a multifaceted entity and some
facets of it are application specific.

Definition 1.16 Unquantifiable quality measures (C8) are a basic
constraint of software engineering that states the model of software quality
has intricate facets and is difficult to be quantitatively modeled and
measured.

Software quality can be perceived from a relative point of view as the
conformity of a software system to its specifications (design models).
Therefore, software quality is inversely proportional to the differences
between the behaviours and performance of a software system and those
required in the specifications. However, many quality attributes of software,
such as design quality, usability, implementation efficiency, and reliability,
cannot be quantified, thus immeasurable.

A basic quality principle is “no measurement, no quality control.” The
factor that it is impossible to measure all quality attributes of a large-scale
software system indicates that we are not completely in control of the
development of such systems. Some qualitative or informal validation and
evaluation techniques, such as review and prototyping [Boehm et al., 1984;
Arnowitz et al., 2006], are adopted in software engineering. Practitioners and
users seem to be used to this situation. Therefore, measurement theories and
methodologies for software systems had never been a central focus in
software engineering, particularly because of its inherent difficulty in this
area [Wang, 2003f].

1.3.3 ORGANIZATIONAL CONSTRAINTS OF
 SOFTWARE ENGINEERING

Definition 1.17 The organizational constraints of software engineering
are a set of coordinative and managerial requirements for software
engineering that enables cooperative work to be efficiently carried out
among a group of software engineers with different roles.

There are various organizational constraints for software engineering.

The fundamental ones identified in software engineering are such as time
dependency, conservative productivity, and labor-time interlock, which will
be described in the following subsections.

© 2008 by Taylor & Francis Group, LLC

36 Part I Principles and Constraints of SE

1.3.3.1 Time Dependency

Definition 1.18 Time dependency (C9) is a basic constraint of software
engineering that states almost all organizational issues in software
engineering, such as software development scheduling, business goal of time
to market, and labor allocation, are dependent on time.

Although the development time of a certain software system is

incompressible in software engineering, it is interchangeable with labor
under given conditions. The interchangeability between time and labor is
constrained by the coordinative work organization laws of software
engineering (Theorems 8.4 through 8.11), which will be presented in Section
8.5.

1.3.3.2 Conservative Productivity

According to the cognitive model of internal information representation
in the brain (Section 9.4), all human intelligent and creative work are
internally grown by means of synaptic neural connections rather than
externally composed. Therefore, there are natural constraints for
programming productivity and development time dependent on the
complexity of problems. Also, almost all human cognitive processes, such as
abstraction, creation, problem solving, learning, and comprehension, are
dependent on individuals’ cognition capability.

Definition 1.19 Conservative productivity (C10) is a basic constraint of

software engineering that states abstract artifacts and their relations in system
designs need to be represented physiologically in the brain via growing
synaptic connections, which is constrained by natural laws and its speed is
not consciously controllable.

The fact that before any program is composed, an internal abstract
model must be created inside the brain [Wang, 2007g; Wang and Wang,
2006] reveals the most fundamental constraint of software engineering as
stated below.

The 6th Law of Software Engineering

Theorem 1.7 Conservative productivity states that software productivity
is physiologically constrained by the growing speed of synaptic
connections inside the brain, because before any creative artifact is
generated externally, it must be created and represented physiologically
inside the brain by the synaptic connections.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 37

Theorem 1.7 is also supported by the 24-hour law of memory
establishment as presented in Theorem 9.11. According to the statistics of
several sources [Boehm, 1987; Dale and Zee, 1992; Jones, 1981/1986;
Livermore, 2005], the average productivity of software development was
about 1,300 LOC/person-year in the 1970s, 2,500 LOC/person-year in the
1980s, and 3,000 LOC/person-year in the 1990s where management, quality
assurance, and supporting activities are considered. It is obvious that the
productivity in software engineering has not been increased remarkably in
the last three decades, independent of the fast advances of hardware and
programming languages! In other words, no matter what kinds of
programming languages are used, as long as they are for human
programming, there is no difference in principle.

This assertion is equivalent to the answers for the following questions:

Did you ever know a writer who is productive because he/she writes in a
specific language? Would typing speed predominantly determine a writer’s
productivity?

Productivity of software development is the key among all the

cognitive, organizational, and resources constraints in software engineering.
The other constraints may be overcome as a result of the improvement of
software engineering productivity. Therefore, the major approach to improve
software development productivity is to explicitly express software
architectures and behaviors, in order to allow automatic tools to seamlessly
generate code based on the explicit specifications. Key approaches and
theories supporting them will be discussed throughout this book.

1.3.3.3 Labor-Time Interlock

Definition 1.20 Labor-time interlock (C11) is a basic constraint of
software engineering that states the nature of software project organization is
dominated by the extremely high interpersonal coordination rate, which
prevents the workload (effort) from free decomposition into a sum of
products of arbitrary amount of labor and periods of time.

The empirical observation that labor and time may be interchangeable

in conventional engineering disciplines and everyday life is not freely
applicable in software engineering, because the much higher rate of

Corollary 1.5 It is very hard to dramatically improve programmers’
productivity of software development, unless automatic tools are adopted
for code generation.

© 2008 by Taylor & Francis Group, LLC

38 Part I Principles and Constraints of SE

requirement for human interaction and coordination in software engineering,
up to 70% overhead, dramatically changes the nature of software project
organization [McCue, 1978; Wang, 2007d].

The theory and skill of labor-time allocation will determine the
outcome of a software engineering project. Inappropriate allocation of labor
and time will result in a dramatic increase of a project’s workload or lead to a
failure of the project. Detailed explanation will be provided in the
coordinative work organization theory in Chapters 8, 11, and 13.

1.3.4 RESOURCES CONSTRAINTS OF SOFTWARE
 ENGINEERING

Definition 1.21 The resources constraints of software engineering are
referred to the development costs and budgets, human resources, and the
supporting and operating platforms of hardware.

The resources constraints of costs, human dependency, and hardware

dependency will be described in the following subsections.

1.3.4.1 Costs

Definition 1.22 Costs (C12) are a basic constraint of software
engineering that states software engineering costs are incurred from both
necessary and futility costs, and from both development and maintenance
costs.

Software engineering costs are incurred from the contributions of both
the necessary development costs and the costs sank into the black hole of
inappropriate project organization. According to Theorems 8.4 through 8.11
developed in Section 8.5, inappropriate software engineering organization
may easily increase the workload and costs of a certain project as high as ten
times as it should normally be. This is the major reason why more than half
of software engineering projects had failed in the history. Detailed cost
models of software engineering will be developed in Chapter 12 on
economics foundations of software engineering.

Software systems have cost too much to be built. It is even more costly
to be maintained. There is a trend in software engineering that in a software
development organization the costs spent on legacy software system
maintenance frequently exceeds those spent on developing new systems at a
given point of time. This phenomenon leads to the discovery of software
maintenance crisis [Wang, 2005d] as described in Sections 12.6.5 and
14.3.3.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 39

1.3.4.2 Human Dependency

Definition 1.23 Human dependency (C13) is a basic constraint of
software engineering that states all software engineering activities and
processes are human-based and constrained by basic human traits, cognitive
and creative capabilities, as well as motivations and attitudes.

All processes of software development in software engineering, such as

design, implementation, and maintenance, rely on human cognitive and
creative power, especially when the work products and objects under study
are intangible and complicated. Because software is intangible, almost all
processes of software engineering are conducted in the abstract world, where
highly capable cognitive power is required for both software engineers and
managers.

1.3.4.3 Hardware Dependency

Definition 1.24 Hardware dependency (C14) is a basic constraint of
software engineering that states software behaviors and functionality can
only be embodied via the computing platform and related interactive I/O
devices.

The above constraint indicates that software relies closely on hardware

and it cannot be functioning without a hardware platform. The platform and
media dependency is a common property of information. Software as a
special type of behavioral information shares the same property. The fact that
both hardware and software can be described by Boolean logic and
denotational mathematics shows the equivalence of hardware and software.

Therefore, an excellent software engineer needs not only software

engineering knowledge, but also knowledge about computers, networks, and
interface devices.

Based on the discussion of this section, it can be concluded that
software engineering theories and practices face a set of fundamental
cognitive, organizational, and resources constraints. Therefore, the problems
and difficulties in software engineering are inherent; behind them there are a
set of cognitive, informatics, technical, systematic, managerial, and social
reasons, which are the driving force of all the constraints in software
engineering. Each of the multidisciplinary reasons that constrains software
engineering will be addressed in individual chapters throughout this book.
The historical pursuits of effective theories and technologies for dealing with
the fundamental constraints in software engineering will be reviewed in the
next section.

© 2008 by Taylor & Francis Group, LLC

40 Part I Principles and Constraints of SE

1.4 Approaches to Software
 Engineering

Various approaches have been sought in the history of software engineering
in order to deal with the fundamental problems and constraints as identified
in the previous sections. The methodologies and approaches can be
summarized as shown in Table 1.4, which cover programming
methodologies, software development models, automated software
engineering, formal methods, software engineering processes, and theoretical
foundations.

In Table 1.4, H, M, and L represent a high, medium, or low coverage of
software engineering problems, respectively, by a given approach. The six
software engineering approaches listed in Table 1.4 can be categorized into
theoretical and empirical ones. The former are mathematics-based
methodologies, such as formal methods and the theoretical foundations; and
the latter are principles- and best-practice-based that encompasses the rest of
the approaches in the list.

Table 1.4

Domain Coverage of the Approaches to Software Engineering

Coverage of SE Problems No. Approach
Theoretical Technical Organization Management

1 Programming
methodologies

L H L L

2 Software development
models

L H M L

3 Automated software
engineering
environments

M H L L

4 Formal methods H H L L
5 Software engineering

processes
L H H H

6 Theoretical
foundations

H H H H

It can be seen that the traditional approaches to software engineering,

such as programming methodologies, software development models, and
automated software engineering, are mainly technology oriented. They

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 41

generally lack the capability to address the theoretical, organizational, and
managerial problems in software engineering. The relatively newer
approaches to software engineering, such as formal methods, software
engineering processes, and theoretical foundations, however, encompass a
wider and higher portion of software engineering problems, particularly the
theoretical foundation approach towards a matured discipline of software
engineering that fully covers every facet of the inherent problems.
 The following subsections provide a brief description for each of the
approaches to software engineering.

1.4.1 PROGRAMMING METHODOLOGIES

Programming methodologies are a set of the earliest technologies for
software engineering. Useful principles were proposed such as abstraction,
information hiding, functional decomposition, modularization, and
reusability.

In tracing the history of programming methodologies, it can be seen
that functional decomposition has been adopted in programming since the
1950s [McDermid, 1991]. In the 1970s the most significant progress in
programming methodologies was structured programming [Hoare, 1972;
Dijkstra, 1965/68/72; Knuth, 1974] and Abstract Data Types (ADTs) [Liskov
and Zilles, 1974; Parnas et al., 1976]. These methods are still useful in
programming and software system designs. Since the 1980s Object-Oriented
Programming (OOP) [Stroustrup, 1982/86; Snyder, 1987] has been broadly
adopted. Object-Oriented technologies have inherited the merits of structured
programming and ADTs, and have represented them in well-organized
mechanisms such as encapsulation, inheritance, reusability, and
polymorphism. The most powerful feature of OOP is the supporting of
software reuse by inheriting code and structural information at object and
system levels. On the basis of OOP, component-based program composition
and the availability of Commercial Off-The-Shelf (COTS) software
components are the latest developments [Bayana, 2006; Wang et al,
1998a/99e/2000].

1.4.2 SOFTWARE DEVELOPMENT MODELS

Programming methodologies can be perceived as mainly oriented to the
conceptual principles of software engineering. A set of more programmatic
technologies developed in software engineering is known as the software
development models, such as the waterfall [Royce, 1970], prototype [Boehm
et al., 1984; Curtis et al., 1987], spiral [Boehm, 1988; Boehm and Bose,
1994], V [GMOD, 1992], evolutionary [Lehman, 1985; Gilb, 1988;

© 2008 by Taylor & Francis Group, LLC

42 Part I Principles and Constraints of SE

Gustavsson, 1989], and incremental [Parnas, 1979; Mills et al., 1980/87]
models.

Supplementary to the above development models, a variety of detailed
methods have been proposed for each phase of the development models. For
instance, just for the software design phase, a number of design methods
have been in existence [McDermid, 1991], typically flowcharts, data flow
diagrams, Nassi-Shneiderman charts, Program Description Languages
(PDLs), entity-relationship diagrams, Yourdon methods, and Jackson system
development. Of course, some of these methods may cover multiple phases in
software development.

The software development model approach attempts to provide a set of
guidelines for the design and implementation of software at system and
module levels. However, this approach has been focused on technical aspects
of software development lifecycles. Organizational and managerial
methodologies and processes have not been covered. Detailed descriptions
and applications of existing software development models may be referred to
the classic software engineering books [McDermid, 1991; Pressman, 1992;
and Sommerville, 1996].

1.4.3 AUTOMATED SOFTWARE ENGINEERING

In order to support programming methodologies and software
development models, an automated software engineering approach has been
sought through the adoption of integrated systems and Computer-Aided
Software Engineering (CASE) tools. The applications of artificial
intelligence, cognitive informatics, and knowledge engineering play
important roles in this approach. The standardization of the Unified
Modelling Language (UML) [Rumbaugh et al., 1998; OMG, 2005] and
related tools such as Rational Rose [Quatrani, 1999], as well as Real-Time
Process Algebra (RTPA) based code generators [Tan and Wang, 2006; Tan,
Wang, and Ngolah, 2004a/04b/05/06; Ngolah, Wang, and Tan, 2005b/06],
are some of the recent progress in automated software engineering. Cognitive
informatics [Wang, 2002d/02e/03a/03b/06b/06j/07a/07b], agent techniques
[Chorafas, 1998], and autonomic computing [IBM, 2001/06; Kephart and
Chess, 2003; Murch, 2004; Wang, 2007f] may influence the techniques in
this area.

The main technical difficulties in automating software development are

requirement acquisition and specification, system architectural behavioral
modeling, application domain knowledge representation, and implementation
correctness proof. These have led to the development of the approaches of
formal methods and theoretical foundations as described in the following
subsections.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 43

1.4.4 FORMAL METHODS

Formal methods are a set of mathematics and logic based notations and
methodologies for software development [Hoare, 1978/85; Milner, 1980/89].
The logical, algebraic, and functional foundations of programming are
studied in formal methods. A number of applications of formal methods in
safety-critical system design and program correctness proof have been
reported [Hayes, 1987; Schneider, 1989; Wang and Ngolah, 2003; Tan,
Wang and Ngolah, 2005].

As structured programming and OOP solved many problems in

software development in the 1970s and 1980s, formal methods attempt to dig
deeply into the nature of programming and to provide new solutions for
rigorous and correction-provable software development. Although
knowledge about the nature of programming has been greatly improved by
the studies of formal methods, only a few of them, such as Z [Spivey,
1988/92; Bowen et al., 1998; Derrick and Boiten, 2001], SDL [CCITT,
1988], CSP [Hoare, 1978/85], and Real-Time Process Algebra (RTPA)
[Wang, 2002a/02b/03c/07h/07i; Wang and Gafurov, 2003; Wang and
Ngolah, 2002/03; Wang and Zhang, 2003; Wang and Huang, 2005; Wang
and Ruhe, 2007; Tan and Wang, 2003; Adewumi and Wang, 2004; Vu and
Wang, 2004; Chiew and Wang, 2004], have been directly applied in real-
world software engineering.

1.4.5 SOFTWARE ENGINEERING PROCESSES

In view of domain coverage it is recognized that the conventional
approaches, methodologies, and tools that cover individual subdomains of
software engineering are inadequate. Thus, it makes sense to think in terms
of an overarching set of approaches for a suitable theoretical and practical
infrastructure that accommodates both new demands and improvement on
existing methodologies. An interesting way forward, which is capable of
accommodating the full domain of modern software engineering, is that of
the software engineering process.

The software engineering process is a set of sequential practices that
are functionally coherent, repeatable, and reusable for software engineering
organization, development, and management. It is usually referred to as the
software process, or simply the process.

The software engineering process approach concerns systematical,
organizational, and managerial infrastructures of software engineering. It is
necessary to expand the horizons of software engineering in this way because
of the rapidly increasing complexity and scale demanded by software

© 2008 by Taylor & Francis Group, LLC

44 Part I Principles and Constraints of SE

products. The need to improve software quality is also a driving force for
management in software engineering.

There are a number of process models developed such as the CMM

[Humphrey, 1988/89/95; Paulk et al., 1991/93/95], ISO 12207 [ISO/IEC
12207, 1995], ISO 15504 [ISO/IEC 15504, 2000], and the Software
Engineering Process Reference Model (SEPRM) [Wang and King, 2000a].
On the basis of the software engineering process technologies, an
infrastructural methodology called Process-Based Software Engineering
(PBSE) has been established [Wang and Bryant, 2002].

1.4.6 THEORETICAL FOUNDATIONS OF SOFTWARE
 ENGINEERING

A particular gap in the current curriculum of software engineering is
the lack of a fundamental framework that provides students and practitioners
for a set of overarching, durable, and multidisciplinary theories and
foundations, in order to explain a great many complicated phenomena and
problems of software engineering in terms of a core set of fundamental
principles. To deal with the difficulties inherent in large-scale software
development, the multidisciplinary foundations of software engineering are
yet to be explored.

Along with the fast growth of the Internet and the Internet-based

distributed programming environment in the 1990s, there has been evidence
that the software engineering agenda has been driven by the industry and
users. Technical innovations in software engineering have been a major force
that drives software engineering trends, methodologies, and practice.
However, all unsolved tough problems and the continuous high failure rate
of projects in software engineering suggest the necessary need for seeking
fundamental theories and systematically structures of software engineering.

One of the fundamental findings in software engineering is that its

problems are not solely an empirical one rather than a theoretical one. That
is, the same set of fundamental problems that could not have been overcome
in the last four decades indicates the existence of fundamental constraints
that need theoretical investigations to reveal the laws and principles behind
all the problems. Definition 1.6 on software engineering expressed the
theoretical view towards an engineering discipline with sound theories and
rigorous organizational methodologies. It is also the main objective of this
book towards the elicitation and establishment of a rigorous theoretical
framework of software engineering.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 45

1.5 Transdisciplinary Foundations
 of Software Engineering

Although software engineering has emerged as a branch in computer science,
it is recognized that software engineering requires much broader and
multidisciplinary foundations, particularly those that facilitate rigorous
expression of notions and thought in system design, and those that enable
optimal organization of creative and cooperative human work.

As discussed in Sections 1.1 and 1.2, the complexity, diversity, and
transdisciplinary nature of software engineering sets forth an ideal testbed for
existing theories and methodologies of a wide range of science and
engineering disciplines, such as philosophy, mathematics, computing,
linguistics, information science, cognitive informatics, system science,
management science, economics, sociology, and engineering organization.
From another angle, software engineering theories can also contribute
significantly to those aforementioned disciplines. This forms the theme of
this book towards a transdisciplinary and rigorous framework of software
engineering foundations.

Albert Einstein believed that ‘Problems that are created by our current
level of thinking cannot be solved by that same level of thinking.’ In other
words, the inherent problems in software engineering may be solved by an
transdisciplinary approach. This section examines closely related science and
engineering disciplines to software engineering that may contribute to the
transdisciplinary theories of software engineering. However, the coverage is
by no means exhaustive. Therefore, readers are encouraged to seek additional
disciplines that would shed light on the development of theories and
methodologies of software engineering or that would take software
engineering as a testbed to evaluate a specific theory or technique. With the
support of multidisciplinary foundations and theories, software engineering
education and practice may be carried out on a more solid basis.

1.5.1 PHILOSOPHICAL FOUNDATIONS

Philosophy is the common root of all sciences and the crystallization of
fundamental knowledge of mankind in the pursuit of understanding and
utilizing nature resources and rules. Philosophy is the top level human
knowledge with highly generalized usability and extremely long durability.

© 2008 by Taylor & Francis Group, LLC

46 Part I Principles and Constraints of SE

Philosophical foundations of software engineering explore the classical
thought of science philosophy on epistemology/cognition, holism/
reductionism, positivism/empiricism, rationalism/causation, determinism/
indeterminism in Chapter 3. Formal inference methodologies as an important
branch of philosophy will be described with argumentation techniques,
deductive, inductive, abductive, and analogical inferences. The nature of
software will be studied on its inherent characteristics and properties of
informatics, intelligence, mathematics, cognition, quality, and engineering
applications. The nature of software engineering will be investigated on its
cognitive properties, engineering characteristics, scope of domains, and the
scope of its solution space.

1.5.2 MATHEMATICAL FOUNDATIONS

Mathematics is the basic means to model, describe, and document
formal knowledge in any science and engineering disciplines. Mathematics
enables rigorous reasoning and inferences be carried out on the basis of
simple deductive rules, and the formally documented results are validated
without exceptions. Therefore, the entire theory of software science and
engineering in Chapter 4 is about mathematical models of software and
denotational mathematics for software engineering processes.

Mathematical foundations for software engineering encompass classical
mathematics such as set theory, relations, functions, propositional logic, and
predicate logic. Complex mathematical entities in software engineering, such
as processes, embedded relations, and systems, as well as a comprehensive
set of mathematical laws of software, will be newly developed. Software
behaviors are modeled by a three-dimensional (3-D) mathematical entity, and
RTPA will be introduced as a software engineering notation system to deal
with the 3-D behaviors and architectures of software systems. RTPA
notations, type system, meta processes, and process relations will be
presented, and the RTPA methodology for software system specification and
refinement will be systematically described.

1.5.3 COMPUTING FOUNDATIONS

Computing theory is one of the most important and direct foundations
of software engineering as presented in Chapter 5. However, classical
computing theories may be treated and reinterpreted on focusing the needs
for modeling and manipulating data objects, computing behaviors, and
resources in software engineering.
 The computing foundations for software engineering encompass the
basic models and needs in computing, and the fundamental computation

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 47

models, such as automata, Turing machines, von Neumann machines, and
autonomic computing machines. Computing theories will be classified into
three categories known as the modeling and manipulation of data objects,
computing behaviors, and resources/processes. Based on this, programs and
software will be modeled as a coordination of both computational behaviors
and data objects in software engineering.

1.5.4 LINGUISTICS FOUNDATIONS

A language is a symbolic system for thought, self-expression, and
communication. Although linguistics studies human or natural languages, the
theories and foundations of linguistics and formal languages in software
engineering are cross fertilized in many areas as presented in Chapter 6.

Linguistic foundations for software engineering encompass the
fundamental theories of linguistics, the nature of languages, and their
acquisition and applications. Classical linguistics will be extended to the
theories of programming languages, which investigate formal language
theories, formal semantics, and mathematical models of linguistics.

1.5.5 INFORMATION SCIENCE FOUNDATIONS

According to the IME model as given in Theorem 1.2, information is
the third essence for modeling the abstract world and its interactions with the
physical world. Information science, or informatics, studies the nature of
information, its processing, and ways of transformation between information,
matter, and energy. In the classical information theory, Shannon defined
information as a probabilistic predication of message sending from a source.
Conventional information theory focuses on information transmission rather
than information itself. The contemporary informatics tends to regard
information as entities of messages, rather than a probability predication of
messages. The new perception is found better to explain the theories and
practices in the IT and software industries.

The information science foundations for software engineering
encompass classical and contemporary information theories in Chapter 7. In
the former, Shannon’s information and entropy will be discussed; in the
latter, new mathematical model of information will be introduced, and the
transition from machine informatics to cognitive informatics that focuses on
human perception and processing of information will be described. A
comprehensive set of informatics laws of software will be derived that reveal
the nature of software. Applications of informatics in software engineering
will be discussed on how behavioral information of software is expressed
and processed in software engineering.

© 2008 by Taylor & Francis Group, LLC

48 Part I Principles and Constraints of SE

1.5.6 ENGINEERING FOUNDATIONS

Engineering is a powerful concept and methodology emerged in the
industrial revolutions during the 18th and 19th centuries. The engineering
foundations of software engineering study generic engineering approaches
and basic engineering principles that are commonly shared by all engineering
disciplines in Chapter 8.

Engineering principles for software development and organization will
be systematically sought. The theory of optimal software engineering
organization will be developed based on the investigation on team
coordination and the transformability between labor and time. Empirical
software engineering foundations will be explored on case studies,
experiments, trials, benchmarking, and standardization in software
engineering.

1.5.7 COGNITIVE INFORMATICS FOUNDATIONS

Cognitive informatics is a discipline that studies the internal
information processing mechanisms of the brain and their engineering
applications. Information in cognitive informatics is defined as abstract
artifacts and their relations that can be elicited, modeled, represented, stored,
and processed by human brains. One of the most interesting findings in
cognitive informatics is that so many science and engineering disciplines,
such as informatics, computing, software engineering, and cognitive
sciences, share a common root problem – how the natural intelligence
processes information.
 Cognitive informatics foundations for software engineering encompass
neurophysiology of cognition and cognitive foundations of the brain and
natural intelligence in Chapter 9. A Layered Reference Model of the Brain
(LRMB) will be developed. The mechanism of internal information
representation will be formally described by the Object-Attribute-Relation
(OAR) model. Applications of cognitive informatics in software engineering
will be focused on cognitive laws of software engineering, software
comprehension, and the measurement of cognitive complexity of software.

1.5.8 SYSTEM SCIENCE FOUNDATIONS

A system is a collection of coherent and interactive entities that has
stable functions and clear boundary with its external environment. System
science and engineering study the most complicated objects and phenomena
in the physical, abstract, and social worlds, namely systems, across all
science and engineering disciplines. A system can be treated as an extended

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 49

mathematical entity constrained by certain mathematical laws. Systems are a
powerful concept for describing a closure of a number of components and
their relations and behaviors, because any given compound entity can be
modeled as a system or a subsystem of another system.
 System science foundations for software engineering encompass
system philosophies, principles, and properties in Chapter 10. An extension
of mathematics to deal with abstract systems, known as system algebra, will
be newly developed [Wang, 2006d], which presents an algebraic treatment of
system modeling, relations, and operations. System models of software and
software engineering processes will be described on the basis of system
algebra. A number of system engineering models for software engineering
will be discussed.

1.5.9 MANAGEMENT SCIENCE FOUNDATIONS

Management is a coordination process that organizes activities and
efforts of a group to achieve goals and results not possible by an individual.
Management science is the discipline that studies organizational behaviors,
executive decision making, and resource optimization on given internal and
external constraints. Historically, software engineering has focused on
programming methodologies, programming languages, and software
development models. One of the critical areas to software engineering –
organizational and management infrastructures – has been largely
overlooked.
 Management science foundations for software engineering encompass
management principles, classical management thought, decision theories, and
quality systems in Chapter 11. A set of organizational theorems and laws will
be formally derived. A theoretical framework of decision theories will be
developed with the mathematical models of decisions, the cognitive process
of decision making, the formal decision strategies, the extended game
theories, and the newly developed decision grid theory. Quality systems will
be presented focusing on quality principles, quality assurance, and quality
management systems. The emphases of applications of management science
in software engineering will be put on SEPRM and the methodology of
process-based software engineering.

1.5.10 ECONOMICS FOUNDATIONS

Economics is the study of how resources are used to produce and
distribute commodities and how services are provided in society.
Engineering economics is a branch of microeconomics dealing with
engineering related economic decisions. Fundamental concepts and
principles of economics will be presented in Chapter 12 covering economic
models, and analyses. A mathematical model on Adam Smith’s equilibrium

© 2008 by Taylor & Francis Group, LLC

50 Part I Principles and Constraints of SE

between demands and supplies will be derived that explains the nature and
mechanisms of the invisible hands rigorously.

Software engineering economics will be discussed on elements of
software costs, project costs estimation and analysis, and project benefit-cost
ratio analysis. The software legacy maintenance model will be developed
based on the software engineering economic models, which leads to the
discovery of the phenomenon known as software maintenance crisis.

1.5.11 SOCIOLOGY FOUNDATIONS

Sociology is a branch of science that studies the structure, organization,
operation, and development of human societies. A society is a dynamic
human system that is interacting not only among members of the society, but
also between societies and the natural environment. Collective behaviors and
how motivation and attitude may influence human productivity and decision
making will be studied in Chapter 13. Optimal organization of groups and
societies will be focused.

Sociology foundations for software engineering encompass social
structures, norms, collective behaviors and social psychology of software
engineering. A formal model of social organization will be developed based
on a new mathematical model known as the organization tree. Models of
socialization will be used to explain the historical evolution of human
societies, which predict that information society will be the form of human
societies following the postindustrial one driven by underpinning economic
structures and basic human needs. Applications of sociology in software
engineering will be explored in the areas of social organization, social
environment, ergonomics, and human factors of software engineering.

1.6 The Architecture of this Book

An improved understanding of the theoretical foundations of software
engineering is helpful to design appropriate curricula for software
engineering education, and to provide students with a solid and well founded
discipline of software engineering knowledge. In a field such as physics, its
knowledge structure is well developed based on clear foundations. Physicists
know what they can do and what they cannot. This offers a solid basis for
judging innovative and emerging technologies. Software engineering
requires a similar basis. It is anticipated that investigations into the
theoretical foundations of software engineering will provide fundamental
capabilities for students and practitioners of software engineering.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 51

The architecture of this book is constructed as shown in Fig. 1.6. The
book encompasses four parts on principles and constraints, theoretical
foundations, organizational foundations, and perspectives on software
science. Part I, principles and constraints of software engineering, models
the basic constraints in software engineering and explores suitable measures
dealing with them by a comprehensive set of software engineering principles.
In Part II, theoretical foundations of software engineering are created on the
basis of philosophy, mathematics, computing, linguistics, and information
science. In Part III, organizational foundations of software engineering are
elicited from those contributing disciplines such as engineering
methodologies, cognitive informatics, system science, management science,
economics, and sociology. Part IV, perspectives on software science,
summarizes the theoretical framework of software engineering, and provides
a prospect on the development of software science.

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Information
 Foundations
 of SE

9. Cognitive Inf.
 Foundations
 of SE

1. Introduction

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

2. Principles
 of SE

8. Engineering
 Foundations
 of SE

3. Philosophical
 Foundations
 of SE

11. Management
 Science Foundations
 of SE

12. Economics
 Foundations
 of SE

13. Sociology
 Foundations
 of SE

14. Retrospect
 on SE

15. Prospect on
 Software
 Science

10. System Science
 Foundations
 of SE

Figure 1.6 Architecture of this book

© 2008 by Taylor & Francis Group, LLC

52 Part I Principles and Constraints of SE

Corresponding to the architecture of this book, the key subject areas of
software engineering foundations are highlighted in Table 1.5. Throughout
this book, new theories for both software engineering and related fields are
developed, and more formal treatments of existing theories and empirical
practice are implemented. Table 1.5 shows the bidirectional impact of this
work on transdisciplinary investigation into the theoretical foundations of
software engineering.

Table 1.5
Structure of this Book

Part Chapter Topic Key Subject Areas

1 Introduction

• Basic concept of SE
• Fundamental constraints of SE
• Approaches to SE
• Transdisciplinary foundations of SE

I.
Principles and
Constraints of
Software
Engineering
 2 Principles of

Software
Engineering

• Pursuits on principles of SE
• A unified framework of SE principles
• SE principles as measures for dealing
 with its constraints

3 Philosophical
Foundations

• Philosophy of science and engineering
• Logical reasoning methodologies
• The nature of software
• The nature of SE
• Murphy’s laws for SE

4 Mathematical
Foundations

• Set theory
• Mathematical logic
• Denotational mathematics for SE
• Real-Time Process Algebra (RTPA)
• The RTPA methodology for software
 system description
• RTPA: notations for SE

5 Computing
Foundations

• Basic computational models
• Data object modeling and manipulation
• Behavioral modeling and manipulation
• Program modeling: coordination of
 computational behaviors and data
 objects
• Resources and processes modeling and
 manipulation

II.
Theoretical
Foundations of
Software
Engineering

6 Linguistics
Foundations

• Fundamentals of linguistics
• Formal language theory
• Syntax of programming languages
• Semantics of programming languages

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 53

• Semantics of RTPA
• Linguistics perceptions on SE

7 Information
Science
Foundations

• Classic information theory
• Contemporary informatics
• Informatics laws of software
• Applications of informatics in SE

8 Engineering
Foundations

• Generic engineering approaches
• Basic engineering principles
• Engineering principles for SE
• Empirical SE
• SE standardization

9 Cognitive
Informatics
Foundations

• Principles
 • Cognitive informatics
 • Cognitive informatics models of
 the brain
 • Cognitive models of internal
 information presentation in the brain
• Cognitive informatics for SE
 • Cognitive Informatics laws of SE
 • SE psychology
 • Software comprehension
 • SE skills and experience
 • Software agent systems
 • Cognitive Complexity of SE

10 Systems
Science
Foundations

• Principles
 • System philosophy
 • Principles of system theories
 • System modeling
 • Properties of systems
• System engineering for SE
 • System algebra
 • The system metaphor of software
 • System engineering for SE
 • Software system engineering models

III.
Organizational
Foundations of
Software
Engineering

11 Management
Science
Foundations

• Principles
 • Classic management thought
 • Decision theories
 • Quality systems
• SE management
 • Decision theories
 • Formal models of games
 • Decision grid theory
 • SE organization
 • The SE Process Reference Model
 (SEPRM)

© 2008 by Taylor & Francis Group, LLC

54 Part I Principles and Constraints of SE

 • Process-Based SE (PBSE)

12 Economics
Foundations

• Principles
 • Classical economic thought
 • Economic models
 • Dynamic values of money and assets
 • Economic analyses
• SE economics
 • Elements of software costs
 • SE project costs estimation
 • Economic analyses for software
 projects
 • The software legacy maintenance cost
 model

13 Sociology
Foundations

• Principles
 • Principles of sociology
 • Social psychology
 • Theory of social organization
• Sociology and SE
 • Organization trees
 • Social organization of SE
 • Ergonomics for SE
 • Human factors in SE

14 Retrospect on
Software
Engineering

• Infrastructure of SE
• Software industry organization
• Essential knowledge towards excellent
 software engineers
• Impact of the theoretical foundations
 to SE

IV.
Perspectives
on
Software
Science

15 Prospect on
Software
Engineering

• The formal knowledge system for SE
• Software industry organization
• A discipline of software
• Impact of software science on
 computing
• Epilogue

This book adopts a transdisciplinary approach to explore the theoretical

foundations of software engineering. This work attempts to put together a
number of multidisciplinary foundations for software engineering, such as
philosophy, mathematics, computing, linguistics, informatics, engineering
science, cognitive informatics, systems science, management science,
economics, and sociology. It is a great curiosity to explore such
transdisciplinary foundations for software engineering and the laws behind
software and software engineering organization. It is also a great comfort to
see that a set of extremely complicated phenomena and a wide variety of

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 55

practices in software engineering can fit in a coherent and integrated
framework of software science with overarching and durable theories and
foundations.

1.7 Summary

Software is a special type of behavioral information of computing and a
means of interaction between the information world and the physical world.
The nature of software makes software engineering a unique discipline,
which is innately the most complicated engineering branch that humans ever
experienced, and inherently the most overarching transdisciplinary field in
both theories and applications. These are also the reasons that set forth
software engineering as an ideal testbed for existing theories and
methodologies of a wide range of science and engineering disciplines from
mathematics to cognitive informatics, and from management science to
sociology.

Software engineering is an increasingly important discipline that
studies the nature of software, approaches and methodologies of large-scale
software development, and the laws behind software behaviors and software
engineering practices.

The study of the fundamental constraints of software engineering is
helpful for: a) Understanding fundamental problems in software engineering;
b) Guiding the development of software engineering theories and
methodologies; and (c) Evaluating software engineering theories, principles,
and techniques.

To deal with the difficulties inherent in large-scale software
development, the multidisciplinary foundations of software engineering
are yet to be explored. This book adopts an interdisciplinary approach to
explore the foundations of software engineering. This work attempts to put
together a number of multidisciplinary foundations for software engineering,
such as philosophy, computing, mathematics, informatics, systems science,
management science, cognitive science, linguistics, and measurement.

This chapter has introduced the nature, the problem domain, the
inherited constraints, and the transdisciplinary solutions towards software
engineering. A set of basic concepts of software engineering has been
presented. Fundamental problems and constraints of software engineering
have been identified. The approaches to software engineering have been
explored in the context of how the basic constraints of software engineering

© 2008 by Taylor & Francis Group, LLC

56 Part I Principles and Constraints of SE

may be dealt with. The framework of multidisciplinary foundations of
software engineering has been presented as a new approach towards software
engineering. This chapter has also described the architecture of this book. As
a result, the problem domain and its nature of software engineering, as
well as the fundamental approach to software engineering, have been
established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Introduction to Software Engineering, readers
have achieved the following strategic goals with the knowledge structure as
summarized below.

Chapter 1. Introduction

■ Software Engineering as a Discipline
 • The nature of software

 - The mathematical metaphor
 - The product metaphor

 - The informatics metaphor
 • The nature of software engineering
 • Status of software engineering as an engineering discipline
 • Characteristics of Software Engineering
 • Hierarchy of abstraction and descriptivity in software engineering

■ Fundamental Constraints of Software Engineering
 • The software engineering constraint model
 • Cognitive constraints of software engineering

- Intangibility, complexity, indeterminacy, diversity, polymorphism,
 inexpressiveness, inexplicit embodiment, and unquantifiable
 quality measures

 • Organizational constraints of software engineering
 - Time dependency, conservative productivity, and labor-time
 interlock

 • Resources constraints of software engineering
 - Costs, human dependency, and hardware dependency

■ Approaches to Software Engineering
 • Programming methodologies
 • Software development models

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 57

 • Automated software engineering
 • Formal methods
 • Software engineering processes
 • Theoretical foundations of software engineering

■ Transdisciplinary Foundations of Software Engineering
 • Engineering foundations
 • Philosophical foundations
 • Mathematical foundations
 • Computing foundations
 • Linguistics foundations
 • Information science foundations
 • Cognitive informatics foundations
 • Systems science foundations
 • Management science foundations
 • Economics foundations
 • Sociology foundations

SIGNIFICANT FINDINGS OF THIS CHAPTER

• Software engineering is an engineering discipline that studies the
nature of software, approaches and methodologies of large-scale software
development, and the laws behind software behaviors and software
engineering practices. This is a guideline in our search of software
engineering theories and foundations towards a matured engineering
discipline.

• The characteristics of theoretical problems under study in a field are

abstract, inductive, mathematics-based, and formal-inference-centered; while
those of empirical problems are concrete, deductive, data-based, and
experimental-validation-centered (Theorem 1.1).

• The theories and techniques of software engineering are centered by

the cognitive, organizational, and resources issues (see the SECM model).

• Software engineering is a unique and the most complicated

engineering discipline that is ever faced in the human history. The
constraints of software engineering are inherited by its intangibility,
complexity, and diversity.

© 2008 by Taylor & Francis Group, LLC

58 Part I Principles and Constraints of SE

• According to the abstraction and descriptivity model, the abstract
levels of cognitive information of both the objects and their behaviors can be
divided into the levels of analogue objects, diagrams, natural languages,
special notation systems, and mathematics. Software engineering was using
lowtech means (lower level abstraction) to deal with hightech problems
(higher level abstraction). This is the root of a whole bunch of problems in
software engineering.

• The problem in software engineering is not solely an empirical one

rather than a theoretical one. That is, the same set of fundamental problems
that could not been overcome in the last four decades indicates the existence
of fundamental constraints that need theoretical investigations to reveal the
laws and principles behind all the problems.

• A particular gap in the current software engineering curriculum is

the lack of a fundamental framework that provides students and practitioners
for overarching, durable, and multidisciplinary theories and foundations, in
order to explain a great many complicated phenomena and problems of
software engineering in terms of a core set of fundamental principles.

• A rigorous and theoretical approach is needed to seek the
fundamental principles and laws of software engineering, and their
transdisciplinary foundations required by the nature of the problems in
software engineering.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

• The IME model: The information-matter-energy (IME) model
provides a generic world view, which reveals that the concrete and abstract
worlds can be modeled as three essences known as matter, energy, and
information.

• According to the IME model, information plays a vital role in
connecting the physical world and the abstract world. Software is a
special type of behavioral information of computing and a means of
interaction between the information world and the physical world. The
nature of software makes software engineering a unique discipline,
which is innately the most complicated engineering branch that humans
experienced, and inherently the most overarching transdisciplinary field
in both theories and applications. These are also the reasons that set
forth software engineering as an ideal testbed for existing theories and
methodologies of a wide range of science and engineering disciplines

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 59

from mathematics to cognitive informatics, and from management
science to sociology.

Software Engineering as a Discipline

• Software is an intellectual artefact that provides a solution for a
repeatable computer application, which enables existing tasks to be done
easier, faster, and smarter, or which provides innovative applications for the
industries and in everyday life. Although the nature of software has been
perceived quite differently in research and practice of computing and
software engineering, the following perceptions on the nature of software can
be found in the literature:

 - Software is a mathematical entity
 - Software is a concrete product
 - Software is a set of behavioral information

• Software engineering is a discipline that adopts engineering

approaches, such as established methodologies, processes, measurement,
tools, standards, organisation methods, management methods, quality
assurance systems and the like, in the development of large-scale software
seeking to result in high productivity, low cost, controllable quality, and
measurable development schedule.

Fundamental Constraints of Software Engineering

• The abstraction and descriptivity model: The abstract levels of
cognitive information of both the objects and their behaviors can be divided
into the levels of analogue objects, diagrams, natural languages, special
notation systems, and mathematics.

• The cognitive constraints of software engineering (Theorem 1.2)

states that fundamental constraints of software engineering stem from
intangibility and intricate inner connections of software systems, and the
cognitive complexity to explicitly describe them.

• It is noteworthy that in software engineering the objects under
study are system and human behaviors in the abstract world rather than
concrete entities in the real world. This is a fundamental difference
between software engineering and other engineering disciplines.

• The expressive power of icons and diagrams are inadequate in

software engineering because they make software design and specifications
vague.

© 2008 by Taylor & Francis Group, LLC

60 Part I Principles and Constraints of SE

• It is recognized that architectures of software are complex
interrelated objects with functional variables and constraints; and
behaviors of software are embedded relational processes. These types
of abstract and complicated entities may only be expressed without
implication by professional notation systems, because only more
abstract and precise means is powerful enough to express an object at a
given level of abstraction.

• The law of explicit descriptivity (Theorem 1.3) states that only a

higher level of more abstract, precise, and rigor means is required to express
an object at a given level of abstraction.

• Symbolic notations and mathematics are the key means for

expressing and embodying software behaviors, because they are at
higher level abstraction and therefore with more adequate descriptive
power.

• The software engineering constraint model (SECM): SECM

models a comprehensive set of 14 basic constraints of software engineering
encompassing three categories known as

 • The cognitive constraints: such as intangibility, complexity,
indeterminacy, diversity, polymorphism, inexpressiveness,
inexplicit embodiment, unquantifiable quality measures.

 • The organizational constraints: such as time dependency,
conservative productivity, and labor-time interlock.

 • The resources constraints: such as costs, human dependency,
and hardware dependency.

• The problems and difficulties in software engineering are inherited;

behind them there are a set of cognitive, informatics, technical, systematic,
managerial, and social reasons, which are the driving force of all the
constraints in software engineering.

Approaches to Software Engineering

• Various approaches have been sought in order to deal with the

fundamental problems in software engineering as identified in the previous
section. The historical development in software engineering approaches
can be summarized as shown below:

 - Programming methodologies

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 61

 - Software development models
 - Automated software engineering environments
 - Formal methods
 - Software engineering processes
 - Theoretical foundations

Transdisciplinary Foundations of Software Engineering

• Transdisciplinary foundations of software engineering: Although
software engineering has emerged as a branch of computer science, it is
recognized that software engineering requires much broader and
multidisciplinary foundations as follows:

 - Principles of Software Engineering
 - Engineering Foundations
 - Philosophical Foundations
 - Mathematical Foundations
 - Computing Foundations
 - Linguistics Foundations
 - Information Science Foundations
 - Cognitive Informatics Foundations
 - Systems Science Foundations
 - Management Science Foundations
 - Economics Foundations
 - Sociology Foundations

• The complicity, broadness, and transdisciplinary nature of software

engineering sets forth an ideal testbed for existing theories and
methodologies of a wide range of science and engineering disciplines, such
as philosophy, mathematics, computing, linguistics, information science,
cognitive informatics, system science, management science, economics,
sociology, and engineering organization.

• From another angle, software engineering theories can contribute

significantly to those above mentioned disciplines. This forms the theme of
this book towards a transdisciplinary and rigorous framework of software
engineering foundations.

© 2008 by Taylor & Francis Group, LLC

62 Part I Principles and Constraints of SE

Questions and
Research Opportunities

1.1 What is the nature of software engineering? Is software

engineering unique or special in relation to the other engineering
disciplines?

1.2 According to Theorem 1.1, the criteria of theoretical problems

under study in a field are abstract, inductive, mathematics-based,
and formal-inference-centered; while the criteria of empirical
problems under study in a field are concrete, deductive, data-
based, and experimental-validation-centered. Try to identify three
example problems for each of these categories.

1.3 On the basis of Ex. 1.2, discuss why the basic problems of

software engineering, such as software system architectural
modeling and behavioral description, cannot be pursued solely by
empirical means and methodologies, but are needed for
theoretical and formal means and methodologies.

1.4 A number of myths have been identified in Section 1.1.2. Try to

find an additional myth on perceiving software engineering and
explain why it is a myth theoretically or empirically.

1.5 Discuss the meaning of Theorem 1.2 – the Information-Matter-

Energy (IME) model – and its impact on understanding the nature
of software and software engineering activities.

1.6 Referring to the general complexity threshold of software

engineering as given in Definition 1.2, discuss why sizes of
software systems are so important in determining the
methodologies and techniques of software engineering.

1.7 The Hierarchical Abstraction Model of System Descriptivity

(HAMSD) reveals that the abstract levels of cognitive
information and knowledge can be divided into five levels such
as those of analogue objects, diagrams, natural languages,
professional notations, and mathematics.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 63

Based on Theorem 1.4 and the HAMSD model, discuss what the
abstraction levels of software systems and the UML diagrams are,
and whether UML is adequate to model and describe a software
system.

1.8 What are the usages for studying the basic constraints of software

engineering and their categories?

1.9 Explain what are the cognitive constraints of software

engineering.

1.10 Explain what are the organizational constraints of software

engineering.

1.11 Explain what are the resource constraints of software

engineering.

1.12 Discuss the software dependencies on humans and hardware as

modeled in the resource constraints of software engineering.

1.13 Software vs. Hardware: Many traditional hardware architectures

and behaviors of systems can be digitalized, therefore
implemented by software. Taking an automobile as an example:

a) Construct a conceptual model of the automobile;

b) Try to analyze which parts (as many as possible) of the
automobile can be replaced by software;

c) Discuss what your understanding of the relationships between
software and hardware on the basis of this example.

1.14 Try to use Theorem 1.6 to prove (or explain) Corollary 1.4 – the

no number one principle in software engineering.

1.15 Explain Table 1.4 on the domain coverage of the different

approaches to software engineering, and analyze their strengths
and weaknesses.

1.16 Why is software productivity conservative? Is there any technique

that may help to increase programming productivity? (Refer to
Theorem 1.7)

1.17 Summarize the multidisciplinary foundations of software

engineering that will be covered in this book, and explain why the

© 2008 by Taylor & Francis Group, LLC

64 Part I Principles and Constraints of SE

transdisciplinary approach needs to be taken in understanding the
fundamental problems and potential solutions of software
engineering.

1.18 Searching for Relevant Theories: On the basis of Ex. 1.17, try to

propose one or more potential disciplines or subdisciplines that
may contribute to the maturity of software engineering theories
and methodologies.

1.19 There is an argument that programming has no scientific

foundations because both professionals and amateurs can write
programs. Do you agree with this observation? Why?

1.20 Why have more than half of software engineering projects failed

in the history? Is this a theoretical, organizational, cognitive, or
operational problem?

1.21 What are the attributes of software quality and can they be

quantitatively measured, therefore be controlled?

1.22 Is time and labor interchangeable in software engineering? If so,

what would be the constraints for the interchangeability between
them?

1.23 How is a project team optimally organized in large-scale software

engineering projects?

1.24 What would be the mathematical means for dealing with the

cognitive complexity of software engineering?

1.25 Software engineering methodologies have been evolved from

programming methods, software development models, CASE
tools, formal methods, and the software engineering process, to
transdisciplinary theoretical foundations. Referring to Section 1.4,
analyze the advantages and disadvantages of each approach to
software engineering.

1.26 Read the following classic article:

Edsger W. Dijkstra (1972), The Humble Programmer,

The 1972 Turing Award Lecture, Communications of

the ACM, 15(10), pp.859-866.

© 2008 by Taylor & Francis Group, LLC

Chapter 1 Introduction 65

Discuss the following topics in a group:

 • About the author.
 • What was the status of software engineering in the 1970s?

• Why would professional programmers feel humble? What
limitations of programmers and/or techniques of software
engineering resulted in this perception?

• What conclusions derived in the articles interested you?
Why?

 • Express your arguments or counter-points on any of the
conclusions.

© 2008 by Taylor & Francis Group, LLC

Chapter 2

PRINCIPLES OF
SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

1. Introduction

2.1 Introduction 2.4 SE Principles as Measures to its Constraints
2.2 Pioneer Pursuits of Principles for SE 2.5 Summary
2.3 A Unified Framework of SE Principles

2. Principles of
 Software
 Engineering

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

68 Part I Fundamental Principles of SE

Knowledge Structure

 Pioneer pursuits of principles for software engineering

 • Parnas’ principles of SE
 • Hoare’s principles of SE
 • Brooks’ principles of SE
 • Wasserman’s principles of SE

 • IEEE SESC’s principles of SE
 • IEEE Software magazine’s principles of SE

 A unified framework of software engineering principles

 • Elicitation of fundamental principles of SE
 • The unified framework of SE principles
 • Description of the fundamental principles of SE

 Software engineering principles as measures to its constraints

 • Principles for coping with the cognitive constraints
 • Principles for coping with the organizational constraints
 • Principles for coping with the resource constraints
 • A systematic view on mapping between the principles and constraints

Learning Objectives

 • To view software engineering principles as fundamental theorems and laws that

constrain software system behaviors and their design and implementation
processes.

 • To be aware of the major pioneer work of leading scientists in pursuing of
software engineering principles in the last four decades.

• To gain a unified and coherent framework of software engineering principles.

 • To understand the interrelationship between software engineering principles
and constraints with a systematical view.

 • To be able to apply the software engineering principles to tackle the
fundamental constraints of software engineering.

2. Principles of Software Engineering

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 69

 “The more science becomes divided into specialized disciplines, the more important
it becomes to find unified principles.”

Herman Haken (1977)

“As a software development professional, you need

knowledge of specific technologies to do your job. But you need knowledge of
software engineering principles to do your job well.”

Steve McConnell (1999)

2.1 Introduction

rinciples of a scientific or engineering field are the basic heuristic
rules, based on theoretical and empirical foundations, which provide a
fundamental and conceptual means for conducting research,

performing practice, and explaining various phenomena in the field.
Engineering sciences are disciplines of human enquiries that seek

solutions for complicated problems and systems that could not be done by
separate individuals. The key aim of engineering is to repetitively produce
complicated artifacts in an efficient way. Thus, to many professionals,
engineering means systematic planning, teamwork, rigorous process,
repeatability, as well as efficiency.

Software engineering is a maturing engineering discipline that adopts
the generic engineering principles in the development of large-scale
software, which could not be produced by individuals. Currently, software
development is evolving from the laboratory-oriented and all-round-
programmer-based practice to an industry-oriented and process-based
platform, and software developers are experiencing changes of roles from
craftsmen to regulated professionals – the software engineers. The practices
of the former are based on personal talents, tastes and art, while those of the
latter are based on disciplined processes and repeatable professional
activities.

Studying the vast literature of software engineering, readers may find
that pioneers in software engineering have addressed many fundamental
problems with insightful visions, and a large set of fundamental principles of
software engineering has been laid. In the remainder of this chapter, the
fundamental principles of software engineering will be presented as follows.
Section 2.2 reviews the major pioneer pursuits of principles for software
engineering in the last four decades, which provide a whole picture for

P

© 2008 by Taylor & Francis Group, LLC

70 Part I Fundamental Principles of SE

understanding the theories and foundations of software engineering. Section
2.3 presents a unified framework of software engineering principles with a
comprehensive set of 31 commonly identified fundamental principles of
software engineering. Then, Section 2.4 treats these fundamental principles
of software engineering as a set of powerful measures to tackle the 14 basic
constraints of software engineering as identified in Section 1.3.

2.2 Pioneer Pursuits of Principles
 for Software Engineering

Since the coining of the term software engineering in 1968 [Bauer, 1976;
Naur and Randell, 1969], efforts for attempting to identify the principles of
software engineering and to explain its implication and extension have been
continued. Although technologies have been changing from time to time, the
fundamental principles of software engineering have remained constant as
the crystallization of theories and methodologies over a long period of time.

A principle is a generic theorem, rule, or law of a theory that can be
applied to a wide range of cases or instances in a field of study. A principle
serves as a fundamental predicate for logical reasoning and deduction.
Principles can be classified into two categories known as the formal and
empirical/heuristic principles. Most known principles in software
engineering are empirical and heuristic. For supporting rigorous reasoning
and decision making in software engineering, formalization of those
empirical principles seems profoundly important and necessary.

Definition 2.1 Software engineering principles are a set of fundamental

and coherent theorems and laws that constrain the behaviours of software
systems and the processes of their development.

Software engineering principles are the essential knowledge that a

software engineer needs in order to develop software scientifically,
effectively, and professionally.

This section surveys the pursuits of fundamental principles in software
engineering by pioneers and leading institutions during the last four decades
in the development of software engineering. The work and contributions of
Davis L. Parnas, C.A.R. Hoare, Frederick P. Brooks, and Anthony I.
Wasserman, as well as the IEEE Software Engineering Standardization

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 71

Committee (SESC) and IEEE Software Board of Advisors, will be briefly
reviewed.

2.2.1 PARNAS’ PRINCIPLES OF SOFTWARE
 ENGINEERING

During the 1970s through the 1990s, David L. Parnas enunciated five
important principles of software engineering [Parnas,
1971/72/76/78/86/94a/94b/95/96/97/98; Aspray et al., 1996; Hoffman and
Weiss, 2001] as follows:

 • DP1: Information hiding
 • DP2: Modularization
 • DP3: Engineering approach
 • DP4: Professional responsibility
 • DP5: Documentation

The following subsections describe Parnas’ insightful visions on the

principles of software engineering.

2.2.1.1 Information Hiding

Information hiding (DP1) is a widely accepted principle for software
engineering identified by Parnas [Parnas and Clements, 1986], which
supposes that unnecessary details of information of software at a certain level
should be masked in lower level implementations.

Parnas viewed that the hierarchical approach to design is useful for
representing and describing a system following the principle of information
hiding. He enunciated that “a programmer is most effective if shielded from,
rather than exposed to, the details of system parts other than his own.”

In his classic papers [Parnas, 1971/72], Parnas explained that it was ill-
structured information distribution that made software systems dirty by
involving almost invisible connections (coupling) between supposedly
independent modules. Parnas believed that limitation of the information
coupling among modules was the key to improve design quality in software
system design.

Information hiding is considered as one of the major methodologies for
implementing modularization, functional decomposition, and stepwise
refinement in structured programming. It is also the foundation of a number
of modern software modeling techniques such as abstract data types,
encapsulation, object technology, and software components.

© 2008 by Taylor & Francis Group, LLC

72 Part I Fundamental Principles of SE

An equivalent expression of information hiding in software engineering
is abstraction, which describes how common properties and shared
information of a set of objects may be elicited and explicitly represented. As
a consequence of abstraction, the uncommon properties and unshared
information of software components are then hidden at lower level structures.

2.2.1.2 Modularization

Modularization (DP2) is a generic system construction approach in
almost all engineering disciplines. Modularization is important in software
engineering, particularly in structured programming, for dealing with
complexity in software architectural design and implementation.

The central idea of modularization is the assumption that a software
system can be broken up, or decomposed, into smaller functional pieces
during system design, and when they are implemented, the system can be
composed by integrating the pieces. The software pieces were called modules
during the 1950s through the 1980s, and then they are known as
classes/objects and components beginning in the 1990s. All these adopt the
philosophy known as divide-and-conquer.

Parnas considered that when systems are decomposed into a large
number of modules, structures need to be emphasized [Parnas, 1972], sharing
similar ideas with the concept of structured programming proposed by Dahl,
Dijkstra, and Hoare in the same period [Dahl et al., 1972] and the
contemporary concept of object-oriented and component-based software
engineering.

2.2.1.3 Engineering Approach

Parnas (1971/72) as well as Baure (1976) supposed that software
development has to take the engineering approach (DP3) in which the
common best practice matured in other engineering disciplines need to be
adopted. Software engineering should focus on ‘fundamental knowledge’
rather than specific techniques, ‘program design’ rather than ‘language
syntax’ or things that are ‘neither mathematical truths nor facts about the
world.’ Parnas wrote [Parnas, 1996]:

“Engineering educators have long known that their students

must be prepared to work in rapidly changing fields. We have
recognized that the educational program must stress fundamentals
– science, mathematics, and design discipline – so that graduates will
find their education still valid and useful late in their careers. Most
of the books that I used in my own engineering education are still
correct and relevant, several decades later. In contrast, many

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 73

introductory programming books are considered out of date before
the students who use them have graduated.”

In a number of papers [Parnas, 1995/96/97], Parnas stresses the

differences between software engineering and computer science, and
emphasizes that software engineering is not computer science. As a result of
this argument, we now understand more about the nature of software
engineering as a much broader field than that of computer science, which
encompasses the engineering organization foundations, cognitive informatics
foundations, and system science foundations [Wang, 2005g/05i/05l]. Further,
the objects of study in software engineering are behavioral information of
both machine and natural intelligence, which are more fundamental at the
root of human knowledge than that of computing.

2.2.1.4 Professional Responsibility

Professional responsibility (DP4) is identified by Parnas as a basic
principle for software engineering [Parnas, 1994a]. He classified the
professional responsibilities of software engineers into three categories
known as the personal, professional, and social responsibilities. According to
Parnas, the three categories of responsibilities can be defined as follows:

“Personal responsibilities are those that are shared by all

persons, no matter what is their profession or educational
background.

“Professional responsibilities are additional responsibilities
that we take on because we have become members of a particular
profession such as medicine, journalism, or engineering.

“Social responsibilities are responsibilities toward society as a
whole rather than toward other individuals.”

The particularly important responsibilities for software engineers

emphasized by Parnas are on accepting individual responsibility, solving the
real problem, being honest about capability, producing reviewable designs,
and software maintainability.

2.2.1.5 Documentation

Parnas and his colleague pointed out that: “Design without
documentation is not design [Parnas and Clements, 1986; Hoffman and
Weiss, 2001],” and “If it is not documented, it is not done [Parnas, 1994b].”
Computer programs were considered as the combination of algorithms and

© 2008 by Taylor & Francis Group, LLC

74 Part I Fundamental Principles of SE

data structures; whilst software is supposed as programs plus documents.
Hence, documentation (DP5) is a basic property of software systems.

Parnas puts emphases on the importance of documentation in software
engineering not only during the design phase of software development, but
also during implementation and maintenance [Hester, Parnas, and Utter,
1981]. According to the discussions on the fundamental constraints of
software engineering in Section 1.3, documentation is a major approach to
dealing with intangibility and cognitive complexity of all intermediate and
final work products in software engineering.

2.2.2 HOARE’S PRINCIPLES OF SOFTWARE
 ENGINEERING

In a number of basic studies [Hoare, 1969/73/75/80/94], C.A.R. (Tony)
Hoare identified seven generic principles of software engineering as follows:

 • TH1: Professionalism

 • TH2: Vigilance
 • TH3: Sound theoretical knowledge
 • TH4: Using tools
 • TH5: Abstraction
 • TH6: Structured programming
 • TH7: Readability

The above list provides Hoare’s insight on the ‘sound engineering

principles’ as Bauer implied. The following subsections describe Hoare’s
views on the principles of software engineering.

2.2.2.1 Professionalism

Hoare defined professionals as those who earn their living by using
their special knowledge and expertise. Professionalism (TH1) represents the
qualification, identity, ethic, and pride of a group of highly qualified people
in a sector of society or engineering fields.
 Professional engineers value and maintain professional integrity. They
should be able to understand client needs, and have the capability,
confidence, and status to advise and persuade clients of their genuine
requirements. Their activities are founded on professional skills as well as
tried and tested techniques. They will aim to recommend a solution that is
cost-effective, simple, efficient, practical, and satisfactory [Hoare, 1975/94].

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 75

2.2.2.2 Vigilance

Vigilance (TH2) is the awareness of possible dangers, risks, and/or
difficulties in a field. It can also be an action of keeping careful watch for the
dangers, risks, and difficulties. Vigilance in software engineering is meant by
Hoare as watchfulness or practice with caution [Hoare, 1975]. Dijkstra used
a similar term “humble” [Dijkstra, 1972] to describe this important
characteristic of professional software engineers.

2.2.2.3 Sound Theoretical Knowledge

Sound theoretical knowledge (TH3) refers to principles, mathematical
theories, and standard codes of practice based upon which engineering
practices are premised [Hoare, 1975; Hoare and Jones, 1989]. This is an
analogy to other matured engineering disciplines, such as mechanical
engineering and electrical engineering, in which mathematical modeling and
logical reasoning are applied to represent system components and the ways in
which the components fit together.

2.2.2.4 Using Tools

It has been observed that all engineering disciplines adopt specialized
tools in order to improve productivity and assure quality. Using tools (TH4)
is a sign of professionalism in engineering.

Software engineers should be able to select and use a range of tools of

proven quality, effectiveness, efficiency, precision, and convenience [Hoare,
1975; Hoare and Jones, 1989].

2.2.2.5 Abstraction

Abstraction (TH5) is an approach to deal with common properties of
objects under study with symbolic representations and with rigorous
treatment. Mathematic logic, set theory, and algebra are perfect paradigms of
applications of abstraction.

Hoare and his colleagues attempted to introduce abstract means of

mathematics into programming language design and programming [Hoare,
1986; Hoare et al., 1987]. Hoare contributed two powerful concepts for
abstraction in programming. One is the process concept for program
behavior abstraction [Hoare, 1978/85]. The other is axiomatic semantics for
program semantic abstraction and their correctness proof on the basis of the
semantics [Hoare, 1969].

© 2008 by Taylor & Francis Group, LLC

76 Part I Fundamental Principles of SE

2.2.2.6 Structured Programming

In Structured Programming (TH6), Dahl, Dijkstra, and Hoare proposed
a systematic approach to the design, development, and documentation of
computer programs [Dahl, Dijkstra and Hoare, 1972]. The concept of
stepwise design refinement is explored. Hoare also studied the logic of
engineering design, and developed the axiomatic basis for computer
programming [Hoare, 1969].

2.2.2.7 Readability

Readability (TH7) of software refers to the extent of how
understandable a program is in a given programming language. Hoare
asserted [Hoare, 1973]:

“The readability of programs is immeasurably more important

than their writeability.” However, “The objective of readability by
human beings has sometimes been denied in favor of readability by a
machine; and sometimes even been denied in favor of abbreviation
of writing, achieved by a wealth of default conventions and implicit
assumptions.”

Hoare believed that readability should be an important attribute of all

programming languages [Hoare, 1973/80; Hoare and Wirth, 1966].
Readability may also be extended to documentations and design work
products in software engineering. This principle also implies a striving for
elegance and simplicity in software design and implementation.

2.2.3 BROOKS’ PRINCIPLES OF SOFTWARE
 ENGINEERING

In his well received paper [Brooks, 1987], “No Silver Bullets – Essence
and Accident in Software Engineering,” Frederick Brooks predicated that
there will be no individual methodology or tool that can solve all
fundamental problems in software engineering and yield a ten-fold
productivity boom in software development in the given decade. Brooks
drew this conclusion by identifying the four basic constraints of software
development known as the essences below, in contrast to the trivial
difficulties called accidents in software engineering:

 • FB1: Complexity
 • FB2: Conformity

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 77

 • FB3: Changeability
 • FB4: Invisibility

Brooks argued that essential difficulties of software engineering

encompass the inherited complexity, real-world conformity, inevitable
changeability, and abstractive invisibility as shown in Fig. 2.1. The following
subsections describe Brooks’ discoveries on the principles of software
engineering with the framework as modeled in Fig. 2.1.

Figure 2.1 Brooks’ constraints of software engineering

2.2.3.1 Complexity

Complexity (FB1) of software refers to the fact that software
complexity is determined by the nature of problems. No language, tool, or
technology may reduce the complexity of a given problem itself.

The complexity of software can be analyzed from the aspects of
requirement complexity, design/architectural complexity, and decision
traceability complexity. The naturally inherited complexity of the object of
study makes software engineering one of the most complicated engineering
fields.

Properly designed software has no homogeneity, which prevents the
scaling of low-level solutions to higher-level problems. As complexity is an
essential property of software, it cannot be abstracted away without losing
the correctness and applicability of the result [Brooks, 1975/95].

Software Engineering Constraints

Complexity Conformity Invisibility Changeability

Requirement

Design/
architecture

Traceability

Adaptability

Expansion

Pruning

Operating
environment

Human users

© 2008 by Taylor & Francis Group, LLC

78 Part I Fundamental Principles of SE

2.2.3.2 Conformity

Conformity (FB2) of software refers to the natural and human
constraints to a software system. The proper functioning of a software system
is both human and hardware dependent, because the given software system
must seamlessly adapt to an operating platform and to users who apply it in a
certain working environment.

In addition, there are existing regulations, standards, requirements, and
quality expectations to be confirmed setting forth for a software system.
Therefore, software is always being put into a context where decision
parameters of the environment are out of the influence of the designers
[Brooks, 1975].

2.2.3.3 Changeability

Changeability (FB3) of software refers to the constant need for change
and adaptation of functionality. Brooks considered software changeability to
encompass adaptability, expansion, and pruning.

For a physical product, a rule of thumb is “if it does not break, do not
fix it.” However, a software system is under continuous psychological and
practical pressure to be improved from both motivations of developers and
users of the system [Brooks, 1975]. This is because there is no perfect
solution for a software system, and even an originally good solution may
become obsolete over time, or due to technical advance and additional user
demands.

Changeability is the innate characteristic to explain why people adopt a
software solution for a given problem rather than a hardware solution. As a
consequence, the requirements and expected functionality of a software
system are always a moving target.

2.2.3.4 Invisibility

Invisibility (FB4) of software refers to its abstract trait and intangibility.
Software defies physical representation, because its time and operational
complexity cannot be successfully captured and explicitly described by using
physical models, an invaluable tool for designers and inventors in other
fields. Brooks perceived that software invisibility “not only impedes the
process of design within one mind, it severely hinders communication among
minds [Brooks, 1987].”

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 79

The invisibility of software lies in two interlocked aspects: the
architecture and behaviors of software. The former is very difficult to be
visualized if it is still possible. The latter is almost impossible to be
visualized by any diagram-based or “geometrical” means. Recent studies on
dealing with software invisibility adopt denotational mathematics such as
Real-Time Process Algebra (RTPA) [Wang, 2002a/02b/03c/06a/07a], which
will be described in Chapter 5 on mathematical foundations of software
engineering.

2.2.4 WASSERMAN’S PRINCIPLES OF SOFTWARE
 ENGINEERING

In an article on “Toward a Discipline of Software Engineering,”

Anthony Wasserman surveyed the literature and summarized the following
eight principles of software engineering [Wasserman, 1996]:

 • AW1: Abstraction
 • AW2: Methods and notations
 • AW3: Prototyping
 • AW4: Modularity and architecture
 • AW5: Lifecycle and process
 • AW6: Reuse
 • AW7: Metrics
 • AW8: Tools and integrated environments

Wasserman identified that despite the rapid changes in software

engineering techniques, the above fundamental principles have been kept
constant and together constitute a viable foundation for software engineering.
The following subsections describe Wasserman’s perceptions on the
principles of software engineering.

2.2.4.1 Abstraction

“Abstraction (AW1) is a fundamental technique for understanding and
solving problems [Wasserman, 1996].” Abstraction is a common intellectual
technique for managing the understanding of complex items. It allows us to
concentrate on a problem at some generalized level without regard to
irrelevant low-level details. Abstraction is the central concept of information
hiding, which lets software developers focus on the appropriate level of
detail concerning a software component.

© 2008 by Taylor & Francis Group, LLC

80 Part I Fundamental Principles of SE

2.2.4.2 Methods and Notations

Wasserman believed that “Analysis and design methods and notations
(AW2) are basic tools for communication in an engineering discipline. … If
software engineering is to mature as a discipline, standard specification and
design notations have to be developed [Wasserman, 1996].”

It is perceived that analysis and design methodologies as well as
notations are helpful to fill the cognitive leap from requirement specification
to system implementation in software engineering. Analyses consider the
problem space, address the structure of the problem, and include the logical
structures of objects in the real world. Design deals with the structures of the
system that implements a solution to the problem.

Wasserman identified that almost all engineering disciplines use
standard blueprints, block diagrams, and/or schematic diagrams. But
software engineering was an exception, where hundreds of different
notations and programming languages were used and the community is still
expecting new ones. He suggested that it is possible to develop a method-
independent software notation that represents a system design which may be
implemented by various development methods.

2.2.4.3 Prototyping

Prototyping (AW3) is a universal practice in engineering disciplines.
Many rapid development methods are based on prototyping.

Wasserman considered prototyping was particularly useful in Graphic
User Interface (GUI) design and implementation. He wrote: “Prototyping of
the user interface is the most effective way to elicit user requirements and to
improve usability of applications [Wasserman, 1996].”

As well as a system can be designed and described hierarchically by
different levels, it can also be implemented in the same way. Prototyping is a
natural approach to implement a complex software system by different level
of abstraction from the top-down.

2.2.4.4 Modularity and Architecture

As Parnas pointed out, modularity and architecture (AW4) are a pair of

techniques that complement each other. Modules are the materials, and
architecture is the framework that accommodates the modules and allows
them to work as a whole.

Wasserman identified that “Software architectures play a major role in
determining system quality and maintainability [Wasserman, 1996].” He
commented that of all the various qualities of software design, none has
proven over time to be more significant than modularity. Objects,
components, design patterns, and application frameworks are modern
techniques that apply the modularization principle of software engineering.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 81

2.2.4.5 Lifecycle and Process

Wasserman considered software lifecycles and processes (AW5) to be
the infrastructure of software development. Although small- or medium-sized
software may adopt ad hoc and rapid development methods, large-scale
software system development, which involves numerous developers,
supporting staff, and customers for months or years, requires well-defined
processes. Also, large and complex software development is both the goal
and the reason of software engineering. Therefore, he suggested that having
some defined and manageable process for software development is much
better than not having one at all [Wasserman, 1996].

2.2.4.6 Reuse

Wasserman agreed that “reuse (AW6) of existing software
development assets is an essential part of any software development process
[Wasserman, 1996].”

However, he observed that “effective reuse beyond the level of function
and class libraries has proven to be more difficult than hoped,” because it
was hard to build high quality reusable components. He observed that there
were fundamental technical barriers in conducting code reuse, such as
application diversity, delayed time-to-market, and extra work involved.

2.2.4.7 Metrics

Wasserman perceived that metrics (AW7) play an important role in
quantifying software engineering measurement. He surveyed a wide range of
software metrics on software processes, quality, defects, productivity,
schedule, sizes, architectures, tests, and costs. Based on the survey, he
asserted that: “improvements in the software development process and
system quality cannot be evaluated without an effective metrics effort
[Wasserman, 1996].”

2.2.4.8 Tools and Integrated Environments

To increase efficiency and productivity, software engineering processes
have to be supported by appropriate tools and integrated environments
(AW8). Wasserman supposed that the infrastructure of software engineering
encompasses integrated tools of object management, process management,
communication, and operating systems. “The application development
environment and its tools should provide comprehensive and integrated
support for the development process [Wasserman, 1996].”
 Wasserman identified that tool integration in software engineering falls
into five categories, such as platform integration, presentation integration,

© 2008 by Taylor & Francis Group, LLC

82 Part I Fundamental Principles of SE

process integration, data integration, and control integration. The issues
surrounding tool integration are complicated and involve both technical and
business trade-offs. Therefore, much work needs to be done before
comprehensive multivendor and multiplatform CASE tools may be achieved.

2.2.5 IEEE SESC’S PRINCIPLES OF SOFTWARE
 ENGINEERING

An international effort has been devoted by the IEEE Software

Engineering Standards Committee (SESC), in collaboration with the
IEEE/ACM Joint Committee on Software Engineering Body of Knowledge
(SWEBOK) and ISO/IEC JTC1/SC7, to identify fundamental principles of
software engineering during 1996 to 2000 [Davis, 1994; SESC, 1996/97/99;
Tripp, 1996; Abran et al., 1999; Dupuis et al., 1999].

The First IEEE Forum on Software Engineering Standards Issues
(SES’96) was held in Montreal, Canada in October 1996 as a part of the
International Symposium on Software Engineering Standards (ISESS’96).
Following the success of ISESS’96, two events, ISESS’97 and ISESS’99,
were held in Walnut Creek, California and Curitiba, Brazil, respectively.
 It is believed that based on the cumulated experience, we may identify
the underlying principles of software engineering that are fundamental and
hence enduring. The purposes of IEEE SESC were to promote the
recognition of software engineering as a well-established discipline, and to
provide a broader and richer framework for establishing relationships among
groups of software engineering standards.

Robert Dupuis and his colleagues reported that a Delphi study was
conducted in 1997 over the Internet among 14 renowned researchers to
identify a first candidate list of fundamental principles of software
engineering. A second workshop was held at the International Software
Engineering Standards Symposium (ISESS’97) to reformulate or eliminate
some of the principles and the selection criteria. Then, a second Delphi study
was conducted in 1998 among 31 IEEE software engineering committee
members in order to improve the set of principles. From this study a list of 15
fundamental principles of software engineering has been compiled
[Dupuis et al., 1999] as shown in Table 2.1.

All the principles proposed in Table 2.1 provide a fundamental view on
software engineering by identifying a set of durable characteristics and
processes. According to a number of surveys, the most significant principles
are SC7 – understanding the problem, SC12 – change management, and
SC13 – specify tradeoffs. The least significant principles are SC9 – minimize
components coupling, SC1 – quantitative measurements, and SC4 – rigorous
specification. There are two principles, SC10 – stepwise development and
SC11 – specify quality objectives, with the weights unidentified.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 83

Table 2.1
The IEEE SESC Proposed Principles of Software Engineering

No. Principle Detailed Description Mean

Weight
[0 ..10]

SC1 Quantitative
measurements

Apply and use quantitative measurements in
decision-making

7.5

SC2 Reuse Build with and for reuse 8.3
SC3 Control complexity Control complexity with multiple perspectives and

multiple levels of abstraction
8.0

SC4 Rigorous specification Define software artifacts rigorously 7.5
SC5 Software process Establish a software process that provides

flexibility
7.9

SC6 Disciplined approach Implement a disciplined approach and improve it
continuously

8.0

SC7 Understanding the
problem

Invest in the understanding of the problem 9.6

SC8 Management
of quality

Manage quality throughout the life cycle as
formally as possible

8.3

SC9 Minimize components
coupling

Minimize software components interaction 7.8

SC10 Stepwise development Produce software in a stepwise fashion -
SC11 Specify quality

Objectives
Set quality objectives for each deliverable product -

SC12 Change management Since change is inherent to software, plan for it and
manage it

9.4

SC13 Specify tradeoffs Since tradeoffs are inherent to software
engineering, make them explicit and document
them

8.8

SC14 Domain knowledge To improve design, study previous solutions to
similar problems

8.5

SC15 Uncertainty
management

Uncertainty is unavoidable in software engineering.
Identify and manage it

8.7

2.2.6 IEEE SOFTWARE MAGAZINE’S PRINCIPLES OF
 SOFTWARE ENGINEERING

In reviewing the best influences during the software engineering’s first
50 years [McConnell, 1999], the advisor board of IEEE Software selected the
following 11 principles for software engineering developed in the past
century.

 • SW1: Reviews and inspections
 • SW2: Information hiding
 • SW3: Incremental development

© 2008 by Taylor & Francis Group, LLC

84 Part I Fundamental Principles of SE

 • SW4: User involvement
 • SW5: Automated revision control
 • SW6: Internet development
 • SW7: Programming languages hall of fame
 • SW8: Capacity maturity model (CMM)
 • SW9: Object-oriented programming
 • SW10: Component-based programming
 • SW11: Metrics and measurement

The following subsections describe the IEEE Software Editors’

perceptions on the principles of software engineering [McConnell, 1999].

2.2.6.1 Reviews and Inspections

Reviews and inspections (SW1): “One of the great
breakthroughs in software engineering was Gerald Weinberg’s
concept of egoless programming – the idea that no matter how
smart a programmer is, reviews will be beneficial. Weinberg’s ideas
were formalized by Michael Fagan into a well-defined review
technique called Fagan inspections. The data in supporting of the
quality, cost, and schedule impact of inspections are overwhelming.
They are an indispensable part of engineering high quality software.”

2.2.6.2 Information Hiding

Information hiding (SW2): “David Parnas’ 25-year old concept
of information hiding is one of the seminal ideas in software
engineering – the idea that good design consists of identifying
“design secrets” that a program’s classes, modules, functions, or
even variables and named constants should hide from other parts of
the program. While other insights into how to come up with the good
design ideas in the first place, information hiding is at the
foundation of both structured design and object-oriented design. In
an age when buzzword methodologies often occupy center stage,
information hiding is a technique with real value.”

2.2.6.3 Incremental Development

Incremental development (SW3): “The software engineering
literature of the 1970s was full of horror stories of software
meltdowns during the integration phase. Components were brought

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 85

together for the first time during ’system integration.’ So many
mistaken or misunderstood interface assumptions were exposed at
the same time that debugging a nest of intertwined assumptions
became all but impossible. Incremental development and integration
approaches have virtually eliminated code-level integration problems
on modern software projects. Of these incremental approaches, the
daily build is the best example of a real-world approach that works.
It minimizes integration risk, provides steady evidence of progress
to project stakeholders, keeps quality levels high, and helps team
morale because everyone can see that the software works.”

2.2.6.4 User Involvement

User involvement (SW4): “We have seen tremendous
developments in the past several years in techniques that bring
users more into the software product design process. Techniques
such as JAD sessions, user interface prototyping, and use cases
engage users with product concepts in ways that paper
specifications simply cannot. Requirements problems are usually
listed as the number one cause of software project failure; these
techniques go a long way toward eliminating requirements problems.”

2.2.6.5 Automated Revision Control

Automated revision control (SW5): “It takes care of mountains
of housekeeping details associated with team programming projects.
In the Mythical Man-Month in 1975, Fred Brooks’ “surgical team”
made use of a librarian. Today, that person’s function is handled by
software. The efficiencies by today’s programming teams would be
inconceivable without automated revision control.”

2.2.6.6 Internet Development

Internet development (SW6): “What we have seen with the
Open Source development is just the beginning of collaborative
efforts made possible via the Internet. The potential this creates
for effective, geographically distributed programming is truly mind
boggling.”

2.2.6.7 Programming Languages Hall of Fame

Programming language hall of fame (SW7): “Programming
languages hall of fame: FORTRAN, COBOL, Turbo Pascal, Visual

© 2008 by Taylor & Francis Group, LLC

86 Part I Fundamental Principles of SE

Basic. A few specific technologies have had significant influence on
software development in the past 30 years.

“Academics and researchers talked about components and
reuse for decades, and nothing happened. Within 18 months of
Visual Basic’s release, a thriving pre-built components market had
sprung from nothing. The direct-manipulation, drag-and-drop, point-
and-click programming interface was a revolutionary advance.”

2.2.6.8 Capability Maturity Model

Capacity maturity model (SW8): “The Software Capability
Maturity Model (CMM) is one of the few branded methodologies
that has had any affect on typical software organizations. More
than 1,000 organizations and 5,000 projects have undergone CMM
assessment, and dozens of organizations have produced mountains
of compelling data on the effectiveness of process improvement
programs based on the CMM model.”

2.2.6.9 Object-Oriented Programming

Object-oriented programming (SW9): “Object-oriented
programming offered great improvements in ‘natural’ design and
programming. After the initial hype faded, practitioners were
sometimes left with programming technologies that increased
complicity, provided only marginal productivity gains, produced
unmaintainable code, and could only be used by experts. In the final
analysis, the real benefit of object-oriented programming is
probably not objects, per se, but the ability to aggregate
programming concepts into larger chunks than subroutines or
functions.”

2.2.6.10 Component-Based Development

Component-based development (SW10): “Component-based
development has held out much promise, but aside from a few
limited successes, it seems to be shaping up to be another idea that
works better in the laboratory than in the real world. Component-
version incompatibilities have given rise to massive setup-program
headaches, unpredictable interactions among programs, de-
installation problems, and a need for utilities that restore all the
components on a person’s computer to ‘last known good state.’ This

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 87

might be one of the ten best for the twenty-first century, probably
not for the twentieth.”

2.2.6.11 Metrics and Measurement

Metrics and Measurement (SW11): “Metrics and measurement
have the potential to revolutionize software engineering. In the few
instances in which they have been used effectively (NASA’s
Software Engineering Lab and a few other organizations), the
insights that well-defined numbers can provide have been amazingly
useful. Powerful as they can be, software process measurements are
not the end, they are the means to the end. The metrics community
seems to forget this lesson again every year.”

Steve McConnell concluded that “An investment in learning software

engineering principles is a particular good investment for a software
professional to make because that knowledge will last a whole career – not
be half obsolete within three years (as those of software development
technologies) [McConnell, 1999].”

2.3 A Unified Framework of
 Software Engineering Principles

The ultimate objective of investigations into the principles of software
engineering is to build an integrated inference framework with axioms
implicitly defining primitive concepts, principles, and rules in order to
construct higher order concepts and theories of software engineering. The
fundamental principles are supposed to be self-evident if not tautologies. The
implications of these principles, like most theorems on the other hand, may
be far from trivial.

Section 2.2 presents a comprehensive survey on existing fundamental
software engineering principles and methodologies. There are 50 principles
identified individually by different authors or institutions. It would be useful
to rethink the parable of the blind men and the elephant about searching the
truth, which probably tells a quite similar situation as we got in seeking the
principles for the giant elephant of software engineering.

© 2008 by Taylor & Francis Group, LLC

88 Part I Fundamental Principles of SE

This section introduces a method of constraints vs. measures to elicit
and integrate the entire set of principles of software engineering. By this
approach, each principle for software engineering is introduced as a measure
that may be used to deal with one or more constraints and problems in
software engineering. Then, all principles can be organized into a coherent
framework of software engineering principles. The purposes and usability of
the principles can also be clarified by mapping them into the constraints of
software engineering.

2.3.1 ELICITATION OF FUNDAMENTAL PRINCIPLES
 OF SOFTWARE ENGINEERING

A significant problem in the software engineering community is the
tendency to think that a brilliant new idea or powerful future tool will solve
all current problems. This tendency is so strong that previously proven
methods or tools would be forgotten as soon as a new idea gains some
support, and consequently problems are re-solved in a new style. Maarten
Boasson recognized that this is a perfect recipe for preventing progress in a
discipline [McConnell, 2000].

Definition 2.2 A principle of software engineering is a generic

theorem, rule, law, or methodology that can be applied to a wide range of
cases and instances in software engineering.

The IEEE Software Engineering Standards Committee (SESC)

proposed that the following criteria can be used to select the fundamental
principles for software engineering [SESC, 1996/97/99; Tripp, 1996; Abran
et al., 1999; Dupuis et al., 1999]:

 • Principles are less specific than methodologies and techniques
 • Principles are more enduring than methodologies and

techniques
 • Principles should be able to withstand the test of time
 • Principles should be selected or elicited from best practices
 • Principles should not contradict more general engineering or

computer science principles
 • Principles should be precise enough to be applied and

implemented
 • Principles should not conceal a tradeoff

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 89

Table 2.2
The Integrated Set of Software Engineering Principles

Individually Identified Principles No Unified Principles
Parnas

(DP)

Hoare

(TH)

Brooks

(FB)

Wasser-
man

(AW)

IEEE
SESC
(SC)

IEEE
Software

(SW)
1 Abstraction TH5 AW1
2 Decomposition and

modularization
DP2 TH6 AW4 SC9 SW9

SW10
3 Information hiding DP1 SW2
4 Engineering approach DP3 SC6
5 Professionalism DP4 TH1
6 Tools and environments TH4 AW8 SW5

7 Documentation DP5
8 Stepwise refinement SC10 SW3
9 Prototyping AW10
10 Engineering notations AW2 SW6, SW7
11 Process models AW5 SC5 SW8
12 Reuse AW6 SC2
13 Measurement and metrics AW7 SC1 SW11
14 Cognitive complexity

control
 FB1 - 3 SC3

15 Formal requirement
specification

 SC4,
SC7

16 Systematical quality
assurance

 SC8,
SC11

17 Review and inspection SW1
18 Management engineering SC12/15
19 Domain knowledge SC14
20 Customer involvement SW4
21 Feasibility analysis SC13
22 Comprehensibility TH7
23 Exception handling TH2
24 Divide-and-conquer DP2
25 Visualization FB4
26 Theoretical foundations TH3
27 Architecture and

behavior modeling

28 Standardization
29 Systems engineering
30 Engineering organization
31 Cognitive engineering

There are 50 software engineering principles identified in Section 2.2

with considerable overlaps as well as gaps. Also, it is noteworthy that the

© 2008 by Taylor & Francis Group, LLC

90 Part I Fundamental Principles of SE

ways in which the principles were identified and proposed were ad hoc and
informal. Eliminating overlaps among these proposals, there are 26 software
engineering principles identified in the literature as shown in Table 2.2.
Those principles that have not been identified in Section 2.2 are newly
proposed by the author based on recent studies on the nature of software and
software engineering, such as architectural and behavioral modeling, system
engineering, engineering organization, cognitive engineering, and theoretical
foundations [Wang, 2001g/02j/02g/04a/04b/05i/05k/05j/06a/06h/06i; Wang
and Patel, 2000; Wang et al. 2006].
 This section attempts to systematically derive a set of fundamental
principles of software engineering that is commonly recognized in the work
of Parnas, Hoare, Brooks, Wasserman, McConnell, IEEE SESC, Wang
[Wang, 2004c/05a/05i/05k/05l; Wang et al., 2004], and of many other
authors. It is achieved by a mapping between the principles identified in
Section 2.2 as summarized in Table 2.2. A set of 31 fundamental principles
of software engineering is then elicited, and each of them will be formally
described in the remainder of this section.

2.3.2 THE UNIFIED FRAMEWORK OF SOFTWARE
 ENGINEERING PRINCIPLES

The relationship between the fundamental principles and basic
constraints of software engineering is a complicated relational network. A
main thread to analyze their relations is to perceive the constraints are the
problems, and the principles are the measures to tackle the problems. On the
basis of this thread, a mapping between the 31 fundamental principles
developed in this chapter and the 14 basic constraints as identified in Section
1.3 can be carried out as shown in Fig. 2.2. A detailed mapping of the
principles of software engineering into the basic constraints in the categories
of cognitive, organization, and resources will be presented in Section 2.4 and
summarized in Table 2.3.

2.3.3 DESCRIPTION OF THE FUNDAMENTAL
 PRINCIPLES OF SOFTWARE ENGINEERING

The following subsections describe each of the 31 fundamental
principles for software engineering as identified in the unified framework
shown in Table 2.2 with a more rigorous and formal treatment.

2.3.3.1 Abstraction

Abstraction is a powerful means of philosophy and mathematics. It is
also a preeminent trait of the human brain identified in cognitive informatics
studies. All formal logical inferences and reasoning can only be carried out
on the basis of generic and abstract properties shared by a given set of

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 91

objects under study. Abstraction is a powerful key to reduce complexity in
software engineering.

Definition 2.3 Abstraction (PR1) is a software engineering principle
for eliciting essential properties of a set of objects while omitting inessential
details of them.

PR1 Abstraction C1
Intangibility

C2
Complicity

C3
Indeterminacy

C4
Diversity

C5
Polymorphism

C6
Inexpressiveness

C7
 Inexplicit embodiment

C8
 Unquantifiable quality

C10
Conservative productivity

C11
 Labor-time interlock

C12
Costs

C13
Human dependency

C14
Hardware dependency

C9
 Time dependency

PR2 decomposition/
 modularization

PR17 Review and
 inspection

PR3 Information
 hiding

PR4 Engineering
 approach

PR19 Acquiring
 domain
 knowledge

PR5 Professionalism

PR6 Tools and
 environments

PR7 Documentation

PR8 Stepwise
 refinement

PR14 Cognitive
 Complexity
 control

PR9 Prototyping

PR10 Adopting
 Engineering
 notations

PR11 Process
 modeling

PR12 Reuse

PR13 Measurements
 and metrics

PR18 Management
 engineering

PR15 Formal
 Requirement
 specification

PR16 Systematic
 quality
 assurance

PR25 Explicit
 embodiment

PR29 System
 engineering

PR26 Establishing
 theoretical
 foundations

PR27 Architecture
 and behaviour
 modeling

PR28 Standardization

PR31 Cognitive
 engineering

PR30 Engineering
 organization

PR23 Exception
 handling

PR22 Improving
 comprehen-
 sibility

PR21 Feasibility
 analysis

PR20 Customer
 involvement

PR24 Divide and
 conquer

Figure 2.2 Principles of software engineering as measures for its constraints

© 2008 by Taylor & Francis Group, LLC

92 Part I Fundamental Principles of SE

The mathematical principle of abstraction in set theory will be
rigorously described in Section 4.2. Human abstract knowledge about the
world may be described by a set of objects and their relations. For seeking
generality and universal truth, either the objects or the relations can only be
abstractly described and rigorously inferred by abstract models rather than
real-world details.

Abstraction is recognized as a gifted capability of human beings. It is a
basic cognitive process of the brain that is modeled at the meta cognitive
layer of the cognitive models of the brain as described in Chapter 9.
Throughout this book, it will be seen that only by abstraction the important
theorems and laws of software engineering may be elicited and discovered
from a great variety of phenomena and empirical observations in software
engineering.

2.3.3.2 Decomposition/Modularization

 In software engineering, decomposition as a process results in
modularization. The contemporary concepts of software modules are such as
objects, components, design patterns, and applications frameworks.

Definition 2.4 Decomposition and modularization (PR2) are a software
engineering principle by which the functions of a software system are broken
up and allocated into individual modules or components.

The central idea of modularization is based on the basic assumption
that a software system can be broken up or decomposed into smaller
functional pieces during system design. When these pieces are implemented,
the system can be composed by integrating these pieces together. This is
known as the re-composability of software. The decomposed software pieces
were called modules during the 1950s to the 1980s, and then they are known
as classes/objects or components since the 1990s.

An important condition of modularization is that a global view, i.e., the
big picture of the whole system, should be consistently maintained and
relationships among components and between the system and the
components should be unambiguously understood. During functional
decomposition, the modules/components and their interfaces should be
clearly defined.
 Another rule in modularization is localization by which logically
related functions and operations will be encapsulated into one module or
components. This will also improve module cohesion and decrease module
coupling.
 However, many evidences of problems in software engineering indicate
that the decomposition-integration approach, or the basic assumption of the
reassembly-ability of software, may be doubtful. Because, according to

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 93

system theory as described in Chapter 10, the information loss during
decomposition may lead to a non-lossless conjunction of the modules into a
coherent system.

2.3.3.3 Information Hiding

 Information hiding is a consequence of abstraction (PR1) and
modularization (PR2). In other words, the methodology for information
hiding is abstraction and modularization.

Definition 2.5 Information hiding (PR3) is a software engineering
principle for the reduction and mask of unnecessary information of software
at a given level from the lower level details.

The purpose of information hiding is to keep the uncommon properties
and unshared information of software components at lower level constructs.
Information hiding and modularization are helpful to limit the degree of
coupling between software components, prevent propaganda of faults,
changes, maintenance errors into other components of a software system.

Parnas proposes that the key to improve design quality in software
system design is to limit the information coupling among modules [Parnas,
1971/72]. Parnas points out that “a programmer is most effective if shielded
from, rather than exposed to, the details of systems parts other than his own
[Parnas and Clements, 1986].”

Abstraction and set theory provides rigorous means to describe
information hiding. The HAMSD model and the mathematical foundations of
information hiding and abstraction are discussed in Sections 1.2.4 and 4.2,
respectively.

2.3.3.4 Engineering Approach

Although the engineering approach to software development was first
proposed by Baure in 1968 [Naure and Randell, 1969; Bauer, 1976], Parnas
best expressed the need of software engineering and what the engineering
characteristics and professionalism are [Parnas, 1971/72/78/95].

Definition 2.6 Engineering approach (PR4) is a software engineering

principle that states software development and its organization should adopt
proven generic engineering methodologies and practice.

Hoare believed simplicity and elegance are important characteristics of
all engineering disciplines. Hoare proposed to maintain the criteria of
simplicity in language and system design, and suggested to build only what is
needed for a program [Hoare, 1973/80].

© 2008 by Taylor & Francis Group, LLC

94 Part I Fundamental Principles of SE

Parnas emphasizes that the focuses of software engineering theories
and methodologies must always put on both ‘fundamental knowledge’ and
‘program design’ rather than specific techniques and language syntax
[Parnas, 1971/72/96].

One of the discoveries on the nature of software engineering is that the

problems of software engineering are an organizational issue, as well as the
cognitive and resources issues. The major organizational issues in software
engineering are work organization, optimal labor/time allocation, and
division of labor. A comprehensive exploration of generic engineering
methodologies and approaches will be presented in Chapter 8 on the
engineering foundations of software engineering.

2.3.3.5 Professionalism

Professionalism is a common standard in engineering and many other
sectors of the society, such as those of medical doctors, lawyers, and
accountants.

Definition 2.7 Professionalism (PR5) is a software engineering

principle that refers to the competence or skill expected for a professional
software engineer who is formally trained and certified.

Professionalism of software engineering refers to the qualification,
identity, and ethic of qualified software engineers. Professionalism of
software engineering also refers to the professional and social responsibilities
of software engineers and their effort for maintaining professional integrity
and service quality to customers and the society.

Because of the importance of software in many systems and daily life

in the modern information society, software engineers take much more
responsibility in system design, implementation, and maintenance, as well as
in technology development and evaluation. The ultimate objective of
professionalism in software engineering is that the software engineers are
capable to recommend a solution to customers that is cost-effective, simple,
efficient, practical, satisfactory, reliable, and safe.

2.3.3.6 Tools and Environments

A tool is a device with a particular function for doing something. A tool
in software engineering is a system or application software that is used to
create, design, or implement other software. An environment for software
engineering is an integrated set of supporting tools that cover multiple
development processes of software engineering.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 95

Definition 2.8 Tools and environments (PR6) are a software
engineering principle that states software development tools and software
engineering supporting environments are facilities that enable efficient
organization of coordinative work or extend human physical and intelligent
capability in software development.

Tools are crucial means in software engineering to improve both

productivity and quality, as well as to extend the capability or lower the
requirement for skills of software engineers. It is noteworthy that both tools
and supporting environments for software engineering should be treated as a
system that integrates a coherent set of certain functions rather than
individual means.

Tools and supporting environments are used to extend human physical
and/or intelligent capability. The latter is particularly needed in software
engineering, such as those of dealing with the cognitive complexity,
facilitating coordinative work, improving productivity, and saving resources
and labor. Fundamental supporting environment for software engineering
should focus on cognitive, organizational, and productivity.

2.3.3.7 Documentation

Documentation is written materials that serve as a record of information
and evidence. Software engineering documentation encompasses not only
source code, but also all intermediate work products toward the code and its
validation and operation, such as memorials, contracts, design architectures
and diagrams, reports, configurations, test cases, maintenance logs, design
comments, and user manuals.

Definition 2.9 Documentation (PR7) is a software engineering
principle that is used to embody system design and architectures, record
work products, maintain traceability of serial decisions, log problems and
maintenance solutions, and enable postmortem analysis.

The need for documentation is to express and embody the intangible
and abstract design and implementation information, including all
intermediate work products and decision rationales in software engineering
that are usually created in software engineers’ and managers’ minds,
explicitly described and formally recorded.

Therefore, documentation is required for all software engineering
processes from requirements to system design, from specification to code,
and from target configuration to maintenance. Emphases should be put on
what Parnas stressed on software engineering documentation: “Design
without documentation is not design [Parnas and Clements, 1986; Hoffman

© 2008 by Taylor & Francis Group, LLC

96 Part I Fundamental Principles of SE

and Weiss, 2001],” and “If it is not documented, it is not done [Parnas,
1994b].”

2.3.3.8 Stepwise Refinement

Refinement is a process to improve or clarify a conceptual model or
prototype by a series of deductive extensions or incremental development of
details.

Definition 2.10 Stepwise refinement (PR8) is a software engineering

principle for deductively extending a conceptual model of requirements for a
given software system by a series of expatiations and incremental
specifications at an increased degree of details.

Software design refinement can be carried out by a serial process of

improved clarity starting from a conceptual model, in which each step results
in an intermediate model that reveals greater degree of details of the
architecture and behaviors of the system. The philosophy of refinement is
deductive extension, where each of them is based on known principles, laws,
and constraints for that particular step of refinement.

The incremental software development methodology is a special case of
stepwise refinement. It is noteworthy that incremental development, as well
as stepwise refinement, is a useful system design methodology, but not a
system implementation technique. Stepwise refinement of system design is
the strategy to deal with the great cognitive complexity in the specification
and design phases of a system. However, once the design of the system is
obtained, its implementation should be completed as customers require rather
than done incrementally.

Usually, detailed system specifications may be obtained through three
to four steps of refinements. Detailed descriptions of system refinement
methodologies can be referred to Section 4.7. If stepwise refinement may be
perceived as an incremental design or specification methodology,
prototyping that will be introduced below can be perceived as an incremental
implementation methodology in software engineering.

2.3.3.9 Prototyping

A prototype in engineering is a rough or preliminary model of an
implementation based on which refined designs or improved models can be
developed. Prototyping is an experimental process in which the design of a
required system can be evaluated and validated via a prototype of the system.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 97

Definition 2.11 Prototyping (PR9) is a software engineering principle
for evaluating or validating a design and feasibility of a required system
based on the implementation of a prototype of the system.

Prototyping is a common practice in almost all engineering disciplines.

Prototyping is particularly important in software engineering because a
prototype is an executable model that embodies abstract system
specifications and design concepts. The focus of software engineering
prototyping should be on evaluation and validation of the design on the basis
of the system specifications. Therefore, a matured process of the design
phase in software engineering must include requirement analysis, system
specification, feasibility evaluation, system design, prototyping, and design
evaluation, before a full scale implementation may be commenced.

2.3.3.10 Adopting Engineering Notations

A notation is a set of symbols for representing attributes of real-world
or abstract objects such as quantity, quality, characteristics, and
classifications. Software engineering notations are formal and descriptive
notations designed for the description and embodiment of intangible software
architectures and behaviors.

Definition 2.12 Adopting engineering notations (PR10) is a software
engineering principle for abstracting, denoting, and modeling of user
requirements and system specifications expressively and explicitly.

 Notations are the formal means of software modeling and design. They
also facilitate top-down refinement of software systems from top-level
designs to low-level details. This leads to the realization of automatic code
generation based on explicitly refined system specifications.

Although, almost all engineering disciplines adopt blueprints, block
diagrams, or schematic diagrams in system design and modeling, due to the
abstract and intangible nature of the object under study, software engineering
requires a descriptive notation system that must be application, method, and
language independent. A recent development for such notations for software

Corollary 2.1 As a necessary and sufficient condition for full scale
implementation of a software system, the design phase of software
engineering shall be extended from requirement analysis, system
specification, and system design to feasibility evaluation, prototyping, and
design evaluation.

© 2008 by Taylor & Francis Group, LLC

98 Part I Fundamental Principles of SE

engineering is RTPA, which is developed based on cognitive informatics
studies that help to elicit basic architectural and behavioral processes of
software system [Wang, 2002a/02c/03c/06a]. RTPA encompasses a small set
of mathematical notations for 17 meta processes and 17 process relations.
However, this coherent set of notations is adequate to seamlessly model and
describe system and human behaviors from top-level design to low-level
implementations based on algebraic rules. RTPA will be described in
Sections 4.5 through 4.8, as well as Section 6.6.

2.3.3.11 Process Modeling

A process is a series of actions toward a particular goal or a series of
transitions toward a particular state. A process model is a formal description
of the sequence of actions or transitions and their conditions.

Definition 2.13 Process modeling (PR11) is a software engineering
principle for dealing with organizational and managerial issues in software
engineering, as well as software behaviors.

Understanding the need to examine the software engineering process
follows naturally from the premise that has been found to be true in other
engineering disciplines, that is, that better products result from better
processes. For the expanded domain of software engineering, the existing
methodologies that cover individual subdomains are becoming inadequate.
Therefore, an overarching approach is sought for a suitable theoretical and
practical infrastructure to accommodate all the modern software engineering
practices and requirements. An interesting approach, which is capable of
accommodating the complete domain of software engineering, has been
recognized and termed the “software engineering process”. Adoption of the
software engineering process paradigm will enhance software engineering
methodologies and techniques in the aspects of management and
organization, and quality assurance.

RTPA can be used as a formal tool for process system modeling and
description. In other words, software engineering processes can be formally
treated and manipulated on the basis of algebraic rules.

2.3.3.12 Reuse

Reuse refers to using a software object more than once. It is perceived
that design for reuse can improve programming efficiency and productivity
in software engineering.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 99

Definition 2.14 Reuse (PR12) is a software engineering principle for
adopting higher-level building blocks, such as algorithms, methods,
processes, patterns, frameworks, in order to improve efficiency, productivity,
and quality of software engineering.

There is a whole spectrum of reuse opportunities from language
statements up to system design notations. However, reuse is first a
philosophy suggesting that a completely new development from scratch is
anti-productive and always error-prone in software engineering. Reuse is a
universal practice in all engineering disciplines.

In software engineering, reuse had been focused on code at a higher
level than statements of programming languages. However, considering that
software is a specific solution to a given application on a general hardware
platform and every application is a one-off activity, code reuse will not be
significantly beneficial to software engineering as the technology might
promise, because there are not so many generic and universal software
components available.

On the other hand, if a broad perception of reuse in software
engineering is adopted from reuse of code to design patterns, frameworks,
tests, processes, and documentation, there will be a wide range of
applications of reuse. The constraints and bottleneck for software reuse
beyond language statement level is not programmers’ willingness but the
standardization of highly reusable components. In software engineering, the
majority of reusable functions and components have been already a part of
different kinds of system software. Then, generic reusable components in
application software are system frameworks, patterns, algorithms, processes,
and documentation.
 A recent progress in reuse methodologies for software engineering is
the finding that tests can be reused as well as that of code via the techniques
known as Built-in Tests (BITs) [Wang et al., 1997/98a/99d/2000]. BITs
provide a new focus on reuse for both system and application software
systems, especially for real-time and safety-critical systems.

2.3.3.13 Measurements and Metrics

A measurement can be perceived as a process to evaluate and quantify
an attribute of physical or abstract object against a certain standard or a unit
system. Metrics is a system of the standard of measurement.

Definition 2.15 Measurements and metrics (PR13) are a software

engineering principle that is applied to elicit generic software attributes,
quantify their measurement, and unify their metrics.

© 2008 by Taylor & Francis Group, LLC

100 Part I Fundamental Principles of SE

Measurement and metrics play an important role in quantitative
software engineering, because where there is no measure, there is no control
on both quality and productivity [Fenton, 1991; Melton, 1996; Zuse, 1997;
Fenton and Pfleeger, 1997; Wang, 2001f/02d/02f]. However, software
measurement and metrics have been overlooked in software engineering for
decades, perhaps partially because of the immaturity of software
measurement theories, and partially because the software industry has not
been convinced with the benefits of quantitative software engineering.
Nevertheless, the day of the maturity of software measurement theories and
practices will be the day of the maturity of software engineering itself.

2.3.3.14 Cognitive Complexity Control

 Complexity is an attribute of a physical or abstract system that
represents the magnitude of its internal parts and the extent of their intricate
connections. Complexity in nature is closely referred to the cognitive
difficulty in comprehension and analysis of the system or objects.

Definition 2.16 Cognitive complexity control (PR14) is a software
engineering principle for dealing with the innate difficulty in both
architectural and behavioral design and implementation of software systems
by a variety of means such as abstraction, modularization, descriptive
notations, stepwise refinement, and prototyping.

As the scale of software increases continually and at an ever faster rate,

greater complexity of software engineering becomes critical. Although, no
language, tool, or technology may reduce the inherited complexity of a given
problem, proven principles and methodologies can help system architects and
programmers to comprehend, represent, and manipulate the cognitive
complicity better in software engineering.

Except the technical complexity in software engineering, a whole set of

cognitive difficulty lies in the areas of organization and management of
large-scale software system development. It will be shown in Section
8.5 that a certain workload of a given software project may be amplified
several even hundreds times due to improper organization and poor
management. This can be considered the major reason that results in the
failures of more than half of large software engineering projects with
severely overspent budgets and/or overrun schedules [Schonberger, 1981;
Jones, 1996; Wang, 2006c; Wang and King, 2000a; Wang and Shao, 2003;
Shao and Wang, 2003].

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 101

2.3.3.15 Formal Requirement Specification

A requirement is a need or wish for a certain object or a function for a
particular purpose and with given conditions. A specification is a precise
statement of a requirement for identifying its attributes and functions,
describing its design and implementation approaches, and proving evaluation
standards.

Definition 2.17 Formal requirement specification (PR15) is a software
engineering principle that states customers’ nonprofessional requirements for
a software system should be formally and rigorously specified in the
development team in order to avoid any misinterpretation and ambiguity, and
to eliminate any conceptual gap and inconsistency.

Formal system specification helps to identify conceptual gaps about the
perceived system in customer’s requirements, between the development team
and the customers, and among team members. It is also a perfect means for
documenting designs of software systems that is independent of
methodologies, languages, and implementation techniques.
 Because the major difficulty in early phase design in software
engineering is the cognitive complexity, a rush into coding by a large group
of programmers may create more problems than those of solved, which may
dramatically increase the real workload for a given project. Instead, the
payoff of a formally specified system approach will be seen in the
implementation phase by an improved productivity, shorter duration, and
predictable quality.

2.3.3.16 Systematic Quality Assurance

Quality is a distinctive attribute or the extent of excellence of an object
against a certain standard. Quality assurance is the maintenance of a required
level of quality for a given object by systematical controls and evaluations
throughout all processes.

Definition 2.18 Systematic quality assurance (PR16) is a software
engineering principle that states software quality is multiple faceted;
therefore a systematic tackle is needed on all attributes of software quality
and their quantitative measurement.

The study on software quality and quality assurance is a particularly
weak area in software engineering and the software industry. The vague
perception on the nature of software quality, the lack of quantitative
measures for software quality, and the stranding to software quality

© 2008 by Taylor & Francis Group, LLC

102 Part I Fundamental Principles of SE

assurance indicate that software quality is a theoretical problem rather than a
technical one yet to be solved in software engineering. A rigorous description
of software quality and quality assurance as a system problem will be
presented in Section 11.4.

2.3.3.17 Review and Inspection

Review is a process to assess a given object by carefully and critical
readings of peers or more experienced experts. Inspection is a process to
examine if a given object confirms with a certain standard or requirement.

Definition 2.19 Review and inspection (PR17) is a software

engineering principle for finding and eliminating software design and
implementation defects via reading and examining the work products by peer
or more experienced reviewers.

Review and inspection have been found effective and useful in design
phase of software development rather than implementation phase, because in
the early phase there are no other verification techniques or tools available,
and no thorough testing can be carried out before the code is ready.
Weinberg believed that review and inspection are an indispensable part of
engineering high quality software, because no matter how smart a
programmer is, reviews will be beneficial [McConnell, 1999]. Watts
Humphrey proposed that review should be a mandatory process before code
compiling and testing [Humphrey, 1995/96].

The theory behind the empirical usage of review and inspection in
software engineering is based on the theory of the randomness of human
errors in performing tasks [Wang, 2005f]. Because different programmers
are unlikely to make the same mistake for the same task at the same time in
software development, review and inspection are entitled to find errors and
eliminate bugs efficiently. Section 13.5.3 will formally prove that review and
inspection are effective techniques dealing with creative work products such
as software systems and related documents.

2.3.3.18 Management Engineering

Management is a process to deal with coordinated work and how
people and resources may be optimally allocated on the work.

Definition 2.20 Management engineering (PR18) is a software
engineering principle that states a crucial facet of software engineering is the
need for a suitable theory for organizing and coordinating large groups in
large-scale projects.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 103

As the scale of software increases continually, the complexity of the
problem grows at an ever faster rate. In contemporary software engineering,
the central role is no longer that of the programmers; project managers and
corporate management have critical roles to play. As programmers use
programming technologies, software corporation managers seek
organizational and strategic management methodologies, and project
managers seek professional management and software quality assurance
methodologies. These developments have resulted in an expanded domain of
software engineering, which includes three important aspects: development
methodology, organization and infrastructure, and management [Wang and
King, 2000a].

An interesting discovery in a recent survey on the international
curricula of software engineering is that project management is the most
popular course commonly offered in almost all universities worldwide
[Wang and Liu, 2004]. Management theories and methodologies are an
important facet of the theoretical and empirical framework of software
engineering. A formal treatment of the coordinative work organization theory
and the management foundations of software engineering will be presented
in Chapters 8 and 11, respectively.

2.3.3.19 Acquiring Domain Knowledge

Domain knowledge is the knowledge about application areas, the nature
of categories of problems, and the environment and context in which a given
problem is encountered, and conventional customer practice for dealing with
the problem.

Definition 2.21 Acquiring domain knowledge (PR19) is a software
engineering principle that states four aspects of domain knowledge, such as
(a) the nature of the problem, (b) the environment and context of the
problem, (c) current customer practice for dealing with the problem, and (d)
existing regulations and constraints in the application area, should be
acquired before a system design for the given problem may proceed.

The approaches to obtain essential domain knowledge are as follows:

 • To observe how the customer deals with the problem traditionally.

 • To understand the environment of the problem and processes
preceding and following the given problem.

 • To be aware of any regulations, standards, and constraints related
to the given problem.

© 2008 by Taylor & Francis Group, LLC

104 Part I Fundamental Principles of SE

 • To survey alternative practices, best practices, and domain norms
on the given problem.

 • To search possible existing solutions in the literature.

The need for domain knowledge in software engineering is a necessary
condition to be able to design a professional system that best suits customers’
requirements and environment. This need leads to the following principle of
software engineering known as customer involvement, and it also results in a
new role in the software industry called domain engineers who are
specialized in one or more application domains and familiar with typical
software solutions for problems in these domains.

2.3.3.20 Customer Involvement

Customer involvement is a key to success in software engineering.
Customers are representatives of a project and/or end users of a software
system, who should be involved in all processes of system development. In
case the customer and user of a certain system are different, the target users
have to be identified clearly.

Definition 2.22 Customer involvement (PR20) is a software

engineering principle that states all stakeholders, particularly the end users of
a software system, should be involved throughout the entire lifecycle of the
system by customer reviews and joint meetings.

 Regular joint meetings and collection of customer review feedback are
two useful techniques that enable customers to be involved in the
development process of software system and feel the growth of the system
well before adopting it in practice.

It is noteworthy that the successful acceptation and adaptation of a new
system is not only dependent on technical performance, but also dependent
on users’ attitudes toward the system. Since the introduction of a new system
requires considerable working behavioral changes even cultural changes in
an organization, training of users and orientation of related stakeholders are a
crucial process for the success of newly developed systems.

2.3.3.21 Feasibility Analysis

Feasibility is the extent of possibility or practicality to carry out a task
within the given constraints. There are technical and economical feasibilities
for any given task or project. The former refers to the feasibility that is

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 105

constrained by technology availability and adequacy, while the latter is
determined by the analysis of the benefit-cost ratio of a given project.

Definition 2.23 Feasibility analysis (PR21) is a software engineering
principle that states both the technical and economical feasibilities of a given
software project should be rigorously estimated and evaluated before the
later-phase processes may be continued.

According to Corollary 2.1, feasibility analysis should be a mandate
process between system specification and detailed system design. The rule of
thumb in software engineering is that both technical and economical
feasibilities should be evaluated before a software project may proceed. The
technical feasibility of a given software engineering project is addressed
through rigorous modeling methodologies in this book. The economic
feasibility in software engineering is discussed in Section 12.6 on economic
analyses of software projects.

2.3.3.22 Comprehensibility

Comprehension is a process to understand or a capability for
understanding. Comprehensibility is the degree of understanding or cognitive
capability about a particular object or issue.

Definition 2.24 Improving comprehensibility (PR22) is a software
engineering principle for explicitly and expressively describing the intangible
problem and its solution with improved understandability, readability, and
cognitive capability.

The natural strategies for dealing with the intangible and abstract
objects under study in software engineering are explicit description and
facilitating comprehensibility, which include readability, cognitive
complexity, and intellectual manageability about the problem and its
software solution. Therefore, the emphases of software engineering theories
and techniques should be put on supporting human comprehensibility in
dealing with large-scale and extremely complicated software systems.
Software engineering notations and explicit documentation methodologies
are some typical means for improving comprehensibility of software.

It is noteworthy that the requirement for comprehensibility covers all
work products in software engineering including design specification, code,
decision making records, documentation, and testing cases and results.

The cognitive process of comprehension will be formally described in
Section 9.5. A formal software engineering notation system, RTPA, will be
presented in Sections 4.5 through 4.8 (notations and methodologies),
Sections 5.3 through 5.6 (usage), and Section 6.6 (deductive semantics).

© 2008 by Taylor & Francis Group, LLC

106 Part I Fundamental Principles of SE

2.3.3.23 Exception Handling

An exception is an unusual event or behavior that is not expected
according to a given rule or norm.

Definition 2.25 Exception handling (PR23) is a software engineering

principle that states system design and specification should consider not only
customer required functions for a given system, but also all possible
exceptions that may drive the system into illegal state(s) in the entire state
space of the system.

The size of the state space of a program is determined by a Cartesian
product between the number of possible states and the number of possible
events. However, the required or legal states of functions for a given system
are usually a small portion of the whole space. The remainders are
nonrequired or illegal states. Customers of a given system just require the
desired and legal functions of the system, but the job of system analysts and
architects is to identify the whole state space of the system and predicate
what would happen if the system enters an illegal state by any reason such as
external interferences, data distortions, human mistakes, or hardware
malfunctions. Therefore, in a certain extent for professional architects,
system designs are meant not only to consider the required functionality but
also to prevent what would go wrong in the given system setting.

Exception handling is first to identify all possible illegal transitions in
the entire state space of the system and then prevent them from happening.
An exception handling strategy and process should be designed for each
exception or each category of equivalent exceptions.

2.3.3.24 Divide and Conquer

Divide-and-conquer is an analytic strategy of system design based on
reductionism. In software engineering, divide-and-conquer, functional
decomposition, and modularization can all be perceived as strategies for
dealing with the cognitive complexity of software systems.

Definition 2.26 Divide-and-conquer (PR24) is a software engineering

principle that supposes if a complex system may be divided into multiple
components, the individual components of the system will be easier to be
dealt with than the whole system.

 Empirically, to directly solve a large problem is often very difficult and
complicated. However, if the problem can be broken up and partitioned into
a set of smaller sub-problems, and the sub-problems are usually easier than

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 107

the original problem, then the problem may be solved individually. This is
the philosophy of divide-and-conquer.

As that of the abstraction principle, divide-and-conquer is another key

to reduce complexity in software engineering. The techniques for conducting
divide-and-conquer in software engineering are modularization and
decomposition. It is noteworthy that the essence of the principle of divide-
and-conquer is not ‘to divide’ but ‘to conquer.’ Therefore the architecture
and structure of the decomposed components are the core in any technology
that supports system modularization.

When applying the principles of divide-and-conquer, a practical

question is how many sub-components should be divided. A heuristic rule is
that when the given system is divided into a set of similar sized sub-systems,
an optimistic solution would be reached. Especially, when the sub-systems
are divided further in the same way, a hierarchical tree structure may be
derived by recursively applying the divide-and-conquer principle. The
heuristic rule indicates that the best way in modularization is to divide the
modules, components, or subsystems into similar and balanced sizes. More
formal treatment of this heuristic rule will be provided in Section 10.3 on
system topology.

2.3.3.25 Explicit Embodiment

Embodiment is a representation or expression of an abstract object,
such as an idea, concept, or feeling, in a tangible or visible form.

Definition 2.27 Explicit embodiment (PR25) is a software engineering
principle for dealing with the implicitness and inexpressiveness in software
engineering by introducing more powerful descriptive means at a higher
level of abstraction and precision.

According to the principle of explicit descriptivity as given in Theorem
1.3, only a higher level of more abstract and more precise means is adequate
and sufficient to express and embody an object at a certain level of
abstraction.

Because of the nature of software, architectures are complicatedly
interrelated objects with functional variables and constraints, and behaviors
are embedded relational processes. These types of abstract and complicated
entities may only be expressed without implication and ambiguity by

© 2008 by Taylor & Francis Group, LLC

108 Part I Fundamental Principles of SE

professional notation systems, because only more abstract and precise means
is powerful enough to express an object at a given level of abstraction.
Therefore, symbolic notations are the key means for expressing and
embodying software visualization. A form of denotational mathematics for
describing software engineering work products, RTPA, will be described in
Chapters 4, 5, and 6.

2.3.3.26 Establishing Theoretical Foundations

A foundation is a principle that forms an underlying basis for deriving
new knowledge and for supporting rigorous reasoning. A theoretical
foundation is a set of formally described foundations derived by rigorous
inductive inferences and proven true universally.

Definition 2.28 Establishing theoretical foundations (PR26) is a
software engineering principle that states rigorous theories and generic laws
should be elicited once there are a wide variety of observed phenomena and
alternative practices.

The lack of theoretical foundations in software engineering is an
essential deficiency for software engineering to be claimed as a matured
engineering discipline. Theories in nature are abstract, generic, and
mathematically rigor. Software engineering theories and their foundations on
the basis of mathematics, particularly denotational mathematics such as logic
and process algebra, allow reasoning about the work products in software
engineering before they are built, and the optimal organization of large
development projects and cooperative human creative work.

This book is devoted to seek the fundamental theories and suitable
mathematical means for software engineering. The foundations of software
engineering will be systematically established in the remainder of this book
on those of philosophy, mathematics, computing, linguistics, information
science, cognitive informatics, system science, management science,
economics, sociology, and engineering science.

2.3.3.27 Architecture and Behavior Modeling

 Modeling is a process to represent complicated objects by systematical,
visualized, procedural, or denotative means.

Definition 2.29 Architecture and behavior modeling (PR27) is a
software engineering principle that states software system models are a

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 109

hybrid model where both architectures and behaviors should be coherently
described.

In software engineering, modeling is focused on the architectures and

behaviors of software systems. The former refers to the abstract models of
the data objects and their logical structures, relations, and constraints; the
latter are computational and interactive operations onto the architectural
model and their interacting environments.

RTPA provides a denotative mathematical means for modeling
software system architectures and their static and dynamic behaviors via a
top-down refinement scheme. Based on the explicit and rigorous models
specified in RTPA, corresponding code in a desired programming language
can be generated automatically using RTPA supporting tools as extensively
described in Chapters 4, 5, and 6.

2.3.3.28 Standardization

Standardization is a process to establish and quantify measures, norms,
or models for enabling comparative evaluation of work products or services.
Standardization is not only useful in societies and everyday life, but also
particularly important and widely applied in engineering for documenting
common factors and best practices, and synchronizing individuals and
systems behaviors.

Definition 2.30 Standardization (PR28) is a software engineering
principle for attempting to integrate, regulate, and optimize existing
principles and best practices in research and in the industry.

Standardization provides a metric, norm, or benchmark as the standard
for a certain attribute of a category of objects. Then, measurement may be
carried out based on the standard.

Software engineering standards are not only records of best practices,
but also vehicles for reconciling successful practices with the underlying
principles of the profession. In software engineering, a large portion of
cognitive, technical, and organizational practices are widely optional or even
arbitrary when they are conducted in an isolated environment. However,
when they are designed and applied for public uses, standardization becomes
necessary. Because of the widely optional feature of design and
implementation in the software industry, the first system of a kind in the
market may become a de facto standard.

A comprehensive review of software engineering standards and
international effort in software engineering standardization will be provided
in Section 8.6.5 [Wang, 2001b].

© 2008 by Taylor & Francis Group, LLC

110 Part I Fundamental Principles of SE

2.3.3.29 Systems Engineering

 A system is a complex whole of interacting components toward a
particular goal. System engineering is the application of system science that
adopts a systematical view to treat complicated objects and their interactions
with the external environment.

Definition 2.31 Systems engineering (PR29) is a software engineering
principle that states system science theories and methodologies should be
adopted to deal with complicated architectures and behaviors of software.

One facet of software as explored in Section 1.5.8 is that it can be
perceived as a system. The design and implementation of both architectures
and behaviors of software are a system issue in software engineering. A
rigorous description of system theories by system algebra [Wang, 2006d] and
system science foundations of software engineering will be presented in
Chapter 10. An important finding according to the formal system model is
that the complexity of a system is on the order of O(n2) in general, where n is
the number of components or objects in the system [Wang, 2006c/06d].

2.3.3.30 Engineering Organization

 Organization is a process to systematically and efficiently coordinate
human activities and interactions for a given work or social event.

Definition 2.32 Engineering organization (PR30) is a software
engineering principle that states the coordinative work organization theory
should be adopted in order to optimize team, project, and enterprise
organizations.

It is identified that an essential facet of the problems in software
engineering is an organizational issue, which is as equally important as those
of the cognitive and technical ones. Therefore, organizational theories and
management methodologies can play an important role in software
engineering.

A formal treatment of generic engineering methodologies and the
exploration of the engineering foundations of software engineering will be
presented in Chapter 8, particularly the coordinative work organization
theory [Wang, 2007d]. Applications of the organization theories will be
discussed in Section 8.5 at the project level and Sections 13.4 and 13.5 at the
society level.

2.3.3.31 Cognitive Engineering

Cognition is a knowledge acquisition process to understand the external
world via sensation, perception, and reasoning. Cognitive engineering is the

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 111

application of cognitive informatics in explaining and solving engineering
problems where human beings are involved as part of the system or the
problems.

Definition 2.33 Cognitive engineering (PR31) is a software

engineering principle that states the cognitive complexity and human
intelligent manageability should be addressed as the dominant problem in
almost all processes of software design, implementation, and maintenance.

 As described in Section 1.3, a large portion of the software engineering
problems can be classified as a cognitive issue and is constrained by human
cognitive capability and manageability of complexity for given problems.
Formal descriptions of cognitive informatics foundations of software
engineering will be presented in Chapter 9.

2.4 Software Engineering Principles
 as Measures to its Constraints

In Section 2.3 a comprehensive set of 31 fundamental principles of software
engineering has been obtained by eliciting the common core proposals of a
number of software scientists and institutions. Based on this, a unified
framework of software engineering principles is established.

Principles are powerful means for facilitating deductive reasoning. This
section examines the relationships between the basic constraints and
fundamental principles of software engineering. The comprehensive set of
basic principles of software engineering will be treated as the fundamental
measures for coping with the basic constraints of software engineering.
According to the discussions in Section 1.3, the 14 basic software
engineering constraints can be classified into three categories known as the
cognitive, organizational, and resources constraints as shown in Fig. 2.2. The
applications of the 31 fundamental principles to each category of these basic
constraints will be explored in the following subsections.

2.4.1 PRINCIPLES FOR COPING WITH THE
 COGNITIVE CONSTRAINTS

The first set of the basic software engineering constraints as shown in
Fig. 2.3 is the cognitive constraints. Many fundamental principles elicited in
Section 2.3 are suitable to deal with these cognitive constraints in software
engineering. A mapping of the fundamental principles into the basic
cognitive constraints is shown in Figs. 2.3 and 2.4, respectively.

© 2008 by Taylor & Francis Group, LLC

112 Part I Fundamental Principles of SE

PR1 Abstraction

C1
Intangibility

C2
Complicity

C3
Indeterminacy

C4
Diversity

C5
Polymorphism

C6
Inexpressiveness

C7
 Inexplicit embodiment

C8
 Unquantifiable quality

PR2 decomposition/
 modularization

PR3 Information
 hiding

PR4 Engineering
 approach

PR5 Professionalism

PR6 Tools and
 environments

PR7 Documentation

PR8 Stepwise
 refinement

PR14 Cognitive
 Complexity
 control

PR9 Prototyping

PR10 Adopting
 Engineering
 notations

PR11 Process
 modeling

PR12 Reuse

PR13 Measurements
 and metrics

PR15 Formal
 Requirement
 specification

PR16 Systematic
 quality
 assurance

Figure 2.3 The software engineering principles vs. the cognitive
 constraints (I)

It can be observed in Figs. 2.3 and 2.4 that multiple principles may be

applied to tackle a specific problem and constraint in software engineering.
For instance, 27 principles are applicable to deal with the cognitive
constraint, such as abstraction, modularization, information hiding, divide-
and-conquer, modularization, stepwise refinement, prototyping, and
decomposition.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 113

C1
Intangibility

C2
Complicity

C3
Indeterminacy

C4
Diversity

C5
Polymorphism

C6
Inexpressiveness

C7
 Inexplicit embodiment

C8
 Unquantifiable quality

PR17 Review and
 inspection

PR19 Acquiring
 domain
 knowledge

PR18 Management
 engineering

PR25 Explicit
 embodiment

PR29 System
 engineering

PR26 Establishing
 theoretical
 foundations

PR27 Architecture
 and behaviour
 modeling

PR28 Standardization

PR31 Cognitive
 engineering

PR30 Engineering
 organization

PR23 Exception
 handling

PR22 Improving
 comprehen-
 sibility

PR21 Feasibility
 analysis

PR20 Customer
 involvement

PR24 Divide and
 conquer

Figure 2.4 The software engineering principles vs. the cognitive
 constraints (II)

© 2008 by Taylor & Francis Group, LLC

114 Part I Fundamental Principles of SE

2.4.2 PRINCIPLES FOR COPING WITH THE
 ORGANIZATIONAL CONSTRAINTS

The second set of the basic software engineering constraints as shown
in Fig. 2.2 is the organizational constraints. A mapping of the fundamental
principles into the basic organizational constraints of software engineering is
shown in Fig. 2.5.

PR1 Abstraction

C10
Conservative
productivity

 C11
 Labor-time
 interlock

C9
Time

dependency

PR2 decomposition/
 modularization

PR17 Review and
 inspection

PR3 Information
 hiding

PR4 Engineering
 approach

PR19 Acquiring
 domain
 knowledge

PR5 Professionalism

PR6 Tools and
 environments

PR7 Documentation

PR8 Stepwise
 refinement

PR14 Cognitive
 Complexity
 control

PR9 Prototyping

PR10 Adopting
 Engineering
 notations

PR11 Process
 modeling

PR12 Reuse

PR13 Measurements
 and metrics

PR18 Management
 engineering

PR15 Formal
 Requirement
 specification

PR16 Systematic
 quality
 assurance

PR25 Explicit
 embodiment

PR29 System
 engineering

PR26 Establishing
 theoretical
 foundations

PR27 Architecture
 and behaviour
 modeling

PR28 Standardization

PR31 Cognitive
 engineering

PR30 Engineering
 organization

PR23 Exception
 handling

PR22 Improving
 comprehen-
 sibility

PR21 Feasibility
 analysis

PR20 Customer
 involvement

PR24 Divide and
 conquer

Figure 2.5 The software engineering principles vs. the organizational
 constraints

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 115

2.4.3 PRINCIPLES FOR COPING WITH THE
 RESOURCE CONSTRAINTS

The third set of the basic software engineering constraints as shown in
Fig. 2.2 is the resource constraints. A mapping of the fundamental principles
into the basic resources constraints of software engineering is shown in Fig.
2.6.

PR1 Abstraction

C12
Costs

C13
Human

dependency

C14
Hardware

dependency

PR2 decomposition/
 modularization

PR17 Review and
 inspection

PR3 Information
 hiding

PR4 Engineering
 approach

PR19 Acquiring
 domain
 knowledge

PR5 Professionalism

PR6 Tools and
 environments

PR7 Documentation

PR8 Stepwise
 refinement

PR14 Cognitive
 Complexity
 control

PR9 Prototyping

PR10 Adopting
 Engineering
 notations

PR11 Process
 modeling

PR12 Reuse

PR13 Measurements
 and metrics

PR18 Management
 engineering

PR15 Formal
 Requirement
 specification

PR16 Systematic
 quality
 assurance

PR25 Explicit
 embodiment

PR29 System
 engineering

PR26 Establishing
 theoretical
 foundations

PR27 Architecture
 and behaviour
 modeling

PR28 Standardization

PR31 Cognitive
 engineering

PR30 Engineering
 organization

PR23 Exception
 handling

PR22 Improving
 comprehen-
 sibility

PR21 Feasibility
 analysis

PR20 Customer
 involvement

PR24 Divide and
 conquer

Figure 2.6 The software engineering principles vs. the resource constraints

© 2008 by Taylor & Francis Group, LLC

116 Part I Fundamental Principles of SE

2.4.4 A SYSTEMATIC VIEW ON MAPPING BETWEEN
 THE PRINCIPLES AND CONSTRAINTS

So far the basic problems and fundamental methodologies of software
engineering have been modeled by the 14 constraints and the 31 principles,
respectively. A general view between the principles and constraints of
software engineering can be represented by a matrix as shown in Table 2.3.

Table 2.3
Mapping Software Engineering Principles into its Constraints

Constraint
Cognitive Organizational Resource

Principle

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

WPR

 PR1 x x x x x x x 7
 PR2 x x x x x x x x 8
 PR3 x x x x 4
 PR4 x x x x x x x x x x x x x x 14
 PR5 x x 2
 PR6 x x x x x x x x x x x x x x 14
 PR7 x x x x x x x x 8
 PR8 x x x x x x x x x x x 11
 PR9 x x x x x x x x x x x x x x 14

PR10 x x x x x x x x x x x x x 13
PR11 x x x x x x x x 8
PR12 x x x x 4
PR13 x x x x x x x x 8
PR14 x x x x x x x x x x x 11
PR15 x x x x x x x x x x 10
PR16 x x x x x 5
PR17 x x x x x x x x 8
PR18 x x x x x x x x x x 10
PR19 x x x x x x x x 8
PR20 x x x x x x x x x x 10
PR21 x x x x x x x x x x x 11
PR22 x x x x x x x x x x x x x 13
PR23 x x x x x x 6
PR24 x x x x x x x x x 9
PR25 x x x x x x x x x x x 11
PR26 x x x x x x x x x x x x x x 14
PR27 x x x x x x x x x x x x x 13
PR28 x x x x x x x 7
PR29 x x x x x x x x x x x x x x 14
PR30 x x x x x x x x x x x 11
PR31 x x x x x x x x x x x x x x 14

 WC 20 28 15 14 22 22 20 24 17 21 18 24 29 16

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 117

The mapping between the software engineering constraints and
measures as shown in Table 2.3 can be used as a guideline for allocating
certain methodologies for coping with a given problem in a software
engineering project. Table 2.3 can also be used to seek new theories and
principles for software engineering.

Analyzing the mapping between software engineering principles and
constraints, it may be found that some of the principles are more fundamental
or useful in software engineering, because they deal with more basic
constraints in software engineering problem solving.

In Table 2.3, the right-most column provides the weights of usage
coverage for each principle WPR. The top six most widely applicable
principles in software engineering, which may be used to deal with all the
basic problems, are as follows:

 • PR4 Engineering approach
 • PR6 Tools and environments
 • PR9 Prototyping
 • PR26 Establishing theoretical foundations
 • PR29 Systems engineering
 • PR31 Cognitive engineering

Following the above list, a set of very useful principles of software
engineering, which cover more than ten basic problems, is identified below
in the order according to their weights of coverage:

 • PR10 Adopting engineering notations
 • PR22 Comprehensibility
 • PR27 Architecture and behavioral modeling

 • PR8 Stepwise refinement
 • PR14 Cognitive complexity control
 • PR21 Feasibility analysis
 • PR25 Explicit embodiment
 • PR30 Engineering organization

 • PR15 Formal requirement specification
 • PR18 Management engineering

 • PR20 Customer involvement

Generally, it may be seen from Table 2.3 that the newly identified
principles in this book labeled PR25 through PR31 are more effective than
those of the conventional ones.

© 2008 by Taylor & Francis Group, LLC

118 Part I Fundamental Principles of SE

In Table 2.3, the data shown in the bottom row indicate the weight of
methodology coverage WC, or how many principles and methodologies of
software engineering have been focused on each of the basic constraints.
According to the weights of methodology coverage, the constraints and
problems in software engineering are covered by multiple principles in the
following order: C13 – human dependency, C2 – complexity, C8 –
unquantifiable quality measures, C12 – costs, C5- polymorphism, C6 –
inexpressiveness, C10 – conservative productivity, C1 – intangibility, C7 –
inexplicit embodiment, C11 – labor-time interlock, C9 – time dependency,
C14 – hardware dependency, C3 – indeterminacy, and C4 – diversity. It may
also be interpreted that the last few problems are tougher to be dealt with
because there are fewer methodologies covering them.

The above list also shows the inadequacy of current principles and
methodologies for software engineering, because most software engineering
principles identified so far are empirical and heuristic. Toward the maturity
of a software engineering discipline, there is still a need to seek the
theoretical foundations and laws of these fundamental principles, and their
rigorous description and empirical studies in software engineering.

The development of coherent software engineering theories,

methodologies, and techniques should put emphases on these tough
challenges and problems in software engineering. To some extent, this is one
of the main motivations and purposes of this book in the remaining chapters.
By putting together all the principles as well as theoretical and empirical
foundations, adequate and sufficient theories and methodologies for software
engineering will be developed systematically throughout the book.

2.5 Summary

The principles of software engineering are the essential knowledge that a
software engineer needs to know in order to develop software scientifically

The 2nd Principle of Software Engineering

Theorem 2.1 Formalization of principles states that the empirical
principles for software engineering are heuristic and data-based; while the
formal principles for software engineering are rigorous and mathematics-
based, which are elicited and refined from the empirical principles.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 119

and effectively. A principle is a generic theorem, rule, or law of a theory that
can be applied to a wide range of cases or instances in a field of study. A
principle serves as a fundamental predicate for logical reasoning and
deduction.

Software engineering principles are a set of fundamental and coherent
theorems and laws that constrain the behaviours of software systems and the
processes of their development.

This chapter has attempted to elicit a coherent set of fundamental
principles of software engineering. The major pioneer pursuits of principles
for software engineering in the last four decades have been reviewed, which
provide a whole picture for understanding the fundamental theories and
foundations of software engineering. A unified framework of software
engineering principles has been established with a comprehensive set of 31
commonly identified fundamental principles. These fundamental principles
of software engineering have been treated as powerful measures to tackle the
14 basic constraints of software engineering as identified in Chapter 1. As a
result, the unified framework of software engineering principles has been
established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

The theme of this chapter is on fundamental principles of software
engineering and their relations with the basic constraints. Through this
chapter, readers have achieved the following strategic goals with the
knowledge structure as summarized below.

Chapter 2. Principles of Software Engineering

■ Pioneer Pursuits of Principles for Software Engineering
 • Parnas’ principles of software engineering
 - Information hiding, modularization, engineering approach,
 professional responsibility, and documentation

 • Hoare’s principles of software engineering
 - Professionalism, vigilance, sound theoretical knowledge, using
 tools, abstraction, structured programming, and readability

 • Brooks’ principles of software engineering
 - Complexity, conformity, changeability, and invisibility
 \

 • Wasserman’s principles of software engineering
 - Abstraction, method and notation, prototyping, modularity and
 architecture, lifecycle and process, reuse, metrics, tools and
 integrated environments

© 2008 by Taylor & Francis Group, LLC

120 Part I Fundamental Principles of SE

 • IEEE SESC’s principles of software engineering
 - Quantitative measurements, reuse, control complexity, rigorous
 specification, software process, disciplined approach,
 understanding the problem, management of quality, minimize
 components coupling, stepwise development, specify quality,
 objectives, change management, specify tradeoffs, domain
 knowledge, and uncertainty management

 • IEEE Software’s principles of software engineering
 - Reviews and inspections, information hiding, incremental
 development, user involvement, automated revision control,
 Internet development, programming languages hall of fame,
 Capacity Maturity Model (CMM), object-oriented programming,
 component-based programming, metrics and measurement

■ A Unified Framework of Software Engineering Principles
 • Elicitation of fundamental principles of software engineering
 • The unified framework of software engineering principles
 • Description of the fundamental principles of software engineering
 - Abstraction
 - Decomposition/modularization
 - Information hiding
 - Engineering approach
 - Professionalism
 - Tools and environments
 - Documentation
 - Stepwise refinement
 - Prototyping
 - Adopting engineering notations
 - Process modeling
 - Reuse
 - Measurement and metrics
 - Cognitive complexity control
 - Formal requirement specification
 - Systematic quality assurance
 - Review and inspection
 - Management engineering
 - Acquiring domain knowledge
 - Customer involvement
 - Feasibility analysis
 - Improving comprehensibility
 - Exception handling
 - Divide and conquer
 - Explicit embodiment

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 121

 - Establishing theoretical foundations
 - Architecture and behavior modeling
 - Standardization
 - Systems engineering
 - Engineering organization
 - Cognitive engineering

■ Software Engineering Principles as Measures to its Constraints
 • Principles for coping with the cognitive constraints
 • Principles for coping with the organizational constraints
 • Principles for coping with the resources constraints
 • A systematic view on mapping between the principles and
 constraints

SIGNIFICANT FINDINGS OF THIS CHAPTER

• The pursuits of fundamental principles for software engineering
can be traced back to the 1950s by pioneers such as Davis L. Parnas, C.A.R.
Hoare, Edsger W. Dijkstra, Friedrich L. Bauer, Frederick P. Brooks, and
Barry Boehm. Software engineering principles form the essential knowledge
that a software engineer needs to know in order to develop software
scientifically and effectively.

• Theories vs. Technologies: Although software development

technologies have been changing from time to time, the fundamental
principles of software engineering have remained constant as the
crystallization of theories and methodologies over a long period of time.

• The relationship between the fundamental principles and basic

constraints of software engineering is a complicated network. A main thread
to analyze their relations is to perceive the constraints are the problems, and
the principles are the measures to tackle the problems. On the basis of this
thread, a mapping between the 31 principles and the 14 constraints is
presented in Fig. 2.2. A detailed mapping of the principles of software
engineering into its constraints is summarized in Table 2.3.

• Principles can be classified into two categories known as the formal

and empirical/heuristic principles. Most known principles in software
engineering are empirical and heuristic. For supporting rigorous reasoning
and decision making in software engineering, formalization of those
empirical principles seems profoundly important.

© 2008 by Taylor & Francis Group, LLC

122 Part I Fundamental Principles of SE

• The most widely applicable principles of software engineering,
which may be used to deal with almost all the basic constraints and problems,
are: PR4 – Engineering approach, PR6 – Tools and environments, PR9 –
Prototyping, PR26 – Establishing theoretical foundations, PR29 – Systems
engineering, and PR31 – Cognitive engineering.

• Newly identified principles, based on the recent studies on the

nature of software and software engineering, are architectural and behavioral
modeling, system engineering, engineering organization, and cognitive
engineering, as well as theoretical foundations.

• A profound pattern for preventing progress in software engineering is

that the tendency to think that a new idea or future tool will solve all
problems. This tendency is so strong that previously solved problems are
forgotten as soon as a new idea gains some support, and consequently
problems are re-solved in the new style.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

A Unified Framework of Software Engineering Principles

• The ultimate objective of investigation into the principles of

software engineering is to build an integrated inference framework with
axioms implicitly defining primitive concepts, principles, and rules for
enabling to construct higher order concepts and theories of software
engineering.

• The unified framework of software engineering principles models

a comprehensive set of fundamental principles as summarized below:

• PR1. Abstraction is to elicit essential properties of a set of
objects while omitting inessential details of them.

• PR2. Decomposition/modularization is to break up the
functions of a software system and to allocate them into individual
modules or components.

• PR3. Information hiding is to reduce and mask unnecessary
information of software at a given level from the lower level details.

• PR4. Engineering approach is to adopt proven generic
engineering methodology and practice in software development and its
organization.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 123

• PR5. Professionalism is to set forth the competence or skill
required for a professional software engineer who is formally trained
and certified.

• PR6. Tools and environments are facilities that enable efficient
organization of coordinative work or extend human physical and
intelligent capability in software development.

• PR7. Documentation is a written record that is used to embody
system design and architectures, record work products, maintain
traceability of serial decisions, log problems and maintenance solutions,
and enable postmortem analysis.

• PR8. Stepwise refinement is to deductively extend a
conceptual model of requirements for a given software system by a
series of expatiated and incremental specifications at increased degrees
of details.

• PR9. Prototyping is to evaluate or validate a design and
feasibility of a required system based on the implementation of a
prototype of the system.

• PR10. Adopting engineering notations is to abstract, denote,
and model user requirements and system specifications expressively
and explicitly.

• PR11. Process modeling is deal with organizational and
managerial issues in software engineering.

• PR12. Reuse is to adopt higher-level building blocks, such as
algorithms, methods, processes, patterns, frameworks, in order to
improve efficiency, productivity, and quality of software engineering.

• PR13. Measurements and metrics are to elicit generic
software attributes, quantify their measurement, and unify their metrics.

• PR14. Cognitive complexity control is to deal with the innate
difficulty in both architectural and behavioral design and
implementation of software systems by a variety of means such as
abstraction, modularization, descriptive notations, stepwise refinement,
and prototyping.

• PR15. Formal requirement specification is to formally and
rigorously specify customer’s nonprofessional requirements for a
software system, in order to avoid any misinterpretation and ambiguity,
and to eliminate any conceptual gap and inconsistency.

© 2008 by Taylor & Francis Group, LLC

124 Part I Fundamental Principles of SE

• PR16. Systematic quality assurance is to adopt a systematic
tackle of the multifaceted attributes of software quality and their
quantitative measurement.

• PR17. Review and inspection is to find and eliminate software
design and implementation defects via reading and examining the work
products by peer or more experienced reviewers.

• PR18. Management engineering is to acknowledge the crucial
need of a suitable theory for organizing and coordinating large human
groups in large-scale projects in software engineering.

• PR19. Acquiring domain knowledge is to obtain four aspects
of application knowledge: (a) the nature of the problem, (b) the
environment and context of the problem, (c) current customer practice
for dealing the problem, and (d) existing regulations and constraints in
the application area.

• PR20. Customer involvement is to incorporate all
stakeholders, particularly the end users of a software system, into the
entire lifecycle of the system by customer reviews and joint meetings.

• PR21. Feasibility analysis is to rigorously estimate and
evaluate both the technical and economical feasibilities of a given
software project before the later-phase processes may be continued.

• PR22. Improving comprehensibility is to explicitly and
expressively describe the intangible problem and its solution in
software engineering with improved understandability, readability, and
cognitive capability.

• PR23. Exception handling is to consider not only customer
required functions for a given system, but also all possible exceptions
that may drive the system into illegal state(s) in the entire state space in
system design and specification.

• PR24. Divide and conquer is to partition a complex system
into multiple components, and then to deal with these individual
components in order to reduce complicity.

• PR25. Explicit embodiment is to deal with the implicitness and
inexpressiveness in software engineering by introducing more powerful
descriptive means at a higher level of abstraction and precision.

• PR26. Establishing theoretical foundations is to elicit
rigorous theories and generic laws of software engineering on the basis
of empirical observations and practices.

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 125

• PR27. Architecture and behavior modeling is a software
engineering principle that states software system models are a hybrid
model where both architectures and behaviors should be coherently
described.

• PR28. Standardization is to integrate, regulate, and optimize
existing principles and best practices in research and in the industry.

• PR29. Systems engineering is to adopt system science theories
and approaches to deal with complicated architectures and behaviors of
software.

• PR30. Engineering organization is to adopt the coordinative
work organization theory in order to optimize team, project, and
enterprise organizations.

• PR31. Cognitive engineering is to address the cognitive
complexity and human intelligent manageability as the dominant
problem in almost all processes of software design, implementation,
and maintenance.

Software Engineering Principles as Measures to its Constraints

• The 31 basic principles of software engineering are used as the
fundamental measures for dealing with the 14 basic constraints of software
engineering.

• The set of 14 basic software engineering constraints can be classified

into three categories known as the cognitive, organizational, and resources
constraints.

Questions and
Research Opportunities

2.1 A software engineering principle is a generic theorem, rule, or

law of a theory that can be applied to a wide range of cases or
instances in software engineering methodologies and practice.
Search on the Internet and try to identify one or more principles
for software engineering, which are not included in this chapter.

© 2008 by Taylor & Francis Group, LLC

126 Part I Fundamental Principles of SE

2.2 Analyze the similarity and differences between principle DP1 –
information hiding proposed by D.L. Parnas and TH5 –
abstraction by C.A.R. Hoare.

2.3 Compare the principles of “invisibility” proposed by F. Brooks

(FB4) that suggests visualization and “intangibility” in the unified
set of principles that suggests abstraction. Discuss the
relationship and differences of these two principles.

2.4 Discuss and comment on S. McConnell’s observation: “An

investment in learning software engineering principles is a
particular good investment for a software professional to make
because that knowledge will last a whole career – not be half
obsolete within three years (as those of software development
technologies) [McConnell, 1999].”

2.5 The IEEE Software Engineering Standards Committee (SESC)

proposed a set of criteria on selecting the fundamental principles
for software engineering [SESC, 1996/97/99] as given in Section
2.3.1. Compare it and Definition 2.2; discuss what the differences
between empirical and theoretical principles are for software
engineering.

2.6 A software engineering principle serves as a fundamental

proposition for logical reasoning and deduction. Principles can be
classified into two categories known as the formal and empirical
(heuristic) principles as described in Theorem 1.1.

 The 31 fundamental software engineering principles elicited in

this chapter may be classified into the above two categories
known as the formal and empirical (heuristic) principles. Use a
table to classify these 31 principles into the formal or empirical
category, and explain your rationale. (Note: Some of the
principles may belong to both categories.)

2.7 A software engineering principle serves as a fundamental

proposition for logical reasoning and deduction. Why are most
known principles in software engineering empirical and heuristic
so far?

2.8 According to Theorem 2.2, for supporting rigorous reasoning and

decision making in software engineering, formalization of those

© 2008 by Taylor & Francis Group, LLC

Chapter 2 Principles of Software Engineering 127

empirical principles seems profoundly important and necessary.
Try to formalize any of the 31 principles using rigorous
mathematical means.

2.9 Briefly describe the relationships between the 31 fundamental

principles and the 14 basic constraints of software engineering.

2.10 Reviewing the 31 software engineering principle, did you observe

any conflict or contradictory principles that need further study?

2.11 How to formalize the empirical principles of software engineering

in order to support rigorous reasoning and decision making in
software engineering? Would formalization with quantified
models result in a set of laws for software engineering?

2.12 Read the following classic articles:

Parnas, D.L. and Clements, P.C. (1986), A Rational Design

Process: How and Why to Fake It, IEEE Trans. on

Software Engineering, 12(2), pp. 251-257.

Parnas, D.L. (1994), Software Aging, Proc. 16th

International Conference on Software Engineering, Sorento,

Italy, May, pp.279-287.

Discuss the following topics in a group:

 • About the author.

• Why the author put emphases on design without
documentation is not design?

• Why, in almost all software engineering processes and/or
work products, “if it is not documented, it is not done”?

 • What conclusions derived in the articles interested you?
 • Express your arguments or counter-points on any of the

conclusions.

© 2008 by Taylor & Francis Group, LLC

PART II

THEORETICAL
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Fundamental
 Principles of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

3. Philosophical
 Foundations
 of SE

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Informatics
 Foundations
 of SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

130 Part II Theoretical Foundations of SE

heoretical software engineering studies the nature of software,
mathematical models of software architectures, mechanisms of
software behaviors, methodologies of large-scale software

development, and the laws behind software behaviors and software
engineering practices. Part II attempts to present the philosophical,
mathematical, computing, linguistic, and informatics metaphors of software
and software engineering.

It is recognized that all the fundamental problems in software
engineering are complicated theoretical problems rather than only empirical
ones. A rigorous and formal approach is needed to seek the fundamental
principles and laws of software engineering, and their transdisciplinary
foundations required by the nature of the problems in software engineering.

The knowledge structure of Part II on Theoretical Foundations of
Software Engineering is as follows:

 • Chapter 3. Philosophical Foundations of Software Engineering
 • Chapter 4. Mathematical Foundations of Software Engineering
 • Chapter 5. Computing Foundations of Software Engineering
 • Chapter 6. Linguistics Foundations of Software Engineering
 • Chapter 7. Information Science Foundations of Software
 Engineering

This part addresses the theoretical foundations of software engineering

with emphases on fundamental theories of software engineering via the cross-
fertilization among engineering philosophy, denotational mathematics,
computing theories, formal linguistics, and informatics. It is noteworthy that,
historically, language-centered programming had been the dominant
methodology in computing and software engineering. However, this should
not be taken for granted as the only approach to software engineering,
because the expressive power of programming languages is inadequate to
deal with complicated software systems, and the rigorousness and level of
abstraction of programming languages are too low in modeling the
architectures and behaviors of software systems. This is why a bridge in
mechanical engineering or a building in civil engineering was not modeled or
described by natural or artificial languages. This observation leads to the
recognition of the need for mathematical modeling of both software system
architectures and static/dynamic behaviors, supplemented with the support of
automatic code generation systems.

Chapter 3, Philosophical Foundations of Software Engineering,
explains the relationship of objects and entities between the abstract world
and the physical world. The problem domain of software engineering can be
seen in the connection between these two worlds, where philosophy provides
the basic judgment for evaluating and predicating complicated phenomena in
software engineering. Philosophies of sciences and engineering in general,

T

© 2008 by Taylor & Francis Group, LLC

 Part II Theoretical Foundations of SE 131

and philosophical methodologies for software engineering in particular, are
explored in this chapter. The properties of software and the philosophy of
software engineering are presented, complemented by a set of practitioners’
philosophies in engineering known as Murphy’s laws. Formal inference
methodologies such as deductive, inductive, abductive, and analogical
inferences are described, which forms the logical means of software
engineering.

Chapter 4, Mathematical Foundations of Software Engineering,
investigates the logical and algebraic properties and laws of software and
software engineering. Mathematics enabling rigorous inferences to be carried
out on the basis of simple deductive rules, and the formally documented
results are validated without exceptions. Therefore, the entire theory of
software engineering is about mathematical modeling of software and
denotational mathematics for software engineering. Essential elements of
denotational mathematics for modeling software architectures and software
system behaviors are analyzed. New mathematical structures such as
cumulative relations and Real-Time Process Algebra (RTPA) are developed
on the basis of conventional fundamental mathematics such as set theory,
Boolean algebra, and mathematical logic. RTPA serves as both a denotational
mathematical means and a system design and refinement methodology for
software engineering.

Chapter 5, Computing Foundations of Software Engineering, analyzes
the computational and denotational properties and laws of software and
software engineering. This chapter examines what computer science may
provide for software engineering as well as what it may not. A new treatment
of computing theories for software engineering is taken, which focuses on the
needs for modeling and manipulating complicated data objects, behaviors,
programs, and resources in software engineering. Data objects modeling
methodologies are presented with the focuses on type theory and architectural
modeling of software systems. Behavioral modeling, particularly a set of
Basic Control Structures (BCS’s), is formally described. Programs are then
modeled as the coordination and interaction between computational
behaviors and data objects. As a result, the abstract model of a generic
computing system is formally described encompassing all computing
resources and processes.

Chapter 6, Linguistics Foundations of Software Engineering, presents
the syntactical and semantic properties and laws of software and software
engineering. Linguistics and formal language theories play important roles in
computing theories; without them computing and software engineering
theories would not be complete. This chapter analyzes not only how
linguistics may improve the understanding of programming languages and
their work products – software, but also how formal language theories extend
the study of natural languages. Formal language theories for rigorous
treatment of language elements are described on syntaxes, semantics,

© 2008 by Taylor & Francis Group, LLC

132 Part II Theoretical Foundations of SE

grammars, and linguistic analyses from the bottom up. A formal semantics
theory known as deductive semantics is presented, which is used to formally
describe the semantics of RTPA. Comparative analyses of natural and
programming languages, as well as linguistics perceptions on software
engineering, are presented.

Chapter 7, Information Science Foundations of Software Engineering,
analyzes the informatics properties and laws of software and software
engineering. Information is the product of either natural or machine
intelligence. Informatics, the science of information, studies the nature of
information, its processing, and ways of transformation between information,
matter, and energy. A fundamental discovery in computer science and
software engineering is that software, as a unique entity, is not constrained by
any law and principle known in the physical world. This chapter
demonstrates that software obeys the laws of informatics. The evolvement of
information science from classic, contemporary, to cognitive informatics is
reviewed. The classic information theories and its perception on information
as probability-based properties of signals and channels are introduced. Then,
contemporary informatics and modern perceptions on information as abstract
entities in computing and software engineering are discussed. A set of
informatics laws that constrains the behaviors of software is described, and
their applications in software engineering are presented.

Part II will establish a coherent theoretical framework of software
engineering with a comprehensive set of formal principles and laws. New
structures of denotational mathematical means will be developed to deal with
the innate complexity of software systems. The philosophical, informatics,
and linguistic theories and laws that constrain software and software
engineering practice will be systematically derived. With this part as a basis,
the empirical framework of software engineering, in terms of its
organizational, system engineering, and cognitive informatics foundations,
will be presented in Part III.

© 2008 by Taylor & Francis Group, LLC

Chapter 3

PHILOSOPHICAL
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

3. Philosophical
 Foundations
 of SE

3.1 Introduction 3.5 Philosophy of Software Engineering
3.2 Philosophies of Science and Engineering 3.6 Murphy’s Laws: The Practitioners’ Philosophy for
3.3 Formal Inference Methodologies Software Engineering
3.4 The Nature of Software 3.7 Summary

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Informatics
 Foundations
 of SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

134 Part II Theoretical Foundations of SE

Knowledge Structure

 Philosophy of sciences and engineering

 • The natural world and the abstract world
 • The basic axioms about nature
 • Epistemology and foundationalism
 • Holism vs. reductionism
 • Positivism vs. rationalism
 • Empiricism and objectivity
 • Determinism vs. indeterminism
 • Natural intelligence vs. artificial intelligence
 • Ethical philosophy of engineering

 Formal inference methodologies

 • Logical argumentations
 • Deductive inferences • Inductive inferences
 • Abductive inferences • Analogical inferences

 The nature of software

 • The three situations where software is needed
 • The behavioral space of software
 • Properties of software

 Philosophy of software engineering

 • The cognitive characteristics of SE
 • The nature of SE

 Murphy’s laws: the practitioners’ philosophy for software engineering

 • Murphy’s laws on generic engineering
 • Murphy’s laws on SE

Learning Objectives

 • To understand the structure of philosophy for science and engineering.
 • To know fundamental philosophical thoughts and views for science and

engineering.
 • To know basic logical argument methodologies.
 • To be familiar with the formal inference methodologies in reasoning.
 • To understand the nature of software and its 3-D behavioral space.
 • To understand the nature of software engineering and its cognitive

characteristics.
 • To be able to apply the philosophies of science and engineering to software

engineering.

3. Philosophical Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 135

“Philosophy is a subject devoted to evaluating arguments and
constructing theories.”

Elliott Sober (1995)

 “Everything it is possible for us to analyze depends on a clear method which

distinguishes the similar from the not similar.”

Linneus G. Plantarum (1754)

3.1 Introduction

aving provided an improved understanding of the intensions and
extensions of software engineering in Chapters 1 and 2, this chapter
attempts to investigate the foundations of software engineering from

the perspectives of philosophy, particularly, the means and methodologies of
rigorous logical inference and reasoning.

 Software is a brainchild of human creativity, and it is created to do
something repeatable at high speed, to extend human capability, reachability,
and/or memory capacity. Therefore, software systems, to some extent, can be
perceived as a virtual agent of human beings.

 W.I. Beveridge (1957) questioned that “Elaborate apparatus plays an
important part in the science of today, but I sometimes wonder if we are not
inclined to forget that the most important instrument in research must always
be the mind of man.”

Modern sciences have been mainly using analytic methodologies and
mathematics in theory development and problem solving. However, the
analytic approach has its inherent limitation for possibly losing the forest to
the trees in reasoning.

It is a common phenomenon that almost all preeminent scientists are
philosophers too. They adopt philosophy, the tool of abstraction, synthesis,
induction, and deduction, to develop new theories when there are inadequate
laws or lack of intuitive facts to be based for reasoning and draw rational
conclusions. For examples, Isaac Newton’s Philosophiae Naturalis Principia
Mathematica (The Principia 1687), Max Planck’s The Philosophy of Physics
(1936), and C.A.R. Hoare’s The Philosophy of Engineering [Hoare and
Jones, 1989].

The philosophical foundations of software engineering highlight the
relationship between the abstract world modeled by information and the
physical world modeled by matter and energy. The problem domain of

H

© 2008 by Taylor & Francis Group, LLC

136 Part II Theoretical Foundations of SE

software engineering can be seen in the connection between the abstract
world to the physical world. That is, software engineering deals with
abstractions, while manufacturing engineering deals with realization. Due to
this ability to call upon multiple levels of abstraction, the problem domain of
software engineering is infinite but it also requires that the process is design
intensive.
 This chapter explores the philosophical foundations and logical means
of software engineering. In the remainder of this chapter, Section 3.2 surveys
philosophies of sciences and engineering. Section 3.3 develops a set of
formal inference methodologies. Section 3.4 examines the nature of software
and its properties. Section 3.5 presents the philosophy of software
engineering, complemented by Murphy’s laws – the practitioners’
philosophy in Section 3.6.

3.2 Philosophy of Sciences and
 Engineering

Philosophy addresses fundamental questions of great generality and ways of
reasoning. Philosophy studies the common doctrines, known or unknown,
shared by all science disciplines. As described in Section 1.2.4, philosophy is
the highest level of abstract knowledge that is general, fundamental, and
universally true. Human wonder about the nature and themselves started by
philosophical queries and concluded in philosophical doctrines [Aristotle,
1925; Plato, 1961/75; Descartes, 1979; Russell, 1948]. Therefore, philosophy
is the common root of all sciences and the crystallization of general
knowledge of mankind in the pursuit of understanding the natural rules and
utilizing the natural resources.

 Philosophy can be divided into the following four branches:

 • Epistemology: The study of knowledge itself.

 • Metaphysics: The study of fundamental concepts of the nature
 such as existence, appearance, reality, and determinism.

 • Logic: The study of rules of reason.

 • Ethics: The study of right and wrong, good and evil, obligations
 and rights, justice, and social organization.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 137

 Scientific and engineering philosophy is an aspect of philosophy that
studies general phenomena and rules of sciences and engineering
methodologies. The following subsections present eight pairs of
philosophical thought on science and engineering, as well as the ethical
philosophy of engineering.

3.2.1 THE NATURAL WORLD AND THE ABSTRACT
 WORLD

 According to the IME model introduced in Section 1.1.1, matter,

energy, and information are the three essences of natural and the abstract
worlds as shown in Fig. 1.2 [Wang, 2003a/07a]. In a modern society,
information plays more and more important roles because it is the only link
between the physical (external) and the abstract (internal) worlds in human
life. It is also the fundamental means for modeling the abstract world. In
cognitive informatics [Wang, 2002d/02e/03a/03b/06b/06j/07a/07b; Wang
and Wang, 2006; Wang and Kinsner, 2006; Wang et al. 2002a/06], software
is perceived as a special type of instructive and behavioral information that
describes a solution for the design and implementation of a computer system.

The IME model also reveals there are two categories of objects under
study in science and engineering known as the concrete entities in the real
world and the abstract objects in the information world. In the latter, an
important part of the abstract objects are human or system behaviors, which
are planned or executed actions onto the real-world entities and abstract
objects.

The principle of universal constraints indicates that any theory, method,

or technology has its own limitations and constraints. In a certain extent,
science and engineering are searching the maximum extent of general
relations between entities, phenomena, and behaviors under a set of
constraints.

Theorem 3.1 will be found useful in a number of disciplines as
described in the following chapters throughout this book, such as the
principle of information scarcity in information theory (Property 7.19), the

The 7th Law of Software Engineering

Theorem 3.1 The universal constraints state that both the natural world
and the perceived abstract world are constrained by certain known
restrictions and laws, or by those yet to be known due to both current
limitations of natural resources and/or human cognitive capability.

© 2008 by Taylor & Francis Group, LLC

138 Part II Theoretical Foundations of SE

law of conservation of basic engineering constraints (Theorem 8.2), the
principle of bounded rationality in decision theories (Lemma 11.2), and the
principle of resource scarcity in economics (Lemma 12.1).

3.2.2 THE BASIC AXIOMS ABOUT NATURE

 Skinner (1948) stated that science is “a search for order, for
uniformities, for lawful relations among the events in nature.” The basic
assumptions underlying scientific inquiry in the context of the above world
view is that the nature of the universe obeys a set of fundamental axioms,
referring to uniformity, determinism, reality, rationality, regularity,
replication, and discoverability of natural events and their relations
[Christensen, 1997].

 Definition 3.1 Uniformity is the most basic scientific axiom, which
assumes that the future will resemble the past.

 Uniformity suggests that natural events and phenomena share generic
and common laws, which are observable, repeatable, and determinable. The
uniformity principle is the foundation of all inductive inferences.
 The effort to uncover the uniform laws of the nature may be carried out
by identifying the variables that are linked together, and by constructing
experiments that attempt to understand the effects produced by given events.
Once it is determined that an event produces an expected effect or a set of
them, the uniformity of nature has been uncovered.

 Definition 3.2 Determinism is a basic scientific axiom that assumes
there are causes or determinants for any natural event, phenomenon, and
effect, and these causes are observable in the sequence of events or
reasonable by studying relations of the events.

 Definition 3.3 Reality is a basic scientific axiom that assumes the
natural phenomena observed as a result of our means of sensation are real
and objective rather than subjective perceptions.

 Definition 3.4 Rationality is a basic scientific axiom that assumes there
is a rational basis for any event that occurs in nature and they can be
understood through the use of logical reasoning.

 Definition 3.5 Regularity is a basic scientific axiom that assumes
events in nature follow the same laws and occur the same way at all times
and places under the same context.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 139

 Regularity is a natural extension of the uniformity axiom. If there is
uniformity in nature, there must be regularity that can be observed and
determined.

 Definition 3.6 Replication is a basic scientific axiom that requires the
results of a study must be reproducible under the same condition.

 Reproduction is the criterion to achieve objectivity and rationality.
Only through replication can we have any confidence that the results of our
studies are valid and reliable. Reproducibility is equally important in both
sciences and engineering.

 Definition 3.7 Discoverability is a basic scientific axiom that assumes
the existence of entities and occurrence of events in nature can be observed
and determined.

 Greek philosopher Thales (625-546 BC) made the first extraordinary
rationalistic assumption that the world – the cosmos – was a thing whose
mechanisms can be understood by human mind [Doren, 1992]. This means
that it is possible to discover the uniformity of nature no matter how difficult
it would be.

3.2.3 EPISTEMOLOGY AND FOUNDATIONALISM

 Definition 3.8 Epistemology is a branch of philosophy that studies
concepts of knowledge and their rational justification.

According to epistemology [Sober, 1995], there are six approaches to
acquire knowledge or gain cognition of nature. These approaches of
cognition are tenacity, intuition, experience, authority, reasoning or
inferring, and logical inquiry. Logical inquiry is a cognitive methodology for
knowledge acquisition by scientific investigation that adopts the processes of
problem identification, hypothesis proposing, experiment and testing, and
theory forming.
 To have the knack of reducing a problem to its simplest and basic
elements and then finding a solution by the most direct means are commonly
recognized as a vital scientific research method, because this approach is
rooted in the philosophy of foundationalism.

 Definition 3.9 Foundationalism is a basic philosophical view that all
propositions known to be true can be divided into foundational and
superstructural ones. The former are indubitable and axiomatically to be

© 2008 by Taylor & Francis Group, LLC

140 Part II Theoretical Foundations of SE

true. The latter are propositions that bear deductive or implicated relationship
to the foundations.

 Rene Descartes (1596 – 1650) is regarded as the father of modern
philosophy and the epistemology known as foundationalism. In Core
Questions in Philosophy [Sober, 1995], Descartes’ foundationalism is
described as follows:

“The word foundationalism should make you think of a building.
What keeps a building from falling over? The answer has two parts.
First, there is a solid foundation. Second, the rest of the building,
which I will call the superstructure, is attached securely to that
solid foundation. Descartes wanted to show that (many if not all of)
the beliefs we have about the world are cases of genuine knowledge.
To show this, he wanted to derive our beliefs into two categories.
There are the foundational beliefs, which are perfectly solid.
Second, there are the superstructural beliefs, which count as
knowledge because they rest securely on that solid foundation.

“A foundationalist theory of knowledge could also be called a

Euclidean theory of knowledge. To show that a given body beliefs
counts as knowledge, we use the following strategy: First, we
identify the beliefs that will provide the foundations of knowledge
(the axioms). These must be shown to have some special property,
like being absolutely certain. ... Second, we show that the rest of
our beliefs count as knowledge because they bear some special
relationship to the foundational items. In Euclid’s geometry, the
special relationship was deductive implication.

“Descartes was interested in the totality of what we believe.

But whether the problem is to describe the foundations of
geometry or the foundations of knowledge as a whole, there are two
ideas that must be clarified. We need to identify what the
foundational items are. And we need to describe the relationship
that must be obtained between foundational and superstructural
items that qualifies the latter as knowledge.”

 Foundationalism provides a fundamental approach towards justification
of knowledge and belief in epistemology and cognition. For example,
Turing's thesis on basic computability, Euclid's geometry, and many
mathematical branches are developed on the basis of foundationalism.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 141

 The design of this book, Software Engineering Foundations: A
Software Science Perspective, follows Descartes' foundationalism in order to
identify the foundational theories and methodologies of software
engineering, and to explain how superstructures, the rational software
engineering practices, may be built and derived on these foundations.

3.2.4 HOLISM VS. REDUCTIONISM

 Philosophies as the fundamental and general methodologies of sciences
and engineering were evolving over all the time in human history. However,
the core methodologies that remain stable are holism and reductionism.

 Definition 3.10 Holism is a philosophical view that perceives a
phenomenon and system with wholeness in an integrated, synthetic, and
systematic approach.

The word holism is originated from the Greek word holos meaning the
whole. Holism can be traced back to the time of Aristotle during which
philosophers believed that the whole is more than the sum of its parts [Klir,
2001]. According to holism, complex organisms and systems as a whole
possess special properties when its elements and their interactions reach or
go above a certain critical mass, which cannot be found from any of the
individual elements.

Definition 3.11 Reductionism is a philosophical view that investigates a

phenomenon and system by using a decomposition and analytic approach.

 Reductionism perceives that any system can be analyzed by breaking it
down into more fundamental elements, then the system can be reduced by the
properties of its elements. As a holistic psychologist, Max Wertheimer
described [Ellis, 1938; Ellis and Fred, 1962]:

“Science means breaking up complexes into their component
elements. Isolate the elements, discover their laws, then
reassemble them, and the problem is solved. All wholes are
reduced to pieces and piecewise relations between pieces.”

The evolution of philosophies of science and engineering can be

illustrated in Fig. 3.1 from a historical point of view. As shown in Fig. 3.1,
holism had been the main philosophical thought starting from Aristotle
during a very long period between 400BC to the 1600s. Then, reductionism
has been the dominating philosophy since Rene Descartes. Beginning in the
later 1990s, there has been a trend to explore the unification of the two

© 2008 by Taylor & Francis Group, LLC

142 Part II Theoretical Foundations of SE

philosophical doctrines when most of the modern scientific and engineering
problems become increasingly complicated and the means to solve them
become increasingly interrelated with multiple disciplines and systems. This
trend of shifting in scientific philosophy is in accordance with the
development of systems science and engineering as described in Chapter 10.

Figure 3.1 Philosophies of sciences and their transitions

3.2.5 POSITIVISM VS. RATIONALISM

 The contemporary philosophy behind natural sciences is positivism and
rationalism.

 Definition 3.12 Positivism is a philosophical view, which states that a
thesis about physical phenomena must either be analytic or empirical.

 Positivism perceives that nature obeys physical laws in the concrete
world. According to positivism, an event or fact must be publicly observable
and independently repeatable. Validation methodologies in positivism are
experiments and logical reasoning.
 Natural scientists adopt a common perception that physical phenomena
must be re-observable and repeatable. However, most mental phenomena in
psychology and cognitive informatics are clearly not, even though all
individuals believe they are truly happening based on rationalism and
empiricism.

 Definition 3.13 Rationalism is a philosophical view to arrive at
knowledge in which reasoning is used to acquire, process, derive, and
evaluate the knowledge.

 Rationalism believes that knowledge or truth can be derived from
reason, and the derived knowledge is just as valid as, and even superior to,

Methodology

No
methodology

Holism

Reductionism

Holism + Reductionism

 Prehistory 400BC 1600s 1990s Time

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 143

that gained from observations. Rationalism and reasoning are a vital
approach in the scientific process. Reasoning process is used not only to
derive hypotheses but also to identify the manner in which these hypotheses
are to be tested.

It is noteworthy that reasoning based on the same input may result in

controversially derived information or conclusions, in which one or all of
them could be wrong. Therefore, cross evaluation of any derived information
by other methodologies, such as positivism and empiricism, is often
necessary.
 This contradiction can be explained by the IME model as described in
Section 1.1.1, that classifies the natural phenomena into two categories
known as those of the natural/concrete world and of the abstract/perceptual
world. According to the IME model, the mental phenomena and cognitive
processes, particularly perceptivity and thinking, should be recognized as a
new category of special phenomena occurring in the abstract and information
world that apparently do not obey specific rules observed in the physical
world. In other words, all information/mental-process-oriented sciences deal
with a totally different category of phenomena that are constricted by
informatics and cognitive laws rather than the physical ones. Software and
software engineering methodologies fall exactly into this category.

3.2.6 EMPIRICISM AND OBJECTIVITY

 Definition 3.14 Empiricism is a philosophical view that states
knowledge can be gained through the experience of an event, the observation
of a fact, or the use of a methodology.

 Empiricism perceives that mental phenomena in psychology and
cognitive informatics may not be publicly observable and independently
repeatable, and they don’t obey all rules observed in the physical world.
However, they obey informatics and cognitive laws in the abstract world.
According to empiricism, an event or fact can be validated by experience,
logical reasoning, and mathematical proving.

The 3rd Principle of Software Engineering

Theorem 3.2 The validation of abstract propositions states that the
abstract and information-based propositions and work products, such as a
design or a specification of a system, are bounded by logical
verifications, mathematical proofs, systematical reviews, behavioral
simulations and tests, and/or in field trials.

© 2008 by Taylor & Francis Group, LLC

144 Part II Theoretical Foundations of SE

 It is noteworthy that empiricism may result in a subjective observation.
Therefore, the criteria of objectivity, replication, and causation are developed
in order to maintain rigor and accuracy in scientific inquiry.

Definition 3.15 Objectivity is a scientific criterion that requires an

observation must be independent of individual opinion, bias, or prejudice.

 True or false of an objective matter is independent of what anyone
believes or thinks.

 Definition 3.16 Causality is a cause-and-effect relationship where the
manipulation of one event produces another event as the effect of the causal
event.

 In his work, A System of Logic, John S. Mill (1843) set forth canons for
identifying causality experimentally:

 • Method of agreement: The identification of the common element
in several instances of an event.

 • Method of difference: The identification of the different effects
produced by variation in only one event.

 • Joint method of agreement and difference: The combination of the
first and the second canons to identify causation.

 • Method of concomitant variation: The identification of parallel
changes in two variables by a correlation between them.

 The four canons of Mill enable one to adequately grasp the idea of
causation and to identify the relationships between a set of variables.
However, they do not allow one to name the single factor that causes an
effect. This identifies the need for distinguishing the necessary and the
sufficient conditions for the occurrence of an event.

The 8th Law of Software Engineering

Theorem 3.3 The law of causality states that a condition must be both
necessary and sufficient to qualify as a cause, where the necessary
condition is a condition that must be present in order for the effect to
occur, while the sufficient condition is a condition that will always
produce the effect.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 145

Therefore, the finding of a cause for an event means that both the
necessary and the sufficient conditions have been met in causality analyses,
as W.I. Beveradge wrote:

“The current attitude is that scientific theories aim at
describing association between events without attempting to explain
the relationship as being causal. The idea of cause, as implying an
inherent necessity, raises philosophical difficulties and in
theoretical physics the ides can be abandoned with advantage as
there is then no longer the need to postulate a connection between
the cause and effect. Thus, in this way, science confines itself to
description – ‘how’, not ‘why’ [Beveradge, 1957].”

3.2.7 DETERMINISM VS. INDETERMINISM

 Definition 3.17 Determinism is a philosophical view, which states the
thesis that a complete description of the causal facts at one time uniquely
determines what must happen next.

 Determinism states the causes of a natural event, phenomenon, and
effect are observable in the sequence of events or reasonable by studying
relations of the events. There is only one possible future given a complete
description of the present. For example, the Newtonian physics says that the
behavior of physical objects is deterministic. In software engineering, most
automata and process dispatching algorithms are deterministic based on a
current state and given event(s).

 Definition 3.18 Indeterminism is a philosophical view, which states the
thesis that even a complete description of the present does not uniquely
determine what will happen in the future.

Indeterminism describes the phenomena in the natural world that not all
events are wholly determinable by antecedent causes. According to
indeterminism, there is more than one possible future and each with its own
probability of coming true under a given complete description of the present.
For examples, the quantum theory says that nature is indeterministic. In
computing, there are indeterministic automata and process dispatching
algorithms, whose behavior or next state is unpredictable caused by internal
memory and intricate internal interacting mechanisms.

3.2.8 NATURAL INTELLIGENCE VS. ARTIFICIAL
 INTELLIGENCE

It is found that the natural intelligence and artificial intelligence share
the same cognitive informatics foundations, because the latter is a machine

© 2008 by Taylor & Francis Group, LLC

146 Part II Theoretical Foundations of SE

implementation of the former. Conventional machines are invented to extend
human physical capability, while modern information processing machines,
such as computers, communication networks, and robots, are developed for
extending human intelligence, memory, and the capacity for information
processing [Turing, 1950; Wang, 2004a/2006b/2007a/07b/07f]. Therefore,
any machine that may implement a part of human behaviors and actions in
information processing is significantly important.

It is recognized [Wang, 2004a/2007a/07f] that the basic approaches to

implement intelligent behaviors can be classified as shown in Table 3.1.

Table 3.1

Approaches to Implement Intelligence

No. Means Approach
1 Biological organisms Naturally grown
2 Silicon automata Wired
3 Computing systems Programmed
4 Other (future) means Hybrid

Observing Table 3.1, software for computation is the third approach to

simulate and implement the natural intelligence by programmed logic. This
indicates that the nature of software is the simulation and execution of human
behaviors, and the extension of human capability, reachability, persistency,
memory, and information processing speed. Therefore, the natural and
machine (artificial) intelligence share the same cognitive foundation or there
is no difference between them in principles and mechanisms rather than
implementation means.

On the basis of Theorem 3.4, the following theorem can be derived.

The 4th Principle of Software Engineering

Theorem 3.4 The compatible intelligent capability states that natural
intelligence (NI) and artificial intelligence (AI) are compatible by sharing
the same mechanisms of intelligent capability, i.e.:

 AI ∝ NI (3.1)

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 147

Theorem 3.5 indicates that AI is dominated by NI. Therefore, one

should not expect a computer or a software system to solve a problem where
human cannot. In other words, no AI or computer systems may be designed
and/or implemented for a given problem where there is no solution being
known collectively by human beings. Further, Theorem 3.5 explains that
without understanding the mechanisms and laws of NI, the development or
implementation of AI is not scientifically based yet.

3.2.9 ETHICAL PHILOSOPHIES OF ENGINEERING

 Definition 3.19 Ethics is a branch of philosophy that develops moral
criteria to guide human behavior and professional practice.

A number of ethical theories have evolved since the dawn of
civilization. Four of those theories, which have stood the test of time and are
relevant to applications in engineering, are Aristotle’s virtue ethics, Mill’s
utilitarianism, Kant’s formalism or duty ethics, and Locke’s rights ethics.
 The virtue-based ethics of Aristotle (384 – 322BC) describes that
happiness is achieved by developing virtues, or qualities of character,
through deduction and reason. An act is good if it is in accordance with
reason. This usually means a course of action that is the golden mean
between extremes of excess and deficiency.
 Mill’s utilitarianism (1806 – 1873) states that an action is morally
correct if it produces the greatest benefit for the greatest number of people.
The duration, intensity, and equality of distribution of the benefit should be
considered.
 The duty-based ethics developed by Kant (1724 – 1804) believes that
each person has a duty to follow those courses of action that would be
acceptable as universal principles for everyone to follow.
 The rights-based ethics, represented by Locke (1632 – 1704), perceives
that all persons are free and equal, and each has a right to life, health, liberty,
possessions, and the product of one’s labor. However, it is occasionally
difficult to determine when one person’s rights infringe on another person’s
rights.

Professionalism is a part of the ethical philosophy. The philosophy of
professionalism for software engineering will be discussed in Section 8.4.5.

The 9th Law of Software Engineering

Theorem 3.5 The inclusive intelligent capability states that artificial
intelligence (AI) is a subset of natural intelligence (NI), i.e.:

 AI ⊆ NI (3.2)

© 2008 by Taylor & Francis Group, LLC

148 Part II Theoretical Foundations of SE

3.3 Formal Inference Methodologies

Inferences are a formalized cognitive process that reasons a possible causal
conclusion from given premises based on known causal relations between a
pair of cause and effect proven true by empirical observations, theoretical
inferences, and/or statistical regulations. Formal logic inferences may be
classified as causal argument, deductive inference, inductive inference,
abductive inference, and analogical inference. All formal logical inferences
can only be carried out on the basis of abstract properties shared by a given
set of objects under study. In other words, abstraction and formalization
described in Sections 1.2.4 and 4.2 are the foundation of formal inferences.

3.3.1 LOGICAL ARGUMENTATIONS

Mathematical logics, such as propositional and predicate logic, provide
a powerful means for logical reasoning and inference on truth and falsity
[Hurley, 1997], which will be systematically described in Chapter 4.

Definition 3.20 An argument A is an assertion that yields () a

proposition Q called the conclusion from a given finite set of propositions
known as the premises P1, P2, …, Pn, i.e.:

ABL (P1BL ∧ P2BL ∧ … ∧ PnBL QBL)BL (3.3)

where the argument and all propositions are in type Boolean (BL). Hence, ABL
= T called a valid argument, otherwise it is a fallacy, i.e., ABL = F.

Eq. 3.3 can also be denoted in the following inference structure:

 1 2 ... nPremises P P P
Conclusion Q

∧ ∧ ∧=A
BL BL BL BLBL

BL BL
 (3.4)

Example 3.1 The following expressions are concrete arguments:

(a) A concrete deductive argument

1 2

 Information processing is an intelligent behavior ().

 Computer is able to process information ().

 Computer is an itelligent machine ().

1P

P

Q

∧A BL (3.5)

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 149

(b) A concrete inductive argument

 2
2

 Human is able to process information ().

 Computer is able to process information ().

Information processing is a common property of

 itelligence ().

1P

P

Q

∧
A BL (3.6)

Example 3.2 The following expressions are abstract arguments:

(a) Abstract deductive arguments

 3

, ()
, ()

x S P x a S
x a P a

∀ ∈ ∧ ∈
∃ =

A BL (3.7)

 4

, 1
1 , 1 2

n n n
n

∀ ∈ < +
∃ = ∈ <

A
NBL

N
 (3.8)

where N represents the type suffix of natural numbers.

(b) Abstract inductive arguments

5

 , ()

, ()

, ()

 , ()

x a S P a

x b S P b

x c S P c

x S P x

∃ = ∈

∧ ∃ = ∈

∧ ∃ = ∈

∀ ∈

A BL (3.9)

1

1
4

1
6 5

1

1 (1 1)
 1

2

14 (14 1)
 14

2

15 (15 1)
 15

2

(1)

2

i

i

i

n i

n i

n i

n n
n

=

=

=

⇒

• +∃ = ∈ ⇒ =

• +∧ ∃ = ∈ ⇒ =

• +∧ ∃ = ∈ ⇒ =

+∀ ∈

∑

∑

∑
A

N

N
BL

N

N

 (3.10)

where N represents the type of natural numbers.

In the above examples that the premier propositions should be arranged

in a list that the most general ones are put in the front. This condition
preserves the deductive chain in reasoning.

© 2008 by Taylor & Francis Group, LLC

150 Part II Theoretical Foundations of SE

It is noteworthy that propositional arguments can be classified as a kind
of causal and static inference. More rigorous and dynamic inferences may be
modeled and described as a set of cognitive processes encompassing a series
of simple inference steps as described in the following subsections.

3.3.2 DEDUCTIVE INFERENCES

For seeking generality and universal truth, either the objects or the
relations can only be rigorously described and formally inferred by abstract
models rather than real world details.

Definition 3.21 Deduction is a cognitive process by which a specific
conclusion necessarily follows from a set of general premises.

Deduction is a reasoning process that discovers or generates new
knowledge based on generic beliefs one already holds such as abstract rules
or principles. The validity of a deductive inference depends on its conformity
to the validity of generic principle; at the same time, the generic principle
that the deduction is based on is evaluated during the deductive practice.

In Theorem 3.6, denotes yield or a causal relation. Any valid logical

statement, established mathematical formula, or proven theorem can be used
as the generic promise for facilitating the above deductive inferring process.

Example 3.3 Let P(n)BL

1

(1)
2

n

i

n n
i

=

+=∑ be a proposition, n ∈ N, a
deductive inference for a given n = 10 can be derived as follows:

The 5th Principle of Software Engineering

Theorem 3.6 The generic formula of deductive inference states that,
given an arbitrary nonempty set X, let p(x) be a proposition for ∀x ∈ X, a
specific conclusion on ∃a ∈ X, p(a) can be drawn as follows:

 ∀x ∈ X, p(x) ∃a ∈ X, p(a) (3.11a)

A composite form of Eq. 3.11a can be given below:

 (∀x ∈ X, p(x) ⇒ q(x)) (∃a ∈ X, p(a) ⇒ q(a)) (3.11b)

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 151

 ∀n ∈ N, P(n)BL
1

(1)
2

n

i

n n
i

=

+=∑

 ∃n =10 ∈ N,

 P(10)BL = {
10

1

10(10 1)
110/2 55

2i
i

=

+= = =∑ }BL

 = T

It is noteworthy that not every deduction may reach a sound deductive

argument as shown in Table 3.2 [Hurley, 1997]. Based on Table 3.2,
Corollary 3.1 can be derived.

Table 3.2
Sound Argument by Deductive Validation

Conclusion
T F

T Valid and sound Invalid
Premises F Invalid Invalid

Corollary 3.1 may be used to avoid any deductive dilemma and falsity

in logical reasoning.

3.3.3 INDUCTIVE INFERENCES

Definition 3.22 Induction is a cognitive process by which a general
conclusion is drawn from a set of specific premises based mainly on
experience or experimental evidences.

Induction is a reasoning process that derives a general rule, pattern, or
theory from summarizing a series of stimuli or events. In contrary to the
deductive inference approach, induction may introduce uncertainty during
the extension of limited observations into general rules. The inductive
inference process encompasses rule learning, category formation,
generalization, and analogy.

Corollary 3.1 A sound deductive inference is yielded iff all premises are
true and the argument is valid.

© 2008 by Taylor & Francis Group, LLC

152 Part II Theoretical Foundations of SE

Theorem 3.7 indicates that for a finite list or an infinite sequence of

recurring patterns, three samplings (two determinate and one random) are
usually sufficient to determine the behavior of the given list or sequence of
patterns. Therefore, logical induction is a tremendously powerful and
efficient cognitive and inferring tool in science and engineering, as well as in
everyday life.

It is noteworthy that because of the limitation of samples, logical
induction may result in faulty proofs or conclusions. Therefore, as a rule of
thumb, the inference results of logic inductions need to be evaluated or
validated by more random samples.

Example 3.4 An iteration of a process P in programming can be
defined as a series of n+1 repetitions, Ri, 1 ≤ i ≤ n+1, of P by mathematical
induction, i.e.:

R0 = ⊗,
R1 = P → R0,
…
Rn+1 = P → Rn, n ≥ 0 (3.13)

where ⊗ denotes skip, or doing nothing but exit.

A recursive process should be terminable or noncircular, i.e., the depth
of recursive dr must be finite. The following lemma guarantees that dr < ∞
for a given recursive process or function [Lipschutz, 1964].

The 6th Principle of Software Engineering

Theorem 3.7 The generic formula of inductive inference states that, if ∃a,
k, succ(k) ∈ X, p(a) and p(k) ⇒ p(succ(k)) are three valid predicates, then
a generic conclusion on ∀x ∈ X, p(x) can be drawn as follows:

 ((∃a ∈ X, p(a)) ∧ (∃k, succ(k) ∈ X, (p(k) ⇒ p(succ(k))))

 ∀x ∈ X, p(x) (3.12a)

where succ(k) denotes the next element of k in X.

A composite form of Eq. 3.12a can be given below:

 ((∃a ∈ X, p(a) ⇒ q(a)) ∧ (∃k, succ(k) ∈ X, ((p(k) ⇒ q(k)) ⇒
 (p(succ(k)) ⇒ q(succ(k))))) ∀x ∈ X, p(x) ⇒ q(x) (3.12b)

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 153

It is noteworthy there are certain conditions to reach a cogent inductive

argument as shown in Table 3.3 [Hurley, 1997]. Based on Table 3.3,
Corollary 3.2 can be derived.

Table 3.3
Cogent Argument by Inductive Validation

Conclusion
T F

T Valid and cogent Invalid
Premises F Invalid Invalid

Corollary 3.2 may be used to avoid any inductive dilemma in logical

reasoning.

3.3.4 ABDUCTIVE INFERENCES

Definition 3.23 Abduction is a cognitive process by which an inference
to the best explanation or most likely reason of an observation or event is
resulted.

Abduction is widely used in causal reasoning, particularly when a
change of events needs to be traced back where not all of the events have
been observed.

Lemma 3.1 A recursive function is noncircular, i.e., dr < ∞, iff:

 a) A base value exists for certain arguments for which the function

does not refer to itself;

 b) In each recursion, the argument of the function must be closer to the
base value.

Corollary 3.2 A cogent inductive inference is yielded iff all premises are
true and the argument is valid.

© 2008 by Taylor & Francis Group, LLC

154 Part II Theoretical Foundations of SE

Abduction is a powerful inference technique for seeking the most likely

cause(s) or reason(s) of an observed phenomenon in causal analyses.

3.3.5 ANALOGICAL INFERENCES

Definition 3.24 Analogy is a cognitive process by which an inference
about the similarity of the same relations holds between different domains or
systems, and/or examines that if two things agree in certain respects then
they probably agree in others.

Analogy is a mapping process that identifies relation(s) in order to
understand one situation in terms of another. Analogy can be used as a
mental model for understanding new domains, explaining new phenomena,
capturing significant parallels across different situations, describing new
concepts, and discovering new relations.

The 7th Principle of Software Engineering

Theorem 3.8 The generic formula of abductive inference states that
based on a general implication ∀x ∈ X, p(x) ⇒ q(x), a specific conclusion
on ∃a ∈ X, p(a) can be drawn as follows:

 (∀x ∈ X, p(x) ⇒ q(x)) (∃a ∈ X, q(a) ⇒ p(a)) (3.14a)

A composite form of Eq. 3.14a can be given below:

 (∀x ∈ X, p(x) ⇒ q(x) ∧ r(x) ⇒ q(x))
 (∃a ∈ X, q(a) ⇒ (p(a) ∨ r(a))) (3.14b)

The 8th Principle of Software Engineering

Theorem 3.9 The generic formula of analogical inference states that
based on a specific predicate ∃a ∈ X, p(a), a similar specific conclusion
can be drawn iff ∃x ∈ X, p(x) as follows:

 ∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a) ∃b ∈ X ∧ b ≠ a, p(b) (3.15a)

A composite form of Eq. 3.15a can be given below:

 (∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a) ⇒ q(a))
 (∃b ∈ X ∧ b ≠ a, p(b) ⇒ q(b)) (3.15b)

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 155

Analogy is widely used to predict a similar phenomenon or
consequence based on a known observation.

Theoretical research is predominantly an inductive process; while
applied research is mainly a deductive process. Both inference processes are
based on the cognitive process and means of abstraction. The five inference
methodologies, causal argument, deduction, induction, abduction, and
analogy, form a set of fundamental reasoning processes of the natural
intelligence. They are an important set of human cognitive processes as
modeled in LRMB [Wang et al., 2006], and have been formally described
using RTPA [Wang, 2002a/02b/03c/07a], which will be further described in
Chapters 9 and 4, respectively.

3.4 The Nature of Software

The remainder of this chapter will show that philosophy is a powerful means
to reveal the nature of software and software engineering. Section 1.2.1 has
reviewed the mathematical, product, and informatics metaphors of software.
This section presents philosophical thought on the nature of software, and
further examines the fundamental properties of software as the objects under
study in software engineering.

3.4.1 THE THREE SITUATIONS WHERE SOFTWARE IS
 NEEDED

The exploration on the nature of software may start from the analysis of

usages of software in different contexts. As an explanation, let us consider
when one needs a software system in particular, and a computing solution in
general. There are three situations, namely the repeatability, flexibility, and
run-time determinability, in which a software system is required [Wang,
2004b; Wang et al., 2004b].

Situation 1: The repeatability – Software is required when one
needs to do something for more than once.

Repeatability is one of the most premier needs for a software solution;

whilst it is not the only sufficient condition for requiring a software system
because repeatability may also be implemented by wired logic or hardware.

© 2008 by Taylor & Francis Group, LLC

156 Part II Theoretical Foundations of SE

 Based on the repeatability, the following situation is introduced.

Situation 2: The programmability – Software is required when one
needs to repeatedly do something not exactly the
same.

In addition to Situations 1 and 2, the following case should be

considered in order to complete the necessary and sufficiency usage analyses
of software.

Situation 3: The run-time determinability – Software is required
when one needs to flexibly do something by a series of
choices on the basis of varying sequences of events
determinable only at run-time.

 The third situation may also be considered as the indeterminism at
compile-time or design time. This has been identified by Turing (1936),
Dijkstra (1975), and Hoare (1978).
 The above analysis leads to the following theorem.

 Theorem 3.10 indicates that the above three situations, namely
repeatability, flexibility, and run-time determinability, form the necessary
and sufficient conditions that warrant the requirement for a software solution.
The third condition is the fundamental issue in computation that determines
the complexity of programming.

3.4.2 THE BEHAVIORAL SPACE OF SOFTWARE

 It is found that both human and software behaviors can be described by

a three-dimensional representative model encompassing action, time, and
space [Wang, 2006a]. For software system behaviors, the three dimensions
are known as computational operations, event/process timing, and memory
manipulation [Wang, 2006a]

The 9th Principle of Software Engineering

Theorem 3.10 The necessary and sufficient conditions of software usage
state those that warrant the requirements for software solutions are the
system behaviors of repeatability, programmability, and run-time
determinability.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 157

Definition 3.25 The behavior of a computational statement is a set of
observable actions or changes of status of objects operated by the statement.

The 3-D behavioral space of software systems can be illustrated in Fig.

3.2. According to Theorem 3.11, the fundamental and general requirements
for programming languages and software development tools are the
capability to express and manipulate the 3-D behaviors. No language or tool
only capable for two of the dimensions, usually OP × S, is adequate to cope
with the more general requirements in software engineering. Therefore, a lot
of problems have stemmed from the implied treatment of time in software
development, particularly for real-time software systems, in conventional
programming languages and tools.

t

s

op

Ω = OP × T × S

The behavior space (Ω)
0

Figure 3.2 The 3-dimensional behavior space of software

3.4.3 PROPERTIES OF SOFTWARE

 The creation as software of conventional physical products by the use
of programmable and reconfigurable components is a new and quiet
industrial revolution. The 19th Century industrial revolutions were oriented
on mass production by machinery and standardized process and components
[Tayler, 1911; Warner and Low, 1947; Gregory, 1971; Wright, 2002]. The
development of soft systems is a revolution that transforms the information

The 10th Law of Software Engineering

Theorem 3.11 The behavior space of software states that the software
behavior space Ω is innately three-dimensional, which can be described
by a Cartesian product of computational operations OP, time T, and
memory space S, i.e.:

 Ω = OP × T × S (3.16)

© 2008 by Taylor & Francis Group, LLC

158 Part II Theoretical Foundations of SE

processing and intelligent components of the conventional physical products
into software.

 Therefore, it might be argued that software engineering has become a
discipline that is at the root of the knowledge structure of most engineering
disciplines. The philosophical considerations explored in this subsection have
attempted to clarify a set of fundamental characteristics of software
engineering. These considerations also provide a basis for judging the
soundness or unsoundness of specific technical solutions for software
engineering, while not losing the sight of the woods for the trees.
 In addition to the mathematical, product, and informatics properties of
software as discussed in Section 1.2.1, this subsection describes another set
of software properties that encompasses the cognitive, intelligent behavioral,
and system properties of software.

3.4.3.1 The Cognitive Properties of Software

The cognitive properties of software refer to its human dependency in

almost all processes of software engineering. Eight cognitive properties of
software are identified [Wang, 2004b] as shown in Fig. 3.3, such as those of
intangibility, complexity, indeterminacy, diversity, polymorphism,
inexpressiveness, inexplicit embodiment, and unquantifiable quality
measures.

One of the unique properties of software is the inherent complexity.
Software complexity may be classified into time, space, symbolic, functional,
and cognitive complexities [Wang, 2006c/07a]. The cognitive complexity of
software models and measures the cognitive property of software by a
product of its architectural and operational complexities. The measure of
cognitive complexity of software plays a key role in understanding the
fundamental properties of software in all phases of software engineering
including the design, implementation, maintenance, and comprehension
phases. Detailed description of software cognitive complexity will be
provided in Sections 9.6 and 10.7.3.

Another unique property of software is its intangibility in design and
comprehension. In Sections 9.2.2 and 9.4.4 it will be revealed that the
abstract architecture and behavior of software should be physiologically
created in the brain, before they can be represented externally in the forms of
system design, code, and documentation.

3.4.3.2 The Intelligent Behavioral Properties of Software

 Software is a brainchild of human beings. A software system, to some
extent, can be perceived as a virtual agent of humans, because it is created to
do something repeatable, to extend human capability, reachability, or
memory, just like assistants hired to do the same thing.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 159

Figure 3.3 The cognitive properties of software

 As shown in Table 3.1, software for computation is the third approach
to simulate and implement the natural intelligence by programmed logic.
According to Theorem 3.4 on inclusive intelligent capability, software is
inherently a part of natural intelligence and human behaviors. Because any
behavior of machine intelligence is a part of expected human behaviors,
according to Theorem 3.4, the following corollary on the relationship
between a software behavior and natural intelligence behavior can be
derived.

Corollary 3.3 reveals that the nature of software is the simulation and

execution of human behaviors, as well as the extension of human capability,
reachability, persistency, memory, and information processing speed. This
leads to the concept of autonomic computing, which will be introduced in
Section 15.4.1.

Unquanti-
fiable
quality

measures

Inexplicit
embodi-

ment

Inexpres-
siveness

Polymor-

phism

Diversity

Indeter-
minacy

Comple-

xity

Intangi-

bility

Cognitive
properties

of
software

Corollary 3.3 Software behaviors SB are a subset of simulated human
intelligent behaviors IB described by programmed instructive information
in a programming language, i.e.:

 SB ⊆ IB (3.17)

© 2008 by Taylor & Francis Group, LLC

160 Part II Theoretical Foundations of SE

3.4.3.3 The System Properties of Software

The nature of software is well fit to the concept of a system, because

software is a complex artifact that consists of a large set of different and
intricately interconnected components. Changes at one point of a software
system may affect the functioning of the entire whole due to propagation of
interactions via highly coupled data architectures and intricately
interconnected components.

A system is the most complicated object that can be modeled in
mathematics. The system science foundations of software engineering define
a system as a collection of coherent and interactive entities that has stable
functions and clear boundary with the external environment. Systems can be
viewed in a hierarchy where one system may be considered part of a larger
system. Contemporary system theory [Klir, 1972/2001; Wang, 2005l/06d] is
a powerful conceptual tool that facilitates a deductive approach to software
engineering problem solving. The design of a large software system would
divide the system into interrelated subsystems and components. The
components may then be developed in parallel by multiple teams before the
system is integrated.

System theory seeks to understand the nature of interactions and
collaborations of systems, subsystems, and components. A system is
considered to be a closure at a certain level of hierarchical architecture of our
conceptual world. The system metaphor of software reveals that software in
nature is an open system that obeys the abstract system theory and system
algebra [Wang, 2006d] as described in Chapter 10 on system science
foundations of software engineering.

3.5 Philosophy of Software
 Engineering

Software engineering is a unique discipline that relies on special
philosophical foundations at the top level. Conventional industries produce
physical products from raw materials via engineering approaches; the
software industry produces software solutions for problems via software
engineering. By contrasting the nature of software engineering with other
engineering disciplines, it is clear that there are a number of interesting and
fundamental differences between them as described in the following parts of
this section.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 161

3.5.1 THE COGNITIVE CHARACTERISTICS OF
SOFTWARE ENGINEERING

 The cognitive properties of software as described in previous section

and the cognitive constraints of software engineering as identified in Section
1.3 are helpful to explain the nature of software engineering and its
dependency on human cognitive capability. Software as an abstract object
under study and its cognitive complexity distinguish software engineering
from conventional engineering disciplines. This subsection describes and
analyzes the unique characteristics of software engineering stemmed from its
basic cognitive constraints.

3.5.1.1 The Abstraction and Intangibility of Software

 The abstraction and intangibility of software refer to the nature that a
specific software system is a solution for a given problem rather than a
physical product. It is abstract and intangible because the solution is
represented by code in a programming language. Further, in the time
dimension, the software never runs as its static sequence shows in the
program and it runs at hundred or thousand times faster than humans can
simulate. We may never know the status of some of the intermediate data
objects and the maps of dynamic memory allocation of a software system
during run-time.

3.5.1.2 The Inherent Complexity and Diversity

 The inherent complexity and diversity refer to the difficulty for seeking
and implementing solutions in software development and the surprisingly
large scope of the problem domain in software engineering. Software
development requires high level cognitive capability of abstraction, mental
simulation, and relating a static sequential program to its dynamic run-time
behaviors. Further, computer science has recognized a whole set of problems
that are noncomputable or impossible to implement by programming known
as the categories of NP-complete problems [Lewis and Papadimitriou, 1998].

3.5.1.3 The Changeability or Malleability of Software

 The changeability or malleability of software refers to the nature that
software is considerably vulnerable and unstable. Although a software
system may not wear-off, it does decay. Any hardware fault, timing fault,
memory allocation problem, and external interference, no matter static or
random, may result in unexpected behaviors of a software system. Therefore,
focusing on software fault-tolerant and exception handling capability rather

© 2008 by Taylor & Francis Group, LLC

162 Part II Theoretical Foundations of SE

than on implementation of ordinary functions that are directly required by
customers is a basic sign to distinguish professional or naive software
engineers.

3.5.1.4 The Difficulty of Establishing and Stabilizing Requirements

 The difficulty of establishing and stabilizing requirements refers to the
nature of software engineering that the requirements in the real world are
inevitably a moving target. One of the reasons we use a software solution
rather than a wired logic for an application is for flexibility and adaptability
on a common computer platform. In addition, system development is a
learning process for both customers and developers. The involvement of
customers in system development stimulates the extension of their
requirements for the system. The deeper the customer understands the
system, the more the customer seeks for functionality. At the same time, it is
interesting that an enthusiastic and idealistic software developer does the
same; even this is, sometimes, in contradiction to the financial objective of a
project.

3.5.1.5 The Requirement of Varying Problem Domain Knowledge

 The requirement of varying problem domain knowledge refers to the
nature that software engineering faces unlimited application domains.
According to Theorem 3.9, it is recognized that for anything discretely
expressive and for any activity needed to be repeated for more than two
times, one may consider a software solution. Therefore, the recognition of
domain knowledge requirements for an experienced software engineer is a
significant issue in software engineering. It will be more important when a
program can be automatically generated from requirement specifications in
the future.

3.5.1.6 The Indeterminacy and Polysolvability in Design

 The indeterminacy and polysolvability in design refer to the nature that
software solutions for a given problem are not sufficiently single. There is a
combined solution space (options) for system design, functional
specification, work products definition, and ways of interaction with
operators. Within this extremely large solution space, an application is only
one possible implementation that the developer believes is sound. We even
can not prove theoretically and economically if the implemented solution is
the best or not, because of the size of the solution space. This is the principle
of nondeterministic and polysovability in software engineering.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 163

3.5.1.7 The Polyglotics and Polymorphism in Implementation

 The polyglotics and polymorphism in implementation refer to the nature
that software implementation for a given problem is not sufficiently single in
both languages and processes as that of the polysolvability for design
described above. There is a combined solution space for programming
languages, target machine languages, coding styles, data models, and
memory allocations. Any change among these factors may result in a
different implementation of a software system.

3.5.1.8 The Dependability of Interactions between Software, Hardware,
 and Humans

 The dependability of interactions between software, hardware, and
humans refers to the nature that any software is not running alone. It needs
hardware support as an operating platform, and it needs interaction with
human beings. Any hardware problem and human error may cause software
malfunctions, even if it is believed that software itself does not wear-off.

3.5.2 THE NATURE OF SOFTWARE ENGINEERING

The nature of software engineering may be explained by contrasting its

unique characteristics with the conventional engineering disciplines [Wang
and King, 2000a]. The uniqueness encompasses virtualization, infinitiveness
of problem domains, design-intensive, generic platform, universal logical
description, and repeatable processes.

3.5.2.1 Programming: Virtualization vs. Realization

 Given manufacturing engineering as an exemplar of conventional
engineering, the common approach moves from abstract to concrete, and the
final product is the physical realization of an abstract design. However, in
software engineering, the approach is reversed. It moves from concrete to
abstract. The final software product is the virtualization (coding) and
invisible representation of an original design that expresses a real world
problem. The only tangible part of a software product is its storage media or
its run-time behaviors. As illustrated in Fig. 3.4, this is probably the most
unique and interesting feature of software engineering.

© 2008 by Taylor & Francis Group, LLC

164 Part II Theoretical Foundations of SE

-100% -50% 0% 50% 100%

Software engineering

Abstraction <------------------------------- Design --------------------------------> Realization

Manufacturing engineering

Figure 3.4 Virtualization vs. Realization

3.5.2.2 Problem Domains: Infinitive vs. Limited

 The problem domain of software engineering encompasses almost all
domains in the real world as shown in Fig. 3.5, from scientific problems and
real-time control to word processing and games. It is infinitely large when
compared with the specific and limited problem domains of the other
engineering disciplines. This stems from the notion of a computer as a
universal machine, and is a feature fundamentally dominating the complexity
in engineering implementation of large-scale software systems.

Manufacture
engineering

Natural science

Other
engineering
disciplines

… etc.

Everyday life

Humanity

 Software engineering

Literature

Figure 3.5 Problem Domains: Infinite vs. Limited

3.5.2.3 Effort Distribution: Design Intensive vs. Repetitive Production

 As demonstrated in Fig. 3.6, software development is a design-
intensive process rather than a mass production process. The design activities
include specification, design, implementation, test, and maintenance; the
production activities consist of duplication and package. In some extent,
software engineering is a design engineering of abstract artifacts, no matter
how large of an exaggerated box may be used by the vendor to pack the
software intending to imply a considerable production effort.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 165

0% 20% 40% 60% 80% 100%

Mass production effort

Software development effort

Design Production

Figure 3.6 Effort distribution in software development and mass production

3.5.2.4 Implementation: Specificity vs. Generality

 Nancy Leveson (1997) viewed that the computer revolution enables
“machines that were physically impossible or impractical to build become
feasible.” Therefore, system designs may put “emphasis on steps to be
achieved without worrying about how the steps will be realized physically.”

 A specific application

Specific software

 Computerization

A general
purpose platform

Figure 3.7 The role of software in computerization

 The development of soft systems is a revolution that transforms the
information processing and intelligent parts of the conventional physical
products into software. Computerization as shown in Fig. 3.7 enables a
specific problem or a special application be solved or implemented by a
general purpose solution plus a specific software system. In this approach, a
given problem is divided into two categories: (a) the standardized control
drivers and interfaces to the general purpose computer, and (b) the special
purpose software for the application. Therefore, a new design and
implementation of a specific system is reduced to a problem of changing the
software subsystem rather than that of refabricating the entire machine.

© 2008 by Taylor & Francis Group, LLC

166 Part II Theoretical Foundations of SE

3.5.2.5 Universal Logical Description vs. Domain-Specific Description

 Software engineering adopts only a few fundamental logical structures,
such as sequence, branch, iteration, recursion, interrupt, and concurrency.
However, these provide a powerful descriptive and abstractive capability for
dealing with any real-world problem. In contrary, in other engineering
disciplines, domain-and-application-specific notations have to be adopted
that have limited descriptivity.

3.5.2.6 Process Standardization vs. Product Standardization

 Directly related to the fact that software engineering is design intensive,
it is recognized that the development of specific application software is
characterized as mainly a one-off activity in design and production. This is
because there are fewer standard software applications or products that can
be mass produced except a few kinds of system software or general utilities.

 Thus, for the design-intensive software development, the only elements
that can possibly be standardized and reused significantly are mainly the
software engineering principles and processes, not the final products
themselves as in other manufacturing engineering disciplines.

3.5.3 SOFTWARE ENGINEERING VALIDATION
 METHODOLOGIES

On the basis of rationalism, it can be seen that the methodology for
software engineering validation and software quality assurance are
profoundly different from the physical engineering disciplines, because the
objects under study in the former are abstract and behavioral information.

According to Theorem 3.2, the following corollaries can be derived.

Corollary 3.4 indicates that the validation methodologies in software

design and implementation are totally different. As shown in Table 3.4, the
validation of the work products of software designs can be: a) Formal
verification on the basis of logic and formal models of the design; b) Review
or inspection of the design; and/or c) Simulation or prototyping. However,
software implementations can only be validated by simulation, testing, and/or
empirical trial.

Corollary 3.4 The validation methodologies of software design and
implementation can be sufficiently categorized as shown in Table 3.4.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 167

Table 3.4
Methodologies for Validating Software Products

Work product in
software engineering

No. Validation method

Design
(Synthesis)

Implementation
(Instantiation)

1 Logical verification √

2 Mathematical prove √

3 Review √

4 Simulation √ √
5 Testing √
6 Trial √

Corollary 3.4 also indicates that software implementation itself is

actually a validation method for the design of the given software system.
This is an inherent property of complex systems where a long chain of
processes is adopted in the design and implementation lifecycle to validate
the system. Therefore, no simple or single process may be adequate in
software system validation. As Brooks said, there is “no silver bullet.”

The philosophical considerations explored in this subsection have
attempted to clarify a set of fundamental characteristics of software
engineering. Based on the above discussion it might be argued that software
engineering has become a discipline that is at the root of human knowledge
structure, and it deals with the most abstract and complex objects among all
disciplines. These considerations also provide a basis for judging soundness
or unsoundness of any specific technical solution for software engineering,
while not losing the sight of the woods for the trees in various practice.

3.6 Murphy's Laws: The
 Practitioners' Philosophy for
 Software Engineering

In the preceding sections it may be seen that important philosophical
thoughts were contributed by preeminent philosophers and scientists, who
think at the highest level of abstraction and in a systematical way. However,
this is not necessary to say that philosophy is only the brainchild of

© 2008 by Taylor & Francis Group, LLC

168 Part II Theoretical Foundations of SE

philosophers and scientists. Actually, ordinary engineers and practitioners do
recognize the usefulness of philosophy in eliciting the generic truth from
everyday life. Murphy’s laws presented in this section are good examples of
people’s philosophy elicited from empirical practice.

The first Murphy's Law was named after Edward A. Murphy, an
engineer working at Edwards Air Force Base in the 1940s. It says: “If
anything can go wrong, it will.” A manager kept it as one of the “laws”
called Murphy's Law. This law has helped the organization to maintain a
good safety record for years.
 Murphy's laws are people's wisdom that represents a number of simple
and intuitive philosophical views on engineering practice. There are
hundreds of Murphy's laws proposed and posted on the Internet. Selected
ones are provided in the following subsections.

3.6.1 MURPHY'S LAWS ON GENERAL ENGINEERING

The following is a list of selected Murphy's laws on generic engineering
practice. Readers may see they are also useful for daily life.

 • If anything can go wrong, it will.
 • Nothing is as easy as it looks.
 • Everything takes longer than one expected.
 • The complexity and frustration factor is inversely proportional to

how much time you have left to finish a project.
 • Experience is something you do not get until just after you needed

 it most.
 • Confidence is the feeling you get just before you fully understand
 the problem.
 • He who laughs last probably made a back-up.

 • You will always discover errors in your work after you have
printed/submitted it.

 • The troubleshooting guide contains the answer to every problem
 except yours.

 • He who hesitates is probably smart.
 • If builders built buildings the way programmers wrote programs,

 then the first woodpecker that came along would destroy
civilization.

 • Great discoveries are made by mistake.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 169

 • A meeting is an event at which the minutes are kept and the hours
 are lost.
 • Any system which depends on human reliability is unreliable.
 • If an experiment works, something has gone wrong.
 • The remaining work to finish in order to reach your goal increases
 as the deadline approaches.

 • Never trust modern technology. Trust it only when it is old
enough.

 • It is simple to make something complex, and complex to make it
 simple.

 • Impossible failures will happen at the test site.

3.6.2 MURPHY'S LAWS ON SOFTWARE ENGINEERING

The following is list of selected Murphy's laws related to software
engineering.

 • A program will always do what you tell it to do, but never what
 you want it to do.

 • Program complexity grows until it exceeds the capability of the
 programmer who must maintain it.
 • Every nontrivial program has at least one bug.
 • The subtlest bugs cause the greatest damage and problems.
 • Undetectable errors are infinite in variety, in contrast to detectable
 errors, which by definition are limited.
 • Adding labor to a late software project makes it later.
 • A working program is one that has only unobserved bugs.
 • No matter how much resources you have, it is never enough.
 • It is futile to try to get more disk space. Data expands to fill any
 void.
 • A failure in a device will never appear until it has passed final
 inspection.

• Computers don't make errors. What they do they do on purpose.

• Every nontrivial program can be simplified by at least one line of
 code.

© 2008 by Taylor & Francis Group, LLC

170 Part II Theoretical Foundations of SE

• For any given software, the moment you manage to master it, a
new version appears. And the new version always manages to
change the very feature that you need most.

 • A patch is a piece of software which replaces old bugs with new
 bugs.
 • The chances of a program doing what it's supposed to do are

inversely proportional to the number of lines of code used to write
 it.

 • Failure is not an option, it's a feature with software.
 • The worst bugs in your program will show up only during the

final review.
 • The likelihood of problems occurring is inversely proportional to

 the amount of time remaining before the deadline.
 • The error is human. To blame you computer for your mistakes is
 even more human.
 • A complex system that does not work is invariably found to have
 been evolved from a simple system that worked well.

• You can always spot an expert in the crowd. It is the person who
 says that the project will take the longest to complete and will
cost the most.

 • Investment in software reliability will increase until it exceeds the
 probable cost of errors.

More and newly proposed Murphy laws may be found at a number of
websites such as: http://www.murphys-laws.com/, http://www.
fourjokers.co.uk/murphy/, and http://www,hardcorenyc.com/murphys_law_
main.htm, etc.

3.7 Summary

Philosophy is the tool of abstraction, synthesis, and deduction, which
enables new theories to be developed when there are inadequate laws or
intuitive facts to be based for reasoning and draw inductive conclusions.
Philosophy is the highest level of knowledge that is universally true without
regard of time and places. Science and engineering philosophy is an aspect

© 2008 by Taylor & Francis Group, LLC

http://www.murphys-laws.com
http://www.fourjokers.co.uk
http://www.fourjokers.co.uk
http://www.hardcorenyc.com
http://www.hardcorenyc.com

Chapter 3 Philosophical Foundations of SE 171

of philosophy that studies general phenomena and rules of sciences and
engineering technologies.

The philosophical foundations of software engineering highlight the
relationship between the abstract world that deals with information and the
physical world that deals with matter and energy. The problem domain of
software engineering can be seen in the connection between the abstract
world of information to the physical world of matter and energy.

This chapter has investigated the philosophical foundations and logical
means of software engineering. Philosophies of science and engineering with
inspiring philosophical thought have been surveyed. A set of formal
inference methodologies based on logical arguments, deduction, induction,
abduction, and analogy has been explored. The nature of software and its
properties have been examined from a philosophical view. The philosophy of
software engineering, complemented by Murphy’s laws – the practitioners’
philosophy, has been presented. As a result, the philosophical foundations
of software engineering have been established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Philosophical Foundations of Software
Engineering, readers have achieved the following strategic goals with the
knowledge architecture as summarized below.

Chapter 3. Philosophical Foundations of SE

■ Philosophies of Science and Engineering
 • The physical world vs. the abstract world
 • The basic axioms about nature
 • Epistemology and cognition
 • Holism vs. reductionism
 • Positivism vs. rationalism
 • Empiricism and objectivity
 • Determinism vs. indeterminism
 • Approaches to implement intelligence
 • Ethical philosophy of engineering

■ Formal Inference Methodologies
 • Logical argumentations
 • Deductive inferences
 • Inductive inferences

© 2008 by Taylor & Francis Group, LLC

172 Part II Theoretical Foundations of SE

 • Abductive inferences
 • Analogical inferences

■ The Nature of Software
 • The three situations where software is needed
 • The behavioral space of software
 • Properties of software
 - The cognitive properties
 - The intelligent behavioral properties
 - The system properties

■ The Philosophy of Software Engineering
 • The cognitive characteristics of software engineering
 - The abstraction and intangibility
 - The inherited complexity and diversity
 - The changeability or malleability
 - The difficulty of establishing and stabilizing requirements
 - The requirements of varying problem domain knowledge
 - The indeterminacy and polysolvability in design
 - The polyglotics and polymorphism in implementation
 - The dependability of interactions between software, hardware,
 and humans

 • The nature of software engineering
 - Programming: virtualization vs. realization
 - Problem domains: infinitive vs. limited
 - Effort distribution: design intensive vs. repetitive production
 - Implementation: specificity vs. generality
 - Universal logical description vs. domain-specific description
 - Process standardization vs. product standardization

 • Software engineering validation methodologies

■ Murphy’s Laws: The Practitioners’ Philosophy for Software
 Engineering
 • Murphy’s laws on general engineering
 • Murphy’s laws on software engineering

SIGNIFICANT FINDINGS OF THIS CHAPTER

• Philosophy is needed when there are inadequate laws or lack of
intuitive facts to be based for reasoning and draw inductive conclusions. It is

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 173

also needed when there is no other clue for the judgment of a new problem or
technology.

• The philosophy of software engineering reveals that software

engineering is a discipline at the root of human knowledge structure, and it
deals with the most abstract and complex objects among all engineering
disciplines.

• Theoretical research is predominantly an inductive process; while

applied research is mainly a deductive process. Both inference processes
are based on the cognitive process and means of abstraction.

• Philosophy, as well as mathematics, is the top level abstraction
means and therefore the most general human knowledge.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Philosophies of Science and Engineering

• Philosophy can be divided into four branches known as
epistemology, metaphysics, logic, and ethics. Logical inquiry is a generic
cognitive methodology for knowledge acquisition by scientific investigation
that adopts the processes of problem identification, hypothesis proposing,
experiment and testing, and theory forming.

• The principle of universal constraints states that both the natural

world and the perceived abstract world are constrained by certain known
restrictions and laws, or by those yet to be known due to current limitations
of natural resources and/or human cognitive capability.

• The basic axiom of scientific inquiry is that nature obeys a set of

fundamental axioms, referring to uniformity, determinism, reality, rationality,
regularity, replication, and discoverability of natural events and their
relations.

 • Epistemology is a branch of philosophy that studies concepts of
knowledge and their rational justification, in which the six approaches to
acquire knowledge or gain cognition of the nature are: tenacity, intuition,
experience, authority, reasoning or inferring, and logical inquiry.

© 2008 by Taylor & Francis Group, LLC

174 Part II Theoretical Foundations of SE

 • Foundationalism is a basic philosophical view that all the
propositions we know to be true can be divided into foundational and
superstructural ones. The former are indubitable and axiomatically to be
true. The latter are propositions that bear deductive or implicated relationship
to the foundations. To have the knack of reducing a problem to its simplest
and basic elements and then finding a solution by the most direct means is
commonly recognized as a vital scientific research method rooted in
foundationalism.

• Holism is a philosophical view that perceives a phenomenon and
system with wholeness in an integrated, synthetic, and systematic approach.
Reductionism is a philosophical view that investigates a phenomenon and
system by using a decomposition and analytic approach.

 • Positivism is a philosophical view, which states that a thesis about
physical phenomena must either be analytic or empirical. Rationalism is a
philosophical view to arrive at knowledge in which reasoning is used to
acquire, process, derive, and evaluate the knowledge.

 • Empiricism is a philosophical view that states knowledge can be
gained through the experience of an event, the observation of a fact, or the
use of a methodology. Objectivity is a scientific criterion that requires an
observation must be independent of individual opinion, bias, or prejudice.
The essence of objectivity is that true or false of an objective matter is
independent of what anyone believes or thinks. Replication is a scientific
criterion which requires that the results of a study must be replicable under
the same condition. Causation is the cause-and-effect relationships where
the manipulation of one event produces another event as the effect of the
causal event.

• Determinism is a philosophical view, which states the thesis that a
complete description of the causal facts at one time uniquely determines what
must happen next. Indeterminism is a philosophical view, which states the
thesis that even a complete description of the present does not uniquely
determine what will happen in the future.

• The natural intelligence (NI) and machine intelligence (AI) share

the same cognitive informatics (CI) foundation, because AI is a machine
implementation of a subset of NI.

• The approaches to implement intelligence can be classified into

four categories known as biological organisms, silicon automata, computing
systems, and hybrid systems. Autonomic computing is proposed as a new

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 175

and advanced computing technique built upon the routine, algorithmic, and
adaptive systems.

Formal Inference Methodologies

• Inference is a cognitive process that inferences a possible causal
conclusion from given premises based on known causal relations between a
pair of cause and effect proven true by empirical observations, theoretical
inferences, or statistical regulations. Reasoning can be classified as causal
argument, deduction, induction, abduction, and analogy.

• A causal argument is an assertion that yields a proposition called the

conclusion from a given finite set of propositions known as the premises. The
argument is valid if the conclusion is true; otherwise, the argument is a
fallacy.

• Deduction is a cognitive process by which a specific conclusion

necessarily follows from a set of general premises (Eq. 3.11). A sound
deductive inference is yielded iff all premises are true and the argument is
valid.

• Induction is a cognitive process by which a general conclusion is

drawn from a set of specific premises based mainly on experience or
experimental evidence (Eq. 3.12). A cogent inductive inference is yielded iff
all premises are true and the argument is valid.

• Abduction is a cognitive process by which an inference on a

causality or the most likely reason of an observation or event may be derived
(Eq. 3.14). A generic inference formula of logical abduction states that based
on a general implication, a specific conclusion can be drawn. Abduction is a
powerful inference technique for seeking the most likely cause(s) and
reason(s) of an observed phenomenon in causal analyses.

• Analogy is a cognitive process by which an inference about the

similarity of the same relations holds between different domains or systems,
and/or examines that if two things agree in certain respects then they
probably agree in others (Eq. 3.15). A generic inference formula of logical
analogy states that based on a specific proposition, a similar specific
conclusion can be drawn. Analogy is widely used to predict a similar
phenomenon or consequence based on a known observation.

The Nature of Software

• The necessary and sufficient conditions warranting the requirement
for a software solution are the repeatability, programmability, and run-time
determinability of system behaviors.

© 2008 by Taylor & Francis Group, LLC

176 Part II Theoretical Foundations of SE

• The behavior of a computational statement is a set of observable
actions or changes of status of objects operated by the statement. The
behavior space of software Ω is a three-dimensional space with the
dimensions of operations, time, and memory space.

• The cognitive properties of software refer to its human dependency

in almost all processes of software engineering, such as intangibility,
complexity, inderterminacy, diversity, polymorphism, inexpressiveness,
inexplicit embodiment, and unquantifiable quality measures.

• The intelligent properties of software refer to the subset of

simulated human intelligent behaviors described by programmed instructive
information. The nature of software is the simulation and execution of human
behaviors, and the extension of human capability, reachability, persistency,
memory, and information processing speed. Both human and software
behaviors can be described by a 3-dimensional representative model
comprising action, time, and space.

• The system properties of software refer to the intricate artifact that

consists of a large set of different and intricately interconnected components.
Changes at one point may affect the functioning of the entire whole due to
propagation of interactions via highly coupled data architectures and
intricately interconnected components. The system metaphor of software
reveals that software in nature is an open system that can be rigorously
treated using abstract system theory and system algebra.

The Philosophy of Software Engineering

• Conventional industries produce artifacts from raw materials via
engineering approaches; the software industry produces software solutions
for problems via software engineering. The nature of software engineering is
explained by contrasting its unique characteristics with the conventional
engineering disciplines. The uniqueness of software engineering
encompasses virtualization in both design and implementation, infinitiveness
of problem domains, design-intensive, generic platform, universal logical
description, and repeatable processes.

• The abstract objects under study and their cognitive complexity

distinguish software engineering from conventional engineering disciplines.
The cognitive characteristics of software engineering have been identified
as follows:

- The abstraction and intangibility
- The inherited complexity and diversity

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 177

- The changeability or malleability
- The difficulty of establishing and stabilizing requirements
- The requirement of varying problem domain knowledge
- The indeterminacy and polysolvability in design
- The polyglotics and polymorphism in implementation
- The dependability of interactions between software, hardware,
 and humans

• The philosophy of software engineering reveals that software
engineering is a discipline at the root of human knowledge structure, and it
deals with the most abstract and complex objects among all engineering
disciplines.

Questions and
Research Opportunities

3.1 Philosophy addresses fundamental questions of great generality

and ways of reasoning. Try to explain that philosophy is the
common root of all sciences and the crystallization of general
knowledge of mankind in the pursuit of understanding and
utilizing the natural resources and their rules.

3.2 Why is philosophy needed when there are inadequate laws and

principles to be based for deductive reasoning, and when there is
no other rule of thumb to be based for a judgment of a given new
problem or technology?

3.3 Discuss why philosophy is the highest level of abstract

knowledge that is universally true without regard of time and
places.

3.4 What are the four branches of philosophy? Why is logic treated as

one of the branches?

3.5 Explain why almost all science disciplines were originally

emerged from philosophy. Why is it perceived that human

© 2008 by Taylor & Francis Group, LLC

178 Part II Theoretical Foundations of SE

wonder about the nature and themselves started by philosophical
queries and concluded in philosophical doctrines?

3.6 Discuss the semantic differences between ‘epistemology’ in

philosophy and ‘cognition’ in psychology and cognitive
informatics.

3.7 Foundationalism is a philosophical view and an important

scientific research method that reduces a problem to its simplest
and basic elements until direct solutions are known or can be
derived. Try to provide an example problem in software
engineering that can be solved in the foundationalism approach.

3.8 According to Theorem 3.2, rationalism views that the abstract and

information-based propositions and work products, such as a
design or a specification of a system, are bounded by logical
verifications, mathematical proofs, systematical reviews,
behavioral simulations and tests, and/or in field trials. Try to
compare rationalism with positivism, in which a thesis about
physical phenomena must be empirically verifiable or repetitively
observable, in a software engineering context.

3.9 Theorems 3.3 and 3.4 indicate that natural and artificial

intelligence are compatible and inclusive. On the basis of this
philosophy, discuss whether a programmer may design a software
system, which can solve a problem that no individual in the world
knows how to solve.

3.10 Why do ethics and professionalism play important roles in

software engineering?

3.11 What are the differences between the deductive and inductive

inference methodologies?

3.12 Explain why empirical research is mainly deductive, while

scientific research is mainly inductive.

3.13 In addition to Theorem 3.6, can induction be carried out by

statistical methods on the basis of multiple observations of
recurring phenomena? Why?

3.14 Develop an instance of deductive inference in software

engineering.

© 2008 by Taylor & Francis Group, LLC

Chapter 3 Philosophical Foundations of SE 179

3.15 Develop an instance of inductive inference in software
engineering.

3.16 Develop an instance of abductive inference in software

engineering.

3.17 Develop an instance of analogical inference in software

engineering.

3.18 According to Theorem 3.9, discuss why the run-time

determinability is the most important condition for implementing
software behaviors.

3.19 Theorem 3.10 states that the software behavior space is innately

three-dimensional, i.e., Ω = OP × T × S. However, almost all
programming languages implement only two of them, but leave
the time dimension T implied rather than explicitly expressed.
What are the possible advantages and disadvantages of this
convention in software engineering?

3.20 In order to understand the nature of software, this chapter presents

the cognitive, intelligent behavior, and system metaphors of
software. Chapter 1 has also presented the mathematics, product,
and information metaphors.

Summarize the set of the six metaphors of software, and consider
if the traditional mass-manufacturing-based methodologies and
quality assurance techniques in software engineering fit with all
the six metaphors that reveals the nature of software from
different angles.

3.21 The concept of soft-systems is a revolution developed in

computing and software engineering, which transform the
information processing and intelligent parts of the conventional
physical products into software. Try to explain the relationship
between the universal machines and the soft-systems.

3.22 A set of software engineering validation methodologies is

presented in Table 3.4, such as logical verification, mathematical
prove, review, simulation, testing, and trial. On the basis of Ex.
3.8, discuss why the validation techniques should be different in
software design and implementation in software engineering.

© 2008 by Taylor & Francis Group, LLC

180 Part II Theoretical Foundations of SE

3.23 Select one of the Murphy's laws on software engineering and try

to validate it by any of the following methodologies such as
logical verification, mathematical prove, review, simulation,
testing, trial, case study, experiment, and/or survey.

3.24 Read the following classic article in software engineering:

Dennis Ritchie (1984), Reflections on Software

Research, The 1983 Turing Award Lecture,

Communications of the ACM, 27(8), pp.758-760.

Discuss the following topics in a group:

 • About the author.

 • What was the nature of software research in the 1980s?
 • What distinguishes software research from computing and

programming?
 • What conclusions of the article interested you? Why?
 • Your argument(s) or counter-points on any of the

conclusions derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 4

MATHEMATICAL
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

3. Philosophical
 Foundations
 of SE

4.1 Introduction 4.6 Real-Time Process Algebra (RTPA)
4.2 Set Theory 4.7 The RTPA Methodology for Software System
4.3 Algebra Systems Modeling and Refinement
4.4 Mathematical Logic 4.8 RTPA: Notations for SE
4.5 Denotational Mathematics for SE 4.9 Summary

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Informatics
 Foundations
 of SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

182 Part II Theoretical Foundations of SE

Knowledge Structure

 Fundamental mathematics

 • Set theory • Relations
 • Functions • Propositional logic
 • Predicate logic • Algebraic systems

 Denotational mathematics for software engineering

 • Fundamental elements in modeling software systems
 • The need for a denotational mathematics in SE
 • The big-R notation

 Real-time process algebra (RTPA)

 • The process metaphor of software systems
 • The structure of RTPA • The type system of RTPA
 • Meta processes of RTPA • Process relations of RTPA

 The RTPA methodology for software system modeling and refinement

 • The RTPA methodology
 • System architecture modeling and refinement in RTPA
 • System static behavior modeling and refinement
 • System dynamic behavior modeling and refinement

 RTPA: notations for software engineering

 • Modeling component-level problems using RTPA
 • Modeling system-level problems using RTPA
 • Modeling cognitive processes of the brain using RTPA

Learning Objectives

• To understand the central role of mathematics for software engineering.
 • To be aware of the usages and limitations of classic mathematics for

software engineering, particularly set theory, functions, and
mathematical logic.

 • To understand the new structure of denotational mathematics for
software engineering, particularly real-time process algebra (RTPA).

• To be familiar with the notation system of RTPA and its defined
algebraic operations on basic processes.

 • To be familiar with the RTPA methodology for software engineering in
system architecture, static, and dynamic behavior modeling and
manipulation.

• To understand the need for a rigorous notation system for software
engineering.

4. Mathematical Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 183

 “Software development is a tough engineering discipline with
a strong mathematical flavor.”

Edsgar W. Dijkstra (1982)

“The basic insight is that programs themselves, as well as
their specifications, are mathematical expressions. …

The great advantage of mathematics is that the rules are much
simpler than those of a natural language, and the vocabulary is much smaller.

Consequently, when presented with something unfamiliar it is possible to work out a
solution for yourself, by logical deduction and invention rather than

by consulting books or experts.”

C.A.R. Hoare (1985)

4.1 Introduction

any branches of mathematics have been created in sciences and
engineering in order to meet their abstract, rigor, and expressive
needs. These phenomena may be conceived as that new problems

require new forms of mathematics.
The entire computing theory, as Lewis and Papadimitriou (1998)

perceived, is about mathematical models of computers and algorithms.
Hence, the entire theory of software engineering is about mathematical
models of software systems and denotational mathematics for software
engineering.

Applied mathematics can be classified into two categories: analytic and
denotational mathematics [Wang, 2002a]. The former are mathematical
structures that deal with functions of variables and their operations and
behaviors; while the latter are mathematical structures that formalize rigorous
expressions and inferences of system architectures and behaviors with data,
concepts, and dynamic processes. Denotational mathematics also provides a
formal semantics for other forms of means based on diagrams or languages in
software engineering.

The problems of software engineering are large-scaled and at the
system level with abstract, complex architectures, and long chains of
computing behaviors. Therefore, denotational mathematics is a system-level
mathematics in which detailed individual computing behaviors may still be

M

© 2008 by Taylor & Francis Group, LLC

184 Part II Theoretical Foundations of SE

modeled by conventional analytical mathematics. Typical forms of
denotational mathematics [Wang, 2002a/06d/06e/06j/07a] are system
algebra, concept algebra, and Real-Time Process Algebra (RTPA). This
chapter covers RTPA, while the other denotational mathematics will be
presented in Chapters 10 and 15, respectively.

This chapter explores essential elements of mathematics for modeling
software architectures and software system behaviors encompassing
fundamental mathematics such as set theory, algebra systems, and
mathematical logic, as well as contemporary denotational mathematics such
as process algebra [Mills, 1975; Hoare, 1978/85; Milner, 1980/89] and
RTPA [Wang, 2002a/02b/03c/07a], which provides an essential formal
notation for software engineering.
 In the remainder of this chapter, existing mathematical means in terms
of set theory, Boolean algebra, mathematical logic, and their applications in
software engineering are orientated in Sections 4.2 through 4.4. The findings
of their inadequacy in dealing with software engineering problems reveal an
age-long overlooked problem in software engineering: the lack of a
denotational and adequate mathematical means. This profound issue is
explored further based on the analysis of essential elements of mathematics
for modeling software systems and behaviors in Section 4.5. Then, a new
mathematical structure, RTPA, is introduced in Section 4.6 as an expressive
and practical notation system and methodology for rigorous treatment of
software engineering problems. The RTPA methodology for software system
modelling and refinement is presented in Section 4.7. Then, the usages of
RTPA as a least complete yet powerful set of notations for software
engineering modelling are described in Section 4.8 with case studies at
system and component levels.

The 11th Law of Software Engineering

Theorem 4.1 The utility of mathematics in software engineering states
that denotational mathematics is the means and rules to rigorously and
explicitly express design notions and conceptual models on abstract
architectures and complex interactive behaviors at the highest level of
abstraction and in the largest scope of systems.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 185

4.2 Set Theory

Abstraction and categorization of external or internal objects in order to form
concepts for reasoning are basic cognitive processes of human beings. Sets
are the mathematical means for modeling such abstract objects, and not a
surprise, it is also the foundation of almost all mathematical branches. This
section briefly introduces set theories in the context of computing and
software engineering. Detailed descriptions of set theory may be referred to
Lipschutz (1964), and Arnold and Guessarian (1996).

4.2.1 SETS AND PROPERTIES

Set theory was created by Cantor in 1895. A set can be viewed as a

collection of objects.

4.2.1.1 Set Notations and Terminologies

 Definition 4.1 A set S is a collection of elements e with a common
property p, denoted by:

 S {e | p(e)} (4.1)

where denotes a definition, and an expression following the vertical
bar | defines the constraints or membership conditions of an element e, and
p(e) means each e of S possesses the property p, i.e., ∀e ∈ S ⇔ p(e).

Set can be used to express types of data structures, class models, and
program syntaxes in software engineering. For examples, some fundamental
sets in software engineering are as follows:

 • The set of natural numbers: N = {n | n is a positive integer}
 = {1, 2, 3, ...} (4.2)

 • The set of integers: Z = {z | z is an integer}
 = {..., -2, -1, 0, 1, 2, ...} (4.3)

 • The set of real numbers: R = {r | r is a real number}
 = {-∞, ..., +∞} (4.4)

 • The set of byte: B = {b | b is a byte of binary numbers}
 = {0, 1, ..., 255} (4.5)

© 2008 by Taylor & Francis Group, LLC

186 Part II Theoretical Foundations of SE

It is noteworthy that in software engineering, the mathematical domain
of natural number N0 is usually extended to include zero because of the
binary system convention for data representation, i.e.:

 N0 = {n | n is 0 or a positive integer}

 = {0, 1, 2, 3, ...} (4.6)

 Definition 4.2 The membership between an element e and a set S can

be determined by checking if e belongs to S or not, denoted by e ∈ S and e ∉
S, respectively.

 Definition 4.3 Some important relationships between two sets A and B
can be defined below:

 • Subset: A ⊆ B ∀a ∈ A ⇒ a ∈ B (4.7)

 • Superset: A ⊇ B ∀b ∈ B ⇒ b ∈ A (4.8)

 • Equal: A = B A ⊆ B ∧ B ⊆ A (4.9)

 • Proper subset: A ⊂ B A ⊆ B ∧ A ≠ B (4.10)

 • Power set: ÞA {Ai | Ai ⊆ A ∧ 1 ≤ i ≤ 2#A} (4.11)

where ⇒ denotes an implication, and Þ a power set.

Set is a fundamental and powerful mathematical concept for abstracting
and eliciting objects that share certain common properties. Abstraction is an
elicitation of common properties of elements from a given set.

Definition 4.4 A universal set U is a superset of all sets under

investigation.

 The universal set U may be an infinite set, but without itself as a
member. Otherwise, it may result in a number of fundamental dilemmas

The 10th Principle of Software Engineering

Theorem 4.2 The principle of abstraction states that, given an arbitrary
set S and any property p, abstraction is to elicit a subset E such that the
elements of it, e, possess the property p(e), i.e.:

 ∀S, p ⇒ ∃E ⊆ S, ∀e ∈ E ∧ p(e) (4.12)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 187

[Lipschutz, 1964]. The universal set U may be used to denote the
environment or context of a software system.

 Definition 4.5 The empty set ∅ is a set that contains no element.

4.2.1.2 Set Operations

 The basic set operations are union, intersection, difference, and
cardinal size. Useful operations derived from the basic operations are
complement, symmetric difference, Cartesian product, and partition. Table
4.1 provides a summary of useful set operations collectively known as
algebra of sets. Each operation in Table 4.1 is illustrated by an example
using the following three sets: A = {1, 2, 3}, B = {3, 4}, and U = N.

Table 4.1
Definitions of Basic Set Operations

Operation Definition Example
Union X ∪ Y {e | e ∈ X ∨ e ∈ Y} A ∪ B = {1, 2, 3, 4}

Intersection X ∩ Y { e | e ∈ X ∧ e ∈ Y} A ∩ B = {3}

Difference X \ Y { e | e ∈ X ∧ e ∉ Y} A \ B = {1, 2}

Cardinal size
(1 |)X e X∈∑

#A = 3
#B = 2

Complement X U \ X
 = { e | e ∈ U ∧ e ∉ X}

A = U \ A = N \ A
 = {4, 5, 6, ...}

Symmetric
difference

X ⊕ Y (X ∪ Y) \ (X ∩ Y)
 = {e | e ∈ X ∨ e ∈ Y ∧ e ∉ X ∩ Y}

A ⊕ B = {1, 2, 4}

The set operations union, intersection, and symmetric difference

defined in Table 4.1 can be extended to multiple finite sets as follows:

 S1 ∪ S2 ∪ … ∪ Sn =
1

n

i
i

S
=
∪

 = {s | s ∈ S1 ∨ s ∈ S2 ∨ … ∨ s ∈ Sn} (4.13)

 S1 ∩ S2 ∩ … ∩ Sn =
1

n

i
i

S
=
∩

 = {s | s ∈ Si ∧ s ∈ S2 ∧ … ∧ s ∈ Sn} (4.14)

© 2008 by Taylor & Francis Group, LLC

188 Part II Theoretical Foundations of SE

 S1 ⊕ S2 ⊕ … ⊕ Sn = {s | s ∈
1

n

i
i

S
=
∪ ∧ s ∉

1

n

i
i

S
=
∩ } (4.15)

 Definition 4.6 A partition of a set S, S ≠ ∅, is a subdivision of S into n,

n ≥ 2, subsets Si, 1 ≤ i ≤ n, such that:

 (a) S =
1

n

i=
∪ Si (4.16)

 (b) Si ≠ ∅, 1 ≤ i ≤ n (4.17)
 (c) Si ∩ Sj = ∅, i ≠ j, 1 ≤ i, j ≤ n (4.18)

where Si is called a cell.

 Partition is a useful concept in component-based software engineering,
in which a component can be modeled as a cell or a nonempty and non-
overlapping subset of a software system. Definition 4.6 also explains that a
component-based system is a composition (union) of its components as
partitions, which meets the three conditions.

Example 4.1 Given set A = {1, 2, 3}, all possible partitions of A can be
derived according to Definition 4.6 as follows:

 A = {{1}, {2}, {3}}, or

 A = {{1}, {2, 3}}, or
 A = {{1, 2}, {3}}, or
 A = {{1, 3}, {2}}

 Definition 4.7 Let A and B be two arbitrary nonempty sets, the

Cartesian product of A × B is a set of all ordered pairs (a, b) where a ∈ A
and b ∈ B, i.e.:

 A × B {(a, b) | a ∈ A ∧ b ∈ B} (4.19)

where × reads cross, and an ordered pair (a, b) is a directed connection from
a to b.

 An important property of a Cartesian product is that the number of its
elements (ordered pairs) is predictable, i.e.:

 #(A × B) = #A • #B (4.20)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 189

Eq. 4.20 indicates that if the cardinal sizes of the finite and nonempty
sets A and B are known, the number of combinations between their elements
is determined.

Example 4.2 Given sets A = {x, y, z} and B = {1, 2}, the size of the

Cartesian product A × B can be predicated as follows:

#(A × B) = #A • #B = 3 • 2 = 6
where the 6 pairs of A × B are:

 A × B = {(x,1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}

Definition 4.7 can be extended to multiple finite numbers of sets, where
each set is nonempty and finite.

 Definition 4.8 Cartesian product of n sets S1 × S2 × … × Sn is a set of n-
tuples (s1, s2, …, sn) where si ∈ Si, 1 ≤ i ≤ n, i.e.:

 S1 × S2 × … × Sn

1
X
n

i
i

S
=

 = {(s1, s2, …, sn) | si ∈ Si, 1 ≤ i ≤ n} (4.21)

where

#(S1 × S2 × … × Sn) =
1
#

n

i
i

S
=
∏ (4.22)

Cartesian products have a wide range of applications in modeling

software systems and their behaviors.

4.2.1.3 Algebraic Laws of Sets

 Algebra of sets obeys the laws as summarized in Table 4.2. These
algebraic laws play important roles to simplify set operations and to compose
complex set relations.
 Observing Table 4.2 it can be found that the set operations of union ∩
and intersection ∪ are symmetric on arbitrary sets including the dual of sets
U and ∅.

There are additional laws and properties on sets [Lipschuts, 1964] such
as the involution law that states:

 ()A = A (4.23)

© 2008 by Taylor & Francis Group, LLC

190 Part II Theoretical Foundations of SE

Table 4.2
Laws of Set Algebra

Law Description
Idempotent A ∪ A = A A ∩ A = A
Commutative A ∪ B = B ∪ A A ∩ B = B ∩ A
Associative A ∪ (B ∪ C) = (A ∪ B) ∪ C A ∩ (B ∩ C) = (A ∩ B) ∩ C
Distributive A ∪ (B ∩ C) = (A ∪ B) ∩

 (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪
 (A ∩ C)

Absorption (A ∪ B) ∩ A = A (A ∩ B) ∪ A = A
DeMorgan A B A B∪ = ∩ A B A B∩ = ∪

Complement A A U∪ = U = ∅ A A∩ =∅ U∅ =

Identity A ∪ ∅ = A A ∪ U = U A ∩ U = A A ∩ ∅ = ∅

4.2.2 SEQUENCES AND ORDERED SETS

According to Definition 4.1, the position, or the sequential order, of an
element in a set has no meaning, i.e., {a, b, c} = {c, b, a}. However, in some
special contexts, the positions of elements do represent important
information. In order to deal with such requirements, the concepts of tuple,
sequence, and ordered set are introduced in this subsection.

4.2.2.1 Pairs and Tuples

 Definition 4.9 A pair p is an ordered encapsulation of two objects a
and b, or a directed connection from a to b, denoted by:

p (a, b) (4.24)

where the positions of the elements in p are sensitive, that is, (a, b) ≠ (b, a).

 Definition 4.10 A tuple τ is an ordered encapsulation of multiple
objects denoted by:

 τ (A, B, …, N) (4.25)

where the objects in the tuple can be a number, set, or function.

A tuple encapsulated with n objects is called an n-tuple. In particular,
the 3- through 6-tuples are called triples, quadruples, quintuples, and
sextuples, respectively.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 191

The tuple is a powerful modeling means in mathematics and software
engineering for denoting a coherent encapsulation or composition of multiple
objects. Usually, the objects in the tuple will be further characterized by their
attributes or properties.

Example 4.3 The syntax of a statement s in a program can be described
as a triple, i.e.:

 s = (I, P, O) (4.26)

where

• P is a specific operator, p ∈ Ξ, where Ξ denotes the instruction set
of a given language;

 • I is a finite set of input; and

 • O is a finite set of output.

4.2.2.2 Sequences

 Definition 4.11 A sequence q is a finite or infinite ordered set where
each element en, n ∈ N, is identified by its cardinal position in the set, i.e.:

 q <en | n ∈ N>

 = <e1, e2, e3, …> (4.27)

where N is the set of natural numbers N = {1, 2, 3, …}.

In computing, the set N is usually extended to N0 = {0, 1, 2, 3, …} for
convenience. If there is no ambiguity, N0 will not be specially denoted in this
book.

4.2.2.3 Lists

 Definition 4.12 A finite sequence with n elements e1, e2, …, en is a list
l, i.e.:

 l <e1, e2, …, en> (4.28)

Example 4.4 A linear (sequential) procedure P in a program with n
statements, s1, s2, …, sn, can be described as a list lP, i.e.:

 lP = <s1, s2, …, sn> (4.29)

© 2008 by Taylor & Francis Group, LLC

192 Part II Theoretical Foundations of SE

4.2.2.4 Ordered Sets

An ordered set is a set that the positions of its elements satisfy a certain
condition. A set of natural or real numbers with the usual order is described
below.

 Definition 4.13 A partially ordered set S≤ is a set in which all elements
are listed according to the usual order or their values in an ascending
sequence, i.e.:

 SP {ei | i ≤ j ∧ i, j ∈ N ⇒ ei ≤ ej ∧ ei, ej ∈ R} (4.30)

Example 4.5 A sort operation on a set A = {5, 2, 1, 5, 8} transforms it
into a partially ordered set A≤ ={1, 2, 5, 5, 8}.

More general treatment of ordered sets is dependent on the definition of
partially ordered relations, which will be described in Section 4.2.3.3.

4.2.3 RELATIONS

 Relation is the most important concept in programming theories,
because a program can be modeled as a finite list of relations between
individual statements. Relations also play an important role in explaining
human internal knowledge representation and the natural intelligence. This
section describes the basic mathematical theory of generic relations. The
relational theory will be further extended in Section 4.6.5 on RTPA and
Section 5.5.1 on the mathematical models of programs and software systems.

4.2.3.1 Binary Relations

 Definition 4.14 Let A and B be sets, a binary relation R(a, b) is an
ordered pair (a, b) ∈ A × B, i.e.:

R(a, b) aRb
 = (a, b), a ∈ A, b ∈ B (4.31)

 Since the pair (a, b) is ordered, a relation aRb≠ bRa = aR-1b, where R-1

is an inverse relation of R.
Usually, a binary relation is simply called a relation.

 Example 4.6 Given sets A = {x, y, z} and B = {1, 2}, a set of six binary
relations can be derived as:

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 193

 R(a, b) = {R1, R2, R3, R4, R5, R6}
= {(x,1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}

4.2.3.2 Compositions of Relations

The binary relation defined in Eq. 4.31 can be extended to a ternary or,
in general, an n-nary relation. The operation that constructs a combinational
relation with more than one binary relation is called a composition.

 Definition 4.15 Let A, B, and C be sets. Then, a composition of two
relations aPb and bQc, R(a, b, c), is denoted by P ο Q, i.e.:

 R(a, b, c) P ο Q
 = (aPb) ο (bQc)
 = (aPb)Qc

= (a, b, c), a ∈ A, b ∈ B, c ∈ C (4.32)

 Example 4.7 Given sets A = {x, y, z} and B = {1, 2}, C = {α, β}, a set
of 12 ternary relations can be derived according to Definition 4.15:

 R(a, b, c) = R(a,b) ο R(b,c)

 = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)} × {α, β}
 = {(x, 1, α), (x, 2, α), (y, 1, α), (y, 2, α), (z, 1, α), (z, 2, α),

 (x, 1, β), (x, 2, β), (y, 1, β), (y, 2, β), (z, 1, β), (z, 2, β)}

 Definition 4.16 A composition of n relations s1R12s2, s2R23s3, …, sn-1Rn-

1,n sn, denoted by R(s1, s2, …, sn), is an ordered n-tuple (s1, s2, …, sn) ∈ S1 × S2
× … × Sn , i.e.:

 R(s1, s2, …, sn) R12 ο R23 ο … ο Rn-1,n
 = (… ((s1R12s2)R23s3) … sn-1)Rn-1,n sn
 = (s1, s2, …, sn), si ∈ Si, 1 ≤ i ≤ n (4.33)

Example 4.8 A string S can be denoted as a list of characters αi, 1 ≤ i ≤

n, composed by the concatenation relation , i.e.:

 1 2 ... nα α α=S
 = α1α2 … αn (4.34)

© 2008 by Taylor & Francis Group, LLC

194 Part II Theoretical Foundations of SE

Because any arbitrary n-nary relation can be reduced to n-1 embedded
binary relations, the following subsections will be focused on operations and
properties of binary relations.

4.2.3.3 Properties of Relations

Major properties of relations, such as associative, reflexive, symmetric,
and transitive, are summarized in Table 4.3, where R, R1, R2, and R3 are
relations, a, b, c are elements in set S, respectively.

Table 4.3

Properties of Relations

Property Description
Associative (R1 ο R2) ο R3 = R1 ο (R2 ο R3)

Reflexive ∀a ∈ S ⇒ aRa

Irreflexive ∀a, b ∈ S, aRb ⇒ a ≠ b
Symmetric ∀a, b ∈ S, aRb ⇒ bRa
Asymmetric ∀a, b ∈ S, aRb ∧ bRa ⇒ a = b
Transitive ∀a, b, c ∈ S, aRb ∧ bRc ⇒ aRc

Based on the basic properties of relations, two categories of relations

known as equivalence and partial order relations can be derived.

Definition 4.17 An equivalence relation is a relation R on a nonempty
set S satisfying the following properties:

 (a) R is reflexive, i.e., ∀a ∈ S ⇒ aRa;

(b) R is symmetric, i.e., ∀a, b ∈ S, aRb ⇒ bRa;
 (c) R is transitive, i.e., ∀a,b,c ∈ S, aRb ∧ bRc ⇒ aRc.

 Definition 4.18 A partially ordered relation Rp is a relation R on a
nonempty set S satisfying the following properties:

 (a) R is reflexive, i.e., ∀a ∈ S ⇒ aRa;

(b) R is asymmetric, i.e., ∀a, b ∈ S, aRb ∧ bRa ⇒ a = b;
 (c) R is transitive, i.e., ∀a,b,c ∈ S, aRb ∧ bRc ⇒ aRc.

 Typical partially ordered relations are ≤, ≥, <, >, and ⊆.

 Definition 4.19 A partially ordered set Sp is a set in which all elements
satisfy a given partially ordered relation Rp.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 195

 Typical partial ordered sets are N≤, N≥, N<, N>, R≤, R≥, R<, R>, and S⊆.

 Definition 4.20 A totally ordered relation Rt is a relation R on a
nonempty set S that is a partial order; in addition, every two elements in it are
comparable.

 According to Definition 4.20, N≤, N≥, N<, N>, R≤, R≥, R<, and R> are also
totally ordered sets, since any pair of elements a and b in them are
comparable by a < b, a = b, or a > b.

4.2.3.4 Cumulative Relations of Programs

A program can be treated as a composition of a list of statements by

predefined relational or composing rules. The relations between statements
are a special type relation known as cumulative relations [Wang,
2006a/06h/06j], that is, a relation Ri is related to all previous relations R1
through Ri-1, 1 ≤ i ≤ n, as defined below.

 Definition 4.21 A cumulative relation ® is an ordered list of embedded
relations where a relation Rij, j = i +1, 1 ≤ i < n-1, 1 < j ≤ n, is related to all
previous relations R12 through Ri-1,j, i.e.:

 ®(s1, s2, …, sn) = (… ((R12) ο R23) ο …) ο Rn-1,n
= (… ((s1R12s2)R23s3) … sn-1)Rn-1,n sn,
 si ∈ Ξ, Rij ∈ R (4.35)

where Ξ is a set of predefined instructions in a given programming language,
and R a set of designated compositional rules in the same language.

Definition 4.21 indicates that program composition is left associative.

The finding on the cumulative relations for modeling composing rules in
programming will be further discussed in Section 4.6 on RTPA and Section
5.5.1 on the unified mathematical models of programs.

The composing rules R in programming can be classified into

sequential, branch, switch, iteration, procedure call, recursion, parallel,
concurrence, interleave, pipeline, interrupt, jump, and system dispatches.
Detailed descriptions will be provided in Section 4.6.5 known as the 17
fundamental process relations in RTPA.

© 2008 by Taylor & Francis Group, LLC

196 Part II Theoretical Foundations of SE

4.3 Algebra Systems

In the preceding section, set theory has been described as the foundation not
only for the entire mathematical family, but also for the modeling and
manipulation of software objects and software system behaviors. However,
only sets and their operations are not adequate and convenient in dealing
with the whole scope of problems in software engineering, particularly the
intricate interrelations among software objects. This section describes algebra
and algebraic operations on functions, which are an extended mathematical
concept beyond sets.

4.3.1 ABSTRACTION IN ALGEBRA SYSTEMS

Definition 4.22 Algebra is a branch of mathematics in which objects
and their relations are represented by abstract symbols and formulae.

 Abstraction as described in Theorem 4.2 is the essence of algebra.
Using algebra, generic relations between variables and quantities may be
formally, precisely, and efficiently described. Rigorous reasoning can then be
conducted based on established algebraic rules and properties.

By extending the objects under study and their relations beyond sets, a
number of advanced and special algebraic systems are developed, such as
abstract algebra, Boolean algebra, process algebra, concept algebra, and
system algebra.

4.3.1.1 Abstract Algebra

Definition 4.23 Abstract algebra studies a set of abstract algebraic

structures beyond sets, such as semigroups, groups, rings, fields, and lattices.

 Discussions on these algebraic structures are out of the scope of

fundamental requirements for software engineering. Detailed materials may
be referred to Arnold and Guessarian (1996) and Lipschutz and Lipson
(1997).

4.3.1.2 Boolean Algebra

Definition 4.24 Boolean algebra is an abstract algebraic system on
binary valued entities developed by George Boole (1813 - 1864).

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 197

Boolean algebra is built on the axioms of the algebraic laws of sets
and/or logic as described in Sections 4.2 and 4.4. A more formal definition of
Boolean algebra is as follows.

Definition 4.25 A Boolean algebra ABL is a 6-tuple, i.e.:

 A BL = (VBL, 0, 1, +, *,) (4.36)

where VBL is a set of Boolean variables, 0 and 1 are the Boolean constants, +,
*, and are Boolean operations known as sum, product, and complement,
respectively.

4.3.1.3 Process Algebra

A process algebra is a sequence of state transitions that may be used to
denote system behaviors. More rigorous definitions of processes will be
given in Sections 4.6.1 and 5.5.1.

Definition 4.26 Process algebra is an abstract algebraic system in

which the entities of algebraic operation are computational processes.

Process algebra is a kind of dynamic algebra that focuses on

computational operations modeled as processes, their algebraic properties,
and relations. Process algebra provides a set of formal notations and rules for
describing algebraic objects of processes and their algebraic relations [Hoare,
1978/85; Milner, 1980/89]. An extended form of process algebra, RTPA
[Wang, 2002a/02b/03c/07a], which deals with the 3-D properties of software
behaviours as introduced in Section 3.4.2, will be intensively described in
Section 4.6.

4.3.1.4 Concept Algebra

Definition 4.27 Concept algebra (CA) is a new mathematical structure
for the formal treatment of abstract concepts and their algebraic relations,
operations, and associative rules for composing complex concepts and
knowledge.

Concept algebra deals with the algebraic relations and associational

rules of abstract concepts. The associations of concepts form a foundation to
denote complicated relations between concepts in knowledge representation.
The associations among concepts can be classified into nine categories, such
as inheritance, extension, tailoring, substitute, composition, decomposition,
aggregation, specification, and instantiation [Wang, 2006e]. Further details
will be presented in Section 15.3.3.

© 2008 by Taylor & Francis Group, LLC

198 Part II Theoretical Foundations of SE

4.3.1.5 System Algebra

Definition 4.28 System algebra is an algebraic system on entities
known as systems, which are beyond sets, functions, and processes.

System algebra [Wang, 2006d] is useful in abstract systems modeling,
system analysis, and system operations. System algebra will be introduced in
Chapter 10 on system science and its applications in software engineering.

4.3.2 FUNCTIONS

Function is an important mathematical concept developed in algebra for

denoting complicated relations between abstract objects. Almost all discrete
or continuous relations between sets can be described as functions.

4.3.2.1 Notations of Functions

 Definition 4.29 A function f is a mapping relation → between two sets
X and Y in a generic signature as follows:

 f : X → Y (4.37)

where X is called the domain of the function, and Y the codomain.

 Another form for denoting a function, particularly a continuous
function, is given below:

 y = f(x), x ∈ X, y ∈ Y (4.38)

Definition 4.29 denotes that for each given independent variable x ∈ X,
function f maps it into a unique dependent variable y ∈ Y. Thus, f :
X → Y is called a total function. The function that maps a subset of X into Y
is called a partial function, denoted by f : X Y.

A function usually results in a transformation of values between
variables in either the same or different types. Most mathematical functions
are in the former form, i.e.:

 f : R → R (4.39)

where R denotes the type or a set of real numbers.

However, more generally in software engineering, most computational
operations may be defined in the latter form. That is, the mappings, in a more
general case, are conducted between different types.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 199

 Example 4.9 An important addressing function π in software
engineering, which maps a given identified id in type S (string) into an
associated memory address located by a pointer ptr in type H (hexidecimal),
can be denoted as follows:

 π: idS → ptrH (4.40a)
or
 ptrH = π(idS)H (4.40b)

4.3.2.2 Inverse Functions

 Definition 4.30 An inverse function f -1 is an inverse mapping relation
between the codomain Y and domain X of a given function f, i.e.:

 f -1: Y → X (4.41a)
or

 x = f -1 (y), x ∈ X, y ∈ Y (4.41b)

 Example 4.10 The inverse function of addressing π as defined in
Example 4.9 converses a given memory address ptrH into an associated
logical name idS, known as memory allocation π -1, can be denoted as
follows:

 π -1: ptrH → idS (4.42a)
or
 idS = π -1(ptrH)S (4.42b)

Addressing π and memory allocation π -1 are fundamental computing
functions widely used in software engineering, which will be modeled in
RTPA in Section 4.6 using the notations ⇒ and ⇐, respectively.

4.3.2.3 Composition of Functions

As that of relations, complex functions can be constructed by a
composition of simple ones. Reversely, complex functions can also be
decomposed into primitive ones.

 Definition 4.31 A composition of two functions f : X → Y and g : Y →
Z, which results in a composed function c: X → Z , is denoted by g ο f, i.e.:

 c: X → Z g(y) ο f(x)
 = g (f (x)) (4.43)

© 2008 by Taylor & Francis Group, LLC

200 Part II Theoretical Foundations of SE

The composition operation can be extended to multiple functions as
described below.

 Definition 4.32 A composition of multiple functions among f1 , f2 , …
fn is a multi-layer embedded function f n, i.e.:

 f n = fn ο … ο f2 ο f1
= fn (… (f2 (f1(x)) …) (4.44)

Example 4.11 If each statement in a list of linear (sequential) process

in a program, s1, s2, … , sn, is treated as a function, the process P is a
composition of all the sequential statements, i.e.:

 P = sn

= sn ο … ο s2 ο s1
= sn (… (s2 (s1(I)) …) (4.45)

where I denotes a set of concrete data objects as the initial inputs in
computing.

It is noteworthy that the compositional description of the process P is

only valid for sequential processes. There are more complicated relations
between statements in a process such as branch, iteration, interrupt, and
parallel. A process in a program that consists of those complicated relations
rather than sequential ones will be given in Theorem 4.10 in Section 4.6.1.

4.3.3 ALGEBRAIC OPERATIONS

The third powerful property of algebra is that it is an open system
allowing various algebraic operations to be introduced as functions between
the objects under operation.

Definition 4.33 An operation on a nonempty set A is an abstract

function *, i.e.:

 * : A × A → A (4.46)

denoted by *(a, b) or a * b, where a, b ∈ A.

The abstract operation * can also be perceived as a binary relation, or

more generally, an n-nary relation, n ≥ 1, between n variables in A.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 201

Example 4.12 Let R be the set of real numbers, the arithmetical
operations * ={+, -, •, ÷} on R can be defined as follows:

 * : R × R → R (4.47a)

and
 + : R × R → R (4.47b)
 - : R × R → R (4.47c)
 • : R × R → R (4.47d)
 ÷ : R × R → R (4.47e)

 It is noteworthy that - and ÷ are not a valid operation on set N of natural
numbers, because the results of these two operations may be out of the
domain of N, such as negative or fractional numbers.

The properties of operations can be associative and/or commutative,
dependent on whether the following conditions are met respectively.

Definition 4.34 An operation * on a set A is associative iff:

 ∀a1, a2, a3 ∈ A ⇒ (a1* a2) * a3 = a1* (a2 * a3) (4.48)

Definition 4.35 An operation * on a set A is commutative if:

 ∀a1, a2 ∈ A ⇒ a1* a2 = a2* a1 (4.49)

Example 4.13 Examining the arithmetic operations defined on R as
shown in Example 4.12, * ={+, -, •, ÷}, it can be found that both + and • are
associative and commutative, but - and ÷ are not. Further, it can be seen that
• over + are distributive, i.e.:

 ∀a, b, c ∈ R ⇒ a • (b + c) = ab + ac (4.50)

4.4 Mathematical Logic

Mathematical logic formalizes the structures and procedures used in
deductive manipulation of objects and relations. Symbolic logic is developed
for a wide range of application in argument, reasoning, deduction, induction,
and proof. George Boole (1815-1864) developed the mathematical theories

© 2008 by Taylor & Francis Group, LLC

202 Part II Theoretical Foundations of SE

of logic and probabilities, particularly Boolean algebra, which he considered
as the laws of thought. Russell and Godel advanced the art of mathematical
logic [van Heijenoort, 1997].

This section describes prepositional logic, predicate logic, and their
applications in software engineering. Further studies on higher order logic
structures may be referred to [Hurley, 1997; Tomassi, 1999].

4.4.1 PROPOSITIONAL LOGIC

Propositional logic deals with a given logical statement as a whole

known as a proposition. Compound statements can be built based on simple
statements through the use of logical operators. Once an argument is
symbolically represented by propositional logic, mere inspection will often
determine whether it is valid or invalid.

4.4.1.1 Propositions

Before discussing the concept of a proposition, three conditional logical
relations known as yield, implication, and equivalence are introduced.

Definition 4.36 A yield relation γ is a conditional logical relation

that denotes a causal relationship between two Boolean objects o1BL (the
cause) and o2BL (the consequence), i.e.:

 γ BL o1BL o2BL

 = o2BL = T iff o1BL = T (4.51)

where the attached bold symbol such as BL is called the type-suffix to denote
the Boolean type of a logical variable or statement, and similarly T or F
denote the Boolean values true or false, respectively.

A yield operation is used to express a causality between the cause and
consequence where the consequence is true iff the cause is true. In other
words, there is no definition when the cause is not true.

Definition 4.37 An implication ι is a conditional logical relation ⇒
that denotes iff o1BL = T then o2BL = T is determinable, otherwise o2BL is
indeterminable, i.e.:

 ι BL o1BL ⇒ o2BL
 = (o1BL = T o2BL = T) ∨ (o1BL = F (o2BL = T ∨ o2BL = F)) (4.52)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 203

It is noteworthy that implication is often overloaded to denote the yield
relation between two propositions in logical inferences when it causes no
confusion.

Definition 4.38 An equivalence ε is a conditional logical relation ⇔
that denotes both if o1BL = T then o2BL = T and if o1BL = F then o2BL = F are
determinable, and vice versa, i.e.:

 ε BL o1BL ⇔ o2BL
 = (o1BL = T o2BL = T) ∨ (o1BL = F o2BL = F)
 ∧ (o2BL = T o1BL = T) ∨ (o2BL = F o1BL = F) (4.53)

For contrasting the differences of the three conditional operations,
readers are suggested to refer to Table 4.4. Based on the above conditional
operations, logical propositions can be formally described as follows.

Definition 4.39 A proposition ρ is a declarative statement that

expresses a Boolean concept (BL) or a ‘to be’ relation between two or more
logical objects oiBL, 1 ≤ i ≤ n, which can be evaluated as either true (T) or
false (F), i.e.:

 ρBL o1BL o2BL (4.54)

where the to be relations ∈ {is, are, =, ≡, , ⇒, ⇔}, and ≡ is treated as
equivalent to ⇔.

Example 4.14 The following statements are propositions:

 ρ1BL (1 ≡ 1)BL = T

 ρ2BL (North is not the opposite of south)BL = F

Propositions defined according to Definition 4.39 are called primitive
propositions, which cannot be broken down into more simpler ones.

 Definition 4.40 Propositional logic is a branch of symbolic logic that
deals with propositions as a whole and the Boolean logical relations between
them.

4.4.1.2 Propositional Logic Operations

 The basic operations in propositional logic are conjunction (∧),
disjunction (∨), implication (⇒), equivalence (⇔), and negation (¬). The

© 2008 by Taylor & Francis Group, LLC

204 Part II Theoretical Foundations of SE

operations of propositional logic may also be classified into connective
operations and conditional operations as shown in Table 4.4 defined using
truth tables.

The truth table is useful for defining and analyzing composite
propositions. It is also useful for evaluating the equivalence between two
composite propositions.

Table 4.4
Truth Tables of Connective and Conditional Logical Operations

Propositions Connective Operations Conditional Operations

p q ¬ p p ∧ q p ∨ q p q p ⇒ q p ⇔ q

T T F T T T T T

T F F F T F F F
F T T F F F T F
F F T F F F T T

Definition 4.41 A composite proposition P is a composition of multiple

primitive propositions by connectives , such as conjunction ∧, disjunction
∨, and negation ¬, i.e.:

 PBL ρ1BL ρ2BL (4.55)

where ∈ {∧, ∨, ¬}.

Example 4.15 Using the primitive propositions defined in Example
4.14, the following composite propositions can be derived:

 PBL ρ1BL ∧ ρ2BL
 = (1 ≡ 1)BL ∧ (North is not the opposite of south)BL
 = T ∧ F
 = F

 P’BL ρ1BL ∨ ρ2BL
 = (1 ≡ 1)BL ∨ (North is not the opposite of south)BL
 = T ∨ F
 = T

4.4.1.3 Laws of Propositional Algebra and Logical Inferences

 Propositional algebra and the rules of logical inference obey the
algebraic laws as summarized in Table 4.5. These laws play important roles
to compose complex propositions and to facilitate logical reasoning. Table

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 205

4.5 shows that the propositional operations of conjunction, disjunction, and
negation are symmetric. It is interesting to observe the phenomena of duality
as well as similarity between the logical and set laws as shown in Tables 4.5
and 4.2, respectively.

Table 4.5
Laws of Propositional Algebra

Law Description
Idempotent p ∨ p ≡ p p ∧ q ≡ p
Commutative p ∨ q ≡ q ∨ p p ∧ q ≡ q ∧ p
Associative p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r
Distributive p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

Absorption (p ∨ q) ∧ p ≡ p (p ∧ q) ∨ p ≡ p
DeMorgan ¬(p ∨ q) ≡ ¬p ∧ ¬q ¬(p ∧ q) ≡ ¬p ∨ ¬q
Complement p ∨ ¬p ≡ T ¬T ≡ F p ∧ ¬p ≡ F ¬F ≡ T

Identity p ∨ F ≡ p p ∨ T ≡ T p ∧ T ≡ p p ∧ F ≡ F

Another law known as the involution law of propositions is:

 ¬¬p ≡ p (4.56)

The fundamental unit of propositional argument is the whole statement.

Therefore, propositional logic lacks the capability to look into the low level
structures of statements that it treats as a black box. When more analytical
power is needed to deal with the contents of a statement known as terms, and
when the universal or existential quantifications need to be deduced, the
extension of prepositional logic by predicate logic is required as described in
the following subsection.

4.4.2 PREDICATE LOGIC

Predicate logic introduces variables, properties, and quantifiers on the
basis of prepositional logic. Predicate logic combines the five operators of
propositional logic with symbols for predicates and quantifiers. Based on
this, a more powerful symbolic system is formed to represent the content of
logical arguments and natural language statements.

Definition 4.42 A predicate p is a declarative assertion that affirms or
denies an object oBL or a relation R as true or existing, i.e.:

© 2008 by Taylor & Francis Group, LLC

206 Part II Theoretical Foundations of SE

 p(o)BL (o p)BL (4.57a)

 p(o1, o2)BL R(o1,o2)BL = (o1Ro2)BL (4.57b)

where the to be relations ∈ {is, are, =, ≡, , ⇒, ⇔}, o1BL and o2BL are two
arbitrary logical objects.

Example 4.16 The following statements are predicates:

 p1(x)BL (x p 1)BL = T

 p2(2,1)BL >(2,1)BL = (2 > 1)BL = T

Definition 4.43 Predicate logic is a branch of symbolic logic that deals

with propositions containing predicates, variables, and quantifiers.

 Once an argument is translated into the symbols of predicate logic,
natural deduction is enabled to derive a sound and valid conclusion.

4.4.2.1 Taxonomy of Predicates

There are three types of predicates in predicate logic known as singular,
universal, and particular predicates or statements.

Definition 4.44 A singular predicate is a specific statement that asserts
a specific object o satisfies a given predicate P, i.e.:

 P(o)BL (4.58)

where o is called an individual constant.

Definition 4.45 A universal predicate is a general statement that asserts
every element x in a set S satisfies a given predicate P, i.e.:

 ∀x ∈ S P(x)BL (4.59)

where ∀ is the universal quantifier, and x is called an individual variable.

Definition 4.46 A particular predicate is a specific statement that
asserts at least one element x in a set S satisfies a given predicate P, i.e.:

 ∃x ∈ S P(x)BL (4.60)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 207

where ∃ is the existential quantifier, and x is an individual variable.

4.4.2.2 Concept Construction with Predicate Logic

In predicate logic, complex logical concepts and arguments can be
hierarchically constructed by predicates, functions, terms, and formulae, from
the bottom up.

4.4.2.2.1 Logical Functions

Definition 4.47 A function F of predicate logic is a ‘to be’ relation
between a predicate F and a given logical variable x, i.e.:

 F(x)BL (x F)BL (4.61)

where x is a free variable that is not bounded by a quantifier.

4.4.2.2.2 Logical Terms

Definition 4.48 A term T of predicate logic is defined recursively as

follows:

 (a) Every logical variable and every constant is a term.

(b) If t1, t2, …, tn are terms and f is a function that takes n
arguments, then f(t1, t2, …, tn) is a term.

 (c) Every term is obtained in this manner.

4.4.2.2.3 Logical Formulae

Definition 4.49 A formula L of predicate logic is defined recursively
as follows:

(a) If t1, t2, …, tn are terms and P is a predicate that takes n
arguments, then P(t1, t2, …, tn) is a formula called an atomic
formula.

(b) If α and β are formulae, so are (¬α), (α ∧ β), (α ∨ β), (α ⇒
β), (α ⇔ β).

(c) If x is a variable and α is a formula, then (∀x α), (∃x α) are
formulae.

 (d) Every formula is obtained in this manner.

© 2008 by Taylor & Francis Group, LLC

208 Part II Theoretical Foundations of SE

Example 4.17 Given three natural language statements and
corresponding definitions of predicates as follows:

Colored flowers always scented(1) are .
() ()

I dislike flowers grown in the open air
(2) that are not .

() G()
grown in the open air colorless(3) No flowers are .

G() ()

C x S x

D x x

x C x¬

The equivalent formulae in predicate logic can be derived as follows:

 (1) L1 ∀x C(x) S(x)

 (2) L2 ∀x (¬G(x) D(x))

 (3) L3 ¬ (∃x (G(x) ∧ ¬C(x)))

4.4.2.3 Inferences in Predicate Logic

Once a natural language statement is represented by a symbolic formula
in predicate logic, a conclusion of argument may be systematically and
rigorously derived via logical deduction on the basis of known inference
rules as developed in Section 3.3.
 The basic propositional inferences are summarized in Table 4.5. Four
additional rules in predicate logic for dealing with the quantifiers in predicate
formulae can be derived. They are the rules of universal instantiation,
universal generalization, existential instantiation, and existential
generalization.
 For individual variables x, y ∈ S, and individual constant a, b ∈ S,
given L (a) be a statement, and L (x) or L (y) be a formula or function, the
following definitions present the rules of inference on predicate formulae.

Definition 4.50 The rule of universal instantiation states that a specific
instance statement can be deduced from a general predicate formula or
function, i.e.:

 ∀x, L (x) L (a) (4.62)

Definition 4.51 The rule of universal generalization states that a
general predicate formula or function can be deduced from a specific
instance formula or function, i.e.:

 L (a) ∀x, L (x) (4.63)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 209

Definition 4.52 The rule of existential instantiation states that a
specific instance statement can be deduced from at least one predicate
formula or function, i.e.:

 ∃x, L (x) L (a) (4.64)

Definition 4.53 The rule of existential generalization states that a

generic predicate formula or function can be deduced from a specific
instance formula, function, or statement, i.e.:

 L (a) ∃x, L (x) (4.65)

More complicated logical argument methodologies and formal
inference processes may be referred to Section 3.3. It is noteworthy that first
order predicate logic is timid. That is, if something is uncertain, it makes no
assumptions. In order to deal with nontraditional problems in system
description and uncertainty reasoning, a number of nonconventional logical
forms have been proposed, such as multiple-valued logic [Dunn and Epstein,
1977], temporal logic [Pnueli, 1997; Emerson, 1990], and fuzzy logic
[Zadeh, 1965/73/82].

However, it is noteworthy that mathematical logic is good at addressing

the to be |= reasoning. More dynamic and diverse problems in the category of
to do in system modeling require new forms of mathematical means known
as denotational mathematics, which will be described in the following
sections.

4.5 Denotational Mathematics for
 Software Engineering

Denotational mathematics is a set of contemporary mathematical structures
for dealing with the unique mathematical entities, abstract objects, relations,
and formal manipulations in abstract system modeling, which encompasses
concept algebra, system algebra, and RTPA. Concept algebra has been
introduced in Section 4.3.1 and details are provided in Section 15.3.3.1 and
in [Wang, 2006e]. System algebra will be intensively discussed in Section
10.4. This section focuses on RTPA and the big-R notation.

© 2008 by Taylor & Francis Group, LLC

210 Part II Theoretical Foundations of SE

4.5.1 FUNDAMENTAL ELEMENTS IN MODELING
 SOFTWARE SYSTEMS

It is observed that, although there are various ways to express oneself,
human and system behaviors can be classified into three categories: to be, to
have, and to do [Wang, 2006a]. All mathematical means and forms, in
general, are an abstract description of these three categories of human and
system behaviors and common rules of them. Taking this view, mathematical
logic may be perceived as the abstract means for describing “to be,” set
theory for describing “to have,” and functions for describing “to do.”

Three forms of denotational mathematics [Wang,
2002a/06d/06e/06j/07a] such as concept algebra, system algebra, and RTPA
are created to enable rigorous treatment of software and knowledge
representation and manipulation in a formal and coherent framework, which
extend the expressive capability for abstract objects under study from basic
mathematical entities of numbers and sets to higher levels, i.e., concepts,
systems, and behavioral processes. Table 4.6 contrasts the usages of
denotational mathematics and classic discrete mathematics.

Table 4.6

Basic Expressive Power for Denotational Mathematics

Basic expressive
power for computing

Classic
mathematics

Denotational
mathematics

To be Logic Concept algebra
To have Set theory System algebra
To do Functions RTPA

Table 4.6 demonstrates a fundamental view toward the natural and

machine intelligence description in general, and software system in
particular. This also indicates that only a logic-based approach, which
developed in philosophy and pure mathematics, is not adequate to be taken as
the sole mathematical foundation for software engineering.

It is recognized in Theorem 3.10 that the behavioral space of any
system or human action is three dimensional encompassing action, time, and
space. Correspondingly, there are three fundamental categories of
computational behaviors in a software system: a) computational operations
for variable manipulation, b) timing operations for event manipulation, and
c) space operations for memory manipulation. Therefore, the behavior of a
software system can, in general, be viewed as a set of 3-D processes
comprising computational operations, time, and memory.

It may be argumentative that some transaction processing systems in
computing are 2-D, i.e., those systems’ behavioral space may only

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 211

encompass operational logic and static memory allocation. Then, the 2-D
systems can be treated as special cases of the generic 3-D systems. It is
mathematically intuitive that any method or technologies that apply to the 3-
D problems in software engineering are applicable to the 2-D problems.
However, a pure 2-D technology is inadequate and unsafe to be extended to a
3-D problem.

Therefore, the requirement for a denotational mathematics that is
suitable for the 3-D problems is theoretically and practically fundamental in
software engineering. RTPA has been developed as a coherent notation
system and a formal engineering method for addressing the 3-D problems in
software system specification, refinement, and implementation, particularly
for real-time and embedded systems.

Definition 4.54 A behavior of a software system is its computing
operations OPs and observable outcomes and effects that affect or change the
states of a system in the environment modeled by all variables and
input/output events, as well as related memory structures M over time T, i.e.:

 Software behavior f (OP, T, M) (4.66)

Behaviors of software systems can be classified as static and dynamic

ones as shown in Table 4.7.

Table 4.7
Characteristics of Software System Behaviors

No. Behaviors Static Dynamic
1 System architectures

2 Data objects

3 Dynamic memory allocations

4 Timing

5 Input/output manipulations

6 Events handling

7 Mathematical operations

Definition 4.55 A static behavior of software systems is a process that
can be determined at design or compile time.

Definition 4.56 A dynamic behavior of software systems is a process

specified by given timing requirements that may only be determined at run-
time.

© 2008 by Taylor & Francis Group, LLC

212 Part II Theoretical Foundations of SE

It is noteworthy in Table 4.7 that most software behaviors are dynamic
or characterized both dynamic and static. Mathematical logic is found
capable to deal with the ‘to be’ type static behaviors; the rest of the dynamic
instructive behaviors in computing have to be manipulated by process
algebras, particularly RTPA.

4.5.2 THE NEED FOR DENOTATIONAL
 MATHEMATICS IN SOFTWARE ENGINEERING

Christopher Strachey (1965), the founder of the Programming Research

Group (PRG) in the Computing Laboratory at Oxford University, wrote: “It
has long been my personal view that the separation of practical and
theoretical work is artificial and injurious. Much of the practical work done
in computing, both in software and in hardware design, is unsound and
clumsy because the people who do it have not any clear understanding of the
fundamental design principles of their work. Most of the abstract
mathematical and theoretical work is sterile because it has no point of contact
with real computing.”

4.5.2.1 Problems Yet to be Solved

In software engineering we are still facing the same problems as those

the community dealt with 40 years ago. Dijkstra supposed this was because
of the spaghetti usage of “goto’ architectures and ‘the non-constructed
approaches’ in programming [Dijkstra, 1968a]. Brooks explained that there
is no silver bullet in the foreseeable future [Brooks, 1987].

This special phenomenon indicates that: (a) The current empirical
approach centered by languages toward programming is insufficiently
practical, and (b) The current theories and mathematical means are
inadequate. Profound problems yet to be solved and the core technology that
we need in software engineering are to support the expression of system
architectures, behaviors, and their implementation. Therefore, the major
reason for all the difficulties in software engineering is that we did not get
our theories, mathematical means, and tools ready before we can effectively
and generically deal with the complicated long-chain sequences of instructive
behaviors in software engineering.

4.5.2.2 New Problems Require New Forms of Mathematics

The history of sciences and engineering shows that new problems
require new forms of mathematics. Many branches of mathematics were

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 213

emerged in engineering sciences in order to meet their abstract, rigor, and
expressive needs. Software science and engineering is a transdisciplinary
enquiry that encompasses a wide range of contemporary science and
engineering disciplines related to information and knowledge processing,
which cannot be described by conventional analytic mathematics. Therefore,
new forms of mathematics are sought, collectively known as the denotational
mathematics, to deal with the unique mathematical entities and abstract
objects emerged in the field of software engineering, such as information,
concepts, knowledge, processes, behaviors, systems, complex relations, and
distributed objects.

Definition 4.57 Denotational mathematics is a category of

mathematical structures that formalizes rigorous expressions and inferences
of system architectures and behaviors with data, concepts, and dynamic
processes.

It is observed that all existing mathematics, continuous or discrete, are
mainly analytic, seeking unknown variables from known factors according to
certain functions. Conventional science and engineering disciplines have
been mainly using analytic methodologies and mathematics in theory
development and problem solving. However, in software engineering, the
need is to formally describe and specify software systems, particularly its
architecture, static behaviors, and dynamic behaviors in terms of operational
logic, timing, and memory manipulation. Because programming languages
lack the required expressive power to deal with all the dynamic behaviors in
the 3-D behavioral space, denotational mathematics that can describe
software architectures and behaviors rigorously, precisely, and expressively
are sought [Wang, 2002a/06d/06e/06j/07a].

According to Theorems 1.3, 1.4, and 4.1, the utility of denotational

mathematics for software engineering is the means and rules to rigorously
and explicitly express design notions and conceptual models on system
architectures and behaviors at the highest level of abstraction, in the largest
scope of systems, and with the complicated long-chain sequences of 3-D
computational behaviors.

RTPA is a form of denotational mathematics that provides an

expressive, coherent notation system, and systematical refinement
methodology for addressing the abstract architectures and 3-D behaviors of
software systems. RTPA will be introduced in Section 4.6. On the basis of
denotational mathematics, an expressive software engineering notation
system, a formal software engineering modelling methodology, and a
rigorous specification of software architecture and behaviours may be
developed systematically.

© 2008 by Taylor & Francis Group, LLC

214 Part II Theoretical Foundations of SE

4.5.3 THE BIG-R NOTATION

The most generic and fundamental operations in system and human

behavioral modeling are iterations and recursions. Because a variety of
iterative constructs are provided in different programming languages, the
notation for repetitive, cyclic, recursive behaviors and architectures in
computing need to be unified.

The big-R notation is introduced to deal with this fundamental
requirement in computing and software engineering [Wang, 2006f], which is
proposed first in RTPA [Wang, 2002a]. In order to develop a general
mathematical model for unifying the syntaxes and semantics of iterations and
recursions, their inductive nature is analyzed below.

Definition 4.58 An iteration of a process P can be defined as a series
of n+1 repetitions, Ri, 1 ≤ i ≤ n+1, of P by mathematical induction, i.e.:

R0 = ⊗,
R1 = P → R0,
…
Rn+1 = P → Rn, n ≥ 0 (4.67)

where ⊗ denotes skip, or doing nothing but exit.

Based on Definitions 4.58, the big-R notation can be introduced below.

Definition 4.59 The big-R notation, R, is a generic mathematical

operator that is used to denote: (a) a finite set of repetitive behaviors, or (b) a
finite set of recurring architectural constructs in computing, in the following
forms, respectively:

(a)
exp =
R

F

BL T
P (4.68)

(b)
i =1
R

n

N
P(iN) (4.69)

where BL and N are the type suffixes of Boolean and natural numbers,
respectively; T and F are the Boolean constants true and false, respectively.

Further description of the type system and a summary of all type

suffixes of RTPA will be presented in Section 4.6.3. Formal type theory will
be provided in Section 5.3 on data object modeling and manipulation.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 215

The mechanism of the big-R notation can be in analogy with the
mathematical notations ∑ and ∏, or programming notations of while-loop
and for-loop as shown in the following examples.

Example 4.18 The big-∑ notation
1

n

i
i

x
=
∑ is a widely used calculus for

denoting repetitive additions. Assuming that the operation of addition is
represented by sum(x), the mechanism of big-∑ can be expressed more
generally by the big-R notation, i.e.:

i=11

()R
n n

i i
i

x sum x
=

=∑ (4.70)

According to Definition 4.59, the big-R notation can be used to denote

not only repetitive operational behaviors in computing, but also recurring
constructs of architectures and data objects as shown below.

Example 4.19 The architecture of a two-dimensional array with n × m

integer elements, Anm, can be denoted by the big-R notation as follows:

 Anm =
i=0 j=0
RR
n-1 m-1

A[i, j]N (4.71)

Because the big-R notation provides a powerful and expressive means

for denoting iterative and recursive behaviors and architectures of systems or
human beings, it is a universal mathematical means for system modeling in
terms of repetitive behaviors and structures or architectures, respectively
[Wang, 2006f]. From this point of view, ∑ and ∏ are special cases of the
big-R for repetitively doing additions and multiplications, respectively.

Definition 4.60 An infinitive iteration can be denoted by the big-R
notation as:

 R P γ • P γ (4.72)

where γ is a label that denotes the rewinding point of a loop, and denotes a
jump.

The infinitive iteration may be used to formally describe an everlasting
behavior of systems.

© 2008 by Taylor & Francis Group, LLC

216 Part II Theoretical Foundations of SE

Example 4.20 A simple everlasting clock, CLOCK, which does nothing
but tick as C.A.R. Hoare proposed [Hoare, 1985], i.e.:

 CLOCK tick → tick → tick → … (4.73)

can be efficiently denoted by the big-R notation as simply as follows:

 CLOCK R tick (4.74)

A more generic and useful iterative construct is the conditional iteration.

Definition 4.61 A conditional iteration can be denoted by the big-R

notation as:

exp =
R

F

BL T
P γ • (expBL = T

 → P
 γ
 | ~
 → ⊗

) (4.75)

where ⊗ denotes a skip.

The conditional iteration is frequently used to formally describe
repetitive behaviors on given conditions. Eq. 4.75 expresses that the iterative
execution of P will go on as long as the evaluation of the conditional
expression is true (expBL = T), until expBL = F abbreviated by ‘~’.

The big-R notation captures and models a fundamental and widely

applied mathematical concept in computing and human behavior description.
More applications of the big-R notation in modeling fundamental computing
behaviors and architectures will be provided in Section 5.4.2, which
demonstrate that a convenient mathematical notation may dramatically
reduce the difficulty and complexity in expressing a frequently used and
highly recurring concept and notion in computing. The big-R notation has
been adapted and implemented in RTPA and its support tools.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 217

4.6 Real-Time Process Algebra
 (RTPA)

Software engineering is a unique discipline in which the objects of their
studies require new forms of mathematics known as denotational
mathematics in the treatment, modeling, description, specification,
development, implementation, and maintenance of software systems. RTPA
is developed as a coherent notation system and a formal engineering
methodology for addressing the 3-D problem in software system
specification, refinement, and implementation for both real-time and nonreal-
time systems [Wang, 2002a/02b/03c/06a/07a].

This section presents the process metaphor of software systems and the
structure of RTPA. The type system, process notations, process relations, and
process composing rules of RTPA are described. The system specification
and refinement methodology of RTPA and case studies on real-world
problems that demonstrate the descriptive power of RTAP as a powerful
software engineering notation system will be provided in the following
sections. More rigorous treatment of RTPA type rules and formal semantics
will be explored in Chapters 5 and 6, respectively.

4.6.1 THE PROCESS METAPHOR OF SOFTWARE
 SYSTEMS

An important finding in formal methods is that a software system can
be perceived and described as the composition of a set of processes. The
process metaphor of software systems has evolved from concurrent
processes to real-time process systems in the area of operating system
research and formal methods [Hoare, 1978/85; Milner, 1980/89].

Definition 4.62 Formal methods are mathematics-based techniques for

software system design, description, specification, and modeling in software
engineering.

Formal methods are developed to deal with human errors resulted by

empirical technologies in software engineering. It has then been found that
formal methods are also useful in training and in the exploration of
theoretical foundations of software engineering. If software engineers were
trained rigorously and experienced some mental challenges at a higher

© 2008 by Taylor & Francis Group, LLC

218 Part II Theoretical Foundations of SE

abstract level, it would help them to develop correct, reliable, and high
quality software. Current formal methods can be classified into three
categories known as logic-based (e.g., Z, Object-Z), algebra-based (e.g.,
CSP, RTPA), and diagram-based (e.g., SDL, SMC, and UML) [Wang,
2002h].

Conventional formal methods were based on logic and set theories
[Spivey, 1988/92; Woodcock and Davies, 1996; Derrick and Boiten, 2001],
which were perceived to be suitable for describing static behaviors of
software systems. For describing system dynamic behaviors, a variety of
algebra-based technologies were proposed since late 1970s [Hoare, 1978/85;
Milner, 1980/89; Baeten and Bergstra, 1991; Gerber et al., 1992; Klusener,
1992; Cerone, 2000; Dierks, 2000; Fecher, 2001].

4.6.1.1 Process Algebra

Algebra is a form of mathematics that simplifies difficult problems by
using symbols to represent variables, calculus, and their relations. Algebra
enables complicated problems to be expressed and investigated in a formal
and rigorous process.

Process algebra is a major branch of formal methods that provides an
algebraic treatment for software systems as a set of interacting processes.
According to Definition 4.26, a process algebra is an abstract algebraic
system in which the entities of algebraic operation are computational
processes. Process algebra defines a set of formal notations and rules for
describing algebraic manipulations of software processes.

Hoare [Hoare, 1978/85], Milner [Milner, 1980/89], and others [Corsetti
et al., 1991; Nicollin and Sifakis, 1991; Jeffrey, 1992; Vereijken, 1995]
developed algebraic ways to represent communicating and concurrent
systems known as process algebra. A typical process algebra is known as
Communicating Sequential Processes (CSP) developed by C.A.R. Hoare
[Hoare, 1985; Brookes et al., 1984]. CSP provides a notation system for the
specification of process systems and proof of the implemented processes
satisfies their specifications. In CSP, a system is modeled as a set of
processes, composed sequentially or in parallel. Each process is described in
terms of all of its possible behaviors. Processes may communicate by
exchanging data via abstract channels. CSP uses 14 notations to denote
processes of software systems as shown in Fig. 4.1.

An important finding in CSP and related work is that a software system
may be modeled by a set of interacting (communicating) processes. A
process in CSP is perceived as follows.

Definition 4.63 A process is an abstract model of a unit of meaningful

software behavior that represents a transition procedure of the system from
one state to another by changing values of its inputs {I}, outputs {O}, and/or
internal variables {V}.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 219

Figure 4.1 The CSP notations

It is noteworthy that the concept of process in CSP is hybrid. That is, it
does not distinguish the differences between the fundamental meta processes
and relational process operations. The CSP notations model a major part of
elementary software behaviors that may be used in system specification and
description. However, it lacks many useful processes that are perceived
essential in system modeling, such as addressing, memory manipulation,
timing, and system dispatch. CSP models all input and output (I/O) as
abstract channel operations that are not expressive enough to denote complex
system interactions, particularly for those of real-time systems.

Wang found that the existing work on process algebra and their timed
variations [Reed and Roscoe, 1986; Boucher and Gerth, 1987; Schneider,
1991] can be extended to a new form of expressive mathematics: Real-time
process algebra [Wang, 2002a/02b/03c/07a]. Real-time process algebra can
be used to formally and precisely describe and specify architectures and
behaviors of software systems on the basis of algebraic process notations and
rules.

4.6.1.2 Real-Time Process Algebra (RTPA)

As indicated in Theorem 3.10, a generic computing problem is a 3-D
problem that requires a formal method addressing the requirements in all
dimensions, particularly the time dimension. The key metaphor in system
modeling, specification, and description is that a software system can be
perceived as the composition of a set of interacting processes, which are

 Process Notation
(1) Sequential P ; Q
(2) Event a → P

(3) Branch P c Q
(4) Repeat * P
(6) Parallel P || Q
(6) Deterministic choice P � Q
(7) Non-deterministic choice P Q

(8) Pipeline P » Q
(9) Interleave P ||| Q
(10) Interrupt P ^ Q
(11) Assignment x := v
(12) Channel input c ? v
(13) Channel output c ! v
(14) System termination STOP

© 2008 by Taylor & Francis Group, LLC

220 Part II Theoretical Foundations of SE

constructed on the basis of algebraic operations. A formal description of a
process is given below.

Definition 4.64 A process P is a composed component of n meta

statements si and sj, 1 ≤ i < n, j = i + 1, according to certain composing
relations rij, i.e.:

 1 12 2 23 3 1,(...((())) ...)n n nP s r s r s r s−= (4.76)

where rij ∈ ℜ, and ℜ is a set of algebraic process relations that will be
described in Section 4.6.5.

Contrasting Definitions 4.63 and 4.64, readers may find the differences
between conventional and mathematical concepts of processes. On the basis
of Definition 4.64, the cumulative relational model of processes can be
derived in the following theorem.

In Theorem 4.3, P and R represents a set of meta processes and a set

of process relations (operations), which will be defined in Eqs. 4.85 and
4.106, respectively. Theorem 4.3 reveals the nature of programs or software
systems as a set of processes.

 Definition 4.65 Real-Time Process Algebra (RTPA) is a set of formal
notations and rules for describing algebraic and real-time relations of
software processes.

RTPA is designed as a coherent algebraic software engineering
notation system and a formal engineering methodology for addressing

 The 12th Law of Software Engineering

Theorem 4.3 The Cumulative Relational Model (CRM) of processes
states that a process P is the basic unit of an applied computational
behavior that is composed by a set of statements si, 1 ≤ i ≤ n-1, with left-
associated cumulative relations, i.e.:

1

1

1 12 2 23 3 1,

 (s), 1

(...((() s) s) ... s)

n

i ij j
i

n n n

P s r j i

s r r r

R
−

=

−

= = +

=

 (4.77)

where si ∈ P and rij ∈ R.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 221

the 3-D problems in software system specification, refinement, and
implementation, particularly for real-time and embedded systems.

RTPA can be used to describe both logical and physical models of a
system. Therefore, logic views of the architecture of a software system and
its operational platform can be described using the same set of RTAP
notations as that for system behaviors. When the system architecture is
formally specified, the static and dynamic behaviors that perform on the
system architectural models can be rigorously described by a three-level
refinement scheme at the system, class, and object levels in a top-down
approach.

4.6.2 THE STRUCTURE OF RTPA

In software engineering, basic requirements for describing and
specifying a software system can be considered in two categories:
architectural components and operational components. Corresponding to
this classification, system models can be described in three subsystems such
as the architecture, static behaviors, and dynamic behaviors. A process can
be a single meta process or a complex process that is built upon meta
processes by using a set of algebraic process combination rules – the process
relations.

Definition 4.66 The structure of RTPA is an algebraic software

engineering notation system encompassing six subsystems as follows:

 RTPA Meta processes
 || Process relations
 || System architecture models
 || Primary types
 || Abstract dada types
 || Specification refinement scheme (4.78)

As shown in Eq. 4.78, RTPA is a set of coherent mathematical

notations and a formal methodology for modeling software system
architectures, static and dynamic behaviors. For modeling system behaviors,
RTPA introduces 17 meta processes and 17 process relations, where a meta
process is an elementary and primary process that serves as a common and
basic building block for a software system, while a complex processes can be
derived from meta processes by a set of process relations that serves as
process combinatory rules. For modeling system architectures, RTPA
provides 17 primitive types and a set of predefined Abstract Data Types
(ADTs). Beyond the RTPA notation system, a stepwise system specification

© 2008 by Taylor & Francis Group, LLC

222 Part II Theoretical Foundations of SE

and refinement methodology is presented in RTPA that states the
architectures and behaviors of any software system can be modeled and
specified by a three-step refinement scheme using the same set of RTPA
notations.

4.6.3 THE TYPE SYSTEM OF RTPA

The RTPA notation is strongly typed. That is, every operand, variable,
constant, object, or architecture in RTPA is assigned with a type labeled as a
bold suffix. Every identifier in RTPA is bounded by a type and constrained
by additional user-defined domains of values as subsets of the mathematical
domains of the predefined RTPA primitive types.

4.6.3.1 Primitive Types and the Type-Suffix Convention

Definition 4.67 A variable x with an arbitrary type T or a constant c

with an arbitrary type T* is an identifier that is first declared and then
invoked in the following forms:

(a) Variable declaration: <x : T | constraints >

(b) Constant declaration: <c : T* | cT* = an instant value>

(c) Invocation and reference: xT or cT* (4.79)

where the constraints for variables are usually user-defined scopes of values,
and the constraints for constants are specifically bounded values.

The type-suffix convention of RTPA provide great convenience for
facilitating complicated large-scale system specifications where the type of
variables and constants (and their scopes and allowable operations) are
always explicitly denoted no matter how far away from where they were
declared. The suffix convention of RTPA also dramatically reduces the
complexity in syntaxes analysis and code generation.

4.6.3.2 Definitions of the Primitive Types of RTPA

The RTPA type system T encompasses 17 primitive types elicited from

fundamental computing needs, where the names, syntaxes, and mathematical
domains of these primitive types are given in Table 4.8.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 223

As shown in Table 4.8, the RTPA primitive types #1 through #10 are
basic data types. The primitive type date/time (#11) is a special type for
continuous systems, such as databases and real-time systems where long-
range timing manipulation is needed. The event type is used to model a
system event @eS (#14) as a string type; a timing event @tTM (#15) as a time
type where TM is a collective timing type denoting TM ∈ {TI, D, DT}; or an
interrupt event @e (#16) as an interrupt-point type . The status type is
designated to model system status ⓢsBL (#17) as a Boolean type.

The run-time determinable type RT (#12) is a subset of all the rest of the
primitive types defined in Table 4.8, which is designed to support flexible
type specification that is unknown at compile-time, but will be instantiated at
run-time. The system architectural type ST (#13) is a novel and important
data type in RTPA that models system architectural components and is going
to be further described in Section 5.3.1.

It is noteworthy in Table 4.8 that the primitive types of RTPA in system
specification and description can be classified into two categories known as
the variable and constant types. The former are well known in programming,
but the latter are equivalently important in system modeling.

The mathematical domain given for each type is the scope of values of
variables or constants in the type. Formal treatment of RTPA types will be
discussed in Section 5.3 on type theories.

Complex types can be derived from the 17 meta types based on a set of
architecture composition rules known as the Component Logical Models
(CLMs) in RTPA [Wang, 2002a/02b/03c/07a]. Details on CLMs will be
provided in Sections 4.7.2 and 5.3.1. A set of 11 frequently used complex
types in RTPA, such as arrays, stacks, queues, tress, graphs, and files, has
been modeled as ADTs [Guttag, 1975/77/02 Guttag, 1975/77/02], which will
be discussed in Section 5.3.4.

The 11th Principle of Software Engineering

Theorem 4.4 Primary types of computational objects state that the RTPA
type system T encompasses 17 primitive types elicited from fundamental
computing needs, i.e.:

 T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST,
 @eS, @tTM, @int ,ⓢsBL} (4.80)

© 2008 by Taylor & Francis Group, LLC

224 Part II Theoretical Foundations of SE

Table 4.8
Primitive Types of RTPA

No. Primitive Type Syntax for
Variables

Syntax for
Constants

Mathematical
Domain

1 Natural number N N* {0, ..., +∞}

2 Integer Z Z* {-∞, ..., +∞}

3 Real R R* {-∞, ..., +∞}

4 String S S* {0, ..., #S}
5 Boolean BL BL* {T, F}
6 Byte B B* {0, ..., 256}

7 Hexadecimal H H* {0, ..., +∞}

8 Pointer P P* {0, ..., +∞}
9 Time TI =

hh:mm:ss:ms
TI* =
hh:mm:ss:ms*

hh ∈ {0, ..., 23},
mm, ss ∈ {0, ..., 59},
ms ∈ {0, ..., 999}

10 Date

D =
yy:MM:dd

D* =
yy:MM:dd*

yy ∈ {0, ..., 99},
MM ∈ {1, ..., 12},
dd ∈ {1, ..., 31}

11 Date/Time DT =
yyyy:MM:dd:
hh:mm:ss:ms

DT* =
yyyy:MM:dd:
hh:mm:ss:ms*

yyyy ∈ {0, ..., 9999},
MM ∈ {1, ..., 12},
dd ∈ {1, ..., 31},
hh ∈ {0, ..., 23},
mm, ss ∈ {0, ..., 59},
ms ∈ {0, ..., 999}

12 Run-time
determinable type

RT –

–

13 System
architectural type

ST –

–

14 Event @eS – @eS ∈ §
15 Timing @tTM – @tTM ∈ §
16 Interrupt @int – @int ∈ §
17 Status ⓢsBL – {T, F}

4.6.3.3 Equivalence between Primitive Types

Definition 4.68 Type equivalence between two arbitrary primitive
types T1 and T2 is the property that variables x and y in these types are
compatible in all allowable operations, i.e.:

 T1(x) T2(y) (4.81)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 225

Examining Table 4.8 according to Theorem 4.5 and Definition 4.68, the

following equivalent type categories among the RTPA primitive types can be
identified:

 B ⊆ P ⊆ H ⊆ N ⊆ Z ⊆ R (4.83a)

 TI, D ⊆ DT (4.83b)

Generally, let T be an arbitrary type, and let T be the universal type or
the super type that encompasses all primitive types as defined in Table 4.8,
the following type relations can be obtained:

 RT ⊆ T ⊆ T
 = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST, @eS, @tTM, @int ,ⓢsBL} (4.84)

Equivalent type relations can be used to facilitate system specifications
and modeling, as well as formal syntax and semantics analyses.

4.6.4 META PROCESSES OF RTPA

Computational operations in conventional process algebra, such as
CSP [Hoare, 1985], Timed-CSP [Reed and Roscoe, 1986; Boucher and
Gerth, 1987; Schneider, 1991], and other proposals, are treated as a set of
processes at the same level. This approach results in an exhaustive listing of
processes. Whenever a new operation is identified or required in computing,
the existing process system must be extended.

RTPA adopts the foundationalism in order to find the most primitive
computational processes known as the meta processes. In this approach,
complex processes are treated as derived processes from these meta
processes based on a set of algebraic process composition rules known as the
process relations. This subsection describes the set of 17 meta processes of

 The 12th Principles of Software Engineering

Theorem 4.5 Type equivalence states that two types T1 and T2 are
equivalent, iff the domain of type T1 is either identical to or a subset of
that of T2, i.e.:

T1(x) = T2(y) ⇒ T1(x) T2(y) (4.82a)

or
T1(x) ⊆ T2(y) ⇒ T1(x) T2(y) (4.82b)

© 2008 by Taylor & Francis Group, LLC

226 Part II Theoretical Foundations of SE

RTPA. The 17 process relations of RTPA will be presented in the next
subsection.

Definition 4.69 A meta process in RTPA is a primitive computational

operation that cannot be broken down to further individual actions or
behaviors.

Meta processes are elementary processes that serve as a basic building
block for modeling software behaviors, based on them complex processes
can be composed by algebraic operations.

4.6.4.1 Structure of the RTPA Meta Processes

In RTPA, a set of 17 meta processes has been elicited from essential

and primary computational operations commonly identified in existing
formal methods and modern programming languages [Higman, 1977; Hoare
et al., 1987; Wilson and Clark, 1988; Louden, 1993]. Syntaxes and usages of
the meta processes are formally described in the following subsections, while
semantics of the meta processes will be formally presented in Section 6.6
[Wang, 2006a].

Names, notations, and syntaxes of the RTPA meta processes are

described in Table 4.9. As shown in Table 4.9, each meta process is a basic
operation on one or more operand such as variables, memory elements, or
I/O ports. Structures of the operands and their allowable operations are
constrained by their types as described in Section 4.6.3 where a generic type
T ∈ T.

It is noteworthy that not all generally important and fundamental

computational operations, as shown in Table 4.9, have been explicitly
identified in conventional formal methods such as the evaluation, addressing,
memory allocation/release, timing/duration, and the system processes.
However, all of them listed above are found necessary and essential in
modeling both software system architectures and behaviors.

 The 13th Principle of Software Engineering

Theorem 4.6 The meta software processes state that the RTPA meta
process system P encompasses 17 fundamental computational operations
elicited from the most basic computing needs, i.e.:

 P = {:=, , ⇒, ⇐, , , , | , | , @, , ↑, ↓, !, ⊗, , §} (4.85)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 227

Table 4.9
RTPA Meta Processes

No. Meta Process Notation Syntax

1 Assignment := yT := xT

2 Evaluation TexpT → T

3 Addressing ⇒ idT ⇒ MEM[ptrP] T

4 Memory allocation ⇐ idT ⇐ MEM[ptrP] T

5 Memory release idT MEM[⊥]T

6 Read MEM[ptrP]T xT

7 Write xT MEM[ptrP]T

8 Input | PORT[ptrP]T | xT

9 Output | xT | PORT[ptrP]T

10 Timing @ @tTM @ §tTM

TM = yy:MM:dd
 | hh:mm:ss:ms
 | yy:MM:dd:hh:mm:ss:ms

11 Duration @tnTM ∆ §tnTM + ∆nTM

12 Increase ↑ ↑(nT)

13 Decrease ↓ ↓(nT)

14 Exception detection ! ! (@eS)

15 Skip ⊗ ⊗

16 Stop

17 System § §(SysIDST)

4.6.4.2 Formal Description of the RTPA Meta Processes

This subsection provides a formal description of the syntaxes and
usages of the 17 meta processes. Deductive semantics of the meta processes
of RTPA [Wang, 2006a] will be provided in Sections 6.6.

4.6.4.2.1 Assignment

Definition 4.70 Let x: T and y: T be two declared variables with a
arbitrary type T. An assignment, denoted by :=, is a meta process that
transfers the value of x, ν(x), to that of y, ν(y), if their types are identical T(x)
= T(y) or equivalent T(x) T(y), i.e.:

 yT := xT (4.86)

© 2008 by Taylor & Francis Group, LLC

228 Part II Theoretical Foundations of SE

where T ∈ T as defined in Table 4.7, and xT can be a constant, xT*, that
matches yT.

Note that in case xT is an expression expT in Eq. 4.86, an evaluation of
the expression should be carried out first as described by the following meta
process.

4.6.4.2.2 Evaluation

Definition 4.71 An evaluation, denoted by T, is a meta process that
maps a given expression in type T into a value in the same type, i.e.:

 (expBL)BL = BL: expBL → {T, F} (4.87a)
 (expN)N = N: expN → N (4.87b)
 (expZ)Z = Z: expZ → Z (4.87c)
 (expR)R = R: expR → R (4.87d)

 (expB)B = B: expB → B (4.87e)

where the types of the evaluations are called a Boolean (T = {BL}), ordinal
(T = {N}), or numerical (T = {Z,R, B}) evaluation, respectively.

The preceding evaluations, except that of type Boolean, can be
extended to a special type called power set evaluation such as ÞN, ÞZ, ÞR, and
ÞB. For example, an ordinal evaluation on ÞN can be defined as follows:

 (expN)ÞN = ÞN: expN → ÞN (4.88)

which is frequently used in a switch construct where a branch may be
selected by a subset of the numbers in a given range.

Another special type of evaluation is relational evaluations that
compare two variables or expressions by a binary relation R, R ∈ R , in the
following form:

 (exp1T, exp2T)R = R: expT × expT → R (4.89)

where R = {=, ≠, >, <, ≥, ≤}.

4.6.4.2.3 Addressing

An addressing function, π: idT → ptrÞP, has been introduced in Eq.
4.40a for mapping a given logical idT into the first byte of the physical
memory block MEM[ptrP, ptrP+n-1]T. The addressing process of RTPA is
formally defined as follows.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 229

Definition 4.72 Addressing, denoted by ⇒, is a meta process that maps
a given logical idT into a block of the physical memory MEM[ptrP, ptrP+n-
1]T, denoted by ptrÞP accommodating n bytes of memory for the variable in
type T, T ∈ {P, H, N, Z}, i.e.:

 idT ⇒ MEM[ptrÞP]T

 (π: idT → ptrÞP
 ⇔ idT = MEM[ptrP, ptrP+n-1]T

) (4.90)

where n is language implementation-dependent.

A formal description of the abstract memory model, MEM[ptrP,
ptrP+n-1]T, will be provided in Section 5.3.1.4.

4.6.4.2.4 Memory Allocation

Definition 4.73 Memory allocation, denoted by ⇐, is a meta process
that collects a unique memory block logically named idT and physically
located by ptrÞP accommodating n bytes of memory for the variable in type
T, i.e.:

 idT ⇐ MEM[ptrÞP]T

 (π-1: ptrÞP → idT
 ⇔ idT = MEM[ptrP, ptrP+n-1]T

) (4.91)

where π-1: ptrÞP → idT is the memory allocation function that is an inverse
function of addressing, which associates a physical memory block
MEM[ptrP, ptrP+n-1]T with the given logical idT.

Memory allocation is a key meta process for dynamic memory
manipulation implemented in the RTPA support system at a part of the
operating system.

4.6.4.2.5 Memory Release

Definition 4.74 Memory release, denoted by , is a meta process that
dissociates and frees a unique block of n continuous physical memory
elements denoted by ptrÞP from its logical identifier idT, i.e.:

 idT MEM[⊥]T
 (π: idT→ ptrÞP
 ⇔ (MEM[ptrP, ptrP+n-1]T := ⊥ ∧ ptrP := ⊥ ∧ idT := ⊥)
) (4.92)

© 2008 by Taylor & Francis Group, LLC

230 Part II Theoretical Foundations of SE

where ⊥ denotes an undefined or unallocated value.

The released memory block that was logically identified by idT will

then be returned to the system memory pool collected by the system memory
management function provided by an operating system or the RTPA support
system.

4.6.4.2.6 Read

Definition 4.75 Read, denoted by , is a meta process that gets data xT
from a given memory location MEM[ptrP], where PtrP is a pointer that
identifies the physical memory address, i.e.:

MEM[ptrP]T xT (4.93)

where T ∈ T.

4.6.4.2.7 Write

Definition 4.76 Write, denoted by , is a meta process that puts data
xT to a given memory location MEM[ptrP], where ptrP is a pointer that
identifies the physical memory address, i.e.:

xT MEM[ptrP]T (4.94)

where T ∈ T.

4.6.4.2.8 Input

Definition 4.77 Input, denoted by | , is a meta process that receives
data xT from a given system I/O port PORT[ptrP]T, where ptrP is a pointer
that identifies the physical address of the port interface, i.e.:

 PORT[ptrP]T | xT (4.95)

where T ∈ {B, S}.

A formal description of the port model, PORT[ptrP]T, will be provided
in Section 5.3.1.4.

4.6.4.2.9 Output

Definition 4.78 Output, denoted by | , is a meta process that sends
data xT to a given system I/O port PORT[ptrP]T, where ptrP is a pointer that
identifies the physical address of the port interface, i.e.:

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 231

 xT | PORT[ptrP]T (4.96)

where T ∈ {B, S}.

4.6.4.2.10 Timing

Definition 4.79 Timing, denoted by @ , is a meta process that sets the
value of a timing variable @t as the absolute time of the current system clock
§t, i.e.:

 @tTM @§tTM (4.97)

where TM ∈ {TI, D, DT}; each subdomain of time and/or date has been defined
in Table 4.8, respectively.

A specific timing process may adopt one of the following expressions
depending on the need for the range of time in a given system:

@thh:mm:ss:ms @ §thh:mm:ss:ms (4.98a)
 @tyy:MM:dd @ §tyy:MM:dd (4.98b)

 @tyyyy:MM:dd:hh:mm:ss:ms @ §tyyyy:MM:dd:hh:mm:ss:ms (4.98c)

4.6.4.2.11 Duration

Definition 4.80 Duration, denoted by , is a meta process that sets a
relative time @tnN as an integer based on the relative system clock §tnN and
the given period ∆nN, i.e.:

@tnN §tnN + ∆nN (4.99)

where the unit of all relative timing variables is ms.

4.6.4.2.12 Increase

Definition 4.81 Increase, denoted by ↑, is a meta process that adds one
to a given variable nT, i.e.:

 ↑(nT) (4.100)

where T ={N, Z, B, H, P, TI, D, DT}.

© 2008 by Taylor & Francis Group, LLC

232 Part II Theoretical Foundations of SE

4.6.4.2.13 Decrease

Definition 4.82 Decrease, denoted by ↓, is a meta process that
subtracts one from a given variable nT, i.e.:

 ↓(nT) (4.101)

where T ={N, Z, B, H, P, TI, D, DT}.

4.6.4.2.14 Exception Detection

Definition 4.83 Exception detection, denoted by !, is a meta process
that logs a detected exception event @eS at run-time, i.e.:

 ! (@eS) (4.102)

The RTPA exceptional detection mechanism is a fundamental process
for safety and dependable system modeling, which enables system exception
detection, handling, and postmortem analysis to be implemented.

4.6.4.2.15 Skip

Definition 4.84 Skip, denoted by ⊗, is a meta process that exits a
current control structure, such as loop, branch, or switch and return to the
immediate upper layer of the current control structure, i.e.:

⊗ (4.103)

A skip process implements no externally observable behaviors, but it

conducts important internal control operations. The semantics of skip is
equivalent to the behaviors of exit, break, or unconditional jump to a
predefined program address. Further explanation of the semantics of the skip
process may be referred to Section 6.6.1.15.

4.6.4.2.16 Stop

Definition 4.85 Stop, denoted by , is a meta process that terminates a
system’s operation, i.e.:

 (4.104)

Note that the stop process is a system level process that shuts down the
system physically.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 233

4.6.4.2.17 System

Definition 4.86 The system, denoted by §, is a top-level meta process

that acts at the highest level controller of a process system for dispatching
and/or executing a specific process according to system timing or predefined
events, i.e.:

 §(SysIDS) (4.105)

where SysIDS is an identity of the system in string type.

A formal description of an abstract system underlying the computing
platform will be provided in Section 5.6.1.

4.6.5 PROCESS RELATIONS AND ALGEBRAIC
 OPERATIONS OF RTPA

The meta processes of RTPA developed in Section 4.6.4 identified a set
of fundamental elements for modeling the most basic behaviors of a software
system. It is interesting to realize that there is only a small set of 17 meta
processes in software system modeling. However, via the combination of a
number of the meta processes by certain algebraic process operations, any
architecture and behavior of real-time or nonreal-time software systems can
be sufficiently described [Higman, 1977; Hoare et al., 1987; Wang and King,
2000].

Definition 4.87 A process relation in RTPA is an algebraic operation

and a compositional rule between two or more meta processes in order to
construct a complex process.

A set of 17 fundamental process relations has been elicited for building

and composing complex processes in the context of real-time software
systems. Syntaxes and usages of the 17 RTPA meta processes are formally
described in this subsection. Semantics of these process relations will be
formally described in Section 6.6.

4.6.5.1 Structure of the RTPA Process Relations

A set of 17 process relations R has been elicited from fundamental
algebraic and relational operations in computing, where definitions and
syntaxes of each of these process relations will be provided in the following
subsections.

© 2008 by Taylor & Francis Group, LLC

234 Part II Theoretical Foundations of SE

Names, notations, and syntaxes of the 17 RTPA process relations are

described in Table 4.10. The first 7 process relations in Table 4.10,
sequential (#1), jump (#2), branch (#3), switch (#4), and iterations (#5
through #7), have long been identified as the Basic Control Structures
(BCS’s) of software architectures [Hoare et al., 1987; Wilson and Clark,
1988]. To represent the modern programming structural concepts, CSP
[Hoare, 1985] identified the following 7 additional process relations such as
recursion (#8), function call (#9), parallel (#10), concurrency (#11),
interleave (#12), pipeline (#13), and interrupt (#14).

However, these process relations or operations were treated the same as

the meta processes in existing formal methods. That is, the conventional
notation systems are not an algebraic production system rather than an
exhaustive instruction system, which do not distinguish the basic
computational operations and their composing rules.

RTPA [Wang, 2002a/02b/03c/07a] extends the BCS’s and process

relations to time-driven dispatch (#15), event-driven dispatch (#16), and
interrupt-driven dispatch (#17) in order to model the top-level system
behaviors, particularly those of real-time systems. The 17 process relations
(BCS’s) are regarded as the foundation of programming and system
architectural design, because any complex process can be implemented by
the algebraic process composing operations onto the set of the 17 meta
processes as defined in Table 4.9.

The 14th Principle of Software Engineering

Theorem 4.7 The software composing rules state that the RTPA process
relation system R encompasses 17 fundamental algebraic and relational
operations elicited from basic computing needs, i.e.:

 R = {→, , |, |…|…,
*R , R+

,
iR , , , ||, ∯ , |||, »,

 , t, e, i} (4.106)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 235

Table 4.10
RTPA Process Relations and Algebraic Operations

No. Process Relation Notation Syntax

1 Sequence → P → Q

2 Jump P Q

3 Branch | expBL = T → P

| ~ → Q

4 Switch |
…
|

 expT = i → Pi

 | ~ →

 where T ∈ {N, Z, B, S}

5 While-loop *R

exp =
R

F

BL T
P

6 Repeat-loop R+
 P →

exp =
R

F

BL T
P

7 For-loop iR

1

n

i
R
=

N

N
P(iM)

8 Recursion 0

i n
R
=N N

PiM PiM-1

9 Function call P F

10 Parallel || P | | Q

11 Concurrence ∯ P ∯ Q

12 Interleave ||| P ||| Q

13 Pipeline » P » Q

14 Interrupt P Q

15 Time-driven dispatch t @tiTM t Pi

16 Event-driven dispatch e @eiS e Pi

17 Interrupt-driven dispatch i @intj i Pj

© 2008 by Taylor & Francis Group, LLC

236 Part II Theoretical Foundations of SE

Theorem 4.8 demonstrates the power of the algebraic structure towards

computational behavior modeling and programming. It is noteworthy that an
ordinary high level programming language may introduce about 150 to 300
individual instructions. However, the expressive power of RTPA is in a very
high order in program composition, i.e., one order higher than any
programming language, although it just adopts a small set of 17 meta
processes and 17 process relations.

In Table 4.10, the big-R used in process relations #5 through #8 is a
special notation recently created for denoting iterative and recursive
behaviors of software systems [Wang, 2006f]. Formal models of the big-R
notation have been given in Section 4.5.3, and its applications in iterative and
recursive behavioral modeling will be provided in Section 5.4.2.

4.6.5.2 Formal Description of the RTPA Process Relations

This subsection defines and explains the 17 process relations of RTPA
for manipulating process operations and combinational rules between meta
processes. Deductive semantics of the process relations [Wang, 2006a] will
be provided in Section 6.6.2.

4.6.5.2.1 Sequence

Definition 4.88 A sequence, denoted by →, is a process relation in
which two meta processes P and Q are executed one by one, i.e.:

 P → Q (4.108)

The 13th Law of Software Engineering

Theorem 4.8 The express power of algebraic modeling states that the
total number of the possible computational operations N is a set of
combinations between two arbitrary meta processes P1, P2 ∈ P composed
by each of the process relations R ∈ R in RTPA, i.e.:

#

2
#=

17!
= 17 •

2!(17-2)!
= 17 • 136

= 2,312

C•N
P

R

 (4.107)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 237

4.6.5.2.2 Jump

Definition 4.89 A jump, denoted by , is a process relation in which,
on the termination of a process P, the system exits the linear sequence of
processes, and invokes a designated process Q, i.e.:

 P Q (4.109)

where Q is usually identified as a label or a logical address.

4.6.5.2.3 Branch

Definition 4.90 A branch, denoted by |, is a process relation in which
the selection of a process is determined by a conditional expression expBL,
i.e.:

 expBL = T → P

 | ~ → Q (4.110)

where ‘~’ means ‘expBL = F,’ or more general, ‘otherwise.’ When the else
branch is optional, Eq. 4.110 is equivalent to:

 expBL = T → P

 | ~ → ∅ (4.111)

4.6.5.2.4 Switch

Definition 4.91 A switch, denoted by | … | …, is a process relation in
which the branch is determined by a numerical expression expT, i.e.:

 expT = 0 → P0
 | 1 → P1
 | …
 | n-1 → Pn-1
 | ~ → ∅ (4.112)

where T ∈ {N, Z, B, S}.

4.6.5.2.5 While-Loop

Definition 4.92 A while-loop, denoted by
*R , is a process relation in

which a meta process or a complex process, P, is executed repeatedly as long
as the conditional expression expBL is true, i.e.:

© 2008 by Taylor & Francis Group, LLC

238 Part II Theoretical Foundations of SE

*

exp =
R R

F

BL T
P (4.113)

where the lower bound, expBL = T, denotes that P may or may not be iterated
at run-time if expBL ≠ T at the beginning; the upper bound, expBL = F, shows
the condition to terminate the iteration.

4.6.5.2.6 Repeat-Loop

Definition 4.93 A repeat-loop, denoted by R +
, is a process relation

in which a meta process or a complex process, P, is executed iteratively for at
least one time until the conditional expression expBL = F, i.e.:

exp =

R R
F

BL T
P P+ → (4.114)

It can be seen that a repeat-loop is a sequential combination of P and a

while-loop of P, i.e.:

*R RP P P+ = → (4.115)

4.6.5.2.7 For-Loop

A for-loop is a special form of the while-loop, where the termination

condition of iteration will be determined by a known constant or expression.

Definition 4.94 A for-loop, denoted byR i
, is a process relation in

which a meta process or a complex process, P(i), is executed repeatedly for n
times controlling by an index i, i ∈ {1, …, n}, i.e.:

1

()R R
n

i

i
P i

=N
 (4.116)

Examples of the three forms of iterations as defined in Definitions 4.92

through 4.94 will be provided in Section 5.4 on modeling iterative behaviors
of software systems.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 239

4.6.5.2.8 Recursion

Definition 4.95 A recursion, denoted by , is a process relation in
which a process P calls itself, i.e.:

 P P (4.117)

Recursion processes are frequently used in programming to simplify
system structures and to specify neat and expressive system functions. It is
particularly useful when an infinite or run-time determinable specification
has to be clearly expressed. Examples of recursions will be provided in
Chapter 6 on modeling recursive behaviors of software systems.

4.6.5.2.9 Function Call

Definition 4.96 A function call, denoted by , is a process relation in
which a process P calls another process Q as a predefined sub-process, i.e.:

 P Q (4.118)

In Eq. 4.118, the called process Q can be regarded as an embedded part
of process P.

4.6.5.2.10 Parallel

Definition 4.97 A parallel, denoted by ||, is a process relation in which
two processes P and Q are executed simultaneously synchronizing by a
common system clock, i.e.:

 P || Q (4.119)

The parallel process relation is designed to model behaviors of a Multi-
Processor Single-Clock (MPSC) system as shown in Table 4.10 (#10). The
syntax of parallel processes may also be extended to denote relations
between system architectural models that are functionally parallel or
equivalent.

4.6.5.2.11 Concurrence

Definition 4.98 A concurrence, denoted by ∯ , is a process relation in
which two processes P and Q are executed simultaneously and
asynchronously according to separate system clocks, and each such process
is executed as a complete task, i.e.:

© 2008 by Taylor & Francis Group, LLC

240 Part II Theoretical Foundations of SE

 P ∯ Q (4.120)

The concurrent process relation is designed to model behaviors of a

Multi-Processor Multi-Clock (MPMC) system.

4.6.5.2.12 Interleave

Definition 4.99 An interleave, denoted by |||, is a process relation in
which two processes P and Q are executed simultaneously, synchronized by
a common system clock, while the execution of each such process would be
alternatively dispatched as a multi-threads system, i.e.:

 P ||| Q (4.121)

The interleave process relation is designed to model behaviors of a

Single-Processor Single-Clock (SPSC) system.

4.6.5.2.13 Pipeline

Definition 4.100 A pipeline, denoted by », is a process relation in
which two processes P and Q are interconnected to each other, and the
succeeding process takes the output(s) of the previous process as its input(s),
i.e.:

 P » Q (4.122)

4.6.5.2.14 Interrupt

Definition 4.101 An interrupt, denoted by , is a process relation in
which a running process P is temporarily held before completion by an
interrupt event @e at the interrupt point sent by another process Q with
a higher priority, and the interrupted process will be resumed when Q has
been completed, i.e.:

 P Q P || (@int Q) (4.123)

where and denote interrupt service and interrupt return, respectively.

The interrupt relation describes execution priority and control taking-
over between processes.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 241

4.6.5.2.15 Time-Driven Dispatch

Definition 4.102 A time-driven dispatch, denoted by t, is a process
relation in which the ith process Pi is triggered by a predefined system time
@tiTM, i.e.:

 @tiTM t Pi , i ∈{1, ..., n} (4.124)

 4.6.5.2.16 Event-Driven Dispatch

Definition 4.103 An event-driven dispatch, denoted by e, is a process
relation in which the ith process Pi is triggered by a predefined system event
@eiS, i.e.:

 @eiS e Pi , i ∈{1, …, n} (4.125)

4.6.5.2.17 Interrupt-Driven Dispatch

Definition 4.104 An interrupt-driven dispatch, denoted by i, is a
process relation in which the ith process Pi is triggered by a predefined
system interrupt @inti , i.e.:

 @intj i Pj , j ∈{1, …, n} (4.126)

All types of events, including the operational events, timing events, and

interrupt events, are captured by the system in order to dispatch a designated
process. Detailed models and mechanisms of system event capture and
dispatch will be discussed in Section 5.4.3.

4.7 The RTPA Methodology for
 Software System Modeling and
 Refinement

In common engineering practice, a complicated system should be specified
via a number of systematic refinements in a top-down approach by using a
set of coherent notations. On the basis of the RTPA notation system

© 2008 by Taylor & Francis Group, LLC

242 Part II Theoretical Foundations of SE

developed in Section 4.6, this section describes the RTPA modeling,
specification, and refinement methodology for software system architectures,
static, and dynamic behaviors via three-level refinements.

4.7.1 THE RTPA METHODOLOGY

In RTPA three fundamental facets of software systems are recognized
as the architecture, static behaviors, and dynamic behaviors. The top-level
specification of a software system can be denoted by a coherent set of
mathematical notations of RTPA as follows.

Definition 4.105 A software system model in RTPA, §(SysIDST),
encompasses the following three subsystems, i.e.:

 §(SysIDST) SysIDST.Architecture
 || SysIDST.StaticBehaviors
 || SysIDST.DynamicBehaviors (4.127)

where ST is the system type suffix.

The RTPA specification and refinement methodology can be described

as a 3 × 3 matrix as shown in Fig. 4.2. Each of the subsystems described in
Eq. 4.127 can be systematically extended by a three-level refinement process
at the system, class, and object levels. Fig. 4.2 shows the method and
expected work products of each specification subsystem at a different level
of system refinement.

In the RTPA specification and refinement scheme for software systems,

two key modeling methods, the component logical model and process, are
introduced to model software system architectures and behaviors. The
mathematical model of the latter has been described in Definitions 4.64 and
4.69. The definition of the former is given below.

 Definition 4.106 A Component Logical Model (CLM) is an abstract
model of a system architectural component that represents a hardware
interface, an internal logical model, a data structure, and/or a common
control structure of a system.

According to Fig. 4.2, the three refinement steps for system architecture

specification (S1) are: 1.1 system architecture, 1.2 CLM schemas, and 1.3
CLM objects. Similarly, the refinement strategy for system static behavior

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 243

specification (S2) is: 2.1 system static behaviors, 2.2 process schemas, and
2.3 process implementations. System dynamic behaviors (S3) can be
specified by: 3.1 system dynamic behaviors, 3.2 process deployment, and 3.3
process dispatch, in a three-level refinement. Detailed explanations and
illustrations of the RTPA scheme for software system specification and
refinement will be given in Sections 4.7.2 through 4.7.4.

Refinement →
↓ Specification

R1. System-Level
Specification

R2. Class-Level
Specification

R3. Object-Level
Specification

S1.
System
Architecture

1.1 System architecture

SysIDST.Architecture ≙
 CLM1S [n1N]
 || CLM2S [n2N]
 || …
 || CLMkS [nkN]

1.2 CLM schemas

CLMSchema ≙ CLM-IDS :: (
 <Field1 : type1 | constraint1>,
 <Field2 : type2 | constraint 2>,
 …
 <Fieldn : typen | constraint n>)

1.3 CLM objects
CLMObject ≙
 CLMSchemaST
 || ObjectIDS
 || {InstanceParameters}
 || {InitialValues}

S2.
Static
Behaviors

2.1 System static behaviors

SysIDST.StaticBehaviors ≙
 SysInitial
 || Process1
 || Process2
 || …
 || Processn

2.2 Process schemas

ProcessSchema ≙
 PNN // process number
 || ProcessIDS ({I}; {O})
 || {OperatedCLMs}
 || {RelatedProcesses}
 || FunctionDescriptionS

2.3 Process implementation

ProcessImplementation ≙
 ProcessSchemaST
 || ProcessInstIDS
 || {DetailedProcesses}

S3.
Dynamic
Behaviors

3.1 System dynamic behaviors

SysIDST.DynamicBehaviors ≙
 || {Base-level processes}
 || {High-level processes}
 || {Low-interrupt-level
 processes}
 || {High-interrupt-level
 processes}

3.2 Process deployment
ProcessDeployment ≙ § →
 (BaseTimeEvent
 ↳ {ProcessSet1}
 | HighLevelTimeEvent
 ↳ {Process set2}
 | LowIntTimeEvent
 ↳ {Process set3}
 | HighIntTimeEvent
 ↳ {Process set4}
) → §

3.3 Process dispatch

ProcessDispatch ≙ § →

(@Event1S ↳ {ProcessSet1}

 | @Event2S ↳ {ProcessSet2}
 | …
 | @EventnS ↳ {ProcessSetn}
)
 → §

Figure 4.2 The scheme of system modeling and refinement in RTPA

There are four basic types of system architectures known as: parallel,

serial, pipeline, and nested as shown in Fig. 4.3. Any complicated system
architecture can be represented by a combination of these four basic
architectures between components. It is interesting to find that each of the
basic architectures corresponds to a key RTPA process relation as defined in
Table 4.10. Therefore, for the first time, not only system behaviors
(operations), but also system architectures can be expressed by the same set
of algebraic notations in RTPA.

© 2008 by Taylor & Francis Group, LLC

244 Part II Theoretical Foundations of SE

Figure 4.3 RTPA meta architectures

Example 4.21 The architecture of a sample system §(SysAST) is given

in the left-hand side of Fig. 4.4, which consists of serial, parallel, and nested
architectural relations among system components. Applying the RTPA
methodology, the architecture of §(SysAST) can be formally specified as
shown in the right-hand side of Fig. 4.4.

The formal architectural specification of real-world systems with

hardware and software subsystems will be demonstrated in Section 4.8.

No. Type of
Architecture

Syntax Example

1 Parallel P || Q §(ParallelSysST) ≙ P1 || P2 || … || Pn

 P1 P2 … Pn

2 Serial P → Q §(SerialSysST) ≙ P1 → P2 → … → Pn

 P1 P2 … Pn

3 Pipeline P » Q §(PipelineSysST) ≙ P1 » P2 » … » Pn

 P1 P2 … Pn
 …

 … …

 …

4 Nested P Q §(NestedSysST) ≙ P1 P2 … Pn

 … P1

 … P2

 … Pn

 …

 …

 …

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 245

System Architecture RTPA Expression

 §(SysAST)

 P1 P2 … Pn

 A

 Q1 Q2

 R1 R2 B

 S2

§(SysAST) ≙ § →
 ((P1 → Q1 → R1)
 || (P2 → Q2 → R2 → S2)
 || …
 || (Pn (A → B))
)

Figure 4.4 The architecture of a sample system

4.7.2 SYSTEM ARCHITECTURE MODELING AND
 REFINEMENT IN RTPA

In RTPA, the architectural components of a system are modeled by
CLMs, which are an abstract model of the system hardware interface, an
internal logic model of hardware, and/or a common control structure of a
system [Wang, 2002a]. The operational components of a system are modeled
by processes, which will be described in Section 4.8.

4.7.2.1 The System Architecture

 System architecture, at the top level, specifies a list of names of CLMs
and their relations. A CLM can be regarded as a predefined class of system
hardware or internal control models, which can be inherited or implemented
by corresponding CLM objects as specific instances in the succeeding system
architectural refinement procedures.

Definition 4.107 The architecture of a software system can be
described as a set of k parallel CLMs in RTPA, i.e.:

 SysIDST.ArchitectureST CLM1ST [n1N]
 || CLM2 ST [n2 N]
 || …
 || CLMkST [nk N] (4.128)

© 2008 by Taylor & Francis Group, LLC

246 Part II Theoretical Foundations of SE

where ST is the suffix of the system architectural type that denotes a CLM in
the type of system architectures, N is a type suffix of natural numbers, and niN
is the given number of the ith CLM configured in the system.

It can be seen that types play an important role in modeling system
architectural entities such as CLMs and data objects. A complete definition
of the RTPA type system may refer to Section 4.6.3.

Eq. 4.128 provides the first-step refinement of the architectural
specification of the given system represented by SysIDST.ArchitectureST. As
a result, the system’s architectural components and their relationships are
clearly specified.

4.7.2.2 The CLM Schema

Definition 4.108 A CLM schema is an abstract logical structure of a
component logical model in the form of a record-like abstract data structure
that specifies the configuration of a CLM by a set of n fields, types, and their
constraints, i.e.:

 CLMSchemaST CLM_IDS::
 (Field1 : type1 | constraint1>,
 Field2 : type2 | constraint2>,
 …
 Fieldn : typen | constraintn>
) (4.129)

A CLM schema can be treated as the architectural specification of a
class, which will be used as a blueprint in further refinement of the CLM
objects as an instance in implementing the CLM classes in the next step.

4.7.2.3 The CLM Objects

The instantiation of a CLM schema is called a CLM object in RTPA.

The CLM object is the result of the final refinement of the specification in
order to obtain the architectural model of a given software system.

Definition 4.109 A CLM object in RTPA is a derived instance of a
CLM schema and its detailed implementation, i.e.:

 CLMObjectST CLMSchemaST
 || ObjectIDS
 || {InstanceParameters}
 || {InitialValues} (4.130)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 247

After the three-step refinement known as system architecture, CLM
schemas, and CLM objects, all architectural components, their relations and
implementations can be obtained systematically.

Example 4.22 In RTPA, similar architectural schemas, as well as

repetitive actions or processes, can be specified by using the big-R notation.
The RTPA specification of the architectures of request buttons of an elevator
dispatching system, ButtonsST, is formally specified in RTPA as shown in
Fig. 4.5. The specification indicates that there are 30 similar request buttons
in the system denoted by Key(1) through Key (30) that share the same
architectural model of ‘ButtonsST’.

Figure 4.5 The component architectural schema of buttons in an elevator
system

As shown in Fig. 4.5, for each ButtonsST, it consists of the following
four fields: (a) A PortAddressN with specific values; (b) A key input
information KeyInputB with the last three bites effective; (c) A directionBL
indicating moving direction up or down; and (d) A KeyPositionN showing
the floor level of the buttons.

The architectural specifications developed in this subsection provide a
set of abstract object models and clear interfaces between system hardware
and software. After reaching this point, the co-design of a software system,
particularly a real-time system, can be separately carried out by hardware and
software teams in parallel.

It is recognized that system architecture specification by the means of
CLMs is the most fundamental and the most difficult part in software design
and modeling. However, conventional formal methods hardly provide any
support for this purpose. RTPA provides a set of expressive notations for
specifying system architectural structures and control models including
hardware, software, and their interactions.

On the basis of the system architecture specification and with the work
products of system architectural components (CLMs), the operational
components of the given system and their behaviors can be specified easily

 ButtonsST R
i

30

1=
 (Key (iN):

 <PortAddress : H | FF00HH ≤ PortAddressH ≤ FF09HH>,
 <KeyInput : B | KeyInputB = <xxxx xkkkB>,
 <Direction : BL | T = Up ∧ F = Down>,
 <KeyPosition : N | 1 ≤ KeyPositionN ≤ 6>
)

© 2008 by Taylor & Francis Group, LLC

248 Part II Theoretical Foundations of SE

by experienced analysts or programmers as discussed in the following
subsections.

4.7.3 SYSTEM STATIC BEHAVIOR MODELING
 AND REFINEMENT

Static behaviors of software systems are those determinable at compile-
time, which can be modeled by a set of processes and their relations. This
subsection describes how RTPA is used to formulate detailed process
specifications based on the CLM architectures specified in Section 4.7.2.

4.7.3.1 System Static Behaviors

Definition 4.110 The specification of system static behaviors is the

high-level configuration of processes of a system and their relations. Its
general form at the top-level can be represented by a set of parallel processes,
i.e.:

 SysIDST.StaticBehaviors SysInitial
 || Process1
 || Process2
 || …
 || Processn (4.131)

4.7.3.2 Process Schemas

As a result of the first-step refinement in the previous subsection,
system static behaviors have been described as a set of process names and
their relations. The second-step refinement of system static behaviors in
RTPA is to specify the schemas of these identified processes as defined in
Fig. 4.2.

Definition 4.111 A process schema is the structure of a process that
identifies the process by a process number PNN and a process name
ProcessIDS, lists operated CLMs and relations with other processes, and
describes brief functions of the process, as follows:

 ProcessSchemaST PNN
 || ProcessIDS ({I}; {O})
 || FunctionDescriptionS
 || {OperatedCLMs}
 || {RelatedProcesses}
 || FunctionDescriptionS (4.132)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 249

where FunctionDescriptionS is a brief description of major functions of a
process, which will be used to guide further refinement of the process.

The process schema provides further detailed information on each
process’ functionality, I/O, and its relationships with system architectural
components (CLMs) and other processes.

4.7.3.3 Process Implementation

The final refinement step of component static behaviors is to extend the
process schemas as specified in Section 4.7.3.2 into detailed processes. This
level of specification for system static behaviors is called process
implementation.

Definition 4.112 Process implementation is the final-step refinement of

static behaviors of a system that extends a process schema to a detailed
process by using meta processes, process relations, and related CLMs
provided in RTPA, i.e.:

 ProcessImplementationST ProcessSchemasST
 || ProcessInstIDSS
 || {DetailedProcesses} (4.133)

Based on the refined specifications, code can be derived seamlessly and
rigorously, and tests of the code can be generated prior to the coding phase.

4.7.4 SYSTEM DYNAMIC BEHAVIOR MODELING
 AND REFINEMENT

Dynamic behaviors of software systems are processes determinable at
run-time. According to the RTPA system specification and refinement
scheme as shown in Fig. 4.2, the work products developed in Section 4.7.3,
the specifications of system static behaviors in term of a set of processes, are
only static functional components of the system. To run the components as a
live and interacting system, its dynamic behaviors, in terms of process
deployment and process dispatch of all predefined static processes, are yet to
be specified in the following subsections.

4.7.4.1 System Dynamic Behaviors

Definition 4.113 The specification of system dynamic behaviors at the
top level can be generically modeled by the allocation of timing relationships
of all static processes contained in the preceding phase, i.e.:

© 2008 by Taylor & Francis Group, LLC

250 Part II Theoretical Foundations of SE

 SysIDST.DynamicBehaviors {Base-level processes}
 || {High-level processes}
 || {Low-interrupt-level processes}
 || {High-interrupt-level processes} (4.134)

where one or more priority levels may be added or omitted for a specific
system.

The four typical priority levels of processes in dynamic behavior
specification for a real-time system can be defined as shown in Table 4.11 in
an increased priority. For a nonreal-time system, such as a transaction
processing and database system, only base level processes may be modeled.

Table 4.11
Priority Levels of Processes in Dynamic Behavior Specification

No. Priority level Definition Execution Priority

1 Base A process that has no strict
execution priority at run-time.

All base-level processes of a system
are dispatched in the lowest priority
when there are no higher level
processes scheduled or interrupt
events occurred.

2 High A process that has some
timing requirements for
execution priority at run-time.

A high-level process may take over
the run-time resources of a base-level
process in system dispatching.

3 Low

interrupt

An interrupt-event-driven
process that has strict
execution priority at run-time.

A low-interrupt-level process may
take over the run-time resources of an
ordinary base-level or high-level
process in system dispatching.

4 High

interrupt

An interrupt-event-driven
process that has extremely
strict execution priority at run-
time.

A high-interrupt-level process may
take over the run-time resources of all
other type processes in system
dispatching.

4.7.4.2 Dynamic Behaviors Deployment

Definition 4.114 Process deployment is a set of detailed dynamic
process relations at run-time, which refines system dynamic behaviors by
specifying precise time-driven relations between the system clock, system
interrupt sources, and processes at different priority levels as follows:

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 251

 ProcessDeployment § →
 (@BaseTimeEventS {ProcessSet1}
 | @HighLevelTimeEventS {ProcessSet2}
 | @LowIntTimeEventS {ProcessSet3}
 | @HighIntTimeEventS {ProcessSet4}
)
 → § (4.135)

where § denotes the system.

Process deployment specifies time-driven process relations at run-time,

where precise timing relationships between different priority levels are
specified. Process deployment may be refined next by process dispatching
structures.

4.7.4.3 Dynamic Behaviors Dispatch

Dynamic behavior dispatch is the most refined dynamic process
relations of a system at run-time.

Definition 4.115 Process dispatch is detailed dynamic process relations
at run-time, which refines system dynamic behaviors by specifying event-
driven relations as follows:

 ProcessDispatch ≙ § →
 (@Event1S {ProcessSet1}
 | @Event2S {ProcessSet2}
 | …
 | @EventnS {ProcessSetn}
)
 → § (4.136)

Process dispatch specifies event-driven process relations at run-time,

where precise process dispatching strategies are specified for each external or
internal event.

 The 14th Law of Software Engineering

Theorem 4.9 The essential facets of software system modeling state that
software systems can be formally specified by its architectures, static
behaviors, and dynamic behaviors with multiple-level refinements.

© 2008 by Taylor & Francis Group, LLC

252 Part II Theoretical Foundations of SE

RTPA adopts only 17 meta processes and 17 process relations to
describe software system behaviors in a stepwise refinement approach.
Experimental case studies demonstrate that both human and software
behaviors can be sufficiently described by RTPA [Wang, 2003c/07h/07i;
Wang and Gafurov, 2003; Wang and Ngolah, 2002/03; Wang and Zhang,
2003; Wang and Huang, 2005; Wang and Ruhe, 2007; Tan and Wang, 2003;
Adewumi and Wang, 2004; Vu and Wang, 2004; Chiew and Wang, 2004].
Specification and modeling of actions and behaviors are a core part of
computing requirement that can be explicitly and precisely described by
RTPA, which has been developed as an expressive, easy-to-comprehend, and
language-independent notation system, and a specification and refinement
methodology for software system modeling and specifications.

This section has demonstrated that a software system, including its
architecture, static behaviors, and dynamic behaviors, can be formally
described and seamlessly refined by RTPA. Because of the equivalence
between software and human behaviors, RTPA can also be used for
describing human dynamic behaviors as a series of actions and cognitive
processes [Wang, 2007h/07i; Wang and Gafurov, 2003; Wang and Ruhe,
2007].

4.8 RTPA: Notations for Software
 Engineering

As explained in Sections 4.5 through 4.7, RTPA is a neat and powerful
denotational mathematics structure, which is capable to be used as a generic
software engineering notation system. RTPA will be adopted throughout the
remainder of this book as a descriptive and expressive means for system
architectures and behaviors description and specification.

The preceding section has presented the generic methodology of RTPA
for software system description and refinement. This section describes the
usage of RTPA as software engineering notations based on case studies on
real-world software engineering problems at both component and system
levels.

4.8.1 MODELING COMPONENT-LEVEL PROBLEMS
 USING RTPA

ADTs are perfect software architectures at component level that can be
used to explain the modeling methodology of component architectures and

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 253

behaviors in RTPA. An ADT is a logical model of a complex and/or user
defined data type with a set of predefined operations. A queue as a typical
ADT is presented in this subsection to demonstrate how the RTPA notation
and methodology are used to model and specify the architecture, static
behaviors, and dynamic behaviors of software components.

4.8.1.1 Existing Approaches to ADT Specification

There are a number of approaches to the specification of ADTs.
Mathematically, the main approaches are logical and algebraic, as well as
their combinations. Although each of these approaches has its advantages,
there are gaps when applying them to solve real-time specification problems.

The logic approach is good at specifying the properties of ADT
operations, usually in forms of the preconditions and post-conditions of
operations. Due to the nature of logic, the logical approach is the easiest one
to model the behaviors of ADTs, particularly their static behaviors. In
contrary, the algebraic approach is good at describing dynamic and run-time
behaviors of ADTs in an abstract, elegant, and dynamic manner.

Example 4.23 A specification of the ADT, Queue, in the logic-based
approach is shown in Fig. 4.6 [Stubbs and Webre, 1985].

Figure 4.6 Specification of an ADT model of Queue in predicate logic

Note in the above example that the data structures are usually
informally described in the logic-based approach. Also, there is actually
nothing that has been specified for how the Queue is created, and what are
the operations between the pre- and post-conditions.

Elements: e, f, g, … of type stdelement.
Structure: Queue Q = {<e, te>, <f, tf>, <g, tg>, …},

 where tx is the time of insertion of
 <x, tx> into Q (<x, tx>, <y, ty> ∈ S | x <> y → tx <> ty)
Domain: 0 <= Cardinality(Q) <= maxsize.
Operations:
 enqueue(e: stdelement)
 pre – ∃Q ∧ Cardinality(Q) <> maxsize.
 post – Q = Q’ ∪ {<e, te>}.
 serve(var e: stdelement)
 pre – ∃Q ∧ Q <> {}.
 post – Q = Q’ - {<e, te>}|(∀<x, tx> ∈ Q, te < tx).
 empty: boolean
 pre – ∃Q.
 post – empty = (Q = {}).
 full: boolean
 pre – ∃Q.
 post – full = Cardinality(Q) = maxsize.
 clear
 pre – ∃Q.
 post – Q = {}.
 create
 pre – true.
 post – ∃Q ∧ Q = {}.

© 2008 by Taylor & Francis Group, LLC

254 Part II Theoretical Foundations of SE

A queue in RTPA is modeled as an algebraic entity, which has
predefined operations on the architectural model of the Queue. Unlike the
conventional approaches to ADT specifications that treat ADTs as static data
types, ADTs in RTPA are treated as dynamic finite state machines to serve as
both structural and operational components in system design and modeling
[Tan and Wang, 2003].

4.8.1.2 Architectural Specification in RTPA

At the top level, an RTPA specification of the queue, QueueST, has
three parallel facets, which are the Queue’s architecture, static behaviors, and
dynamic behaviors as shown below.

 QueueST QueueST.Architecture
 || QueueST.StaticBehaviors
 || QueueST.DynamicBehaviors (4.137)

Then, QueueST can be broken up and be further refined by detailed
specifications according to the RTPA specification and refinement method.

Example 4.24 The architecture of the QueueST is specified by RTPA as

shown in Fig. 4.7, where both the architectural CLM and an access model are
provided for the Queue.

Figure 4.7 The architectural model of the Queue specified in RTPA

In Fig. 4.7 the access model of QueueST is a logic model for supporting
external invocation of the Queue in operations, such as enqueue and service.
The other parts of the model are designed for internal manipulation of the
Queue, such as creation, memory allocation, and release.

Queue ST.Architecture CLM : ST
 || AccessModel : ST
 || Events : S
 || Status : BL

Queue. ST Architecture.CLM QueueIDS ::
 (<Size : N | SizeN ≥ 0>,
 <Element : RT>,
 <CurrentPos : P | 0 ≤ CurrentPosP ≤ SizeN-1>
)

Queue ST.Architecture.AccessModel
 QueueIDS(CurrentPosP)RT

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 255

4.8.1.3 Static Behavior Specification in RTPA

 Component static behaviors in RTPA are valid operations of system
that can be determined at compile-time, which describe the configuration of
processes of the component and their relations. The schemas of a set of static
behaviors of QueueST, known as create, release, enqueue, serve, clear, empty
test, full test, are modeled as given in the following example.

 Example 4.25 The detailed specification of one of the Queue’s static
behaviors, QueueST.serve, is given below.

Figure 4.8 The static behavioral model of the Queue specified in RTPA

Contrasting the static behavior model of QueueST.serve in RTPA as

shown in Fig. 4.8 and that of predicate logic as shown in Fig. 4.6, advances
of the RTPA method and notations are well demonstrated. Among them, the
most important advantage is that a system model in RTPA can be seamlessly
refined into code in a programming language in the succeeding phases of
software engineering.

4.8.1.4 Dynamic Behavior Specification in RTPA

Component dynamic behaviors in RTPA are process relations that may
be determined at run-time. According to the RTPA system specification and
refinement scheme, the specifications of system static behaviors are only
functional components of the system. To incorporate the components into a
live and interacting system, the dynamic behaviors of the system in terms of
process deployment and dispatch are yet to be specified.

QueueST.Serve (<I :: QueueInstS>;
 <O :: ⓢQueueID.ServedBL, ElementRT>)
{
 QueueIDS := QueueInstS

 → (ⓢQueueExistBL = T ∧ CurrentPosP > 0

 → (QueueID(1))RT ⋗ Element RT
 → QueueID(i))RT ⋗ QueueID(i-1)RT
 → ↓ (QueueID.CurrentPosP)
 → ⓢQueueID.ServedBL := T

 | ~

 → ⓢQueueID.ServedBL := F
 → ! (@’QueueIDExistBL = F ∨ QueueEmptyBL = T’)
)
}

© 2008 by Taylor & Francis Group, LLC

256 Part II Theoretical Foundations of SE

 Example 4.26 The dynamic behaviors of QueueST are specified in
RTPA as shown in Fig. 4.9, where the process dispatch mechanisms of the
Queue specifies detailed dynamic process relations at run-time by a set of
event-driven relations.

Figure 4.9 The dynamic behavioral model of the Queue specified in RTPA

Figs. 4.7 through 4.9 model an ADT, QueueST, in a coherent system

from three perspectives. With the RTPA specification and refinement method
and the expressive power of RTPA notation system, the features of ADTs as
both static data types and dynamic system components can be specified
rigorously and precisely.

4.8.2 MODELING SYSTEM-LEVEL PROBLEMS USING
 RTPA

The same methodology and notations of RTPA for component level
specification can be applied in system level modeling and refinement. An
Automated Teller Machine (ATM) is taken as a well-known example of
safety-critical and real-time systems for demonstrating the methodology of
RTPA. This subsection describes how the architecture, static and dynamic

QueueST.DynamicBehaviors { § →

(@CreateQueueS ↳ Queue.Create (<I:: QueueInstS, ElementInstRT, SizeInstN>;

 <O:: ⓢQueueID.AllocatedBL, ⓢQueueID.ExistBL>)

 | @ReleaseQueueS ↳ Queue.Release (<I:: QueueInstS>;

 <O:: ⓢQueueID.ReleasedBL>)

 | @EnqueueS ↳ Queue.Enqueue (<I:: QueueInstS, ElementInstRT>;

 <O:: ⓢQueueID.EnqueuedBL>)

 | @ServeS ↳ Queue.Serve (<I:: QueueInstS>;

 <O:: ⓢQueueID.ServedBL, ElementRT>)

 | @ClearS ↳ Queue.Clear (<I:: QueueInstS>;

 <O:: ⓢQueueID.ClearedBL>)

 | @QueueEmptyS ↳ Queue.EmptyTest (<I:: QueueInstS>;

 <O:: ⓢQueueID.FullBL>)

 | @QueueFullS ↳ Queue.FullTest (<I:: QueueInstS>;

 <O:: ⓢQueueID.FullBL>)
) → §
}

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 257

behaviors of the ATM system can be modeled rigorously, precisely, and
consistently using RTPA [Wang and Zhang, 2003].

The conceptual model of the ATM system can be described by an FSM,

and the formal model of the ATM is specified by RTPA. The formal model
of the ATM enables implementation of system models independent of
programming languages and operating platforms. It also improves the
controllability, reliability, maintainability, and quality of the design and
implementation in real-time software engineering.

4.8.2.1 The Conceptual Model of the ATM

The conceptual model of the ATM architecture and behaviors are given
in Figs. 4.10 and 4.11, respectively. Fig. 4.10 describes the configuration and
logical relationships among components of the ATM.

Figure 4.10 The conceptual model of the ATM architecture

A state transition diagram is adopted in Fig. 4.11 to describe the basis

behaviors of the ATM system as an FSM.

The following subsections develop a formal specification of the ATM

system using RTPA notations and methodology.

 ATM

 Processor

 [1]

System
Clock

[1]

Cash
Bank

[1]

Cash

Disburser
[1]

 Card
Reader

[1]

Keypad

[1]

Monitor

[1]

Account
Database

[1]

© 2008 by Taylor & Francis Group, LLC

258 Part II Theoretical Foundations of SE

System

Welcome

Check PIN

Check
amount

Disburse
cash

Verify cash
availability

Eject card

Verify acc.
balance

start

correct
PIN

insert
card

incorrect
PIN

cash >
max

cash ≤
max

cancel
transaction

cancel
transaction

sufficient cash
in ATM

insufficient
funds

sufficient
funds

insufficient
cash in ATM

Figure 4.11 The conceptual model of the ATM behaviors

4.8.2.2 Formal Description of the ATM Architectures

According to the RTPA scheme for system specification and
refinement, the top-level specification of the ATM system can be described
as follows:

 §(ATMST) ATMST.Architecture
 || ATMST.StaticBehaviors
 || ATMST.DynamicBehaviors (4.138)

 The high-level specification of the architecture of ATM as a set of
CLMs is shown in Fig.4.12, where the number in the angular brackets, [nN],
specifies the required number of instance objects for a CLM in the system
architectural configuration.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 259

Figure 4.12 The architecture of the ATM system

For example, the RTPA specification of the architectural model of the

CardReaderST in the ATM is further refined as given in Fig. 4.13, where the
statuses, ports of interfaces, and the data format of the card reader are
formally specified. A complete description of the ATM architectural models
may be referred to Appendix K.

Figure 4.13 The architecture of the ATM CardReaderST

4.8.2.3 Formal Description of the ATM Static Behaviors

System static behaviors model the high-level configuration of all
processes of a system and their relations. This subsection describes how
RTPA can be used to formulate detailed process specifications of the ATM
system based on the CLM architectures obtained in the architectural
modeling.

The ATM system encompasses eight static behaviors, such as the
system, welcome, check PIN, check amount, verify account balance, verify
cash availability, disburse cash, and eject card. Each of these static behaviors
can be described as a process in the ATM. For instance, the welcome
processes can be specified as shown in Fig. 4.14. A complete description of
the ATM process models is provided in Appendix K.

Based on the detailed specifications of system components as a set of
processes, program code can be derived easily and rigorously based on them,

CardReaderST CardReaderS ::
 (<Data : N | 0 ≤ DataN ≤ 1000000>,
 <Status : BL | T = CardInserted ∧ F = NoCard>,
 <CardEjectStatus : BL | T = Ejected ∧ F = NoAction>,
 <CardReaderPort : B | CardReaderPortB = FFF1H >
)

ATMST.Architecture <ATMProcessor : ST | [1]>
 || <SystemClock : ST | [1]>
 || <CardReader : ST | [1]>
 || <Keypad : ST | [1]>

 || <Monitor : ST | [1]>
 || <AccountDatabase : ST | [1]>
 || <CashBank : ST | [1]>
 || <CashDisburser : ST | [1]>

 || <Events : S>
 || <Status : BL>

© 2008 by Taylor & Francis Group, LLC

260 Part II Theoretical Foundations of SE

and test cases for the code can also be generated prior to the program being
implemented.

Figure 4.14 The Welcome process of the ATM system

4.8.2.4 Formal Description of the ATM Dynamic Behaviors

Generally, system dynamic behaviors are the timing relationships
between the static processes of a system. The dynamic behaviors of the ATM
system can be specified by a number of execution priority levels of processes
based on their real-time timing requirements, which are the base-level and
high-interrupt-level processes.

Process deployment is defined as dynamic process relations at run-time,
which refines system dynamic behaviors by specifying precise and explicit
time-driven relations between system clock, system interrupt sources, and
processes at different priority levels. For example, the ATM dynamic
behaviors are shown in Fig. 4.15, where precise timing relationships between
different priority levels are specified.

Welcome (<I::()>; <O::()>)
{// State 1: Welcome
 // Operated CLMs :: {stdCardSlotST }
 // Related processes :: {CheckPIN}

CardInserted

T

BL F
R

=
(Monitor.StatusBL = T

 → ‘Welcome!’ |⋖ PORT(MonitorPortP)S

 → ‘Please insert your card.’ |⋖ PORT(MonitorPortP)S
 → CardReaderST.StatusBL |⋗ CardInsertedBL

 | ~

 → ! (ⓈMonitorFaultBL = T)
 → StateN := 8 // System fault

)
CardReaderST.DataN |⋗ AccountNumN

→ (SysDatabaseST(AccountNumN).StatusBL := T

 → PINEnterTimesN := 10000 // 10s
 → ProcessStateN := 2

 | ~

 → ‘Invalid Card.’ |⋖ PORT(MonitorPortP^)S
 → EjectCardBL := T
 → EjectCardBL |⋗ CardReaderST.CardEjectStatusBL
 → ProcessStateN := 1
}

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 261

Figure 4.15 The ATM process deployment process

Process dispatch describes another aspect of system dynamic behaviors

at run-time by specifying the event-driven relationships of the given system.
For instance, the specification of ATM process dispatch is shown in Fig.
4.16.

Figure 4.16 The ATM process dispatch process

ATMProcessDispatch
{(ⓢATMID.RunningBL = T
 → (@ATM.StateN = 0 // Idle
 → ∅

| @ATM.StateN = 1
 ↳ Welcome (<I:: (PNN)>; <O:: ()>)

| @ATM.StateN = 2
 ↳ CheckPIN (<I:: (PNN)>; <O:: ()>)

| @ATM.StateN = 3
 ↳ CheckAmount (<I:: (PNN)>; <O:: ()>)

 | @ATM.StateN = 4
 ↳ VerifyAccountBalance (<I:: (PNN)>; <O:: ()>)

 | @ATM.StateN = 5
 ↳ VerifyCashAvailability (<I:: (PNN)>; <O:: ()>)

 | @ATM.StateN = 6
 ↳ DisburseCash (<I:: (PNN)>; <O:: ()>)

 | @ATM.StateN = 7
 ↳ EjectCard (<I:: (PNN)>; <O:: ()>))

}

ATM.ProcessDeployment
{ // basic level processes
 @ System ↳ (SysInitial

 →
SysShutDown

R
=

T

BL F
ATMProcessDispatching

 → ⊠
)
|| // High-interrupt level processes
 ⊙ @SysClock1msInt
 (SysClock
 ↳ CardScanning
)
 ⊙
}

© 2008 by Taylor & Francis Group, LLC

262 Part II Theoretical Foundations of SE

This section has demonstrated that the ATM system, including its
architecture, and static and dynamic behaviors, can be essentially and
sufficiently described by RTPA. The case studies on real-world problems
have shown that the formal specification and modeling of the ATM system
are helpful for improving safety operations and quality services of the
system. Other related case studies on RTPA for formally modeling real-time
systems may be referred to [Wang, 2003c; Wang and Ngolah, 2002/03;
Wang and Huang, 2005; Adewumi and Wang, 2004; Vu and Wang, 2004]. A
complete specification of the ATM system is provided in Appendix K of this
book.

RTPA is not only useful as a generic notation and methodology for
software engineering, but also good at modeling human cognitive processes.
The applications of RTPA in modeling cognitive processes of the brain and
natural intelligence may be referred to [Wang, 2007h/07i; Wang and
Gafurov, 2003; Wang and Ruhe, 2007; Chiew and Wang, 2004].

RTPA has been developed as an algebra-based, expressive, easy-to-
comprehend, and language-independent notation system, and a practical
specification and refinement methodology for software engineering. RTPA is
capable to support top-down software system design and implementation by
algebraic modeling and seamless refinement methodologies. The RTPA
methodology covers the entire software engineering processes from system
modeling to code generation in a coherent algebraic notation.

A number of case studies on large-scale software system modeling and
specifications have been carried out, such as the Telephone Switching
System (TSS) [2002a], the Lift Dispatching System (LDS) [Wang and
Ngolah, 2002], the Automated Teller Machine (ATM) [Wang and Zhang,
2003], and a set of ADTs [Tan and Wang, 2003]. RTPA has also been used
to specify algorithms and software process models such as CMM.

Experiences show that the RTPA notation system and methodology
have the following advantages:

• Easy to learn and acquisition
• Easy to comprehend
• Suitable for specifying the 3-D real-time system behaviors
• Suitable for specifying both architectural and operational

components in a system
• Expressive for both system architectures and behaviors
• Expressive for real-time events and timing manipulations
• Strongly and strictly typed with a type suffix system
• Built-in exceptional detection mechanisms for safety-critical

applications

 A set of support tools for RTPA has been developed [Tan and Wang,
2006; Tan, Wang, and Ngolah, 2004a/04b/05/06; Ngolah, Wang, and Tan,

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 263

2005b/06], which encompasses the RTPA parser, type checker, and code
generator in C++ and Java. The RTPA code generator enables system
specifications in RTPA to be automatically translated into fully executable
code. The RTPA tools will support system architects, analysts, and
practitioners for developing consistent and correct specifications and
architectural models of large-scale real-time and distributed systems, and the
automatic generation of code based on the rigorous specifications in the
descriptive mathematical notations.

RTPA is characterized as the least complete set of algebraic notations
and well structured stepwise method for software system specification and
refinement. The application results encouragingly demonstrated that RTPA is
a powerful and practical software engineering notation system and
methodology for both academics and practitioners in software engineering.

4.9 Summary

Mathematics deals with statements about abstract objects and relations
between them. The entire theory of software engineering is about
mathematical models and formal treatment of software architectures,
behaviors, and software engineering processes, which are centered by
denotational mathematics and formal inference means.

This chapter has explored essential mathematical means for modeling
software architectures and behaviors. Existing mathematical means, such as
sets, functions, relations, mathematical logic, and their applications in
software engineering, has been reviewed. The investigation has been
continued on what are the essential elements of mathematical needs for
modeling software systems and software engineering processes, which leads
to the findings of the inadequacy of conventional analytic mathematics, and
the requirement for a denotational mathematics in software engineering.
Real-Time Process Algebra (RTPA) has thus been introduced as an
expressive mathematics and practical notation system for a rigorous
treatment of software system architectures, static behaviours, and dynamic
behaviours. The methodology of RTPA for software system description and
refinement has been presented, and applications of RTPA as a powerful and
generic notation system for software engineering have been described. As a
result, the mathematical foundations of software engineering have been
established.

© 2008 by Taylor & Francis Group, LLC

264 Part II Theoretical Foundations of SE

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Mathematical Foundations of Software
Engineering, readers have achieved the following strategic goals with the
knowledge architecture as summarized below.

Chapter 4. Mathematical Foundations of SE

■ Fundamental Mathematics
 • Set theory
 • Relations
 • Functions
 • Propositional logic
 • Predicate logic
 • Algebraic systems

■ Denotational Mathematics for Software Engineering
 • Fundamental elements in modeling software systems
 • The need for denotational mathematics in software engineering
 • The big-R notation

■ Real-Time Process Algebra (RTPA)
 • The process metaphor of software systems
 • The structure of RTPA
 • The type system of RTPA
 • Meta processes of RTPA
 • Process relations of RTPA

■ The RTPA Methodology for Software System Modeling and
 Refinement
 • The RTPA methodology
 • System architecture modeling and refinement

 - The system architecture
 - The CLM schema
 - The CLM objects

 • System static behavior modeling and refinement
 - System static behaviors
 - Process schemas
 - Process implementation

 • System dynamic behavior modeling and refinement
 - System dynamic behaviors

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 265

 - Dynamic behaviors deployment
 - Dynamic behaviors dispatch

■ RTPA: Notations for Software Engineering
 • Modeling Component-Level Problems using RTPA
 - Existing approaches to ADT specification
 - Architectural specification in RTPA
 - Static behavior specification in RTPA
 - Dynamic behavior specification in RTPA

 • Modeling System-Level Problems using RTPA
 - The conceptual model of the ATM system
 - Formal description of the ATM architectures
 - Formal description of the ATM static behaviors
 - Formal description of the ATM dynamic behaviors

SIGNIFICANT FINDINGS OF THIS CHAPTER

• Mathematics, as well as philosophy, is the top level abstraction
means and therefore the most general human knowledge.

• The utility of mathematics in software engineering states that

denotational mathematics is the means and rules to rigorously and explicitly
express design notions and conceptual models on abstract architectures and
complex interactive behaviors at the highest level of abstraction and in the
largest scope of systems.

• Conventional analytic mathematics and propositional logic are

inadequate in dealing with software engineering problems. This finding
reveals a profoundly overlooked problem in software engineering, i.e., the
formal means and tools were inadequate, and there was a lack of a
denotational mathematics for software engineering.

• A fundamental view towards the description and modeling of human

and system behaviors is that there are essentially three categories of
descriptivity: to be, to have, and to do. All mathematical means and forms,
in general, are an abstract description of these three categories of human and
system behaviors. That is, mathematical logic is the abstract means for
describing “to be,” set theory for describing “to have,” and algebras for
describing “to do.”

© 2008 by Taylor & Francis Group, LLC

266 Part II Theoretical Foundations of SE

• The behavior space Ω of software is 3-dimensional, which can be
described by a Cartesian product of operations OP, time T, and memory
space S, i.e.: Ω = OP × T × S. Mathematics, theories, methodologies, and
tools for software engineering must be designed to adequately deal with such
3-D problems.

• The big-R notation models and unifies a fundamental and widely

applied mathematical concept in computing and human behavior description,
i.e., iterations and recursions. It demonstrates that a convenient mathematical
notation may dramatically reduce the difficulty and complexity in expressing
a frequently used and highly recurring concept and notion in computing.

• Software system behaviors can be described as the composition of a

list of interacting processes. The top-level behaviors of software systems
are process dispatches known as the event-, time-, and interrupt-driven
dispatching mechanisms.

• Software system architectures can be described as a set of

Component Logical Models (CLMs).

• The evaluation (or quantification) T is a fundamental computing

operation that maps a given expression in type T into a value in the same
type. When the type T = {BL, N, Z, R, B}, the evaluations are called a Boolean,
ordinal, or numerical evaluation (for types Z, R, B), respectively, i.e.:

 BL(expBL)BL = BL: expBL → {T, F}
 N(expN)N = N: expN → N
 Z(expZ)Z = Z: expZ → Z
 R(expR)R = R: expR → R
 B(expB)B = B: expB → B

• The addressing ⇒ is a fundamental computing operation that maps a
given logical idT into a block of the physical memory denoted by ptrÞP
accommodating n bytes of memory for the variable in type T, i.e.:

 idT ⇒ MEM[ptrÞP]T

⇔ (π: idT → ptrÞP
 → idT = MEM[ptrP, ptrP+n-1]T
)

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 267

• Memory allocation ⇐ is a fundamental computing operation that
collects a unique memory block logically named idT and physically located
by ptrÞP accommodating n bytes of memory for the variable in type T, i.e.:

 idT ⇐ MEM[ptrÞP]T

⇔ (π-1: ptrÞP → idT
 → idT = MEM[ptrP, ptrP+n-1]T
)

• Memory release is a fundamental computing operation that
dissociates and frees a unique block of n continuous physical memory
elements denoted by ptrÞP from its logical identifier idT, i.e.:

idT MEM[⊥]T

⇔ (π: idT→ ptrÞP
 → MEM[ptrP, ptrP+n-1]T := ⊥
 → ptrP := ⊥
 → idT := ⊥

)

• The mathematical model of a process P is a composed component
of n meta statements pi and pj, 1 ≤ i < n, j = i + 1, according to certain
composing relations rij, i.e.:

1

1

1 12 2 23 3 1,

 (), 1

(...((())) ...)

n

i ij j
i

n n n

P p r p j i

p r p r p r p

R
−

=

−

= = +

=

where rij is one of the 17 cumulated relations or composing rules identified
in RTPA.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Fundamental Mathematics

• Abstraction and categorization of objects are basic human cognitive

processes. Set is the mathematical model of these cognitive processes.

• A set is a collection of elements with a common property. Set is a

fundamental and powerful mathematical concept for abstracting and eliciting

© 2008 by Taylor & Francis Group, LLC

268 Part II Theoretical Foundations of SE

objects that share certain common properties. Abstraction is an elicitation of
common properties of elements from a given set.

• The basic set operations are union, intersection, difference, and

cardinal size. Derived set operations are complement, symmetric difference,
Cartesian product, and partition.

• Since the position, or the sequential order, of an element in a set has

no meaning, the mathematical entities of pair, tuple, sequence, list, and
ordered set are introduced for dealing with the order information of
elements in sets.

 • Relation is the most important concept in programming theories,

because a program can be modeled as a finite list of relations between
individual statements. Relations also play an important role in explaining
internal knowledge representation and the natural intelligence. Relations as
mathematical entities can be treated and composed based on algebraic laws.

• A program can be treated as a composition of a list of statements by

predefined relational or composing rules. The relations between statements
are special type relations known as cumulative relations ®, where a given
relation is related to all previous relations.

• The composing rules in programming can be classified into 17

process relations known as sequential, branch, switch, iterations (3),
procedure call, recursion, parallel, concurrence, interleave, pipeline,
interrupt, jump, and system dispatches (3).

• Algebra is a branch of mathematics in which variables and their

relations are represented by abstract symbols and formulae. Using algebra,
generic relations between variables and quantities may be formally, precisely,
and efficiently described. Rigorous reasoning can then be conducted based
on established algebraic rules and properties.

• Function is another important mathematical concept developed in

algebra. A function is a mapping relation between two sets in a generic
signature. Almost all discrete or continuous relations between sets can be
described as functions.

• By extending the objects under study beyond sets in algebra, a

number of advanced algebraic systems are developed, such as abstract
algebra, process algebra, concept algebra, and system algebra.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 269

Denotational Mathematics for Software Engineering

• Denotational mathematics is a set of contemporary mathematical

structures for dealing with the unique mathematical entities, abstract objects,
relations, and formal manipulations in abstract system modeling, which
encompasses concept algebra, system algebra, and RTPA.

• New problems require new forms of mathematics. Conventional

science and engineering disciplines have been mainly using analytic
mathematics in theory development and problem solving. Software
engineering needs a denotational mathematics, e.g., RTPA, which can be
used to describe software systems rigorously, explicitly, and expressively. A
coherent notation system for software engineering is derived on the basis of
RTPA.

• Denotational mathematics deal with the 3-D behavior space Ω of

software system behaviors, i.e.: Ω = OP × T × S.

• A generic and fundamental operation in system and human behavioral

modeling is the formal description of repetitive actions and/or recurring
architectures. The big-R notation is introduced to denote this fundamental
requirement in computing and software engineering.

Real-Time Process Algebra (RTPA)

 • Real-Time Process Algebra (RTPA) is a set of formal notations and
algebraic rules for modelling and describing real-time process architectures
and behaviours of software systems.

The structure of RTPA can be defined as follows:

 RTPA Meta processes
 || Process relations
 || System architectures
 || Primary types
 || Abstract dada types
 || Specification refinement scheme

• The RTPA type system T encompasses 17 primitive types as

follows:

 T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST, @eS, @tTM, @int ,ⓢsBL}

© 2008 by Taylor & Francis Group, LLC

270 Part II Theoretical Foundations of SE

RTPA adopts the type-suffix convention in which every identifier of
variables, constants, and expressions is attached with a type in bold in the
format of idT, T ∈ T.

• The set of RTPA meta processes P encompasses 17 fundamental

primitive operations in computing as follows:

 P = {:=, , ⇒, ⇐, , , , | , | , @ , , ↑, ↓, !, , ⊠ , §}

• The set of RTPA process relations R encompasses 17 fundamental

primitive operations in computing as follows:

 R = {→, , |, |…|,
*R , R+

,
iR , , , ||, ∯ , |||, », , t, e, i}

The RTPA Methodology for Software System Modeling and
Refinement

• RTPA deals with complicated system modeling and specifications via

a number of systematic refinements in a top-down approach by using a
coherent set of notations.

• In RTPA three fundamental aspects of software systems can be

modeled and specified, i.e.:

 §(SysIDS) ≙ SysIDS.Architecture
 || SysIDS.StaticBehaviors
 || SysIDS.DynamicBehaviors

• The specification of each of the above subsystems can be
implemented by a three-level refinement process at the system, class, and
object levels.

• In the RTPA specification and refinement scheme, two key concepts,

CLM and the process, are introduced to model software system architectures
and behaviors, respectively. A CLM is an abstract model of a system
architectural component that represents a hardware interface, an internal
logical model, and/or a common control structure of a system. A process is
an abstract model of a unit of software system behaviors that represents a
transition procedure of the system from one state to another by changing
values of its inputs {I}, outputs {O}, and/or internal variables {V}.

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 271

• RTPA is not only a mathematical inference means, but also a generic
software engineering notation system. RTPA applications in system
architectural and behavioral modeling and specifications are presented in a
number of real-world case studies, which may be used as testing benchmarks
for comparatively evaluating the express power of existing formal methods.

Questions and
Research Opportunities

4.1 Why is denotational mathematics needed for software engineering

determined by the nature of software as well as Theorem 1.3,
Theorem 1.4, and the HAMSD model?

4.2 What are the differences between denotational and analytic

mathematics in means and purposes?

4.3 Set is a fundamental and powerful mathematical concept for

describing objects that share certain common properties.
According to Lemma 4.1, abstraction is an elicitation of common
properties of elements from a given set.

According to the HAMSD model of knowledge abstraction as
presented in Theorem 1.4, explain why mathematics is the top
level abstraction means in system modeling.

4.4 Tuple is a powerful modeling means in mathematics and software

engineering for denoting a coherent encapsulation or composition
of multiple objects. Try to denote the automobile you’ve modeled
in Ex.1.13 with a tuple and extend the categories of functions
defined in it with detailed attributes or properties.

4.5 A cumulative relation ® as given in Definition 4.21 is an ordered

list of embedded relations. Try to provide an instance of a
cumulative relation.

4.6 Try to prove the following logical equivalences using truth tables:

 a) X ⇒ Y ⇔ ¬ X ∨ Y
 b) (X ⇔ Y) ⇔ (X ∧ Y) ∨ (¬ X ∧ ¬ Y)

© 2008 by Taylor & Francis Group, LLC

272 Part II Theoretical Foundations of SE

4.7 According to Definition 4.33, a generic computational operation
can be defined as an abstract function op on the set of operands or
data objects O. Provide a mathematical definition for the above
concept.

4.8 Create a form to compare and contrast the definitions and usages

of inference methods in predicate logic, such as universal
instantiation, universal generalization, existential instantiation,
and existential generalization as described in Section 4.4.2.3.

4.9 Describe the corresponding relationships between the basic

expressiveness of natural languages and the mathematical means
in conventional and denotational mathematics.

4.10 Use the big-R notation of RTPA to denote the following

computational operations:

 a) A while loop for process P
 b) A repeat loop for process Q

4.11 Use the big-R notation of RTPA to denote the following

architectural models of data objects and system structures:

a) A one dimensional array, ArrayST, with 100 integer
elements A[i N]Z.

b) Ten buttons on an equipment, ButtonsST, that share the
same structure, i.e., Button (0) … Button (9).

4.12 Use the MaxFinder algorithm as given below to explain Theorem

4.3, and identify all statements and relations in the process.

4.13 What is the architecture of RTPA as a coherent notation system?

MaxFinder ({I:: X[0]N, X[1]N, …, X[n-1]N }; {O:: maxN })
{
 XmaxN := 0

 →
n -1

i 0
R
N

N=
(X[i N]N > XmaxN

 → XmaxN := X[i N]N
)
 → maxN := XmaxN
}

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 273

4.14 Briefly describe the RTPA type system T.

4.15 According to Theorem 4.5, partition the 17 RTPA primitive types

into equivalence sets.

4.16 RTPA extends the type rules from variables to constants. What

are the advantages of this extension over conventional
programming practice in software engineering?

4.17 Briefly describe the set of RTPA meta processes P.

4.18 Why is evaluation (T) modeled as a fundamental computing

process in RTPA?

4.19 Why is addressing (⇒, or π: idT → ptrÞP) modeled as a

fundamental computing process in RTPA?

4.20 Why is memory allocation () modeled as a fundamental

computing process in RTPA?

4.21 What is the syntactic and semantic differences between skip (⊗)

as modeled in RTPA and an operation that does nothing?

4.22 Briefly describe the algebraic process operations of RTPA known

as the process relations R.

4.23 Why can computing operations at the system level be modeled as

three process dispatching operations known as the event-, time-,
and interrupt-driven process dispatches?

4.24 On the basis of Theorem 4.8, explain why the expressive power

of RTPA is much higher than existing programming languages,
though it only adopts 17 meta processes and 17 algebraic process
operations.

4.25 What are the three subsystems that are generically modelled at the

top layer of software systems in RTPA? What are the sequences
for specifying and refining these three subsystems in RTPA?

4.26 Briefly summarize the methodology of RTPA in software system

modelling and refinement.

© 2008 by Taylor & Francis Group, LLC

274 Part II Theoretical Foundations of SE

4.27 Why has architectural modelling been recognized as the most
creative, important, and difficult aspects in system design and
implementation?

4.28 Why should architectural models be designed and specified first

before the behavioural models of a given system is carried out
according to RTPA methodology? What would be wasted in
software engineering if a project team goes directly into
programming?

4.29 A Component Logical Model (CLM) is a powerful modeling

technique of RTPA for system architectural component modeling.
Explain how CLM may be used to model the following data
objects in system architectures:

a) A hardware interface
b) An internal logical model
c) A data structure
d) A top-level control structure of a system

4.30 Serial, parallel, and nested architectures are the basic

architectures of software systems. Try to describe the architecture
of the following system, §, using proper RTPA notations.

4.31 Referring to Sections 4.7.4 and 4.8.2, describe what is the generic
top-level structure of a real-time systems modelled by the event-
dispatching-based dynamic behaviours.

4.32 Read the following classic article in software engineering:

 P1

 P2

 …

P3 P4

P5

 ||

© 2008 by Taylor & Francis Group, LLC

Chapter 4 Mathematical Foundations of SE 275

Juris Hartmanis (1994), On Computational

Complexity and the Nature of Computer Science, The

1993 Turing Award Lecture, Communications of the

ACM, 37(10), pp.37-43.

Discuss the following topics in a group:

 • About the author.

• What was the nature of computer science according to the
author in the 1990s?

 • What is the role of mathematics in computer science?
 • What conclusions of the article interested you? Why?
 • Your argument(s) or counter-points on any of the

conclusions derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 5

COMPUTING
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

3. Philosophical
 Foundations
 of SE

5.1 Introduction 5.5 Program Modeling: Coordination of Computational
5.2 Basic Computation Models Behaviors and Data Objects
5.3 Data Object Modeling and Manipulation 5.6 Resources & Processes Modeling & Manipulation
5.4 Behavioral Modeling and Manipulation 5.7 Summary

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Informatics
 Foundations
 of SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

278 Part II Theoretical Foundations of SE

Knowledge Structure

 Basic computation models

 • Basic operations in computing • Automata
 • Turing machines • von Neumann machines
 • Cognitive machines

 Data object modeling and manipulation

 • Types and data structures • Basic data modeling techniques
 • Formal type theory • Abstract data types (ADTs)

 Behavioral modeling and manipulation

 • Internal behaviors modeling
 • Iterative and recursive behaviors modeling
 • External and Interactive behaviors modeling

 Program modeling: coordination of computational behaviors and data objects

 • The unified mathematical model of programs
 • Programs modeling at component level
 • Programs modeling at system level - Frameworks

 Resources and processes modeling and manipulation

 • Abstract model of computing systems
 • Architectures of operating systems
 • Computing resources manipulation
 • Real-time/embedded resources and processes manipulation

Learning Objectives

• To understand the basic computing models such as automata, Turing

machines, von Neumann machines.
 • To know the techniques for data object and architecture modeling and

manipulation in software engineering.
 • To know the techniques for system behavioral modeling and

manipulation in software engineering.
 • To be familiar with the techniques for program modeling and

manipulation in software engineering.
 • To be familiar with the techniques for software engineering resources

and process modeling and manipulation in software engineering.
 • To understand the unified program model.
 • To understand the generic abstract model of computing systems.

5. Computing Foundations of Software Engineering

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 279

“The entire computing theory is about mathematical models of
computers and algorithms.”

Lewis and Papadimitriou (1998)

“There are three levels of problems. There is the level of solving a very specific

instance … . That is the level closest to the practitioners.
Then there is the level of studying the problem in general, with emphasis on

methodology for solving itThat is one level up
because you are not interested just in a specific instance. Then there is a

metatheoretic level where you study the whole structure of a class of problems. This is
the point of view that we have inherited from logic and computability theory.”

Richard Karp (1985)

5.1 Introduction

omputer science is an inquiry of computational methods, generic
computer architectures and implementations, computing objects and
their abstract representations, as well as programs and programming

methodologies that embody a generic computer for specific applications.
Computing theory is one of the most important and direct foundations

of software engineering, because software engineering as an engineering
discipline grew out of computer science when the complexity and costs for
producing software had become increasingly greater than that of hardware
since the 1970s.
 As early as in the 1830s, there were creations of machines that
attempted to realize many of the principles of modern computers such as
Charles Babbage’s (1791-1871) difference engine and analytical engine.
However, since these machines were too complicated to be implemented by
the 19th century technologies, the leap from theory to practice had to wait
until the inventions of electronics, particularly transistors and integrated
circuits, a century later.

Logical inferences and mathematical induction played a central rule in
the ultimate philosophy of computing theory contributed by Charles
Babbage, Alan M. Turing (1936, 1950), and John von Neumann (1946,
1958, 1963, 1966). The fundamental objects of computation are abstracted
by binary digits (bits). Any real-world data object is seen to be able to be
reduced to bits – the most fundamental and general form of representation of
real-world objects and data. As a consequence on the basis of this profound
axiom, computation methods in general are perceived to be based on the

C

© 2008 by Taylor & Francis Group, LLC

280 Part II Theoretical Foundations of SE

basic arithmetical and logical operations on bits known as Boolean algebra.
Any other complex operations must be reduced to these kinds of basic forms
of operations in computing. In addition, computing resources are
dramatically simplified to the form of finite or infinite sequential memory of
bits and characters.

That is why the hardware technologies of computing were matured so
quickly, because all problems can be unified by the basic operations on the
basic objects based on bits. Therefore, hardware devices such as processor
and memory chips may be repetitively designed and massively produced.
Once a design of a computer is correct, all products based on it must be
correct all the time.

However, in software engineering, the development of software is
recognized as a one-off activity. To the maximum extent, software design
and implementation can only be reduced to known languages components or
common design patterns. Although the method and process for software
development may be reusable, the objects under study and the resources
required in software engineering are far more complicated than those of basic
computing hardware techniques.

Table 5.1 summarizes and contrasts the differences of computational
objects, methods, and resources in computer science and software
engineering. As identified in Table 5.1, computer science only provides basic
computing theories and programming methodologies to software
engineering. However, areas now thought critical in software engineering –
the nature of software, cognitive foundations, denotational mathematics,
architectural and behavioral laws, system theories, coordinative work
organization theories, and management infrastructures – have not been fully
covered by computer science.

Table 5.1

Objects under Study in Computer Science and Software Engineering

Category Description Computer Science
Focuses

Software Engineering
Focuses

Objects Entities, concepts, and
their relations under
study

Computers and
abstract data in
binary form

Programs, software
systems, and complex
data objects

Methods Instructions, algorithms,
and processes for
computation

Basic arithmetic
and logical
operations

Complex operations plus
I/O, real-time
manipulation, and
dynamic memory
allocation

Resources CPU power, memory,
external storage, ports,
files, databases, and
communication
channels

Sequential memory
with physical
structures

Large-scale memories
with complex abstract
(logical) structures

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 281

This chapter explores the computing foundations of software
engineering, and examines what computer science may provide for software
engineering as well as what it may not. A new treatment of computing
theories for software engineering is taken, which focuses on the needs for
modeling and manipulating complicated data objects, behaviors, and
resources in software engineering beyond bits.

In the remainder of this chapter, basic computation models, such as
automata, Turing machines, von Neumann machines, and cognitive
machines, are reinterpreted in the context of software engineering in Section
5.2. Section 5.3 presents data objects modeling with the focuses on type
theory and architectural modeling of software systems. Section 5.4 describes
behavioral modeling, particularly the Basic Control Structures (BCS’s), and
highlights their fundamental roles in computing. Section 5.5 models
programs as the coordination and interaction between computational
behaviors and data objects on the basis of Sections 5.3 and 5.4. Section 5.6
discusses computing resources modeling and manipulation, as well as
process coordination, by focusing on generic and real-time operating system
models.

Closely related to this chapter, the mathematical models and algebraic
treatment of software have been described in Chapter 4. The language aspect
of programming and software engineering will be discussed in Chapter 6
with comparative studies between natural and programming languages,
syntaxes and semantics, as well as linguistics and formal language theories in
computing and software engineering.

5.2 Basic Computational Models

This section first elicits the fundamental needs in computation. Then, it
describes the approaches to implement computing machines such as
automata, Turing machines, von Neumann machines, and cognitive
computers.

5.2.1 BASIC OPERATIONS IN COMPUTING

The philosophy on when computation and software are needed has
been discussed in Section 3.4.1, where Theorem 3.9 states that the necessary
and sufficient conditions for computing are the repeatability, flexibility, and

© 2008 by Taylor & Francis Group, LLC

282 Part II Theoretical Foundations of SE

run-time determinability. As recognized in Section 3.5.2, the problem space
of computing is infinite. Further, the solution space for each given
application problem can be extremely large because of the combination of
possible design and implementation technologies in each software
engineering process.

The fundamental operations in computation can be classified into three
categories: computational operations, object manipulations, and resource
manipulation as shown in Table 5.2. Although there are various
computational operations such as logical, arithmetical, mathematical, flow
control, and run-time control, all of them can be reduced to three
fundamental Boolean logic operations known as ∧, ∨, and ¬. Objects in
computing, such as data, I/O, events, time, and their addresses can be
reduced to bits. Then, all resources of computing such as memory, standard
devices, and external devices can be reduced to memory locations or port
spaces identified by binary addresses.

Table 5.2

Basic Operations in Computing

Category Operations Description of operations
Data
manipulation

Data object modeling, types, CLMs, identifiers, read, and
write

I/O space
manipulation

I/O object modeling, port access, input, output, DMA,
device representation, serial communication, and parallel
communication

Event
manipulation

Event capture, exception detection, interrupt, and system
synchronization

Objects

Time
manipulation

Timing, duration, date, time

Logic Conjunction (∧), disjunction (∨), implication (⇒),
equivalence (⇔), negation (¬)

Arithmetic +, -, x, /
Mathematic Composed operations: evaluations, expressions, functions,

classes, and processes
Flow control Jump, branch, iteration, interrupt, and parallel

Computation

Run-time
control

Processes, task scheduling, time-driven dispatch, event-
driven dispatch, and interrupt-driven dispatch

Memory Memory allocation, release, addressing, access, data
representation, file, and database

Standard
devices

Monitor, keyboard, mouse, printer, communication ports,
external bus (USB), serial interface, parallel interface

Resources

External
devices

Generally abstracted as a port

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 283

In a summary, the most fundamental computing needs are only binary
data, basic Boolean operations, and a linear memory/port space. Any
complex application can be implemented on the basis of these three essences
of computation by certain composition rules. Therefore, all digital computers
and computational operations are based on Boolean algebra. This leads to the
following theorem on the common root of computer science and information
science.

Theorem 5.1 reveals that the most fundamental data object in

computing, informatics, and software engineering is bits. All other data
objects in computing are derived objects of bits. Similarly, the following
theorem recognizes the most fundamental operations in computing and
software engineering.

Theorem 5.2 indicates that the most fundamental computing operations

and behaviors are bit-based logical, arithmetic, and memory operations. All
other operations and behaviors in computing are derived behaviors of them.

Theorems 5.1 and 5.2 are the profound conditions of the whole
architecture of modern computing theories, methodologies, and technologies.
However, it is noteworthy that some of programming languages, such as
Java, puts limit on the expressive power to address all these essential
programming requirements, particularly for real-time applications, in order to
gain high portability. Some operating systems may also restrict direct access
and manipulation of system resources and data objects such as absolute
memory addresses, I/O ports, and interrupt events in programming.

The mathematical models of all basic computing operations as shown
in Table 5.2 have been described in RTPA, where these operations are
categorized into the meta processes and the process relations. The latter are
corresponding mainly to the flow and run-time control operations, which

The 15th Law of Software Engineering

Theorem 5.1 The root of computing and information science states that
the most fundamental data object model shared in both computing and
information science is binary digits (bits).

 The 15th Principle of Software Engineering

Theorem 5.2 The primitive computational behaviors state that the most
fundamental computational operations are logical, arithmetic, and
memory access operations on bits.

© 2008 by Taylor & Francis Group, LLC

284 Part II Theoretical Foundations of SE

enable the algebraic composition of a large set of complex computational
operations on the basis of a certain instruction set of a programming
language.

5.2.2 AUTOMATA

 Automata are one of the earliest digital computing models that are still
widely used in computing applications to model and describe system
behaviors [von Neumann, 1946/58/63/66; Wiener, 1948; Shannon, 1956;
Krohn and Rhodes, 1963; Arbib and Michael 1966; Arbib, 1969; Hopcroft
and Ullman, 1979]. An automaton is an abstract model of computers or
robots that respond to external events or stimulates by predesigned
instructions. An automaton transits between a finite set of functional states
driven by external events and current internal states. Therefore, it is also
known as a finite state machine synonymously [Arbib et al., 1968].

 In computing, automata are modeled and used mainly as finite state
machines for language reorganization. However, in software engineering,
automata are treated as fundamental modeling techniques of software
behaviors and interactions with external environments. Therefore, an
automaton can be perceived as an event-driven finite state machine. This
subsection discusses the definition, formal descriptions, and applications of
automata in software engineering, and their usage and limitations.

5.2.2.1 Automata and Finite State Machines (FSMs)

An automaton is a finite state machine based on the mechanism of
event-driven state transitions that can be formally defined as follows.

 Definition 5.1 A Finite State Machine (FSM) is a 5-tuple, i.e.:

 FSM (∑, S, s, T, δ) (5.1)
where

(i) ∑ is a finite set of alphabet, inputs, or events;
(ii) S is a finite set of internal states;
(iii) s is the initial state, s ∈ S;
(iv) T is the set of final states, T ⊆ S; and
(v) δ is the state transition function, which is defined as:

 δ: S × ∑ → S (5.2)

The state transition function δ as defined in Eq. 5.2 can be described
equivalently by a state transition table with the following schema as shown
in Table 5.3.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 285

Table 5.3
The Schema of a State Transition Table of FSMs

Current state
si, si ∈ S

Current event
ei, ei ∈ ∑

Next State
si+1 = δ (si, ei), si+1 ∈ S

A practical question before all transitional instances are derived for

Table 5.3 is how many possible transitions may be expected for a given
layout of an FSM. Because the transition function δ is defined as a Cartesian
product in Eq. 5.2, an outstanding advantage of it is that the number of
transitions in δ can be exactly predicated by the following definition.

Definition 5.2 The size of state space of an FSM, SΩ(FSM), is all

possible transitions that can be determined by the product of both sizes of the
state set S and alphabet set ∑., i.e.:

SΩ (FSM) = #S • #∑ (5.3)

It is noteworthy that SΩ (FSM) determined by Eq. 5.3 predicates all

possible transitions of an FSM, which encompasses both legal and illegal
transitions that represent the entire behaviors of the FSM. The former are the
defined transitions in δ as defined in Eq. 5.2, and the latter are exceptional
transitions outside δ denoted by δ . It may be expected that δ could be much
larger than δ. Therefore, one of the important tasks of professional system
architects and analysts is to identify the whole state space of an FSM and to
rule out all possible exceptional transitions.

Based on the above discussion, Eq. 5.3 may be extended to the

following in order to consider the two important portions of transitional
behaviors of a given FSM, i.e.:

 SΩ (FSM) = #S • #∑

 = # #δ δ+ (5.4)

Therefore, it can be perceived in software engineering that, to a certain
extent, requirement engineering elicits δ from users’ needs for a given
system; while system specification identifies the entire space of all possible
behaviors of the required system, SΩ (FSM) = # #δ δ+ , in order to prevent
the FSM from going into any of the illegal transitions.

© 2008 by Taylor & Francis Group, LLC

286 Part II Theoretical Foundations of SE

It is noteworthy, according to Theorem 5.3, that most software systems

may go wrong not because they are incorrect on normally required functions,
but because there are wrong or not prepared for implied and nonspecified
exceptions.

According to Corollary 5.1, system design and specification should

focus on the entire SΩ, or should emphasize on both δ and δ . This is a major
indicator that distinguishes professionals and amateurs in software
engineering, where the latter focus only on required behaviors (δ) and rush to
implement them, while the former thoughtfully model the whole behaviors of
a given system (δ + δ) and eliminate the possibility for the system under
design crashes into any undesired exceptional states.

5.2.2.2 Approaches to Describe FSMs

On the basis of discussions in Sections 5.2.2.1 and 4.7, four approaches
to describe FSMs can be summarized below:

 a) To define the 5-tuple for a given FSM according to

Definitions 5.1 and 5.2;

 b) To define the state transition table for the FSM using the
template as given in Table 5.3;

The 16th Principle of Software Engineering

Theorem 5.3 The nature of requirements and specifications states that
requirement elicitation focuses on desired functions of a system δ, while
system specification focuses on the entire behavioral space of the system
Ω, including both δ and the undesired but potential system transitions
represented by δ in the behavioral space, i.e.:

 SΩ =# #δ δ+
 = #S • #∑ (5.5)

Corollary 5.1 For a software system, particular a complex system, the
size of undesired behavior space is far more greater than that of the
desired one, i.e.:

 # #δ δ (5.6)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 287

 c) To draw a labeled digraph known as the state diagram as
shown in Fig. 5.1;

 d) To specify an event-driven RTPA process as discussed in
Section 4.7 and illustrated in Example 5.2.

The following examples demonstrate the methods for specifying FSMs

according to the above four approaches.

Example 5.1 According to Definition 5.1, an automaton FSM1 can be

described as follows:

 FSM1 = (∑, S, s, T,δ)

where ∑ = {a, b}, S = {s0, s1, s2}, s = s0, and T = {s2}.

The transition function δ: S × ∑ → S is given in Table 5.4. According

to Eq. 5.3, the state space includes six legal transitions and two illegal ones,
because once FSM1 reaches the final state s2, it will no longer be able to
change its state.

Table 5.4
The State Transition Table of FSM1

Current state
si

Current event
ei

Next state
si+1 = δ (si, ei)

Category

s0 A s1

s0 B s2

s1 A s1

s1 b s2

δ

s2 a -

s2 b -

δ

An equivalent state diagram of FSM1 can be derived on the basis of

Table 5.4 as shown in Fig. 5.1, where a square block denotes the initial state,
and a double circle denotes the final state.

S0 S1 S2

a

b

b

a

Figure 5.1 The state diagram of FSM1

© 2008 by Taylor & Francis Group, LLC

288 Part II Theoretical Foundations of SE

Example 5.2 The fourth method for formally describing an FSM is by
using RTPA. The RTPA specification of FSA1 is given below.

FSA1 {s0 →

 (@aS ↳ s1

 → (@aS ↳ s1

 | @bS ↳ s2
)
 | @bS ↳ s2
)
 } (5.7)

Further details may be referred to the RTPA notations and the system

specification methodology described in Sections 4.6 and 4.7.

Due to the well-defined theories and methods, FSMs have found a wide
range of applications in computing and software engineering. This is why the
state diagrams have been adopted in UML as an important part of its
diagram-based notations for modeling software systems.

5.2.2.3 Description of Software Behaviors by FSMs

The preceding section shows that automata theories are expressive and
rigorous methods that can be applied to describe and specify software system
behaviors. Especially, it provides a powerful means to predict the possible
state space or domain of behaviors of a given system requirement or
specification according to Theorem 5.3.

This subsection takes the ATM as previously described in Section 4.8.2
and Fig. 4.11 as a real-world example to demonstrate the application of FSM
technologies in system modeling and specification [Wang and Zhang, 2003].

Example 5.3 The ATM as shown in Fig. 4.11 can be abstracted as an
FSM as described in Fig. 5.2. Therefore, the ATM can be formally described
as follows:

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 289

e8
e10

e11

e9

e7

e7

e5

e3

e2

e1

e6

e4

S0

 S2

 S3

 S4

S1

 S7

S6

S5

Figure 5.2 The abstract FSM model of the ATM

 ATM (∑, S, s, T, δ) (5.8a)

Corresponding to the given ATM in Fig. 5.2, the components of the 5-
tuple as given in Eq. 5.8a can be formally defined below:

• ∑ = {e1, e2, …, e11}, where:

 e1 - Start
 e2 - Insert card
 e3 - Correct PIN

 e4 - Incorrect PIN
 e5 - Cash ≤ max
 e6 - Cash > max
 e7 - Cancel transaction
 e8 - Sufficient funds
 e9 - Insufficient funds
 e10 - Sufficient cash in ATM
 e11 - Insufficient cash in ATM (5.8b)

© 2008 by Taylor & Francis Group, LLC

290 Part II Theoretical Foundations of SE

• S = {s0, s1, …, s7}, where:

 s0 - System
 s1 - Welcome
 s2 - Check PIN
 s3 - Check amount
 s4 - Verify account balance
 s5 - Verify cash availability
 s6 - Disburse cash
 s7 - Eject card (5.8c)

• s = s1 // welcome (5.8d)

 • T = {s1} // welcome (5.8e)

• δ = f: S x ∑ → S is given in Table 5.5 corresponding to the state
 diagram model of the ATM system as shown in Fig. 5.2.

Table 5.5

The State Transition Table of the ATM

si ei si+1 = δ(si, ei)
s0
s1
s2
s2
s2
s3
s3
s3
s4
s4
s5
s5
s6
s7

…

e1
e2
e3
e4
e7
e5
e6
e7
e8
e9
e10
e11
-
-

…

s1
s2
s3
s2
s7
s4
s3
s7
s5
s7
s6
s7
s7
s1

δ

Example 5.4 According to Theorem 5.3, the size of behavior space of

the ATM can be predicated as:

 SΩ (ATM) =# #δ δ+
 = #S • #∑
 = 8 • 11
 = 88

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 291

where #δ = 12 + 2 • 11 = 34, and # δ = SΩ - #δ = 88 – 34 = 54.

Special care should be taken in the design of this ATM to prevent all
the 54 illegal transitions from happening. If any of these transitions occurs,
the system should be ready to handle it as an exception.

A complete specification of the ATM system in RTPA, in terms of its

architecture and behaviors, is provided in Section 4.8.2 and Appendix K.

5.2.2.4 FSM Composition and Refinement

In an FSM, a state can be extended to a sub-FSM. This provides a
powerful approach to refine a system design and specification, hierarchically.

 Example 5.5 A given automaton FSM0 can be refined by three more
detailed automata FSM1, FSM2, and FSM3, as shown in Fig. 5.3, where the
event-driven relations between the sub-FSMs are also provided. A formal
description of the refinement of FSM0 in RTPA is provided in Eq. 5.9.

FSM0 { FSM1
 → (e1 FSM2
 | e2 FSM3
)
 } (5.9)

FSM0

FSM2 FSM1

FSM3

e1

e2

Figure 5.3 Refinement of an FSM by sub-FSMs

If the refinement of FSM0 described above is perceived as

decomposition of an FSM into sub-FSMs, the composition of a number of
FSMs into a coherent system can be explained as an inverse operation of
FSM refinement. Both FSM refinement and composition provide a
foundation for software system modeling, specification, and integration.

© 2008 by Taylor & Francis Group, LLC

292 Part II Theoretical Foundations of SE

5.2.2.5 Deterministic and Nondeterministic Automata

 There are deterministic and nondeterministic automata. The former
represent the automata that their transition functions are known for each
given event in the context of the current state; the latter represent the
automata that their transition functions are not unique, or the possible next
states are multiple on a given event and the current state. Therefore, the
behaviors of a nondeterministic FSM are inpredictable and should require
additional information or be arbitrarily instantiated at run-time.

The deterministic FSMs have been defined in Definition 5.1, This
subsection introduces the definition of nondeterministic FSMs and their
relationships with the deterministic counterparts.

 Definition 5.3 A nondeterministic FSM, FSM’, is defined by a 5-tuple,
i.e.:

 FSM’ (∑’, S, s, T, δ’) (5.10)

where

(i) ∑’ is a finite set of alphabet plus a generic freely
transitional event known as the empty event φ;

(ii) S is a finite set of internal states;
(iii) s is the initial state, s∈ S;
(iv) T is the set of final states, T ⊆ S;
(v) δ’ is the state transition function, which is defined as:

 δ’: S × ∑’ → S (5.11)

Comparing Definitions 5.1 and 5.3, it can be seen that the only

differences between a deterministic and nondeterministic FSM is the
extension of ∑ by φ, and the replacement of the transition function δ by δ’
that is no longer unique and allows multiple arbitrary next states. In other
words, a nondeterministic FSM is a special case of the deterministic one.
This leads to the following Corollary.

A proof of Corollary 5.2 may be referred to [Lewis and Papadimitriou,

1998].

Corollary 5.2 The deterministic and nondeterministic FSMs are
equivalent. That is, for any given nondeterministic FSM, there is an
equivalent deterministic FSM.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 293

According to Corollary 5.2, a nondeterministic FSM can always be
converted into an equivalent deterministic counterpart. Conversion between
nondeterministic and deterministic FSMs can be enabled by providing
additional rules in the transition function or simply allowing arbitrary
transitions among defined (legal) multiple next states on the basis of a given
event and the current state of the system.

5.2.2.6 Usage of Automata

Automata are found useful for describing software behaviors based on
event-driven mechanisms at framework level. However, their expressive
power is limited when there is a series of complicated actions or algorithms
responding to a specific event or request, which is modeled as a process in
RTPA in Chapter 4. In addition, automata lack the capability to model the
architectures and data objects of software systems as RTPA does, which are
an equally, if not a more, important part of software system modeling and
specification. These are the reasons why automata and FSMs have not been
adopted as the main software engineering notation system and modeling
techniques.

Revealed by Theorem 5.4, the features, descriptive power, and

suitability for large-scale systems modeling by FSMs and RTPA can be
observed by comparing Examples 5.1, 5.2, 5.3, and the models presented in
Section 4.8.2. In dealing with large-scale system specifications, it is found
that the algebraic description of an automaton in RTPA is more convenient
and rigorous. Another advantage of the RTPA methodology is that its work
products for system modeling are much closer to the form of programs, the
naturally succeeding phase in software system development.

 The 17th Principle of Software Engineering

Theorem 5.4 The weaknesses of automata state that automata and FSMs
as a system composition and modeling method built on event-driven
mechanisms are inadequate to model the complete basic computational
requirements, particularly the lack of the descriptive power for:

 a) System architectures and data objects modeling;

 b) Nonevent-driven transitional process modeling;

 c) Detailed behavioral descriptions;

 d) Mathematical operations and processing of complicated languages.

© 2008 by Taylor & Francis Group, LLC

294 Part II Theoretical Foundations of SE

5.2.3 TURING MACHINES

Turing machines are the most fundamental mathematical model of
computation that are perceived, in theory, to imitate logical human thought.
A Turing machine provides a generic abstract model for digital computers,
and reveals the basic computability of problems and their implementation by
the simplest computing machines.

5.2.3.1 The Abstract Model of Computing

The development of Turing machines is a great application of
fundamentalism as described in Section 3.2.3 in computing, in order to seek
the most fundamental needs and mechanisms for computing. According to
Theorems 5.1 and 5.2, the most fundamental data object modeling technique
is bits. Based on it the most fundamental computational operations are logical
and architectural operations on bits.

 In his classic paper On Computable Numbers, with an Application to
the Entscheidungs Problem, Turing (1936) described that: “All detailed sets
of instructions that can be carried out by a human calculator can also be
carried out by a suitably defined simple machine.” It is known then as the
Turing machine.

 According to Theorems 5.1 and 5.2, a Turing machine is the simplest
model of computing and machine intelligence. Any complicated computing
machine can be reduced onto a number of basic Turing machines. This
provides a practical approach to build large and complicated computing
systems based on simple ones. Any computational task that cannot be
processed by Turing machines is a non-determinable problem.

Figure 5.4 A Turing machine

A typical Turing machine can be illustrated as shown in Fig. 5.4. The
Turing machine encompasses three basic components: (a) the finite-state

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 295

control unit, (b) the tape (memory) with finite or infinite cells, and (c) the
read/write head. In Fig. 5.4, the symbol represents a blank space, and
represents the left end or the beginning of the tape. Among the finite states of
the control unit, h is the halting or termination state of the machine.

5.2.3.2 Formal Description of Turing Machines

A formal model of a Turing machine can be described as follows.

Definition 5.4 A Turing machine (TM) is defined by a 6-tuple, i.e.:

 TM (∑, S, s, H, M, δ) (5.12)

where

 (i) ∑ is the finite set of alphabet, ∑ = {R, W, , }, where R
represents a finite set of symbols read from the tape, W a
finite set of symbols written to the tape, the blank space,
and the beginning of the tape;

 (ii) S is the finite set of states;
(iii) s is the initial state, s ∈ S;

 (iv) H is the set of halting states, H ⊆ S;
(v) M is the set of head movements, M = {←, →, ◊} denotes

move to left, right, or no move, respectively.
 (vi) δ is the state transition function that is defined by:

 δ: (S \ H) × ∑ → S × ∑ × M (5.13)

where the state transition function δ(si, ri) = (si+1, wi, mi) denotes that when
the TM is in state si, si ∈ S\H, and scanning symbol ri, ri ∈ R ⊆ ∑, it will
carry out three actions: (a) write symbol wi, wi ∈ W ⊆ ∑, onto the tape at the
current position; (b) conduct a movement of the head mi , mi ∈ M ={←, →,
◊}; and (c) transfer to the next state si+1, such that:

(1) wi ≠ ; and
 (2) If ri = , then wi = φ and mi = →;

According to Definition 5.4, the transition function δ of the TM is not
defined on any states in H. In other words, when the TM reaches a halting
state its operation will be totally terminated. In the above definition,
Condition (1) on δ means that the TM will never write additional on the
tape, so that is the unmistakable sign of the left end of the tape; and
Condition (2) means when the TM sees the left end of the tape , it must

© 2008 by Taylor & Francis Group, LLC

296 Part II Theoretical Foundations of SE

move right in order to maintain that the leftmost is never erased in order to
prevent the TM from falling off the left end of the tape.

Example 5.6 A Turing machine TM1 is designed to simulate 3 + 5 = 8,
where the initial and final tape contents are [,0,0,1,1,1,0, ,0,1,1,1,1,1,0,0,0,
…] and [,1,1,1,1,1,1,1,1,0,0,0, …], respectively. Let a finite set of states be
given below:

 s0: Scans rightwards through the first group of 1’s until the blank
separator is read;

s1: Scans rightwards through the second group of 1’s until it finds a
0;

 s2: Erases the 1 scanned from the current position;

 s3: Writes the current scanned 1 at the tail of the first group of 1’s.

The above given TM1 can be formally defined as follows:

 TM1 (∑, S, s, H, M,δ) (5.14)

where
 • ∑ = {1, 0, , }
 • S = {s0, s1, s2, s3, h}
 • s = s0
 • H = {h}
 • M = {←, →, ◊}
 • δ: (S \ H) × ∑ → S × ∑ × M is as given in Table 5.6 below:

Table 5.6

The State Transition Table of TM1

si ri (si+1, wi, mi) = δ(si, ri)
s0
s0
s1
s1
s2
s2
s3
s3

0
1
0
1
0
1
0
1

(s1, 0, →)
(s0, 1, →)
(s2, 0, ←)
(s1, 1, →)
(s2, 0, ←)
(s3, 0, ←)
(h, 0, ◊)
(s3, 1, ←)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 297

Comparing the definitions of FSM and TM, it is noteworthy that the
extension of descriptive power in TMs over FSMs is the introduction of both
the output operation by writing a symbol wi onto the tape, and the head action
mi associated to a state transition si+1. In the TM model, the output actions
can be either to rewrite the currently scanned symbol ri-1 onto the tape in the
current place or another designated symbol in the alphabet. The head
movement actions can be any one in M = {←, →, ◊}. However, if
considering that a state of FSM is a process that may be able to carry out
more powerful operations, then FSM is equivalent to TM.

Although there are a variety of TMs, it can be proven that all TMs are
equivalent [Gersting, 1982; Lewis and Papadimitriou, 1998; McDermid,
1991]. With the extension of TMs over FSMs on both the I/O capacity and
the infinite memory tape, virtually any complex computing activities may be
sufficiently modeled and implemented. This can be proven by Theorems 5.1
and 5.2.

5.2.3.3 The Nature of Computing

Definition 5.5 A computation of a TM is a finite sequence of state
transitions, i.e.:

1

k

i
R
=

N

N
((si, ri-1, mi-1) → (si+1, wi, mi)) (5.15a)

where (s0, -, -) is the initial state, (sk, ak-1, h) is the halting state, and the trace
of I/Os or the processes of an TM computation is:

 (r0, w1) → (r1, w2) → … → (rk-1, wk) (5.15b)

According to Definition 5.4, a certain TM is a fixed and
unprogrammable computing machine, specialized at solving a particular
problem with instructions (δ) that are hard-wired. An FSM can be perceived
as a restricted TM where the head is read-only and shift only from left to
right.

Turing's contribution is the identification of the basic mechanism for
computing and machine intelligence. Turing's theory shows that the basic
elements needed for computing are: TM = (∑, S, s, H, M, δ). Any complex
computing system may be decomposed into a number of simple TMs. In this
view, Turing machines are the most fundamental computing structures rather
than the most powerful machines.

According to Turing’s theory as well as Theorems 5.1 and 5.2, the
basic functionality for computing can be summarized in the following
theorem.

© 2008 by Taylor & Francis Group, LLC

298 Part II Theoretical Foundations of SE

The findings in Theorem 5.5 are significant because the theorem

reveals that intelligence is memory-based [Wang and Wang, 2006]. Further,
it indicates that computing, a highly abstract machine intelligence, can be
reduced to a sequence of simple memory manipulations, such as addressing,
reading, and writing, as well as quantitative evaluations.

A TM is capable to process memory-stored information as a closed
system. However, it cannot process interacting I/O events from/to the
external world, which is seen as a basic requirement for a modern computing
system. It also lacks the descriptive power for: a) System architectures and
data objects modeling; b) Nontransitional behavioral modeling; and c) High-
level data objects and behavioral modeling.

The meta processes of RTPA as presented in Chapter 4 modeled all the
basic computational operations as well as their algorithmic composing rules.
Therefore, RTPA is a high-level and convenient mathematical means for
formally denoting computing needs and computational behaviors on the basis
of modern computers.

5.2.4 VON NEUMANN MACHINES

Sections 5.2.2 and 5.2.3 described the abstract models of low-level

computers in terms of FSMs and TMs. Although these models reveal the
necessary functions of computation, they possess insufficient functions to
computing. This may be analogized to those of using machine languages vs.
high-level languages in programming.

The 18th Principle of Software Engineering

Theorem 5.5 The fundamental computational capabilities state that the
essential capabilities for computation are as follows:

• A memory for storing bit information;
• A simple addressing capability for accessing information in

the memory;
• Read/write operations for retrieving or updating the memory;
• A conditional and quantitative evaluation capability for

interpreting the inputted information;
• A stored-information-driven mechanism for determining the

next step.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 299

 In order to develop more powerful high-level computers, the
weaknesses of the low-level computational models, such as TM and
automata, have to be enhanced. This subsection introduces the stored-
program concept in computing and a high-level computing model known as
the von Neumann machines.

5.2.4.1 The Stored-Program Concept

Stored-program computers and systems are a remarkable technical
advance in the evaluation of computer architectures and implementation
technologies. Before the introduction of the stored-program concept,
computing machines are designed and controlled by wired logic or electronic
circuits, in which changes of instructions in applications require rewiring of
the physical machine.

Definition 5.6 Stored-program techniques are a computer organization

technology that treats instructions of a computer as the same of data objects,
and then the abstract representation of the instructions – the program – can be
interpreted and executed by the Central Processing Unit (CPU).

The stored-program concept can be traced back to the times of Babbage

in mid 1940s. John von Neumann formalized the technology of stored-
program computers [von Neumann, 1946], and it is still the most widely used
architecture of modern computers. Based on the successful development of
the first electronic digital computer ENIAC (Electrical Numerical Integrator
and Calculator) in 1946, von Neumann developed an abstract model of
computers with a universal structure, and yet be able to execute any kind of
computation by means of programmable control without the need for
changing the physical units of the computer. The above concept, usually
referred to as the stored-program technology, became essential for modern
digital computers.

The main purpose for introducing stored-program control is to provide
flexible computation where updates of desired functions may be introduced
primarily through program modification rather than through changes of
hardware. Therefore, stored-program may be considered as the central
concept of the von Neumann architecture of modern digital computers. It is
also the foundation of theoretical and functional equivalence between
hardware and software in computation.

5.2.4.2 The von Neumann Architecture of Computers

The key requirements for implementing a stored-program controlled
computer are: a) The generalization of common computing architectures; and
b) The generic computer is able to interpret the data loaded in memory as

© 2008 by Taylor & Francis Group, LLC

300 Part II Theoretical Foundations of SE

computing instructions. These are the essences of stored-program computers
with von Neumann architecture [von Neumann, 1946/58; Stallings, 1987].
von Neumann elicited the five fundamental and essential components to
implement general-purpose programmable digital computers in order to
embody the concept of stored-program-controlled computers.

Definition 5.7 A von Neumann Architecture (VNA) of computers is a

5-tuple that consists of five components: (a) the Arithmetic-Logic Unit
(ALU), (b) the Control Unit (CU) with a Program Counter (PC), (c) a
memory (M), (d) a set of Input/Output (I/O) devices, and (e) a bus (B) that
provides the data path between these components, i.e.:

 VNA (ALU, CU, M, I/O, B) (5.16)

Definition 5.8 von Neumann Machines (VNMs) are VNA-based

computers aiming at stored-program-controlled data processing based on
mathematical logic and Boolean algebra.

A VNM can be illustrated in Fig. 5.5, which is centric by the bus and

characterized by the all-purpose memory for both data and instructions.
Comparing Figs. 5.5 and 5.4, it can be seen that a VNM is an enhanced
Turing machine (TM), where the power and functionality of all components
of TM including the control unit (with wired instructions), the tape
(memory), and the head of I/O are greatly enhanced and extended with more
powerful instructions and I/O capacity.

 Bus

Control
Unit

Memory I/O

 ALU

Figure 5.5 The von Neumann architecture of computers

Definition 5.9 An abstract model of a VNM performs computation in
the following iterative steps:

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 301

where nN is the length of the program, Instri denotes a specific instruction in
the instruction set of a given computer [Wang, 2006h].

 External buses

Memory I/O Interrupt

Bus
Adapter

Registers

Control
Unit

 Internal buses

 ALU

Cache

 Clock CPU

 CB
 AB
 DB

Figure 5.6 Typical modern computer architecture based on VNA

A modern VNM can be illustrated as shown in Fig. 5.6. Although the

architecture of computers has changed little since von Neumann’s times and
most modern computers are still based on VNA, new extensions and
enhancements have been developed and implemented in almost all aspects of
VNMs as follows [Stallings, 1987; Hennessy and Patterson, 1996]:

§(VNAMachine)
 {

PCN := 0

→
EOF =
R

T

BL F
(MEM[PCN]B ⇒ InstB

→ ↑(PCN)
→ InstB = (

 0: Instr0
 1: Instr1
 …
 i: Read
 i+1: Write
 i+2: Input
 i+3: Output
 i+4: PCN := kN , kN ≤ nN
 …
 m: ⊠)
)
)
 } (5.17)

© 2008 by Taylor & Francis Group, LLC

302 Part II Theoretical Foundations of SE

 • More powerful instruction set, register set, and on chip cache
have been introduced into CPU. Pipeline techniques are adopted
for instruction decoding and executions.

 • The bus has been separated into control, address, and data buses,

as well as internal and external buses.

 • The memory has been extended from the 1-D sequential memory
to 2-D segmented memory and virtual memory.

 • The pure internal stored-program computing has been extended to
be able to process external events and interrupts for advanced
I/Os and multi-threads.

Trends in advanced computer architectures beyond VNM are parallel,

networking, and cognitive computers. Parallel and networking computers
may be implemented with a set of homogeneous/heterogeneous VNMs or
non-VNMs. The theory of cognitive computers may result in new
architectures of computers as discussed in the following subsection.

5.2.5 COGNITIVE MACHINES

The theory and philosophy behind the next generation computers and
computing technologies are cognitive informatics (Chapter 9) [Wang,
2002d/02e/03a/03b/06b/06j/07a/07b; Wang and Wang, 2006; Wang and
Kinsner, 2006; Wang et al. 2002a/06] and denotational mathematics [Wang,
2002a/05a/06d/06e/06f/06j/07a]. It is commonly believed that the future-
generation cognitive computers will adopt non-von Neumann architectures.

5.2.5.1 The Wang Architecture of Computers

Definition 5.10 A Wang Architecture (WA) of computers, known as a
Cognitive Machine, is a parallel structure encompassing an Inference Engine
(IE) and a Perception Engine (PE), i.e. [Wang, 2006b]:

 WA (IE || PE)
 = (KMU // The Knowledge Manipulation Unit
 || BMU // The Behavior Manipulation Unit
 || EMU // The Experience Manipulation Unit
 || SMU // The Skill Manipulation Unit
)
 || (BPU // The Behavior Perception Unit
 || EPU // The Experience Perception Unit
) (5.18)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 303

As illustrated in Fig. 5.7, WA computers as defined in Eq. 5.18 are not
centered by a CPU for data manipulation as the VNA computers do. The WA
computers are centered by the concurrent IE and PE for cognitive learning
and autonomic perception based on abstract concept inferences and empirical
stimulus perception. The IE is designed for concept/knowledge manipulation
according to concept algebra [Wang, 2006b], particularly the nine concept
operations for knowledge acquisition, creation, and manipulation. The PE is
designed for perception processing according to RTPA and the formally
described cognitive process models of the perception layers as defined in the
LRMB model in Section 9.3.1.

IE

 LTM

 LTM

 ABM

 ABM

 LTM

 ABM

 LTM

 ABM

 PE

 KMU

 BMU

 EMU

 SMU

 BPU

 EPU

 The Cognitive Machine (CM)

Interactions

 SBM

 LTM SBM

 ABM

Knoledge

Behaviors

Experience

Skills

Behaviors

Experience

Enquiries

Stimuli

CM = IE || PE

Figure 5.7 The architecture of a cognitive machine

5.2.5.2 Cognitive Computers

Definition 5.11. Cognitive computers with WA are aimed at cognitive
and perceptive concept/knowledge processing based on contemporary
denotational mathematics, i.e., Concept Algebra, RTPA, and System Algebra.

As that of mathematical logic and Boolean algebra are the
mathematical foundations of VNA computers. The mathematical foundations
of WA computers are based on contemporary denotational mathematics.
According to the LRMB reference model [Wang et al., 2006], all the 39
fundamental cognitive processes of human brains can be formally described
in denotational mathematics, particularly concept algebra and RTPA [Wang,
2006e/02a], which can be implemented and simulated by WA-based
cognitive computers.

© 2008 by Taylor & Francis Group, LLC

304 Part II Theoretical Foundations of SE

One paradigm of cognitive computers is the autonomic computers
[IBM, 2001/06; Pescovitz, 2002; Kephart and Chess, 2003; Murch, 2004;
Wang, 2003d/04a/07e/04f], which is a nonimperative computer based on
non-VNA, e.g., WA, that autonomously carries out robotistic and interactive
applications based on goal- and inference-driven mechanisms on the basis of
nonlinear and content sensitive memory architectures.

The history towards autonomic computing may be traced back to the
work on automata by Norbert Wiener, John von Neumann, Alan Turing, and
Claude E. Shannon as early as in the 1940s [Wiener, 1948; von Neumann,
1946/58/63/66; Turing, 1950; Shannon, 1956; Rabin and Scott, 1959]. In the
same period, Warren McCulloch proposed the term of artificial intelligence
(AI) [McCulloch, 1943/65/93], and S.C. Kleene analyzed the relations of
automata and nerve nets [Kleene, 1956]. Then, Bernard Widrow developed
the term of artificial neural networks in the 1950s [Widrow and Lehr, 1990;
Harvey, 1994]. The concepts of robotics [Brooks, 1970] and expert systems
[Giarrantans and Riley, 1989] were developed in the 1970s and 1980s,
respectively. Then, intelligent systems [Meystel and Albus, 2002] and
software agents [Negreponte, 1995; Chorafas, 1998; Jennings, 2000]
emerged in the 1990s. These events and developments led to the formation of
the concept of autonomic computing. This subject will be further discussed
in Section 15.4.

5.3 Data Object Modeling and
 Manipulation

As highlighted in the previous sections, a major thread of this chapter on
computing foundations of software engineering is that computational
operations can be classified into the categories of data object, behavior, and
resources modeling and manipulations. Based on this view, programs are
perceived as the coordination of data objects and behaviors in computing.

Definition 5.12 Data object modeling in computing is a process to

creatively extract and abstractly represent a real-world problem by
computing objects based on the constraints of given computing resources.

Relations between the data objects and resources form the architectural

model of an application system. The behaviors of the application system are
then the computational operations embodied onto the data objects. The data
object modeling process is recognized as much more important and difficult

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 305

than behaviors modeling, because the former is an open and creative process
and it involves both real-world entities and their abstract representation on
computing resources and their constraints. This section focuses on how data
objects of a system are elicited, modeled, and constructed. Behavioral
modeling and manipulation will be presented in Section 5.4.

5.3.1 TYPES AND DATA STRUCTURES

Using types to model the natural world can be traced back to the
mathematical thought of Bertrand Russell and Godel [Schilpp, 1946; van
Heijenoort, 1997]. Types are an important logical property shared by data
objects in programming. Languages where variables should be declared in
types are called typed languages. Most modern programming languages are
typed and their compilers are capable to do static type checks to maintain
consistency between declared and applied variables and data objects [Martin-
Lof, 1975; Grune et al., 2000].

In computing, data in their most primitive form are a string of bits.
Therefore, types are not an innate property of data at the level of physical
representation and implementation. However, types are found expressively
convenient for data representation at the logical level in programming and
software engineering.

To some extent, type theory is developed for modeling and
manipulating data objects for programmers, language processors, and tool
developers. Therefore, types are the most fundamental techniques for
modeling data objects in software engineering. Another purpose of type
theory is to prevent computational operations on incompatible operands. The
knowledge of type theory can help software engineers to avoid both obvious
and not so obvious pitfalls, and it can also improve regularity and
orthogonality in language design.

5.3.1.1 Type Systems of Programming Languages

The maximum range of values that a variable can assume is a type, and
a type is associated with a set of predefined or allowable operations.
Methodologies of types and their properties have been defined in RTPA in
Table 4.8 and refined in Table 5.7, where 17 primitive types in computing
and software engineering have been elicited.

Definition 5.13 A data type, shortly a type, is a set in which all member

data objects share a common logical property or attribute.

© 2008 by Taylor & Francis Group, LLC

306 Part II Theoretical Foundations of SE

The usages of types are as follows:

 • To determine allowable operations, e.g., Boolean variables can

not be operated by arithmetic operations such as addition and
subtraction. Integers can not be operated by logical operations
such as union or intersection;

 • To help elicit common properties of data;
 • To classify data into basic categories;
 • To interpret semantics of values of data;
 • To direct physical representation and implementations of data

objects in a computer;
• To separate logical models of data objects from their physical

model’s implementation details.

A type can be classified as primitive and derived (complex) types. The
former are the most elemental types that cannot further divided into more
simple ones; the latter are a compound form of multiple primitive types based
on given rules, which will be discussed in Section 5.3.1.3. Most primitive
types are provided by programming languages; while most user defined types
are derived ones.

Definition 5.14 A type system specifies data object modeling and

manipulation rules of a programming language, as that of a grammar system
which specifies the program composing rules (grammar) of the language.

Some typical structures of type systems are modeled in Figs. 5.8

through 5.10 with the Pascal [Jensen, 1978; Louden, 1993], Java [Wiener
and Pinson, 2000], and IDL [OMG, 2002] type structures, respectively. IDL
stands for the Interface Description Language defined by the Object
Management Group (OMG).

The Pascal Type System

Simple Structured

Ordinal Real

Integer

Boolean

Char

Subrange

Enumerated

Array

Record

Set

File

Pointer

Text

Figure 5.8 The type system of Pascal

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 307

The Java Type System

Primitive Reference

Numeric Boolean

int

long

short

char

byte

Array

Class

Interface

float

double

Figure 5.9 The type system of Java

The IDL Type System

Object reference Basic value Constructed value

Integer Simple

Short

Float point

Float

Double

Char

String

Boolean

Enum

Octal

Any

Long

UShort

ULong

Struct

Sequence

Union

Any

Figure 5.10 The type system of IDL

The RTPA type system defines the mathematical models of 17

primitive types and 11 abstract data types. The former will be discussed in
the following subsection, and the latter will be described in Section 5.3.4
[Wang, 2002a].

5.3.1.2 Primitive Types

Via comparative studies of programming languages and formal
specification methodologies, RTPA elicits 17 common and essential
primitive types as presented in Section 4.6.3. The RTPA primitive types and
their syntaxes and domains are described in Table 5.7, where the first 11

© 2008 by Taylor & Francis Group, LLC

308 Part II Theoretical Foundations of SE

primitive types are for mathematical and logical manipulation of data objects,
and the remaining 6 are for system control. In Table 5.7, Dm is the
mathematical domain of a type, Dl the language defined domain, where Dl ⊆
Dm, determined by the physical memory constraint in the implementation of a
certain programming language. It is noteworthy that although a generic
algorithm is constrained by Dm, an executable program is constrained by Dl
or, at most of the time, by the user designed domain Du, where Du ⊆ Dl.

According to Theorem 5.6, the following corollary can be derived.

Most data objects modeling errors are various violations of the type

domain rules as expressed in Eq. 5.19 and 5.20. Throughout this book, a type
suffix convention is adopted for all identifiers as described below in order to
avoid these fundamental problems in software engineering.

Definition 5.15 The type suffix convention denotes every variable x

declared in a type T, x : T, by a bold type label attached to the variable in all
invocations, i.e.:

 x : T ⇒ xT (5.21)

where T is any valid primitive or derived type as defined in Table 5.7.

The 16th Law of Software Engineering

Theorem 5.6 The domain constraints of data objects state that to let Dm,
Dl, and Du be the domains of mathematical (logical), language defined,
and user defined, respectively, the following relationship between the
domains of an identifier in programming is always held, i.e.:

 Du ⊆ Dl ⊆ Dm (5.19)

Corollary 5.3 The precedence of domain determination in programming
and software engineering is always:

 Du ⇒ Dl ⇒ Dm (5.20)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 309

Table 5.7
RTPA Primitive Types and Their Domains

No Type Syntax Dm Dl Equivalence
1 Natural number N [0, +∞] [0, 65535]

2 Integer Z [-∞, +∞] [-32768,
+32767]

3 Real R [-∞, +∞] [-2147483648,
2147483647]

Arithmetic,
mathematic,
assignment

4 String S [0, +∞] [0, 255] String and
character
operations

5 Boolean BL [T, F] [T, F] Logical,
assignment

6 Byte B [0, 256] [0, 256]

7 Hexadecimal H [0, +∞] [0, max]

8 Pointer P [0, +∞] [0, max]

Arithmetic,
assignment,
addressing

9 Time TI =
hh:mm:ss:ms

hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

10 Date

D =
yy:MM:dd

yy: [0, 99]
MM: [1, 12]
dd: [1, 31}

yy: [0, 99]
MM: [1, 12]
dd: [1, 31}

11 Date/Time DT =
yyyy:MM:dd:
hh:mm:ss:ms

yyyy: [0, 9999]
MM:[1, 12]
dd: [1, 31]
hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

Yyyy: [0, 9999]
MM:[1, 12]
dd: [1, 31]
hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

Timing,
duration,
arithmetic

(A generic
 abbreviation:

TI={TI, D, DT})

12 Run-time
determinable
type

RT –

–

Operations
suitable at
run-time

13 System
architectural
type

ST – – Assignment
(field
reference by .)

14 Random event @eS [0, +∞] [0, 255] String
operations

15 Time event @tTM [0ms,
9999 yyyy]

[0ms,
9999 yyyy]

Logical

16 Interrupt
event

@int [0, 1023] [0, 1023] Logical

17 Status ⓢsBL [T, F] [T, F] Logical

© 2008 by Taylor & Francis Group, LLC

310 Part II Theoretical Foundations of SE

 The type suffix convention as adopted in RTPA is a convenient
notation for both programmers and language processors. One of the most
important advances of the type suffix convention is the improvement of
readability – the key attributes in designing a programming language. Using
the type suffixes, programmers may easily identify if all variables in a
statement or expression are equivalent or compatible without referring to an
earlier declaration that are scattered in a program across hundreds of pages in
a large software. The convention also greatly simplifies type checking
requirements during parsing the RTPA specifications [Wang, 2002a].

5.3.1.3 Derived and Advanced Types

The most common and powerful derived type shared by all
programming languages is a record, also known as a construct in some
languages. System architectures can be modeled on the basis of structured
records. There are also a number of special advanced types for computing,
such as the system types, dynamic run-time types, and event, interrupt, and
status types. This subsection discusses those important derived types and
their composing rules. User definable complex type in terms of ADTs will be
described in Section 5.3.4.

5.3.1.3.1 Dynamic Run-Time Types

Definition 5.16 The run-time type RT is a nondeterministic type at
compile-time that can be dynamically bound during run-time with one of the
predefined primitive types.

The run-time type RT provides programmers a powerful tool to express

and handle highly flexible and nondeterministic computing objects in data
modeling. Some language such as Java and IDL [OMG, 2002] label the
dynamic type RT as anytype, for which a specific type may be bound until
run-time.

For example, referring to Section 4.7.2 on architectural specification
and refinement in RTPA, data objects in a generic CLM schema may be
specified in the type RT, for flexibility, while in the CLM objects, these data
objects specified in RT will be instantiated in specific primitive types.

5.3.1.3.2 Time Types

 According to Table 5.7, the time types including data, time, and
date/time, are a special property of all computational systems, particularly
real-time systems.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 311

Definition 5.17 A time type TM is a complex type with a set of
structural segments in N that models absolute (calendar-based) or relative
(system-based) date and/or time, i.e.:

 TM = D | TI | DT

 = hh:mm:ss:ms
 | yy:MM:dd

 | yyyy:MM:dd: hh:mm:ss:ms (5.22)

where the scope of each TM segment is a natural number as defined in Table
5.7.

5.3.1.3.3 Event Types

Definition 5.18 An event is an advanced type in computing that
captures the occurring of a predefined external or internal change of status,
such as an action of users, an external change of environment, and an internal
change of the value of a specific variable.

The event types of RTPA can be classified into operational (@eS), time

(@tTM), and interrupt (@int) events as shown in Table 5.8, where @ is the
event prefix, and S, TM, and ⊙ the type suffixes, respectively.

Table 5.8

Event Types of RTPA

No Type Syntax Usage in system
dispatch

Category

1 Operational event @eS @eiS t Pi External or internal

2 Time event @tTM @tiTM e Pi Internal

3 Interrupt event @int @intj i Pj External or internal

The interrupt event is a kind of special event that models the

interruption of an executing process and the temporal handover of controls to
an Interrupt Service Routine (ISR) resuming till its completion. In a real-time
environment, an ISR should just conduct the most necessary functions and
must be short enough compared with the time slice scheduled for a normal
process.

5.3.1.3.4 Status Types

Definition 5.19 A status is an advanced type in computing that models
the Boolean result of an execution of a process or a logical assertion of a
given state in a process.

© 2008 by Taylor & Francis Group, LLC

312 Part II Theoretical Foundations of SE

A status s is denoted by ⓢsBL in RTPA as described in Section 4.6.3,
where ⓢ is the status prefix, and BL the Boolean type suffix for all statuses.

5.3.1.4 System Architectural Types

A special set of complex types known as the system type ST is widely
used for modeling system architectures, particularly real-time, embedded,
and distributed systems architectures. These requirements as identified in
RTPA are such as system components, system processes, memory, I/O ports,
device interfaces, interrupt sources, real-time events, and communication
sockets. All the system types are nontrivial data objects in computing, rather
than simple data or logical objects, which play a very important role in the
whole lifecycle of complex system development including design, modeling,
specification, refinement, comprehension, implementation, and maintenance
of such systems.

5.3.1.4.1 The System Type

Definition 5.20 A system type ST is a system architectural type that
models the architectural components of the system and their relations.

 A generic ST type is CLM, which has been introduced in Definitions
4.106 and 4.108. CLMs are an abstract model of a system architectural
component that represents a hardware interface, an internal logical model,
and/or a common control structure of a system.

5.3.1.4.2 The System Memory Type

All logical identifiers and data objects, no matter language generated or
user created, should be implemented as physical data objects and be bound to
specific memory locations. This subsection explores the memory models of
computing, mathematical models of addressing, and dynamic memory
allocations.

Definition 5.21 The generic system memory model, MEMST, can be
described as a system architectural type ST with a finite linear space, i.e.:

MEMST [addr1H … addr2H]RT (5.23)

where addr1H and addr2H are the start and end addresses of the memory space,
and RT is the type of each of the memory elements.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 313

 The entire memory space of a computer is typically divided into four
general categories known as the system area, static area, stack, and heap as
illustrated in Fig. 5.11.

 ≈

System area
(Space for operating system)

 ≈

Stack
(Language controlled area)

Heap
(Dynamic area)

Free space for
both stack and heap

Static area
(Global variables & data

objects)

maxH

x0000H

Figure 5.11 The logical memory model of computing

The system area is totally controlled by the operating system, and users

have no access to this area. The static area is a language controlled area
where global variables and data objects such as CLMs are allocated.

The stack is a language (compiler) controlled area for storing local and
intermediate variables associated with embedded program blocks such as a
method, function, or procedure in a program hierarchy. When a block
completes its execution, all local variables scoped within it will be popped up
and eliminated from the system.

The heap is a user controlled memory area reserved for dynamic
memory allocation during run-time. A programmer may allocate or release a
block of memory in heap by using special instructions like new(x) and
dispose(x) in C++. Variables allocated in heap can be accessed by pointers or
indirect addressing.

© 2008 by Taylor & Francis Group, LLC

314 Part II Theoretical Foundations of SE

Note that in a typical implementation, the stack and heap grow in
opposite directions, thus they may share the unallocated working memory
efficiently. Further discussions on memory allocation and management can
be found in Section 5.6.3.

5.3.1.4.3 The System Port Type

A special system architectural type is the I/O port type for modeling

hardware architectures and interfaces.

Definition 5.22 The generic system I/O port model, PORTST, can be
described as a system architectural type ST with a finite linear space, i.e.:

PORTST [ptr1H … ptr2H]RT (5.24)

where ptr1H and ptr2H are the start and end addresses of the port space, and RT
is the type of each of the port I/O interfaces.

Examples of I/O CLMs may be referred to Section 4.7.2 and Example

4.22. More rigorous description of computational type systems in general,
and the type rules of RTPA in particular, will be presented in Section 5.3.3.

5.3.2 BASIC DATA MODELING TECHNIQUES

As identified in Section 5.2, the most fundamental computing models
and data objects in computing is bits. Therefore, it is at the center of all
fundamental computing techniques to focus how real-world entities and their
relations are represented and modeled by a set of given data structures and
construct rules in computing and programming.

This subsection describes basic data modeling techniques for
identifiers, variables, constants, expressions, memory models, and physical
data objects. The modeling of advanced data structures, type theory, and
abstract data types will be discussed in Sections 5.3.3 and 5.3.4.

5.3.2.1 Identifiers

Definition 5.23 An identifier ID is a logical name of a language entity
or construct, which can be formally defined by a 7-tuple, i.e.:

 ID (N, T, D, V, L, S, A) (5.25)

where the 7 attributes of an ID can be defined as follows:

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 315

 • N is a representative symbol or name of the ID.
 • T is the type of the ID, T ∈ T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT,

ST, @eS, @tTM, @int ,ⓢsBL}, which is one of the 17 primitive
types of RTPA according to Theorem 4.4.

 • D is the domain of the ID, or the scope of its value.
 • V is an instant value of the ID valid within the scope of values

defined for the type.
 • L is the physical location of the ID in the memory space M.
 • S is the scope of life-span of the ID.
 • A is the scope of accessibility or visibility of the ID.

Identifiers may be used to represent variables, constants, procedures,

classes, or program names at different levels in programming. Definition
5.23 provides a comprehensive set of characteristics of an ID. Any ID in
computing can be uniquely identified and allocated using Eq. 5.25. Important
characteristics of IDs are described below.

The type of identifiers, T, can be language provided, user defined, or
one of the system types such as a program, a class, a procedure, or a CLM.

Definition 5.24 Binding is a process that associates an attribute to an
identifier.

Bindings may be implemented either during execution or prior to
execution of a statement with the identifier. The former are called dynamic
binding, and the latter are called static binding. Static bindings are widely
used to define new identifiers in imperative languages, where “the rule of
declaration before use” is adopted. Dynamic bindings are used in
assignments and dynamic memory allocations.

The scope of an identifier C as specified in Definition 5.23 can be
defined below.

Definition 5.25 The scope of an identifier ID is a region in a program
over which the binding between the ID and a given attribute is declared.

The scope of an identifier can be temporary, local, global, or persistent

as shown in Table 5.9. Most IDs possess a local scope, except those declared
at the top-level of a program. The persistent identifiers or variables have a
longer lifecycle than the program that created them. This type of identifier
can be found in file systems, data bases, and communication systems where
the identifiers and related data are stored in an external storage such as a hard
disk rather than the internal memory.

© 2008 by Taylor & Francis Group, LLC

316 Part II Theoretical Foundations of SE

 Table 5.9
Classifications of Scope of Life-Span and Accessibility of Variables

 Category Symbol Description Example
Temporary SBCS SBCS = S (BCS) A control variable of a loop
Local Sl Sl = S (function) An exclusive variable declared

in a function or process
Global Sg Sg = S (program) A shared variable declared in

the top level of a program

Scope of
life-span

(S)

Persistent S∞ S∞ = ∞ A data entity in a database

Public A0 By any class Public: int i;
Private A1 Within the same

class
Private: int i;

Protected A2 Within the same
and derived
classes

Protected: int i;

Accessi-
bility

(A)

Read-only A3 A constant Public: int pi const;

Example 5.7 Table 5.10 characterizes three formally defined identifiers
and their application examples in programming languages.

Table 5.10

Formal Definition of Identifiers

Formal definition

ID = (N, T, D, V, L, S, A)

Dm Dl Du Language
property and

example
ID1 =
<i, N, 0≤ i<9, 0, MEM[i], SBCS, A1>

[0, +∞] [0, 65,535] [0, 9] Variable
int i

ID2 =
<pi, Z*, pi=3.14, 3.14, MEM[pi], Sg, A2>

[-∞, +∞] [-32,768,
32,767]

3.14 Constant
pi = 3.14

ID3 =
<FunctA, S, #S =6, ⊥, x00F2H, Sl, A3>

[1, +∞] [1, 255] #S=6 Class
class FunctA

According to the formal definition and the illustrations of Table 5.10,

identifiers using the same representation symbol would be treated differently
when any of the other attributes is different except that of V. In other words,
Eq. 5.25, i.e., ID = (N, T, D, V, L, S, A), essentially specifies a unique

identifier in a program.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 317

5.3.2.2 Variables and Constants

Real-world entities and their attributes can be abstracted and identified
by symbols or identifiers. If an identifier can be quantified by a fixed value in
its given scope, it is a constant; otherwise, it is a variable. Therefore, the
descriptions of variables and constants share the same basis as for identifiers
developed in the previous subsections.

Definition 5.26 A variable v is an identifier that its set of value V is
multiple and changeable within the given domain D of type T, i.e.:

 v = IDv
 = (N, T, D, V, L, S, A), #V > 1 (5.26)

A variable obtains or changes its value through the operation of
assignments.

Definition 5.27 An assignment is an operation in programming that

transfers a value q to a variable x, when their types are the same or
equivalent, denoted by:

xT := qT (5.27)

where T is the type suffix. Note that q can be a number, constant, or the
value of an expression.

Definition 5.28 A constant c is an identifier that its set of value V is
fixed with only one read-only value within the given domain D of type T*,
i.e.:

 c = IDc

 = (N, T*, D, V, L, S, A), #V ≡ 1 (5.28)

where T* shows that type T is a constant type.

Unlike a variable, a constant obtains its value through declaration

rather than assignment, and the binding between a constant identifier and its
value is fixed, which can not be changed by any operations.

According to Definitions 5.28 and 5.23, constants as those of variables
can be specified in various types. That is, there are numerical constants such
as c1 = 1 (T= Z*) and c2 = 3.14159 (T = R*), as well as Boolean constants
such as c3 = T (T = BL*) and c4 = F (T = BL*). Therefore, most of the types T
as defined in Table 5.7 have a corresponding form for constants T* as given

© 2008 by Taylor & Francis Group, LLC

318 Part II Theoretical Foundations of SE

in Table 5.11. This convention is an extension of existing type theory, which
provides additional expressive power to model constants as special data
objects in computing and software engineering.

Table 5.11

Types of Constants and Their Usages

No. Primitive Type Syntax for
Constants

Usages

1 Natural number N*
2 Integer Z*
3 Real R*

Numerical constants

4 String S* Reserved words

5 Boolean BL* = {T, F} Boolean constants

6 Byte B*
7 Hexadecimal H*
8 Pointer P*

Constant addresses
of memory and port
locations

9 Time TI* = hh:mm:ss:ms*
10 Date D* = yy:MM:dd*
11 Date/Time DT* = yyyy:MM:dd:

 hh:mm:ss:ms*

Constant date/time

(A generic
abbreviation is:
TM* = { TI*, D*, DT*})

12 Run-time
determinable type

–

13 System
architectural type

–

14 Event –
15 Timing –
16 Interrupt –
17 Status –

N/A

5.3.2.3 Expressions

In programming, an expression is a basic formula for building
meaningful syntactic entities that may be used in evaluation of its semantic
values.

Definition 5.29 An expression exp is a relation between a set of
operands (variables or constants) O = {o1, o2, …, on} that is formed by a set
of operators R = {r1, r2, …, rm}, i.e.:

 exp = O × R × O

= {oi rk oj}, oi, oj ∈ O ∧ rk ∈ R (5.29)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 319

where R can be the arithmetical, logical, memory manipulation, or data
manipulation operators.

An expression can be classified as logical, ordinal, numerical, timing,

and architectural, according to the type of its value in BL, N, R/Z/S/B/H/P, TM,
and ST, respectively.
 Expressions as a language building block will discussed in Section 6.3
on formal language theory.

5.3.3 FORMAL TYPE THEORY

A type system specifies the data objects composing rules of a

programming language as that of a grammar system which specifies the
behavioral composing rules of the language. The basic properties of type
systems are decidable, transparent, and enforceable [Martin-Lof, 1975;
Cardelli and Wegner, 1985; Mitchell, 1990; Nordstrom et al., 1990; Cardelli,
1997; Pierce, 2002]. Type systems should be decidable by a type checking
system that can ensure that types of variables are both well-declared and
referred. Type systems should be transparent that diagnose reasons for
inconsistency between variables or variables and their declarations. Type
systems should be enforceable in order to check type inconsistence as much
as possible.

5.3.3.1 Type Rules

A type is a category of variables that share a common property such as
kinds of data, domain, and allowable operations. A formal rule of types is a
mathematical relation and constraint on a given type. Type rules are defined
on the basis of a type environment.

Definition 5.30 A type environment Θt is a collection of all primitive
types in the given programming language or formal notation system, i.e.:

 Θt = T
 = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST, @eS, @tTM, @int , sBL} (5.30)

where T is the set of primitive types defined in the given notation system,
i.e., RTPA.

The description of a type rule can be expressed by a formal statement
called a judgment in Θt.

© 2008 by Taylor & Francis Group, LLC

320 Part II Theoretical Foundations of SE

Definition 5.31 A judgment σ is an assertion A yielded in a given type
environment Θt, denoted by:

tΘ σ A (5.31)

where it reads that Θt yields A, or A is declared in Θt .

The forms of the assertions A vary from judgment to judgment, but all
the variables of A must be declared in Θt. For example, the following
assertions are valid judgments:

 • T is declared as a type in Θ t:

tΘ T (5.32)
 • ID is declared as a variable of type T in Θ t: tΘ : ID T (5.33)
 • D is declared as a signature S in Θ t:

tΘ D S (5.34)

where Eq. 5.34 assigns a signature S to a declaration D, and S is essentially
the type of a declaration such as ID : T.

Definition 5.32 A type rule is an assertion of the validity of the

conclusion of a judgment on a type
tΘ A based on the inference of a

number of n premise judgments
tΘ iA , 0 ≤ i ≤ n, denoted by the

following convention:

 t t n

t

Θ Θ
Θ
1
,...,

=
A APremise(s)

Conclusion A
 (5.35)

where the conclusion holds iff all of the premises are satisfied.

Definition 5.33 An empty environment is an axiom of reference rule
that derives an empty judgment ◊, which is always valid with no premise,
i.e.:

tΘ ◊

 (5.36)

or simply written without the horizontal line, i.e.:

tΘ ◊ .

Example 5.8 A type rule, Val(n), n = 1, 2, …, can be derived based on

the variable judgment, i.e.:

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 321

t

t

Θ
Θ :

◊
N

Val(n)
n

 (5.37)

where the rule asserts that the value of any numeral n is declared in the
natural number type N, derived on the basis of an empty type environment.

Example 5.9 The type rule of assignment, id := E, can be derived based

on the signature judgment, i.e.:

t t

t

Θ : , Θ :
Θ () :

RT RT
RT

id E
id := E

id := E
 (5.38)

where the rule asserts that an assignment is valid when the types in the both
sides of the assignment are the same, and E is a constant, variable, or
expression in the same type as that of id.

5.3.3.2 Formal Type Systems

Definition 5.34 A formal type system is a collection of all type rules in

Θt for a given programming language or formal notation system.

The essential part of the formal type system of RTPA can be
summarized in Table 5.12, where all of the 17 primitive types are rigorously
derived by valid judgments on the basis of type rules of RTPA in its type
environment Θt.

Similarly, the type systems of Pascal, Java, and IDL as shown in Figs.

5.8 through 5.10 can be rigorously described in the same approach. The
formal definitions of these type systems are reserved as exercises for readers
at the end of this chapter.

5.3.3.3 Complex Type Rules for the RTPA Derived Types

Complex and derived types of RTPA can be described by composed

type rules based on those of the primitive types. As described in Chapter 4,
there are two basic system modeling techniques in RTPA known as the
process and CLM. The type rules of both CLMs and processes can be
derived below.

© 2008 by Taylor & Francis Group, LLC

322 Part II Theoretical Foundations of SE

Table 5.12
The Formal Type System of RTPA

No Type Syntax Type Rule Description
1 Natural number N t

t

Θ
Θ

◊
N

 A primitive
type

2 Integer Z t

t

Θ
Θ

◊
Z

 Ditto

3 Real R t

t

Θ
Θ

◊
R

 Ditto

4 String S t

t

Θ
Θ

◊
S

 Ditto

5 Boolean BL t

t

Θ
Θ

◊
B L

 Ditto

6 Byte B t

t

Θ
Θ

◊
B

 Ditto

7 Hexadecimal H t

t

Θ
Θ

◊
H

 Ditto

8 Pointer P t

t

Θ
Θ

◊
P

 Ditto

9 Time TI =
hh:mm:ss:ms

t

t : : :

Θ
Θ

◊
h h m m ss m s

 Ditto

10 Date D =
yy:MM:dd

t

t : :

Θ
Θ

◊
y y M M dd

 Ditto

11 Date/Time DT =
yyyy:MM:dd:
hh:mm:ss:ms

t

t

Θ
Θ : : : : :

◊
yyyy MM dd hh mm ss

Ditto

12 Run-time
determinable type

RT t

t

Θ
Θ

◊
R T

 RT ∈ {N, Z, R,
S, BL, B, H, P,
TI, D, DT}

13 System
architectural type

ST t

t

Θ
Θ

◊
S T

 ST is a
CLM

14 Event @eS t t

t

Θ @ Θ
Θ @

,

:

S
Se

 A system
variable

15 Timing @tTM t t

t

Θ @ Θ
Θ @

,

:

T M
T Mt

 A system
Variable

={ , , }TM TI D DT

16 Interrupt @int t t

t

Θ @ Θ
Θ @

,

:int

 A system
variable

17 Status ⓢsBL t t

t

Θ Θ
Θ

 ,

:

B L
B Ls

 A system
variable

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 323

5.3.3.3.1 The Type Rules for CLMs in RTPA

CLM is a generic type for modeling and manipulating data objects and
system architectures. A CLM is an abstract or logical model of a system
component such as an internal data object, an external hardware device, and
an interface between the system and its environment.

Definition 5.35 The type rule of a CLM type, CLM, is a complex
system type ST in RTPA derived in Θt, i.e.:

t

t

Θ
Θ :

ST
STCLM

 (5.39)

The declaration of a variable, ClmID, with the CLM type can be

denoted by using the following type rule:

t t t t

n

t i i i ii=1

, , ,

Θ Θ Θ : Θ :

Θ ::{ < : | Constraint()>;}R

ClmID ID

ClmID ClmID ID ID

ST T ST T

ST S T T

 (5.40)

where the ClmIDST is defined by the string type label ClmIDS with an n-field
record, each of them specifies a meta variable IDi in type Ti, and its
constraints denoted by Constraint(IDiTi).

Example 5.10 On the basis of the CLM type rule, the declaration of a
system clock as a CLM, SysClockST, is given in Fig. 5.12.

Figure 5.12 Specification of the architecture of system clock in RTPA

In Fig. 5.12, §tnN is the relative clock; and §thh:mm:ss:ms is the absolute
clock. The system clock is driven by an external tick signal from port
MainClockPortB at address 00F1H with an interval of 1ms. The
ClockIntCounterN transfers every 1,000 pulses of ClockIntervalN to a second
inorder to update §thh:mm:ss:ms. When it is needed, a long-range absolute
SysClockST may be specified using §tyyyy:MM:dd:hh:mm:ss:ms.

SysClockST SysClockS ::
 { <§tn : N | 0 ≤ §tnN ≤ 1M>;
 || <§t : hh:mm:ss:ms | 0:0:0:0 ≤ §thh:mm:ss:ms ≤ 23:59:59:99>;

 || <MainClockPort : B | MainClockPortB = 00F1H>;
 || <ClockInterval : N | ClockIntervalN = 1ms>;

 || <ClockIntCounter : N | 0 ≤ ClockIntCounterN ≤ 999>
 }

© 2008 by Taylor & Francis Group, LLC

324 Part II Theoretical Foundations of SE

5.3.3.3.2 The Type Rules for Processes in RTPA

A process in RTPA is a basic behavioral unit for modeling software
system operations onto the data objects. A process can be a meta process or a
complex process composed with multiple meta processes by the relational
process operators. Because processes are so frequently used in system
modeling, a derived type in RTPA known as the process type can be
introduced as a special system type.

Definition 5.36 The type rule of a process type, ProcST, is a complex
system type ST in RTPA derived fromΘt, i.e.:

 t

t

Θ

Θ :

ST
STPROC

 (5.41)

The declaration of a variable, ProcID, with the process type can be
denoted by using the following type rule:

t

t

n m q

i i j j k ki=1 j=1 k=1

Θ :

Θ

(I::< >; O::< >; CLM::< >)R R RID ID ClmID

ST
ST S

T T ST

ProcID
ProcID ProcID

 (5.42)

where the ProcIDST is defined by the string type label ProcIDS with a set of
n inputs and a set of m outputs in a specific T type, as well as a set of q I/O
constructs known as CLMs in a specific ST type.

Examples of process declarations and specifications will be provided in
Section 5.5.1. Formal semantics of processes of RTPA in deductive
semantics will be discussed in Chapter 6.

5.3.4 ABSTRACT DATA TYPES

Studies in algebraic specifications of software systems lead to the
development of the concept on abstract data types [Gaudel, 1991]. The
concept of ADT is proposed in Guttag’s work [Guttag, 1975/77/02; Guttag
and Horning, 1978]. More systematic description of ADTs may be found in
Broy et al. (1984), Goguen (1978), and Louden (1993).

It is noteworthy that an ADT is not simply a type or complex type for
data object modeling, rather than a behavioral modeling technique in
computing. Because the purpose of ADTs is for encapsulation of predefined
operations with related data objects, the emphases of ADT modeling
techniques have been put on operational behaviors rather than expressive and
comprehensive characterization of architectural data objects. However, for
explaining the whole picture of data object modeling techniques in
computing, ADTs are introduced in this subsection.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 325

5.3.4.1 The Generic Model of ADTs

Definition 5.37 An Abstract Data Type (ADT) is a logical model of

data objects, which defines both the logical architecture and valid operations
of the data object, with the following schema:

ADT_IDST ADT_IDS ::
 (Architecture

 || Static behaviors
 || Dynamic behaviors
) (5.43)

According to Definition 5.37, ADTs are abstract logical models of user
defined data objects, where predefined operations on given data objects are a
set of behavioral schemas (interfaces) rather than detailed implementations.
Particular specifications of physical implementation of the ADT on different
computer platforms are omitted.

Example 5.11 An ADT of arithmetic operations on R, *, has been

given in Example 4.12 in RTPA, i.e., * : R × R → R.

According to Definition 5.37, the architecture of the ADT * can be

modeled as * : R × R → R. The static behaviors of * are all allowable
operations, i.e., + : R × R → R; - : R × R → R; • : R × R → R; and ÷ : R × R →
R. The dynamic behaviors of * are:

 @opS:

+ : +(R, R)R
- : -(R, R)R
• : •(R, R)R
÷ : ÷(R, R)R, ∀r ∈ R, ÷ (r, 0)R → ε

where @opS represents the run-time selection of specific operations, and ε
denotes an error.

ADTs possess the following properties:

 • An extension of type constructions by integrating both data

structures and functional behaviors.

 • A hybrid data object modeling technique that encapsulates both
user defined data structures (types) and allowable operations on
them.

© 2008 by Taylor & Francis Group, LLC

326 Part II Theoretical Foundations of SE

 • The interface and implementation of an ADT are separated.
Detailed implementation of the ADT is hidden to applications that
invoke the ADT and its predefined operations. In other words,
applications may only access the ADT as an abstract object as
seen by the interfaces of the ADT.

It is noteworthy that a class in modern object-oriented programming

[Stroustrup, 1986] can be perceived as an ADT with the properties of
encapsulation, abstraction, inheritance, and polymorphism.

5.3.4.2 Modeling Complex Data Structures and Component
 Architectures by ADTs

Kenneth C. Louden (1993) described another form of ADT algebraic
specifications with the following schema:

 ADTST ADT_IDS ::

 (architecture
 || operations
 || variables
 || axioms
) (5.44)

where the architecture is a brief date structure of the ADT and detailed
properties of the ADT are specified by the axioms, and the remaining two
parallel components are predefined operations and variables that represent
instantiations of the architecture. Comparing Eqs. 5.43 and 5.44, it can be
seen that the dynamic aspect of the ADT is not specified in the latter
approach.

Example 5.12 A specification of a stack ADT according to Louden can

be described as shown in Fig. 5.13.

Fig. 5.13 specifies that the Stack is an ADT with the architecture of the

stack in type ST consisting of a set of element in type RT, where the specific
type of RT will be instantiated during run-time. Predefined operations of the
stack ADT, such as create, push, pop, and empty, are given in the operation
section for the schemes, and in the axiom section for the instances. The Last-
In First-Out (LIFO) behavior of the Stack is specified with additional
information provided in the axioms of the Stack. Note that the architecture or
data structure of the ADT is usually informally described in this approach,
and the creation of the Stack is not well defined.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 327

Figure 5.13 A stack ADT

The operations specified in an ADT are a set of functions, which may

be classified in the following categories:

 • Constructor: An operation that its codomain is the type of the
ADT.

 • Inspector: An operation that its codomain is different from the
type of the ADT. Inspectors can be either predicates that result in
a Boolean output or selectors that result in a non-Boolean output.

 • Destructor: An operation that its codomain is a subset of the type
of the ADT.

According to the above classification, the create and push operations of
the stack in Example 5.12 are constructors, pop is a destructor, and empty is
an inspector or more specifically a predicate.

5.3.4.3 Typical ADTs Modeled in RTPA

An ADT in RTPA is described as a logical model of derived data
objects that possesses predefined operations on the logical model. Unlike the
conventional approaches to ADT specifications that treat ADTs as static data
types, ADTs are treated as dynamic entities in RTPA, which have both
architectures and behaviors to server as both structural and operational
models.

A set of 11 ADTs, which models typical and frequently used complex
data objects in data structural and system architectural modeling, has been

ADT Stack (element : RT) : ST

operations:
 create: → stack
 push: stack × element → stack
 pop: stack → element
 empty: stack → Boolean

variables:
 s: stack;
 e: element

axioms:
 create (s) = s

push (s, e) = e s
pop (create (s)) = error
pop (push (s, e)) = e
empty (create (s)) = T
empty (push (s, e)) = F

© 2008 by Taylor & Francis Group, LLC

328 Part II Theoretical Foundations of SE

predefined in RTPA as shown in Table 5.13. The ADTs, which are
developed recursively by using the RTPA notation and primitive types, are a
coherent part of the RTPA notation system. Users may use the ADTs and
their designed behaviors in system specifications as those of the primitive
types by directly invoking their structures and related operations.

Table 5.13

Abstract Data Types Defined in RTPA

No. ADT Syntax Designed Behaviors

1 Stack Stack : ST StackST.{Create, Push, Pop, Clear, EmptyTest,
FullTest, Release}

2 Record

Record : ST RecordST.{Create, fieldUpdate, Update, FieldRetrieve,
Retrieve, Release}

3 Array Array : ST ArrayST.{Create, Enqueue, Serve, Clear, EmptyTest,
FullTest, Release}

4 Queue
(FIFO)

Queue : ST QueueST.{Create, Enqueue, Serve, Clear, EmptTest,
FullTest, Release}

5 Sequence Sequence : ST SequenceST.{Create, Retrieve, Append, Clear,
EmptyTest, FullTest, Release}

6 List

List : ST ListST.{Create, FindNext, FindPrior, Findith, FindKey,
Retrieve, Update, InsertAfter, InsertBefore, Delete,
CurrentPos, FullTest, EmptyTest, SizeTest, Clear,
Release}

7 Set Set : ST SetST.{Create, Assign, In, Intersection, Union,
Difference, Equal, Subset, Release}

8 File
(Sequential)

SeqFile : ST SeqFileST.{Create, Reset, Read, Append, Clear,
EndTest, Release}

9 File
(Random)

RandFile : ST RandFileST.{Create, Reset, Read, Write, Clear,
EndTest, Release}

10 Binary Tree

BTree : ST BTreeST.{Create, Traverse, Insert, DeleteSub, Update,
Retrieve, Find, Characteristics, EmptyTest, Clear,
Release}

11 DiGraph

DiGraph : ST DiGraph ST.{Create(G), Search(G), GetSize(G),
ClearGraph(G), Release(G), InsertNode(u),
DeleteNode(u), InsertEdge(u, v), DeleteEdge(u, v),
RetrieveNode(u), UpdateNode(u), FindNode(u),
FindEdge(u, v), CurrentNode, CurrentEdge,
GetNumberOfEdges(u), FindNeighbors(u), FanIn(u),
FanOut(u), Degree(u)}

In the RTPA specifications of the ADTs, three related perspectives of

ADTs are described: the architecture, static behaviors, and dynamic
behaviors as modeled in Definition 5.37. With the RTPA specification and

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 329

refinement method, the features of ADTs as both static data types and
dynamic behavioral objects or components can be specified formally and
precisely.

Example 5.13 A stack ADT specified in RTPA is as shown in Fig.
5.14.

StackST StackST.Architecture
 || StackST.StaticBehaviors
 || StackST.DynamicBehaviors (5.45)

The architecture of the StackST is specified by RTPA as shown in Eq.

5.12, where both the architectural CLM and an access model are provided for
the StackST.

Figure 5.14 The architecture of the stack ADT

In Fig. 5.14, the access model of the StackST is a logic model for
supporting external invoking of the StackST in operations, such as push and
pop. The other parts of the model are designed for internal manipulations of
the StackST, such as creation, memory allocation, and release.
 System static behaviors in RTPA describe the configuration of
processes of the StackST and their relations. The schemas of the seven static
behaviors of the StackST are specified as follows.

Figure 5.15 The static behaviors of the stack ADT

StackST.Architecture CLM : ST
 || AccessModel : ST
 || Events : S
 || Status : BL

StackST.Architecture.CLM StackIDS ::
 (<Element : RT>,
 <Size : N | SizeN ≥ 0>,
 <CurrentPos : P | 0 ≤ CurrentPosP ≤ SizeN-1>
)

StackST.Architecture.AccessModel StackIDS(CurrentPosP)RT

StackST.StaticBehaviors
 Stack.Create (<I :: StackInstS, SizeInstN, ElementInstRT>;
 <O:: ⓢStackID.AllocatedBL, ⓢStackID.ExistBL>)
 | Stack.Push (<I :: StackInstS, ElementInstRT>; <O:: ⓢStackID.PushedBL>)
 | Stack.Pop (<I :: StackInstS>; <O:: ⓢStackID.PoppedBL, ElementRT>)
 | Stack.Clear (<I :: StackInstS>; <O:: ⓢStackID.ClearedBL>)
 | Stack.EmptyTest (<I :: StackInstS>; <O:: ⓢStackID.EmptyBL>)
 | Stack.FullTest (<I :: StackInstS>; <O:: ⓢStackID.FullBL>)
 | Stack.Release (<I :: StackInstS>; <O:: ⓢStackID.ReleasedBL>)

© 2008 by Taylor & Francis Group, LLC

330 Part II Theoretical Foundations of SE

The refinement of detailed specifications of two static behaviors of
Stack, Stack.push and Stack.pop, is given in Fig. 5.16.

Figure 5.16 The specification of detailed behaviors of the stack ADT

According to the RTPA system modeling and refinement scheme as
described in Section 4.7, the specifications of system static behaviors are
only functional components of the system. To put the components into a live,

Stack.PushST (<I:: <StackInstS, ElementInstRT>; <O:: ⓢStackID.PushedBL>)
 {

< StackIDS, ElementRT> := < StackInstS, ElementInstRT>
→ (ⓢStackID.ExistBL = T

 → ((CurrentPosP^ < SizeN-1)
 → ↑ (CurrentPosP^)
 → ElementRT ⋖ StackIDS(CurrentPosP^)RT

 → ⓢStackID.PushedBL := T
 | ~

 → ⓢStackID.PushedBL := F
 → ! (@’StackID.Full’)

)
 | ~

 → ⓢStackID.PushedBL := F
→ ! (@’StackID.ExistBL = F’)

)
 }

Stack.PopST (<I:: StackInstS>; <O:: <ⓢStackID.PoppedBL, ElementRT>)
 {

StackIDS := StackInstS
→ (ⓢStackID.ExistBL = T

→ ((CurrentPosP^ > 0)
→ StackIDS(CurrentPosP^)RT ⋗ ElementRT
→ ↓ (CurrentPosP^)
→ ⓢStackID.PoppedBL := T

 | ~

 → ⓢStackID.PoppedBL := F
→ ! (@’StackID.Empty’)

)
| ~

 → ⓢStackID.PoppedBL := F
→ ! (@’StackID.ExistBL = F’)

)
 }

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 331

coherent, and real-time system, the dynamic behaviors of the system, in
terms of process deployment and dispatch, are yet to be specified. The
dynamic behaviors of the StackST can be specified below in RTPA.

Figure 5.17 The dynamic behaviors of the stack ADT

The process dispatch mechanism of the StackST as defined in Fig. 5.17
specifies detailed dynamic process relations at run-time by a set of event-
driven relations.

On the basis of the above example, it is demonstrated that the important
architectural and dynamic features of ADTs can be described by RTPA,
including dynamic memory allocation, event and timing manipulation,
exception detection, etc., which are hardly dealt with in other approaches to
ADT specifications.

These 11 typical ADTs have also been used for the construction of the
RTPA type library, which enables the ADTs to be reused in real-time system
and non real-time specifications via RTPA [2002a].

5.4 Behavioral Modeling and
 Manipulation

Behaviors of programs and software systems are observable computing
processes and operation consequences on the data objects modeled in the
computing environment. On the basis of the discussions on data objects

StackST.DynamicBehaviors
 { (@CreateStack ↘ Stack.Create (<I:: StackInstS, SizeInstN, ElementInstRT>;
 <O:: ⓢStackID.AllocatedBL, ⓢStackID.ExistBL>)
 | @Push ↘ Stack.Push (<I:: StackInstS, ElementInstRT>;
 <O:: ⓢStackID.PushedBL>)
 | @Pop ↘ Stack.Pop (<I :: StackInstS>;
 <O:: ⓢStackID.PoppedBL, ElementRT>)

 | @Clear ↘ Stack.Clear (<I:: StackInstS>; <O:: ⓢStackID.ClearedBL>)

 | @StackEmpty ↘ Stack.EmptyTest (<I:: StackInstS>; <O:: ⓢStackID.EmptyBL>)

 | @StackFull ↘ Stack.FullTest (<I:: StackInstS>; <O:: ⓢStackID.FullBL>)

 | @ReleaseStack ↘ Stack.Release (<I:: StackInstS>; <O:: ⓢStackID.ReleasedBL>)
) → ⊗
 }

© 2008 by Taylor & Francis Group, LLC

332 Part II Theoretical Foundations of SE

modeling and manipulation in the preceding section, this section describes
how internal and interactive behaviors embodied on data objects in
computing may be formally modeled and manipulated.
 Built upon the VNA machines as described in Section 5.2.4,
fundamental computing behaviors modeled by various instruction sets of
computers can be classified into eight categories, such as data manipulations,
arithmetical operations, logical operations, bitwise operations, program
controls, memory manipulations, I/O manipulations, and interrupt and time
manipulations, as shown in Table 5.14.

Table 5.14
Taxonomy of Fundamental Instructions in Computing

No Category of Behaviors Description
1 Data manipulation Move {(r, r) | (r, m) | (m, r) | (m, m)},

write (r, m), and read (m, r)
where r - registers and m – memory.

2 Arithmetic +, −, ∗, /
3 Logic ∧, ∨, ⊕, ¬
4 Bitwise operations Bit manipulations, logical shift, arithmetic shift,

rotate, rotate through the carry flag
5

Internal
behaviors

Program controls Operation flags: carry, sign, overflow, parity
Evaluations: Boolean, cardinal, numeric
Comparisons: =, ≠, >, <, ≥, ≤
Flow control: call, return, jump, skip, stop

6 Memory
manipulations

Memory addressing, allocation, release, initialization,
data-block transformation/comparison, dynamic
management

7 I/O manipulations Input, output, I/O space manipulations
8

External
behaviors

Interrupt and time
manipulations

Interrupt capture, return, and mask, event processing,
timing

The eight categories of fundamental computing behaviors defined on

abstract data objects can be grouped into internal and external (interactive)
behaviors [Mandrioli and Ghezzi, 1987]. Sections 5.4.1 and 5.4.2 will focus
on the modeling and manipulation of internal behaviors. The modeling of
external and interactive behaviors will be discussed in Section 5.4.3.

5.4.1 INTERNAL BEHAVIORS MODELING

Definition 5.38 The internal behaviors of a software system are
computing operations and processes implemented on internal data objects
contained in registers, cache, and the stack.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 333

As shown in Table 5.14, the internal behaviors encompass those of data
manipulation, arithmetic, logic, bitwise, and program controls. Because the
first four categories of behaviors are intuitive, this subsection will put
emphases on the program control mechanisms in computing and software
engineering.

5.4.1.1 Basic Control Structures (BCS’s)

Definition 5.39 Basic Control Structures (BCS’s) are a set of essential
flow control mechanisms that are used for constructing logical architectures
of software systems.

The most commonly identified BCS’s in computing and program

languages are known as the sequential, branch, iterations, recursion,
function call, parallel, and interrupt structures as shown in Table 5.15. These
BCS’s provide important compositional rules for programming. Based on
them, complex computing functions and processes can be composed.

According to Table 4.9, it can be seen that the 10 BCS’s identified in
Table 5.15 are a subset of process relations R as defined in RTPA, i.e.:

 BCS = {→, |, |…|…,
*R , R+

,
iR , , , || (∯), }

 ⊆ R (5.46)

where R has been formally specified in Theorem 4.7 and explained in
Sections 4.6.5, 6.6.2, and 6.6.3.

5.4.1.2 Control Flow Graphs

BCS’s, or more general the RTPA process relations, model the
fundamental flow control mechanisms and program composing rules in
computing. To abstract the entire control structure of a program, the
technique of control flow graph, which is a combinational representation of
the digraph models of BCS’s as modeled in Table 5.15, may be applied.

Definition 5.40 A Control Flow Graph (CFG) is a directed graph
(digraph) model of program control structure, where a block of sequential
instructions is abstractly represented by an edge, a branch BCS is denoted by
two fan-out edges, and an iteration BCS is represented by a branch and
sequential BCS’s.

 Example 5.14 A program, MaxFinder, is formally described in RTPA
as shown in Fig. 5.18. Its function is to find the maximum number maxN from
a set of n inputted integers {X[1]N, X[2]N, …, X[n]N}.

© 2008 by Taylor & Francis Group, LLC

334 Part II Theoretical Foundations of SE

Table 5.15
BCS’s and their Mathematical Models

Category BCS Notation Structural
model

RTPA model

Sequence Sequence

→

P → Q

Branch

|

 expBL = T → P

| ~ → Q

Branch

Switch |
…
|

 …

 expT =
 i → Pi
| ~ →

 where T ∈ {N, Z, B, S}

While-
loop

*R

exp =
R

F

BL T
P

Repeat-
loop

R +

P →
exp =
R

F

BL T
P

Iteration

For-loop

iR

 1

n

i
R
=

N

N
P(iM)

Function
Call

P F Embedded
component

Recursion

0

i n
R
=N N

PiM PiM-1

Parallel ||

P | | Q Concurrence

Interrupt

P Q

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 335

MaxFinderST ({I:: X[1]N, X[2] N, …, X[n] N }; {O:: max N })
{
 Xmax N := 0 // 1

 →
n

i 0
R

N

N=
(// 2

 X[i N] N > Xmax N // 3
 → Xmax N := X[i N] N // 4
) // 5
 → max N := Xmax N // 6
}

Figure 5.18 Formal description of the MaxFinder program

 The corresponding CFG of this program is shown in Fig. 5.19, where
the number label on a node refers to the instruction number marked in
Fig. 5.18.

Figure 5.19 The CFG of the program MaxFinder

 When a program is abstracted by a CFG, i.e., a problem is reduced to a
digraph, well-defined graph theory can be used to analyze its properties and
complexities. Examples will be given in Section 10.7.2.

5.4.2 ITERATIVE AND RECURSIVE BEHAVIORS
 MODELING

As modeled in Table 5.15, the interactive and recursive behaviors are
an important part of the internal behaviors in computing. Iterative and

 4

 2

 6

 3

 5

 1

© 2008 by Taylor & Francis Group, LLC

336 Part II Theoretical Foundations of SE

recursive control structures are the most fundamental mechanisms of
computing, because they make programming more effective and expressive.
However, iteration constructs are perhaps the most diverse and confusable
instructions in programming languages at both syntactic and semantic levels.
Although a wide variety of notations have been proposed for describing
iterations, there is still a lack of a unified mathematical notation that may be
used to express the notion of repetitive, recursive, and predicative behaviors
and architectures in computing.

When analyzing the syntactic and semantic problems inherent in
iterations in programming, B.L. Meek concluded that: “There are some who
argue that this demonstrates that the procedural approach to programming
languages must be inadequate and fatally flawed, and that coping with
something so fundamental as looping must therefore entail looking at
computation in a different way rather than trying to devise better procedural
syntax. There are others who would argue the possible applications of
looping so it cannot simply be removed or obviated. As ever it is probably
this last argument that will hold sway until (or unless) someone proves them
wrong, whether with a brilliant stroke of procedural syntactic genius, or an
effective and comprehensive new approach to the whole area [Meek, 1991].”

This section adopts the big-R notation [Wang, 2002a/06f] as developed
in Section 4.5.3 as a unified mathematical means for representing and
modeling iterations and recursions in computing. Based on the big-R
notation, fundamental properties of iterative and recursive behaviors of
software systems are comparatively analyzed.

5.4.2.1 Formal Description of Iterations

The importance of iterations in computing is rooted in the basic need
for effectively describing recurrent and repetitive software behaviors and
system architectures. However, unlike the high commonality in branch
structures among programming languages, the syntaxes of loops are far more
than unified. There is even a lack of common semantics of all forms of loops
in modern programming languages.

Based on the inductive property of iterations, the big-R notation as

defined in Eq. 4.59 is found to be a convenient means to describe all types of
iterations including the while-, repeat-, and for-loops.

Definition 5.41 The while loop *R is an iterative construct in which a
process P is executed repeatedly as long as the conditional expression expBL
is true, i.e.:

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 337

 *R P
exp =
R

F

BL T
P

 = γ • (expBL = T
 → P
 γ

 | ~
 → ⊗
) (5.47)

where denotes a jump to a given label γ, ⊗ denotes the exit of the loop,
and * denotes an iteration for 0 to n times, n ≥ 0. That is, P may not be
iterated in the while-loop at run-time if expBL = F at the very beginning.

According to Eq. 5.47, the semantics of the while-loop can be reduced
to a series of repetitive conditional operations where the branch “? ~ → ∅”
denotes an exit of the loop when expBL ≠ T. Note that the update of the
control expression expBL is not necessarily to be explicitly specified inside
the body of the loop. In other words, the termination of the while-loop, or the
change of expBL, can either be a result of internal effect of P or that of other
external events.

Definition 5.42 The repeat loop +R is an iterative construct in which a
process P is executed repetitively for at least once until the conditional
expression expBL = F, i.e.:

+R P P → *R P

 = P →
exp =
R

F

BL T
P

 = P → γ • (expBL = T
 → P
 γ

 | ~
 → ⊗

) (5.48)

where + denotes an iteration for 1 to n times, n ≥ 1. That is, P will be
executed at least once in the repeat loop until expBL ≠ T.

© 2008 by Taylor & Francis Group, LLC

338 Part II Theoretical Foundations of SE

According to Eq. 5.48, the semantics of the repeat-loop is deduced to a
single sequential operation of P plus a serial of repetitive conditional
operations whenever expBL = T. Or simply, the semantics of the repeat-loop is
equivalent to a single sequential operation of P plus a while-loop of P.

In both Eqs. 5.47 and 5.48, the loop control variable expBL is in the type
Boolean. When a loop control variable i as an index is adopted in a numeric
type, say in type N with known lower bound n1N and upper bounds n2N, then a
special variation of iteration, the for loop, can be derived below.

Definition 5.43 The for loop iR is an iterative construct in which a
process P indexed by an identification variable iN, P(iN), is executed
repeatedly in the scope n1N ≤ iN ≤ n2N, i.e.:

iR P(iN)

2

1

n

i =n
R

N

N N
P(iN)

 = iN := n1N
 → γ • (iN ≤ n2N

 → P(iN)
 → ↑(iN)
 γ

 | ~
 → ⊗
)

 = iN := n1N
 → expBL = iN ≤ n2N

 →
exp =
R

F

BL T
(P(iN)

 → ↑(iN)
) (5.49)

where iN denotes the loop control variable, and ↑(iN) increases iN by one.

According to Eq. 5.49, the semantics of the for loop is a special case of
while-loops where the loop control expression is expBL = iN ≤ n2N, and the
update of the control variable iN must be explicitly specified inside the body
of the loop. In other words, the termination of the for-loop is internally
controlled.

Based on Definition 5.42, the most simple for loop that iteratively

executes P(iN) for k times, 1 ≤ i ≤ k, can be derived as follows:

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 339

iR P(iN)

k

i =1
R
N

P(iN) (5.50)

It is noteworthy that a general assumption in Eqs. 5.49 and 5.50 is that i

is a natural number and the iteration step ∆iN = +1. In a more generic
situation, i may be an arbitrary integer Z or in other numerical types, and ∆iZ ≠
+1. In this case, the lower bound of a for-loop can be described as an
expression, or the incremental step ∆iZ can be explicitly expressed inside the
body of the loop, e.g.:

iR P(iZ)

-10

i =0
R
z

(P(iZ)

 → iZ := iZ – ∆iZ
) (5.51)

where ∆iZ ≥ 1.

5.4.2.2 Formal Description of Recursions

Recursion is a powerful tool in mathematics for a neat treatment of
complex problems following a fundamental deduction-then-induction
approach. Gödel, Herbrand, and Kleene developed the theory of recursive
functions using an equational calculus in the 1930s [Kleene, 1952;
McDermid, 1991]. More recent work on recursions in programming may be
found in [Peter, 1967; Hermes, 1969; Hoare, 1985; Wilson and Clark, 1988].
The idea is to construct a class of effectively computable functions from a
collection of base functions using fundamental techniques such as function
composition and inductive referencing.

5.4.2.2.1 Properties of Recursions

Recursion is an operation that a process or function calls or refers to
itself.

Definition 5.44 A recursion of process P can be defined by

mathematical induction, i.e.:

F0(P) = P,
F1(P) = F(F0(P)) = F(P),
…
Fn+1(P) = F(Fn(P)), n ≥ 0 (5.52)

© 2008 by Taylor & Francis Group, LLC

340 Part II Theoretical Foundations of SE

A recursive process should be terminable or noncircular, i.e., the depth
of recursive dr must be finite. The following theorem guarantees that dr < ∞
for a given recursive process or function [Lipschutz and Lipson, 1997].

Example 5.15 The factorial function can be recursively defined as

shown in Eq. 5.53.

 (nN)! {

 nN = 0
 → (nN)! := 1
 | ~

 → (nN)! := nN • (nN-1)!
 } (5.53)

Example 5.16 A C++ implementation of the factorial algorithm as

given in Example 5.15 is provided below.

 int factorial (int n)
 {

 int factor;
 if (n==0)
 factor = 1;

 else factor = n * factorial(n-1);
 return factor;

 } (5.54)

In addition to the usage of recursion for efficiently modeling repetitive
behaviors of systems as above, it has also been found useful in modeling
many fundamental language properties.

Example 5.17 Assume the following letters are used to represent the
corresponding syntactic entities in the angler brackets:

Corollary 5.4 A recursive function is noncircular, i.e., dr < ∞, iff:

 a) A base value exists for certain arguments for which the
function does not refer to itself;

 b) In each recursion, the argument of the function must be closer
to the base value.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 341

P <program>,
L <statement list>,
S <statement>,
E <expression>,
I <identifier>,
A <letter>,
N <number>, and
D <digit>

The abstract syntax of grammar rules for a simple programming

language may be recursively specified in BNF (see Section 6.3.6) as follows.

 E ::= E ‘+’ E
 | E ‘-‘ E
 | E ‘*’ E
 | ‘(‘ E ‘)’
 | I
 | N
 I ::= I A | A
 A ::= ‘a’ | ‘b’ | … | ‘z'
 N ::= N D | D
 D ::= ‘0’ | ‘1’ | … | ‘9’ (5.55)

In Eq. 5.55 expression E is recursively defined by operations on E

itself, an identifier I, or a number N. Further, I is recursively defined by itself
and/or letter A; and N is recursively defined as itself and/or digit D. Since any
form of E as specified above can be eventually deduced on terminal letters
(‘a’, ‘b’, …, ‘z’), and digits (‘0’, ‘1’, …, ‘9’), or predefined operations (‘+’,
‘-‘, ‘*’, ‘(‘, ’)’), the BNF specification of E as shown in Eq. 5.55 is called
well defined.

5.4.2.2.2 The Mathematical Model of Recursions

Definition 5.45 Recursion is an embedded process relation in which a
process P calls itself. The recursive process relation can be denoted as
follows:

 P ↺ P (5.56)

The mechanism of recursion is a series of embedding (deductive,
denoted by ↺) and de-embedding (inductive, denoted by ↻) processes. In
the first phase of embedding, a given layer of nested process is deduced to a
lower layer till it is embodied to a known value. In the second phase of de-
embedding, the value of a higher layer process is induced by the lower layer
starting from the base layer, where its value has already been known at the
end of the embedding phase.

© 2008 by Taylor & Francis Group, LLC

342 Part II Theoretical Foundations of SE

Recursion processes are frequently used in programming to simplify
system structures and to specify neat and provable system functions. It is
particularly useful when an infinite or run-time determinable specification
has to be clearly expressed.

Instead of using self-calling in recursions, a more generic form of
embedded construct that enables inter-process calls is known as the function
call, P Q, as defined in RTPA, where the called process Q can be
regarded as an embedded part of process P.

Using the big-R notation, a recursion can be defined formally as
follows.

Definition 5.46 Recursion R Pi is a multi-layered embedded process
relation in which a process P at layer i of embedment, Pi, calls itself at an
inner layer i-1, Pi-1, 0 ≤ i ≤ n. The termination of Pi depends on the
termination of Pi-1 during its execution, i.e.:

 R Pi
0

i =n
R
N N

(iN > 0

 → PiN := PiN-1
 | ~

 → P0
) (5.57)

where n is the depth of recursion or embedment that is determined by an
explicitly specified conditional expression expBL = T inside the body of P.

Example 5.18 Using the big-R notation, the recursive description of the
algorithm provided in Example 5.15 can be improved as follows:

 (nN)! R (nN) !

 =
0

i =n
R
N N

 (iN > 0

 → (iN)! := iN • (iN-1)!
 | ~
 → (iN)! := 1

) (5.58)

5.4.2.3 Comparative Analysis of Iterations and Recursions

In the literature, iterations were often mixed with recursions, or an
iteration was perceived as a special type of recursion. Although, both

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 343

iteration
iR P(i) and recursion R Pi are repetitive and cyclic constructs

in computing, the fundamental differences between their traces of execution
at run-time are that the former is a linear structure, i.e.:

iR P(i) = P1 → P2 → … → Pn (5.59)

However, the latter is an embedded structure, i.e.:

R Pi = Pn ↺Pn-1 ↺…↺P1 ↺P0 ↻P1 ↻…↻Pn-1 ↻Pn

 (5.60)

The generic forms of iterative and recursive constructs and their trace
models in computing can be contrasted as illustrated in Figs. 5.20 and 5.21 as
follows.

 … P

 … P1

 … P2

 . . .

 … Pn

 . . .

Figure 5.20 The linear architecture of iterations

 … Pn

 … Pn-1

 ...

 P0

 …

 …

 …

Figure 5.21 The nested architecture of recursions

© 2008 by Taylor & Francis Group, LLC

344 Part II Theoretical Foundations of SE

It is noteworthy that there is always a pair of counterpart solutions for a
given repetitive and cyclic problem with either the recursive or iteration
approach. For instance, the corresponding iterative version of Example 5.15
can be described below.

Example 5.19 Applying the big-R notation, the iterative description of
the algorithm as provided in Example 5.15 is shown below.

 (nN)! {
 factorialN := 1

 →
n

i =1
R

N

N
(factorialN := iN • factorialN)

→ (nN)! := factorialN
 } (5.61)

It is interesting to compare both formal algorithms of factorial with

recursion and iteration as shown in Eqs. 5.58 and 5.61, respectively.

Example 5.20 On the basis of Example 5.19, an iterative
implementation of Example 5.15 in C++ can be developed as follows.

 int factorial (int n)
 {

 int factor = 1;
for (int i = 1; i <= n ; i++)

 factor = i * factor;
return factor;

 } (5.62)

The above examples show the difference between the recursive and
iterative techniques for implementing the same algorithm for repetitive and
cyclic computation. Contrasting Examples 5.18 and 5.19, or Examples 5.16
and 5.20, it can be seen that the recursive solution for a given problem is
usually more expressive, but less efficient in implementation in terms of time
and space complexity, than its iterative counterpart. As Peter Deutsch, the
creator of the GhostScript interpreter, put it: “To iterate is human, to recurse
divine.”

The efficient treatment of repetitive and recurrent behaviors and
architectures has been recognized as one of the most premier needs in
computing. Case studies on the applications of the big-R notation as
introduced in Section 4.5.3 in denoting iterative and recursive computing
behaviors demonstrated in this subsection show that a convenient notation

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 345

may dramatically reduce the difficulty and complexity in expressing the most
frequently used and highly recurring concept and notion in computing.

5.4.3 EXTERNAL AND INTERACTIVE BEHAVIORS
 MODELING

Definition 5.47 The external behaviors of a software system are
interactive computing operations and processes implemented on external data
objects modeled in the memory and I/O space that represent the system
architectural model and environment.

As shown in Table 5.14, interactive behaviors modeling in computing

encompass memory manipulation, external interface (I/O) manipulation,
operating event handling, timing event handling, interrupt handling, and
exception handling.

5.4.3.1 Memory Manipulations

Memory manipulations are the most frequently used techniques of
interactive behavioral modeling in computing, which deal with memory I/O
operations on the system memory model MEMST [addr1H … addr2H]RT as
given in Definition 5.21.

Typical memory manipulation behaviors are memory allocation,
memory release, read, and write, as modeled in RTPA meta processes (Table
4.8).

5.4.3.1.1 Modes of Addressing

As formally described in Definition 4.71, addressing is a function π:
idT → ptrÞP that maps a given logical idT into the physical memory block
identified by ptrÞP in MEM[ptrP, ptrP+n-1]T, and T ∈ {P, H, N, Z}.

Addressing is one of the most important and special operations in
computing, which is used to find the physical address of a logical data object
represented by an identifier in the memory space. Addressing techniques can
be classified as absolute and relative, where the letter can be further divided
into direct and indirect addressing dependent on whether an address is
directly provided or indirectly inferred. Typical addressing modes in
computing can be summarized in Table 5.16, where a formula describes how
a memory address in hexadecimal, addrH, can be obtained based on available
information in registers and offsets.

© 2008 by Taylor & Francis Group, LLC

346 Part II Theoretical Foundations of SE

Table 5.16
Typical Addressing Modes in Computing

No. Category Mode Description
 Absolute [addrH = dataH]
1 Immediate addrH = PhysicalAddressH
 Relative [addrH = expH]
2 - Direct Register addrH = RegisterH
3 Offset addrH = RegisterH + offsetH
4 Index addrH = RegisterH + IndexH
5 Base addrH = BseRegH + offsetH
6 Segment addrH = SegRegH + offsetH
7 - Indirect Register addrH = (RegisterH)H
8 Offset addrH = (RegisterH)H + offsetH
9 Index addrH = (RegisterH)H + IndexH
10 Base addrH = (BaseRegH)H + offsetH
11 Segment addrH = (SegRegH)H + offsetH

In high-level programming languages, addressing is usually relative
and logical. That is, the address of a given data object is referred to as a
logical location rather than an absolute memory address. However, in many
situations in computing, such as system specification, architectural modeling,
real-time system development, dynamic memory manipulation, and operating
system development, physical and absolute addressing are necessary.

In addition, physical port address manipulations are required for I/O
space manipulations.

5.4.3.1.2 Memory Read and Write

As given in Definition 4.74, a memory read denoted by is a meta
process that gets data xT from a given memory location MEM[ptrP], where
PtrP is a pointer that identifies the physical memory address, i.e.,
MEM[ptrP]T xT, where T ∈ T.

As given in Definition 4.75, a memory write process denoted by is a
meta process that puts data xT to a given memory location MEM[ptrP],
where ptrP is a pointer that identifies the physical memory address, i.e., xT
MEM[ptrP]Twhere T ∈ T.

5.4.3.1.3 Dynamic Memory Allocation

Typical memory allocations for almost all the primitive types of
variables as modeled in Table 5.7, except RT, are static that are controlled by
the system. That is, the logical name of a variable is permanently bound to a
fixed element or a continuous block of the physical memory throughout its

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 347

lifecycle and accessibility scope. The condition for enabling static memory
allocation at compile-time is that the size of the given variable or its length
of memory occupation is determinable. Otherwise, the memory allocation
should be dynamic, and be postponed until run-time.

 Definition 5.48 Dynamic memory allocation is a binding process that
associates a logical name of a data object, usually consisting of multiple
similar elements, with a series of inter-linked physical locations in the heap
during run-time.

 Example 5.21 A generic digraph model can be logically represented
by a list of dynamically allocated nodes as shown in Fig. 5.22 using the
doubly-linked list model.

 Node 1

 Node 2

 Node k (k > 0)

Head

Tail

 PriorPtrP ElementRT OrderN {E} {W} NextPtrP

 PriorPtrP ElementRT OrderN {E} {W} NextPtrP

 PriorPtrP ElementRT OrderN {E} {W} NextPtrP

Figure 5.22 The architectural model of a digraph

In the doubly-linked list model of digraph, two global pointers, head
and tail, pointing to a designated first and last node, respectively. The nodes
are represented as a set of arrays, each of which points to a list of attributes
consisting of two pointers (prior and next), the order (number of edges), a set
of edges (E) in which the elements are node numbers connected to the given
node, and a set of weights (W) denoting the weight of each corresponding
edges.

A formal description of the architecture of the digraph in RTPA is
shown in Fig. 5.23. The digraph CLM describes the abstract data structures
of its doubly-linked list model. Each node in the digraph is modeled in
DiGraphST.Architecture.NodeCLMST. In the node CLM, an ElementRT is a
data field for accommodating information of specific applications, and is
specified as a run-time determinable type in RT. Attached to each node is a set

of edges
1

Order

i
R
=

N

N
Edge(iN)S depending on the value of OrderN, and the edges

may be specified for a WeightN corresponding to each of them in E. The

© 2008 by Taylor & Francis Group, LLC

348 Part II Theoretical Foundations of SE

PriorPtrP and NextPtrP of a node specify the bidirectional links of a node. A
complete specification of the DiGrapg static and dynamic behaviors may be
referred to [Wang and Adewumi, 2004].

Figure 5.23 Formal specification of the architecture of the digraph

The key difference between dynamic memory allocation and static
memory allocation is whether the size of memory requirement of a given
variable is run-time vs. compile-time determinable. This is in line with the
definitions of dynamic and static behaviors of processes as recognized in
Section 4.7.1. Another difference is the mechanisms of their physical
implementations, where dynamic memory allocation uses the user-
controllable heap that is a user controlled memory area as shown in Fig.
5.11; while static memory allocations uses language-controlled stacks in
system memory.

Dynamically allocated variables and data objects in the heap can be
accessed by pointers or indirect addressing. As described in Definition 4.72,
memory allocation is an inverse function of addressing, i.e., π-1: ptrÞP →
idT, that associates a physical memory block MEM[ptrP, ptrP+n-1]T with the
given logical idT.

Because dynamic allocated variables and complex data objects reside in
the user-controllable heap, a dynamic memory allocation and its release
should be carried out by explicit instructions provided by users. Typical
dynamic memory allocation and release instructions are as follows:

 DiGraphST.Architecture.CLMST DiGraphS ::
(<GSize: N | GSizeN ≥ 1>, // Number of Nodes

1

GSize

i
R
=

N

N
<Node(iN) : ST>,

 <Head : P>,
 <Tail : P>
)

DiGraphST.Architecture.NodeCLMST NodeS ::
(<Element : RT>,
 <PriorPtr : P>,
 <NextPtr : P>,
 <Order: N | 0 ≤ OrderN ≤ SizeofEdgesN>,

 <
1

Order

i
R
=

N

N
Edge(iN) : S>,

 <
1

Order

i
R
=

N

N
Weight(iN) : N>,

)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 349

 a) C++: (ptrP = new T, delete ptrP)
 b) C: (ptrP = malloc(n), free(ptrP))
 c) Java: (objC = new objectC(), system.gc()) (5.63)

where in Java, gc stands for garbage collection and C denotes a type of class.
Memory allocation is a key meta process for dynamic memory

manipulation in RTPA. The memory allocation process in RTPA, idT ⇐
MEM[ptrP, ptrP+n-1]T, is implemented in Fig. 5.24.

Figure 5.24 Implementation of dynamic memory allocation process in RTPA

Memory release is a process that dissociates a given memory block
from a logical identifier idT, and returns the memory block to the system
through a mechanism known as system garbage collection. The memory
release process of RTAP, idT MEM[⊥]T, is implemented in Fig. 5.25.

Figure 5.25 Implementation of the memory release process in RTPA

1

n

i
R
=

MemoryRelease (<I :: ObjectIDS>; <O:: ⓢObjectID.ReleasedBL>)
{
 delete ObjectIDS // System.GarbageCollection()
 → ObjectIDS := null
 → (ⓢObjectReleasedBL := T
 → ⓢObjectID.ReleasedBL = T
 | ~
 → ⓢObjectID.ReleasedBL = F
)
}

MemoryAllocation (<I :: ObjectIDS, NofElementsN, ElementTypeRT >;
 <O:: ⓢObjectID.ExistedBL>)
{
 nN := NofElementsN

 → (New ObjectID(iN) : ElementTypeRT)
 → (ⓢObjectAllocatedBL := T
 → ⓢObjectID.ExistedBL = T
 | ~
 → ⓢObjectID.ExistedBL = F
)
}

© 2008 by Taylor & Francis Group, LLC

350 Part II Theoretical Foundations of SE

The released memory block that was logically identified by idS will
then be collected by the system garbage management mechanism provided
by an operating system.

5.4.3.2 Events Handling

 Events capture and handling are important behaviors of all open
systems, particularly for real-time systems. As given in Definition 5.18, the
event types in computing can be classified into operational, time, and
interrupt events as shown in Table 5.17, where @ is the event prefix, and S,
TM, and ⊙ the type suffixes. The operational events occur randomly. A
special kind of operational events is the exception events. Another special
type of system events may be classified as the interrupt events.

Table 5.17

Event Types of RTPA

No Type Syntax Usage in system
dispatch

Category

1 Operational event @eS @eiS e Pi Internal or external

2 Time event @tTM @tiTM t Pi Internal

3 Interrupt event @int @intj i Pj External or internal

5.4.3.2.1 Operating Event Handling

As given in Definition 5.102, an event-driven dispatch behavior of
software system, denoted by e, is a process relation in which the ith
process Pi is triggered by a predesignated system event @eiS, i.e., @eiS e Pi ,
i ∈{1, …, n}.

5.4.3.2.2 Time Event Handling

As given in Definition 4.78, absolute timing event manipulation known
as timing, denoted by @ , is a meta process that sets the value of a timing
variable @tTM as the absolute time of the current system clock §tTM, i.e.,
@tTM @ §tTM, where TM is an abbreviation of TI = hh:mm:ss:ms, D = yy:MM:dd,

and DT = yyyy:MM:dd:hh:mm:ss:ms, respectively.
Similarly, the related timing event manipulation known as duration

given in Definition 4.79, denoted by , is a meta process that sets a relative
time @tnZ as an integer based on the relative system clock §tnZ and the given

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 351

period ∆nZ, i.e., @tnTM §tnTM + ∆nN, where the unit of all relative timing
variables is ms.

As given in Definition 4.101, a time-driven dispatch behavior of
software system, denoted by t, is a process relation, in which the ith process
Pi is triggered by a predefined system time @tiTM, i.e., @tiTM t Pi, i ∈{1, ...,
n}.

5.4.3.2.3 Interrupt Event Handling

The interrupt mechanism describes execution priority and control
taking-over between processes. As given in Definition 4.100, an interrupt,
denoted by , is a process relation in which a running process P is
temporarily held before termination by another higher priority process Q on
interrupt event @e at the interrupt point , and the interrupted process will
be resumed when the high priority process has been completed, i.e., P Q =
P || (@int Q), where and denote interrupt service and interrupt
return.

As given in Definition 4.103, an interrupt-driven dispatch, denoted by
 i, is a process relation in which the ith process Pi is triggered by a

predefined system interrupt @inti , i.e., @inti Pi , i ∈{1, …, n}.

5.4.3.2.4 Exceptional Event Handling

As given in Definition 4.82, an exception detection, denoted by !, is a
meta process that logs a detected exception event @eS at run-time, i.e.,
!(@eS). The RTPA exception detection mechanism is a fundamental process
for safety and dependable system specification, which enables system
exception detection, handling, or postmortem analysis to be implemented.

5.5 Program Modeling:
 Coordination of Computational
 Behaviors with Data Objects

Program modeling provides various encapsulation methodologies for
integrating and coordinating computing behaviors and data objects into a
coherent system. Since the scale of a program can be very large,

© 2008 by Taylor & Francis Group, LLC

352 Part II Theoretical Foundations of SE

methodologies for program modeling, construction, and refinement play
important roles in programming and software engineering.

5.5.1 THE UNIFIED MATHEMATICAL MODEL OF
 PROGRAMS

The concept of program was treated as for granted in computing and
software engineering. Although there are various perceptions of programs, a
rigorous and generic mathematical model of programs, the key object under
study in software engineering, is yet to be sought.

The mathematical models of programs and software can be described
and analyzed at various composition levels, such as those of statement,
process, and system from bottom-up, according to the hierarchical
architecture of the program. It is noteworthy that a statement is the minimum
functional unit of programs at the most fundamental level of programming. If
the mathematical models of all fundamental instructions (known as the meta
processes in RTPA) [Wang, 2002a/02b/03c/06a/07a] and their relational
composition rules (known as the process relations in RTPA) in a given
language can be defined, the mathematical models of the process and
program at the higher levels can be derived and established inductively.

5.5.1.1 The Abstract Model of Statements

A statement as an instance of an instruction in a programming language
is the smallest functional unit of a program that specifies an explicit action
and results in the change of one or more data objects logically modeled by
variables.

Definition 5.49 A statement s in a program is an instantiation of a meta
instruction of a programming language that executes a basic unit of coherent
function and leads to a predictable behavior.

Definition 5.50 A generic model of a statement s in computing can be
described as a function p, that maps a set of inputs I into a set of outputs O,
i.e.:

 s p: I → O (5.64)

The above IPO model of statements can be illustrated as shown in Fig.
5.26. A statement is usually a relational function between a variable on the
left-hand side and an expression on the right-hand site.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 353

p OI

Figure 5.26 A statement as an IPO process

A set of 17 fundamental instructions in computing, as shown in Table
4.8 and Theorem 4.6, has been identified and elicited in RTPA known as the
meta processes. Although existing programming languages may implement a
larger set of instructions, the additional ones are logical combinations of the
17 essential meta processes.

5.5.1.2 The Abstract Model of Processes

A process at the middle or component level of the program hierarchy is

composed by individual statements with given rules of algebraic
compositions.

Definition 5.51 A process P is a composed component in a program
that forms a logical combination of n meta statements si and sj, 1 ≤ i < n, 1 <
j ≤ m, according to certain composing relations rij, i.e.:

1

1

1 12 2 23 3 1,

(s), 1

(...((() s) s) ... s)

n

i ij j
i

n n n

P s r j i

s r r r

R
−

=

−

= = +

=

 (5.65)

where rij is a set of algebraic relations or composing rules.

A comprehensive set of those composing rules has been modeled in

RTPA known as process relations as described in Table 4.9 and Theorem
4.7.

5.5.1.3 The Abstract Model of Programs

Definition 5.52 A program ℘ is a triple of a finite list of instructive
statements S that describes the computational behaviors, a set of data objects
D that model the internal states and external environment, and their
interrelations R, i.e.:

 ℘= (S, D, R) (5.66)

The above definition puts emphases on the algebraic model of
programs. A dynamic structural model of programs can be described below.

© 2008 by Taylor & Francis Group, LLC

354 Part II Theoretical Foundations of SE

Definition 5.53 A program ℘ is a composition of a finite set of k
processes at the component level according to certain process dispatching
rules, i.e.:

1

(@)S
k

i i
i

e PR
=

℘= (5.67)

where ↳ denotes a process dispatch according to a predesignated event @eiS,
which may be an external, a system timing, or an interrupt event.

Formal descriptions of the event-, time-, and interrupt-driven
dispatching mechanisms of program systems are described in Section 5.4.3.2.

The process in Definition 5.53 has been formally described in Theorem
4.3 by the cumulative relational model of processes. Based on Theorem 4.3,
the cumulative relational model of programs can be derived in the following
theorem.

Theorem 5.7 provides a unified mathematical model for programs

[Wang, 2006h], which reveals that a program is a finite and nonempty set of
embedded binary relations between a current statement and all previous ones
that formed the semantic context or environment of computing. It also reveals
that the nature of programs is a cumulative (nonlinear) relational composition
of a set of finite meta processes. The law indicates that no program is
context-free, because every statement is relational to the consequences of all
its previous statements that form the context of the given statement in a
program and constitute the semantics of the given execution.

According to Theorem 5.7, a program can be reduced to the
composition of a finite set of k processes at the component level. Then, each

The 17th Law of Software Engineering

Theorem 5.7 The generic mathematical model of programs states that a
software system or a program ℘ is a set of complex embedded
cumulative relational processes Pk dispatched by system-level events ek,
i.e.:

 1
1

1 1

 (@)

 [@ (() () s ())], 1

S

S

m

k k
k
m n

k i ij j
k i

e P

e s k r k k j i

R
R R
=

−

= =

℘=

= = +

 (5.68)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 355

of the processes can be further reduced to the composition of a finite set of n
statements at the bottom level. The definitions, syntaxes, and formal
semantics of each of the meta processes and process relations may be
referred to RTPA [Wang, 2002a/02b/03c/06a/07a]. A complex process and a
program can be derived from the meta-processes by the set of algebraic
process relations.

5.5.2 PROGRAMS MODELING AT COMPONENT
 LEVEL

Typical program modeling methodologies at the component and system
levels can be classified into algorithms, classes, patterns, and frameworks
from the bottom up. This subsection presents the first three models in the
component level of the program hierarchy. System level models in terms of
software frameworks will be discussed in Section 5.5.3.

5.5.2.1 Algorithms

An algorithm is a computational construct that provides an efficient
method, which can be described and implemented by a finite list of
instructive statements, for solving a particular and frequently encountered
problem.

Definition 5.54 An algorithm Λ is a frequently recurring function f that
maps a set of input X into a set of output Y by a finite set of statements or a
finite-step process, i.e.:

 Λ = f: X → Y (5.69)

The criteria that warrant a piece of program as an algorithm are due to
its reusability, finiteness, and efficiency.

Example 5.22 A problem called the In-Between Sum, IBSum, for two

given integers A and B, and A < B. For instance, when A = 2 and B = 5,
IBSum = 3 + 4 = 7.

A direct algorithm for IBSum can be described by the following:

1

1

B

i A
i

−

= +
∑ (5.70)

A more efficient algorithm can be derived based on the difference of

sums of B-1 and A on the basis of known fact that
1

(1)
2

n

i

n ni
=

+=∑ , i.e.:

© 2008 by Taylor & Francis Group, LLC

356 Part II Theoretical Foundations of SE

IBSum =
1

1

B

i

−

=
∑ -

1

A

i=
∑

 = (-1) • • (1)
2 2

B B A A +− (5.71)

The second algorithm as shown in Eq. 5.71 is well designed because its

complexity in average and worst cases is a constant c, i.e., O(c), which is not
dependent on the distance between A and B. However, the complexity of the
first direct algorithm is O(n), which is more complicated when n is
considerably large.

The second IBSum algorithm is formally described in RTPA as shown

in Fig. 5.27.

Figure 5.27 RTPA specification of the algorithm of In-Between Sum

5.5.2.2 Classes and Object-Orientation

Bertrand Russell (1872-1970) proposed that the world could be
described by a set of objects, classes, and relations in 1900 [Russell, 1961],
which is considered the earliest concept of modern object notions that has

IBSAlgorithm.Architecture <Input: ST>
 || <Output: ST>
 || <Event: ST>
 || <Status: ST>

= InputST:: (<A: N | 0 < AN < 65535>,
 <B: N | 0 < BN < 65535, BN > AN>)
 || OutputST:: (<IBSum: N>)
 || EventST:: (<@IBSAlgorithmS>)
 || StatusST:: (<ⓢIBSResultBL>)

IBSAlgorithm.StaticBehaviors IBS_Algorithm

IBS_Algorithm ({I:: AN, BN}; {O:: ⓢIBSResultBL, IBSumN})
{

→ MaxN := 65535
→ ((0 < AN < maxN) ∧ (0 < BN < maxN) ∧ (AN < BN)

 → IBSumN := (-1) • • (1)
2 2

B B A A +−N N N N

 → ⓢIBSResultBL := T
 | ~

 → ⓢIBSResultBL := F
 → ! (@’AN and/or BN out of range, or AN ≥ BN’)
)
}

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 357

latterly been adopted in software engineering [Goldberg and Robson, 1983;
Stroustrup, 1982/86/87; Booch, 1986; Rumbaugh et al., 1991].

Object-oriented programming is one of the significant developments of
software engineering that emerged in the 1980s represented by SmallTalk
[Goldberg and Robson, 1983] and C++ [Stroustrup, 1982/86/87]. In
computer science and software engineering, a set of fundamental conceptual
tools has been developed to cope with the complexity of problem
specification and solution. Some of the important methodologies are
abstraction, information hiding, functional decomposition, modularization
and reusability. Object-orientation technologies have inherited the merits of
these fundamental approaches and represented them in well organized
mechanisms such as encapsulation, inheritance, reusability, and
polymorphism [Gunter and Mitchell, 1994].

5.5.2.2.1 Mathematical Models of Classes

The abstract model of a generic class can be modeled using the

following mathematical structures in RTPA.

Definition 5.55 A class is a dynamic construct in object-oriented

programming to build hierarchical architectures of a system, which can be
formally described below:

 ClassST { Architecture : ST
 || StaticBehaviors : ST
 || DynamicBehaviors : ST
 } (5.72)

 ClassST.ArchitectureST { <Interfaces : ST>
 || <Implementations : ST>
 } (5.73)

 ClassST.ArchitectureST.InterfacesST ClassIDST ::
 { <Attributes : RT >
 || <Methods : ST >
 } (5.74)

The interfaces of a class are the means of access for users of the class,

which model a set of attributes and methods. The implementations of the
class are hidden behind the interfaces to realize detailed functions. For a well
packaged class, the only access means to it is via its interfaces. The
implementations of methods and related data structures are hidden inside the
class, which enable the methods to be changed independently without
affecting the interfaces of the class.

© 2008 by Taylor & Francis Group, LLC

358 Part II Theoretical Foundations of SE

The types of classes in object-oriented methodologies can be classified
into the categories of system classes (SC) and user derived classes (DC). The
latter can be further divided into abstract classes (AC) and concrete classes
(CC). These classes, as well as methods (M) modeled in a class, are treated as
derived types of the system architecture type (ST) in RTPA as defined in
Table 5.18.

Table 5.18
Taxonomy of Class Types

Definition 5.56 An object is an instantiation of a class or multiple

classes, which cannot be further inherited by other classes or objects.

Tracing back the history of programming methodologies, it can be seen

that object-orientation is a natural extension and combination of two main
stream programming methodologies: the functional-oriented programming
and the data-oriented programming.

Definition 5.57 Object Orientation (OO) is a kind of system design

and/or implementation methodologies that supports integrated functional-
and data-oriented programming and system development.

5.5.2.2.2 Associations between Classes and Objects

The associations between classes can be classified into nine categories

in OO methodologies as summaries in Table 5.19 [ORG, 2005]. Formal
definitions of the mathematical semantics of these OO associations [Wang
and Huang, 2005] are given in RTPA.

The associations of classes form a foundation to denote complicated

relations between classes in software patterns, which will be discussed in
Section 5.5.2.3. More formal treatment of the mathematical semantics of OO
associations among classes may be referred to concept algebra as presented
in Section 15.3.3 [Wang, 2006e]

No Type Symbol Description
1 System class SC A class provided by the system
2 Derived class DC A class defined by a user based on SC
2.1 Abstract class AC A class serves as a generalization and

conceptual model, which can be
inherited but can not be instantiated

2.2 Concrete class CC An ordinary class derived from an AC

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 359

Table 5.19
OO Associations and their Mathematical Semantics in RTPA

OO

Associations
UML RTPA

Inheritance
(Inh)

Q

P

:In h Q P

Multiple
inheritance

(MInh)

Q

P1 Pn

1
:

n

i
i

M In g Q PR
=

Delegation
(Del)

Q

P

 D el Q P

Aggregation
(Agg) P

Q1 Qn

1
. : ,

n

i i
i

i

A g g P M Q

P Q

R
=

∫∫

Composition
(Com) P

Q1 Qn

1
. : ,

 ||

n

i i
i

i

C o m P M Q

P Q

R
=

Generalization
(Gen)

P

Q1 Qn

1
:

n

i
i

G en Q PR
=

Instantiation
(Ins)

Q

P

:Ins Q P

Dependency
(Dep)

P

Q

1
. :

n

i
i

D ep Q M PR
=

Abstract/
Concrete class

(AC_CC)

<<Interface>>
AC

CC CC

_ :C C A C C C A C

© 2008 by Taylor & Francis Group, LLC

360 Part II Theoretical Foundations of SE

5.5.2.2.3 Basic Attributes of Object-Orientation

OO technologies were originally designed for programming. Therefore
OO was initially an implementation tool rather than a design tool. However,
as OO programming became broadly accepted, it was found that OO
technologies could be used not only in programming, but also in system
design and analysis.

The fundamental attributes that can be commonly identified in OO
technologies are encapsulation, inheritance, reusability, and polymorphism.
A set of formal descriptions of these basic attributes is given below.

Definition 5.58 Encapsulation is a basic attribute of OO technologies
by which functions and data structures of a class is integrated into a package,
and the class can only be accessed through its methods with specific
messages.

Definition 5.59 Inheritance is a basic attribute of OO technologies by

which methods and related data structures modeled in a class can be inherited
by derived classes or objects as existing system functions and/or structural
types.

Definition 5.60 Reusability is a basic attribute of object-oriented

technologies by which classes and their hierarchy modeled in an OO system
can be reused by different applications as existing system resources.

Definition 5.61 Polymorphism is a basic attribute of OO technologies
that provides evolvability and tailorability for inheritance by which the
inherited methods and related data structures of a class can be partially
redefined or overloaded.

Within the above set of basic attributes, encapsulation is a direct
representation of the fundamental principles of abstraction, information
hiding, and modularization in OO methodologies. Inheritance and reusability
are powerful features for improving productivity and quality in software and
system development. Polymorphism is a supplement of flexibility to other
attributes.

OO technologies are useful conceptual modeling approach and
generically applicable in software system design, analysis, and
implementation. However, a number of drawbacks of OO systems as
discussed below have also been identified in applications. For example, by
using common OO languages, programmers must know details of a
complicated structure of the foundational class hierarchy provided by a
compiler in order to inherit or reuse a software component and/or a data type.
This approach significantly increases the difficulty of mastering OO

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 361

languages, and generates inherent complexity, subsequently, in OO software
testing and maintenance.

Moreover, inherence of a made class hierarchy in an OO language is
not tailorable. Programmers have to inherit anything that is contained in a
given class and its ancestors, even just a small portion of functions of the
class intended to be reused. This inefficient implementation of object
technology results in a special phenomenon so called ‘fatware,’ of which
only an empty object encapsulation in common OO languages cost more than
10 kbytes in implementation. Also, inheritance from the root of a vendor’s
class system causes difficulty in testing and maintenance. For example, a
project reported that more than half of the bugs in porting a Borland C++
based software into MS C++ environment were caused by the incompatibility
between the two foundational class structures [Wang, 2001a].

Another drawback of OO technologies is that the data objects and their
architectures are bounded with a set of predefined operations. When an
object needs to use data objects defined in multiple classes, or to only use
one data object from a large set of them defined in a class, the efficiency will
be dramatically decreased by multiple inheritance. This is not acceptable in
the design and implementation of real-time systems. More generally, there is
only one global data object model for an entire real-time system, and it is
commonly shared by all classes. If the system architectural model is defined
in the fundamental class of the system, every other derived class has to
inherit the whole data model, but only use a very small portion of it. These
result in very high level of coupling between the data objects and their
behavioral (operational) models and low efficiency in implementation,
particularly for real-time systems.

In general, it is noteworthy that OO is only a high-level logical
metaphor for software component and system modeling. There are no such
concepts of object and class at machine or target language level. That is,
either OO or non-OO technique results in the same implementation of a
system at the machine level. In fact, OO techniques may result in low
efficient code in both speed and memory usages than those of non-OO
techniques. However, the gains from OO are a better modeling approach to
complex systems, an improved readability of program, more available
fundamental object libraries, and a wide-range support of tools.

5.5.2.3 Patterns

A pattern according to the Oxford Dictionary of English is a regular or
logical form, a model, design, or a set of instructions for making something,
or an excellent example. Christopher Alexander and his colleagues (1977),
working in civil engineering, proposed that: “The pattern is, in short, at the
same time a thing, which happens in the world, and the rule which tells us
how to create that thing, and when we must create it. It is both a process and

© 2008 by Taylor & Francis Group, LLC

362 Part II Theoretical Foundations of SE

a thing; both a description of a thing which is alive, and a description of the
process which will generate that thing.”

Software patterns [Gamma, 1995; Taibi and Ngo, 2003; Vu and Wang,
2004] are a new component modeling technology built upon classes and
object-oriented techniques. Software patterns are presented as a means of
encapsulating the experience of architects and programmers in order to
facilitate effective software reuse and design experience sharing. Patterns
provide the following advantages in software architectural design: (a)
experience encapsulation; (b) architectures of reusable components; and (c)
enhanced documentation of software designs.

5.5.2.3.1 The Concept of Software Patterns

A pattern is a set of interacting classes. Patterns can be used as a
powerful tool for capturing software design notions and best practices, which
provide common solutions to core problems in software development.

Definition 5.62 A pattern is a complex software construct that
incorporates a set of classes for a recurring architectural and behavioral
design described by abstract classes, concrete classes, instantiations, and
their associations.

Gamma and his colleagues (1995) proposed that software patterns can

be classified into three categories known as the creational, structural, and
behavioral patterns. The classification and description of software patterns
can be summarized in Table 5.20, where the first three categories of patterns
are adopted according to Gamma et al. (1995), while the fourth category of
patterns is user defined according to Definition 5.62.

5.5.2.3.2 The Mathematical Model of Patterns

A pattern is a highly reusable and coherent set of complex classes that
are encapsulated to provide certain functions [Wang and Huang, 2005].
Pattern specification is based on class specifications as described in Section
5.5.2.2. Using RTPA notations and methodology, a pattern is denoted by
three parallel components known as the architecture, static, and dynamic
behaviors at the top level. Then, the architecture of the pattern is refined by a
CLM. The static and dynamic behaviors of the pattern are denoted by a set of
collaborating processes.

Definition 5.63 The generic mathematical model of software pattern

can be formally described by the four-level hierarchical model, as shown in
Fig. 5.28, known as the interfaces, implementations, instantiations, and
associations among the interfaces, implementations, and instantiations.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 363

Table 5.20
Classification of Software Patterns

Category Pattern Description
1. Creational
 patterns

CP CP deals with initializing and configuring
classes and objects

1.1 Factory Method Method in a derived class creates associates
1.2 Abstract Factory Factory for building related objects
1.3 Builder Factory for building complex objects

incrementally
1.4 Prototype Factory for cloning new instances from a

prototype
1.5 Singleton Factory for a singular (sole) instance
2. Structural
 patterns

SP SP deals with decoupling interface and
implementation of classes and objects

2.1 Adapter A translator adapts a server interface for a client
2.2 Bridge Abstraction for binding one of many

implementations
2.3 Composite Structure for building recursive aggregations
2.4 Decorator Decorator extends an object transparently
2.5 Facade Facade simplifies the interface for a subsystem
2.6 Flyweight Many fine-grained objects shared efficiently
2.7 Proxy One object approximates another
3. Behavioral
 patterns

BP BP deals with dynamic interactions among
societies of classes and objects

3.1 Chain of
Responsibility

Request delegated to the responsible service
provider

3.2 Command Encapsulate a request as an object
3.3 Interpreter Language interpreter for a small grammar
3.4 Iterator Aggregate objects are accessed sequentially
3.5 Mediator Coordinate interactions between its associates
3.6 Memento Snapshot captures and restores object states

privately
3.7 Observer Update dependents automatically when a subject

changes
3.8 State Objects whose behavior depends on its state
3.9 Strategy Abstraction for selecting one of many algorithms
3.10 Template

Method
Algorithm with some steps supplied by a derived
class

3.11 Visitor Operations applied to elements of an
heterogeneous object structure

4. User
 defined
 patterns

UDP An abstraction of a class or an algorithm by
separation of its interface and
implementation details

© 2008 by Taylor & Francis Group, LLC

364 Part II Theoretical Foundations of SE

The generic pattern model given in Fig. 5.28 may be treated as a super
meta pattern, which reveals that any specific software pattern can be
specified at four structural levels. According to Definition 5.62, the features
of patterns lie in the hierarchical architectures as described by
PatternST.ArchitectureST (Eq. 5.76) in Fig. 5.28. It is noteworthy that a class
is modeled as a two-level structure with the class interfaces and
implementations. However, the architectural model of a pattern is a four-
level hierarchy featured with the extended refinement levels of instantiations
and associations for deriving applications of the pattern.

The interface of a pattern, PatternST.ArchitectureST.InterfacesST (Eq.
5.77), isolates users of the pattern from its internal implementations. Users
may only access the pattern via its interfaces. This mechanism enables the
implementation of the pattern to be independent of its users. Whenever the
internal implementations need to be changed, it is transparent to the users of
the pattern as long as the interfaces remain the same.

Since a pattern is a highly reusable design of a software object, the
implementation of a pattern, PatternST.ArchitectureST.ImplementationST (Eq.
5.78), will be kept in a generic concrete class, while the detailed and
application specific functions related to users’ specific requirements, which
are captured via the interface, will be implemented at the lower-level
concrete classes known as the instantiations PatternST.ArchitectureST.
InstantiationsST (Eq. 5.79) at run-time.

The fourth component in the generic pattern hierarchy is the internal
associations, PatternST.ArchitectureST.AssociationST (Eq. 5.77), which is
used to model the interrelationships among the rest of the three-level
abstractions of classes and interfaces within the pattern.

The formal model of generic patterns can be used as a formula to derive
specific descriptions of any software pattern. Case studies will be provided in
the following section, which show that all typical and classic design patterns
fit the generic pattern models of RTPA as developed in this section.

It is noteworthy that a pattern is a generic model of reusable functions.
Specific behaviors in an execution instance are dependent on run-time
information provided by uses of the pattern.

5.5.2.3.3 Pattern Modeling: Formal Models vs. UML Models

The conventional descriptive means for design patterns are natural

languages or UML class diagram. Due to the inherited complexity, the
architectural and semantic descriptive power of the above means is found
inadequate [Vu and Wnag, 2004; Wang and Huang, 2005]. This section
contrasts the descriptive power of RTPA and UML on denoting pattern
architectures and behaviors.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 365

Figure 5.28 The generic mathematical model of software patterns

PatternST { Architecture : ST
 || StaticBehaviors : ST
 || DynamicBehaviors : ST
 } (5.75)

PatternST.ArchitectureST { <Interfaces>
 || <Implementations>
 || <Instantiations>
 || <Associations>
 } (5.76)

PatternST.ArchitectureST.InterfacesST PatterIDST ::

 {
1

n

i
R
=

N

N
<Attributes(i N) : RT >

 ||
1

m

j
R
=

N

N
<AbstractClass(jN) : AC>

 } (5.77)

PatternST.ArchitectureST.ImplementationsST

 {
1

q

k
R
=

N

N
<ConcreteClass(kN) : CC>

 } (5.78)

PatternST.ArchitectureST.InstantiationsST

 {
1

r

l
R
=

N

N
<Instantiation(lN) : CC>

 } (5.79)

PatternST.ArchitectureST.AssociationsST

 {
1

m

j
R
=

N

N
(<Interface(jN)AC : SC>

1

| () . : (')
p

m
m

Interface j M Interface jR
=

N AC M N AC)

 ||
1

q

k
R
=

N

N
<Implementation(kN)CC : AC(jN)>

 ||
1

r

l
R
=

N

N
<Instantiation(lN)CC : CC(kN)>

 } (5.80)

© 2008 by Taylor & Francis Group, LLC

366 Part II Theoretical Foundations of SE

Example 5.23 The builder pattern is one of the important creational
patterns proposed by Gamma and his colleagues [Gamma, 1995]. A UML
class diagram of the builder pattern is shown in Fig. 5.29. This pattern is
designed to separate the complex object construction process from its final
diversity representations. The benefit of this treatment is that complicated
construction processes may be reused to produce various object
representations.

Figure 5.29 The structure of the Builder pattern

Figure 5.30 The behaviors of the Builder pattern

As shown in the formal model of the Builder pattern in Fig. 5.30, the
DirectorAC is an abstract class that serves as an interface of the builder
pattern. The BuilderAC is another abstract class that represents the common
and generic functions of the pattern, which may be implemented by a
concrete class at lower levels. The ConcreteBuilderCC is a concrete class that
implements the conceptual model BuilderAC. Note that the implementation of
the ConcreteBuilderCC is still a generic model, which will be completely

BuilderPatternST.StaticBehaviors
{
 DirectorAC.Construct (<I:: PartIDS>; <O:: BuilderAC>)
 || BuilderAC.BuildPart (<I:: PartIDS>; <O:: ConcreteBuilderCC>)
 || ConcreteBuilderCC.BuildPart (<I:: PartIDS>; <O:: ConcreteBuilderCC.GetResult>)
 || ConcreteBuilderCC.GetResult (<I:: PartIDS>; <O:: ProductST>)
}

BuilderPatternST.DynamicBehaviors § →
{ @PartIDS
 DirectorAC.Construct (<I:: PartIDS>; <O:: BuilderAC>)
 BuilderAC.BuildPart (<I:: PartIDS>; <O:: ConcreteBuilderCC>)
 ConcreteBuilderCC.BuildPart (<I:: PartIDS>;
 <O:: ConcreteBuilderCC.GetResult>)
 ConcreteBuilderCC.GetResult (<I:: PartIDS>; <O:: ProductST>)

}
→ §

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 367

implemented by the ProductCC at run-time when a user of the pattern
provides further details of instances via the interface of the pattern.

a) Architecture of the Builder Pattern

Using Eqs. 5.75 through 5.80 as the generic design formulae, the

architecture of the BuilderPatternST can be accurately and rigorously
specified and stepwise refined as described below.

According to Eq. 5.75, the top-level architecture of the

BuilderPatternST can be specified as shown in Eq. 5.81.

 BuilderPatternST { Architecture : ST
 || StaticBehaviors : ST

 || DynamicBehaviors : ST
 } (5.81)

Using Eq. 5.76, the architecture of the pattern, BuilderPatternST.

ArchitectureST, can be specified as follows.

 BuilderPatternST.ArchitectureST { <Interface>
 || <Implementation>
 || <Instantiation>
 || <Association>
 } (5.82)

Applying Eq. 5.77, the interfaces of the pattern, BuilderPatternST.
ArchitectureST.InterfaceST, can be specified as follows.

 BuilderPatternST.ArchitectureST.InterfaceST BuilderST ::

 {
1

n

i
R
=

N

N
<Attributes(iN) : RT>

 || <Builder : AC>
 || <Director : AC>
 } (5.83)

Applying Eq. 5.78, the implementations of the pattern,

BuilderPatternST.ArchitectureST.ImplementationST, can be specified as
follows.

 BuilderPatternST.ArchitectureST.ImplementationST
 {

 <ConcreteBuilder : CC>
 } (5.84)

© 2008 by Taylor & Francis Group, LLC

368 Part II Theoretical Foundations of SE

Applying Eq. 5.79, the instantiations of the pattern,
BuilderPatternST.ArchitectureST.InstantiationsST, can be specified as follows.

 BuilderPatternST.ArchitectureST.InstantiationST
 {
 <Product : CC>
 } (5.85)

The relations between the components described above, the
associations of the pattern, BuilderPatternST.ArchitectureST.AssociationsST,
can be formally described on the basis of Eq. 5.80 as follows.

 BuilderPatternST.ArchitectureST.AssociationST
 { // Interface classes
 (<BuilderAC : SC>
 || <

1
 : | . :

p

m
m

Director Director M BuilderR
=

AC SC AC M AC >

)

 || // Implementation classes
 <ConcreteBuilderCC : BuilderAC>

 || // Instantiation classes
 <ProductCC : ConcreteBuilderCC>
 } (5.86)

b) Behaviors of the Builder Pattern

Based on the formal model of the architecture of the Builder pattern, its
static and dynamic behaviors can be rigorously described, as given in Fig.
5.30, using the RTPA behavioral modeling scheme described in Section 4.7.

It can be observed that the conventional pattern notations using UML
class diagrams as shown in Fig. 5.29 are inadequate to denote what the
behaviors and functions are, because it only provides a rough conceptual
model. The RTPA notation system and methodology provide a rigorous
means and generic formula for modeling any existing patterns and future user
defined patterns in software engineering [Vu and Wang, 2004; Wang and
Huang, 2005].

It is noteworthy that the behaviors of a pattern are highly general in
nature, for which application specific details are yet to be implemented
according to user’s requirements during run-time until an instantiation of
applications invokes the pattern.

Software patterns are a higher layer construct built upon classes and
objects for modeling system architectures and behaviors. Software patterns
may be adopted to enable abstraction, guide creative design, separate

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 369

interface and implementation of system components, facilitate design reuse,
and improve architecture design quality. The rigorous treatment of object-
oriented patterns demonstrates a powerful cognitive means for
comprehending existing patterns and creating new patterns in software
engineering.

5.5.3 PROGRAMS MODELING AT SYSTEM LEVEL –
 FRAMEWORKS

 System frameworks are the top-level system modeling techniques built
upon algorithms, classes, and/or patterns in an object-oriented or component-
based approach [Sparks et al., 1996; Fayad et al., 1999; Wang and King,
2000a].

Definition 5.64 A software system framework is an architectural model
of an entire system that represents the overall structure, components,
processes, and their interrelationships and interactions.

A system framework permits template-based development in software
engineering. Framework technologies enable domain and design knowledge
to be reused as well as that of code. The taxonomy of system frameworks can
be summarized as shown in Table 5.21.

Table 5.21

Taxonomy of System Frameworks

Category Framework Example
1. Systems
1.1 Operating system frameworks Unix, MS Windows
1.2 Compiler frameworks C++, Java, XML

1.3 Database frameworks Oracle, Access, xbase
1.4 Communication and networking

frameworks
Internet, OSI

1.5 Distributed system and middleware
Frameworks

CORBA, DCOM

1.6 Real-time system frameworks RT-CORBA, RTOS+
2. Applications
2.1 Domain frameworks Telecom, banking, flight control
2.2 Object-oriented frameworks A reusable design of a system that

is presented by a set of classes
and their interactions

2.3 Enterprise frameworks Companies, banks, universities

© 2008 by Taylor & Francis Group, LLC

370 Part II Theoretical Foundations of SE

Example 5.24 A conceptual model of a Telephone Switching System
(TSS) is given in Fig. 5.31 for illustrating the framework modeling
methodology.

Figure 5.31 The telephone switching system (TSS)

The framework of the TSS system, encompassing its architecture,
schemas of static behaviors, and schemas of dynamic behaviors, can be
specified using RTPA as follows [Wang, 2002a].

a) System architectural framework: The architectural framework of the
TSS system is given in Fig. 5.32.

Figure 5.32 The architectural framework of the TSS system

 Signaling
 Trunks TSS
 … [5] Call
 Processor

 0 •

 1 • Line Call
 Scanners Records
 …
 15 • [16] [16]

 Routes System
 Clock
 [5] [1]

 Digits [1]
 … Receivers
 [16]

TSS.ArchitectureST CallProcessingSubsys
 || SubscriberSubsys
 || RouteSubsys
 || SignalingSubsys

= (CallProcessorST [1] // specified by the system static/dynamic behaviors
 || SysClockST [1]
 || CallRecordsST [16]
)
 || (SubscribersST [16] // status represented by
 // the line scanners and call records
 || LineScannersST [16]
)
 || RoutesST [5]
 || (DigitsReceiversST [16]
 || SignalingTrunksST [5]
)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 371

b) System static behavioral framework: The static behavioral
framework of the TSS system is given in Fig. 5.33.

Figure 5.33 The static behavioral framework of the TSS system

c) System dynamic behavioral framework: The dynamic behavioral
framework of the TSS system, in terms of TSS process deployment and
dispatch, is given in Figs. 5.34 and 5.35, respectively.

Figure 5.34 The process deployment framework of the TSS system

TSS.StaticBehaviorsST SysInitial
 || SysClock
 || LineScanning
 || DigitsReceiving
 || ConnectDrive
 || CallProcessing

TSS.StaticBehaviorsST.CallProcessing
 CallOrigination
 || Dialling
 || CheckCalledStatus
 || Connecting
 || Talking
 || CallTermination
 || ExceptionalTermination

TSS.ProcessDeploymentST § →
{ // Base level processes
 @SystemInitial
 ↳ (SysInitial

 →
SysShutdown

R
=

T

BL F
CallProcessing

 → ⊠
)
 || // High-level interrupt processes
 @SysClock1msInt⊙

 ↳ (SysClock
 → DigitsReceiving
)
 || // Low-level interrupt processes
 @SysClock100msInt⊙

 ↳ LineScanning
} → §

© 2008 by Taylor & Francis Group, LLC

372 Part II Theoretical Foundations of SE

In Fig. 5.34, the iterative CallProcessing process is a complex process
that can be further refined in the system process dispatching framework as
shown in Fig. 5.35.

Figure 5.35 The process dispatching framework of the TSS system

In Example 5.24, all aspects of system framework descriptions follow
the same system-level modeling scheme of RTPA as presented in Section
4.7.1. Further details of the TSS system framework specifications may be
referred to [Wang, 2002a]. More empirical design and implementation of
application frameworks have been reported in [Fayad and Schmidt, 1997;
Fayad et al., 1999].

CallProcessing § →

{

 nN := 15

 → (ⓢCallRecord.CallStatusBL = T

 → LineNumN := iN

 → (@ CallRecord(iN).CallProcessN = 0 // Idle

 → ∅

 | @ CallRecord(iN).CallProcessN = 1 // Call origination

 ↳ CallOrigination (<I:: LineNumN>; <O:: CallProcessN>)

 | @ CallRecord(iN).CallProcessN = 2 // Dialing

 ↳ Dialling (<I:: LineNumN>; <O:: CallProcessN>)

 | @ CallRecord(iN).CallProcessN = 3 // Check called status

 ↳ CheckCalledStatus (<I:: LineNumN>; <O:: CallProcessN>)

 | @ CallRecord(iN).CallProcessN = 4 // Connecting

 ↳ Connecting (<I:: LineNumN>; <O:: CallProcessN>)

 | @ CallRecord(iN).CallProcessN = 5 // Talking

 ↳ Talking (<I:: LineNumN>; <O:: CallProcessN>)

 | @ CallRecord(iN).CallProcessN = 6 // Call termination

 ↳ CallTermination (<I:: LineNumN>; <O:: CallProcessN>)

 | @ CallRecord(iN).CallProcessN = 7 // Exceptional termination

 ↳ ExceptionalTermination (<I:: LineNumN>; <O:: CallProcessN>)

)

)

} → §

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 373

5.6 Resources and Processes
 Modeling and Manipulation

Theories and technologies of computational data objects, behaviors, and their
interactions in the form of programs have been modeled in Sections 5.2
through 5.4, respectively. The three facets form the foundation of computing,
programming, and software engineering, which enable the coordination of
computing resources and processes to be modeled and manipulated at the top
level – the operating system level.

This section describes typical architectures and generic functions of

operating systems. In this section, the generic mathematical model of
operating systems is established. The conceptual and typical commercial
architectures of operating systems are surveyed. Then, the common functions
of operating systems for computing resource and process manipulations, such
as process and thread management, memory management, file system
management, I/O system management, and network/communication
management, are described. Real-time operating systems are presented with
illustrations of the RTOS+ operating system to demonstrate how real-time
resources and processes are coordinated and dispatched in computing.

5.6.1 ABSTRACT MODELS OF COMPUTING SYSTEMS

Any program as well as its behavior space and semantic environment
must be realized and executed by a target computer. A generic computing
system model, also known as a virtual machine, can be described as shown in
Fig. 5.36, where all computing resources and processes are modeled and
represented in the system. The hardware subsystem at the bottom of the
architecture can be extended as shown in Fig. 5.5.

A mathematical model of the generic computing system on the basis of

Fig. 5.36 can be described as follows.

© 2008 by Taylor & Francis Group, LLC

374 Part II Theoretical Foundations of SE

Applications

Hardware

Memory
management

Operating system kernel

CPU scheduling Process management

File system
management

Communication
management

Network
management

I/O system
management

Figure 5.36 Architecture of the operating system of a GCS

Definition 5.65 The Generic Computing System (GCS), §, is an
abstract logical model of the executing platform of a target machine denoted
by a set of parallel or concurrent computing resources and processes, i.e.:

 § SysIDS ::

 { <
-1

0

procn

i
R
=

N

N
 PiST> // Processes

 || <
-1

0

MEMn

addr
R
=

H

P
MEM[ptrP]RT> // Memory

 || <
-1

0

PORTn

ptr
R
=

H

P
PORT[ptrP]RT> // Ports

|| <§tTM> // The system clock

|| <
-1

0

en

k
R
=

N

N
@ekS ↳Pk> // Event-driven dispatch

|| <
-1

0

tn

k
R
=

N

N
@tkTM ↳Pk> // Time-driven dispatch

|| <
int -1

0

n

k
R
=

N

N
@intk ↳Pk > // Interrupt-driven dispatch

|| <
-1

0

Vn

i
R
=

N

N
ViRT> // System variables

|| <
-1

0

Sn

i
R
=

N

N
SiBL> // System statuses

 } (5.87)

where || denotes the parallel relation between given components of the
system, and its formal semantics is provided in Section 6.6.2.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 375

As shown in Eq. 5.87 and Fig. 5.36, a computing system § is the
executing platform or the operating system that controls all the computing
resources of the abstract target machine. The system is logically abstracted as
a set of processes and underlying resources, such as the memory, ports, the
system clock, and system status. A process is dispatched and controlled by
the system §, which is triggered by various external, system timing, or
interrupt events.

Operating system technologies have evolved from rather simple notions
of managing the hardware on behalf of a single user or sequentially
scheduled users to multiuser time-sharing systems, and then to networked
and distributed systems [Dijkstra, 1968b; Brinch-Hansen, 1971/73; Peterson
and Silberschantz, 1985; Milenkovic, 1992; Tanenbaum, 1994/2001;
Silberschatz et al., 2003]. Most modern operating systems are based on
multi-programmed timesharing technologies.

Definition 5.66 A Virtual Machine (VM) is a subset of an operating

system that represents various computing resources to users in a unified
manner, and hides hardware details and physical implementation differences
at the lower layers.

 For example, the Java Virtual Machine (JVM) is a self-contained Java
operating environment that simulates a specific computer platform and its
resources.

 Definition 5.67 An Operating System is a set of integrated system
software that organizes, manages, and controls the resources and computing
power of a computer, or a computer network, and provides users a logical
interface for accessing the physical machine to run applications.

Almost all general-purpose computers need an operating system before
any specific application may be installed and executed by users. The role of
an operating system as a conceptual model of a computer is shown in Fig.
5.37.
 The general-purpose operating systems can be classified into four
types: the batch systems, time-sharing systems, real-time systems, and
distributed systems. A batch system is an early type of operating system that
runs similar jobs sorted by an operator as a batch through an operation
console. A time-sharing system is a type of multitasking operating system
that executes multiple jobs by automatically switching among them with
predefined time slice. A real-time operating system is a type of special-
purpose operating system that is designed for dealing with highly time-
constrained events of processes and I/Os of control systems. A distributed
operating system is a type of operating system that supports networking,
communication, and file sharing among multiple computers via a network
protocol [Sloane, 1993; Tanenbaum, 1994].

© 2008 by Taylor & Francis Group, LLC

376 Part II Theoretical Foundations of SE

 Hardware
(The naked
machine)

 Operating
 system

 Applications

 (Application software)

 (System software)

Figure 5.37 The role of an operating system in a general-purpose computer

5.6.2 ARCHITECTURES OF OPERATING SYSTEMS

The architectures of operating systems have evolved over the years
from being a monolithic set of system services whose boundaries were
difficult to establish to being a structured set of system services. Current
operating systems are all based on the idea of building higher-level hardware
abstraction from lower-level hardware-oriented functions. Thus, all kinds of
hard disks, for example, are made to look and operate in the same manner by
their low-level device drivers. Then, in turn, the operating system presents,
with all other services in the system (such as the file system), a uniform,
common view of the hard disk.

5.6.2.1 The Generic Architecture of Operating Systems

An operating system may be perceived as an agent between the
computing resources of a computer or a computer network and the users as
well as their applications as shown in GCS (Fig.5.36). The generic operating
system may be divided into two parts: the kernel and the resource
management subsystems [Peterson and Silberschantz, 1985; Silberschatz et
al., 2003; and Tanenbaum, 2001]. The former is a set of central components
for computing, including CPU scheduling and process management. The
latter is a set of individual supporting software for various system resources
and user interfaces.

The kernel is the most basic set of computing functions needed for an
operating system. The kernel contains the interrupt handler, the task
manager, and the interprocess communication manager. It may also contain

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 377

the virtual memory manager and the network subsystem manager. With these
services the system can operate all the hardware present in the system and
also coordinate the activities between tasks. The services provided by an
operating system can be organized in categories, where four typical
categories are task control, file manipulation, device control, and
information maintenance.

The following subsection presents the architectures of a number of
typical operating systems such as Unix, Linux, and Windows XP. Users may
compare their features with the generic architecture of GCS.

5.6.2.2 The Unix™ and Linux™ Operating Systems

 The history of Unix can be traced back to 1969 based on Ken
Thompson, Dennis Ritchie, and others’ work [Thomas et al., 1986]. The
name "Unix" was intended as a pun on Multics (UNiplexed Information and
Computing System). The development of Unix was essentially confined to
Bell Labs for DEC's PDP-11 (16 bits) and later VAXen (32 bits) [Earhart,
1986]. But much happened to Unix outside AT&T, especially at Berkeley.
Major vendors of workstations, such as SUN’s NFS, also contributed to this
development.

The architecture of Unix is shown in Fig. 5.38, which can be divided
into the kernel and the system programs. The Unix kernel consists of system
resource management, interfaces, and device drivers, such as the CPU
scheduling, file system, memory management, and I/O management.

 Terminal controllers Device controllers Memory controllers

Applications (Users)

File system

 Shells & commands Compilers Interpreters System libraries

CPU
scheduling

Demand
paging

Swapping block I/O system
Virtual

memory
Page

replacement

the kernel

Terminal signal handling

Character I/O system

 Terminals Disks and tapes Physical memory

Terminal drivers Disk and tape drivers

Interface to
 kernel

Figure 5.38 The architecture of Unix™

© 2008 by Taylor & Francis Group, LLC

378 Part II Theoretical Foundations of SE

 Linux is a complete Unix clone for Intel 386/486/Pentium machines
[Siever et al., 2003]. Linux is an operating system, which acts as a
communication service between the hardware and software of a computer
system. The Linux kernel contains all of the features that one would expect
in any operating system. Some of the features included are: multitasking,
virtual memory, fast TCP/IP drivers, shared libraries, multi-user capability,
and protected mode.

5.6.2.3 The Windows™ XP Operating System

Windows XP is a multitasking operating system built on enhanced
technologies that integrate the strengths of Windows 2000 such as standard-
based security, manageability, and reliability, with the best features of
Windows 98 such as plug and play, and easy-to-use user interfaces.

The architecture of Windows XP is shown in Fig. 5.39. Windows XP
adopts a layered structure that consists of the hardware abstraction layer, the
kernel layer, the executive layer, the user mode layer, and applications.

Applications

Object
manager

Win32 subsystem

I/O manager

Security
monitor

Process
manager

Plug & play
manager

Virtual
memory manager

System
call

File system

Cache manager

Network drivers

Device drivers
Kernel

Hardware abstraction layer

Executive

User mode

Window
manager

Graphic
device drivers

System hardware

Figure 5.39 The architecture of Windows™ XP

 Each kernel entity of Windows XP is treated as an object that is
managed by an object manager in the executive. The kernel objects can be
called by the user-mode applications via an object handle in a process. The
use of kernel objects to provide basic services, and the support of client-
server computing, enable Windows XP to support a wide variety of
applications. Windows XP also provides virtual memory, integrated caching,

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 379

preemptive scheduling, stronger security mode, and internationalization
features.

5.6.3 COMPUTING RESOURCES MANIPULATION

The basic functions of operating systems can be classified as process
and thread management, memory management, file system management, I/O
system management, and network/communication management. This
subsection describes the fundamental technologies of main operating system
functions for computing resources manipulation in modern operating
systems.

5.6.3.1 Process Management

A process is an execution of a program on a computer under the
support of an operating system. A process can be a system process or a user
process. The former executes system code, and the latter runs a user’s
application. Processes may be executed sequentially or concurrently
depending on the type of operating systems.
 The operating system carries out process management by the following
activities:

• Detection of process requests

• Creation of processes by individual Process Control Blocks
(PCBs)

• Allocation of system resources to processes, such as CPU time,
memory, files, and I/O devices

• Scheduling of processes based on a predefined process state
transition diagram

• Termination of processes

 A typical process state transition diagram of a real-time operating
system, RTOS+ [Wang and Ngolah, 2003], will be given in Fig. 5.41.
 Threads are an important concept of process management in operating
systems [Lewis and Berg, 1998]. A thread is a basic unit of CPU utilization,
or a flow of control within a process, supported by a thread control block
with a thread ID, a program counter, a set of registers, and a stack.
Conventional operating systems are single thread systems. Multithreaded
systems enable a process to control a number of execution threads. The
benefits of multithreaded operating systems and multithreaded programming
are responsiveness, resource sharing, implementation efficiency, and
utilization of multiprocessor architectures of modern computers.

© 2008 by Taylor & Francis Group, LLC

380 Part II Theoretical Foundations of SE

5.6.3.2 CPU Scheduling

CPU scheduling is a fundamental operating system function to
maximize CPU utilization. The techniques of multiprogram and multithread
are introduced to keep the CPU running different processes or threads on a
time-sharing basis. CPU scheduling is the basis of multiprogrammed and
multithreaded operating systems [Brinch-Hansen, 1971]. The CPU scheduler
and dispatcher are two kernel functions of operating systems. The former
selects which process in the ready queue should be run next based on a
predefined scheduling algorithm or strategy. The latter switches control of
the CPU to the process selected by the scheduler.
 Some typical CPU scheduling algorithms are described as follows.

 • First-come-first-served (FCFS) scheduling: This algorithm
schedules the first process in the ready queue to the CPU based
on the assumption that all processes in the queue have an equal
priority. FCFS is the simplest scheduling algorithm for CPU
scheduling. The disadvantage of the FCFS algorithm is that if
there are long processes in front of the queue, short processes
may have to wait for a very long time.

• Shortest-job-first (SJF) scheduling: This algorithm gives priority
to the short processes, which results in the optimal average
waiting time. But the predication of process length seems a
difficult issue by using the SJF strategy.

• Priority (PR) scheduling: This algorithm assigns different
priorities to individual processes. Based on this, CPU scheduling
will be carried out by selecting the process with the highest
priority. The drawback of the priority algorithm is starvation, a
term that denotes the indefinite blocking of low priority processes
under high CPU load. To deal with starvation, the ageing
technique may be adopted that increases the priority levels of low
priority processes periodically, so that the executing priorities of
those processes will be increased automatically while waiting in
the ready queue.

 • Round-robin (RR) scheduling: This algorithm allocates the CPU
to the first process in the FIFO ready queue for only a predefined
time slice, and then it is put back at the tail of the ready queue if it
has not yet been completed.

 • Multiprocessor scheduling: This algorithm schedules each
processor individually in a multiprocessor operating system on
the basis of a common queue of processes. In a multiprocessor
operating system, processes that need to use a specific device

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 381

have to be switched to the right processor that is physically
connected to the device.

5.6.3.3 Memory Management

Memory management is one of the key functions of operating systems
because memory is both the working space and storage of data or files.
Common memory management technologies of operating systems are
contiguous allocation, paging, segmentation, and combinations of these
methods [Silberschatz et al., 2003].

 • Contiguous memory allocation: This method is used primarily in
a batch system where memory is divided into a number of fixed-
sized partitions. The contiguous allocation of memory may be
carried out by searching a set of holes (free partitions) that best fit
the memory requirement of a process. A number of algorithms
and strategies were developed for contiguous memory allocation
such as the first-fit, best-fit, and worst-fit algorithms [Tanenbaum
and Tanenbaum, 2001].

 • Paging: Paging is a dynamic memory allocation method that
divides the logical memory into equal blocks known as pages
corresponding to physical memory frames. In a paging system,
each logical address contains a page number and a page offset.
The physical address is generated via a page table where the base
address of an available page is provided. Paging technology is
used widely in modern operating systems to avoid the
fragmentation problem as found in the early contiguous memory
allocation techniques.

 • Segmentation: This is a memory-management technique that uses
a set of segments (logical address spaces) to represent user’s
logical view of memory independent of the physical allocation of
system memory. Segments can be accessed by providing their
names (numbers) and offsets.

 • Virtual memory: When the memory requirement of a process is
larger than physical memory, an advanced technique needs to be
adopted known as the virtual memory, which enables the
execution of processes that may not be completely in memory.
The main approach to implement virtual memory is to separate
the logical view of system memory from its physical allocation
and limitations. Various technologies have been developed to
support virtual memory such as the demand paging and demand
segmentation algorithms [Silberschatz et al., 2003].

© 2008 by Taylor & Francis Group, LLC

382 Part II Theoretical Foundations of SE

In memory-sharing systems, the sender and receiver use a common area
of memory to place the data that is to be exchanged. To guarantee
appropriate concurrent manipulation of these shared areas, the operating
system has to provide synchronization services for mutual exclusion. A
common synchronization primitive is the semaphore, which provides mutual
exclusion for two tasks using a common area of memory. In a shared
memory system the virtual memory subsystem must also collaborate to
provide the shared areas of work.

5.6.3.4 File System Management

File system is the most used function of operating systems for non-
programming users. A file is a logical storage unit of data or code separated
from its physical implementation and location. Types of files can be text,
source code, executable code, object code, word processor formatted, or
system library code. The attributes of files can be identified by name, type,
location (path of directory), size, date/time, user ID, and access control
information. Logical file structures can be classified as sequential and
random files. The former are files that organize information as a list of
ordered records; while the latter are files with fixed-length logical records
accessible by its block number.
 Typical file operations are reading, writing, and appending. Common
file management operations are creating, deleting, opening, closing, copying,
and renaming.
 The file system of an operating system consists of a set of files and a
directory structure that organizes all files and provides detailed information
about them. The major function of a file management system is to map
logical files onto physical storage devices such as disks or tapes. Most file
systems organize files by a tree-structured directory. A file in the file system
can be identified by its name and detailed attributes provided by the file
directory. The most frequently used method for directory management is the
hash table. Although it is fast and efficient, backup is always required to
recover a hash table from unpredicted damage.
 A physical file system can be implemented by contiguous, linked, and
indexed allocation. Contiguous allocation can suffer from external
fragmentation. Direct-access is inefficient with linked allocation. Indexed
allocation may require substantial overheads for its index block.

5.6.3.5 I/O System Management

I/O devices of a computer system encompass a variety of generic and
special-purpose hardware and interfaces. Typical I/O devices that an
operating system deals with are shown in Table 5.22.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 383

Table 5.22
Types of I/O Devices

Types of I/O devices Examples

System devices System clock, timer, interrupt controller

Storage devices Disks, CD drivers, tapes

Human interface devices Keyboard, monitor, mouse

Communication devices Serial/parallel buses, network cards, DMA controllers,
MODEMs

Special devices Application-specific control devices

 I/O devices are connected to the computer through buses with specific
ports or I/O addresses. Usually, between an I/O device and the bus, there is a
device controller and an associated device driver program. The I/O
management system of an operating system is designed to enable users to use
and access system I/O devices seamlessly, harmoniously, and efficiently.
 I/O management techniques of operating systems can be described as
follows:

 • Polling: Polling is a simple I/O control technique by which the
operating system periodically checks the status of the device until
it is ready before any I/O operation is carried out.

 • Interrupt: Interrupt is an advanced I/O control technique that lets

the I/O device or control equipment notify the CPU or system
interrupt controller whenever an I/O request has occurred or a
waiting event is ready. When an interrupt is detected, the
operating system saves the current execution environment,
dispatches a corresponding interrupt handler to process the
required interrupt, and then returns to the interrupted program.
Interrupts can be divided into different priorities on the basis of
processor structures in order to handle complicated and
concurrent interrupt requests.

 • DMA: Direct memory access (DMA) is used to transfer a batch of

large amounts of data between the CPU and I/O devices, such as
disks or communication ports. A DMA controller is handled by
the operating system to carry out a DMA data transfer between an
I/O device and the CPU.

 • Network sockets: Most operating systems use a socket interface to

control network communications. When requested in networking,
the operating system creates a local socket and asks the target

© 2008 by Taylor & Francis Group, LLC

384 Part II Theoretical Foundations of SE

machine to be connected to establish a remote socket. Then, the
pair of computers may communicate by a given communication
protocol.

5.6.3.6 Communication Management

A fundamental characteristic that may vary from system to system is
the manner of communication between tasks. The two manners in which this
is done are via messages sent between tasks or via the sharing of memory
where the communicating tasks can both access the data. Operating systems
can support either. In fact, both manners can coexist in a system.

In message-passing systems, the sender task builds a message in an
area that it owns and then contacts the operating system to send the message
to the recipient. There must be a location mechanism in the system so that the
sender can identify the receiver. The operating system is then put in charge
of delivering the message to the recipient. To minimize the overhead of the
message delivery process, some systems try to avoid copying the message
from the sender to the kernel and then to the receiver, but to provide means
by which the receiver can read the message directly from where the sender
wrote it. This mechanism requires the operating system intervenes if the
sender wants to modify the contents of a message before the recipient has
gone through its content.

In memory-sharing systems, the sender and receiver use a common area
of memory to place the data that is to be exchanged. To guarantee
appropriate concurrent manipulation of these shared areas, the operating
system has to provide synchronization services for mutual exclusion. A
common synchronization primitive is the semaphore, which provides mutual
exclusion for two tasks using a common area of memory. In a shared
memory system, the virtual memory subsystem must also collaborate to
provide the shared areas of work.

The ISO Open Systems Interconnection (OSI) reference model was
developed in 1983 [Day and Zimmermann, 1983] for standardizing data
communication protocols between different computer systems and networks.
The OSI reference model is an important protocol framework for regulating
multi-vendor multi-OS computers interconnection in Local Area Network
(LAN) and Wide Area Network (WAN) environments [Stallings, 2000].
From bottom-up, the seven layers are: physical, data link, network, transport,
session, presentation, and application as shown in Fig. 5.40.

Fig. 5.40 contrasts the functional equivalence between the OSI model
and TCP/IP (the Transmission Control Protocol/Internet Protocol) [Day and
Zimmermann, 1983]. The TCP/IP design philosophy [Comer, 1996/2000] is
to provide universal connectivity with connection-independent protocols at
the network layer. Thus TCP/IP does not address the data link and physical
layers which determine the communication channels. There are no separate

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 385

application, presentation, and session layers in TCP/IP; instead, a combined
application layer is provided in TCP/IP, which has the functions of those
layers.

 OSI TCP/IP

 Application Telnet FTP NFS DNS

 Presentation etc.

 Session

 Transport TCP UDP

 Network IP

 Data link -

 Physical -

Figure 5.40 The OSI reference model and TCP/IP

The IP protocol is approximately equivalent to the OSI network layer.
In a WAN, IP is presented on every node in the network. The role of IP is to
segment messages into packets (up to 64 kbyte) and then route and pass the
packets from one node to another until they reach their destinations. IP uses
packet switching as its fundamental transmission algorithm. A message is
transmitted from gateway to gateway by dynamic routed packets. IP routes
packets to their destination network, but final delivery is left to TCP. The
TCP protocol fulfills the role of the OSI transport layer, plus some of the
functionality of the session layer. TCP is designed to provide end-to-end
connectivity. TCP is not required for packet routing, so it is not included on
gateways. TCP provides an acknowledgement mechanism to enable
messages to be sent from destination(s) back to the sender to verify receipt of
each packet that makes up a message.

5.6.3.7 Network Management

A network operating system implements protocols that are required for
network communication and provides a variety of additional services to users
and application programs. Network operating systems may provide support
for several different protocols known as stacks, e.g., a TCP/IP stack and an
IPX/SPX stack. A modern network operating system provides a socket
facility to help users to plug-in utilities that provide additional services.
Common services that a modern network operating system can provide are as
follows.

© 2008 by Taylor & Francis Group, LLC

386 Part II Theoretical Foundations of SE

• File services: File services transfer programs and data files from a
computer on the network to another.

• Message services: Message services allow users and applications
to pass messages from a computer to another on the network. The
most familiar application of message services is Email and
intercomputer talk facilities.

 • Security and network management services: These services
provide security across the network and allow users to manage
and control the network.

 • Printer services: Printer services enable sharing of expensive
printer resources in a network. Print requests from applications
are redirected by the operating system to a network workstation,
which manages the requested printer.

• Remote Procedure Calls (RPCs): RPCs provide application
program interface services to allow a program to access local or
remote network operating system functions.

• Remote processing services: These services allow users or
applications to remotely login to another system on the network
and use its facilities for program execution. The most familiar
service of this type is Telnet, which is included in the TCP/IP
protocol suite [Comer, 1996/2000] and many other modern
network operating systems.

5.6.4 REAL-TIME/EMBEDDED RESOURCES AND
 PROCESSES MANIPULATION

A Real-Time Operating System (RTOS) is essential to implement
embedded and/or real-time control systems. An RTOS is an operating system
that guarantees timely processing of external and internal events of real-time
systems. There were varying models of real-time operating systems
developed in the last decades [Labrosse, 1999; Laplante, 1977; Liu, 2000].

Problems often faced by RTOS's are CPU and tasks scheduling,

timing/event management, and resource management. RTOS requires
multitasking, process threads, and explicit interrupt levels to deal with real-
time events and interrupts. An extended RTOS, RTOS+ [Wang and Ngolah,
2003; Ngolah et al., 2004] is presented in this section to describe real-time
resources modeling and manipulation.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 387

5.6.4.1 The Architecture of RTOS+

RTOS+ is a portable and multitask/multithread operating system
capable of handling event-, time-, and interrupt-driven processes in a real-
time environment. The architecture of RTOS+ is shown in Fig. 5.41, where
interactions between system resources, components, and internal control
models are illustrated. There are four subsystems in RTOS+: a) the processor
and task scheduler, b) the resource controller, c) the event handler, and d) the
system resources. The task scheduler is the innermost operating system
kernel that directly controls the CPU and all other system resources by
system control blocks. The resources of RTOS+, supplemented to the CPU,
are mainly the memory, system clock, I/O ports, interrupt facilities, files, and
internal control models such as queues and task/resource control blocks as
shown in Fig. 5.41.

SuspendedQWaitingQL

ReadyQH

ReadyQL

Running
Process

PCB

WaitingQH

DelayedQ InterruptedQ CompletedQ

Resource Control Bus

System
Control
Block

RTOS
Task

Scheduler
 Processor

Event Bus

System
Clock

Interrupts I/Os Memory Files

Ti
m

e-
ou

t

In
te

rr
up

t H
ig

h

In
te

rr
up

t L
ow

Ev
en

t L
ow

Ev
en

t H
ig

h

Resource Bus

Figure 5.41 The architecture of RTOS+

 The task scheduling of RTOS+ is priority-based. A fixed-priority
scheduling algorithm is adopted where the priority of a task is assigned based
on its importance when it is created. Tasks are categorized into four priority
levels with descending priority: the high and low priority interrupts, as well
as the high and base priority processes. A process, when created, will be put
into a proper queue corresponding to its predefined priority level.

© 2008 by Taylor & Francis Group, LLC

388 Part II Theoretical Foundations of SE

5.6.4.2 The Task Scheduler of RTOS+

The Task Scheduler is the kernel of RTOS+. Its behaviors can be
modeled by a state transition diagram as shown in Fig. 5.42. The task
scheduler of RTOS+ is designed for handling event-, time-, and interrupt-
driven processes, in which the CPU is allocated by a fixed time-slice for
executing a given process.

Creating
(1)

Ready
(2)

Running
(3)

Completed
(4)

Interrupt
Services

(9)

Interrupted
(5)

Delayed
(6)

Suspended
(7)

Killed
(8)

Process
Request

Resource
available Schedule Completed

Interrupt

Interrupt
Return

Interrupt

Wait for Event

Tim
e-out

Event
Available

Delete

Delete

D
elete

Interrupt
return

Time
available

Figure 5.42 Process state transition diagram of RTOS+

 Process requests are handled by the task scheduler for creating a
process. When a new process is generated, it is first put into the waiting state
with a PCB and a unique task ID. The system uses a Resource Control Block
(RCB) to manage system resources. Each task in the waiting state must be
checked to see if there are enough resources for its execution. If resources are
available, it is transferred into the ready state; otherwise it has to be re-
queued at the tail of the waiting queue until resources are available.

The task scheduler continuously checks the ready queue for any ready
task. If there are ready tasks, it executes the first task in the queue until it is
completed (State 4) or is suspended. There are three conditions that may
cause a running task to be suspended during execution: a) interrupted by a
task or event with higher priority, b) time-out for a scheduled time-slice of
CPU, and c) waiting for a specific event. The scheduler may remove the CPU
from a running task if a higher priority interrupt request occurs. Such
interruption will cause the running task to go into the interrupted queue and
later return to the appropriate ready queue when the interrupt service is over.
A task that has exhausted its assigned time-slice must go to the delayed
queue. When a new CPU time-slice is available, it is re-scheduled into the

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 389

appropriate ready queue. A task that can no longer be executed due to
waiting for an event goes into the suspended queue, and returns to the
appropriate ready queue once the event has occurred. In any of these
suspended cases, the task is put into a corresponding queue in States 5, 6, or
7, respectively. The task will be re-scheduled into ready state when the cause
of the suspension is no longer true.
 A task suspended may be cancelled (State 8) by the scheduler from the
queues of States 5, 6, or 7 in case there is a lack of resources or under the
request of users.

5.6.4.3 Process Dispatching of RTOS+

 In the previous subsection, the conceptual model of RTOS+ has been
established. To further refine the design of RTOS+, RTPA is adopted as a
formal specification means. The dynamic behaviors of RTOS+ can be
described by the interactions of parallel processes between TaskScheduling,
TimeManagement, ResourceManagement, and SystemControlUpdate as
shown in Fig. 5.43.

Figure 5.43 Real-time process deployment in RTOS+

RTOSST.ProcessDeployment
{ // Basic level processes
 @SystemInitial
 ↳ (SysInitial

 ↳
@SysShutDown=

R
T

F
TaskManagement

 → ⊠
)

 || // High-interrupt level processes
 ⊙ @SysClock1msInt
 (SysClock

 ↳ TaskScheduling
 ↳ SystemControlBlockUpdate
 ↳ InterruptManagement
 ↳ TimeManagement
 ↳ HighPriorityEventScan

)
 ⊙
 || // Low-interrupt level processes
 ⊙ @SysClock100msInt
 (BaseEventScane
 ↳ ResourceManagement
)
 ⊙
}

© 2008 by Taylor & Francis Group, LLC

390 Part II Theoretical Foundations of SE

RTOS+ runs the TaskManagment routine continuously by updating and
dispatching various processes in different queues. If an interrupt occurs
during run-time, the interrupt handling process (SysClock100msInst) saves
the current executing environment, switches control to the interrupting
process, and then automatically returns to the interrupted process following
completion of a higher priority operation. SysClock100msInt handles low
level interrupt events, such as system ResourceManagement at 100ms
intervals.

Corresponding to the state transition diagram as shown in Fig. 5.42, the
task scheduler of RTOS+ is specified by RTPA in Fig. 5.44. The process
dispatching mechanism of RTPA is used to formally describe the RTOS+
dynamic behaviors by a set of event-driven relationships between system
events and functional processes of the operating system kernel.

Figure 5.44 Dynamic behaviors of the RTOS+ task scheduler

 Other core operations of RTOS+, such as task scheduling, time, event,
and resource management, can be rigorously modeled and described for
better real-time performance and improved resource utilization. On the basis
of the formal specification of RTOS+ by RTPA, architectural and behavioral
consistency and correctness of RTOS+ can be improved [Wang and Ngolah,
2003].

This section has described resources and processes organization and
manipulation by operating systems. The conceptual and typical commercial
architectures of operating systems have been surveyed. A mathematical

RTOSST.TaskScheduler

{ ⓢNewProcRequestBL = T

 → CreatePCB (<I:: ProcIDN>; <O:: ()>
 → ProcStateN = 1

 | ⓢPCB.ProcStateN ≥ 1

 ProcStateN

 | 1 → Waiting (<I::(ProcIDN); O::()>)
 | 2 → Ready (<I::(ProcIDN); O::()>)
 | 3 → Running (<I::(ProcIDN); O::()>)
 | 4 → Completed (<I::(ProcIDN); O::()>)
 | 5 → Interrupted (<I::(ProcIDN); O::()>)
 | 6 → Delayed (<I::(ProcIDN); O::()>)
 | 7 → Suspended (<I::(ProcIDN); O::()>)
 | 8 → Killed (<I::(ProcIDN); O::()>)
 | 9 → InterruptService (<I::(ProcIDN); O::(IntReturnBL)>)
 |~ → ∅
}

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 391

model of generic operating systems and computing resources is established.
Common functions of operating systems, such as process and thread
management, memory management, file system management, I/O system
management, and network/communication management, are presented. The
real-time operating system, RTOS+, is introduced with formal models and
event/time/interrupt-driven process dispatching techniques.

5.7 Summary

Computer science is an applied scientific and engineering discipline with
the systematic study and development of computers and software as its
principle subject matters. Computing theories encompass computational
methods, computing objects, and computing resources, which form one of
the most important and direct foundations of software engineering. The
essences of computer science are the rigorous treatment of modeling
theories and techniques for data objects, system architectures, operational
behaviors, and their interactions incorporated in a program.

 This chapter has explored the computing foundations of software
engineering on rigorous treatment of data objects, architectures, behaviors,
program modeling theories, and techniques. It has also examined what
computer science may and may not provide for software engineering. Basic
computation models, such as automata, Turing machines, von Neumann
machines, cognitive computers, and autonomic computing machines, have
been explored. Data objects modeling with type theory and system
architectural modeling with CLMs have been centered. Behavioral modeling
and manipulation has been focused on meta processes and BCS’s because of
their fundamental and highly recurring roles in computing. Program
modeling has been treated as a coordination of computational behaviors and
data objects/architectures. Resources manipulation and process coordination
in software engineering have been presented with generic and real-time
operating system models. As a result, the computing foundations of
software engineering have been established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Computing Foundations of Software
Engineering, readers have achieved the following strategic goals with the
knowledge architecture as summarized below.

© 2008 by Taylor & Francis Group, LLC

392 Part II Theoretical Foundations of SE

Chapter 5. Computing Foundations of SE

■ Basic Computation Models
 • Basic operations in computing
 • Automata
 - Automata and Finite State Machines (FSMs)
 - Approaches to describe FSMs
 - Description of software behaviors by FSMs
 - FSM composition and fefinement
 - Deterministic and nondeterministic automata
 - Usage of automata

 • Turing machines
 - The abstract model of computing
 - Formal description of Turing machines
 - The nature of computing

 • von Neumann machines
 - The stored-program concept
 - The von Neumann architecture of computers

 • Cognitive machines
 - The Wang architecture of computers
 - Cognitive computers

■ Data Object Modeling and Manipulation
 • Types and data structures
 - Type systems of programming languages
 - Primitive types
 - Derived and advanced types
 - System architectural types

 • Basic data modeling techniques
 - Identifiers
 - Variables and constants
 - Expressions

 • Formal type theory
 - Type rules
 - Formal type systems
 - Complex type rules for the RTPA derived types

 • Abstract data types (ADTs)
 - The generic model of ADTs
 - Modeling complex data structures and component architectures
 by ADTs
 - Typical ADTs modeled in RTPA

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 393

■ Behavioral Modeling and Manipulation
 • Internal behaviors modeling
 - Basic control structures (BCS’s)
 - Control flow graphs

 • Iterative and recursive behaviors modeling
 - Formal description of iterations
 - Formal description of recursions
 - Comparative analysis of iterations and recursions

 • External and interactive behaviors modeling
 - Memory manipulations
 - Events handling

■ Program Modeling: Coordination of Computational Behaviors
 and Data Objects
 • The unified mathematical model of programs
 - The abstract model of statements
 - The abstract model of processes
 - The abstract model of programs

 • Program modeling at component level
 - Algorithms
 - Classes and object-orientation
 - Patterns

 • Program modeling at system level - frameworks

■ Resources and Processes Modeling and Manipulation
 • Abstract models of computing systems

 • Architectures of operating systems
 - The generic architecture of operating systems
 - The Unix and Linux operating systems
 - The Windows XP operating systems

 • Computing resources manipulation
 - Process management
 - CPU scheduling
 - Memory management
 - File system management
 - I/O system management
 - Communication management
 - Network management

 • Real-time/embedded resources and processes manipulation
 - The architecture of RTOS+
 - The task scheduler of RTOS+
 - Process dispatching of RTOS+

© 2008 by Taylor & Francis Group, LLC

394 Part II Theoretical Foundations of SE

SIGNIFICANT FINDINGS OF THIS CHAPTER

 • Software engineering was perceived as a branch of computer
science. However, computer science only provides basic computing theories
and programming methodologies. Software engineering has historically
focused on programming methodologies, programming languages, software
development models, and tools. Areas now thought critical to software
engineering – nature of software, cognitive foundations, denotational
mathematical means, architectural and behavioral laws, system theories,
organizational and management infrastructures – have been largely
overlooked.

• The objects in computation can be abstracted by binary digits (bits)
and a few primitive types. Any complex real-world data object in computing
can be reduced to these primitive types. Based on this profound axiom of
data objects in computing, computational methods in general are assumed
to be arithmetical and logical operations, and any other complex operations
must be reduced to these kinds of basic forms. In addition, computing
resources are dramatically simplified as a sequential memory space with
binary digits or characters. That is why the hardware technology was so
mature because all issues can be reduced to basic operations and basic
objects by deduction.

• However, in software engineering, the development of software is a

one-off activity. To the maximum extent, a program can only be reduced to
known languages statements and primitive types. The method and process
are highly reusable, but the objects and resources are far more complicated
than those of hardware devices.

• Most software systems go wrong not because they are incorrect on

normally required functions, but because there are wrong or not prepared
for implied or nonspecified exceptions (Theorem 5.3). Therefore, system
design and specification should focus on the entire SΩ = δ + δ .

• This is a major indicator that distinguishes professionals and
amateurs in software engineering, where the latter focus only on
required behaviors (δ); while the former model the whole behaviors of
a given system (δ + δ).

• In computing, the most generic functions and routine tasks are

implemented with a hardware processor. Therefore, what left for software are
one-off applications. As a consequence, the reuse rate of software cannot be
as high as any software reuse technique promises. Just like that in the
publishing and journalist industries, nobody talks reuse in composition.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 395

• The mathematical model of programs is a finite set of cumulated

relations between processes, which in turn is a finite set of cumulated
relations of statements (Eqs. 5.65, 5.67, and 5.68).

• An Autonomic Computing Machine (ACM) is a nonimperative

computer that autonomously carries out robotic and interactive applications
based on goal- and event-driven mechanisms on the basis of nonlinear and
content sensitive memory architectures.

• On the basis of the above fundamental computing models, the entire

computing theory can be divided into:

- Data object modeling
- Operational behavioral modeling
- Program modeling
- Resource and process modeling

• The data object modeling process is much more important and

difficult than that of behaviors modeling, because the former is an open and
creative process and it involves both real-world entities and their abstract
representation with computing resources and expressing constraints.

• Fundamental computing behaviors can be classified into eight

categories, such as data manipulations, arithmetical operations, logical
operations, bitwise operations, program controls, memory manipulations,
I/O manipulations, and interrupt and time manipulations.

• Basic Control Structures (BCS’s) are the fundamental

compositional means of programming. The mathematical laws of BCS’s and
other process relations have been described in Section 5.4.1.

• In programming, iterative and recursive behaviors are equivalent.

A recursive solution for an iterative problem is usually more expressive, but
less efficient in implementation than its iterative counterpart.

• The mathematical model of programs is a finite set of cumulated

relations between processes, which in turn is a finite set of cumulated
relations of statements.

• A pattern is a computational construct that extends the structure of a

single class from interface and implementation to instantiations and
associations.

© 2008 by Taylor & Francis Group, LLC

396 Part II Theoretical Foundations of SE

• The Generic Computing System (GCS), §, is an abstract logical

model of the executing platform of a target machine denoted by a set of
parallel or concurrent computing resources and processes (See Eq. 5.87).

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Basic Computation Models

• A statement is the smallest functional unit of a program that specifies
an explicit action and results in the change of one or more variables. A
generic model of a statement in programming languages can be described
as a function, or a process, that maps a set of input into a set of output.

• The fundamental operations in computing can be classified into

three categories: computational operations, object manipulations, and
resource manipulation. These fundamental computing needs can be
reduced to only binary data, basic Boolean operations (∧, ∨, and ¬), and a
linear memory space. Any complex application can be implemented on the
basis of these three essences of computation by certain composition rules.

 • A finite State Machine (FSM, or automaton) is defined by a 5-tuple
encompassing the alphabet, states, initial state, final state(s), and the state
transition function. The size of state space of an FSM, or all possible items
in its transition table, SΩ(FSM), can be determined by the product of both
sizes of the sets of state S and alphabet ∑., i.e., SΩ (FSM) = #S • #∑ .

• The differences of requirement elicitation and system specification
in software engineering are that the former is focused on desired functions of
a system δ, and the latter is on entire behaviors of the system Ω, including
both δ and the undesired but potential functions δ in the behavioral space SΩ
(FSM) = #S • #∑ =#() #()δ δ+ . For a complex software system, the size of
undesired behavior space is far more greater than that of the desired ones,
i.e.,#() #()δ δ .

• Automata and FSMs are a generic computing model for the rigorous

description of event-driven behaviors of finite state systems. However,
according to Theorem 5.1, the efficiency of automata decreases sharply
when the size of a system is getting large and complicated. Therefore, FSMs
are most useful for modeling computing behaviors at the component level.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 397

• A Turing Machine (TM) is a 6-tuple encompassing the alphabet,

states, initial state, halting states, head movements, and the state transition
function. TM encompasses three basic components: the finite-state control
unit, the tape (memory), and the read/write head. TM is the simplest model
of computing and machine intelligence. Any complicated computing machine
can be reduced to a number of basic TMs. This provides a practical approach
to build large and complicated systems based on simple TMs. Although there
are a variety of Turing machines, it can be proven that all Turing machines
are equivalent.

• Turing's contribution is the identification of the basic requirements

for computing and machine intelligence. The essences of computing are
those of a finite memory, a simple addressing capability for searching
information in the memory, I/O operations on the memory, and evaluation or
quantitative assessment capability. TM theory reveals that intelligence is
memory-based.

• TM vs. FSM: A TM extends the descriptive power of TM to both the

output operation on the tape and the head actions associated to a state
transition. An FSM is a restricted TM where the head is read-only and shift
only from left to right. When a state of the FSM is a process that may be able
to carry out any kind of operations, then FSM is equivalent to TM. This is
why FSM is still widely applied in software engineering.

• A von Neumann Machine (VNM) consists of five components: the

arithmetic-logic unit (ALU), the control unit, the memory, a set of I/O
devices, and a bus that provides a data path between these components.

• The key requirements for implementing a VUM, the stored-program

controlled computer, are the generalization of common computing
architectures and the computer is able to interpret the data loaded in memory
as computing instructions.

• Trends in advanced computer architectures beyond VNM are

parallel, networking (distributed), and autonomic computers.

• Data object modeling is a process to creatively elicit and abstractly

represent a real-world application by logical data objects and their relations
based on the constraints of given computing resources. Operational
behavioral modeling is composed dynamic operations embodied onto the
data objects. Program architectural modeling provides encapsulation
methodologies for integrating and coordinating computing behaviors and
data objects into a coherent system. Resource and process modeling deals

© 2008 by Taylor & Francis Group, LLC

398 Part II Theoretical Foundations of SE

with system platforms, operating resources, as well as the dynamic
deployment of system data objects, architectures, and behaviors.

Data Object Modeling and Manipulation

• Dada object modeling is at the center of all profound computing
techniques that studies how real-world entities and their relations are
represented and modeled by a set of given data structures and construct rules
in a programming language.

• The abstract representation of any data object can be reduced
to the fundamental level of binary digits.

• The logical models of basic data objects in computing can be
represented by identifiers, variables, constants, and expressions.

• The physical models of data objects are allocated in memory as
static or dynamic data.

• An identifier is a logical name of a language entity or construct that

represents variables, constants, procedures, classes, or program names from
the bottom up.

• Type is the most important attribute of an identifier.

• Binding is a process that associates an attribute to an identifier.

• The scope of an identifier is a region in a program over which
the binding between the identifier and the attribute is declared.

• A variable is an identifier that its domain of defined value is multiple

and changeable. A variable obtains its value through assignment.

• A constant is an identifier that its value is fixed and read-only. A

constant obtains its value through declaration rather than assignment.

• An expression is a relation between a set of operands (variables or

constants) formed by relational operators in a given language. An expression
can be classified as logical, ordinal, numerical, timing, and architectural,
according to the type of its value in BL, N, R/Z/S/B/H/P, TM, and ST, respectively.

• Addressing is one of the most important and special operations in

computing. Addressing is a function π: idT → ptrÞP that maps a given
logical idT into the physical memory block MEM[ptrP, ptrP+n-1]T, and T ∈
{P, H, N, Z}. Addressing locates the address of a given data object in the
memory space.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 399

• Addressing can be classified as absolute and relative, where
the letter can be further divided into direct and indirect addressing
dependent on whether an address is directly provided or indirectly
inferred.

• Memory allocation is a binding process that associates a logical

name with a physical location in the memory. The key difference between
dynamic and static memory allocation is whether the size of memory
requirement of a given variable is run-time or compile-time determinable.

• Dynamic memory allocation is a binding process that
associates a logical name of complex data objects consisting of multiple
similar elements with a series of inter-linked physical locations in the
heap during run-time, when the unit size of a given element and the
number of elements are determinable.

• Types are an important logical property shared by data objects in
programming. A type is a set in which all member data objects share a
common logical property or attribute, and a type implies a set of allowable
operations on data specified in this type. A type system specifies the type
rules of a programming language as that of a grammar system which
specifies the grammar rules of the language.

• The RTPA type system T encompasses 17 primitive types as

follows:

 T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST, @eS, @tTM, @int ,ⓢsBL}

• The type-suffix convention of RTPA attaches every identifier of

variables, constants, and expressions with a type in bold in the format of idT,
T ∈ T.

• Important derived types in RTPA on the basis of the primitive types

are those of run-time, time, event, status, and CLMs.

• A special set of complex types known as the system types that are

widely used for modeling system architectures, particularly real-time,
embedded, and distributed systems, such as system components, system
clocks, I/O interfaces, device drivers, interrupt sources, real-time events, and
communication sockets.

• The Component Logical Model (CLM) is an abstract model of a
system architectural component that represents a hardware interface, an
internal logical model, and/or a common control structure of a system.

© 2008 by Taylor & Francis Group, LLC

400 Part II Theoretical Foundations of SE

• An Abstract Data Type (ADT) is a logical model of data objects,

which defines the logical architecture and valid operations of the data object.
ADTs extend type construction techniques by encapsulating both data
structures and functional behaviors. The interface and implementation of an
ADT can be separated.

• A formal type system is a collection of type rules for a given

programming language. A type rule is an assertion of the validity of a
judgment’s conclusion on a type

tΘ A based on the inference of a number
of premise judgments

tΘ iA , where Θ t is the given type environment.

Operational Behavioral Modeling and Manipulation

• Behaviors of programs and software systems are observable
computing effects and consequences on the data objects. Fundamental
computing behaviors shared by various instruction sets of computers can be
classified into eight categories, such as data manipulations, arithmetical
operations, logical operations, bitwise operations, program controls,
memory manipulations, I/O manipulations, and interrupt and time
manipulations.

• Basic Control Structures (BCS’s) are a set of essential flow control

mechanisms that are used for building logical architectures of software. The
most commonly identified BCS’s in computing are known as the sequential,
branch, iteration, procedure call, recursion, parallel, and interrupt
structures. The BCS’s provide essential compositional rules for
programming. Based on them, complex computing functions and processes
can be composed.

 • A Control Flow Graph (CFG) is a directed graph model of program
control structures, where a block of sequential instructions is abstractly
represented by an edge, a branch BCS is denoted by two fan-out edges, and
an iteration BCS is represented by a branch and sequential BCS’s. When a
program is abstracted by a CFG, the architecture of the problem is reduced to
a graph where well-defined graph theory can be used to analyze its properties
and complexity.

• The importance of iterations in computing is rooted in the basic need
for effectively describing recurrent and repetitive software behaviors and
system architectures. Based on the inductive property of iterations, the big-R
notation is introduced to unify all types of iterations including the while
(*R), repeat (+R), and for (iR) loops.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 401

• Recursion is an embedded process relation in which a process P calls

itself, i.e. P ↺ P. The mechanism of recursion is a series of embedding

(deductive, denoted by ↺) and de-embedding (inductive, denoted by ↻)
processes. A recursive process should be terminable or noncircular.
Recursions are used to model not only repetitive behaviors of systems, but
also many fundamental language properties in computing.

• Interactive behavior modeling in computing encompasses external

interface (I/O) manipulation, memory manipulation, operating event
handling, timing event handling, interrupt handling, and exception handling.

Program Modeling: Coordination of Computational Behaviors with

Data Objects

• Typical program modeling technologies are statements, algorithms,

classes, components, patterns, and frameworks from the bottom up.

• A statement S is a function, or process, P, that maps a set of input I

into a set of output O, i.e., S = P: I → O. A statement is the smallest
functional unit in programming that specifies an explicit action and results in
the change of one or more variables.

• A program P is a finite list of instructive statements S that describes

the computational behaviors, a set of data objects D that model the internal
and external environment, and their interactions F that result in the change of
the data objects, i.e., P = (S, D, F). A program is a finite set of cumulated
relations between all statements.

• An algorithm Λ is a frequently recurring function f that maps a set of

input X into a set of output Y by a finite set of statements or a finite-step
process, i.e., Λ = f: X → Y. The characteristics of algorithms are reusability,
finite process, and efficiency.

• A class is a computational construct that models a set of data objects

and predefined behaviors or operations on them by an integrated
encapsulation and an abstracted interface.

• An object is an instance of a given class. An object forms an abstract

model of a real world entity and/or a computational module, which is
packaged by an integrated structure of interface and implementation, and is

© 2008 by Taylor & Francis Group, LLC

402 Part II Theoretical Foundations of SE

described by methods for its functions and by data structures for its
architecture and attributes.

• Object-oriented technologies can be commonly identified as

encapsulation, inheritance, reusability, and polymorphism.

• A pattern is a complex computational construct that incorporates a
set of classes for a recurring architectural and behavioral design described by
abstract classes, concrete classes, instantiations, and their associations.

• Software patterns (Definition 5.63) are a new component
modeling technology built upon classes and object-oriented techniques.
As a set of interacting classes, patterns can be used as a powerful tool
for capturing software design notions and best practices, which provide
common solutions to core problems in software development.

• A framework is an architectural model of an entire system that

represents the overall structure, components, processes, and their
interrelationships and interactions.

• Frameworks are the top level computational construct built
upon algorithms, components, classes, and/or patterns in an object-
oriented or component-based approach. Framework technology enables
domain and design knowledge to be reused as well as that of code.

• A framework permits a new technology known as template-
based programming.

Resources and Processes Modeling and Manipulation

• The coordination of computing resources and processes is

manipulated at the operating system level. A program and its behavior space
and semantic environment are realized by a target computer, which can be
modeled by the Generic Computing System (GCS) §.

• An operating system is a type of system software that manages and

controls the resources and computing capability of a computer or a computer
network, and provides users a logical interface for accessing the physical
computer to execute applications. The general-purpose operating systems can
be classified into four types: the batch systems, time-sharing systems, real-
time systems, and distributed systems.

• A Virtual Machine (VM) is a subset of an operating system that

represents various computing resources to the users in a unified manner, and

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 403

hides hardware differences and physical implementation details at the lower
layers.

• A generic operating system encompasses the kernel and the

resource management subsystems. The former is a set of central components
for computing, including CPU scheduling and process management. The
latter is a set of individual supporting software for various system resources
and user interfaces.

• The kernel encompasses the interrupt handler, the task manager, and
the inter-process communication manager, the virtual memory manager, and
the network subsystem manager.

• The services provided by an operating system can be classified into
categories of task control, file manipulation, device control, and information
maintenance.

• Basic computing resource manipulations enabled by an operating

system can be classified as process and thread management, memory
management, file system management, I/O system management, and
network/communication management.

• A Real-Time Operating System (RTOS) is an operating system

that guarantees timely processing of external and internal events of real-time
systems. RTOS requires multitasking, process threads, and explicit interrupt
levels to deal with real-time events and interrupts. An RTOS is essential to
implement embedded and/or real-time control systems.

Questions and
Research Opportunities

5.1 On the basis of Table 5.1, analyze and contrast the orientations

and focuses of problems in software engineering and computer
science in terms of their objects, methods, and resources.

5.2 Why are binary digits (bits) treated as the most fundamental form

of data object representation in computing? Why do computer

© 2008 by Taylor & Francis Group, LLC

404 Part II Theoretical Foundations of SE

science and information science share the same fundamental
object form – bits?

5.3 Why are the most fundamental problems in software engineering

about how the complex data objects and complicated
mathematical and behavioral operations on them may be reduced
to bits and bits-based operations?

5.4 Why are the most fundamental computational operations logical,

arithmetic, and memory access operations on bits?

5.5 What are the different orientations on the usage of automata in

computer science and software engineering?

5.6 Formally define the following FSM according to Definition 5.1.

 a

5.7 According to Theorem 5.3, most software systems go wrong not

because they are incorrect on normally required functions, but
because there are wrong or not prepared for implied or
nonspecified exceptions.

Analyze the following properties of the FSM as given in Ex.5.6:

 a) The entire behavior space Ω of the FSM;

 b) The required behavior space δ of the FSM;
 c) The unspecified behavior space δ of the FSM;

 d) The ratio between the specified behavior space and
the entire behavior space, i.e., (δ / Ω) • 100%.

5.8 What are the limitations or weaknesses of FSMs in computing

and software engineering? What kind of software engineering
problems cannot be dealt with FSMs?

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 405

5.9 Describe the extensions of a Turing machine (TM), TM (∑, S,
s, H, M, δ) and its transition function δ over the structure of an
FSM.

5.10 According to Theorem 5.5, what are the key findings of Turing on

the fundamental computational capabilities?

5.11 It is perceived that virtually any complex computing activities can
be reduced to a Turing machine. Based on this assertion, discuss
if Turing machines are either more fundamental or more powerful
in modeling computing structures.

5.12 What are the limitations or weaknesses of Turing machines in

computing and software engineering? What kind of software
engineering problems cannot be dealt with Turing machines?

5.13 What are the extensions of von Neumann machines over Turing

machines?

5.14 Stored-program techniques unified data and ___?___ in memory.

How?

5.15 Describe the architecture of a VNM machine:

VNA (ALU, CU, M, I/O, B).

5.16 What are the limitations or weaknesses of VNMs in computing

and software engineering? What kind of software engineering
problems cannot be dealt with VNMs?

5.17 Discuss what would be the potential computing theories and

techniques towards the development of non-VNMs.

5.18 What is a data type and what are types’ usages in software

engineering and computing?

5.19 Summarize the 17 primitive types of RTPA, and highlight the

special types that are not modeled in exiting programming
languages.

5.20 According to Theorem 5.6, the type domains of mathematics Dm,

language Dl, and user defined Du obey the following law: Du ⊆ Dl
⊆ Dm. On the basis of this theorem, explain why the precedence

© 2008 by Taylor & Francis Group, LLC

406 Part II Theoretical Foundations of SE

of domain determination must be Du ⇒ Dl ⇒ Dm in software
engineering.

5.21 The type system of Pascal is given in Fig. 5.8. Referring to Table

5.12, try to formally define the type system of Pascal according to
Definition 5.34.

5.22 The type system of Java is given in Fig. 5.9. Referring to Table

5.12, try to formally define the type system of Java according to
Definition 5.34.

5.23 The type system of IDL is given in Fig. 5.10. Referring to Table

5.12, try to formally define the type system of IDL according to
Definition 5.34.

5.24 Build an informal type system model for C++ as that of Fig. 5.9.

Then, develop a formal type system model of C++ according to
Definition 5.34 and Table 5.12.

5.25 The schema of a function in programming languages can be

formally modeled as a complex type according to type theory.
Referring to Definition 5.36, try to develop a formal type rule for
the function type, FuncST, for Java.

5.26 The schema of a class in UML may be modeled as three

components known as the ClassIDS, AttributesRT, and MethodsST.
Try to define a formal type rule, ClassST, for UML classes.

5.27 What is the usage of the run-time type RT as modeled in RTPA?

What are the counterparts in programming languages?

5.28 What is the usage of the system (structural) type ST as modeled in

RTPA? What are the counterparts in programming languages?

5.29 The architectural model of an ADT, QueueST, is partially

specified as follows:

 Queue.ArchitectureST QST ::
 (<_ : N | sizeN ≥ _>,
 <_ : _>,
 <CurrentPos : _ | _ ≤ _ P ≤ _>
)

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 407

 a) Try to complete the specification by providing proper
values or types for the eight blank places marked by _.

 b) Draw a diagram to show the corresponding conceptual

model of the queue.

5.30 How is a port or system interface modeled by the system structure
PORTST in RTPA? What are the counterparts in programming
languages?

5.31 What are the characteristics modeled in the formal definition of

an identifier?

5.32 Referring to that of a variable obtains or changes its value

through assignments, how does a constant obtain its value? Is the
binding between the constant and its value permanent or
temporary?

5.33 BCS’s are a set of essential flow control mechanisms that are used

for constructing logical architectures of software systems. What
are the relations of the 10 BCS’s and the 17 process relations
(operations) modeled in RTPA?

5.34 Comparatively analyzing the linear and nested structure of

iterations and recursions, and corresponding formal denotations in
RTPA, describe the role of the big-R notation.

5.35 Draw a conceptual model of a node in the digraph, NodeS, based

on the following RTPA specification:

5.36 According to Definition 5.51, i.e.:

DiGraphST.Architecture.NodeCLMST NodeS ::
(<Element : RT>,
 <PriorPtr : P>,
 <NextPtr : P>,
 <Order: N | 0 ≤ OrderN ≤ SizeofEdgesN>,

 <
1

Order

i
R
=

N

N
Edge(iN) : S>,

 <
1

Order

i
R
=

N

N
Weight(iN) : N>,

)

© 2008 by Taylor & Francis Group, LLC

408 Part II Theoretical Foundations of SE

1

1 12 2 23 3 1,
1

(s), 1 (...((() s) s) ... s)
n

i ij j n n n
i

P s r j i s r r rR
−

−
=

= = + = ,

explain the physical meaning of a process in programs. (Hint:
Refer to Theorem 4.3 on the cumulative relational processes.)

5.37 Explain Theorem 5.7, the generic mathematical model of

programs, i.e.:

1

1 1 1

(@) [@ (() () s ())], 1
m m n

k k k i ij j
k k i

e P e s k r k k j iR R R
−

= = =

℘= = = +S S

and demonstrate how it fits an example program in any
programming language.

5.38 Refer to Section 5.5.2.3 and explain how the generic

mathematical model of patterns is applied to the Builder pattern
deductively.

5.39 The current design and implementation of software patterns are

based on object-oriented technologies. Are software patterns
independent of technologies and programming languages? Why?

5.40 Refer to Section 5.5.3 and explain how the framework of the

Telephone Switching System (TSS) is modeled by
TSS.ArchitectureST, TSS.StaticBehaviorsST, and
TSS.StaticBehaviorsST in RTPA.

5.41 Discuss how an operating system may be described by the

Generic Computing System (GCS), §, as given in Definition 5.56.

5.42 Read the following classic article in software engineering:

John E. Hopcroft (1987), Computer Science: The

Emergence of a Discipline, The 1986 Turing Award

Lecture, Communications of the ACM, 30(3), pp.198-

202.

Discuss the following topics in a group:

 • About the author.

© 2008 by Taylor & Francis Group, LLC

Chapter 5 Computing Foundations of SE 409

• What was the nature of computer science according to the
author in the 1980s?

 • What is the architecture of computer science as a scientific
discipline?

 • What conclusions of the article interested you? Why?
 • Your arguments or counter-points on any of the conclusions

derived in this article.

5.43 Using the state transition diagram (STD) of RTOS+ as shown

below as an example, try to solve the following problems:

 a) Formally define the STD of RTOS+ as an FSM.
 b) Analyze the size of the behavioral space Ω of the FSM.

S0 S1 S2 S3

S8 S4 S5 S6

a b c

d

d

e

e f

g

S7

h

k

l
l

l

where

s0: Creating
s1: Ready
s2: Running
s3: Completed
s4: Interrupted
s5: Delayed
s6: Suspended
s7: Killed
s8: Interrupt Services

a: Resource available
b: Schedule
c: Completed
d: Interrupt
e: Interrupt return
f : Time-out
g: Time available
h: Wait for event
k: Event available
l: Delete

© 2008 by Taylor & Francis Group, LLC

410 Part II Theoretical Foundations of SE

5.44 Read the following classic article in software engineering:

Erich Gamma (2002), Design Patterns – Ten Years

Later, in M. Broy and E. Denert eds., Software

Pioneers, Springer, Berlin, pp. 688 – 700.

Discuss the following topics in a group:

 • About the author.

• Where does the concept of software design patterns comes
from?

 • Why are design patterns considered useful in software
engineering?

 • What are the limitations of patterns in software reuse?
 • What conclusions of the article interested you? Why?

 • Your arguments or counter-points on any of the conclusions
derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 6

LINGUISTIC FOUNDATIONS
OF SOFTWARE
ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

3. Philosophical
 Foundations
 of SE

6.1 Introduction 6.5 Semantics of Programming Languages
6.2 Fundamentals of Linguistics 6.6 Semantics of RTPA
6.3 Formal Language Theory 6.7 Linguistic Perspectives on SE
6.4 Syntax of Programming Languages 6.8 Summary

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Informatics
 Foundations
 of SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

412 Part II Theoretical Foundations of SE

Knowledge Architecture

 Fundamentals of linguistics

 • Taxonomy of linguistics • Syntaxes
 • Semantics • Grammars

 Formal language theory

 • Alphabets • Strings
 • Expressions • Grammar theories
 • Languages • BNF and EBNF
 • Language recognitions

 Syntax of programming languages

 • Lexical analyses • Syntax definition and descriptions
 • Syntactical analyses • Syntactical analyses of RTPA

 Semantics of programming languages

 • Taxonomy of semantics
 • Denotational semantics
 • Deductive semantics

 Semantics of RTPA

 • Semantics of RTPA meta processes
 • Semantics of RTPA process relations
 • Semantics of system and system process dispatching

 Linguistics perceptions on software engineering

 • Comparative analysis of natural and programming languages
 • Principles of programming language design
 • Characteristics of programming languages

Learning Objectives

• To understand the role of linguistics and fundamental principles of linguistics

in software engineering.
 • To be aware of the formal language theory and the formal grammar system.
 • To be familiar with formal syntaxes and semantics.
 • To understand the BNF and EBNF notations for language specification and

modeling.
 • To understand deductive semantics and its applications in RTPA modeling.
 • To be familiar with applications of linguistics in software engineering.

6. Linguistics Foundations of SE

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 413

 “The gift of language is the single human trait that marks us all genetically,
 setting us apart from the rest of life.”

Lewis Thomas (1974)

 “I believe that the time is ripe for significantly better documentation of

 programs, and that we can best achieve this by considering
programs to be works of literature.”

D.E. Knuth (1984)

6.1 Introduction

inguistics is the discipline that studies human or natural languages.
Languages are an oral and/or written symbolic system for thought,
self-expression, and communication. Lewis Thomas highlighted that

“the gift of language is the single human trait that marks us all genetically,
setting us apart from the rest of life [Thomas, 1974].” This is because
functions of languages can be identified as for memory, instruction,
communication, modeling, thought, reasoning, problem-solving, prediction,
and planning [Pattee, 1986; Casti and Karlqvist, 1986].
 Linguists commonly agree there is a universal language structure or
grammar [Chomski, 1956/57/59/62/65/82; Pattee, 1986; O’Grady and
Archibald, 2000]. However, the grammar may be precise and explicit as in
formal languages, or ambiguous and implied as in natural languages.
Although a language string is symbolically constructed and read sequentially,
all natural languages have the so called metalinguistic ability to reference
themselves out of the sequences. That is, to construct strings which refer to
other strings in a language.
 This chapter comparatively studies natural and artificial languages, and
explores fundamental theories of linguistics, language acquisition, and
applications. Then, it extends linguistics to artificial languages, particularly
programming languages, which investigate the theory of formal languages
and the applications of mathematics in computational linguistics.
 It is noteworthy that a natural language is context sensitive. While
almost all programming languages, no matter at machine level or higher
level, are supposed to be context free. Therefore, it is curious to query if a
real-world problem and its solution(s), in a context-dependent manner, can
be described by a context-free programming language without losing any
information. Automata and compiler theories [Rabin and Scott, 1959; Aho et
al. 1985; Louden, 1993; Lewis and Papadimitriou, 1998] indicate a context-

L

© 2008 by Taylor & Francis Group, LLC

414 Part II Theoretical Foundations of SE

sensitive language may be transformed into a corresponding context-free
language. But the costs to do so are really dear, because the context cannot
be freely removed. A common approach is to hide (imply) the context of
software in data objects and intermediate data structures in programming.
However, the drawbacks of this convention, or the limitations of
conventional compiling technologies, make programming hard and
complicated, because the computational behaviors and their data objects were
separated or incoherent in the languages’ descriptive power. This is an
indication that a much natural and context-dependent programming language
and related compiling technology are yet to be sought. We may consider that
ADTs and object-oriented programming technologies are context-dependent,
because the context (in the form of a set of data objects) has been
encapsulated into a set of individual classes and the whole class hierarchy of
a software system.

From a linguistic point of view, software engineering is the application
of information technologies in communicating between a variety of
stakeholders in computing, such as professionals and customers,
architects and software engineers, programmers and computers, as well
as computing systems and their environments. Therefore, linguistics and
formal language theories may play important roles in computing
theories; without them computing and software engineering theories would
not be complete.

It is noteworthy that, historically, language-centered programming had
been the dominant methodology in computing and software engineering.
However, this should not be taken as granted as the only approach to
software engineering, because the expressive power of programming
languages is inadequate to deal with complicated software systems. In
addition, the rigorousness and level of abstraction of programming languages
are too low in modeling the architectures and behaviors of software systems.
This is why a bridge in mechanical engineering or a building in civil
engineering was not modeled or described by natural or artificial languages.
This observation leads to the recognition of the need for mathematical
modeling of both software system architectures and static/dynamic
behaviors, supplemented with the support of automatic code generation
systems.

This chapter analyzes not only how linguistics may improve the
understanding of programming languages and their work products –
software, but also how formal language theories extend the study of
natural languages. In the remainder of this chapter, the linguistics
foundations of software engineering will be presented in six sections.
Fundamental theories of linguistics are reviewed in Section 6.2 on syntaxes,
semantics, grammars, and linguistic analyses. Formal language theories that
provide a rigorous treatment of language elements from the bottom up
are described in Section 6.3. Syntaxes and semantics of programming

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 415

languages and their analyses are presented in Sections 6.4 and 6.5 with
the introduction of a formal semantics theory known as deductive
semantics. Semantics of RTPA are formally described in Section 6.6
using deductive semantics. Comparative analyses of natural and
programming languages, as well as linguistics perceptions on software
engineering, are discussed in Section 6.7.

6.2 Fundamentals of Linguistics

Linguistics studies natural languages in both oral and written forms. Since
languages are the basic means of human communication and tools of
thinking and expression, linguistics may be perceived as one of the
foundations of computing, software engineering, and information sciences.
This section surveys the basic theories and principles of linguistics, which
form a reference system for the study of artificial, programming, and formal
languages in software engineering.

6.2.1 TAXONOMY OF LINGUISTICS

 The basic function of languages is both to communicate information
and to express abstract human behaviors. The central issue of linguistics is
grammar, which is the rules of a language and the ways how the language is
to be generated, formed, recognized, and interpreted.

 Definition 6.1 Linguistics is a discipline that studies the nature and use
of languages.

 The domain of linguistics encompasses phonetics, phonology,
morphology, syntax, and semantics. The first three facets of linguistics are
introduced below, while syntax and semantics will be formally described in
Sections 6.2.2 and 6.2.3.

Definition 6.2 Phonetics is a domain of linguistics that studies the
articulation and perception of sounds of human speech.

 The sounds of any language can be categorized into two types known
as syllabic and nonsyllabic sounds. The former are those of vowels, syllabic

© 2008 by Taylor & Francis Group, LLC

416 Part II Theoretical Foundations of SE

liquids, and syllabic nasals; the latter are those of consonants and glides. It is
interesting to observe that all sounds of human languages can be widely
transcribed by the standard international phonetic alphabet defined by the
International Phonetic Association [IPA, 1970].

Definition 6.3 Phonology is a domain of linguistics that studies the
patterns of speech sounds.

Three units of phonological representation, known as the feature,
phoneme, and syllable, are adopted in the bottom-up phonemic analyses. For
a classic presentation of phonemic analysis, readers may refer to H. A.
Gleason, Jr.’s An Introduction to Descriptive Linguistics [Gleason, 1961].

Definition 6.4 Morphology is a domain of linguistics that studies the
formation and structure of words.

 Words are the smallest free form and basic building blocks of a
language, where the element of words is morphemes. Basic word formation
techniques are derivation and compounding in English. A basic word may be
inflected to mark grammatical contrasts in number, person, gender, case, and
tense. The mental dictionary acquired by a person is called lexicon, which
contains a collection of information about the syntactic properties, meaning,
and phonological representation of words in a language. Interested readers on
morphology may refer to Jensen (1990) or Spencer (1991).

In line with the theme of this chapter on comparative linguistics
between natural and programming languages, the remainder of this section
will put emphases on syntax and semantics of natural languages, because
programming languages in nature are written languages rather than speaking
ones.

6.2.2 SYNTAXES

 Syntaxes deal with relations and combinational rules of words in
sentences. Much of our understanding of the syntactic rules of languages has
come from linguists who have studied and elicited the common rules that
underlie the standard language. One of the most influential linguistic
frameworks, known as the theory of universal grammar, was proposed by
Noam Chomsky [Chomsky, 1957/65]. Universal grammar and its modern
version, the Government and Binding Theory [Chomsky, 1982], have
become a linguistic premise on grammatical analysis in linguistics, which
will be discussed in Section 6.2.4.

Definition 6.5 A syntax is a domain of linguistics that studies sentence
formation and structures.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 417

Definition 6.6 An abstract syntax is the abstract description of a syntax
system where concrete strings of tokens and their grammatical relations are
represented and analyzed symbolically.

Linguistic studies are used to the convention of hierarchical tree
schema to denote sentence structures in syntactical analyses. In a
syntactic perspective, any human language, natural or artificial, is a
sequential or one-dimensional (1-D) symbol stream of syntactical blocks,
which can be decomposed into paragraphs, sentences, phrases, words, and
letters from the top down. Although the syntax of a language is 1-D, its
grammar is recursively structured in a 2-D space.

However, the semantics of languages implied by the sequential

syntaxes can be more complicated, i.e., non-sequential and multi-dimensional
in most cases, such as branch, parallel, embedded, concurrent, interleaved,
and interrupt structures as shown in Table 6.1 [Wang, 2007l].

Table 6.1
Semantic Relations of Sentences

No. Relation Formal Symbol Description
1 Sequential → and, then

2 Branch | or
3 Parallel || and, simultaneously (action by the same subjects)
4 Embedded that, which, if, whether
5 Concurrent ∯ and, simultaneously (action by different subjects)

6 Interleave ||| Alternatively
7 Interrupt when, while, during

Table 6.1 indicates that the semantic relations of sentences are a set of

connectors, which are a subset of the 17 process relations as defined in
RTPA [Wang, 2002a/02b/03c/06a/07a].

Syntactic elements in natural languages can be classified into the
categories of lexical, functional, phrasal, and relational. A summary of
definitions of syntactic elements of languages is provided in Table 6.2, where
an element in angular brackets is optional. In Table 6.2, there is special
category of lexical components known as complement phrases (CPs). CPs
can be a supplemental part of N/NP, V/VP, A/AP, or P/PP. The rules for

Lemma 6.1 Syntaxes of natural languages, Syn, are 2-dimensionally
descriptable and are recursive.

© 2008 by Taylor & Francis Group, LLC

418 Part II Theoretical Foundations of SE

defining relations between CPs and other lexical categories of sentences may
be referred to O’Grady and Archibald (2000).

Table 6.2

Definition of Lexical Categories of languages

Category Sub Cat. Symbol Description
Lexical
 Noun N entities and abstract objects
 Verb V actions, states, and possessions
 Adjective A properties of a noun
 Adverb Λ properties of a verb

 Preposition P designates relations in space or time
Functional
 Determiner τ the, a, this, these, etc.

 Degree word δ too, so, very, more, quite, etc.

 Qualifier κ almost, always, often, perhaps, never, etc.

 Auxiliary α will, can, may, must, should, could, etc.

 Conjunctor γ and, or, that, which, if, whether, etc.

 Negative ¬ not

Phrasal a syntactic unit with one or more words as a
lexical category

 Noun phrase NP τ N [PP]
 Verb phrase VP V NP etc.
 Adjective

phrase
AP [δ] A [PP]

 Adverb phrase ΛP [Λ] V | V [Λ]
 Prepositional

phrase
PP [δ] P [NP]

 Complement
phrase

CP supplemental part of N (NP), V (VP), A (AP), or
P (PP)

Relational R A set of connectors

 Sequential → and, then

 Branch | or
 Parallel || and, simultaneously (action by the same subjects)
 Embedded that, which, if, whether

 Concurrent ∯ and, simultaneously (action by different subjects)

 Interleave ||| alternatively
 Interrupt when, while, during

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 419

Based on the definitions of lexical functions of words and phrases, the
syntactic structure of sentences can be described formally as shown in Fig.
6.1. In Fig. 6.1, the D-structure represents relationship between subject and
object in a sentence, while the S-structure represents the surface linear
arrangements of words in a sentence [Gleason, 19961/97]. The S-structure
consists of the sound structure of a sentence called the phonetic form and the
meaning of the sentence called the logical form. The D-structure consists of a
set of phrase structure rules and the lexicon that specifies the
morphophonological and syntactical features of the sentence.

 Phonetic form

Transformation
rules

 Phrase rules

 S-structure

 D-structure

 Logic form

Semantic
rules

 Lexicon

Figure 6.1 Relationships among components of universal grammar

6.2.3 SEMANTICS

Definition 6.7 Semantics is a domain of linguistics that studies the

interpretation of words and sentences, and analysis of their meanings.

 Semantics deals with how the meaning of a sentence in a language is
obtained, hence the sentence is comprehended. Studies on semantics explore
mechanisms in the understanding of language and the nature of meaning
where syntactic structures play an important role in the interpretation of
sentence and the intension and extension of word meaning [Tarski, 1944;
Chomski, 1956/57/59/62/65/82].

Definition 6.8 The mathematical model of semantics of natural
languages, Sem, is a 5-tuple, i.e.:

 Sem (J, B, O, T, S) (6.1)

© 2008 by Taylor & Francis Group, LLC

420 Part II Theoretical Foundations of SE

where

• J is the subject of the sentence;
• B is a behavior or action;
• O is the subject of the sentence;
• T is the time when the action is occurring;
• S is the space where the action is occurring.

According to Lemma 6.1 (Syn) and Definition 6.8 (Sem), the
relationship between a language and its syntaxes and semantics can be
illustrated as shown in Fig. 6.2. Fig. 6.2 explains that linguistic analyses are a
deductive process that maps the 1-D language into the 5-D semantics of
natural languages via the 2-D syntactical analyses [Wang, 2007h/07j].

 O O … O … O O … [L (1-D)]

 Syn (2-D) Sem (5-D)

 S

 J

 B

 T O

Figure 6.2 The Universal Language Processing (ULP) model

Semantic analysis and comprehension are a deductive cognitive
process. According to the OAR model as developed in Section 9.4, the
semantics of a sentence may be considered having been understood when: a)
The logical relations of parts of the sentence are clarified; and b) All parts of
sentence are reduced to the terminal entities, which are either a real-world
image or a primitive abstract concept. The theoretical foundations of
language cognition and comprehension will be further discussed in
Chapter 9.

6.2.4 GRAMMARS

Syntactic and semantic analyses in linguistics rely on a set of explicitly

described rules known as the grammar of a language. Therefore,

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 421

contemporary linguistic analyses focus on the study of grammars, which is
centered in language acquisition, understanding, and interpretation.

 Definition 6.9 The grammar of a language is a set of common rules

that integrates phonetics, phonology, morphology, syntax, and semantics of a
given language.

 The grammar governs the articulation, perception, and patterning of

speech sounds, the formation of words and sentences, and the interpretation
of utterance.

6.2.4.1 Properties of Grammars

O’Grady and Archibald (2000) identified five basic properties of

grammars as follows:

• Property 1. Generality: All languages have a grammar.
• Property 2. Parity: All grammars are equivalent in terms of their

expressive capacity.
• Property 3. Universality: Grammars are commonly alike, or

basic principles and properties are shared in all languages.
• Property 4. Mutability: Grammars of all languages are constantly

changing over time.
• Property 5. Inaccessibility: Grammatical knowledge of the

mother tongue is built at the subconscious layer of the brain.

The above basic properties of grammars form an important part of the
foundations of human intelligence. The most interesting property of
grammars of natural languages is their expressive parity.

Based on Lemmas 6.2, it is perceived that, in computing and software

engineering, all programming languages are equivalent. In other words, no
language may claim a primitive status over others, as long as they implement
the 17 meta processes and 17 process relations of RTPA as stated in
Theorems 4.6, 4.7, and 5.7 in Sections 4.6 and 5.5.

6.2.4.2 The Universal Grammar

An important discovery in modern linguistics is the existence of the

universal grammar among human languages.

Lemma 6.2 All grammars of natural languages are equivalent.

© 2008 by Taylor & Francis Group, LLC

422 Part II Theoretical Foundations of SE

 Definition 6.10 The universal grammar (UG) is a system of categories,
mechanisms, and constraints shared by all human languages.

UG is perceived as innate based on recent neurolinguistic and

psycholinguistic studies [Chomsky, 1982; O’Grady and Archibald, 2000;
Wang, 2007h]. UG treats all languages with the same generic type of
syntactic mechanisms, which include the merge and transformation
operations. The former is a syntactic operation that combines words in
accordance with their syntactic categories and properties; while the latter is a
syntactic operation that puts words and phrases in an appropriate structure.

An instance of UG is the English grammar, which may be formally
described in the following section.

6.2.4.3 The Deductive Grammar of English

Formal language theories of computing science and software

engineering perceive that the grammar of any programming language or
professional notation systems may be rigorously defined by the EBNF
notation [Naur, 1968/73]. The author found that the formal language theory
can be extended to describe and analyze the grammar of natural languages
such as that of English [Wang, 2007l].

 Definition 6.11 The deductive grammar is an abstract grammar that
formally denotes the syntactic rules of a language based on which as a
generic formula valid language sentences can be deductively derived.

On the basis of the definitions of the syntactic elements as given in

Table 6.2, the English grammar can be formally described in EBNF known
as the Deductive Grammar of English (DGE) [Wang, 2007l]. A rigorous
definition of DGE at the sentence level is given in Fig. 6.3. Some aspects of
DGE are simplified at the bottom level, particularly on person rules of nouns,
time rules of verbs, and the matching of nouns and verbs in sentences.

According to DGE, the schema of the most complicated sentence in
English that consists of all possible and legal syntactic components of DGE
is shown in Fig. 6.4. The generic schema of DGE can be used as a universal
formula to deductively derive any sentence in English. For example, the
shortest possible sentence is given in Example 1 in Fig. 6.4. The longest
possible sentence is presented in Example 3, i.e.:

“The unregistered new student all in the class [and another
phrase] will not get the expected comprehensive handbook directly
from the teacher [or another sentence].”

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 423

Figure 6.3 The Deductive Grammar of English (DGE)

S (Sentence)
Subject Action

NP VP
NP γ NP VP γ VP

AP PP NP Object * VP

No.

τ
Λ A

N
Λ P τ N

γ
…
α ¬ V

τ Λ A N Λ P τ N
γ

…
Ex.1 Look .
Ex.2 I read a book .
Ex.3 a b b d e f g h i j k l m n o p q r s t u v w

Note: Words in Sentence 3 are defined as follows:

a – The, b – unregistered, c – new, d – student, e – all, f – in, g – the, h – class, i – and,
j – …, k – will, l – not, m – get, n – the, o – expected, p – comprehensive, q – handbook,
r – directly, s – from, t – the, u – teacher, v – or, w – another sentence.

Figure 6.4 The schema of a generic sentence based on DGE

S ::= [Subject] Predicate
 | S γ S
Subject ::= NP
Predicate ::= VP [Object]
Object ::= NP
NP ::= τ [AP] N [PP]
 | τ N*
 | NP γ NP
AP ::= [Λ] A
ΛP ::= [δ] Λ
 | [κ] Λ
PP ::= [Λ] P [NP]
VP ::= VP γ VP
 | [α] [¬] V [Object]*
 | [ΛP] V [¬] [Object]*
 | V [¬] [Object]* [ΛP]
¬ ::= <not>
N ::= <nouns>
V ::= <be>
 | <have>
 | <do>
P ::= <propositions>
A ::= <adjectives>
Λ ::= <adverbs>
δ ::= <degree words>
κ ::= <qualifier words>
α ::= <auxiliary words>
τ ::= <determiner words>
γ ::= <conjunction words>
 | <.>
 | <;>

© 2008 by Taylor & Francis Group, LLC

424 Part II Theoretical Foundations of SE

The above example provided in Fig. 6.4 is an instance that uses almost
all possible syntactic components. Obviously, natural sentences in practical
usages are always a subset of the DGE schema. Therefore, they are rather
simple and short as shown in the first two examples in Fig. 6.4.

The 1-D structured sentences as shown in Fig. 6.4 can be modeled in a
2-D graphical form as shown in Fig. 6.5. Observing Figs. 6.3 through 6.5, it
is noteworthy that the syntactic structure of the DGE schema is highly
recursive. The recursive characteristics in Fig. 6.5 are repetitively
represented by the none phrases (NP) and verb phrases (VP).

 S

Subj
(NP)

 NP γ

 α ¬ V

 VP

 Obj

 NP

 NP γ VP

 τ N PP

 A

 AP

 Act
(VP)

 Λ Λ P N τ

Figure 6.5 The syntax structure of the generic sentence schema in DGE

Theorem 6.1 indicates that the simpler the syntactic rules or the

grammar, the richer or more complicated the semantics, and vice versa
According to Theorem 6.1, since UG or DGE as defined in Fig. 6.3 are
relatively simple, its semantics are much richer, more complicated, and more
ambiguous. In contrary, because programming languages adopt very detailed
and complicated grammars, their semantics are relatively concise, simple,
and rigor.

The fundamental elements of natural languages can be classified as
shown in Table 6.3 [Wang, 2002a/06j/07a]. Observing Table 6.3 it can be

The 18th Law of Software Engineering

Theorem 6.1 The tradeoff between syntaxes and semantics states that in
the DGE system, the complexities of the syntactic rules (or grammar) Csyn
and of the semantic rules Csem are inversely proportional, i.e.:

 1
syn

sem
C

C
∝ (6.2)

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 425

seen that although natural languages can be rich, complex, and powerfully
descriptive, they share common basic structures, such as ‘to be (|=),’ ‘to have
(|⊂),’ and ‘to do (|>).’

Table 6.3

Fundamental Elements in Natural Languages

Function Category Notation Example

Identify objects and
attributes

To be |= A |= B ⇒
 (A is B)

Describe relations and
possession

To have |⊂ A |⊂ B ⇒
 (A has B)

To do |> A |> B ⇒
 (A does B)

Describe status and
behaviors

Indirect to do |>> … |> A |>> B |> C ⇒
 (A has B to do C)

Describe negative facts Not ¬ A ¬ |= B ⇒
 (A is not B)
A ¬ |⊂ B ⇒
 (A has not B)
A ¬ |> B ⇒
 (A does not B)

The formal models of UG and DGE provide linguistics, particularly

language analyzers, implementers, and recognizers, for a powerful tool to
formally describe and process natural language documents. Perspective
applications of DGE may be in the development of Internet searching
engines, semantic analysis of natural languages, speech recognitions, and
intelligent systems for natural language parsing and word processing.

6.3 Formal Language Theory

Natural languages studied in Section 6.2 are informal and nonrigorous. Every
defined rule in the grammars of human languages has exceptions and their
semantics depends on contexts, situations, and subjective perceptions.

In contrary, formal languages are theories and rules for rigorously
specify, analyze, generate, and recognize programming languages. Formal
language theories study the following objects hierarchically from the bottom
up:

© 2008 by Taylor & Francis Group, LLC

426 Part II Theoretical Foundations of SE

 • Alphabets
 • Strings
 • Expressions
 • Languages
 • Grammars
 • Machines capable to process formal languages

 Software engineering may need to extend conventional formal language
theories from language generation and recognition to software system
modeling and specification.

6.3.1 ALPHABET

 Any language, natural and artificial, for human or machine, is based on
a set of symbols known as the alphabet.

 Definition 6.12 An alphabet ∑ is a nonempty finite set of symbols or
letters.

 Example 6.1 The following sets of symbols are typical alphabets:

 a) Roman alphabet: ∑R = {a, b, …, z, A, B, …, Z}
 b) The binary alphabet: ∑B = {0,1}

 c) Digits: ∑D = {0,1, 2, …, 9}
 d) Operators: ∑OP = {+, -, *, /, :=, … }

 In software engineering, the alphabet of a programming language ∑PL is
usually an extension of ∑R ∪ ∑D ∪ ∑OP. The alphabets of modeling and
specification notation systems can be more complicated over ∑L with
extensions of special structural, architectural, and behavioral symbols.

6.3.2 STRINGS

 Strings are the second-level building block of a language based on a
given alphabet.

Definition 6.13 A string s over an alphabet ∑ is a finite sequence of
symbols defined on ∑. A string is also known as a word.

 Example 6.2 The following sequences are typical strings:

 a) A string over Roman alphabet ∑R: s1 = ‘Software engineering’.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 427

 b) A string over the binary alphabet ∑B: s2 = ‘011’.
 c) An empty string over any alphabet: s3 = ∅, or s3 = ‘ ’.

 Major string operations are length test, concatenation, and closure.

 Definition 6.14 The length of a string s, Ls, is the number of symbols
included in s, i.e.:

 Ls = |s|
 = #s (6.3)

 Example 6.3 Given strings as shown in Example 6.2, the lengths Ls1 =
|s1| = #(Software engineering) = 20, note that a space between symbols is
counted as a symbol in the string; Ls2 = |s2| = #(011) = 3; and Ls3 = |s3| = |∅| =
#(‘’) = 0.

 Definition 6.15 The concatenation of two strings p and q over given
alphabets ∑p and ∑q is the connection of p and q in the given sequence that
forms a combined string s over a joint alphabet ∑p ∪ ∑q, i.e.:

 s = p q, s ∈ ∑p ∪ ∑q and |s| = |p| + |q| (6.4)

where, s(i) = p(i) for i = 1, …, |p|, and s(|p|+i) = q(i) for i = 1, …, |q|.

 Example 6.4 Let s1 and s2 be the strings as given in Example 6.3. Then,
a string s that concatenates s1 and s2 is as follows:

 s = s1 s2
 = ‘Software engineering’ + ‘011’
 = ‘Software engineering011’, s ∈ ∑R ∪ ∑B

Concatenation can be extended to operations on more than two strings
as described below.

Lemma 6.3 The concatenation operation of arbitrary strings p, q, and r
on an alphabet ∑ is constrained by the following laws:

a) Associative: (p ο q) ο r = p ο (q ο r) (6.5)
b) Antisymmetric: p ο q ≠ q ο p (6.6)

© 2008 by Taylor & Francis Group, LLC

428 Part II Theoretical Foundations of SE

Both laws on concatenation can be proven directly by using Definition
6.15.

 Definition 6.16 The closure of an alphabet ∑, ∑*, is the set of all
strings on ∑, including the empty string ∅.

The number of strings that can be generated by a closure ∑*, #(∑*),
may easily grow to an infinitive when the size of the alphabet #∑ is larger
enough.

Example 6.5 a) Let alphabet ∑1 = {a, b}, the closure of ∑1 is ∑1* =
{∅, a, b, ab, ba}. b) A subset of the closure of Roman alphabet ∑R that
includes all strings with length of three is: ∑R3* = {s ∈ ∑R* | #(s) = 3} =
{abc, bcd, ..., xyz, …}.

 Example 6.6 The following strings belong to a specific closure of
alphabet:

(a) s1 = ‘Software engineering’ ∈ ∑*R
(b) s2 = ‘011’ ∈ ∑*B
(c) s = s1 s2 = ‘Software engineering011’ ∈ (∑R ∪ ∑B)*

6.3.3 EXPRESSIONS

 Expressions are the third-level building block of a language based on a
given alphabet.

Definition 6.17 An expression e is a string on an alphabet or a number
of strings concatenated by a set of special symbols known as operators.

 Definition 6.18 A regular expression er is an expression or a special
kind of strings that consists of single symbols on a given alphabet, or of
those single symbols combined with the symbols of the empty string ∅,
union ∪ , repeat *, and parentheses ().

 Example 6.7 According to Definition 6.18, the following expression

 er1 = (a ∪ b)* a

is a regular expression.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 429

6.3.4 GRAMMAR THEORIES

 As described in Section 6.2.4, the concept of formal grammars was
developed by linguist Noam Chomsky in the 1950s [Chomsky, 1956]. In this
subsection, readers are prepared with introductions to some terms before the
discussions on formal grammars are presented.

6.3.4.1 Production Rules of Grammars

A production rule is a function that facilities formal reasoning in
grammar analyses. On the basis of a set of productions, a grammar can be
formally defined.

Definition 6.19 A terminal is a constant string on a given alphabet ∑

that has a defined semantics and cannot be broken down further. Terminals
will be denoted by lower case italic letters.

Definition 6.20 A nonterminal is a variable string on a given alphabet
∑ that is a syntactical category or combined term with semantics dependent
on further deductions. Nonterminals will be denoted by italic capital letters.

Definition 6.21 A production p is a function that produces an ordered
pair (α, β), i.e.:

p: α → β (6.7)

where α and β is a terminal, nonterminal, or their combinations.

Example 6.8 The following are productions:

A → a, A → Aa, A → B, and aB → b

These productions may be shortly denoted by:

A → (a, Aa, B), and aB → b

A production with all terminals on its right-hand side (RHS) is a final
product with a derived semantics or physical meaning; while a product with
at least one nonterminal on its RHS is an intermediate product with its
semantics pending on further deduction.

6.3.4.2 Taxonomy of Grammars

 There are various grammars classified according to the types of
productions adopted for establishing the rules of a grammar, the relations of a
grammar with the contexts, or the techniques for grammar recognitions.

© 2008 by Taylor & Francis Group, LLC

430 Part II Theoretical Foundations of SE

6.3.4.2.1 Chomsky Grammars

According to Noam Chomsky [Chomsky, 1956], formal grammars can
be classified as Type 0 through Type 3 from the bottom up with increasing
rigor, based on the types of production rules adopted in the grammars.

Definition 6.22 A Type 0 grammar, G0, is a grammar that has no

restrictions on its productions.

Definition 6.23 A Type 1 grammar, G1, is a grammar that satisfies the
following conditions:

 ∀p ∈ G1, p: α → ∅ ∨ (p: α → β ⇒ |α| ≤ |β |) (6.8)

Definition 6.24 A Type 2 grammar, G2, is a grammar that satisfies the

following condition:

 ∀p ∈ G2, p: A → β (6.9)

where A is a nonterminal.

Definition 6.25 A Type 3 grammar, G3, is a grammar that satisfies the
following conditions:

 ∀p ∈ G3, p: s0 → ∅ ∨ p: A → a ∨ p: A → aB (6.10)

where s0 is the start symbol, A and B are nonterminals, and a is a single
terminal.

Corollary 6.1 can be directly proven on the basis of Definitions 6.22

through 6.25.

Corollary 6.1 The four-type Chomsky grammars, G0 through G3, satisfy
the following relations:

G3 ⊆ G2 ⊆ G1 ⊆ G0 (6.11)

That is, a higher level grammar imposes stronger restrictions on its
production rules than those of the lower level grammar(s).

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 431

6.3.4.2.2 Grammars Classified by Relations with the Contexts

A context of a production is a certain configuration of all symbols in
the strings and expressions of a production.

Definition 6.26 A context-sensitive grammar Gs is a grammar that is
constrained by the following condition:

 ∀p ∈ Gs, p: αAα’ → αβα’ (6.12)

where αAα’ is the context, and A is a nonterminal symbol that can be
replaced in the given context.

Definition 6.27 A context-free grammar Gf is a grammar that is
constrained by the following condition:

 ∀p ∈ Gf, p: A → β (6.13)

where p is context-independent.

Definition 6.28 A regular grammar Gr is a grammar that is constrained
by the following conditions:

 ∀p ∈ Gr, p: s0 → ∅ ∨ p: A → a ∨ p: A → aB (6.14)

6.3.4.2.3 Formal Description of Context-Free Grammars

Context-free grammars, or Type 2 grammars due to Chomsky, are a
category of the most widely used grammars in language generation,
specification, recognition, and processing.

Definition 6.29 A context-free grammar Gf is a language generator that
can be described by a 4-tuple:

Corollary 6.2 The three types of grammars classified with regard to their
contexts, Gs, Gf, and Gr, satisfy the following relations:

 Gr ⊆ Gf ⊆ Gs (6.15)

and
Gs = G1 (6.16a)
Gf = G2 (6.16b)

 Gr = G3 (6.16c)

© 2008 by Taylor & Francis Group, LLC

432 Part II Theoretical Foundations of SE

 Gf (∑, s0, T, R) (6.17)

where

 (i) ∑ is a finite nonempty set of alphabet;
 (ii) T the set of terminals, T ⊆ ∑;

 (iii) s0 the start symbol, S0 ∈ (∑ \ T), which is a nonterminal;
 (iv) R the set of rules, R ⊆ (∑ \ T) × ∑*, which is called productions.

 Example 6.9 According to Definition 6.27, the following given
grammar Gf1 = (∑, s0, T, R) is a context-free grammar where:

 ∑ = {a, b, ∅}
 s0 = a
 T = {b}
 R = {s1→aMb, M→A, M→B, A→∅, A→aA,
 B→∅, B→bB}

In the rule set R, a capital letter represents a nonterminal symbol or a
variable. Usually, a grammar G may be simply denoted by its productions R,
because R contains all necessary information for defining G.

6.3.4.2.4 Grammars Classified by Language Recognition Techniques

According to the relations to language parsing techniques, context-free
grammars can be classified into two categories known as the LL(k) [Aho and
Ullman, 1972] and LR(k) grammars [Knuth, 1965].

Definition 6.30 An LL(k) grammar is a class of context-free grammars,

where the first L denotes that the parsing is from left to right, the second L
specifies that the next production is derived by left-most derivation, and k, k
≥ 1, denotes that at most k-symbol looking ahead into the unmatched part of
the input string is required in order to uniquely determine the next
production.

When k > 1, the LL(k) grammar is called a strong LL(k) grammar. Any
LL(k) grammar is unambiguous and suitable for top-down parsing. LL(1)
grammars are widely used in compiling systems because most of the syntaxes
of high-level programming languages can be defined by an LL(1) grammar
[Aho, Sethi, and Ullman, 1985].

Definition 6.31 An LR(k) grammar is a class of context-free grammars,

where the letter L denotes that the parsing is from left to right, the letter R
specifies that the next production is derived by right-most derivation in

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 433

reverse, and k, k ≥ 1, denotes that at most k-symbol looking ahead into the
unmatched part of the input string is required in order to uniquely determine
the next production.

LR(k) grammars are the most widely used techniques in compiling
systems because they are suitable for bottom-up parsing in order to reduce
shift in input scanning [Knuth, 1965]. Any deterministic language can be
defined by an LR(1) grammar [Hopcroft and Ullman, 1979]. The relationship
between the two parsing-driven grammars is that any LL(k) grammar is
necessarily LR(k) [Knuth, 1965].

6.3.5 LANGUAGES

 A language is a set of expressions and strings over an alphabet that is
formed following certain properties and rules known as the grammar.

 Definition 6.32 A language on a given alphabet ∑ is a subset of
expressions e over ∑*, i.e.:

 L = {e ∈ ∑* | p(e)} (6.18)

where p(e) denotes each e of L possesses the common property or satisfies
the grammar rule p, i.e., ∀e ∈ L ⇔ p(e).

 According to Definition 6.32, the following strings and expressions
belong to a language:

 • The empty string ∅
 • All individual symbols in ∑

• All finite sequences of combinations of the individual symbols
 on ∑

 Example 6.10 a) Let ∑1 = {a, b}, then language L1 = {s ∈ ∑1*} = {∅,
a, b, ab, ba}. b) Let ∑2 = ∑R, then language L2 = {s ∈ ∑R3* | #(s) = 3} =
{abc, bcd, ..., xyz, …}.

 In order to enable machines to process certain language in computing,
regular languages are introduced that composite more restricted strings in the
form of regular expressions as described in Section 6.3.3.

 Definition 6.33 A regular language Lr over an alphabet ∑ is a set of
regular expressions on ∑*, i.e.:

© 2008 by Taylor & Francis Group, LLC

434 Part II Theoretical Foundations of SE

 Lr = {er ∈ ∑* | p(er)} (6.19)

 Regular languages are all languages that can be described by regular
expressions. In other words, every regular expression represents a regular
language.

 Example 6.11 According to Definition 6.8, the regular expression er1 =
(a ∪ b)* a defines a regular language Lr1 as follows:

 Lr1 = {er1 ∈ {a, b}* | er1 = (a ∪ b)* a}

which encompasses all strings determined by er1 in the form {a, b}* a,
representing any string repeated by ab and ends with a.

 The relationship between formal languages and machines can be
described by the following corollary.

 Kleene proved the above theorem [Kleene, 1956], which reveals that
automata are machines designed for recognizing and executing given
instructions in the form of regular expressions or restricted strings with a set
of given rules, i.e., the grammar.

 Definition 6.34 A context-free language Lf is a language generated by a
context-free grammar Gf, i.e.:

 Lf = L(Gf) (6.20)

 Example 6.12 According to Definition 6.34, for a given context-free
grammar Gf1 = (∑, s0, T, R) as shown in Example 6.9, the language

 L(Gf1) = a (a* ∪ b*) b

is a context-free language generated by Gf1.

 In computing, context-free grammars are used for language generators,
while automata are used for language recognizers. Context-free grammars
are extremely useful in modeling syntaxes of programming languages, and
parsers of compilers for programming languages. Techniques on using LL(k)

Corollary 6.3 A language is regular iff it is accepted by a finite
automaton.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 435

and EBNF for RTPA recognition will be presented in Section 6.4.4 [Tan and
Wang, 2006; Tan, Wang, and Ngolah, 2004a/04b/05/06; Ngolah, Wang, and
Tan, 2005b/06].

6.3.6 BNF AND EBNF

 A Backus-Naur form is a recursive notation for describing the
productions of a context-free grammar. It is developed based on the work of
John Backus with contributions by Peter Naur [Naur, 1963/78].

Definition 6.35 A Backus-Naur Form (BNF) is defined by a 5-tuple:

BNF (∑, T, V, P, S) (6.21)

where

 (i) ∑ is a finite nonempty set of alphabet;

 (ii) T is a finite set of terminals, T ⊆ ∑;
 (iii) V is a finite set of nonterminals, V ⊆ ∑ ∧ V = ∑ \ T;
 (iv) P is a finite set of production rules denoted by α ::= β.

(v) S is a finite set of metasymbols that denote relations of the
 multiple derived products βs separated by alternative selection |.

Example 6.13 The BNF counterparts of the productions as shown in

Example 6.8, A → (a , Aa, B), aB → b, can be recursively denoted by:

A ::= a | Aa | B
aB ::= b

Definition 6.36 An abstract syntax is the abstract description of a

syntax where strings of tokens or nodes in a parse tree are represented by a
symbol, usually a single letter.

Example 6.14 Assume the following letters be used to represent their
corresponding concrete syntactic entities: P <program>, L <statement list>, S
<statement>, E <expression>, I <identifier>, A <letter>, N <number>, and D
<digit>. The abstract syntax of a Sample Programming Language (SPL)
[Louden, 1993] for integer arithmetic expressions, variables, basic
statements, assignments, and loop constructs can be described in BNF as
shown in Fig. 6.6.

© 2008 by Taylor & Francis Group, LLC

436 Part II Theoretical Foundations of SE

Figure 6.6 An abstract syntax representation of the sample language SPL

BNF is found very useful to define context-free grammars of
programming languages, because its simplicity of notations, highly recursive
structures, and the support of many compiler generation tools, such as YACC
[Johnson, 1975], LEX [Lesk, 1975], and ANTLR [Parr, 2000].

In applications it is realized the descriptive power of BNF may be

greatly improved by introducing a few extended metasymbols, particularly
the ones for repetitive and optional structures of grammar rules. There are a
variety of extended BNFs proposed for grammar description and analysis
[Wirth, 1976]. A typical EBNF is given below.

Definition 6.37 An extended Backus-Naur form (EBNF) is defined by a
similar 5-tuple as given in Eq. 6.21, i.e.:

EBNF (∑, T, V, P, S’) (6.22)

with an extended set of metasymbols S’ = { |, ()*, ()+, []}, where:

(i) The metasymbol β* and β+ are adopted to denote the repetitive

structures of derived products, where β* =

0
β

=

n

i
i
R and β+ =

1
β

=

n

i
i
R

according to the big-R notation [Wang, 2002a].

(ii) The metasymbol [β] is adopted to denote optional structures of a

derived product.

P ::= L
L ::= L1 ‘;’ L2
 | S
S ::= I ‘:=’ E ‘;’
 | ‘if’ E ‘then’ L1 ‘;’
 | ‘if’ E ‘then’ L1 ‘else’ L2 ‘;’
 | ‘while’ E ‘do’ L ‘;’
E ::= E1 ‘+’ E2
 | E1 ‘-‘ E2
 | E1 ‘*’ E2
 | ‘(‘ E ‘)’
 | I
 | N
I ::= I A | A
A ::= ‘a’ | ‘b’ | … | ‘z’
N ::= N D | D
D ::= ‘0’ | ‘1’ | … | ‘9’

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 437

Example 6.15 The BNF representation of the abstract syntax of SPL as
given in Example 6.14 can be simplified by using EBNF nations as shown in
Fig.6.7. The improved descriptions of grammar rules in EBNF are
highlighted by underlines.

Figure 6.7 An abstract syntax description of SPL using NBNF

6.4 Syntaxes of Programming
 Languages

In Section 6.3 it is demonstrated that a programming language can be
designed and generated from the bottom up according to a set of predefined
lexes and syntaxes. Reversely, the language can be recognized, analyzed, and
reduced from the top-down via lexical and syntactic analyses. Therefore,
syntactical theories of programming languages play an important role in
language processing.

In software engineering it is more interested in language recognition,
cognition, and its expressive power. A programming language in software
engineering can be perceived as a special notation system for describing and
specifying instructive computing information on both architectural (data) and
behavioral (process) aspects of software systems.

P ::= L
L ::= L1 ‘;’ L2
 | S
S ::= I ‘:=’ E ‘;’
 | ‘if’ E ‘then’ L1 [‘else’ L2] ‘;’
 | ‘while’ E ‘do’ L ‘;’
E ::= E1 ‘+’ E2
 | E1 ‘-‘ E2
 | E1 ‘*’ E2
 | ‘(‘ E1 ‘)’
 | I
 | N
I ::= A A*
A ::= ‘a’ | ‘b’ | … | ‘z’
N ::= D D*
D ::= ‘0’ | ‘1’ | … | ‘9’

© 2008 by Taylor & Francis Group, LLC

438 Part II Theoretical Foundations of SE

The processing of programming languages by a compiler, interpreter,
or generally a translator can be carried out in four phases: a) lexical analysis,
b) syntactical analysis, c) semantic analysis, and d) code generation, as
shown in Fig. 6.8.

Source program

Stream of tokens

Syntactic structures

Lexical analyzer

Parser

Semantic analyzer

Semantics of syntactic structures

Code generator

Target code

Figure 6.8 Processes of programming language compilations

This section describes the analyses of program structures in a
programming language in the first two phases known as lexical and
syntactical analysis. The third and fourth phases on semantic analysis and
code generation will be discussed in Section 6.5. Further discussions on
intelligent code generation will be presented in Section 15.4.2.

6.4.1 LEXICAL ANALYSES

A lexeme is a basic lexical unit of a language, such as a word or a
phrase, where the elements of which do not separately convey the meaning of
the whole. Lexemes and lexical structures are the object of study in
morphology.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 439

 Definition 6.38 The lexical structure of a programming language is the
structures of its lexemes, such as strings or words, known as tokens in
language processing.

6.4.1.1 Taxonomy of Lexical Entities in Programming Languages

Tokens of a programming language can be classified into three
categories that represent program entities of reserved words, reserved
symbols (operators and separators), and identifiers (user-defined variables
and constants) as shown in Table 6.4.

 Identifiers are the most widely used entities in programming for
representing variables, constants, procedures, classes, and program names.
According to Definition 5.23, an identifier ID is a logical name of a language
entity or construct, which can be essentially and uniquely specified by a 6-
tuple ID (S, T, D, V, L, C), where the most important properties are the
representative symbol S and its type T. The other properties in the 6-tuple
are the ID’s domain D, instant values V, the physical location L, and the
scope C. Detailed descriptions can be referred to Section 5.3.2 on basic data
object modeling techniques in computing. For the definition of a constant ID
in Table 6.4, T* represents the type of the constant as that of variables.

Table 6.4

Taxonomy of Lexical Entities

No Entity Description Property Example

1 Reserved
words

Keywords in
instructions

System defined
instructions

if, do, end

2 Symbols for building
expressions and
program structures

2.1 - Operators System defined functions +, -, =

2.2

Reserved
symbols

- Separators System defined formats //, (,), ;

3 Names of data objects User defined objects

based on naming rules

3.1 - Variables ID (S, T, D, V, L, C) iN, xR, expZ

3.2

Identifiers

- Constants ID (S, T*, D, V, L, C) TBL*, event1S*

© 2008 by Taylor & Francis Group, LLC

440 Part II Theoretical Foundations of SE

6.4.1.2 Lexical Analyses of Programs

 In programming language processing, lexical analyses are conducted by
the lexical analyzer or the scanner. The input of the lexical analyzer is the
source program in a given language, and the output of the lexical analyzer is
a sequence of tokens identified from the program.

Lexical analysis is aimed to chop a long list of the source code in a

programming language into a finite sequence of individual tokens, for each
of them, its language properties such as identifier, reserved word, or reserved
symbol, as classified in Table 6.4, is clearly identified.

6.4.2 SYNTAX DEFINITIONS AND DESCRIPTIONS

The syntax of a programming language constitutes how the language is

built with lexical symbols or tokens.

 Definition 6.39 The syntax of a programming language is a set of

grammatical rules for constructing legal instructions.

The grammar rules of a given language that constrain and direct a
syntactic analysis of a parser can be described by BNF or EBNF as discussed
in Section 6.3.6. Although both descriptions of grammars in BNF and EBNF
are equivalent, the EBNF representation is more efficient and expressive to
facilitate syntactic analyses. The BNF or EBNF grammar rules are applied by
the parser to determine whether an inputted sequence of tokens is legal and
correct. Corresponding to the EBNF description of the syntactic structures of
a programming language, a flow diagram known as syntax diagram can be
used to illustrate the rules and syntactic structures. Syntax of programming
languages can also be formally described by RTPA.

Table 6.5 contrasts the three syntactical description techniques for

typical syntactic entities and structures in EBNF, syntax diagrams, and
RTPA. In the syntax diagrams, a terminal and a nonterminal are represented
by an oval and a square, respectively.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 441

Table 6.5
Description of Typical Syntactic Entities and Structures

No Syntactic
structure

EBNF notation Syntax diagram RTPA notation

1 Serial S ::=
 S1 S2 … Sn

S = S1 → S2 → .. → Sn

2 Serial with
option

S ::=
 S1 [S2] … Sn

S = S1 → S2 → S3 …
 → Sn
 | S1 → S3 → … Sn

3 Repeat
serial for 0
or more
times

S ::=
 (S1 S2 … Sn)*

*
...1 2()ns s sR → → →

4 Repeat
serial for 1
or more
times

S ::=
 (S1 S2 … Sn)+

+
...1 2()ns s sR → → →

5 Alternative S ::=
 S1 | S2 | … | Sn

 S = S1 | S2 | … | Sn

6 Alternative
with
option

S ::=
 [S1 | S2 | … | Sn]

 S = S1 | S2 | … | Sn | ∅

7 Repeat
alternative
for 0 or
more times

S ::=
 (S1 | S2 | … | Sn)*

*
1 2(| | ... |)ns s sR

8 Repeat
alternative
for 1 or
more times

S ::=
 (S1 | S2 | … | Sn)+

+
1 2(| | ... |)ns s sR

 S
SnS1 S2

 …

 S
SnS1 S2

…

 S
SnS1 S2

…

 S
SnS1 S2

…

 S

S2

 …

Sn

S1

 S

 …

Sn

S1

S2

 S

 …

Sn

S1

S2

 S

 …

Sn

S1

S2

© 2008 by Taylor & Francis Group, LLC

442 Part II Theoretical Foundations of SE

Example 6.16 The syntax diagram of expressions in SPL as described
in Section 6.3.6, i.e.:

 E ::= E1 ‘+’ E2

 | E1 ‘-‘ E2
 | E1 ‘*’ E2
 | ‘(‘ E ‘)’

can be derived as shown in Fig. 6.9.

Figure 6.9 The syntactic structure of expressions in SPL

6.4.3 SYNTACTICAL ANALYSES

 In programming language processing, syntactical analyses are
conducted by a parser or a syntactical analyzer. The input of the parser is a
sequence of tokens identified by the lexical analyzer; and the output of the
parser is a set of syntactically structured program instructions.

6.4.3.1 Basic Syntactical Analysis Techniques

Fundamental syntax analysis techniques can be classified into top-down
and bottom-up parsing approaches, which adopt the LL(k) and LR(k)
grammars, respectively.

6.4.3.1.1 Top-Down Parsing

Definition 6.40 Top-down parsing is a class of parsing techniques that
matches an input string to a given syntax tree in a preorder, i.e., from the root
of the syntax tree to the leftmost nodes.

Top-down parsing is directed by an LL(k) grammar. Frequently used
top-down parsing techniques are recursive-descent parsing and predictive

 E

E1

E1

E2 +

 -

)

 *

E2

E2

E1 (

E1

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 443

parsing. LL(k) parsers can be implemented using the compiler generation tool
ANTLR [Parr, 2000].

Definition 6.41 Recursive-descent parsing is a top-down parsing
technique that derives a parsing tree according to a set of left-recursive
grammar rules.

For example, a recursive-descent parser can process a grammar G1 = {S
::= αAβ, A ::= a | b}, where α and β are strings of tokens with terminals
and/or nonterminals. It may require backtracking when a derivation can not
match the whole input string in case the input string s = αaβ, for a grammar
G2 = {S ::= αAβ, A ::= ab | a}. It may also result in an infinitive loop in the
case such as G3 = {S ::= αAβ, A ::= ab | a | A}.

A parser is nondeterministic if there is at least one decision point where
the parser cannot resolve which path to take. Nondeterminisms arise because
of the weakness of a given grammar.

Example 6.17 The following grammar rule parsing by LL(1) grammar
is nondeterministic:

 S ::= aa ; | a ;

However, by using LL(2) grammar, the above rule is deterministic because
the second lookahead token helps to uniquely determine which alternative to
predict.

Definition 6.42 Predictive parsing is a restricted form of recursive-
descent parsing where the backtracking is eliminated in the top-down parsing
by adopting an LL(1) grammar.

 Any production rule in LL(1) in the form of A ::= α1 | α2 | … | αn must
meet the following conditions: a) The first token in αi | , 1 ≤ i ≤ n, should be
unique; and b) The following tokens in each αi should not be the same with
any of the first tokens of αi.

6.4.3.1.2 Bottom-Up Parsing

Complemented to the top-down approach, a bottom-up approach to
syntactic analysis and parser implementation is also widely used.

Definition 6.43 Bottom-up parsing is a class of parsing techniques that

derives a parse tree for an input string from the leaves to the root, in order to
reduce the string to the start symbol of production rules.

© 2008 by Taylor & Francis Group, LLC

444 Part II Theoretical Foundations of SE

Example 6.18 Assume the grammar rules for expressions E are given
below:

E ::= E + E | E - E | E * E | (E) | id

A bottom-up rightmost derivation for the input string S = id1 + id2 * id3 can
be reduced in the following steps:

 S = id1 + id2 * id3
⇒ E + id2 * id3
⇒ E + E * id3
⇒ E + E * E
⇒ E + E
⇒ E

Bottom-up parsing is usually directed by an LR(k) grammar. That is, at

each step of reduction, a rightmost derivation is traced out. LR(k) parsers can
be implemented using the compiler generation tool YACC (Yet Another
Compiler-Compiler) [Johnson, 1975].

6.4.3.2 Description of Parsing Results by Syntax Trees

Definition 6.44 An Abstract Syntax Tree (AST) is a tree structure that
represents the parsing result, including a number of tokens and their
syntactical relations, in a hierarchical diagram.

Example 6.19 An AST of a simple grammar rule and an AST of the
RTPA top-level rule of specifications can be generated by a parser,
respectively, as follows:

a) S ::= a | b

 S

a b
/ \

 b) §(SysIDS) ::= ArchitectureST
 || StaticBehaviorsST
 || DynamicBehaviorsST

Figure 6.10 ASTs generated by parsers

 §(SysIDS)

ArchitectureST StaticBehaviorsST DynamicBehaviorsST

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 445

6.4.4 SYNTACTICAL ANALYSES OF RTPA

 The syntax of RTPA has been described in Section 4.6. This subsection
describes the syntax analysis techniques for RTPA and their implementation
[Tan and Wang, 2006; Tan, Wang, and Ngolah, 2004a/05/06; Ngolah, Wang,
and Tan, 2005b/06]. A comprehensive set of RTPA grammar rules can be
referred to [Tan, Wang, and Ngolah, 2004b].

6.4.4.1 Description of the RTPA Syntax in LL(k)

The RTPA methodology and syntax for software system specification
and modeling are specified by a set of almost 300 LL(k) grammar rules [Tan,
Wang, and Ngolah, 2004b]. Since LL(k) is a context-free grammar, it can be
described by EBNF.

On the basis of the description of the RTPA methodology and syntax in
Sections 4.6 and 4.7, the top-level RTPA grammar rule for the entire
architecture of a given software system can be specified in EBNF as shown
in the following rule.

rtpa_system_specification ::=

top_schema architecture static_behaviors dynamic_behaviors
EOF (6.23)

The first part of the system specification is the top_schema, which can

be refined in Eq. 6.24. In this rule, the system declaration specifies the name
of the system by a definition symbol. The system architecture declaration,
system static behaviors declaration, and system dynamic behaviors
declaration define the three subsystems in an RTPA specification,
respectively.

 top_schema ::=
 system_declaration DEFINITION_SYMBOL

 system_architecture_declaration
 PARALLEL_SYMBOL
 system_static_behaviors_declaration

 PARALLEL_SYMBOL
 system_dynamic_behaviors_declaration (6.24)

The system name is represented by a variable of kind system-name with
type S and scope global. The system name can be used as a prefix before
subsystem names, CLM names, process names, events, statuses, and
constants used in the system. The system name variable should not be
assigned with any value in the system specification, while it is treated as a

© 2008 by Taylor & Francis Group, LLC

446 Part II Theoretical Foundations of SE

unique identification of the system when it is referred in other system
specifications in the way that it is initialized to a variable of system
architecture type ST.

The LL(k) grammar rules of RTPA can also be described by a
corresponding syntax diagram.

Example 6.20 An EBNF grammar rule for the component logical

model (CLM) of RTPA as given in Eq. 6.25 below can be described by a
corresponding syntax diagram in Fig. 6.11. More formal description of
CLMs in RTPA has been provided in Section 5.3.3.3.1.

clm_schemas ::= (clm_schema
 (EQUALITY_SYMBOL
 clm_object (PARALLEL_SYMBOL
 clm_object)*
)
)+ (6.25)

 clm_schema clm_object clm_object = ||

Figure 6.11 An EBNF syntax diagram of RTPA CLM schemas

6.4.4.2 Description of Special RTPA Grammar Rules by Syntactic
 Predicates

There are special RTPA grammar rules that cannot be described by
LL(k) grammar, such as assignment, read/write, I/O, timing, duration, and the
iteration processes denoted in the big-R notation. These special parsing rules
of RTPA can be specified by a special means known as the syntactic
predicates.

Definition 6.45 A syntactic predicate, denoted by:

 <syntactic entity> ⇒ <production> (6.26)

is a selective form of backtracking adopted for recognizing complicated
language constructs that cannot be distinguished without seeing the entire
structure.

A syntactic predicate is a conditional production determined by a
current scanned token that directs the selection of a suitable rule in parsing.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 447

The syntactic predicates can be implemented by the guarded predicate
provided by ANTLR (ANother Tool for Language Recognizer) [Parr, 2000]
in the process of RTPA parser generation [Tan, Wang, and Ngolah,
2004a/06].

Example 6.21 The grammar rules of several RTPA meta processes,
such as shown in Eq. 6.27 through Eq. 6.31, may not be determined by a
fixed k according to LL(k) grammar, because these meta processes share the
same identifier with arbitrary length in an RTPA specification.

 single_assignment ::=

 variable ASSIGNMENT_SYMBOL expression (6.27)

 read_process ::=
memory_expression READ_SYMBOL variable (6.28)

 write_process ::=

variable WRITE_SYMBOL memory_expression (6.29)

 input_process ::=
port_expression INPUT_SYMBOL variable (6.30)

 output_process ::=

variable OUTPUT_SYMBOL port_expression (6.31)

To solve the above problems, a new rule using syntactic predicates as
guarded directors is introduced as shown below.

 id_prefixed_process ::=
(pointer_variable ASSIGNMENT_SYMBOL) =>
 addressing_process

| (variable ASSIGNMENT_SYMBOL) => single_assignment
| (variable OUTPUT_SYMBOL) => output_process
| (variable READ_SYMBOL) => read_process
| (variable WRITE_SYMBOL) => write_process
| (prefixed_identifier [subscript_expression]
 LEFT_PARENTHESIS) => process_instance_expression
| (prefixed_identifier [subscript_expression]) => name_process

 (6.32)

The rule given in Eq. 6.32 specifies that alternative guarding conditions
should be checked before a specific alternative rule may be selected. The
conditional syntactic predicates are shown in the left-hand side of “=>” in
Eq. 6.32. Since the conditions are described uniquely for each rule in Eq.
6.32, a determinable choice can be implemented in the RTPA parser. The

© 2008 by Taylor & Francis Group, LLC

448 Part II Theoretical Foundations of SE

method for solving the nondeterministic problems in parsing an RTPA
specification is also useful in the definition of the expression rules of RTPA.

6.4.4.3 Parsing RTPA Specifications

An advanced compiler generation tool, ANTLR [Parr, 2000], takes
LL(k) grammar rules as its input and generates a corresponding LL(k) parser
as the output. ANTLR generates predicate-LL(k) parsers that support
syntactic predicates for specifying both context-free and context-sensitive
grammars. The generated RTPA parser encompasses a lexical analyzer and a
type checker. The parsing of an RTPA system model and system
specification can be conducted as shown in Fig. 6.12.

Figure 6.12 Syntactic analysis of RTPA specifications

Under the support of ANTLR, the RTPA parser can be implemented in
the following processes [Tan, Wang and Ngolah, 2004b/2006]:

 a) To define the RTPA grammar in EBNF.

b) To convert the RTPA grammar into a set of LL(k) parsing rules.
For those RTPA grammar rules that can not be described by
LL(k), the ANTLR syntactic predicates are used to make them
determinable within a fixed depth of look-ahead.

RTPA
specifications

RTPA lexical
analyzer

Stream of tokens

RTPA
parser and

type checker

Report of syntactic
or type errors

Abstract syntax
trees of RTPA

 Errors found Parsing

RTPA grammar
rules in EBNF

RTPA syntactic
predicates

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 449

c) To embed a type checker into the rules of RTPA parser as special
semantic actions.

d) To load the parser rules of RTPA to ANTLR in order to generate
the RTPA parser (including the lexer and the type checker) in
executable Java classes.

It is noteworthy that, although there is no clearly drawn boundary

between syntactical and semantic analyses, it is generally classified that
language entities and properties expressible by context-free grammars are
syntactic issues; otherwise, they are semantic issues.

6.5 Semantics of Programming
 Languages

Studies on software semantics have been recognized as one of the key areas
in the development of fundamental theories for computer science and
software engineering [Hoare, 1969; Gries, 1981; McDermid, 1991; Slonneg
and Kurts, 1995; Bjoner, 2000]. The semantics of a programming language is
the behavioral meanings that constitute what a syntactically correct
instructional statement in the language is supposed to do during run-time.
The development of formal semantic theories of programming is one of the
pinnacles of computing and software engineering [Pagan, 1981; Meyer,
1990; Gunter, 1992; Louden, 1993; Bjoner, 2000].

In semantics analyses, the instructions shared by all programming
languages can be classified into three types: a) Internal operations such as
memory manipulation and assignment instructions; b) Basic control
structures such as the if-then-else and while-do instructions; and c) External
operations onto the environment, such as input/output, event handling, and
human-machine interactive instructions.

Definition 6.46 The semantics of a program in a given programming

language is the logical consequences of an execution of the program that
results in the changes of values of a finite set of variables and/or the
embodiment of computing behaviors in the underlying computing
environment.

 This section introduces existing semantic theories of programming
languages such as target semantics, operational semantics, denotational

© 2008 by Taylor & Francis Group, LLC

450 Part II Theoretical Foundations of SE

semantics, axiomatic semantics, and algebraic semantics. Then, it
demonstrates how the semantics of a program in a given programming
language is expressed and embodied on the basis of syntactic analysis. It also
shows that the existing semantic notations and methodologies are inadequate
to express some important instructions, complex control structures, and the
real-time environments at run-time. This leads to the development of the
deductive semantics as described in Section 6.5.3.

6.5.1 TAXONOMY OF SEMANTICS

Basic semantics of a programming language can be described by its
behavioral equivalence to another language, such as a natural language or
languages of the target machines. Semantics can also be described by a set of
predefined executable functions in machine languages. Another approach to
specify the semantics of a programming language is by mathematical
definitions known as formal semantics.

A number of formal semantics, such as the operational [Wegner, 1972;
Ollongren, 1974; Marcotty and Ledgard, 1986; Wikstrom, 1987],
denotational [Scott and Strachey, 1971; Jones, 1980; Scott, 1982; Bjorner
and Jones, 1982; Schmidt, 1988/94/96], axiomatic [Hoare, 1969; Dijktra,
1975/76; Gries, 1981], algebraic [Goguen et al., 1977/96; Guttag and
Horning, 1978], and deductive semantics [Wang, 2006a], have been
proposed in the last three decades for defining and interpreting the meanings
of programs and programming languages. The following subsections
describe the formal approaches to specification and analysis of program
semantics.

6.5.1.1 Target Semantics

The most basic and simplest semantics of programming languages is
the target semantics, which maps the equivalent behaviors of a given
statement in the target-machine’s language. Target semantics is typical
semantics adopted in early stages of programming technologies.

Definition 6.47 Target semantics is an equivalent semantics that adopts

a target-machine’s language to interpret the behavioral meaning of a program
in a programming language.

The most typical target language is assembly language. Because
machine languages are system dependent, there are two drawbacks in using
target semantics. The first drawback is that it is not rigorous and cannot be
formally defined and described in order to facilitate machine-based semantic
analyses. Another is the low efficiency in applications because the semantics

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 451

of a given programming language has to be mapped into multiple target
languages. Theses reasons motivated the studies on theories of formal
semantics of programming languages and software systems.

A common approach towards the establishment of formal semantics is
to develop suitable and generic abstract models of the target machines,
supplemented with the formal description of the abstract syntactic rules of
the programming languages. Once the target machines can be abstracted by
unified mathematic models, formal semantics such as the operational,
denotational, axiomatic, and algebraic semantics may be developed as shown
in the following subsections.

6.5.1.2 Operational Semantics

Definition 6.48 Operational semantics adopts a virtual machine, whose
operations are well defined, to describe the semantics of a program in a
specific programming language by its equivalent behaviors implemented on
the virtual machine.

The foundation of operational semantics is based on virtual machine
theory [McDermid, 1991]. Virtual machines have been discussed in Section
5.6.1. A typical virtual machine for embodying operational semantics of an
arbitrary program is called a reduction machine [Louden, 1993]. The
reduction machine is used to reduce the given program to values inside the
machine and its environment by a finite set of permissible operations.

6.5.1.3 Denotational Semantics

Definition 6.49 Denotational semantics adopts functions to describe
the semantics of a programming language, in which the functions map
semantics values into syntactically legal program constructs.

 The foundation of denotational semantics is based on recursive function
theory [Scott and Strachey, 1971; Jones, 1980; Scott, 1982; Bjorner and
Jones, 1982; Schmidt, 1988/94/96]. Denotational semantics is considered a
well defined semantics among the existing ones for expressing the meaning
of computational instructions in a programming language. In denotational
semantics, instructions in a program can be translated into a set of functions
based on rigorously defined methodologies.

6.5.1.4 Axiomatic Semantics

Definition 6.50 Axiomatic semantics adopts effective assertions to
describe the semantics of a programming language, in which the assertions of

© 2008 by Taylor & Francis Group, LLC

452 Part II Theoretical Foundations of SE

effects for executing an instruction are deduced to the values of data objects
manipulated by the instruction.

The foundation of axiomatic semantics is based on predicate logic
[Hoare, 1969; Dijktra, 1975/76; Gries, 1981], where assertions play an
important role in axiomatic semantics. Because logical axioms are used in the
assertions for denoting program semantics, this method gains the name as
axiomatic semantics.

Definition 6.51 An assertion A is a logical statement about the

predicate behavior Q and its initial assumptions P of a given instruction S at
any given point of a program during run-time, which can be examined as true
or false, i.e.:

 A {P} S {Q} (6.33)

where P is called the precondition and Q the postcondition.

However, P and Q are not always specifiable, because some of the

operations at run-time are unpredictable or indeterministic, such as event
dispatching, parallel mechanisms, and dynamic memory allocations.
Nevertheless, assertions have been adopted in a number of modern
programming languages, such as C++ and Java. Assertions have also been
found useful in formal-specification-based software testing [Yao and Wang,
2004].

Assertions play an important role in correction proving for formal
specifications of software systems. As C.A.R. Hoare wrote: “Thus the
practice of proving programs would seem to lead to solution of three of the
most pressing problems in software and programming, namely, reliability,
documentation, and compatibility. However, program proving, certainly at
present, will be difficult even for programmers of high caliber; and may be
applicable only to quite simple program designs [Hoare, 1969].”

6.5.1.5 Algebraic Semantics

Definition 6.52 Algebraic semantics adopts abstract algebra to describe
the semantics of a programming language, in which data objects and
operations are defined by algebraic axioms and deduced by abstract algebraic
laws.

 The foundation of algebraic semantics is based on abstract algebras
[Goguen et al., 1977/96; Guttag and Horning, 1978]. A well-known
application of algebraic semantics is the definitions and descriptions of
ADTs. Algebraic semantics are capable to deduce the semantics of data

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 453

objects and imposed operations on abstract types, sorts, and mathematical
entities. However, it can not reduce the semantics onto concrete data entities
and complex architectures and processes.

6.5.1.6 Deductive Semantics

The aforementioned classic formal semantics were oriented on a certain

set of software behaviors that are limited by the models of their semantic
environments. The mathematical models of the target machines and the
semantic environments in conventional semantics seem to be inadequate to
deal with the semantics of complex programming requirements, and to
express some important instructions, complex control structures, and the real-
time environments at run-time. For supporting systematical and machine
enabled semantic analysis and code generation in software engineering, the
deductive semantics will be introduced that provides a systematic semantic
analysis methodology.

Definition 6.53 Deductive semantics is a formal software semantics

that deduces the semantics of a program in a given programming language
from a generic abstract semantic function to the concrete semantics, which
are embodied onto the changes of status of a finite set of variables
constituting the semantic environment of computing.

The theoretical foundations of deductive semantics are based on

process algebra and Boolean partial differentials [Wang, 2006a]. Based on
the mathematical models and architectural properties of a program at
different composing levels as described in Section 5.5, deductive models of
software semantics, semantic environment, and semantic matrix will be
formally defined in Section 6.5.3. Properties of software semantics and
relations between the software behavioral space and semantic environment
will be discussed. The deductive semantic rules of RTPA are presented in
Section 6.6, which serve both as a comprehensive case study for verifying
the expressive and analytic capacity of deductive semantics and as the
completion of RTPA as a rigorously defined software engineering notation
system.

6.5.2 DENOTATIONAL SEMANTICS

As that of natural languages, the semantic analysis of programs is
syntax-directed, in which the semantic definitions are based on a context-free
grammar or a set of BNF rules. The border between syntactic and semantic
analyses lies at the interfaces of format and meaning, structure and behavior,
and static grammar and dynamic implementation. Therefore, it can be

© 2008 by Taylor & Francis Group, LLC

454 Part II Theoretical Foundations of SE

perceived that semantics of languages concern everything not specified by
the grammar in term of the BNF rules.

Denotational semantics provides a rigorous approach to semantic
analysis of programs and programming languages. This subsection uses the
sample language SPL as given in Fig. 6.6 and explained in Section 6.3.6 to
examine how semantics of programs expressed in this language may be
elicited and comprehended formally by using the method of denotational
semantics.

6.5.2.1 Syntactic and Semantic Domains of Denotational Semantics

Before proceeding to the description of denotational semantics, the
concept of semantic functions and their syntactic and semantic domains are
introduced as a preparation.

Definition 6.54 A semantic function SF of a programming language is

a function f that maps a set of syntactic constructs C onto a set of associated
semantic values in V, i.e.:

 SF = f: C → V (6.34)

Example 6.22 A semantic function of expression evaluation VAL that

associates an integer value in to an integer arithmetic expression E can be
denoted by:

 VAL = fval: E →

 The semantic functions provide a set of deduction rules for a language.
Based on those rules, semantics of programs written in the language can be
derived onto the values of all variables in a given environment.

Definition 6.55 The domain of a semantic function, C, is a syntactic
domain.

Definition 6.56 The codomain of a semantic function, V, is a semantic

domain.

Example 6.23 For the above semantic function VAL = fval: E → , its
syntactic domain is the domain of E, i.e., all syntactically correct expressions
according to the given grammar. Its semantic domain is the domain of , i.e.,
all binding values of each syntactically correct expression.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 455

 In semantic analysis, the semantics of each statement in a program has
to be deducted onto the values of all variables or identifiers. Since the
identifiers operated by a statement are stored in a physical memory location,
semantics of a statement is eventually embodied as the current values of all
identifiers that are affected by a given statement. More exactly, semantics of
a statement are the changes of the values of all identifiers after the execution
of the statement. Hence, the semantic environment of a program in a given
programming language is the collection of all values of identifiers stored in
predefined memory locations.

 Definition 6.57 A semantic environment Θ of a programming language
is a logical model of a set of identifiers and their values bound in pairs, i.e.:

Θ = f: I →

 = {
#

1

I

k
R
=

(ik, vk)}

 = {(i1, v1), (i2, v2), …, (i#I, v#I)} (6.35)

where I is a set of identifier, a set of integer, and #I the number of elements
in I.

According to Definition 6.57, an empty environment Θ0 is an empty set
or a set of arbitrary numbers of undefined identifiers without binding value,
i.e.:

Θ0 = {(∅, ⊥)}
 = ⊥ (6.36)

where ⊥, called the bottom, is used to denote an undefined value.

The evaluation of a syntactic domain (SD), such as expressions E,
statements S, or a program P, in the presence of an environment Θ can be
denoted by:

SD || Θ (6.37)

where || represents a parallel relation between an SD and its underlay
environment Θ. In other words, any change in SD will result in a
corresponding change of value for the related identifier(s) in Θ.

For example, according to Eq. 6.37, P||Θ, S||Θ, or E||Θ represent the
evaluation of a program, statement, or expression in the given environment
Θ, respectively. When there is no confusion, the context ||Θ may be omitted.

© 2008 by Taylor & Francis Group, LLC

456 Part II Theoretical Foundations of SE

6.5.2.2 Description of Syntactic Domains of the Sample Language SPL

In denotational semantics, the syntactic domain of a language is defined
as a set of pairwise relations between a syntactic variable and a syntactic
entity. Then, the grammar rules for each of the syntactic variables are defined
by an abstract syntax.

As given in Example 6.15, the syntactic domain SD of the sample
language SPL is defined below:

 SD = {(P, <program>),
 (L, <statement list>),
 (S, <statement>),
 (E, <expression>),
 (I, <identifier>),
 (A, <letter>),
 (N, <number>),
 (D, <digit>)} (6.38)

On the basis of the defined SD, the abstract syntactic model of SPL can

be described in Fig. 6.13, where a terminal symbol ‘t’ is enclosed in quotes to
denotes that it is different from the operation or value that t represents.

Figure 6.13 The abstract syntax model of SPL

6.5.2.3 Semantic Analysis using Denotational Semantics

The sample language SPL can be divided into three parts: integer
arithmetic expressions, assignments, and control constructs. This subsection
analyzes those syntactic domains, their corresponding semantic functions,

P ::= L
L ::= L1 ‘;’ L2
 | S
S ::= I ‘:=’ E ‘;’
 | ‘if’ E ‘then’ L1 ‘;’
 | ‘if’ E ‘then’ L1 ‘else’ L2 ‘;’
 | ‘while’ E ‘do’ L ‘;’
E ::= E1 ‘+’ E2
 | E1 ‘-‘ E2
 | E1 ‘*’ E2
 | ‘(‘ E1 ‘)’
 | I
 | N
I ::= I A | A
A ::= ‘a’ | ‘b’ | … | ‘z’
N ::= N D | D
D ::= ‘0’ | ‘1’ | … | ‘9’

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 457

and the semantic meaning of each syntactic domain that may be deducted
from the semantic functions. The denotational semantics approach will be
used in the analyses.

6.5.2.3.1 Semantics of Integer Arithmetic Expressions

Denotational semantics can be described by a set of semantic functions
or rules; each of them maps a syntactic domain into a semantic domain.
The semantics of the integer arithmetic expressions of SPL in denotational
semantics can be described by a set of semantic functions defined on given
syntactic and semantic domains as shown in Table 6.6.

Table 6.6

Semantic Analysis of Integer Arithmetic Expressions

Syntactic Domains Semantic Domains Semantic Functions

E ::= E1 ‘+’ E2
| E1 ‘-‘ E2
| E1 ‘*’ E2
| ‘(‘ E ‘)’
| N

N ::= N D | D

D ::= ‘0’ | ‘1’ | … | ‘9’

Domains
 v :
 Θ : I → ⊥

Operations
 +: × →

 -: × →

 *: × →

E: E → ⊥

N: N →

D: D →

E E1 ‘+’ E2 = E E1 + E E2

E E1 ‘-’ E2 = E E1 - E E2

E E1 ‘*’ E2 = E E1 • E E2

E ‘(‘ E ‘)’ = E E

E N = N N

N ND = 10 • N N + N D

N D = D D

D ‘0’ = 0

D ‘1’ = 1
 …
D ‘9’ = 9

The syntactic domain of SPL, SD = {E, N, D}, is specified in the left

column of Table 6.6. It encompasses three syntactic sub-domains, E
<Expression>, N <Number>, and D <Digit> as defined in EBNF.

In the semantic domains, the domains of variables and the environment,
as well as their allowable operations, are defined in the middle column of
Table 6.6. A generic variable v is introduced in the simple type integer for
all identifiers in SPL. The environment Θ is defined as a function that maps

© 2008 by Taylor & Francis Group, LLC

458 Part II Theoretical Foundations of SE

a set of identifiers I into , which is undefined (⊥) initially. On the basis of
the declarations of types of variables, three operations, +, _, *, are defined as
functions that operate two integer variables and result in an integer value.
 In the semantic function column of Table 6.6, there are two types of
semantic functions: the generic and the derived semantic functions. The three
generic semantic functions, E, N, and D, are schemas of functions that map a
corresponding syntactic domain into a value in . On the basis of the generic
functional schemas, a set of 17 derived semantic functions are defined for
each of the corresponding production rules as defined in the syntactic
domains.

6.5.2.3.2 Semantics of Assignments

This subsection extends the SPL to cover the semantics of the
assignment statement in denotational semantics as shown in Table 6.7.

Table 6.7
Semantic Analysis of Assignments

Syntactic Domains Semantic Domains Semantic Functions
S ::= I ‘:=’ E ‘;’

E ::= E1 ‘+’ E2

| E1 ‘-‘ E2
| E1 ‘*’ E2
| ‘(‘ E ‘)’
| I
| N

I ::= I A | A

A ::= ‘a’ | ‘b’ | … | ‘z’

N ::= N D | D

D ::= ‘0’ | ‘1’ | … | ‘9’

Domains
 v :
 Θ : I → ⊥

Operations
 +: × →

 -: × →

 *: × →

S: S → Θ
E: E → ⊥

N: N →

D: D →

S I ‘:=’ E = (I = E E)

E E1 ‘+’ E2 = E E1 + E E2

E E1 ‘-’ E2 = E E1 - E E2

E E1 ‘*’ E2 = E E1 • E E2

E ‘(‘ E ‘)’ = E E

E N = N N

N ND = 10 • N N + N D

N D = D D

D ‘0’ = 0

D ‘1’ = 1
 …
D ‘9’ = 9

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 459

The syntactic domains SD = {E, N, D} in Table 6.6 are extended by S
<Statement>, I <Identifier>, and A <Letter> with corresponding EBNF
deduction rules. Therefore, the syntactic domains of assignment statements
for semantic analysis include six domains, i.e., SD = {S, E, I, A, N, D} as
shown in Table 6.7.

The semantic domains and the environment Θ remain the same for
interpreting the results of semantic analysis.

The new generic semantic function S maps an assignment statement
into the environment Θ, i.e., into an integer identifier in type . The new
derived semantic function of assignment, S I ‘:=’ E = (I = E E), denotes
that an assignment S I ‘:=’ E in the environment Θ is an evaluation of the
expression E, E, in Θ, and transfers the value of E to the identifier I.

6.5.2.3.3 Semantics of Branch Statements

This subsection extends the SPL to cover the semantics of the branch
statement in denotational semantics as shown in Table 6.8.

Table 6.8
Semantic Analysis of Branch Construct

Syntactic Domains Semantic Domains Semantic Functions
L ::= L1 ‘;’ L2

| S

S ::= ‘if’ E ‘then’ L1
 ‘else’ L2 ‘;’

E ::= E1 ‘+’ E2

| E1 ‘-‘ E2
| E1 ‘*’ E2
| ‘(‘ E ‘)’
| I
| N

Domains
 v :
 Θ : I → ⊥
 T: ℤ | T = 1
 F: ℤ | F = 0

Operations
 +: × →

 -: × →
 *: × →

E: E → ⊥
L: L → Θ
S: S → Θ

L L1 ‘;’ L2 = L L2 ° L L1
L S = S S

S ‘if’ E ‘then’ L1 ‘else’ L2 ’;’
 = if (E E = T
 then L L1
 else L L2

The syntactic domains in Table 6.8 are extended by adding a
<statement-list> L, i.e., SD = {S, E, I, A, N, D} ∪ {L}.

The environment Θ in the semantic domain remains unchanged.
However, two integer constants T and F are introduced with the value ‘1’ and
‘0’ respectively. The reason for defining these two Boolean constants as
integer is that Θ and all variables v in SPL have been restricted in ℤ for
simplicity in analysis.
 In the semantic functions, a statement-list L for a single statement S,
L S , is interpreted as a derived function of an ordinary statement S S .
Another semantic function L L1 ‘;’ L2 = L L2 ° L L1 denotes that two
sequential statement-lists L1 followed by L2 are semantically equivalent to the

© 2008 by Taylor & Francis Group, LLC

460 Part II Theoretical Foundations of SE

execution of L1 and then L2, which is denoted as a concatenation of functions
L2 ° L1.

The semantic function of a branch statement S ‘if’ E ‘then’ L1 ‘else’ L2
’;’ interprets the branch operation as the choice of execution of two optional
statement-lists on the conditional expression E. When the evaluation of E,
i.e., the resulted value E E = 1 (T), L1 will be executed; otherwise, L2 will be
executed.

6.5.2.3.4 Semantics of While-Loop Statements

This subsection extends the SPL to cover the semantics of the while-
loop statement in denotational semantics as shown in Table 6.9.

Table 6.9
Semantic Analysis of While Loop Construct

Syntactic Domains Semantic Domains Semantic Functions
L ::= L1 ‘;’ L2

| S

S ::= ‘while’ E
 ‘do’ L ‘;’

E ::= E1 ‘+’ E2

| E1 ‘-‘ E2
| E1 ‘*’ E2
| ‘(‘ E ‘)’
| I
| N

Domains
 v :
 Θ : I → ⊥
 T: ℤ | T = 1
 F: ℤ | F = 0

Operations
 +: × →

 -: × →
 *: × →

E: E → ⊥
L: L → Θ
S: S → Θ

L L1 ‘;’ L2 = L L2 ° L L1
L S = S S

S ‘while’ E ‘do’ L ’;’

 =
F

TE
R
=

L L L

 Note that the semantics of the while loop, according to the definitions
of the generic iteration representation as discussed in Section 5.4.2, is
described as a repeat function that evaluates E , if it is true then execute L
whenever E remains true, i.e.:

 S ‘while’ E ‘do’ L ’;’ =
=E
R

F

T
 L L (6.39)

Eq. 6.39 is equivalent to the conventional representation of the while
loop by recursive if-then-else structures in the literature [Wirth, 1976;
Louden, 1993] as described below:

 S ‘while’ E ‘do’ L ’;’ =
 S if E E = T
 then L L; S
 else Θ
 (6.40)

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 461

6.5.2.4 Semantics of Programs in SPL

On the basis of the semantic analysis methods developed in Section
6.5.2.3, the semantics of a complete program can be derived in denotational
semantics. This subsection describes the semantics of a whole program in
SPL that covers all syntactic domains discussed earlier with new extensions
of domains of a program P and statement-list L, as shown in Table 6.10.

Table 6.10

Semantic Analysis of a Whole Program in SPL

Syntactic Domains Semantic Domains Semantic Functions
P ::= L

L ::= L1 ‘;’ L2

| S

S ::= I ‘:=’ E ‘;’

E ::= E1 ‘+’ E2

| E1 ‘-‘ E2
| E1 ‘*’ E2
| ‘(‘ E ‘)’
| I
| N

I ::= I A | A

A ::= ‘a’ | ‘b’ | … | ‘z’

N ::= N D | D

D ::= ‘0’ | ‘1’ | … | ‘9’

Domains
 v :
 Θ : I → ⊥

Operations
 +: × →

 -: × →

 *: × →

P: P → Θ
L: L → Θ
S: S → Θ
E: E → ⊥
N: N →
D: D →
P P = L L

L L1 ‘;’ L2 = L L2 ° L L1

L S = S S

S I ‘:=’ E = (I = E E)

S ‘if’ E ‘then’ L1 ‘else’ L2 ’;’ =

 if (E E) = T
 then L L1
 else L L2

S ‘while’ E ‘do’ L ’;’ = =
F

TE
R
=

L L L

E E1 ‘+’ E2 = E E1 + E E2

E E1 ‘-’ E2 = E E1 - E E2

E E1 ‘*’ E2 = E E1 • E E2

E ‘(‘ E ‘)’ = E E

E N = N N

N ND = 10 • N N + N D

N D = D D

D ‘0’ = 0

D ‘1’ = 1
 …
D ‘9’ = 9

© 2008 by Taylor & Francis Group, LLC

462 Part II Theoretical Foundations of SE

It is noteworthy that the sample language SPL analyzed in this
subsection is quite simple. Although the basic semantic deduction rules for
arithmetic, assignment statements, and the branch and while loop constructs
have been covered, complex statements and program constructs such as I/O
environment, recursive and interrupt constructs, as well as event handling
have not been touched. They are remaining as important topics in
programming semantic studies yet to be explored.

6.5.3 DEDUCTIVE SEMANTICS

Deduction is an inference process that discovers new knowledge or

derives a specific conclusion based on generic premises such as abstract rules
or principles. The nature of semantics of a given programming language is its
computational meanings or embodied behaviors expressed by an instruction
in the language. Because the carriers of software semantics are a finite set of
variables declared in a given program, program semantics can be reduced
onto the changes of values of these variables over time. In order to provide a
rigorous mathematical treatment of both the abstract and concrete semantics
of software, a new type of formal semantics known as the deductive
semantics is developed [Wang, 2006a].

Deductive semantics as given in Definition 6.53 is a formal software

semantics that deduces the semantics of a program in a given programming
language from a generic abstract semantic function to the concrete semantics,
which are embodied onto the changes of status of a finite set of variables
constituting the semantic environment of computing. Deductive semantics
can be used to define both abstract and concrete semantics of large-scale
software systems, facilitate software comprehension and recognition, support
tool development, enable semantics-based software testing and verification,
and explore the semantic complexity of software systems.

This subsection develops the mathematical models of deductive

semantics and elicits the fundamental properties of software semantics. The
deductive models of semantics, semantic function, and semantic environment
at various composing levels of programs are introduced. Properties of
software semantics and relationships between the software behavioral space
and the semantic environment are studied. New methods such as the semantic
differential and semantic matrix are developed to facilitate deductive
semantic analyses from a generic semantic function to a specific semantic
matrix, and from semantics of statements to those of processes and programs.
The establishment of the deductive semantic rules of RTPA will be described
in Section 6.6, where deductive semantics of a comprehensive set of software
processes is modeled.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 463

6.5.3.1 The Mathematic Model of Software Semantics

A semantic environment of a program in a given programming
language is a logical model of a finite set of identifiers and their values
changing over time along the execution of the program. The semantic
environment constituting the behaviors of software is inherently a three
dimensional structure known as the operations, memory space, and time.

 According to Theorem 3.10, the behavioral space Ω of a program
executed on a certain machine is a finite set of variables operated in a 3-D
state space determined by a triple, Ω (OP, T, S), where OP is a finite set of
operations, T is a finite set of discrete steps of program execution, and S is a
finite set of memory locations or their logical representations by identifiers of
variables.

According to Definition 6.45, the set of variables of a program, S, plays
an important role in semantic analysis, because they are the objects of
software behavioral operations and the carriers of program semantics.
Variables can be classified as free and system variables. The former are user
defined and the latter are language provided. From a functional point of
view, variables can be classified into object representatives, control
variables, result containers, and address locaters. The life spans or scopes of
variables can be categorized as persistent, global, local, and temporal. The
persistent variables are those that their life span are longer than the program
that generates them, such as data in a database or files in distributed
networks.

A new mathematical operator introduced in deductive semantics is the
partial differential of sets on the basis of Boolean differential, which is used
to facilitate the instantiation of abstract semantics into concrete ones.

Definition 6.58 Given two sets X and V, X ⊆ V, a partial differential of
X on V with elements x, x ∈ X, denoted by ∂V/∂x, is an elicitation of
interested elements from V as specified in X, i.e.:

 ,

∂ = ∩ ∈ ⊆
∂
=

V X V x X V
x

X

 (6.41)

The partial differential of sets can be easily extended to double, triple,

or, more generally, multiple partial differentials as defined below.

Definition 6.57 A multiple partial differential of X1, X2, …, and Xn on

V with elements 1 2 nand1 2 nx X , x X , ..., x X∈ ∈ ∈ , denoted by
n

1 ... 2 n

V
x x x
∂

∂ ∂ ∂
, is

© 2008 by Taylor & Francis Group, LLC

464 Part II Theoretical Foundations of SE

a Cartesian product of all partial differentials that select interested elements
from V as specified in X1, X2, …, and Xn, respectively, i.e.:

n

1

...
 ... 1 2 n

2 n

V = X X X
x x x
∂ × × ×

∂ ∂ ∂
 (6.42)

where , ...,1 2 nX ,X X V.⊆

For example,
2

x y
∂ × ∈ ∧ ∈ ∧ ⊆
∂ ∂

V = X Y, x X y Y X, Y V and
3

x y
V =

z
∂

∂ ∂ ∂

× × ∈ ∧ ∈ ∧ ∈ ∧ ⊆X Y Z, x X y Y z Z X, Y, Z V .

On the basis of the definitions of software behavioral space and partial

differential of sets, the semantic environment of software can be introduced
as follows.

Definition 6.60 The semantic environment Θ of a program on a certain

target machine is its run-time behavioral space Ω(OP, T, S) projected onto
the Cartesian plane determined by T and S, i.e.:

2

2

,

(, ,)

t T s S
t s

OP T S
t s

T S

∂ ΩΘ = ∈ ∧ ∈
∂ ∂
∂ Ω=
∂ ∂
= ×

 (6.43)

where, T is a finite set of discrete steps of program execution, S is a finite set
of memory locations or their logical representations by identifiers of
variables.

As indicated in Definition 6.60, the semantic environment of a program
is a dynamic entity over time, because following each execution of a
statement in the program, the semantic environment Θ, particularly the set of
values V of the variables S may be changed as a result of the operation of the
statement.

A generic semantic function is developed below, which can be used to
derive a specific and concrete semantic function for a given statement,
process, or program at different composing levels by mathematical
deduction.

Definition 6.61 A semantic function of a program ℘, fθ(℘), is a
function that maps the semantic environment Θ into a finite set of values V

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 465

determined by a Cartesian product on a finite set of executing steps T and a
finite set of variables S, i.e.:

 fθ(℘) = f: T × S → V

 = 11 12 1

1 1

m

n n nm

v v v

v v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⊥ ⊥ ⊥ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠⎟⎜ ⎟

1 2 m

0

1

n

s s s
t
t

t

 (6.44)

where T = {t0, t1, …, tn}, S = {s1, s2, …, sm}, and V is a finite set of values
v(ti, sj), 0 ≤ i ≤ n, and 1 ≤ j ≤ m.

In Eq. 6.44, all values of v(ti, sj) at t0 are undefined for a program as
denoted by the bottom symbol ⊥, i.e., (,) , jv 0 s 1 j m= ⊥ ≤ ≤ . However, for a

statement or a process, it is usually true that (,)jv 0 s ≠ ⊥ dependent on the

context of previous statement(s) or the initialization of the system.
According to Definition 6.61, the semantic environment and the

domain of a semantic function can be illustrated by a semantic diagram
[Wang, 2006a] as described below.

Definition 6.62 A semantic diagram is a sub-Cartesian-plane in the

semantic environment Θ that forms the domain of the semantic function for a
composed process P with fθ(P) = f: TP × SP → VP.

The semantic diagram fθ(P) as defined in Definition 6.62 can be

illustrated in Fig. 6.14, where SP is the set of variables of process P.

 t

 s

tP

Θ (P)

0

P
SP

Figure 6.14 The semantic diagram of a process

© 2008 by Taylor & Francis Group, LLC

466 Part II Theoretical Foundations of SE

The semantic diagram can be used to analyze complex semantic
relations, and to demonstrate semantic functions and their semantic
environments. Observing Fig. 6.14, the flowing properties of semantic
function for composed processes can be derived.

6.5.3.2 Deductive Semantics of Programs at Different Levels of
 Compositions

It is noteworthy that deductive semantics introduces only a universal
semantic function as given in Definition 6.61, rather than adopting multiple
concrete semantic functions as the conventional approaches do. In deductive
semantics, any particular concrete semantic function is a deduced
instantiation of the universal abstract semantic function. This is why it is
named deductive semantics, and this avoids the trouble in other exhaustive
approaches where a new semantic function has to be particularly defined
from time to time whenever additional instruction is introduced in a given
language.

According to the architectural model of programs as described in
Section 5.5.1, the semantics of a program in a given language can be
described and analyzed at various composition levels, such as those of
statement, process, and system from the bottom up.

Definition 6.63 The semantics of a statement p, θ(p), on a given
semantic environment Θ is a double partial differential of the semantic
function fθ(p) on the sets of variables S and executing steps T, i.e.:

 θ (p) = 2

()f p
t s θ
∂
∂ ∂

=
() # ()

0 1
(,)

T p S p

p i j
i j

v t sR R
= =

=
1 2 m#{s , s , ..., s }1

0 1
(,)p i j

i j
v t sR R

= =

Corollary 6.4 The variables of two arbitrary processes P and Q, SP and
SQ, in the semantic environment Θ possess the following properties:

 a) The entire set of variables: S = Sp ∪ SQ (6.45)
 b) Global variables: SG ⊆ Sp ∩ SQ (6.46)
 c) Local variables: SL = S - SG, SL ⊆ Sp ⊕ SQ ,

 where SLp = SL \ SQ and SLq = SL \ Sp (6.47)

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 467

 = 01 02 0

11 12 1

m

m

v v v

v v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

1 2 m

0

0 1

s s s
t

(t , t]

 (6.48)

where t denotes the discrete time immediately before and after the execution
of p during (t0, t1], and # is the cardinal calculus that counts the number of
elements in a given set, i.e., n = #T(p) and m=#S(p).

In Definition 6.63, the first partial differential selects all related

variable S(p) of the statement p from Θ. The second partial differential
selects a set of discrete steps of p’s execution T(p) from Θ. According to
Definition 6.63, the semantics of a statement can be deduced onto a semantic
function that results in a 2-D matrix with the changes of values of all
variables over time of program execution.

On the basis of Definitions 6.61 and 6.63, semantics of any statements
in a given programming language can be analyzed using Eq. 6.48 via a
deductive process.

Example 6.24 Analyze the semantics of Statement 3, p3, in the
following program entitled sum.

 void sum;
{
 (0) int x, y, z;
 (1) x = 8;
 (2) y = 2;
 (3) z := x + y;
}

According to Definition 6.63, the semantics of Statement p3 is as

follows:

(6.49)

3

3

3

2

3 3

()3

2 1

#{ , , }3

2 1

2

() ()

 (,)

(,)

8 2
8 2 10

S p

p i j
i j

x y z

p i j
i j

p f p
t s

v t s

v t s

R R

R R

θθ

= =

= =

⊥

∂=
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠2 3

x y z
t

(t , t]

© 2008 by Taylor & Francis Group, LLC

468 Part II Theoretical Foundations of SE

This example shows how the concrete semantics of a statement can be
derived on the basis of the generic and abstract semantic function of
deductive semantics.

In semantic analysis, the changed part of the semantic environment Θ,
known as the semantic effect as defined below, is particularly interested,
which is the embodiment of software semantics.

Definition 6.64 The semantic effect of a statement p, θ* (p), is the
resulting changes of values of variables by its semantic function θ(p) during
the time interval immediately before and after the execution of p, ∆t = (ti,
ti+1], i.e.:

()

1
1

()

1 1
1

* = ((,) (,))

(,) (,) | (,) (,)

S p

p i j p i j
j

S p

p i j p i j p i j p i j
j

(p) v t s v t s

v t s v t s v t s v t s

R

R

θ +
=

+ +
=

⊕

= < → ≠ >

 (6.50)

where → denotes a transition of values for a given variable.

Example 6.25 For the same statement p3 as shown in Example 6.24,

determine its semantic effect θ*(p3).

According to Eq. 6.50, the semantic effect θ*(p3) is:

3

3 3 3 3

3 3 3 3

()

3 2 3 2 3
1

#(, ,)

2 3 2 3
1

*() = (,) (,) | (,) (,)

 = (,) (,) | (,) (,)

S p

p j p j p j p j
j

x y z

p j p j p j p j
j

p v t s v t s v t s v t s

v t s v t s v t s v t s

R

R

θ
=

=

< → ≠ >

< → ≠ >

 =
3 32 3{ (,) (,) 10 }< = ⊥ → = >p pv t z v t z

It can be seen in Examples 6.24 and 6.25 that deductive semantics can

be used not only to describe the abstract and concrete semantics of
programs, but also to elicit and highlight their semantic effects.

According to Theorem 5.7 as well as Definitions 5.51 and 5.53, a
program or a process is composed by individual statements with given rules
of compositions. Therefore, the definitions and mathematical models of
semantics at the statement level can be extended onto the higher levels of
program hierarchy systematically.

Definition 6.65 The semantics of a process P, θ(P), on a given
semantic environment Θ is a double partial differential of the semantic
function fθ(P) on the sets of variables S and executing steps T, i.e.:

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 469

 θ (P) = 2

()f P
t s θ
∂
∂ ∂

2 21

1
() # () # () # ()1

1 0 1 0 1

{[()] [()]}, 1

{[(,)] [(,)]}
k k l l

k l

n

k kl l
k

T P S P T P S Pn

P i j kl P i j
k i j i j

f P r f P l k
t s t s

v t s r v t s

R

R R R R R

θ θ

−

=

−

= = = = =

∂ ∂= = +
∂ ∂ ∂ ∂

=

 =

1−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠⎟⎟

1

2

n

p G

p G

p G

V V

V V

V V

 (6.51)

where

kpV , 1≤ k ≤ n-1, is a set of values of local variables that belongs to
processes Pk, and VG is a finite set of values of global variables.

On the basis of Definition 6.65, the semantics of a program at the top-
level composition can be deduced to the combination of semantics of a set of
processes, each of which can be further deduced to the composition of all
statements’ semantics as described below.

Definition 6.66 The semantics of a program ℘, θ(℘), on a given
semantic environment Θ, is a combination of the semantic functions of all
processes θ(Pk), 1≤ k ≤ n, i.e.:

2# ()

1
()

1
() # ()# ()

1 0 1

() ()

 ()

[(,)]
k k

k

K

k
K

k
k

T P S PK

P i j
k i j

f
t s

P

v t s

R

R

R R R

θθ

θ

℘

=

℘

=

℘

= = =

∂℘ = ℘
∂ ∂

=

=

 (6.52)

where #K(℘) is the number of processes or components in the program.

It is noteworthy that Eq. 6.52 will usually result in a very large matrix
of semantic space, which can be quantitatively predicated as follows.

Definition 6.67 The semantic space of a program SΘ(℘) is a product
between the number of variables #S(℘) and the number of executing steps
#T(℘), i.e.:

© 2008 by Taylor & Francis Group, LLC

470 Part II Theoretical Foundations of SE

 # () # ()

k=1 k=1

() = # () # ()

= # () # ()
K K

k k

S S T

S T

Θ

℘ ℘

℘ ℘ • ℘

℘ • ℘∑ ∑
 (6.53)

The semantic space of a program provides a useful measure for

software complexity. Due to the tremendous size of the semantic space, both
program composition and comprehension are innately a hard problem in
terms of complexity and cognitive difficulty.

6.5.3.3 Properties of Software Semantics

Observing the formal definitions and mathematical models of deductive
semantics developed in previous sections, a number of common properties of
software semantics may be elicited, which are useful for explaining the
fundamental characteristics of software semantics.

One of the most interesting characteristics of program semantics is its
invariance against different executing speeds as described in the following
theorem.

Theorem 6.2 states that, for most nonreal-time or relatively timed

programs, different executing speeds or simulation paces will not alter the
semantics of the software system. This explains why a programmer may
simulate the run-time behaviors of a given program that may be executing at
a speed of up to 109 times faster than that of human beings. It also explains
why computers with different system clock frequencies may correctly run the
same program and obtain the same behavior.

A fundamental question in programming language and software
engineering theories is what the least complete set of instructions for
programming is. As discussed in Sections 5.2.1 and 5.4, the meta instructions
shared by all programming languages can be classified into three categories:
a) Internal operations, such as memory manipulation and assignments; b)
External operations, such as input/output, event handling, and human-
machine interactions; and c) Basic control structures (BCS’s) [Wang,

The 19th Law of Software Engineering

Theorem 6.2 The asynchronicity of program semantics states that the
semantics of a relatively timed program is invariant with the changes of
executing speed, as long as any absolute time constraint is met.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 471

2005a/06c/06h/06f], such as the jump, branch, and iteration constructs as
summarized in Tables 5.2, 5.14, and 5.15. Based on the above exploration,
the sets of sufficient meta instructions and their algebraic compositional rules
have been elicited in Theorems 4.6 and 4.7, respectively. According to these
theorems, the questions on the least complete set of instructions in
programming can be formally answered below.

Theorem 6.3 indicates that the necessary and sufficient conditions of

program compositionality in a given language are that all the meta
instructions (Table 4.8) and the fundamental BCS’s (Table 5.16) must be
implemented in the language. In case of nonreal-time programming
languages, the requirement for the four special BCS’s, BCS’s #10 through
#13, may be waived. However, it is helpful to be aware of the whole set of
software compositional rules for both ordinary and real-time software
systems.

It is noteworthy that some of the BCS’s as shown in Table 5.16 were

used to be treated as basic instructions rather than compositional rules in
conventional programming and formal techniques. However, according to
Theorems 4.3, 4.8, and 6.3, there is a need to distinguish the semantic roles
of statements (the minimum semantic unit of a language) and BCS’s (the
compositional rules of the language).

Definition 6.68 The behavior of a computational statement is a set of

observable actions or changes of status of objects operated by the statement.

According to Theorem 3.10, the behavioral space of software Ω is three
dimensional; while as given in Definition 6.58, the semantic environment Θ
is two dimensional. Therefore, to a certain extent, semantic analysis is a
projection of the 3-D software behaviors into the 2-D semantic environment
Θ as shown in Fig. 6.15.

The 20th Law of Software Engineering

Theorem 6.3 The least complete set of instructions in programming
states that a program is composable with sufficient descriptive power in a
given language iff both the sufficient sets of meta instructions (P,
Theorem 4.6) and compositional rules (R, Theorem 4.7) are rigorously
defined.

© 2008 by Taylor & Francis Group, LLC

472 Part II Theoretical Foundations of SE

 t

s
Θ = T × S

t

s

op

Ω = OP × T × S

The behavior space (Ω) The semantic environment (Θ)
00

Figure 6.15 Relationship between software behavior space and the semantic
environment

6.6 Semantics of RTPA

The theory of deductive semantics developed in Section 6.5.3 will be
systematically applied to formally and rigorously describe the semantics of
the RTPA meta processes and the process relations (operations) [Wang,
2002a/02b/03c/06a/07a]. This section extends the coverage of semantic rules
of programming languages to a complete set of features that encompasses
both basic computing operations and their algebraic composition rules.
Because RTPA is a mathematical modeling language based on process
algebra that covers a comprehensive set of computing and programming
requirements as summarized in Section 4.5.1 and Theorem 6.3, any formal
semantics that is capable to process RTPA is powerful enough to express the
semantics of any programming language.

6.6.1 SEMANTICS OF RTPA META PROCESSES

Meta processes of RTPA are most fundamental computational
operations elicited from basic computing requirements, based on them
complex processes can be composed. RTPA identified 17 meta processes
such as assignment, system control, event/time handling, memory, and I/O
manipulation. The meta processes and their syntaxes have been given in
Table 4.8 with detailed descriptions in Section 4.6.4 [Wang, 2002a].

As shown in Table 4.8, each meta process is a basic operation on one or
more operands such as variables, memory elements, or I/O ports. Based on
Definition 6.63, the deductive semantics of the set of RTPA meta processes

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 473

will be defined in the following subsections, except that of the system
process, §, which will be presented in Section 6.3.3.

6.6.1.1 The Assignment Process

Definition 6.69 The semantics of the assignment process, θ(yRT :=

xRT), in the given semantic environment Θ is a double partial differential of
the semantic function fθ(yRT := xRT) on the sets of variables S and executing
steps T, i.e.:

2

(y := x) # (y := x)

0 1

1 2

0 1

(y := x) (y := x)

(,)

 (,)

RT RT RT RT

RT RT RT RT

RT RT
RT
RT RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x x

R R

R R

θθ

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x y
t

(t , t]

 (6.54)

where the size of the matrix is #T • #S.

6.6.1.2 The Evaluation Process

Definition 6.70 The semantics of the evaluation process, θ(expT →

T), in the given semantic environment Θ is a double partial differential of the
semantic function fθ(θ(expT → T) on the sets of variables S and executing
steps T in the following two forms, i.e.:

2

() # ()

0 1

1 2

0 1

1 2

1 2'

(()) (())

 (,)

 (,)

()
()

BL BL BL BL

BL BL BL BL

B BL BL
BL BL

T T
F F

T exp S exp

i j
i j

i j
i j

exp

exp f exp
t s

v t s

v t s

exp
exp

R R

R R

θθ

δ

→ →

= =

= =

∂→ →
∂ ∂

=

=

⎛ ⎞
⎜ ⎟⊥⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0 1(t , t]
(t , t]
(t , t]

 (6.55a)

© 2008 by Taylor & Francis Group, LLC

474 Part II Theoretical Foundations of SE

or

2

() # ()

0 1

1 2

0 1

1 2

() ()

 (,)

 (,)

()
()

T T T T

T T T T

T T T

T T

T T

T exp S exp

i j
i j

i j
i j

exp

exp f exp
t s

v t s

v t s

exp
exp
n n

R R

R R

θθ

δ

→ →

= =

= =

⊥

∂→ →
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0 1(t , t]
(t , t]

 (6.55b)

where T(expBL) is the Boolean evaluation function on expBL that results in T
or F.

In general, T(expT) is the cardinal or numerical evaluation function

on expT that results in T = {N, Z, R, B} as given in Definition 4.88a through
4.88e, respectively.

6.6.1.3 The Addressing Process

Definition 6.71 The semantics of the addressing process, θ(idS ⇒ ptrP),

in the given semantic environment Θ is a double partial differential of the
semantic function fθ(idS ⇒ ptrP) on the sets of variables S and executing
steps T, i.e.:

2

(id ptr) # (id ptr)

0 1

1 2

0 1

)

() (id ptr)

(,)

 (,)

(

S P S P

S P S P

S P
S
S S H

T S

i j
i j

i j
i j

id ptr f
t s

v t s

v t s

id
id id

R R

R R

θθ

π

⇒ ⇒

= =

= =

⊥

∂
⇒ ⇒

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

id ptr
t

(t , t]

 (6.56)

where π(idS)H is a function as given in Definition 4.41 that associates a
declared identifier idS to its hexadecimal memory address located by the
pointed ptrP.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 475

6.6.1.4 The Memory Allocation Process

Definition 6.72 The semantics of the memory allocation process, θ(idS
⇐ MEM[ptrP]RT), in the given semantic environment Θ is a double partial
differential of the semantic function fθ(idS ⇐ MEM[ptrP]RT) on the sets of
variables S and executing steps T, i.e.:

2

(id MEM[ptr]) # (id MEM[ptr])

0 1

1 3

0 1

(id MEM[ptr]) (id MEM[ptr])

 (,)

 (,)

() MEM[]

S P RT S P RT

S P RT
S
S S H P RT

S P RT S P RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

id
id id ptr

R R

R R

θθ

π

⇐ ⇐

= =

= =

⊥ ⊥

∂⇐ ⇐
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

id ptr MEM
t

(t , t]

 (6.57)

where π(idS)H is a mapping function as given in Definition 4.41 that
associates an identifier idS to a memory block starting at a hexadecimal
address located by the pointed ptrP. The ending address of the allocated
memory block, ptrP+size(RT)-1, is dependent on a machine implementation
of the size of a given variable in type RT.

6.6.1.5 The Memory Release Process

Definition 6.73 The semantics of the memory release process, θ(idS
MEM[⊥]RT), in the given semantic environment Θ is a double partial
differential of the semantic function fθ(idS MEM[⊥]RT) on the sets of
variables S and executing steps T, i.e.:

2

(MEM[]) # (MEM[])

0 1

1 3

0 1

() MEM()

(MEM[]) (MEM[])

 (,)

 (,)

()

⊥ ⊥

⊥ ⊥

S RT S RT

RT P RT
S S H P RT

S RT S RT

T id S id

i j
i j

i j
i j

id ptr

id f id
t s

v t s

v t s

id

R R

R R

θ

π

θ

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⊥ ⊥⎝ ⎠

0

0 1

id ptr MEM
t

(t , t]

 (6.58)

© 2008 by Taylor & Francis Group, LLC

476 Part II Theoretical Foundations of SE

6.6.1.6 The Read Process

Definition 6.74 The semantics of the read process,
θ(MEM[ptrP]RT xRT), in the given semantic environment Θ is a double
partial differential of the semantic function fθ(MEM[ptrP]RT xRT) on the
sets of variables S and executing steps T, i.e.:

2

(MEM[ptr] x) # (MEM[ptr] x)

0 1

1 3

0 1

(MEM[ptr] x) (MEM[ptr] x)

 (,)

 (,)

MEM[] MEM[]

P RT RT P RT RT

P RT RT P RT RT

P P RT RT
P
P P RT P RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

ptr
ptr ptr ptr

R R

R R

θθ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

ptr MEM(ptr) x
t

(t , t]

(6.59)

6.6.1.7 The Write Process

Definition 6.75 The semantics of the write process,

θ(MEM[ptrP]RT xRT), in the given semantic environment Θ is a double
partial differential of the semantic function fθ(MEM[ptrP]RT xRT) on the
sets of variables S and executing steps T, i.e.:

2

(MEM[ptr] x) # (MEM[ptr] x)

0 1

1 3

0 1

(MEM[ptr] x) (MEM[ptr] x)

(,)

 (,)

P RT RT P RT RT

P RT RT P RT RT

RT P P RT
RT
RT P RT

 T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R

θθ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x ptr MEM[ptr]
t

(t , t]

 (6.60)

6.6.1.8 The Input Process

Definition 6.76 The semantics of the input process,

θ(PORT[ptrP]RT xRT), in the given semantic environment Θ is a double

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 477

partial differential of the semantic function fθ((PORT[ptrP]RT xRT) on the
sets of variables S and executing steps T, i.e.:

2

(PORT[ptr] x) # (PORT[ptr] x)

0 1

1 3

0 1

(PORT[ptr] x) (PORT[ptr] x)

 (,)

 (,)

PORT[] PORT[]

P RT RT P RT RT

P RT RT P RT RT

P P RT RT
P
P P RT P RT

 T S

i j
i j

i j
i j

f
t s

v t s

v t s

ptr
ptr ptr ptr

R R

R R

θθ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜
⎝ ⎠

0

0 1

ptr PORT[ptr] x
t

(t ,t] ⎟

 (6.61)

6.6.1.9 The Output Process

Definition 6.77 The semantics of the output process, θ(xRT

PORT[ptrP]RT), in the given semantic environment Θ is a double partial
differential of the semantic function fθ(xRT PORT[ptrP]RT) on the sets of
variables S and executing steps T, i.e.:

2

(x PORT[ptr]) # (x PORT[ptr])

0 1

1 3

0 1

(x PORT[ptr]) (x PORT[ptr])

(,)

 (,)

RT P RT RT P RT

RT P RT RT P RT

RT P P RT
RT
RT P RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R

θθ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x ptr PORT[ptr]
t

(t , t]

 (6.62)

6.6.1.10 The Timing Process

Definition 6.78 The semantics of the timing process, θ(@tTM
@ §tTM), in the given semantic environment Θ is a double partial differential

of the semantic function fθ(@tTM @ §tTM) on the sets of variables S and
executing steps T, i.e.:

© 2008 by Taylor & Francis Group, LLC

478 Part II Theoretical Foundations of SE

2

(@ t @§t) # (@ t @§t)

0 1

1 2

0 1

(@ t @§t) (@ t @§t)

(,)

 (,)

§t
§t §t

TM TM TM TM

TM TM TM TM

TM TM
TM
TM TM

T S

i j
i j

i j
i j

f
t s

v t s

v t s

R R

R R

θθ

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

§t @t
t

(t , t]

 (6.63)

where TM represents the three timing types as shown in Table 4.7, i.e. TM =

{yy:MM:dd, hh:mm:ss:ms, yy:MM:dd:hh:mm:ss:ms}.

6.6.1.11 The Duration Process

Definition 6.79 The semantics of the duration process,

θ(@tTM ∆ §tTM+∆dZ), in the given semantic environment Θ is a double

partial differential of the semantic function fθ(@tTM ∆ §tTM+∆dN) on the sets
of variables S and executing steps T, i.e.:

2

(@ t §t) # (@ t §t)

0 1

1 3

0 1

d

(@ t §t + d) (@ t §t + d)

 (,)

 (,)

§t
§t d §t

TM TM TM TM

TM TM Z TM TM Z

N
TM N TM
TM
TM N TM N

T S

i j
i j

i j
i j

f
t s

v t s

v t s

d

R R

R R

θθ

∆ ∆

= =

= =

∆ ⊥

∂∆ ∆ ∆ ∆
∂ ∂

=

=

∆⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟∆ + ∆⎝ ⎠

0

0 1

§t d @t
t

(t , t]

 (6.64)

where TM = {yy:MM:dd, hh:mm:ss:ms, yy:MM:dd:hh:mm:ss:ms}.

6.6.1.12 The Increase Process

Definition 6.80 The semantics of the increase process, θ(↑(xRT)), in the
given semantic environment Θ is a double partial differential of the semantic
function fθ(↑(xRT)) on the sets of variables S and executing steps T, i.e.:

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 479

2

((x)) # ((x))

0 1

1 1

0 1

((x)) ((x))

 (,)

 (,)

1

RT RT

RT RT

RT
RT

RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x

R R

R R

θθ

↑ ↑

= =

= =

∂↑ ↑
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟+⎝ ⎠

0

0 1

x
t

(t , t]

 (6.65)

where the run-time type RT = {N, Z, B, H, P, TM}.

6.6.1.13 The Decrease Process

Definition 6.81 The semantics of the decrease process, θ(↓(xRT)), in

the given semantic environment Θ is a double partial differential of the
semantic function fθ(↓(xRT)) on the sets of variables S and executing steps T,
i.e.:

2

((x)) # ((x))

0 1

1 1

0 1

-

((x)) ((x))

 (,)

 (,)

1

RT RT

RT RT

RT
RT

RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x

R R

R R

θθ

↓ ↓

= =

= =

∂↓ ↓
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x
t

(t , t]

 (6.66)

where the run-time type RT = {N, Z, B, H, P, TM}.

6.6.1.14 The Exception Detection Process

Definition 6.82 The semantics of the exception detection process,

θ(!(@)eS), in the given semantic environment Θ is a double partial
differential of the semantic function fθ(!(@)eS)) on the sets of variables S and
executing steps T, i.e.:

© 2008 by Taylor & Francis Group, LLC

480 Part II Theoretical Foundations of SE

2

(!(@e) # (!(@e)

0 1

1 3

0 1

(!(@e) (!(@e)

 (,)

 (,)

@
@ @

S S

S S

P P S
S
S P S

S

T S

i j
i j

i j
i j

f
t s

v t s

v t s

e
e ptr e

R R

R R

θθ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

@e ptr PORT(ptr)
t

(t , t]

 (6.67)

Eq. 6.67 indicates that the semantics of exception detection is the

output of a string @eS to a designated port PORT[ptrP]S, where the pointer
ptrP points to a CRT or a printer. Therefore, the semantics of exception
detection can be described based on the semantics of output as defined in
Definition 6.77, i.e.:

 θ ((!(@eS)) =θ (@eS PORT[ptrP]S) (6.68)

6.6.1.15 The Skip Process

Definition 6.83 The semantics of the skip process, θ(⊗), in the given

semantic environment Θ is a double partial differential of the semantic
function fθ(⊗) on the sets of variables S and executing steps T, i.e.:

1 1

1

1

1

2
1

() # ()

0 1

1 2

0 1

() ()

()

(,)

 (,)

\

⊗

k k k k

k k

k k

k k

k k

T P P S P P

i j
i j

i j
i j

P P

P P

S

P P

f P P
t s

v t s

v t s

S
S S

R R

R R

θ

θ θ

− −

−

−

−

−

= =

= =

⊥

∂=
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

k-1 kP P

0

0 1

S S
t

(t , t]

 (6.69)

where Pk is a process P at a given embedded layer k in a program with P0 at
the outermost layer, and denotes the jump process relation and its
semantics will be formally defined in Section 6.6.2.2.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 481

According to Definition 6.83, the skip process ⊗ has no semantic effect
on the current process Pk at the given embedded layer k in a program, such as
a branch, loop, or function. However, it do have semantic effect on internal
control structures that redirects the system to jump to execute an upper-layer
process Pk-1 in the embedded hierarchy. Therefore, skip is also known as exit
or break in programming languages.

6.6.1.16 The Stop Process

Definition 6.84 The semantics of the stop process, θ (), in the given
semantic environment Θ is a double partial differential of the semantic
function fθ() on the sets of variables S and executing steps T, i.e.:

2

(§) # (§)

0 1

1 2

0 1

() (§)

(§)

(,)

 (,)

\
P

T P S P

i j
i j

i j
i j

§

§ P

S

P

f P
t s

v t s

v t s

S
S S

R R

R R

θ

θ θ

= =

= =

⊥

∂=
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

§ P

0

0 1

S S
t

(t , t]

 (6.70)

where the stop process does nothing but returns the control of execution to
the system. The semantics of jump, , will be formally described in
Section 6.6.2.2.

6.6.2 SEMANTICS OF RTPA PROCESS RELATIONS

Section 6.6.1 presented formal definitions of the meta processes of
RTPA for software system modeling. According to Theorem 6.3, via the
composition of multiple meta processes by the 17 process relations, complex
architectures and behaviors of software systems, in the most complicated
case, a real-time system, can be sufficiently described [Wang, 2002a].

Detailed descriptions of syntaxes of RTPA process relations have been

described in Table 4.9. On the basis of Definition 6.65, the semantics of the
RTPA process relations will be formally defined and analyzed in the

© 2008 by Taylor & Francis Group, LLC

482 Part II Theoretical Foundations of SE

following subsections, except that of the three process dispatch relations
which will be presented in Section 6.6.3.

6.6.2.1 The Sequential Process Relation

Definition 6.85 The semantics of the sequential relations of processes,
θ(P→Q), in the given semantic environment Θ is a double partial differential
of the semantic function fθ(P→Q) on the sets of variables S and executing
steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

(# ()

0 1

() ()

() ()

(,) (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T PQ S P Q

i j
i j

1P 1PQ

2Q 2PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂→ →
∂ ∂

∂ ∂= →
∂ ∂ ∂ ∂

= →

=

⎛ ⎞
⎜ ⎟⊥ ⊥ ⊥⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

=

P Q PQ

0

0 1

1 2

P PQ

Q

s s s
t

(t , t]
(t , t]

V V
V

⎛ ⎞
⎜ ⎟
⎝ ⎠PQV

 (6.71)

where PQ indicates a concatenation of these two processes over time, and in
the simplified notation of the matrix, VP = v(tP, sP), 0 ≤ tP ≤ nP, 1 ≤ sP ≤ mP;
VQ = v(tQ, sQ), 0 ≤ tQ ≤ nQ, 1 ≤ sQ ≤ mQ; and VPQ = v(tPQ, sPQ), 0 ≤ tPQ ≤ nPQ, 1
≤ sPQ ≤ mPQ.

In Eq. 6.71, the first partial differential selects a set of related variables

in the sequential processes P and Q, S(P ∪ Q). The second partial differential
selects a set of time moments T(PQ). The semantic diagram of the
sequential process relation as defined in Eq. 6.71 is illustrated in Fig. 6.16 in
the semantic environment Θ .

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 483

 t

 s

t2

Θ (P→Q)

0 t1

Q

P
SP

SQ

SPQ

Figure 6.16 The semantic diagram of the sequential process relation

 The following example shows the physical meaning of Eq. 6.71 and
how the abstract syntaxes and their implied meanings are embodied onto the
objects (variables) and their dynamic values in order to obtain the concrete
semantics in deductive semantics.

Example 6.26 Analyze the semantics of two simple sequential
processes P and Q in the following program:

 void sequential_sum;
 {

 (0) int x, y, z;
 {// P
 (1) x = 2;
 (2) y = 8;
 (3) z := x + y;
 }
 {// Q
 (4) z := x + y + z;
 (5) print z;
 }

 }

According to Definition 6.85, the semantics of the above program can
be analyzed as follows:

0 1 5(...)P P Pθ → → → = 2

0 1 5(...)f P P P
t s θ
∂ → → →
∂ ∂

= 2 2 2

0 1 5() () ... ()

f P f P f P
t s t s t sθ θ θ
∂ ∂ ∂→ → →
∂ ∂ ∂ ∂ ∂ ∂

© 2008 by Taylor & Francis Group, LLC

484 Part II Theoretical Foundations of SE

0 0 1 1

0 1

5 5

5

() # () # () # ()

0 1 0 1

() # ()

0 1

 (,) (,) ...

 (,)

T P S P T P S P

P i j P i j
i j i j

T P S P

P i j
i j

v t s v t s

v t s

R R R R

R R
= = = =

= =

= → →

→

=
0 1 5 0 1 5# (...) # (...)

0 1
(,)

T P P P S P P P

i j
i j

v t sR R
∪ ∪ ∪

= =

 =
5 4

0 1
 (,)i j

i j
v t sR R

= =

 =

[]

2

2 8

2 8 10

2 8 20

2 8 20 20

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥

⊥

⊥

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟

0

0 1

1 2

2 3

3 4

4 5

x y z CRT
t

(t , t]

(t , t]

(t , t]

(t , t]

(t , t]

PORT P N

 (6.72)

where PORT[CRTP]N denotes a system monitor of type N located by the
pointer CRTP; the semantics of P and Q are shown in the intervals [t0, t3] and
(t3, t5], respectively.

6.6.2.2 The Jump Process Relation

Definition 6.86 The semantics of the jump relations of processes,

θ(P Q), in the given semantic environment Θ is a double partial
differential of the semantic function fθ(P Q) on the sets of variables S and
executing steps T, i.e.:

 θ(P Q) 2

()f P Q
t s θ
∂
∂ ∂

 = 2 2

() ()

f P f Q
t s t sθ θ
∂ ∂
∂ ∂ ∂ ∂

 =
() # () # () # ()

0 1 0 1
(,) (,)

= = = =

T P S P T Q S Q

P i j Q i j
i j i j

v t s v t sR R R R

 =
() # ()

0 1
(,)

T PQ S P Q

i j
i j

v t sR R
∪

= =

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 485

 =
()

1P 1PQ

3Q 3PQ

V V

Q

V V

π

⊥ ⊥

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ − − − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎟⎜⎜ ⎟⎝ ⎠⎜ ⎟

P Q PQ

0 1

1 2

2 3

S S S addr

[t , t]

(t , t]

(t , t]

H

S H
 (6.73)

where π(QS)H is a system addressing function of the system that directs the
program control flow to execute the new process Q, which is physically
located in a different memory address at addrH = π(QS)H.

The semantic diagram of the jump process relation as defined in Eq.

6.73 is illustrated in Fig. 6.17 in the semantic environment Θ.

 t

 s

t1 t2 t3

Θ (P Q)

0

Q

P

 π(QS)H

 SQ

 SP
SPQ

 addrH

Figure 6.17 The semantic diagram of the jump process relation

The jump process relation is an important process relation that forms a

fundamental part of many other processes and constructs. For instance, the
jump process relation has been applied in expressing the semantics of the
skip and stop processes in Section 4.1.

6.6.2.3 The Branch Process Relation

Definition 6.87 The semantics of the branch relations of processes,

θ(expBL = T → P | ~ → Q), abbreviated by θ(P | Q), in the given semantic
environment Θ is a double partial differential of the semantic function
fθ(P | Q) on the sets of variables S and executing steps T, i.e.:

© 2008 by Taylor & Francis Group, LLC

486 Part II Theoretical Foundations of SE

2

2

2

() # ()

0 1

(| ~) (| ~)

 ()

 | ~ ()

 (,)

 | ~

RT RT

BL

BL
T P S P

P i j
i j

exp P Q f exp P Q
t s

exp f P
t s

f Q
t s

exp v t sR R

θ

θ

θ

θ

= =

∂→ → → →
∂ ∂

∂= →
∂ ∂

∂→
∂ ∂

= →

() # ()

0 1

2

 (,)

()

-

BL
BL

T
F

T Q S Q

Q i j
i j

2P PQ

3Q 3PQ

v t s

exp
V V

- V V

R R

δ

= =

⊥ ⊥ ⊥

→

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

P Q PQ

0 1

1 2

1 2'

exp S S S
(t , t]
(t , t]
(t , t]

 (6.74)

where δ(expBL) is the evaluation function on the value of expBL, δ(expBL) ∈
{T, F}.

The semantic diagram of the branch process relation as defined in Eq.

6.74 is illustrated in Fig. 6.18 in the semantic environment Θ(θ(expBL = T

→ P | ~ → Q).

 t

 s

t2’

Θ (expBL → P | ~ →Q)

0 t1 t2

Q

P

SP

SQ

 expBL

Figure 6.18 The semantic diagram of the branch process relation

6.6.2.4 The Switch Process Relation

Definition 6.88 The semantics of the switch relations of processes,

θ(expiRT → Pi | ~ → ∅), abbreviated by θ(Pi | ∅), in the given semantic
environment Θ is a double partial differential of the semantic function fθ(Pi |
∅) on the sets of variables S and executing steps T, i.e.:

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 487

2

i i i i

2

2

1

2

(P | ~) (P | ~)

 = ()

 | ...

 | 1 ()

 | ()

⊗ ⊗

⊗

RT RT

RT

RT

RT

0

n

exp f exp
t s

exp 0 f P
t s

exp n f P
t s

exp n f
t s

θ

θ

θ

θ

θ

−

∂→ → → →
∂ ∂
∂= →
∂ ∂

∂= − →
∂ ∂
∂= →
∂ ∂

0

1 1

1

() # ()

0 1

() # ()

0 1

 = (,)

 | ...

 | 1 (,)

 |

RT

RT

RT

RT

0 0

n n

n

T P S P

P i j
i j

T P S P

P i j
i j

exp 0 v t s

exp n v t s

exp n

R R

R R
− −

−

= =

= =

= →

= − →

= →∅

=

0Pexp S S

1

(exp)

1

RT

0

n

2 P G

2 P G

G

0 V V

n V V

n V

δ

−

⊥ ⊥ ⊥

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

n-1

0

n-1

n

P G

0 1

1 2

1 2

1 2

S

[t , t]
(t , t]

(t , t]

(t , t]

 (6.75)

where VG is a set of global variables shared by P0, P1, and Pn-1.

The semantic diagram of the switch process relation as defined in Eq.

6.75 is illustrated in Fig. 6.19 in the semantic environment Θ(expiRT → Pi |
~ → ∅).

 t

 s

t2n-1

Θ (?expiRT → Pi | ?~ → ∅))

0 t20

Pn-1

P0

 t1

 …

 …

SP0

SPn-1

expRT

Figure 6.19 The semantic diagram of the switch process relation

© 2008 by Taylor & Francis Group, LLC

488 Part II Theoretical Foundations of SE

6.6.2.5 The While-Loop Process Relation

Definition 6.89 The semantics of the while-loop relations of processes,
θ(

exp =

*()PR
F

BL T

), in the given semantic environment Θ is a double partial

differential of the semantic function fθ(

exp =

*()PR
F

BL T

) on the sets of variables S and

executing steps T, i.e.:

2

exp = exp =

2

exp =

() # ()

0 1exp =

* *(()) (())

* (())

* ((,))

(exp)

(exp)

⊗

⊗

F F

BL T BL T

F

BL T

F

BL T

BL

T
F

T
F

BL

BL

T P S P

P i j
i j

P

P

P f P
t s

f P
t s

v t s

V

V

R RR

R R
R

θ

θ

θ

δ

δ

= =

∂
∂ ∂

∂=
∂ ∂

=

⎛
⎜ ⊥⎜
⎜
⎜
⎜= ⎜
⎜

−⎜

⎝

P

0 1

1 2

1 2'

3 4

4 5

4 5'

exp S
[t , t]
(t , t]
(t , t]

(t , t]
(t , t]
(t , t]

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟⎜ ⎟

⎠ (6.76)

where ∅ denotes exit, and δ(expBL) is the evaluation function on the Boolean
expression, δ(expBL) ∈ {T, F}.

The semantic diagram of the while-loop process relation as defined in
Eq. 6.76 is illustrated in Fig. 6.20 in the semantic environment Θ.

 t

 s

0

P P
exp

*()PR
=

Θ
F

BL T

 t1 t2’ t2 t3 t4 t5’ t5

 ∅

expBL

SP

Figure 6.20 The semantic diagram of the while-loop process relation

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 489

6.6.2.6 The Repeat-Loop Process Relation

Definition 6.90 The semantics of the repeat-loop relations of

processes, θ(
exp =

()PR+
F

BL T

), in the given semantic environment Θ is a double

partial differential of the semantic function fθ(

exp =

()PR+
F

BL T

) on the sets of

variables S and executing steps T, i.e.:

2

exp = exp =

2

exp =

() # ()

0 1exp =

'

(()) (())

(())

* ((,))

(exp)

(exp)

⊗

F F

BL T BL T

F

BL T

F

BL T

BL

T

T

BL

F

BL

P

T P S P

P i j
i j

P

P

V

P f P
t s

f P
t s

P v t s

V

V

R R

R R

R
R

θ

θ

θ

δ

δ

= =

⊥

∂+ +
∂ ∂

∂+=
∂ ∂

= →

−

=

−

P

0 1

1 2

2 3

2 3'

4 5

5 6

5 6

exp S
[t , t]
(t , t]
(t , t]
(t , t]

(t , t]
(t , t]
(t , t] ⊗F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (6.77)

The semantic diagram of the repeat-loop process relation as defined in

Eq. 6.77 is illustrated in Fig. 6.21 in the semantic environment Θ .

 t

 s

0 t1 t2 t3’ t3 … t4 t5 t6’ t6

P P

…

P

exp
()R

=

+Θ
F

BL T
 ∅

expBL

SP

Figure 6.21 The semantic diagram of the repeat-loop process relation

© 2008 by Taylor & Francis Group, LLC

490 Part II Theoretical Foundations of SE

6.6.2.7 The For-Loop Process Relation

Definition 6.91 The semantics of the for-loop relations of processes,

θ(
n

i =1
R
N

P(i)), in the given semantic environment Θ is a double partial

differential of the semantic function fθ(
n

i =1
R
N

P(i)) on the sets of variables S and

executing steps T, i.e.:

n n

n

n

2

i =1 i =1

2

k = 1
() # ()

0 1k =1

(P(i)) (P(i))

 (())

((,))

1
1

N N

N

N

N

Pk Pk

k

i

T S

P i j
i j

P

P

f
t s

f P
t s

v t s

V

n
n V

R R

R R

R
R

θ

θ

θ

= =

⊥

∂
∂ ∂

∂=
∂ ∂

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
= ⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

P

0 1

1 2

n-2 n-1

n-1 n

k S
[t , t]
(t ,t]

(t ,t]
(t ,t]

 (6.78)

The semantic diagram of the for-loop process relation as defined in Eq.

6.78 is illustrated in Fig. 6.22 in the semantic environment Θ.

 s

 t1 t2 t3 t4 … tn-2 tn-1 tn

1
(())

n

k
k

PR
=

Θ
N

0

 P(1) P(2) … P(n)

 iN

SP

 t

Figure 6.22 The semantic diagram of the for-loop process relation

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 491

6.6.2.8 The Function Call Process Relation

Definition 6.92 The semantics of the function call relations of
processes, θ(P Q), in the given semantic environment Θ is a double
partial differential of the semantic function fθ(P Q) on the sets of variables
S and executing steps T, i.e.:

1 2 2 3

2

2 2

() # () # () # ()

0 1 0 1

([] (] (]) # ()

0 1

() ()

() ()

(,) (,)

 (,)
0 1

T P S P T Q S Q

P i j Q i j
i j i j

T t ,t t ,t t ,t S P Q

i j
i j

1P 1PQ

2Q 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
v V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

⊥ ⊥ ⊥

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

−=
−

P Q PQ

0

0 1

1 2

S S S
t

(t , t]
(t , t] PQ

3P 3PQV V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠2 3(t , t]

 (6.79)

The semantic diagram of the procedure call process relation as defined

in Eq. 6.79 is illustrated in Fig. 6.23 in the semantic environment Θ.

 t

 s

t3 t2 0 t1

 Q

P

Θ(P Q)

SP

VPQ

VQ

Figure 6.23 The semantic diagram of the function call process relation

© 2008 by Taylor & Francis Group, LLC

492 Part II Theoretical Foundations of SE

6.6.2.9 The Recursive Process Relation

Definition 6.93 The semantics of the recursive relations of processes,
θ(P P), in the given semantic environment Θ is a double partial differential
of the semantic function fθ(P P) on the sets of variables S and executing
steps T, i.e.:

1

0

' 1

'

2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

(,) (,)

 (,)

n

n

n

n

T P S P T P S P

i j i j
i j i j

T P S P

i j
i j

P

P

P

P

P

P P f P P
t s

f P f P
t s t s

v t s v t s

v t s

V
V

V

V
V

R R R R

R R

θ

θ θ

θ

−

−

= = = =

= =

∂
∂ ∂
∂ ∂=
∂ ∂ ∂ ∂

=

=

=

P

0 1

1 2

3 4

5 6

6 7

S
[t , t]
(t , t]

(t , t]

(t , t]
(t , t]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.80)

The semantic diagram of the recursive process relation as defined in

Eq. 6.80 is illustrated in Fig. 6.24 in the semantic environment Θ.

 t

 s Θ (P P)

0 t1 t2…t3 t4…t5 t6 t7

 Pn Pn-1. ... P0 ... Pn-1’ Pn’
 SP

Figure 6.24 The semantic diagram of the recursive process relation

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 493

6.6.2.10 The Parallel Process Relation

Definition 6.94 The semantics of the parallel relations of processes,

θ(P || Q), in the given semantic environment Θ is a double partial differential
of the semantic function fθ(P || Q) on the sets of variables S and executing
steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

max(# (),# ()) # ()

0 1

1

(||) (||)

() || ()

(,) || (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T P T Q S P Q

i j

0P 0Q 0PQ

1P 1Q PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V
V V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

=

P Q PQ

0

0 1

1 2

S S S
t

(t ,t]
(t ,t] 2 2Q PQV V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

 (6.81)

where t2 = max(#T(P), (#T(Q)) is the synchronization point between two
parallel processes.

The semantic diagram of the parallel process relation as defined in Eq.
6.81 is illustrated in Fig. 6.25 in the semantic environment Θ.

 t

 s
Θ (P||Q)

0 t1 t2

Q

P
SP

SQ

SPQ

Figure 6.25 The semantic diagram of the parallel process relation

© 2008 by Taylor & Francis Group, LLC

494 Part II Theoretical Foundations of SE

It is noteworthy that parallel processes P and Q are interlocked. That is,
they should start and end at the same time. In case t1 ≠ t2, the process
completed earlier should wait for the completion of the other. The second
condition between parallel processes is that the shared resources, in particular
variables, memory space, ports, and devices, should be protected. That is,
when a process operates on a shared resource, it is locked to the other
process until the operation is completed. A variety of interlocking and
synchronization techniques, such as semaphores, mutual exclusions, and
critical regions, have been proposed in real-time system techniques [Liu,
2000; McDermid, 1991].

6.6.2.11 The Concurrent Process Relation

Definition 6.95 The semantics of the concurrent relations of processes,

θ(P ∯ Q), in the given semantic environment Θ is a double partial differential
of the semantic function fθ(P ∯ Q) on the sets of variables S and executing
steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

max(# (),# ()) # ()

0 1

 () ()

() ()

(,) (,)

 (,)

RT

T P S P T Q S Q

P i j Q i j
i j i j

T P T Q S P Q

i j
i j

0P 0P 0P 0com

1P 1

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V V
V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂
∂ ∂=
∂ ∂ ∂ ∂

=

=

−=

∫∫ ∫∫

∫∫

∫∫

P Q PQ

0

0 1

S S S com
t

(t ,t] PQ 1com

2P 2Q 2PQ 2com

3P 3PQ 3com

V
V V V V
V V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

1 2

2 3

(t ,t]
(t ,t]

 (6.82)

where comRT is a set of inter-process communication variables that are used
to synchronize P and Q executing on different machines based on
independent system clocks.

The semantic diagram of the concurrent process relation as defined in
Eq. 6.82 is illustrated in Fig. 6.26 in the semantic environment Θ.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 495

 t

 s Θ (P ∯ Q)

0 t1 t2 t3

P

Q

 tP

 tQ

 sQ

SQ

SP

 SPQ

 comRT

Figure 6.26 The semantic diagram of the concurrent process relation

6.6.2.12 The Interleave Process Relation

Definition 6.96 The semantics of the interleave relations of processes,

θ(P ||| Q), in the given semantic environment Θ is a double partial differential
of the semantic function fθ(P ||| Q) on the sets of variables S and executing
steps T, i.e.:

0 1 1 2 2 3 3 4 4 5

2

2 2

() # () # () # ()

0 1 0 1

([t ,t] (t ,t] (t ,t] (t ,t] (t ,t]) # ()

0 1

(|||) (|||)

() ||| ()

(,) ||| (,)

(,)

T P S P T Q S Q

P i j Q i j
i j i j

T S P Q

i j
i j

0P 0Q 0PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

=

P Q PQ

0

0

S S S
t

(t '

'

''

''

'''

1P 1PQ

2Q 2PQ

3P 3PQ

4Q 4PQ

5P 5PQ

V V
V V

V V
V V

V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

1

1 2

2 3

3 4

4 5

, t]
(t , t]
(t ,t]
(t , t]
(t ,t]

 (6.83)

The semantic diagram of the interleave process relation as defined in

Eq. 6.83 is illustrated in Fig. 6.27 in the semantic environment Θ.

© 2008 by Taylor & Francis Group, LLC

496 Part II Theoretical Foundations of SE

 t

 s

t1 t2 t3 t4 t5

Θ (P ||| Q)

0

 Q’ Q’’

P’ P’’ P’’’

SP

SQ

SPQ

Figure 6.27 The semantic diagram of the interleave process relation

6.6.2.13 The Pipeline Process Relation

Definition 6.97 The semantics of the pipeline relations of processes,

θ(P >> Q), in the given semantic environment Θ is a double partial
differential of the semantic function fθ(P >> Q) on the sets of variables S and
executing steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

= (,) (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T PQ S P Q

i j
i j

0P 0PQ 0Q

1P 1PQ

2PQ 2Q

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V

V V

V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

⎛⎜⎜⎜⎜⎜⎜= ⎜⎜ −

−⎝

P Po Qi Q

0

0 1

1 2

S S = S S

t

(t , t]

(t , t]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎠⎜ ⎟

 (6.84)

where

oPS and
iQS denote a set of n one-to-one connections between the

outputs of P and inputs of Q, respectively, as follows:

1

0
(() ())o i

n

k
P i Q iR

−

=
= (6.85)

The semantic diagram of the pipeline process relation as defined in Eq.

6.84 is illustrated in Fig. 6.28 in the semantic environment Θ.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 497

 t

 s

t2

Θ (P >> Q)

0 t1

Q

P

.
SP

SQ

SPo=SQi

Figure 6.28 The semantic diagram of the pipeline process relation

6.6.2.14 The Interrupt Process Relation

Definition 6.98 The semantics of the interrupt relations of processes,

θ(P Q), in the given semantic environment Θ is a double partial differential
of the semantic function fθ(P Q) on the sets of variables S and executing
steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

(' '') # ()

0 1

'

() ()

() ()

(,) (,)

 (,)

[,

T P S P T Q S Q

P i j Q i j
i j i j

T P Q P S P Q

i j
i j

1P 1PQ

2PQ 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂
∂ ∂=
∂ ∂ ∂ ∂

=

=

⊥ ⊥
− −

=

P Q PQ

0 1

1 2 int

S S S int
t t]

(t ,t]
(t

'

''

3Q 3PQ

4PQ 4

5P 5PQ

V V
V V

V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

2 3

3 4 int

4 5

, t]
(t ,t]
(t ,t]

 (6.86)

The semantic diagram of the interrupt process relation as defined in Eq.

6.86 is illustrated in Fig. 6.29 in the semantic environment Θ. In Fig. 6.29,
C(int) and C’('int) are the interrupt and interrupt-return points,
respectively.

© 2008 by Taylor & Francis Group, LLC

498 Part II Theoretical Foundations of SE

 t

 s Θ (P↯Q)

0

Q

P’ P’’

 t1 t2 t3 t4 t5

 C
 C’

 SQ

SP

int

SPQ

Figure 6.29 The semantic diagram of the interrupt process relation

6.6.3 SEMANTICS OF SYSTEM AND SYSTEM PROCESS

 DISPATCHING

The generic mathematical model of program systems has been modeled
in Theorem 5.7 in Section 5.5.1. According to Theorem 5.7 and Definitions
6.63 and 6.65, the semantics of system at the top level of a program can be
deduced onto a dispatch mechanism of a finite set of processes based
on time-, event-, and interrupt-dispatching.

6.6.3.1 The System Process

Definition 6.99 The semantics of the system process in RTPA, §, is an
abstract logical model of the executing platform with a set of parallel
dispatched processes based on internal system clock, external events, and
system interrupts, i.e.:

int

-1

-1

-1

2

2

0

0

0

(§) (§)

 { (@)

 || (@)

 || (@)

 }

N

N

N

N

N

N

S

TM

S

e

t

n

i i
i
n

j j
j

n

k k
k

f
t s

f e P
t s

t P

int P

R

R

R

θ

θ

θ

=

=

=

∂
∂ ∂
∂=
∂ ∂

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 499

int

-1

-1

-1

0

0

0

 { (@)

 || (@)

 || (@)

 }

e

t

n

i i
SysShuntDown i

n

j j
j

n

k k
k

e P

t P

int P

R R

R

R

= =

=

=

=
NT

BL F N

N

N

N

N

S

TM

S

 (6.87)

where the semantics of the parallel relations has been given in Definition
6.94, and those of the system dispatch processes will be described in the
following subsections.

6.6.3.2 The Time-Driven Dispatching Process Relation

Definition 6.100 The semantics of the time-driven dispatching

relations of processes, θ(@tkTM t Pk), in the given semantic environment Θ
is a double partial differential of the semantic function fθ(@tkTM t Pk) on the
sets of variables S and executing steps T, i.e.:

1

2

2

() # ()

0 1

()

1
0

1

1

(@ P) (@ P)

 (@ ())

 (@ (,))

 @

TM TM

TM

TM

TM

k k

k

k k k k k k

k k

T P S P

k P i j
i j

T P

i

n

k
n

k

t f t
t s

t f P
t s

t v t s

t

R R

R

R

R

θ

θ

θ

= =

=

=

=

∂
∂ ∂

∂= →
∂ ∂

= →

= →
1

1

1

()

1

() # ()

0 1

 (,)

 | ...

 | @ (,)

...

()

TM

TM
TM

n n

n

S P

P i j
j

T P S P

n P i j
i j

k

k

1 P

v t s

t v t s

@t
@t V

R

R R

δ

=

= =

⊥ ⊥

→

−=

1 nP P

0 1

1 2

1

@ S S

[t , t]
(t , t]

(t

t

nn P@t V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠n, t]

 (6.88)

where (@tkTM) = (@tkN) is the evaluation function as defined in Eq.
4.88b.

© 2008 by Taylor & Francis Group, LLC

500 Part II Theoretical Foundations of SE

The semantic diagram of the time-driven dispatching process relation as
defined in Eq. 6.88 is illustrated in Fig. 6.30 in the semantic environment Θ.

 t

 s Θ (@tkTM ↳t Pk)

0 t2 … tn

Pn

P1

 t1

 …

 …

SP1

SPn

@tkTM

Figure 6.30 The semantic diagram of time-driven dispatch relation

6.6.3.3 The Event-Driven Dispatching Process Relation

Definition 6.101 The semantics of the event-driven dispatching

relations of processes, θ(@ekS e Pk), in the given semantic environment Θ is
a double partial differential of the semantic function fθ(@ekS e Pk) on the sets
of variables S and executing steps T, i.e.:

1

2

2

() # ()

0 1

()

1
0 1

1

1

(@e P) (@e P)

 (@ ())
() ()

 (@ (,))

 @

S S

S

S

S

k k

k

k e k k e k

k k
k k

T P S P

k P i j
i j

T P

i j

n

k
n

k

f
t s

e f P
t P s P

e v t s

e

R R

R

R

R

θ

θ

θ

= =

= =

=

=

∂
∂ ∂

∂= →
∂ ∂

= →

= →
1

1

1

()

() # ()

0 1

(,)

 | ...

 | @ (,)

...

()

S

S
S

n n

n

n

S P

P i j

T P S P

n P i j
i j

k

1 P

n P

v t s

e v t s

@e
@e V

@e V

R

R R

δ

= =

⊥ ⊥

→

⎛

−=

−

1 nP P

0 1

1 2

1 n

@ S S

[t , t]
(t , t]

(t , t]

ke ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (6.89)

The semantic diagram of the event-driven process relation as defined in

Eq. 6.89 is illustrated in Fig. 6.31 in the semantic environment Θ.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 501

 t

 s Θ (@ekS ↳e Pk)

0 t2 … tn

Pn

P1

 t1

 …

 …

SP1

SPn

@eiS

Figure 6.31 The semantic diagram of the event-driven dispatch relation

6.6.3.4 The Interrupt-Driven Dispatching Process Relation

Definition 6.102 The semantics of the interrupt-driven dispatching

relations of processes, θ(@intkS i Pi), in the given semantic environment Θ
is a double partial differential of the semantic function fθ(@intkS i Pi) on the
sets of variables S and executing steps T, i.e.:

2

i i

2

() # ()

0 1

1

1

1

(@ P) (@ P)

 (@ ())
() ()

 (@ (,))

 @

S S

S

S
k k

k

k k k k

k k
k k

T P S P

k P i j
i j

n

k
n

k

int f int
t s

int f P
t P s P

int v t s

int

R R

R

R

θ

θ

θ

= =

=

=

∂
∂ ∂

∂= →
∂ ∂

= →

=
1 1

1

() # ()

0 1

() # ()

0 1

 (,)

 | ...

 | @ (,)

...

()

S

S

S
S

n n

n

T P S P

P i j
i j

T P S P

n P i j
i j

k

v t s

int v t s

@int
@

R R

R R

δ

= =

= =

⊥ ⊥

→

→

=

1 nP P

0 1

1 2

@ S S

[t ,t]
(t , t]

kint

1

n

1 P

n P

e V

@e V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠1 n(t , t]

 (6.90)

The semantic diagram of the interrupt-driven process relation as

defined in Eq. 6.90 is illustrated in Fig. 6.32 in the semantic environment Θ.

© 2008 by Taylor & Francis Group, LLC

502 Part II Theoretical Foundations of SE

 t

 s Θ (@intkS ↳Pk)

0 t2 … tn

Pn

P1

 t1

 …

 …

SP1

SPn

@intiS

Figure 6.32 The semantic diagram of the interrupt-driven dispatch relation

Semantics plays an important role in language processing, formal
methods, and software engineering theories. This section has presented a
rigorous treatment of RTPA deductive semantics, which enables a new
approach towards deductive reasoning of software semantics at all
composing levels of program hierarchy. Deductive semantics has greatly
simplified the description and analysis of the semantics of complicated
software systems implemented in programming languages or specified in
formal notations. Deductive semantics can be used to define both abstract
and concrete semantics of large-scale software systems, facilitate software
comprehension and recognition, support tool development, enable semantics-
based software testing and verification, and explore the semantic complexity
of software systems.

6.7 Linguistic Perceptions on
 Software Engineering

Because software engineering is the application of information technologies
in communicating between professionals and customers, architects and
software engineers, programmers and computers, as well as computing
systems and their environments, linguistics and formal language theories play
important roles in software engineering. This section takes a comparative
approach to explore the common and special characteristics and features of
natural and programming languages. It analyzes how the formal language
theories extends the study of natural languages, and how linguistics may

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 503

improve the understanding of programming languages and their work
products – software.

6.7.1 COMPARATIVE ANALYSIS OF NATURAL AND
 PROGRAMMING LANGUAGE THEORIES

It is interesting to compare the features of programming languages and

those of natural ones. A summary of the comparative analysis of
programming and natural languages is provided in Table 6.11 on the basis of
the discussions in preceding sections. Intuitively, it is expected that a
programming language would be a small subset of natural languages.
Surprisingly, this hypothesis is only partially true at the morphology
(lexicon) and semantic levels. However, the syntax of programming
languages is far more complicated than those of natural languages.

Table 6.11
Comparative Analysis of Natural and Programming Language Theories

No. Category Natural language Programming language

1 Phonetics Small N/A

2 Phonology Complex N/A

3 Morphology

(lexis)

Very large

(> 60,000 words)

Small (< 1,000 instructions
/ reserved words)

4 Syntax Simple

(< 100 rules, Fig. 6.3)

Very complicated

(> 1,000 rules)

5 Semantics Very complex (5-D) Simple (2-D)

6 Grammar Context sensitive Context free

7 Applications Thought, communications Computing, system control

It can also be seen in Table 6.11 that the semantics of programming

languages is much simpler than that of natural languages, which is
determined by the basic objectives of applications that should be suitable for
limited machine intelligence. However, for achieving such simple and
precise semantics in programming languages, a very complex and rigorous
syntax and grammatical rules have to be adopted.

More generally, it is noteworthy that there is no clear-cutting between
syntax and semantics in both natural and programming languages as stated in

© 2008 by Taylor & Francis Group, LLC

504 Part II Theoretical Foundations of SE

Theorem 6.1. In other words, syntactic and semantic rules are equivalent and
interchangeable in linguistics. A simple syntax will require for a complex
semantics, while a complex syntax will result in a simple semantics.

6.7.2 PRINCIPLES OF PROGRAMMING LANGUAGE
 DESIGN

A variety of programming languages have been designed and proposed
in the last five decades, either procedural or object-oriented, assemble or
high-level, general purpose or special usages [Louden, 1993]. For example,
FORTRAN was seen as focused on execution efficiency, COBLE was
emphasized on natural language like readability, Pascal was to provide a
structured language for maintaining complexity, and C++ and Java are
designed for object-orientation and more structural encapsulation of language
components. All of them may be perceived as instances derived on the basis
of the formal language theory discussed in previous subsections.

A number of common principles shared in programming language
design can be elicited from existing and historical programming languages
[Hoare, 1966/73; Wirth, 1974; Horowitz, 1984; Mitchell, 1996]. This
subsection describes the basic principles and generic criteria for
programming language design, which may be used to evaluate and appreciate
the features of different existing and future programming languages.

6.7.2.1 Abstraction and Complexity Control

Abstraction is a primitive design principle of programming languages.
It is also a basic engineering principle for controlling design complexity in
software engineering, since any professional language itself is an abstract
symbolic system for describing and exchanging notions. The abstractive
power of programming languages helps programmers to denote real-world
applications with mathematical-based architectural and behavioral models,
which can then be embodied by executable code.

6.7.2.2 Efficiency

Efficiency is a ubiquitous requirement for programming languages.
Efficiency can be classified into programming efficiency, language processor
implementation efficiency, as well as target code time and memory
efficiency.
 Programming efficiency is the innate characteristic of programming
language that depends on the expressiveness, writeability, and readability of
the language. These features involve both the express power on data

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 505

architectures and behavioral processes. A structural or object-oriented
methodology for building complex structures from basic components and
architectures are also necessary.
 Language processor implementation efficiency refers to the
implementability and complexity of compilers or interpreters for a given
language. Some special grammar rules and run-time supporting features of
programming languages may dramatically increase the implement
complexity and efficiency.

Target code efficiency is closely linked with tool implementing
technologies and their efficiency. The basic criteria for code efficiency can
be evaluated by time, space, or both. Usually the time and space efficiencies
of code may be contradictory to each other in a given environment.
Therefore, tradeoffs between them are often required, and almost all modern
compilers provide options on optimizing a required feature during compiling.

6.7.2.3 Expressivity

Expressivity is the principle for language descriptivity and its
preciseness. Expressivity of languages can be classified as those for
architecture and data manipulation, behaviors and processes manipulation,
and I/O and environment interaction manipulation. A common model for
expressivity of programming languages developed in RTPA is the
expressions of object architectures and behavioral processes [Wang, 2002a].
The former can be described generically by CLMs, and the latter can be
described by a set of 17 meta processes and their algebraic relations. Since
both CLMs and processes of RTPA are defined on the basis of a small set of
algebraic laws and operators, the system models specified in RTPA are both
precise and expressive.

6.7.2.4 Simplicity

Simplicity is the principles for enabling writeability, readability, and
efficiency. The successful story of RISC (Reduced Instruction Set
Computing) technology in microinstruction level [Marshall, 1989;
Bhandarhar and Clark, 1991] has proven that a smaller and essential
instruction set can be more efficient in computing and programming.
According to Theorem 4.8, an important finding of the work in developing
RTPA [Wang, 2002a] is that the basic set of behavioral instructions for any
programming language includes only 17 meta processes and 17 process
relations, where a meta process is a basic instruction in computing.
Therefore, simplicity is an important design principle of programming
languages that drive language designers and researchers to seek the core and
essential expressive constructs in computing and programming.

© 2008 by Taylor & Francis Group, LLC

506 Part II Theoretical Foundations of SE

6.7.2.5 Uniformity

Uniformity is a principle for language instructions’ consistency and
generality of appearance and behaviors. Similar instructions should adopt
similar appearance and behavior; dissimilar instructions should not be easily
confused. Basic control structures should be implemented in unified syntax
and implies consistent semantics.

6.7.2.6 Orthogonality

Orthogonality is a principle of language design which requires that all
language constructs should behave the same in any context. The
orthogonality of programming languages enables different constructs to be
freely composed in applications with a predictable behavior. For example, all
instructions or data objects should behave independently and context-freely
in either sequential or embedded program components.

6.7.2.7 Comprehensibility and Readability

Comprehensibility is the feature of how understandable of a program
and its readability. With the increasing complexity of large-scale system
development, code reviews, and legacy system reengineering,
comprehensibility or readability has gained more and more attention than
writeability among language designers and researchers in software
engineering. Hence, C.A.R. Hoare asserted that “The readability of programs
is immeasurably more important than their writeability [Hoare, 1973].”

6.7.3 CHARACTERISTICS OF PROGRAMMING
 LANGUAGES

The architectural characteristics of programming and natural languages
have been contrasted in Table 6.11. This subsection reviews the basic
requirements for programming and the characteristics of programming
languages from a linguistic perspective.

6.7.3.1 Fundamental Requirements for Programming

The basic elements for computing have been identified in Section 5.2.1.
For supporting and implementing the basic computing requirements, the
necessary expressive power of programming languages is as follows:

 • Arithmetical operations
 • Logic operations

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 507

 • Data and memory manipulations
 • Inputs/outputs manipulations
 • Events timing and processing
 • Interrupt and parallel dispatching of processes

 Observing Table 6.3 it can be seen that although natural languages can
be rich, complex, and powerfully descriptive, they share the common and
basic mechanisms, such as ‘to be (|=),’ ‘to have (|⊂),’ and ‘to do (|>).’
Programming languages presented a comprehensive set of instructions on
describing system actions and behaviors, such as the sequential, branch,
iterative, recursive, concurrent, parallel, and interruptive process relations
[Wang, 2005a/06c/06h/06f]. However, ‘to be (|=)’ is not adequately
represented in programming languages. This results in a vital weakness and a
lot of ambiguity in programming languages in describing architectures of
software and its components.

The 17 meta processes of RTPA and their composition rules known as
the 17 process relations provide a sufficient and comprehensive descriptive
power. According to Theorem 4.8, only binary orthogonal combination of
the meta processes and process relations may result in up to 2,312
programming instructions, which is rich enough than any programming
language to describe architectures and behaviors of software systems.

6.7.3.2 Characteristics of Programming Languages

The characteristics of programming languages, perceived from a

linguistic point of view, can be described as follows:

 • An artificial language
 • Limited alphabet and grammar
 • To be learnt as a second (or nth, n > 2) language
 • Only a written language
 • No tenses and timing

 • No person (presumed ‘I’ or the computer)
 • Context free

 • Objects are typed
 • Language and tool integration
 • Designed to manipulate abstract objects

 It is noteworthy that there is a cognitive and expressive gap between
the context-free programming languages and the context-sensitive natural
languages. Therefore, a fundamental issue is how a real-world problem and

© 2008 by Taylor & Francis Group, LLC

508 Part II Theoretical Foundations of SE

its solution(s) in a context-sensitive manner may be described by a relatively
inadequate programming language. Because the context cannot be freely
removed without loss of useful information, programming languages have to
imply the context of a program in data objects and related semantic
environment. This forms a fundamental constraint on automatic code
generation by machines, because no machine can recognize implied and
inexplicitly expressed semantics in a program. This is one of the key reasons
for why software engineering is still a labor (programmer) intensive
discipline. RTPA presents a context-expressive software notation system,
where the programming context or the semantic environment for a given
problem is explicitly described by a system architectural model with
encapsulated data objects in terms of a set of CLMs. Based on RTPA,
intelligent and automatic code generation systems have been successfully
implemented for software engineering as presented in Section 15.4.2.

6.8 Summary

This chapter has demonstrated that formal language theories play an
important role in computing theories, without it computing and software
engineering theories are not complete. Language is an oral and/or written
symbolic system for thought, self-expression, and communication.
Linguistics is the discipline that studies human or natural languages. This
chapter has extended linguistics to programming languages and
professional notation systems known as formal languages.

A comparative approach has been adopted to explore the common and
special characteristics of human and programming languages. This chapter
has analyzed not only how linguistics may improve the understanding of
programming languages and their work products – software, but also how
formal language theories extend the study of natural languages.

This chapter has explored the linguistics foundations of software
engineering and analyzed the expressive means and their rigorous treatment
in software engineering. Classic thought in linguistics, such as syntaxes,
semantics, grammars, and linguistic analyses, has been reviewed. Formal
treatment of language elements and their compositions from the bottom up
have been described. Syntaxes and semantics of programming languages and
their analyses have been presented. Semantics of RTPA have been formally
described on the basis of deductive semantics. Comparative analyses of
natural and programming languages, as well as linguistics perceptions on

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 509

software engineering, have been discussed. As a result, the linguistic
foundations of software engineering have been established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Linguistics Foundations of Software Engineering,
readers have achieved the following strategic aims with the knowledge
architecture as summarized below.

Chapter 6. Linguistics Foundations of SE

■ Fundamentals of Linguistics
 • Taxonomy of linguistics
 • Syntaxes
 • Semantics
 • Grammars
 • Formal analysis of syntaxes

■ Formal Language Theory
 • Alphabets
 • Strings
 • Expressions
 • Grammar theories
 • Languages
 • BNF and EBNF

■ Syntax of Programming Languages
 • Lexical analyses
 • Syntax definitions and descriptions
 • Syntactical analyses
 • Syntactical analyses of RTPA

■ Semantics of Programming Languages
 • Taxonomy of semantics
 - Target semantics
 - Operational semantics
 - Denotational semantics
 - Axiomatic semantics
 - Algebraic semantics
 - Deductive semantics

 • Denotational semantics

© 2008 by Taylor & Francis Group, LLC

510 Part II Theoretical Foundations of SE

 - Syntactic and semantic domains of denotational semantics
 - Description of syntactic domains of SPL
 - Semantic analysis using denotational semantics
 - Semantics of programs in SPL

 • Deductive semantics
 - The mathematical model of software semantics
 - Deductive semantics of programs at different levels of
 compositions
 - Properties of software semantics

■ Semantics of RTPA
 • Semantics of RTPA meta processes
 - The assignment process
 - The evaluation process
 - The addressing process
 - The memory allocation process
 - The memory release process
 - The read process
 - The write process
 - The input process
 - The output process
 - The timing process
 - The duration process
 - The increase process
 - The decrease process
 - The exception detection process
 - The skip process
 - The stop process

 • Semantics of RTPA process relations
 - The sequential process relation
 - The jump process relation
 - The branch process relation
 - The switch process relation
 - The while-loop process relation
 - The repeat-loop process relation
 - The for-loop process relation
 - The function call process relation
 - The recursive process relation
 - The parallel process relation
 - The concurrent process relation
 - The interleave process relation
 - The pipeline process relation
 - The interrupt process relation

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 511

 • Semantics of system and process dispatching
 - The system process
 - The time-driven dispatch process relation
 - The event-driven dispatch process relation
 - The interrupt-driven dispatch process relation

■ Linguistic Perceptions on Software Engineering
 • Comparative analysis of natural and programming languages
 • Principles of programming language design
 • Characteristics of programming languages

SIGNIFICANT FINDINGS OF THIS CHAPTER

• The need centered in software engineering is to efficiently facilitate
communications among multiple stakeholders, such as those between
professionals and customers, architects and software engineers,
programmers and computers, as well as computing systems and their
environments. Therefore, linguistics and formal language theories play
important roles in computing and software engineering.

• The basic function of languages is both to communicate information

and to express abstract human behaviors.

• It is recognized that the ways to express human and system behaviors

can be classified into three categories: to be, to have, and to do in natural
languages. All mathematical means and forms, in general, are abstract
description and manipulation of these three categories of human and system
behaviors and common rules.

• Natural languages are context-sensitive, while programming

languages are context-free. Therefore, the descriptive power of
programming languages is inherently limited than that of the needs for
expressing and solving natural-world problems.

• Most fundamental problems in computing and software engineering
may stem from the removal or implication of the computing environments
and data objects. Therefore, a much natural and context-expressive
programming language and related compiling technology are yet to be
sought.

© 2008 by Taylor & Francis Group, LLC

512 Part II Theoretical Foundations of SE

• An important discovery in modern linguistics is the existence of the
universal grammar (UG) among human languages. UG and grammars of
natural languages can be formally described and analyzed using formal
language theories. A typical UG is the Deductive Grammar of English
(DGE) as established in Section 6.2.4.

• Although natural languages can be rich, complex, and powerfully

descriptive, their functions can be classified into three fundamental
categories known as ‘to be (|=),’ ‘to have (|⊂),’ and ‘to do (|>).’

• In software engineering, formal language theories are reoriented to

express software specification and design notions, rather than focussing on
language generation and recognition.

• A programming language can be designed and generated from the
bottom up according to a set of lexes and syntaxes. Reversely, the language
can be recognized, analyzed, and reduced from the top down via lexical and
syntactic analyses. Software engineering puts emphases on language
recognition, cognition, and its expressiveness rather than language
generation.

• Semantics of a programming language can be described by its

behavioral equivalence to another language. Semantics can also be
described by a set of predefined executable functions in machine
languages. Another approach to specify the semantics of a programming
language is by mathematical definitions known as formal semantics.

• According to deductive semantics, the carriers of software

semantics are a finite set of variables declared in a given program.
Therefore, program semantics can be reduced onto the changes of values of
these variables.

• The behavior of a computational statement is a set of observable

actions or changes of status of objects operated by the statement.

• Semantic analysis is a deductive process that projects the 3-D

software behaviors into the 2-D semantic environment.

• Programming languages vs. natural languages: It was expected

that a programming language would be a small subset of natural languages.
Surprisingly, this hypothesis is only partially true to the morphology
(lexicon) and semantics, because the syntax of programming languages is far
more complicated that those of natural languages.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 513

• Syntax vs. semantics of programming languages: Syntactic and

semantic rules are equivalent and interchangeable. A simple syntax requires
for a complex semantics, while a complex syntax results in a simple
semantics.

• Deductive semantics is a formal software semantics that deduces the

semantics of a program in a given programming language from a generic
abstract semantic function to the concrete semantics, which are embodied
onto the changes of status of a finite set of variables constituting the semantic
environment of computing.

• The advantage of deductive semantics is that it introduces
only a universal semantic function rather than adopting multiple
concrete semantic functions as the conventional approaches do. In
deductive semantics, any particular concrete semantic function is a
deduced instantiation of the universal abstract semantic function. This
avoids the trouble in other exhaustive approaches where new semantic
functions have to be particularly defined whenever additional
instructions are introduced in a given language.

• Deductive semantics can be used not only to describe the
abstract and concrete semantics of programs, but also to elicit and
highlight their semantic effects.

• Historically, language-centered programming had been the

dominant methodology in computing and software engineering. However,
this should not be taken for granted as the only approach to software
engineering, because the expressive power of programming languages is
inadequate to deal with complicated software systems. In addition, the
rigorousness and level of abstraction of programming languages are too low
in modeling the architectures and behaviors of software systems. Therefore,
the recognition of the need for mathematical modeling of both software
system architectures and static/dynamic behaviors, as well as the support
of automatic code generation systems, is profoundly important.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Fundamentals of Linguistics

• Linguistics is the discipline that studies the nature and use of
languages. The central issue of linguistics is grammar, the rules of a language
and how to generate, form, recognize, and interpret the language.

© 2008 by Taylor & Francis Group, LLC

514 Part II Theoretical Foundations of SE

• Linguistics is one of the important foundations of computing and
software engineering because languages are the basic means of human
communication and tools of thinking and expression.

 • The basic function of languages is to express abstract human
behaviors and to communicate information. Any human language, natural or
artificial, is a sequential or 1-D symbol stream of syntactical blocks, which,
from top down, are paragraphs, sentences, phrases, words, and letters.

• Syntax is a domain of linguistics that studies sentence formation and
structures. Syntax of languages is multi-dimensional (n-D).

• Lexical elements in a language can be classified into the categories

of lexical, functional, phrasal, and relational.

• Semantics is a domain of linguistics that studies the interpretation of

words and sentences, and analysis of their meanings. Semantic analysis and
comprehension is a deductive cognitive process. The semantics of a
sentence is comprehended till all elements of the sentence can be reduced to
either a real-world image or a primitive abstract concept, and the logical
relations of parts of the sentence are clarified.

• A grammar is a set of common rules that integrates phonetics,

phonology, morphology, syntax, and semantics of a given language. The
grammar for the multi-dimensional syntax of languages is hierarchical and
recursive. The basic properties of natural language grammars are generality,
parity, universality, mutability, and inaccessibility.

• The universal grammar (UG) is a system of categories, mechanisms,

and constraints shared by all human languages. UG is perceived as innate in
the brain based on recent neurolinguistic and psycholinguistic studies.

• A paradigm of UG is the rigorous definition of the English grammar

by the deductive grammar (DGE) at the sentence level. Any valid English
sentences can be derived on the basis of DGE.

Formal Language Theory

• A programming language is a special notation system for describing
and specifying instructive computing information on both architectural (data)
and behavioral (process) aspects of a software system.

• Formal languages are rigorously defined theories and rules of

programming languages to specify, analyze, generate, and recognize

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 515

computational languages. Formal language theories study the language
elements such as alphabets, strings, expressions, languages, and grammars.

• An alphabet is a nonempty finite set of symbols or letters.

• A string (word) over an alphabet is a finite sequence of
symbols defined on the alphabet. The closure of an alphabet ∑* is a
power set of the given alphabet.

• An expression is a string on an alphabet or a number of strings
concatenated by a set of special symbols known as operators.

• A regular expression is a special kind of strings consisting of
single symbols on a given alphabet, or composed of single symbols by
the empty string ∅, union ∪ , repeat *, and parentheses ().

• A language is a set of expressions and strings over an alphabet that

are formed following certain properties and rules known as grammar. A
regular language over an alphabet ∑ is a set of regular expressions on ∑*.
A language is regular if and only if it is accepted by a finite automaton. A
context-free language Lf is a language generated by a context-free grammar
Gf, i.e., Lf = L(Gf).

• A production p is a function that produces an ordered pair (α, β),

i.e., p: α → β, where α and β is a terminal, nonterminal, or their
combinations. A production with all terminals on its RHS is a final product
with its semantics or physical meaning defined, while a product with at least
one nonterminal on its RHS is an intermediate product with its semantics
pending on further deduction.

• Chomsky Grammars: Based on the types of production rules

adopted in a grammar, formal grammars can be classified as Type 0 through
Type 3 from the bottom up.

• A Type 0 grammar, G0, is a grammar that has no restrictions on
its productions.

• A Type 1 grammar, G1, is a grammar that satisfies: ∀p ∈ G1, p:
α → ∅ ∨ (p: α → β ⇒ |α| ≤ |β |).

• A Type 2 grammar, G2, is a grammar that satisfies: ∀p ∈ G2, p:
A → β.

• A Type 3 grammar, G3, is a grammar that satisfies: ∀p ∈ G3, p:
s0 → ∅ ∨ p: A → a ∨ p: A → aB where s0 is the start symbol and a is a
single terminal.

© 2008 by Taylor & Francis Group, LLC

516 Part II Theoretical Foundations of SE

• A context of a production is a certain configuration of all symbols in
the strings and expressions of a production.

• A context-sensitive grammar Gs is constrained by: ∀p ∈ Gs, p:
αAα’ → αβα’, where αXα’ is the context, and X is a nonterminal that
can be replaced in the given context.

• A context-free grammar Gf is constrained by: ∀p ∈ Gf, p: A
→ β.

• A regular grammar Gr is a grammar that is constrained by: ∀p
∈ Gr, p: S0 → ∅ ∨ p: A → a ∨ p: A → aB.

• Levels of grammars: A higher level grammar imposes stronger

restrictions on its production rules than those of the lower level grammars,
i.e., G3 (Gr) ⊆ G2 (Gf) ⊆ G1 (Gs) ⊆ G0.

• An LL(k) grammar is a class of context-free grammars Gf = (∑, s, T,

R), where the first L defines that the parsing is from left to right, and the
second L specifies that next production is derived by left-most derivation,
and k, k ≥ 1, denotes that at most k-symbol looking ahead into the unmatched
part of the input string is required in order to uniquely determine the next
production.

• An LR(k) grammar is a class of context-free grammars Gf = (∑, s, T,

R), where the L defines that the parsing is from left to right, and the R
specifies that next production is derived by right-most derivation in reverse,
and k, k ≥ 0, denotes that at most k-symbol looking ahead into the unmatched
part of the input string is required in order to uniquely determine the next
production.

 • A Backus-Naur form (BNF) is defined by a 5-tuple: BNF (∑, T,
V, P, S). An extended BNF (EBNF) adopts an extended set of metasymbols
S’ = { |, ()*, ()+, []}. BNF/EBNF are a recursive notation for describing the
productions of a context-free grammar.

Syntax of Programming Languages

• The syntactic processing of programs encompasses lexical and
syntactical analyses.

• The lexical structure of a programming language is the structures of

its lexemes, such as strings or words, known as tokens in language
processing.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 517

• Tokens of a programming language can be classified into three
categories that represent program entities of reserved words, reserved
symbols (operators and separators), and identifiers (variables and
constants).

• Lexical analyses are conducted by a scanner or a lexical
analyzer.

• Lexical analysis breaks down a source code into a finite
sequence of individual tokens; for each of them its language property is
identified.

• The syntax of a programming language is its grammatical rules for

constructing legal instructions.

• Grammar rules of a language that constrain and direct a
syntactic analysis of a parser can be described by BNF, EBNF, syntax
diagrams, or RTPA.

• Syntactical analyses are conducted by the parser or syntactical
analyzer.

• Syntactical analysis techniques can be classified into top-down
and bottom-up parsing that adopt the LL(k) or LR(k) grammar,
respectively.

• Top-down parsing is a class of parsing techniques directed by an

LL(k) grammar that matches an input string to a given syntax tree in a
preorder, i.e., from the root of the syntax tree to the leftmost nodes.

• Recursive-descent parsing is a top-down parsing technique
that derives a parsing tree according to a set of left-recursive grammar
rules.

• Predictive parsing is a restricted form of recursive-descent
parsing where the backtracking is eliminated in a top-down parsing by
adopting an LL(1) grammar.

• Bottom-up parsing is a class of parsing techniques that derives a

parse tree for an input string from the leaves to the root, in order to reduce
the string to the start symbol of production rule.

• RTPA syntactical analyses: Most of the RTPA syntax for software

system specification and modeling can be specified by a set of about 300
LL(k) grammar rules in EBNF.

© 2008 by Taylor & Francis Group, LLC

518 Part II Theoretical Foundations of SE

• Special grammar rules of RTPA are described by syntactic
predicate in the form of <syntactic entity> => <production>, which is a
selective backtracking to recognize language constructs that cannot be
distinguished without seeing all or most of the construct.

• On the basis of the EBNF grammar rules, the RTPA parser and
type checker are implemented using ANTLR.

Semantics of Programming Languages

• The semantics of a programming language is the behavioral
meanings that constitute what an instructional statement of the language is to
do. The semantics of a program in a given programming language is the
logical consequences of an execution of the program that results in the
changes of values of a finite set of variables in the underlying computing
environment.

• Formal semantics of programming languages can be classified into

five categories known as operational semantics, denotational semantics,
axiomatic semantics, algebraic semantics, and deductive semantics.

• Operational semantics adopts a virtual machine, whose
operation is well-defined, to describe the semantics of a programming
language by its equivalent behaviors executing by the virtual machine.

• Denotational semantics adopts functions to describe the
semantics of a programming language, in which the function describes
semantics by associating semantic values to syntactically legal
constructs.

• Axiomatic semantics adopt effective assertions to describe the
semantics of a programming language, in which the assertions of effect
by executing an instruction is deduced to the values of data
manipulated by the instruction.

• Algebraic semantics adopt abstract algebra to describe the
semantics of a programming language, in which data objects and
operations are defined by algebraic axioms and deduced by abstract
algebraic laws.

• Deductive semantics is a formal software semantics that deduces the

semantics of a program in a given programming language from a generic
abstract semantic function to the concrete semantics, which are embodied
onto the changes of status of a finite set of variables constituting the semantic
environment of computing.

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 519

• A semantic environment of a program in a given programming
language is a logical model of a finite set of identifiers and their values
changing over time along the execution of the program.

• The behavioral space Ω of a program executed on a certain machine

is a finite set of variables operated in a three-dimensional state space
determined by a finite set of operations O, a finite set of memory locations or
their logical representations by identifiers of variables S, and a finite set of
discrete steps of program execution T.

• The semantic environment Θ of a program on a certain target

machine is its run-time behavioral space Ω projected onto the Cartesian plane

determined by T and S, i.e.,
2

T S
t s
∂ ΩΘ = = ×
∂ ∂

.

• A semantic function of a program ℘, fθ(℘), is a finite set of values
V determined by a Cartesian product on a finite set of variables S and a finite
set of executing steps T, i.e., fθ(℘) = f: T × S → V, where T = {t0, t1, …, tn},
S = {s1, s2, …, sm}, and V is a set of values v(ti, sj), 0 ≤ i ≤ n, and 1 ≤ j ≤ m.

• A semantic diagram is a sub-Cartesian-plane in the semantic

environment Θ that forms the domain of the semantic function for a
composed process P with fθ(P) = f: TP × SP → VP.

• The semantics of a statement p, θ(p), in a given semantic

environment Θ is a double partial differential of the semantic function fθ(p)
on the sets of variables S and executing steps T, i.e.:

 θ (p) = 2

()f p
t s θ
∂
∂ ∂

=
() # ()

0 1
(,)

T p S p

p i j
i j

v t sR R
= =

=
1 2 m#{s , s , ..., s }1

0 1
(,)p i j

i j
v t sR R

= =

 = 01 02 0

11 12 1

m

m

v v v

v v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

1 2 m

0

0 1

s s s
t

(t , t]

• The semantic effect of a statement p, θ* (p), is the resulted changes

of values of variables by its semantic function θ(p) during the time interval
immediately before and after the execution of p, ∆t = (ti, ti+1], i.e.:

© 2008 by Taylor & Francis Group, LLC

520 Part II Theoretical Foundations of SE

()

1
1

()

1 1
1

* = ((,) (,))

(,) (,) | (,) (,)

S p

p i j p i j
j

S p

p i j p i j p i j p i j
j

(p) v t s v t s

v t s v t s v t s v t s

R

R

θ +
=

+ +
=

⊕

= < → ≠ >

• The semantics of a process P, θ(P), in a given semantic environment

Θ is a double partial differential of the semantic function fθ(P) on the sets of
variables S and executing steps T, i.e.:

 θ (P) = 2

()f P
t s θ
∂
∂ ∂

2 21

1
() # () # () # ()1

1 0 1 0 1

{[()] [()]}, 1

{[(,)] [(,)]}
k k l l

k l

n

k kl l
k

T P S P T P S Pn

P i j kl P i j
k i j i j

f P r f P l k
t s t s

v t s r v t s

R

R R R R R

θ θ

−

=

−

= = = = =

∂ ∂= = +
∂ ∂ ∂ ∂

=

 =

1−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠⎟⎟

1

2

n

p G

p G

p G

V V

V V

V V

where

kpV , 1≤ k ≤ n-1, is a set of values of local variables that belongs to
processes Pk, and VG is a finite set of values of global variables.

• The semantics of a program ℘, θ(℘), in a given semantic
environment Θ, is a combination of the semantic functions of all processes
θ(Pk), 1≤ k ≤ n, i.e.:

2# ()

1
()

1
() # ()# ()

1 0 1

() ()

 ()

[(,)]
k k

k

K

k
K

k
k

T P S PK

P i j
k i j

f
t s

P

v t s

R

R

R R R

θθ

θ

℘

=

℘

=

℘

= = =

∂℘ = ℘
∂ ∂

=

=

• The semantic space of a program SΘ(℘) is a product of #S(℘)

variables and #T(℘) executing steps, i.e.:

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 521

 # () # ()

k=1 k=1

() = # () # ()

= # () # ()
K K

k k

S S T

S T

Θ

℘ ℘

℘ ℘ • ℘

℘ • ℘∑ ∑

• Usage of deductive semantics: a) To define both abstract and

concrete semantics of large-scale software systems; b) To facilitate software
comprehension and recognition; c) To support tool development; d) To
enable semantics-based software testing and verification; and e) To explore
the semantic complexity of software systems.

• The semantics of a program are invariant with the changes of
executing speed, as long as any absolute time constraint is met.

• A program is composable in a given language iff both sufficient sets

of meta instructions and BCS’s are rigorously defined.

• Semantics of RTPA: Deductive semantics can be applied to derive

and interpret the semantics of the 17 meta processes and the 17 process
relations of RTPA, which covers an essential and sufficient set of
fundamental computing requirements in programming and software
engineering.

Linguistics Perceptions on Software Engineering

• Programming languages vs. natural languages: Although the
lexicon and semantics of a programming language are a small subset of
natural languages, the syntax of programming languages are far more
complicated that those of natural languages.

• Language design principles elicited from existing and historical

programming languages are abstraction, efficiency, expressivity, simplicity,
uniformity, orthogonality, comprehensibility, and readability, which are used
to evaluate and appreciate the features of different existing and future
programming languages.

• The limitations of conventional software specification and compiling

technologies make programming hard and complicated, because the objects
(O), actions (B), and contexts (T, S) are separated, implied, and inexplicitly
expressed. This is the fundamental constraint on code generation that can
not be implemented by machines automatically, and dominates software
engineering as still a labor-intensive discipline.

© 2008 by Taylor & Francis Group, LLC

522 Part II Theoretical Foundations of SE

Questions and
Research Opportunities

6.1 What are the roles of linguistics and formal language theories in

programming and software engineering?

6.2 Discuss why the language-centered programming convention in
computing and software engineering must not be taken for
granted. What would be the alternative approaches to software
engineering?

6.3 According to the HAMSD model provided in Theorem 1.4,

discuss whether mathematical modeling of software system
architectures and static/dynamic behaviors, as well as automatic
code generation systems would be the silver bullets for software
engineering.

6.4 It is recognized that the ways to express human and system

behaviors can be classified into three categories: to be, to have,
and to do in natural languages. All mathematical means and
forms, in general, are abstract description and manipulation of
these three categories of human and system behaviors and
common rules.

Referring to Table 4.6, discuss the compatibility and differences
between natural languages, programming languages, and
denotational mathematical structures in their expressive power
and level of abstraction.

6.5 Referring to Fig. 6.2, how is the deductive process of linguistic

analyses conducted in natural languages from the 1-D language
sentence to the 5-D semantics?

6.6 What are the Universal Grammar (UG) and its basic properties?

6.7 Why may any valid English sentence be derived by the generic

schema on the basis of the Formal English Grammar (FEG)?

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 523

6.8 What are the relationship and compatibility between syntaxes and
semantics of natural languages? Is the compatibility also
applicable to programming languages?

6.9 What are the different orientations of formal language theories for

computing and software engineering?

6.10 What is the hierarchical structure of objects under study in formal

language from the bottom up?

6.11 What are the restrictions imposed to a general expression in order

to obtain a regular expression?

6.12 What is an LL(k) grammar and what does the first L, second L,

and k stands for, respectively?

6.13 What is an LR(k) grammar and what does L, R, and k stands for,

respectively?

6.14 Summarize the following grammars and their relationships in a

table based on Corollaries 6.1 and 6.2:

 • Chomsky grammar types G0, G0, G0, and G3;
 • The context-sensitive grammar Gs, the context-free

grammar Gf, and the regular grammar Gr;
 • The LL(k) grammar and the LR(k) grammar

6.15 What are the extensions of EBNF on BNF, and how do these

extensions improve the express power of BNF notations?

6.16 Referring to Table 6.5, describe the relationship between EBNF

notations and their mathematical semantics in RTPA.

6.17 Summarize the four forms of formal semantics, such as

operational semantics, denotational semantics, axiomatic
semantics, and algebraic semantics, as well as their methods and
usages.

6.18 What is a semantic function? What are the differences between an

abstract and a concrete semantic function?

© 2008 by Taylor & Francis Group, LLC

524 Part II Theoretical Foundations of SE

6.19 What are deductive semantics and its generic abstract semantic
function? What are the advantages of deductive semantics against
conventional semantic theories?

6.20 Explain the relationship between a semantic environment and a

semantic diagram as defined in deductive semantics.

6.21 Figs. 6.2 and 6.15 show the nature of semantic analyses for

natural and programming languages, respectively. Analyze the
similarity and differences between them.

6.22 Using the following program entitled sum as given in Example

6.24, analyze the semantics of Statements (0) through (3) using
deductive semantics:

 void sum;
 {
 (0) int x, y, z;
 (1) x := 8;
 (2) y := 2;
 (3) z := x + y;
 }

6.23 Draw a semantic diagram for the following composed processes

which is a sequential relation between P and a while-loop for Q:

exp =

*()P QRθ →
F

BL T

6.24 Theorem 6.3, the least complete set of instructions in

programming, states that a program is composable with sufficient
descriptive power in a given language iff both the sufficient sets
of meta instructions (P, Theorem 4.6) and compositional rules
(R, Theorem 4.7) are rigorously defined.

 Try to prove Theorem 6.3 on the basis of Theorems 5.7 and 4.8.

6.25 What are the syntactic and semantic differences between the roles

of statements (meta processes) and BCS’s (process relations)?

6.26 Comparatively analyze the linguistic complexities of

programming languages and natural languages in the following

© 2008 by Taylor & Francis Group, LLC

 Chapter 6 Linguistic Foundations of SE 525

aspects: lexis, syntax, semantics, grammar, and applications.
Identify in which aspects a programming language would be far
more complicated than a natural language.

6.27 Read the following classic article in software engineering:

C.A.R. Hoare (1981), The Emperor’s Old Clothes, the

The 1980 Turing Award Lecture, Communications of

the ACM, 24(2), pp. 75-83.

Discuss the following topics in a group:

 • About the author.

• What are the ‘new clothes’ of the emperor in software
engineering?
• Identify your own examples of promising technical hoaxes

that were popular in software engineering but disappeared
shortly.

 • What conclusions of the article interested you? Why?
 • Your arguments or counter-points on any of the conclusions

derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 7

INFORMATION SCIENCE
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

3. Philosophical
 Foundations
 of SE

7.1 Introduction 7.4 Informatics Laws of Software
7.2 Classical Information Theory 7.5 Information Theories for SE
7.3 Contemporary Informatics 7.6 Summary

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Informatics
 Foundations
 of SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

528 Part II Theoretical Foundations of SE

Knowledge Structure

 Classic information theory

 • Shannon’s definition of information
 • The physical meaning of classic information
 • Domain of classical information theory
 • Subjectivity of classical information theory

 Contemporary informatics

 • Information: the third essence of nature
 • Measurement of information
 • From machine informatics to cognitive informatics

 Informatics laws of software

 • What constrains software?
 • Equivalence between information-matter-energy
 • Informatics laws and properties of software

 Information theories for software engineering

 • The informatics metaphor of software
 • Informatics laws that constrain software behaviors
 • The informatics attributes of software quality

Learning Objectives

 • To know the essences of the classical information theory.
 • To understand contemporary information theory and the measurement of

information.
• To be aware of the emergence of cognitive informatics based on contemporary

informatics.
 • To understand the 19 informatics laws and fundamental properties of software.
 • To understand the cognitive functional complexity of software.
 • To be able to apply informatics in software engineering, particularly the

information metaphor and informatics laws.

7. Information Science Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 529

“A little information, when shared, can go a long way.”

BBC World (2005)

“A fundamental discovery in computer science is that software
as a unique entity is not constrained by any law and principle known in the

physical world. However, software obeys the laws of informatics.”

“Cumulativeness is the most significant attribute of information that mankind
relies on in evolution.”

Yingxu Wang (2002)

7.1 Introduction

t is recognized that matter, energy, and information are the three
essences of the natural and the abstract worlds according to the
Information-Matter-Energy (IME) model [Wang, 2003a/2006a] as

presented in Theorem 1.2. In a modern society, information plays more and
more important roles because it is the only link between the physical
(external) and the abstract (internal) worlds in human life, and the top-level
requirement for achieving fundamental human esteems.

Information is the product of either natural or machine intelligence.
Informatics, the science of information, studies the nature of information, its
processing, and ways of transformation between information, matter, and
energy. Informatics has developed from the classic information theory
[Hartley, 1928; Shannon, 1948/49a/49b/51/59; Shannon and Weaver, 1949;
Bell, 1953; Goldman, 1953; Reza, 1961], contemporary informatics [Chaitin,
1977/04; Zhong, 1996; Nielsen and Chuang, 2000; David, 2002; Wang,
2002d/03b], to cognitive informatics [Wang, 2002d/02e/03a/03b/06b/06j/
07a/07b; Wang and Wang, 2006; Wang and Kinsner, 2006; Wang et al.
2002a/06] in the past half century.

A fundamental discovery in computer science and software engineering
was that software as a unique entity is not constrained by any law and
principle known in the physical world [McDermid, 1991; Hartmanis, 1994;
Wang, 2006a]. Hence, it is curious to query the following:

 • What are the constraints that software obeys?

Software in informatics is perceived as instructive and behavioral

information. Referring to the abstractive levels of human knowledge and

I

© 2008 by Taylor & Francis Group, LLC

530 Part II Theoretical Foundations of SE

information as given in the HAMSD model (Fig. 1.3) in Section 1.2.4,
software is information at Level 4 (special notation systems) and/or Level 5
(mathematics). Therefore, software possesses all the properties of
information and may be formally treated by informatics theories.

This chapter attempts to demonstrate that software obeys the laws of
informatics [Wang, 2006a/06b/07a]. As a logical consequence, it explores
the following important issue:

 • What are the laws of informatics that constrain software in

software engineering?

In order to answer this fundamental question, this chapter examines the
informatics properties and laws of software and software engineering. In the
remainder of this chapter, the information science foundations of software
engineering will be presented from classic, contemporary, to cognitive
informatics. Section 7.2 briefly reviews classic information theories and its
perception on information as probability-based properties of signals and
channels. Section 7.3 presents contemporary informatics and current
perception on information in the Information Technology (IT) and software
industries. Section 7.4 explores a comprehensive set of informatics laws that
constrain the behaviors of software. Then, Section 7.5 describes information
science for software engineering and applications of informatics in software
engineering.

7.2 Classic Information Theory

Information theory, system theory, and cybernetics were regarded as the
major three theories invented in the 1940s, which have greatly influenced
related research, industrial applications, and human life since the second half
of the 20th century. The classic information theory is regarded to be founded
by Claude E. Shannon during 1948-1949 [Shannon, 1948/49a/49b/51/59;
Shannon and Weaver, 1949], while the term information was first adopted by
Hartley in 1928 [Hartley, 1928], and extensively studied by Bell and
Goldman in 1953, respectively [Bell, 1953; Goldman, 1953]. Conventional
information theory was modeled based on probability theory, and was
focused on information transmission rather than information itself [Reza,
1961; Kolmogorov, 1965].

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 531

7.2.1 SHANNON’S PERCEPTION ON INFORMATION

 In the early 1940s, it was thought that increasing the transmission rate
of information over a communication channel increased the probability of
errors. Shannon surprised the communication theory community by proving
that this was not true as long as the communication rate was below the
capacity of a channel, where the channel capacity is constrained by its noise
characteristics.
 In the classic information theory, Shannon [Shannon,
1948/49a/49b/51/59] defines information as a probabilistic measure of the
variability of messages that can be obtained from a message source
[Shannon, 1948/59]. In other words, the physical meaning of information is
the prediction of variability of any kind of signals that can be sent via
transmission channels.

 Definition 7.1 Information is a weighted probabilistic measure of the
variability of messages (signals) that is expected from a message source via a
transmission channel.

Definition 7.2 The information variability of the ith sign in a message,
Ii, is determined by its unexpectedness, i.e.:

 2
1

 [bit]i
i

I log
p

= (7.1)

where pi is the probability that the ith sign is transmitted. The unit of
information is bit, shortened from ‘binary digit.’

 On the basis of Definition 7.2, the total information variability of a
given signal system can be derived below.

 Definition 7.3 The total information variability transmitted by a source
or sender, I, is the weighted sum of the probability of all its n possible signs
Ii, 1 ≤ i ≤ n, known as the alphabet, in the message, i.e.:

1

1

1

1
log

- log [bit]

n

i i
i
n

i 2
ii

n

i 2 i
i

I p I

p
p

p p

=

=

=

= •

= •

= •

∑

∑

∑

 (7.2)

© 2008 by Taylor & Francis Group, LLC

532 Part II Theoretical Foundations of SE

Example 7.1 For a binary source that has an alphabet of two equally
likely signs, i.e., p1 = p2 = 0.5, its total information variability, I, is:

1
2

1

1log

1
0.5 log

0.5
2 0.5

= 1 [bit]

n

i 2
ii

2
i

I p
p=

=

= •

= •

= •

∑

∑ (7.3)

 The classic information theory perceived that information is any kind of
signals that can be sent via transmission channels where the signals’
probability is predictable. It is noteworthy in this theory: a) If the statistical
probability of any sign in the message is either pi = 0 or unknown, which is
often the case, then there is no definition of information; and b) When pi = 1,
there is no information may be received.

It is noteworthy that for the above binary system, the information
variability is always 1 bit. In other words, I is a measure of information
variability rather than that of information quantity. Therefore, I is not
proportional to the sizes of messages, according to Eq. 7.2. On the basis of
the classical information measurement, no matter how many bit messages
have been transmitted, the value of the I will not change for a given
transmission system. This result may be surprisingly contradictory to the
common sense of information in contemporary informatics and in the IT
industry.

However, the most important contribution of classic information theory
is the identification of the fundamental information unit bit. It indicates that
the foundation of information is a binary digit. Therefore, any other kind of
complex information can then be reduced to the measurement of bit. This
forms a common foundation for both contemporary informatics and
computer science as discussed in Theorem 5.1.

7.2.2 THE PHYSICAL MEANING OF CLASSIC
 INFORMATION

An important concept that links the classic information theory with
physics is entropy [Shannon, 1951; Brillouin, 1953; Cutnell and Johnson,
1998; Witold, 2007b]. Entropy is an inherent property of both concrete and
abstract information systems that drifts them to disorder.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 533

7.2.2.1 The Concept of Entropy

Entropy is not a physical entity in the concrete world but a measure of
the extent of chaos of a given system. Entropy is the concept studied
intensively in thermodynamics [Cutnell and Johnson, 1998].

Definition 7.4 Entropy is the extent of the trend of a system towards

complete disorder or randomization.

Definition 7.5 The quantity of information entropy Hi of a message

source is determined by the average weighted information variability I
transmitted by the source, i.e.:

1
- log [bit]

i

n

i 2 i
i

H I

p p
=

=

= •∑
 (7.4)

Eq. 7.4 shows that entropy may be measured by the information

variability. In other words, the nature of information variability is entropy.
Actually, Shannon initially used entropy to denote the information variability
of signal systems and channels.

It is found that the maximum entropy of a given source occurs if the
probabilities of all signals are equal [Shannon, 1948].

7.2.2.2 The Laws of Thermodynamics

A thermodynamic system is the collection of objects on which attention
on energy transformation is being focused with respect to the surrounding
environment. Energy is an inherent property of matter and systems, which
exists in various forms, such as heat, mechanical (kinetic or potential)
energy, chemical energy, and radiant energy,

Definition 7.6 Thermodynamics is the branch of physics built upon the
fundamental laws obeyed by energy in the forms of heat and work and their
transformation.

Thermodynamics treats temperature as the statistical measure of the
thermal status of a system. A basic principle of thermal equilibrium states the
status of a system there is no flow of heat within it. Because all forms of
energy may be degraded to heat, the rules that apply to heat transformations
may be used to describe energy changes and exchanges in systems.

The three laws of thermodynamics are the basic theories that govern
exchanges of energy. Although these laws may be expressed in a number of
ways, the most common descriptions are provided in this subsection [Cutnell
and Johnson, 1998].

© 2008 by Taylor & Francis Group, LLC

534 Part II Theoretical Foundations of SE

The second law of thermodynamics that deals with natural tendency of
heat can be described as follows [Cutnell and Johnson, 1998].

The second law of thermodynamics is the most profound law in all of

science, which shows that energy during its forms change tends to become
degraded to scattered states in which the capacity for useful work diminishes.
Although, the total energy of a system is always conservative according to
the first law, the second law reveals that the ability of the energy to be
utilized for useful work continuously decreases.

Since entropy is a measure of the disorder, the random property of
energy and the second law may be explained by the natural tendency for
entropy to increase in a transformation system. In thermodynamics, the
thermal entropy is defined as follows.

Definition 7.7 The thermal entropy Ht is a function of the state or

condition of a system. For a reversible process, the change in the entropy ∆H
can be defined by the heat Q divided by the temperature T in Kelvins, i.e.:

Lemma 7.1 The first law of thermodynamics, conservation of energy,
states that energy can be neither created nor destroyed, so that the total
input of energy Ei in any transformation must equal the total output of
energy Eo, i.e.:

∑ Ei ≡ ∑ Eo (7.5)

Eq. 7.5 can also be expressed by perceiving the change of internal
energy ∆E due to heat Q and work W, i.e.:

 ∆E = Q - W (7.6)

where a positive or negative Q represents the system gains or loses heat,
and a positive or negative W denotes a system does the work or receives
the work, respectively.

Lemma 7.2 The second law of thermodynamics, the heat flow statement,
states that heat flows spontaneously from a substance at a higher
temperature to a substance at a lower temperature, and does not flow
spontaneously in the reversed direction.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 535

 [/]t
QH J K
T

∆ = (7.7)

It is noteworthy that the unit of thermal entropy Ht in thermodynamics

is a Joule per Kelvin [J/K], while in informatics the information entropy Hi is
defined as a pure quantity with the unit of bit.
 With the introduction of thermal entropy, Lemma 7.2 can be revised as
follows [Cutnell and Johnson, 1998].

Because entropy can be interpreted in terms of order and disorder,

when an irreversible process occurs and the entropy of the universe
increases, the energy available for doing work decreases.

The third law may also be described as that it is not possible to lower

the temperature of any system to absolute zero in a finite number of steps.
The third law of thermodynamics emphasizes the prevalence of disorder in
almost all natural states and systems, because ideal crystallization is rarely
achievable and the temperature of absolute zero is unattainable.

7.2.2.3 Transformation between Information Entropy and Thermal
 Entropy

According to the second law of thermodynamics, the information
entropy and the thermal entropy in a system is conservative. Hence, an

Corollary 7.1 The second law of thermodynamics, the heat flow
statement, states that:

(a) Entropy of the universe ∆Hu does not change when a
reversible process occurs, i.e.: ∆Hu = 0, and

(b) Entropy of the universe ∆Hu increases when an irreversible
process occurs, i.e.: ∆Hu > 0.

Lemma 7.3 The third law of thermodynamics, the state of maximum
order, states that a perfect crystal at a temperature of absolute zero
possesses zero entropy, i.e.:

0
lim 0tT

H
→

= (7.8)

where the unit of temperature of T is in Kelvin.

© 2008 by Taylor & Francis Group, LLC

536 Part II Theoretical Foundations of SE

extended view of the second law of thermodynamics can be perceived as
follows.

Eq. 7.9 indicates that for the decrease of the thermal entropy of a

system, the information entropy has to be increased, and vice versa.
Therefore, the information entropy is also perceived as the negative entropy.

7.2.3 DOMAIN OF CLASSIC INFORMATION THEORY

Although classic information theory was intended to be applied in a
very broad area, the domain of it mainly encompasses communication and
coding theories. The former studies models of communication channels,
noises, and signal processing. The latter deal with data encoding, decoding,
compression, protection, and encryption.
 The structure of the domain of classical information theory can be
described as follows:

 • Communication theories
 • Models of communication channels
 • Noise behaviors

 • Signal processing
 • Coding theories

 • Data compression
 • Data protection
 • Data encryption

Classic information theory is good at answering two fundamental

questions in communication theory: a) What is the ultimate transmission rate
of communication? and b) What is the maximum rate of data compression?

For the former, Shannon revealed that the ultimate transmission rate of
a channel is the maximum channel capacity. For the latter, Shannon

Corollary 7.2 The extended 2nd law of thermodynamics states that in any
system, the sum of the information entropy Hi and the thermal entropy Ht
is a constant, i.e.:

 kt |Ht | + ki Hi = ε [bit] (7.9)

where kt, ki, ε are positive constants for a given system, and the unit of kt
is Kelvin per Joule (K/J).

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 537

answered that the maximum data compression rate is the entropy
(information) of the data [Shannon, 1948]. In addition to being the
foundation of communication theory, classic information theory has also
found a wide range of applications in algorithm complexity analysis in
computer science, functional and information sizes measurement in software
engineering, and statistic mechanisms in physics.

7.2.4 SUBJECTIVITY OF CLASSIC INFORMATION
 THEORY

It is noteworthy that classic information theory is not about the measure
of information itself rather than its variability or entropy. A dilemma in the
conventional information theory is that the measurement of the variability or
entropy of information is dependent on the receiver’s subjective judgment.
According to classic information theory, information is the message that one
does not expect and does not know. Therefore, a subjective criterion has been
introduced into the objective measurement of information. This results in that
the same message represents varying information for different observers
depending on their degrees of awareness of the message. Further, whenever
one reads the same message later, the information that one may obtain
degrades over time because of the loss of uncertainty.
 For instance, the following assertions that were thought to be true
according to classic information theory may be doubtable:

 • If the contents of a message are already known, there is no

expected information.
 • The same message may have information for some people, and no

information for others, dependent on their previous knowledge
about the expected message.

 • Every time, when one reads the same message, the information
that one may get is different and decreasing.

 • Information of a message is dependent on the probability
distribution of all signs in the alphabet, but not the size of the
message.

 Information is perceived as entropy of signals on the basis of statistical
probability. The subjective nature of entropy deems there is no information if
the probability of a sign in a message is 1. In both cases when the probability
of signals is indeterminable or 0, the entropy or information is undefined.

Alternative information theories have been proposed to improve the
classical theory, such as nonprobability-based theory [Chaitin, 1977/04;
Nielsen and Chuang, 2000; David, 2002], decision theory [Berger, 1990;

© 2008 by Taylor & Francis Group, LLC

538 Part II Theoretical Foundations of SE

Edwards and Fasolo, 2001; Carlsson and Turban, 2002; Wang, 2005b/05e;
Wang and Ruhe, 2007], and belief theory [Kramosil, 2001].

7.3 Contemporary Informatics

The domain of informatics has been extended in the last decades along with
the development in computer science and in the IT industry. Conventional
informatics treats information as a probabilistic measure of the variability or
uncertainty of messages that can be received from a source. It was focused
on information transmission rather than information itself. However,
contemporary informatics tends to regard information as entities of messages,
rather than a measurement of the messages’ probability properties as that of
the classic information theory [Chaitin, 1977/04; Zhong, 1996; Nielsen and
Chuang, 2000; David, 2002; Wang, 2002d/03b; Wang and Patel, 2004]. The
new perception is found better to explain the theories and practices in the IT
and computer/software industries, because it treats information as any aspect
of the natural world that can be abstractly represented and mentally
processed [Wang, 2002d/03b].

This section first explores the nature of information in contemporary
informatics and the measurement of information. Then, it discusses the
transition of information science from machine informatics to cognitive
informatics, and from external informatics to internal informatics inside the
brain.

7.3.1 INFORMATION: THE THIRD ESSENCE OF
 NATURE

According to the IME model (Theorem 1.2), information is recognized
as the third essence of the natural world supplementing to matter and energy
[Wang, 2003a], because the primary function of the human brain is
information processing.
 It is observed that in applied computing and software sciences as well
as in the IT industries, the term information has a much more practical and
concrete meaning that focuses on data and knowledge representation, storage
and processing. With this orientation, information is regarded as an entity of
messages, rather than a measurement or metric of the messages’ variability.
With this perspective, the definition of information has been shifted from the
classical informatics to the contemporary informatics as follows [Wang,
2002d/03b].

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 539

 Definition 7.8 Information in contemporary informatics is defined as
any property or attribute of the natural world that can be generally abstracted,
quantitatively represented, and mentally processed.

From Definition 7.8 it can be seen that the intension and extension of
information have been shifted from the probability of messages to organized
data that represent the messages, knowledge, and/or abstracted real-world
entities. With this new orientation, information is regarded as an independent
and essential entity in modeling the natural world, particularly its abstract
aspect.

7.3.2 MEASUREMENT OF INFORMATION

With the new orientation as discussed in Section 7.3.1, information is
regarded as an entity of messages, rather than a measurement of the
variability of messages. From this perspective, a definition of information
can be derived as follows [Wang, 2003b].

Definition 7.9 The measurement of information, Ik, is defined by the

cost of code to abstractly represent a given size of internal message M in the
brain in a digital system based on k, i.e.:

⎡ ⎤

:

 log
k k

k

I f M S

M

= →

=
 (7.10)

where Ik is the content of information in a k-based digital system, and Sk the
measurement scale based on k. The unit of Ik is the number of k-based digits.

Eq. 7.10 is a generic measure of information sizes. When a binary
digital representation system is adopted, i.e., k = b = 2, it becomes the most
fundamental one for the meta-level representation of information.

The 19th Principle of Software Engineering

Theorem 7.1 The primitive form of information states that the most
fundamental form of information that can be represented and processed is
binary digit where k = b = 2, i.e.:

 ⎡ ⎤
⎡ ⎤2

:

 log

log [bit]

b b

b

I f M S

M

M

= →

=

=

 (7.11)

© 2008 by Taylor & Francis Group, LLC

540 Part II Theoretical Foundations of SE

Theorem 7.1 indicates that any form of information in the physical
(natural) and abstract (mental) worlds can be unified on the basis of bits. This
is the informatics foundation of modern digital computers and natural
intelligence.

Note that the bit here is a concrete and deterministic unit, and it is no
longer probability-based as in conventional information theories [Shannon,
1948; Bell, 1953]. In a certain extent, computer science and engineering is a
branch of contemporary informatics that studies machine representation and
processing of external information; while cognitive informatics is a branch of
contemporary informatics that studies internal information representation and
processing in the brain (see Chapter 9).

 Example 7.2 According to Eq. 7.10, for given messages M1 = 2 bits
and M2 = 230 bits, their information contents can be determined, respectively,
as follows:

⎡ ⎤
⎡ ⎤

1 2 1

2

log

log 2

1 []

bI M

bit

=

=

=

and

⎡ ⎤2 2 2

30
2

log

log 2

30 []

bI M

bit

=

⎡ ⎤= ⎢ ⎥
=

 The results show that messages M1 and M2 contain, respectively, 1 bit
and 30 bits information. In other words, information Ib1 = 1 bit and Ib1 = 30
bits may represent messages in sizes of 2 or 230 bits, respectively.

With the new perception on information according to Definitions 7.8
and 7.9, it is natural and intuitive to perceive IT as any technology that can
be used for the processing of information. In the same way, an information
system can be defined as an abstract representation system for information
elicitation, acquisition, storage, manipulation (adding, deleting, updating),
production, presentation, searching, and retrieving.

7.3.3 FROM MACHINE INFORMATICS TO COGNITIVE
 INFORMATICS

According to the IME model, the information theories discussed in
Sections 7.2 and 7.3 so far can be collectively classified as external

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 541

informatics. Complementary to it, there is a whole range of new research
areas known as cognitive informatics [Wang, 2002d/02e/03a/03b/06b/06j/
07a/07b; Wang and Wang, 2006; Wang and Kinsner, 2006; Wang et al.
2002a/06]. The emerging discipline of cognitive informatics developed
recently forms a profound interdisciplinary study of cognitive and
information sciences. Cognitive informatics is a cutting-edge
interdisciplinary research area that tackles the fundamental problems of
modern informatics, computation, software engineering, artificial
intelligence, cognitive science, neuropsychology, and life sciences. Almost
all of the hard problems yet to be solved in the above areas share a common
root in the understanding of mechanisms of natural intelligence and cognitive
processes of the brain.

Cognitive informatics is perceived as a new frontier that explores the
internal information processing mechanisms of the brain, and their
engineering applications in computing and the IT industry. This subsection
briefly introduces the historical development of informatics from the classical
information theory and contemporary informatics, to cognitive informatics.
The domain of cognitive informatics and its interdisciplinary nature are
explored. Further details will be extensively described in Chapter 9.

7.3.3.1 Cognitive Informatics

The development of classical and contemporary informatics, the cross
fertilization between computer science, software engineering, cognitive
science and neuropsychology, has led to a whole range of extremely
interesting new research areas known as cognitive informatics. Cognitive
informatics is the transdisciplinary study of cognitive and information
sciences that investigates into the internal information processing
mechanisms and processes of the natural intelligence – human brains and
minds. Cognitive informatics is a branch of information and computer
science that studies computing by cognitive methodologies; and studies
cognitive science by informatics and computing theories.

The first- and second-generation informatics put emphases on external
information processing, which overlook the fundamental fact that human
brains are both the original sources and final consumers of information, and
any information must be cognized by the brain before it can be understood.
This observation leads to the establishment of the third-generation
informatics, a term coined as cognitive informatics [Wang, 2002d, Wang et
al., 2002a].

In many disciplines of human knowledge, almost all of the hard
problems yet to be solved share a common root in the understanding of the
mechanisms of the natural intelligence and the cognitive processes of the
brain. This leads to the study on cognitive informatics, and the query on the
nature of information processing in the brain, such as information

© 2008 by Taylor & Francis Group, LLC

542 Part II Theoretical Foundations of SE

acquisition, representation, memory, retrieve, generation, and
communication. Via an interdisciplinary approach and with the support of
modern information and neural science technologies, mechanisms of the
brain and the mind will be systematically explored in cognitive informatics.
 The relationship between the internal and external informatics can be
illustrated in Fig. 7.1. In cognitive informatics, the brain is perceived as the
last thing in the world yet to be explored, where special recursive intelligent
power of the brain is required. This makes cognitive informatics unique in
distinguishing it from other natural sciences.

 Cognitive
 Informatics

Modern
Informatic

 Classic
 Informatics

Internal,
Brain-based

External,
Computer-based

External,
Channel-based

Figure 7.1 Relationship between the three-generation informatics

7.3.3.2 Perspective on Information in Cognitive Informatics

 Definition 7.10 Information in cognitive informatics is defined as the
abstract artifacts and their relations that can be modeled, processed, stored,
and processed by human brains.

 The measurement of information in cognitive informatics is similar to
Definition 7.9 as given in Section 7.3.2. However, the basic unit of
information, bit, in cognitive informatics corresponds to a single synaptic
connection between neurons in the brain [Wang, 2003b; Wang et al., 2003].

Definition 7.11 The measurement of cognitive information, Ic, is
defined by the cost of number of synaptic links to abstractly represent a given
size of internal message X in the brain in a binary relational system, i.e.:

⎡ ⎤2

:

 log []
c cI f X S

X bit

= →

=
 (7.12)

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 543

where Sc is the cognitive measurement scale based on number of synapses,
and the unit of information, Ic, is a bit.

According to Theorem 7.1, the most fundamental form of information
that can be represented and processed is bit. Any form of information in the
physical (natural) and abstract (mental) worlds can be unified on the basis of
bit. Both internal and external information share the same basic type in
information representation.

7.3.3.3 The Role of Information in Mankind Evolution

It is recognized that the basic evolutional need of mankind is to
preserve both the species’ biological traits and the cumulated
information/knowledge bases [Wang, 2005f/07a]. For the former, the gene
pools are adopted to pass human trait information via DNA from generation
to generation. However, for the latter, because acquired knowledge cannot be
inherited between generations or individuals, various information means and
systems are adopted to pass cumulated human information and knowledge.

Therefore, to a certain extent, mankind relies very much on information
for evolution than that of genes, because the basic characteristic of the human
brain is information processing. In other words, the ability to cumulate and
transfer information from generation to generation plays the vital role in
mankind evolution for both individuals and the species. This distinguishes
human beings from other species in natural evolution, where the latter cannot
systematically pass acquired information from generation to generation in
order to enable it to grow cumulatively and exponentially [Wang, 2005f].

Further discussion on the role of information and its accumulation in
societies will be discussed in Chapter 13 on sociological foundations of
software engineering.

7.4 Informatics Laws of Software

A fundamental finding in computer science and software engineering is that
software is not constrained by physical laws and properties because it is not a
physical entity at all. Therefore, the study on what constrains software is a
fundamental query yet to be explored in software engineering theories. It is
also one of the key objectives of this book.

© 2008 by Taylor & Francis Group, LLC

544 Part II Theoretical Foundations of SE

This section explores the informatics properties and laws of software
and software engineering. The informatics laws of software may help to
understand the nature of the objects studied in software science and
engineering, and the unique constraints and methodologies that distinguish
software engineering from other engineering disciplines.

7.4.1 EQUIVALENCE BETWEEN I-M-E

Before exploring the informatics properties of software, the
equivalence between information, matter, and energy, as well as potential
transformability among them, is explained in the following subsections.

7.4.1.1 Equivalence of Matter and Energy

According to the theory of special relativity discovered by Albert
Einstein (1879 - 1855), one of the most enlightening results in modern
physics is that mass and energy are equivalent. Einstein revealed that a
moving object obeys the following mass-energy relation.

The discovery on the transformability between matter and energy

indicates that a gain or loss of mass can be regarded equally well as a loss or
gain of energy, respectively.

A special case of Eq. 7.13 is when the object is at rest, i.e., v = 0. Under
this condition, the static energy of the object Eo is obtained as:

Eo = mc2 (7.14)

Eq. 7.14 is Einstein’s then famous equation known as the mass-energy
relation [Cutnell and Johnson, 1998].

Lemma 7.4 (Einstein‘s Theory of Special Relativity): The total energy E
of the moving object is related to its mass m and speed v by the following
equation:

2

2 21 (/)
mcE

v c
=

−
 (7.13)

where c is the speed of light, a universal constant, that is measured to be
199,782,458 m/s.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 545

In this sense, matter may be regarded as a special case of energy, and
the loss of mass during nuclear reactions is transformed into awesome
energy. This explains why the apparent discrepancy between energy input
and output in nuclear reactions does not contradict the first law of
thermodynamics (Lemma 7.1), because the release of tremendous amounts of
energy in nuclear transformations such as fission or fusion is accounted for
by the loss of mass during these reactions and the conversion of this mass to
energy.

Another special case of Eq. 7.13 is that when the object is traveling at v

= c. This results in the maximum energy of the object Emax = ∞, which
indicates that no object with mass may travel at a speed as the same as light c
in a vacuum, because as v approaches c, the kinetic energy becomes infinite.
Hence an infinitive amount of work would have to be done to enable the
object to reach c.

Inversely, the transformation of energy into matter has also been
observed in experimental physics. In which, the pair production of the
particles known as an electron and a positron can be generated by a high
energy gamma ray when it hits the nucleus of an atom [Cutnell and Johnson,
1998].

7.4.1.2 Transformation between Matter, Energy, and Information

 Information in cognitive informatics is deemed as the generic abstract
artefacts that can be modeled, processed, and stored by human brains.
Theories of cognitive informatics provide a new perception on information
and informatics – the science of information – in the following aspects:

 • Information is the 3rd essence in modeling the world.

 • Any product and/or process of human mental activities results in
information.

 • Information, matter, and energy may be transferred between each
other.

 • Software obeys the laws of modern informatics and cognitive
informatics.

The perceived transformability among I-M-E can be illustrated by Fig.

7.2, where all generic functions f1 through f6 obey the following corollary.

© 2008 by Taylor & Francis Group, LLC

546 Part II Theoretical Foundations of SE

 I

 M E

f3

f4f2

f5

f1

f6

Figure 7.2 The transformability between I-M-E

Albert Einstein revealed Functions f5 and f6, the relationship between

matter (m) and energy (E), in the form E = mC2, where C is the speed of
light. It is a great curiosity to explore what the remaining relationships and
forms of transformation between I-M-E will be. In a certain extent,
contemporary informatics is the science to seek possible solutions for f1 to f4.
A clue to explore the relations and transformability is believed in the
understanding of the natural intelligence and its information processing
mechanisms [Wang, 2002d/03a/03b].

Corollary 7.3 The transformability between I-M-E states that, according
to the IME model, the three essences of the world are predicated to be
transformable between each other as described by the following generic
functions f1 to f6:

 I = f1 (M) (7.15a)
 M = f2 (I) ≟ f1

-1(I) (7.15b)

 I = f3 (E) (7.15c)
 E = f4 (I) ≟ f3

-1(I) (7.15d)

 E = f5 (M) (7.15e)
 M = f6 (E) = f5

-1(E) (7.15f)

where a question mark on an equal sign denotes a hypothesis on the
existence of such an inverse function.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 547

It is expected that any breakthrough in this area will significantly push
forward the development of the next generation theories and technologies in
informatics, computing, software, and cognitive sciences.

7.4.2 INFORMATICS LAWS AND PROPERTIES OF
 SOFTWARE

This subsection explores the informatics laws that constrain software
by investigating the properties and principles of cognitive informatics. The
properties and laws of information are helpful to explain the nature of
information science and IT technology, which are tackling a wide range of
fundamental problems in the interdisciplinary area between conventional
natural sciences and modern informatics-based sciences, particularly, in the
area of computing and software engineering.

A set of 19 informatics properties of software has been identified as
follows [Wang, 2006a]:

 1) Abstraction
 2) Generality
 3) Cumulativeness
 4) Dependency on cognition
 5) Multi-dimensional behavioral space
 6) Sharability
 7) Physically dimensionless
 8) Weightless
 9) Transformability between I-M-E
 10) Multiple representation forms
 11) Multiple carrying media
 12) Multiple transmission forms
 13) Dependency on media
 14) Dependency on energy
 15) Wearless and time dependency
 16) Conservation of information entropy and thermal entropy
 17) Information-based quality attributes

 18) Susceptible to distortion
 19) Scarcity

The following subsections provide detailed description of these

properties of information and their applications in understanding the

© 2008 by Taylor & Francis Group, LLC

548 Part II Theoretical Foundations of SE

informatics laws that constrain software, software behaviors, and software
engineering processes. Some of them may seem intuitive, but they are so
profound in describing the axiomatic theory of informatics foundations of
software engineering.

7.4.2.1 Abstraction

Property 7.1 Abstraction: Information is abstract artifacts that is
elicited from physical entities in the natural world, or is created for
representing relations between the entities or the entities and abstract mental
objects. Information can be attributes, status, characteristics, structures, and
dynamic processes of real-world entities, as well as relations between them.
New information may be derived based on existing information and their
relations in the abstract world.

 Therefore, although it can be recorded, transformed, and
communicated, information is the product of the brain and it exists in
the abstract world. Theorem 1.2 on the IME model presented in Section 1.2
and the Object-Attribute-Relation (OAR) model of internal information
representation in the brain presented in Section 9.4 [Wang, 2007g] provide a
generic view about the abstractive property of information and its
relationship with the real-world entities.

7.4.2.2 Generality

Property 7.2 Generality: According to Property 7.1 (abstraction) and

the OAR model [Wang, 2007g], it can be derived that sources of information
are widely general. Information can be elicited from objects, attributes, and
their relations. Any physical entity in the universe is the source of
information, and any abstract artifact (object) is the crystallization of
information. Therefore, information is formed by the combination between
physical entities, abstract objects, and relations between them, i.e.:

 • Abstraction of physical entities and their attributes

 • Relations between physical entities

 • Relations between physical entities and abstract objects

 • Relations between abstract objects

Hence, to a certain extent, contemporary informatics studies the sources
and initiation of information, as well as the creation and perception of
information by human cognitive processes.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 549

7.4.2.3 Cumulativeness

Property 7.3 Cumulativeness: The physical world is conservative.
According to the natural law of conservation, matter and energy can neither
be reproduced nor destroyed (while they may be transformed). However,
information is not conservative but cumulative, because information may be
created, destroyed, and reproduced. Cumulativeness is the most significant
attribute of information that mankind relies on in evolution.

7.4.2.4 Dependency on Cognition

Property 7.4 Dependency on cognition: Information should be
recognized and consumed by human brains or other intelligent systems by a
cognitive process before it can be effectively retained, retrieved, and used.
According to the OAR model [Wang, 2007g], information is represented
internally by its relations with existing information and knowledge in the
brain. Without cognition and comprehension, there is no information and
knowledge, also no access and retrieval of them.

7.4.2.5 Multi-Dimensional Behavioral Space

Property 7.5 Multi-dimensional behavior space: Information, as that of
semantics of natural languages (Lemma 6.2), can be generically modeled by
a 5-tuple encompassing the subject (J), behavior (B), object (O), time (T),
and space (S), i.e.:

 I = (J, B, O, T, S) (7.16)

where behavior B is a set of observable actions, operations, or changes of
status.

When the subject J and object O are obvious or they are implied, the
information related to J and O, IJ, can be simplified as a triple as shown
below:

 IJ = (BJ , T, S) (7.17)

where BJ is the behavior of J.

Therefore, software as instructive information, Is, can be modeled in a 3-

dimensional behavioral space Ω, i.e.:

 Is = Ω
 = (OP, T, S) (7.18)

© 2008 by Taylor & Francis Group, LLC

550 Part II Theoretical Foundations of SE

where OP is a finite set of operations or computational behaviors.

7.4.2.6 Sharability

 Property 7.6 Shareability: Information can be shared and reused by
multiple users without loss in quantity and without degradation in quality.
Information may be amplified or multiplied by broadcasting. The lossless
reuse of existing information will usually result in the creation of new
information.

7.4.2.7 Physically Dimensionless

 Property 7.7 Physically dimensionless: Related to Property 7.1
(abstraction), information has no physical size and dimension. No matter
how large or small the physical entities, their conceptual abstraction result in
the same unit of information. Their abstract representations or the cognitive
visual objects occupy a similar sight frame; only the resolutions may vary
[Wang, 2003e; Wang and Wang, 2006].

7.4.2.8 Weightless

Property 7.8 Weightless: A direct corollary based on Property 7.7
(physically dimensionless) is that the weight of information, Wi, is always
zero, i.e.:

 Wi ≡ 0 (7.19)

 This explains why an empty or full hard disk has the same weight; a
blank or recorded tape has no difference in weight; and a memory chip
storing all 0, all 1, or any combinations of 0s and 1s has the same weight.
This property of information can also explain why one can afford to obtain a
PhD degree without feeling any change of the weight of the brain, rather than
the changes of its internal configurations.

7.4.2.9 Transformability between I-M-E

Property 7.9 Transformability between I-M-E: According to the IME
model (Theorem 1.1), the three essences of the world are predicated to be
transformable between each other as shown in Fig. 7.2.

In Fig. 7.2, there are six possible relations between the three essences in

the natural and information worlds. These relations can be described by the
following generic functions f1 through f6 as given in Eqs. 7.16a through 7.16f.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 551

7.4.2.10 Multiple Representation Forms

Property 7.10 Multiple representation forms: Related to Property 7.1
(abstraction) and Property 7.2 (generality), it is observed that information
can be represented in multiple forms, such as analogue (audio, visual),
abstract (written languages and notation systems), and digital.

In the above classification, digitalization in information representation
is the most generic and fundamental approach. The cognitive foundation of
digitalization is that information is represented discretely or granularly in the
brain with the basic unit as individual neurons. Therefore, the discrete
representability is the foundation of information representation, storage, and
processing. It is also the foundation of modern digital multimedia
information engineering.

7.4.2.11 Multiple Carrying Media

Property 7.11 Multiple carrying media: Parallel to Property 7.10
(multiple representation forms), information can be carried by various media,
as listed in the following, and their combinations: electronic, electrical,
magnetic, optical, mechanic, hydraulic, written, oral, and signs.

It is noteworthy that a certain medium may carry one or more forms of
information. Correspondingly, a given form of information may be carried by
different media.

7.4.2.12 Multiple Transmission Forms

Property 7.12 Multiple transmission forms: In addition to that
information may be represented in multiple forms (Property 10) and carried
by various media (Property 11), its transmission can be conducted in multiple
forms as well. The following is the possible transmission forms of
information:

 a) Information passing: 1 - to - 1
 b) Information broadcasting: 1 - to - n
 c) Information gathering: n - to - 1
 d) Information networking: n - to - m (7.20)

where 1 represents a single information source/receiver, n and m indicate
multiple sources/receivers, and n and m can be the same.

The fast development of the Internet indicates that the fourth form of
information transmission, information networking, is the highest form of
communication.

© 2008 by Taylor & Francis Group, LLC

552 Part II Theoretical Foundations of SE

7.4.2.13 Dependency on Media

Property 7.13 Dependency on media: Information can not exist
without a storage medium. The types of media may be organic, physical,
chemical, or the combinations of them as described in Property 7.11.
Therefore, to some extent, information may be perceived as a change of
status of the storage medium or matter.

7.4.2.14 Dependency on Energy

Property 7.14 Dependency on energy: All information processing

tasks, such as acquisition, storage, retain, retrieve, and refresh, consume
certain energy. There is no system that may process information without
consuming energy. Therefore, in some extent, information may also be
perceived as a change of status of energy on a given medium.

7.4.2.15 Wearless and Time Dependency

Property 7.15 Wearless and time dependency: The logic of formal
information, such as special notation systems, mathematics, and philosophies
as described at the abstract cognitive Levels 4 – 5 according to the HAMSD
model in Section 1.2.4, does not wear out. Once the logic of a specific piece
of information is true, it is always true and true forever.

However, the timeliness of informal information, as described at the

abstract cognitive Levels 1 – 2, is much shorter, i.e., such kind of information
may be out of date quickly.

7.4.2.16 Conservation of Information Entropy and Thermal Entropy

Property 7.16 Conservation of information entropy and thermal

entropy: According to the extended second law of thermodynamics
(Corollary 7.2), the sum of the information entropy and the thermal entropy
in a given system is conservative. In a physical system, entropy can be
reduced by input of energy in order to maintain the order of the system. In
neural and social systems, the order and the state of organization can be
increased by inputting information.

7.4.2.17 Information-Based Quality Attributes

On the basis of the conventional product-based metaphor [ISO 9126,
1991], the quality of software is perceived as a collection of external
attributes, such as usability, availability, reliability, portability, and
maintainability. Quality software is commonly considered as the software

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 553

that contains fewer bugs. However, the intension of the concept of quality
itself has never been properly defined in software engineering.

Property 7.17 Information-based quality attributes: To model the

quality of software and information, a set of information-based quality
attributes is identified as follows:

 • Completeness

 • Correctness
 • Consistency
 • Properly represented (no mis-interpretation)
 • Clearness (no ambiguity)
 • Feasible (can be implemented in technical and economical terms)
 • Verifiable (attributes specified can be measured)

From this new angle, software quality can be defined as the

achievement of the above inherent attributes for software architectures, static
behaviors, and dynamic behaviors.

Comparing the above two approaches towards software quality, it can
be seen that the former is a set of external quality attributes, and the latter is a
set of internal ones. The internal quality attributes should be focused and
controlled first in software engineering. Otherwise, it would be too late to
examine the external quality attributes, because this may only be carried out
after a software system has already been built.

7.4.2.18 Susceptible to Distortion

Property 7.18 Susceptible to distortion: Unlike physical entities,
information is more fragile and vulnerable subjected to distortion, decay, and
destroy. Therefore, information should be treated more carefully. Fault-
tolerant and security techniques should be always adopted in dealing with
information distortion.

7.4.2.19 Scarcity

Property 7.19 Scarcity: Information scarcity states that information
when it is needed is always inadequate, constrained by its availability,
awareness, and/or the cost and complexity to thoroughly search, acquire, and
comprehend it.

© 2008 by Taylor & Francis Group, LLC

554 Part II Theoretical Foundations of SE

According to the law of universal constraints as given in Theorem 3.1,
any theory, method, or technology has its own limitations and constraints. To
a certain extent, science and engineering are the searching of the maximum
extent of general relations between entities, phenomena, and behaviors under
a set of constraints.

7.5 Information Theories for
 Software Engineering

Software is a product of human intelligence that is used as a set of instructive
information to implement computing behaviors on a generic computer. In a
modern society, information plays more and more important roles because it
is the only link between the physical (external) and the abstract (internal)
worlds in human life. In cognitive informatics, software is perceived as a
type of instructive and behavioral information that describes a solution for
the design and implementation of a computing system [Wang,
2002g/03c/04b/05g/ 06a/07a].

A fundamental finding in computer science and software engineering is
that software, as a unique entity, is not constrained by any law and principle
known in the physical world [McDermid, 1991; Hartmanis, 1994]. This
section attempts to demonstrate that software obeys the laws of informatics
[Wang, 2006a], because software is a kind of instructive and behavioral
information that is used to communicate with computer servers to provide
specified functionality for users of the computing system.

7.5.1 THE INFORMATICS METAPHOR OF SOFTWARE

Software, in daily life, is simply meant as anything flexible and without

a physical dimension. In the IT industry, software is perceived broadly as a
concrete product [Baker, 1972; ISO 9001, 1989/94; ISO 9126, 1991;
Taguchi, 1986; Jones, 1986; SQPL, 1990; Dromey, 1995]. With the product
metaphor, a number of manufacturing technologies and quality assurance
principles were introduced into software engineering. However, the
phenomenon, in which we are facing almost the same problems in software
engineering as we dealt with 40 years ago, indicates a failure of the
manufacture-based and mass-production-oriented metaphor, and related

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 555

technologies in software development. Therefore, the nature of software and
how it may be effectively produced must be re-thought in software
engineering.

According to the informatics metaphor, software can be perceived as
follows.

Definition 7.12 Software is a kind of coded and instructive information

for a computing system that describes the expected architectures and
behaviors of the system in a programming language and related design
documentations.

The above definition indicates a new way to explain the properties and

laws that govern the behavior of software, which forms an important part of
the informatics foundations of software engineering. Definition 7.12 also
indicates that the current philosophy and methodology in organizing and
managing software engineering and software development organizations as
mass manufacturing and quality control processes are perhaps fundamentally
mismatching.

Software as instructive and behavioral information describes the

following:

• What are the abstract (or logical) models of objects in a given
computing system?

• What do we do with these objects?
• How do we do with these objects?

 The first question listed above implies that in software design we need
to describe the abstract architecture of the system and its components by
logical and algebraic modeling techniques. The last two questions indicate
the requirements for describing the static and dynamic behaviors of the
system as a set of interacting objects. It is perceived that the processes and
techniques widely used in the publishing industry and the journalism industry
are worth to be intensively studied and adopted in software engineering
[Wang, 2004b], on the basis of the informatics metaphor.

7.5.2 INFORMATICS LAWS THAT CONSTRAIN
 SOFTWARE BEHAVIORS

Adopting the informatics metaphor of software, a set of 19 properties
and laws of information have been developed in Section 7.4, which are used
to explain the fundamental characteristics of information and software

© 2008 by Taylor & Francis Group, LLC

556 Part II Theoretical Foundations of SE

behaviors. The informatics laws indicate that, although software does not
obey any physical laws of the natural world, it is indeed constrained by the
informatics laws. Therefore, information science forms one of the
foundations of software engineering and computing science.

 The manufacture-based metaphor for software development has
dominated the methodologies and technologies of software engineering in the
last four decades. However, unsolved fundamental problems in software
engineering indicate that the theoretical and empirical needs for investigating
the informatics and other theoretical foundations of software engineering are
yet to be explored.

7.5.3 THE INFORMATICS ATTRIBUTES OF
 SOFTWARE QUALITY

As will be discussed in Section 8.2.4, quality is one of the basic
engineering objectives in any engineering disciplines. However, the term
quality, particularly software quality, is a very complicated and collective
concept that has never been well defined and formalized.

According to the informatics property 7.17 of software, the quality
attributes of software can be classified as external and internal attributes.
The internal quality attributes are those of a software system when it is
treated as a white box. The seven information-oriented internal quality
attributes of software as identified in Property 7.17 are extended in Table 7.1,
encompassing completeness, no misinterpretation, consistency, exactness
(nonambiguous), no confliction, feasibility (can be implemented in technical
and economical terms), and verifiability (can be measured) [Wang, 2004b].

The external attributes of software quality are those of the product or
system when it is treated as a black box, such as functionality, usability,
availability, reliability, efficiency, portability, and maintainability [ISO 9126,
1991; ISO 9000-1, 1994; ISO 9000-2, 1994; ISO 9000-3, 1991; ISO 9000-4,
1993; ISO 9001, 1989; ISO 9001, 1994; ISO 9002, 1994; ISO 9003, 1994;
ISO 9004-1, 1994; ISO 9004-2, 1991; ISO 9004-4, 1993; Jenner, 1995].

The 21st Law of Software Engineering

Theorem 7.2 The informatics laws of software state that software
architectures, behaviors, and processes are constrained by the 19
informatics laws of basic information properties.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 557

Table 7.1
Information-Oriented Quality Attributes of Software

No Attribute Description
1 Completeness Completeness is an information-oriented software quality

attribute that states a software system should completely
describe and implement the system requirements.

2 No
misinterpretation

No misinterpretation is an information-oriented software
quality attribute that states a software system should
correctly describe and implement the system requirements.

3 Consistency Consistency is an information-oriented software quality
attribute that states a software system should accurately
describe and implement the system requirements.

4 Exactness Exactness is an information-oriented software quality
attribute that states a software system should accurately and
nonambiguously describe and implement the system
requirements.

5 No confliction No confliction is an information-oriented software quality
attribute that states a software system should recognize and
solve conflict system requirements.

6 Feasibility Feasibility is an information-oriented software quality
attribute that states a software system should be feasibly
designed and implemented against known technical or
financial constraints.

7 Verifiability Verifiability is an information-oriented software quality
attribute that states a software system should recognize and
qualify any nonverifiable system requirements.

A more formal treatment of quality theories and software quality based

on the informatics metaphor will be presented in Chapter 8 on the
engineering foundations of software engineering. Cognitive informatics as an
emerging discipline and its applications in software engineering will be
presented in Chapter 9 on cognitive informatics foundations of software
engineering.

7.6 Summary

Information is the third essence of the natural world supplementing matter
and energy. Informatics, the science of information, studies the nature of
information, its processing, and ways of transformation between information,

© 2008 by Taylor & Francis Group, LLC

558 Part II Theoretical Foundations of SE

matter, and energy. In a modern society, information plays more and more
important roles because it is the only link between the physical (external)
and the abstract (internal) worlds.

Software is a type of instructive and behavioral information that
describes a solution for the design and implementation of a computing
system. According to the Hierarchical Abstraction Model of System
Descriptivity (HAMSD), software can be categorized as information at
abstraction Level 3 – special notation systems and/or Level 4 – mathematics.

The manufacture-based metaphor for software development has
dominated the methodologies of software engineering in the last three
decades. A new informatics-based metaphor has been proposed in this
chapter for software engineering. In this chapter, the nature of software has
been examined, which helped to clarify the basic informatics characteristics
of software. The informatics laws of software have been perceived as an
important part of the foundations of software engineering and computer
science. The information-based metaphor on software will result in the
development of new software notations, processes, quality principles,
verification techniques, and organizational methodologies in software
engineering and in the IT industry.

This chapter has explored the informatics nature of software and the
information laws of software engineering. Classic information theories have
been briefly reviewed. Contemporary informatics and current perception on
information in the IT and software industries have been presented. A set of
19 informatics laws that constrain the behaviors of software has been
identified. Applications of informatics in software engineering have been
described, which leads to the emerging area known as cognitive informatics
that will be further investigated in Chapter 9. As a result, the information
science foundations of software engineering have been established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Information Science Foundations of Software
Engineering, readers have achieved the following strategic goals with
knowledge architecture as summarized below.

Chapter 7. Information Science Foundations of SE

■ Classic Information Theory
 • Shannon’s definition of information
 - The concept of entropy
 - The laws of thermodynamics
 - Transformation between information entropy and thermal entropy

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 559

 • Predicative measurement of information
 • Information and entropy
 • Domain of classical information theory
 • Subjectivity of classical information theory

■ Contemporary Informatics
 • Information: the third essence of nature
 • Measurement of information
 • From machine to cognitive informatics
 - Cognitive informatics
 - Perspective on information in cognitive informatics
 - The role of information in mankind evolution

■ Informatics Laws of Software
 • Equivalence between information-matter-energy
 - The equivalence of matter and energy
 - Transformation between matter, energy, and information

 • Informatics laws and properties of software
 - Abstraction
 - Generality
 - Cumulativeness
 - Dependency on cognition
 - Multi-dimensional behavioral space
 - Sharability
 - Physically dimensionless
 - Weightless
 - Transformability between I-M-E
 - Multiple representation forms
 - Multiple carrying media
 - Multiple transmission forms
 - Dependency on media
 - Dependency on energy
 - Wearless and time dependency
 - Conservation of information entropy and thermal entropy
 - Information-based quality attributes
 - Susceptible to distortion

■ Information Theories for Software Engineering
 • The informatics metaphor of software
 • Informatics laws that constrain software behaviors
 • The informatics attributes of software quality

© 2008 by Taylor & Francis Group, LLC

560 Part II Theoretical Foundations of SE

SIGNIFICANT FINDINGS OF THIS CHAPTER

• The IME model reveals that matter, energy, and information are the
three essences of the natural and the abstract worlds. The relationships
between IME and their transformations are one of the fundamental
questions in cognitive informatics. It is believed that any breakthrough in this
area will be profoundly significant towards the development of next
generation technologies in informatics, computing, software, and cognitive
sciences.

• It is recognized that software is not constrained by the physical laws

and principles discovered in the concrete world. However, software does
obey the laws of informatics. A set of 19 informatics laws and properties of
software has been identified.

• The classic information theory is not about the measure of
information rather than its variability or entropy. A dilemma in the
conventional information theory is that the measurement of the variability or
entropy of information is dependent on the receiver’s subjective judgment.

• The most fundamental form of information that can be represented

and processed is bit. Any form of information in the physical (natural) and
abstract (mental) worlds can be unified on the basis of bits. This is the
informatics foundation of modern digital computers and natural intelligence.

• The development of classical and contemporary informatics, the cross

fertilization between computer science, software engineering, cognitive
science and neuropsychology, has led to a whole range of new research areas
known as cognitive informatics.

• Perceptions on Information: a) In classic informatics, information

is defined as a probabilistic measure of the variability of messages which can
be obtained from a message source. b) In contemporary informatics,
information is defined as any property or attribute of the natural world that
can be generally abstracted, quantitatively represented, and mentally
processed. c) In cognitive informatics, information is defined as abstract
artifacts and their relations that can be elicited, modeled, represented, stored,
and processed by human brains.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 561

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Classic Information Theory

• The classic information theory is founded by Shannon during 1948-

1949, while the term information was first adopted by Hartley in 1928, and
extensively discussed by Bell and Goldman in 1953.

• Conventional information theory was modeled based on probability

theory and statistics. Information is defined as a probabilistic measure of the
variability of message which can be obtained from a message source.

• Information is a weighted probabilistic measure of the variability of
messages (signals) that is expected from a message source via a transmission
channel.

• Entropy is the extent of the trend of a system towards complete

disorder or randomization. Entropy is not a physical entity, but a measure of
the extent of chaos of a given system, which is closely related to the classic
concept of information. The quantity of information entropy Hi of a source
is determined by the average weighted information variability I transmitted
by the source.

• The information variability, Ii, of the ith sign in a message is

determined by its unexpectedness, i.e., 2
1

[bit]i
i

I log
p

= , where pi is the

probability that the ith sign is transmitted.

• The total information variability transmitted by a source or sender,

I, is the weighted sum of the probability of all its n possible signs, known as

the alphabet, in the message, i.e.,
1 1

- log [bit]
n n

i i i 2 i
i i

I p I p p
= =

= • = •∑ ∑ .

• Thermodynamics is the branch of physics built upon the

fundamental laws obeyed by energy in the forms of heat and work and in
their transformation. The three laws of thermodynamics are the basic theory
that governs exchanges of energy.

• The 1st law of thermodynamics, conservation of energy, states that

energy can be neither created nor destroyed, so that the total input of energy,

© 2008 by Taylor & Francis Group, LLC

562 Part II Theoretical Foundations of SE

Ei, in any transformation must equal the total output of energy, Eo, i.e., ∑ Ei ≡
∑ Eo .

• The 2nd law of thermodynamics, the heat flow statement, states

that: (a) Entropy of the universe ∆Hu does not change when a reversible
process occurs, i.e., ∆Hu = 0, and (b) Entropy of the universe ∆Hu increases
when an irreversible process occurs, i.e., ∆Hu > 0.

• The 3rd law of thermodynamics, the state of maximum order,

states that a perfect crystal at a temperature of absolute zero possesses zero
entropy, i.e.,

0
lim 0
T

H
→

= .

• The extended 2nd law of thermodynamics states that in any system,

the sum of the information entropy Hi and the thermal entropy Ht is a
constant, i.e., kt Ht + ki Hi = ε, where kt, ki, and ε are positive constants for
a given system. In other words, the information entropy is also perceived as
the negative entropy.

• The classic information theory was used to study models of

communication channels and coding/decoding systems. Alternative
information theories have been developed in the last decades to extend the
usage of classical informatics.

Contemporary Informatics

 • Information in contemporary informatics is defined as any property
or attribute of the natural world that can be generally abstracted,
quantitatively represented, and mentally processed.

 • Contemporary informatics perceives that the implication and
extension of information has been shifted from the probability of messages to
the entity of messages that represents the messages, knowledge and/or
abstracted real-world entities. With this new orientation, information is
regarded as an independent and essential entity in modeling the natural
world, particularly its abstract part.

• The content of information in modern informatics is measured by
the cost of code to abstractly represent a given size of message M in a digital
system based on k [12], i.e., Ik = f: M → Sk = logk M, where Ik is the content
of information in a k-based digital system, and Sk the measurement scale
based on k. The unit of Ik is the number of k-based digits. A bit is defined as
the measure of information when a binary digital representation system is
adopted, i.e., k = b = 2.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 563

• In modern informatics, IT is a technology that can be used for the
processing of information, such as information acquisition, elicitation,
storage, manipulation (adding, deleting, updating), production, presentation,
searching, and retrieving.

 • Cognitive informatics is the transdisciplinary study of cognitive and
information sciences that investigates into the internal information processing
mechanisms and processes of the natural intelligence - human brains and
minds.

• Information in cognitive informatics is defined as abstract artifacts
and their relations that can be elicited, modeled, represented, stored, and
processed by human brains.

Informatics Laws of Software

• The informatics laws of software state that software architectures,
behaviors, and processes are constrained by the laws of informatics and
mathematics.

• According to the theory of special relativity of Albert Einstein

(1879 - 1855), one of the most astonishing results is that mass and energy are
equivalent. According to the IME model, the three essences of the world are
predicated to be transformable between each other in cognitive informatics.

• A set of 19 informatics laws and properties of software has been

identified as follows:

 1) Abstraction
 2) Generality
 3) Cumulativeness
 4) Dependency on cognition
 5) Three-dimensional behavioral space
 6) Sharability
 7) Dimensionless
 8) Weightless
 9) Transformability between I-M-E
 10) Multiple representation forms
 11) Multiple carrying media
 12) Multiple transmission forms
 13) Dependability on media
 14) Dependability on energy

© 2008 by Taylor & Francis Group, LLC

564 Part II Theoretical Foundations of SE

 15) Wearless and time dependency
 16) Conservation of information entropy and thermal entropy
 17) Informatics quality attributes

 18) Susceptible to distortion
 19) Scarcity

• The principle of universal constraints states that both the natural
world and the perceived abstract world are constrained by certain known or
yet to be known restrictions and laws, due to the limitations of natural
resources and/or human cognitive capability.

Information Theories for Software Engineering

• According to the cognitive information model, software can be
perceived as a kind of coded and instructive information that describes the
algebraic process logic of software system architectures and behaviors in
computing.

• The internal quality attributes of software systems are such as

completeness, no misinterpretation, consistency, exactness, no confliction,
feasibility, and verifiability. The external quality attributes of software
system are such as functionality, usability, availability, reliability, efficiency,
portability, and maintainability.

• The nature of software is its instructive characteristics and the

information- and mathematics-based metaphors.

Questions and
Research Opportunities

7.1 Referring to the Information-Matter-Energy model (IME,

Theorem 1.1), discuss why information plays an important role in
modeling software properties, behaviors, and software
engineering theories and methodologies.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 565

7.2 Why is software not constrained by any physical law and
principle known in the concrete world? What is the impact of this
discovery to software engineering theories and methodologies?

7.3 What is the relationship between information in classic

informatics and entropy in physics?

7.4 Comparing Corollaries 7.1 and 7.2, discuss how the extended 2nd

law of thermodynamics integrates information entropy and
thermal entropy into a coherent framework.

7.5 What are the perceptions of information in contemporary

informatics and in the information, computer, and software
industry?

7.6 What is the perception of internal information in the brain as

modeled in cognitive informatics?

7.7 What is the role of information in mankind evolution?

7.8 Why is it impossible to directly transfer acquired information and

knowledge of a person on to the next generation or peers? What
would be the indirect approaches to do so?

7.9 What is the set of perceived transformability among I-M-E?

Which pairs of transformations have been formally proven? Why
will natural or machine intelligence play an important role in
searching the remainder potential transformability?

7.10 Try to summarize the 19 fundamental properties of information in

a structured framework with categorizations.

7.11 How to prove informatics Property 8 – information is weightless?

7.12 The three dependencies of information, Property 4 – dependency

on cognition, Property 13 – dependency on media, and Property
14 – dependency on energy, reveal the relationships between
information and human brain, hardware, and energy. Discuss if
these three dependencies of information are always necessary in
software engineering or there are exceptional options.

7.13 The laws of informatics that are applicable to software and

software engineering are identified as the 19 basic properties of

© 2008 by Taylor & Francis Group, LLC

566 Part II Theoretical Foundations of SE

informatics. Based on the informatics laws and properties, try to
discuss the following:

 (a) Doesn’t software obey any of the above information laws?

 (b) Does software obey any informatics laws (or basic
properties) that were not identified in the given set?

 (c) Does software obey any physical laws of the world?

7.14 What does the unit of information, bit, mean in classic,

contemporary, and cognitive informatics?

7.15 Theorem 7.1 states that the primitive form of information is the

bit. Explain why this view forms a foundation to integrate both
computer science and information science into a common
framework.

7.16 Comparing the three definitions of information in classic,

contemporary, and cognitive informatics, try to analyze the
evolution on intensions and extensions of the concept information
and their applications in the IT industry.

7.17 Summarize how information is measured in classical,

contemporary, and cognitive informatics.

7.18 Assuming the package of information is X = 240 bytes, answer the

following questions:

 (a) How many bits do you need to represent the information, X,
in a computer in parallel?

 (b) If a neural cell is equivalent to 210 bits in parallel, how
many neural cells do you need to represent X in the brain?

7.19 What are the differences between the external and internal

attributes of software? What are the information-oriented internal
quality attributes of software?

7.20 Read the following chapter in information systems:

Robert G. Murdick (1986), Chapter 5, Data,

Information, and Communication, MIS Concepts and

Design, 2nd ed., pp. 140-177.

© 2008 by Taylor & Francis Group, LLC

Chapter 7 Information Science Foundations of SE 567

Discuss the following topics in a group or individually:

 • About the author.

 • What are the attributes and measure of information?
 • What are the relationships between information, data, and

software?
 • What conclusions of the article interested you? Why?
 • Your arguments or counter-points on any of the conclusions

derived in this article.

© 2008 by Taylor & Francis Group, LLC

=]]]]]]]]]]

PART III

ORGANIZATIONAL
FOUNDATIONS OF SOFTWARE

ENGINEERING

I. Fundamental
 Principles of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

8. Engineering
Foundations
of SE

9. Cognitive
Informatics
Foundations
of SE

10. System
Science
Foundations
of SE

11. Management
Science
Foundations
of SE

12. Economics
Foundations
of SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

13. Sociology
Foundations
of SE

© 2008 by Taylor & Francis Group, LLC

570 Part III Organizational Foundations of SE

rganizational foundations of software engineering incorporate
multi-facet principles, transdisciplinary theories, and empirical
knowledge for software engineering. Part III attempts to explore the

organization and system metaphors toward software engineering. Three main
threads are adopted in this part known as system science, cognitive
informatics, and organizational theories at different levels in the domains of
engineering science, management science, economics, and sociology.

It is recognized in this part that the hidden reasons caused so many
failures of large-scale software engineering projects are neither purely
technical ones nor unsatisfied programming skills, but mainly because of
both the organizational deficiency of nonoptimal labor allocation and the
incorrect sequence of interlocked labor-duration-cost determination in
coordinative work organization.

The knowledge structure of Part III on Organizational Foundations of
Software Engineering is as follows:

 • Chapter 8. Engineering Foundations of Software Engineering
 • Chapter 9. Cognitive Informatics Foundations of Software

Engineering
 • Chapter 10. System Science Foundations of Software

Engineering
 • Chapter 11. Management Science Foundations of Software

Engineering
 • Chapter 12. Economics Foundations of Software Engineering
 • Chapter 13. Sociology Foundations of Software Engineering

This part addresses the organizational and cognitive theories and
methodologies of software engineering in a transdisciplinary approach. The
structural organization of software engineering perceives software as abstract
systems. The fundamental view towards software engineering perceives
software as a set of cognitive and intelligent behaviors. With system science
theories as an overarching framework, the organizational theories for
software engineering form a hierarchical structure in this part covering
multidisciplinary foundations of engineering science, management science,
economics, and sociology from the bottom-up.

Chapter 8, Engineering Foundations of Software Engineering, presents
the generic engineering principles and their applications in software
engineering. Engineering is deemed as an important organizational
methodology that emerged during the industrial revolutions. It helps to
understand the nature, status, and problems of software engineering, as well
as its future trends, based on comparative studies between the generic
engineering principles and current software engineering practices. Key
empirical knowledge and methodologies that may be learned from other

O

© 2008 by Taylor & Francis Group, LLC

 Part III Organizational Foundations of SE 571

matured engineering disciplines are discussed. Basic engineering principles
commonly shared in most engineering disciplines are elicited on engineering
objectives, organization, technology, professionalism, and domain
characteristics. A comprehensive set of engineering principle for software
engineering, such as engineering characteristics, division of labor, and
professionalism for software engineering is derived. A formal coordinative
work organization theory for engineering science in general and software
engineering in particular is developed that reveals how software engineering
projects may be optimally organized. Empirical methodologies for software
engineering, such as case studies, experiments, trials, benchmarking, and
standardization, are reviewed.

Chapter 9, Cognitive Informatics Foundations of Software Engineering,
introduces a new transdisciplinary field that studies the internal information
processing mechanisms of the brain and their engineering applications.
Large-scale software systems are highly complicated systems that mankind
has ever handled or experienced before. Software is a unique abstract artifact
that does not obey any known physical laws. However, it is recognized that
software should be constrained by the laws of cognitive informatics,
mathematics, and systems as explored in this book. Theories of cognitive
informatics and its potential impacts on, and applications in, information-
based sciences and engineering disciplines, particularly in software
engineering, are discussed. Cognitive informatics models of the brain, such
as the Layered Reference Model of the Brain (LRMB), the cognitive models
of memories, and the cognitive model of natural intelligence, are developed.
The cognitive model of internal information presentation in the brain,
particularly the Object-Attribute-Relation (OAR) model, is presented. This
chapter describes the cognitive informatics and intelligent behavioral
metaphor of software and software engineering. The cognitive informatics
foundations that address the cognitive constraints of software engineering are
described, which lead to the understanding and formal measurement of the
cognitive complexity of software systems.

Chapter 10, System Science Foundations of Software Engineering,
provides a powerful means for dealing with complicated objects and
phenomena in software engineering. Treating software engineering and large-
scale software projects via system engineering is also a promising trend in
dealing with the problems, complexities, quality assurances, and human
factors in software engineering. This chapter describes the system metaphor
of software and software engineering, and explores theories of systems
science, underlying principles, and modeling techniques of systems
engineering. The classic system philosophies and system topology are
described. A new mathematical structure of abstract systems known as
system algebra is developed. Principles of system theories, such as generic
architectures, equilibrium, synchronization, and dissimilation, are formally
and rigorously treated. Applications of system theories and system
engineering techniques in software engineering are described with formalized

© 2008 by Taylor & Francis Group, LLC

572 Part III Organizational Foundations of SE

software system models and formal explanations of many important software
engineering phenomena as system engineering issues.

Chapter 11, Management Science Foundations of Software
Engineering, studies organizational behaviors, executive decision making,
and resource optimization on given internal and external constraints in
software engineering. Historically, software engineering has focused on
programming methodologies, programming languages, and software
development models. One of the critical areas to software engineering –
organizational and management infrastructures – has been largely ignored.
Management science foundations for software engineering encompass
management principles, classical management thought, decision theories, and
quality system theories beyond programming and technical aspects of
software development. A set of organizational theorems and laws are
formally derived. A theoretical framework of decision theories is developed
with the mathematical models of decisions, the cognitive process of decision
making, formal description of decision strategies, the extended game
theories, and decision grid theory for a series of dynamic decision making.
Quality systems are presented focusing on quality principles, quality
assurance, and quality management systems. Then, the concept and
methodology of process-based software engineering is developed in order to
deal with complicated management issues in software engineering.

Chapter 12, Economics Foundations of Software Engineering, studies
how resources are efficiently used to develop software and how services are
provided in software engineering. This chapter introduces fundamental
principles and methodologies utilized in engineering economics and their
applications in software engineering. It also introduces formal methodology
into economic analysis and modeling. A set of formal economic models such
as the production, costs, and market models is developed based on
fundamental principles of microeconomics. The dynamic values of money
and assets, as well as their patterns in cash flows, are formally modeled.
Economic analysis methodologies for engineering decisions such as project
costs, benefit-cost ratio, payback period, and rate of return are rigorously
described. On the basis of the formal treatment of economic theories and
principles, software engineering economics is presented on elements of
software costs, software engineering project costs estimation, economic
analyses of software engineering projects, and the software legacy
maintenance cost model, which leads to the finding of the important
phenomenon known as software maintenance crisis in software engineering.

Chapter 13, Sociology Foundations of Software Engineering,
investigates how a software engineering environment may be organized
efficiently and effectively on certain group and social constraints. This
chapter completes the final piece of the puzzle of the systematic theory on
coordinative work organization at the highest level of scopes – the society
level. It forms an important methodology for optimal allocation of labor,
resources, and schedules for a given workload in a society in general, and in a

© 2008 by Taylor & Francis Group, LLC

 Part III Organizational Foundations of SE 573

software engineering context in particular. This chapter presents a formal
treatment of the sociological theories, models, and their applications in
software engineering. Fundamental principles of sociology are reviewed,
which covers social structures, social behaviors, and social norms. Social
psychology such as fundamental human traits, collective behaviors, and the
perceptual influence on them are described, which form the underlying
theory for explaining the human factor in engineering systems and societies.
Theories of social organization that provide an essential understanding for
coordinative work organization at various levels of societies are presented. A
formal model of social organization is developed based on a new
mathematical model known as the complete organization tree. Sociology for
software engineering is explored on social environment of software
engineering, ergonomics for software engineering, and human factors in
terms of human strengths, weaknesses, and uncertainty in the context of
software engineering. The theoretical foundation of quality assurance in
programming and software engineering is developed.
 Part III will establish the organizational foundations of software
engineering with engineering science, cognitive informatics, and system
science at various scopes such as management science, economics, and
sociology. Supplemented to Part II, this part will reveal that important
aspects of software engineering theories are the organizational and cognitive
theories. It will demonstrate that the profound causes that result in all the
failures in software engineering history are not only pure technical reasons,
but also organizational reasons due to the limitations of human cognitive
capability.

© 2008 by Taylor & Francis Group, LLC

Chapter 8

ENGINEERING
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

9.
Cognitive
Informatics
Foundations
of SE

8.1 Introduction 8.5 The Theory of SE Organization
8.2 Generic Engineering Approaches 8.6 Empirical SE
8.3 Basic Engineering Principles 8.7 Summary
8.4 Engineering Principles for SE

10.
System
Science
Foundations
of SE

11.
Management
Science
Foundations
of SE

12.
Economics
Foundations
of
SE

13.
Sociology
Foundations
of
SE

8.
Engineering
Foundations
of
SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

576 Part III Organizational Foundations of SE

Knowledge Structure

 Generic engineering approaches

 • Engineering: a concept emerged from the industrial revolutions
 • Science and generic scientific method
 • Engineering vs. sciences
 • Fundamental goals and constraints of engineering
 • Generic engineering approaches
 • The generic engineering maturity model (GEMM)

 Basic engineering principles

 • Principles of engineering organization • Principles of engineering technology
 • Principles of engineering management • Principles of engineering professionalism

 Engineering principles for software engineering

 • The engineering characteristics of SE • Division of labor
 • Characteristics of SE in the engineering age • Unique principles of SE
 • Professionalism of SE

 The theory of software engineering organization

 • The characteristics of coordinative work in engineering
 • Laws of work organization in SE
 • The mythical man-month explained
 • Decision optimization in SE

 Empirical software engineering

 • SE case studies • SE experiments
 • SE trials • SE benchmarking
 • SE standardization

Learning Objectives

 • To gain generic engineering principles.

 • To know generic engineering approaches.

 • To understand the essences of interpersonal coordination in engineering and the
interchangeability between labor and time.

 • To understand the laws of abstract work organization for engineering projects.

 • To be able to apply the fundamental theories of engineering organization in
software engineering.

 • To be able to apply the empirical software engineering methods such as case
studies, experiments, trials, benchmarking, and using standards.

8. Engineering Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 577

 “Software engineers are not just good programmers.”

David L. Parnas (1998)

 “Large software systems are among the most complex systems
engineered by man.”

J.V. Guttag (2002)

“It is this application of expertise that causes the fields of both bridge building and

software development to be areas where engineering principles are applicable.
 It is the cost of failure that makes these principles required.”

R. Gisselquist (1998)

8.1 Introduction

ngineering is a set of applied scientific disciplines seeking solutions
for complicated problems and systems that could not be done by
individuals. The aim of engineering is to repetitively produce

complicated artifacts in an efficient way on the basis of scientific theories
and principles.

The etymology of the words engineer and ingenuity comes from the
same Latin root, ingenium, which means talent, genius, cleverness, or native
ability. Thus, engineering may be perceived as an approach to both problem
solving and industrial organization.

 Engineering may also be deemed as a profession. The Accreditation
Board for Engineering and Technology (ABET) defines engineering as “the
profession in which a knowledge of the mathematical and natural sciences
gained by study, experience, and practice is applied with judgment to
develop ways to economically utilize the materials and forces of nature for
the benefit of mankind [ABET, 1986].”

 The basic task of scientists is to perform research that creates new
knowledge, while the basic task of engineers is to perform design and
development that result in new applications and products. Therefore,
engineering is a methodology and process that converts theoretical concepts
into useful applications to satisfy human needs.

 Definition 8.1 Engineering is a technological and organizational
methodology and approach by which human beings can repetitively plan,
design, develop, produce, maintain, and/or use complicated artefacts, in
rigorous, systematic, efficient, and refining processes, that cannot be done by
individuals.

E

© 2008 by Taylor & Francis Group, LLC

578 Part III Organizational Foundations of SE

 Software engineering is a discipline that adopts engineering approaches
to develop large-scale software with high productivity, low cost, controllable
quality, and measurable development schedules. It is recognized that: “Large
software systems are among the most complex systems engineered by man
[Guttag, 2002].” Therefore, engineering approaches and generic engineering
principles form an important part of the basic theoretical and empirical
foundations of software engineering. However, the engineering metaphor in
the term software engineering was vague from the very beginning, and it has
rarely been well defined and explained in the literature.

This chapter attempts to explore a set of generic engineering principles
and their applications in software engineering, particularly the theory of
coordinative work organization. It helps to understand the nature, status, and
problems of software engineering, as well as its future trends, based on
comparative studies between the generic engineering principles and current
software engineering practices. Key empirical knowledge and methodologies
that may be learned from the generic engineering principles will be
discussed. Engineering principles for software engineering will be elicited on
engineering objectives, organization, technology, professionalism, and
domain characteristics.

In the remainder of this chapter, the engineering foundations of
software engineering will be presented as follows. Section 8.2 explores
generic engineering approaches that may be learnt by software engineering.
Section 8.3 discusses basic engineering principles commonly shared in most
engineering disciplines. Section 8.4 describes the engineering principle for
software engineering, such as engineering characteristics, division of labor,
and professionalism for software engineering. Section 8.5 creates the
coordinative work organizational theory for software engineering that reveals
how software engineering projects may be optimally organized and what are
the major reasons of historical failures in software engineering. Section 8.6
reviews empirical methodologies for software engineering such as case
studies, experiments, trials, benchmarking, and standardization.

8.2 Generic Engineering

Approaches

The advances in sciences and the increases of economical demands led to the
industrial revolutions during the 18th and 19th centuries. The wealth created
by standardized and mass-produced products encouraged the exponential

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 579

growth in engineering in the 20th century. Then, the computer revolution
brought the world entirely new fields of engineering, such as computer
engineering, software engineering, information engineering, knowledge
engineering, and intelligent engineering.

 In order to explain the fundamental engineering principles of software
engineering, let us review the historical development of matured engineering
disciplines and elicit their common approaches and methodologies. This can
be done in the following subsections by answering the following questions:
a) What are the differences between science and engineering? b) What are
the generic approaches to engineering? c) How have various engineering
disciplines matured in history? and d) What are the generic principles of
engineering?

8.2.1 ENGINEERING: A CONCEPT EMERGED FROM
 THE INDUSTRIAL REVOLUTIONS

Engineering is a concept of industrial organization emerged from the
industrial revolutions [Ure, 1835; Soanes and Stevenson, 2003]. The
industrial revolutions were a time of drastic change and transformation from
hand tools and hand made items to machine manufactured and mass
produced goods.

The first industrial revolution begun in England in the 1730s emerged
from inventions and technology innovations in cotton weaving. Before the
first industrial revolution in the early 18th century, England's economy was
based on its cottage industry. Workers would buy raw materials from
merchants and take it back to their cottages in order to produce goods at
homes. It was usually owned and managed by one person or a family. Since
the productivity of the cottage workers was low, goods were high in price
and exclusive only to the wealthy people. Under the increasing demand for
cotton cloth, the flying shuttle was invented in 1733 that resulted in the
reduction of weaving time in half. This invention triggered the first industrial
revolution. Inventions such as the spinning jenny and the water-powered
frame helped the manufacture of cotton goods by dramatically improved
productivity with machinery and mass production. In this way, the cottage
industry had been inevitably replaced by the factory system. Mass production
made usually expensive items affordable by less wealthy people. Therefore,
the quality of life had been improved. In the meantime, steam engines were
invented that provide stronger power than horses and enable a faster mode of
transportation for people and resources.

 The second industrial revolution in the beginning of the 19th century
proved more drastic, not only in inventions, but also in social and
organizational reforms as life with machinery had already been assimilated
into society. The second industrial revolution utilized the power of electricity

© 2008 by Taylor & Francis Group, LLC

580 Part III Organizational Foundations of SE

based on Michael Faraday’s invention. Electricity improved life by supplying
people with light as well as electricity to power machines. Communications
have been improved by the telephone and telegraph. Radio waves were
discovered that enabled messages to be sent over long distances in virtually
no time. During the 1800's, over 70,000 chemical compounds were analyzed,
and petroleum begun to be widely used as an alternate energy source. As a
result, steam engines were replaced by the internal combustion engines. This
allowed a person to own a car instead of using public transportation. Then,
the airplane industry was born following the first flight of man-made aircraft
by Orville and Wilbur Wright.

 As the first industrial revolution was centered by machinery, power,
and mass production, the second industrial revolution was characterized by
electricity, transportation, and the internal combustion engine. Both industrial
revolutions brought on more technology, power, and wealth followed by the
third industrial revolution in the 20th century of computer and information,
which is still going on and has already dramatically and fundamentally
extended human’s capability, reachability, and cognitive power.

 The characteristics of the industrial revolutions, such as machinery,
mass production, energy, power systems, high-speed transportation, and
telecommunications, were the cradle of the concept of engineering. As
Andrew Ure (1835) observed in The Philosophy of Manufactures, the
improvements in machinery in the industrial revolutions have a three-fold
bearing:

• “They make it possible to fabricate some products which, but

for them, could not be fabricated at all.

• “They enable an operative to turn out a greater quantity of
work than he could before – time, labor, and quality of work
remaining constant.

• “They effect a substitution of labor comparatively unskilled,
for that which is more skilled.

Ure’s observation revealed the great achievement of the engineering

approach to industrialization that resulted in extended human capability,
improved productivity, and reduced skill requirement.

The impacts of industrial revolutions and the industrialization of the
economies can be described from the following five aspects [Macionis et al.,
1997]:

 • New forms of energy
 • The centralization of work in factories
 • Manufacturing and mass production

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 581

 • Specialization and division of labor
 • Wage labor and management as profession

More generically, the industrial revolutions extended human physical
capability by machines and power engines, while the new information
revolution is focused on the extension of human intelligence, memory, and
the capacity for information processing by computers, communication
networks, and robots.
 Contrary to the traditional individual-based production process,
engineering is a methodology for enabling a group of people to work
together to produce a complex product, or achieve a common goal, which
could not be reached by individuals physically, technically, and/or
economically. Therefore, the essence of engineering is the organizational
methodology for enabling team work. Further details of this important
concept will be discussed in Chapters 11 and 13 on management science and
sociology foundations of software engineering.

8.2.2 SCIENCE AND THE GENERIC SCIENTIFIC
 METHOD

Science is both an organized system for the systematic study of

particular aspects of the dual world known as the natural and abstract world,
and a process of inquiry for generating a body of knowledge towards them.
Therefore, science is not only a set of systematic and formulated knowledge
about the dual world, but also a generic method to explore it.

Definition 8.2 Science is a systematic cognitive methodology for

exploring and explaining the nature, for cumulating and organizing the
knowledge obtained about it, and for applying the knowledge in solving
engineering and technological problems.

Science stresses an objective approach to the phenomena being studied,

and scientific questions about nature tend to emphasizes how things occur
rather than why they occur. It involves the application of the scientific
method to problems formulated by trained minds in particular disciplines
[Kuhn, 1970].

In a formal sense, the scientific method, according to Francis Bacon
(1561 - 1626), can be generically described below.

Definition 8.3 The generic scientific method refers to the model for
research that involves the following sequence:

© 2008 by Taylor & Francis Group, LLC

582 Part III Organizational Foundations of SE

 a. Identifying the problem

 b. Collecting data within the problem area (by observations,
measurements, etc.)

 c. Sifting the data for correlations, meaningful connections, and
regularities

 d. Formulating a hypothesis (a generalization), which is an
educated guess that explains the existing data and suggests
further avenues of investigation

 e. Testing the hypothesis rigorously by gathering new data

 f. Confirming, modifying, or rejecting the hypothesis in light of
the new findings

Scientists may be interested in different aspects of nature, but they use
a similar intellectual approach to guide their investigation. Scientists must
first formulate a problem to which they can then seek an answer. The answer
generally involves an explanation relating to order or process in nature. The
scientist is primarily interested in the mechanisms by which nature works
rather than in questions of ultimate purpose.
 Once a question has been raised, the scientist seeks answers by
collecting data relevant to the problem. The data, which may consist of direct
observations and measurements, or derived results, are carefully sifted for
regularity and relationships. An educated guess, called a hypothesis, is then
drawn up in order to place the data into a conceptual framework.
 The hypothesis makes up the lattice-work upon which scientific
understanding is structured. The hypothesis constitutes a generalization that
describes the state of affairs within an area of investigation. Inductive logic is
used to formulate a hypothesis (a generalization) from the particulars
(specific) of the data. Since the scientific method involves such an inductive
process at its very core, it is often described as the inductive method.

A hypothesis must be both logical and testable. It is tested by
constructing experiments and gathering new data, which in the end will
either support or refute the hypothesis. An experiment must be reproducible,
which means that other scientists must be able to repeat the experiment and
get the same results. Once the experiments have been completed, the results
must be weighted to see if the hypothesis should be accepted, modified, or
rejected. Although scientists are very inquisitive and highly creative in the
thought processes, their curiosity may be constrained by previous, long-
accepted views.

Definition 8.4 The criteria that constitute a good hypothesis, Hg, can be
defined as a 5-tuple with causality (C), originality (O), generality (G),
predictability (P), and falsifiability (F), i.e.:

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 583

Hg (C, O, G, P, F) (8.1)

where

 (a) C = true states that the hypothesis must be able to explain the
causal relationship of existing data or observed phenomena.

 (b) O = true states that the hypothesis must be able to create a new
relationship between two or more entities or phenomena.

 (c) G = true states that the hypothesis must be able to explain a set of
similar phenomena rather than an individual instance.

 (d) P = true states that the hypothesis must be able to predicate new
phenomena and their consequences on the basis of the defined
causality.

 (e) F = true states that the predictability and causality of the
hypothesis must be able to be proven true or false.

Formal proofs and/or repeated confirmations of a hypothesis against the

five criteria as defined in Definition 8.4 elevate it to the status of a theory.

When a fundamental theory has been formally proven and/or repeatedly

confirmed over a long period of time, it may be accepted as a scientific law.
When a hypothesis is substantially contradicted by new findings, it is
rejected to make way for new hypotheses.

It is noteworthy that a hypothesis which withstands the rigor of present
tests may have to be altered in the light of future evidences. In other words, a
theory, or a proven hypothesis, is a relatively true explanation of a given set
of phenomena in a given space and time. Absolutely true theories may only
exist in the results of philosophy and mathematics.

8.2.3 ENGINEERING VS. SCIENCE

In a speech, Richard Feynman (1963) perceived that “Science means,
sometimes, a special method of finding things out. Sometimes it means the

The 20th Principle of Software Engineering

Theorem 8.1 The relationship between a hypothesis and a theory states
that the necessary and sufficient conditions for a hypothesis Hg(C, O, G,
P, F) to be proven as a theory T are iff it fulfills the following criteria, i.e.:

Hg T, iff C ∧ O ∧ G ∧ P ∧ F = T (8.2)

© 2008 by Taylor & Francis Group, LLC

584 Part III Organizational Foundations of SE

body of knowledge arising from the things found out. It may also mean the
new things you can do when you have found something out, or the actual
doing of new things. This last field is usually called technology [Feynman
and Brown, 2000].”

In the view of system philosophy, there is neither number two in
sciences nor number one in engineering. The former is true because sciences
are aimed at advancing the knowledge, where no reinvention or rediscovery
is recognized. The latter is true because both engineering design and
implementation are characterized by the polymorphism in a large solution
space. It is impossible to prove if a given engineering solution is the best or
optimistic both technically and economically. This is particularly true in
software engineering.

8.2.3.1 Science and Scientists

Science is a process of inquiry for generating a body of knowledge. All

sciences are characterized by a common method as a logic of inquiry in their
quest for knowledge, such as tenacity, intuition, reference, rationalism, and
empiricism.
 W.I. Beveridge observed that “The curiosity of the scientist is usually
directed toward seeking an understanding of things or relationships which the
notices have no satisfactory explanations. Explanations usually consist in
connecting new observations or ideas to accepted facts or ideas. An
explanation may be a generalization which ties together a bundle of data into
an orderly whole that can be connected up with current knowledge and
beliefs. That strong desire scientists usually have to seek underlying
principles in masses of data not obviously related may be regarded as an
adult form or sublimation of curiosity [Beveridge, 1957].” Further,
Beveridge wrote: “Scientists are cautious and conservative individuals,
recognizing that most phenomena are multidetermined and that new evidence
may necessitate replacing an old explanation with a better one.”

 Christensen pointed out that the objectives of science are description,
explanation, prediction, and control [Christensen, 1997]:

 • Description: The portrayal of a phenomenon, fact, or mechanism

by identifying variables, constants, and their relations and
constraints.

• Explanation: The determination of the cause of a given
phenomenon that answers why the phenomenon exists and its
occurring conditions.

 • Prediction: The ability to anticipate the occurrence of an event
 based on the described knowledge and explained conditions.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 585

 • Control: The manipulation of the conditions that determine a
phenomenon and the elimination of the influence of extraneous
 conditions. Controlled inquiry is an absolutely essential process in
 science because without it the cause of an effect could not be
 isolated.

 Scientists are professionals who investigate the universe around us and
invent new ways of using its resources. All scientific work is carried out
systematically and originally. Scientific approaches include experiment,
observation, testing, exploration, classification, measurement, equipment,
modeling, and development of theories [Beveridge, 1957; Sober, 1995].

8.2.3.2 Engineering and Engineers

 Referring to Definition 8.1, engineering is an organizational approach

by which human beings can repetitively plan, design, develop, produce,
maintain, and/or use complicated artifacts in a rigorous, systematic, and
refining process. Thus, an engineer is a professional who has a disciplined
role with required skills in an engineering branch.

 A. Eide and his colleagues thought [Eide et al., 1979] that “Both the
engineer and scientist are thoroughly educated in the mathematical and
natural sciences, but the scientist primarily uses this knowledge to acquire
new knowledge, whereas the engineer applies the knowledge to design and
develop usable devices, structures, and processes. In other words, the
scientist seeks to know, the engineer aims to do.” In summary, scientists
explore what is; engineers find out how to do.

 Definition 8.5 An engineer is a professional who is regulated and

experienced to practise engineering by using science, mathematics, and
technology for creative design and implementation of applications, products,
systems, and processes.

 In the Computing Curricula – Software Engineering (CCSE),
IEEE/ACM identify the following characteristics of engineers in general
[IEEE/ACM, 2001/03; Wang, 2005h]:

• “Engineers proceed a task by making a series of decisions,
 carefully evaluating options, and choosing an approach at each
 decision-point that is appropriate for the current task in the
current context. Appropriateness can be judged by tradeoff
analysis, which balances costs against benefits.

• “Engineers measure things, and when appropriate, work
 quantitatively; they calibrate and validate their measurements;
and they use approximations based on experience and empirical
data.

© 2008 by Taylor & Francis Group, LLC

586 Part III Organizational Foundations of SE

 • “Engineers emphasize the use of a disciplined process when
 creating a design.

• “Engineers can have multiple roles: research, development,
 design, production, testing, construction, operations,
management, and others such as sales, consulting, and teaching.

• “Engineers use tools to apply process systematically.
Therefore, the choice and use of appropriate tools is key to
engineering.

 • “Engineering disciplines advance by the development and
 validation of principles, standards, and best practices.

 • “Engineers reuse designs and design artifacts.”

According to Definitions 8.1 and 8.5, it can be seen that the domain of
engineering and engineers is as broad as the demand of mankind. Engineers
are trained to think in analytical and objective terms and to approach
problems methodically and systematically. As Michel Sintzoff stated “The
clear and structured representation of design knowledge and reasoning, on an
industrial scale and for various domains, helps to solve the problem of
generality in software engineering, which is akin to that of generality in
artificial intelligence [Sintzoff, 1989].”

8.2.3.3 Relationship between Science and Engineering

The relationship between science and engineering can be analyzed from

the aspects of the disciplines and the professions as shown in Fig. 8.1. The
disciplines of science and engineering can be contrasted by their domains,
although there is no clear cut way. In general, science transfers information
about nature into knowledge and theories; while engineering embodies
knowledge into methodologies and products. The differences between
science and engineering in terms of objectives, methodologies, criteria, and
embodied results are summarized in Table 8.1.

Table 8.1
Characteristics of Engineering and Science

Discipline Major objectives Basic
methodology

Criteria Embodied results

Science Knowledge Inductive Originality Information, knowledge,
and methodologies

Engineering Products, skills,
and applications

Deductive Utility and
efficiency

Technologies, products,
and know-how

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 587

The roles of scientists and engineers as different professions are also
illustrated in Fig. 8.1. Scientists work on scientific research, and engineers
apply scientific theories into industry by engineering development and by
finding the ways for suitable mass production. Although there are overlaps
between the roles of scientists and engineers, it is obvious that an engineer is
not responsible for developing fundamental theories, and a scientist is not
directly involved in manufacturing a product.

Pure
sciences

Applied
sciences

Methodologies Products and
services

Natural and
Engineering Science

Fundamental
research

Applied
research

Design and
development

EngineeringScience

Scientists

Engineers

The discipline

The profession

 Organization for
mass production

Figure 8.1 Engineering vs. science

8.2.4 FUNDAMENTAL GOALS AND CONSTRAINTS OF
 ENGINEERING

 Science and engineering disciplines share a number of common goals
in their pursuits as Steven Weinberg, the 1979 Nobel Prize laureate,
expressed: “Our job in physics is to see things simply, to understand a great
many complicated phenomena, in terms of a few simple principles.” Science
pursues originality, generality, and simplicity in principles and theories. In
addition to the goals of science, engineering seeks efficiency, productivity,

© 2008 by Taylor & Francis Group, LLC

588 Part III Organizational Foundations of SE

and quality in implementation of scientific principles and theories into
repetitive and mass production.
 The three generic engineering goals can be described by a triangular
Engineering Objective Model (EOM) as shown in Fig. 8.2 [Wang, 2006a]. In
the EOM model, each of the three generic goals, efficiency, productivity, and
quality, obeys a basic constraint for engineering organization and practice in
terms of costs, time, and utility, respectively. It is found, unfortunately, the
three basic goals in engineering are interlocked.

In the EOM model, productivity is the principal objective and major
purpose of any engineering discipline. The improvement of productivity is
the key to achieve other engineering goals by technical innovation, i.e., by
increasing δ as described in Eq. 8.2. For example, the innovation of
automatic exchangers and stored program-controlled switching systems in
the telecommunication industry in the 1940s and the 1990s have dramatically
improved telephone handling capability, which eventually solved the
telephone traffic crisis if it would still be handled manually. Therefore, it is
inevitable that software engineering should set its paramount goal on the
improvement of productivity by using automatic tools for software code
generation.

 Efficiency
 (Costs, C)

 Productivity
 (Time, T)

 Quality
 (Utility, U)

Figure 8.2 The engineering objective model (EOM)

The EMO model as shown in Fig. 8.2 demonstrates that the three basic

engineering goals cannot be achieved at the same time in a given engineering
context. That is, any goal among the three may be achieved in the costs of the
remainder. A formal treatment of this observation is described in the
following theorem.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 589

 According to Theorem 8.2, the following conclusions may be predicted
for a given engineering project:

a) The shortening of time (T) and reduction of costs (C) will

sacrifice the quality of expected result or its utility (U).

b) The reduction of time (T) and requiring of better result (U) will
 increase costs (C).

c) The reduction of costs (C) and requiring of better quality (U) will
increase the production time (T).

 In the EOM model, quality is a complicated term that will be formally
modelled and analyzed in Section 11.4.1.

Because software engineering is a specific branch of engineering
disciplines, it obeys the same generic engineering rules as stated in Theorem
8.2. The most fundamental categories of goals for software engineering are
still productivity, efficiency, and quality, although there are various goals
identified such as improve customer satisfaction, ensure quality, shorten time
to market, decreasing costs and effort, improve process capability, enhance
reliability/dependability/code stability, provide better services, minimum
defects, estimate project accurately, and provide better maintainability.

8.2.5 GENERIC ENGINEERING APPROACHES

 As we discussed in Section 8.2.1, the engineering approaches and
disciplines emerged during the industrial revolutions. Before the industrial
revolutions, people produced goods as craftsmen in small or limited scales
and they learnt things by doing. For improving productivity as well as

The 22nd Law of Software Engineering

Theorem 8.2 The conservation of basic engineering constraints states
that the three basic constraints of engineering goals known as time (T),
costs (C), and utility (U) are conservative in a given engineering context,
i.e.:

 ft(T-1) + fc(C-1) + fu(U)

 Uk
T C

δ= =
•

 (8.3)

where both δ and k are a constant.

© 2008 by Taylor & Francis Group, LLC

590 Part III Organizational Foundations of SE

quality, and for lowering the requirements for skills in mass production, a
generic industrial engineering approach [Eide et al, 1979; Wang and Patel,
2000] had been formed as outlined below:

 • To identify repeatable work processes;

 • To identify standard and reusable components of products;

 • To adopt division of labor (people are specialized in a defined

 role in processes);

 • To equip specialized tools for the roles and processes;

 • To recognize management as a profession for organization of the
 processes and for coordination of the roles.

 The above key steps of a generic engineering approach form the basis
of almost all existing engineering disciplines. Historically, every engineering
discipline in the modern industries has been developed and matured in the
same approach: first a kind of art, then a discipline of engineering.
 For instance, in the early 19th century, watches were produced
manually. Therefore, there were no identical watches. At this stage, the
watchmakers were characterized as craftsmen rather than engineers. This
resulted in low productivity and high price, and one would perhaps need to
find the original watchmaker in order to have a watch fixed. In the middle
and late 19th century, the industrial revolutions addressed some of the
problems and introduced the approach to engineering. As a result in the
watch manufacturing industry, watches could be mass produced by
machines, and all watches were identical so that parts were interchangeable
among watches of the same brand. At this stage, the traditional watch-smiths
had become engineers who were responsible and skilled for one or limited
production processes in watch manufacturing.
 The generic industrial approach to engineering is also applicable to
software engineering, although it has often been ignored in research and
practice.

8.2.6 THE GENERIC ENGINEERING MATURITY
 MODEL (EMM)

 Malcolm Gregory (1971) pointed out: “By examining the roots of
engineering, we are able to ensure the broad flow of history and to view the
present as a part of that flow. This helps us to put the present in its context
and to take a better view of our goals, aspirations, and actions.”

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 591

 In order to answer how the existing engineering discipline matured, a
generic engineering maturity mode may be created from the history of
industrialization by comparing the differences between an engineer and a
craftsman over time. Looking at the time dimension, engineering is a
discipline matured from arts of craftsmen in terms of scale and rigor. When
asking how the industrial revolutions had changed the traditional individual
or family watchmakers, history tells us that the manual watchmakers had
disappeared except a few that existed as a special profession. Similar
evolution traces may be found in other traditional engineering disciplines.

The history indicates a universal engineering maturity model of all

engineering disciplines [Wang and Patel, 2000] as shown in Table 8.2, where
the key characteristics of each maturity level have been identified. Based on
the definitions in Table 8.2, the following theorem can be derived.

Table 8.2

The Engineering Maturity Model (EMM)

Maturity
Level

Description Characteristics

1 The
emerging
age

• Being a branch of an existing discipline
• Demands in sciences and/or industry have been identified
• Common theories and foundations are forming
• A group of professionals has been recognized

2 The art
age

• Varying professional practices
• Individual stamps and influences both design and
 implementation
• All processes are dependent on personal talent, art, and hobby
• Work is skill/experience-based and doing by learning
• Individual tends to be wizard for everything in all processes
• Chasing new methods and/or technologies before their
 validation has been proven

3 The
engineering
age

• Adoption of division of labor (specialization)
• Established processes
• Reinforced standards
• Stable and regulated professional practices
• Defined best practices
• Well developed theories and foundations
• Proven methods and technologies

4 The
post-
engineering
age

• Well defined processes
• Well defined standards
• Precisely defined professional roles within a discipline
• Refined methods and technologies
• Matured theories and foundations for relevant science branches
• Giving birth of new disciplines

© 2008 by Taylor & Francis Group, LLC

592 Part III Organizational Foundations of SE

The EMM model of engineering maturity can be illustrated as shown in

Fig. 8.3. Applying the EMM model, it may be found that some examples of
existing engineering disciplines have already been at Level 4 – the post-
engineering age, such as civil engineering, mechanical engineering, and
electrical engineering. Electronic engineering would be at Level 3 – the
engineering age, since it is still under rapid development within the context
of a wide range technical innovation. Biological engineering is an example of
those at Level 1 – the emerging age of an engineering discipline.

Emergence

Time

Art

Engineering

Post engineering

Maturity

Figure 8.3 The engineering maturity model (EMM)

The EMM model can be taken as a reference for analyzing and

organizing software engineering for a maturing engineering discipline. Based
on the EMM model, we can predict that software engineering as a young
engineering discipline is going to be matured in the same way: from art to
engineering. Checking with the engineering maturity characteristics, software
engineering is considered to be a good example of a Level-2 discipline in the
art age, while it is under a transition toward Level 3 – the engineering age.

The 21st Principle of Software Engineering

Theorem 8.3 The Engineering Maturity Model (EMM) states that the
applied engineering disciplines have four maturity levels known as the
levels of emergence (L1), art (L2), engineering (L3), and post-engineering
(L4), i.e.:

 1 2 3 4:EMM L L L L⊆ ⊆ ⊆ (8.4)

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 593

8.3 Basic Engineering Principles

The fundamental engineering objectives and the engineering approaches
have been discussed in Section 8.2. This section elicits basic engineering
principles, which focuses on those of engineering organization, technology,
management, and professionalism. Applications of the basic engineering
principles in software engineering will be explored in Section 8.4. A formal
treatment of engineering organization in general and for software engineering
in particular will be presented in Section 8.5 on the basis of the newly
developed coordinative work organization theory [Wang, 2007d].

8.3.1 PRINCIPLES OF ENGINEERING ORGANIZATION

 Engineering disciplines emerged and developed in the industrial
revolutions share the following common principles in engineering
organization:

• Apply systematic processes
• Adopt division of labor
• Support co-operative work
• Adopt quantitative measurement
• Establish standards
• Use tools and machinery
• Plan actual schedule
• Optimise resources allocation
• Derive predictable outputs
• Seek controllable quality

 The essence of the above principles is the establishment of efficient

engineering infrastructures and the rational forms of engineering
organization. The key organizational principle of engineering invented in the
industrial revolutions is division of labor, or limiting and specializing roles of
labors in the whole production processes, which plays an important role in
engineering organization. For instance, in electronic engineering an
electronic engineer is not supposed to be specialized in all application areas

© 2008 by Taylor & Francis Group, LLC

594 Part III Organizational Foundations of SE

of electric engineering: from low to high frequency circuits, from analogue to
digital circuits, from real-time systems to home appliances. Similarly, an
automobile engineer is not supposed to be skilled in all areas of car
manufacturing and maintenance, such as mechanical structures, engines,
transmissions, electronic systems, micro-controllers, petrol, lighting, safety
facilities, and bodies of vehicles. Therefore, for large-scale software
development, what we need is highly skilled software engineers who are
competitive for one or limited roles, rather than a person with all-round skills
in the software engineering processes. This is what we may learn from the
general principles of industry engineering. More rigorous treatment of
engineering organization theories will be developed in Section 8.5.

8.3.2 PRINCIPLES OF ENGINEERING TECHNOLOGY

 The principles of engineering technology are elicited from a set of
common processes and tactical approaches shared in all engineering
disciplines. The technical principles of engineering are identified as follows
[Wang, 2004c]:

• Identify rigorous foundations
• Apply established theories and methods
• Adopt specialized notation systems
• Improve visualization and tangibility
• Comparative study alternative methodologies
• Adopt matured technologies
• Identify repeatability in develop, design, and manufacturing
• Identify standard components
• Adopt mass production technologies
• Maximum reuse
• Adopt modeling and prototyping technologies
• Adopt measurement and metrics
• Reinforce rigorous testing and validation
• Improve compatibility and exchangeability
• Adopt quality assurance techniques
• Encourage technical innovation
• Pursue engineering elegance and efficiency
• Develop tools for self-sufficiency

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 595

 More than a half of the technical principles of engineering principles
have not been systematically adopted and applied in software engineering.
This indicates that software engineering is a very young discipline as an
engineering profession.

8.3.3 PRINCIPLES OF ENGINEERING MANAGEMENT

 The principles of engineering management are at the center of all
engineering principles, which establish guidelines for basic engineering
organization, group collaboration, and support environments. The managerial
principles of engineering are identified as follows [Wang, 2004c]:

• Recognize management roles

• Establish team work environment

• Understand the role of interpersonal coordination in groups

• Improve communications

• Ensure work product integration

• Maintain project data and documentation

8.3.4 PRINCIPLES OF ENGINEERING
 PROFESSIONALISM

 Richard Gisselquist believed that “producing software is an engineering
endeavor at the level of responsibility and ethics. … Engineers do not
celebrate until they can walk across the completed bridge, holding their
children’s hands [Gisselquist, 1998].” This subsection discusses the
principles of engineering professionalism in term of ethics.
 According to Wright (2002), “Ethics is the study of the morality of
human actions. It is the science of determining values in human conduct and
of deciding what ought to be done in different circumstances and situations.
Engineering ethics represents the attempts of professional engineers to define
proper courses of action in their dealings with each other, with their clients
and employees, and with the general public.”
 Although ethical principles are nontechnical ones for a professional
engineer, they are designed to coordinate the professional practice in a sector.
The nine professional characteristics of engineering principles, as shown
below, represent an important aspect of the nontechnical features of a
matured engineering profession.

© 2008 by Taylor & Francis Group, LLC

596 Part III Organizational Foundations of SE

 • Establish laws and regulations
 • Accumulate patents and know-hows
 • Develop a code of ethics
 • Define proudness and responsibility for professionals
 • Identify a body of knowledge
 • Promote continuous professional education
 • Establish license or certificate schemes
 • Evaluate environment effects
 • Regulate safety roles

 For establishing software engineering as a respected professional
discipline, all above characteristics will attract much more attention in a
modern society. Professional regulations in software engineering may be
implemented by registration, certification, and/or licensing. There are a
number of codes of ethics and professional practice for software engineering,
which share similar principles and philosophies toward a cohesive way we
act as software engineering professionals [IEEE/ACM, 1998].

8.4 Engineering Principles for
 Software Engineering

Engineering approaches to large-scale software development have been
identified as established methodologies, processes, tools, standards,
organization methods, management methods, and quality assurance systems.
Interesting findings on what software engineering may learn from generic
engineering principles are discussed in this section.

8.4.1 THE ENGINEERING CHARACTERISTICS OF
 SOFTWARE ENGINEERING

 Analyzing the descriptions on generic engineering approaches and
basic engineering principles in Sections 8.2 and 8.3, it can be seen that in
order to identify a comprehensive set of characteristics of software

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 597

engineering, a comparative approach of thinking between existing
engineering disciplines and software engineering may be inspirational. This
subsection takes a comparative approach to software engineering, in order to
perceive the nature and characteristics of software engineering and to
understand what software engineering may learn from the generic
engineering principles.

It was a dilemma: “to be or not to be” on the combination of the two
terms software and engineering. Software professionals have been arguing
the term software engineering and its intensions and extensions for more than
four decades since Friedrich Bauer proposed it in 1968 [Bauer, 1972/1976;
Naur and Randell, 1969]. Yet still some fundamental questions remain, such
as: a) Is software development an engineering discipline? and b) Are
software developers engineering professionals? There were completely
different assertions and opinions on the contradictory issues, and it is still
confusing the academia, practitioners, and students in software engineering.
 However, according to the EMM model presented in Theorem 8.3, the
above myth is caused by a confusion of timely maturity in perceiving the
software profession and software engineering. The rational answer to the
question if software development is an engineering discipline is that although
it is not at present and in the past, it will be and should be yes in the future.
 As discussed in Sections 8.2 and 8.3, engineering is a set of disciplines
seeking solutions for complicated problems and systems that could not be
done by individuals. The key aim of engineering is to repetitively produce
complex artifacts in an efficient way. Thus, to many professionals,
engineering means systematic planning, teamwork, rigorous process,
repeatability, and efficiency.
 Software engineering is a maturing engineering discipline that adopts
the generic engineering principles in the development of large-scale
software, which could not be produced by individuals. Currently, software
development is evolving from the laboratory-oriented and all-round-
programmer-based practice to an industry-oriented and process-based
platform, and software developers are experiencing changes of roles from
craftsmen to regulated professionals – the software engineers [Wang and
King, 2000a; Wang and Patel, 2000]. The practices of the former are based
on personal talents, tastes, and art, while those of the latter are based on
disciplined processes and repeatable professional activities.

8.4.2 DIVISION OF LABOR

 According to the generic engineering principles, one of the keys of
software engineering organization and practice is division of labor, which is
so obvious and so often to be ignored in current software engineering
practice. For large-scale software development, what we need is highly

© 2008 by Taylor & Francis Group, LLC

598 Part III Organizational Foundations of SE

skilled software engineers who are competitive for one or limited roles,
rather than a person with all-round skills in the software engineering
processes.

Table 8.3

Roles of Software Engineers in Software Engineering

No Category Roles
1 Software engineering

Organization

1.1 Software organization manager
1.2 Organizational software engineering process designer
1.3 Software engineering environments and tools maintainer
1.4 Legacy (delivered) systems manager
1.5 System services monitor
2 Software

Development

2.1 System architect
2.2 Domain engineer
2.3 Requirements capture engineer
2.4 Programmer
2.5 Software testing engineer
2.6 System integration and configuration engineer
2.7 Field trial engineer
3 Software engineering

project management

3.1 Project manager
3.2 Project planning and estimation engineer
3.3 Project contract and requirements manager
3.4 System analyst
3.5 Quality assurance engineer
3.6 Project configuration and document manager
4 Customer support

management

4.1 Customer problems and requirements analyst
4.2 Customer solution consultant
4.3 Customer development coordinator
4.4 Customer testing coordinator
4.5 Technical trainer
4.6 Maintenance and supporting engineer
4.7 Technical menus author

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 599

 A software engineer is a professional whose role and skills are
regulated by the software engineering discipline and processes. Examining
the requirements for functions of software engineers in software engineering
at the technical, managerial, and organizational categories, a variety of roles
can be identified as shown in Table 8.3 [Wang and King, 2000a]. Observing
Table 8.3, it can be found that a software engineer may be responsible for
only one or limited role(s) rather than a master of all the skills in software
engineering processes. This is what we may learn from the universal
principles of industrial engineering, which is so obvious and so easy and so
often to be ignored in practice. Therefore, the key is ‘division of work’, or
limitation of the roles of a software engineer in the whole software
development processes. Formal models of division of labor will be presented
in Section 11.2 on management foundations of software engineering.

8.4.3 CHARACTERISTICS OF SOFTWARE
 ENGINEERING IN THE ENGINEERING AGE

Conventional industries produce products from raw materials via
engineering approaches; while the software industry produces software
solutions for problems via software engineering. Software engineering is
going to be a discipline that fully adopts engineering approaches, such as
established methodologies, processes, tools, standards, organization methods,
management methods, quality assurance systems and the like, in the
development of large-scale software. The aims of software engineering are to
improve productivity and quality, keep timeliness, prolong software life
span, and maximum benefit in software development.

Because software engineering is a young discipline, there is still some
way to go for software engineering to be a matured engineering discipline. A
fundamental issue we may learn from the generic principles of industrial
engineering is there are still significant gaps in many important practices of
software engineering in the engineering way, such as:

 • Team-work oriented
• Human-oriented programming and documentation rather than

machine-oriented
 • Following common roles rather than personal hobbies

• Explicit description of roles, best practices, and regulated
processes rather than leaving them loosely as personal experience
or private knowledge

• System test and validation should carried out independently from
original developers or vendors

© 2008 by Taylor & Francis Group, LLC

600 Part III Organizational Foundations of SE

• Individual software engineers should be prepared to fit in specific
processes rather than tend to be a master of all-round activities in
development

• Maximizing application and reuse of available components and
tools in development rather than tends to be self-sufficient

 A detailed analysis of characteristics of software engineering at

different maturity ages is provided in Table 8.4. The information in Table 8.4
shows that current software development practices and software engineering
education are still located in-between the ages of art and engineering,
because the center of education and practices is mainly craftsman-and-
laboratory-environment-oriented. For software engineering to evolve into a
mature engineering age there is still much to do as described in the right-
hand column of Table 8.4. However, from a historical point of view, it is
encouraging to see that software engineering, as an engineering discipline,
has been matured to be between Level 2 and Level 3 as in the EMM model in
just four decades. Some existing engineering disciplines, such as civil
engineering and manufacturing engineering, would have taken hundreds of
years to reach their current levels of maturity.

 By recognizing the current status of software engineering as a
discipline locating between Levels 2 and 3 according to the EMM scale,
responsibilities of software engineering researchers and practitioners are to
push forward software engineering to a matured engineering discipline by
applying the generic engineering principles gained from other matured
engineering disciplines.

8.4.4 UNIQUE PRINCIPLES OF SOFTWARE
 ENGINEERING

 In addition to the generic principles of software engineering as
discussed in the previous sections, unique domain specific principles of
software engineering may be identified. These unique principles can be
classified into the categories of cognitive characteristics and special problem-
domain characteristics of software engineering.

The fundamental cognitive informatics principles of software
engineering are those of its informatics properties, intelligent behaviors,
denotational mathematics needs, and cognitive complexity. In Section 3.5.1
eight fundamental cognitive characteristics of software engineering are
identified. Detailed discussions of the basic cognitive characteristics of
software engineering will be presented in Sections 9.5 and 9.6 [Wang,
2004b/06a/07a].

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 601

The domain-specific principles of software engineering encompass the
following basic characteristics that determine the difficulty of software
development and require a broad knowledge structure for software engineers
[Wang and Patel, 2000]:

Table 8.4

Characteristics of Software Engineering Practices at Different Levels of EMM

No. Characteristics of SE
in the art age

Characteristics of SE
in the engineering age

1 Individual perceptions on software
development activities

Team perceptions on software development
activities

2 A programmer, as software
developer, is a master of all skills
needed for programming

A software engineer skills for a single or
limited development process(es)

3 Final products reflect personal talent,
art, hobby, and experience

Final products are based on sound theory,
proven methodologies, and best practices

4 A software developer is a person who
has multi-roles as of requirement
analyst, designer, programmer, tester,
and even the customer

A software engineer is a person who has
specific role in one of the processes as listed
on the left

5 Software product is a personal
solution to an application

Software product is a standard and regulated
solution to an application

6 Programming is personal interaction
between the programmer and a
computer

Programming is a group interaction between
all roles and processes including users

7 Program is written for machines
rather than for human reading

Program is written for team members
involved in all processes rather than only for
machines

8 Programmers are not trained in
formal ways, but believe learning by
doing

Software engineers are trained in formal
ways and following common rules

9 Knowledge transfer in programming
seemed to be hard, and design and
implementation of software is
regarded as personal experience

Knowledge transfer is regulated and carried
out by hierarchical processes at organization,
project, and individual levels

10 Problems to be solved are limited in
small scale

Problems to be solved are in large-scale and
for complicated systems

11 Program maintenance is relied on the
original designer

Software maintenance can be carried out
independently from the original developers

12 An individual virtually runs a
program using one’s mental power
for software validation

Software validation is carried out by rigorous
architecture design, testing, logical
deduction, and review

13 A programmer is self-sufficient and
self-managed for all processes

Software engineers are mutually related with
a chain of processes

14 Local availability of materials, tools,
and solutions

Global availability of materials, components,
tools, and solutions

© 2008 by Taylor & Francis Group, LLC

602 Part III Organizational Foundations of SE

 • Intangible objects and work products, and intricate relations and
interactions between them

 • Problem domain is infinite, including all application areas of all
existing engineering disciplines

 • Software engineering is design-intensive opposed to repetitive
 mass production

 • Application development is one-off activity

 • Development processes are stable and repetitive

• A specific design and implementation of a software system is only
one of all possible solutions for a real-world problem on the basis
of tradeoffs and constraints

• Software engineering needs new forms of denotational
mathematics as identified in Section 4.5 that are different from
current analytic ones

 The most significant and unique characteristic of software engineering
lays on the fact that its problem domain is infinitive, because it encompasses
almost all other domains in the real world, from scientific problems and real-
time control to word processing and games. It is infinitely larger than the
specific and limited problem domains of the other engineering disciplines.
This stems from the notion of a computer as a universal intelligent machine,
and is a feature fundamentally dominating the complexity in engineering
design and implementation of varying software systems.

8.4.5 PROFESSIONALISM OF SOFTWARE

 ENGINEERING

Via contrasting professional engineers and amateurs in software
engineering, this subsection highlights professionalism as one of the
important requirements for software engineers. Then, the software
engineering ethics and professional practice as recommended by IEEE/ACM
are summarized.

8.4.5.1 Professionalism of Software Engineers

There is a special phenomenon in software engineering that anybody
who is able to use a programming language may claim that one can
programming or even be a software engineer. This is just like that one who
acquires reading and writing ability in a natural language may claim oneself

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 603

as a writer; or one who is able to build a simple shelter or doghouse may
claim oneself as a civil engineer.
 If knowing or even understanding a programming language is not
enough to be a qualified software engineer, then what else is needed? The
answers may be obtained by analyzing the differences between professionals
and amateurs.

Professional software engineers are persons with professional cognitive
models and knowledge on software engineering. They are trained and
experienced in:

 • Fundamental knowledge governing software and software

engineering practices
 • Proven algorithms

 • Problem domain knowledge
 • Problem solving experience
 • Programming languages
 • Program developing tools/environments
 • Solid programming knowledge

 • A global view on software development, including required
 functionalities, exceptions handling, and fault-tolerance

 However, amateurish programmers are persons who know only one or
a couple of programming languages but lack fundamental knowledge, skills,
and experience as those of professionals identified above. Amateurs may be
characterized as follows in software engineering:

 • Possession of an ad hoc structure of programming knowledge
 • Eagerly trying what are directly required for a program

• Tending to focus on details without a global and systematic view
on software as a system

 In discussing “what makes a good software engineer” in a panel,
Marcia Finfer (1989) believed: “the answer, in my opinion, is simply the
combination of both innate skill and significant experience in building real
systems against a set of functional and performance requirements and a given
budget and schedule.” This shows that professional experience is a primary
factor of professional software engineers. Also, possession of fundamental
principles of software engineering is essential towards excellence of software
engineers.

© 2008 by Taylor & Francis Group, LLC

604 Part III Organizational Foundations of SE

 Software engineering encompasses theory, technology, practice, and
application of software in computer-based systems. A central theme of
software engineering education is to engender an engineering discipline in
software engineers and students, enabling them to define and use processes,
models, and metrics in software and system development.

A software engineer as a professional must demonstrate the ability to

analyze, design, verify, validate, implement, and maintain software systems,
using appropriate quality assurance techniques/methods in all practices. They
must possess the necessary team and communication skills to function in a
typical software development environment. Engineering responsibility and
practice have to be stressed, which includes conveying ethical, social, legal,
economic, and safety issues. These concerns must be reinforced in advanced
work with appropriate use of software engineering standards. Software
engineers should also learn methods for technical and economic decision
making, such as project planning and resource management.

The social responsibility of software engineers above their personal and

professional responsibilities is stressed by David Parnas. He wrote: “My
view is that those of us who have received an extensive education from
society have a debt to repay; we have to share our knowledge with that
society when it can be of benefit to that society [Parnas, 1994].”

8.4.5.2 Ethical Practice in Software Engineering

 The Software Engineering Code of Ethics and Professional Practice
was recommended by the IEEE/ACM Joint Task Force in 1998 [IEEE/ACM,
1998]. The code requires that: “Software engineers shall commit themselves
to making the analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession.”

In accordance with their commitment to the health, safety, and welfare

of the public, software engineers shall adhere to the following eight aspects
of ethics as shown in Table 8.5.

Professionalism of software engineers is mainly reflected in

professional practice, professional judgment, public responsibility, and
product responsibility. They are specified in the IEEE/ACM Software
Engineering Code of Ethics and Professional Practice [IEEE/ACM, 1998] as
follows.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 605

Table 8.5
A Summary of IEEE/ACM Software Engineering Code of Ethics and

Professional Practice [IEEE/ACM, 1998]

No. Principle of
Ethics

Description

1 Public Software engineers shall act consistently with the public interest

2 Client and
employer

Software engineers shall act in a manner that is in the best
interests of their client and employer consistent with the public
interest

3 Product Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible

4 Judgment Software engineers shall maintain integrity and independence in
their professional judgment

5 Management Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software
development and maintenance

6 Profession Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest

7 Colleagues Software engineers shall be fair to and supportive of their
colleagues

8 Self Software engineers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical
approach to the practice of the profession

 Professional practice of software engineers: Acting software
engineering ethically; promoting public awareness; extending software
engineering knowledge by life-long learning; supporting other engineers
practicing the ethics; putting the professional interest above private ones;
obeying all laws governing their work; avoiding false, speculative, vacuous,
deceptive, misleading, or doubtful descriptions of work products; taking
responsibility for detecting, correcting, and reporting errors in software and
associated documents; avoiding associations with businesses and
organizations conflicting with this code; and reporting violations of the
ethics.

 Professional judgment of software engineers: Tempering technical
judgments to human values; endorsing work products cautiously;
maintaining objective judgment when evaluating work products; and
avoiding conflict interest.

 Public responsibility of software engineers: Accepting full
responsibility for one's own work; moderating all parties' interests with the
public good; maintaining software's safety, quality, and protecting the
environment; disclosing any actual or potential danger to the public caused

© 2008 by Taylor & Francis Group, LLC

606 Part III Organizational Foundations of SE

by software, its installation, maintenance, support or documentation; being
encouraged to volunteer professional skills to good causes; and contributing
to public education concerning the discipline.
 Product responsibility of software engineers: Striving for high quality,
acceptable cost and a reasonable schedule; ensuring proper and achievable
objectives for a project; ensuring the use of an appropriate methodology;
working to follow professional standards; ensuring the understanding of
project specifications; reviewing and approving specifications; proving
realistic estimates of cost, scheduling, personnel, quality and outcomes on a
project; ensuring adequate testing, debugging, and review of software and
related documents; ensuring adequate documentation of a software system;
respecting the privacy and information security; being careful to use only
accurate data; and maintaining the integrity of data and information.

8.5 The Theory of Software
 Engineering Organization

In his classic book on The Mythical Man-Month, Frederick Brooks presents a
well-known empirical study on the myths of the relationship between labor
(number of persons) and time (duration in months) in software engineering
[Brooks, 1975/95]. However, in the last chapter of the book, Brooks has still
left the conclusions open: “Propositions of the mythical man-month: true or
false?”

From a more generic management science point of view, the
convention to measure the project workload by a product of labor and time
known as person-month really caused more problems than it explained,
because workload is a common and complicated phenomenon existing not
only in software engineering, but also in project management and economical
decision making in all engineering disciplines.

8.5.1 BASIC PROPERTIES OF COORDINATIVE WORK
 IN ENGINEERING

 This subsection formally analyzes the properties of coordinative work
and the age-old myth on project workload or effort in term of person-month.
Mathematical models that explain the equivalence and transformability
between labor and time in work organization are systematically developed,

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 607

which rigorously describes the conditions of the interchangeability of basic
elements in a coordinative workload [Wang, 2006g/07d].

8.5.1.1 The Mechanisms of Coordinative Workload and Effort

Definition 8.6 The workload W of a coordinative project is determined
by a product of the number of labor L and the duration T needed or spent in a
project, i.e.:

 W = L • T [PM] (8.5)

where the unit of labor is person (P), the unit of duration is month (M), and
as a result the unit of workload is person-month (PM).

 There are numerous myths on the simple relationship between labor
and duration defined in Eq. 8.5 in empirical studies, because a number of
fundamental questions on the nature of the hybrid product of workload in PM
remain [Brooks, 1975/95; Wang, 2006g/07d]. For example, how many
persons and how many months are needed for a given W? Are 1.0P • 10.0M
= 10.0P • 1.0M = 10.0PM?

All the empirical questions in applications on the nature of coordinative

workload can be reduced to the following fundamental problems.

Question 8.1 Whether labor L or duration T is arbitrarily determinable
for a given workload W in a coordinative work?

Question 8.2 Are labor L and duration T interchangeable for a given
workload W in collaborative work organization?

 The following lemma answers Question 8.1. Theorem 8.4 will provide
formal explanations for Question 8.2.

Lemma 8.1 The generic form of workload W carried out by more than
one person is always supplemented by an inevitable overhead h, i.e.:

 W = L • T1 (1+h) [PM] (8.6)

where h is called the interpersonal coordination overhead in a multiple
personal project, and T1 is the time needed to complete the work by only
one person.

© 2008 by Taylor & Francis Group, LLC

608 Part III Organizational Foundations of SE

According to Lemma 8.1, the workload W defined in Eq. 8.5 is a special
case where the project only involves a single person ideally and therefore
there is no interpersonal coordination overhead h.

8.5.1.2 The Rate of Interpersonal Coordination

It is observed that many factors may affect the workload of a
coordinative project [Mooney, 1947; Gray, 1989; Hardy and Phillips, 1998;
Huseman and Miles, 1988; Huxham, 1996; Pasquero, 1991; Roberts and
Bradley, 1991; Wang, 2007d; Wood and Gray, 1991], such as
documentation, swap between roles in a project, and interactions to other
groups in the organization. However, a macro indicator known as the
interpersonal coordination rate r is a unique factor that distinguishes a single
person project and a multiple-person coordinative project. Therefore, the role
of r is the key to solve the myths on coordinative work organization.

Definition 8.7 Interpersonal coordination activities are tasks that can
not be done by an individual, such as communication, meeting,
synchronization, peer review of work products, standardization, supervision,
and quality assurance.

The effort on interpersonal coordination activities as a necessary

overhead of a coordinative project can be collectively analyzed by the extra
time spent by individuals in the project.

Definition 8.8 The interpersonal coordination rate r is an average ratio

of the time spent on interpersonal coordination activities tr and the total
working time of a person T in a given project, i.e.:

 rtr
T

= (8.7)

According to Definition 8.8, an empirical method for collecting and

calculating r on the basis of work time distributions is provided in Ex. 8.19.
The average rate of interpersonal coordination r has a scope of 0 (0%)

through 1.0 (100%), where r = 0 means there is no interpersonal coordination
and r = 100% means all time has been spent on interpersonal coordination.
These are the two extremes that constrain a coordinative work.

For instance, in software engineering, a wide variety of factors may
affect the interpersonal coordination rate. Ten major factors, such as the
scope of project, importance, difficulty, complexity, domain knowledge
requirement, experience requirement, special process needed, schedule
constraints, budget constraints, and other process constraints, have been
identified in [Wang and King, 2000a] as summarized in Table 8.6, where a

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 609

set of sample weights for the coordination factors for a specific project is also
given as an example.

Table 8.6
Key Factors Affecting the Rate of Interpersonal Coordination in

Software Engineering

 Note: High = 10, Medium = 5, and Low = 1

When the weight for each project factor is determined on a

measurement scale of 1 through 10, the interpersonal coordination needed for
the given project can be empirically determined as follows:

10

1
100

i
r i

w
tr
T

== ∝
∑

 (8.8)

Eq. 8.8 indicates that the empirical range of r in software engineering is

0.001 ≤ r < 0.999, or r is between 0.1% to 99.9%. For example, with the
particular layout of a project as given in Table 8.6, the average interpersonal
coordination rate r is proportional to:

10

1 (10 5 10 10 1 5 5 10 1 5)/100
100

0.62

i
i

w
r == = + + + + + + + + +

=

∑

Scope of Weight (wi) No. Factors of project
High Medium Low

1 Scope √

2 Importance √

3 Difficulty √

4 Complexity √

5 Domain knowledge requirement √
6 Experience requirement √

7 Special process needed √

8 Schedule constraints √

9 Budget constraints √
 10 Other process constraints √

© 2008 by Taylor & Francis Group, LLC

610 Part III Organizational Foundations of SE

Real-world project data collected in recent surveys in the software
industry show r is between 12.5% to 47.8% [Wang, 2007d]. Higher rate of r
is also reported up to 70.0% at IBM [McCue, 1978]. The data also indicate
that r may vary in different processes of software engineering, ranging
averagely from 49.3% in the design process, 30.8% in the coding process,
60.0% in the integration/testing process, and 47.8% in the maintenance
process, respectively. It is noteworthy that different development
methodologies may affect the calibration of r. For instance, r = 30.2% for
projects organized according to conventional waterfall models, and it may be
up to 50.2% when projects are organized by extreme programming or agile
processes.

8.5.1.3 The Overhead of Interpersonal Coordination

Definition 8.9 The number of interpersonal coordination, n, needed in
a group of size L, L ≥ 2, is determined by the number of pairwise
coordination in the group, i.e.:

2
L

! =
2 ! (2) !

(1)
2

C Ln
L

L L -

=
−

= i
 (8.9)

where L is the number of labor in the group. In addition, a possible k-nary
coordination, k > 2, within the group can be treated as multiple pairwise
ones.

Lemma 8.2 The overhead of interpersonal coordination h in a multiple
personal project (L > 1) is proportional to both the number of pairwise
relations n and the average rate of time spent in each pair of coordination
r, i.e.:

 (1)
2

h r n

L L
r

= •

−= •
 (8.10)

where multiple personal relations in the project can be treated as the
combinations of multiple pairwise relations.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 611

Lemma 8.2 indicates that the interpersonal coordination overhead h is a
function of r and L, i.e., h(r, L), which represents the efficiency of the
transformation between labor and time in a coordinative project. For a given
r for a coordinative project, the more the persons involved in the project, the
faster the overhead for coordination increases. For instance, according to Eq.
8.10, if there are three persons, i.e., L = 3, in a coordinative project where r =
0.4, the interpersonal overhead h = 1.2; for L = 10, h = 18; and for L = 1,000,
h = 199,800. Obviously, h = 0 if a project is with only one person.

Typical overheads, h(r, L), for interpersonal coordination are provided

in Table 8.7 determined by Eq. 8.10. With the data derived in Table 8.7,
Lemma 8.2 can be illustrated by the 13 curves as shown in Fig. 8.4, where
the first curve h(0.001, L) is very close to zero. It is noteworthy that Lemma
8.2 is a generic model that is valid for the domains 0 < r ≤ 100% and 1 ≤ L ≤
∞ for any coordination project.

Table 8.7

Overhead of Interpersonal Coordination h(r, L)

L [P] 1 2 3 4 5 6 7 8 9 10

n 0 1 3 6 10 15 21 28 36 45

R h(r, L)

0.001 0 0.001 0.003 0.006 0.01 0.015 0.021 0.028 0.036 0.045

0.01 0 0.01 0.03 0.06 0.1 0.15 0.21 0.28 0.36 0.45

0.05 0 0.05 0.15 0.3 0.5 0.75 1.05 1.4 1.8 2.25

0.1 0 0.1 0.3 0.6 1 1.5 2.1 2.8 3.6 4.5

0.2 0 0.2 0.6 1.2 2 3 4.2 5.6 7.2 9

0.3 0 0.3 0.9 1.8 3 4.5 6.3 8.4 10.8 13.5

0.4 0 0.4 1.2 2.4 4 6 8.4 11.2 14.4 18

0.5 0 0.5 1.5 3 5 7.5 10.5 14 18 22.5

0.6 0 0.6 1.8 3.6 6 9 12.6 16.8 21.6 27

0.7 0 0.7 2.1 4.2 7 10.5 14.7 19.6 25.2 31.5

0.8 0 0.8 2.4 4.8 8 12 16.8 22.4 28.8 36

0.9 0 0.9 2.7 5.4 9 13.5 18.9 25.2 32.4 40.5

1.0 0 1 3 6 10 15 21 28 36 45

© 2008 by Taylor & Francis Group, LLC

612 Part III Organizational Foundations of SE

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

Labor [P]

O
ve

rh
ea

d
h(

r,
L)

Figure 8.4 Overhead of interpersonal coordination when r ∈ {0.001 … 1}

8.5.1.4 The Nature of Coordinative Work in Engineering

Definition 8.10 The actual time T spent in a multi-person project is
determined by the ideal average time spent on work by a single person T1 and
the total overhead of interpersonal coordination h, i.e.:

1

1

(1)

(1)
(1)

2

T T h

L L
T r

= +

−= + •
 (8.11)

where the more the persons involved, the longer the duration of the project.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 613

 Replacing T in Eq. 8.5 with the above expression, the inherent nature of
coordinative work and the generic form of the actual workload in a
coordinative project can be revealed by the following law.

This is the first fundamental finding on laws of coordinative work

organization [Wang, 2007d]. The 23rd Law of software engineering
(Theorem 8.4) reveals that the ideal workload W1 defined in Eq. 8.12 is a
special case where the project only involves one person ideally and therefore
there is no interpersonal coordination overhead (h = 0). Although, some other
types of overhead may exist in various projects, h(r, L) is the unique property
found only in coordinative projects.

It is noteworthy that the generic coordinative workload model
developed in Theorem 8.4 is development-cycle/structure independent,
because it is only a function of W(r, L). The theory fits all three forms of
system organizations in serial, parallel, and hybrid structures at both the
unit/process level and the whole project level, because a hybrid structure of
work organization can be analyzed segmentally where each segment is a
simple serial or parallel structure.

In the context of software engineering, since a software project
organized by any process model falls into one of the three basic system
structures, the project as a whole or as a set of segmented processes obeys the
same laws. Theorem 8.4 is also applicable to any real-world instance or
specific case that uses the waterfall model, incremental model, or process
models, because various model adoptions may only change the instance

 The 23rd Law of Software Engineering

Theorem 8.4 The coordinative workload in engineering states that the
actual workload W of a coordinative project is a function of the average
interpersonal coordination rate r and the number of labor L in the project,
i.e.:

1

1

1

(1)

(1)

(1)
(1) [PM]

2

W L T

L T h

W h

L L
W r

= •

= • +

= +

−= + •

 (8.12)

where T1 is the indicational duration needed to complete the work by
only one person, and W1 is the ideal workload without the interpersonal
overhead h or that of a single person project.

© 2008 by Taylor & Francis Group, LLC

614 Part III Organizational Foundations of SE

values of the interpersonal coordination rate r rather than the law itself. In
addition, the following empirical observations and heuristic principles in
software and system engineering such as: a) The Brooks’ principle that states
“Adding people in a late project make it later [Brooks, 1975/95],” and b) The
Schonberger’s observation on “Why Projects are Always Late [Schonberger,
1981],” are specific evidences supporting the generic work organization
theory.

8.5.2 LAWS OF WORK ORGANIZATION IN SOFTWARE
 ENGINEERING

Based on the understanding of the nature of coordinative workload in
engineering projects and the key role of interpersonal coordination rate in
team work, a set of laws for engineering organization in general and for
software engineering organization in particular will be established in this
subsection.

8.5.2.1 The Laws of Incompressibility of Software Engineering
Workload

Observing Theorem 8.4 it can be seen that the ideal workload W1 of a
project is the minimum workload in coordinative tasks, and it cannot be
reduced no matter how many persons are involved via any kind of labor
allocation.

Proof: According to Theorem 8.4, W = W1(1+h). (a) In a multi-person

project, because h > 0 by any kind of labor allocation, therefore W > W1. (b)
In a single-person project, since h = 0, therefore, W ≥ W1 = Wmin.

The 22nd Principle of Software Engineering

Theorem 8.5 The incompressible workload states that a given ideal
workload W1 in software engineering can not be compressed by any kind
of labor allocation, i.e.:

 W ≥ W1 = Wmin (8.13)

and in the best case when there is only one person involved, the minimum
workload W = W1 = Wmin may be reached.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 615

Theorem 8.5 indicates that via coordination in a multi-personal project
the duration of the project may be reduced, but the total workload cannot be
reduced because the minimum workload for a given project is reached at
Wmin = W1. In other words, although labor and time may be interchangeable,
the minimum workload for a given project is a constant. Therefore, the total
workload in any type of coordinative labor allocation will be larger than the
minimum.

8.5.2.2 The Law of Interchangeability between Labor and Time in
 Software Engineering

On the basis of Theorems 8.4 and 8.5, the mathematical model of the
interchangeability between labor and time can be formally derived as
follows.

Proof: Solving Eq. 8.12 for T obtains the above conclusion.

The 24th Law of software engineering indicates that the duration of a

coordinative project is a function of labor L and the interpersonal
coordination rate r for the given project. In case where r is a variable in
dynamic project organization, such as in different processes of a software
engineering project, each individual process can be treated as a subproject
with a constant r, or simply, a mathematical mean of r for all processes may
be adopted.

The 24th Law of Software Engineering

Theorem 8.6 The interchangeability of labor and time (ILT) states that,
for a given workload W, labor L and duration T are transformable under
the following condition:

1

1 2

1

(1)
(1)

2
1 1(1)
2 2

1 2()
2

WT
L

L LW r
L

W rL rL
L

W rL r
L

=

−= + •

= − +

= − +

 (8.14)

© 2008 by Taylor & Francis Group, LLC

616 Part III Organizational Foundations of SE

8.5.2.3 The Laws of the Shortest Duration of Coordinative Work in
 Software Engineering

Proof: Because T(r, L) as given in Eq. 8.14 is a deferential function on

L when r is known for a certain project, it reaches the minimum Tmin when its
derivative equals to zero, i.e.:

1

1 2

1 2(())
2

1 2()
2
0

T W rL r
L L L

W r
L

∂ ∂= − +
∂ ∂

= −

=

 (8.17)

Eq. 8.17 yields

2
2 0r
L

− = , i.e., the optimum labor allocation is:

0

2

1.414 , 0

L
r

r
r

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎢ ⎥
⎡ ⎤= ≠⎢ ⎥
⎢ ⎥

 (8.18)

where L0 will be rounded to the ceiling of an integer, i.e., the minimum
number of persons needed for a given project.

This is the second fundamental finding on laws of coordinative work

organization [Wang, 2007d]. The 25th Law of software engineering
(Theorem 8.7) reveals, for the first time, that the optimal labor allocation in

The 25th Law of Software Engineering

Theorem 8.7 The shortest duration of coordinative work states that there
exists the shortest duration Tmin under the optimum labor allocation L0
for a given ideal workload W1 with a certain interpersonal coordination
rate r, i.e.:

min 0

1 0
0

0

{ | }

1 2 () [] (8.15)
2

1.414 , 0 [] (8.16)

T T L L

W rL r M
L

L r P
r

⎧ = =⎪⎪⎪⎪⎪⎪ = − +⎪⎪⎪⎨⎪⎪⎪⎪⎪ ⎡ ⎤⎪ = ≠⎢ ⎥⎪⎪⎪⎩ ⎢ ⎥

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 617

engineering project organization is not related to the size or the ideal
workload of a given project as conventional empirical studies suggested.
Surprisingly, it is merely determined by the interpersonal coordination rate
for the project. The 25th Law had hardly been realized in empirical studies in
management science and system engineering [Brooks, 1975/79; Schonberger,
1981], because of the vital need for a long chain of insightful reasoning that
seamlessly transforms Eq. 8.5 through Eq. 8.18.

Although other factors as identified earlier may influence the shortest

duration Tmin in a certain project, Theorem 8.7 provides insight on
coordinative work allocation out of all the trivial factors that have hidden the
key truth of rational work organization for decades since the establishment of
management science [Tayler, 1911] and system science [Klir, 1992].

As a result of a complicated long-chain reasoning, Theorems 8.4

through 8.7 reveal and prove mathematically the existence and predictability
of the minimum of project duration determined by the optimum labor
allocation under certain group coordination rate r. Although there were
empirical observations on the minimum, such as Brooks’ work (1975),
rigorous mathematical explanation has not been created for this profound
phenomenon in management science [Tayler, 1911], system engineering
[Klir, 1992], and operations theories [Schmenner and Swink, 1998].

It is noteworthy that the same work coordination laws and

mathematical formulae may be used at subproject or individual process levels
as well as at the whole project level. In the former case, the labor L does not
necessarily be treated as a constant in the entire lifecycle of the given project.
There are two ways to deal with L’s flexibility: a) Whenever L needs to be
different in a certain process of a project, the workload of this process may
be recalculated by the same law in the same mathematical form. b) In the
planning phase, L may be deemed as an average of labor allocations in the
entire lifecycle of the project.

A set of typical data between actual duration and actual workload

against different labor allocations, subjected to the ideal workload W1 =
10.0PM, is shown in Table 8.8. Any other specific cases can be determined
by applying Eqs. 8.16 and 8.15.

In Table 8.8, the optimum labor allocation L0 for each T(r, L) curve is

shaded where T reaches its minimum. The curves and trends of actual project
durations against different labor allocations are illustrated in Fig. 8.5 known
as the Pigeon Diagram. The curves indicate that a given optimum labor
allocation L0 for each curve will determine a certain minimum on the curve
corresponding to the shortest project duration Tmin.

© 2008 by Taylor & Francis Group, LLC

618 Part III Organizational Foundations of SE

Table 8.8
Actual Time T(r, L) and Actual Workload W(r, L) Distribution

L [P] 1 2 3 4 5 6 7 8 9 10

T(0) [M] 10 5 3.33 2.5 2 1.67 1.43 1.25 1.11 1

E(0)[PM] 10 10 10 10 10 10 10 10 10 10

T(0.001) 10 5.01 3.34 2.52 2.02 1.7 1.46 1.29 1.15 1.05

E(0.001) 10 10.02 10.03 10.08 10.1 10.2 10.22 10.32 10.35 10.5

T(0.01) 10 5.05 3.4 2.65 2.2 1.92 1.73 1.6 1.51 1.45

E(0.01) 10 10.1 10.2 10.6 11 11.52 12.11 12.8 13.59 14.5

T(0.05) 10 5.25 3.8 3.25 3 2.92 2.93 3 3.11 3.25

E(0.05) 10 10.5 11.4 13 15 17.52 20.51 24 27.99 32.5

T(0.1) 10 5.5 4.29 4 4 4.18 4.43 4.75 5.11 5.5

E(0.1) 10 11 12.87 16 20 25.1 31 38 46 55

T(0.2) 10 6 5.28 5.5 6 6.68 7.44 8.25 9.1 10

E(0.2) 10 12 15.84 22 30 40.1 52.1 66 81.9 100

T(0.3) 10 6.5 6.27 7 8 9.19 10.44 11.75 13.1 14.5

E(0.3) 10 13 18.81 28 40 55.14 73.08 94 117.9 145

T(0.4) 10 7 7.26 8.5 10 11.69 13.44 15.25 17.09 19

E(0.4) 10 14 21.78 34 50 70.14 94.08 122 153.81 190

T(0.5) 10 7.5 8.25 10 12 14.2 16.45 18.75 21.1 23.5

E(0.5) 10 15 24.75 40 60 85.2 115.2 150 189.9 235

T(1) 10 10 13.2 17.5 22 26.72 31.46 36.25 41.1 46

E(1) 10 20 39.6 70 110 160.32 220.2 290 369.9 460

Theorem 8.7 and the pigeon diagram reveal that the key hidden reasons

that cause so many failures of large-scale software engineering projects are
neither technical issues nor inadequate programming skills, but mainly
because of the nonoptimal organization of coordinative work in complicated
projects. In other words, nonoptimal labor allocation and/or incorrect order
of project labor-duration determination are the black hole that results in the
unexpected wastage of huge extra workload or resources in software
engineering.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 619

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

Labor [P]

Ti
m

e
[M

]

T (1)

T(0.5)

T(0.4)

T(0.3)

T(0.2)

T(0.1)

T(0.05)

T(0.01)

T(0.001)

T(0)

Figure 8.5 The pigeon diagram: actual time against number of labors
 (W1 = 10PM)

Example 8.1 Assuming the ideal workload of a software engineering

project is expected to be W1 = 10.0PM and the organization has 1 to 10
persons available, determine the optimum allocation of labor L0 and the
shortest expected duration Tmin for this project according to the 25th Law,
given the average interpersonal coordination rate r = 10%.

Applying the 25th Law (Theorem 8.7), the optimum labor allocation is
obtained as follows:

⎡ ⎤

0
1.414()

1.414
0.1

1.414/0.316

5.0 [P]

L r
r

⎡ ⎤= ⎢ ⎥⎢ ⎥
⎡ ⎤= ⎢ ⎥
⎢ ⎥

=

=

© 2008 by Taylor & Francis Group, LLC

620 Part III Organizational Foundations of SE

Replacing L0 in Eq. 8.15 with the instantiation value L0(r), the shortest
duration of the project can be determined as follows:

min 1 0
0

1 2(-)
2
0.5 10.0 (0.1 5.0 - 0.1 2/5.0)

5.0 0.8

4.0 [M]

T W rL r
L

= +

= • • • +

= •

=

The above solutions indicate that, for a project with an expected

10.0PM workload by one person, the optimum labor allocation and shortest
possible duration implemented by a coordinative project are 5.0 persons for
4.0 months, respectively, under r = 10%. This results in a real workload of W
= 5.0P • 4.0M = 20.0PM by the coordinative team, where the gain is the
reduction of project duration from 10.0M to 4.0M.

Example 8.2 Comparatively reanalyze Example 8.1 for a given average

interpersonal coordination rate r = 50%.
The optimum solution yielded for the same project with ideally 10.0PM

workload under r = 50% is to spend 7.5 months by 2.0 persons, which needs
an expected workload W = 2.0P • 7.5M = 15.0PM.

On the basis of Theorem 8.7, an important corollary may be derived

below, which clarifies the myth that whether labor L or duration T in a
coordinative project is arbitrarily determinable as mentioned in the beginning
of this section.

This is the third fundamental finding on laws of coordinative work

organization [Wang, 2007d]. Corollary 8.1 indicates that the conventional
common sense which believed that labor L or duration T in a coordinative
project is arbitrarily determinable [Brooks, 1975/79; Boehm, 1981; Gantt,
1919; Tayler, 1911] would be a risky organizational practice that could easily
result in a lot of waste of both resources and time without awareness in large

Corollary 8.1 An optimal work organization must be carried out in the
following order for a given coordinative project:

a) To determine the optimum labor allocation L0 (Eq. 8.16);
b) To obtain the shortest duration of the coordinative work Tmin

under L0 (Eq. 8.15).

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 621

coordinative engineering projects. Further analysis will be shown in Example
8.5 in Section 8.5.3.

8.5.3 THE MYTHICAL MAN-MONTH EXPLAINED

According to the organization laws of software engineering, it is proven
that the trade-off between labor and time is possible under certain conditions
as given in Theorem 8.7 and Corollary 8.1. This subsection analyzes the
equivalence or the exchange rate between labor and time in coordinative
work organization.

Definition 8.11 The maximum gain of time ∆T of a multi-person
project is the difference between the time needed when only one person is
allocated for the project and the shortest time Tmin when labor is optimally
allocated at L0, i.e.:

 ∆T = T1 - Tmin (8.19)

Definition 8.12 The maximum increment of labor ∆L of a multi-person

project is the difference between the optimum allocated number of persons L0
and the smallest group where L1 = 1, i.e.:

 0 1 1= , 1L L - L L∆ ≡ (8.20)

The physical meaning of Eq. 8.21 is how many expected months may

be gained or shortened in the schedule of a coordinative project by adding
per labor into the project. It also explains how many months may be delayed
if a person is withdrawn from the project.

The 23rd Principle of Software Engineering

Theorem 8.8 The exchangeability from labor to time states that the
exchange rate from labor to time γL∼T in a coordinative work organization
is determined by the ratio between the increment of time ∆T and the
increment of labor ∆L, i.e.:

1

0 1
 [M/P]

-

L T

min

T
L

T - T
L L

γ ∆=
∆

=

∼
 (8.21)

© 2008 by Taylor & Francis Group, LLC

622 Part III Organizational Foundations of SE

Example 8.3 The exchange rate from labor to time γL∼T as given in
Example 8.1 can be determined as follows:

1

0 1-
10.0-4.0

=
5.0-1.0

1.5 [M/P]

min
L T

T - T
L L

γ =

=

∼

The result shows that around the optimum labor allocation point, the

increment of persons is most effective to progress a project. For this given
example, the increment of each person can reduce the project duration for 1.5
months.

The physical meaning of Eq. 8.22 is how many persons’ work is

equivalent to a monthly increase/decrease in the project duration.

Example 8.4 The exchange rate from time to labor γT∼L as given in

Example 8.3 can be determined as follows:

0 1

1

-

5.0-1.0
=

10.0-4.0
= 0.67 [P/M]

T L
min

L L
T - T

γ =∼

The result shows that, in the most effective case, an action to allow an

extra month in the schedule is equivalent to the reducing of 0.67 person in
the whole project lifecycle.

Comparing Eqs. 8.21 and 8.22, it can be observed that the two
exchange rates are reciprocal. This leads to the following corollary.

The 24th Principle of Software Engineering

Theorem 8.9 The exchangeability from time to labor states that the
exchange rate from time to labor γT∼L in a coordinative work organization
is determined by the ratio between the increment of labor ∆L and the
increment of time ∆T, i.e.:

0 1

1 min

 - [P/M]

T L
L
T

L L
T - T

γ ∆=
∆

=

∼
 (8.22)

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 623

Theorems 8.4 through 8.9 and related corollaries have answered the

fundamental questions in coordinative work organization raised in the
beginning of this section by rigorous reasoning and inferences. As a result,
the insightful nature and inherent mechanisms of the problems in
coordination work organization are systematically revealed and explained.

8.5.4 DECISION OPTIMIZATION IN SOFTWARE
 ENGINEERING

On the basis of the work coordination theory and laws presented in

preceding sections, a number of decision optimization strategies may be
derived towards the following objectives:

(a) The optimal labor allocations and the shortest project duration;

 (b) The lowest workload and costs;

 (c) The lowest overhead of interpersonal coordination.

8.5.4.1 Optimization of Project Organization for the Shortest Duration

In the software industry, time to market is always a priority. Therefore,

the shortest duration optimization strategy as provided in Corollary 8.3 is as
practically important as that of the cost optimization strategy that will be
described in the next subsection.

Table 8.8 and Fig. 8.5 described a small scale software engineering
project with W1 = 10.0PM. The case study on a large-scale project with W1 =
100.0PM is summarized in Table 8.9. The optimal labor allocation L0 for
each T(r, L) curve is shaded where T reaches its minimum.

Corollary 8.3 The strategy for optimizing a project for the shortest
duration is to set the project at the expected workload Wexp(L0, Tmin).

Corollary 8.2 Labor and time are bidirectionally interchangeable or
transformable in coordinative work organization under the constraints of
Theorems 8.4 through 8.9, i.e.:

 1

L T T Lγ γ−=∼ ∼ (8.23)

© 2008 by Taylor & Francis Group, LLC

624 Part III Organizational Foundations of SE

Table 8.9
Actual Time and Actual Workload Distribution (W=100PM)

L [P] 1 2 3 4 5 6 7 8 9 10 20 30 50 100

T (0) 100 50 33 25 20 17 14.3 12.5 11 10 5 3.33 2.00 1

T(0.001) 100 50 33 25 20 17 15 13 12 11 6 4.8 4.5 6

T(0.01) 100 51 34 27 22 19 17 16 15 14.5 14.5 18 27 51

T(0.05) 100 53 38 33 30 29 29 30 31 33 53 76 125 249

T(0.1) 100 55 43 40 40 42 44 48 51 55 100 148 247 496

T(0.2) 100 60 53 55 60 68 73 86 91 100 195 293 492 991

T(0.5) 100 75 83 100 120 142 165 188 211 235 480 728 1227 2476

T(1) 100 100 132 175 220 267 315 363 411 460 955 1452 2452 4951

When W1 = 100.0PM, the curves of actual project durations against
different labor allocations are illustrated in Fig. 8.6. The optimum labor
allocation for each curve can be found where T(r, L) reaches its minimum.

Observing Table 8.9 and Fig. 8.6, it is noteworthy that no matter how
large a software engineering project is, the optimum labor allocations are
mainly ranged within 1 through 10 persons. Any other solutions are not an
optimal labor allocation, because they do not result in the shortest project
duration, rather than create a dramatically large actual workload.

This is the forth fundamental finding of the laws of coordinative work
organization [Wang, 2007d] that leads to the following theorem.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 20 30 50 100

Labor [P]

Ti
m

e
[M

]

T (1)

T(0.5)

T(0.2)

T(0.1)

T(0.05)

T(0.01)

T(0.001)

T(0)

Figure 8.6 Actual time against number of labors when W1 = 100PM

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 625

Proof: Reformatting Eq. 8.16 the following expression is obtained:

 2
0

2r
L

= (8.25)

For a required L0 > 20.0P implies r < 0.005. Because an interpersonal

coordination rate r less than 0.5% is impossible for carrying out any software
engineering project, no project can be organized economically, efficiently,
and technically sound in any form with more than 20.0 persons.

Ignoring the above natural constraints as described in Theorem 8.10,
i.e., adding more labor into a maximum labor allocated project, will result in
an exponentially increased actual workload as shown in the trends of the
curves in Figs. 8.5 and 8.6, or in other words, a project failure in reality.

This is the fifth fundamental finding on laws of coordinative work
organization. The truth has been evidenced by numerous failed projects in
software engineering that involve hundreds of programmers in a single
project [Brooks, 1975/95; Schonberger, 1981].

This corollary is a direct extension of Theorem 8.10. Usually, setting of

Tmin ≥ 10.0M is safe for W1 ≥ 100.0PM.
It is noteworthy that Theorem 8.10 has ruled out the technical and

economic feasibility for organizing large-scale software engineering project
with a single large group. Therefore, the rational solution for real-world
large-scale projects organization in software engineering is to adopt multi-

The 25th Principle of Software Engineering

Theorem 8.10 The constraint on group size in coordinative work states
that there exists an upper limit of group size Smax in coordinative work
organization in software engineering, i.e.:

Smax = max (L0(r))
 = 20 [P] (8.24)

Therefore, large projects must be partitioned into multiple parallel groups
that each of the groups obeys the same natural constraint.

Corollary 8.4 A large software engineering project, W1 ≥ 100.0PM, with
a higher coordination rate r, cannot be economically and feasibly
completed with less than Tmin = 5.0 M.

© 2008 by Taylor & Francis Group, LLC

626 Part III Organizational Foundations of SE

groups in a hierarchical structure, rather than simply increasing the size of a
single group. The only possible clue to do so is to divide the whole project
into clearly partitioned and isolated parallel subprojects, provided that each
of those subprojects should still obey the constraint on group sizes as given
in Theorem 8.10.

Further discussions on large-scale project organization may be referred
to Chapters 10 through 13, particularly Section 10.3.5 on System
Organization Trees, Section 12.6.2 on the Formal Economic Model of
Software Engineering Costs (FEMSEC), and Section 13.5.2 on Theory for
Large-Scale Software Engineering Project Organization. These chapters
explain how large-scale projects may be organized by hierarchical structures
according to theories of system science, management science, economics,
and sociology. Special attention may be paid to Law 45 on FEMSEC
(Theorem 12.3), Law 47 on organizational coordination efficiency (Theorem
13.3), and Law 48 on time-oriented optimization for large-scale project
organization (Theorem 13.4).

8.5.4.2 Optimization of Project Organization for the Lowest Effort /Cost

Using the data provided in Table 8.8, the curves of actual workloads
with varying overhead rates against different number of labors are illustrated
in Fig. 8.7.

Observing Fig. 8.7, it can be seen that all curves obey Theorem 8.5 that
states Wmin = W1, i.e., the minimum effort/cost can only be reached when the
project is carried out by one person.

According to Theorem 8.5 and Corollary 8.5, it is noteworthy that the

group work in engineering organization is actually a generic mechanism and
structure that allows the trading of time by labor as stated in the following
corollary.

Corollary 8.5 The strategy for optimizing a project for the lowest
effort/costs is to set the project at Wmin(L1, T1).

Corollary 8.6 Coordinative work organization by groups in engineering
may gain time or shorten the project duration by using more man power,
but cannot reduce the minimum project costs due to the natural constraint
stated in Theorem 8.5, i.e., Wmin = W1(L1, T1).

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 627

Figure 8.7 Actual effort against number of labors when W1 = 10PM

Actually, most coordinative engineering projects enable organizers to

pursue an optimization strategy for both the shortest project duration and the
minimum costs at the same time. In this generic case, the optimal strategy is
still Wexp as stated below.

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

Labor [P]

Ef
fo

rt
[P

M
] W(1)

W(0.5)

W(0.4)

W(0.3)

W(0.2)

W(0.1)

W(0.05)

W(0.01)

W(0.001)

W(0)

© 2008 by Taylor & Francis Group, LLC

628 Part III Organizational Foundations of SE

Example 8.5 In Example 8.1, the optimal work allocation has been

determined as exp 0 min 5.0 4.0 20.0 [PM]W L T= • = • = . When the number
of persons for this project is subjectively allocated by L = 9.0P, what will be
the amount of the real workload W? How much effort would have been
wasted due to this nonoptimal labor and time allocation?

According to Eqs. 8.14 and 8.12, the duration T and the real workload

W of this project for given L = 9.0P and r = 0.1 can be determined,
respectively, as follows:

1
1 2(-)
2
0.5 10 (0.1 9.0 - 0.1 2/9.0)

5.0 1.02

5.1 [M]

T W rL r
L

= +

= • • • +

= •

=

 9.0 5.1

45.9 [PM]

W L T= •

= •

=

According to Corollary 8.7, due to the nonoptimal labor and time

allocation in this coordinative project, the effort wasted, ∆W, can be expected
as follows:

exp

45.9 - 20.0

25.9 [PM]

W W W∆ = −

=

=

Corollary 8.7 The strategy for optimization of a coordinative project for
both the shortest project duration and the minimum costs is to set the
project at Wexp(L0, Tmin). Otherwise, the waste of effort ∆W can be
determined as:

exp

0 min= () () [PM]

W W W

L T L T

∆ = −

• − •
 (8.26)

where W is the realized workload due to a nonoptimal work allocation.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 629

The above example demonstrates that, due to the exponential curves of
W(r, L) as shown in Fig. 8.7, the average interpersonal coordination rate r is
really the black hole that may consume a huge extra workload when the
group size is not optimally determined in software engineering.

8.5.4.3 Optimization of Project Organization by Controlling the
 Interpersonal Coordination Rate

It is noteworthy, in Examples 8.1 and 8.2, that the interpersonal
coordination rate r may significantly affect the optimization results of a
project plan. A complicated engineering project, particularly in software
engineering, may be easily turned to a failure due to bad organizational
decisions with a nonoptimal labor allocation as stated below.

A rule of thumb in optimal decision making by controlling r may be

derived from the data shown in Table 8.10.

Observing Table 8.10 and Fig. 8.6, it is noteworthy that no matter how

large a software engineering project is, the optimum labor allocations are
mainly ranged within 1.0 through 20.0 persons (Theorem 8.10). Any other
solution is not an optimum labor allocation, because they do not result in the
shortest project duration rather than a creation of a dramatically large actual
workload.

The 26th Principle of Software Engineering

Theorem 8.11 The risk of nonoptimal work organization states that the
risks R due to irrational decisions of work organization are proportional
to the coordination rate r in a project. That is, the higher the r, the higher
the risk under nonoptimal labor allocation:

 r∝R (8.27)

Corollary 8.8 The higher the interpersonal coordination rate r, the longer
the possible shortest development duration, and the higher the total actual
effort; and vice versa.

© 2008 by Taylor & Francis Group, LLC

630 Part III Organizational Foundations of SE

Table 8.10
The Optimum Labor Allocation and the Shortest Duration Minimum

r L0 Tmin Wmin E1
1.0 1.41 9.15 12.90 10.00
0.9 1.49 8.90 13.26 10.00
0.8 1.58 8.67 13.70 10.00
0.7 1.69 8.30 14.03 10.00
0.6 1.83 7.95 14.55 10.00
0.5 2.00 7.50 15.00 10.00
0.4 2.24 7.00 15.68 10.00
0.3 2.58 6.25 16.13 10.00
0.2 3.16 5.32 16.81 10.00
0.1 4.47 4.00 17.88 10.00

0.05 6.32 2.93 18.52 10.00
0.01 14.14 1.35 19.09 10.00

0.001 44.59 0.45 20.07 10.00
0 ∞ 0 ∞ 10.00

Corollary 8.9 proves there is the natural constraint on the upper limit of

group size, L0, in software engineering project organization as stated in
Theorem 8.10. No matter how much resources one would dispatch, the
maximum team size of a software engineering project is constrained by the
natural laws revealed in Theorems 8.4 through 8.11.

This section has addressed an age-old problem on coordinative project
and group organization and optimization across many disciplines such as
management science, operations theories, system science, software
engineering, economics, and sociology. Conventional work has been focused
on empirical studies of project planning and scheduling, and the inherent
nature of the problem was hidden by too many trivial factors. This is the first
time that it has been revealed that the interpersonal coordination rate in group

Corollary 8.9 The optimal labor allocation in an individual software
engineering project L0 is ranged between 10 to 3 persons corresponding
to the constrained coordination rate 1% ≤ r ≤ 20%, i.e.:

0

0 max

= 3 [P], = 20%

= 10 [P], = 1%
min max

min

L r

L r
−

−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 (8.28)

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 631

is the black hole that has resulted in the failures of so many large-scale
projects due to the exponential growing of unexpected actual workload under
nonoptimal labor and work allocation. Based on the Wang’s laws and
theorems of rational work organization theories, a wide range of applications
in optimal software engineering organization may be conducted, such as the
decision optimization strategies in engineering coordination, and the
determination of the best labor allocation, the shortest duration, and the
lowest effort (cost) in project organization.

8.6 Empirical Software Engineering

It is recognized that software engineering requires both theoretical and
empirical research. The former focuses on foundations and basic theories of
software engineering; whilst the latter concentrates on fundamental
principles, tools/environments, and best practices. The primary
methodologies for empirical studies in software engineering encompass case
study, experiment, trial, benchmarking, and standardization. These empirical
methodologies may usually involve surveys and statistical analysis
technologies as well.

8.6.1 SOFTWARE ENGINEERING CASE STUDIES

Case study is the first primary method for empirical studies in software
engineering.

Definition 8.13 A case study is an intensive investigation and analysis

of a particular technology, project, organization, or environment based on
information obtained from a variety of sources such as interviews, surveys,
documents, test or trial results, and archival records.

Case studies link a theory to practice, which allow conclusions to be

drawn about the suitability of a given method on real-world problems in
industrial scales. They also enable inductive inferences on a general theory
based on a set of empirical data and applications.
 Case studies may be used to validate a theory or method by empirical
tests. They are also useful for providing a counter instance for a generally
accepted principle. However, the drawback of case studies as an empirical
method in software engineering is the difficulties of data collection and the

© 2008 by Taylor & Francis Group, LLC

632 Part III Organizational Foundations of SE

generalization of findings via limited cases, particularly when they are
positive but nonexhaustive.

8.6.2 SOFTWARE ENGINEERING EXPERIMENTS

Science as we know it today may be dated from the introduction of the
experimental method during the Renaissance. It is a common means, in any
scientific and engineering discipline, to gain empirical knowledge by
conducting laboratorial and industrial experiments. The validation of
empirical theories and best practices is by repetition and testing [Christensen,
1997].

Definition 8.14 Experiment is a fundamental research approach to

identify causal relationships among variables under a controllable
environment.

 Rene Dubos perceived [Beveridge, 1957]: “The experiment serves two
purposes, often independent one from the other: it allows the observation of
new facts, hitherto either unsuspected, or not yet well defined; and it
determines whether a working hypothesis fits the world of observable facts.”
 A major advantage of the experimental approach is that a causal
relationship can be inferred with a high degree of control over irrelevant
variables by either eliminating their influence or holding their influence
constant. Another advantage is the ability to manipulate precisely one or
more variables at one time in order to identify a possible causality.
 The disadvantage of experiment is that laboratory findings are obtained
in an artificial environment which precludes the generalization to a real-
world situation. Hence, more in vivo experiments and in-field trials need to
be adopted as described in the following subsection.
 Experiment is seen vital for validating and assessing software
engineering methodologies and techniques. Victor Basili and his colleagues
promoted the experimental approach to software engineering [Basili et al.,
1986/91]. Lawrence Votta and Adam Porter [Votta and Porter, 1995]
proposed three types of experiments in software engineering as follows:

 • Individual vs. groups
 • Students vs. professional software developers
 • In vitro vs. in vivo studies

where in vitro means in a controlled environment and in vivo stands for the
way it really happens.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 633

 A generic software engineering experiment may be carried out in the
following process: experimental design, conduct the experiment and collect
data, result analysis, and interpretation results. Similar to this experimental
process, Pierre Bourque and Alain Abran developed an experimental
framework for software engineering research [Bourque and Abran, 1996].
The framework provides a model of software engineering experiment, which
consists of the phases of experiment definition, planning, operation,
interpretation, and field testing.
 The experimental framework begins with definition of the problem and
hypothesis of the experiment. The design of the experiment and measurement
criteria is conducted in the planning phase. When the goal and hypothesis are
defined and methods and measures are selected, the experiment can then be
carried out in the operation phase. The experimental results are described and
analyzed in the interpretation phase, no matter whether the results are either
positive or negative in validating the hypothesis. A well designed software
engineering experiment may result in new findings, theories, models, lessons
learned or validation of a method or tool. The early phases of experiment
may be carried out in laboratories or development centers. Then, field testing
is necessary to examine the theory, method, or model in the industrial setting
of software development organizations.
 Systematic elimination, or vary one thing at a time, is a widely
accepted principle in carrying out experiments. W.I.B. Beveridge observed
that “It is when experiments go wrong that we find things out [Beveridge,
1957],” because a search for the unknown factor in an experiment may lead
to an interesting discovery. Therefore he suggested that “A good maxim for
the research man is: look out for the unexpected.” This truth of the matter
also lies in Pasteur’s famous saying: “In the field of observation, chance
favors only the prepared mind.”

8.6.3 SOFTWARE ENGINEERING TRIALS

When a system is newly developed and tested, trial should be carried
out in parallel with existing system before a decision may be made for
putting the new system into operation as the main and active system.
Statistics show that problems and failures may intensively occur during the
turn over between the existing and new system, because of both technical and
operational reasons.

Definition 8.15 System trial is a technology in empirical software

engineering for safely putting a new system into operation.

© 2008 by Taylor & Francis Group, LLC

634 Part III Organizational Foundations of SE

 The organization of software engineering trial is demonstrated in Fig.
8.8. Parallelism and output comparison between the new and old systems are
key techniques for trials. Therefore, it is unwise to throw away the existing
system and cease traditional practices before it is for sure that the new system
is working as specified and expected in the field. Otherwise, there will be no
back-up system and users could not resume the conventional practice
whenever the new system should fail.

Figure 8.8 The architecture of software engineering trials

A typical procedure for system trial in empirical software engineering
is provided in Fig. 8.9 [Wang, 2004c]. The six steps of trial should be
followed carefully, particularly for the two evaluations when switching the
new system from the back-up state to the active state, and when the old
system is going to be shutdown and the traditional practices are going to be
ceased.

Figure 8.9 The procedure of software engineering trials

Back-up

Active

Input

New system

Old system

Comparison

Output

Satisfied

Satisfied

Unsatisfied

Unsatisfied

1. Customer training

3. Preliminary
trial evaluation

4. Trial new system as the active system

5. Final trial
evaluation

2. Trial new system as the back-up system

6. Retire the old system

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 635

 It is noteworthy that the criteria for retiring the old or existing system
are threefold: a) The trial is completed and the new system can produce the
same output under the same operational conditions in site; b) The
performance of the new system is satisfied; c) The users have been trained
and have already been used to the new system. The trial and old system
retirement procedure is particularly vital for safety-critical and real-time
systems in software engineering.
 Pilot or preliminary experiment is a typical way of engineering trial,
which uses a small scale experiment at the laboratory to seek an indication as
to whether a full scale field experiment is warranted. A pilot project is often
applied in software engineering to test a new technology, architecture, tool,
or system platform.

8.6.4 SOFTWARE ENGINEERING BENCHMARKING

 Software engineering benchmarking is one of the important

methodologies in software process engineering [Dutta et al., 1998; Wang,
2001e; Wang et al., 98b/99b/01; Wang and King, 2000a/00b; Chiew and
Wang, 2002]. Benchmarking and benchmark-based process improvement is a
cutting-edge technology in empirical software engineering for adaptive and
relative process improvement.

Definition 8.16 A benchmark of a software engineering process system

is a set of statistical reference data that represents the average performance
and industrial norms of a set of processes in software engineering practices.

The key value of the software engineering benchmarking technologies

is the establishment of the industrial norms and the quantitative measurement
of common and best practices in different regions. On the basis of the
benchmarks, software organizations are able to determine their current
positions in a region, and to compare their practices against peers in the same
sector. One of the major application areas of software engineering
benchmarking is benchmark-based process improvement. Another
application area of benchmarking is to enable software development
organizations to compare and better manage their process improvement
activities through benchmarking analysis.

A European process benchmark is developed by IBM (Europe) in the
later 1990s, which encompasses 7 software engineering processes. Then, a
series of worldwide surveys have been conducted by the author in order to
establish a set of comprehensive benchmarks according to the Software
Engineering Process Reference Model (SERPM) [Wang et al., 1998b/99a;
Wang and King, 2000a] that consists of 51 processes characterized by 444

© 2008 by Taylor & Francis Group, LLC

636 Part III Organizational Foundations of SE

Base Process Activities (BPAs). This section describes the design and
establishment of the two software engineering process benchmarks.

8.6.4.1 The IBM European Benchmarks on Software Engineering
 Practices

 The IBM European benchmarks on software engineering provide seven
high-level processes known as those of the organization, process, quality,
methods, technology, planning, and measurements [IBM, 1996/97]. All
processes defined in the benchmark are performed slightly above level 5 in
the scale of 1 to 10, except the measurement process, as shown in Fig. 8.10.

In collaboration with IBM (Europe), the Center for Software
Engineering at the Swedish Product Engineering Research Institute (IVF)
conducted a national benchmarking survey to derive a national benchmark of
software engineering practices for the Swedish software industry [IBM and
IVF, 1997; Wang et al., 1998b/99b/99c/01]. The national benchmarks of
software engineering practices are established against the seven IBM
processes as illustrated in Fig. 8.10.

Generally, almost all processes of the Sweden software industry have
been performed above level 5. Particularly the performances of the
organization, quality, and measurement processes have exceeded the
European benchmarks. The average performance level of all benchmarked
processes is 5.2. The overall average value is used as a general national
benchmark, where if a software development organization has a total mean
process performance higher than 5.2, it has reached and/or exceeded the
national norm in software development practices.

-6

-4

-2

0

2

4

6

8

10

Organisation

Process

Quality

Methods

Technology

Planning

Measurements

Average

Bs (Swedish benchmark) Be (European benchmark)
Gr (Relative gaps)

Figure 8.10 IBM (Europe) benchmark of software engineering practices

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 637

 It is interesting to find that the Swedish national benchmarks are quite
close to the European ones. The average difference of all processes is
only -0.6%. This means the software engineering practices in the Swedish
software industry have generally reached the best European practice level.
Magnified gaps between the two benchmarks are shown by the Gr curve,
which indicates the strengths and weaknesses of the Swedish software
industry against the IBM European benchmarks.

8.6.4.2 The SEPRM Benchmarks on Software Engineering Processes

 The IBM European benchmarks described in preceding subsection
covered only 7 processes. There is thus a need to develop a comprehensive
set of software engineering process benchmarks based on the SEPRM model
[Wang et al., 1998b/99a; Wang and King, 2000a], which covers 51 processes
characterized by quantitative process attributes [Wang, 2001e; Wang et al.,
98b/99b/00b/01]. A high-level hierarchical structure of the SEPRM
framework is shown in Fig. 11.22 and detailed descriptions of the process
model will be given in Table 11.22.

 SEPRM is a comprehensive software process model which possesses a
superset of software engineering processes identified in current process
models and standards such as CMM [Humphrey, 1988/89/95; Paulk et al.,
1991/93/95], ISO 9001 [ISO 9001, 1989/94; ISO 9000-3, 1991], ISO/ICT
15504 [ISO/ICT, 2000; Dorling, Wang, et al., 1999]. SEPRM supports both
goal-oriented and benchmark-based process establishment, assessment, and
improvement.
 The SEPRM software engineering process benchmarks derived based
on a series of worldwide surveys [Wang et al., 1998b/99b] are shown in Fig.
8.11, where the number of a process corresponds to the serial number of
processes in SEPRM as given in Table 11.22.

 Based on the SEPRM benchmarks, the target capability levels for
benchmark-based process improvement can be divided into three categories
such as the basic, competitive, and advanced levels.

 Definition 8.17 The basic level is the minimum level of process
capability that a software organization should achieve in order to develop
quality software according to the SEPRM benchmarks.

The basic level is suitable as a target for initial software organizations

that are in the early stages of software process establishment and
improvement.

Definition 8.18 The competitive level is an average level of process

capability that ordinary software organizations have reached in software
development according to the SEPRM benchmarks.

© 2008 by Taylor & Francis Group, LLC

638 Part III Organizational Foundations of SE

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Process

Capability
Level

Benchmark Basic Competitive Advanced

Figure 8.11 The SEPRM software engineering process capability benchmarks

The competitive level is suitable as a target for the established software

organizations that pursue a stable software engineering process system and
systematic process improvement.

Definition 8.19 The advanced level is the highest level of process

capability that has been achieved by the top 10% of software development
organizations according to the SEPRM benchmarks.

The advanced level is suitable as a target for the experienced software

organizations that aim at optimizing existing process systems and producing
high quality software for complicated and/or mission-critical systems.

One of the major application areas of software engineering
benchmarking is the benchmark-based process improvement. Although the
conventional goal-based process improvement technologies have been
widely accepted, its philosophy of “the higher the better” has been
questioned in practice. Particularly it is found that the determination of target
capability levels for a specific organization tends to be virtual, infeasible, and
sometimes overshot in the goal-based improvement approach. Benchmark-
based process assessment and improvement [Wang, 2001e; Wang et al.,
98b/99b/01; Wang and King, 2000a/00b; Chiew and Wang, 2002] provides a
new approach to adaptive and relative process improvement based on a
philosophy of “with a competitive margin just above the benchmarks.”
According to the benchmark-based process improvement method, the target
capability levels of given software processes may be set relative to the
benchmarks of the software industry, rather than to the virtually highest
capability level as in a goal-based process approach.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 639

 Another application area of software engineering benchmarking is to
enable software development organizations to compare and better manage
their process improvement activities through benchmarking analysis. The key
value of the software engineering benchmarking technologies is the
establishment of the industrial norms and the quantitative measurement of
common and best practices in different regions. On the basis of the
benchmarks, software organizations are able to determine their current
positions in a region, and to compare their practices against peers in the same
sector.

8.6.5 SOFTWARE ENGINEERING STANDARDIZATION

Standardization is an attempt to regulate, integrate, and optimize
existing methodologies and best practices in engineering research and in the
industry. This subsection presents three categories of software engineering
standards: the software development standards, software quality standards,
and software engineering process standards.

Considering that a variety of software process models have been
developed by international, national, professional, and industrial institutions
in recent decades, standardization is a timely strategic action in this
discipline. Standards are often arrived, however, at as the result of trade-offs
between cutting-edge development and existing ones that are widely
accepted as good practices. The active international standardization bodies in
areas of software engineering, software process, and software quality are The
International Organization for Standardization (ISO), and The Institute of
Electrical and Electronics Engineers (IEEE).

 Software engineering standards are not only records of best practices,
but also means for reconciling successful practices with the underlying
principles of the profession [Wang, 2001b]. Therefore, software engineering
standards should be best practices validated by successful patterns of
applications and rooted rationalized fundamental software engineering
principles.

8.6.5.1 Software Development Standards

Historically, the standards for software engineering were focused on
software development standards in the 1980s. Such standards include IEEE
STD 1016 – Recommended Practice for Software Design Description, IEEE
STD 830 – Guide to Software Requirements, IEEE STD 1012 – Software
Verification and Validation Plans, IEEE STD 829 – Software Test
Documentation, and IEEE STD 1008 – Software Unit Testing [IEEE,
1983/89; James, 1998].

© 2008 by Taylor & Francis Group, LLC

640 Part III Organizational Foundations of SE

 In the 1990s, the effort of international software engineering
standardization has been shifted to software quality and software engineering
processes standards, which represents the new focus and industrial needs.

8.6.5.2 Software Quality Standards

 Software quality system standardization is covered by the research
inherent in the ISO Technical Committee (TC) 176 on quality management,
quality assurance, and generic quality systems. A major serial standard
developed by ISO TC176 is ISO 9000 (1987/91/93/94). ISO 9000 was
published in 1987 and revised in 1994. ISO 9000 has been recognized
worldwide for establishing quality systems. It is designed for quality
management and assurance, which specifies the basic requirements for
development, production, installation, and service at system and product
levels. ISO 9000 provides a management organization approach, a product
management system, and a development management system based on
quality system principles.

 Within the ISO 9000 suite, ISO 9001 and ISO 9000-3 are applicable to
software quality systems for certifying the processes, products, and services
within a software development organization according to the ISO 9000
model. ISO 9001 aims to set minimum requirements for a general quality
management system. According to recent surveys [Wang and King, 2000b]
the ISO 9001 model is the most popular quality system model in the global
software industry. However, because ISO 9001 treats software development
processes in the same way as any mass manufacturing system, its suitability
to the creative and design-intensive software development processes is still
uncertain.

 ISO 9001 models a software quality system in 3 subsystems, 20 Main
Topic Areas (MTAs), and 177 Management Issues (MIs) [ISO 9001, 1994;
Jenner, 1995]. ISO 9001 provides a one-dimensional checklist-based
software quality system assessment method. On the basis of feedback from
both industries and researchers, a significant trend in ISO 9000/9001 revision
(2000) is to shift from a check-list based quality system standard to a
process-oriented one. The new version of ISO 9001 will include a process
model based on Deming’s Plan-Do-Check-Act cycle for product, service, and
management processes. Also, ISO 9001:2000 will merge the 1994 versions
of ISO 9001, ISO 9002, and ISO 9003 into a single and integrated standard.
The 20 MTAs of ISO 9001 will be re-organized into 21 processes that are
categorized into four primary processes: management responsibility,
resource management, product realization, and measurement, analysis and
improvement. New requirements in ISO 9001:2000, such as customer focus,
establishment of measurable objectives, continual improvement, and
evaluation of training effectiveness, are added for enabling quality process
assessment and improvement.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 641

 Another important software quality standard is ISO 9126 – Software
Product Evaluation – Quality Characteristics and Guidelines for Their Use
[ISO 9126, 1991]. ISO 9126 extends principles of quality control to software
and summarizes the major characteristics and attributes of software quality.
For an overview of ISO 9126 software quality model refer to Table 11.19.

 ISO 9126 adopted a black-box philosophy that represents the
customer’s view of software products and systems. Further investigations
[Dromey, 1995] argued that the ISO 9126 model has been focused only on
the external attributes of software quality. Substantial internal attributes of
software quality, such as of architecture, reuse description, coding styles, test
completeness, run-time efficiency, resource usage efficiency, and exception
handling, have not been modeled. In other words, the internal quality
attributes of software may be characterized by the software engineering
process-oriented standards and models. This observation explores an
interesting connection between the process standardization and quality
standardization in software engineering.

8.6.5.3 Software Engineering Process Standards

A number of software engineering standards and models have been
developed in the last decade, such as TickIT [DTI, 1987; TickIT, 1987], ISO
9001 [ISO 9001, 1989/94], CMM [Humphrey, 1988/89/95; Paulk et al.,
1991/93/95], ISO/IEC 12207 [ISO/IEC 12207, 1995], ISO/IEC 15504
[ISO/IEC 15504, 2000]. In addition, a number of regional and internal
models have been adopted. According to a recent worldwide survey [Wang
and King, 2000], ISO 9001 is the most popular standard in software
engineering followed by CMM and ISO/IEC 15504. Some regional, internal,
and industry sectors’ process models, such as Trillium, also share a
significant part of application in the software industry.

The process-related standards are developed within the international
and professional standardization organizations such as the ISO/IEC
JTC1/SC7 software/system engineering subcommittee and the IEEE.
Significant standards coming forward are inter alia, ISO/IEC 12207 (1995)
on Software Life Cycle Processes, ISO/IEC 15288 (1999) on System Life
Cycle Processes, and ISO/IEC 15504 (2000) on Software Process
Assessment and Capability Determination.

 Major trends in software engineering process standardization have been
considered to integrate the existing process-related standards and models, but
standardization may also cover new process areas in software engineering.
For instance, ISO/IEC 15504 is to align its process dimension to ISO/IEC
12207. In addition, extension for ISO/IEC 15504 has been proposed to cover
some system life cycle processes, such as acquisition processes and broader
system environment processes [Dorling, Wang et al., 1999; Wang and King,
2000a].

© 2008 by Taylor & Francis Group, LLC

642 Part III Organizational Foundations of SE

 It is noteworthy that the list of software engineering standards is
continuously expanding. As the evolution of software engineering theories,
methodologies, and practices gets faster, more and more areas are expected
to be covered by efforts in software engineering standardization. Candidate
examples might be new standards for system requirement definition, domain
knowledge infrastructures, software architectures/frameworks, and software
engineering notations.

8.7 Summary

Engineering is a technological and organizational methodology and
approach by which human beings can repetitively plan, design, develop,
produce, maintain, and/or use complicated artefacts, in rigorous, systematic,
efficient, and refining processes, that cannot be done by individuals.

Engineering is a process that converts theoretical concepts into useful
applications to satisfy human needs. Engineering approaches and generic
engineering principles form a part of the basic theoretical and empirical
foundations of software engineering.

Software engineering is a discipline that adopts engineering
approaches to develop large-scale software with high productivity, low cost,
controllable quality, and measurable development schedules. Engineering
principles for software engineering can be elicited on engineering objectives,
organization, technology, professionalism, and domain characteristics.
 This chapter has explored the generic engineering principles and
engineering professionalism. The organizational theory for software
engineering has developed, which reveals how software engineering projects
may be optimally organized. A set of empirical methodologies for software
engineering, such as case studies, experiments, trials, benchmarking, and
standardization, has been described. As a result, the engineering
foundations of software engineering have been established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, on Engineering Foundations of Software
Engineering, readers have achieved the following strategic aims with the
knowledge architecture as summarized below.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 643

Chapter 8. Engineering Foundations of SE

■ Generic Engineering Approaches
 • Engineering emerged from the industrial revolutions
 • The generic scientific method
 • Engineering vs. sciences
 • Fundamental goals and constraints of engineering
 • Generic engineering approaches
 • The generic engineering maturity model (EMM)

■ Basic Engineering Principles
 • Principles of engineering organization
 • Principles of engineering technology
 • Principles of engineering management
 • Principles of engineering professionalism

■ Engineering Principles for Software Engineering
 • The engineering characteristics of software engineering
 • Division of labor
 • Characteristics of software engineering in the engineering age
 • Unique principles of software engineering
 • Professionalism of software engineering

■ The Theory of Software Engineering Organization
 • The characteristics of coordinative work in engineering
 - The mechanisms of coordinative workload and effort
 - The rate of interpersonal coordination
 - The overhead of interpersonal coordination
 - The nature of coordinative work in engineering

 • Laws of work organization in software engineering
 - The laws of incompressibility of software engineering workload
 - The laws of interchangeability between labor and time in
 software engineering
 - The laws of the shortest duration of coordinative word in
 software engineering

 • The mythical man-month explained

 • Decision optimization in software engineering
 - Optimization of project organization for the shortest duration
 - Optimization of project organization for the lowest effort/cost
 - Optimization of project organization by controlling the
 interpersonal coordination rate

© 2008 by Taylor & Francis Group, LLC

644 Part III Organizational Foundations of SE

■ Empirical Software Engineering
 • Software engineering case studies
 • Software engineering experiments
 • Software engineering trials
 • Software engineering benchmarking
 - The IBM European benchmarks on software engineering
 practices
 - The SEPRM benchmarks on software engineering processes

 • Software engineering standardization
 - Software development standards
 - Software quality standards
 - Software engineering process standards

SIGNIFICANT FINDINGS OF THIS CHAPTER

• Engineering is a concept of industrial organization emerged from the
industrial revolution. Large software systems are among the most complex
systems engineered by man.

• Engineering approaches to large-scale software development are

those of established methodologies, processes, tools, standards, organization
methods, management methods, and quality assurance systems.

• Every engineering discipline in the modern industries has been

developed and matured in the same approach. The generic engineering
approach is characterized by the following activities: a) To identify
repeatable work processes; b) To identify standard and reusable components
of products; c) To adopt division of labor; d) To equip specialized tools for
the roles and processes; and e) To recognize management as a profession for
organization of the processes and for co-ordination of the roles.

• Engineering disciplines emerged and developed in the industrial

revolutions share the following common principles for engineering
organization: a) Apply systematic processes; b) Adopt division of labor; c)
Support co-operative work; d) Adopt quantitative measurement; e) Establish
standards; f) Use tools and machinery; g) Plan actual schedule; h) Optimise
resources allocation; i) Derive predictable outputs; and j) Seek controllable
quality.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 645

• The coordinative work organization theory (Theorem 8.4 through
8.11) for engineering project organization in general, and for software
engineering project organization in particular, reveals that a set of key
factors in coordinative engineering organization, such as the optimal labor
allocation, the shortest project duration, the minimum expected
workload/effort/costs, and the interchangeability between labor and time, is
constrained by natural laws and a certain sequence for their determinations.

• The generic form of workload in coordinative work is always

supplemented by an inevitable overhead, which is determined by the
interpersonal coordination rate r in a multi-person project that formally
and systematically explains the mythic man-month in software engineering
(Theorem 8.7 and the Pigeon diagram).

• It is recognized that any theory, method, or technology has its own

limitations and constraints. Therefore, to a certain extent, science and
engineering are the searching of the maximum extent of general relations
between entities, phenomena, and behaviors under a set of constraints.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Generic Engineering Approaches

• The great achievement of the engineering approach to
industrialization results in extended human capability, improved
productivity, and reduced skill requirement. The industrial revolution
extended human physical capability by machines and engines. The
information revolution is focused on the extension of human intelligence,
memory, and the capacity for information processing by computers,
communication networks, and robots.

 • The essence of engineering is the organizational methodology for
enabling coordinative team work in order to produce a complex product, or
achieve a common goal, which could not be reached by individuals
physically, technically, and/or economically.

• Science is a process of inquiry for generating a body of knowledge.
The objectives of science are description, explanation, prediction, and control
of category of objects under study. Engineering is an approach by which
human being can repetitively plan, design, develop, produce, maintain,

© 2008 by Taylor & Francis Group, LLC

646 Part III Organizational Foundations of SE

and/or use complicated artifacts in a rigorous, systematic, and refining
process.

• Scientists explore what is; while engineers find out how to do.

Science transfers information about nature into knowledge and theories;
while engineering embodies knowledge into methodologies and products.

• The criteria that constitute a good hypothesis in scientific study are

causality, originality, generality, predictability, and falsifiability.

• Sciences pursue originality, simplicity, and generality in principles

and theories. In addition to the goals of sciences, engineering seeks
efficiency, productivity, and quality in implementation of scientific principles
and theories into repetitive and mass production.

• The law of conservation of basic engineering constraints, states

that the three basic constraints of engineering objectives known as time (T),
costs (C), and utility (U) are conservative in a given engineering context (Eq.
8.12).

• The engineering maturity model (EMM) of applied engineering

disciplines states that there are four levels of engineering maturity, known as
the phases of emergence, art, engineering, and post-engineering, in the
evolution of any engineering discipline.

Basic Engineering Principles

 • The fundamental engineering principles can be classified into the
principles of engineering objectives, organization, technology, management,
and professionalism.

• A significant part of the common engineering principles has not been
systematically adopted and implemented in software engineering yet.

Engineering Principles for Software Engineering

• Special characteristics of software engineering are identified as:

a) Intangible objects and work products, and intricate
relations and interactions between them;

b) Problem domain is infinite including all application areas
of all existing engineering disciplines;

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 647

c) Software engineering is design intensive opposed to
repetitive production;

d) Application development is one-off activity;

e) Development processes are stable and repetitive;

f) A software design and implementation is only one of all
possible solutions for a real-world problem on the basis of
tradeoffs and constraints;

g) Software engineering needs new forms of descriptive
mathematics that are different from current analytic ones.

The Theory of Software Engineering Organization

• The coordinative workload in engineering states that the actual
workload W of a coordinative project is a function of the average
interpersonal coordination rate r and the number of labor L in the project
(Theorem 8.4).

• The incompressible workload states that a given ideal workload W1
in software engineering can not be compressed by any kind of labor
allocation, i.e.: W ≥ W1 = Wmin (Theorem 8.5).

• The interchangeability of labor and time (ILT) states that, for a
given workload W, labor L and duration T are transformable under the
condition of Eq. 8.14 (Theorem 8.6).

• The shortest duration of coordinative work states that there exists

the shortest duration Tmin under the optimum labor allocation L0 for a given
ideal workload W1 with a certain interpersonal coordination rate r (Theorem
8.7)

• An optimal work organization must be carried out in the following
order for a given coordinative project: a) To determine the optimal labor
allocation L0 (Eq. 8.16); and b) To obtain the shortest duration of the
coordinative work Tmin under L0 (Eq. 8.15).

• Labor and time are bidirectionally interchangeable or transfor-
mable in coordinative work organization under the constraints of Theorems
8.4 through 8.9.

• The constraint on group size in coordinative work states that there
exists an upper limit of group size Smax in coordinative work organization in
software engineering, i.e., Smax = max (L0(r)) = 20 [P]. Therefore, large

© 2008 by Taylor & Francis Group, LLC

648 Part III Organizational Foundations of SE

projects must be partitioned into multiple parallel groups that each of the
groups obeys the same natural constraint. (Theorem 8.10)

• The strategy for optimization of a coordinative project for both the
shortest duration and the lowest cost is to set the project at Wexp(L0, Tmin).
Otherwise, the waste of effort ∆W can be determined as

exp 0 min = () () [PM]W W W L T L T∆ = − • − • , where W is the realized
workload due to a nonoptimal work allocation (Corollary 8.7).

• The risk of nonoptimal work organization states that the risks R
due to irrational decisions of work organization are proportional to the
coordination rate r in a project. That is, the higher the r, the higher the risk
under nonoptimal labor allocation, i.e., r∝R (Theorem 8.11).

Empirical Software Engineering

• Theoretical software engineering focuses on foundations and basic

theories of software engineering; whilst empirical software engineering
concentrates on heuristic principles, tools/environments, and best practices.
The primary methodologies for empirical software engineering are case
study, experiment, trial, benchmarking, and standardization.

• A case study is an intensive investigation and analysis of a particular

technology, project, organization, or environment based on information
obtained from a variety of sources such as interviews, surveys, documents,
test or trial results, and archival records.

• Experiment is a fundamental research approach to identify causal
relationships among variables under a controllable environment.

• System trial is a technology in empirical software engineering for
safely putting a new system into operation.

• A benchmark of a software engineering process system is a set of

statistical reference data that represents the average performance and
industrial norms of a set of processes in software engineering practices.

• Standardization is an attempt to regulate, integrate, and optimize

existing methodologies and best practices in engineering research and in the
industry. This subsection presents three categories of software engineering
standards: the software development standards, software quality standards,
and software engineering process standards.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 649

Questions and
Research Opportunities

8.1 What is engineering and why did it emerge from the industrial

revolutions?

8.2 What are the differences between science and engineering in
terms of their objectives, methodologies, criteria, and embodied
results?

8.3 Compare and contrast the generic engineering approaches and the

generic scientific method.

8.4 What are the generic engineering principles? How can software

engineering learn from them?

8.5 What is the nature of software engineering? Is software

engineering unique or special in relation to the other engineering
disciplines?

8.6 Is software development an engineering discipline? Are software

developers engineering professionals? May both answers to the
first two questions not be the same?

8.7 According to the EMM model (Theorem 8.3), discuss the

following: a) Why should software engineering be considered as
an engineering discipline even if it is immature at the given time?
b) What will software engineering lead to (give birth) when it is
matured?

8.8 Can software engineering methodologies and approaches be

applied to other engineering disciplines? Try to provide an
example.

8.9 Following Ex. 8.4, discuss how to implement the generic

engineering principles in software engineering.

© 2008 by Taylor & Francis Group, LLC

650 Part III Organizational Foundations of SE

8.10 What is the fundamental difference between the objects under

study in traditional engineering disciplines and software
engineering?

8.11 In Section 3.5.1 eight fundamental cognitive characteristics of

software engineering are identified. Choose one of them and
explain its impact on the engineering of software development.

8.12 The three constraints of the basic objectives of engineering,

known as Time (T), Costs (C), and Utility (U), are conservative in
a given engineering context according to Theorem 8.2. When the
duration of a software project should be reduced, what would be
the consequences on the other constraints?

8.13 According to Theorems 8.4 and 8.7, explain the organizational

reasons of a significantly high failure rate of software engineering
projects in history?

8.14 When 6 programmers work together in a project team, what is the

number of pairwise relations n? If the number of programmers is
increased to 30, what is the impact on n?

8.15 How can programmer group(s) be optimally organized in large-

scale software engineering projects? Discuss the situations with
less than 10 and more than 20 persons in a group, respectively.

8.16 What are the profound factors that constitute coordinative team

work in software engineering?

8.17 Whether labor L or duration T is arbitrarily determinable for a

given workload W in a coordinative software engineering project?
What is the law that constrains the determination of them?

8.18 Are time T and labor L interchangeable for a given workload W in

software engineering? If so, what would be the constraints for the
interchangeability between them?

8.19 The average interpersonal coordination rate r (Definition 8.8)

can be determined as follows: r = t’ / (t + t’), where t is the total
time an individual used on pure software development tasks; t’ is
the total time one spent in work that is not directly used in
software development such as meetings, discussions,
communications, learning, training, travel, in site testing, services,
etc.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 651

Fill in the following form using your data during work, practice,
or study (if you are a student), and analyze your findings.

No. Process Method (conventional)
r (0.5% – 100%)

Method (Agile or XP)
r (0.5% – 100%)

1 Design
2 Coding
3 Integration and testing
4 Maintenance
5 Average
6 Size of the project (PM)

8.20 Assume the ideal workload of a software engineering project is

expected to be W1 = 100.0PM, the organization has up to 30
persons available, and the average interpersonal cooperation rate r
= 20%.

(a) According to the ILT Law (Theorem 8.6), determine the

optimal allocation of labor L0 and then the shortest expected
project duration Tmin for this project.

(b) What is the expected workload Wexp that this project may

achieve under the optimal labor allocation and the shortest
project duration as obtained in (a)?

(c) When the number of persons for this project is subjectively

allocated as L = 25P, what would be the resulted real
workload (W)?

(d) How much effort would be wasted in solution (c) due to the

nonoptimal labor and time allocation? (Hint: Consider ∆W
= W – Wexp).

8.21 According to Theorem 8.6, given W1 = 6.0PM, Wmin = 12.0PM,

and r = 0.5, when 10 persons are subjectively allocated to a
project, how much effort would be wasted in this project due to
the nonoptimal labor and time allocation?

8.22 What is the black hole in coordinative work organization that

would result in the unexpected wastage of huge extra workload
and resources in software engineering?

© 2008 by Taylor & Francis Group, LLC

652 Part III Organizational Foundations of SE

8.23 According to Law 25 (Theorem 8.7), explain why the key reasons

that cause so many failures of large-scale software engineering
projects are not purely technical ones, but mainly organizational
reasons that result in nonoptimal coordinative work organization
in complicated software engineering projects.

8.24 Why should an optimal work organization be determined in the

rational order from the optimal labor allocation L0 to the shortest
project duration Tmin? What would be the consequences if this law
is not obeyed in project planning and organization?

8.25 Five empirical methodologies for software engineering, known as

cases studies, experiments, trials, benchmarking, and
standardization, have been discussed in Section 8.6. Try to
develop a table to compare the advantages and disadvantages of
these empirical methodologies in software engineering research
and practice.

8.26 How to implement division of labor in software engineering?

8.27 According to the procedure of software engineering trials, explain

why a software system trial should be divided into four phases,
and what the conditions of each transition to the next phase are.

8.28 Given a heuristic principle of software engineering, such as

review/inspection or system engineering, which empirical
method(s) you would like to use in order to validate it in software
engineering. Why?

8.29 Why do ethics and professionalism play important roles in

software engineering?

8.30 Discuss the following software engineering situations that require

good ethical judgment of a software engineer [Vliet, 2000]:

Suppose you are testing a part of a big software system. You find
quite a few errors and you are certainly not ready to deliver.
However, your manager is pressing you. The schedule has already
slipped by quite a few weeks. Your manager in turn is pressed by
his boss. The customer is eagerly awaiting delivery of the system.
Your manager suggests that you should deliver the system as is,
continue testing, and replace the system by a better version within
the next month.

© 2008 by Taylor & Francis Group, LLC

Chapter 8 Engineering Foundations of SE 653

 • How would you react to this scheme?
 • Would you simply give up?
 • Argue with your manager?
 • Go to his boss?
 • Go to the customer?

8.31 An argument on software engineering is that because both

professionals and amateurs can write programs, programming has
no scientific foundations. Do you agree with this observation?
Why?

8.32 Read the following classic article in software engineering:

David L. Parnas (1995), On ICSE’s ‘Most Influential’

Papers, ACM Software Engineering Notes, 20(3), pp.

29-32.

Discuss the following topics in a group:

 • About the author.

• What are the major problems in software engineering
research according to the author?

• What is the relationship between proven theories and
empirical methodologies of software engineering?

 • What conclusions of the article interested you? Why?
 • Your argument(s) or counter-points on any of the

conclusions derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 9

COGNITIVE INFORMATICS
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

9.
Cognitive
Informatics
Foundations
of SE

9.1 Introduction 9.5 Cognitive Informatics for SE
9.2 Cognitive Informatics 9.6 Cognitive Complexity of Software
9.3 Cognitive Informatics Models of the Brain 9.7 Summary
9.4 Cognitive Informatics of Knowledge Representation

10.
System
Science
Foundations
of SE

11.
Management
Science
Foundations
of SE

12.
Economics
Foundations
of
SE

13.
Sociology
Foundations
of
SE

8.
Engineering
Foundations
of
SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

656 Part III Organizational Foundations of SE

Knowledge Structure

 Cognitive informatics

 • Cognitive philosophy • Neural informatics foundations of the brain
 • The emergence of cognitive informatics
 • The theoretical framework of cognitive informatics

 Cognitive informatics models of the brain

 • The Layered Reference Model of the Brain (LRMB)
 • Cognitive properties of internal information
 • Natural intelligence vs. artificial intelligence
 • The cognitive model of the brain

 Cognitive informatics of knowledge representation

 • The Hierarchical Neural Cluster (HNC) model of memory
 • The Object-Attribute-Relation (OAR) model of internal information representation
 • The extended OAR model of the brain
 • The cognitive mechanisms of long-term memories
 • The memory capacity of human brain

 Cognitive informatics for software engineering

 • Cognitive informatics properties of SE • SE psychology
 • The cognitive foundation of software comprehension • SE skills and experiences

 Cognitive complexity of software

 • The relative cognitive weights of generic software structures
 • Psychological experiments on the cognitive weights
 • Calibration of the relative cognitive weights of BCS’s

Learning Objectives

 • To understand the need for extending informatics to the study of the brain –
a profound problem shared by almost all science and engineering disciplines.

 • To be aware of the neural informatics foundation of cognitive informatics.
 • To recognize the theoretical framework of cognitive informatics.
 • To understand the cognitive informatics models of the brain (i.e., LRMB,

intelligence model of the brain, logical model of the brain).
 • To understand the cognitive models of internal knowledge representation

(i.e., HNC, OAR, EOAR).
 • To appreciate the cognitive informatics foundations of software engineering

for addressing the cognitive constraints of software engineering.
 • To understand the cognitive complexity of software and the relative

cognitive weights of BCS’s.

9. Cognitive Informatics Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 657

 “Knowingness is a cognition, so is unknowingness.”

Confucian (551 – 479BC)

 “I think, therefore I am”

Rene Descartes (1596-1650)

 “Elaborate apparatus plays an important part in the science of today, but I

sometimes wonder if we are not inclined to forget that the most important instrument
in research must always be the mind of man.”

W.I.B. Beveridge (1957)

9.1 Introduction

n Chapter 7, it is reviewed that information science or informatics has
developed from the classical information theory, contemporary
informatics, to cognitive informatics in the past half century. Cognitive

informatics is coined by Yingxu Wang in 2002 in the IEEE First
International Conference on Cognitive Informatics (ICCI’02) [Wang, 2002d;
Wang et al. 2002a]. Since then, it has been widely received as an emerging
cutting-edge discipline that forges links between computing, cognitive
psychology, information science, and software engineering.
 It is identified that information is the product of either natural
intelligence or machine intelligence, and the third essence of the natural and
the perceived world. In computing, software engineering, informatics,
intelligence science, and psychology, almost all hard problems yet to be
solved share a common root in the understanding of the mechanisms of
natural intelligence and the cognitive processes of the brain. This leads to the
emerging discipline of research known as cognitive informatics [Wang,
2002d/02e/03a/03b/06b/06j/07a/07b; Wang and Wang, 2006; Wang and
Kinsner, 2006; Wang et al. 2002a/06].

Cognitive informatics is the transdisciplinary study of cognitive and
information science that investigates into the internal information processing
mechanisms and processes of the natural intelligence – human brains and
minds.

The study on cognitive informatics is triggered by the fundamental
wonder of mankind to understand the brain – a quest is certainly as long as
the human history itself. Studies of the brain were originally conducted in the

I

© 2008 by Taylor & Francis Group, LLC

658 Part III Organizational Foundations of SE

domain of philosophy and psychology. Though, it is noteworthy that
psychology was a part of philosophy in the early phase development of
natural sciences [Leahey, 1980; Wilson and Keil, 2001]. Psyche means spirit
or soul in both Greek and Latin. In 2500BC, the ancient Egyptians believed
that the heart was the true seat of intelligence. It was not until 450BC, Greek
physician Alcmaeon found that the brain is the central organ of sensations
based on anatomic dissections of animals.

Psychological thoughts can be traced back to Plato and Aristotle in 400
to 320BC [Plato, 1961/75; Aristotle, 1925]. Plato (428-347BC), Greek
philosopher, observed that philosophy begins in human wonder, a powerful
desire to understand the world, not merely to act in it as animals do. Aristotle
(394-322 BC), a quester for the nature, perceived psychology as the study of
the soul, ‘the form of a natural body having life potentially within it,’ which
differentiates the animate world from the inanimate one. However, Aristotle
had also believed till 335BC that the organ of thought and sensation is the
heart, and the brain is a radiator to cool it. After nearly half a century,
Herophilus and Erasistratus first dissected a human body and found the
nervous system of the brain in 300BC.

Psychology, as we know it, began with Rene Descartes (1596-1650),
who in 1649 proposed that the brain functions like a machine [Descartes,
1979]. Descartes had also created a framework for thinking about mind and
body for philosophers and psychologists. Then, after about 200 years,
Wilhelm Wundt (1832-1920) found psychology as a science discipline by
initiating a link between physiology and philosophy via an experimental
approach in 1873 [Wundt, 1873].
 The study on cognitive informatics is also rooted in the quests in life
science, natural intelligence, and their interactions with machines and
artificial intelligence.

Definition 9.1 A living organism is a physicochemical structure and
process that possesses a high degree of complexity and is capable of self-
regulation, metabolism, and perpetuates itself through time.

The primarily attributes of living organisms are featured as the
following general characteristics [Fried and Hademenos, 1999]:

• Movement: The motions within the organisms or locomotion of
the organisms through its environment.

• Irritability: The capacity to respond in a characteristic manner to
stimuli in the internal or external environment.

• Growth: The ability to increase their mass of living materials by
assimilating new materials from the environment.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 659

• Adaptability: The tendency to undergo or institute changes in
their structure, function, or behavior that improve their capacity to
survive in a particular environment.

• Reproduction: The ability to reproduce new individuals like
themselves.

• Lifecycle: The existence of a clear lifecycle and life span for a
given generation.

According to the IME model (Theorem 1.2), information theories

discussed in Chapter 7 can be classified as the external informatics.
Complementary to it, there is a whole range of new research areas known as
cognitive informatics that studies the mechanisms of internal informatics
inside the brain.

Leveson stated that “If our problems in building and interacting with

complex systems are really rooted in intellectual manageability and human
limits in managing complexity, then we will need to stretch these limits to
build ever more complex systems [Leveson, 1995].” Large-scale software
systems are highly complicated systems that humans have ever been handled
or experienced before. Software is a unique abstract artifact that does not
obey any known physical laws. However, it is recognized that software
should be constrained by the laws of cognitive informatics, mathematics, and
systems as explored in this book. This section explores theories of cognitive
informatics and its potential impacts on, and applications in, information-
based sciences and engineering disciplines, particularly software engineering.
The mathematical and system foundations of software engineering are
presented in Chapters 4 and 10, respectively.

This chapter describes the cognitive informatics and intelligent
behavioral metaphor of software and software engineering. In the remainder
of this chapter, the cognitive informatics foundations of software engineering
will be presented in five sections. Section 9.2 introduces the new
transdisciplinary field of study known as cognitive informatics. Section 9.3
develops cognitive informatics models of the brain, such as the layered
reference model of the brain, the cognitive models of memories, and the
cognitive model of natural intelligence. Section 9.4 explores the cognitive
model of internal information presentation in the brain, particularly the
object-attribute-relation model. Section 9.5 presents the cognitive informatics
foundations of software engineering, which leads to the understanding and
formal measurement of the cognitive complexity of software systems in
Section 9.6.

© 2008 by Taylor & Francis Group, LLC

660 Part III Organizational Foundations of SE

9.2 Cognitive Informatics

Cognitive informatics is the science for brain and natural information
processing. A profound problem in natural and engineering sciences is
cognitive informatics, which studies the mechanisms and processes of the
brain in information processing, and the understanding of the natural
intelligence. The cognitive informatics foundations are shared by
multidisciplinary studies, such as philosophy, psychology, computing,
software science (engineering), informatics, neuroscience, neurobiology,
mathematics, and linguistics.

9.2.1 COGNITIVE PHILOSOPHY

It is interesting to note that philosophers all over the world shared
similar perceptions towards cognition, information, and the natural
intelligence. A historical story is told of two Chinese philosophers walking
around a lake and seeing fishes swimming and jumping lively and freely in
the water. The following dialogue took place (Zhuang Tsui, 369BC - 286BC,
Chuang Tsui • Outer Chapters, Chapter 17, Autumn Water):

Philosopher A: “The fishes must be very happy because they

are lively playing in the lake.
Philosopher B: “Well, you are not a fish. How do you know that

they are happy?
Philosopher A: “Then, you are not me. How do you know that I

don’t know the feeling of the fishes.
Philosopher B: “Just as I am not you, I don’t know you; You are

not a fish, therefore you don’t know the feeling
of the fishes.

Philosopher A: “As you claim that I don’t know something, you
implied you know what I know. Therefore, I am
able to perceive what the meaning of the fishes’
behavior is.

 This is a perfect situation to demonstrate the objectives of the study in
cognitive informatics – how human beings acquire, process, interpret, and
express information by using the brain, and how the minds of different
individuals are understood.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 661

 Rene Descartes (1596-1650), French philosopher and mathematician,
believed that the commonly accepted knowledge would be doubtful because
of the subjective nature of human senses. He attempted to rebuild human
knowledge structure using the fundamental concept known as 'cogito ergo
sum' (I think, therefore I am). He once wrote:

“If you would be a real seeker after truth, it is necessary that at
least once in your life you doubt, as far as possible, all things
[Descartes, 1979].”

 The subjectivity of the perceived world as Descartes expressed has
been formally described in Theorem 1.2 known as the generic worldview in
the IME model.
 The brain is perhaps the last thing in the natural world yet to be
explored and understood. One of the most interesting findings in cognitive
informatics is that so many science and engineering disciplines, such as
informatics, computing, software engineering, and cognitive sciences, share a
common root problem – how the natural intelligence processes information.
 Along with the development of natural sciences, particularly
psychology, cognitive science, and cognitive informatics, there are a number
of significant scientific discoveries as shown in Table 9.1, which shed light
on the nature of human beings and, in the same time, blow on human self-
esteem [Leahey, 1980; Wang, 2003b].

Table 9.1
Scientific Discoveries Impacting on Human Esteem

No. Time Theory Description
The
1st
blow

1473-
1543

Universe view

(Nicholas Copernicus)

Human beings did not live at the center of the
universe.

The
2nd
blow

1809-
1882

Evolution

(Charles Darwin)

Human beings were part of nature – being
animals like any other species.

The
3rd
blow

1856-
1939

Nonconsciousness

(Sigmund Freud)

The human ego is not master in its own house,
since many human behaviors are determined by
nonconscious life functions.

The
4th
blow

2003 Partial autonomous

(The author of this
book)

Human beings do not fully behave
autonomously. The natural intelligence can be
classified into those of reflective, perceptive,
cognitive, and instructive, where the reflective
and instructive intelligence are external event-
driven and environment-dependent.

© 2008 by Taylor & Francis Group, LLC

662 Part III Organizational Foundations of SE

 In Table 9.1, Darwin’s finding from the viewpoint of cognitive
informatics is that the human brain at the basic level has no difference from
other animal species. However, it possesses the following advantages as
presented in Theorems 9.1 and 9.2 [Wang, 2003b; Wang and Wang, 2006].

Although Freud’s theory indicates that many fundamental human

behaviors are nonconscious and there was no direct access and control on
them by the conscious minds [Freud, 1895], psychology and cognitive
science still maintain a common belief that an individual human being is at
least autonomous and behaves purely on own desires and motivations.
However, this assertion may be doubt in cognitive informatics.
 The basic life function of the human brain is information processing.
Although the brain may be stimulated by both external and internal
information, the internal information is previously acquired from external
sources. The willingness-driven mechanism of human behaviors was thought
to be purely determined by internal information and conditions such as goals,
desires, and emotions. Based on this perception, an individual may be
considered as an autonomous human being. However, all willingness-driven
behaviors as the nonconscious life functions as identified by Freud are
synthetically dependent on the historically cumulated external events,
information, status, and current internal physiological and subconscious
conditions. That is, the universal causality on the study of human brains and
cognitive behaviors can still be preserved, even some of the willingness-
driven cause-effects are not so obvious due to long-term and indirect
feedback in the human memory [Wang, 2003b].
 The willingness-, event- and time-driven life functions and their
cognitive processes may be formally described by RTPA [Wang, 2002a],

The 26th Law of Software Engineering

Theorem 9.1 The quantitative advantage of human brain states that the
magnitude of the memory capacity of the brain is tremendously larger
than that of the closest species.

The 27th Law of Software Engineering

Theorem 9.2 The qualitative advantage of human brain states that the
possession of the abstract layer of memory and the abstract reasoning
capacity makes human brain profoundly powerful on the basis of the
quantitative advantage.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 663

which provides an expressive mathematical means for rigorously describing
the meta cognitive life-functions such as abstraction, search, quantification,
categorization, and memorization, as well as higher cognitive life-functions
such as recognition, imagination, comprehension, inference, learning, and
problem solving.

 This section shows the philosophical differences between cognitive
informatics and AI research. The philosophy of AI is based on the principle
of Turing tests for evaluating functional equivalence between machine and
human intelligence. AI attempts to answer how a computer can do what a
human being does [Wang, 2002d]. However, before the fundamental
mechanisms of natural intelligence are well understood, AI would be a
search in dark without theoretical references.

The philosophy of cognitive informatics is autonomic and
supplementary computing that explores theories and techniques addressing:

 • What are the fundamental mechanisms of natural intelligence of
the brain?

 • How does internal information be represented, processed, and
utilized?

 • What can a computer do while human beings cannot?

 • What can a computer do better than human beings?

 • What will be the next generation architectures of computers that
may learn from the human brains and natural intelligence?

 In recent genome research people expect that the decoding and probing

of human genomes will solve almost all problems and answer almost all
questions about the myths of the natural intelligence. Although the aim is
important and encouraging, computer scientists would doubt this promising
prediction. This is based on the basic reductionism of science and the
following observations: Although the details of computer circuitry are fully
observable at the bottom level, i.e., at the gate even the molecular level, only
seeing computers as the low-level structures would not help explaining the
mechanisms of computing rather than get lost in an extremely large number
of interconnected similar elements, if the high-level functional architectures
and logical mechanisms of computers were unknown.

This is one of the motivations of this chapter to investigate into the
cognitive informatics models of the brain at the system logical and functional
levels. Another motivation is, according to the functional model of the brain,
genes may only explain things at the level of inherited life functions, rather
than at the level of acquired life functions, because the letter cannot be
directly represented in genes in order to be inherited. Therefore, high-level

© 2008 by Taylor & Francis Group, LLC

664 Part III Organizational Foundations of SE

cognitive functional models of the brain are yet to be sought to explain the
fundamental mechanisms of the natural intelligence.

9.2.2 NEURAL INFORMATICS FOUNDATIONS OF
 THE BRAIN

The brain is the organizing and processing center of the nervous
system. It receives impulses from the spinal cord and 12 pairs of cranial
nerves arising in the sensory organs and other organs. It develops appropriate
responses and sends forth these responses by motor neurons. The brain
consumes about 25% of all the oxygen used in the body and is extremely
sensitive to oxygen or glucose deprivation.

Definition 9.2 Neural Informatics (NeI) is a new interdisciplinary

enquiry of the biological and physiological representation of information and
knowledge in the brain at the neural level and their abstract mathematical
models.

Neural informatics is a branch of cognitive informatics, where memory
is recognized as the foundation and platform of any natural or artificial
intelligence [Wang and Wang, 2006; Wang, 2007a/07g]. This subsection
briefly introduces the basic unit of the brain known as the neurons and their
mechanisms. Then, it describes the physiological structures of the brain and
its functional lobes.

9.2.2.1 Neurons and Synapses

Nerve cells are called neurons or nerve fibers. Neurons may be
classified into three groups:

• Sensory neurons: They carry impulses from receptors to the
Central Nervous System (CNS, including brain and spinal cord).
Receptors detect external or internal changes and send the
information to the CNS in the form of impulses.

• Motor neurons: They carry impulses from the CNS to effectors
(muscles or glands). This allows a person to respond to the
messages that the brain or spinal cord has received.

• Interneurons: They are located entirely within the CNS and
connect sensory and motor neurons.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 665

Neurons that transmit impulses to other neurons (or effectors) do not
actually touch one another. The junction between two neurons or between a
neuron and its effecter muscle or gland is the synapse as shown in Fig. 9.1.
The small gap or space between the axon of one neuron and the dendrites or
cell body of the next neuron is called the synaptic cleft. On arriving at the
synaptic knobs (terminal end) of the axon, the impulse stimulates the release
of chemical substances called neurotransmitters. Neurotransmitters swiftly
diffuse across the synaptic cleft and change the permeability of the next
neuron. This causes depolarization and generates an electrical impulse which
in turn is carried by the neuron’s axon to the next synapse.

Figure 9.1 Synaptic transmission

An important function of the presence of synapses is that they ensure

one-way transmission of impulses in the neural networks. A nerve impulse
cannot go backward across a synapse because neurotransmitters can only be
released by a neuron’s axon.

There are two types of neuron effects known as the excitatory and

inhibitory, respectively. As shown in Fig. 9.2, transmitter chemicals from
neurons A and B are both excitatory; while that of C is inhibitory. Although
neither A nor B is capable of causing sufficient depolarization to initiate an
action potential in neuron D, when neurons A and B fire at the same time, a
sufficient amount of transmitter chemical is released to cause depolarization
of the postsynaptic membrane. The production of an action potential in
neuron D requires the sum of two or more excitatory neurons, which is
known as the summation mechanism of input signals.

© 2008 by Taylor & Francis Group, LLC

666 Part III Organizational Foundations of SE

Figure 9.2 Summation of input signals in neural networks

It is noteworthy that almost all cells in the body have a lifecycle in

which they reproduce themselves via divisions. This mechanism allows
human trait information to be transferred to offspring through genes (DNA)
replications during cell reproduction. However, it is observed that the most
special mechanism of neurons is that they are the only type of cells in human
body that does not go through reproduction but remains alive throughout the
entire human life [Thomas, 1974; Fried and Hademenos, 1999; Kandel et al.,
2000]. The advantage of this mechanism is that it enables the physiological
representation and retention of acquired information and knowledge to be
memorized permanently in long-term memory. But the vital disadvantage of
this mechanism is that it does not allow acquired information to be
physiologically passed on to the next generation, because there is no DNA
replication among memory neurons. This special mechanism of neurons in
the brain explains not only the foundation of memory and memorization, but
also the wonder why acquired information and knowledge cannot be passed
and inherited physiologically through generation to generation.

9.2.2.2 Physiological Structure of the Brain

The brain is divided into three major portions, as shown in Fig. 9.3,

encompassing the brain stem (an extension of the spinal cord), the
cerebellum, and the large folded cerebrum sitting atop the brain stem.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 667

 1. Cerebrum 2.Hypothalumus 3. Pituitary gland 4. Pons 5. Medulla oblongata
6. Cerebellum 7. Frontal lobe 8. Parietal lobe 9. Occipital lobe 10. Temporal lobe

Figure 9.3 Structure of the Brain

The major components of the brain and their functions can be described
as follows:

• Cerebrum: The cerebrum is a storage of information accumulated
from senses such as hearing, sight, etc.

• Hypothalamus: The hypothalamus regulates temperature and
glandular secretions.

• Cerebellum: The cerebellum regulates motor impulses that
stimulate or inhibit skeletal muscles.

• Medulla oblongata: The medulla oblongata regulates heartbeat
and blood pressure.

The functions of the four lobes of the brain as shown in areas 7 through

10 in Fig. 9.3 can be described as follows:

• Frontal lobe: It controls higher layer cognitive processes such as
abstract reasoning, motor processing, and aspects of personality.

• Parietal lobe: It controls somatosensory sensation processing
such as those of skin and muscles, as well as senses of space and
motion.

• Occipital lobe: It controls vision and visual processing.

• Temporal lobe: It controls auditory processing and languages.

The brain is divided into the left and right hemispheres. Studies show
that each hemisphere of the brain controls different functions. The left

© 2008 by Taylor & Francis Group, LLC

668 Part III Organizational Foundations of SE

hemisphere controls speech, logic, calculations, writing, and mathematics.
The right hemisphere controls artistic conceptions and spatial perceptions
discriminating shapes and forms. Information travels from one side to the
other through the links between the two hemispheres known as the corpus
callosum.

9.2.2.3 Cognitive Models of Memories

 Memory is the foundation for maintaining a stable state of an animate
system. It is the foundation for any form of natural and machine intelligence.
Without memory intelligence cannot exist. This subsection explores types of
human memory, their cognitive models, and their neurophysiological
foundations.

9.2.2.3.1 The Magnitude of Human Brain

 It is perceived that the elementary function and mechanism of the brain
as a hierarchical neural network is quite simple, but its magnitude is
extremely high [Turing, 1950; Kleene, 1956; Rabin and Scott, 1959; Widrow
and Lehr, 1990; Kotulak, 1997; Leahey, 1997; Gabrieli, 1998; Matlin, 1998;
Payne and Wenger, 1998; Harnish, 2002]. This is a common phenomenon of
the naturally grown intelligence, which uses tremendous number of highly
recurrent but simple elements to implement highly complex intelligent
mechanisms and concurrent behaviors.

A comparison between the brain capacities of human and those of
many other species, as shown in Fig. 9.4, can be served as an explanation of
the above assumption [Smith, 1993; Kotulak, 1997; Pinel, 1997; Rosenzmeig
et al., 1999].

1 0 0 ,0 0 0

1 0 ,0 0 0
5 0 .1

0

2 0 ,0 0 0

4 0 ,0 0 0

6 0 ,0 0 0

8 0 ,0 0 0

1 0 0 ,0 0 0

1 2 0 ,0 0 0

H u m a n M o n k e y M o u s e F r u i t f l y

N o . o f n e u r a l
c e l l s (M i l l io n)

 Figure 9.4 Brain capacities of human beings and other animals

Fig. 9.4 shows that the human brain contains about 100 billion (100 ×

109) neurons. Further investigations reveal that each of them, in average,
possesses thousands of synapses connecting to other neurons. Comparing the
human brain and those of other animals, the magnitude of capacity of the

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 669

human brain highlights a significant difference. This is one of the evidences
that indicates the memory capacity is the key to distinguish humans from
other species.

 The trend of growth and the magnitude of human neurons in the brain
are shown in Fig. 9.5 [Marieb, 1992; Smith, 1993; Pinel, 1997; Rosenzmeig
et al., 1999]. Conventionally, long-term memory is perceived as static and
fixed in adult brains [Marieb, 1992; Smith, 1993; Pinel, 1997; Sternberg,
1998]. This is based on the observation that the capacity of adult brains has
already reached a stable state and would not grow continuously. However,
latest discoveries in neuroscience and cognitive informatics indicate that
long-term memory is dynamically reconfiguring, particularly at the lower
levels of the neural clusters [Baddeley, 1990; Squire et al., 1993; Gabrieli,
1998; Solso, 1999; Wang and Wang, 2006]. Otherwise, the mechanisms of
memory establishment, enhancement, and evolution, that are functioning
everyday in the brain, cannot be explained.

0
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0

- 1 0 m - 3 m 0 m 8 m 1 2 0 m 1 4 4 m 3 6 0 m
T im e (m o n t h s)

N o . o f n e u r a l
c e l l s (B i l l io n)

Figure 9.5 Trend of growth of the human brain

The two perceptions above are actually not contradictory. The former

observes that the macro-number of neurons will not increase significantly in
an adult brain. The latter perceives that information and knowledge should be
physically and physiologically represented in long-term memory by newly
grown synapses between the existing neurons.

9.2.2.3.2 Taxonomy of Human Memories

 Types and structures of memories in the human brain have attracted a

lot of interest since psychology was emerged as an independent discipline
nearly 130 year ago. In 1890, William James identified that there are three
components in human memory [James, 1890]:

 • The after-image
 • The primary memory
 • The secondary memory

© 2008 by Taylor & Francis Group, LLC

670 Part III Organizational Foundations of SE

 The after-image memory proposed above is considered a relatively
narrow concept because there are other sensorial inputs to the memory, such
as hearing and touch. Thus, the after-image was gradually replaced by the
concept of sensory memory. Therefore, contemporary theories on memory
classification [Baddeley, 1990; Smith, 1993; Squire et al., 1993; Gabrieli,
1998] can be commonly described as follows:

 • The sensory memory

 • The short-term memory
 • The long-term memory

 Examining the above types of memory it may be seen that there is a
lack of an output-oriented memory, because the sensory memory is only an
input-oriented buffer. A new type of memory called the action buffer
memory is introduced recently [Wang, 2002d/2007g; Wang and Wang,
2006], which denotes the memory functions for the output-oriented actions,
skills, and behaviors, such as a sequence of movement and a pre-prepared
verbal sentence. Therefore, according to cognitive informatics, the logical
architecture of memories in the brain can be classified into the following
categories:

 • The sensory buffer memory (SBM)

 • The short-term memory (STM)
 • The long-term memory (LTM)

 • The action buffer memory (ABM)

The 27th Principle of Software Engineering

Theorem 9.3 The Cognitive Model of Memory (CMM) states that the
architecture of human memory is parallel configured by the Sensory
Buffer Memory (SBM), Short-Term Memory (STM), Long-Term
Memory (LTM), and Action-Buffer Memory (ABM), i.e.:

 CMM SBM
 || STM
 || LTM
 || ABM (9.1)

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 671

9.2.2.3.3 Functional Models of Memories

A set of functional models of SBM, STM, LTM, and ABM in CMM is

presented below for explaining the architectures, functions, and behaviors of
memories in the brain.

(a) The Sensory Buffer Memory

 The sensory buffer memory (SBM) is an input-oriented temporary
memory.

 Model 9.1 The functional model of SBM is a set of queues

corresponding to each of the sensors of the brain.

 The capacity of SBM is quite small. Some psychological experiments
reported that the capacity of SBM is about 7±2 digits [Miller, 1956].
However, this type of memory was confusedly called the short-term memory
according to Miller [Miller, 1956; Smith, 1993]. The basic mechanism of
SBM is that the contents stored in it can only last for a short moment until
new information arrives to the same sensory. When the new information
arrives, the old one in the buffered queue should either be moved into STM
or be replaced by the new one. This explains why the SBM seems to be
rather small.

(b) The Short-Term Memory

 The short-term memory (STM) is the working memory of the brain.
Information lasting period in STM is about 24 hours [Wang and Wang,
2006], although some literature considered it is only a few minutes to a few
hours [Baddeley, 1990; Smith, 1993; Sternberg, 1998). Out of this time span,
the information will be either moved into the long-term memory or removed
(forgot) or replaced from STM.

 Model 9.2 The functional model of STM is a set of stacks.

 This model explains why people can remember better the events and

information gained in early morning and later evening [Smith, 1993;
Sternberg, 1998]. The former is true because the stacks are relatively empty,
so that sufficient working space is available. The latter can be proved based
on the mechanism of stacks, in which the information buffered last is on the
top of STM that gain the priority to be processed and memorized first.

© 2008 by Taylor & Francis Group, LLC

672 Part III Organizational Foundations of SE

(c) The Long-Term Memory

 The long-term memory (LTM) is the permanent memory that human
beings rely on for retaining acquired information in terms of facts,
knowledge, and skills. LTM is apparently unlimited, because of its enormous
neurons (at 100 • 109 level), and much more potential synapses connections
(at 108,432 level), which will be further analyzed in Section 9.4.5.

 Model 9.3 The functional model of LTM is hierarchical neural

clusters with partially connected neurons via synapses.

 The structure of LTM is dynamic and partially interconnected neural

networks as shown in Figs. 9.4 and 9.5, where a connection between two
neurons by a synapse represents a relation.

 Although the number of neurons in LTM was perceived as static and it
made no change in an adult’s brain [Marieb, 1992; Smith, 1993; Pinel, 1997;
Sternberg, 1998] as shown in Fig. 9.5, the connections between the neurons
in the form of synapses in LTM are dynamic and lively reconfiguring,
particularly at the lower levels or on leaves of the neural clusters. This fits
the observations in neural science and explains the mechanisms of memory
establishment, evolution, and the effects of learning.

(d) The Action Buffer Memory

 Supplementary to the input-oriented SBM, the action buffer memory
(ABM) is an output-oriented temporary memory.

 Model 9.4 The functional model of ABM is a set of parallel queues,

each of them representing a sequence of actions or a process.

 ABM has not been reported in the literature before and is discovered in
[Wang, 2002d/2007g; Wang and Wang, 2006]. Detailed mechanism of ABM
will be explained in Section 9.3.4, where the ABM will be put into the
context of the dynamic memory model.

9.2.2.3.4 Neurophysiological Foundations of Memories

Because information and knowledge have to be represented
physiologically in the brain at the bottom level, the functional models of
memories, such as LTM, STM, SBM, and ABM, should be physically
identified and mapped to physiologically organs in the brain. The major
organ that accommodates memories in the brain is the cerebrum or the
cerebral cortex [Baddeley, 1990; Squire et al., 1993; Smith, 1993; Gabrieli,
1998; Sternberg, 1998; Solso, 1999; Wang and Wang, 2006] as shown in

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 673

Table 9.2. Particularly, the association and premotor cortex in the frontal
lobe, the temporal lobe, sensory cortex in the frontal lobe, visual cortex in the
occipital lobe, primary motor cortex in the frontal lobe, supplementary motor
area in the frontal lobe, and procedural memory in the cerebellum.

Table 9.2
Neural Physiological Foundations of Memories

Memory Corresponding part in the cerebrum
LTM • Association cortex in the frontal lobe

• Premotor cortex in the frontal lobe
STM • The temporal lobe
SBM • Sensory cortex in the frontal lobe

• Visual cortex in the occipital lobe
ABM • Primary motor cortex in the frontal lobe

• Supplementary motor area in the frontal lobe
• Procedural memory in cerebellum

 In Table 9.2, the relations between memories and their corresponding
parts in the cerebral cortex and lobes are established. LTM as the largest and
dynamic memory of the brain is mainly located at the association cortex in
the frontal lobe of the cerebrum.

The CMM model and the mapping of the four types of human memory
onto the physiological organs in the brain reveal a set of fundamental
mechanisms of neural informatics. The theories of cognitive informatics and
neural informatics explain a number of important questions in the study of
natural intelligence. Enlightening results derived in cognitive informatics and
neural informatics are listed below, which will be explained throughout this
chapter:

a) LTM establishment is a subconscious process during sleeping

(See Theorem 9.10);

 b) The general acquisition cycle of LTM is equal to or longer than
24 hours (See Model 9.8);

 c) The mechanism of LTM establishment is to update the entire
memory of information represented as an OAR model in the brain
(See Theorem 9.11);

 d) Eye movement and dreams play an important role in LTM
creation.

The latest development in cognitive informatics and neural informatics

has led to the determination of the magnitude and expected capacity of
human memory, which will be presented in Section 9.4.5.

© 2008 by Taylor & Francis Group, LLC

674 Part III Organizational Foundations of SE

9.2.3 THE EMERGENCE OF COGNITIVE
 INFORMATICS

 It is recognized that the brain and natural intelligence are centric on
information processing [Wang, 2002d/2003b/2007a; Wang et al., 2006]. The
information metaphor is widely adopted in cognitive science, following the
dominations of structuralism, functionalism, associationism, connectionism,
and behaviorism [Leahey, 1997].

N. Stillings and M.H. Feinstein assumed that “the human mind is a
complex system that receives, stores, retrieves, transforms, and transmits
information [Stillings and Feinstein, 1987].” R. Harre perceived that
cognitive science is the study of cognitive phenomena [Harre, 2002], while
Michael Dawson considered “the central assumption for cognitive science is
information processing [Dawson, 1998].” In summary, contemporary
cognitive science is the study of the brain, the mind, and intelligent behavior
that blends anthropology, computer science, psychology, neuroscience,
linguistics, sociology, and philosophy.

 Cognitive informatics is a cutting-edge and interdisciplinary research
area that tackles the common root problems of modern informatics,
intelligent science, computing, software engineering, AI, cognitive science,
knowledge science, and neuropsychology. This subsection explores the
emerging discipline of cognitive informatics. Cognitive informatics studies
the internal information processing mechanisms and natural intelligence of
the brain. The historical development of informatics from the classical
information theory, contemporary informatics, to cognitive informatics, has
been reviewed in Chapter 7.

Definition 9.3 Cognitive Informatics (CI) is a transdisciplinary enquiry

of natural and machine intelligence, and their products in terms of
information, knowledge, and behaviors.

Cognitive informatics is a new frontier that attempts to solve problems

in two interconnected areas in a bi-directional and multidisciplinary
approach. In one direction, cognitive informatics uses cognitive science
theories to investigate informatics, computing, and software engineering
problems, such as information and knowledge representation in the brain, the
nature of computing, cognitive complexity of software, abstraction of
software, and system behaviors. In the other direction, cognitive informatics
uses computing theories and formal mathematical means to investigate
cognitive science problems, such as memory, learning, and thinking.

 Cognitive informatics is a discipline that forges links between a number
of natural science and life science disciplines with informatics and computing
science. The relationship between cognitive informatics and other natural
sciences can be perceived as shown in Fig. 9.6.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 675

Neural
Science Psychology

Cognitive
Science

Mathematics
Computer
Science

Contemporary
Informatics

Cognitive Informatics (CI)

Figure 9.6 Relationship between cognitive informatics and related science
disciplines

 Fig. 9.6 shows that the foundations of cognitive informatics are based

on multidisciplinary knowledge, such as those of informatics, natural
sciences, and humanity. These foundations can be classified into three
categories as shown in Table 9.3.

Table 9.3

Foundations of Cognitive informatics

Category
No.

Category of
sciences

Discipline of sciences

1 Informatics
1.1 Modern information theory
1.2 Computing theory
1.3 Software science
1.4 Artificial intelligence
2 Natural sciences
2.1 Cognitive science
2.2 Neurobiology
2.3 Psychology
2.4 Physiology
2.5 Mathematics
3 Humanity
3.1 Philosophy
3.2 Linguistics

© 2008 by Taylor & Francis Group, LLC

676 Part III Organizational Foundations of SE

9.2.4 THE THEORETICAL FRAMEWORK OF
 COGNITIVE INFORMATICS

Cognitive informatics is a discipline that forges links between a number
of natural science and life science disciplines with informatics and computing
science. The structure of the theoretical framework of cognitive informatics
is described in Fig. 9.7, which encompasses the fundamental theories of
cognitive informatics, denotational mathematics for cognitive informatics,
and the key application areas of cognitive informatics.

T4
CI model of

the brain

T5
Natural

intelligence

A4
Cognitive properties

of knowledge

A1
Future generation

computers

The Theoretical Framework of Cognitive Informatics (CI)

M2
RTPA

T2
The LRMB

model

T3
The OAR

model

T7
CI laws of
software

T8
Perception
processes

T9
Inference
processes

M1
Concept

algebra (CA)

A2
Capacity of human

memory

T1
The IME

model

M3
System algebra

(SA)

CI
Theories (T)

Denotational
Mathematics for

CI (M)

CI
Applications (A)

A8
Deductive semantics

of software

A5
Simulation of

cognitive behaviors

A7
CI foundations of

software engineering

A3
Autonomic
computing

A6
Agent

systems

T6
Neural

informatics

T10
The knowledge

system

A9
Cognitive complexity

of software

Figure 9.7 The theoretical framework of cognitive informatics

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 677

9.2.4.1 The Fundamental Theories of Cognitive informatics

The fundamental theories of cognitive informatics are developed in ten
aspects resulting in the basic and transdisciplinary research in cognitive
informatics [Wang, 2002d/07a], which encompass the Information-Matter-
Energy (IME) model, the Layered Reference Model of the Brain (LRMB),
the Object-Attribute-Relation (OAR) model of information representation in
the brain, the cognitive informatics model of the brain, Natural Intelligence
(NI), Neural Intelligence (NeI), the cognitive informatics laws of software,
the mechanism of human perception processes, the cognitive processes of
formal inferences, and the formal knowledge system. The remainder of this
chapter and related parts throughout the book explains these fundamental
theories of cognitive informatics and their interrelationships.

The denotational mathematics is an important part of the theories of
cognitive informatics as introduced in Section 4.5, which provides rigorous
and expressive means for formal reasoning in cognitive informatics studies.
Three new types of denotational mathematics, concept algebra [Wang,
2006e], system algebra [Wang, 2006d], and RTPA [Wang, 2002a], are
created for cognitive informatics to enable rigorous treatment of knowledge
representation and manipulation in a formal and coherent framework.

The new structures of contemporary mathematics have extended the
abstract objects under study in mathematics to a higher level on concepts,
behavioral processes, and systems. RTPA has been intensively discussed in
related sections of Chapters 4 and 6. System algebra will be presented in
Chapter 10. Concept algebra may be referred to Chapter 15 and [Wang,
2004e]. A wide range of applications of the denotational mathematics in the
context of cognitive informatics has been identified [Wang, 2002b/03c/06j].

9.2.4.2 The Domain of Cognitive Informatics

The key application areas of cognitive informatics can be divided into
two categories [Wang, 2007a]. One category of applications, A2, A4, and A5
as shown in Fig. 9.7, uses informatics and computing techniques to
investigate cognitive science problems, such as memory, learning, and
reasoning. The other category including the remainder areas uses cognitive
theories to investigate problems in informatics, computing, and
software/knowledge engineering. Cognitive informatics focuses on the nature
of information processing in the brain, such as information acquisition,
representation, memory, retrieve, generation, and communication. Through
the interdisciplinary approach and with the support of modern information
and neuroscience technologies, mechanisms of the brain and the mind may
be systematically explored within the framework of cognitive informatics.

© 2008 by Taylor & Francis Group, LLC

678 Part III Organizational Foundations of SE

 Cognitive informatics covers a whole range of interdisciplinary
research in subject areas including NI, autonomic computing, and NeI, as
shown in Table 9.4.

Table 9.4
Subject Areas of Cognitive informatics

 No. Category Description
 1 Natural Intelligence

(NI)

1.1 Informatics models of the brain
1.2 Cognitive processes of the brain
1.3 Internal information processing mechanisms
1.4 Theories of natural intelligence
1.5 Intelligent foundations of computing
1.6 Descriptive mathematics for NI
1.7 Abstraction and means
1.8 Ergonomics
1.9 Informatics laws of software
1.10 Knowledge representation
1.11 Models of knowledge and skills
1.12 Language acquisition
1.13 Cognitive complexity of software
1.14 Distributed intelligence
1.15 Computational intelligence
1.16 Emotions/motivations/attitudes
1.17 Perception and consciousness
1.18 Hybrid (AI/NI) intelligence
2 Autonomic

Computing (AC)

2.1 Imperative vs. autonomic computing
2.2 Reasoning and inferences
2.3 Cognitive informatics foundations of AC
2.4 Memory models
2.5 Informatics foundations of software engineering
2.6 Fuzzy logic
2.7 Knowledge engineering
2.8 Pattern recognition
2.9 Agent technologies
2.10 Artificial intelligence
2.11 Software agent systems

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 679

2.12 Decision theories
2.13 Problem solving
2.14 Machine learning
2.15 Intelligent Internet techniques
2.16 Web contents cognition
2.17 Nature of software
2.18 Quantum computing
3 Neural informatics

(NeI)

3.1 Neural informatics foundations of information processing
3.2 Cognitive models of the brain
3.3 Functional modes of the brain
3.4 Neural models of memory
3.5 Neural networks
3.6 Neural computation
3.7 Cognitive linguistics
3.8 Neuropsychology
3.9 Bioinformatics
3.10 Biosignal processing
3.11 Cognitive signal processing
3.12 Gene analysis
3.13 Gene expression
3.14 Neural signal interpretation
3.15 Visual information representation
3.16 Visual information interpretation
3.17 Sensational cognitive processes
3.18 Human factors in systems

9.3 Cognitive Informatics Models of
 the Brain

The human brain is the most complicated organ in the universe and is
constantly the frontier yet to be explored in an interdisciplinary approach.
Investigation into the brain and its cognitive mechanism is a unique and the

© 2008 by Taylor & Francis Group, LLC

680 Part III Organizational Foundations of SE

hardest problem in science that requires recursive and introspective mental
power to explore the brain by the brain.

This section develops the cognitive informatics models of the brain.
One of the focuses of this section is the relationship between the inherited
life functions and the acquired life functions. Another focus is the memory-
based theory of intelligence, which deems that the memory mechanisms are
the foundation for any kind of natural intelligence. Without the establishment
of a unified memory model, studies on the brain will never form a coherent
theory.

9.3.1 THE LAYERED REFERENCE MODEL OF THE
 BRAIN (LRMB)

A variety of life functions and their cognitive processes have been
identified in cognitive informatics, cognitive neuropsychology, cognitive
science, and neurophilosophy. Based on the advances of research in
cognitive informatics and related fields, this subsection presents a Layered
Reference Model of the Brain (LRMB) [Wang et al, 2006] that explains the
functional mechanisms and cognitive processes of the natural intelligence. In
order to formally and rigorously describe a comprehensive and coherent set
of mental processes and their relationships, the hierarchical LRMB model is
established, which encompasses 39 cognitive processes at six layers known
as the sensation, memory, perception, action, meta cognitive, and higher
cognitive layers from the bottom up.

The following subsections discuss each of these six layers of cognitive
processes and interactions between the layers in the context of the cognitive
model of the brain as a real-time intelligent system.

9.3.1.1 The Architecture of LRMB

 LRMB can be described as shown in Fig. 9.8. At the top level, the
hierarchical life functions of the brain, the natural intelligent system (NI-
Sys), can be divided into two categories: the subconscious and conscious
subsystems. The former known as the NI operating system (NI-OS)
encompasses the layers of sensation, memory, perception, and action (Layers
1 to 4). The latter known as the NI applications (NI-App) includes the layers
of meta and higher cognitive functions (Layers 5 and 6).

 The subconscious layers of the brain represented by NI-OS are
inherited, fixed, and relatively mature when a person was born. Therefore,
the subconscious cognitive function layers are not directly controlled and
accessed by the conscious life function layers. This is why it used to be
called the nonconscious life functions in psychology literature [Smith, 1993;
Leahey, 1997; Payne and Wenger, 1998; Sternberg, 1998; Reisberg, 2001].

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 681

The conscious layers of the brain, represented by NI-App, are acquired,
highly plastic, programmable, and can be controlled intentionally based on
willingness (motivations), goals, and inferences. Although cognitive
informatics puts more emphases on exploring the conscious NI-App, the
interactions of NI-App with NI-OS profoundly shape the theory of LRMB.

 N I-Sys

 Conscious

life
functions

(NI-App)

Subconscious
life

functions

(NI-OS)

Layer 6
Higher cognitive functions

Layer 5
M eta cognitive functions

Level 3
Perception

Layer 4
Action

Level 2
 M emory

Layer 1
 Sensation

Figure 9.8 The Layered Reference Model of the Brain (LRMB)

A formal description of the high-level architecture of the LRMB model
using RTPA is presented in Fig. 9.9. Detailed descriptions of individual
layers of LRMB will be presented in the following subsection and may be
referred to [Wang et al., 2006].

Figure 9.9 Formal description of the LRMB model of the brain

The Layered Reference Model of the Brain (LRMB)

§LRMBST §NI_Sys // The Natural Intelligent system
 = NI_OS // The sub conscious NI operating system
 || NI_App // The conscious NI applications
 = (Layer1_Sensation
 || Layer2_Memory
 || Layer3_Perception
 || Layer4_Action
)
 || (Layer5_Meta_Cognitive_Functions
 || Layer6_Higher_Cogntive_Functions
)

© 2008 by Taylor & Francis Group, LLC

682 Part III Organizational Foundations of SE

9.3.1.2 The Functional Layers of LRMB

Based on the architectural framework of LRMB, the six layers of
cognitive processes of the brain and their relationships are descried below.

9.3.1.2.1 Layer 1: The Sensation Layer

Definition 9.4 The sensation layer of LRMB is a subconscious layer of

life functions of the brain for detecting and acquiring cognitive information
from the external world via physical and/or chemical means.

The sensation layer encompasses all input-oriented senses such as

vision, audition, smell, tactility, and taste. The sensation layer is associated
with a set of input-oriented temporary memory, known as SBM, as modeled
in Section 9.2.2.3.

 Definition 9.5 Sensation is a set of cognitive processes of the brain at
the subconscious life functional layer that forms the interfaces between the
internal and external worlds for information detection, transformation, and
acquisition.

Sensations are mental states caused by the stimulation of sensory
organs affected by either real-world entities or energy as well as their
changes of statuses in the external world. The sensational cognitive processes
at Layer 1 of LRMB encompass the basic cognitive life functions of vision,
audition, smell, tactility, and taste as described in Table 9.5 [Wang et al,
2006; Wang, 2005c]. Tactility can be further divided into senses of therme,
pressure, weight, pain, and texture; while taste can be categorized as that of
salt, sweet, bitter, sour, and pungency.

9.3.1.2.2 Layer 2: The Memory Layer

Definition 9.6 The memory layer of LRMB is the fundamental layer of
life functions of the brain functioning to: a) Retain and store information
about both the external and internal worlds; b) Maintain a stable state of an
animate system; c) Provide a working space of abstract inference; and d)
Buffer programmed actions and motions to be executed by the body.

It is recognized that the natural intelligence is memory-based [Wang,
2002d/07a; Wang and Wang, 2006], and the memory layer is a
fundamentally important part of the subconscious life functions. According

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 683

to neural informatics as discussed in Section 9.2.2, the memory of brain
encompasses the following types of memories: SBM, STM, LTM, and ABM,
where LTM is the key to understand the mechanism of the natural
intelligence.

Definition 9.7 Memory is a set of cognitive processes of the brain at the

subconscious life function layer that retains the external or internal cognitive
information in various memories of the brain, particularly in LTM.

The memory layer is the fundamental layer of life functions of the brain

for maintaining a stable state of an animate system. The major means of
interaction between the conscious and subconscious layers of LRMB are all
forms of memories and the information retained in them.

9.3.1.2.3 Layer 3: The Perception Layer

Definition 9.8 The perception layer of LRMB is a subconscious layer

of life functions of the brain for maintaining conscious life functions and for
browsing internal abstract memories in the cognitive models of the brain.

The cognitive functions of the perception layer can be considered as the

thinking engine of the brain and the kernel of the natural intelligence.
Perception may also be considered as the sixth sense, supplementary to the
five external sensations at Layer 1, known as vision, audition, smell, tactility,
and taste, which implements self consciousness inside the abstract memories
of the brain. Therefore, the perception layer is a core part of the subconscious
life functions.

Definition 9.9 Perception is a set of internal sensational cognitive

processes of the brain at the subconscious life function layer that detects,
relates, interprets, and searches internal cognitive information in the mind.

The cognitive processes of perception encompass the self-

consciousness, attention, emotions, attitude, sense of spatiality, and sense of
motion as shown in Table 9.5. Perception is the internal sensory layer of the
brain that almost all cognitive life functions rely on it. Perception is also an
important cognitive function at the subconscious layers that determines

© 2008 by Taylor & Francis Group, LLC

684 Part III Organizational Foundations of SE

personality. In other words, personality is a faculty of all subconscious life
functions and experience cumulated via conscious life functions.

9.3.1.2.4 Layer 4: The Action Layer

Definition 9.10 The action layer of LRMB is a subconscious layer of
life functions of the brain for output-oriented actions and motions that
implement human behaviors such as a sequence of movement and a pre-
prepared verbal communication.

The action layer is a part of the subconscious life functions. The action
layer encompasses all motor control and execution functions such as looking,
reading, and writing as shown in Table 9.5. Supplemented to the input-
oriented SBM, ABM is an output-oriented temporary memory. The
functional model of ABM is a set of parallel queues, each of them
representing a sequence of actions, or a process. ABM was first identified in
[Wang, 2002d; Wang and Wang 2006]. The action and the sensation layers
form a closed-loop for implementing various life functions, particularly the
cognitive life functions at the conscious layers.

Definition 9.11 Actions are a set of subconscious cognitive processes
of the brain at the subconscious life function that executes both bodily
(external) or mental (internal) actions via the motor systems of the body or
the perceptional engine of the brain.

Note that there are mental perceptual actions inside the brain via the
thinking engine of the mind. This observation is significant to explain how
perceptive and thinking processes are carried out in the abstract or
information world of the brain.

9.3.1.2.5 Layer 5: The Meta Cognitive Process Layer

Definition 9.12 The meta cognitive process layer of LRMB is a
conscious layer of life functions of the brain that carries out the fundamental
and elementary cognitive processes commonly used in higher cognitive
processes.

The meta cognitive process layer is a part of the conscious life
functions that can be controlled directly by the conscious mind (or the
thinking engine) as mental applications.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 685

Definition 9.13 A meta cognitive function is a fundamental and
elemental cognitive process of the brain at the conscious life function layer
that is commonly used (or applied) to support the higher layer cognitive life
functions.

The meta cognitive functions at Layer 5 of LRMB encompass the basic
cognitive processes of identify object, abstraction, concept establishment,
search, categorization, memorization, selection, qualification, quantification,
and comparison as shown in Table 9.5.

9.3.1.2.6 Layer 6: The Higher Cognitive Process Layer

Definition 9.14 The higher cognitive process layer of LRMB is a
conscious layer of life functions of the brain that carries out a set of specific
cognitive processes under the support of the meta cognitive processes.

 The higher cognitive process layer is a part of the conscious life
functions. More complicated and colorful life functions can be implemented
by serial, parallel, and interleaved combinations of these cognitive processes
in LRMB.

Definition 9.15 A higher cognitive function is an advanced cognitive
process of the brain at the conscious life function layer that is developed and
acquired to carry out commonly recurring life functions under the support of
the meta cognitive process.

The higher cognitive functions at Layer 6 of LRMB include 16

processes such as recognition, imagery, comprehension, learning, deduction,
induction, abduction, analogy, decision making, problem solving,
explanation, analysis, synthesis, creation, planning, and modeling as shown
in Table 9.5.

9.3.1.3 The Configuration of the Cognitive Processes of LRMB

In a summary, LRMB models 39 cognitive processes as shown in Table
9.5, which are categorized into the six layers and two subsystems. It is a great
curiosity to explore the insides and processes of the brain and to explain its
fundamental mechanisms by a set of cognitive processes. Formal descriptions
of particular cognitive processes of LRMB in RTPA may be referred to
[Wang, 2007h/07i; Wang and Gafurov, 2003; Chiew and Wang, 2004; Wang
and Ruhe, 2007]. A comprehensive collection of detailed description of all
the LRMB processes will be presented in Cognitive Informatics: A
Transdisciplinary Field Exploring Natural and Artificial Intelligence [Wang,
2007j].

© 2008 by Taylor & Francis Group, LLC

686 Part III Organizational Foundations of SE

Table 9.5
Classification of Cognitive Processes in LRMB

Subconscious Processes Conscious Processes
Layer 1 Layers 2-4 Layer 5 Layer 6

Sensational
cognitive
processes

Subconscious
cognitive
processes

Meta cognitive
processes

Higher cognitive
Processes

1.1 Vision 2.0 Memory 5.1 Identify object 6.1 Recognition
1.2 Audition 3.0 Perception 5.2 Abstraction 6.2 Imagery
1.3 Smell 3.1 Self-

 consciousness
5.3 Concept
 establishment

6.3 Comprehension

1.4 Tactility 3.2 Attention 5.4 Search 6.4 Learning
 - Therme 3.3 Emotions 5.5 Categorization 6.5 Deduction
 - Pressure 3.4 Attitudes 5.6 Memorization 6.6 Abduction
 - Weight 3.5 Sense of

 spatiality
5.7 Selection 6.7 Induction

 - Pain 3.6 Sense of
 motion

5.8 Qualification 6.8 Analogy

 - Texture 4.0 Actions 5.9 Quantification 6.9 Decision making
1.5 Taste 5.10 Comparison 6.10 Problem solving
 - Salt 6.11 Explanation
 - Sweet 6.12 Analysis
 - Bitter 6.13 Synthesis
 - Sour 6.14 Creation
 - Pungency 6.15 Modeling
 6.16 Planning

9.3.2 COGNITIVE PROPERTIES OF INTERNAL
 INFORMATION

Almost all modern disciplines of science and engineering deal with

information and knowledge. However, the three fundamental concepts of
data, information, and knowledge are conventionally perceived quite
differently in literature [Debenham, 1989; McDermid, 1991]. Data are
directly acquired raw information, usually a quantitative abstraction of
external objects and/or their relations. Information is meaningful data, or the
subjective interpretation of data. Then, knowledge is the consumed
information related to existing knowledge in the brain.

 Based on the investigations in cognitive informatics, particularly the
research on the object-attribute-relation model and the mechanisms of

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 687

internal information representation, the above empirical classification of the
cognitive levels of data, information, and knowledge may be revised. A
cognitive informatics perception on the relationship among data (sensational
inputs), actions (behavioral outputs), and their internal representations such
as knowledge, experience, and skill, are that all of them are cognitive
information. The taxonomy of cognitive information is determined by the
types of inputs and outputs of information to and from the brain as described
below.

Definition 9.16 The Cognitive Information Model (CIM) classifies
cognitive information into four categories known as knowledge, behavior,
experience, and skill, according to the types of input and output as either
information (I) or action (A), i.e.:

a) Knowledge K: I → I (9.2)
b) Behavior B: I → A (9.3)
c) Experience E: A → I (9.4)
d) Skill S: A → A (9.5)

The CIM model provided in Definition 9.16 can be illustrated as shown

in Table 9.6. According to Table 9.6, for a given cognitive process, if both
I/O are abstract information, the internal information acquired is knowledge;
if both I/O are empirical actions, the type of internal information is skill; and
the remainder combinations between action/information and information/
action produce experience and behaviors, respectively. Note in Table 9.6 that
behaviors are a new type of cognitive information modeled inside the brain,
which embodies an abstract input to an observable behavioral output [Wang
et al., 2004; Wang, 2007a].

Table 9.6
The Cognitive Information Model (CIM)

It is noteworthy that the approaches to acquire knowledge/instructions

and experience/skills are fundamentally different. Although knowledge or
behaviors may be acquired directly or indirectly, skills and experiences can

Type of output

Information Action

Ways of
acquisition

Information Knowledge (K) Behavior (B) Direct or indirect Type
of

input Action Experience (E) Skill (S) Direct only

© 2008 by Taylor & Francis Group, LLC

688 Part III Organizational Foundations of SE

only be obtained directly by hands-on activities. Further, the storage
locations of the abstract information are different, where knowledge and
experience are stored as abstract relations in LTM, while behaviors and skills
are stored as wired neural connections in ABM.

The cognitive informatics theory developed in this section explains
why people have to make the same mistakes in order to gain empirical
experiences and skills, and why experience transfer is so hard and could not
be gained by indirect reading. The cognitive informatics theories on
classification of internal information will be used to explain a wide range of
phenomena of learning and practices in software engineering in Section 9.5.

According to Table 9.6, the following law on information manipulation
and learning for both human and machine systems can be derived.

Theorem 9.4 lays an important foundation for learning theories and

pedagogy [Wang et al., 2004; Wang, 2007a]. Theorem 9.4 indicates that
learning theories and their implementation in autonomic and intelligent
systems should study all four categories of cognitive information
acquisitions, particularly behaviors, experience, and skills rather than only
focusing on knowledge.

Based on Theorem 9.4, the following corollaries on cognitive
information acquisition can be derived.

Corollary 9.1 All the four categories of information can be acquired
directly by an individual.

Corollary 9.2 Knowledge and behaviors can be learnt indirectly by
inputting abstract information; while experience and skills must be learnt
directly by hands-on or empirical actions.

The 28th Law of Software Engineering

Theorem 9.4 The generic forms of cognitive information state that there
are four categories of internal information I in the brain known as
knowledge (Ik), behaviors (Ib), experience (Ie), and skills (Is), i.e.:

 (, , ,)k b e s=I I I I I (9.6)

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 689

To a certain extent, software engineering deals with instructive
behaviors and their relations with knowledge, experience, and skills
according to the CIM model.

9.3.3 NATURAL INTELLIGENCE VS. ARTIFICIAL
 INTELLIGENCE

Cognitive informatics adopts a compatible perspective on natural
intelligence and artificial intelligence. It is logical to believe that natural
intelligence should be fully understood before artificial intelligence can be
scientifically studied. This subsection explores the nature of intelligence and
the equivalence between natural and artificial intelligence. In this view,
conventional machines are invented to extend human physical capability,
while modern information processing machines such as computers,
communication networks, and robots are developed for extending human
intelligence, memory, and the capacity for information processing [Wang,
2006b/07a]. Therefore, any machine that may implement a part of human
behaviors and actions in information processing has possessed some extent
of intelligence.

9.3.3.1 The Nature of Intelligence

Intelligence is a driving force or an ability to acquire and use

knowledge and skills, or to reason in problem solving. It was conventionally
deemed that only human beings and advanced species possess intelligence.
However, the development of computers, robots, and autonomic systems
indicates that intelligence may also be created or implemented by machines
and man-made systems.

Definition 9.17 Intelligence, in the narrow sense, is a human or a
system ability that transforms information into behaviors; and in a broad
sense, it is any human or system ability that autonomously transfers the forms
of abstract information among data, information, knowledge, and behaviors
in the brain.

In the above definition, the four abstract objects can be defined as

follows based on Definition 9.16.

Definition 9.18 The abstract objects in the brain such as data (D),
information (I), knowledge (K), and behavior (B) can be formally modeled as
follows:

min: log , = 2d k kD r M S M k→ = (9.7)

 : , i iI r D C r→ ∈R (9.8)

© 2008 by Taylor & Francis Group, LLC

690 Part III Organizational Foundations of SE

n

1
i=1

: (), X Rk n i kK r C C r+ → ∈ (9.9)

1

1

1 1

 (@)

 [@ (() () ())], 1, R

m

k k
k

m n

k i ij j ij
k i

B

e P

e p k r k p k j i r

R
R R

=

−

= =

℘

=

= = + ∈

 (9.10)

where C is a concept as given in Definition 15.3, R is the set of process
relations as defined in Theorem 4.7, and the behavior B is equivalent to a
program℘ or a set of interacting processes as given in Definition 5.53.

With the clarification of the intension and extension of the generic

concept, intelligence, the terms of natural and artificial intelligence can be
derived below.

 Definition 9.19 Natural intelligence (NI) is a system of intelligent
behaviors possessed or embodied by the brains of human beings and other
advanced species.

Definition 9.20 Artificial intelligence (AI) is a system of intelligent
behaviors possessed or implemented by machines or man-made systems.

9.3.3.2 Taxonomy of Intelligence

Intelligence can be formally modeled as a set of functions that transfers

a pair of abstract objects in the brain or systems as given in Definitions 9.17
or 9.18.

The 29th Law of Software Engineering

Theorem 9.5 The nature of intelligence states that intelligence I can be
classified into four forms called the perceptive intelligence Ip, cognitive
intelligence Ic, instructive intelligence Ii, and reflective intelligence Ir as
modeled below:

 p

 c

i

r

: (Perceptive)

 || : (Cognitive)
 || : (Instructive)
 || : (Reflective)

D I

I K
I B
D B

→

→
→
→

I I

I

I

I

 (9.11)

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 691

According to Theorem 9.5 and Definitions 9.17, the narrow sense of
intelligence is corresponding to the instructive and reflective intelligence;
while the broad sense of intelligence includes all four forms of intelligence,
particularly the perceptive and cognitive intelligence.

It is recognized [Wang, 2006b/2007a] that the basic approaches to
implement intelligence can be classified as shown in Table 9.7. Observing
Table 9.7, software for computation is the third approach to simulate and
implement the natural intelligence by programmed logic. This indicates that
the nature of software is the simulation and execution of partial human
behaviors, and the extension of human capability, reachability, persistency,
memory, and information processing speed.

Table 9.7
Approaches to Implement Natural Intelligence and Artificial Intelligence

No. Means Approach Category
1 Biological organisms Naturally grown NI
2 Silicon automata Wired AI
3 Computing systems Programmed AI
4 Other (in future) Hybrid NI + AI

9.3.3.3 The Model of Natural Intelligence

On the basis of the conceptual models developed in previous

subsections, the mechanisms of natural intelligence can be described by a
generic intelligence model (GIM) as given below.

Definition 9.21 The Generic Intelligence Model (GIM) describes the

mechanisms of the natural intelligence, as shown in Fig. 9.10, according to
Theorem 9.5 on the nature of intelligence.

Figure 9.10 The Generic Intelligence Model (GIM)

 K
LTM

 Ii

Stimuli

 I
STM

 D
SBM

 B
ABM

Enquiries

Behaviors
 Ir

 Ip – Perceptive intelligence

 Ic

 Ip

 Ic – Cognitive intelligence Ii – Reflective intelligence
 Ii – Instructive intelligence

© 2008 by Taylor & Francis Group, LLC

692 Part III Organizational Foundations of SE

In the GIM model as shown in Fig. 9.10, different kind of intelligence
is described as a driving force that transfers between a pair of abstract objects
in the brain such as data (D), information (I), knowledge (K), and behavior
(B).

It is noteworthy that each abstract object is physically stored in a
particular type of memories as defined in Section 9.2.2.3 according to the
CMM model given in Theorem 9.3. This is the neural informatics foundation
of natural intelligence, and the physiological evidences of why natural
intelligence can be classified into four forms as given in Theorem 9.5.

According to the GIM model, as well as Theorems 3.3 and 3.4, the
natural and machine (artificial) intelligence share the same cognitive
informatics foundation. In other words, they are compatible. Therefore, the
studies on natural intelligence and artificial intelligence may be unified into a
common framework.

9.3.3.4 Measurement of Intelligence

The measurement of intelligent capability of humans and systems can
be classified into three categories known as intelligent quotation, intelligent
equivalence, and intelligent capability as described in the following
subsections.

9.3.3.4.1 Intelligent Quotient

The first measurement for mental intelligence is proposed in

psychology known as the intelligent quotient based on the Stanford-Binet
intelligence test [Binet, 1905; Terman and Merrill, 1961; Pinneau, 1961;
Mackintosh, 1998]. Intelligent quotient is determined by six subtests where
the passing of each subtest is counted for two equivalent months of mental
intelligence.

Definition 9.22 The mental age Am in an intelligent quotient test is the

sum of a base age Ab and an extra equivalent age ∆A, i.e.:

max

max

2
12

 []
6

m b

sub

sub

A A A
nA

nA yr

= + ∆

= +

= +

 (9.12)

where Ab is the maximum age Amax gained by a testee who passes all six
subtests required for an certain age, and ∆A is determined by the number of
passed subtests beyond Amax as merits, i.e., nsub.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 693

Definition 9.23 Intelligent quotient (IQ) is a ratio between the mental
age Am and the chronological (actual) age Ac, multiplied by 100, i.e.:

max

100

1
6 100

m

c

sub

c

AIQ
A

A n

A

= •

+
= •

 (9.13)

Example 9.1 For a 9 year-old boy and 6.75 year-old (6 year and 9

month) girl, if they both pass all six subtests at the 7-year level, plus 12
subtests partially passes in higher age levels, what are their IQs, respectively?

As given above, for the boy: Ac1 = 9, Amax1 = 7, and nsub1 = 12; and for

the girl: Ac2 = 6.75, Amax2 = 7, and nsub2 = 12. Their IQs, IQ1 and IQ2, can be
determined according to Eq. 9.12 as follows:

max

1

1
6 100

127
6 100

9
100.0

sub

c

A n
IQ

A

+
= •

+
= •

=

max

2

1
6 100

127
6 100

6.75
133.3

sub

c

A n
IQ

A

+
= •

+
= •

=

According to Definition 9.12, an IQ score above 100 supposes a gifted

intelligence. However, the measure is only sensitive to children but not
sensitive to adults, because the differences between the mental and
chronological ages for adults are not clear naturally. Another drawback in the
IQ test is that the norms or benchmarks of the mental ages for determining IQ
are not easy to objectively define, especially for adults, and were considered
highly subjective. Third, the IQ test does not cover all forms of intelligence
as defined in Theorem 9.5, particularly the instructive and reflective
intelligent capabilities.

© 2008 by Taylor & Francis Group, LLC

694 Part III Organizational Foundations of SE

9.3.3.4.2 The Turing Test

The second measurement for comparative intelligence is proposed by
Alan Turing based on the Turing test [Turing, 1950].

Definition 9.24 The Turing intelligence equivalence ET is a ratio of

conformance or equivalence evaluated in a comparative test between a
system under test and an equivalent human-based system, where both
systems are treated as a black box and the testers do not know which is the
tested system, i.e.:

 100%
+

c
T

c u

TE
T T

= • (9.14)

where Tc is the number of conformable results between the two systems a
tester evaluated, and Tu the number of unconformable results.

Turing tests with the layout above are informally defined based on
empirical experiments and subjective judgements of conformance by testers.
The standard real human intelligent system as the reference system in the test
is difficult to be defined and it is instable. Also, not all forms of intelligence
may be tested by the black box settings such as the cognitive and reflective
intelligent capabilities.

9.3.3.4.3 Wang’s Intelligent Capability Metrics

Based on the investigation into the nature of intelligence and the GIM
intelligence model [Wang, 2006b/06j/07a], a comprehensive measurement on
human and system intelligence is proposed by the author known as the
Wang’s intelligent capability metrics as defined below [Wang, 2007i].

Definition 9.25 The Intelligent Capability CI is an average capability of

the perceptive intelligence (Cp), cognitive intelligence (Cc), instructive
intelligence (Ci), and reflective intelligence (Cr), i.e.:

 p c i r

+ + +

4I

C C C C
=C (9.15)

where CI ≥ 0 and CI = 0 represents no intelligence.

 In Definition 9.25, the four forms of intelligent capabilities can be
measured individually according to the following methods given in
Definitions 9.26 through 9.29.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 695

Definition 9.26 The perceptive intelligent capability Cp is the ability to
transfer a given number of data objects or events Nd into a number of
information objects in term of derived or related concepts, Ni, i.e.:

 i

d
p

NC
N

= (9.16)

The perceptive intelligent capability is directly related to the association

capability of a testee. The higher the ratio of Cp, the higher the capability of
perceptive intelligence. If there is no concept that may be linked or derived
for a given set of data or event, there is no perceptive intelligent capability.

Definition 9.27 The cognitive intelligent capability Cc is the ability to
transfer a given number of information objects Ni in terms of associated
concepts into a number of knowledge objects Nk in terms of relations
between concepts, i.e.:

 k

i
c

NC
N

= (9.17)

Definition 9.28 The instructive intelligent capability Ci is the ability to

transfer a given number of information objects Ni in terms of associated
concepts into a number of behavioral actions Nb in terms of number of
processes at LRMB Layers 5 and 6, i.e.:

 b

i
i

NC
N

= (9.18)

Definition 9.29 The reflective intelligent capability Cr is the ability to

transfer a given number of data objects or events Nd into a number of
behavioral actions Nb in terms of number of processes at LRMB Layers 5 and
6, i.e.:

 b

d
r

NC
N

= (9.19)

 On the basis of Definitions 9.25 through 9.29, a benchmark of average
intelligent capabilities can be established with large set of test samples. Then,
a particular testee’s relative intelligent capability or intelligent merit may be
derived based on the benchmark.

© 2008 by Taylor & Francis Group, LLC

696 Part III Organizational Foundations of SE

Definition 9.30 The relative intelligent capability ∆CI is the difference
between a testee’s absolute intelligent capability CI and a given intelligent
capability benchmark

IC , i.e.:

b bi k

d i i d

-
1 () -
4

I I I

I
N NN N

N N N N

∆ =

= + + +

C C C

C
 (9.20)

9.3.3.5 Theory of Learning and Knowledge Acquisition

According to the CIM model described in Section 9.3.3, the forms of
information acquisition and learning of both humans and machine systems
are determined by the taxonomy and cognitive properties of internal
information inside the brain as stated in the following theorem.

Theorem 9.6 indicates that learning theories and their implementations

in autonomic and intelligent systems should study all four categories of
cognitive information acquisition, particularly behaviors, experience, and
skills rather than only focusing on knowledge.

According to the object-attribute-relation (OAR) model (see Model

9.8), the result of knowledge acquisition or learning can be embodied by the
updating of the existing OAR in the brain. In other words, learning is a
dynamic composition of the existing OAR in LTM and the currently created
sub-OAR as expressed below.

Corollary 9.3 Knowledge and behaviors can be learnt indirectly by
inputting abstract information; while experience and skills must be learnt
directly by hands-on or empirical actions.

The 28th Principle of Software Engineering

Theorem 9.6 The generic forms of learning state there are sufficiently
four categories of learning L known as those of knowledge (Lk),
behaviors (Lb), experience (Le), and skills (Ls), i.e.:

 (, , ,)k b e s=L L L L L (9.21)

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 697

9.3.4 THE COGNITIVE MODEL OF THE BRAIN

As argued in the beginning of Section 9.2, although plenty of

observations and studies on the brain at physiological and psychological
levels have been cumulated, there is a lack of the functional model of the
brain at the top level that provides a whole picture of the brain and natural
intelligence.

This subsection develops the cognitive models of the brain and natural
intelligence by studying relationships between the inherited and acquired life
functions in the six layers of LRMB and between the memory components of
the brain. It is found that the brain and the natural intelligence can be
formally treated as a real-time information processing system [Wang and
Wang, 2006] at the functional level in cognitive informatics with the
framework of LRMB.

 Model 9.5 The Real-Time Intelligent System Model of the brain, NI-

Sys, can be described as a real-time natural intelligent system with an
inherited operating system (thinking engine) NI-OS and a set of acquired life
applications NI-App, i.e.:

 NI-Sys NI-OS
 || NI-App (9.23)

where NI-OS represents the inherited life functions, NI-App the developed
life functions, and || a parallel relation.

The relationship between NI-OS and NI-App has been illustrated in Fig.

9.8, where the Level 1 through Level 4 life functions belong to NI-OS, and
Level 5 and Level 6 life functions are a fundamental part of NI-App.

The 29th Principle of Software Engineering

Theorem 9.7 The representation of learning results states that the
internal memory in the form of the OAR structure can be updated by a
conjunction between the existing OAR and the newly created sub-OAR
(sOAR), i.e.:

 OAR’ ST OARST ∪ sOAR’ST
 = OARST ∪ (Os, As, Rs) (9.22)

© 2008 by Taylor & Francis Group, LLC

698 Part III Organizational Foundations of SE

The characteristics of NI-OS have been observed as follows [Wang and
Wang, 2006]:

 • Inherited
 • Wired (by neural networks)
 • Working subconsciously and automatically
 • A real-time system
 • Person-independent, common and similar
 • Highly parallel and fault-tolerant

 • With event/time/interrupt/goal/inference-driven mechanisms

In contrary to the NI-OS, the characteristics of NI-App have been
identified as follows [Wang and Wang, 2006]:

 • Acquired
 • Partially wired (frequently used functions) and partially

programmed (temporary functions)
 • Working consciously
 • Can be trained and programmed

 • Person-specific

The goal-driven and inference-driven mechanisms are unique features
of natural intelligence systems on top of the event-, time-, and interrupt-
driven imperative computing mechanisms. The former are autonomously
determined by internal states and willingness such as emotions, desires, and
rational reasoning. A systematical comparison of the natural intelligent
behaviors and the conventional imperative computer behaviors will be
provided in Section 15.4.1 toward the development of software science and
autonomic computing. Because the inference-driven behaviors have been
modeled in Section 3.3, the goal-driven behaviors are described below.

Definition 9.31 A goal, denoted by @gkST in the system type ST, is a
triple, i.e.:

 @gkST = (P, Ω, Θ) (9.24)

where P = {p1, p2, …, pn} is a nonempty finite set of purposes or motivations,
Ω is a set of constraints for the goal, and Θ is the environment of the goal.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 699

Therefore, a goal-driven behavior is a cognitive process that is
determined by an internal goal in the forms of emotions, desires, willingness,
and/or results of rational reasoning.

On the basis of Model 9.5, the functional model of the brain is
illustrated in Fig. 9.11 [Wang and Wang, 2006], which shows that the brain
consists of the NI-Sys (NI-OS || NI-App), LTM, STM, SBM (connected with
a set of sensors), and ABM (connected with a set of servos). In Fig. 9.11 the
kernel of the brain is the natural intelligence system (NI-Sys), which is the
thinking engine of the brain as described in the LRMB model.

The external world
The internal world

NI-App

 NI-OS
(The thinking
 engine)

Looking

Short-term
Memory
(STM)

Long-term
Memory
(LTM)

Input
sensors

Action
buffer
memory
(ABM)

Sensory
buffer
memory
(SBM)

Output
actions

Vision

Audition

Touch

Smell

Taste

Speaking

W riting

other

…

Figure 9.11 The functional model of the brain

Based on Fig. 9.11 and the CMM model, Model 9.5 can be extended as
follows.

Model 9.6 The functional model of the brain, BRAIN, as a real-time

system and a high-level logical model of the brain, describes the functional
configuration of the brain and how the NI-Sys interacts with the memory
system, i.e.:

_
 ||
 (_
 || _
)
 || (
 ||
 ||
 ||
)

BRAIN NI Sys
CMM

NI OS
NI App

LTM
STM
SBM
ABM

=

 (9.25)

© 2008 by Taylor & Francis Group, LLC

700 Part III Organizational Foundations of SE

Eq. 9.25 indicates that although the thinking engine NI-Sys is
considered the center of the natural intelligence, the memories are essential to
enable the NI-Sys to properly function, and to keep temporary and stable
results stored and retrievable.

The corresponding biological organ of NI-OS in neurophysiology is the
thalamus – a switching center located above the midbrain, which possesses
tremendous amounts of connections to almost all parts of the brain,
especially cerebral cortex, eyes, and visual cortex [Smith, 1993; Leahey,
1997; Payne and Wenger, 1998; Sternberg, 1998]. Thalamus, the
physiological organ corresponding to NI-OS, has nearly matured when a
person is born. However, the NI-App is a set of acquired functions, in forms
of knowledge and skills, wired and stored in the LTM in cerebral cortex.

NI-Sys interacts with LTM and STM in a bi-directional way, which
forms the basic functionality of the brain as a thinking machine. STM
provides working space for the NI-Sys, and LTM stores both cumulated
information (knowledge) and wired and usually subconscious procedures
(skills). It is also noteworthy that ABM plays an important role in the brain to
plan and implement human behaviors [Wang and Wang, 2006].

 The NI-Sys communicates with the external world through inputs and
outputs (I/Os). The former are sensorial information, including vision,
audition, touch, smell, and taste. The latter are action and behaviors of life
functions, such as looking, speaking, writing, and driving. The actions and
behaviors generated in the brain, either from NI-OS or NI-App, are buffered
in the ABM before they are executed and outputted to implement the
predetermined actions and behaviors.
 Unlike a computer, the brain works in two approaches: the internal
goal- and inference-driven processes (in NI-OS), and the external event-,
time-, and interrupt-driven processes (in NI-App). The external information
and events are the major sources that drive the brain, particularly for NI-App
functions. In this case, the brain may be perceived as a passive system, at
least when it is conscious, that is controlled and driven by external
information. Even the internal willingness, such as goals, desires, and
emotions, may be considered as derived information based on originally
external information.

It is noteworthy that the subconscious life functions determine the
majority of human behaviors and cognitive processes. Although Sigmund
Freud identified the psychological effects of sex-related desires of human
beings [Freud, 1895; Leahey, 1997], the other more important subconscious
life functions as modeled in LRMB as shown in Table 9.5 were probably
oversimplified [Wang et al., 2006]. Therefore, a study on the subconscious
behaviors of the brain and their mechanisms may be the key to understand
how the brain works.

The LRMB reference model and the functional model of the brain
establish the foundation for explaining and analyzing the cognitive

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 701

mechanisms of the brain. Based on them, the age-old problem of the
relationship between the brain and the mind can be explained, where the
brain is both an information processing organ and a real-time controller of
the body; while the mind is an abstract model of oneself and a thinking
engine. The mind, as a virtual model of a person in the brain, is partially
programmed and partially wired. The former is evolved for the flexibility of
life functions, while the latter is formed for the efficiency of frequently
conducted activities, such as eating, writing, and driving.

Definition 9.32 The relationship between the brain and the mind can be
analogized by:

 Brain : mind = computer : program (9.26)

The existence of the virtual model of human beings, the mind, can be

proven by the following mental phenomena: (a) If one keeps eyes closed, one
may still imagine or ‘see’ everything you learned and remembered,
particularly, the visual information, such as the hands and legs. (b) It is
reported that patients who lost a leg or arm may think or feel, from time to
time, that they still have it as before, because the original cognitive model
about the organ at the lower layer of the brain may not be eliminated
whenever it had been physiologically created. However, the low-level model
may be bypassed or patched at higher layer by conscious cognitive processes.

9.4 Cognitive Informatics Models of
 Knowledge Representation

Types and structures of memories have been formally modeled in Section
9.2.2, and the cognitive models of the brain have been formally described in
Section 9.3. This section examines the cognitive informatics models of
information and knowledge and their internal representation in the brain. A
set of cognitive models will be developed such as the hierarchical neural
cluster model of memory and the object-attribute-relation model of internal
knowledge representation, which leads to the explanation of the forms of
learning result representation and the estimation of the memory capacity of
the brain.

© 2008 by Taylor & Francis Group, LLC

702 Part III Organizational Foundations of SE

9.4.1 THE HIERARCHICAL NEURAL CLUSTER (HNC)
 MODEL OF MEMORY

In contrary to the traditional container metaphor, the human memory
mechanism can be described by a relational metaphor [Wang et al., 2003;
Wang and Wang, 2006]. The new metaphor perceives that memory and
knowledge are represented by the connections between neurons in the brain,
rather than the neurons themselves as information containers. Therefore, the
cognitive model of human memory, particularly LTM, can be modelled as
follows.

Model 9.7 The functional model of LTM is a set of Hierarchical
Neural Clusters (HNC) with partially connected neurons via synapses.

The HNC model can be illustrated as shown in Fig. 9.12, where the
LTM consists of dynamic and partially interconnected neural networks,
where a connection between a pair of neurons by a synapse represents a
relation between two cognitive objects. The hierarchical and partially
connected neural clusters are the foundation for permanent and dynamic
information and knowledge representation in LTM.

Figure 9.12 LTM: hierarchical and partially connected neural clusters

9.4.2 THE OBJECT-ATTRIBUTE-RELATION (OAR)
 MODEL OF INTERNAL INFORMATION
 REPRESENTATION

 It is recognized that at the fundamental level, the brain models

information by only four meta types [Wang, 2007f; Wang and Wang, 2006]:
object, attribute, and relation, as shown in Table 9.8. However, the
magnitude of connections among them is extremely high, which can be on
the order of 108,432 bits according to a recent study [Wang et al., 2003]
described in Section 9.4.5.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 703

Table 9.8
The Meta Cognitive Models of the Brain

Cognitive
models

Description Mathematical
abstraction

Object The abstraction of external entities
and/or internal concepts

Set, tuple, concept algebra

Attribute Detailed properties and characteristics
of an object

Set, tuple, concept algebra

Relation Connections and relationships between
any pair of object-object, object-
attributes, and attribute-attribute

Concept algebra, relational
algebra, combinational logic

 Based on this observation, an object-attribute-relation model of human

memory is developed below, which presents a generic memory model of the
brain [Wang, 2007f].

Model 9.8 The Object-Attribute-Relation (OAR) model of LTM can be

described as a triple, i.e.:

 OAR (O, A, R) (9.27)

where O is a set of objects identified by unique symbolic names, i.e.:

 O {o1, o2, …, oi, …, on} (9.28)

 For each given object oi, 1≤ i ≤ n, Ai is a set of attributes for
characterizing the object, i.e.:

 Ai {Ai1, Ai2, …, Aij, …, Aim} (9.29)

 Logically, each Ai may be defined by one of the following set of
generic attributes and/or specific attributes:

 Ai physical attributes
 | chemical attributes
 | cognitive attributes (image, sound, touch, smell, taste)
 | economical attributes
 | time-related attributes
 | space-related attributes
 | categories
 | specifications

© 2008 by Taylor & Francis Group, LLC

704 Part III Organizational Foundations of SE

 | measurements
 | usages
 | other specific attributes (9.30)

 For each given oi, 1≤ i ≤ n, Ri is a set of relations between oi and other
objects or attributes of other objects, i.e.:

 Ri {Ri1, Ri2, …, Rik, …, Riq} (9.31)

where Rik is a relation r between two objects, oi and oi’, and their attributes Aij

and Ai’j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, i.e.:

 Rik r (oi , oi’)
 | r (oi, Ai’j)
 | r (Aij, oi’)
 | r (Aij, Ai’j), 1≤ k ≤ q (9.32)

Typically, Ri may be defined by one of the following set of generic
relations and/or specific ones:

 Ri categories
 | types

 | entities (real-world objects)
 | artifacts (abstract concepts)

 | others (9.33)

where | denotes an alternative relation between defined items.

 O1

 A11

 O2

 A12

 A13

 A22

 A23

 A2j A1i

A2m'

 A21

A1m

 r(O1, O2)

 r(A11, A21)

 r(O1, A1m) r(O2, A2m’)

 r(O1, A2j) r(O2, A1i)

Figure 9.13 The OAR model of internal knowledge representation

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 705

An illustration of the OAR model between two objects is shown in Fig.
9.13. The relations between objects can be established via pairs of object-
object, object-attribute, and/or attribute-attribute. The connections could be
highly complicated, while the mechanism is so simple that it can be deducted
to the physiological links of neurons via synapses in LTM.

 Example 9.2 The OAR model for representing an object tree, t, in
LTM of the brain can be expressed as follows:

t (O, A, R)
 = (t, At, Rt)

where
 o t = tree

 At sign
 | real world reference (image)
 | other sensorial attributes (sound, touch, smell, and taste)
 | shape (category)
 | phonetics (/tri:/)
 | plant (category)
 | having a trunk (specific attribute 1)
 | with leaves (specific attribute 2)
 | green (specific attribute 3)
 | …

 Rt forest
 | wood
 | environment
 | furniture
 | house
 | bird

 | …

It is noteworthy as in the OAR model that the internal information and

knowledge is presented by the relations in the brain. The relational metaphor
is totally different from the traditional container metaphor in
neuropsychology and computer science, because the latter perceives that
memory and knowledge are stored in individual neurons or memory cells and
the neurons or cells function as containers.

Although the number of neurons in the brain is limited, the possible
relations between them may result in an explosive number of combinations
that represent knowledge in the human memory. Therefore, the OAR model
is capable to explain the fundamental mechanisms of human memory

© 2008 by Taylor & Francis Group, LLC

706 Part III Organizational Foundations of SE

creation, retention, and processing. It also explains why the cortex of the
brain is twisted like spaghettis, because this physical configuration allows
and increases possible synaptic links between different physiological groups
of neurons that represent logically different internal knowledge and
information. The establishment of an unusual synaptic link between such
logically long-distance but physiologically nearby neurons indicates the
mechanism of creation or invention.

9.4.3 THE EXTENDED OAR MODEL OF THE BRAIN

 The OAR model developed in Section 9.4.2 provides an abstract

conceptual model of LTM and the logical representation of knowledge and
learning results [Wang, 2007f]. Mapping it onto the cognitive structure of the
brain, an extended OAR model, EOAR, can be derived below and illustrated
in Fig. 9.14 [Wang and Wang, 2006].

 Model 9.9 The Extended OAR model of the brain, EOAR, states that the
external world is represented by real entities (REs), and the internal world by
virtual entities (VEs) and objects (Os). The internal world can be divided into
two layers known as the image layer and the abstract layer.

 The internal world

Real Entities

 RE1

Virtual Entities

 Real Entities

 Os/AsRelations Os/As Virtual Entities

The external world The external world
 The Image Layer The Image Layer The Abstract Layer

Derived
objects

Meta
objects

…

… ……… …

…

……

…

 O1 VE1 VE1O1 RE1

Op

O’1

O’2

O’m

O2

 VEn

VE2

VEn

 VE2

REn

RE2 RE2

REn

O’1

 O2

O’2

O’m

 On

Other
internal
relations

The concrete
space

The abstract
space

Figure 9.14 The EOAR model of the brain

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 707

The virtual entities are direct images of the external real-entities located
at the image layer. The objects are abstract artifacts located at the abstract
layer. There are meta objects (O) and derived objects (O'). The former are
objects directly corresponding to the virtual entities; the latter are objects that
are derived internally and have no direct connection with the virtual entities
or images of the real-entities.

According to EOAR, there are two inference spaces in the brain: the
concrete space and the abstract space. The former is the memory space for
visual reasoning; the latter for abstract reasoning. Objects in both spaces can
be further extended into a network of object, attributes, and relations
according to the OAR model.

The abstract space is an advanced property of the human brain. Other
species have no such abstract layer in their brains. This can be proved by the
following test with a cat for instance. One may communicate with one’s cat
by a concrete real entity. However, if you want your cat to pay attention to an
entity in the distance by pointing your finger at it, the cat will never
understand your intention but simply look at your finger perplexedly! Thus,
animals have no indirect or abstract thinking capability in addition to
inherited reflective capability. In other words, the abstract space and the
abstract inference capability is a unique power of human brains. The other
advantage of the human brain is the tremendous capacity of LTM in cerebral
cortex as described in Theorems 9.1 and 9.2.

It is noteworthy that the cognitive model of the brain is looped. This

means that an internal virtual entity is not only abstracted from the real-entity
as shown in the left-hand side in Fig. 9.14, but also eventually connected to
the entities in the right-hand side. This is the foundation of thinking,
reasoning, and other high-level cognitive processes, in which internal
information has to be related to the real-world entities, in order to enable the
mental processes to be embodied and meaningful.

The EOAR model can be used to describe information representation
and its relation to the external world. The external world is described in
terms of real entities whereas the internal world is represented by virtual
entities and objects. The internal world in its turn consists of two layers: the

The 30th Principle of Software Engineering

Theorem 9.8 The principal intelligent advantages state that, on the basis
of two principal advantages known as the qualitative properties (Theorem
9.1) and quantitative properties (Theorem 9.2), humans gain the power as
the most intelligent species in the world.

© 2008 by Taylor & Francis Group, LLC

708 Part III Organizational Foundations of SE

image and abstract layers. Virtual entity is an image of the real entity in
internal world and located at the image layer. Objects in the abstract layer are
grouped into two classes: the meta and derived objects. Meta objects have
direct relations to virtual entities, while derived objects are represented
internally in the abstract space without direct relations to the virtual entities.

 The EOAR model reveals that the natural intelligence is memory-
based. The EOAR model can be applied to explain the mental processes and
cognitive mechanisms as identified in the LRMB model as developed in
Section 9.3.1.

9.4.4 THE COGNITIVE MECHANISMS OF LONG-TERM
 MEMORY

 In studying the mechanisms of generic computing machines, Allan
Turing found that the basic functionality for computing might mimic the
following fundamental capabilities of human brains [Turing, 1936/50]:

 • A limited-length memory tape

 • A simple addressing capability for searching information in
the memory

 • Inputs (read) from the memory tape
 • Outputs (write) to the memory tape

 This finding revealed that intelligence is memory-based. Further, it

indicates that computing, a high-level artificial intelligence, can be divided
into a sequence of simple memory manipulations, such as addressing,
reading, and writing. Turing’s findings can also be used to explain the natural
intelligence in cognitive informatics and neuropsychology.

 It is observed that the capacity of association cortex, the physiological
organ of LTM, has increased dramatically as mankind evolved over time.
This provides a foundation for retaining and manipulating information and
knowledge in the brain.

On the basis of the cognitive models of the brain developed in the
preceding subsection, the cognitive mechanisms and properties of human
memory, particularly LTM, can be systematically examined and analyzed.
This subsection demonstrates that based on the cognitive models of the brain
and memories, a wide range of natural intelligent phenomena and their
mechanisms may be formally explained.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 709

9.4.4.1 Cognitive Properties of LTM

 It is noteworthy that LTM cannot be sorted because it is so complicated
and it uses spatial synapse connections to represent information. Therefore,
accesses to information in LTM have to be carried out by content-sensitive
and thread-based search. Comparing computer memory and LTM, it can be
seen that the former may be fast and randomly accessed by address-sensitive
mechanisms, while the latter is far more stable and robust. In addition, for a
given object, LTM can be accessed through multiple paths. This is one of the
cognitive foundations for reasoning and imagination.

 Potential approaches to represent information in LTM may be
implemented as follows:

 a) A set of new synaptic links: To represent new information as

relations with existing objects. In this case, no new neuron is
needed to be allocated.

 b) New neurons and synaptic links: To represent new information at
the leave of a neural cluster. In this case, new neurons belongs to
an existing subcluster need to be allocated, and more synaptic
links need to be generated within this cluster.

 c) A new neural cluster: To represent a large set of coherent new
information such as systematical knowledge learned in a new
course by new neural clusters. In this case, significant numbers of
new neurons and their clustering are needed. This is may be
implemented by allocating a set of spare neurons in LTM [Squire
et al., 1993; Gabrieli, 1998; Payne and Wenger, 1998]. Therefore
the total memory capacity of adult brain will not be significantly
changed rather than reallocated.

It can be seen that the third case identified above is the most difficult

situation in learning and memorization where a set of totally new knowledge

Corollary 9.4 The cognitive properties of LTM are identified as follows:

 • It’s directed
 • New relations (synaptic connections) can be generated
 • It can be reconfigured
 • It can be traversed or searched

 • It contains loops allowing searches may be carried out from an
arbitrary node

 • It cannot be sorted

© 2008 by Taylor & Francis Group, LLC

710 Part III Organizational Foundations of SE

has to be physiologically represented and memorized. This explains why the
productivity of creative work such as that of software engineering is
conservative as stated in Theorem 1.7, because the allocation of neurons and
the growing rate of synapses are constrained by natural laws.

9.4.4.2 When is Memory Created in LTM?

The investigation of this fundamental issue can be started by examining

the following questions: Why do all mammals need sleep? What is the
cognitive mechanism of sleeping?

Sleep as an important physiological and psychological phenomenon
was perceived as innate, and few hypotheses and theories have been
developed to explain the reason. This subsection explores the role of sleep in
LTM establishment.

It is observed that when complicated and highly abstract subjects are
taught in a class, students tend to get sleepy. The common sense explanation
for this phenomenon is because of boredom or being tired. However,
according to Theorem 9.9 and the following lemma, it is a natural and
protective action of the brain, which tries to create a sleeping or nap period to
remove information that occupies STM into LTM, in order to release more
STM space for a current and complicated subject.

Lemma 9.1 logically explains the following common phenomena: a)

All mammals, including human beings, need to sleep; b) When sleeping, the
blood supply to the brain reaches the peak, at about 1/3 of the total
consumption of the entire body. However, during daytime the brain just
consumes 1/5 of the total blood supply in the body [Smith, 1993;
Rosenzmeig et al., 1999; Maquet, 2001; Stickgold et al., 2001]; and c)

Lemma 9.1 Information memorization in LTM, as a process to create
synaptic relations between neurons according to the OAR model, is
functioning subconsciously during sleep.

The 30th Law of Software Engineering

Theorem 9.9 The dynamic properties of neural clusters state that the
LTM is dynamic. New neurons (to represent objects or attributes) are
assigning, and new synaptic connections (to represent relations) are
creating and reconfiguring all the time in the brain.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 711

According to the NI-Sys model, human beings are naturally a real-time
intelligent information processing system. Since the brain is busy during day-
time, it is logical to schedule the functions of LTM establishment at night,
when more processing time is available, and fewer interruptions occur due to
external events.

Lemma 9.1 is supported by the following observations and

experiments.

Experiment 9.1 A group of UK scientists observed that stewardesses
serving long-haul flights had bad memory in common [Wilson and Frank,
1999]. An initial explanation about the cause of this phenomenon was that
the stewardesses have been crossing time zones too frequently.

Actually, the above hypothesis is only a partially correct explanation.
According to Lemma 9.1, the memory problems of stewardesses are caused
by the lack of quality sleep during night flights. As a consequence, the LTM
could not be properly established.

Based on Lemma 9.1, the cognitive informatics theory of sleep can be

derived as follows.

Theorem 9.10 describes an important finding on one of the fundamental

mechanisms of the brain and the cognitive informatics meaning of sleep. Of
course, there are obvious physiological purposes of sleep as well, such as
resting the body and saving energy.

It was commonly believed that the heart is the only organ in the human

body that never takes a rest during the entire life. Corollary 9.5 reveals that
so does the brain. The nonresting brain is even more important than the heart
because the latter is subconsciously controlled and maintained by the former.

The 31st Principle of Software Engineering

Theorem 9.10 The cognitive mechanism of sleep states that sleeping is a
subconscious process for LTM establishment, i.e.:

 Cognitive purpose of sleep = LTM establishment (9.34)

Corollary 9.5 Lack of sleep results in bad memory, because the memory
in LTM cannot be properly established.

© 2008 by Taylor & Francis Group, LLC

712 Part III Organizational Foundations of SE

9.4.4.3 How is Memory Created in LTM?

Sleep is recognized as a subconscious process in cognitive informatics.

Its cognitive and psychological purpose is to build and update LTM. LTM is
updated by searching and analyzing the contents of STM and selecting useful
(i.e., the most frequently used) information.

Based on Theorem 9.12, the relationship between memorization

(especially that of LTM) and learning becomes apparent. That is, learning is
to gain knowledge or acquire skills, where the results of learning are retained
in LTM or ABM, respectively.

Corollary 9.6 The subconscious cognitive processes of the brain, NI-OS,
do not sleep throughout human life.

The 31st Law of Software Engineering

Theorem 9.11 The establishment cycle of LTM states that the cycle of
LTM establishment requires at least 24 hours, i.e.:

 LTM establishment cycle ≥ 24 [hrs] (9.35)

where the 24-hour cycle includes any kind of combinations of awake,
asleep, and siesta.

The 32nd Principle of Software Engineering

Theorem 9.12 The mechanism of LTM establishment states that the entire
memory of information represented as an OAR model in the brain is
updated by incorporating the sub-OARs formed in STM based on the
following selective criteria:

 a) A new sub-OAR in STM was more frequently used in the previous
24 hours;

 b) A new sub-OAR in STM was related to the existing OAR in LTM
at a higher level of the neural cluster hierarchy;

 c) A new sub-OAR in STM was given special attention so that it
obtained a higher retention weight.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 713

9.4.5 THE MEMORY CAPACITY OF HUMAN BRAINS

According to the OAR model as shown in Figs. 9.13 and 9.14,

information is represented in the brain by relations, which is a logical model
of the synaptic connections among neurons. Therefore, the capacity of
human memory is not only dependent on the number of neurons, but also the
synaptic connections among them. This mechanism may result in a huge
space of exponential combination to represent and retain information in
LTM. This also explains why the magnitude of neurons in an adult brain
seems stable, however, a tremendous amount of information can be
remembered through out the entire life of a person.

On the basis of the OAR model, a mathematical model for estimating
the upper limit of human memory capacity can be derived [Wang et al.,
2003].

Model 9.10 The human memory capacity model states that, assuming

there are n neurons in the brain, and in average there are s synaptic
connections between a given neuron and a subset of the rest of them in the
brain, the magnitude of the brain's memory capacity Cm can be expressed by
the following mathematical model:

 n

! [bit]
!()!

Cs
mC

n
s n s

=
−

 (9.36)

where n is the total number of neurons, and s the number of average partial
connections between neurons via synapses.

Model 9.10 indicates that the age-old memory capacity problem in
cognitive science and neuropsychology can be reduced to a classical
combinatorial problem, with the total potential relational combinations, Cs

n ,
among all neurons (n = 1011) and their average synaptic connections (s = 103)
[Marieb, 1992; Pinel, 1997; Gabrieli, 1998]. Therefore, the parameters of Eq.
9.32 can be determined as shown below:

 n
11

3 11 3

10 ! [bit]
10 !(10 10)!

Cs
mC

=
−

 (9.37)

Eq. 9.37 provides a mathematical explanation of the OAR model,

which shows that the number of connections among neurons in the brain can

© 2008 by Taylor & Francis Group, LLC

714 Part III Organizational Foundations of SE

be derived by the combination of a huge base and a large number of potential
synaptic connections.

The above model seems a simple problem intuitively. However, it turns
out to be extremely hard to calculate and is almost intractable using a typical
computer, because of the exponential complexity or the recursive
computational costs for such large n and m. However, using approximation
theory, and a computational algorithm [Wang et al., 2003], Eq. 9.37 is solved
and the result is obtained as:

n

11

3 11 3

8,432

10 !
10 !(10 10)!
10 [bit]

Cs
mC

=
−

=

 (9.38)

 Eq. 9.38 reveals that the magnitude of the memory capacity of the brain
may reach an order as high as 108,432 bits according to the OAR model. This
forms the quantitative foundation of the natural intelligence. The finding on
the magnitude of the human memory capacity reveals an important
mechanism of the brain. That is, the brain does not create new neurons to
represent new information, instead it generates new synapses between the
existing neurons in order to represent new information. The observation in
neurophysiology that the number of neurons is kept stable rather than
continuous increasing in adult brains [Marieb, 1992; Pinel, 1997;
Rosenzmeig et al, 1999] is observed evidences for supporting the relational
model of information representation in human memory.

It is interesting to contrast the memory capacities between modern
computers and human beings. The capacity of computer memory (mainly the
hard disks) has been increased dramatically in the last few decades from a
few kB to several GB (109 byte), even TB (1012 byte). Therefore, with an
intuitive metaphor that 1 neuron = 1 bit, optimistic vendors of computers and
memory chips perceived that the capacity of computer memory will, sooner
or later, reach or even exceed the capacity of human memory [Sabloniere,
2002]. However, according to the finding reported in this subsection, the
ratio, r, between the brain memory capacity (Cb) and the projected computer
memory capacity (Cc) in the next ten years is as follows [Wang, et al., 2003]:

8,432 12

8,432 13

8,419

10 8 10
10 10
10

b cr C C=

= ×
≈
=

 (9.39)

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 715

This indicates that the memory capacity of a human brain is equivalent
to at least 108,419 modern computers. In other words, the total memory
capacity of computers all over the world is far more less than that of a single
human brain. Eq. 9.39 also shows the power of the OAR mechanism and
configuration of the brain, which uses only 100 billion neurons and their
relational combinations to represent and store up to 108,432 bit information
and knowledge.

The tremendous difference of memory magnitudes between human
beings and computers demonstrates the efficiency of information
representation, storage, and processing in human brains. Computers store
data in a direct and unconsumed manner; while the brain stores information
by relational neural clusters. The former can be accessed directly by explicit
addresses and can be sorted; while the latter may only be retrieved by
content-sensitive search and matching among neuron clusters where spatial
connections and configurations themselves represent information.

Investigation into the cognitive models of information and knowledge
representation in the brain and the capacity of the memory have been
perceived to be one of the fundamental research areas that help to reveal the
mechanisms and the potential of the brain. The result developed in this
subsection has demonstrated that the magnitude (upper limit) of human
memory capacity is excessively higher than those of computers in an order
that we never realized. This new factor has revealed the tremendous
quantitative gap between the natural and machine intelligence. The finding of
this subsection has also indicated that the next generation computer memory
systems can be built according to the relational OAR model rather than the
traditional container metaphor, because the former is more powerful, flexible,
efficient, and is capable of generating a mathematically unlimited memory
capacity by using limited number of neurons in the brain or hardware cells in
the next generation computers.

9.5 Cognitive Informatics for
 Software Engineering

The cognitive constraints of software engineering have been identified in
Section 1.3.2 as one of the primary constraints of software engineering,
which refer to those of intangibility, complexity, indeterminacy, diversity,
polymorphism, inexpressiveness, inexplicit embodiment, and unquantifiable

© 2008 by Taylor & Francis Group, LLC

716 Part III Organizational Foundations of SE

quality measures. On the basis of improved understanding of the cognitive
properties of software as intelligent behaviors, this section describes the
cognitive informatics principles of software engineering, which encompass
cognitive constraints on software productivity, software engineering
psychology, the cognitive foundation of software comprehension, software
engineering skills and experiences, and software agent systems.

9.5.1 COGNITIVE CONSTRAINTS ON SOFTWARE
 PRODUCTIVITY

According to Theorem 1.6, conservative productivity is a basic
constraint of software engineering due to cognitive complexity and due to the
cognitive mechanism in which abstract artifacts need to be represented
physiologically in the brain via growing synaptic neural connections.

The fact that before any program is composed, an internal abstract
model must be created inside the brain [Wang, 2007a; Wang and Wang,
2006] reveals the most fundamental constraint of software engineering, i.e.,
software is generated and represented in the brain before it can be transferred
into the computer. Because the growth of the human neural system is
naturally constrained, as described by the 24-hour law in Theorem 9.11, it is
very hard to dramatically improve the productivity of software development.

According to the statistics of software engineering literature [Boehm,
1987; Dale and Zee, 1992; Jones, 1981/1986; Livermore, 2005], the average
productivity of software development was about 1,300 LOC/person-year in
the 1970s, 2,500 LOC/person-year in the 1980s, and 3,000 LOC/person-year
in the 1990s, where management, quality assurance, and supporting activities
are included, and LOC is the unit of the symbolic size of software in terms of
Line of Code. It is obvious that the productivity in software engineering has
not been increased remarkably in the last four decades independent of
programming language development. In other words, no matter what kind of
programming language is used, as long as they are for human programming,
there is no difference in principle. This assertion can be proved by asking the
following question: Have you ever known an author in literature who is
productive because he/she writes in a specific natural language?

Productivity of software development is the key among all the
cognitive, time, and resources constraints in software engineering. The other
constraints can be overcome as a result of the improvement of software
engineering productivity.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 717

All theories and approaches explored throughout this book put

emphases on this ultimate goal of software engineering. The most significant
and unique characteristic of software engineering lays on the need for the
contemporary denotational mathematics in order to rigorously and explicitly
model the architectures and behaviors of software systems and to reduce the
cognitive complexity of software engineering, which are challenging the
limitation of human cognitive capacity in large scale software development.

9.5.2 SOFTWARE ENGINEERING PSYCHOLOGY

 Software engineering psychology is a part of the domain of cognitive
informatics. It is perceived that the nature of software and software
engineering is in many ways closer to cognitive psychology than engineering
and technology, because software is intangible and complicated abstract
artifacts created by human brains [Weinberg, 1971; Wang, 2004b]. The best
software often takes advantages of human creativity.
 There are two types of programmers in a psychological view: the
realistic and idealistic ones. The former may be suitable for coding, testing,
and quality control; while the latter may be good at solution seeking, Graphic
User Interface (GUI) design, and carrying out tasks as system analysts. For
both above categories, the following psychological requirements for software
engineers are important in software engineering:

 • Abstract-level thinking
 • Imagination of static descriptions in terms of dynamic behaviors

 • Organization capability
 • Cooperation and team working attitude
 • Long-term focus of attentions
 • Preciseness

Lemma 9.2 The key approaches to improve software development
productivity are:

a) To explicitly express software architectures and behaviors in
denotational mathematics;

b) To investigate the theories of rational software engineering
organization; and

c) To design tools that lead to automatic software code
generation based on the denotational system models.

© 2008 by Taylor & Francis Group, LLC

718 Part III Organizational Foundations of SE

 • Reliability
 • Expressive capability in expressions and communications

There is a special phenomenon in software engineering that anybody
who is able to use a programming language may claim that one can
programming or even be a software engineer. This is just like that one who
acquires reading and writing skills in a natural language may claim oneself as
a writer; or one who is able to build a simple shelter or doghouse may claim
oneself as a civil engineer.
 It is stressed that knowing a programming language is not enough to be
a qualified software engineer. So what else is needed? The following
characteristics of software engineering practice may be considered as the
basic requirements:

• How to reuse proven software components into a well defined
architecture

 • How to conform with standards and empirical best practice
 • How to organize a coherent team in engineering approach

 • How to control a complicated software engineering process

 Hence, it is interesting to contrast and analyze the differences between
professionals and amateurs in software engineering. Professional software
engineers are persons with professional cognitive models and knowledge on
software engineering. They are trained with:

 • Fundamental knowledge that governs software and software
 engineering practices
 • Basic principles and laws of software engineering
 • Proven algorithms

 • Problem domain knowledge
 • Problem solving experience
 • Program developing tools / environments
 • Solid programming skills in multiple programming languages

• A global and insightful view on system development, including
its required functionalities as well as exception handling and
fault-tolerance strategies

 However, amateurish programmers are persons who know only one or
a couple of programming languages but lack awareness and training as those

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 719

professionals identified above. Amateurs may be characterized as follows in
their software engineering knowledge structure:

 • Ad hoc structure of programming knowledge
 • Limited programming experience and skills

• Eager to try what is directly required before a system architecture
is designed

 • Tend to focus on details without a global and systematic view

The key difference between professionals and amateurs is whether their
knowledge and skills are wired or temporarily programmed in the brain.
Professional software engineers possess wired skills in the brain for
programming, and with a global view on software development. They focus
not only on required functions, but also on exceptions handling and fault-
tolerance in implementing the required functions. However, amateur
programmers possess ad hoc programming knowledge, eager to try what is
directly required, and tend to focus on details without a global and systematic
view.

9.5.3 THE COGNITIVE FOUNDATION OF SOFTWARE
 COMPREHENSION

 Comprehension is the action or capability of understanding.
Comprehension is a higher cognitive process of the brain that searches
relations between a given object or attribute and other objects, attributes, and
relations in LTM, and establishes a representational model for the object or
attribute by connecting it to appropriate clusters of memory. It is recognized
that although knowledge and information are powerful, before any
information can be possessed and processed it should be comprehended
properly.
 Comprehension can be modeled as a cognitive process that can be
carried out by the following steps:

 a) To search relations from real entities to virtual entities and/or
existing objects and attributes.

 b) To build a partial or adequate OAR model of the entity.

 c) To wrap up the OAR model by classifying and connecting it to
appropriate clusters of the LTM.

 d) To memorize the new OAR model and its connections in LTM.

© 2008 by Taylor & Francis Group, LLC

720 Part III Organizational Foundations of SE

The above cognitive process of comprehension is informally described
in Fig. 9.15. As shown in Fig. 9.15, the first step to comprehend a given real
entity or concept is to search the corresponding virtual entity and its relations
to objects in the abstract layer. Depending on the results of the search for
relations, the next step can be different. The ideal search result is that
adequate relations have been found. In this case, comprehension is almost
reached. The other possible result is that a partial comprehension or
incomprehension is obtained when a partial OAR model is built, or a very
low level of comprehension is reached. A partial OAR model is a sub-OAR
model, where no sufficient relations have been found. In an extremely case,
for a totally new concept in comprehension, probably only an ID of the
concept is existent. These different outcomes in comprehension indicate that
everything is comprehensible; only the extent of comprehension is varying in
a range from 100% to 0%.
 If the findings are sufficient then the brain builds a sub-OAR model for
the given object (box 7). When the model is built it needs to be connected to
the most appropriate cluster in the entire OAR of the brain (box 8). Only
after this step is comprehension achieved.
 However, if the findings are not adequate after the search, the brain
builds a partial OAR model with limited information and requires further
actions to obtain additional information from external resources (box 10). For
example, if one could not recall or do not know the meaning of a given word
by existing knowledge, one may look for it in a dictionary or encyclopedia.
The search from external resources may be a repetitive process. For instance,
if one cannot find the meaning of the word in the dictionary, then someone
may be asked for its meaning.

After searching several times in external resources, the brain checks
again whether findings are adequate (box 11). If so, Steps 7 to 9 will be
repeated. Otherwise, it is regarded that an incomprehension has been
achieved (box 12) at this given moment, but still the results are remembered
in LTM. In this situation a sub-OAR model is stored and it may be simply an
ID for an unknown concept for future comprehension. For example, when
reading one may come across a completely new word, and one could neither
find it from any dictionary nor from other resources. Then, the word may
simply be remembered by rote without knowing its meaning. One may
remember it like “the word has seven letters”, “it starts with letter k”, “and it
resembles the word …” etc, but without any significant attribute. For another
example, when one looks at an abstract painting, one may see that some parts
of the picture resemble a hand and other parts resemble something else, but
what the whole picture expresses cannot be understood. In both examples the
brain may still able to build a partial OAR model with a few insignificant
attributes and relations based on the limited clues. The final step in the
comprehension process is to memorize the OAR model in LTM by which the
comprehension process is completed.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 721

Figure 9.15 The cognitive model of the comprehension process

On the basis of the explanation of the comprehension process of the
brain, a formal description of the cognitive process of comprehension in
RTPA is presented in Fig. 9.16. The relationship between the comprehension
process and other meta cognitive processes, such as search, memorization,
and knowledge representation, is also identified in the process.

Definition 9.33 Program comprehension is a cognitive process to

understand a given software system in dimensions of architecture, static
behaviors, and dynamic behaviors, and their relationships.

Program comprehension is a cognitive process to understand a given

software system in terms of the architecture, static behavior, and dynamic
behavior dimensions as well as their relationships and interactions. The
comprehension of software architectures can be supported by concept algebra
and system algebra [Wang, 2006e/06d], which focuses on data objects and
frameworks of a software system. The comprehension of software static and

No

No

Yes

Incomprehension
identified

Yes

Identify object

Begin

Search at
image layer

Search at
abstract layer

Find related attributes
and relations

Are findings
adequate?

Comprehension achieved
and satisfied

Build an
appropriate OAR

Are findings
adequate?

Memorize the results in
LTM

Search external
resources and

End

(1)

(2)

(3) (4)

(5)

(6)

(7)

(8)

(9)

(13)

(10)

(11)

(12)

© 2008 by Taylor & Francis Group, LLC

722 Part III Organizational Foundations of SE

dynamic behaviors can be supported by RTPA, which focuses on individual
behaviors and the interactions between computing actions and the data
objects.

Figure 9.16 Formal description of the comprehension process in RTPA

9.5.4 SOFTWARE ENGINEERING SKILLS AND
 EXPERIENCES

 As revealed in Theorem 9.4 and Table 9.6, although knowledge can be
acquired indirectly in learning, experiences and skills must be obtained
directly by empirical actions.

The Cognitive Process of Comprehension

Comprehension (I:: TheConceptS;
 O:: OAR(TheConceptS)ST, LcomprehensionN)
{
 oS := TheConceptS
 → (
 ScopeS := ImageLayerOfLTMS
 Search (I:: oS, ScopeS; O:: ArST, RrST)
 || ScopeS := AbstartcLayerOfLTMS
 Search (I:: oS, ScopeS; O:: ArST, RrST)
)
 → ArST = {a1, a2, …, an}
 → RrST = {o1, o2, …, om}
 → ((ArST ⊆ AmetaST) ∧ (RrST ⊆ OmetaST) ∧ (ArST = φ ∨ RrST = φ)
 → PL1S: OAR(oS)ST = {oS, ArST, RrST}
 | ~
 → ScopeS := ExternalResourcesS
 Search (I:: oS, ScopeS; O:: A′rST, R(rST)
 ((ArST ⊆ Ameta) ∧ ((RrST ⊆ Ometa) ∧ (ArST = φ ∨ RrST = φ)
 PL1S
 | ~
 → OAR(oS)ST = {oS, ArST, RrST}
)
)
 Memorization (OAR(oS)ST)

 →

n

1
R
i=

(OAR(RiST)ST = {oiS, AiST ∪ oiS, RiST ∪ oiS}

}

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 723

In discussing “what makes a good software engineer” in a panel,
Marcia Finfer (1989) believed: “the answer, in my opinion, is simply the
combination of both innate skill and significant experience in building real
systems against a set of functional and performance requirements and a given
budget and schedule.” This shows that professional experience is a primary
factor of software engineers, where an experience of problem complexity
beyond 5,000LOC as given in Definition 1.2 is a necessary benchmark. Also,
the possession of fundamental principles and laws of software engineering is
essential towards excellent software engineers.

The acquisition of professional skills may be described by a cognitive
process. For example, in a complex building, if a newcomer is guided
through once, he or she may still have difficulty to manage to remember the
ways in the beginning. Because an abstract model of the building has yet to
be built in his/her LTM by wired neural networks, which takes time (see the
24-hour law in Theorem 9.11). The acquisition of skills for driving is another
example that explains skill acquisition according to cognitive informatics
principles.

 It is observed that programming skills and software engineering
experiences can not be transferred directly from person to person without
hands on practice. Therefore, it is curious to seek what made skill and
experience transfer hard in software engineering below.

The means of experience repository in software engineering can be
categorized into the following types:

 • Best practices
 • Know-how
 • Lessons learnt
 • Failure reports
 • New technology trial reports

 All the above items of software engineering experience seem to be hard
to gain indirectly by reading. The major cognitive reasons explaining these
phenomena can be described as follows:

• The brain has no direct skill or experience transfer mechanism.
Before it is acquired and possessed, any skill has to be
physiologically modeled in the ABM, and any experience has to
be reprogrammed into an action process in ABM.

 • The only way for skill and experience acquisition is learn by
doing, or trial and error. People, usually, have to make the same
mistakes, at least to simulate them, in order to learn and remember
a specific experience.

© 2008 by Taylor & Francis Group, LLC

724 Part III Organizational Foundations of SE

• Each brain is unique as described in Theorem 1.2, because of
individual physiological differences, cognitive style differences,
personality differences, and learning environment differences.

 Therefore, although computers, as external or extended memory and
information processing systems for the brain, provide a new possibility for
people to learn things faster than ever, the internal representation of abstract
knowledge or active behaviors such as skills and experiences must still rely
on wired inter-connections among neural clusters and obey the same
cognitive laws of the brain as described in Theorems 9.4 through 9.11.

9.5.5 SOFTWARE AGENT SYSTEMS

Definition 9.34 A software agent is an intelligent software system that

autonomously carries out robotistic and interactive applications based on
goal-driven mechanisms [Wang, 2003d/07f].

The theoretical foundation of agent systems is cognitive informatics.
Because a software agent may be perceived as an application-specific virtual
brain according to Theorems 3.4 and 9.5, functions of an agent are mirrored
human behaviors. The fundamental characteristics of agent-based systems
are autonomic computing, goal-driven action-generation, and self-learning.
 Machine perception is a basic capability required for a software agent
system, where perception refers to the capability for thinking and interpreting
data and information acquired from external world and events based on
existing internal knowledge and how the data and information may be
transformed into behaviors based on cognition [Matlin, 1994; Chorafas,
1998].

LRMB [Wang et al., 2006] may be used as a reference model for agent-
based technologies. This is a fundamental view toward the formal description
and modeling of the architectures and behaviors of agent systems, which are
designed to do something repeatable in context, to extend human capability,
reachability, and/or memory capacity.

It is found that both human and software behaviors can be described by
a 3-D representative model comprising action, time, and space. For agent
system behaviors, the three dimensions are known as mathematical
operations, event/process timing, and memory manipulation [Wang, 2003d].
The 3-D behavioral space of agents can be formally described by RTPA
[Wang, 2002a] that serves as an expressive notation system for describing
thoughts and notions of dynamic system and human behaviors as a series of
actions and cognitive processes.

Recent research reveals that the foundations of agent technologies
[Wang, 2007f] are rooted in cognitive informatics theories and autonomic

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 725

computing methodologies. Along with the latest development of cognitive
informatics and autonomic computing, self-organizing, self-managing and
non-imperative autonomic agent systems are emerging. An autonomic agent
system is an intelligent software system that takes rational actions in the
pursuit of its agenda via goal-, inference-, and event-driven behaviors.
Because cognitive informatics investigates the internal information
processing mechanisms and processes of the brain and natural intelligence,
its research results underpin engineering applications of autonomic agent
systems.

9.6 Cognitive Complexity of
 Software

One of the central problems in software engineering is its inherited
complexity. Since software is the product of human intelligence, cognitive
informatics plays an important role in understanding the fundamental
characteristics of software complexity.

The existing measures for software complexity can be classified into
two categories: the macro and the micro measures of software complexity.
Two major macro complexity measures of software were proposed by Basili
and Kearney, respectively. The former considered software complexity as
‘the resources expended [Basili, 1980a/80b].’ The latter perceived that the
complexity is the extent of difficulty in programming [Kearney et al., 1986].

 The micro measures are based on program code disregarding comments
and stylistic attributes. This type of measures typically depends on program
sizes, program flow graphs, or module interfaces such as Halstead’s software
science metrics [Halstead, 1977] and the cyclomatic complexity of McCabe
[McCabe, 1976]. However, Halstead’s software science purely calculates the
numbers of operators and operands, but does not consider the internal
structures of software components; while McCabe’s cyclomatic measure
focuses on the internal structures of software flow graphs without
considering the data objects and I/O structures of software systems.

 In cognitive informatics, it is found that the functional complexity of
software in design and comprehension is dependent on three fundamental
factors known as the internal processes, inputs, and outputs as modeled in
the system theory in Section 10.5.5. The new measure for software cognitive
complexity is a measure of cognitive and psychological complexity of
software as a human intelligent artifact. The cognitive complexity measure

© 2008 by Taylor & Francis Group, LLC

726 Part III Organizational Foundations of SE

takes into account both internal process structures of a software system and
the I/O data objects under its processing [Wang, 2005j/06c; Shaw and Wang,
2003].

This section describes the complexity of software by examining the
cognitive weights of BCS’s in software systems as modeled in Section 5.4.1.
A new concept of software cognitive complexity is introduced, which
provides a foundation for cross-platform analysis of complexities, sizes, and
comprehension efforts of software specifications and implementations in the
phases of design, implementation, and/or maintenance in software
engineering.

9.6.1 THE RELATIVE COGNITIVE WEIGHTS OF
 GENERIC SOFTWARE STRUCTURES

 To design and comprehend a given program, the focuses are naturally
put on the control logic of a software system represented by BCS’s and the
behaviors they may operate on the data objects. BCS’s are a set of essential
flow control mechanisms that are used for building logical architectures of
software, as described in Section 5.4.1, independent of programming
languages.

 Definition 9.35 The cognitive weight of software is the extent of
difficulty or relative time and effort for comprehending the function and
semantics of a given program.

 It is almost impossible to measure the cognitive weights of a program at
statement level because of their variety and language dependency. However,
it is found that it is feasible if the focus is put on the BCS’s of the software
systems [Wang, 2005j], because there are only ten BCS’s in programming no
matter what kind of programming language is used. Detailed definitions of
the BCS’s and their syntaxes may be referred to Section 5.4.1 and Table 9.9.

Definition 9.36 The relative cognitive weight of a BCS, wBCS(i), 1 ≤ i ≤
10, is the relative time or effort spent on comprehending the function and
semantics of a BCS against that of the sequential BCS.

()

() , 1 10
(1)

BCS
BCS

BCS

t i
w i i

t
= ≤ ≤ (9.40)

where tBCS(1) is the relative time spent on the sequential BCS.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 727

Table 9.9
The Relative Cognitive Weights of BCS’s

BCS
 (i)

Description Nota-
tion

Structural
model

RTPA model Calibrated
weight
wBCS(i)

1 Sequence

→

P → Q 1

2 Branch

|

 expBL = T → P

| ~ → Q

3

3 Switch |
…
|

 …

 expT =
 i → Pi
| ~ →

where T ∈ {N, Z, B, S}

4

4 While-loop

*R

exp =
R

F

BL T
P

7

5 Repeat-loop
 R+

P →
exp =
R

F

BL T
P

8

6 For-loop

iR

 1

n

i
R
=

N

N
P(iM)

7

7 Function
call

P F 7

8 Recursion

0

i n
R
=N N

PiM PiM-1

11

9 Parallel ||

P | | Q 15

10 Interrupt

P Q 22

© 2008 by Taylor & Francis Group, LLC

728 Part III Organizational Foundations of SE

Definition 9.37 The unit of cognitive weight of BCS’s, CU, is the
relative time spent on the sequential BCS, i.e.:

(1)

(1)
(1)

1 [CU]

BCS
BCS

BCS

t
w

t
=

=
 (9.41)

 The ten categories of BCS’s described above are profound architectural
attributes of software systems. These BCS’s and their variations are modeled
and illustrated in Table 9.9, where their equivalent cognitive weights
(wBCS(i)) for determining a component’s functionality and complexity are
defined based on a set of psychological experiments in cognitive informatics
[Wang, 2005j].

9.6.2 PSYCHOLOGICAL EXPERIMENTS ON THE
 COGNITIVE WEIGHTS

The method of the psychological experiments [Osgood, 1953; Wang,
2005j] for calibrating the relative cognitive weights of the ten BCS’s is based
on the axiom that the relative time spent on comprehending the function and
semantics of a BCS is proportional to the relative cognitive weight of effort
for the given BCS.

Although different persons may comprehend the set of the ten BCS’s in
different speeds according to their experience and skill in a given
programming language, the relative effort or the relative weight spent on
each type of the BCS’s are statistically stable, assuming the relative weight of
the sequential BCS is one CU according to Definition 9.36.

Definition 9.38 The generic psychological experimental method for

establishing a benchmark of the cognitive weights of the ten BCS’s can be
conducted in the following steps:

a) Record the start time T1 in mm:ss.
b) Read the given program Test_1:

int Test1 (int A=1, B=2) {
 return A + B;

 }
c) Answer: A + B = ?
d) Record the end time T2 in mm:ss.
e) Calculate the relative cognitive weight of the sequential

construct BCS1 according to Eq. 9.40, i.e., tBCS(1) = (T2 – T1),
and wBCS(1) = tBCS(1) / tBCS(1) ≡ 1.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 729

Applying the generic experimental method as given in Definition 9.38
by simply replacing the testing program in Step (b), a set of cognitive
psychological experiments can be carried out on the ten BCS’s by empirical
studies in software engineering [Wang, 2005j]. The following are examples
adopted in the experiments.

Experiment 9.2 The relative cognitive weights of the branch BCS
(ITE), wBCS(2), is determined using the following program in Java:

 int Test2 (int A=2, B=3) {
 if A >= B
 return A - B
 else return B - A

 } (9.42)

Experiment 9.3 The relative cognitive weights of the for-loop BCS

(Ri), wBCS(6), is determined using the following program in Java:

 int Test4 (int A=2, B=3) {
 for (int i=0; i<3; i++) {
 A := A + i
 }
 return A + B

 } (9.43)

9.6.3 CALIBRATION OF THE RELATIVE COGNITIVE
 WEIGHTS OF BCS’S

The cognitive psychological experiments as designed in the previous
subsection have been carried out in undergraduate and graduate classes in
software engineering. Based on 126 experiment results, the equivalent
cognitive weights of the ten fundamental BCS’s are calibrated as
summarized in Table 9.9.

On the basis of the calibrated cognitive weights of BCS’s, the cognitive

complexity of software can be rigorously analyzed. Detailed methodology for
measuring the cognitive complexities of software will be provided in Section
10.7 with comparative studies against existing software complexity
measures.

© 2008 by Taylor & Francis Group, LLC

730 Part III Organizational Foundations of SE

9.7 Summary

Cognitive informatics (CI) has been recognized as a new frontier that
studies internal information processing mechanisms and processes of the
brain, and their applications in computing and the IT industry. Cognitive
informatics has been described as a profound transdisciplinary research field
that tackles the common root problems of modern informatics, computation,
software engineering, AI, cognitive science, nueropsychology, and life
sciences.

Large-scale software systems have been recognized as highly
complicated systems that mankind has ever handled or experienced.
Although software as a unique abstract artifact does not obey any known
physical laws, it is constrained by the laws of informatics, cognitive
informatics, mathematics, and systems.

This chapter has described the cognitive informatics and intelligent
behavioral metaphor of software and software engineering. The theories of
cognitive informatics and its potential impacts on, and applications in,
information-based sciences and engineering disciplines, particularly software
engineering, have been explored. As a result, the cognitive informatics
foundations of software engineering have been established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Cognitive Informatics Foundations of Software
Engineering, readers have achieved the following strategic goals with the
knowledge structure as summarized below.

Chapter 9. Cognitive Informatics Foundations of SE

■ Cognitive Informatics
 • Cognitive philosophy
 • Neural informatics foundations of the brain
 - Neurons and synapses
 - Physiological structure of the brain
 - Cognitive models of memories

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 731

 • The emergence of cognitive informatics
 • The theoretical framework of cognitive informatics
 - The fundamental theories of cognitive informatics
 - The domain of cognitive informatics

■ Cognitive Informatics Models of the Brain
 • The layered reference model of the brain (LRMB)
 - The structure of LRMB
 - Cognitive layers of LRMB
 - The configuration of the cognitive processes of LRMB

 • Cognitive properties of internal information
 • Natural intelligence vs. artificial intelligence
 - The nature of intelligence
 - Taxonomy of intelligence
 - The model of natural intelligence
 - Measurement of intelligence
 - Theory of learning and knowledge acquisition

 • The cognitive model of the brain
 - The functional model of the brain
 - The cognitive mechanisms of the brain

■ Cognitive Informatics of Knowledge Representation
 • The hierarchical neural cluster (HNC) model of memory
 • The object-attribute-relation (OAR) model of internal information
 representation
 • The extended OAR model of the brain
 • The cognitive mechanisms of long-term memories
 • The memory capacity of human brain

■ Cognitive Informatics for Software Engineering
 • Cognitive informatics properties of SE
 • SE psychology
 • The cognitive foundation of software comprehension
 • SE skills and experiences

■ Cognitive Complexity of Software
 • The relative cognitive weights of generic software structures
 • Psychological experiments on the cognitive weights
 • Calibration of the relative cognitive weights of BCS’s
 • Measurement of cognitive complexity of software

© 2008 by Taylor & Francis Group, LLC

732 Part III Organizational Foundations of SE

SIGNIFICANT FINDINGS OF THIS CHAPTER

• The quantitative advantage of human brain: The magnitude of the
memory capacity of the brain is tremendously larger than that of the closest
species.

• The qualitative advantage of human brain: The possession of the

abstract layer of memory and the abstract reasoning capacity makes human
brain profoundly powerful on the basis of the quantitative advantage.

• Cognitive Models of Memories: Memory is the foundation for

maintaining a stable state of an animate system. It is also the foundation for
any form of natural and machine intelligence.

• Latest discoveries in neuroscience and cognitive informatics
indicate that LTM is dynamically reconfiguring, particularly at the
lower levels of the neural clusters. This explains the mechanisms of
memory establishment, enhancement, and evolution that are
functioning everyday in the brain.

• A new type of memory known as ABM is identified recently
that denotes the memory functions for the output-oriented actions,
skills, and behaviors, such as a sequence of movement and a pre-
prepared verbal sentence.

• LTM: The HNC model indicates that the LTM is dynamic. New

neurons (to represent objects or attributes) are assigning, and new
connections (to represent relations) are creating and reconfiguring all the
time in the brain.

• Knowledge in LTM, as synaptic connections between neurons
according to the OAR model, is dynamically grown during sleeping.

• Properties of LRMB: The subconscious layers of the brain

represented by NI-OS are inherited, fixed, and relatively mature when a
person is born. Therefore, the subconscious cognitive function layers are not
directly controlled and accessed by the conscious life function layers. The
conscious layers of the brain, represented by NI-App, are acquired, highly
plastic, programmable, and can be controlled intentionally based on
willingness, goals, and inferences.

• Inherited and acquired brain functions: According to the logical
model of the brain, genes may only explain things at the level of inherited
brain functions, rather than at the level of acquired brain functions, because
the latter cannot be directly represented by genes in order to be inherited;

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 733

instead they should be represented as internal knowledge, behaviors,
experience, and skills.

• Intelligence, in the narrow sense, is a human or a system ability that

transforms information into behaviors; and in a broad sense, it is any human
or system ability that autonomously transfers the forms of abstract
information between data, information, knowledge, and behaviors in the
brain.

• Natural intelligence I can be classified into four forms called
the perceptive intelligence (Ip: D → I), cognitive intelligence (Ic: I →
K), instructive intelligence (Ii: I → B), and reflective intelligence (Ir: D
→ B), where D stands for data.

 • The representation of learning results: The consequence of
learning is represented by a updating of the internal memory in the form of
the OAR structure by a conjunction between the existing OAR and the newly
created sub-OAR (sOAR).

• Cognitive mechanisms of the brain: a) LTM establishment is a
subconscious process; b) The long-term memory is established during
sleeping; c) The general acquisition cycle of LTM requires at least 24 hours;
e) The mechanism of LTM establishment is to update the entire memory of
information represented as an OAR model in the brain; and f) Eye movement
and dreams play an important role in LTM creation.

• The human memory capacity model of the brain: Assuming there
are n neurons in the brain, and in average there are s connections between a
given neuron and a subset of the rest of them in the form of synapses, the
magnitude of the brain's memory capacity can be determined with the total
potential relational combinations Cs

n , among all neurons (n = 1011) and their
average synapses (s = 103), which results in 108,432 bits.

• The tremendous difference of memory magnitudes between
human beings and computers demonstrates the efficiency of
information representation, storage, and processing in the human
brains. Computers store data in a direct and unconsumed manner; while
the brain stores information by relational neural clusters. The former
can be accessed directly by explicit addresses and can be sorted; while
the latter may only be retrieved by content-sensitive search and
matching among neuron clusters where spatial connections and
configurations themselves represent information.

© 2008 by Taylor & Francis Group, LLC

734 Part III Organizational Foundations of SE

• Cognitive informatics properties of software engineering: The fact
that before any program is composed, an internal abstract model must be
created inside the brain reveals the most fundamental constraint of software
engineering, i.e., software is generated and represented in the brain before it
can be transferred into a computer. Because the growth of the human neural
system is naturally constrained as described by the 24-hour law, it is very
hard to dramatically improve the productivity of software development. This
is identified as one of the basic constraints of software engineering known as
conservative productivity due to the cognitive mechanism in which abstract
artifacts need to be represented physiologically in the brain via growing
synaptic neural connections.

• The cognitive complexity weights of software are a new functional

complexity measure based on the ten BCS’s in programming. The relative
cognitive weight of a BCS, wBCS, is the relative time or effort spent on
comprehending the function and semantics of a BCS against that of the
sequential BCS. The calibrated wBCS(Sequence, branch, switch, while-loop,
repeat-loop, for-loop, function call, recursion, parallel, interrupt) = (1, 3, 4,
7, 8, 7, 7, 11, 15, 22).

• Psychological requirements for software engineers: a) Abstract-
level thinking; b) Imagination of dynamic behaviors with static descriptions;
c) Organization capability; d) Cooperative attitude in team work; e) Long-
term focus of attentions; f) Preciseness; g) Reliability; and h) Expressive
capability in communication.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Cognitive informatics

• Cognitive informatics (CI) is a transdisciplinary enquiry of natural
and machine intelligence, and their products in terms of information,
knowledge, and behaviors.

• Cognitive informatics covers a whole range of interdisciplinary
research in subject areas including natural intelligence (NI),
autonomic computing (AC), and neural informatics (NeI).

• The theories of cognitive informatics and neural informatics
explain a number of important questions in the study of NI.
Enlightening results derived in cognitive informatics have led to the

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 735

determination of the magnitude and expected capacity of human
memory.

• Neural Informatics (NeI) is a new interdisciplinary enquiry of the

biological and physiological representation of information and knowledge in
the brain at the neuron level and their abstract mathematical models.

• Neural informatics is a branch of cognitive informatics, where
memory is recognized as the foundation and platform of any natural or
artificial intelligence.

Cognitive informatics models of the brain

• The human brain is the most complicated organ in the universe and
is constantly the frontier yet to be explored in an interdisciplinary approach.
Investigation into the brain and its cognitive mechanism is a unique and the
hardest problem in science that requires recursive and introspective mental
power to explore the brain by the brain.

• The Cognitive Models of Memory (CMM): CMM states that the
architecture of human memory is parallel configured by the Sensory Buffer
Memory (SBM), Short-Term Memory (STM), Long-Term Memory (LTM),
and Action-Buffer Memory (ABM).

• The Layered Reference Model of the Brain (LRMB): LRMB
encompasses 39 cognitive processes at six layers known as the sensation,
memory, perception, action, meta cognitive, and higher cognitive layers from
the bottom up.

• The hierarchical life functions of the brain, the natural
intelligent system (NI-Sys), can be divided into two categories: the
subconscious and conscious subsystems. The former known as the NI
operating system (NI-OS) encompasses the layers of sensation,
memory, perception, and action (Layers 1 to 4). The latter known as the
NI applications (NI-App) includes the layers of meta and higher
cognitive functions (Layers 5 and 6).

• Sensation is a set of cognitive processes of the brain at the
subconscious life functional layer that forms the interfaces between the
internal and external worlds for information detection, acquisition, and
input into the brain. The sensation layer of LRMB is a subconscious
layer of life functions of the brain for detecting and acquiring cognitive
information from the external world via physical and/or chemical
means.

© 2008 by Taylor & Francis Group, LLC

736 Part III Organizational Foundations of SE

• Memory is a set of cognitive processes of the brain at the
subconscious life function layer that retains the external or internal
cognitive information in various memories of the brain, particularly in
LTM. The memory layer of LRMB is the fundamental layer of life
functions of the brain functioning to: a) retain and store information
about both the external and internal worlds; b) maintain a stable state of
an animate system; c) provide a working space of abstract inference;
and d) buffer programmed actions and motions to be executed by the
body.

• Perception is a set of internal sensational cognitive processes of
the brain at the subconscious life function layer that detects, relates,
interprets, and searches internal cognitive information in the mind. The
perception layer of LRMB is a subconscious layer of life functions of
the brain for maintaining conscious life functions and for browsing
internal abstract memories in the cognitive models of the brain.

• Action is a set of subconscious cognitive processes of the brain
at the subconscious life function that executes both bodily (external) or
mental (internal) actions via the motor systems of the body or the
perceptional engine of the brain. The action layer of LRMB is a
subconscious layer of life functions of the brain for output-oriented
actions and motions that implement human behaviors such as a
sequence of movement and a pre-prepared verbal sentence.

• A meta cognitive function is a fundamental and elemental
cognitive process of the brain at the conscious life function layer that is
commonly used (or applied) to support the higher layer cognitive life
functions. The meta cognitive process layer of LRMB is a conscious
layer of life functions of the brain that carries out the fundamental and
elementary cognitive processes commonly used in higher cognitive
processes.

• A higher cognitive function is an advanced cognitive process
of the brain at the conscious life function layer that is developed and
acquired to carry out commonly recurring life functions under the
support of the meta cognitive process. The higher cognitive process
layer of LRMB is a conscious layer of life functions of the brain that
carries out a set of specific cognitive processes under the support of the
meta cognitive processes.

• The Cognitive Information Model (CIM): CIM classifies cognitive

information into four categories, according to their types of I/O information,
known as knowledge (K: I → I), behavior (B: I → A), experience (E: A → I),
and skill (S: A → A), where I stands for information and A for actions.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 737

• The CIM model lays an important foundation for learning
theories and pedagogy. It reveals that software engineering deals with
instructive behaviors and their relations with knowledge, experience,
and skills.

• The generic forms of cognitive information: There are four

categories of internal information I in the brain known as knowledge (Ik),
behaviors (Ib), experience (Ie), and skills (Is), i.e., (, , ,)k b e s=I I I I I .
All the four categories of information can be acquired directly by an
individual. However, knowledge and behaviors can be learnt indirectly based
on abstract information. Instead, experience and skills must be learnt directly
by hands-on or empirical actions.

• Intelligence: Natural intelligence (NI) is a system of intelligent

behaviors possessed or implemented by the brains of human beings and other
advanced species; Artificial intelligence (AI) is a system of intelligent
behaviors possessed or implemented by machines or man-made systems.

• Measurement of Intelligence: There are three methods for

measuring the natural and artificial intelligence.

• Intelligent quotient (IQ) is a ratio between the mental age Am
and the chronological (actual) age Ac, multiplied by 100, where Am is
the sum of a base age Ab and an extra equivalent age ∆A.

• Turing intelligence equivalence ET is a ratio of conformance
or equivalence evaluated in a comparative test between a system under
test and an equivalent human-based system, where both systems are
treated as a black box and the testers do not know which the tested
system is.

• Wang’s intelligent capability metric CI is a normalized sum of
abilities of the perceptive intelligence (Cp), cognitive intelligence (Cc),
instructive intelligence (Ci), and reflective intelligence (Cr).

• The perceptive intelligent capability Cp is the ability to transfer
a given number of data objects or events Nd into a number of
information objects in term of derived or related concepts Ni.

• The cognitive intelligent capability Cc is the ability to transfer a
given number of information objects Ni into a number of knowledge
objects Nk.

© 2008 by Taylor & Francis Group, LLC

738 Part III Organizational Foundations of SE

• The instructive intelligent capability Ci is the ability to transfer
a given number of information objects Ni into a number of behavioral
actions Nb.

• The reflective intelligent capability Cr is the ability to transfer a
given number of data objects or events Nd into a number of behavioral
actions Nb.

• The relative intelligent capability ∆CI is the difference
between a testee’s absolute intelligent capability CI and a given
intelligent capability benchmark

IC .

• Theory of learning: The generic forms of learning L can be

classified into those of knowledge (Lk), behaviors (Lb), experience (Le), and
skills (Ls), i.e., (, , ,)k b e s=L L L L L .

• The functional model of the brain: A high-level logical model of
the brain describes the functional configuration of the brain and how the NI-
Sys interacts with the memory system. It revealed that intelligence is
memory-based.

Cognitive informatics models of knowledge representation

• The cognitive informatics model for internal knowledge

representation: The functional model of LTM is a set of Hierarchical
Neural Clusters (HNC) with partially connected neurons via synapses. In
contrary to the traditional container metaphor, the human memory
mechanism can be described by a relational metaphor, in which memory and
knowledge are represented by the connections between neurons in the brain,
rather than the neurons themselves as information containers.

• The Object-Attribute-Relation (OAR) model: The OAR model of

LTM can be described as a triple, i.e., OAR = (O, A, R), where O is a set of
objects identified by unique symbolic names, A is a set of attributes for
characterizing the object, and R is a set of relations between oi and other
objects or attributes of other objects.

• The Extended OAR Model (EOAR) of the brain: EOAR states that

the external world is represented by real entities, and the internal world by
virtual entities and objects. The internal world can be divided into two layers
known as the image layer and the abstract layer.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 739

• The EOAR model can be used to describe information
representation and its relation to the external world. It can also be
applied to explain the mental processes and cognitive mechanisms as
identified in the LRMB model.

• The principal intelligent advantages state that, on the basis of two

principal advantages known as the qualitative properties and quantitative
properties, humans gain the power as the most intelligent species in the
world.

Cognitive informatics for software engineering

• Productivity of software development is the key among all the
cognitive, time, and resources constraints in software engineering. The other
constraints can be overcome as a result of the improvement of software
engineering productivity. All theories and approaches explored throughout
this book put emphases on this ultimate goal of software engineering.

• The key approaches to improve software development
productivity are:

 a) To explicitly express software architectures and behaviors in

denotational mathematics;

 b) To investigate the theories of rational software engineering
organization; and

 c) To design tools that lead to automatic software code
generation based on the denotational system models.

 • Software engineering psychology: There are two types of
programmers: the realistic and idealistic ones. The former may be suitable
for coding, testing, and quality control; while the latter may be good at
solution seeking, GUI design, and carrying out tasks as system analysts.

• Psychological requirements for software engineers: abstract-level
thinking; imagination of static descriptions in terms of dynamic behaviors;
organization capability; cooperation and team working attitude; long-term
focus of attentions; preciseness; reliability; and expressive capability in
communications.

• Program comprehension: It is a cognitive process to understand a
given software system in dimensions of architecture, static behaviors, and
dynamic behaviors, and their relationships.

© 2008 by Taylor & Francis Group, LLC

740 Part III Organizational Foundations of SE

• The cognitive process of comprehension: a) To search
relations from real entities to virtual entities and/or existing objects and
attributes; b) To build a partial or adequate OAR model of the entity; c)
To wrap up the OAR model by classifying and connecting it to
appropriate clusters of the LTM; d) To memorize the new OAR model
and its connections in LTM.

 • Software engineering skills and experiences: All software
engineering experience and skills, such as best practices, know-how, lessons
learnt, failure reports, and new technology trial results, are hard to gain
indirectly, because: a) The brain has no direct experience or skill transfer
mechanism, hence it has to be physiologically acquired from the external
world; b) The only way to gain experience is learn by doing, or trial and
error. Hence people have to make the same mistakes, at least to simulate
them, in order to learn and remember them; c) Each brain is unique because
of individual physiological differences, cognitive style differences,
personality differences, and environment differences.

• A software agent is an intelligent software system that autonomously
carries out robotistic and interactive applications based on goal-driven
mechanisms. The theoretical foundation of agent systems is rooted in
cognitive informatics theories and autonomic computing methodologies,
particularly the LRMB model and denotational mathematics.

• Along with the latest development of cognitive informatics and
autonomic computing, self-organizing, self-managing and non-
imperative autonomic agent systems are emerging. An autonomic
agent system is an intelligent software system that takes rational
actions in the pursuit of its agenda via goal-, inference-, and event-
driven behaviors.

Cognitive complexity of software

• The cognitive complexity weights of software: One of the central
problems in software engineering is the inherited complexity.

• The cognitive weight of software is the extent of difficulty or
relative time and effort for comprehending the function and semantics
of a given program.

• It is almost impossible to measure the cognitive weights of a
program at statement level because of their variety and language
dependency. However, it is found that it is feasible if the focus is put on
the BCS’s, the control logic of software systems, because there are only

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 741

ten BCS’s in programming no matter what kind of programming
language is used.

• Software cognitive complexity provides a foundation for cross-

platform analysis of complexities, sizes, and comprehension efforts of
software specifications and implementations in the phases of design,
implementation, and/or maintenance in software engineering. Detailed
theories will be completed in Section 10.7.

Questions and
Research Opportunities

9.1 What is cognitive informatics? How has it emerged from classic

and contemporary informatics – the science of information?

9.2 What are the relationships of cognitive informatics with NI, AI,
and cognitive science?

9.3 Summarize the fundamental theories of cognitive informatics,

particularly the laws and principles for software engineering
stated in the theorems of this chapter.

9.4 On the basis of the Software Engineering Constraint Model

(SECM, Theorem 1.5), discuss why cognitive informatics plays
an important role in building the foundations for software
engineering.

9.5 Why is denotational mathematics a coherent part of the theoretical

framework of cognitive informatics?

9.6 Discuss how cognitive informatics may be used in explaining

fundamental software engineering issues such as software
comprehension and software experience/skill transformation.

9.7 What are the qualitative and quantitative advantages of the human

brain with regard to the other species?

© 2008 by Taylor & Francis Group, LLC

742 Part III Organizational Foundations of SE

9.8 Explain the roles of synapses in the neural networks of the brain
according to the Hierarchical Neural Clusters (HNC) model and
the logical model of OAR.

9.9 According to NeI and the OAR model, try to logically explain

why brain neurons are the only type of cells in human body that
does not go through reproduction rather than remains alive
throughout the entire human life.

9.10 On the basis of the OAR model, try to explain the physiological

and logical mechanisms of creation or invention.

9.11 Why acquired information and knowledge cannot be passed on

and inherited through genes? How may highly professional skills
that are acquired throughout a person’s life be passed on to peers
or next generation?

9.12 According to the HNC model and the properties of LTM, discuss

why human memory can be searched based on content-sensitive
mechanisms, but cannot be sorted internally.

9.13 Which form of cognitive information is with inputs of data and

outputs of actions that can be both directly and indirectly
acquired?

9.14 What are the forms of intelligence? Are the natural and machine

intelligence different? Why?

9.15 Why is memory the foundation of both the natural and machine

intelligence? Can a form of intelligence exist without memory?
Why?

9.16 What is the taxonomy of human memories? Why should the

action buffer memory be considered as an independent category
of memory? Without it what kind of life functions cannot be
carried out?

9.17 According to the Layered Reference Model of the Brain (LRMB),

why can the natural intelligence be reduced and described by 6
layers and 39 fundamental cognitive processes?

9.18 Given a goal to find a certain restaurant, explain how the task

may be carried out by composing multiple LRMB processes at

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 743

different layers. A block diagram may be used to represent your
answer.

9.19 According to the LRMB model, try to suggest any possible basic

process(es) that is not modeled in LRMB and cannot be
composedly described by multiple fundamental processes
identified in it.

9.20 Define the four categories of information one deals with in

software engineering according to Theorem 9.4 and the Cognitive
Information Model (CIM).

9.21 The CIM model classifies cognitive information into four

categories, according to their types of I/O information, known as
knowledge (information, information), behavior (information,
action), experience (action, information), and skill (action,
action).

According to CIM, what is the category of a program or a
software system? What is the category of a programmer’s
acquired ability for programming?

9.22 Why may the functional model of the brain be treated as a real-
time intelligent system?

9.23 Discuss what the fundamental mechanisms of natural intelligence

of the brain are, and how internal information is represented,
processed, and utilized.

9.24 What will be the next generation architectures of computers that
may learn from the human brains and natural intelligence?

9.25 Discuss what can a computer do while human beings cannot?

What can a computer do better than human beings?

9.26 How do a faculty of subconscious and conscious life functions
interact in the brain?

9.27 Where is the thinking engine? Or where is the organ in the brain

that physiologically drives thinking and perception?

9.28 How is the thinking engine triggered or directed?

9.29 Are all thinking mechanisms consciously or intentionally
controllable?

© 2008 by Taylor & Francis Group, LLC

744 Part III Organizational Foundations of SE

9.30 How can consciousness be the product of physiological and
mental processes of the brain?

9.31 Explain why experience transfer is very difficult in programming

and software engineering on the basis of Corollary 9.2.

9.32 According to Theorem 9.5 and the GIM model, explain why

programming may be considered, to some extent, as a process to
create machine intelligence.

9.33 Why do all mammals need sleep? What is the cognitive

mechanism of sleeping?

9.34 When is memory established in the long-term memory? What are

the roles of sleep in memory creation? What does the 24-hour law
(Theorem 9.11) explain?

9.35 According to the OAR model, the entire knowledge maintained

and represented in the brain is a hierarchical OAR structure. Try
to use the OAR model to explain the following mechanisms:

(a) How is existing knowledge extended or updated in the OAR

with Aext, Oext, and/or Rext?

(b) How is new knowledge created in the OAR with Anew,
Onew, and/or Rnew?

9.36 Why is software productivity, as that of any other creative work,

is conservative that forms a basic constraint for software
engineering?

9.37 Why has software productivity not been significantly improved in

software engineering in the last four decades? What are key
approaches to improve software development productivity by
dealing with the cognitive complexity of software engineering?

9.38 According to the cognitive model of the comprehension process,

explain why no comprehension is logically a comprehension.

9.39 Referring to Experiment 9.3, try to design an psychological

experiment for calibrating your relative cognitive weight of the
while-loop BCS, i.e., wBCS(4). Then, compare your result with
Table 9.9.

© 2008 by Taylor & Francis Group, LLC

Chapter 9 Cognitive Informatics Foundations of SE 745

9.40 According to the experiment method provided in Definition 9.38
and the detail test programs reported in [Wang, 2005j], try to
conduct a complete set of the psychological experiments for
calibrating the relative cognitive weights of all ten BCS’s in a
group and analyze your results with Table 9.9.

9.41 Read the following classic article in software engineering:

John L. McCarthy (1987), Generality in Artificial

Intelligence, The 1971 Turing Award Lecture,

Communications of the ACM, 30(12), pp. 1029-1035.

Discuss the following topics in a group:

 • About the author.

• What was the generality of AI according to the author in the
1970s?

• What is the relationship between AI and cognitive
informatics (CI)?

 • What conclusions of the article interested you? Why?
 • Your arguments or counter-points on any of the conclusions

derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 10

SYSTEM SCIENCE
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

9.
Cognitive
Informatics
Foundations
of SE

10.1 Introduction 10.5 Principles of System Science
10.2 System Philosophies 10.6 Software System Engineering
10.3 Abstract Systems and System Topology 10.7 The Complexity Theory of Software Systems
10.4 System Algebra 10.8 Summary

10.
System
Science
Foundations
of SE

11.
Management
Science
Foundations
of SE

12.
Economics
Foundations
of
SE

13.
Sociology
Foundations
of
SE

8.
Engineering
Foundations
of
SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

748 Part III Organizational Foundations of SE

Knowledge Structure

 System philosophies

 • The system metaphor for modeling complex entities
 • Holism • Systematic thinking

 Abstract systems and system topology

 • Mathematical models of abstract systems
 • Taxonomy of systems • Magnitudes of systems

 System algebra

 • Algebraic relations of systems • Algebraic operations of systems
 Principles of system science

 • System fusions • System functions and behaviors
 • Work done by systems • The maximum output of systems
 • System equilibrium and organization • System synchronization and coordination
 • System dissimilation

 Software system engineering

 • The abstract model of computing systems • The hierarchical model of software systems
 • The ISO/IEC 15288 system engineering model for SE
 • SE phenomena as system engineering problems

 The complexity theory of software systems

 • Computational complexity • Control flow complexity
 • Cognitive complexity of software systems • Software cognitive complexity analysis
 • Cohesion and coupling complexity of software systems

Learning Objectives

 • To know the system philosophy for dealing with complex entities and
objects in software engineering.

 • To understand the concept of abstract systems and their topology as a
mathematical model for general and concrete systems.

 • To understand the new mathematical structure of system algebra for
modeling and manipulating abstract and software systems.

 • To gain knowledge on fundamental system principles and their formal
explanations, particularly system gains and abstract work done by systems.

 • To understand the abstract model of generic computing systems and the
hierarchical model of generic software systems.

 • To understand the complexity theory of software systems, particularly
cognitive complexity analyses for software engineering.

 • To be able to explain software engineering phenomena by system theories.

10. System Science Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 749

 “Problems that are created by our current level of thinking can’t be
 solved by that same level of thinking.”

Albert Einstein (1879-1956)

“The more science becomes divided into specialized disciplines, the more important

it becomes to find unifying principles.”

Herman Haken (1977)

10.1 Introduction

ystem theories are one of the three emerging sciences, with
information science (covered in Chapter 7) and cybernetics (covered
and extended in Chapter 9), developed in the 1940s. System science

and its application in systems engineering are a branch of knowledge that
studies the top-level objects and phenomena in the physical, information, and
social worlds, namely systems, across all science and engineering disciplines.

The concept of systems can be traced back to the 17th Century when
Rene Descartes (1596-1650) noticed the interrelationship among scientific
disciplines as systems. Descartes developed analytic geometry that integrated
algebra, geometry, and physics on the same mathematical foundation. Then,
the general system notion was founded by Ludwig von Bertalanffy in the
1920s [von Bertalanffy, 1952].

Definition 10.1 An abstract system is a collection of coherent and

interactive entities that possesses stable functions and clear boundary with
external environment.

 This chapter treats systems as discrete entities and studies the generic
rules and theories of abstract systems. Systems treated as continuous systems
may be referred to synergetics [Haken, 1977/83; Haken et al., 1995],
hypercycle theory [Eigen and Schuster, 1979], and dissipative structures
[Prigogine and Stengers, 1984/97].

The classic theories at the system level developed in the 20th century
are as follows:

 • Information theory (C.E. Shannon, 1948)

 • Cybernetics (N. Wiener, 1948)
 • Systems theory (L. von Bertalanffy, 1952)

S

© 2008 by Taylor & Francis Group, LLC

750 Part III Organizational Foundations of SE

With a similar point of view, management science, economics, and
sociology, which will be explored in Chapters 11, 12, and 13, respectively,
are special branches of system science that study objects and phenomena at
different levels of human coordinative work and social organizations.

Because software engineering is one of the most complicated systems
that humans have ever dealt with, it is naturally an ideal testbed for
evaluating existing system theories and their enhancements. Treating
software engineering and large-scale software project via system engineering
is also a promising trend in dealing with the problems, complexities, quality
assurances, and human factors in software engineering.

This chapter describes the system metaphor of software and software
engineering. It explores theories of systems science, as well as underlying
principles and modeling techniques of system engineering. Applications of
system theories and system engineering methodologies in software
engineering are discussed, and interesting software engineering phenomena
as system engineering issues are addressed. In the remainder of this chapter,
the system science foundations of software engineering will be presented in
six sections. Section 10.2 presents classic system philosophies and the ways
of system thinking for modeling complex entities. Section 10.3 introduces a
new mathematical structure of abstract systems known as system algebra.
Section 10.4 describes principles of system theories with a formal and
rigorous treatment. Section 10.5 discusses properties of abstract systems such
as generic architectures, equilibrium, synchronization, and dissimilation.
Section 10.6 applies system theories and system engineering techniques into
software engineering. The systematical perception on software and software
system models is presented in Section 10.7.

10.2 System Philosophies

Many preeminent scientists working in different disciplines intend to
recognize that nature is a coherent system with perfect harmony and integrity
[Ellis and Fred, 1962]. Rene Descartes (1596-1650) first proposed the notion
of system in his investigation into analytic geometry. Ludwig von Bertalanffy
found the generic system theory on the basis of his study in biologic systems
[von Bertalanffy, 1952], which is then extensively studied in [Hall and
Fagan, 1956; Boulding, 1956/74; Ashby, 1956/58a/62/70/72; Rapoport,
1962; Schedrovitzk, 1962; Makridakis and Faucheux, 1971/73; Bunge,
1978/81; Gaines, 1972/78/84; Takahara and Takai, 1985; Klir, 2001].

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 751

Steven Weinberg wrote: ‘Our job in physics is to see things simply, to
understand a great many complicated phenomena, in terms of a few simple
principles.’ The system philosophy is based on the observation that the
nature is built by a small number of basic components and particles, and
governed by a limited set of basic laws. Even all living things are configured
by almost the same cells, chromosomes, and DNAs.

 In Philosophy of Physics (1936), Max Planck expressed:

“Modern physics has taught us that the nature of any system
cannot be discovered by dividing it into its component parts and
studying each part by itself, since such a method often implies the
loss of important properties of the system. We must keep our
attention fixed on the whole and on the inter-connection between
the parts. … The whole is never equal simply to the sum of its
various parts.”

This is an excellent representation of the basic philosophy of system
science theory, which suggests that systems must be viewed as a whole with
each part linking to all the other parts.

10.2.1 THE SYSTEM METAPHOR FOR MODELING
 COMPLEX ENTITIES

The discipline of system science is an inquiry into the general
principles and rules commonly shared by different kinds of systems. The
system metaphor is one of the most widely used concepts and notions in
almost all disciplines of science, engineering, and society. Whenever an
object of study is getting complicated, the system metaphor can be adopted
as a powerful modeling and analysis means to deal with the complexity of
the object under investigation.

A system can be as small as two dependent components or as large as
the universe. The scopes and magnitudes of systems may vary extremely
from a few components to billions of components. According to the system
philosophy, the universe may be defined as a system of all systems.
Otherwise, the readers might have difficulties to answer: Where is the
boundary of the universe? What are things outside the universe?

Lemma 10.1 The principle of generic constraints states that any system
is constrained by a set of common conditions, properties, and rules,
which are obeyed by all components inside the system, but not by those
outside it.

© 2008 by Taylor & Francis Group, LLC

752 Part III Organizational Foundations of SE

The generic system theory treats everything as a system, and it
perceives that a system belongs to other super system(s) and contains more
subsystems. A generic system can be described recursively in a hierarchical
structure as illustrated in Fig. 10.1

Figure 10.1 A hierarchical view of system structures

For example, the hierarchical levels of living systems of the universe

can be decomposed into the following layers from bottom up:

 • Cell
 • Organ
 • Organism / individual
 • Group / team
 • Organization
 • Society / community
 • Supranational system / earth
 • The universe

Based on Fig. 10.1, the following lemma on system abstraction can be
derived.

 System

…

 Super system

 Subsystem 1 Subsystem n Subsystem 2

The current level
of abstraction

Lemma 10.2 The generality principle of system abstraction states that a
system can be represented as a whole in a given level k of abstraction and
reasoning without knowing the details at levels below k.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 753

10.2.2 HOLISM

The word holism is originated from Greek holos meaning the whole.
Holism is a philosophical view that perceives a phenomenon and system with
wholeness in an integrated, synthetic, and systematic approach. Holism was
well entrenched in Greek philosophy as well as in the classic Chinese
philosophy of Taoism.

The most influential statement of holism is as follows:

“The whole is more than the sum of its parts.”

That has been widely accepted since Aristotle’s time in 400BC [Klir,
2001]. According to holism, complex organisms and systems as a whole
possess special properties when its elements and their interactions reach or
beyond a certain critical mass, which cannot be found from any of the
individual elements.

Albert Einstein (1879-1956) once pointed out:

 “Problems that are created by our current level of thinking
cannot be solved by that same level of thinking.”

Bertrand Russell, British philosopher and logician, presented similar

thought in the 1960s, concerning that problems about the whole of a given
order of logic have to be solved in a higher order of logic. Russell also
proposed for using objects and classes to describe the logical world in 1900
[Russell, 1961], which is considered the philosophical foundation of modern
object-oriented technology in software engineering.

Taking the systematic view on entities and their relations in a system as
a whole, a common problem known as “local maximum” may be avoided in
the development of knowledge. As it is said there is no number two in
sciences, while there is no number one in engineering. The rational is that
sciences do not recognize a repetitive discovery or reinvention, but
engineering cannot prove or claim, in technical and economical terms,
whether a specific design or implementation is the best or the optimal
solution among a large number of potential ones. This is particularly true in
software engineering.

10.2.3 SYSTEMATIC THINKING

The principle of systematic thinking extends the system philosophy to

strategic and tactic applications in sociology, management science,
economics, engineering, and everyday life. To illustrate this philosophy, the
following historic story about King Qi’s horse racing may be taken as an
example. About 2000 years ago, King Qi collected the best horses in his

© 2008 by Taylor & Francis Group, LLC

754 Part III Organizational Foundations of SE

kingdom. He liked horse racing very much and he expected to win every
time. However, once he lost to Ji Tian, a wizard of that time.

The horses were categorized in three classes, i.e., for the King: K1, K2,

and K3; and for Tian: T1, T2, and T3. If they were raced in the way: K1 – T1,
K2 – T2, and K3 – T3, there was no surprise that the King had have to win, as
illustrated in Fig. 10.2, because he possessed the best horses in each class.

T3

K3

T2

K2

K1
T1

0

1

2

3

4

5

6

7

P e r f o r m a n c e

Game 1 Game 2 Game 3

Figure 10.2 Horse Racing: King Qi vs. Ji Tian – System strategy (I)

However, the wizard Ji Tian won using the following systematical
strategy as shown in Fig. 10.3. Tian dispatched his third class horse (T3)
against King Qi’s first class (K1), and of course allowed the King to win the
first race. Then, in the following two races, Tian used his first (T1) and
second (K2) class horses against the King’s second (K2) and third (K3) class
horses, respectively. Eventually, Tian won the three-match game for the first
time in the history of the kingdom.

T2
K3

T1
K2

T3

K1

0
1
2
3
4
5
6
7

P e r f o r m a n c e

 Game 1 Game 2 Game 3

Figure 10.3 Horse Racing: King Qi vs. Ji Tian – System strategy (II)

This story tells a useful operational strategy in system theory, which
has then been taken as an excellent paradigm of systematic thinking.
However, readers will find that the contemporary system theories in system
science and engineering are far more complicated and abstract than the story.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 755

10.3 Abstract Systems and System
 Topology

This section creates the mathematical models of abstract systems and
explores their properties, structures, and behaviors. The topological
properties of abstract systems universally shared by all systems, such as
system sizes, magnitudes, and complexities, are analyzed. The structural
properties of abstract systems are studied on the hierarchical architectures.
As a result, the universal system organization tree is introduced.

10.3.1 MATHEMATICAL MODELS OF ABSTRACT
 SYSTEMS

This subsection introduces the concept of abstract systems [Wang,
2006d] and describes how the properties of abstract systems may be formally
modeled and studied.

Abstract systems can be classified into two categories known as the
closed and open systems. Most practical and useful systems in nature are
open systems in which there are interactions between the system and its
environment. However, in order to develop the theoretical framework of
abstract systems, the closed systems in which there is no interaction with
external environment will be introduced first in the following subsection.

10.3.1.1 The Mathematical Model of Closed Systems

The axiom of the abstract system theory is based on the OAR model
[Wang and Wang, 2006; Wang, 2007g] as defined in Chapter 9, in which the
architecture of a system object Os can be modeled by a set of attributes A and
a set of binary relations R among the attributes, i.e.:

 Os = (A, R) (10.1)

Encompassing both architectures and behaviors of a system on the basis

of Eq. 10.1, an abstract closed system without interactions with the
environment can be formally described as follows.

Definition 10.2 A closed systemS is a 4-tuple, i.e.:

© 2008 by Taylor & Francis Group, LLC

756 Part III Organizational Foundations of SE

 S = (C, R, B, Ω) (10.2)
where

• C is a nonempty set of components of the system, C = {c1, c2, …,
cn}.

• R is a nonempty set of relations between pairs of the components
in the system, R = {r1, r2, …, rm}, R ⊆ C × C.

 • B is a set of behaviors (or functions), B = {b1, b2, …, bp}.
 • Ω is a set of constraints on the memberships of components, the

conditions of relations, and the scopes of behaviors, Ω = {ω1, ω2,
…, ωq}.

An abstract closed system, S = (C, R, B, Ω), can be illustrated as shown
in Fig. 10.4.

 R1

 R2

 S
 U

 C1 B1

 Ω1

 R1

 C2 B2

 Ω2

 R2

Figure 10.4 The abstract model of a closed system

 Definition 10.3 The maximum number of binary relations nr = #R
between all pairs of the nc = #C components in a closed system S = (C, R, B,
Ω) can be determined as follows:

 nr = #R
 = #(C × C)
 = nc

2 (10.5)

Lemma 10.3 A closed system S = (C, R, B, Ω) is an asymmetric
(directed) and reflective system because the relations R in it are
constrained by the following rules:

 (a) ∀a, b ∈ C ∧ a ≠ b ∧ r ∈ R, r(a, b) r(b, a) (10.3)
 (b) ∀c ∈ C, r(c, c) ∈ R (10.4)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 757

if all reflective self-relations are ruled out in nr, the partially connected
relations n’r is obtain as:

 ' (1)r c cn n n= − (10.6)

10.3.1.2 The Mathematical Model of Open Systems

Most practical systems in the real world are not closed. That is, they
need to interact with the external world known as the environment Θ in order
to exchange energy, matter, and/or information. Such systems are called open
systems. Typical interactions between an open system and the environment
are inputs and outputs.

Observe that the relations of a closed system are defined on the

Cartesian product of internal components. For an open system that has
interactions with external environment, the set of relations R needs to be
extended to include both internal relations Rc and external (input/output)
relations Ri and Ro, i.e.:

 R = Rc ∪ Ri ∪ Ro (10.7)

Based on the above discussion, an abstract open system can be defined

below.

Definition 10.4 An open system S is a 7-tuple, i.e.:

 S = (C, R, B, Ω, Θ)
 = (C, Rc, Ri, Ro, B, Ω, Θ) (10.8)

where the extensions of entities beyond the closed system are as follows:

 • Θ is the environment of S with a nonempty set of components CΘ
outside C, i.e., CΘ ∩ C = ∅ .

 • Rc ⊆ C × C is a set of internal relations.
 • Ri ⊆ CΘ × C is a set of external input relations.
 • Ro ⊆ C × CΘ is a set of external output relations.

An abstract open system, S = (C, Rc, Ri, Ro, B, Ω, Θ), can be illustrated as
shown in Fig. 10.5.

© 2008 by Taylor & Francis Group, LLC

758 Part III Organizational Foundations of SE

 S

 U

 C1 B1

 Ω1

 R1

 C2 B2

 Ω2

 R2

 Θ

 Ri
1

 Ri
2

 Ro
1

 Ro
2

 Rc
2 Rc

1

Figure 10.5 The abstract model of an open system

Example 10.1 A digital clock, Clock, can be described as an open

system S1 as follows:

 Clock = S1(C1, Rc
1, Ri

1, Ro
1, B1, Ω1, Θ1)

where

• The set of components:
C1 = {Processor, Keypad, LEDs, ClockPulse}

 • The set of internal relations:
Rc

1 ⊆ C1 × C1 = {Input (Keypad, Processor),
 Tick (ClockPulse, Processor),
 Output (Processor, LEDs)}

 • The set of input relations:
Ri

1 ⊆ CΘ1 × C1 = {SetTime (User, Keypad)}

 • The set of output relations:
Ro

1 ⊆ C1 × CΘ1 = {ShowTime (LEDs, User)}

 • The set of behaviors:
B1 = {SetTime, ShownTime, Tick}

 • The set of constraints:
Ω1 = {Time = hh × mm × ss}

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 759

 • The environment:
Θ1 = {User}

where the behaviors of the digital clock system defined in B1 can be further
refined by a set of processes in RTPA.

Example 10.2 The alarm subsystem, Alarm, of a digital clock can be

described as an open system S2 as follows:

 Alarm = S2(C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2)

where

• The set of components:
C2 = {Processor, Keypad, LEDs, Bell}

 • The set of internal relations:
Rc

2 ⊆ C2 × C2 = {Input (Keypad, Processor),
 AlarmCheck (Time, Alarm),
 AlarmRelease (Keypad, Processor),

 Output (Processor, LEDs),
 Ring (Processor, Bell)}

 • The set of input relations:
Ri

2 ⊆ CΘ2 × C2 = {SetAlarm (User, Keypad)}

 • The set of output relations:
Ro

2 ⊆ C2 × CΘ2 = {ShowAlarm (LEDs, User)}

 • The set of behaviors:
B2 = {SetAlarm, ShownAlarm, CheckAlarm, Ring, AlarmRelease}

 • The set of constraints:
Ω2 = {Alarm = hh × mm}

 • The environment:
Θ2 = {User}

where the behaviors of the alarm system defined in B2 can be further refined
by a set of processes in RTPA.

© 2008 by Taylor & Francis Group, LLC

760 Part III Organizational Foundations of SE

 Definition 10.5 The total number of potential binary relations nr in an
open system S(C, Rc, Ri, Ro, B, Ω, Θ) is determined by the numbers of
internal relations Rc, and external relations Ri and Ro, i.e.:

 nr = #Rc + #Ri + #Ro
 = nc

2 + 2 #C • #CΘ (10.13)

According to Definitions 10.3 and 10.4, it is apparent that either a
closed or an open system may result in a huge number of relations nr when
the number of components possessed in them is considerably large.

10.3.2 TAXONOMY OF SYSTEMS

Systems as complex entities may be classified into various categories
according to the key characteristics of their components (C), relations (R),
behaviors (B), constraints (Ω), and/or environments (Θ). A summary of the
system taxonomy is shown in Table 10.1.
 There are combined categories of systems that fall in two or more
categories, such as a dynamic nonlinear system and a discrete fuzzy social
system. The types of systems may also classified by their magnitudes, which
will be discussed in Section 10.3.3.

Detailed definitions of system classifications and their characteristics
are described in the following subsections.

10.3.2.1 Concrete and Abstract Systems

Definition 10.6 A concrete system is a real and specific system with
natural entities and certain functions.

Definition 10.7 An abstract system is a virtual or theoretical system
that is modeled by mathematics or computing simulations.

Lemma 10.4 An open system S(C, Rc, Ri, Ro, B, Ω, Θ) is an asymmetric
and reflective system because its relations Rc, Ri, and Ro are constrained
by the following rules:

(a) ∀a, b ∈ C ∧ a ≠ b ∧ r ∈ Rc, r(a,b) r(b,a) (10.9)
(b) ∀c ∈ C, r(c, c) ∈ Rc (10.10)
(c) ∀a ∈ C ∧ ∀x ∈ CΘ ∧ r ∈ Ri, r(x,a) r(a,x) (10.11)
(d) ∀a ∈ C ∧ ∀x ∈ CΘ ∧ r ∈ Ro, r(a,x) r(x,a) (10.12)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 761

Table 10.1
Taxonomy of Systems

Key Characteristics No System

Components
(C)

Relations
(R)

Behaviors
(B)

Environment
(Θ)

1 Concrete Natural or real
entities

2 Abstract Mathematical
or virtual
entities

3 Physical Natural entities
4 Social Humans
5 Finite #(C) ≠ ∞

6 Infinite #(C) = ∞

7 Closed Ri = ∅ ∧
Ro = ∅

8 Open Ri ≠ ∅ ∧
Ro ≠ ∅

9 Static Invariable
10 Dynamic Variable
11 Linear Linear functions
12 Nonlinear Nonlinear functions
13 Continuous Continuous functions
14 Discrete Discrete functions
15 Precise Precise functions
16 Fuzzy Fuzzy functions
17 Determinate Response predictable

to same stimulates

18 Indeter-
minate

 Response
unpredictable to same
stimulates

19 White-box Observable Transparent Observable
20 Black-box Unobservable Non-

transparent
of internal
relations

Observable

21 Intelligent Autonomic Adaptive
22 Non-

intelligent
 Imperative Nonadaptive

23 Maintainable Fixable Recoverable
24 Non-

maintainable
Nonfixable Nonrecoverable

© 2008 by Taylor & Francis Group, LLC

762 Part III Organizational Foundations of SE

 An abstract system is usually used as a theoretical model of concrete
systems, particularly for the purpose of formal treatment and the study of the
generic properties shared by all concrete systems. In this view, a concrete
system is an application or special case of the abstract system.

Observing the taxonomy of systems as given in Table 10.1, it can be
seen that although there are numerous and various systems for different
purposes in the real-world, their abstract models, categories, and properties
are limited. This is the theoretical and empirical foundation for the
establishment of system algebra as a generic mathematical means for the
formal treatment of real-world systems as presented in Section 10.4 [Wang,
2006d].

10.3.2.2 Physical and Social Systems

Definition 10.8 A physical system is a natural and nonhuman system in
which physical entities interact for certain purposes.

Definition 10.9 A social system is an organized human system in which

groups of people interact for certain social purposes.

The physical systems can be mechanical, chemical, thermodynamic,

electrical, and biological. The social systems such as social organizations,
economic systems, and man-machine hybrid system are the most complicated
and dynamic systems. The modeling and analysis of economical and social
systems, as well as their applications in software engineering, will be
presented in Chapters 12 through 13, respectively.

10.3.2.3 Finite and Infinite Systems

Definition 10.10 The finite system is a system with a certain number of
components, i.e.:

 nc = #C < ∞ ⇒ S(C, Rc, Ri, Ro, B, Ω, Θ) is finite (10.14)

Definition 10.11 The infinite system is a system with an unlimited

number of components, i.e.:

 nc = #C = ∞ ⇒ S(C, Rc, Ri, Ro, B, Ω, Θ) is infinite (10.15)

The ultimate concrete infinite system in the physical world is the

universe, because as defined, anything that anybody may ever identify is
included in the universal system.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 763

Definition 10.12 The universe U is an infinite system with unlimited
sets of components U, as well as unlimited relations RU, behaviors BU, and
constraints ΩU, i.e.:

U = (U, RU, BU, ΩU) (10.16)

where U encompasses any component c ever identifiable in the physical
world, i.e., ∀ c, c ∈ U.

There are many infinite abstract systems characterized by an infinite

component set, such as the system with relations between a set of all natural
numbers, or that of all points between [0, 1].

Definition 10.13 The empty system O is the smallest finite system in

which the sets of components C∅, relations R∅, behaviors B∅, and constraints
Ω∅ are empty, i.e.:

 O = (C∅, R∅, B∅, Ω∅)

 = (∅, ∅, ∅, ∅) (10.17)

Definition 10.14 A finite system is a system between U(U, RU, BU, ΩU)
and O(∅, R∅, B∅, Ω∅), which is characterized by 0 < #C < ∞.

Lemma 10.5 There is only one physical infinitive system, i.e., U (U, RU,
BU, ΩU), but multiple abstract or mathematical infinitive systems exist.

Lemma 10.6 The evaluation criterion for whether a given system is
infinite is that if the set of components CU is infinitive.

Corollary 10.1 The evaluation criterion for whether a given system is
empty is that if the set of components C∅ is empty.

Lemma 10.7 There is only one empty system in both the physical and
abstract worlds, i.e., O(C∅, R∅, B∅, Ω∅).

© 2008 by Taylor & Francis Group, LLC

764 Part III Organizational Foundations of SE

10.3.2.4 Closed and Open Systems

The definitions of closed and open systems have been given in

Definitions 10.2 and 10.4. According to the definitions, it is hardly find any
practical usage of a closed system except its theoretical value as a primitive
model of systems.

Although in physics there are ideal theoretical models of closed
systems, such as an isolated kinematical system and an adiabatic chamber
with idea gas, there is no concrete closed system except the universe.
Actually, in mathematical senses, there are only two concrete closed systems,
the universal and empty systems, as described in the following theorem.

The universal system U(CU, RU, BU, ΩU) is closed because there is no

external environment outside U. The empty system O(C∅, R∅, B∅, Ω∅) is
closed because there are no relations both internal and external.

10.3.2.5 Static and Dynamic Systems

Definition 10.15 A static system is a system that its behaviors are
invariable over time or with the change of the environment.

Corollary 10.2 The relationship between the infinitive universal system
and the empty system O is complementary, i.e.:

 =U O (10.18a)

or
 =O U (10.18b)

Corollary 10.3 There are only two concrete closed systems in the
physical world that are the universal system U(CU, RU, BU, ΩU) and the
empty system O(C∅, R∅, B∅, Ω∅).

Lemma 10.8 A closed system is conservative and there is always a
unique static stable state.

Lemma 10.9 An open system is anticonservative and in which at least
one dynamic equilibrium state exists.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 765

Definition 10.16 A dynamic system is a system that its behaviors are
variable over time or with the change of the environment.

10.3.2.6 Linear and Nonlinear Systems

Definition 10.17 A linear system is a system that its behaviors are
modeled by linear functions.

Definition 10.18 A nonlinear system is a system that its behaviors are

modeled by nonlinear functions.

10.3.2.7 Continuous and Discrete Systems

Definition 10.19 A continuous system is a system that its behaviors are
modeled by continuous functions.

Definition 10.20 A discrete system is a system that its behaviors are
modeled by discrete or digital functions.

10.3.2.8 Precise and Fuzzy Systems

Definition 10.21 A precise system is a system that its behaviors are
modeled by precise functions.

Definition 10.22 A fuzzy system is a system that its behaviors are
modeled by fuzzy logic.

Some works in fuzzy theories prefer to call a precise system as a crisp

system. From a point of view in the time dimension, precise verses fuzzy
systems may better represent the cognitive or theoretical maturity towards a
target system under study. That is, in the beginning, a system under study
may be fuzzy, but in the end, as understanding improves along theoretical
and technical advances, it becomes precise. Also, there exists a unified
membership function in extended set theory [Wang, 2007a] that treats the
precise, fuzzy, and rough sets and their membership functions as its special
cases.

Corollary 10.4 Continuous and discrete systems are equivalent because
any continuous system can be simulated by a discrete system on the basis
of behavioral equivalence.

© 2008 by Taylor & Francis Group, LLC

766 Part III Organizational Foundations of SE

10.3.2.9 Determinate and Indeterminate Systems

Definition 10.23 A determinate system is a system that its behaviors

are predictable for the same stimulus from the environment.

Definition 10.24 An indeterminate system is a system that its behaviors

are unpredictable for the same stimulus from the environment due to internal
states, memory, and long-term feedback.

10.3.2.10 White-Box and Black-Box Systems

Definition 10.25 A white-box system is a system that both its internal

architectures including the components and their relations, and external
behaviors are transparent to and observable from the environment.

Definition 10.26 A black-box system is a system that only a part of its

behaviors are observable from the environment, but the components and their
relations are not transparent.

10.3.2.11 Intelligent and Nonintelligent Systems

Definition 10.27 An intelligent system is a system that its behaviors are

determined autonomously by internal goals and motivations, and it is
adaptive to the environment through learning and cumulated knowledge.

Definition 10.28 A nonintelligent system is a system that its behaviors

are determined by imperative instructions, and has no ability to adapt to the
environment.

10.3.2.12 Maintainable and Nonmaintainable Systems

Definition 10.29 A maintainable system is a system that its conditions,

functions, or performance can be recovered or resumed after malfunctions or
unsatisfied performances by maintenance or service during its lifecycle.

Definition 10.30 A non-maintainable system is a system that its

conditions, functions, or performance cannot be recovered or resumed due to
malfunctions and degrading, or its maintenance and service are infeasible
technically or economically, during its lifecycle.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 767

10.3.3 MAGNITUDES OF SYSTEMS

Abstract and real-world systems may be very small or extremely large

[Rosen, 1977; Qian et al, 1990]. Therefore, a formal model of system
magnitudes is needed to classify the size properties of systems and their
relationship with other basic system attributes. In order to derive such a
model, a set of measures on system sizes, magnitudes, and complexities is
introduced in this subsection.

10.3.3.1 System Sizes, Magnitudes, and Complexities

Definition 10.31 The size of a system Ss is the number of components
encompassed in the system, i.e.:

#s

c

S C
n

=
=

 (10.19)

Definition 10.32 The magnitude of a system Ms is the number of
asymmetric binary relations among the nc components of the system
including the reflexive relations, i.e.:

2

= #

= #()
s r

c

M R n

C C

n

=

×

=

 (10.20)

If all self-reflective relations are ruled out in nr, the pure number of
binary relations M’s in the given system is determined as follows:

2

'

-

(- 1)

s s c

c c

c c

M M n

n n

n n

= −

=

=

 (10.21)

Lemma 10.10 The pure number of binary relations M’s equals to exactly
two times of the number of pairwise combinations among nc, i.e.:

2

' (- 1)

(- 1)
2

2
2 C c

s c c

c c

n

M n n

n n

=

= •

= •

 (10.22)

where the factor 2 represents the asymmetric binary relation r, i.e., arb ≠
bra.

© 2008 by Taylor & Francis Group, LLC

768 Part III Organizational Foundations of SE

The magnitude of a system determines its complexity. The complicities
of systems can be classified based on if they are fully or partially connected.
The former is the theoretical upper-bound complexity of systems in which all
components are potentially interconnected with each other in all n-nary ways,
1 ≤ n ≤ nc = #C. The latter is the more typical complexity of systems where
components are only pairwisely connected.

Definition 10.33 The complexity of a fully connected system Cmax is a

closure of all possible n-nary relations R*, 1 ≤ n ≤ nc, among all components
of the given system nc = #C, i.e.:

*

0

2

1

2

2 2

2 2

2

2

C
r

r

r

c

r

s

max

n
k
n

k
n

n

n

M

C R

=

+

•

•

=

=

=

≈

=

=

∑
 (10.23)

where Cmax is also called the maximum complexity of systems.

 According to Eq. 10.23, the closure of all possible n-nary relations R*
may easily result in an extremely huge degree of complexity for a system
with few components. For example, when nc = 10, Cmax = 2100. This explains
why most of the real-world systems are really too hard to be modeled and
handled.

It is noteworthy that almost all functioning systems are partially
connected, because a fully connected system may not represent or provide
anything meaningful. Therefore, the complexity of partially connected
systems can be simplified as follows.

Definition 10.34 The complexity of a partially connected system Cr is

determined by the number of asymmetric binary relations M’s of the system,
i.e.:

2

'

2

(- 1)
C c

r s

n

c c

C M

n n

=

= •

=

 (10.24)

where Cr is simply called the relational complexity of systems.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 769

10.3.3.2 Taxonomy of System Magnitudes

The taxonomy of system magnitudes [Wang, 2006d] can be classified
at seven levels known as the empty, small, medium, large, giant, immense,
and infinite systems from the bottom up. A summary of the relationships
between system magnitudes, sizes, internal relations, and complexities can be
described in the system magnitude model as shown in Table 10.2.

Table 10.2

The System Magnitude Model

Level Category Size of
systems

(Ss = nc)

Magnitude
of systems

(Ms = nr = nc

2)

Relational
complexity of

systems

((1))r c cC n n= −

Maximum
complexity of

systems

(Cmax =
2

2 cn)

1 The empty
system (O) 0 0 0

-

2 Small system [1, 10] [1, 102] [0, 90] [2, 2100]

3 Medium system (10, 102] (102, 104] (90,
0.99 • 104]

(2100, 210,000]

4 Large system (102,
103]

(104, 106] (0.99 • 104,
0.999 • 106]

∞

5 Giant system (103,
104]

(106, 108] (0.999 • 106,
0.9999 • 108]

∞

6 Immense system (104,
105]

(108, 1010] (0.9999 • 108,
0.99999 •1010]

∞

7 The infinite
system (U)

∞

∞

∞

∞

Table 10.2 indicates that the complexity of a small system may easily

be out of control of human cognitive manageability. This leads to the
following theorem.

The 32nd Law of Software Engineering

Theorem 10.1 The holism complexity of systems states that within the 7-
level magnitudes of systems, known as the empty, small, medium, large,
giant, immense, and infinite systems, almost all systems are too
complicated to be cognitively understood or mentally handled as a whole,
except small systems or those that can be decomposed into small systems.

© 2008 by Taylor & Francis Group, LLC

770 Part III Organizational Foundations of SE

According to Theorem 10.1, the basic principle for dealing with
complicated systems is system decomposition or modularity, in which the
complexity of a lower level subsystem must be small enough to be
cognitively manageable. Details of system decomposition theories and the art
of system architectures will be developed in the following sections.

10.3.4 HIERARCHICAL ARCHITECTURES OF
 SYSTEMS

The hierarchical architecture of systems is very much in line with the
notion of system philosophy and the hierarchical abstraction of systems that
perceive a given system possesses certain subsystems and belongs to certain
super system(s). From an organizational point of view, a system can be
perceived as a closure at a certain level of hierarchical architecture of the
abstract or conceptual world. Therefore, a system may be a part of a larger
system at the top level except U, or consists of a number of smaller systems
at the lower level except O. For example, a computer is an electronic
information processing system, which may belong to a larger networked
system, and at the same time it may contain a number of subsystems such as
those of hardware, software, file management system, etc.

It has been empirically observed that the tree-like architecture is a
universal hierarchical prototype of systems across disciplines of not only
science and engineering, but also sociology and living systems. This
subsection explores the theories behind the universal phenomena in system
science, which explain why systems have to adopt tree structures in
organization, and what the advantages of hierarchical trees in system
organizations are.

The discussion may be started from analyzing the underlying reasons
that force systems to take hierarchical structures. They are:

 • The complexity of an unstructured system can easily grow out of

control.

 • The efficiency of an unstructured system can be very low.

 • The gain of system by coordination may diminish when the
overhead for doing so is too high in unstructured systems.

For example, according to the system magnitude model given in Table

10.2, when an unstructured group is getting too large, say nc ≥ 100, its
relative complexity Cr = 9,999, and its absolute complexity can be as high as
Cmax = 210,000. It is obviously too complicated to be controllable. It is also an
indirect proof of the coordinative work organization theory about the limit of
group sizes as given in Theorem 8.10.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 771

This example demonstrates the need for a suitable hierarchical structure
for dealing with the complexities of large-scale systems. The most ideal
structure of organized systems is known as the complete tree.

Definition 10.35 A complete n-nary tree Tc(n, N) is a normalized tree
in which each node of Tc can have at most n children, each level k of Tc from
top-down can have at most nk nodes, and all levels have allocated the
maximum number of possible nodes, except on the rightmost subtrees and at
the leave level where there are N nodes, N ≤ nk.

It is noteworthy in Definition 10.35, a tree said to be complete means
that all levels of the tree have been allocated the maximum number of
possible nodes, only two types of exceptions are allowed at the leave level
and the rightmost subtress. The advantage of complete trees is that the
configuration of any complete n-nary tree Tc(n, N) is determined by only two
attributes: the unified fan-out n and the number of leave nodes N at the
bottom level. For instance, two complete trees Tc1(n1, N1) = Tc1(2, 3) and
Tc2(n2, N2) = Tc1(2, 7) are as shown in Fig. 10.6.

 1 3

 Tc1(2, 3)

 5 6 7 4 2

 Tc2(2, 7)

Figure 10.6 Growth of complete binary trees

Definition 10.36 A normalized system is a hierarchically structured

system where no direct interconnections between nodes belong to different
subtrees, and communications between such nodes should be coordinated
through a common higher-level parent node.

 The 33rd Law of Software Engineering

Theorem 10.2 The generic topology of normalized systems states that
systems tend to be normalized into a hierarchical structure in the form of
a complete n-nary tree.

© 2008 by Taylor & Francis Group, LLC

772 Part III Organizational Foundations of SE

Systems are forced to be with tree-like structures in order to maintain
equilibrium, evolvability, and optimal predictability. The advantages of tree
structures of systems can be formally described in the following corollary.

10.3.5 THE SYSTEM ORGANIZATION TREE

Based on the model of complete trees, the topology of normalized
systems can be implemented by a system organization tree. A structural
model of the system organization tree is presented in this subsection for
formally describing the hierarchical architectures of normalized systems.

Definition 10.37 A System Organization Tree (SOT) is an n-nary
complete tree in which all leave nodes represent a component and the
remainder, all nodes beyond the leave level, represent a subsystem.

For instance, a ternary SOT, SOT(n, N) = SOT(3, 24), is shown in Fig.

10.7. Since an SOT is a complete tree, when the leaves (components) do not
reach the maximum possible numbers, the right most leaves and subtrees of
the SOT will be left open.

According to Definition 10.37, SOT is an ideal model that implements
the topology of a normalized system where: a) No direct interconnections
between nodes of different subtrees; and b) Communication needs between
those nodes belong to different subtrees may go through a common higher-
level parent node known as the manager node. A set of useful topological
properties of SOT is identified as summarized in the following corollary
[Wang, 2006d].

Corollary 10.5 Advantages of the normalized tree architecture of systems
are as follows:

(a) Equilibrium: Looking down from any node at a level of the
system tree, except at the leave level, the structural property of
fan-out or the number of coordinated components are the same
and evenly distributed.

(b) Evolvablility: A normalized system does not change the
existing structure for future growth needs.

(c) Optimal predictability: There is an optimal approach to create
a unique system structure Tc(n, N) determined by the attributes
of the unified fan-out n and the number of leave nodes N at
the bottom level.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 773

 S111 S112 S113 S121 S122 S123 S131 S132 S133 S221 S222 S223 S321 S322 S323 …

 S11 S12 S13 S21 S22 S23 S31 S32 S33

 S1 S2 S3

 S

 … … …

Figure 10.7 A ternary system organization tree SOT(3, 24)

Corollary 10.6 An n-nary system organization tree SOT(n, N) with the
total number of leaves nodes N possesses the following properties:

 (a) The maximum number of fan-out of any node fon :

0fon n L= = (10.25)

 (b) The maximum number of nodes at a given level k, nk:

 nk = nk (10.26)

 (c) The depth of the SOT, d:

 log
log

Nd
n

⎡ ⎤= ⎢ ⎥⎢ ⎥⎢ ⎥
 (10.27)

 (d) The maximum number of nodes in the SOT, NSOT:

0

d
k

SOT
k

N n
=

= ∑ (10.28)

 (e) The maximum number of components (on all leaves) in the SOT, N:

 dN n= (10.29)

(f) The maximum number of subsystems (nodes except all leaves) in the SOT,
Nm:

-1

1
- -1

d
k

m SOT
k

N N N n
=

= = ∑ (10.30)

© 2008 by Taylor & Francis Group, LLC

774 Part III Organizational Foundations of SE

It is noteworthy that the determination of the fan-out n, which
represents the optimal size of a group in an organization (L0), is not arbitrary
according to Theorem 8.7. The optimization of n will be discussed in
Sections 11.2 and 13.4.2. A wide range of applications of SOT in optimizing
system organizations has been found. An SOT can be used to model and
analyze the architectures and efficiencies of system organizations, for
examples, in management science (Section 11.2) and sociology (Section
13.4).

10.3.6 SYSTEM COHESION AND COUPLING

Cohesion and coupling are a pair of important properties of systems.
Both cohesion and coupling of a system can be described as a relative ratio
of internal and external relations of the system, where the concept of the
border of the system is used to distinguish whether a given relation is internal
or external.

10.3.6.1 The Border of Systems

The border of a system in topology is a closure that can be described by
the intersections of the interior and the exterior of the system.

Definition 10.38 The interior of a system S, IN, is a set of components
CS that are fully included in S, i.e.:

IN(S) = {c | c ∈ CS} (10.31)

Definition 10.39 The exterior of a system S, ET, is a set of components

C’S that are excluded in S but are related or interacting with S, i.e.:

 ET(S) = {x | x ∈ C’S ∧ x ∉ CS ∧ r(x, c) ∈ Ri
S ∧ r(c, x) ∈ Ro

S} (10.32)

where Ri

S and Ro
S represent the sets of input and output relations of systems.

The exterior of a system is also called the environment.
In a normalized system, there must be no component that belongs to

more than one system.

Definition 10.40 The border of a system S, B(S), is a closure of all
internal components that separate the interior and exterior of the system, i.e.:

 B(S) = IN(S) ∩ ET(S)
 = {CS* | CS E S} (10.33)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 775

According to Definition 10.40, an open system is fused together by the
internal relations and is linked with the environment by the external relations
cross the border in both ways. Therefore, cohesion and coupling of a system
can be defined based on the relative ratio of these relations as analyzed in the
following subsections.

10.3.6.2 System Cohesion and Coupling

Assume #Rc(S) is the number of internal relations of system S, #Ri(S)
the number of input relations, #Ro(S) the number of output relations, and
#R(S) the total number of both internal and external relations. Then, system
cohesion and coupling can be defined below, respectively.

Definition 10.41 The cohesion of a system S, CH(S), is defined as a

ratio between its number of internal relations #Rc(S) and the total relations of
the system #R(S), i.e.:

()
() = 100%

()
()

100%
() # () # ()

c

c

c i o

R S
CH S

R S
R S

R S R S R S
=

+ +

i

i
 (10.34)

Definition 10.42 The coupling of a system S, CP(S), is defined as a

ratio between its number of external relations #Ri(S) + #Ro(S) and the total
relations of the system #R(S), i.e.:

() # ()
() = 100%

()

() # ()
100%

() # () # ()

i o

i o

c i o

R S R S
CP S

R S

R S R S
R S R S R S

+

+=
+ +

i

i
 (10.35)

It is noteworthy that system cohesion and coupling are not independent.

The relationship between them can be described in the following corollary.

The above corollary can be proven based on Definitions 10.41 and

10.42 as given below.

Corollary 10.7 The cohesion and coupling of any open system S are
complementary, i.e.:

 CH(S) + CP(S) = 100% (10.36)

© 2008 by Taylor & Francis Group, LLC

776 Part III Organizational Foundations of SE

() # () # ()
() + () = 100% 100%

() # ()

() # () # ()
100%

()
100%

c i o

c i o

R S R S R S
CH S CP S

R S R S

R S R S R S
R S

++

+ +=

=

i i

i (10.37)

Therefore, when either cohesion or coupling of a given system is

known, the other one can be determined as a complement according to Eq.
10.36.

10.4 System Algebra

The mathematical models of abstract systems have been established in
Section 10.3. On the basis of the discussions on the notions, metaphors,
philosophies, and topology of systems, this section presents a new
mathematical structure known as system algebra [Wang, 2006d], which
provides a denotational means for the manipulation of abstract systems and
the analysis of complex systems. System algebra is also the foundation for
the formal treatment of principles and properties of abstract systems in
Section 10.5.

Definition 10.43 System algebra is an abstract mathematical structure
that provides an algebraic treatment of abstract systems and rules of
relational and algebraic operations for forming complex systems.

10.4.1 RELATIONAL OPERATIONS OF SYSTEMS

This subsection describes the relational operations of abstract systems,
which provides a formal treatment of system equivalence and comparability.
The relations between closed and open systems are analyzed separately.
Then, relations and equivalence between them will be discussed.

10.4.1.1 Algebraic Relations of Closed Systems

Relationships between two systems can be equivalent, independent,
being subsystem, and being super system. The evaluations of these four types
of relationships can be carried out based on the following definitions.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 777

Definition 10.44 Two systems 1S and 2S are equivalent, denoted by =,
if all sets of components, relations, behaviors, and constraints are identical,
i.e.:

 C1 = C2 ∧ R1 = R2 ∧ B1 = B2 ∧ Ω1 = Ω2 ⇒

 1S (C1, R1, B1, Ω1) = 2S (C2, R2, B2, Ω2) (10.38)

Definition 10.45 Two systems 1S and 2S are independent, denoted
by R , if their component sets are disjoint, i.e.:

 C1 ∩ C2 = ∅ ⇒

 1S (C1, R1, B1, Ω1) R 2S (C2, R2, B2, Ω2) (10.39)

It is noteworthy that, by definition, there is no related or overlapped
closed systems.

Definition 10.46 A subsystem 'S is a system that is encompassed in

another system S , denoted by , i.e.:

 'S (C’, R’, B’, Ω’) S (C, R, B, Ω) ⇔

C’ ⊆ C ∧ R’ ⊆ R ∧ B’ ⊆ B ∧ Ω’ ⊆ Ω (10.40)

The above definition indicates that a subsystem of a given closed

system is a coherent component of the system where the component’s
relations, behaviors, constraints, and environment are integrated into the
system.

Definition 10.47 A super system S is a system that encompasses one

or more subsystems S’, denoted by , i.e.:

 S (C, R, B, Ω) 'S (C’, R’, B’, Ω’) ⇔

C’ ⊆ C ∧ R’ ⊆ R ∧ B’ ⊆ B∧ Ω’ ⊆ Ω (10.41)

According to Definition 10.47 the composition of systems can be
carried out when all four sets in the tuple that determine a system or
subsystem are merged. Further discussion on the mechanisms of system
compositions will be presented in Section 10.4.2.

10.4.1.2 Algebraic Relations of Open Systems

Relationships between two open systems can be equivalent,
independent, overlapped, related, being subsystem, and being super system.

© 2008 by Taylor & Francis Group, LLC

778 Part III Organizational Foundations of SE

The evaluations of these relationships can be carried out based on the
following definitions.

Definition 10.48 Two open systems S1 and S2 are equivalent, denoted
by =, if all sets of components, relations, behaviors, constraints, and
environments are identical, i.e.:

 C1 = C2 ∧ Rc

1
 = Rc

2 ∧ Ri
1

 = Ri
2 ∧ Ro

1 = Ro
2 ∧ B1 = B2 ∧ Ω1 = Ω2 ∧ Θ1 = Θ2

 ⇒ S1 (C1, Rc
1, Ri

1, Ro
1, B1, Ω1, Θ1) =

 S2 (C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2) (10.42)

Definition 10.49 Two open systems S1 and S2 are independent, denoted

by R , if both their component sets and external relation sets are disjoint, i.e.:

 C1 ∩ C2 = ∅ ∧ Ri
1

 ∩ Ri
2 = ∅ ∧ Ro

1 ∩ Ro
2 = ∅ ⇒

 S1 (C1, Rc
1, Ri

1, Ro
1, B1, Ω1, Θ1) R

 S2 (C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2) (10.43)

Definition 10.50 Two open systems S1 and S2 are overlapped, denoted

by Π, if their component sets are overlapped, i.e.:

 C1 ∩ C2 ≠ ∅ ⇒
 S1 (C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1) Π
 S2 (C2, Rc

2, Ri
2, Ro

2, B2, Ω2, Θ2) (10.44)

Definition 10.51 Two open systems S1 and S2 are related, denoted by

R, if there is at least a coupled I/O relation satisfying ∀a ∈ C1, ∀b ∈ C2, r(a,
b) ∈ Ro

1 ∩ Ri
2 or r(b, a) ∈ Ro

2 ∩ Ri
1, i.e.:

 Ro

1 ∩ Ri
2 ≠ ∅ ∨ Ro

2 ∩ Ri
1 ≠ ∅ ⇒

 S1 (C1, Rc
1, Ri

1, Ro
1, B1, Ω1, Θ1)R

 S2 (C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2) (10.45)

Definition 10.52 A subsystem S’ is a system that is encompassed in

another system S, denoted by , i.e.:

 S’(C’, Rc’, Ri’, Ro’, B’, Ω’, Θ’) S(C, Rc, Ri, Ro, B, Ω, Θ) ⇔
 C’ ⊆ C ∧ Rc’⊆ Rc ∧ Ri’⊆ Ri ∧ Ro’⊆ Ro ∧
 B’⊆ B ∧ Ω’ ⊆ Ω ∧ Θ’ = Θ (10.46)

The above definition indicates that a subsystem of either an open or

closed system is an open system. In other words, the decomposition of any
system results in multiple open subsystems.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 779

Definition 10.53 A super system S is a system that encompasses one or
more subsystems S’, denoted by , i.e.:

 S’(C’, Rc’, Ri’, Ro’, B’, Ω’, Θ’) S(C, Rc, Ri, Ro, B, Ω, Θ) ⇔

 C’ ⊆ C ∧ Rc’⊆ Rc ∧ Ri’⊆ Ri ∧ Ro’⊆ Ro ∧
 B’⊆ B ∧ Ω’ ⊆ Ω ∧ Θ’ = Θ (10.47)

According to Definition 10.53 the composition of two or more open

systems can be carried out when all seven sets in the tuple that determine a
system or subsystem are merged. Further discussion on system composition
will be presented in Section 10.4.2.

10.4.1.3 Relations between Closed and Open Systems

 The previous subsections analyzed the relations of closed systems and
open systems separately. However, it is noteworthy that closed and open
systems are transformable, when the environment of open systems is treated
as a super system.

Based on the definitions of closed systems (Eq. 10.2) and open systems

(Eq. 10.8), the above notion can be described in the following theorem and
corollaries.

According to Theorem 10.3, the following properties of equivalence

between closed and open systems can be derived.

The 33rd Principle of Software Engineering

Theorem 10.3 The equivalence between open and closed systems states
that an open system S and a closed systemS (S CΘ = E S) in the same
context is transformable when their environments SΘ and SΘ are taken
into consideration, respectively, i.e.:

 S

S

 = S

S =

S

S

⎧⎪ Θ⎪⎪⎨⎪ Θ⎪⎪⎩
 (10.48)

© 2008 by Taylor & Francis Group, LLC

780 Part III Organizational Foundations of SE

10.4.2 ALGEBRAIC OPERATIONS OF SYSTEMS

System algebra provides a powerful means to manipulate abstract
systems as a mathematical entity. A set of algebraic operations on systems,
such as system conjunction, disjunction, difference, composition, and
decomposition, is defined in the following subsections based on algebraic
rules.

10.4.2.1 System Conjunction

An operation on incremental union of multiple sets of relations is
introduced first as a preparation before defining system conjunction.

Definition 10.54 An incremental union of two sets of relations R1
and R2 from different systems S1 and S2 are a normal union of A1 and A2 plus
a newly generated incremental set ∆R12, i.e.:

 R = R1 R2
 = R1 ∪ R2 ∪ ∆R12, R1 E S1, R2 E S2, ∆R12 E S (10.51)

where E denotes a special membership relation of a set in a system.

 Eq. 10.51 reveals an important property of systems relations, known as
the incremental union, which indicates that the merge of two systems results
in new relations and/or behaviors (functions).

Corollary 10.8 Any subsystem kS of a closed system S is an open
system S, i.e.:

 ∀ kS ⊆S ⇒ Ri
k ≠ ∅ ∧ Ro

k ≠ ∅ ∧ Θk = Cs \ Ck ≠ ∅ (10.49)

Corollary 10.9 Any supersystem S of a given set of n open systems kS ,
plus their environments Θk, 1 ≤ k ≤ n, is a closed system, i.e.:

 ∀ kS , Θk,
1
()

n

k k
k

S S
=

= Θ ⇒ Ri
S = ∅ ∧ Ro

S = ∅ ∧ ΘS = ∅ (10.50)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 781

Definition 10.55 The conjunction of two closed systems 1S and 2S ,
denoted by , results in a super system S that is formed by union of both sets
of components and constraints, as well as incremental union of both sets of
relations and behaviors, respectively, i.e.:

 1S (C1, R1, B1, Ω1) 2S (C2, R2, B2, Ω2)
 S (C1 ∪ C2, R1 R2, B1 B2, Ω1 ∪ Ω2)
 =S (C1 ∪ C2, R1 ∪ R2 ∪ ∆R12, B1 ∪ B2 ∪ ∆B12, Ω1 ∪ Ω2)
 =S (C, R, B, Ω) (10.52)

The discovery in Theorem 10.4 reveals that the mathematical

explanation of system gains is the newly generated relations ∆R12 and/or
behaviors ∆B12 during the conjunction of two systems or subsystems. The
empirical awareness of this key system property has been intuitively or
empirically described in the literature in system engineering for centuries.
However, Theorem 10.4 is the first rigorous explanation of the mechanism of
system gains during the incremental system conjunctions and compositions.

Theorem 10.4 may be used to predict the maximum numbers of newly
established relations and behaviors when two systems are conjoined.
According to Eq. 10.53, the maximum incremental or system gain equals to
the number of by-directly interconnection between all components in both S1

and S2, i.e., 2(#C1 • #C2). It is noteworthy that if C1 and C2 are disjoint, there
is no incremental gain in system conjunctions.

More generally, Theorem 10.4 and Definition 10.55 can be extended to
open systems as below.

Definition 10.56 The conjunction of two open systems S1 and S2,

denoted by , results in a super system that is formed by incremental
conjunctions of both sets of relations and behaviors, respectively, as well as

The 34th Law of Software Engineering

Theorem 10.4 The system gain of functionality states that system
conjunction or composition between two systems S1 and S2 creates new
relations ∆R12 and/or new behaviors (functions) ∆B12 that are solely a
property of the newly established super system S, which can be
determined by the sizes of the two intersected component sets #C1 and
#C2, i.e.:

 ∆R12 = #R - (#R1 + #R2)
 = (#(C1 + C2))2 - ((#C1)2 +(#C2)2)
 = 2 (#C1 • #C2) (10.53)

© 2008 by Taylor & Francis Group, LLC

782 Part III Organizational Foundations of SE

simple conjunctions of sets of components, constraints, and environments,
i.e.:

 S1(C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1) S2(C2, Rc
2, Ri

2, Ro
2, B2, Ω2, Θ2)

 S(C1 ∪ C2, Rc
1 ∪ Rc

2 ∪ ∆Rc
12, Ri

1 ∪ Ri
2, Ro

1 ∪ Ro
2,

 B1 ∪ B2 ∪ ∆B12, Ω1 ∪ Ω2, Θ1 ∪ Θ2)
 = S(C, Rc, Ri, Ro, B, Ω, Θ) (10.54)

The operation of open system conjunction is illustrated in Fig. 10.8,

where the generation of the new relations ∆Rc
12 = ∆Rc

1 + ∆Rc
2 in S after the

conjunction of S1 and S2 can be observed.

 U

 S1

 C11 B11

 Ω11

 R11

 C12 B12

 Ω12

 R12

 Ri
11

 Ri
12

Ro
11

Ro
12

 Rc
12 Rc

11
 S2

 C21 B21

 Ω21

 R21

 C22 B22

 Ω22

 R22

Ri
21

Ri
22

 Ro
21

 Ro
22

 Rc
22Rc

21

 Ri
1

 Ri
2

 Ro
2

 Ro
1

 Θ1 Θ2

 Θ
 S

∆Rc
1

∆Rc
2

Figure 10.8 The conjunction of two open systems

Example 10.3 According to Definition 10.56, the conjunction of the

two open systems S1(Clock) and S2(Alarm) as given in Examples 10.1 and
10.2 results in a new system S(Alarm_Clock) as follows:

 S(C, Rc, Ri, Ro, B, Ω, Θ) = S1(C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1)
 S2(C2, Rc

2, Ri
2, Ro

2, B2, Ω2, Θ2)
 = S(C1 ∪ C2, Rc

1 ∪ Rc
2 ∪ ∆Rc

12, Ri
1 ∪ Ri

2, Ro
1 ∪ Ro

2,
 B1 ∪ B2 ∪ ∆B12, Ω1 ∪ Ω2, Θ1 ∪ Θ2)
where

• The set of components:
C = C1 ∪ C2
 = {Processor, Keypad, LEDs, ClockPulse} ∪
 {Processor, Keypad, LEDs, Bell}
 = {Processor, Keypad, LEDs, ClockPulse, Bell}

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 783

 • The set of internal relations:
Rc = Rc

1 ∪ Rc
2 ∪ ∆Rc

12

 = {Input(Keypad, Processor),
 Tick(ClockPulse, Processor),
 Output(Processor, LEDs)
 } ∪
 {Input(Keypad, Processor),
 AlarmCheck(Time, Alarm),
 AlarmRelease(Keypad, Processor),

Output(Processor, LEDs),
Ring(Processor, Bell)

 } ∪
 {Select(Clock, Alarm)} // ∆Rc

12
 = {Input(Keypad, Processor),
 Tick(ClockPulse, Processor),
 AlarmCheck(Time, Alarm),
 AlarmRelease(Keypad, Processor),

 Output(Processor, LEDs),
 Ring(Processor, Bell),
 Select(Clock, Alarm)
 }

 • The set of input relations:
Ri = Ri

1 ∪ Ri
2

 = {SetTime(User, Keypad), SetAlarm(User, Keypad)}

 • The set of output relations:
Ro = Ro

1 ∪ Ro
2

 = {ShowTime(LEDs, User), ShowAlarm(LEDs, User)}

 • The set of behaviors:
B = B1 ∪ B2 ∪ ∆B12

 = {SetTime, ShownTime, tick} ∪
 {SetAlarm, ShownAlarm, CheckAlarm, Ring, AlarmRelease} ∪
 {SelectClock, SelectAlarm} // ∆B12

 • The set of constraints:
Ω = Ω1 ∪ Ω2

 = {Time = hh × mm × ss, Alarm = hh × mm}

 • The environment:
Θ = Θ1 ∪ Θ2
 = {User}

© 2008 by Taylor & Francis Group, LLC

784 Part III Organizational Foundations of SE

Note that newly generated relations Select(Clock, Alarm), as well as
behaviors SelectClock and SelectAlarm in system S(Alarm_Clock), do not
belong to either subsystem S(Clock) or S(Alarm).

10.4.2.2 System Difference

Definition 10.57 The difference between a closed system S and a
subsystem 1S , denoted by , results in a subsystem 2S that is formed by
the differences of sets of components and constraints, difference of sets of
relations minus both R1 and ∆R12, and difference of sets of behaviors minus
both B1 and ∆B12, i.e.:

 S (C, R, B, Ω) 1S (C1, R1, B1, Ω1)
 2S (C \ C’

1, R \ (R’
1 ∪ ∆R12), B \ (B1 ∪ ∆B12), Ω \ Ω1)

 = 2S (C2, R2, B2, Ω2) (10.55)

where C’
1 ⊆ C1 ∧ C’

1 ∩ C2 = ∅ and R’
1 ⊆ R1 ∧ R’

1 ∩ R2 = ∅.

According to Definition 10.57, a difference of a subsystem from a

system S will result in the removal of not only the given subsystem but also
all interrelations and incremental behaviors between the subsystem and other
subsystem in S.

It is noteworthy that if there is an overlap between two subsystems
inS , the operation of system difference will only remove C’

1 and R’
1, which

are only the disjoint subsets of C1 and R1, respectively.
More generally, Definition 10.57 can be extended to open systems as

follows.

Definition 10.58 The difference between an open system S and a

subsystem S1, denoted by , results in an open subsystem S2 that is formed
by the differences of sets of components, input relations, output relations,
and constraints, difference of sets of internal relations minus both Rc’

1 and
∆Rc

12, and difference of sets of behaviors minus both B1 and ∆B12, i.e.:

 S(C, Rc, Ri, Ro, B, Ω, Θ) S1(C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1)
 S2(C \ C’

1, Rc \ (Rc’
1 ∪ ∆Rc

12), Ri \ Ri
1, Ro \ Ro

1,
 B \ (B1 ∪ ∆B12), Ω \ Ω1, Θ \ Θ’

1)
= S2(C2, Rc

2, Ri
2, Ro

2, B2, Ω2, Θ2) (10.56)

where C’

1 ⊆ C ∧ C’
1 ∩ C2 = ∅, Rc’

1 ⊆ Rc
1 ∧ Rc’

1 ∩ Rc
2 = ∅, and Θ’

1 ⊆ Θ1 ∧
Θ’

1 ∩ Θ2 = ∅.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 785

As shown in Eq. 10.56, the operation of system difference will only
remove the disjoint subsets, i.e., C’

1, Rc’
1, and/or Θ’

1 from S, respectively.
 An open system difference S S1 = S2 is illustrated in Fig. 10.9.

 U

 S1

 C11 B11

 Ω11

 R11

 C12 B12

 Ω12

 R12

 Ri
11

 Ri
12

Ro
11

Ro
12

 Rc
12 Rc

11
 S2

 C21 B21

 Ω21

 R21

 C22 B22

 Ω22

 R22

Ri
21

Ri
22

Ro
21

Ro
22

 Rc
22Rc

21
 Θ1 Θ2

 Θ
S

Figure 10.9 The difference of two open systems (S S1 = S2)

Example 10.4 According to Definition 10.58, the difference of the two
open systems S(AlarmClock) and S2(Alarm) as given in Examples 10.1 and
10.2 results in a new subsystem S1(Clock) as follows:

 S1(C1, Rc

1, Ri
1, Ro

1, B1, Ω1, Θ1) = S(C, Rc, Ri, Ro, B, Ω, Θ)
 S2(C2, Rc

2, Ri
2, Ro

2, B2, Ω2, Θ2)
 = S1(C \ C’

2, Rc \ (Rc’
2 ∪ ∆Rc

12), Ri \ Ri
2, Ro \ Ro

2,
 B \ (B2 ∪ ∆B12), Ω \ Ω2, Θ \ Θ’

2)

where

• The set of components:
C1 = C \ C’

2
 = {Processor, Keypad, LEDs, ClockPulse, Bell} \ {Bell}
 = {Processor, Keypad, LEDs, ClockPulse}

 • The set of internal relations:
Rc

1 = Rc \ (Rc’
2 ∪ ∆Rc

12),
 = {Input(Keypad, Processor),
 Tick(ClockPulse, Processor),
 AlarmCheck(Time, Alarm),
 AlarmRelease(Keypad, Processor),

 Output(Processor, LEDs),
 Ring(Processor, Bell),
 Select(Clock, Alarm)
 } \

© 2008 by Taylor & Francis Group, LLC

786 Part III Organizational Foundations of SE

 {AlarmCheck(Time, Alarm),
 AlarmRelease(Keypad, Processor),

 Ring(Processor, Bell)
 } ∪
 {Select(Clock, Alarm)}

 = {Input(Keypad, Processor),
 Tick(ClockPulse, Processor),
 Output(Processor, LEDs)
 }

 • The set of input relations:
Ri

1 = Ri \ Ri
2

 = {SetTime(User, Keypad)}

 • The set of output relations:
Ro

1 = Ro \ Ro
2

 = {ShowTime(LEDs, User)}

 • The set of behaviors:
B1 = B \ {B2 ∪ ∆B12}
 = {SetTime, ShownTime, tick, SetAlarm, ShownAlarm,
 CheckAlarm, Ring, AlarmRelease, SelectClock,
 SelectAlarm
 } \
 {SetAlarm, ShownAlarm, CheckAlarm, Ring, AlarmRelease,
 SelectClock, SelectAlarm
 }
 = {SetTime, ShownTime, tick}

 • The set of constraints:
Ω1 = Ω \ Ω2

 = {Time = hh × mm × ss}

 • The environment:
Θ1 = Θ \ Θ’

2
 = {User}

Note that within the given system S, since there is an overlap between
the two subsystems S1 and S2, the difference operation may only remove the
disjoint subset C’

2, Rc’
2, and Θ’

2 from S.

10.4.2.3 System Composition

System composition is the most complicated system operation that
integrates two or more systems into a super system with a hierarchical

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 787

architecture. It is noteworthy that only open systems may be composed, or a
closed system should be transformed into an open system before it can be
composed.

There are three basic forms of system compositions known as: parallel
(||), serial (→), and nested () compositions as shown in Fig. 10.10.
Complex system compositions can be represented by a combination of these
three basic forms. The syntaxes and semantics of these three system
composition rules have been defined in RTPA in Section 4.6.5 and Section
6.6.2, respectively.

No Form of
composition

Syntax Example

1 Parallel S1 || S2 S S1 || S2 || … || Sn

 S1 S2 … Sn

2 Serial S1 → S2 S S1 → S2 → … → Sn

 S1 S2 … Sn

3 Nested S1 S2 S S1 S2 … Sn

 … S1

 … S2

 … Sn

 …

 …

 …

Figure 10.10 Basic forms of system compositions

Definition 10.59 The composition of two open systems S1 and S2,
denoted by , is an integration of both systems into a super system S at a
given level of the system hierarchy by one of the compositional relations Rc =
{||, →, }, i.e.:

 S(C, R, B, Ω ,Θ)

S1(C1, R1, B1, Ω1, Θ1) S2(C2, R2, B2, Ω2, Θ2) (10.57)

© 2008 by Taylor & Francis Group, LLC

788 Part III Organizational Foundations of SE

where ∈ Rc.

Eq. 10.57 can be extended to n-nary compositions as given below:

 S(C, R, B, Ω ,Θ) S1 12 S2 23 … n-1,n Sn (10.58)

where ij ∈ Rc.

According to Definition 10.59, a system can be integrated from the

bottom up by a series of compositions level by level in a system hierarchy.

Example 10.5 A composed system S(C, R, B, Ω ,Θ) as given in Fig.

10.11 can be formally described below.

 S1 S2 Sx

S11 S12 S13 S21 S22

 S

 Sx1

 Sx11 S111 S11x …

 …

Figure 10.11 The hierarchical organization chart of system compositions

 S(C, R, B, Ω ,Θ) S1
|| S2
|| …
|| Sx

in which the subsystems of S can be refined as follows:

 S1 S11
|| S12
|| S13

 = (S111
 || …
 || S11x
)

|| S12
|| S13

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 789

 S2 S21 → S22

 Sx Sx1 Sx11

where ||, →, and denote the parallel, serial, and embedded (function call)
relations, as defined in Section 4.6.5 in RTPA, respectively.

In the hierarchical organization chart of systems as shown in Fig.
10.11, the labeling convention is defined below.

Definition 10.60 The labeling convention of nodes in the system

organization chart is that each node is labeled by d digits where d is the depth
of the node in the hierarchy. The configuration of the d digits is as follows: a)
The last digit is always the series number of the nodes at the same level and
belongs to the same parent; and b) The remainder of the proceeding digit(s)
are the identification label of the node’s parent.

Note that x represents a digit that is flexible and will be instantiated for
a specific case. Also, an x that appears in different places may be different.

For simplifying system architectures, system compositions should obey
the following rules.

For example, subsystems S111 and S13 should communicate through

commonly shared system S1 rather than directly link by themselves;
subsystems S13 and S22 should communicate through commonly inherited
system S. These rules ensure that coordination between functions of different
system/subsystems can be carried out via standard interfacing mechanisms,
and a strict system hierarchical can be maintained.

Lemma 10.11 The following architectural rules of a normalized system
should be maintained in system compositions:

Rule 1. Direct relations between subsystems at different levels of
the hierarchy are not allowed.

Rule 2. Direct relations between components of different
subsystems are not allowed.

Rule 3. Communications across systems and subsystems should be
through commonly inherited higher-level system(s) in the system
hierarchy.

© 2008 by Taylor & Francis Group, LLC

790 Part III Organizational Foundations of SE

10.4.2.4 System Decomposition

System decomposition is an inverse operation of system composition
that breaks up a system into two or more subsystems. It is noteworthy both
open and closed systems can be decomposed, and all of them result in open
subsystems.

Definition 10.61 The decomposition of an open systems S, denoted by

, is to break up S into two subsystems at the same level of the system
hierarchy by one of the compositional relations Rc = {||, →, }, i.e.:

 S(C, R, B, Ω ,Θ)

S1(C1, R1, B1, Ω1, Θ1) S2(C2, R2, B2, Ω2, Θ2) (10.59)

where ∈ Rc.

Eq. 10.59 can be extended to n-nary decompositions as given below:

 S(C, R, B, Ω ,Θ) S1 12 S2 23 … n-1,n Sn (10.60)

where ij ∈ Rc.

Similarly, the decomposition of a closed system can be defined below.

Definition 10.62 The decomposition of a closed system S , denoted by

, is to break up S into two subsystems at the same level of the system
hierarchy by one of the compositional relations Rc = {||, →, }, i.e.:

 S (C, R, B, Ω)

 1S (C1, R1, B1, Ω1) 2S (C2, R2, B2, Ω2) (10.61)

where ∈ Rc.

Eq. 10.61 can be extended to n-nary decompositions of closed systems

as given below:

 S (C, R, B, Ω) 1S 12 2S 23 … n-1,n nS (10.62)

where ij ∈ Rc.

According to Definitions 10.61 and 10.62, either an open or a closed

system can be resolved from the top down by a series of decompositions
level by level in the system hierarchy.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 791

System decomposition can be illustrated by the same diagram as shown
in Fig. 10.11. The only difference between system composition and
decomposition is that the former is a bottom-up operation, while the latter is
a top-down operation.

10.5 Principles of System Science

The theories of system science have evolved from classic to contemporary
with I. Prigogine’s dissipative structure theory [Prigogine and Stengers,
1984/97], H. Haken’s synergetics [Haken, 1977/83], and M. Eigen’s
hypercycle theory [Eigen and Schuster, 1979]. Then, the field has shifted on
proposals of systematology [Klir, 2001], complex systems theory [Ashby,
1958; Simon, 1965; Zadeh, 1973; Gaines, 1977/76], fuzzy theories [Zadeh,
1965/82; Pedrycz, 1981; Gaines, 1983; Negoita, 1989], and chaos theories
[Prigogine and Stengers, 1984/97; Ford, 1986; Skarda and Freeman, 1987].

The abstract system theory supporting by system algebra is developed
in 2006 [Wang, 2006d] is the latest attempt to provide a formal and rigorous
treatment of abstract systems, their properties, and principles. This section
describes fundamental principles of system science on the basis of abstract
system theories and system algebra. A comprehensive set of system
phenomena and principles, such as system fusions, system functions and
behaviors, work done by systems, the maximum output of systems, system
equilibrium and organization, system synchronization and coordination, and
system dissimilation, are formally explained by the abstract system theories.

10.5.1 SYSTEM FUSIONS

Systems are needed because of the special and self-productive
properties known as the fusion effect, which is not possessed by any of its
parts or components before compositions.

Definition 10.63 The fusion effect of a system is a self-productive

property of systems that only appears when the system functions coherently
as a whole.

The fusion effect can be quantitatively analyzed using Law 34 of

system gain of functionality as stated in Theorem 10.4. Based on Law 34, the

© 2008 by Taylor & Francis Group, LLC

792 Part III Organizational Foundations of SE

following corollaries on system fusion during system compositions are
derived.

The critical mass and the curve of system fusion effect can be

illustrated as shown in Fig. 10.12. An important phenomenon in system
fusion is the mutation of system functions triggered by the critical mass Qcm.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 10 20 q …

Qcm q

Fu
nc

tio
n

f(
q)

Figure 10.12 System fusion and the critical mass

Definition 10.64 The behavior of system mutation can be formally

modeled as a system function f(q), i.e.:

Lemma 10.12 The system fusion principle states that the fusion effect of
systems is generated by either increments of quantity in C or increments
of diversity in R.

The 35th Law of Software Engineering

Theorem 10.5 System mutation states that the gradual increment of
quantities, e.g., ∆C or ∆R, in a system beyond the point of the critical
mass Qcm triggers the abrupt generation of functionality (quality) Fcm of
the system.

Corollary 10.10 There exists a threshold that triggers the fusion effect of
systems known as the critical mass Qcm, which is the minimum quantity
for obtaining or implementing the system fusion effect over the
incremental of quantity.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 793

() 0,

() (),
cm

cm cm

f q q Q

f q f q q Q

⎧ = <⎪⎪⎪⎨⎪ = ≥⎪⎪⎩
 (10.63)

where fcm(q) is the active system behavior that is system- or context-specific.

Example 10.6 The following examples show, respectively, how
quantitative or diverse increments generate the fusion effects in systems.

(a) A voltage evaluator as a circuit system: The output is triggered by

the gradual increment of its input Vi , i.e.:

0, 2.5v
()

1, 2.5v
i

i

V
S voltage_evaluator

V

<⎧⎪⎪= ⎨⎪ ≥⎪⎩

(b) A water molecular as a chemical system: The resulting compound
gains a set of new chemical and physical properties that are not possessed by
its individual component molecules, i.e.:

 S(water_molecular) = 2H + O ⇒ H2O

10.5.2 SYSTEM FUNCTIONS AND BEHAVIORS

There was an attempt in system theories to describe the behaviors of all

systems or a category of systems by a single mathematical model. Because of
the extreme complexity and wide variety of systems, this aim seems
impossible to be achieved. However, as described in Sections 10.3 and 10.4,
the generic mathematical models for the architectures of abstract systems do
exist.

Although homogeneously structured systems may implement different
behaviors, heterogeneously structured systems may implement identical
behaviors. To this extent, computers and software engineering are a generic
system engineering platform to implement a wide range of system behaviors
by homogeneous and/or heterogeneous system architectures.

The behaviors of systems vary greatly at the application level.
However, there are only a finite set of meta behaviors shared by all the
applications at the fundamental level in both physical and intelligent systems.
These meta behaviors can be modeled by a set of 17 meta processes in
RTPA. The 17 meta processes can be composed by a set of 17 process
relations to built the architectures and behaviors of larger components and
complex systems. In other words, computing systems or human behaviors
can be described and implemented by a set of processes based on
compositions of the meta processes and their algebraic relations [Wang,
2002a/03c].

© 2008 by Taylor & Francis Group, LLC

794 Part III Organizational Foundations of SE

On the basis of Theorem 4.6, the set of 17 meta processes P in
computing have been defined in Section 4.6.4 as follows:

 P = {:=, , ⇒, ⇐, , , , | , | , @ , , ↑, ↓, !, , ⊠ , §} (10.64)

According to Theorem 4.7, the set of 17 algebraic process operations

R in computing have been defined in Section 4.6.5 as follows:

 R =

 {→, , |, |…|,
*R , R+

,
iR , , , ||, ∯ , |||, », , t, e, i} (10.65)

The syntaxes and semantics of each of the above meta processes and

algebraic process operations may be referred to Sections 4.6, 5.4, and 6.6,
respectively. Formal descriptions of system behaviors in RTPA may be
referred to Sections 4.8, 5.5, and Appendix K. In addition, formal description
of human behaviors in RTPA may be referred to the examples in Fig. 9.16
and Fig. 11.10.

10.5.3 WORK DONE BY SYSTEMS

This subsection introduces the concept of abstract work done by a
system that is an extension and generalization of the concept of work in
kinematics, electricity, and thermodynamics.

 Definition 10.65 The abstract work done by a system S, W(S), is its

output of utility U in term of the implemented number of functions F, i.e.:

() [F]W S U= (10.66)

where the functions of U can be perceived as energy spent in Joule in
physical systems, information generated or processed in bit in intelligent
systems, or tasks conducted in person-hour in human-based systems.

Definition 10.66 The power of a system S, P(S), is the work done by
the system per unit time, i.e.:

()
()

= [F/hr]

W S
P S

t
U
t

=
 (10.67)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 795

Definition 10.67 The efficiency of a system η is the ratio between the
average output work oW and the average input work iW of the system, i.e.:

 = 100% o

i

W
W

η • (10.68)

Definition 10.68 The overhead of a system ϖ is the ratio of average

internal loss of work in the system, i.e.:

= 100% -

= (1 -) 100% o

i

W
W

ϖ η

•
 (10.69)

where η and ϖ are complementary, i.e.: η +ϖ = 100%.

Eq. 10.71 indicates that, although a system’s capability to carry out a

work is more powerful than any of its components, the total work done by
the system cannot exceed the sum of all its components because the existence
of the overhead ϖ > 0, or no system or its components may reach an
efficiency η ≥ 100%.

There was a myth on an ideal system in conventional systems theory
that supposes the work done by the ideal system W(S) may be greater than

Corollary 10.11 The ideal system utility states that no system S may
reach the efficiency η(S) that equals to or greater than 100%, i.e.:

 S ⇒ η(S) ≥ 100% (10.70)

The 36th Law of Software Engineering

Theorem 10.6 The system gain of work states that work done by a system
is always greater than any of its components, but must not greater than
the sum of those of its components, i.e.:

 1
() (), 100%

() max(()),

n

i
i

i i S

W S W C

W S W C C E

η
=

⎧⎪⎪ ≤ ≤⎪⎪⎨⎪⎪ > ∈⎪⎪⎩

∑ (10.71)

© 2008 by Taylor & Francis Group, LLC

796 Part III Organizational Foundations of SE

the sum of all its components W(ei), i.e.,
1

() ()
n

i
i

W S W C
=

≥ ∑ . According to

Theorem 10.6 and Corollary 10.11, this ideal system utility is impossible to
achieve.

10.5.4 THE MAXIMUM OUTPUT OF SYSTEMS

The output work of systems is dependent on the architectural types of
the systems. The basic structures of system compositions are serial, parallel,
and hybrid as analyzed below.

Definition 10.69 A serial system Ss is a specially structured system that
can be described as a pair, i.e.:

 Ss = (Cs, Rs) (10.72)

where Cs is a set of components, i.e., Cs = (C1, C2, …, Cn), and Rs is a serial
relation between all components, i.e., Rs = C1 ∧ C2 ∧ … ∧ Cn.

The bottleneck principle can be described by the bucket effect of serial

systems, which states that the capacity of a bucket is determined by the
shortest piece that the bucket is made of. This is a vivid example to explain
the behavior of serial systems.

Definition 10.70 A parallel system Sp is a specially structured system

that can be described as a pair, i.e.:

 Sp = (Cp, Rp) (10.74)

where Cp is a set of components, i.e., Cp = {C1, C2, …, Cn}, and Rp is a
parallel relation between all components, i.e., Rp = C1 ∨ C2 ∨ … ∨ Cn.

The 34th Principle of Software Engineering

Theorem 10.7 The bottleneck principle of systems states that the output
work of a serial system W(Ss) is determined by the least powerful
component of the system, i.e.:

 W(Ss) = min (W(Ci) | Ci ∈ Cs ∧ 1 ≤ i ≤ n)) (10.73)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 797

A complex system with hybrid architectures of serial and parallel

components can be analyzed separately by the sum of a number of parallel
subsystems of serial components, or a number of serial subsystems of parallel
components.

10.5.5 SYSTEM EQUILIBRIUM AND ORGANIZATION

A set of components may form a system because of their coherent
organization towards a common goal of the system. Self-organization is a
universal property of systems with the characteristic of equilibrium.

In Principles of the Self-Organizing System (1962), Ashby wrote:

“We start with the fact that systems in general go to
equilibrium. Now most of a system's states are non-equilibrial
… . So in going from any state to one of the equilibria, the
system is going from a larger number of states to a smaller. In
this way, it is performing a selection, in the purely objective
sense that it rejects some states, by leaving them, and retains
some other state, by sticking to it. ”

10.5.5.1 The Generic IPO Model of Systems

The functional architecture of any open system can be described by its
input, output, and the internal behaviors in terms of processes of the system,
IPO, as shown in Fig. 10.13.

Figure 10.13 The generic IPO system model

The 35th Principle of Software Engineering

Theorem 10.8 The linear sum principle of systems states that the output
work of a parallel system W(Sp) is a sum of the work done by all its
components less the overhead ϖ of the system, i.e.:

n

1
() () - , , > 0p i i p

i
W S W C C Cϖ ϖ

=
= ∈∑ (10.75)

 Input
 (I)

 Process
 (P)

 Output
 (O)

© 2008 by Taylor & Francis Group, LLC

798 Part III Organizational Foundations of SE

The architecture of a system with feedback, IPOf, is shown in Fig.
10.14. The feedback for a system can be positive or negative. The former,
IPOf+, is a self-stimulated system; while the latter, IPOf -, is a self-regulated
system for autonomously maintaining system equilibrium and self-
organization.

Figure 10.14 The positive/negative feedback systems IPOf+ or IPOf-

Definition 10.71 The negative feedback of a system is a feedback that
is proportional to the output of the system and its effect is to reduce or
regulate the aggregative tendency of the system.

Feedback is a universal phenomenon that exists not only in physical

systems, but also in advanced systems such as biological, physiological,
economical, and social systems. The observation of negative and positive
feedback among neurons in the brain via synapses may be referred to [Smith,
1993; Kotulak, 1997; Pinel, 1997; Rosenzmeig et al., 1999]. The effect of
negative feedback in economics will be discussed in Section 12.2.2 on
economic equilibriums.

10.5.5.2 Laws of System Equilibrium and Organization

It is empirically observed that system equilibriums and self-

organization exist when the negative feedback of a system is proportional to
its aggregative effects in the system.

Definition 10.72 The equilibrium of a system is a stable state where the
effects of all components in terms of their abstract work form a zero-sum,
i.e.:

1

() () 0
n

i
i

W S W C
=

= =∑ (10.76)

where W(S) is the total work done by the system, and such a system is called
a zero-sum system.

 Input Process

 Feedback

 Output

f+ / f-

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 799

Example 10.7 The following phenomena are system equilibriums in
different disciplines:

a) Newton’s 1st law in kinematics: The sum of all work done by forces

F in a circle of movement d is zero, i.e.:

1

0
n

i i
i

Fd
=

=∑ (10.77)

b) Energy conservation: The sum of all forms of energy E in a system

is zero, i.e.:

1

0
n

i
i

E
=

=∑ (10.78)

c) Kirchhoff’s rule in electricity: The sum of all potentials P in a closed

circuit system is zero, i.e.:

1

0
n

i
i

P
=

=∑ (10.79)

d) Economic equilibrium: The effect of all demands D and supplies S

on the price P in a market is a zero-sum, i.e.:

1
(() ()) 0

n

i i
i

P D P S
=

+ =∑ (10.80)

Definition 10.73 System organization is a process to configure and

manipulate the system approaching to a stable and ordered state with an
internal equilibrium.

 The 37th Law of Software Engineering

Theorem 10.9 Conservative work of equilibrium systems states that the
sum of all types of work is always zero in an equilibrium system, i.e.:

1
() 0

n

i
i

W C
=

=∑ (10.81)

where W(Ci) is the abstract work of a system component Ci.

© 2008 by Taylor & Francis Group, LLC

800 Part III Organizational Foundations of SE

System organizations can be classified as self-organization or hetero-
organization. The mechanisms of system self-organization are analyzed
below.

Definition 10.74 Let f(x) be a continuous and deferential function of a
system defined in a domain [a, b]. Then, the minimum of f(x), fmin(x), satisfies
the following condition:

 f(x) - fmin(x) > 0, x, xmin ∈ [a, b], x ≠ xmin (10.82)

There may be multiple minimums for a given function f(x) in different

subdomains of [a, b], such as fmin(x1 | x1 ∈ (a1, b1)), fmin(x2 | x2 ∈ (a2, b2)), and
fmin(xk | xk ∈ (ak, bk)). Among those, the minimum of minimums is called the
global minimum, fmin(xg), i.e.:

min(| min(),1)g g if x x x i k= ≤ ≤ (10.83)

The remainders are called local minimums.

Since negative feedback is the only means to regulate the states of a

system, the following conclusions can be derived.

 The 38th Law of Software Engineering

Theorem 10.10 The condition of self-organization states that the
necessary and sufficient condition of self-organization is the existence of
at least one minimum on the state curve of a system f(x), which satisfies
the following requirements:

 ' (| ()) = 0

''(| ()) 0
min min

min min

f x x a, b

f x x a, b

⎧ ∈⎪⎪⎪⎨⎪ ∈ ≠⎪⎪⎩
 (10.84)

Or equivalently

 ' (| ()) = 0

''(| ())< 0

''(| ())> 0

min min

min

min

f x x a, b

f x x x a, b

f x x x a, b

⎧⎪ ∈⎪⎪⎪⎪ < ∈⎨⎪⎪⎪ > ∈⎪⎪⎩

 (10.85)

where f ’(x) and f ’’(x) are the first and second order derivatives of f(x) on
(a, b).

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 801

10.5.6 SYSTEM SYNCHRONIZATION AND
 COORDINATION

A system reaches the maximum output when it is synchronized over
time, unified on a common goal, or coordinated among individual efforts.
This assertion can be illustrated in Fig. 10.15, where 1 2and S S denote the
vectors of efforts or work done by components S1 and S2 in the system S.

1S

2S

S0

Figure 10.15 System synchronization and coordination

The synchronization principle described in the 39th Law proves from

another angle that the work of a system may not exceed the sum of its
components as revealed in Theorem 10.6.

Corollary 10.12 The functional condition of self-organization system is
the existence of the negative feedback mechanism that is proportional to
the incremental or aggressive effects of the system.

 The 39th Law of Software Engineering

Theorem 10.11 System synchronization states that a system reaches its
maximum utility maxS when all components’ efforts 1 2and S S are
synchronized, i.e.:

1 2

max 1 2| | | |

S S S

S S S

⎧⎪ = +⎪⎪⎨⎪ = +⎪⎪⎩

 (10.86)

© 2008 by Taylor & Francis Group, LLC

802 Part III Organizational Foundations of SE

Science and engineering methodologies are rational because they

usually adopt the Category (a) conditions in Corollary 10.13 when the
constraints and all possible solutions are known. However, social and
psychological systems often adopt a Category (b) condition when there is no
rational or apparent optimal solution available. The latter is also in line with
the basic axiom of science, minimizing energy consumption, in searching
rational or arbitrary solutions.

10.5.7 SYSTEM DISSIMILATION

Dissimilation is a universal property of any system such as physical,

economic, living, or social systems. According to system topology, there are
maintainable and nonmaintainable systems. The properties of dissimilation of
both types of systems are analyzed in the following subsections, respectively.

10.5.7.1 Dissimilation of Nonmaintainable Systems

Definition 10.75 Dissimilation is the tendency that a system undergoes

an apparent or hidden destructive change against its original purposes or
designed functions.

System dissimilation can be analyzed on the basis of how systems

maintain their functional availability and against the loss of it.

 Definition 10.76 The availability of a system α(t) can be the designed
utility, function, efficiency, or reliability of the system.

Definition 10.77 The dissimilation of a nonmaintainable system Dnm is

determined by its degradation of availability over time during its lifecycle T,
i.e.:

-(1 -), 0t T

nmD k e t T= ≤ ≤ (10.87)

where k is a positive constant called the initial availability of the system.

Corollary 10.13 A dynamic system tends to synchronize on a certain
state where it is stable or dynamically equilibrial that satisfies one of the
following conditions:

 a) The rational condition: The apparent best equilibrium condition;

or
 b) The arbitrary condition: The first meet or most conventional

equilibrium condition.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 803

Definition 10.78 The rate of dissimilation δ of a nonmaintainable
system can be derived as follows:

-

-

()

(1 -)

- , 0

nm

t T

t T

dD t
dt

dk e
dt

ke t T

δ =

=

= < ≤

 (10.88)

The trend of dissimilation of a nonmaintainable system Dnm and its rate

δ are shown in Fig. 10.16, where the curves are normalized with k = 1. The
unit of δ uses a different scale from that of Dnm in order to better plot the
lower curve.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 10 20

t

D
is

si
m

ila
tio

n

Figure 10.16 System dissimilation (nonmaintainable system, T = 20)

It can be seen in Fig. 10.16 that a system is exponentially dissimilating
during its lifecycle, and the rate of dissimilation reaches the maximum in the
last period of its lifecycle.

Theorem 10.12 indicates that any concrete system has a certain

lifecycle, in which dissimilation is being undergone since it has been put into
operation.

The 40th Law of Software Engineering

Theorem 10.12 System dissimilation states that any system tends to
undergo a continuous degradation that leads to the eventual loss of its
designed utility and against its initial purposes to form the system.

© 2008 by Taylor & Francis Group, LLC

804 Part III Organizational Foundations of SE

When considering the development or building period as part of the
lifecycle of a system, the dissimilation of a nonmaintainable system during
this period is negative, because of the continuous effort of development.

Definition 10.79 The dissimilation of a nonmaintainable system during

the development period D’nm is determined as follows:

- - '' (1 -), ' 0t T

nmD k e T t= ≤ ≤ (10.89)

where T ’ may be different from T.

 Therefore, in the entire lifecycle of a nonmaintainable system, T ’ + T,
the trend of dissimilation is shown in Fig. 10.17, where t = 0 is the time that
the system is put into operation.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-20 -19 -18 -17 -16 -15 -10 0 1 2 3 4 5 10 20 t

Development | Operation period

A
va

ila
bi

lit
y

A
(t)

Figure 10.17 The entire lifecycle of system dissimilation (nonmaintainable
system, T = T’ = 20)

10.5.7.2 Dissimilation of Maintainable Systems

The dissimilation property of maintainable systems can be derived
based on those of nonmaintainable systems, if the maintenance effect is
treated as a recovery of the original availability of the system. Therefore, the
dissimilation during the whole lifecycle of a maintainable system is given in
Fig. 10.18.

Corollary 10.14 The most critical period of system dissimilation is its
exiting period. During this period the rate of dissimilation of the system
will be exponentially increased.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 805

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-20 -19 -18 -17 -16 -15 -10 0 1 2 3 4 5 10 20 21 22 23 24 25 30 40 t

 Development | Operation period 1 | Operation period 2 | ...

A
va

ila
bi

lit
y

A
(t)

Figure 10.18 The entire lifecycle of system dissimilation (maintainable system,
T = 20)

Definition 10.80 The dissimilation of a maintainable system Dm is
determined as follows:

- - '

-

(1 -), ' 0

(1 -), (1) , 0

t T

m t T

k e T t
D

k e nT t n T n

⎧ ≤ <⎪⎪⎪= ⎨⎪ ≤ < + ≥⎪⎪⎩
 (10.90)

where T is the maintenance cycle, and n is the number of operation period.

System dissimilation may be considered as an inversed process of
system fusion as described in Section 10.5.1. The property of system
dissimilation can be used to explain a wide range of phenomena in systems,
such as system availability, efficiency, reliability, and the trends of systems
during the entire lifecycle. For example, the discovery of the phenomena of
software maintenance crisis in software development organizations [Wang,
2005d], which will be described in Sections 12.6.5 and 14.3.3, is a direct
application of the principle of system dissimilation.

10.6 Software System Engineering

Software systems are a category of the most complicated systems in the
abstract world interacting with the concrete-world. Therefore, software
engineering is an important discipline that may be used to test the theories of
system science as developed in the previous sections.

© 2008 by Taylor & Francis Group, LLC

806 Part III Organizational Foundations of SE

This section describes the abstract model of computing systems and the
hierarchical model of software systems, as well as corresponding work
products in software engineering. The ISO/IEC 15288 system engineering
model for software engineering is introduced. Then, a set of common and
frequently observed phenomena in software engineering is explained as
typical system engineering issues. Software system complexity as well as
cohesion and coupling will be formally modeled in Section 10.7.

10.6.1 THE ABSTRACT MODEL OF COMPUTING
 SYSTEMS

According to Definition 5.65, the abstract model of a generic
computing system, GCS, has been modeled in Section 5.6.1 as the common
architecture of operating systems. The GCS system, §, is an abstract logical
model of the executing platform denoted by a set of parallel computing
resources as given in Eq. 5.87.

The abstract computing system as defined in Eq. 5.87 can be illustrated

in Fig. 10.19, where the GCS § controls all the computing resources of an
abstract target machine. The system is logically abstracted as a set of
processes and underlying resources, such as memory, ports, and the system
clock. A process is dispatched and controlled by the system §, which is
triggered by various external, timing, or interrupt events [Wang, 2005l].

@ e1

 @ en

 @ tk

 @ ik

E xt.

P rocesses P kS T

T he system

 §(SysID S)

Ports
P O R T[ptrP]

M em ory
M E M [ptrP]

S ystem
clock
§ tT M

S ystem
event

cap ture

Int.

 …

 …

 …

 …

 …

 …

 …

@ e kS P k

@ ik P k

 D ispatcher

@ tkT M P k

Figure 10.19 The abstract model of the Generic Computing System (GCS)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 807

10.6.2 THE HIERARCHICAL MODEL OF SOFTWARE
 SYSTEMS

According to Theorem 10.2, the hierarchical architecture is one of the
universal system principles that software system architectures obey as well.
Actually, abstract systems need much more explicit architectural design and
description than that of concrete systems, because the former are inexplicit
and nonself-expressive.

10.6.2.1 The Hierarchical Structure of Software Systems

A hierarchical structure of software systems [Wang, 2005l] can be
described in Fig. 10.20. The generic layered model shows that a software
system can be decomposed from top down at seven levels known as those of
the system, subsystem, component (class, or pattern), function (method),
statement, data model (structure), and target code. The layered
decomposition of software systems can be perceived as a stepwise refinement
process that transfers a system into target code.

L7 A software system

 L6 Subsystems

 L5 Components/classes/patterns

 L4 Functions/methods

 L3 Statements

 L2 Data models/structures

 L1 Target code

Figure 10.20 The layered model of software systems

10.6.2.2 The Hierarchical Structure of Software Engineering Processes
 and Work Products

As that of software system architectures, software engineering
processes and their work products can also be described by a hierarchical

© 2008 by Taylor & Francis Group, LLC

808 Part III Organizational Foundations of SE

system model. The layered system model of software engineering processes
and corresponding work products and documentation [Wang, 2005l] are
shown in Fig. 10.21. The clarification of the work products or results of each
layered process are helpful to establish job expectations, quality standards,
and process transition criteria in software engineering organization.

 P7 Delivery
 and
 maintenance

 P1 Requirement
 analysis

 P2 System
 specification

 P3 System
 design

 P4 Detailed
 design

 P5 Coding

 P6 System
 integration
 and test

 Processes Work Products

 • User requirements
 • System requirements and constraints

 • System specifications
 • System test criteria

 • System architecture
 • System static and dynamic behaviors

 • Module architectures
 • Module static and dynamic behaviors

 • Source code at module level
 • Test results at module level

 • Source code at system level
 • Target code and configurations
 • Test results at system level

 • Target code and deployment configuration
 • Installation and operation manuals
 • Maintenance log

Figure 10.21 Work products of software engineering processes

10.6.3 THE ISO/IEC 15288 SYSTEM ENGINEERING
 MODEL FOR SOFTWARE ENGINEERING

It has been seen in the previous subsections that software systems are
highly complex abstract systems that need to adopt system theories in their
entire lifecycle such as design, modeling, implementation, and maintenance.
This section presents a paradigm of software system models, the ISO/IEC
15288 System Engineering Model of Software Engineering [ISO/IEC, 1999].

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 809

ISO 15288 describes a software development organization by a four-
level hierarchical process model known as the processes of enterprise,
project, technology, and agreement. Within each process, there are a number
of defined activities as shown in each column of Table 10.3.

Table 10.3

The ISO/IEC 15288 System Engineering Model of Software Engineering

No Enterprise
processes

Project
processes

Technical
processes

Agreement
processes

1 Enterprise environment
management

Project
planning

Stakeholder require-
ments definition

Acquisition

2 Investment management Project
assessment

Requirements
analysis

Supply

3 System lifecycle
management

Project
control

Architectural
design

4 Resource management Decision making Implementation
5 Quality management Risk management Integration
6 Configuration

management
Verification

7 Information
management

Transition

8 Validation

9 Operation

10 Maintenance
11 Disposal

In ISO/IEC 15288, the behavioral processes of a software development

organization can be classified as intra- and inter-organizational processes.
The relationship between these two types of organizational processes is
illustrated in Fig. 10.22 [ISO/IEC, 1999].

 Enterprise processes

 Project processes

 Technical processes

 Enterprise processes

 Project processes

 Technical processes

 Agreement

 processes

 Organization 1 Organization 2

Figure 10.22 The system model of intra- and inter-organization processes

© 2008 by Taylor & Francis Group, LLC

810 Part III Organizational Foundations of SE

ISO/IEC 15288 provides a generic process model that treats a software
development organization and its software engineering processes as a system.
ISO/IEC 15288 provides an extended process system for software
engineering, which encompasses not only conventional software processes,
but also system processes integrating an extended scope of stakeholders
involved in software engineering.

10.6.4 SOFTWARE ENGINEERING PHENOMENA AS
 SYSTEM ENGINEERING PROBLEMS

 Systems theories and philosophies are considered as a cure to many
unwise practices in software engineering [Wang, 2005l]. Some typical
phenomena in software engineering practice that are typical system
engineering problems are presented below.

 a) New is beautiful: This is a software engineering phenomenon that
practitioners chase anything claimed new and fancy in practice,
such as programming languages, models, tools, and environments.
This shows no confidence in the existing methodologies and
tools, no patience to get familiar with the existing knowledge, and
no awareness of necessary domain knowledge built-up
requirements. From the system science point of view, this practice
ignores engineering experience accumulation needs and wastes
resources on various languages where there is no theoretical
difference in their descriptive power for programming.

 b) Fundamental research left behind industrial practices: Scientists

in software engineering are busy explaining a great many
complicated phenomena in a numerals different techniques. A few
researchers concentrate on the fundamental theories and the order
of knowledge for software engineering. This allows software
engineering probably to be the first engineering discipline that is
led by practitioners rather than scientists.

 c) Overlooked coordinative work organization as the key software

engineering technology: The whole spectrum of the software
engineering system encompasses technology, organization, and
management. According to Theorem 8.7, it is recognized that the
coordinative work organization theory is the top-level technology
for software engineering. Without it, pure focuses on technical
issues in software engineering such as programming languages
and testing tools would lead to a significant loss of effort,

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 811

resources, and time into the black hole of inappropriate
engineering project organization. Therefore, emphases must be
put on the systematical view towards software engineering
constraints and solutions, before any detailed technical decisions
are made.

 d) Product lifespan is too short: Nobody prepared for a durable

design and implementation that may last for a few decades, if not
for a few hundred years. It was reported that the current owner of
a historical building in Shanghai received a letter for its 100th
anniversary survey from a UK construction company in 1998.
The reaction of the owner was astonished: ‘Somebody had still
remembered us!’ Even though the owners of the building had
changed so many times, the architects still kept the record of the
entity and their responsibility. Is this a shame on the software
engineering community? Can one find all design and testing
documents for a system conducted ten years ago? Is it ethical
when a vendor tries to stop supporting existing systems,
environments, or languages that numerous legacy systems rely
on?

 e) Local maximum is often adopted:: According to systems theory,
optimization of a component of a system may not improve the
performance of the whole system. Instead, it is even harmful for
the system. For instance, a fax control system consists of the fax
machine, transmission lines, switching systems, signaling
systems, code error monitoring, and the flow control software.
The system’s performance would get worse when the
transmission speed is increased. Instead, the fax system may reach
a better performance by decreasing the speed of the modem.
Therefore, global tradeoffs in a software system should always be
maintained.

 f) Pentium inside? Most PCs nowadays have a label on it – Pentium

inside! This is simply because one cannot not feel too much
difference in speed and performance whatever if there is a
Pentium processor inside or not! Although the CPU speed in a PC
has improved 104-106 times in the last decades, the speed of
external buses, peripheral devices, and communication modems
have not been significantly matched up. As a result, the
processing speed of PCs as a system has not been enhanced
significantly. Sometime, it has even been getting worse when
using the scroll bar or marking multiple pages, it may be too fast
to be able to get the pages stopped on the place that one wishes.

© 2008 by Taylor & Francis Group, LLC

812 Part III Organizational Foundations of SE

 g) Views on software systems – pessimism vs. optimism: Almost all
doctors are astonished that human beings are relatively much
more robust than biological and physiological principles may
suggest. Fortunately, so are software systems. In principle, a
software system may go wrong by only a single bit error, and for
some of them the programmers have no control because they are
dependent on run-time situations, such as dynamic memory
allocations and external interferences. However, there are still
more and more software systems, especially mission-critical ones,
running correctly day and night via systematic exception
detection, handling, and fault-tolerant techniques.

 h) The software maintenance crisis: Software maintenance crisis is

an inherited type of software crisis that happens when the demand
for legacy software maintenance largely exceeded the capability
that the software industry can provide, or when the costs of legacy
software maintenance predominantly override the investment in
new software development. Detailed description and solutions on
software maintenance crisis may be referred to Section 14.3.3.
[Wang, 2005d].

 i) Synchronization by process-based software engineering:

Software engineering may adopt the principle of system
synchronization in its organizational infrastructure, known as
process-based software engineering. Detailed techniques and
explanations will be proved in Section 14.2.2.

 j) Measuring the tendency of programmers: The productivity of

software engineering is conventionally measured based on the
symbolic size of programs as defined below.

Definition 10.81 The productivity ρ of software development is

determined by the symbolic size of programs Ss developed per person p per
month t, i.e.:

 [LOC/PM]sS
p t

ρ =
•

 (10.91)

where the unit of Ss is LOC, and the unit of p • t is person-month (PM).

Since the above simple absolute measure of ρ assumes a philosophy of
the higher the better, programmers are encouraged to develop larger physical
sized program or longer code for a certain required function. This is a typical
practice that results from an imbalanced measurement system in software
engineering. Just like Tom Clancy wrote about the ancient Roman bridges:

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 813

 “The Roman bridges of antiquity were very inefficient
structures. By modern standards, they used too much stone, and as
a result, far too much labor to build. Over the years we have learned
to build bridges more efficiently, using fewer materials and less
labor to perform the same task.”

 Therefore, a countermeasure known as coding efficiency as defined
below needs to be adopted supplemented to the symbolic size measure in
software engineering.

Definition 10.82 Coding efficiency e in software implementation is

measured by the ratio of functional size Sf and symbolic size Ss, i.e.:

 [FO/LOC]f

s

S
e

S
= (10.92)

where the functional size of software Sf is equivalent to the cognitive
complexity of software Cc in the unit of function-object (FO), which will be
presented in Section 10.7.3.

When the measure of implementation efficiency is introduced into the

software engineering processes, the tendency of over-sized software, so
called fat-ware, in software engineering can be effectively rectified [Wang
and King, 2000a; Wang, 2003f].

The discussions in this section show that system theories and
philosophies are an ideal cure to many unwise practices in software
engineering that were not conform with fundamental system principles.
Therefore, system science and engineering methodologies [Hall, 1967; Bate
et al., 1993; Harauz, 1997; Wang, 2006d/2007d] will play an increasingly
significant role in software engineering.

10.7 The Complexity Theory of
 Software Systems

Applying the system complexity theories developed in Section 10.3.3, the
symbolic and functional complexities of software, as well as cohesions and

© 2008 by Taylor & Francis Group, LLC

814 Part III Organizational Foundations of SE

couplings of software systems can be formally analyzed using a set of system
level measurements in software engineering.

Although computational complexities, particularly algorithm
complexities, are one of the focuses in computer science, software
engineering is particularly interested in the functional complexity of large
scale and real-world software systems.

The computational complexity of algorithms puts emphases on the
computability and efficiency of typical algorithms of massive data processing
and high throughput systems, in which computing efficiency is dependent on
and dominated by the problem sizes in terms of their number of inputs such
as those in sorting and searching. However, there are more generic
computational problems and software systems that are not dominated by this
kind of input sizes rather than by internal architectural and operational
complexities such as problem solving and process dispatching. This shows
the differences of focuses or problem models in the complexity theories of
software engineering and conventional computing.

In software engineering, a problem with very high computational

complexity may be quite simple for human comprehension, and vice versa.
According to cognitive informatics, human beings may comprehend a large
cycle of iteration, which is the major issue of computational complexity, by
looking at only the beginning and termination conditions, and one or a few
arbitrary internal loops with inductive inferences. However, humans are not
good at dealing with functional complexities such as a long chain of
interrelated operations, very abstract data objects, and their consistency.
Therefore, the system complexity of large-scale software is the focus of
software engineering.

10.7.1 COMPUTATIONAL COMPLEXITY

Computational complexity theory is a well established area in
computing [Hartmanis and Stearns, 1965; Hartmanis, 1994; Lewis and
Papadimitriou, 1998] that studies: a) The taxonomy of problems in

The 36th Principle of Software Engineering

Theorem 10.13 The orientation of software engineering complexity
theories states that the complexity theories of computation and software
engineering are different. The former is focused on the problems of high
throughput complexity that are computing time efficiency centered; while
the latter puts emphases on the problems of functional complexity that are
human cognition time and workload oriented.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 815

computing and their solvabilities; and b) Complexities and efficiencies of
algorithms for a given problem. Computational complexity centered by the
algorithm complexity can be modeled by its time or space complexity,
particularly the former, proportional to the sizes of problems.

10.7.1.1 Taxonomy of Computational Problems

Computational complexity theories study the solvability in computing.
The solvable problems are those that can be computed by polynomial-time
consumption. The nonsolvable problems are those that cannot be solved in
any practical sense by computers due to excessive time requirements.

The taxonomy of problems in computation can be classified into the
following classes. The class of solvable problems that are polynomial-time
computational by deterministic Turing machines are called the class P
problems. The class of problems that are polynomial-time computational by
nondeterministic Turing machines are called the class NP problems. The
class of problems that their answers are complementary to the NP problems
are called the NP complementary (coNP) problems. The subclass of NP
problems, which serves as a meta problem where other NP problems may be
reduced to them in polynomial time, is called the NP-complete (NPc)
problems. There is a special class of problems that can be reduced to known
NP problems in polynomial time, which are usually referred to as the NP-
hard (NPh) problems [Hartmanis and Stearns 1965; McDermid, 1991; Lewis
and Papadimitriou, 1998].

The relationship among various classes of problems in computation can
be illustrated as shown in Fig. 10.23. It is noteworthy that there are certain
problems that are unsolvable or with unknown solvability in computing, but
they might be solvable by human brains.

 P
 NP coNP

Solvable

 Solvability unknown

 Unsolvable

NPh

NPccoNPc

Figure 10.23 Taxonomy of problems in computing

© 2008 by Taylor & Francis Group, LLC

816 Part III Organizational Foundations of SE

10.7.1.2 Time Complexity of Algorithms

The time complexity of an algorithm for a given problem is measured
in software engineering as an estimation of its computational complexity.
The time complexity of an algorithm can be estimated by analyzing the
number of dominant operations in the algorithm, where each of the dominant
operations is assumed to take an identical unit of time in operation.

 Definition 10.83 The dominant operations in an algorithm are those
statements within iterative structures that are proportional to the size of the
problem or the number of inputs n of the algorithm.

Definition 10.84 For a given function f(x), its asymptotic function fa(x)

is a function that satisfies:

 |f(x)| ≤ k|fa(x)|, x > b (10.93)

where k and b are a positive constant.

Definition 10.85 If a function f(x) has an asymptotic function fa(x), the

function f(x) is said to be of order of fa(x), denoted by:

 f(x) = O(fa(x)) (10.94)

where O is known as the big O notation.

Definition 10.86 For a given size of a problem n, the time complexity

Ct(n) of an algorithm for solving the problem is a function of the maximum
required number of dominant operations O(fa(n)), i.e.:

 Ct(n) = O(fa(n)) (10.95)

where fa(n) is called the asymptotic function of Ct(n).

 It is noteworthy in Definition 10.86 that the maximum number of
dominant operations Ct(n) indicates the worst case scenario. An average case
complexity is a mathematical expectation of Ct(n).

Example 10.8 According to Definition 10.86, the time complexity
Ct(n) of the following functions f1(n) through f4(n) can be estimated as
follows:

 • f1(n) = 5n3 + 2n2 - 6 ⇒ Ct1(n) = O(fa1(n)) = O(n3)
 • f2(n) = 3n ⇒ Ct2(n) = O(fa2(n)) = O(n)
 • f3(n) = 4log2 n + 10 ⇒ Ct3(n) = O(fa3(n)) = O(log2 n)
 • f4(n) = 2 + 8 ⇒ Ct4(n) = O(fa4(n)) = O(ε)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 817

where ε is a positive constant.

Typical asymptotic functions of algorithm and programs are shown in
Fig. 10.23, where the computational loads in term of processing time of
different functions may grow polynomially or exponentially as the size of
problem n, usually the number of input items, increasing. If an algorithm can
be reduced to a type of function with polynomial complexity, it is always a
computable problem; otherwise, it would be a very hard problem, particularly
in the worst case when n is large.

1

100

10000

100000
0

1E+08

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1 5 10 20 50 100
n

O
(f(

n)
)

22
n nn

 Exponential

 n

n2

n3

2n n!

 nlog2n

 log2n

 Polynomial

 Figure 10.24 Typical asymptotic functions of software time complexities

10.7.1.3 Space Complexity of Algorithms

Definition 10.87 The space complexity of an algorithm for a given
problem is the maximum required space for both working memory w and
target code memory o, i.e.:

Cm(n) = O(f(w+o))
 ≈ O(f(w)) (10.96)

where w refers to the memory for data objects under processing such as
input/output and intermediate variables, and o refers to the memory for
executable code.

Because the target code memory is static and determinable, algorithm
space complexity is focused on the dynamic working memory complexity.

© 2008 by Taylor & Francis Group, LLC

818 Part III Organizational Foundations of SE

10.7.2 SYMBOLIC AND CONTROL FLOW
 COMPLEXITIES

Software system complexities may also be measured by two popular
and simple methods known as the symbolic complexity [Wang, 2001d/03f]
and the control flow complexity. The former is also known as the Lines of
Code (LOC) [Halstead, 1977; Albrecht and Gaffney, 1983], while the latter
is also called the McCabe cyclomatic complexity [McCabe, 1976].

10.7.2.1 Symbolic Complexity of Software Systems

The most simple and direct forward complexity measure of software

systems is the symbolic complexity that can be represented by the number of
lines of statements in a programming language.

Definition 10.88 The symbolic complexity of a software system S,

Cs(S), is the linear length of its static statements measured in the unit of Lines
of Code (LOC), i.e.:

1

() () [LOC]
cn

s s
k

C S C k
=

=∑ (10.97)

where Cs(k) represents the symbolic complexity of component k in S.

In the measure of symbolic complexity of software, variables, data
objects declarations, and comments are not considered as a valid line of
instructions, and an instruction separated in multiple lines is usually counted
as a single line.

10.7.2.2 Control Flow Complexity of Software Systems

Another approach to measure the code complexity of software systems

can be via its control structures based on the Control Flow Graph (CFG) as
described in Section 5.4.1. When a program is abstracted by a CFG, well-
defined graph theory may be used to analyze its complexity properties. In the
remainder of this section, Euler’s theorem is introduced and how it is used to
model the complexity of CFGs is described. Then, the relationship between
Euler’s theorem and McCabe cyclomatic complexity is discussed.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 819

The proof of Lemma 10.13 may refer to Lipschutz and Lipson (1997).
The McCabe cyclomatic complexity [McCabe, 1976] of a software

system can be determined by applying Euler’s theorem onto the CFGs of
software systems.

Definition 10.89 The cyclomatic complexity of a software system S,
Cr(S), is determined by the number of regions contained in a given CFG GS,
r(GS), provided that G is connected, i.e.:

 Cr(S) = r(GS)
 = e - n + 2 (10.99)

where, e is the number of edges in GS representing branches and cycles, n
number of nodes in GS where a block of sequential code may be reduced to a
single node.

It can be observed that Eq. 10.99 is derived property of Euler’s theorem
as provided in Lemma 10.13, which shows that the physical meaning of the
McCabe cyclomatic complexity is the number of regions in a CFG of a
software system.

 Example 10.9 The cyclomatic complexity of the program MaxFinder
as given in Example 5.14 can be determined by using Eq. 10.99 on the CFG
as shown in Fig. 5.19 as follows:

 Cr(S) = e - n + 2
 = 7 – 6 + 2
 = 3

Observing Fig. 5.19, it may be found that the result Cr(S) = r(GS) = 3
is the number of regions in the CFG, providing there is always a region by
linking the first node to the last node in the CFG. This finding indicates that
the calculation as required in Eq. 10.99 can be omitted; instead, a simple
count of the number of regions in GS is enough.

Lemma 10.13 Euler’s theorem states that the following formula holds for
the numbers of nodes n, of edges e, and of regions r for any connected
planar graph or map G:

 n – e + r = 2 (10.98)

© 2008 by Taylor & Francis Group, LLC

820 Part III Organizational Foundations of SE

Further, it may also be seen in Fig. 5.19 that the result Cr(S) = r(GS) =
3 is the number of BCS’s in the program or its formal specification,
providing a single sequential BCS is always taken into account by one. This
finding reveals that the drawing of a CFG for a given program or component
is not necessary in the cyclomatic analysis. In other words, r(CFG) equals to
the numbers of BCS’s in a program [Wang, 2003f].

Incorporating the above findings with Definition 10.89, the following

corollary is obtained.

10.7.3 THE COGNITIVE COMPLEXITIES OF
 SOFTWARE SYSTEMS

According to Theorem 10.13 on the orientations of complexity theories
of computation and software engineering, the complexities of an abstract
system can be classified as the symbolic, relational, architectural,
operational, and functional complexities. This subsection describes the
cognitive complexity of software systems that is a special type of software
functional complexity defined as a product of the architectural and
operational complexities of software systems.

10.7.3.1 The Operational Complexity of Software Systems

In Section 9.6.3 a set of calibrated cognitive weights of BCS’s has been
derived based on a series of psychological and cognitive experiments [Wang,
2005j]. The calibrated cognitive weights for the ten fundamental BCS’s are
illustrated in Fig. 10.25, where the relative cognitive weight of the sequential
structure is assumed one, i.e., w1 = 1.

Corollary 10.15 The cyclomatic complexity of a connected software
system Cr(S) can be determined by any of the following three methods:

 Cr(S) = e - n + 2 // Method 1
 = r(CFG) // Method 2
 = #(BCS) // Method 3 (10.100)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 821

1
3 4

7 7 8 7

11

15

22

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
 wi (BCS)

Co
gn

iti
ve

 w
ei

gh
ts

Note: 1 – sequence, 2 – branch, 3 – switch, 4 – for-loop, 5 – repeat-loop,
 6 – while-loop, 7 – functional call, 8 – recursion, 9 – parallel, 10 - interrupt

Figure 10.25 The relative cognitive weights of BCS’s of software systems

According to the generic mathematical model of programs as modeled
in Theorem 5.7, a software system can be rigorously described by a complex
process P with a composed operation of n meta statements pi and pj, 1 ≤ i <
n, j = i+1, based on certain composing relations rij known as the ten BCS’s
as shown in Fig. 10.25, i.e.:

 (10.101)

Therefore, the sum of the cognitive weights of all rij represents the
operational complexity of a software system.

There are two structural patterns of BCS’s in a software system: the
sequentially and the embedded related BCS’s. In the former, all the BCS’s
are in a linear layout in S, therefore the operational complexity of S is a sum
of the cognitive weights of all linear BCS’s. In the latter, some BCS’s are
embedded in others in S, hence the operational complexity of S is a product
of the cognitive weights of inner BCS’s and the weights of outer layer
BCS’s. In general, the two types of BCS architectural relations in S may be
combined in various ways. Therefore, a general method for calculating the
operational complexity of software can be derived as follows.

 Definition 10.90 The operational complexity of a software system S,
Cop(S), is determined by the sum of the cognitive weights of its n linear
blocks composed by individual BCS’s, where each block may consist of q

1

1

1 12 2 23 3 1,

(), 1

(...((())) ...)

n

i ij j
i

n n n

P p r p j i

p r p r p r p

R
−

=

−

= = +

=

© 2008 by Taylor & Francis Group, LLC

822 Part III Organizational Foundations of SE

layers of embedded BCS’s, and within each of the layer there are m linear
BCS’s, i.e.:

,

1

1 11

() = ()

= ((, ,) [F])

c

k jkc

n

op op k
k

mqn

k ij

C S C C

w k j i

=

= ==

∑

∑ ∑∏
 (10.102)

If there is no embedded BCS in any of the nc components in Eq.

10.102, i.e., q = 1, then Eq. 10.102 can be simplified as follows:

 1

1 1

() = ()

(,) [F]

c

c k

n

op op k
k
n m

k i

C S C C

w k i

=

= =

=

∑

∑ ∑
 (10.103)

where w(k, BCS) is given in Fig. 10.25.

Definition 10.91 The unit of operational complexity of software
systems is a single sequential operation called a function F, i.e.:

 () = 1 [F] #(SeqOP()) = 1opC S S⇔ (10.104)

With the cognitive weight of sequential process relation defined as one

unit of operational function of software systems, complex process relations
can be analyzed.

Example 10.10 The operational complexity of the algorithm of In-
Between Sum, IBS_AlgorithmST, as given in Fig. 10.26, can be analyzed as
follows:

1 11

1 1

() = ((, ,)

= (,)

= (SEQ) { (ITE) 2 (SEQ) (ITE) 2 (SEQ)}
= 1 + (3 2 + 3 2)
= 13 [F]

)
c

c

n q m

op
k ij

n m

k i

BCS

C S w k i j

w k i

w w w w w

= ==

= =

+ • + •
• •

∑ ∑∏

∑ ∑

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 823

Figure 10.26 The IBS algorithm (a) specified in RTPA

It is noteworthy that for a fully sequential software system where only

w(sequence) = 1 [F] is involved, its operational complexity is reduced to the
symbolic complexity.

Corollary 10.16 presents an important finding on the relationship

between conventional symbolic complexity and the operational complexity
of software. It indicates that the symbolic measure is oversimplified so that it
cannot represent the real functional complexities and sizes of software
systems. Case studies summarized in Table 10.4 show that algorithms or
programs with similar symbolic complexities may possess widely different
functional complexities in terms of the operational and cognitive
complexities.

10.7.3.2 The Architectural Complexity of Software Systems

The architectural complexity of a software system is proportional to its
number of global and local data objects such as inputs, outputs, data
structures, and internal variables.

IBS_AlgorithmST ({I:: AN, BN}; {O:: IBSResultBL, IBSumN})
{
 MaxN := 65535
 → (? (0 < AN < maxN) ∧ (0 < BN < maxN) ∧ (AN < BN)
 → IBSumN := ((BN - 1) * BN) / 2) - (AN * (AN + 1) / 2)
 → IBSResultBL := T
 | ? ~
 → IBSResultBL := F
 → !(@’AN and/or BN out of range, or AN ≥ BN’)
)
}

Corollary 10.16 The symbolic complexity Cs(S) is a special case of the
operational complexity Cop(S), where the cognitive weights of all kinds of
BCS’s, wi(BCS), are simplified as always one, i.e.:

1 1

() (,)

(), (,) 1

() [LOC]

C kn m

op
k i

s

s

S S w k i

C S w k i

C S

= =
=

= ≡

=

∑ ∑
 (10.105)

© 2008 by Taylor & Francis Group, LLC

824 Part III Organizational Foundations of SE

Definition 10.92 The architectural complexity of a software system S,
Ca(S), is determined by the number of data objects at the system and
component levels, i.e.:

1 1

() OBJ())

OBJ() + OBJ() [O]
CLM C

a

n n

k k
k k

C S S

CLM C
= =

=

= ∑ ∑
 (10.106)

where OBJ represents a function that counts the number of data objects in a
given CLM (number of global variables) or components (number of local
variables).

Definition 10.93 The unit of architectural complexity of software
systems is a single data object, modeled either globally or locally, called an
object O, i.e.:

 () = 1 [] #(OBJ()) = 1aC S O S⇔ (10.107)

There are special system input architectures known as the high

throughput or pipeline system, in which a large even infinite number of
similar inputs and/or outputs are operated. In this case, the architectural
complexity of such pipeline systems will be defined as a relative equivalent
constant rather than an absolute infinite as follows.

Definition 10.94 The equivalent architectural complexity of a high

throughput or infinite pipeline system S with repetitive data objects, C’a(S), is
treated as a constant of three based on cognitive theory of inductive
inferences.

In the above definition, C’a(S) is determined on the basis of cognitive
informatics where the inductive inference effort of a large or infinite series of
similar patterns is equivalent to three, typically the first and the last items
plus an arbitrary one in the middle. For instance, the equivalent number of
the data object in the set {X[1]N, X[2]N, …, X[n]N} is counted as three rather
than n.

Example 10.11 The architectural complexity of the MaxFinder
component as given in Example 5.14 can be determined as follows:

() = OBJ()

= #(inputs) + #(outputs) + #(local variables)

= 3+1+1

= 5 [O]

aC MaxFider MaxFider

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 825

Example 10.12 The CLM SysClockST given below encompasses 7
objects, therefore its architectural complexity is Ca(SysClockST) = 7 [O].

 SysClockST ≙ SysClockS ::

 (<§t : N | 0 ≤ §tN ≤ 1M>,
 <CurrentTime : hh:mm:ss:ms | 00:00:00:000 ≤
 CurrentTime hh:mm:ss:ms ≤ 23:59:59:999>,
 <Timer : ss | 0 ≤ Timerss ≤ 3600>,
 <MainClockPort : B | MainClockPortB = FFF0H >,
 <ClockInterval : N | TimeIntervalN = 1ms>,
 <InterruptCounter : N | 0 ≤ InterruptCounterN ≤ 999>
)

10.7.3.3 The Cognitive Complexity of Software Systems

How the functional sizes of software systems may be modeled and
measured is an age-old problem in software engineering. The concepts of
function point [Albrecht and Gaffney, 1983] and MaCabe’s cyclomatic
complexity [McCabe, 1976] are proposed for measuring the functional
complexity of software. However, in the former, it is not well defined what
the physical meaning of a unit function point is. In the latter, only the internal
loop architectures of a system are considered; the throughput of the system in
terms of data objects and other internal architectures such as sequences,
branches, and embedded constructs are excluded.

This subsection introduces the cognitive complexity of software
systems as a fundamental measure of the functional sizes of software. It is
empirically observed that the functional size of a software system is not only
determined by its operational complexity, but also determined by its
architectural complexity. That is, software functional size is proportional to
its cognitive complexity, which is a product of its operational and
architectural complexities.

According to Definition 6.58, the semantic function of a program ℘,
fθ(℘), is a finite set of values V determined by a Cartesian product on a finite
set of variables S and a finite set of executing steps T, i.e.:

 fθ(℘) = f: T × S → V

 = 11 12 1

1 1

m

n n nm

v v v

v v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⊥ ⊥ ⊥ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠⎟⎜ ⎟

1 2 m

0

1

n

s s s
t
t

t

 (10.108)

where T = {t0, t1, …, tn}, S = {s1, s2, …, sm}, and V is a set of values v(ti, sj), 0
≤ i ≤ n, and 1 ≤ j ≤ m.

© 2008 by Taylor & Francis Group, LLC

826 Part III Organizational Foundations of SE

Therefore, the semantic space of a program can be illustrated by a two
dimensional plane as shown in Fig. 10.26.

 0 1 2 3 4 n…

1

2

3

m

op

 s

Figure 10.26 The semantic space of software systems

Observing Fig. 10.26 and Eq. 10.108, it can be seen that the complexity

of a software system, or its semantic space, is determined not only by the
number of operations, but also by the number of data objects. This leads to
the formal description of the cognitive complexity of software systems.

Theorem 10.14, the 41st Law of software engineering, indicates that the

more the architectural data objects and the higher the operational complicity
onto these objects, the higher the cognitive complexity and the larger the
functional size of the system.

Definition 10.95 The unit of cognitive complexity of software systems

is a single sequential operation onto a single data object called a function-
object FO, i.e.:

The 41st Law of Software Engineering

Theorem 10.14 The cognitive complexity of software states that the
cognitive complexity of a software system S, Cc(S), is a product of its
operational complexity Cop(S) and its architectural complexity Ca(S), i.e.:

1 1

1 1

() () ()

{ (,)}

 { OBJ() + OBJ()} [FO]

C k

CLM C

f op a

n m

k i
n n

k k
k k

S S C S C S

w k i

CLM C

= =

= =

= •

= •∑∑

∑ ∑

 (10.109)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 827

•

1[F] 1[O]

1 [FO]

f op aC C C=

= •

=

 (10.110)

According to Theorem 10.14, the physical meaning of software
cognitive complexity is how many function-object [FO] are equivalent for a
given software system.

10.7.4 SOFTWARE SYSTEM COMPLEXITY ANALYSIS

In this subsection, the cognitive complexity of software systems with its

operational and architectural complexities are compared with conventional
system complexity measures such as time, cyclomatic, and symbolic (LOC)
complexities. A set of case studies is carried out in order to examine the
measurability and accuracy of various complexity and size measures for
software systems. This subsection demonstrates that the cognitive complexity
is the most sensitive measure for denoting the real complexities and
functional sizes of software systems.

10.7.4.1 Comparative Case Studies on the Complexity Models of
 Software Systems

For self containment, all the RTPA specifications of the four cases are
presented in Examples 10.13 through 10.15, except that the IBS_Algorithm
(a) has been given in Fig. 10.26.

Example 10.13 The formal specification of the In-Between Sum (IBS)
algorithm in RTPA, IBS_AlgorithmST, can be given in two approaches as
specified in Figs. 10.26 (Algorithm (a)) and 10.28 (Algorithm (b)),
respectively. Obviously, Algorithm (a) is more efficiently designed.

Figure 10.28 The IBS algorithm (b) specified in RTPA

IBS_AlgorithmST ({I:: AN, BN}; {O:: IBSResultBL, IBSumN})
{ // Specification (b)
 MaxN := 65535
 → (? (0 < AN < maxN) ∧ (0 < BN < maxN) ∧ (AN < BN)
→ IBSumN := 0

 → IBSumN :=
1

1
(+)

B

i A
IBSum iR

−

= +

N

N N
N N

 → IBSResultBL := T
 | ? ~
 → IBSResultBL := F
→ !(@’AN and/or BN out of range, or AN ≥ BN’)
)
}

© 2008 by Taylor & Francis Group, LLC

828 Part III Organizational Foundations of SE

Example 10.14 The algorithm, MaxFinderST, is formally described in
RTPA as shown in Fig. 10.29. Its function is to find the maximum number
maxN from a set of n inputted integers {X[1]N, X[2]N, …, X[n]N}.

MaxFinderST ({I:: X[0]N, X[1]N, …, X[n-1]N }; {O:: maxN })
{
 XmaxN := 0

 →
n -1

i 0
R
N

N=
(

 ? X[i N]N > XmaxN
 → XmaxN := X[i N]N
)
 → maxN := XmaxN
}

Figure 10.29 The MaxFinder algorithm specified in RTPA

 Example 10.15 The Self-Index Sort algorithm [Wang, 1996],
SIS_SortST, can be formally described in RTPA as shown in Fig. 10.30.

 SIS_SortST({I:: X[iN] Array }; {O:: X[siN] Array, SISResultBL)

 { // <Input:: X[iN] : Array | 0 ≤ iN ≤ nN -1, 0 ≤ X[iN] N ≤ mN-1, mN > nN>
 // <Output:: X[siN] : Array | 0 ≤ siN ≤ nN -1, xs0≤ xs1 ≤ , ..., ≤ xsi ≤ ,..., ≤ xsn-1>

 // <CLM:: SS[jN] : Array | 0 ≤ jN ≤ mN –1, 0 ≤ mN ≤ maxN>

 // Initialization

1

0

m

j
R
−

=
SS[jN]N := 0

 // Self-index sorting

 →
1

0

n

i
R
−

=
(↑ (SS[X[iN]N]N)

 // Compression
 → iN := 0

 →
1

0

m

j
R
−

=
 (

[] 0

[] 0

ss j

ss j
R

≤

>
 (X[iN] N := jN

 → ↓(SS[jN]N)
 → ↑(iN)
)
)
 → SISResultBL := T
}

Figure 10.30 The SIS_Sort algorithm specified in RTPA

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 829

According to the definitions given in Sections 10.7.1 through 10.7.3,
the typical complexities of software systems, known as the time complexity,
cyclomatic complexity, symbolic complexity, and the cognitive complexity
with the operational complexity and the architectural complexity, can be
systematically analyzed as summarized in Table 10.4.

Table 10.4

Comparative Measurement of Software System Complexities

System Time
complexity

(Ct [OP])

Cyclomatic

complexity

(Cm [-])

Symbolic

complexity

(Cs [LOC])

Operational

complexity

(Cop [F])

Architectural

complexity

(Ca [O])

Cognitive

complexity

(Cc [FO])

IBS (a) ε 1 7 13 5 65

IBS (b) O(n) 2 8 34 5 170

MaxFinder O(n) 2 5 115 5* 575

SIS_Sort O(m+n) 5 8 163 11* 1,793

 * The equivalent objects as defined in Definition 10.94

Observing Table 10.4 it is noteworthy that the first three measurements,

namely the time, cyclomatic, and symbolic complexities, cannot actually
reflect the real complexity of software systems in design, representation,
cognition, and/or comprehension in software engineering.

 • Although the four example systems are with similar symbolic

complexities, their operational and cognitive complexities are
greatly different. This indicates that the symbolic complexity
cannot be used to represent the operational or functional
complexity of software systems.

 • Symbolic complexity does not represent the throughput or the
input size of problems.

 • Time complexity does not work well for a system where is no
loop and dominant operations, because theoretically in this case
all statements in linear structures are treated as zero no matter
how long they are. In addition, time complexity cannot
distinguish the real complexities of systems with the same
asymptotic function, such as in Case 2 (IBS (b)) and Case 3
(Maxfinder).

© 2008 by Taylor & Francis Group, LLC

830 Part III Organizational Foundations of SE

 • The cognitive complexity is a more objective measure of software
system complexities and sizes, because it represents the real
semantic complexity by integrating both the operational and
architectural complexities in a coherent measure. For example, the
difference between IBS(a) and IBS(b) can be successfully
captured by cognitive complexity. However, symbolic and
cyclomatic complexities cannot identify the functional differences
very well.

10.7.4.2 The Symbolic vs. Cognitive Sizes of Software Systems

On the basis of the complexity models developed so far, the sizes of
software systems can be quantitatively analyzed by measures of the symbolic,
cognitive functional, and relational sizes modeled by the corresponding
complexity measures, respectively.

According to the generic system complexity theory discussed in Section
10.3.3, when a system is treated as a black box, the relational complexity of
the system can be estimated by the maximum possible pairwise relations
between all components in the system.

Definition 10.96 The relational complexity of software system S, Cr(S),
is the maximum number of relations nr among components, i.e.:

()

(- 1) [R]
r r

c c

C S n

n n

=

=
 (10.111)

where the unit of the relational complexity is the number of relations R.

It is noteworthy that Cr(S) provides the maximum potential or the upper
limit of internal relational complexity of a given software system.

The relationship among the symbolic, relational, and operational

complexities of software systems is plotted in Fig, 10.31 in the logarithmic
scale. As shown in Fig. 10.31, the symbolic complexity of software Cs(S) is
the lower bound of the functional complexity of software and it is linearly
proportional to the number of statements n, i.e., O(n). The relational
complexity Cr(S) is the upper bound of functional complexity of software in
the order of O(n2). Therefore, the real cognitive functional complexity
represented by the operational complexity Cop(S) is bounded between the
curves of the symbolic and relational complexities.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 831

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000

n

C
om

pl
ex

iti
es

Cr(n)

Cs(n)

Figure 10.31 The relational and symbolic complexities as the upper/lower
bounds of functional complexity of software systems

Fig. 10.31 indicates that the floor of the operational complexity Cop(S)
of software systems is determined by the symbolic complexity Cs(S) when
only sequential relation is considered between all adjacent statements in a
given program, and all weights of the sequential relational operations in
computing are simplified to one. The ceiling of the operational complexity
Cop(S) is determined by the relational complexity Cr(S), when all potential
relations among the components (statements) in computing are considered.

According to Corollary 10.16 and Fig. 10.29 it can be seen that the real

complexity and size of software systems are greatly underestimated when the
conventional symbolic size measurement (LOC) is adopted, because it
represents the minimum functional complexity of software. Therefore, the
functional size of software systems measured by the cognitive complexity as
described in Theorem 10.14, the 41st Law of software engineering, should be
adopted to measure the actual sizes and complexities of software systems.

10.7.5 COHESION AND COUPLING COMPLEXITIES OF
 SOFTWARE SYSTEMS

The preceding subsections in Section 10.7 have focused on the
measurements of software complexities and sizes within a software

Corollary 10.17 The operational complexity Cop(S) of a software system
S is constrained by the lower bound of the symbolic complexity Cs(S) and
the upper bound of the relational complexity Cr(S), i.e.:

 O(n) ≤ Cop(S) ≤ O(n2) (10.112)

where n is the number of statements in S.

© 2008 by Taylor & Francis Group, LLC

832 Part III Organizational Foundations of SE

component. This subsection examining a larger scope where the focus is put
on the relational complexity among components in software systems.
Software system cohesion and coupling are introduced as a pair of higher-
level relational complexities of software systems based on the system theory
developed in Section 10.3.6. Then, properties and generic rules of software
system cohesion and coupling are analyzed.

10.7.5.1 Cohesion of Software Systems

The relations between a given software system S and other systems can
be categorized into internal relations (Rc(S)) and external relations (Ri(S),
Ro(S)). The former are relations between components belonging to S; the
latter are those between components within and outside S.

Definition 10.97 The cohesion of a software system S, CH(S), is a ratio

of the system’s number of internal relations #Rc and its total number of
internal and external relations #Rc + #Ri + #Ro, i.e.:

#() = 100%
+# +

c

c i o
RCH S

R R R
• (10.113)

where 0% ≤ CH(S) ≤ 100%.

It is expected that the higher the system cohesion, the better the

architectural design. However, CH(S) = 100% is not a practical system
because it indicates that S is a closed system.

If a system may be decomposed into multiple subsystems, each
subsystem may be analyzed in the same way as defined in Eq. 10.113.

Corollary 10.18 Properties of software system cohesion are as follows:

 • Nonnegative: ∀S, CH(S) ≥ 0 (10.114a)
 • Normalized domain: ∀S, 0% ≤ CH(S) ≤ 100% (10.114b)
 • Null if Rc is empty: ∃S, Rc = ∅ ⇒ CH(S) = 0% (10.114c)

 • Full if Ri ∪ Ro is empty: ∃S, Ri ∪ Ro
 = ∅ ⇒

 CH(S) = 100% (10.114d)

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 833

10.7.5.2 Coupling of Software Systems

Definition 10.98 The coupling of a software system S, CP(S), is a ratio
of the system’s number of external relations #Ri + #Ro and its total number of
internal and external relations #Rc + #Ri + #Ro, i.e.:

+ #() = 100%
+ # +

i o

c i o
R RCP S

R R R
• (10.115)

where 0% ≤ CP(S) ≤ 100% and a lower value of CP(S) indicates a better
architectural design.

The relationship between the cohesion and coupling of software

systems is constrained by the same complement law as described in Section
10.3.6. Therefore, when either cohesion or coupling of a software system is
known, the other can be determined.

10.7.5.3 Comparative Analysis of Software System Cohesions and
 Couplings

Reusing the examples and data shown in Table 10.4, the cohesions and
couplings of the four given systems can be calculated as given in Table 10.5
using Eqs. 10.113 and 10.115.

Table 10.5
Measurement of Software System Cohesions and Couplings

External relations System Internal
relations

(#Rc)
Input

relations
(#Ri)

Output
relations

(#Ro)

Total
relations

(#R)

System
cohesion
(CH(S)

[%])

System
coupling
(CP(S)

[%])

IBS 7 2 2 11 63.6 36.4
ATM-PIN 23 1 3 27 85.2 14.8
MaxFinder 5 n 1 n+6 ∼0 ∼100
SIS_Sort 8 n n+1 2n+9 ∼0 ∼100

Corollary 10.19 Properties of software system coupling are as follows:

 • Nonnegative: ∀S, CP(S) ≥ 0 (10.116a)
 • Normalized domain: ∀S, 0% ≤ CP(S) ≤ 100% (10.116b)
 • Null if Ri ∪ Ro is empty: ∃S, Ri ∪ Ro = ∅ ⇒
 CP(S) = 0% (10.116c)
 • Full if Rc is empty: ∃S, Rc

 = ∅ ⇒ CP(S) = 100% (10.116d)

© 2008 by Taylor & Francis Group, LLC

834 Part III Organizational Foundations of SE

In Table 10.5, there are a category of software systems that may be
classified as a pipeline system such as a data processing system and a data
sort system. The size of inputs and/or outputs n of such systems as those of
the MaxFinder and SIS-Sort system is often flexible and indeterminable
before run-time. In this case, the cohesion and coupling can be redefined as a
limit below.

Definition 10.99 The limits of cohesion and coupling of software

systems with indeterminable variable #Ri and #Ro are treated as functions
CH(S, n) and CP(S, n) as n approaching ∞, i.e.:

#lim (,) = lim (100%)
+# +

lim () 100%

0%

c

c i on n

n

RCH S n
R R R
c

c cn

→∞ →∞

→∞

•

= •
+

=

 (10.117)

+ #lim (,) = lim (100%)
+ # +

lim () 100%

100%

i o

c i on n

n

R RCP S n
R R R
cn

c cn

→∞ →∞

→∞

•

= •
+

=

 (10.118)

where c and k are a positive constant.

Eqs. 10.117 and 10.118 explain the nature of pipeline systems, where

the cohesions of such systems are approaching 0, while their couplings are
equivalent to 100%.

Software system coupling is usually too high to be efficiently handled
in ad hoc system designs. Therefore, the normalized system decomposition
rules and the system organization tree structures developed in Sections 10.3.4
and 10.3.5 should be adopted as guidelines in the architectural designs of
software systems.

The 37th Principle of Software Engineering

Theorem 10.15 The normalized software system architectures states that
components of different subsystems should not be coupled directly, rather
than be invoked through their top layer components shared in the same
subsystem.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 835

Theorem 10.15 can be illustrated in Fig. 10.32 that shows valid and
invalid couplings in structured programming. According to Theorem 10.15,
if there is a need to couple two components belonging to different
subsystems, the coupling of them should be done through their common
parent nodes in the system hierarchical architecture. This forms the basic
principle of software system modularization.

 S111 S112 S113 S121 S122 S123 S131 S132 S133 S221 S222 S223

 S11 S12 S13 S21 S22 S23

 S1 S2

 S

 … …

Invalid
coupling

Valid
coupling

Valid
coupling

Figure 10.32 The normalized system architecture for component couplings

10.8 Summary

In this chapter, an abstract system has been modeled as a collection of
coherent and interactive entities that possesses stable functions and a clear
boundary with external environment. The generic rules and theories of
abstract systems and their applications in concrete systems have been

Corollary 10.20 In order to reduce system complexity and maintain a
manageable cognitive handling ability, the coupling among components
of a software system should be implemented through their common
parent node (the super system) rather than by direct links between them.

© 2008 by Taylor & Francis Group, LLC

836 Part III Organizational Foundations of SE

developed. It has been identified that, to some extent, management science,
economics, and sociology may be perceived as a special branch of system
science that study objects and phenomena at different levels of human work
and social organizations.

Because software engineering is one of the most complicated system
engineering areas, it has naturally been identified as the ideal testbed for
evaluating existing system theories and their enhancements. Treating
software engineering and large-scale software project via system engineering
has formed a promising trend in dealing with the problems, complexities, and
human factors in software engineering.

This chapter has presented a systematic view towards software
engineering. The theories of systems science, as well as underlying principles
and modeling techniques of systems engineering, have been explored. A new
mathematical structure, process algebra, has been developed to model and
manipulate abstract and concrete systems, particularly software systems.
Applications of system theories and system engineering methodologies in
software engineering have been discussed. As a result, the system science
foundations of software engineering have been established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, System Science Foundations of Software
Engineering, readers have achieved the following strategic goals with the
knowledge structure as summarized below.

Chapter 10. Systems Science Foundations of SE

■ System philosophies
 • The system metaphor for modeling complex entities
 • Holism
 • Systematic thinking

■ Abstract systems and system topology
 • Mathematical models of abstract systems
 - The mathematical model of closed systems
 - The mathematical model of open systems

 • Taxonomy of systems
 - Concrete and abstract systems
 - Physical and social systems
 - Finite and infinite systems
 - Closed and open systems

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 837

 - Static and dynamic systems
 - Linear and nonlinear systems
 - Continuous and discrete systems
 - Precise and fuzzy systems
 - Determinate and indeterminate systems
 - White-box and black-box systems
 - Intelligent and nonintelligent systems
 - Maintainable and nonmaintainable systems

 • Magnitudes of systems
 - System sizes, magnitudes, and complexities
 - Taxonomy of system magnitudes

 • Hierarchical architecture of systems
 • The system organization tree
 • Systems cohesion and coupling
 - The border of systems
 - System cohesions and coupling

■ System algebra
 • Relational operations of systems
 - Algebraic relations of closed systems
 - Algebraic relations of open systems
 - Relationships between closed and open systems

 • Algebraic operations of systems
 - System conjunction
 - System difference
 - System composition
 - System decomposition

■ Principles of system science
 • System fusion and mutation
 • System functions and behaviors
 • Work done by systems
 • The maximum output of systems
 • System equilibrium and organization
 - The generic IPO model of systems
 - Laws of system equilibrium and organization

 • System synchronization and coordination
 • System dissimilation
 - Dissimilation of nonmaintainable systems
 - Dissimilation of maintainable systems

■ Software system engineering
 • The abstract model of computing systems

© 2008 by Taylor & Francis Group, LLC

838 Part III Organizational Foundations of SE

 • The hierarchical model of software systems
 - The hierarchical structure of software systems
 - The hierarchical structure of software engineering processes and
 work products

 • The ISO/IEC 15288 system engineering model for SE
 • SE phenomena as system engineering problems

■ The complexity theory of software systems
 • Computational complexity
 - Taxonomy of computational problems
 - Time complexity of algorithms
 - Space complexity of algorithms

 • Symbolic and Control flow complexities
 - Symbolic complexity of software systems
 - Control flow complexity of software systems

 • Cognitive complexity of software systems
 - The operational complexity of software systems
 - The architectural complexity of software systems
 - The cognitive complexity of software systems

 • Software cognitive complexity analysis
 - Comparative case studies on the complexity models of software
 systems
 - The symbolic vs. functional sizes of software systems

 • Cohesion and coupling complexity of software systems
 - Cohesion of software systems
 - Coupling of software systems
 - Analysis of software system cohesion and coupling

SIGNIFICANT FINDINGS OF THIS CHAPTER

• An abstract system is an algebraic model of generic systems that
encompasses a collection of coherent and interactive entities and possesses
stable functions and a clear boundary with external environment.

• The principle of generic constraints states that any system is

constrained by a set of common conditions, properties, and rules, which are
obeyed by components inside the system, but not by those outside the
system.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 839

• Continuous and discrete systems are equivalent because any
continuous system can be simulated by a discrete system on the basis of
behavioral equivalence.

• The holism complexity of systems states that within the 7-level

magnitudes of systems, known as the empty, small, medium, large, giant,
immense, and infinite systems, almost all systems are too complicated to be
cognitively understood or mentally handled as a whole, except small systems
or those can be decomposed into small systems.

• The generic topology of systems tends to normalized into a
hierarchical structure in the form of a complete n-nary tree.

• Advantages of the normalized tree architecture of systems are as

follows:

 a) Equilibrium: Looking down from any node at a level of the
system tree, except at the leave level, the structural property of
fan-out or the number of coordinated components are the same
and evenly distributed.

 b) Evolvablility: A normalized system does not change the existing
structure for future growth needs.

 c) Optimal predictability: There is an optimal approach to create a
unique system structure Tc(n, N) determined by the attributes of
the unified fan-out n and the number of leave nodes N at the
bottom level.

• The cohesion and coupling of any open system are complementary,

i.e., CH(S) + CP(S) = 100%.

• The equivalence between open and closed systems states that an
open system S is equivalent to a closed systemS , and vice versa, when it is
conjoined with its environment SΘ or SΘ , respectively.

• The following architectural rules of a normalized system should be

maintained in system compositions: a) Direct relations between subsystems
at different levels of the hierarchy are not allowed; b) Direct relations
between components of different subsystems are not allowed; and c)
Communications across systems and subsystems should be through
commonly inherited higher-level system(s) in the system hierarchy.

© 2008 by Taylor & Francis Group, LLC

840 Part III Organizational Foundations of SE

• The system fusion principle states that the fusion effect of systems is
generated by either increments of quantity in the set of components C or
increments of diversity in the set of relations R.

• There exists a threshold that triggers the fusion effect of systems

known as the critical mass Qcm, which is the minimum quantity for obtaining
or implementing system fusion over the increment of quantity.

• The principle of system gain of work states that work done by a
system is always greater than that of any of its components, but at most
equals the sum of those of its components.

• The equilibrium of a system is a stable state where the effects of all
components in term of their abstract work form a zero-sum.

• The equilibrium system work states that the sum of all types of

work is always zero in an equilibrium system, i.e.,
1

() 0
n

i
i

W C
=

=∑ , where

W(Ci) is the abstract work of a component Ci in the system.

• The necessary and sufficient mathematical condition of self-
organization is the existence of at least one minimum on the state curve of
a system f(x).

• The functional condition of self-organization of a system is the

existence of the negative feedback mechanism that is proportional to the
incremental or aggressive effects of the system.

• A dynamic system tends to synchronize on a certain state where it is
stable or dynamically equilibrium that satisfies one of the following
conditions: a) The rational condition: The apparent best equilibrium
condition; or b) The arbitrary condition: The first met or most conventional
equilibrium condition.

• System dissimilation states that any system tends to undergo a
continuous degradation that leads to the eventual loss of its designed utility
and against its initial purposes to form the system.

• The orientation of software engineering complexity theories states
that the orientations of complexity theories of computation and software
engineering are different. That is, the former is focused on the problems of
high throughput complexity that are computing time efficiency centered;

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 841

while the latter puts emphases on the problems of functional complexity that
are human cognition time and workload oriented.

• In software engineering, a problem with very high computational
complexity may be quite simple for human comprehension, and vice versa.
According to cognitive informatics, human beings may comprehend a large
cycle of iteration, which is the major issue of computational complexity, by
looking at only the beginning and termination conditions, as well as one or a
few arbitrary internal loops with inductive inferences. However, humans are
not good at dealing with functional complexities such as huge numbers of
interrelated operations and very abstract data objects. Therefore, the system
complexity of large-scale software is the focus of software engineering.

• The symbolic complexity Cs(S) is a special case of the operational
complexity Cop(S), where the cognitive weights of all kinds of BCS’s,
wi(BCS), are simply treated as one (Corollary 10.16).

• This is an important finding on the relationship between
conventional symbolic complexity and the operational complexity of
software. It indicates that the symbolic measure is oversimplified so
that it cannot represent the real functional complexities and sizes of
software systems. In other words, algorithms or programs with similar
symbolic complexities may possess widely different functional
complexities in terms of the operational and cognitive complexities.

• The cyclomatic complexity of a connected software system Cr(S) can

be determined by any of the following three methods: a) Cr(S) = e - n + 2; b)
Cr(S) = r(CFG); or c) Cr(S) = #(BCS).

• The advantage of the third method is that it does not require
for transforming a given program into a CFG.

• The McCabe cyclomatic complexity is a directly derived
property of CFGs based Euler’s theorem in graph theory, which is
used for determining regions for a given connected planar graph with
know topology.

• Comparative studies show that the time, cyclomatic, and symbolic

complexities cannot actually reflect the real complexity of software systems
in design, representation, cognition, and/or comprehension.

• Symbolic complexity does not correlate to the operational or
functional complexity of software systems. Symbolic complexity does
not represent the throughput or the input size of problems.

© 2008 by Taylor & Francis Group, LLC

842 Part III Organizational Foundations of SE

• Time complexity does not work well for a system where there
are no loops and dominant operations. Time complexity cannot
distinguish the real complexities of systems with the same asymptotic
function.

• The cognitive complexity is a more objective measure of
software system complexities and sizes, because it represents the real
semantic complexity by integrating both the operational and
architectural complexities in a coherent measure.

• The operational complexity Cop(S) of a software system S is

constrained by the lower bound of the symbolic complexity Cs(S) and the
upper bound of the relational complexity Cr(S), i.e., O(n) ≤ Cop(S) ≤ O(n2),
where n is the number of statements in S.

• It indicates that the real complexities and sizes of software
systems are used to be greatly underestimated when the conventional
symbolic size measurement (LOC) is adopted, because it represents
only the minimum functional complexity of software.

• The cognitive complexity results in more actual measurement
of the functional sizes of software systems.

• The normalized software system architectures state that

components of different subsystems should not be coupled directly, rather
than be invoked through their top layer components in the same subsystem.

• In order to reduce system complexity and maintain a manageable

cognitive handling ability, the coupling among components of a software
system should be implemented through their common parent node (the super
system) rather than by direct links between them.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

System philosophies

• The system philosophy is based on the observation that the nature is
built by a small number of basic components and particles, and governed by
a limited set of basic laws. Even all living things is configured by almost the
same cells, chromosomes, and DNAs.

• The discipline of system science is an inquiry into the general

principles and rules commonly shared by different kinds of systems. The

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 843

system metaphor is one of the most widely used concepts and notions in
almost all disciplines of science, engineering, and society.

System Abstraction

• The generality principle of system abstraction states that a system
can be represented as a whole in a given level k of reasoning without
knowing the details at levels below k.

• Abstract systems can be classified into two categories known as the
closed and open systems. Most practical and useful systems in nature are
open systems in which there are interactions between the system and its
environment.

• A closed systemS is a 4-tuple, i.e.,S = (C, R, B, Ω), where C is
a nonempty set of components of the system; R is a nonempty set of
relations between pairs of the components in the system, R ⊆ C × C; B
is a set of behaviors (or functions); and Ω is a set of constraints on the
memberships of components, the conditions of relations, and the scopes
of behaviors.

• An open system S is a 7-tuple, i.e., S = (C, R, B, Ω, Θ) = (C, Rc,
Ri, Ro, B, Ω, Θ), where Θ is the environment of S with a nonempty set of
components CΘ outside C; Rc ⊆ C × C is a set of internal relations; Ri ⊆
CΘ × C is a set of external input relations; and Ro ⊆ C × CΘ is a set of
external output relations.

System topology

• Systems as complex entities may be classified into various categories
according to key characteristics of their components (C), relations (R),
behaviors (B), constraints (Ω), and/or environments (Θ).

• A concrete system is a real and specific system with natural
entities and certain functions.

• An abstract system is a virtual or theoretical system that is
modeled by mathematics or computing simulations.

• The size of a system Ss is the number of components encompassed in

the system, i.e., Ss = #C = nc.

• The magnitude of system Ms is the number of asymmetric binary

relations among the nc components of the system including the reflexive
relations, i.e., Ms = #R = nc

2.

© 2008 by Taylor & Francis Group, LLC

844 Part III Organizational Foundations of SE

• The taxonomy of the magnitudes of systems can be classified at
seven levels, from bottom up, known as:

• The empty system: (Ss = 0, Ms = 0)

• Small system: (1 ≤ Ss ≤ 10, 1 ≤ Ms ≤ 100)

• Medium system: (10 < Ss ≤ 100, 100 < Ms ≤ 104)

• Large system: (102 < Ss ≤ 103, 104 < Ms ≤ 106)

• Giant system: (103 < Ss ≤ 104, 106 < Ms ≤ 108)

• Immense system: (104 < Ss ≤ 105, 108 < Ms ≤ 1010)

• The infinite system: (Ss = ∞, Ms = ∞)

• A System Organization Tree (SOT) is an n-nary complete tree in
which all leave nodes represent a component and the remainder, all nodes
beyond the leaves, represent a subsystem.

• The cohesion of a system S, CH(S), is defined as a ratio between its

number of internal relations #Rc(S) and the total relations of the system
#R(S).

• The coupling of a system S, CP(S), is defined as a ratio between its

number of external relations #Ri(S) + #Ro(S) and the total relations of the
system #R(S).

• The relationship between cohesion and coupling of any open system
S are complementary, i.e., CH(S) + CP(S) = 100%.

System Algebra

• System algebra is an abstract mathematical structure that provides an

algebraic treatment of abstract systems as well as their relations and
operation rules for forming complex systems.

• System relationships in system algebra can be equivalent,
independent, overlapped, related, being subsystem, and being super system.

• Two systems S1 and S2 are equivalent, denoted by =, if all sets
of components, relations, behaviors, constraints, and environments are
identical.

• Two systems S1 and S2 are independent, denoted by R , if both
their component sets and external relation sets are disjoint.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 845

• Two systems S1 and S2 are overlapped, denoted by Π, if their
component sets are overlapped.

• Two systems S1 and S2 are related, denoted by R, if either the
sets of their input relations or output relations are overlapped.

• A subsystem S’ is a system that is encompassed in another
system S, denoted by .

• A super system S is a system that encompasses one or more
subsystems S’, denoted by .

• System operations in system algebra are system conjunction,

disjunction, difference, composition, and decomposition as defined below.

• The conjunction of two open systems S1 and S2, denoted by ,
results in a super system that is formed by incremental conjunctions
of both sets of relations and behaviors, respectively, as well as simple
conjunctions of sets of components, constraints, and environments.

• The difference between an open systems S and an open
subsystem S1, denoted by , results in an open subsystem S2 that is
formed by the differences of sets of components, input relations, output
relations, and constraints, difference of sets of internal relations minus
both Rc

1 and ∆Rc
12, as difference of sets of behaviors minus both B1

and ∆B12.

• The composition of two open systems S1 and S2, denoted by ,
is an integration of both systems into a super system S at a given level
of the system hierarchy by one of the compositional relations Rc = {||,
→, }.

• The decomposition of an open systems S, denoted by , is to
break up S into two subsystems at the same level of the system
hierarchy by one of the compositional relations Rc = {||, →, }.

System principles

• The system gain of functionality states that system conjunction or
composition between two systems S1 and S2 creates new relations ∆R12
and/or new behaviors (functions) ∆B12 that are solely a property of the
newly established super system S, which can be determined by the sizes of
the two intersected component sets #C1 and #C2.

• The fusion effect of a system is a self-productive property of systems
that only appears when the system functions collectively as a whole.

© 2008 by Taylor & Francis Group, LLC

846 Part III Organizational Foundations of SE

• System mutation states that the gradual increment of quantity of a
system, i.e., ∆C or ∆R, in a system beyond the point of the critical mass Qcm
triggers the abrupt generation of functionality (quality) Fcm of the system.

• The abstract work done by a system S, W(S), is its output of utility
U in term of number of functions F implemented, i.e., () [F]W S U= .

• The bottleneck principle of systems states that the output work
of a serial system W(Ss) is determined by the least powerful component
of the system.

• The appreciation principle of systems states that the output
work of a parallel system W(Sp) is a sum of the work done by all its
components less the overhead of the system ϖ.

• System organization is a process to configure and manipulate the

system into or approaching to a stable and ordered state with an internal
equilibrium.

• System synchronization states that a system reaches its maximum
utility maxS when all components’ efforts 1 2and S S are synchronized.

• Dissimilation is the tendency that a system undergoes in an apparent
or hidden destructive change against its original purposes or designed
functions. System dissimilation can be analyzed on the basis of how systems
maintain their functional availability and against the loss of it, which can be
the designed utility, function, efficiency, or reliability of the system.

• The dissimilation property of maintainable systems can be
derived based on those of nonmaintainable systems, if the maintenance
effect is treated as a recovery of the original availability of the system.

Software System engineering

• The Generic Computing System (GCS) is an abstract logical model
of the executing platform, which controls a set of processes and underlying
resources, such as memory, ports, and the system clock. A process is
dispatched and controlled by the system that is triggered by various external,
timing, or interrupt events.

• The hierarchical structure of software systems shows that a
software system can be decomposed from the top down at seven levels
known as those of the system, subsystem, component (class, or pattern),
function (method), statement, data model (structure), and target code. The

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 847

layered decomposition of software systems can be perceived as a stepwise
refinement process that transfers a system into target code.

• Software engineering processes and their work products can be
described by the layered system model of software engineering processes and
corresponding work products and documentation. The clarification of the
work products and results of each layered process is helpful to establish job
expectations, quality standards, and process transition criteria in software
engineering organization.

• Many phenomena in software engineering practice can be identified
as typical system engineering problems, such as: a) New is beautiful; b)
Fundamental research left behind industrial practices; c) Overlooked
coordinative work organization as the key software engineering technology;
d) Product lifespan is too short; e) Local maximum is often adopted; f)
Pentium inside? g) Views on software systems – pessimism vs. optimism; h)
The software maintenance crisis; i) Synchronization by process-based
software engineering; and j) Measuring the tendency of programmers.

The complexity theory of software systems

• Although computational complexities, particularly algorithm
complexities, are one of the focuses in computer science, software
engineering is particularly interested in the functional complexity of large
scale and real-world systems.

• Computational complexity theories study the solvability in
computing. The solvable problems are those that can be computed by
polynomial-time consumption. The nonsolvable problems are those that
cannot be solved in any practical sense by computers due to excessive time
requirements.

• The time complexity of an algorithm for a given problem is
measured as an estimation of the number of dominant operations in the
algorithm, where each of the dominant operations is assumed to take an
identical unit of time in operation.

• The space complexity of an algorithm for a given problem is
the maximum required space for both working memory and target code
memory. Because the target code memory is a constant and
determinable, software space complexity is focused on the working
memory complexity.

© 2008 by Taylor & Francis Group, LLC

848 Part III Organizational Foundations of SE

• The symbolic complexity of a software system S, Cs(S), is the linear
length of its static statements measured in the unit of lines of code (LOC).

• The cyclomatic complexity of a software system S, Cr(S), is

determined by the number of regions contained in the CFG, r(CFG),
provided that CFG is connected according to Euler’s theorem, i.e., Cr(S) =
r(CFG) = e - n + 2, where, e is the number of edges in CFG representing
branches and cycles, n number of nodes in CFG where each node is
equivalent to a block of sequential code.

• The cyclomatic complexity Cr(S) can be determined by three
methods such as: a) Cr(S) = e - n + 2; b) Cr(S) = r(CFG); or c) Cr(S)
= #(BCS). The advantage of the third method is that it does not require
for transforming a given program into a CFG.

• The cognitive complexity of a software system S, Cc(S), is a product

of the operational complexity Cop(S) and the architectural complexity
Ca(S). The unit of cognitive complexity is function-objects [FO].

• The operational complexity of a software system S, Cop(S), is
determined by the sum of the cognitive weights of its n linear blocks
composed by individual BCS’s, where each block may consist of q
layers of embedded BCS’s, and within each of the layers there are m
linear BCS’s. The unit of operational complexity is functions [F].

• The architectural complexity of a software system S, Ca(S), is
determined by the number of data objects at the system and component
levels. The unit of architectural complexity is objects [O].

• The cohesion of a software system S, CH(S), is a ratio of the
system’s number of internal relations #Rc and its total number of internal and
external relations #Rc + #Ri + #Ro.

• The coupling of a software system S, CP(S), is a ratio of the
system’s number of external relations #Ri + #Ro and its total number of
internal and external relations #Rc + #Ri + #Ro.

• In order to reduce system complexity and maintain a manageable
cognitive handling ability, the coupling among components of a software
system should be implemented through their common parent node (the super
system) rather than by direct links between them.

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 849

Questions and
Research Opportunities

10.1 The slogan of system science and philosophy is: “The whole is

more than the sum of its parts.” Discuss on which condition(s) it
is true and on which condition(s) it may be false.

10.2 Why do more and more researchers believe software engineering

should adopt the system engineering approach? How may system
science play an important role in software engineering?

10.3 According to system philosophy, explain why there is no number

two in sciences, while there is no number one in engineering.

10.4 According to Definitions 10.5 and 10.3, discuss what the

differences between an open system and a closed system are.

10.5 Why are almost all real-world systems open systems? Is the

empty system an open or closed system? What is that of the
universe system?

10.6 Thy to prove that the universal system U(CU, RU, BU, ΩU) is a

closed system.

10.7 Try to prove that the empty system O(C∅, R∅, B∅, Ω∅) is a closed

system.

10.8 What are the five basic characteristics or criteria based on that

system taxonomy may be classified?

10.9 What are the differences between system sizes and system

magnitudes?

10.10 What is the seven-level taxonomy of system scales based on

system sizes and magnitudes? Why may systems easily grow very
large and complicated?

© 2008 by Taylor & Francis Group, LLC

850 Part III Organizational Foundations of SE

10.11 Given a software system with 20 components, calculate the size,
magnitude, and relative complexity of the system according to the
system magnitude model. Then, determine the category of the
system in the seven-level hierarchy of system magnitudes.

10.12 Redo Ex. 10.11 assuming a software system with 300 components

and discuss what techniques may be adopted to deal with the
complexity of such a system.

10.13 Why should the generic system topology be a hierarchical

structure based on the complete n-nary tree? What are the
advantages of the normalized system architecture?

10.14 An advanced property of the complete n-nary tree Tc(n, N) is that

it is uniquely determinable by only two attributes: the number of
fan-out of the tree n and the total number of leaves N. Try to
determine the architecture of two complete n-nary trees, Tc1(n1,
N1) = (3, 20) and Tc2(n2, N2) = (4, 30), based on the given values.

10.15 According to Corollary 10.5, what are the underlying reasons that

force systems to take hierarchical tree structures?

10.16 Apply the system organization theories to analyze the following

issues:

 a) Given a system S with 8 components (at the leave level), try
to determine the structure of a complete ternary tree for
system organization.

 b) When 5 additional components are included into S, what
changes need to be made in the ternary organization tree?

10.17 Draw a diagram to denote the growth of a system organization

tree from SOT(3, 5) to SOT(3, 14).

10.18 Draw a diagram for the system organization tree SOT(5, 30), and

determine its structural attributes according to Corollary 10.6.

10.19 Given a normalized system organization tree SOT(fon , N) =

SOT(4, 20), where N is the number of employees, and fon is the
average fan-out of groups, how many managers are needed in this
organization? What is the depth of the normalized organization
tree?

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 851

10.20 According to Corollary 10.6, all properties of an n-nary system
organization tree SOT(fon , N) are uniquely determined when the
total number of leave nodes N and the average fan-out fon are
given. For a system SOT(fon , N) = SOT(3, 18), try to determine
the following properties:

 a) The maximum number of fan-out of any node fon .

 b) The maximum number of nodes at a given level k, nk.

 c) The depth of the SOT, d.

 d) The maximum number of nodes in the SOT, NSOT.

 e) The maximum number of components (on all leaves) in the
SOT, Ne.

 f) The maximum number of subsystems (nodes except all
leaves) in the SOT, Nm.

10.21 What are the values of cohesion and coupling of a closed system?

10.22 What are the values of cohesion and coupling of an empty

system?

10.23 What are the conditions that convert a closed system to an open

system, and vice versa?

10.24 What is the mathematical model of incremental union , and how

may it be used to explain the system gains during system
conjunction and composition?

10.25 According to the law of system maximum gain, discuss why the

conventional description of system gains,
1

() ()
n

i
i

W S W C
=

≥ ∑ , is

incorrect?

10.26 What would necessarily be sacrificed when systems gain new

functionality from composition of multiple components?

10.27 What is the condition of system equilibrium? Try to provide an

example for a particular equilibrium system.

10.28 What are the conditions of system self-organization? Try to

provide an example for a particular self-organized system.

© 2008 by Taylor & Francis Group, LLC

852 Part III Organizational Foundations of SE

10.29 What is system dissimilation? What are the differences between
dissimilations of maintainable and nonmaintainable systems?

10.30 What are your suggestions for implementing the system’s

maximum output in software engineering organization?

10.31 On the basis of system theories, try to identify a software

engineering problem that is a system engineering issue rather than
a technical issue.

10.32 Comparatively analyze the symbolic complexity and operational

complexity of the formal model QueueST as given in Fig. 4.8.

10.33 According to the definition of software cognitive complexity,

explain why the functional complexity of software is not a simple
measure rather than a complex one as a product of software
architectural and operational complexities.

10.34 Calculate the cognitive complexity of the formal model QueueST

as given in Figs. 4.7 and 4.8.

10.35 Using the data presented in Table 10.4, explain why programs

with widely different functional/cognitive complexities would not
be distinguished by the measure of symbolic complexity.

10.36 Why is the symbolic complexity Cs(S) treated as a special case of

the operational complexity Cop(S)? What is the general case of
problems? What is the basic assumption that has been simplified
in the symbolic complexity?

10.37 According to Corollary 10.17 and Fig. 10.31, explain why the real

relational and functional complexities of software systems have
been totally underestimated by the measure of the symbolic
complexity.

10.38 Comparatively analyze the following methodologies for software

complexity measurements, and discuss their advantages,
disadvantages, and usages (application areas) in a table:

 • Computational (time) complexity

 • Symbolic complexity (in LOC)

 • Cyclomatic complexity

 • Cognitive complexity

© 2008 by Taylor & Francis Group, LLC

Chapter 10 System Science Foundations of SE 853

10.39 Why may the cohesion and coupling complexities be treated as
the system-level relational complexity measure for software
systems, particularly component-based system?

10.40 According to Theorem 10.15, explain why direct coupling is

prohibited in structured programming and normalized system
architectures.

10.41 Read the following classic article in system science:

George J. Klir (1988), System Profile: The emergence

of System Science, System Research, 5(2), pp.145-156.

Discuss the following topics in a group:

 • About the author.

 • How did system science emerge?
• Why would system science and engineering be the next

focus in software engineering?
 • What conclusions of the article interested you? Why?
 • Your arguments or counter-points on any of the conclusions

derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 11

MANAGEMENT SCIENCE
FOUNDATIONS OF

SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

9.
Cognitive
Informatics
Foundations
of SE

11.1 Introduction 11.4 Quality Systems
11.2 Principles of Management Science 11.5 SE Management
11.3 Decision Theories 11.6 Summary

10.
System
Science
Foundations
of SE

11.
Management
Science
Foundations
of SE

12.
Economics
Foundations
of
SE

13.
Sociology
Foundations
of
SE

8.
Engineering
Foundations
of
SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

856 Part III Organizational Foundations of SE

Knowledge Structure

 Principles of management science

 • Classic management thought
 • Architecture of management science
 • Fundamental theory of management science

 Decision theories

 • The mathematical model of decision making
 • Decision making processes
 • Static decision making strategies
 • Game theory
 • Decision grid theory

 Quality systems

 • Quality principles
 • Quality control and assurance
 • Quality management systems

 Software engineering management

 • Taxonomy of SE management
 • The SE process reference model (SEPRM)

Learning Objectives

 • To be aware of fundamental principles and architecture of management
science.

 • To understand theories of management science, particularly the gains of
management and division of labor.

 • To understand decision theories for engineering management and the
structure of decision strategies and processes.

 • To know game theories and the decision grid theory for dynamic and series
decision making.

 • To understand quality system theories and quality principles for software
engineering.

 • To be able to apply management theories to software engineering
organization, management, and quality assurance.

11. Management Science Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 857

“Doing the best you can with the resources at your disposal
is an age-old problem.”

J. Lawrence, Jr. and B. Pasternack (2002)

“Poor management can increase software costs more rapidly than any other factor.”

Barry Boehm (1981)

11.1 Introduction

anagement science studies how organizations may be operated
efficiently, effectively, and profitably on certain constraints of
resources and environments. Management is one of the important

techniques and professions that emerged in the industrial revolutions in
which it was found that management was needed when people worked
together to achieve a result not possible by individuals acting alone.
Management science as a discipline developed on the basis of a field of study
known as operations research that proliferated during World War II.

 Definition 11.1 Management science is the discipline that studies
organizational behaviors, executive decision making, and resource
optimization on given internal and external constraints.

The objects of study in management science are work, people,

resources, and processes. The focal point of management science is
productivity and quality. The basic principles of management science are
organization, coordination, planning, forecasting, scheduling, and quality
assurance. Therefore, formal and empirical theories of coordination, decision
making, and quality are the major pursuits of management science.

A profound theory for management science is the formal work
organization theory as developed in Chapter 8 represented by Theorems 8.4
through 8.11. Wang’s coordinative work organization theory reveals the
nature and laws behind human coordination in group work and the
approaches for engineering project optimizations. Therefore, it plays a
fundamental role in building the formalized theoretical framework of
management science.

Historically, software engineering has focused on programming
methodologies, programming languages, software development models, and
tools. Areas now thought critical to software engineering – organizational

M

© 2008 by Taylor & Francis Group, LLC

858 Part III Organizational Foundations of SE

and management infrastructures – have been largely ignored. Although the
managerial foundations of software engineering had not been widely
recognized in software engineering studies and education, this is not to say
that management science has not strongly influenced the formation of
software engineering as a discipline. In tracing the history of software
engineering, it has been found that many of the important concepts of
software engineering, such as specification, requirement analysis, design,
testing, process, and quality were borrowed from or inspired by the methods
and practices developed in management science and other engineering
disciplines.

Early software project organization was mostly ad hoc. There were no
established processes or best practices. Those that managed or oversaw the
work were not traditionally trained managers, rather they could be thought of
as accidental managers, who were in charge because they were the best
programmers. As it turns out, the skills required for managers do not usually
come hand-in-hand with those for writing good software. It becomes evident
that software projects follow the same classic project phases as other
‘traditional’ projects: analysis, design, implementation, and testing. This
becomes increasingly evident as software becomes more pervasive
throughout all industries, and software projects are now accountable to non-
software managers. This has led to increased attention on software project
management and organization methodologies as the author and his colleague
wrote [Wang and King, 2000a]:

 “In the software industry, the central role is no longer that of
the programmers, because project managers and corporate
management also have critical roles to play. As programmers require
programming technologies, the software corporation managers seek
organization and decision making methodologies, and the project
managers seek management and software quality assurance
methodologies. These needs have together formed the modern
domain of software engineering which to summarize includes three
important aspects: development methodology, organization, and
management.”

Therefore, beyond programming and technical aspects of software

development, software engineering deals with questions of organization and
management infrastructures. The work of the project manager is to balance
competing demands for project scope, time, cost, risk, and quality; they must
satisfy stakeholders with differing needs and expectations and meet identified
requirements.
 In the remainder of this chapter, the management science foundations
of software engineering will be presented in four sections. Section 11.2

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 859

reviews classic management thought, formalizes a set of empirical principles
of management science, and introduces the work coordination and
organization theory and laws developed by Wang. Section 11.3 presents a
comprehensive set of decision theories, especially the latest development of
the formal game theory and decision grid theory, which may be used for
dynamic decision making in complex real-world applications when a series
of interlinked decisions are needed. Section 11.4 describes quality systems
for management, in which a formal treatment of quality and its assurance is
provided. Section 11.5 deals with complicated management issues in
software engineering by introducing the approach of process-based software
engineering.

11.2 Principles of Management
 Science

The development of management as a scientific discipline can be traced back
to the work of Frederick Taylor on the improvement of operations in
production in the 1890s [Taylor, 1911]. Henry Gantt studied project
scheduling and developed the control chart in the 1900s, known as Gantt
Chart [Gantt, 1919], for minimizing interrelated job completion times. In the
1920s, William Shewhart introduced statistics into management and
developed the control charts for statistical process and quality control
[Shewhart, 1939]. In the 1930s, John von Neumann and his colleagues
studied strategies in competitive situations known as game theory [von
Neumann and Morgenstern, 1980; Osborne and Rubinstein, 1994; Myerson,
1997]. In the 1950s, project scheduling was well studied and the Program
Evaluation and Review Technique (PERT) [Dougherty and Stephens, 1984;
Hagstrom, 1988; Schmenner and Swink, 1998] and Critical Path Method
(CPM) [Kelley, 1961; Schonberger, 1981] were developed. Queuing theory
was developed by E. Erlang and John Little in the 1910s and the 1960s,
respectively [Little, 1961; Ramaswami and Wirth, 1997]. Various
programming methods were proposed to solve optimization problems for a
given objective and a number of constraints such as linear programming in
the 1940s [Murty, 1983], nonlinear programming and dynamic programming
in the 1950s and later [Bertsekas, 1995; Donnelly et al., 1998; Schmenner
and Swink, 1998]. Philip Crosby, Edwards Deming, Genichi Taguchi, and
Joseph Juran worked on quality systems and developed a number of quality

© 2008 by Taylor & Francis Group, LLC

860 Part III Organizational Foundations of SE

control principles and methodologies in the 1970s and the 1980s [Crosby,
1977; Deming, 1982/86; Taguchi,1986; Juran, 1988/89; Juran et al,
1962/80].

11.2.1 CLASSIC MANAGEMENT THOUGHT

Frederick Taylor’s work on Principles of Scientific Management
published in 1911 inaugurates management as a formal branch of human
inquiry on group work and industrial engineering [Taylor, 1911]. Then,
classic management thought was further developed in Henri Fayol’s work on
General and Industrial Management in 1929 [Fayol, 1929], and James
Mooney‘s work on The Principle of Organization in 1947 [Mooney, 1947].

Henri Fayol was interested in the basic principles of management on

determining “soundness and good working order [Fayol, 1929].” Based on
experience as the manager of a large coal company in France, Fayol
proposed a framework for the art of management with the following
principles:

 • Division of labor: Work can be divided into the smallest

feasible elements to take advantage of gain from
specialization.

 • Parity of authority and responsibility: Sufficient authority must
be delegated to each jobholder for carrying out assigned job
responsibility.

 • Unity of command: An employee must receive orders from and
be accountable to only one superior.

 • Unity of direction: Activities with the same purpose must be
organized together and operated under an integrated plan.

 • Team work: Employees must be encouraged to unite their
effort, goals, and interest with those of the organization. The
general interest of the organization takes precedence over
those of individuals.

 • Fair remuneration: Pay must be based on achievement of
assigned job objectives.

 • Order: Each job and its relationship to other jobs must be
clearly defined.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 861

 • Equity: Established rules and agreements must be enforced
fairly.

 • Stability of personnel: Employees must be encouraged to
establish loyalty to the organization via a long-term
commitment.

 • Initiative: Employees must be encouraged to exercise
independent judgment within their job authority.

James Mooney views organization as the technique of relating specific

duties or functions in a coordinated whole. Therefore, management is to
devise an appropriate organization [Mooney, 1947]. The classical
management thought believed that natural laws of organization and
management existed. The objective of management science is to seek the
laws and principles for business, industry, and system organization and
management. However, despite of a variety of empirical principles and
heuristic strategies, a few formal theories and laws has been developed in
contemporary management science on the basis of the classic thought of
management as reviewed in the beginning of this section.

11.2.2 ARCHITECTURE OF MANAGEMENT SCIENCE

Definition 11.2 Management is a coordination process that organizes
activities and efforts of a group to achieve goals and results not possible by
individuals.

11.2.2.1 Functions of Management

The functions of management identified in management science are
planning, organizing, controlling, and optimizing as shown in Fig. 11.1. A
manager is responsible for: a) Planning the process, labor, time, resource
allocation, and quality requirements of a work; b) Organizing various inputs
via the processes to produce certain product or service; c) Controlling
individual and process outputs in terms of productivity, costs, and quality;
and d) Optimizing the input allocations and organizational objectives via
feedback of processes and customers.

© 2008 by Taylor & Francis Group, LLC

862 Part III Organizational Foundations of SE

Figure 11.1 The functions of management

Definition 11.3 Planning is a management process for organization,

coordination, and estimation of project time and related labor and resource
allocation.

Planning is required at all levels of management from the strategic
level, the technical level, to the operating level. The work products of
planning are objectives, decisions, people and resources allocations, and the
implementation processes.

The basic techniques for project planning are as follows:

 • Partition a given task into detailed subtasks
 • Analyze interrelationships between the subtasks, identify parallel

and/or serial relations and constraints
 • Estimate time needed for completing each subtask
 • Decide on the sequence of work allocation (scheduling)
 • Define outputs (deliverables) of each task and subtasks
 • Assign personnel for each task and subtask
 • Allocate resources to each task and subtask

Planning in management encompasses forecasting and scheduling.

Formal descriptions of theories and laws on project planning, forecasting,
and decision making will be discussed in Sections 11.2.3 and 11.3. The
concept of scheduling is briefly introduced below.

Planning

Organizing

Controlling

Optimizing

Management

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 863

Definition 11.4 Scheduling is a management process that maps the
planned activities onto the time axis in a parallel or serial structure or their
combinations.

Project planning and scheduling focus on the overall synchronization
and coordination of all processes, tasks, and people working on them. Plans
and schedules enable project managers and members to check if any activity
is started and/or completed on time and within the scope of allocated
resources. Without scheduling, one may realize that a project is late when all
planned time and resources have been consumed.

Formal descriptions of theories and laws on project scheduling have
been provided in Section 8.5. It is noteworthy that there are natural laws that
constrain the allocation of labor and time for a given project. In other words,
the optimal allocation of labor, time, and resources is not arbitrary and
simply empirical; certain laws and natural constraints exist as described in
Section 8.5, particularly by Theorems 8.2, 8.4, and 8.7.

Definition 11.5 Organizing is a management process that coordinates

and allocates essential means, such as labor, resources, and processes, in
order to implement a planned work.

Organizing methodologies play a central rule in management because

organization is the major means of management. The fundamental
requirement for organization, and theories of optimal allocation of labor and
time will be discussed in Section 11.2.3.

Definition 11.6 Controlling is a management process that monitors and
ensures the planned work process and outcomes in operation conforming to
predefined requirements, standards, and schedules.

 Controlling is a management process parallel with the production or

operation process. When a nonconforming result is identified in the
operation, the process should be reviewed and the causality should be
identified. The establishment of a quality system is the key methodology for
project and organizational controlling in management. Some recurring and
systematic inconformity in process may indicate the need to adjust the
planned process, technology, labor allocation, and/or the initial schedule.

Definition 11.7 Optimizing is a management process that continuously
improves the results of an organization or project in terms of higher
productivity, better quality, more accurate scheduling, more efficient process,
and lower costs.

J. Lawrence, Jr. and B. Pasternack (2002) provided a best explanation
of management optimizing that says: “Doing the best you can with the

© 2008 by Taylor & Francis Group, LLC

864 Part III Organizational Foundations of SE

resources at your disposal … .” Management always seeks the optimal
solutions, products, services, and systems. Various linear/nonlinear
programming models, decision theories, and process improvement methods
are developed to support the management activities towards system
optimization, which will be described in the remainder of this chapter.

11.2.2.2 The System Model of Management

It is noteworthy that, although there are various objectives in
management, the key objective of management science is not management
but work. That is, management science studies how human work may be
done coordinately, efficiently, qualitatively, and profitably in a systematic
approach [Wang, 2006l/06d/07d].

Management science as a system science can be described in Fig. 11.2.
In the management system, managers organize and coordinate the production
or service processes to transfer the inputs into expected outputs. As shown in
Fig. 11.2, the inputs of a management system encompass three essences
known as labor, time, and resources; while the outputs of a management
system encompass other three essences known as productivity, profit/cost,
and quality.

Figure 11.2 Structure of a management system

11.2.3 FUNDAMENTAL THEORY OF MANAGEMENT
 SCIENCE

Although management has been recognized before the establishment of
management science, the foundation of management science is still mainly

 Management

Input

Labor

Time Profit (costs)

Resources

Productivity

Quality

Processes

Organization

Process Output

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 865

empirical. Prior to discussing detailed management theories, this section
formally examines the fundamental requirement for management in groups,
organizations, societies, economies, businesses, and academic research. This
leads to the management laws of gain of management and gain of division of
labor [Wang, 2005i].

11.2.3.1 Why Management is Needed in Work Organization?

Based on empirical intuition, management has been recognized as a
necessary overhead in work organization. The primitive task of management
is to synchronize the work of a group of people. In an experiment on
rebuilding Stonehenge by not using modern tools in England, the project
involved hundreds of volunteers. One of the key findings in the project is
that a manager is needed as a chanteyman for synchronizing the team.
Otherwise, no matter how many people push and pall the huge stone, it will
not be moved for an inch.

However, a number of fundamental questions remain unexplained in
management science. For instances: Why is management universally needed
in work organization? What are the natural laws behind this generic
phenomenon? What are the optimal organizational forms in industry and
engineering?

The answers to the above questions may be sought by studying and
analyzing the nature of working groups of people [Wang, 2005i].

Definition 11.8 A natural group is a working group of people with

peers in which work is carried out via temporal pairwise coordination when
work has to be done by any pair of the peers.

Definition 11.9 A managed group is a working group of people with

peers and a manager, in which work is carried out via one-to-many
coordination by the manager.

Definition 11.10 The size of a group n is the number of people working

together toward a common goal in production or service.

Definition 11.11 The number of interpersonal coordination C2(n)
needed in a natural group of size n, n ≥ 3, can be determined by:

2

2 n() = 2

(1)
CC n

n n -=

i

i
 (11.1)

where a coordination between peers a and b is asymmetric, i.e., a r b ≠ b r a.

© 2008 by Taylor & Francis Group, LLC

866 Part III Organizational Foundations of SE

When all possible forms of interpersonal coordination in a group is
considered, i.e., taking into account of all possible combinations of k

nC for
any k, 0 ≤ k ≤ n, the total number of interpersonal coordination C(n) is
obtained as follows:

 0
1

() = 2

2

C
n

k
n

k
n

C n
=

+=

∑i (11.2)

Eq. 11.2 results in a geometrical progression series that is exponentially

increasing with the size of group n. The complexity is easily to be out of
control considering that a ten-person group yields C(10) = 211 = 2,048
possible forms of required coordination.

Definition 11.12 The number of interpersonal coordination Cm(n)

needed in a managed group of size n, n ≥ 3, can be determined by:

 Cm(n) = n + 1 (11.3)

where the addition person is the manager.

Definition 11.13 The management gain ∆m(n) of a managed group

over a natural group is the difference between the coordination efforts
needed in these two organization forms, i.e.:

2

2

() = () ()

(1) (1)

2 1

mm n C n C n

n n - n

n n

∆ −

= − +

= − −

i (11.4)

Definition 11.14 The management efficiency e(n) of a managed group

over a natural group is a ratio between the management gain and the
coordination efforts without management, i.e.:

2

2

()
() = 100%

()
()

(1) 100%
()
n+1(1) 100%
(1)

m

m n
e n

C n
c n
c n

n n -

∆

= −

= −

i

i

i
i

 (11.5)

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 867

Eqs. 11.1 through 11.5 indicate that management is needed because it
helps to reduce the complexity of working group organization. The benefit of
management in terms of the management gain ∆m(n) and the management
efficiency e(n) are illustrated in Fig. 11.3. It is obvious that

2lim () lim (2 1)
n n

m n n n
→∞ →∞

∆ = − − =∞ and 1lim () lim (1) 100%
n n

e n
n→∞ →∞

= − • =

100% [Wang, 2005i].

1

10

100

1000

10000

3 4 5 10 20 30 50 100

n

Re
la

tiv
e

ef
fo

rt m(n)

e(n)%

Figure 11.3 Gain and efficiency of management

11.2.3.2 The First Principle of Management

On the basis of the discussions in previous subsection, the relationships
among interpersonal coordination in a natural group (Eq. 11.1) and a
managed group (Eq. 11.3), as well as the management gain (Eq. 11.4) and
the management efficiencies (Eq. 11.5), can be quantitatively analyzed as
shown in Table 11.1. This result formally establishes the following principle
for management science [Wang, 2005i].

Table 11.1
Gains of Efficiency by Management

N 1 2 3 4 5 10 20 30 50 100
C2(n) 0 2 6 12 20 90 380 870 2450 9900
Cm(n) 2 3 4 5 6 11 21 31 51 101

∆m(n) - - 2 7 14 79 359 839 2399 9799

e(n)% - - 33.3 58.0 70.0 87.8 94.5 96.4 97.9 99.0

© 2008 by Taylor & Francis Group, LLC

868 Part III Organizational Foundations of SE

It is empirically observed that management is a necessary overhead of

any human-based system. Management functions like a switching center for
a group as a system. Without the management, individual component of the
system cannot work properly and efficiently.

The natural function of management is system synchronization.
Although the basic elements of management are planning, organization,
control, and optimization, the essence of all management principles is system
synchronization, which is also identified as one of the fundamental principles
of system science [Wang, 2005l] as described in Chapter 10, as well as in
economics [Marshall, 1938].

11.2.3.3 Gains from Division of Labor

The advantage of division of labor, also known as specialization of
skills, has been observed empirically by Confucius (551 – 479BC) in ancient
bureaucracy, Adam Smith in economics in 1776 [Smith, 1776], and
Frederick Taylor in management science in 1911 [Taylor, 1911]. Therefore,
it is perceived that division of labor is the fifth great invention of Chinese
civilization to the world in classic management science and sociology in
addition to the four great technical inventions known as typography, papyrus,
powder, and compass.

Adam Smith (1723-1790), the proposer of the invisible hand in
economics, investigated the advantages of specialization during the industrial
revolutions [Smith, 1776; Cannan, 1994]. He observed the operation of a pin
factory as follows:

“One workman could scarce, perhaps, with his utmost industry,
make ten pin in a day, and certainly could not make twenty.”

However, when pin making has become specialized in the factory, said

he:

“One man draws out the wire, another straightens it, a third cuts
it, a fourth points it, a fifth grinds it at the top for receiving the
head, …”

The 42nd Law of Software Engineering

Theorem 11.1 The gain of management states that management is
required to reduce the complexity of working group organization, to
improve the efficiency of groups, and to simplify the forms of
interpersonal coordination.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 869

As a result, Smith estimated that ten workers, working in the team in
the factory, could produce 48,000 pins a day in the above specialized
process. That would be at least 240-fold improvement of productivity than
these same ten people could produce while working alone.

Based on this observation, Smith found three distinct advantages of
specialization as follows:

 • The workers get good at their jobs – better than they would be if

they went from one function to another.

 • They do not waste time shifting from one task to another.

 • Tools or machines may be invented or purchased for the
specialized and repetitive work.

Smith’s observation on specialization has then been adopted as one of

the important principles for improving productivity. It is then called division
of labor by Marshall in Principles of Economics [Marshall, 1938]. This
principle is generally true because if all of us got really good at something
and concentrated on that one specialty, we could produce much more than we
could if we tried to do everything ourselves.

Specialization or division of labor can be implemented in two ways.
One way is to use different people to conduct different processes. The other
is to repetitively conduct a particular process by one person, and then repeat
the next process by the same person. According to cognitive informatics, the
latter approach can also save the overhead of cognitive complexity and
mental power between the switching of working processes [Wang, 2007j].
Exercise 11.35 provides an interesting example for testing the gain of
division of labor in the second approach.

The remainder of this subsection explores the natural laws behind the
well known phenomenon of division of labor in many areas of human
coordinative work organization.

Definition 11.15 Division of labor (DOL), or specialization on a
specific subtask in a process, is a work organization method in which a task
is divided into a sequence of multiple subtasks, and a person is only
specialized in a repeatable subtask.

Work organization by DOL can be illustrated in Fig. 11.4. The first

advantage of DOL is that it results in higher productivity and better quality
when a work involves only a limited number of subtasks. The second
advantage of DOL is that it eases work planning, because labor allocation,
replacement, and training are simplified when work is divided into simple
and limited basic processes.

© 2008 by Taylor & Francis Group, LLC

870 Part III Organizational Foundations of SE

To formally explain the potential gains of DOL, the differences of
relative effort of an individual spent in specialized work allocation and
natural work allocation can be comparatively analyzed below [Wang, 2005i].

DOL work allocation

P’1

↓
P’2

↓
… P’n

↓
Subtask-level repetition (Tj)

 Task: Ti = (Ti1 , Ti2 , …, Tin)
 Subtask: Tj = (T1j , T2j , …, Tkj)

1 2 … n

P1 → 1 T11 T12 … T1n

P2 → 2 T21 T22 … T2n

… … … … … …

Natural
work

allocation

Pk →

Whole

task-level
repetition

(Ti) k Tk1 Tk2 … Tkn

Figure 11.4 Division of labor: labor specializes (repeats) at the subtask-level

Definition 11.16 The natural work allocation is a form of loosely
coupled work organization that requires an invariable effort E(1) with a
relative value 1, i.e.:

 (1) = 1E (11.6)

Definition 11.17 The specialized work allocation Edol(1) is a work
organization method that allocates tasks via DOL, which results in the saving
of effort proportional to times of repetition k in an inversed exponential rate
determined by a constant e/c, i.e.:

 1(1) = ()kdol
eE
c

− (11.7)

where e = 2.72 and c is determined empirically based on the skilled rate of
repetition for a given task in the range of 1 < c < e.

Based on Eqs. 11.6 and 11.7, the gain of DOL can be illustrated in Fig.

11.5 where c = 2.5. When the relative effort of natural work allocation is set
as one, the advantage of DOL is an inversed exponential curve that decreases
proportionally to the number of task repetitions k.

Definition 11.18 The effort of natural work allocation of a group E(k)

is proportional to the number of persons k who is working on the task, i.e.:

() = (1)E k k E

k=

i
 (11.8)

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 871

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 20 50 100

k

R
el

at
iv

e
ef

fo
rt

E(1) Ed(1)

Figure 11.5 Gains of division of labor

Definition 11.19 The effort of specialized work allocation of a group
Edol(k) is proportional to the repetitive times k in an inversed exponential rate
determined by a constant e/c, i.e.:

-11

1
() =

()

k

dol ki
E k e

c
=
∑ (11.9)

where c, c < e, is determined empirically based on the specialization rate of a
repetitive task.

When the relative values of both E(k) and Edol(k) are determined, the
gain of DOL can be described by a ratio or a relative difference between
them.

Definition 11.20 The gain from DOL, g(k), by specialized work

allocation over the natural work allocation is a ratio between the work efforts
needed for these two organizational forms, i.e.:

-11

()
() =

()

1

()

dol

k

ki

E k
g k

E k
k

e
c=

=

∑
 (11.10)

© 2008 by Taylor & Francis Group, LLC

872 Part III Organizational Foundations of SE

Definition 11.21 The relative gain from DOL gr(k) of a specialized
work allocation over the natural work allocation is a ratio between the
relative difference and the work efforts needed without DOL, i.e.:

-11

() - ()
() = 100%

()
()

(1-) 100%
()

1

()
(1-) 100%

dol
r

dol

k

ki

E k E k
g k

E k
E k
E k

e
c
k

=

=

=

∑

i

i

i

 (11.11)

On the basis of Eqs. 11.10 and 11.11, the simulation results and curves

of gains of DOL in forms of the absolute gain g(k) and relative gain gr(k)%
are shown in Table 11.2 and Fig. 11.6, respectively, where c = 2.5.

 Table 11.2

Gains of Division of Labor

k 1 2 3 4 5 6 7 8 9 10 20 50 100
E(k) 1 2 3 4 5 6 7 8 9 10 20 50 100

Edol(k) 1 1.92 2.76 3.53 4.24 4.89 5.49 6.04 6.54 7 9.93 11.87 12.1
g(k) 1 1.04 1.09 1.13 1.18 1.23 1.28 1.32 1.38 1.43 2.01 4.21 8.26

gr(k)% 0 4 8 11.8 15.2 18.5 21.6 24.5 27.3 30 50.4 76.3 87.9

1

10

100

1 2 3 4 5 6 7 8 9 10 20 50 100

k

R
el

at
iv

e
ef

fo
rt

gr(k)%

g(k)

Figure 11.6 Gains of division of labor (e/c = 1.09)

When a higher skill rate in specialization is used, i.e., e/c = 2.72, the

curves of gains via DOL as shown in Fig. 11.6 are increased sharply. In other

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 873

words, the higher the skill rate via specialization and repetition in a task, the
larger the gains via DOL.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 10 20 50 100

k

Re
la

tiv
e

ef
fo

rt

gr(k)%

g(k)

Figure 11.7 Gains of division of labor (e/c = 2.72)

11.2.3.4 The Second Principle of Management

Based on the discussions in Section 11.2.3.3, this subsection derives the
second principle of management on the benefit of division of labor in work
organization [Wang, 2005i].

The 43rd Law of Software Engineering

Theorem 11.2 The gain of division of labor states that the relative gain
gr(k) via division of labor in work organization is proportional to the
repetitive times k at specialized subtask-level, i.e.:

-11

() - ()
() = 100%

()
()

(1-) 100%
()

1

()
(1-) 100%

dol
r

dol

k

ki

E k E k
g k

E k
E k
E k

e
c
k

=

=

=

∑

i

i

i

 (11.12)

where c is a positive constant, 1 < c < e.

© 2008 by Taylor & Francis Group, LLC

874 Part III Organizational Foundations of SE

The fundamental principles of management as described in both
Theorems 11.1 and 11.2 [Wang, 2005i] can be applied in any field of human
coordinative work organization. Law 43 can be extended to division of work
for multiple subtasks conducted by a single person. That is, as shown in Figs.
11.5 through 11.6, when there are n subtasks needed to be repeated for k
times by one person, Tij, 1 ≤ i ≤ n, 1 ≤ j ≤ k, the person may carry out the
work by repeating each subtask Tj = (T1j , T2j , …, Tkj), 1 ≤ j ≤ k, in order
to save effort and time.

11.2.3.5 Wang’s Work Organization Theory for Coordinative Work
 Management

As revealed in Section 11.2.2.2, the ultimate object under study in
management science is human work rather than management. Therefore, the
theoretical framework for management science is the laws and principles
developed so far in Section 11.2.3 [Wang, 2005i] and the formal coordinative
work organization theory [Wang, 2007d] as presented in Section 8.5. Human
coordination in groups and projects is a widely generic phenomenon studied
in large-scale engineering organization in management science, system
science, and software engineering [Brooks, 1975; Klir, 1992; Ritzer, 1983].
Coordinative work is needed when separated individuals cannot carry out a
given work or solve a certain problem. Therefore, a theory of coordinative
work organization is at the center of management and system sciences.

Despite of a whole spectrum of empirical studies on the age-old
problems that observed the influence and impact of the extent of human
coordination to work performance [Fayol, 1929; Mooney, 1947; Ritzer,
1983/93], there was a lack of a rigorous theory of coordinative work
organization and management, and the inherent nature of the problem was
hidden by too many trivial factors.

The work described in Section 8.5 developed a generic theory of
coordinative work organization based on intensive studies in the complicated
software engineering environment. The basic properties and characteristics of
coordinative work and their mathematical models are established, which
explains the transformability between labor and time in coordinative work
and the role of the overhead for interpersonal coordination. A set of Wang’s
laws of abstract work organization is derived in Theorems 8.4 through 8.11,
which provide a foundation for rigorously analyzing the work duration and

Corollary 11.1 By adopting division of work, a single person can gain
the advantage of division of labor by repetitively working on the same
subtask, when a task can be decomposed into a series of subtasks.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 875

effort in coordinative project organization. The laws have been revealed, for
the first time, that the interpersonal coordination rate in groups is the black
hole that has resulted in the failures of so many large-scale projects due to
the exponential growing of unexpected actual workload under nonoptimal
labor and work allocation.

On the basis of the coordinative work organization theory, a set of
decision optimization strategies can be derived towards optimal project
organization for the best labor allocation, the shortest project duration, and
the lowest effort. The exchangeability and its constraints between labor and
time in work organization are formally explained.

11.3 Decision Theories

Decision making is one of the basic cognitive processes of human brains
[Wang et al., 2006; Wang and Ruhe, 2007d], by which a preferred option or
a course of actions is chosen from among a set of alternatives based on
certain criteria. Decision theories are widely applied in a number of
disciplines encompassing cognitive science, computer science, management
science, economics, sociology, psychology, political science, and statistics. A
number of decision strategies have been proposed from different angles and
application domains such as the maximum expected utility and Bayesian
method. However, there is still a lack of a fundamental and mathematical
decision model and a rigorous cognitive process for decision making.

In this section, a decision making process is modeled as a sequence of
Cartesian-product based selections. A rigorous description of the
fundamental decision process in RTPA is presented. Different decision
making strategies are comparatively analyzed. The result shows these
strategies can be well fit in the formally described decision process. The
cognitive process of decision making may be applied in a wide range of
decision-based systems, such as cognitive informatics, software agent
systems, expert systems, and decision support systems.

A decision making process chooses a preferred option or a course of
actions from among a set of alternatives on the basis of given criteria or
strategies [Simon, 1960; Wilson and Keil, 2001; Wang and Ruhe, 2007d].
Decision making is one of the 39 fundamental cognitive processes modeled
in LRMB [Wang et al., 2006]. The study on decision making is interested in
multiple disciplines, such as cognitive informatics, cognitive science,
computer science, psychology, management science, economics, sociology,

© 2008 by Taylor & Francis Group, LLC

876 Part III Organizational Foundations of SE

political science, and statistics [Wald, 1950; Berger, 1990; Pinel, 1997;
Matlin, 1998; Payne and Wenger, 1998; Edwards and Fasolo, 2001; Hastie,
2001; Wilson and Keil, 2001; Wang et al., 2006]. Each of those disciplines
has emphasized on a special aspect of decision making. It is recognized that
there is a need to seek an axiomatic and rigorous model of the cognitive
decision-making process in the brain, which may be served as the foundation
of various decision making theories. This approach is based on the basic
understanding that, although the cognitive capacities of decision makers may
be greatly varying, the core cognitive processes of the human brain share
similar and recursive characteristics and mechanisms [Wang et al., 2006;
Wang and Ruhe, 2007].

Decision theories can be categorized into two paradigms: the
descriptive and normative theories. The former is based on empirical
observation and on experimental studies of choice behaviors; and the latter
assumes a rational decision-maker who follows well-defined preferences that
obey certain axioms of rational behaviors. Typical normative theories are the
expected utility paradigm [Osborne and Rubinstein, 1994] and the Bayesian
theory [Wald, 1950; Berger, 1990]. W. Edwards and B. Fasolo proposed a
19-step decision making process [Edwards and Fasolo, 2001] by integrating
Bayesian and multi-attribute utility theories. W. Zachary and his colleagues
[Zachary et al., 1982] perceived that there are three constituents in decision
making known as the decision situation, the decision maker, and the decision
process. Although the cognitive capacities of decision makers may be greatly
varying, the core cognitive processes of the human brain share similar and
recursive characteristics and mechanisms [Wang, 2003a; Wang and Gafurov,
2003; Wang et al., 2006; Wang and Ruhe, 2007].

An overview of the taxonomy and classification of decision theories
and related rational strategies that will be discussed in this section can be
illustrated as shown in Fig. 11.8. Fig. 11.8 can be used as a guideline for
studying the whole framework of decision theories that will be extended in
the following subsections.

11.3.1 THE MATHEMATICAL MODEL OF DECISION
 MAKING

 Decision making as one of the fundamental cognitive processes of
human beings is widely used in determining rational, heuristic, and intuitive
selections in complex scientific, engineering, economical, and management
situations, as well as in almost each procedure of daily life. Since decision
making is a meta mental process, it occurs every few seconds in the thinking
courses of human minds consciously or subconsciously.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 877

Decision Models

No
Yes

 Certain outcomes?

Static decisions Dynamic decisions

Predictable
probability?

Decision
under

certainty

Decision
under
risk

Decision
under

uncertainty

Decision
series

Decision with
interactive

events

Decision
with

competition

No

Yes

Min. regretPessimisticOptimistic

Maximax
profit

Minimin
cost

Maximin
profit

Minimax
cost

Minimax
regret

Max.
expected

utility

Max.
profit

Maximax
utility

probability
Min.
cost

Decision
grids

Automata

Games

Zero
sum

Nonzero
Sum

Figure 11.8 Overview of decision theories and decision strategies

This subsection explores the nature of selection, decision, and decision
making, and their mathematical models. A rigorous description of decision
making and its strategies is developed.

11.3.1.1 The Principle of Choices

The philosophy of the axiom of choice [Lipschutz, 1964] is adopted to
describe decision theories, which identifies the following three essences for
decision making known as the decision goals, a set of alternative choices,
and a set of selection criteria or strategies. According to this theory, decision

© 2008 by Taylor & Francis Group, LLC

878 Part III Organizational Foundations of SE

makers are only the engine or executive of a decision making process. If the
three essences of decision making are defined, a decision making process
may be rigorously carried out by either a human decision maker or by an
intelligent system. This is a cognitive foundation for implementing expert
systems, agent systems, and decision supporting systems [Wang et al., 2006;
Wang, 2007a].

Definition 11.22 Let I be a nonempty indexing set, S be a collection of
sets, {Ai | i ∈ I} be a collection of disjoint sets, Ai ⊆ S, and Ai ≠ ∅. A choice
function c can be described as:

 c: {Ai | i ∈ I} → Ai (11.13)

where c(Ai) = ai, ai ∈ Ai ⊆ S, U the universal set, I a set of natural numbers,
and Ai is called the set of alternatives.

In addition to the axiom of choice, the additive and multiplicative

principles of choices given below are useful when solving composed
decision problems.

Lemma 11.1 The axiom of choice selection states that there exists a
choice function for any nonempty collection S of nonempty disjoint sets
of alternatives Ai ⊆ S, i ∈ I [Lipschutz, 1964].

Lemma 11.2 The additive principle of choices states that the number of
choices between two arbitrary sets of alternatives A or B is the sum of all
alternatives provided in them, i.e.:

 #() # #A B A B∨ = + (11.14)

Lemma 11.3 The multiplicative principle of choices states that the
number of choices between two arbitrary sets of alternatives A and B is
the product of the number of all alternatives provided in both of them,
i.e.:

 #() # #A B A B•∧ = (11.15)

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 879

11.3.1.2 Decisions and Decision Making

 On the basis of the axiom and function of choice, a decision can be
rigorously defined as follows.

Definition 11.23 A decision d is a selected alternative a ∈A from a
nonempty set of alternatives A, A ⊆ U, based on a given set of criteria C,
i.e.:

 d = f (A, C)
 = f: A × C → A, A ⊆ U, A ≠ ∅ (11.16)

where × represents a Cartesian product.

 It is noteworthy that the choice criteria C can be a simple one or a
complex one. The latter is the combination of a number of joint criteria
depending on multiple factors.

 Definition 11.24 Decision making is a process of decision selection
from available alternatives against the chosen criteria for a given decision
goal.

 According to Definition 11.24, the number of possible decisions, n, can
be determined by the sizes of A and C, i.e.:

 n = #A • #C (11.17)

where # is the cardinal calculus on sets, and A ∩ C = ∅.

Eq. 11.17 indicates that in case #A = 0 and/or #C = 0, no decision may
be derived for the given case.

The above definitions provide a generic and fundamental mathematical
model of decision making, which reveal that the factors determining a
decision are the alternatives A and criteria C for a given decision making
goal. A unified theory on fundamental and cognitive decision making can be
developed based on the axiomatic and recursive cognitive process elicited
from the simplest decision-making categories as shown in Table 11.3.

11.3.1.3 Strategies and Criteria for Decision Making

 According to Definition 11.24, the outcome of a decision making
process is determined by the decision-making strategies selected by decision

© 2008 by Taylor & Francis Group, LLC

880 Part III Organizational Foundations of SE

makers, when a set of alternative decisions has been identified. It is obvious
that different decision making strategies require different decision selection
criteria. There is a great variation of decision-making strategies developed in
traditional decision and game theories, as well as cognitive science, system
science, management science, and economics.

The taxonomy of strategies and corresponding criteria for decision
making may be classified into four categories known as intuitive, empirical,
heuristic, and rational as shown in Table 11.3 [Wang and Ruhe, 2007]. It is
noteworthy in Table 11.3 that the existing decision theories provide a set of
criteria (C) for evaluating alternative choices for a given problem.
 As summarized in Table 11.3, the first two categories of decision
making, intuitive and empirical, are in line with human intuitive cognitive
psychology and there is no specific rational model for explaining those
decision criteria. The rational decision making strategies will be described
by two subcategories, the static and dynamic strategies and criteria, in
Sections 11.3.3 and 11.3.4, respectively. The heuristic decision-making
strategies are frequently used by human beings as a decision maker. Details
of the heuristic decision-making strategies may be referred to cognitive
psychology and AI [Matlin, 1998; Payne and Wenger, 1998; Hastie, 2001].

It is interesting to observe that the most simple decision making theory
can be classified into the intuitive category, such as arbitrary and preference
choices based on personal propensity, hobby, tendency, expectation, and/or
common senses. That is, not necessarily to be an expert, a layperson may still
be able to make important and perhaps wise decisions every day, even every
few seconds. Therefore, the elicitation of the most fundamental and core
process of decision making shared in human cognitive processes is yet to be
sought. Recursive applications of such a core process of decision making will
be helpful to solve complicated decision problems in the real-world.

11.3.1.4 The Structure of Rational Decision Making

According to Table 11.3, rational and complex decision making
strategies can be classified into the static and dynamic categories. Most
existing decision-making strategies are static because the changes of
environments of decision makers are independent of the decision makers’
activities. Also, different decision strategies may be selected in the same
situation or environment based on the decision makers’ values and attitudes
towards risk and their prediction on future outcomes. When the environment
of a decision maker is interactive with his/her decisions or the environment
changes according to the decision makers’ activities and the decision
strategies and rules are predetermined, this category of decision making
needs are classified into the category of dynamic decisions, such as games
and decision grids [von Neumann and Morgenstern, 1980; Osborne and
Rubinstein, 1994; Wang, 2005b/05e].

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 881

Table 11.3
Taxonomy of Strategies and Criteria for Decision Making

No. Category Strategy Criterion
1 Intuitive
1.1 Arbitrary Based on the most easy or familiar choice
1.2 Preference Based on propensity, hobby, tendency, or

expectation
1.3 Common senses Based on axioms and judgment
2 Empirical
2.1 Trial and error Based on exhaustive trial
2.2 Experiment Based on experiment results
2.3 Experience Based on existing knowledge
2.4 Consultant Based on professional consultation
2.5 Estimation Based on rough evaluation
3 Heuristic
3.1 Principles Based on scientific theories
3.2 Ethics Based on philosophical judgment and belief
3.3 Representative Based on common rules of thumb
3.4 Availability Based on limited information or local maximum
3.5 Anchoring Based on presumption or bias and their

justification
4 Rational
4.1 Static
4.1.1 Minimum cost Based on minimizing energy, time, money

4.1.2 Maximum benefit Based on maximizing gain of usability,
functionality, reliability, quality, dependability

4.1.3 Maximum utility Based on cost-benefit ratio
4.1.3.1 - Certainty Based on maximum probability, statistic data
4.1.3.2 - Risks Based on minimum loss or regret
 - Uncertainty
4.1.3.3 - Pessimist Based on maximin
4.1.3.4 - Optimist Based on maximax
4.1.3.5 - Regretist Based on minimax of regrets
4.2 Dynamic
4.2.1 Interactive events Based on automata
4.2.2 Games Based on conflict
4.2.2.1 - Zero sum Based on ∑ (gain + loss) = 0
4.2.2.2 - Non zero sum Based on ∑ (gain + loss) > 0
4.2.3 Decision grids Based on a series of choices in a decision grid

© 2008 by Taylor & Francis Group, LLC

882 Part III Organizational Foundations of SE

Definition 11.25 The dynamic strategies and criteria of decision
making are those that all alternatives and criteria are dependent on both the
environment and the effect of the historical decisions made by the decision
maker.

Classic dynamic decision making methods are decision trees
[Friedman, 1996; Edwards and Fasolo, 2001]. A new theory of decision grids
is developed in [Wang, 2005b] for serial decision makings. Decision making
under interactive events and competition is modeled by games [von
Neumann and Morgenstern, 1980; Osborne and Rubinstein, 1994; Wang,
2005b/05e]. Wang (2005e) presents a formal model of games, which
rigorously describes the architecture or layout of games and their dynamic
properties and behaviors.

Decision making is the process of constructing the choice criteria (or
functions) and strategies and using them to select a decision from a set of
possible alternatives. In this view, existing decision theories are about how a
choice function may be created for finding a good decision. Different
decision theories provide different choice functions.

An overview of the classification of decisions and related rational
strategies has been provided in Fig. 11.8. It can be seen that games are used
to deal with the most complicated decision problems, which are dynamic,
interactive, and under uncontrollable competitions. Decision models may
also be classified among other points of views such as structures, constraints,
degrees of uncertainty, clearness and scopes of objectives, difficulties of
information processing, degrees of complexity, utilities and beliefs, ease of
formalization, time constraints, and uniqueness or novelty.

11.3.2 DECISION MAKING PROCESSES

 Decision making is one of the fundamental cognitive processes
modeled in LRMB [Wang et al., 2006]. The decision making process can be
explained based on the OAR model, OAR = (O, A, R), as developed in
Section 9.4.2, where O is a given set of objects identified by an abstract
name, A is a set of attributes for characterizing the object, and R is a set of
relations between the object and other objects or attributes of them.

11.3.2.1 The Cognitive Process of Decision Making

 On the basis of the LRMB [Wang et al., 2006] and OAR [Wang,
2007g] models developed in Chapter 9, the cognitive process of decision
making may be informally described by the following procedures:

 a) To comprehend the decision making problem, and to identify the
decision goal in terms of an Object (O) and its attributes (A).

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 883

 b) To search in the abstract layer of LTM for alternative solutions
(A) and criteria or useful decision strategies (C).

 c) To quantify A and C, and determine if the search should be going
on.

 d) To build a set of decisions by using A and C as obtained in above
searches.

 e) To select the preferred decision(s) on the basis of satisfaction of
decision makers.

 f) To represent the decision(s) in a new sub-OAR model.

 g) To memorize the sub-OAR model in LTM.

 A detailed cognitive process model of decision making is shown in Fig.
11.9, where a double-ended rectangle block represents a function call that
involves a predefined process as provided in the LRMB model.
 The first step is to understand the decision-making problem. According
to the cognitive process of comprehension [Wang and Gafurov, 2003], the
object (goal) of decision will be identified, and an initial sub-OAR model
will be created. The object, its attributes, and known relations are retrieved
and represented in the sub-OAR model. Then, alternatives and strategies are
searched, which result in two sets of Ai and C, respectively. The results of
search will be quantified in order to form a decision as defined in Eq. 11.16,
i.e., d = f: A × C → A, where i ∈ I, A ⊆ S, and A ≠ ∅.
 When the decision d is derived, the initial sub-OAR model will be
updated with d and related information. Then, the decision maker may
consider whether the decision is satisfied according to the current states of
nature and personal judgment. If yes, the sub-OAR model for the decision is
memorized in the LTM. Otherwise, the decision-making process has to be
repeated until a satisfied decision is found, or the decision maker chooses to
quit with no satisfied decision. During the decision making process, the
mental states of the decision maker, the global OAR model in the brain,
changes from time to time. Although the state of nature will not be changed
in a short period during decision making, its perception may be changed with
the effect of the updating OAR model.

The process of decision making is a higher-layer cognitive process
defined at Layer 6 of LRMB. The decision making process interacts with
other processes underneath this layer such as Search, Representation and
Memorization; and the processes at the same layer such as Comprehension,
Qualification, Quantification, and Problem solving. Relationships between
the decision-making process and other related processes have been described
in Section 9.3.1 [Wang et al. 2006].

© 2008 by Taylor & Francis Group, LLC

884 Part III Organizational Foundations of SE

Search (Alternatives
of choices - A)

Representation
(OAR)

Begin

Identify
(Object - O)

Identify
(Attributes - A)

Search (Criteria of
choices - C)

Evaluate
(Adequacy of C)

Select (Decision - d)
d = f (A, C)

Evaluate
(Satisfaction of d)

Memorize
(OAR)

End

Yes

No

Yes

Yes

No

Quantify (A) Quantify (C)

No Evaluate
(Adequacy of A)

Figure 11.9 The cognitive process of decision making

11.3.2.2 Formal Description of the Decision Making Process

 On the basis of the cognitive model of decision making as described in
Fig. 11.9, a rigorous cognitive process can be specified using RTPA [Wang,
2002a]. RTPA is designed for describing the architectures, static, and
dynamic behaviors of software systems as well as human cognitive behaviors
and sequences of actions.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 885

 The formal model of the cognitive process of decision making in RTPA
is presented in Fig. 11.10. According to the LRMB and OAR models of
internal knowledge representation in the brain, the result of a decision in the
mind of the decision maker is a new sub-OAR model, or an updated version
of the global OAR model of knowledge in the human brain.

The Decision Making Process

Decision_Making (I:: OS; O:: OAR(dS)ST)
{ // I. Form decision goal(s)

 Identify (O) // The decision making goal
 Identify (A) // Sub decision making goals

→ {
Satisfication of As

R
=

T

F
(Search (A)

 Quantify (A)
 Evaluate (A)
)

 ||
Satisfication of C

R
=

T

F
 (Search (C)

 Quantify (C)
 Evaluate (C)
)
 }

// II. Select decisions
→ d = f: A × C → A // Refers to Eq. 11.6

 Evaluate (d)

→ (s(d) ≥ k // k: a satisfaction threshold
 Memorize (OARST)
 → ⊗
 | ~ // Otherwise

 → (GiveUpBL = F

 DMP_Process(I:: OS; O:: OAR(d)ST)
 | ~
 → ⊗
)
)

// III. Represent decisions
 → R = <d, A, C> // Form new relation on d
 → OARST = <O, A, R> // Form new OAR model for d
}

Figure 11.10 The RTPA definition of the cognitive process of decision making

© 2008 by Taylor & Francis Group, LLC

886 Part III Organizational Foundations of SE

As shown in Fig. 11.10, a decision-making process is started by
defining the goal of decision in terms of the object and attributes. Then, an
exhaustive search of the alternative decisions (A) and useful criteria (C) are
carried out in parallel. The searches are conducted in both the brain of a
decision maker internally, and through external resources based on the
knowledge, experiences, and goal expectation. The results of searches are
quantitatively evaluated until the searching for both A and C is satisfied. If
nonempty sets are obtained for both A and C, the n decisions in d have
already existed as determinable by Eq. 11.17.

One or a number of suitable decisions are selected from the set of d by

decision makers via evaluating the satisfaction levels. Satisfied decisions will
be represented in a sub-OAR model, which will be added to the entire
knowledge of the decision maker in LTM by the process of memorization.

11.3.3 STATIC DECISION MAKING STRATEGIES

 In the previous section it has been seen that the strategies and selection
criteria are vital in a decision making process, particularly for making
rational and complex decisions [Simon, 1960; Wang and Ruhe, 2007]. The
rational strategies and criteria for decision making can be classified into
static and dynamic decisions. This section describes common static decision
making strategies and their evaluation criteria. The dynamic ones will be
discussed in the following sections.

Definition 11.26 A static strategy and criterion of decision making is
an evaluation and selection method for which all alternatives A and criteria C
are determinable and only one optimal decision ai ∈A is expected for a given
situation.

 Let us consider three typical static decision making strategies known as
decision making under certainty, risks, and uncertainty. The latter may be
further divided into the pessimistic, optimistic, and regret decision making
under uncertainty according to Fig. 11.8.

It is noteworthy that practical decisions for a given problem are usually
made under partial certainty, empirical estimation, or heuristic prediction,
because not all required information is available, no suitable decision
strategy is aware of, and/or no acceptable cost to thoroughly search all
possible alternatives. This observation can be formally described as the
principle of bounded rationality [Simon, 1957] in decision making.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 887

A convenient technique to represent the conditions for a decision is

using a matrix called payoff table, which lists the value of utilities or costs of
all alternative decisions against different situations known as the states of
nature.

 Definition 11.27 A payoff table is a 2-D matrix as shown in Table 11.4
that quantifies the utility, value, or level of satisfaction, uij, for each given
pair of alternative ai and situation sj, where 1 ≤ i ≤ n, and 1 ≤ j ≤ k.

Table 11.4
The Structure of a Payoff Table

Situation (S)
Alternative (A)

s1 s2 ... sk

a1 u11 u12 ... u1k
a2 u21 u22 ... u2k
...
an un1 un1 ... unk

 Example 11.1 Consider a decision making problem for a software
engineering project. This project is designed with three alternative
Architectures a1 to a3. Each architecture would be implemented in different
Results s1 to s4 that are predictable or unpredictable in various situations.

The payoff table of this project with utilities (gains) in k$ can be
described as shown in Table 11.5.

Table 11.5
The Payoff Table of a Software Engineering Project

Situation (S)
Alternative (A) Result 1

(s1)
Result 2

(s2)
Result 3

(s3)
Result 4

(s4)

Architecture (a1) 100 10 40 60

Architecture (a2) -10 50 200 30

Architecture (a3) 50 20 5 130

Lemma 11.4 The principle of bounded rationality states that a decision-
maker in a real-world situation will never have all information necessary
for making an optimal decision.

© 2008 by Taylor & Francis Group, LLC

888 Part III Organizational Foundations of SE

The following subsection will take the above software engineering
project as an example to illustrate how a wide range of decision making
strategies and criterion can be used in the decision making process.

11.3.3.1 Decision Making under Certainty

Decision making under certainty is an ideal situation where all
necessary information and strategies are available, and the outcomes are
objectively determinable.

 Definition 11.28 A decision making under certainty dmax or dmin is a
selection of an certain alternative ai among A that meets a given criterion C
which is either the maximum of utility or profit max(ui), and the minimum of
costs or effort min(ei), i.e.:

 dmax = f: A × C → A
 = {ai | max (ui) ∧ ai ∈ A} (11.18a)
or

 dmin = f: A × C → A
 = {ai | min (ei) ∧ ai ∈ A} (11.18b)

 Example 11.2 Consider the software engineering project given in
Example 11.1. When the criterion C is to take the maximum utility, and the
project will definitely achieve Result 4 under the certain situation, which
system architecture should be selected for this project?

The answer under the given conditions is direct forward according to
Eq. 11.18a since the criterion C is to maximize the project gain, i.e.:

 dmax = f: A × C → A
 = {ai | max (u14, u24, u34)}
 = {a3 | u34 = 130}

 The solution indicates that the optimal decision for this given project
with the maximum criterion is (a3, s4), which will result in a maximum
project gain umax = u34 = $130,000.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 889

11.3.3.2 Decision Making under Uncertainty

 Definition 11.29 A decision making under uncertainty is a selection of
an alternative ai among A that meets a given criterion C, when the
probability of each possible situation is unknown.

The strategies for decision making under uncertainty can be divided

into three categories known as the optimistic, pessimistic, and regret
decisions.

11.3.3.2.1 Optimistic Decision Making under Uncertainty

When the occurrence probabilities of possible future situations or states
of the nature are unknown, one of the solutions in decision making is based
on an optimistic or aggressive strategy to try to gain the maximum utility or
to spend the minimum cost.

 Definition 11.30 An optimistic decision making under uncertainty
dmaximax or dminimin yields a decision with the maximum-maximum strategy for
utility or a minimum-minimum strategy for cost, respectively, i.e.:

 dmaximax = f: A × C → A
 = {ai | max (max (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)} (11.19a)
or

 dminimin = f: A × C → A
 = {ai | min (min (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)} (11.19b)

 Example 11.3 Consider the software engineering project given in
Example 11.1. A maximax or an optimistic uncertainty decision can be made
based on the project gains for different architecture-result combinations as
shown in Table 11.6.

Table 11.6
Maximax Decision Making for the Software Engineering Project

Situation (S)
Alternative (A) Result 1

(s1)
Result 2

(s2)
Result 3

(s3)
Result 4

(s4)

Criterion
(maximax

utility)

Architecture (a1) 100 10 40 60

Architecture (a2) - 10 50 200 30 u23 = $200k

Architecture (a3) 50 20 5 130

© 2008 by Taylor & Francis Group, LLC

890 Part III Organizational Foundations of SE

According to Eq. 11.19a, the maximax decision under uncertainty is as
follows:

 dmaximax = f: A × C → A
 = {ai | max (max (uij | 1 ≤ i ≤ 3) | 1 ≤ j ≤ 4)}
 = {ai | max (u11, u23, u34)}
 = {a2 | u23 = 200}

 The solution indicates that the optimal decision for this given project
with the maximax criterion is (a2, s3) that will result in a maximum project
gain umax = u23 = $200,000.

It is noteworthy that, by choosing this solution, there is a risk to lose
$10,000 if the uncertain project outcomes turn out to be Result 1 with u21. A
more conservative but safe decision without any loss for this project may be
made based on another decision strategy as discussed in the next subsection.

11.3.3.2.2 Pessimistic Decision Making under Uncertainty

When the occurrence probabilities of possible future situations or states
of the nature are unknown, another solution in decision making is based on a
conservative or pessimistic strategy to try to gain the maximum utility or to
spend the minimum cost.

Definition 11.31 A pessimistic decision making under uncertainty
dmaximin or dminimax yields a decision with the maximum-minimum strategy for
utility or a minimum-maximum strategy for cost, i.e.:

 dmaximin = f: A × C → A
 = {ai | max (min (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)} (11.20a)

or

 dminimax = f: A × C → A
 = {ai | min (max (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)} (11.20b)

 Example 11.4 Consider the software engineering project given in
Example 11.1. A maximin or a pessimistic uncertainty decision can be made
based on the project gains for different architecture-result combinations as
shown in Table 11.7.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 891

Table 11.7
Maximin Decision Making for the Software Engineering Project

Situation (S)
Alternative (A) Result 1

(s1)
Result 2

(s2)
Result 3

(s3)
Result 4

(s4)

Criterion
(maximin

utility)

Architecture (a1) 100 10 40 60 u12 = $10k

Architecture (a2) - 10 50 200 30

Architecture (a3) 50 20 5 130

According to Eq. 11.20a, the maximin decision under uncertainty is as

follows:

 dmaximax = f: A × C → A
 = {ai | max (min (uij | 1 ≤ i ≤ 3) | 1 ≤ j ≤ 4)}
 = {ai | max (u12, u21, u33)}
 = {a1 | u12 = 10}

 The solution indicates that the conservative decision for this given
project with the maximin criterion is (a1, s2), which will result in a maximin
project gain umax = u12 = $10,000.
 It is noteworthy that, by choosing this solution, there is a chance to lose
the opportunity gain of $200,000 if the uncertain project outcomes turn out to
be Result 3 with u23. However, in any case, this decision can prevent the
project from a negative result.

11.3.3.2.3 Minimum Regret Decision Making under Uncertainty

 As discussed in the proceeding subsection, when the conservative
strategy is taken, a decision under uncertainty may result in a loss of a better
opportunity. The loss of an opportunity gain or an opportunity save of costs
is called a regret. A strategy exists for minimizing the regret in decision
making under uncertainty.

 Definition 11.32 A regret rij is the loss of the best opportunity by
selecting a conservative decision under uncertainty, i.e.:

 rij = umaxj - uij , 1 ≤ j ≤ k, 1 ≤ i ≤ n (11.21)

 Definition 11.33 A minimum regret decision making under uncertainty
dminimax yields a decision with the minimum-maximum regret strategy for
utility gain or cost save, i.e.:

© 2008 by Taylor & Francis Group, LLC

892 Part III Organizational Foundations of SE

 dminimax = f: A × C → A
 = {ai | min (max (rij | 1 ≤ i ≤ n)} (11.22)

 Example 11.5 Consider the software engineering project given in
Example 11.1. A minimax regret decision under uncertainty can be made
based on the regret rij determined by Eq. 11.22 for different architecture-
result combinations as shown in Table 11.8.

Table 11.8

Minimax Regret Decision Making for the Software Engineering Project

Situation (S)
Alternative (A) Result 1

(s1)
Result 2

(s2)
Result 3

(s3)
Result 4

(s4)

Criterion
(minimax

regret)

Architecture (a1) 0 40 160 70

Architecture (a2) 110 0 0 100 r21 = $110k

Architecture (a3) 50 30 195 0

umaxj 100 50 200 130

According to the above regret payoff table and Eq. 11.22, the minimax

regret decision under uncertainty is as follows:

 dminimax = f: A × C → A
 = {ai | min (max (rij | 1 ≤ i ≤ n)}
 = {ai | min (r13, r21, r33)}
 = {a2 | r21 = 110}

 The solution indicates that the decision for this given project with the
minimax regret criterion under uncertainty is (a2, s1), which will result in a
minimum regret for possible lost opportunities rmin = r21 = $110,000.

11.3.3.3 Decision Making under Risks

The previous subsections deal with decisions where the probabilities of
future situations are uncertain or their probabilities are assumed to be
identical. When the future situations or the states of the nature for a given
problem are individually predictable, i.e., the probabilities or likelihoods are
known, the risk for a decision can be better estimated. In this case, decision
making process will be directed based on the weights of probabilities for
each payoff.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 893

 Definition 11.34 A decision making under risk is a selection of an
alternative ai among A that meets a given criterion C, when the likelihood or
probability of each possible situation is known or can be predicated.

Decision making under risk can be carried out by two strategies based

on the analysis of the maximum expected utility or maximax utility
probability.

11.3.3.3.1 Decision Making under Risk with Maximum Expected Utility

 The criterion for a decision making under risk can be based on the
maximum expected utility of alternatives.

 Definition 11.35 An expected utility EU is a weighted sum of all
utilities uj for each decision alternative based on known probabilities for each
possible situation pj, i.e.:

=1

= , 1
k

i ij j
j

EU u p i n≤ ≤∑ i (11.23)

 Definition 11.36 A decision making under risk with maximum expected
utility dmaxEU yields a decision with the maximum expected utilities of all
alternatives, i.e.:

 dmaxEU = f: A × C → A
 = {ai | max (EUi | 1 ≤ i ≤ n)} (11.24)

 Example 11.6 Consider the software engineering project given in
Example 11.1. A decision under risk with maximum expected utility can be
made based on the EUs determined by Eq. 11.23 for different decision
alternatives as shown in Table 11.9.

Table 11.9
Decision Making based on the Maximum Expected Utility for

the Software Engineering Project

Situation (S)
Alternative (A) Result 1

(s1)
[p1 = 0.2]

Result 2
(s2)

[p2 = 0.5]

Result 3
(s3)

[p3 = 0.2]

Result 4
(s4)

[p4 = 0.1]

Expected

Utility
(EU)

Criterion
(Maximum

EV)

Architecture (a1) 100 10 40 60 EU1 = 39

Architecture (a2) - 10 50 200 30 EU2 = 66 EUmax = 66

Architecture (a3) 50 20 5 130 EU3 = 34

© 2008 by Taylor & Francis Group, LLC

894 Part III Organizational Foundations of SE

After the expected utilities for all three alternatives are obtained as
shown in Table 11.9, the best decision with the maximum expected utility
can be determined according to Eq. 11.24 as follows:

 dmaxEU = f: A × C → A
 = {ai | max (EUi | 1 ≤ i ≤ n)}
 = {ai | man (EU1, EU2, EU3)}
 = {a2 | EU2 = 66}

 The solution indicates that the decision under risk for this given project
with the maximum expected utility criterion is Architecture a2 that will result
in a maximum weighted sum EU2 = $66,000.
 Decision making under risk with the maximum expected utility dmaxEU
can be described by a backward-inducted decision tree as shown in Fig.
11.11. The decision tree provides another approach to derive the maximum
expected utility in two steps [Friedman, 1996]. First, the individual weighted
utilities of all the alternatives are calculated according to Eq. 11.23, which
yields EUi, 1 ≤ i ≤ 3, represented by the three middle nodes. Then, the
maximum utility EUmax is selected from these three middle nodes according
to Eq. 11.24, which yields node A represented by decision d2 with EUmax =
66.

 A

 E

 F

 G

 H

 I

 J

 K

 L

 M

 N

 O

 P

 D

 C

 B

 d1

 d2

 d3

p1 = 0.2
p2 = 0.5

p3 = 0.2

p4 = 0.1

 u11 = 100

 u12 = 10

 u13 = 40

 u14 = 60

 u21 = -10

 u21 = 50

 u23 = 200

 u24 = 30

 u31 = 50

 u32 = 20

 u33 = 5

 u34 = 130

p1 = 0.2
p2 = 0.5

p2 = 0.5

p3 = 0.2

p3 = 0.2

p4 = 0.1

p4 = 0.1

p1 = 0.2

 EU1 = 39

 EU2 = 66

 EU3 = 34

d2 | EUmax=66

Figure 11.11 A decision tree based on the strategy of maximum expected
utility

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 895

11.3.3.3.2 Decision Making under Risk with Maximax Utility Probability

 Observing the strategy presented in Section 11.3.3.3.1, it can be seen
that the decision based on expected values are dominated by the largest
probability of situations or the states of nature. Therefore, a simplified
method of decision making under risk with maximum probability can be
derived without calculation of the expected values.

 Definition 11.37 A decision making under risk with maximum utility of
maximum probability dmaximax-p yields a decision with the maximum utility of
the maximum probability of outcome of all alternatives, i.e.:

 dmaximax-p = f: A × C → A
 = {ai | max (uij | (max (pj | 1 ≤ j ≤ k)), 1 ≤ i ≤ n} (11.25)

 Example 11.7 Consider the software engineering project given in
Example 11.1. A decision under risk with maximum utility of maximum
probability can be made based on Eq. 11.25 for different decision alternatives
as shown in Table 11.10.

Table 11.10
Decision Making based on the Maximax Utility Probability for

the Software Engineering Project

Situation (S)
Alternative (A) Result 1

(s1)
[p1 = 0.2]

Result 2
(s2)

[p2 = 0.5]

Result 3
(s3)

[p3 = 0.2]

Result 4
(s4)

[p4 = 0.1]

Criterion
(Maximax utility)

Architecture (a1) 100 10 40 60

Architecture (a2) - 10 50 200 30 u22 = 50

Architecture (a3) 50 20 5 130

According to Eq. 11.25, the expected values for all three alternatives

are obtained as shown in Table 11.10. The best decision with the maximum
expected values can be determined as follows:

 dmaximax-p = f: A × C → A
 = {ai | max (uij | (max (pj | 1 ≤ j ≤ k)), 1 ≤ i ≤ n}
 = {ai | max (u12, u22, u32)}
 = {a2 | u22 = 50}

© 2008 by Taylor & Francis Group, LLC

896 Part III Organizational Foundations of SE

 The solution indicates that the decision under risk for this given project
with the maximax probability based utility is Architecture a2 that will result
in a maximum possible utility u22 = $50,000.

11.3.4 GAME THEORY

In Section 11.3.3 we explored a wide range of the decision making
strategies known as the static strategies, because, although the environment
of decision makers may change, its changes are independent of the decision
makers’ activities or expectations. Also, different decision strategies may be
selected in the same situation or environment based on the decision makers’
values and attitudes towards risk and their predictions on future outcomes.

In classic decision and operations theories [Bronson and Naadimuthu,
1997], although the states of nature or environment may be both
deterministic or nondeterministic, its state of nature as an outcome of the
environment will not be changed or affected by the decision maker’s actions.
In other words, there are natural rules but no adaptive competitors in the
static decision making processes. However, more decision making situations
are dynamic rather than static, where the decision maker is under competition
in games.

Definition 11.38 A game is a decision process under competition
where opponent players or opponent groups of players compete for the
maximum gain or a success state in the same environment according to the
same predetermined rules of the game.

Games traditionally deal with probability-based static payoff tables.
However, this method is found inadequate to deal with the dynamic
behaviors of games and to rigorously determine the outcomes of games. This
section presents a formal treatment of games by a set of mathematical models
on both of the layout and behaviors of games [Wang, 2005e].

11.3.4.1 The Formal Model of Games

The architecture or layout of a game can be formally described by the
following mathematical model, where the behaviors of the game are modeled
by a series of matches between the players.

Definition 11.39 A formal game G is a 4-tuple, i.e.:

 G = (P, D, M, S) (11.26)

where

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 897

 • P is a finite set of players P = {p1, p2, …, pn}, and n is the number
of players, n ≥ 2.

• D is a finite set of decisions for certain moves, D = {d1, d2, …,

dk}, k ≥ 1. All players in G have the same number of alternative
decisions.

 • M is a finite set of matches between player, M = {m1, m2, …, mq},

q ≥ 1.

 • S is a finite set of cumulated scores for each players, S = {s1, s2,

…, sn}.

For a generic game, the matches, which represent the behaviors of the
game, can be further described below.

Definition 11.40 A match m ∈ M of a game G = (P, D, M, S) is a

function that maps a set of n decisions made by each player into a set of n
scores S for each of the players, i.e.:

 m = fm : D1 × D2 × … × Dn → S (11.27)

A match corresponds to an individual block preset in a given payoff

table of the game. A set of matches in the given game is constrained by a set
of generic rules [Wang, 2005e].

Lemma 11.5 In a formal game G = (P, D, M, S), the following generic
rules for matches should be obeyed in order to yield stable and
predictable game behaviors and scores:

 Rule (a): All players are supposed to pursue the maximum gains
on the basis of the same predefined payoff table.

 Rule (b): Whenever the first player initiates a move in a specific

set of matches, the remaining moves (actions) of all
players in the set of matches are determined according to
Rule (a).

 Rule (c): Each match preset in the payoff table may only be used

once in the set of matches.

© 2008 by Taylor & Francis Group, LLC

898 Part III Organizational Foundations of SE

The above rules form the constraints of formal games and make a game
to be deterministic and its outcomes of all sets of matches are predictable.
Rules (a) and (b) guarantee that all matches of a game are determinable on
the basis of the given payoff table. Rule (c) assurances that a set of matches
in a game is finite and the number of matches in the set is a constant.

Example 11.8 An n × k = 2 × 2 game G1 = (P, D, M, S) can be formally

described according to Definition 11.39 as follows:

 • Players P = {a, b}, n = 2

• Decisions D = {d1, d2}, k = 2
 • Scores S = {sa, sb}
 • Matches M = {m11, m12, m21, m22}, nm = kn = 22 = 4

where letting a1 and a2 be the alternative decisions of player A, and b1 and b2
the alternative decisions of player B, the four matches can be determined
according to Eq. 11.31 as shown below:

mab = Da : Db → S(sa : sb)
m11 = a1 : b1 → 0 : 0
m12 = a1 : b2 → -1 : 1
m21 = a2 : b1 → -2 : 2
m22 = a2 : b2 → 3 : -3

The above matches can be represented by a payoff table as shown in

Table 11.11.

Table 11.11 The Payoff Table of M = {m11, m12, m21, m22}

 b1 b2
a1 0 : 0 -1 : 1
a2 -2 : 2 3 : -3

Lemma 11.6 The number of individual matches nm in a set of matches for
a given game G = (P, D, M, S) is determined by:

 nm = kn (11.28)

where n is the number of players in a game, and k is the number of
alternative decisions (moves) defined in the game for each player.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 899

This is the static architecture or layout of the game G1. Its dynamic
behaviors on the basis of the layout will be discussed in the following
subsections.

11.3.4.2 Properties of Games

This subsection analyzes the common properties of formal games that
may be interesting for all players. The properties of formal games can be
used to predicate possible outcomes of games and to select optimal strategies
or moves in games.

When a game G is set according to Definitions 11.39 and 11.40, the
properties of G, such as the number of matches, the number of sets of
matches, and the winner, are determined. Game theory may be used to
predict and select the optimal combination of individual strategies. However,
the score for any individual strategy in G has already been fixed according to
the payoff table.

According to Theorem 11.3 [Wang, 2005e], game theory may be used

to predict and select the optimal combinations of individual strategies for a
player in a given game G. However, the optimal strategies may not
necessarily result in a win situation rather than a minimal loss in some cases,
because the scores for individual moves and their combination strategies in G
are determined by the settings of the game.

The objective of decision makers in a game is to make the score of a

player to the maximum. However, according to Corollary 11.2, max(si) may
not mean a winning score due to the settings of a given game.

 The 38th Principle of Software Engineering

Theorem 11.3 The properties of games state that a formal game G is
deterministic and conservative. That is, once the game G = (P, D, M, S) is
set, the properties of G are determined and predictable, but not
changeable by any player in the game.

Corollary 11.2 The outcomes of a formal game G = (P, D, M, S) are
constrained by the settings of the game. Although an individual strategy
may result in the maximum gain, the final score of a player in a whole set
of games is fixed by the payoff table in a particular match, which may not
necessarily result in a win situation.

© 2008 by Taylor & Francis Group, LLC

900 Part III Organizational Foundations of SE

Definition 11.41 A set of matches is a series of matches in a game G =
(P, D, M, S) in which all players may use each pair of their alternative
strategies only once.

Lemmas 11.7 through 11.8 can be used to determine the properties and

attributes of any given game. The attributes of typical games can be
predicated using theses lemmas as shown in Table 11.12.

Table 11.12 Attributes of Typical Games

n k ⇒ (nm = kn | ns = n • k | q = nm nm = nkn+1)
 1 2 3 4

2 1 2 2 4 4 16 9 6 54 16 8 128
3 1 3 3 8 6 48 27 9 243 64 12 768
4 1 4 4 16 8 128 81 12 972 256 16 4096
5 1 5 5 32 10 320 243 15 3645 1024 20 20480

It can be seen in Table 11.12 that the complexity of games is

explosively increasing. This explains why games are so complicated and
difficult to be modeled and formally treated on the basis of conventional
game theory [von Neumann and Morgenstern, 1980; Osborne and

Lemma 11.7 The total sets of matches ns in a game G = (P, D, M, S), in
which all players may use each pair of their alternative strategies only
once determined according to the current move of opponent and the rule
of the maximum gains based on the given layout of the game, can be
determined by:

 ns = n • k (11.29)

where k is the number of alternative decisions (moves) defined in the
game, and n is the number of players.

Lemma 11.8 The total number of matches q of a game G = (P, D, M, S)
is determined by the number of sets of matches nm and number of
matches in each set ns, i.e.:

= s m

n

n+1

q n • n

 nk • k

n • k

=

=

 (11.30)

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 901

Rubinstein, 1994; Bronson and Naadimuthu, 1997]. For example, when the
number of players n = 5 and the number of alternative strategies of each
player k = 4, the total number of matches of the game may easily exceeded
20,000. However, the formal game theory developed in this section is able to
analyze any games no matter how large n and k would be based on the
generic mathematical model of abstract games [Wang, 2005e].

Since games with multiple players can be divided into a number of
pairwise games, the following sections will focus on binary games as shaded
in Table 11.12.

Definition 11.42 A binary game G = (P2, D, M, S2) is a game with only
two players n = 2, where P2 = {p1, p2} and S2 = {s1, s2}. It will simply called
a game in the remainder of this section.

 The attributes of binary games are shown in the first row of Table
11.12. The properties and dynamic behaviors of binary games can be
analyzed in the categories of zero-sum and nonzero-sum games.

11.3.4.3 Behaviors of Zero-Sum Games

Definition 11.43 A zero-sum game is a game where the total scores of

all n players in the game is zero, i.e.:

1

0
n

i
i

s
=

=∑ (11.31)

In the case of a binary game, Eq. 11.31 can be expressed as follows:

 s1 = - s2 (11.32)

where Eq. 11.32 models a decision making situation that is known as one
player’s gain is another’s loss.

Example 11.9 The game G1 = (P, D, M, S) as shown in Example 11.8

and Table 11.11 is a zero-sum game. The properties and behaviors of G1 can
be formally analyzed according to Eqs. 11.31 through 11.33 as follows:

Lemma 11.9 The condition for a zero-sum game is iff that each of the nm
individual matches is zero-sum, i.e.:

 0, 1q ms q n= ≤ ≤ (11.33)

© 2008 by Taylor & Francis Group, LLC

902 Part III Organizational Foundations of SE

The properties of game G1 = (P, D, M, S) are:

 • Number of sets of matches: ns = n • k = 2 • 2 = 4
 • Number of matches in a set: nm = kn = 22 = 4
 • Total number of matches in the game:
 3 = 2 2 16n+1

s mq n • n n • k •= = =

The behaviors of game G1 = (P, D, M, S) can be described by the four
sets of matches as illustrated in Fig. 11.12.

1:1 3: 3 2:2 0:0

2:2 0:0 1:1 3: 3

0:0 1:1

1 2 2 1 1

2 1 1 2 2

1 1

 :

Set 1: 0 : 0

Set 2: 0 : 0

Set 3:

a bs s

a b a b a

a b a b a

b a

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯ →

⇒

⇒
3: 3 2:2

3: 3 2:2 0:0 1:1

2 2 1

2 2 1 1 2

0 : 0

Set 4: 0 : 0

b a b

b a b a b

− −
⎯⎯ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

⇒

Figure 11.12 Sets of matches in the zero-sum game G1

According to Corollary 11.3, the results of all possible sets of matches

for a given zero-sum game can be predicated using Eq. 11.34. For instance,
the final score of Example 11.9 can be calculated according to Eq. 11.34 as
follows:

Corollary 11.3 The scores of a 2 × k formal game G, sa : sb, is
predetermined by the settings of the payoff table, i.e.:

=1 =1 =1 =1

=1 =1 =1 =1

 : = () : ()

() : (-)

ij ij

ij ij

k k k k
a b

a b
i j i j

k k k k
a a

i j i j

s s s s

s s=

∑∑ ∑∑

∑∑ ∑∑
 (11.34)

where k is the number of alternative decision strategies and k is the same
for all players.

Lemma 11.10 The final scores of all sets of matches of formal games G
are the same, no matter who moves first and which strategy (decision
alternative) is selected for the first move.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 903

11 12 21 22

11 12 21 22

=1 =1 =1 =1
: = () : ()

() :

 ()

(0 1 2 3) :

 (0 1 2 3)

0 : 0

ij ij

k k k k
a b

a b
i j i j

a a a a

b b b b

s s s s

s s s s

s s s s

= + + +

+ + +

= − − +

+ + −

=

∑∑ ∑∑

Example 11.10 For a 2 × 3 game G2 = (P, D, M, S) with the following

payoff table, try to determine its properties and behaviors.

Table 11.13
The Payoff Table of G2 = (P, D, M, S)

 b1 b2 b3
a1 0 : 0 100 : -100 200 : -200
a2 -300 : 300 0 : 0 -100 : 100
a3 500 : -500 -200 : 200 0 : 0

The properties of G2 = (P, D, M, S) are:

 • Number of sets of matches: ns = n • k = 2 • 3 = 6

 • Number of matches in a set: nm = kn = 32 = 9

 • Total number of matches in the game:
 3= 2 3 54n+1

s mq n • n n • k •= = =

The above properties can also be obtained from Table 11.13.
According to Corollary 11.3, the final scores of G2 = (P, D, M, S) are as

follows:

11 12 13 21 22 23 31 32 33

11 12 13 21 22 23 31 32 33

=1 =1 =1 =1
 : = () : ()

() :

 ()

(0 100 200 300 0 100 500 200 0) :

 (0 100 200 300 0 100 500 2

ij ij

k k k k
a b

a b
i j i j

a a a a a a a a a

b b b b b b b b b

s s s s

s s s s s s s s s

s s s s s s s s s

= + + + + + + + +

+ + + + + + + +

= + + − + − + − +

− − + + + − +

∑∑ ∑∑

00 0)

200 : -200

+

=

© 2008 by Taylor & Francis Group, LLC

904 Part III Organizational Foundations of SE

The behaviors of G2 = (P, D, M, S) can be modeled by the 54 detailed
matches in the following 6 sets as shown in Fig. 11.13.

0:0 500:-500 -200:200 100:-100

200:-200 0:0 -300:300

1 1 3 2 1

3 3 2 1

 :

Set 1:

 , ,

a bs s

a b a b a

b a a b

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

0:0 -100:100

-300:300 500:-500 -200:200 100:-100

0:0 200:-200 0:0

2 2 2 3

2 1 3 2 1

1 1 3 2 2

 , 200 : -200

Set 2:

 , , ,

a b a b

a b a b a

b a b a b

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

-100:100 0:0

-200:200 100:-100 0:0 500:-500

0:0 200:-200 300:300

2 3 3 3

3 2 1 1 3

3 1 2 1

 , 200 : -200

Set 3:

 , ,

a b a b

a b a b a

b a a b

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯→

⇒

0:0 -100:100

500:-500 -200:200 100:-100 0:0

-300:300 -100:100 0:0

2 2 2 3

1 3 2 1 1

2 3 2 2

 , 200 : -200

Set 4:

 , ,

a b a b

b a b a b

a b b a

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

200:-200 0:0

100:-100 0:0 500:-500 -200:200

0:0 300:300 200:-200

3 1 3 3

2 1 1 3 2

2 1 3 1

 , 200 : -200

Set 5:

 , ,

b a b a

b a b a b

a b b a

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⇒

-100:100 0:0

200:-200 0:0 500:-500 -200:200

100:-100 0:0 -300:300

3 2 3 3

3 1 1 3 2

1 3 3 1 2

 , 200 : -200

Set 6:

 , , ,

b a b a

b a b a b

a a b b a

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⇒

0:0 -100:100
2 2 3 2 , 200 : -200b a b a⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⇒

Figure 11.13 Sets of matches of the 2 × 3 zero-sum game G2

Therefore, the final score predicated for Example 11.9, sa : sb = 0 : 0,

shows a tied game; while that of Example 11.10, sa : sb = 200 : -200, indicates
that Player A wins.

Corollary 11.4 The scores of a given game G, sa : sb, can be evaluated as
follows:

: Player A won

 = : Tied

: Player B won

a b

a b

a b

s s

s s

s s

⎧⎪ >⎪⎪⎪⎪⎨⎪⎪⎪ <⎪⎪⎩

 (11.35)

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 905

11.3.4.4 Behaviors of Nonzero-Sum Games

A more general type of games is nonzero-sum games, where all players

involved share a certain pie with a fixed size. From this view, the zero-sum
game discussed in previous subsection is a special case of nonzero-sum
games where the size of the pie is zero.

Definition 11.44 A nonzero-sum game is a game where the total scores
of all players in the game is a positive nonzero value, i.e.:

1

0
n

i
i

s
=

>∑ (11.36)

A group on a common project or a set of partners bidding for a contract

is typical examples of nonzero-sum games.
 The most interesting property of decision making in nonzero-sum
games is that there is an ideal state of result known as the win-win situation.

Definition 11.45 A win-win game is a game in which all players gain a
satisfied score constrained by Eq. 11.36.

According to Lemma 11.11, if all the competitive players in a nonzero-

sum game are coordinated, i.e., a superset of partnership is established in the
game, every party may gain a certain benefit.

 The 39th Principle of Software Engineering

Theorem 11.4 The conditions of win-win decisions state that a win-win
decision can be achieved when the following condition of a nonzero-sum
game is satisfied:

1

1 n

i
s i

s
n

σ
=

≥ ∑ (11.37)

where σ is the sum of the game that is a positive nonzero constant, si is
the expected score of player i, and ns is the number of sets of matches in
the game.

Lemma 11.11 A win-win game can only exist in nonzero-sum games.

© 2008 by Taylor & Francis Group, LLC

906 Part III Organizational Foundations of SE

Based on Theorem 11.4 [Wang, 2005e], a win-win game may satisfy all
players when the constant sum σ is large enough as described by Eq. 11.37.

Example 11.11 Given a 2 × 2 nonzero-sum game G3 = (P, D, M, S)
with the following payoff table and σ = 100, try to determine its properties
and behaviors.

Table 11.14

The Payoff Table of G3 = (P, D, M, S)

 b1 b2
a1 70 : 30 20 : 80
a2 60 : 40 90 : 10

The properties of G3 = (P, D, M, S) are:

 • Number of sets of matches: ns = n • k = 2 • 2 = 4

 • Number of matches in a set: nm = kn = 22 = 4

 • Total number of matches in the game:
 3= 2 2 16n+1

s mq n • n n • k •= = =

According to Theorem 11.4, the final scores of G3 = (P, D, M, S) are as
follows:

11 12 21 22

11 12 21 22

=1 =1 =1 =1
: = () : ()

() :

 ()

(70 20 60 90) :

 (30 80 40 10)

240 : 160

ij ij

k k k k
a b

a b
i j i j

a a a a

b b b b

s s s s

s s s s

s s s s

= + + +

+ + +

= + + +

+ + +

=

∑∑ ∑∑

This result indicates that the four sets of matches defined by G3 will

result in the average score in each match as 60 : 40, in which Players A and
B share the σ = 100. This can be proved by the following four sets of
matches as shown in Fig. 11.14.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 907

20:80 90:10 60:40 70:30

60:40 70:30 20:80 90:10

1 2 2 1 1

2 1 1 2 2

 :

Set 1: 240 : 160

Set 2: 2

a bs s

a b a b a

a b a b a

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⇒

⇒
70:30 20:80 90:10 60:40

90:10 60:40 70:30 20:80

1 1 2 2 1

2 2 1 1 2

40 : 160

Set 3: 240 : 160

Set 4: 240 : 160

b a b a b

b a b a b

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⇒

⇒

Figure 11.14 Sets of matches of the 2 × 2 nonzero-sum game G3

It may be observed that for a given game in a certain context, it would
appear to be competitive between conflict interests of players. However, at a
higher level of an enlarged scope of the given game, it may be perceived
differently as noncompetitive for all parties involved. Based on this
systematical view, the following corollary for management attitude and skills
can be derived.

11.3.5 DECISION GRID THEORY

Traditional decision theories have been focused on static and single
decision making techniques. However, a wide range of problems and real-
world challenges require a series of dynamic decision makings. There is a
lack of coherent theoretical framework for such kind of decision making
requirements. Especially, there is a need for a theory that deals with the
issues when a mistake or multiple mistakes are made in a decision chain such
as: How can mistakes be recovered? What are the consequences or costs of
mistakes in decision chains?

This section introduces a new decision and operations theory, known as
the decision grids [Wang, 2005b], for modeling and supporting dynamic and
sequential decision making. The mathematical models of decision grids are
introduced and their properties are rigorously described. The formal
treatment of serial decision makings with both limited and unlimited trials are
modeled by decision grids. This new theory can be applied in a wide range of
serial and dynamic decision making situations in management science,
operations studies, cognitive science, sociology, economy, software
engineering, systems engineering, political science, statistics, as well as
everyday lives.

Corollary 11.5 The art of management, to a certain extent, is to create a
win-win environment for all members, partners, and parent organizations
involved in a game context.

© 2008 by Taylor & Francis Group, LLC

908 Part III Organizational Foundations of SE

11.3.5.1 The Formal Model of Decision Grids

Definition 11.46 A decision grid is a directed network of a series of
decisions over time where each decision possesses only two possible
outcomes, right or wrong, where the effort spent to make a right decision is
assumed to be identical with that of a wrong decision.

A decision grid is illustrated as shown in Fig. 11.15.

 0

 3

 1

 2

 0

-1

-2

-3

-4

1 63 4 2
 4

10987 16 1511 12 13 14

1 2 3 4 8765 11 12 13 14 15 16 9

E

 t
 (times
 of
 trials)

5

10

 Success
 state

 w

 r
…

…
Dmin = 4

Figure 11.15 A decision grid DG1 with (Dmin = 4)

Definition 11.47 The formal model of a decision grid DG is a 4-tuple,

i.e.:

DG = (T, D, E, S) (11.38)

where

 • T is a finite or infinite set of trials T = {t1, t2, …, tn}, and n is the
time points of trials where n may be infinitive.

• D is the decision distance of a series of decision trials, D = ti - t0 =

ti, 1 ≤ i ≤ n.

• E is the effort of a specific trial towards the success state in the
grid, 0 ≤ E ≤ n.

• S is a finite or infinite set of success states of the grid, S = {s1, s2,

…, sk}, 1 ≤ k ≤ n.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 909

Example 11.12 A decision grid DG1 with the minimum effort of four
right decisions to achieve the success state, as shown in Fig. 11.15, can be
defined as follows:

 DG1 = (T, D, E, S)

where

 • T = {t1, t2, …, t16, …, tn}, n = ∞
 • D = ti = 4

• 0 ≤ E ≤ n
 • S = {s1, s2, …, sk}, 1 ≤ k ≤ n

Observing the decision grid DG1 = (T, D, E, S), the effort E spent in a
right or wrong decision is treated as equivalent. That is, a combined effort of
a wrong decision followed by a right decision, or vice versa, results in no
effect towards the success state, except that time for two trials has been lost.

Decision grids can be classified into categories of unlimited and limited
grids according to the scope of times for allowable trials.

Definition 11.48 When the allowable times of trials t in a decision grid

are infinitive, the decision grid is called an unlimited decision grid;
otherwise, it is a limited decision grid.

The unlimited decision grid is a suitable model for the series of

decisions toward a success state no matter how many trials are needed, such
as an experimental process, a research project, or a person’s pursuit towards
a goal in life. The limited decision grid is a serial decision model for a short
period of trials, such as a student towards a degree, an assessment process, or
a deadline-specific process. The following subsections discuss the properties
and decision processes of unlimited decision grid first. Most of the properties
of unlimited decision grids will be found applicable to limited decision grids.

11.3.5.2 Serial Decision Making with Unlimited Trials

Definition 11.49 The decision distance Dt in a decision grid is the
number of decisions made from the initial state t0 towards a success state ti
over time by any path in the decision grid, i.e.:

 0t i

i

D t t

t

= +
=

 (11.39)

It is noteworthy that in a decision grid the decision distance Dt from the
initial decision point d(0, 0) to another decision d(t, e) at certain trial point t
is a constant, which is not dependent on the paths or the combination of any
series of right/wrong decisions.

© 2008 by Taylor & Francis Group, LLC

910 Part III Organizational Foundations of SE

Theorem 11.5 reveals an interesting property of decision grids that the

decision distance, or number of decisions needed towards a success goal, is
always equal to ti no matter how the right and wrong decisions are
interleaved. This can be proven by observing Fig. 11.15.

Example 11.13 In Fig. 11.15 the decision distances of D8 and D16 are:

8

6 2

8

r wD d d= +

= +

=

and

16

10 6

16

r wD d d= +

= +

=

Different combinations of dr and dw in the above cases will result in

multiple paths towards D8 or D16. However, the decision distance Dt remains
constant.

The 40th Principle of Software Engineering

Theorem 11.5 The properties of decision grid state that the decision
distance Dt in a decision grid is a constant that is determined by the
number of decision trials ti spent in the time series, i.e.:

t i

r w

D t

d d

=

= +
 (11.40)

where dr and dw represent numbers of right and wrong decisions,
respectively.

Corollary 11.6 The shortest decision distance Dmin between the initial
state d(0, 0) and the success state d(tmin, Dmin) in a decision grid is a series
of pure successful decisions where no wrong decision has been made,
i.e.:

 = min min rD t d= (11.41)

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 911

Example 11.14 For the given decision grid as shown in Fig. 11.15, the
shortest decision distance Dmin is:

= 4
min min

r

D t

d

=

=

Observing that in the decision grid as shown in Fig. 11.15, any number

of continuous or separated wrong decisions dw should be recovered by the
same number of right decisions d’r, before the success state is achieved, i.e.:

'r wd d≡ (11.43)

Therefore, replacing dr with Drmin + d’r in Eq. 11.40, the following
relation can be obtained:

 min

min

(')

2

t r w

r w

w

D d d

D d d

D d

= +

= + +

= +

 (11.44)

Solving Eq. 11.44, the allowable number of wrong decisions for a

given decision grid is obtained as follows:

 min

2
t

w
D Dd −= (11.45)

Corollary 11.7 The last decision dn of a successful series of decisions Sr
is always a right decision, i.e.:

0 1(, ,...,) rightr n nS d d d d∀ = ⇒ ≡ (11.42)

Corollary 11.8 The maximum number of allowable wrong decisions
dw-max in a decision series that may achieve the success state in a given
decision grid is determined by the times of trials ti (or Dt) and the
minimum decision distance Dmin, i.e.:

 -
 =

2
i min

w-max
t D

d ⎡ ⎤
⎢ ⎥
⎢ ⎥

 (11.46)

© 2008 by Taylor & Francis Group, LLC

912 Part III Organizational Foundations of SE

Definition 11.50 The allowable rate of wrong decisions rw in a

decision series that eventually achieves the success state in a decision grid is
a ratio between the number of wrong decisions and the total times of trials ti,
i.e.:

 100%w
w

i

d
r

t
•= (11.48)

Definition 11.51 The relative cost of wrong decisions Cw is the relative

difference between the total number of decision trials ti and the minimum
decision distance Dmin, i.e.:

 -i min
w

i

t D
C

t
= (11.49)

where Cw is usually represented in a percentage form.

Definition 11.52 The efficiency of decisions er is the ratio between the
minimum decision distance Dmin and the total number of decision trials spent
ti, i.e.:

1

min
r

i

w

De
t

C

=

= −
 (11.50)

where er is usually represented in a percentage form.

The properties of the above five attributes of decision grids, in terms of
the maximum number of allowable wrong decisions (Eq. 11.46), the
minimum number of required right decisions (Eq. 11.47), the allowable rate

Corollary 11.9 The minimum number of required right decisions dr-min in
a decision series that may achieve the success state in a given decision
grid is a complement number of dw-max to the given times of trials ti, i.e.:

= -

 -
= -

2
 +

2

r -min i w-max

i min
i

i min

d t d

t D
t

t D

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎢ ⎥= ⎢ ⎥
⎣ ⎦

 (11.47)

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 913

of wrong decisions (Eq. 11.48), the relative cost of wrong decisions (Eq.
11.49), and the efficiency of decisions (Eq. 11.50), can be illustrated in Fig.
11.16. Detailed data for generating the curves of Fig. 11.16 are given in
Table 11.15. It can be seen that, when ti = 100, for given Dmin = 4, the
efficiency of decisions er may drop to zero percent, and on other hand, the
relative cost due to multiple wrong decisions Cw may increase to nearly 100
percent.

0
10
20
30
40
50
60
70
80
90

100

4 5 6 7 8 9 10 12 14 16 20 50 100
t

Pr
op

er
tie

s

Cw (%)

rw (%)

dr-min

dw-max

er (%)

Figure 11.16 Properties of decision grid (Dmin = 4)

Table 11.15

Properties of Decision Grid (Dmin = 4)

T 4 5 6 7 8 9 10 12 14 16 20 50 100
Cw (%) 0 20 33.3 42.9 50 55.6 60 66.7 71.4 75 80 92 96
rw (%) 0 20 16.7 28.6 25 33.3 30 33.3 35.7 37.5 40 46 48

dr 4 4 5 5 6 6 7 8 9 10 12 27 52
dw 0 1 1 2 2 3 3 4 5 6 8 23 48

er (%) 100 80 66.7 57.1 50 44.4 40 33.3 28.6 25 20 8 4

Based on Fig. 11.16 and Table 11.15, the following corollary can be

derived.

Corollary 11.10 The later the wrong decision is corrected, the higher the
cost of the decision series; The earlier the wrong decision is corrected, the
more efficient of a decision series.

© 2008 by Taylor & Francis Group, LLC

914 Part III Organizational Foundations of SE

The essence of Corollary 11.10 is a formal description of the empirical
wisdoms in everyday life, such as Shakespeare’s “all is well that ends well,”
and the antonym's “a good kick off is worth a half of the success.”

It is noteworthy that Fig. 11.16 shows that the allowable rate of wrong
decisions rw towards the success state will not exceed 50% no matter how
large ti is. This observation leads to the following theorem [Wang, 2005b].

According to Theorem 11.6 and Fig. 11.16, it is impossible to win a

game by random decisions, because the probability of wrong or right
decisions in random, when ti is large enough, is exactly 50%. However, the
allowable rate of wrong decisions rw(%) for any series of decisions is always
below 50%.

It is intuitive that both time and effort have been lost when any wrong
decision is made in the decision grid. The following corollary provides a
quantitative explanation of how worse this could be when multiple wrong
decisions have been made in a decision process.

The result of Corollary 11.11 can be illustrated as shown in Fig. 11.17.

The curves show that, when the number of wrong decisions increases,
although there is still changes to reach the success state in a decision grid if
dw ≤ dw-max, the loss of time is close to 100%, and the loss of effort is

 The 41st Principle of Software Engineering

Theorem 11.6 The random series of unlimited trials states that random
decisions, or equal probability right and wrong trials, will not lead to a
success in any series of decisions under unlimited trials.

Corollary 11.11 A wrong decision results in both losses of time tl and
effort El, which can be estimated by the relative differences between the
number of decision trials and the minimum decision distance Dmin (or
tmin), i.e.:

 () = - l i mina t t t (11.51)

- () =

 - =

min
l

min

i min

min

D Db E
D

t t
t

 (11.52)

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 915

hundreds even thousands times higher than that of the best decision series
where no wrong decision had been introduced.

1

100

10000

4 5 6 7 8 9 10 12 14 16 20 50 100

t

D
ec

is
io

n
lo

ss
es

dw

tl

el (%)

Figure 11.17 Time and effort losses of wrong decisions in decision grid (Dmin
= 4)

Example 11.15 A new software engineering project is expected to be

completed by three processes in the best case that involves three continuous
right decisions at the beginning of each process. Draw a decision grid for this
project and analyze the seven decision attributes on the following cases:

 Case 1: The maximum times of trials should be no more than 3
times.

 Case 2: The maximum times of trials should be no more than 9
times.

 Case 3: If 5 wrong decisions have been made in this project, what is
the earliest completion time in terms of number of trials?

A decision grid DG2 = (T, D, E, S) for the given software engineering

project is described in Fig.11.18. It is noteworthy that according to Theorem
11.5, the interesting property of the decision grid is that the decision distance
D from the initial decision point d(0, 0) to another decision d(ti, e) at any
given trial ti is a constant, which is not dependent on the path or the
combinations of dr and dw.

Solutions for Case 1 through Case 3 can be derived as shown
respectively in Table 11.16, where an appropriate equation for each decision
attribute of the decision grid is referred. Note that data provided in the square
brackets are given from the problem.

© 2008 by Taylor & Francis Group, LLC

916 Part III Organizational Foundations of SE

 0

 3

 1

 2

 0

-1

-2

-3

-4

1 63 4 2
 4

10987 … 1511 12 13 14

1 2 3 4 8765 11 12 13 14 15 … 9

E

t

5

10

 Success
 state

 w

 r

Dmin = 3

Figure 11.18 A decision grid DG2 with (Dmin = 3)

11.3.5.3 Serial Decision Making with Limited Trials

Serial decision making under limited trials can be modeled by a limited
decision grid, where the maximum number of decision trials ti is a finite
constant. The limited decision grid is suitable for dealing with serial
decisions of a time constrained process. The seven attributes and related
theorems and corollaries for unlimited decision grids developed in Section
11.3.5.2 are also applicable to limited decision grids.

Table 11.16

Properties of the Decision Grid DG2

Attributes of DG2
Attribute Symbol

Case 1

Case 2

Case 3

Remark

Minimum distance or
minimum times of trials

Dmin =
 tmin

[3] [3] [3] Given

Maximum trials (distance) Dt [3] [9] 13 Eq.11.44
Max. no. of allowable
wrong decisions

dw-max 0 3 [5] Eq.11.46

Min. no. of required right
decisions

dr-min 3 6 8 Eq.11.47

Allowable rate of wrong
decisions

rw (%) 0 33.3 38.5 Eq.11.48

Relative cost of wrong
decisions

Cw (%) 0 66.7 76.9 Eq.11.49

Efficiency of decisions er (%) 100 33.3 23.1 Eq.11.50
Time loss in decisions tl (trials) 0 6 10 Eq.11.51
Effort loss in decisions El (%) 0 200 330 Eq.11.52

 Note: Data in square brackets [x] are given.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 917

For decision making under unlimited trials modeled by an unlimited
decision grid, there is always a next chance to achieve the success state no
matter how many wrong decisions have been made and what are their costs
in terms of time and effort. However, decision making with limited trials
modeled by a limited decision grid is constrained by the maximum number of
trials one may try, or the maximum wrong decisions one may make.

According to Corollary 11.7, the maximum number of allowable wrong
decisions is determined by a certain ti. Therefore, for a given limited decision
grid, once the number of wrong decisions made dw is larger than the
maximum allowable mistakes, the decision series should be considered over,
because there is no more chance to reach the success state.

Example 11.15 can also be used to analyze a series of decision making

cases under limited trials with a limited decision grid.

It can be seen that both Theorems 11.6 and 11.7 rule out the success

possibility of random decision series in either unlimited or limited trials. In a
limited decision series, the relative cost and efficiency of the decision series
are much worse.

This section shows that decision grids are a powerful means and
methodology for dealing with dynamic and serial decision makings with
limited or unlimited trials. Decision grids can be applied in a wide range of
serial and dynamic decision making situations in management science,
operation studies, sociology, economy, software engineering, systems
engineering, as well as everyday lives.

The 42nd Principle of Software Engineering

Theorem 11.7 The random series of limited trails states that random
decisions, or equal probability right and wrong trials, will not lead to a
success in any series of decisions under limited trials.

Corollary 11.12 For a given limited decision grid, the following
condition determines a failure of a decision series under limited trials ti,
i.e.:

>

 -
=

2

w w-max

i min

d d

t D⎡ ⎤
⎢ ⎥
⎢ ⎥

 (11.53)

© 2008 by Taylor & Francis Group, LLC

918 Part III Organizational Foundations of SE

11.4 Quality Systems

As discussed in Section 8.2.4, quality is one of the fundamental objectives of
engineering. In modern industrial organization, quality has become a major
concern of management in virtually all sectors of industries, services,
government, health care, and education.

This section reviews classic thought on quality in management science
and explains new perceptions and formal treatment of quality and quality
systems. Then, it discusses what constitutes a quality control system, and
what are the necessary conditions and basic quality assurance techniques to
implement it. Typical quality management systems will be described, which
covers total quality management, the ISO 9000 quality system, and the ISO
9126 quality attributes.

11.4.1 QUALITY PRINCIPLES

Studies on quality and quality control principles may be traced back to
Shewhart in 1939, when the method for statistical quality control was
proposed [Shewhart, 1939]. However, quality as one of the essences of
management science was perceived differently. Philip Crosby focused on
quality that conforms to requirements [Crosby, 1977]. Edwards Deming said
quality is how well something meets customers’ needs [Deming, 1992/86].
Joseph Juran perceived quality as fit for use [Juran, 1988/89; Huran et al.,
1962/80]. Genichi Taguchi viewed quality as the closeness to an ideal state
that implements maximum well-being to the society and users [Taguchi,
1986].

Definition 11.53 Quality Q is the totality of features and characteristics

of a product or service that bear on its ability to satisfy stated or implied
needs.

Although quality as a term is vague, nobody doubts its importance.
Quality before quantity has been a basic principle in management science.

11.4.1.1 Attributes of Quality

Garvin identified eight attributes known as dimensions of quality that
break down the abstract concept of quality into detailed characteristics
[Garvin, 1987]. The eight dimensions, according to Garvin, are as follows:

• Performance: Primitive operating characteristics of a product,
service, or system.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 919

 • Features: The secondary or extra characteristics.
 • Reliability: Consistency of performance within a given period.
 • Conformance: The degree of performance and features meets

specific requirements and standards.
 • Durability: The lifespan of a product or service.
 • Serviceability: Post sale/delivery technical support and

maintenance.
 • Aesthetics: The appearance or inner attribute of beauty in design,

production, or service.
• Perception of excellence: Implied quality carried by reputation or

brand name.

It is interesting to compare the attributes of quality identified in

management science and software engineering as shown in Table 11.17.

Table 11.17
Comparison of Quality Concept in Management Science and

Software Engineering

Quality attributes No
Management

science
Software engineering

Detailed attributes

1 Performance and
features

Functionality Suitability, accuracy,
interoperability, and security

2 Reliability Reliability Maturity, fault tolerance, and
recoverability

3 Conformance Conformance to requirements
(not included in ISO 9126)

Functionality against standards

4 Durability Validated period of
functionality

5 Usability Understandability, learnability,
and operability

6 Efficiency Time behavior, and resource
behavior

7 Serviceability Maintainability Analyzability, changeability,
Stability, and testability

8 Portability Adaptability, installability,
conformance, and
replaceability

9 Aesthetics Appearance or inner attributes
of appreciation

10 Perception on
excellence

 User satisfaction

© 2008 by Taylor & Francis Group, LLC

920 Part III Organizational Foundations of SE

The quality attributes of software engineering shown in Table 11.17 are
adopted from ISO 9126 (1991), which will be extensively described in
Section 11.4.3. Both disciplines cover the quality attributes such as
functionality, reliability, conformance, and maintainability. It indicates that
management science has strongly influenced the perception on quality in
software engineering. However, software engineering overlooked the
subjective attributes of aesthetics and perception on excellence identified in
management science. These subjective attributes may be as equally important
as those of the other attributes, because software engineering is dealing with
complicated creative artifacts and customers always have the final say on
quality of a software system. There are three special features in software
engineering known as usability, efficiency, and portability. These features
indicate the unique concerns on quality in software engineering.

Because customers are decisive in evaluating the quality of a system or
service, surveys on customer feedback are important techniques and a
necessary process in any quality control system.

11.4.1.2 Formal Models of Quality

Quality is a generic measure of the degree of excellence of a product or
service against a given standard. More specifically, quality is a common
attribute of any product or service that characterizes the quantity of both
utility and durability of the product or service. Therefore, the general view on
quality can be defined as follows [Wang, 2001b].

Definition 11.54 Quality Q is a generic and collective attribute of a
product, a service, or a system that is proportional to both its average utility
U and the available duration T of the utility, i.e.:

Q = U • T [Fh] (11.54)

where the unit of utility is function (F), and the unit of duration is hour (h),
and these result in the unit of quality as Function-hour or shortly Fh.

According to Definition 11.54, for a given product, service, or system,

there is no quality if there is a lack of either utility (U = 0) or availability of
the utility (T = 0).

Quality defined in Definition 11.54 is the average quality. A more
generic form of quality that represents the dynamic aspect of quality when
the utility is a function of time is given below.

Definition 11.55 A generic dynamic utility function U(t) is an inversed

exponential function over time, i.e.:

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 921

 () (1) [F]t TU t U e −= − (11.55)

where both U and T are a positive constant.

With the above definition of U(t) in the curve as that is shown in Fig.

10.15, the value of the dynamic quality can be determined by the following
lemma.

Lemma 11.12 shows that the integrated quality of a dissimilating utility

system or product is always smaller than that of constant utility.
The quality formulae defined by Eqs. 11.54 and 11.56 are an absolute

value. In practice, a relative measure of quality may provide more
information when a standard or benchmark on the quality of a given system
or product is available.

Definition 11.56 The relative quality q(t) is a relative degree of
difference between the quality of a product, a service, or a system and the
standard or benchmark S for the expected quality, i.e.:

0

-

[())] -
()

 - - (1 -)
 [Fh]

T

T

U t dt S
q t

S
Q S U e

S

=

=

∫
 (11.57)

When U(t) = U is a positive constant, a special case of the relative quality is
as follows:

Lemma 11.12 The integrated quality with dynamic utility, Q(t), is an
integral of the utility function U(t) over the entire lifecycle of the utility
[0, T], i.e.:

0

0

-

-

() ()

(1)

(1)

= - (1 -)

= - (1 -) [Fh]

T

T t T

T

T

T

Q t U t dt

U e dt

U e T

UT U e

Q U e

−

−

=

= −

= + −

∫
∫

 (11.56)

where U is the initial quality of the product, service, or system.

© 2008 by Taylor & Francis Group, LLC

922 Part III Organizational Foundations of SE

-
()

() -
 [Fh]

Q Sq t
S

U T S
S
•

=

=
 (11.58)

The utility of a product or a system described in Eq. 11.55 can be

classified as external and internal utility. The external utility encompasses
the quality attributes of the product or system when it is treated as a black
box, such as functionality, usability, availability, reliability, efficiency,
portability, and maintainability. The internal utility encompasses the quality
attributes of the product or system when it is treated as a white box, such as
completeness, correctness, consistency, clearness (no ambiguity), feasibility
(can be implemented in technical and economical terms), and verifiability
(can be measured).

Corollary 11.13 indicates that the control, assurance, and improvement

of quality must be carried out systematically on multiple attributes of the
target product, service, or system.

Quality is closely related to the cost of a product or service in two

ways. One is the perception on benefit of quality as described below.

Definition 11.57 The benefit of a product or a system B is the quality

gained per unit cost (C) in terms of resources, labor, and time, i.e.:

=

= [Fh/$]

Q
B

C
U •T

C

 (11.59)

The other is the principle of the quality-cost relationship known as the

quality funnel principle [Bain, 1962].

Corollary 11.13 Quality is a collective attribute of a product, service, or
system.

Corollary 11.14 Quality is implemented incrementally via each
individual in every process.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 923

If the whole process of manufacture or service can be divided into the

processes of design, implementation, and application, the costs of quality can
be classified into three corresponding phases known as the prevention costs,
the appraisal costs, and the failure costs.
 Because software engineering is a specific branch of the engineering
discipline, it obeys the generic engineering rules as stated in Corollaries
11.13 through 11.15. Among a wide variety of goals identified in Theorem
8.2 on conservation of basic engineering constraints, productivity, efficiency,
and quality are recognized as the most fundamental categories of goals in
software engineering.

11.4.2 QUALITY CONTROL AND ASSURANCE

According to Corollary 11.13, quality is a collective attribute of a
product, service, or system. Therefore, the control and management of
quality must focus not only on individual attributes but also on the
integration of an entire system. Therefore, quality control and assurance are
not only individual techniques but also a fundamental infrastructure system
for an organization.

11.4.2.1 Quality Control Systems

A generic quality control system encompasses five subsystems known
as quality definition, implementation, appraisal, postmortem, and prevention.
The five subsystems of the quality control system are illustrated in Fig.
11.19. Fig. 11.19 also describes the sequence of implementation and cyclic
operation of these five subsystems.

Definition 11.58 The quality definition subsystem is responsible to

identify, partition, and quantify the attributes and characteristics of the
products or services produced or provided in an organization.

For the establishment of a new quality control system, the quality

definition phase is the most crucial one. If this phase can not be achieved, no
quality control system may be implemented.

Corollary 11.15 The quality funnel principle states that the nearer to the
start of the production process, the lower the cost of quality.

© 2008 by Taylor & Francis Group, LLC

924 Part III Organizational Foundations of SE

The Quality Control System

Definition Appraisal Implementation Postmortem

Attributes

Processes

Measures

Design

Tools

Training

Commit-
ment

Formal
verification

Assessment

Review

Audit

Test

Feedback

Data
Analysis

Data
Collection

Prevention

Standards

Quality
policy

Improve
process

Enhance
standards

Simulation

Figure 11.19 The configuration of a generic quality control system

Definition 11.59 The quality implementation subsystem distributes

quality attributes identified in phase one into individual processes and job
functions.

Through training and tools support, each individual in a given process
should understand both job functions and quality responsibilities with
corresponding expected standards.

Definition 11.60 The quality appraisal subsystem is a set of evaluation

techniques against the quality standards for each process and each attribute of
a given product, service, or system.

Definition 11.61 The quality postmortem subsystem is a feedback

subsystem that helps to identify existing or potential problems in the process
or quality standards on the basis of operating data on current performance.

Definition 11.62 The problem prevention subsystem is an adaptive
process that prevents recurrent problems or failures from happening through
improvement of the current processes and quality standards.

Simulations and pilot trials are typical techniques in the phase of

problem prevention.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 925

11.4.2.2 Quality Assurance Techniques

Typical quality assurance techniques in quality control systems can be
classified into definitive, implemental, appraisable, postmortem, and
preventive corresponding to the quality control system model as shown in
Fig. 11.19. Effective techniques for quality assurance are quality audit,
quality review, quality measurement, and formal verification/validation.

Definition 11.63 Audit is an empirical quality assurance technique that

uses professional auditors to monitor the quality of products and services on
the basis of statistical quality control and review techniques.

Quality audit may be carried out in forms of sampling-based statistical

analysis and review. The former is suitable for physical products and mass
production systems; the latter is widely used for information-based artifacts
and services.

Quality review is a special audit technique for information-based work

products such as system designs, plans, software, and documents. Quality
review is an effective technique for quality assurance in software
engineering.

Definition 11.64 Measurement is a quantitative quality assurance
technique that evaluates the conformance of products and services against
predefined standards or benchmarks.

A major problem in software quality assurance is that there lacks a

comprehensive and coherent set of quantitative measures and benchmarked

The 43rd Principle of Software Engineering

Theorem 11.8 The conditions of quality control state that the necessary
conditions for implementing a quality control system for a given product,
service, or system are that all attributes of its quality can be:

a) Abstractly identified

b) Quantitatively defined, and

c) Independently measurable.

© 2008 by Taylor & Francis Group, LLC

926 Part III Organizational Foundations of SE

standards for each of the basic attributes of software and software
engineering processes. Taking the automobile industry as an example, each
and all of the attributes of a car, at a number of thousands level, have been
systematically identified and quantitatively defined. Based on this well-
defined quality system, each car out of a production line can be guaranteed
for the same quality as the standard specified. However, the lack of the
measurability in software engineering is the fundamental barrier that prevents
the software industry from achieving a predictable and stable quality in
software engineering as its counterparts in other industries.

Definition 11.65 Verification and validation is a formal quality

assurance technique that applies mathematical models, logical inference
tools, and simulation systems into quality control of products and services.

It is noteworthy that all practical quality assurance techniques, no
matter formal or empirical and quantitative or qualitative, require the
establishment of a quality system, which satisfies the conditions as identified
in Theorem 11.8 for implementing a quality control system.

Corollary 11.16 forms the foundation of total quality management,

which will be discussed later in this chapter.

With the influence of W.E. Deming in the 1940s, the concept of quality

circles originated in Japan in 1962 on the basis of the statistical quality
control theory.

Definition 11.66 The quality circle is a four-phase repetitive process

for quality improvement that encompasses the phases of problem
identification, finding solutions, implementation of the solutions, and
evaluation.

In the 1980s, the quality circles are evolved to be the cycle of plan, do,

check, and act as shown in Fig. 11.21, which is known as the Deming circle.

Corollary 11.16 A quality control system should be designed and
implemented as a whole, because any individual quality assurance
technique, no matter how effective, can not solve the problem alone in a
given quality system.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 927

Figure 11.20 The Deming cycle: plan-do-check-action

11.4.3 QUALITY MANAGEMENT SYSTEMS

In the preceding sections it has been observed that quality control and
assurance are a management activity at the system level. This section
introduces three well-found quality management systems: the total quality
management, the ISO 9000 quality system, and the ISO 9126 quality system.

11.4.3.1 Total Quality Management (TQM)

Total quality management has been a main stream methodology in
quality management since the 1970s [Deming, 1982; Buckland et al., 1991;
EFQM, 1993; Dunn and Ullman, 1994]. Total quality management extends
the concept of quality control from the product to the process, from the
physical objects to human beings who produce them, from individuals to the
entire organization, and from manufacturing to culture in which quality is
treated as an integral part of every job function in the organization.

David Garvin summarized three principles of quality known as: a) To

set objectives on continuous improvement in quality; b) To focus on the
processes that produce products and services; and c) To implement
employee’s involvement in quality improvement [Garvin, 1991]. These
principles cover the essences of total quality management.

Definition 11.67 Total Quality Management (TQM) is a systematical
management methodology that states quality of products and services of an
organization depends on a systematical management of the organization’s
culture, attitude, and operations through all members’ involvement.

(c)
Check

(a)
Plan

(d)
Act

(b)
Do

© 2008 by Taylor & Francis Group, LLC

928 Part III Organizational Foundations of SE

TQM adopts all proven quality control techniques such as statistical
quality control, process system, continuous improvement, all employees’
involvement, and customer feedback. TQM encompasses a set of key
elements such as ethics, integrity, trust, training, teamwork, leadership,
recognition, and communication. Among the eight elements, ethics, integrity,
and trust are the foundation of the TQM framework. Training enables every
member of the organization to be integrated into the TQM system.
Teamwork and leadership are basic organizational techniques at project or
department level. Recognition is the means of motivation for everybody
involved. Finally, communication is the essential foundation for system
synchronization in order to decrease the overhead of interpersonal
coordination.

11.4.3.2 The ISO 9000 Quality System

The ISO 9000 quality system has been discussed in Section 8.6.5. A
hierarchical structure of the ISO 9001 framework is shown in Table
11.18.

What is software quality and how to measure it? This is a fundamental
issue in software engineering for which the formal models of quality as
developed in Section 11.4.1 may provide an answer. Usually, quality
software is perceived as the software that meets users’ needs. However, for
the same application system, users’ needs may be different and informally
described. Therefore, the quality of software is difficult to be verified
according to this definition. Another definition perceives quality software as
the software that contains fewer bugs. However, bugs as an internal feature
of software are difficult to identify and measure in practice.

According to the formal model of quality as described in Section
11.4.1.2, software quality can be perceived as follows.

Definition 11.68 Software quality is a set of inherent internal and

external characteristics of a software system that show relative advantages
over similar systems or indicate a conformance to a standard.

The central idea of this definition is to recognize that the quality of

software (not quality software) is a relative concept that can be referred to as
‘higher’ or ‘better’.

The design philosophy behind ISO 9001 is a generic quality system
perception on software engineering. Although this philosophy has been
proven successful in the conventional manufacturing industries, there is still
a need for supporting evidence of its effectiveness and impact on the design-
intensive software engineering and nonconventional software industries. It
appears likely that software engineering is sufficiently unique as an
engineering discipline in that it relies upon special foundations and applies a
different philosophy as discussed in Chapter 3. Therefore, further studies on

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 929

common features and differences between conventional mass manufacturing
and software engineering are still expected.

Table 11.18

Structure of the ISO 9001 Framework

ID. Subsystem Main Topic Area (MTA)
SS1 Organization

management

MTA1.1 Management responsibility
MTA1.2 Quality system
MTA1.3 Document and data control
MTA1.4 Internal quality audits
MTA1.5 Corrective and preventive action
MTA1.6 Quality system records
MTA1.7 Training
SS2 Product

management

MTA2.1 Product management
MTA2.2 Control of customer-supplied product
MTA2.3 Purchasing
MTA2.4 Handling, storage, packaging, preservation, and

delivery
MTA2.5 Control of nonconforming product
SS3 Development

management

MTA3.1 Contract reviews
MTA3.2 Process control
MTA3.3 Design and development control
MTA3.4 Inspection and testing
MTA3.5 Inspection and test status
MTA3.6 Control of inspection, measuring, and test

equipment
MTA3.7 Statistical techniques
MTA3.8 Servicing and software maintenance

11.4.3.3 The ISO 9126 Quality System

ISO 9126 extends principles of quality control to software engineering
and summarizes the major characteristics and attributes of software quality
[ISO 9126, 1991] as shown in Table 11.19. ISO 9126 develops a collective
way to perceive software quality. According to the philosophy of ISO 9126,

© 2008 by Taylor & Francis Group, LLC

930 Part III Organizational Foundations of SE

software quality is a set of qualitative characteristics and attributes. ISO 9126
provides a software quality model by defining 6 software quality
characteristics and 20 attributes, which are intended to be exhaustive.

Table 11.19

ISO 9126 Software Quality Model

No. Quality characteristics Quality attribute
1 Functionality
1.1 Suitability
1.2 Accuracy
1.3 Interoperability
1.4 Security
2 Reliability
2.1 Maturity
2.2 Fault tolerance
2.3 Recoverability
3 Usability
3.1 Understandability
3.2 Learnability
3.3 Operability
4 Efficiency
4.1 Time behavior
4.2 Resource behavior
5 Maintainability
5.1 Analyzability
5.2 Changeability
5.3 Stability
5.4 Testability
6 Portability
6.1 Adaptability
6.2 Installability
6.3 Conformance
6.4 Replaceability

The major quality characteristics identified in ISO 9126 are described

below:

• Functionality: The characteristics that a system can provide
specified services that meet users’ requirements.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 931

 • Reliability: The probability that a system will fulfill the service
during a given period when ever a user demands.

 • Usability: The characteristics that a system is ready and easy for
use when a user needs its service.

 • Efficiency: The characteristics that a system uses minimum
resources and provides timely response to an application.

 • Maintainability: The probability that a system can be restored,
within a given time after a failure, to provide the originally
specified services.

 • Portability: The characteristics that a system is capable of running
on different target machines, operating systems, and network
platforms.

Software quality may be characterized by external and internal

attributes. External quality characteristics are those that can be evaluated
when executing the software; and internal quality characteristics are those
that are evaluated by inspecting the internal features of the software. The
former is user-oriented and may be verified by black-box testing techniques.
However, the latter is oriented to developers and maintainers, and may be
verified by white-box testing techniques.

ISO 9126 focuses only on external characteristics of software quality.
Substantial internal attributes of software quality, such as of architecture,
reuse description, coding styles, test completeness, run-time efficiency, and
resource usage efficiency, have not been modeled.

Another gap in ISO 9126’s quality characteristic set is the lack of
exception handling capability requirements for software as stated in Theorem
5.3, which is an important attribute of software quality that identifies the
unexpected circumstances and conditions of a system, and specifies how the
system should behave under such conditions. Design for exception handling
capability of software is recognized as a good indicator to distinguish naive
and professional software engineers and system analysts, even though a
customer has not explicitly requested this kind of built-in software quality.

Further, it is found that the concept of software quality might be
different between vendor-specified (common system) software and user-
specified (applications) software. For the former, quality refers to the
software that provides much more usability and higher dependability at a
comparable price; while for the latter, quality means the software that meets
users’ requirements and runs with fewer failures. Also, it is considered that
we need to distinguish the quality of software according to its developing
processes. For example, we may identify the design quality, implementation
quality, test quality, and maintenance quality of a software system, rather
than pursuing a hybrid concept of the quality of software.

© 2008 by Taylor & Francis Group, LLC

932 Part III Organizational Foundations of SE

Generally, the philosophy behind current software quality standards is
based on a generic quality system perception on software development.
Although this philosophy has been proven successful in conventional
manufacturing industry, there is still a need for supporting evidence of its
effectiveness and impact on the design-intensive software engineering and
the nonconventional software industry.

11.5 Software Engineering
 Management

As analyzed in Sections 8.5 and 11.2.3, the key difference between
knowledge-based and labor-intensive engineering projects is determined by
the factor of interpersonal coordination rate r. A high degree of interpersonal
coordination in a creative software development project, for example, r >
50%, would dramatically changed the behavior of such projects. Therefore,
the coordinative work organization theories and laws, management
methodologies, decision theories, and quality system theories presented in
preceding sections lay the foundation for software engineering project
management and quality assurance.

11.5.1 TAXONOMY OF SOFTWARE ENGINEERING
 MANAGEMENT

The managerial foundations of software engineering are cross fertilized
by researches in management science, systems theory, and quality system
principles. A brief structure of the management foundations of software
engineering is summarized in Table 11.20.

The basic theories for software engineering management listed in Table
11.20 are sociology, anthropology, semiotics, linguistics, and psychology.
Sociology concerns organizational theory; anthropology addresses
organizational culture; semiotics relates to the theories of communication and
knowledge; linguistics studies language theory; and psychology concerns
human behavior and learning.

The system science foundations for software engineering management
encompass abstract systems theory, system design and analysis, system

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 933

modeling and simulation. Systems theory is a common foundation for
management science and many other engineering disciplines. Systems theory
as presented in Chapter 10 has provided interdisciplinary and strategic
solutions that are qualitative and quantitative, organized and creative,
theoretical and empirical for a wide range of problems.

Table 11.20
Structure of Managerial Foundations of Software Engineering

No Category Subcategory
1 Basic theories
1.1 Sociology
1.2 Anthropology
1.3 Semiotics
1.4 Linguistics
1.5 Psychology
2 System science
2.1 Abstract systems theory
2.2 System design and analysis
2.3 System modeling and simulation
3 Management theories
3.1 Strategic planning
3.2 Operational theory
3.3 Decision theory
3.4 Organization methods
3.5 Management economics
4 Quality system principles
4.1 Total Quality Management (TQM)
4.2 Business process reengineering
4.3 The Deming circle: Plan-Do-Check-Act (PDCA)

 Management science is a scientific approach to solving system
problems in the field of management. It encompasses operational theory
[Fabrycky et al. 1984], decision theory [Keen and Morton, 1978; Steven,
1980; Wang and Ruhe, 2007], organization methods [Radnor, 1970; Kolb,
1970], strategic planning [Anthony, 1965; Khaden and Schultzki, 1983;
William, 1991], quality theories [Shewhart, 1939; Crosby, 1977; Deming,
1992/86; Juran, 1988/89; Huran et al., 1962/80; Taguchi, 1986], and
management economics [Richardson, 1966]. Management science provides
management with a variety of decision aids and rules.

A set of quality system principles has been developed in management
science. The important quality management philosophies that are applicable

© 2008 by Taylor & Francis Group, LLC

934 Part III Organizational Foundations of SE

to software engineering organization and management are TQM [Deming,
1982; EFQM, 1993; Dunn and Ullman, 1994], business process
reengineering [Schein, 1961; Johansson et al., 1993; Thomas, 1994; Wang
and King, 2000a], and the Deming Circle [Deming, 1982].

Studies on organization and management of software engineering have,
over time, covered methodologies for project management, project
estimation, project planning, software quality assurance, configuration
management, requirement/contract management, document management, and
human resource management. Table 11.21 provides a summary of the
software engineering organization and management methodologies in
practice. It may be seen that software engineering management and
organization methodologies have intensively influenced by management
science and system science. However, one of its outstanding characteristics is
the very high interpersonal coordination rate in organization and
management, which makes software engineering unique and requires special
care for dealing with the cognitive and organizational constraints according
to the cooperative work organization theory presented in Section 8.5 [Wang,
2007].

Table 11.21
Classification of Software Engineering

Organization and Management Methodologies

No. Category Typical Methods
1 Project management

methods
Methods of metric-based, productivity-oriented, quality-
oriented, schedule-driven, standard process models,
benchmark analysis, checklist / milestones, etc.

2 Project estimation/
planning methods

Methods of coordinative work organization, symbolic kLOC
metric, COCOMO model, the function-points, program
evaluation and review technique (PERT), critical path
method (CPM), Gantt chart, etc.

3 Software quality
assurance methods

Methods of quality manual / policy, process review, process
audit, peer review, inspection, defect prevention,
subcontractor quality control, benchmark analysis, process
tracking, etc.

4 Configuration
management methods

Methods of version control, change control, version history
record, software component library, reuse library, system file
library, etc.

5 Requirement/
contract management
methods

Methods of system requirement management, software
requirement management, standard contractual procedure,
subcontractor management, purchasing management, etc.

6 Document
management methods

Methods of document library, classification, access control,
maintenance, distribution, etc.

7 Human resource
management methods

Methods of position criteria, career development plan,
training, experience exchange, domain knowledge
development, etc.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 935

11.5.2 THE SOFTWARE ENGINEERING PROCESS
 REFERENCE MODEL (SEPRM)

The Software Engineering Process Reference Model (SEPRM) [Wang
et al. 1998b/99a; Wang and King 2000a] identifies a superset of processes
and BPAs that covers the domains of current process models and new areas
for software engineering environment and supporting tools. The philosophy
of SEPRM is to provide a comprehensive and integrated software
engineering process system reference model. SEPRM demonstrates a unified
process system framework for Process-Based Software Engineering (PBSE),
in which all current process models can be located.

SEPRM develops a basis against which process capability levels
between existing process models can be systematically and quantitatively
compared. It also allows transformation between process capability levels
within different process models, and it enables software development
organizations to relate their process capabilities to a range of different
process models.

The following subsections describe the process model, process
capability model, and process assessment method of SEPRM.

11.5.2.1 The SEPRM Process Model

SEPRM provides a hierarchical software engineering process
framework with 3 process subsystems, 12 process categories, 51 processes,
and 444 Base Process Activities (BPAs). The structure of the SEPRM
process model is shown in Fig. 11.21 [Wang and King, 2000a].

PS.1
Organisation Process
Subsystem

PS.2
Development
Process Subsystem

PS.3
Management
Process Subsystem

PC2.1 Software
engineering
methodologies

The Software Engineering Process Reference Model
SEPRM

PC2.2
Software
development

PC2.3 Software
development
environment

PC1.3
Customer
service

PC1.2
Organisational
process

PC1.1
Organisation
structure

PC3.1
Software
quality assurance

PC3.2
Project
planning

PC3.3
Project
management

PC3.4 Contract
and requirement
management

PC3.5
Document
management

PC3.6
Human resource
management

Figure 11.21 The hierarchical structure of SEPRM

© 2008 by Taylor & Francis Group, LLC

936 Part III Organizational Foundations of SE

The 51 processes of SEPRM and the configuration of the 444 BPAs in
the process system are shown in Table 11.22.

Table 11.22
The SEPRM process model

ID. Process
Serial No.

Subsystem Category / Process Identified
BPAs

1 Organization 81

1.1 Organization structure processes 13
1.1.1 1 Organization definition 7
1.1.2 2 Project organization 6
1.2 Organization processes 26
1.2.1 3 Organization process definition 15
1.2.2 4 Organization process improvement 11
1.3 Customer service processes 39
1.3.1 5 Customer relations 13
1.3.2 6 Customer support 12
1.3.3 7 Software/system delivery 11
1.3.4 8 Service evaluation 6
2 Development 115
2.1 Software engineering methodology

processes
23

2.1.1 9 Software engineering modeling 9
2.1.2 10 Reuse methodologies 7
2.1.3 11 Technology innovation 7
2.2 Software development processes 60
2.2.1 12 Development process definition 12
2.2.2 13 Requirement analysis 8
2.2.3 14 Design 9
2.2.4 15 Coding 8
2.2.5 16 Module testing 6
2.2.6 17 Integration and system testing 7
2.2.7 18 Maintenance 10
2.3 Software engineering infrastructure

processes
32

2.3.1 19 Environment 7
2.3.2 20 Facilities 15
2.3.3 21 Development support tools 4
2.3.4 22 Management support tools 6

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 937

3 Management 248
3.1 Software quality assurance (SQA)

processes
78

3.1.1 23 SQA process definition 17
3.1.2 24 Requirement review 5
3.1.3 25 Design review 4
3.1.4 26 Code review 3
3.1.5 27 Module testing audit 4
3.1.6 28 Integration and system testing audit 6
3.1.7 29 Maintenance audit 8
3.1.8 39 Audit and inspection 6
3.1.9 31 Peer review 10
3.1.10 32 Defect control 10
3.1.11 33 Subcontractor’s quality control 5
3.2 Project planning processes 45
3.2.1 34 Project plan 20
3.2.2 35 Project estimation 7
3.2.3 36 Project risk avoidance 11
3.2.4 37 Project quality plan 7
3.3 Project management processes 55
3.3.1 38 Process management 8
3.3.2 39 Process tracking 15
3.3.3 40 Configuration management 8
3.3.4 41 Change control 9
3.3.5 42 Process review 8
3.3.6 43 Intergroup coordination 7
3.4 Contract and requirement

management processes
42

3.4.1 44 Requirement management 12
3.4.2 45 Contract management 7
3.4.3 46 Subcontractor management 14
3.4.4 47 Purchasing management 9
3.5 Document management processes 17
3.5.1 48 Documentation 11
3.5.2 49 Process database/library 6
3.6 Human resource management

processes
11

3.6.1 50 Staff selection and allocation 4
3.6.2 51 Training 7

Total 3 51 444

© 2008 by Taylor & Francis Group, LLC

938 Part III Organizational Foundations of SE

11.5.2.2 The SEPRM Process Capability Model

Parallel to the SEPRM process dimension, the process capability model
describes another dimension of SEPRM that provides an assessment
framework for each process defined in the process model.

The SEPRM process capability model consists of a practice
performance scale, a process capability scale, and a process capability scope.
A practice performance rating scale for the BPAs in SEPRM is defined in
Table 11.23. It employs a four-level scale for evaluating a BPA’s existence
and performance. The rating thresholds provide a set of quantitative
measurement for rating a BPA’s performance with the scale.

Table 11.23

Performance Rating Scale of the BPAs

Scale Description Rating threshold
5 (F) Fully adequate 90% - 100%
3 (L) Largely adequate 70% - 89%
1 (P) Partially adequate 35% - 69%
0 (N) Not adequate 0 – 34%

There are three types of process capability scales: the pass-threshold-

based, process-management-oriented, and process-oriented as shown in
Table 11.24. The SEPRM process capability model is designed for directly
rating and characterizing the performance of a process within context, rather
than to indirectly evaluate the management maturity level for a process.

SEPRM develops a six-level software process capability model as
shown in Table 11.24, with a set of defined criteria for rating the capability
of a process. Table 11.24 shows that, in SEPRM, a process as an independent
unit is assessed in the organization, project, and individual contexts against
the six level process capability criteria. In order to relate the process
capability criteria to the performance of BPAs in a process, there is an
additional threshold for assessing a process. This is the average performance
of the BPAs. Thus, based on both the software process capability model and
the BPA performance threshold, an SEPRM process capability scale is
described in Table 11.25.

It can be seen in Table 11.25 that there are four criteria that a process
has to fulfill at each capability level. The first three are oriented to a process
as a whole; while the last one is oriented to BPAs contained in a process.
Therefore, the capability of a software development organization to operate a
given process is determined by the maximum level i that a process achieved
for fulfilling all four criteria for that level.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 939

Table 11.24
The SEPRM Process Capability Model

Process Capability Criteria Capa-
bility
Level

CL[i]

Description

Organization
Scope

Project Scope Individual
Scope

CL[0] Incomplete C[0,1]
No process system
reference model

C[0,2]
No defined and repeatable process
activities

C[0,3]
Ad hoc

CL[1] Loose C[1,1]
There are defined
processes at some
extent

C[1,2]
There are limited process activities
defined and conducted

C[1,3]
Varying

CL[2] Integrated C[2,1]
There is a process
system reference
model established

C[2,2]
There are relatively complete process
activities defined and aligned to
organization reference model

C[2,3]
Generally
process-based

CL[3] Stable C[3,1]
There is a repeatable
process system
reference model

C[3,2]
There are complete process activities
derived from organization reference
model

C[3,3]
Repeatedly
process-based

CL[4] Effective C[4,1]
There is a proven
process reference
system model

C[4,2]
- There are completed process activities
 derived from organization reference
 model
- Performances of processes are
 monitored

C[4,3]
Rigorously
process-based

CL[5] Refining C[5,1]
There is a refined
and proven process
system reference
model

C[5,2]
- There is a completed derived process
 model
- Performances of processes are
 quantitatively monitored and fine-tuned

C[5,3]
Optimistic
process-based

Table 11.25

The SEPRM Process Capability Scale

Process Capability Criteria Capability
Level

(CL[i])

Description
 Organization

Scope
Project
Scope

Individual
Scope

BPA
Average

Performance
Threshold

CL[0] Incomplete C[0,1]
No

C[0,2]
No

C[0,3]
No

C[0,4]
0 – 0.9

CL[1] Loose C[1,1]
Achieved

C[1,2]
Achieved

C[1,3]
Achieved

C[1,4]
1.0 – 1.9

CL[2] Integrated C[2,1]
Achieved

C[2,2]
Achieved

C[2,3]
Achieved

C[2,4]
2.0 – 2.9

CL[3] Stable C[3,1]
Achieved

C[3,2]
Achieved

C[3,3]
Achieved

C[3,4]
3.0 – 3.9

CL[4] Effective C[4,1]
Achieved

C[4,2]
Achieved

C[4,3]
Achieved

C[4,4]
4.0 – 4.9

CL[5] Refining C[5,1]
Achieved

C[5,2]
Achieved

C[5,3]
Achieved

C[5,4]
5.0

© 2008 by Taylor & Francis Group, LLC

940 Part III Organizational Foundations of SE

The SEPRM process assessment results are reported at the six levels
with a decimal value. This means it has the potential to distinguish the
process capability at tenth-sublevels. This approach enables a software
development organization to fine-tune its process system in continuous
process improvement.

11.5.2.3 The SEPRM Process Capability Determination Methodology

Using the formal definitions of the SEPRM process model and process
capability model as developed in previous subsections, we can now consider
how to apply the latter to the former for the assessment of process capability
at practice, process, project, and organization levels. This activity is called
process capability determination.

The SEPRM process capability determination methodology can be
described as an algorithm as shown bellow.

Algorithm 11.1 The SEPRM Process Capability Determination Algorithm

Assume: NPC(SUBSYS) - Number of process categories in a
 process subsystem
 NPROC(SUBSYS,PC) - Number of processes in a category
 NBPA(SUBSYS,PC,PROC) - Number of BPAs in a process
 BPA(SUBSYS,PC,PROC) - A BPA index
 CL - A capability level
 PCLproc(SUBSYS,PC,PROC) - A process capability level
 PCLproc - Capability level of a project
Input: Sample indicators of BPA and processes existence and performance
Output: A process profile: PCLproc[SUBSYS,PC,PROC], and a project process
 capability level: PCLproj
Begin

// Step 1: Initialization
 // Define numbers of processes in each process subsystem and category according to
 [Wang and King 2000]
 // Define numbers of BPAs in each process [Wang and King 2000]

// Step 2: Practice performance rating

 for SUBSYS := 1 to 3 do // the process subsystem index
 for PC := 1 to NPC(SUBSYS) do // the process category index
 for PROC :=1 to Nproc(SUBSYS, PC) do // the process index
 begin
 PP(SUBSYS, PC, PROC) := 0;

 for BPA := 1 to NBPA(SUBSYS, PC, PROC) do
 // The BPA index
 begin
 // Assess a BPA according to Table 11.23, and
 // record performance rating in BPA(SUBSYS, PC, PROC)
 case BPA(SUBSYS, PC, PROC)
 F: // Fully adequate

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 941

 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 5;
 L: // Largely adequate
 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 3;
 P: // Partially adequate
 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 1;
 N: // Not adequate
 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 0;
 NA: // Does not apply
 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 5;
 end;
 end;
end;

// Step 3: Process capability determination

 for SUBSYS := 1 to 3 do // the process subsystem index
 for PC := 1 to NPC(SUBSYS) do // the process category index
 for PROC :=1 to Nproc(SUBSYS, PC) do // the process index
 // 3.1 Assess each process against the six level
 // process criteria as defined in Table 11.24

 CLPROC(SUBSYS, PC, PROC) :=
 max { i | (C[i,j] are fulfilled) ^ j=1,2,3};

 // 3.2 Assess mean BPA performance according to Table 11.25

 CLBPA(SUBSYS, PC, PROC) := PP(SUBSYS, PC, PROC) /
 NBPA(SUBSYS,PC,PROC);

 // 3.3 Determine process capability levels

 CL(SUBSYS, PC, PROC) :=
 min {CLPROC(SUBSYS,PC,PROC)+0.9,
 CLBPA(SUBSYS,PC,PROC)};

 // 3.4 Save process capability profile

 PCLproc(SUBSYS,PC,PROC) := CL(SUBSYS,PC,PROC);

// Step 4: Project capability determination

 k := 51; // Number of PROCs defined in SEPRM
 CL := 0;
 for SUBSYS := 1 to 3 do // the process subsystem index
 for PC := 1 to NPC(SUBSYS) do // the process category index
 for PROC :=1 to Nproc(SUBSYS, PC) do // the process index
 // Calculate cumulated process capability value
 CL := CL + PCLproc(SUBSYS, PC, PROC);

 // Derive capability level of the project
 PCLproj := CL / k; // Calculate project capability level

End

Figure 11.22 The SEPRM Process Assessment Algorithm and Method

© 2008 by Taylor & Francis Group, LLC

942 Part III Organizational Foundations of SE

An SEPRM assessment according to Algorithm 11.1 is carried out in
four steps:

a) Initialization: This step is designed to specify the numbers of BPAs
defined in SEPRM. For obtaining a detailed configuration of BPAs in the
SEPRM process model, reference may be made to Appendix C in [Wang and
King, 2000].

b) BPA performance rating: In this step, all BPAs for each process are

rated according to the definitions of practice performance scale in Table
11.23. The basic function of this step is to count the total values of the rated
BPAs within individual processes.

c) Process capability determination: This step first derives both the

process capability ratings by the process criteria (Table 11.24) and the BPA
performance criteria (Table 11.25). Next, the capability level of the process
is determined by taking into account both of the first three criteria (the
qualitative score) and the fourth criterion (the quantitative score) according
to the definitions in Table 11.25. Then, a process capability profile of an
SEPRM assessment is created.

d) Project process capability determination: In the final step, the

algorithm derives a process capability level for a software project based on
all processes’ capability levels derived in Step (c). The project capability
level will be reported with the addition of a process capability profile.

SEPRM establishes a comprehensive and unified process system

reference model that serves as an infrastructure for software engineering
organization via PBSE. The development of SEPRM was based on the
inspirations derived from existing process models and experience in
empirical software engineering. From this we have gained improved
understanding on software engineering and on software process system
modeling as a key for organization and implementing software engineering.
The SEPRM process model is supported by a set of industrial benchmarking
data, and its process capability model is independently operational at levels
of organization, project, and individual software engineers. SEPRM enables
a derived process capability level to be transformed into other process
models. It also allows, for the first time, capability levels from different
process models to be related, transformed, and compared [Wang and King,
2000a].

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 943

11.6 Summary

Management science is the discipline that studies organizational behaviors,
executive decision making, and resource optimization on given internal and
external constraints. Management is both an organizational methodology and
a profession, which is needed when people work together to achieve a result
not possible by individuals acting alone. Management science encompasses
operational theories, work organization, decision making, and quality
systems. It studies the objects of work, people, resources, and processes, with
emphases on productivity and quality.

It is recognized that, beyond programming and technical aspects of
software development, software engineering deals with problems of
organisation and management infrastructures. The work of software project
managers is to balance competing demands for project scope, time, cost, risk,
and quality. Therefore, they must satisfy stakeholders with differing needs
and expectations and meet identified requirements constrained by the laws of
work organization and management.

This chapter has discussed the roles of management in software
engineering and the underpinning theoretical and empirical foundations. A
set of classic management thought has been reviewed, and the fundamental
principles and laws of management science have been formalized. On the
basis of the management theories, two threads have been taken in this chapter
on decision theories and quality principles. A structure of decision theories
on static, dynamic, and serial decision making in complex management
contexts, especially the formal game theory and decision grid theory, has
been presented. Quality systems and principles for management have been
rigorously discussed. Applications of management science and complicated
management issues in software engineering have been described via the
approach of process-based software engineering (PBSE). As a result, the
management science foundations of software engineering have been
established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Management Science Foundations of Software
Engineering, readers have achieved the following strategic goals with the
knowledge structure as summarized below.

© 2008 by Taylor & Francis Group, LLC

944 Part III Organizational Foundations of SE

Chapter 11. Management Science Foundations of SE

■ Principles of Management Science
 • Classic management thought
 • Architecture of management science
 - Functions of management
 - The system model of management

 • Fundamental theory of management science
 - Why is management needed in work organization?
 - The first principle of management
 - Gains from division of labor
 - The second principle of management

 • The coordinative work organization theory and laws

■ Decision Theories
 • The mathematical model of decision making
 - The principle of choices
 - Decisions and decision making
 - Strategies and criteria for decision making
 - The structure of rational decision making

 • Decision making processes
 - The cognitive process of decision making
 - Formal description of the decision making process

 • Static decision making strategies
 - Decision making under certainty
 - Decision making under uncertainty
 - Decision making under risks

 • Game theory
 - The formal model of games
 - Properties of games
 - Behaviors of zero-sum games
 - Behaviors of nonzero-sum games

 • Decision grid theory
 - The formal model of decision grids
 - Serial decision making with unlimited trials
 - Serial decision making with limited trials

■ Quality Systems
 • Quality principles
 - Attributes of quality
 - Formal models of quality

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 945

 • Quality control and assurance
 - Quality control systems
 - Quality assurance techniques

 • Quality management systems
 - Total quality management (TQM)
 - The ISO 9000 quality system
 - The ISO 9126 quality system

■ Software Engineering Management
 • Taxonomy of SE management
 • The SE process reference model (SEPRM)
 - The SEPRM process model
 - The SEPRM capability model
 - The SEPRM capability determination methodology

 • The coordinative work organization theory and laws for SE
 (Section 8.5)

 • The Formal Economic Model for SE Costs (Section 12.6.2)

SIGNIFICANT FINDINGS OF THIS CHAPTER

• Although there are various objectives in management, the key
objective of management science is not management but work. That is,
management science studies how human work may be done coordinately,
efficiently, qualitatively, and profitably in a systematic approach.

• Management science is a system science. In the management
system, managers organize and coordinate the production or service
processes to transfer the inputs into expected outputs. As shown in Fig. 11.2,
the inputs of a management system encompass three essences known as
labor, time, and resources; while the outputs of a management system also
encompass three essences known as productivity, profit/cost, and quality.

• It is noteworthy that there are natural laws that constrain the
allocation of labor and time for a given project. In other words, the optimal
allocation of labor, time, and resources is not arbitrary and simply empirical;
certain laws and constraints exist as described in Section 8.5, particularly by
Theorems 8.2, 8.4, and 8.7.

• The natural function of management is system synchronization.
Although the basic elements of management are planning, organization,

© 2008 by Taylor & Francis Group, LLC

946 Part III Organizational Foundations of SE

control, and optimization, the essence of all management principles is system
synchronization, which is also identified as one of the fundamental principles
of system science.

• The factors determining a decision are the alternatives A and

criteria C for a given decision making goal. A unified theory on fundamental
and cognitive decision making can be developed based on the axiomatic and
recursive cognitive process elicited from the simplest decision-making
categories.

• The taxonomy of strategies and corresponding criteria for decision
making may be classified into four categories known as intuitive, empirical,
heuristic, and rational.

• The principle of bounded rationality states that a decision-maker in

a real-world situation will never have all information necessary for making
an optimal decision.

• It is noteworthy that practical decisions for a given problem are
usually made under partial certainty, empirical estimation, or heuristic
prediction, because not all required information is available, no suitable
decision strategy is aware of, and/or no acceptable cost to thoroughly
search all possible alternatives.

• The art of management, to a certain extent, is to create a win-win

environment for members, partners, and parent organizations involved in a
game context.

• Quality is a collective attribute of a product, service, or system.

• Quality is implemented incrementally via each individual in
every process.

• A major problem in software quality assurance is that there
lacks a comprehensive and coherent set of quantitative measures and
benchmarked standards for each of the basic attributes of software and
software engineering processes. The lack of the measurability in
software engineering is the fundamental barrier that prevents the
software industry from achieving a predictable and stable quality in
software engineering as its counterparts in other industries.

• The conditions of quality control states that the necessary

conditions for implementing a quality control system for a given product,
service, or system are that all attributes of its quality can be: a) abstractly
identified; b) quantitatively defined, and c) independently measurable.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 947

• A quality control system should be designed and implemented as a

whole, because any individual quality assurance technique, no matter how
effective, can not solve the problem alone in a given quality system.

• The fundamental principles and formal models for software
engineering organization and management:

 • The coordinative work organization theory and laws (Chapter

 8).

• The system organization trees (SOTs, Chapter 10)

• The principle of management gains

• The principle of gains of division of labor

• The quality models and the principle of quality control systems

• The infrastructure of process-based software engineering

• The Formal Economic Model of SE Costs (FEMSEC, Chapter
 12)

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Principles of management science

• Classic management thought and methodologies can be traced
back to the work of Frederick Taylor on operations studies in production,
Henry Gantt on project scheduling and the Gantt Chart, William Shewhart on
statistical quality control, John von Neumann on game theory, linear
programming in the 1940s, Program Evaluation and Review Technique
(PERT) in 1950s, nonlinear programming and dynamic programming in the
1950s, Critical Path Method (CPM) in 1960s, E. Erlang and John Little on
queuing theory, Philip Crosby, Edwards Deming, Genichi Taguchi, and
Joseph Juran on quality systems and quality control principles.

• Management is a coordination process that organizes activities and
efforts of a group to achieve goals and results not possible by individuals.

• The functions of management are planning, organizing, controlling,
and optimizing.

© 2008 by Taylor & Francis Group, LLC

948 Part III Organizational Foundations of SE

• Planning is a management process for organization,
coordination, and estimation of project time and related labor and
resource allocation.

• Scheduling is a management process that maps the planned
activities onto the time axis in a parallel or serial structure or their
combinations.

• Organizing is a management process that coordinates and
allocates essential means, such as labor, resources, and processes, in
order to implement a planned work.

• Controlling is a management process that monitors and ensures
the planned work process and outcomes in operation conforming to
predefined requirements, standards, and schedule.

• Optimizing is a management process that continuously
improves the results of an organization or project in terms of higher
productivity, better quality, more accurate scheduling, more efficient
process, and lower costs.

• The organization forms in management:

• A natural group is a working group of people with peers in
which work is carried out via temporal pairwise coordination when
work has to be done by any pair of the peers.

• A managed group is a working group of people with peers and
a manager, in which work is carried out via one-to-many coordination
by the manager.

• The number of interpersonal coordination C2(n) needed in a natural

group of size n, n ≥ 3, can be determined by:

2

2 n() = 2

(1)
CC n

n n -=

i

i

• The number of interpersonal coordination Cm(n) needed in a

managed group of size n, n ≥ 3, can be determined by:

 Cm(n) = n + 1

• The first principle of management: The gain of management states
that management is required to reduce the complexity of working group
organization, to improve the efficiency of groups, and to simplify the forms
of interpersonal coordination.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 949

• The second principle of management: Division of labor (DOL), or
specialization on a specific subtask in a process, is a work organization
method in which a task is divided into a sequence of multiple subtasks, and a
person is only specialized in a repeatable subtask.

• The natural work allocation is a form of loosely coupled work

organization that requires an invariable effort E(1) with a relative value 1,
i.e., (1) = 1E .

• The specialized work allocation Ed(1) is a work organization method

that allocates tasks via DOL, which results in the saving of effort
proportional to times of repetition k in an inversed exponential rate
determined by a constant e/c, i.e., 1(1) = ()kd

eE
c

− , where c is determined

empirically based on the skilled rate of repetition for a given task, 1 < c < e.

• The gain of division of labor states that the relative gain gr(k) via

division of labor in work organization is proportional to the repetitive times k
at specialized subtask-level (see Theorem 11.2).

Decision theories

• Decision making is one of the basic cognitive processes of human
brains, by which a preferred option or a course of actions is chosen from
among a set of alternatives based on certain criteria.

• A decision d is a selected alternative a ∈A from a nonempty set of
alternatives A, A ⊆ U, based on a given set of criteria C, i.e., d = f: A × C →
A.

• Decision making is a process of decision selection from available
alternatives against the chosen criteria for a given decision goal.

• The number of possible decisions, n, can be determined by the sizes

of A and C, i.e., n = #A • #C.

• Rational and complex decision making strategies can be classified
into the static and dynamic categories.

• Most existing decision-making strategies are static decisions
because the changes of environments of decision makers are
independent of the decision makers’ activities. Also, different decision
strategies may be selected in the same situation or environment based

© 2008 by Taylor & Francis Group, LLC

950 Part III Organizational Foundations of SE

on the decision makers’ values and attitudes towards risk and their
prediction on future outcomes.

• When the environment of a decision maker is interactive with
his/her decisions or the environment changes according to the decision
makers’ activities and the decision strategies and rules are
predetermined, this category of decision making needs is classified into
the category of dynamic decisions, such as games and decision grids.

• The dynamic strategies and criteria of decision making are
those that all alternatives and criteria are dependent on both the
environment and the effect of the historical decisions made by the
decision maker.

• The cognitive process of decision making can be carried out by the

following procedures:

 a) To comprehend the decision making problem, and to identify the
decision goal in terms of an Object (O) and its attributes (A).

 b) To search in the abstract layer of LTM for alternative solutions
(A) and criteria or useful decision strategies (C).

 c) To quantify A and C, and determine if the search should go on.

 d) To build a set of decisions by using A and C as obtained in above
searches.

 e) To select the preferred decision(s) on the basis of satisfaction of
decision makers.

 f) To represent the decision(s) in a new sub-OAR model.

 g) To memorize the sub-OAR model in LTM.

• A static strategy and criterion of decision making is an evaluation
and selection method for which all alternatives A and criteria C are
determinable and only one optimal decision ai ∈A is expected for a given
situation.

• A decision making under certainty dmax or dmin is a selection
of a certain alternative ai among A that meets a given criterion C which
is either the maximum of utility or profit max(ui), and the minimum of
costs or effort min(ei).

• An optimistic decision making under uncertainty dmaximax or
dminimin yields a decision with the maximum-maximum strategy for
utility or a minimum-minimum strategy for cost, respectively.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 951

• A pessimistic decision making under uncertainty dmaximin or
dminimax yields a decision with the maximum-minimum strategy for utility
or a minimum-maximum strategy for cost.

• A minimum regret decision making under uncertainty
dminimax yields a decision with the minimum-maximum regret strategy
for utility gain or cost save.

• A decision making under risk with maximum expected utility

dmaxEU yields a decision with the maximum expected utilities of all
alternatives.

• A decision making under risk with maximum utility of maximum
probability dmaximax-p yields a decision with the maximum utility of the
maximum probability of outcome of all alternatives.

• The dynamic strategies and criteria of decision making are those
that all alternatives and criteria are dependent on both the environment and
the effect of the historical decisions made by the decision maker.

• In classic decision theories, although the states of nature or

environment may be deterministic or nondeterministic, its state of nature as
an outcome of the environment will not be changed or affected by the
decision maker’s actions. In other words, there are natural rules but no
adaptive competitors in the static decision making processes. However, more
decision making situations are dynamic rather than static, where the decision
maker is under competition in games.

• A game is a decision process under competition where opponent

players or opponent groups of players compete for the maximum gain or a
success state in the same environment according to the same predetermined
rules of the game.

• Games are traditionally dealt with probability-based static
payoff tables. However, this method is found inadequate to deal with
the dynamic behaviors of games and to rigorously determine the
outcomes of games.

• A formal game G is a 4-tuple, i.e., G = (P, D, M, S), where P is a

finite set of n players, n ≥ 2; D is a finite set of k decisions for certain moves,
k ≥ 1. M is a finite set of q matches between player, q ≥ 1; and S is a finite set
of cumulated scores for each player.

© 2008 by Taylor & Francis Group, LLC

952 Part III Organizational Foundations of SE

• A match m ∈ M of a game G = (P, D, M, S) is a function that
maps a set of n decisions made by each player into a set of n scores S
for each of the players, i.e., m = fm : D1 × D2 × … × Dn → S.

• The number of individual matches nm in a set of matches for a
given game G = (P, D, M, S) is determined by nm = kn, where n is the
number of players in a game, and k is the number of alternative
decisions (moves) defined in the game for each player.

• The total sets of matches ns in a game G = (P, D, M, S), in
which all players may use each pair of their alternative strategies only
once determined according to the current move of opponent and the
rule of the maximum gains based on the given layout of the game, can
be determined by ns = n • k, where k is the number of alternative
decisions (moves) defined in the game, and n is the number of players.

• The total number of matches q of a game G = (P, D, M, S) is
determined by the number of sets of matches nm and number of matches
in each set ns, i.e., = .n+1

s mq n • n n • k =

• A zero-sum game is a game where the total scores of all n players in

the game is zero.

• The condition for a zero-sum game is iff that each of the nm

individual matches is zero-sum.

• The scores of all sets of matches of formal games G are the same, no

matter who moves first and which strategy (decision alternative) is selected
for the first move.

• A nonzero-sum game is a game where the total scores of all players

in the game is a positive nonzero value.

• A decision grid is a directed network of a series of decisions over
time where each decision possesses only two possible outcomes, right or
wrong, where the effort spent to make a right decision is considered to be
identical with that of a wrong decision.

• Decision grids can be applied in a wide range of serial and
dynamic decision making situations.

• The formal model of a decision grid DG is a 4-tuple, i.e., DG = (T,

D, E, S), where T is a finite or infinite set of n trials and n is the time points
of trials where n may be infinitive; D is the decision distance of a series of
decision trials, D = ti - t0 = ti, 1 ≤ i ≤ n; E is the effort of a specific trial

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 953

towards the success state in the grid, 0 ≤ E ≤ n; and S is a finite or infinite set
of success states of the grid, S = {s1, s2, …, sk}, 1 ≤ k ≤ n.

• When the allowable times of trials t in a decision grid are infinitive,
the decision grid is called an unlimited decision grid; otherwise, it is a
limited decision grid.

• The properties of decision grid state that the decision distance Dt in

a decision grid is a constant that is determined by the number of decision
trials ti spent in the time series, i.e., Dt = ti = dr + dw, where dr and dw
represent numbers of right and wrong decisions, respectively.

• The later the wrong decision is corrected, the higher the cost of the

decision series. The earlier the wrong decision is corrected, the more
efficient of a decision series.

• The random series of unlimited trials or equal probability right and

wrong trials will not lead to a success in any series of decisions under
unlimited trials.

• The random series of limited trials or equal probability right and

wrong trials will not lead to a success in any series of decisions under limited
trials.

Quality theories

• Quality is the totality of features and characteristics of a product or
service that bear on its ability to satisfy stated or implied needs. Quality
before quantity is a basic principle in management science.

• The Garvin’s eight dimensions of quality are performance,

features, reliability, conformance, durability, serviceability, aesthetics, and
perception of excellence.

• The external quality attributes of software: functionality,

reliability, conformance to requirements, usability, efficiency,
maintainability, and portability.

• The internal quality attributes of software: completeness,

correctness, consistency, clearness (no ambiguity), feasibility (can be
implemented in technical and economical terms), and verifiability (can be
measured).

© 2008 by Taylor & Francis Group, LLC

954 Part III Organizational Foundations of SE

• Quality is a generic measure of the degree of excellence of a product
or service against a given standard. More specifically, quality is a common
attribute of any product or service that characterizes the quantity of both
utility and durability of the product or service.

• Quality Q is a generic and collective attribute of a product, a
service, or a system that is proportional to both its average utility U and
the available duration T of the utility, i.e., Q = U • T [Fh], where the
unit of utility is function (F), and the unit of duration is hour (h), and
these result in the unit of quality as Function-hour or shortly Fh.

• The dynamic value of quality Q(t) is an integral of the utility
function U(t) on the entire lifecycle of the utility [0, T].

• The relative quality q(t) is a relative degree of difference
between the quality of a product, a service, or a system and the standard
or benchmark S for the expected quality.

• The benefit of a product or a system B is the quality gained per unit

cost (C) in terms of resources, labor, and time.

• The quality funnel principle states that the nearer to the start of the

production process, the lower the cost of quality.

• A generic quality control system encompasses five subsystems

known as quality definition, implementation, appraisal, postmortem, and
prevention.

• The quality definition subsystem is responsible to identify,
partition, and quantify the attributes and characteristics of the products
or services produced or provided in an organization.

• The quality implementation subsystem distributes quality
attributes identified in phase one into individual processes and job
functions.

• The quality appraisal subsystem is a set of evaluation
techniques against the quality standards for each process and each
attribute of a given product, service, or system.

• The quality postmortem subsystem is a feedback subsystem
that helps to identify existing or potential problems in the process or
quality standards on the basis of operating data on current performance.

• The problem prevention subsystem is an adaptive process that
prevents recurrent problems or failures from happening through
improvement of the current processes and quality standards.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 955

• Typical quality assurance techniques in quality control systems can
be classified into definitive, implemental, appraisable, postmortem, and
preventive corresponding to the quality control system model.

• Audit is an empirical quality assurance technique that uses
professional auditors to monitor the quality of products and services on
the basis of statistical quality control and review techniques.

• Review is a special audit technique for information-based work
products such as system designs, plans, software, and documents.
Quality review is an effective technique for quality assurance in
software engineering.

• Measurement is a quantitative quality assurance technique that
evaluates the conformance of products and services against predefined
standards or benchmarks.

• Verification and validation is a formal quality assurance
technique that applies mathematical models, logical inference tools, and
simulation systems into the quality control of products and services.

• Total Quality Management (TQM) is a systematical management

methodology that states quality of products and services of an organization
depends on a systematical management of the organization’s culture, attitude,
and operations through all members’ involvement.

Software engineering management

• Software quality is a set of inherent internal and external
characteristics of a software system that show relative advantages over
similar systems or indicate a conformance to a standard.

• Exception handling capability is a necessary attribute of software
quality, which identifies the unexpected circumstances and conditions of a
system, and specifies how the system should behave under such conditions.

• Design for exception handling capability of software is
recognized as a good indicator to distinguish naive and professional
software engineers and system analysts, even for a customer who has
not explicitly required for this kind of built-in software quality.

© 2008 by Taylor & Francis Group, LLC

956 Part III Organizational Foundations of SE

• The concept of software quality might be different between vendor-
specified (common system) software and user-specified (applications)
software. For the former, quality refers to the software that provides much
more usability and higher dependability at a comparable price. While for the
latter, quality means the software that meets the user’s requirements and runs
with fewer failures.

• There is a need to distinguish the quality of software according to its

developing processes, such as design quality, implementation quality, test
quality, and maintenance quality of a software system.

• The philosophy behind current software quality standards is based

on a generic quality system perception on software development. Although
this philosophy has been proven successful in conventional manufacturing
industry, there is still a need for supporting evidence of its effectiveness and
impact on the design-intensive software engineering and the nonconventional
software industry.

• Studies of software engineering organization and management
have, over time, covered methodologies for project management, project
estimation, project planning, software quality assurance, configuration
management, requirement/ contract management, document management,
and human resource management.

• The Software Engineering Process Reference Model (SEPRM)
identifies a superset of processes for software engineering. SEPRM provides
a hierarchical software engineering process framework with 3 process
subsystems, 12 process categories, 51 processes, and 444 Base Process
Activities (BPAs). SEPRM demonstrates a unified process infrastructure for
PBSE.

• The process capability model of SEPRM describes an assessment

framework for each process defined in the process model. The SEPRM
process capability model consists of a practice performance scale, a process
capability scale, and a process capability scope.

• The process capability determination methodology of SEPRM is

modeled in four steps: a) Initialization, b) BPA performance rating, c)
Process capability determination, and d) Project process capability
determination.

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 957

Questions and
Research Opportunities

11.1 What are the nature and functions of management? Why is the

basic object under study in management science not management
but human work? How may this metaphor influence your view
towards the nature of management science?

11.2 Explain the system model of management.

11.3 Discuss why management is needed in groups and organizations.

11.4 Why is management universally needed in work organization?

What are the natural laws behind this generic phenomenon?

11.5 According to Theorem 11.1, explain what the gain of

management is.

11.6 According to Theorem 11.2, explain what the gain of division of

labor is.

11.7 Referring to Theorems 8.4 through 8.11, discuss how the

coordinative work organization theory may play a fundamental
role in management science.

11.8 Given the ideal workload of a software engineering project is

expected to be W1 = 36PM, find the optimum labor allocation and
the shortest project durations for r1 = 10% and r2 = 50%
according to Theorem 8.7.

11.9 Redo Exercise 11.7 for W1 = 360PM.

11.10 Compare the results obtained in Exercises 11.7 and 11.8. Then,

analyze and discuss which laws (as stated in Theorems 8.4
through 8.11) apply to the phenomena you observed.

11.11 Why should a manager of a large-scale software engineering

project be cautious when the labor allocation is above 20 persons
for the project?

© 2008 by Taylor & Francis Group, LLC

958 Part III Organizational Foundations of SE

11.12 Referring to the System Organization Tree (SOT) as presented in

Section 10.3.5, discuss what are the optimal organizational forms
for software engineering projects and groups?

11.13 What is a decision and what is the nature of decision making?

11.14 Based on Table 11.3, summarize the features and usages of the

categories of intuitive, empirical, heuristic, and rational decision
makings.

11.15 Summarize and contrast the formulae of static decisions in the

three categories, i.e., decisions under certainty, uncertainty, and
risk.

11.16 How may game theories be used in dynamic decision making?

11.17 What are the basic properties of games and why may games be

extremely complicated?

11.18 What are the conditions for zero-sum and nonzero-sum games?

11.19 What are the applications of nonzero-sum game principles in

management science and software engineering?

11.20 How may decision grid theory be used in dynamic decision

making?

11.21 What are the basic properties of decision grids?

11.22 Why will random decisions, or equal probability right and wrong

trials, not lead to a success in any series of decisions under limited
or unlimited trials?

11.23 What is the nature (physical meaning) of quality? How to

quantitatively and rigorously express the generic model of
quality?

11.24 Describe the architecture of a generic quality control system.

11.25 What are the three conditions for quality control?

11.26 What are the four basic quality assurance techniques?

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 959

11.27 Referring to the philosophical and engineering considerations as
presented in Chapter 4 and Chapter 8, discuss whether software
quality technologies are necessarily the same as those of
conventional manufacturing industries.

11.28 What are the fundamental management issues in software

engineering in addition to the technical, cognitive, systematical,
and economical issues?

11.29 According to Theorem 8.2, conservation of basic engineering

constraints, explain why the basic objectives of software
engineering such as time, costs, and utility are conservative and
interlocked.

11.30 According to the 1st principle of management, Theorem 11.1,

discuss how gains of management may be applied and
implemented in software engineering.

11.31 According to the 2nd principle of management, Theorem 11.2,

discuss how gains of division of labor may be applied and
implemented in software engineering.

11.32 An important software engineering management principle is

known as the process parallelism as adopted in SEPRM, which
states there is a need to identify a management process for each
technical processes in software engineering. Based on this
principle, try to identify the management techniques in the
processes parallel with the software processes of system design
and testing.

11.33 Referring to the organizational and management theories

presented in this chapter, discuss what kinds of decision
optimizations may be implemented in each process of software
engineering.

Hint: Use a table with the schema as follows: processes | work
products | optimization strategies | decision methods

11.34 The process assessment method of SEPRM has been given in

Algorithm 11.1. Try to translate the informal description of
Algorithm 11.1 into a formal model described in RTPA.

11.35 The following experiment is designed to empirically prove the

2nd principle of management (Theorem 11.2) – gains of division

© 2008 by Taylor & Francis Group, LLC

960 Part III Organizational Foundations of SE

of labor – by carrying out a text editing task for the given page
below in an ordinary sequential way and a categorized way.

 All typos underlined in the following page should be correct by

corresponding capital letters. Record your time while editing in
methods (a) and (b) as given below, i.e., t1 and t2, respectively.

 a) Correct the typos in the given page sequentially line by line.

 b) Correct the typos in the given page word by word vertically
in three passes: The first pass checks for all F’s, the second
pass for all S’s, and the third pass for all E’s.

Then, calculate the gain of the simulated division-of-labor using

the following formula: 1 2

1
100%dol

t t
G

t
−= • .

11.36 Read the following classic article in software engineering:

Software Engineering Foundations:
A Software Science Perspective

Part I. Principles and Constraints of Software Engineering
1. Introduction
2. Principles of software Engineering

Part II. Theoretical foundations of Software engineering
3. Philosophical Foundations of software engineering
4. Mathematical foundations of Software engineering
5. Computing foundations of software Engineering
6. Linguistics Foundations of Software engineering
7. Information Science foundations of software Engineering

Part III. Organizational Foundations of software Engineering
8. Engineering foundations of software engineering
9. Cognitive Informatics Foundations of Software engineering
10. System Science foundations of software engineering
11. Management Science foundations of software Engineering
12. Economics Foundations of Software Engineering
13. Sociology foundations of software engineering

Part IV. Perspectives on Software Science
14. Retrospect on software engineering
15. Prospect on software Science

© 2008 by Taylor & Francis Group, LLC

Chapter 11 Management Science Foundations of SE 961

Frederick P. Brooks (1987), No Silver Bullet – Essence

and Accident in Software Engineering, IEEE

Computer, 20(4), pp.10-19.

Discuss the following topics in a group or individually:

 • About the author.

• What are the basic constraints of software engineering
according to the author in the 1980s?

• Are the author’s conclusions too pessimistic? What would
be the possible ‘silver bullet(s)’ in the future?

 • What conclusions of the article interested you? Why?

 • Your arguments or counter-points on any of the conclusions
derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 12

ECONOMICS FOUNDATIONS
OF SOFTWARE
ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

9.
Cognitive
Informatics
Foundations
of SE

12.1 Introduction 12.5 Economic Analyses
12.2 Fundamental Principles of Economics 12.6 SE Economics
12.3 Economic Models 12.7 Summary
12.4 Dynamic Values of Memory and Assets

10.
System
Science
Foundations
of SE

11.
Management
Science
Foundations
of SE

12.
Economics
Foundations
of
SE

13.
Sociology
Foundations
of
SE

8.
Engineering
Foundations
of
SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

964 Part III Organizational Foundations of SE

Knowledge Structure

 Fundamental principles of economics

 • Basic axioms of economics
 • Economic equilibrium between demands and supplies
 • The behaviors of market systems

 Economic models

 • Production models • Cost models
 • Market models

 Dynamic values of money and assets

 • Dynamics of money • Dynamics of asset’s values
 • Cumulative values of cash flows

 Economic analyses

 • Project cost analyses • Project benefit-cost analyses
 • Project payback period analyses • Project rate of return analyses

 Software engineering economics

 • Elements of SE costs
 • SE project costs estimation using FEMSEC
 • SE project costs estimation using COCOMO
 • Economic analyses of software projects
 • The software legacy cost model

Learning Objectives

 • To gain knowledge on fundamental principles of economics and behaviors
of economic systems interacting between demands and supplies.

 • To understand basic economic models such as those of production, cost,
market, equilibrium, benefit-cost ratio, payback period, and rate of return.

 • To know dynamics of money, assets, investments, and cash flows, as well as
their cumulative values over time.

 • To understand the architecture of software engineering economics and the
unique features of software and software engineering.

 • To understand the formal economic model of software engineering costs
 (FEMSEC).
 • To become familiar with software engineering economic analyses and
 cost/effort estimations.
 • To understand the software legacy maintenance cost model in software
 engineering.

12. Economics Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 965

 “Economists are not easy to follow …, when they talk theory, even their fellow
economists have difficulty understanding what they are saying. In fact, there is a

theory that if all the economists in the world were laid out end to end,
they still would not reach a conclusion.”

Stephen L. Slavin (1988)

“Although a good deal of progress has been made in software cost estimation, a great

deal remains to be done.”

Barry Boehm (1984)

12.1 Introduction

conomics studies how people and resources are organized efficiently,
effectively, and profitably for gaining the maximum for individuals,
organizations, and the societies. Fundamental economic structures are

the underlying forces of socialization and social organization. In turn, the
fundamental economic structures are determined by the current and
predominantly highest level of unsatisfied fundamental human needs [Wang,
2005d/05k]. Therefore, a successful software engineer requires certain
knowledge of economics in addition to science and engineering.

Definition 12.1 Economics is the study of how resources are used to
produce and distribute commodities and how services are provided in
society.

Economics can be classified as microeconomics and macroeconomics.
The former studies the behaviors of individual agents and industrial markets.
The latter studies broad aspects of the economy, such as overall employment,
export, and prices in a national or global scope.

A universal quantitative measure of commodities and services in
economics is money.

Definition 12.2 Money is a generic representation of value and utility

in terms of quantity of products, quality of services, and effort in production
and services.

Therefore, in a certain extent, economics can be perceived as the

science of money, or the production, consumption, and transfer of wealth.

E

© 2008 by Taylor & Francis Group, LLC

966 Part III Organizational Foundations of SE

Definition 12.3 Engineering economics is a branch of microeconomics
dealing with engineering related economic decisions.

This chapter presents a transdisciplinary study on economics, its
formalization, and its engineering application. The first part of this chapter
presents classic thought of economics. A mathematical model of economical
equilibrium is developed for formally and quantitatively explaining Adam
Smith’s genius hypothesis of the invisible hand proposed in 1776 [Smith,
1776; Cannan, 1994]. The equilibrium theorem can also be applied to more
complicated multivariable equilibrium problems that conventional economic
theories could not explain.

The second part of this chapter derives the theories and principles of
software engineering economics. A set of economic models of software
engineering and their formal description is provided. The applications of
economic analysis and problem solving methodologies in a variety of
software project decision making contexts are discussed. This leads to the
development of the law of software legacy maintenance costs, and the
finding of a hidden but significant phenomenon in software engineering
known as the Software Maintenance Crisis (SMC) [Wang, 2005d], in which
the maintenance costs overrun development costs at an exponential speed in
the software development organizations. The complete model of MSC and
possible solutions will be provided in Chapter 14.

This chapter introduces fundamental principles and methodologies
utilized in engineering economics and their applications in software
engineering. It also introduces formal methodology into economic analysis
and modeling. A set of formal economic models will be developed based on
fundamental principles of microeconomics. In the remainder of this chapter,
the economic foundations of software engineering will be presented in five
sections. Section 12.2 reviews fundamental principles of economics. Section
12.3 develops a set of formal economic models such as the production, costs,
and market models. Section 12.4 discusses the dynamic values of money and
assets, and their growth patterns. Section 12.5 describes economic analysis
methodologies on engineering decisions such as project costs, benefit-cost
ratio, payback period, and rate of return. On the basis of the formal treatment
of economic theories and principles, Section 12.6 presents software
engineering economics, particularly the theories and laws behind it, such as
elements of software costs, software engineering project costs estimation,
economic analyses of software engineering projects, and the software legacy
maintenance cost model. As foundations for this chapter, the laws for optimal
work and labor allocation have been discussed in Chapters 8 and 11 on
engineering and management science foundations of software engineering,
respectively.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 967

12.2 Fundamental Principles of
 Economics

This section reviews the classic thought in economics with a formal
treatment. Basic axioms of economics and the principle of resource scarcity
are formally described. Based on the axioms, the profit-driven law of
demands and supplies and the equilibrium between demands and supplies are
quantitatively explained. The law of economic equilibrium is derived that
rigorously describes the adaptive mechanisms of market systems, and serves
as a formal proof of Adam Smith’s genius hypothesis of invisible hand
proposed in 1776 [Smith, 1776].

12.2.1 BASIC AXIOMS OF ECONOMICS

The entire theory of economic is based on a number of basic axioms,
which are fundamental models of economics, such as generic constraints of
resource scarcity, unlimited demanding behaviors of consumers, profit-
driven behaviors of producers, and the conservative behaviors of market
systems [Slavin, 1988; Cannan, 1994; Brue, 2001; Wang, 2005d]. This
subsection explains these basic axioms and fundamental models that are
shared by both macro and micro economics.

12.2.1.1 Demand vs. Supply

Demand and supply are a pair of fundamental concepts of economics.

They are also the foundation for engineering resources management and
organization.

 Definition 12.4 Demand is the required quantities for a product or
service that consumers are willing and able to buy at a given range of prices.

 Demands are the fundamental driving force of market systems and the
predominant reason behind almost all economic phenomena. The market
response to a demand is called supply.

 Definition 12.5 Supply is the required quantities for a product or
service that producers are willing and able to sell at a given range of prices.

© 2008 by Taylor & Francis Group, LLC

968 Part III Organizational Foundations of SE

Demands and supplies are the fundamental behaviors of dynamic
market systems, which form the context of economics.

12.2.1.2 The Principle of Resource Scarcity

The most basic yet important principle of economics is the recognition
of a pair of contradictive phenomena [Slavin, 1988], resource scarcity vs.
unlimited human demands, in human activities and the society.

The principle of resource scarcity forms a fundamental constraint to

demands and supplies in the market system. The entire economic theory is
oriented to the coordination and balancing of this pair of interacting
phenomena. With this view, economics may be seen as a science that studies
how the unlimited human demands may be met under the generic constraint
of resource scarcity.

12.2.1.3 The Law of Market Conservation

Lemma 12.1 The principle of resource scarcity states that the total
resources at a given time RΣ(t), or the means of production represented by
their values, such as land Vl(t), building Vb(t), materials Vm(t), labor Vlb(t),
and capital Vc(t), are constrained by a constant of nature k(t), which is
always inadequate to meet the ever growing total demands DΣ(t).

 RΣ(t) = Vl(t) + Vb(t) + Vm(t) + Vlb(t) + Vc(t)
 = k(t)
 < DΣ(t) (12.1)

Lemma 12.2 The law of market conservation states that the prices of
goods or services in a market system behave conservatively and
complementally to the quantities of demands and supplies, i.e.:

D
P

S

D
P

S

↑ →⎧⎪⎪ → ↑⎪⎪ ↓ →⎪⎪⎪⎨⎪ ↓ →⎪⎪ → ↓⎪⎪ ↑ →⎪⎪⎩

 (12.2)

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 969

The behaviors of prices responding to the changes of demands and
supplies as stated in Lemma 12.2 can be illustrated in Fig. 12.1.

Figure 12.1 Behaviors of prices influenced by demands and supplies

12.2.1.4 The Law of Maximizing Profits

According to Lemma 12.3, the consumer and supplier behaviors in the

market driven by the ultimate profit motivation are primarily influenced by
the price as described below.

Lemma 12.3 The ultimate objective of markets, and of the producers and
consumers in them, is to pursue the maximum profit Pmax, or in other
words, to maximize the revenues Rmax and to minimize the costs Cmin at
the same time, i.e.:

 Pmax(t) = Rmax(t) - Cmin(t) (12.3)

S(t)

 P(t)

Q(t)

D(t)

0

Lemma 12.4 The law of maximizing profit states that the demands and
supplies of goods or services in a market system are driven by the
tendency to maximize profits leveraged by the changes of prices, i.e.:

D
P

S

D
P

S

→ ↓⎧⎪⎪ ↑ →⎪⎪ → ↑⎪⎪⎪⎨⎪ → ↑⎪⎪ ↓ →⎪⎪ → ↓⎪⎪⎩

 (12.4)

© 2008 by Taylor & Francis Group, LLC

970 Part III Organizational Foundations of SE

The behaviors of demands of consumers and supplies of producers
responding to the changes of price as stated in Lemma 12.4 can be illustrated
in Fig. 12.2.

Figure 12.2 Behaviors of demands and supplies influenced by prices

12.2.2 ECONOMIC EQUILIBRIUM BETWEEN
 DEMANDS AND SUPPLIES

On the basis of Lemma 12.4, it can be seen that both demands and
supplies are price-driven to meet the ultimate economic goals of consumers
and producers.

 However, it should be emphasized that the market is a bi-directional
interacting system. That is, the price not only influences demands and
supplies (Lemma 12.4), but also is influenced by the demands and supplies
(Lemma 12.2). Therefore, the entire mechanisms of a market system and the
behaviors of the closed-circle interactions among demands, supplies, and
prices are known as the economic equilibrium.

The equilibrium between demands and supplies in a given market at a
given point of time can be illustrated by Fig. 12.3. Fig.12.3 provides a
unified equilibrium model for explaining the equilibrium mechanism of
prices as a result of interactions between demands and supplies in a market.

Definition 12.6 Equilibrium of demand and supply e is a point of
quantity Qe(t) where the demand D(t) equals to the supply S(t), i.e.:

D(t)

 Q(t)

P(t)

S(t)

0

Lemma 12.5 Price P(t) is an important leverage in the market to
autonomously adjust the equilibrium of demands and supplies, known as
the invisible hands, according to Adam Smith (1776).

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 971

 e = {Qe(t) | D(t) = S(t)} (12.5)

where the price at e, Pe(t), is called the equilibrium price.

Figure 12.3 The equilibrium between demands D(t) and supplies S(t)

The equilibrium as describe by Eq. 12.5 and illustrated in Fig. 12.3
demonstrates that the total quantities of demands as outputs and supplies as
inputs in a market system determine the equilibrium point and the
equilibrium price. At the same time, the price also enforces feedbacks to
influence the equilibrium quantities between the demands and supplies.

That is, Lemma 12.5 only reveals part of the truth about the

mechanisms of economic equilibrium in a market system.
It is noteworthy that conventional economics textbooks provide an

upside-down model to explain equilibrium where the curves of D(t) and S(t)
as shown in Figs. 12.1 and 12.3 are confusingly interchanged [Sepulveda et
al., 1984; Slavin, 1988; Frank, 1997; Park et al., 2001]. This convention has
made the formal treatment of economic equilibrium very difficult.

The next subsection formally describes the mechanisms of economic
equilibrium in a market system that provides a rigorous explanation of Adam
Smith’s invisible hand hypothesis.

12.2.3 THE BEHAVIORS OF MARKET SYSTEMS

According to Corollary 10.11, the functional condition of any self-

organization system is the existence of the negative feedback mechanism that
is proportional to the incremental or aggressive effects of the system. The

S(t)

 P(t)

Q(t)
[QD, QS]

D(t)

 Qe(t)

 Pe(t)

0

Corollary 12.1 The equilibrium mechanism interacting between the
quantities of demands, supplies, and the prices of them in a market
system is the invisible hand.

© 2008 by Taylor & Francis Group, LLC

972 Part III Organizational Foundations of SE

market systems as a special type of self-organization systems obey the same
law. That is, the adaptive equilibrium of market systems as a result of
interactions between demands and supplies is rooted in the negative feedback
mechanisms between their quantities and prices.

Definition 12.7 The equilibrium model of market systems is a negative

feedback system, in which the increase or decrease of price in the market will
result in a negated feedback, and so do the changes of quantities of demands
and supplies on prices, which intend to resist the tendency of deviating from
the current equilibrium.

Based on Definition 12.7 and Lemmas 12.2 and 12.4, the entire

behaviors of market systems are constrained by the following theorem
[Wang, 2005d].

Theorem 12.1 indicates that Lemmas 12.2 and 12.4 are mutually

reflexive. Each of them represents an aspect of the entire mechanisms of the
market systems. The consequence of an economic equilibrium may be
described by the following corollary.

The 44th Law of Software Engineering

Theorem 12.1 The adaptive economic equilibrium states that a market
with autonomic interactions between demands D and supplies S is a self-
regulated and self-adaptive system, where any change in demand, supply,
or both will be autonomously adjusted via the leverage of price P to an
equilibrium, i.e.:

Market conservation Maximizing profits[] []
Lemma 12.xx Lemma 12.xx

D D
P P

S S

D D
P P

S S

↑ → ↓ →⎧ ⎫⎪ ⎪⎪ ⎪→ ↑ ⇒ → ↓⎪ ⎪⎪ ⎪→ →↓ ↑⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪↓ → ↑ →⎪ ⎪⎪ ⎪→ ↓ ⇒ → ↑⎪ ⎪→ →⎪ ⎪↑ ↓⎪ ⎪⎪ ⎪⎩ ⎭

+

Corollary 12.2 The result of interactions between dynamic demands and
supplies, through the leverage of prices, results in an automatic
stabilization of the market at a new equilibrium that is close to the current
equilibrium price.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 973

Theorem 12.1 and Corollary 12.2 are a rigorous enhancement [Wang,
2005d] of Adam Smith’s hypothesis of the invisible hand. These laws will be
explained in the following subsections with both simple and complex modes
of economic equilibriums.

12.2.3.1 Simple Modes of Economic Equilibriums

There are four simple modes that may drive a market away from an
equilibrium considered in conventional economics. They are demand
increase E(D+), demand decrease E(D-), supply increase E(S+), and supply
decrease E(D-). Theorem 12.1 can be applied to each of the above modes and
situations as analyzed below.

Mode 1. Demand Increase E(D+)

The reactions of the equilibrium mechanism to an event of demand

increase, E(D+), can be described by the following reactions:

 1) Demand is increased D ↑ as an event.

 2) Price P is increased due toD ↑ according to the law of scarcity
(Lemma 12.1).

 3) Parallel to Reaction 2, quantity of supply is increased SQ ↑
according to the law of maximizing profits (Lemma 12.4).

 4) Price P is decreased following S ↑ in Reaction 3 according to the
law of market conservation (Lemma 12.2).

 5) Price P is regulated to a newly established P’e that is close to Pe
due to synthetic result of the effect and negative feedback
according to the law of economic equilibrium (Theorem 12.1).

The above chain of feedback reactions can be formally described by

Eq. 12.6 and illustrated by Fig. 12.4.

(+) = 'e
P

E D D P
S P

→ ↑ →
↑ → ⇒→→ ↑ → ↓

 (12.6)

© 2008 by Taylor & Francis Group, LLC

974 Part III Organizational Foundations of SE

Figure 12.4 The equilibrium mechanism of Mode 1: E(D+)

On the basis of Fig. 12.4, the newly established equilibrium P’e, and the

increment of price ∆P can be predicated as follows.

Example 12.1 Assume that two shifted equilibriums of a market system

are affected by demand increases resulting in the following effects (Pe1, P’1,
P’’1) = (20, 36, 10) and (Pe2, P’2, P’’2) = (30, 40, 8). The newly established
equilibriums can be predicated as:

 1 1
1

' '''
2

36 10
2

$23

e
P PP +=

+=

=

S(t)

 P(t)

Q(t)

D(t)

 Qe

 Pe

0

1

2

 3

4

 e

5’

5’’

 Q’

 P’

 P’’

The 44th Principle of Software Engineering

Theorem 12.2 The predictability of new equilibrium states that a newly
established equilibrium on price P’e is determined by the effect P’ and
feedback effect P’’ of the driving forces deviating from the current
equilibrium, i.e.:

' - ''' ''
2

' '' , ' '
2

e

e

P PP P

P P P P

= +

+= >
 (12.7)

and the increment of price caused by the shifting of equilibriums is:

'

' ''
, ' '

2

e e

e e

P P P

P P
P P P

∆ = −

+= − >
 (12.8)

where ∆P may be positive or negative that represents a upward or
downward shifting of the current equilibrium price, respectively.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 975

and
 2 2

2
' '''

2
40 8

2
$24

e
P PP +=

+=

=

The increments in the above situations are:

1 1 1'

23 20

= $3

e eP P P∆ = −

= −

and

2 2 2'

24 30

= -$6

e eP P P∆ = −

= −

It can be proven that Theorem 12.2 can be applied to any other mode of

market equilibriums.

Mode 2. Demand Decrease E(D-)

The reactions of the equilibrium mechanism to an event of demand

decrease, E(D-), are formally described as follows:

() = 'e
P

E D- D P
S P

→ ↓ →
↓ → ⇒→→ ↓ → ↑

 (12.9)

The chain of feedback reactions as described in Eq. 12.9 can be

illustrated as shown in Fig. 12.5.

Figure 12.5 The equilibrium mechanism of Mode 1: E(D-)

S(t)

 P(t)

Q(t)

D(t)

 Qe

 Pe

0

1
2

 3

4

 e

5’

5’’

 Q’

 P’

 P’’

© 2008 by Taylor & Francis Group, LLC

976 Part III Organizational Foundations of SE

Mode 3. Supply Increase E(S+)

The reactions of the equilibrium mechanism to an event of supply
increase, E(S+), are formally described as follows:

() = 'e
P

E S S P
S P

→ ↓ →
+ ↑ → ⇒→→ ↑ → ↑

 (12.10)

The chain of feedback reactions as described in Eq. 12.10 can be
illustrated as shown in Fig. 12.6.

Figure 12.6 The equilibrium mechanism of Mode 1: E(S+)

Mode 4. Supply Decrease E(S-)

The reactions of the equilibrium mechanism to an event of supply

decrease, E(S-), can be formally described as follows:

() = 'e
P

E S- S P
S P

→ ↑ →
↓ → ⇒→→ ↓ → ↓

 (12.11)

The chain of feedback reactions as described in Eq. 12.11 can be
illustrated as shown in Fig. 12.7.

Figure 12.7 The equilibrium mechanism of Mode 1: E(S-)

S(t)

 P(t)

Q(t)

D(t)

 Qe

 Pe

0

1

2

 3

4

 e 5’

5’’

 Q’

 P’

 P’’

S(t)

 P(t)

Q(t)

D(t)

 Qe

 Pe

0

1

2

 3

4

 e

5’

5’’

 Q’

 P’

 P’’

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 977

12.2.3.2 Complex Modes of Economic Equilibriums

Observing the driving causes of market systems, there are four
additional complex modes based on the above simple modes, which could
not be accurately dealt with conventional economics theories. They are
compound demand/supply increases E(D+, S+), compound demand increase
and supply decrease E(D+, S-), compound demand decrease and supply
increase E(D-, S+), and compound demand decrease and supply decrease
E(D-, S-).

Theorem 12.1 can still be applied in each of the complex modes and
situations as follows.

Mode 5. Compound Demand/Supply Increases E(D+, S+)

The reactions of the equilibrium mechanism to a compound event of

demand/supply increases, E(D+, S+), are formally described by Eq. 12.12.
The chain of feedback reactions described in Eq. 12.12 can be illustrated by
combining Figs. 12.4 and 12.6.

 E(D+, S+) =

'e

P
D

S P
P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↓
↑ → →→ ↑ → ↑

 (12.12)

Mode 6. Compound Demand Increase/Supply Decrease E(D+, S-)

The reactions of the equilibrium mechanism to a compound event of

demand increase/supply decrease, E(D+, S-), are formally described by Eq.
12.13. The chain of feedback reactions described in Eq. 12.13 can be
illustrated by combining Figs. 12.4 and 12.7.

 E(D+, S-) =

'e

P
D

S P
P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↑
↓ → →→ ↓ → ↓

 (12.13)

Mode 7. Compound Demand Decrease/Supply Increases E(D-, S+)

The reactions of the equilibrium mechanism to a compound event of

demand decrease/supply increases, E(D-, S+), are formally described by Eq.
12.14. The chain of feedback reactions described in Eq. 12.14 can be
illustrated by combining Figs. 12.5 and 12.6.

© 2008 by Taylor & Francis Group, LLC

978 Part III Organizational Foundations of SE

 E(D-, S+) =

'e

P
D

S P
P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↓
↑ → →→ ↑ → ↑

 (12.14)

Mode 8. Compound Demand/Supply Decreases E(D-, S-).

The reactions of the equilibrium mechanism to a compound event of

demand/supply decreases, E(D-, S-), are formally described by Eq. 12.15.
The chain of feedback reactions described in Eq. 12.15 can be illustrated by
combining Figs. 12.5 and 12.7.

 E(D-, S-) =

'e

P
D

S P
P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↑
↓ → →→ ↓ → ↓

 (12.15)

12.2.3.3 The Adaptive Equilibrium Mechanisms of Market Systems

The eight modes of equilibrium mechanisms described so far are
summarized in Table 12.1.

Theorems 12.1 and 12.2 as well as related mathematical models derived

in this section are actually a formal proof of Adam Smith’s hypothesis of
invisible hand proposed in 1776 [Smith, 1776] with the enhancement in
Theorem 12.2.

Corollary 12.3 The adaptive equilibrium mechanism of market systems
described in Theorem 12.1 and Modes 1 through 8 is the invisible hand,
which self-regulates and self-organizes the equilibrium of quantities and
prices affected by the interactions between demands and supplies.

Corollary 12.4 Equilibrium market is a conservative system. Once an
equilibrium is established in a market, the price may gradually wave
around and slowly shifting from Pe, but may not be increased or
decreased abruptly and dramatically.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 979

Table 12.1
Adaptive Equilibrium Behaviors of Market Systems

Mode Event

No. Symbol D S

Chain of Feedback Reactions Illustration

1 E(D+) ↑

'e
P

D P
S P

→ ↑ →
↑ → ⇒→→ ↑ → ↓

 Fig. 12.4

2 E(D-) ↓

'e
P

D P
S P

→ ↓ →
↓ → ⇒→→ ↓ → ↑

 Fig. 12.5

3 E(S+) ↑

'e
P

S P
S P

→ ↓ →
↑ → ⇒→→ ↑ → ↑

 Fig. 12.6

4 E(S-) ↓

'e
P

S P
S P

→ ↑ →
↓ → ⇒→→ ↓ → ↓

 Fig. 12.7

5 E(D+, S+) ↑ ↑

'e

P
D

S P
P

P
S

S P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↓
↑ → →→ ↑ → ↑

Fig. 12.4

&

Fig. 12.6

6 E(D+, S-) ↑ ↓

'e

P
D

S P
P

P
S

S P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↑
↓ → →→ ↓ → ↓

Fig. 12.4

&

Fig. 12.7

7 E(D-, S+) ↓ ↑

'e

P
D

S P
P

P
S

S P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↓
↑ → →→ ↑ → ↑

Fig. 12.5

&

Fig. 12.6

8 E(D-, S-) ↓ ↓

'e

P
D

S P
P

P
S

S P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↑
↓ → →→ ↓ → ↓

Fig. 12.5

&

Fig. 12.7

© 2008 by Taylor & Francis Group, LLC

980 Part III Organizational Foundations of SE

12.3 Economic Models

To explain the relations among a great variety of economic phenomena and
their behaviors, a set of economic models such as the production model, cost
model, and market model will be studied in this section.

12.3.1 PRODUCTION MODELS

Production models study the forms of production systems and their
efficiencies between the input and output. The most important production
model in economics is productivity.

Definition 12.8 The productivity, or the average product, P , is a ratio
between the total output O and the variable input or labor Iv, i.e.:

v

O
P

I
= (12.16)

 Productivity is a macro measure of an economic system. In order to
find the efficiency of economic input of a production system per unit of
labor, the marginal product at the micro level is introduced below.

Definition 12.9 The marginal product P∆ is a ratio between the
incremental output and the incremental input, i.e.:

v

O
P

I∆
∆=
∆

 (12.17)

Specialization efficiency was found in the industrial revolutions that

productivity or marginal product can be increased by adding specialized
labor in the incremental input in a certain range. However, overhead of
specialization may diminish the return of variable input, when ∆Iv is large
enough. This observation leads to the following lemma.

Lemma 12.6 Law of diminishing returns states that specialization
efficiency is over turned by overhead of using more variable input.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 981

12.3.2 COST MODELS

Costs of production systems can be classified as the fixed and variable
costs. The former such as those of buildings and machines are invariant with
the output or scale of production even though if there is no output the same
fixed costs still exist. The latter are proportional to output in a production
system such as those of materials and labor. Therefore, labor and its rational
organization are the most important and value-adding essence in production.

Definition 12.10 Total cost of a production system C is the sum of

fixed cost cf and variable cost cv, i.e.:

 C = cf + cv (12.18)

The total cost is an absolute value in production. In economic analyses,

the relative cost against output, or the average cost, is more meaningful in
cost analyses.

Definition 12.11 The average cost in production C is the unit cost per
product, i.e.:

 +

+

f v

f v

v

C
C

O
c c

O
c c
P I

=

=

=
•

 (12.19)

Definition 12.12 Marginal cost C ∆ is the ratio between the

incremental total cost and incremental output, i.e.:

+f v

v

CC
O

c c
P I

∆

∆

∆=
∆

∆
=

• ∆

 (12.20)

Eqs. 12.19 and 12.20 indicate that the average cost or marginal cost

may be reduced by increasing productivity or decreasing variable costs on
labor or materials. Eq. 12.20 also indicates that the increase of ∆O will result
in the increases of ∆cv. The tradeoffs between ∆O and ∆cv, therefore, form
the economical scale problem.

Definition 12.13 The economical scale of production is the maximum
output that yields the minimum average cost under a certain productivity, i.e.:

© 2008 by Taylor & Francis Group, LLC

982 Part III Organizational Foundations of SE

 min
max

C
C

O
= (12.21)

A typical relationship between maxO and minC can be illustrated in Fig.

12.8.

 O

Omax

C min

 C

0

Figure 12.8 The economical scale of production

12.3.3 MARKET MODELS

Definition 12.14 The market is an economic domain in which buyers
and sellers exchange commodity and services.

 Markets in economics can be classified into a spectrum of categories
such as those of perfect competitive, monopolistically competitive (with
product differentiation), oligopoly, and monopoly. The perfect competition
market and oligopoly are the two extreme forms of markets, where the
former is the most healthy and efficient market.

 Definition 12.15 A perfect competitive market is a free-entry market
where many sellers supply identical products or services so that none of them
may dominantly influence the market prices.

 In the perfect competitive market, a supplier is forced by competitors to
operate at maximum efficiency rather than to manipulate a higher price in
order to make profits. Therefore, the perfect competitive market is the most
consumer-friendly market.

 Definition 12.16 A monopolistic market is a market where only a sole
supplier provides a good or service without any close substitutes.

Although the demand is decided by buyers, a monopoly in the market
may be formed based on one of the following conditions: a) A controller of
an essential resource; b) A holder of a government franchise; c) A creator of

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 983

a new market, or a pioneer getting a market first; d) A founder of de facto
industrial standard; and e) An inventor and entrepreneur of a widely
applicable product or service.

Real-world markets are operating in between the perfect competitive
and monopolistic market modes. Usually, the large-scale and global
industries are oligopolistic, local utility industries are monopolistic, and the
remainder is perfect competitive or semi-competitive.
 The markets may also be classified as surplus and shortage markets,
which can be illustrated by the interactions of demands and supplies over
time as shown in Fig. 12.9, where:

a) A surplus market: ti’ < ti ⇒ S’(ti) > D(ti)
b) A shortage market: ti’’ > ti ⇒ S’’(ti) < D(ti) (12.22)

The former is also known as the buyer-market and the latter the seller-

market dependent on whether the demand occurs after the supply (S’(t)) or
before it (S’’(t)).

Figure 12.9 Surplus vs. shortage markets

12.4 Dynamic Values of Money and
 Assets

A basic concept of economics is that the values of physical assets and their
denoted representation in terms of money are a relative quantity. Both of
their values change over time, or more rigorously, their value is a function of

QD, QS

 t

S’(t)

 ti

 QD

0

S’’(t) D(t)

 t’i t’’i

 QS’’

 QS’

© 2008 by Taylor & Francis Group, LLC

984 Part III Organizational Foundations of SE

time and the interest rate. This section describes the dynamics of money and
assets. The techniques for determining the values of various cash flows in
any given point of time are presented.

12.4.1 DYNAMICS OF MONEY

Since money has been recognized as a generic representation or
measure of the value of any goods, services, and assets, the study of its
dynamics is to analyze the factors and mechanisms that influence the value of
money.

Definition 12.17 The dynamic value of money or an asset, V(t), is its
present worth P projected at a given point of time t for a given average or
predicated interest rate i during [0, t], i.e.:

 V(t) = f(P, i, t) (12.23)

For totally n interest calculation periods, the simple interest I that is

earned only on principal P during each interest period is:

 I(n) = (P • i) • n (12.24)

where the dimension of time is simplified into a serial discrete interest
periods n.

The value at end of the nth interest period, V(n), or the future value

F(n), for a given average interest i can be determined as follows:

 V(n) = F(n)
 = f(P, i, n)

 = P + I(n)
 = P + (P • i • n)
 = P (1 + i • n) (12.25)

A more advanced interest calculation method is known as the

compound interest that is recursive accumulation of the interest based on
each end of the n given periods as the future value F(n), i.e.:

 F(n) = P(1+i)n (12.26)

An inverse function of Eq. 12.26 determines the present value P of a

future value F(n) for given periods n and interest i, i.e.:

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 985

 P = F(n) 1
(1)ni+

 (12.27)

12.4.2 DYNAMICS OF ASSET’S VALUES

 As that of money discussed in the preceding subsection, values of
assets possess a dynamic property too.

Definition 12.18 For a given asset, the continuous decreasing of value
over time is known as depreciation.

The depreciation of assets can be classified as: a) Physical depreciation
that refers to the reduction in asset’s capacity to perform its intended service
due to physical impairment; b) Functional depreciation that refers to
obsolescence; c) Economic depreciation that refers to the total values lost
during the life span of an asset; and d) Accounting depreciation that refers to
a systematic allocation of the initial cost of an asset in parts over time.

The physical, functional, and economic depreciations are equivalent to
the concept of system dissimilation discussed in Section 10.5.7. The
accounting depreciation may be used for booking investment costs or for tax
purposes.

Definition 12.19 Assume an asset provides an equal amount of utility

or service in each year of its life-span n, the linear depreciation of the asset
in each year D is:

 D = P - S
n

 (12.28)

where P is the initial value of the asset, and S the salvage value by the year
end of n.

Therefore, the real value of the asset in year k, Va(k), 0 ≤ k ≤ n, can be
determined as:

 Va(k) = P - kD

()

P - SP - k
n

P n - k kS
n

=

+=
 (12.29)

where, particularly, Va(0) = P and Va(n) = S.

© 2008 by Taylor & Francis Group, LLC

986 Part III Organizational Foundations of SE

There are a number of nonlinear depreciation methods that enables a
faster early depreciation by inverse exponential models, so that the costs of
initial investment can be distributed or recovered in the early phase of
projects. Details may be referred to [Park et al., 2001; Sepulveda et al.,
1984].

12.4.3 CUMULATIVE VALUES OF CASH FLOWS

Cumulated values of a series of cash flows can be derived as a sum of
individual payments at the same point of time [Park et al., 2001; Sepulveda et
al., 1984], such as at present or at the end of n period in the future .

12.4.3.1 The Uniform Payment Series

Definition 12.20 The uniform payment series is a series of identical
payments A at the end of each period by a fixed frequency.

The cumulated present value PΣ(A) of a uniform series payments A is

given by Eq. 12.30 below:

(1+) -1
()

(1)

n

n
i

P A A
i iΣ =
+

 (12.30)

Inversely, the equivalent value of uniform payment A at present is:

(1)

()
(1+) -1

n

n
i i

A P A
iΣ
+= (12.31)

where A is called the capital recovery factor for denoting the periodical
return of an initial investment PΣ(A) .

The cumulated future value FΣ(A) of a uniform series A is given by Eq.
12.32 below:

(1+) -1

()
ni

F A A
iΣ = (12.32)

Inversely, the equivalent value of uniform payment A in a given year in the
future is:

()
(1+) -1n

iA F A
iΣ= (12.33)

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 987

where A is called the sinking fund factor for denoting the periodical payment
for a given accumulated fund in the future FΣ(A) .

It is noteworthy that the cumulative present and future values are still
obeying the relationship as described in Eq. 12.34, i.e.:

 FΣ (A) = PΣ(A) (1+i)n (12.34)

 Eq. 12.34 can be proved by replacing PΣ(A) and FΣ(A) in the above
equation by Eq. 12.30 and Eq. 12.32, respectively.

12.4.3.2 The Linear Gradient Payment Series

Definition 12.21 A linear gradient payment series is a series of linearly
increased payments G by a fixed frequency.

The linear gradient series G is illustrated in Fig. 12.10.

0 1 2 n-1 n

(n-2)G

 2G
 G

(n-1)G

3

 0

Figure 12.10 Linear gradient series

The cumulated present value PΣ(G) of a linear gradient series G is
given below:

 2
(1+) - -1

()=
(1+)

n

n
i i n

P G G
i iΣ

• (12.35)

where G is the increment factor and G can be positive or negative to
implement a linear gradient increase or decrease in the series.

12.3.3.3 The Geometric Gradient Payment Series

Definition 12.22 A geometric gradient payment series is a series of
nonlinearly increased payments g by a fixed frequency.

The geometric gradient series g is illustrated in Fig. 12.11.

© 2008 by Taylor & Francis Group, LLC

988 Part III Organizational Foundations of SE

0 1 2 n-1 n

 A1(1+g)
 A1

 …

A1(1+g)2

 0

3

A1(1+g)n-1

Figure 12.11 Geometric gradient series

The cumulated present value PΣ(g) of a geometric gradient series g is

given below:

-

1
1-(1+) (1)

()=
-

n ng i
P g A

i gΣ
+ (12.36)

where g is the growth rate and g can be positive or negative to implement a
geometric gradient increase or decrease in the series.

In a more generic situation, the cash flows may be a composite series
formed by the combination of the primitive series as discussed in the
previous subsections. In this case, the cumulated value can be calculated as
the sum of individual component series. Further discussions may be referred
to [Park et al., 2001; Sepulveda et al., 1984].

12.5 Economic Analyses

This section develops a set of algorithms for dynamic cost and investment
analysis that can be used in economic analyses for software engineering
projects. The algorithms provide numerical solutions for values of cost and
investment in present (P) and future (F), cumulative present value (P Σ) and
future value (R Σ), return-period (n) and return-rate (ρ). By applying these
algorithms, complicated mathematical problems in dynamic cost and
investment estimation in software engineering can be solved easily. The
algorithms are useful not only for project managers to plan and analyze
software development costs, but also for customers to estimate investment
benefit and risk of software projects.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 989

12.5.1 PROJECT COSTS ANALYSES

The concepts of the dynamic values of money and assets have been
introduced in Section 12.4. Fundamental expressions for comparing the
values of cost/investment over time are provided. This subsection
demonstrates applications of the dynamic value theory in project economic
analyses.

Example 12.2 An engineering project is predicted to yield different

cash flows as given in Table 12.2. Assuming the initial investment P =
$100,000, and interest rate i = 10%, analyze the cumulated payback value PΣ
of each cash flow.

Table 12.2
Cash Flows of a Project

End of year 0 1 2 3
Cash flow 1 (Random, k$) -100 30 60 50

Cash flow 2 (Uniform, k$) -100 46 46 46

Cash flow 3 (Linear gradient, k$) -100 0 80 160

Cash flow 4 (Geometric gradient, k$) -100 25 25 • 1.5 25 • 1.52

 a) Cash Flow 1: According to Eq.12.27, PΣ is determined as follows:

1 2 3
1 1 1(1) (2) (3)

(1) (1) (1)
100 30k 0.9091 60k 0.8264 50k 0.7513

100 27,273 49,584 37,566

$14, 423

P P F F F
i i iΣ = + + +

+ + +
= − + • + • + •

= − + + +

=

 b) Cash Flow 2: According to Eq.12.34, PΣ(A) is determined as

follows:

3

3

(1+) -1
()

(1)

1.1 -1100 46, 000
0.1 1.1

100 46, 000 2.4869

$14,397

n

n
i

P A P A
i iΣ = +
+

= − + •
•

= − + •

=

© 2008 by Taylor & Francis Group, LLC

990 Part III Organizational Foundations of SE

c) Cash Flow 3: According to Eq.12.35, PΣ(G) is determined as
follows:

 2

3

2 3

(1+) - -1
()= +

(1+)

1.1 - 0.1 3 -1
100 80,000

0.1 1.1
100 186,320

$86,320

n

n
i i n

P G P G
i iΣ

•

•= − + •
•

= − +

=

Another way to calculate PΣ(G) for Cash Flow 3 is using Eq. 12.27 as

that for Cash Flow 1, and the same result will be yielded as shown below.
However, when the series is very long, the above solution is more efficient.

1 2 3
1 1 1

(1) (2) (3)
(1) (1) (1)

100 0 80, 000 0.8264 160, 000 0.7513

100 186, 320

$86,320

P P F F F
i i iΣ = + + +

+ + +
= − + + • + •

= − +

=

d) Cash Flow 4: According to Eq.12.36, PΣ(g) is determined as

follows:

-

1

3 -3

1-(1+) (1)
()= +

-
1-(1+1.5) 1.1

= 100 + 25, 000
0.1-1.5

100 191,773

$91.773

n ng i
P g P A

i gΣ
+

•− •

= − +

=

12.5.2 PROJECT BENEFIT-COST ANALYSES

Analyses of benefit-cost ratios are usually based on the preset values P.
However, when project life spans are different, the analysis can be based on
annual values A.

Definition 12.23 The total benefit of a project B is the sum of its
benefits Bk of year k, 0 ≤ k ≤ n, in the view of its present values, i.e.:

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 991

B =
0 (1)

n
k

k
k

B
i= +∑ (12.37)

where i is the sponsor’s interest or discount rate.

Definition 12.24 The total costs of a project C is the sum of its costs Ck
of year k, 0 ≤ k ≤ n, in the view of its present values, i.e.:

 C =

0 (1)

n
k

k
k

C
i= +∑

 = C0 + C′ (12.38)

where Ck includes all capital expenditures C0 and annual operating costs C′.

 When both the total benefit and cost are known, the benefit-cost ratio of
a project can be determined as follows.

Definition 12.25 Benefit-cost ratio BC of a project is a ratio between
the total benefit B and the total cost C, i.e.:

0

BC =
B
C

B
C C

= ′+

 (12.39)

A variation of BC known as the net benefit-cost ratio B′C is defined as

below:

 0

0

'B'C =

'

B C
C

B
C

−

=
 (12.40)

where B′ = B - C′ is the net benefit.

Definition 12.26 The economic evaluation criterion to accept a project
is that its benefit-cost ratio is larger than one, i.e.:

 BC > 1 (12.41)

or
B′C > 1 (12.42)

Eqs. 12.41 and 12.42 imply B > C or B′ > C0, respectively.

© 2008 by Taylor & Francis Group, LLC

992 Part III Organizational Foundations of SE

 According to Definition 12.26, an evaluation of BC or B′C for a given
project may result in three outcomes as follows:

1, a desirable project

1, a risky project

1, an unacceptable project

BC

⎧⎪>⎪⎪⎪⎪=⎨⎪⎪⎪<⎪⎪⎩

 (12.43)

12.5.3 PROJECT PAYBACK PERIOD ANALYSES

Definition 12.27 The payback period ρ of a project is the expected
point of time n at which the initial investment P will be recovered by the
revenues of the project PΣ for a given interest rate i, i.e.:

 ρ = {n | P = PΣ(n)} (12.44)

The accurate solution of Eq. 12.44 can be derived by constructing a
function f(n) as follows:

 f(n) = P - PΣ(n)

 =
(1+) -1

-
(1)

n

n
i

P A
i i+

 = 0 (12.45)

where PΣ is assumed as a uniform series of annual payback. In general, PΣ
can be a cumulated present value of any kind of cash flows.

Because Eq. 12.45 needs to be solved by a numerical algorithm, a
simple estimation of payback period in practical engineering economic
analysis may be calculated by linear interpolation as follows:

 ρ ={n | P = PΣ(n)}

 ≈ ⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎣ ⎦

- ()
() - ()
P P n

n
P n P n

Σ

Σ Σ
+ (12.46)

where ⎣ ⎦n and ⎣ ⎦n are the floor and ceiling of the turning point in a year n,
respectively, where the cumulated payback ⎣ ⎦()P nΣ before n is less than P,
but the following year will yield a ⎡ ⎤()P nΣ greater than P.

Example 12.3 The payback periods of Cash Flows 1 and 3 as given in
Example 12.2 and Table 12.2 can be calculated as follows:

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 993

 (a) Cash Flow 1:

 ρ1 ={n | P = PΣ(n)}

⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎣ ⎦

- ()
() - ()

100,000 76,875
2

114, 423 76, 875
23,1252
37,548

2 0.62

2.62 [year]

P P n
n

P n P n
Σ

Σ Σ
≈ +

−= +
−

= +

= +

=

(b) Cash Flow 3:

⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎣ ⎦

2

- ()
() - ()

100, 000 66,112
2

186, 320 66,112
33, 8882
120,208

2.28 [year]

P P n
n

P n P n
ρ Σ

Σ Σ
≈ +

−= +
−

= +

=

12.5.4 PROJECT RATE OF RETURN ANALYSES

In engineering economic analysis, γ is a useful indication of the speed

of payback.

Definition 12.28 The rate of return γ of a project is the equivalent

interest rate yield by a cash flow PΣ for recovering the initial investment P
for a given period n, i.e.:

 γ = {i | P = PΣ } (12.47)

The accurate solution for Eq. 12.47 can be derived by constructing a

function f(i) as follows:

 f(i) = P - PΣ

 =
(1+) -1

-
(1)

n

n
i

P A
i i+

 = 0 (12.48)

© 2008 by Taylor & Francis Group, LLC

994 Part III Organizational Foundations of SE

where PΣ is assumed as a uniform series of annual payback. In general, PΣ
can be a cumulated present value of any kind of cash flows.

Because Eq. 12.48 needs to be solved by a numerical algorithm, in

practical engineering economic analysis, the rate of return γ can be
approximately estimated as the inverse of ρ, i.e.:

 1 100%γ
ρ

= • (12.49)

The rate of return is usually compared with the bank interest i in

economic analyses. The evaluation criteria of γ can be set as given below:

, a desirable project

, a risky project

, an unacceptable project

i

i

i

γ

⎧⎪>⎪⎪⎪⎪=⎨⎪⎪⎪<⎪⎪⎩

 (12.50)

 Example 12.4 Using the same data as given and/or derived in

Examples 12.2 and 12.3, determine the rates of return for Cash Flows 1 and
3.

(a) Cash Flow 1: As obtained in Example 12.3, ρ1 = 2.62 year.
According to Eq. 12.49 the rate of return γ1 can be determined as
follows:

1
1

1 100%

1 100%
2.62
38.17%

γ
ρ

= •

= •

=

(b) Cash Flow 3: The rate of return γ3 for ρ3 = 2.28 year is as follows:

3
3

1 100%

1 100%
2.28
43.86%

γ
ρ

= •

= •

=

 A case study on economic analyses of a software engineering project
will be provided in Section 12.6.4.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 995

12.6 Software Engineering
 Economics

Software engineering economics is a branch of applied microeconomics that
studies how resources are used to produce software systems and services and
how optimistic decisions may be made for software engineering projects.
This section describes elements of software costs, economic analyses,
problem solving methods, and their applications in a variety of software
engineering project decisions.

12.6.1 ELEMENTS OF SOFTWARE ENGINEERING
 COSTS

Prior to developing the cost and revenue models of software
engineering, the taxonomy of software costs is presented. Then, the cost
elements of system and application software are comparatively analyzed.

12.6.1.1 Analysis of Software Engineering Costs

The costs of software engineering projects can be classified into the
categories of fix cost, variable cost, development cost, service cost, and
competition cost as shown in Table 12.3. Mapping these cost elements into
software engineering processes, they can be described as the design,
production, and service costs.

The conventional cost models in economics consider only the fixed

costs and variable costs as discussed in Section 12.3.2, which are oriented to
the manufacturing industry characterized by mass production. For software
engineering projects in the software industry, more cost categories need to be
explored, such as the development costs and service costs. Also, the
differences between the cost models of system and application software need
to be distinguished, where system software are operating systems and
fundamental system tools such as language compliers, database management
systems, and network/communication software; while application software
are those of user developed built on top of the system software.

© 2008 by Taylor & Francis Group, LLC

996 Part III Organizational Foundations of SE

Table 12.3
Elements of Software Costs

No. Category Cost element System
software

Application
software

Process

1 Fixed costs
1.1 Land and buildings
1.2 Equipment
1.3 Office facilities
1.4 IT systems
2 Variable costs
2.1 Labor
2.2 Materials
2.3 Manual and

Documentation

Production
costs

3 Development
costs

3.1 Requirement analysis
3.2 Feasibility study
3.3 Specification
3.4 Design
3.5 Implementation
3.6 Test
3.7 Quality assurance
3.8 Process improvement
3.9 Tools

Design
costs

4 Service costs
4.1 Maintenance
4.2 Distribution
4.3 Support
4.4 Training
4.5 Trial
4.6 Localization
5 Competition

costs

5.1 Advertisement
5.2 Free promotions
5.3 Special discounts
5.4 Standardization

Service
costs

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 997

12.6.1.2 Analysis of Software Engineering Revenues

The elements of software revenues in software engineering can be
analyzed as shown in Table 12.4. It is noteworthy that, although the cost
models of system and application software are quite similar, their revenue
models are fairly different.

Table 12.4
Elements of Software Revenues

No. Category System
software

Application
software

1 Licenses
2 Rents
3 Certifications
4 Development
5 Training
6 Service

According to the revenue models of software, it is obvious that system

software may create much higher revenues than those of application software
systems.

12.6.2 SOFTWARE ENGINEERING PROJECT COSTS
 ESTIMATION USING FEMSEC

The cost of a software engineering project is usually perceived as a
linear function of the size of a given project. However, according to the
coordinative work organization theory as developed in Section 8.5, software
project cost is more directly related to the expected workload of projects,
which is dominated by the property of interpersonal coordination rate
required for the project. Further, the allocations of labor and time for a
project cannot be carried out freely, but are constrained by certain laws as
stated in Theorems 8.4 and 8.7. The workload-based approach to software
engineering project cost determination will be formalized in this subsection
by the Formal Economic Model of Software Engineering Cost (FEMSEC)
[Wang, 2007d], and will be compared with the COCOMO approach in
Section 12.6.3.

12.6.2.1 The FEMSEC Model of Software Engineering Costs

It recognized that the cost of a software engineering project is not
simply a linear function of the size of the project rather than a complicated

© 2008 by Taylor & Francis Group, LLC

998 Part III Organizational Foundations of SE

function related to the expected workload, the form of labor allocation, and
whether the shortest project duration is achieved. A rational and rigorous
treatment of the software engineering cost determination and estimation can
be derived on the basis of the coordinative work organization theory as
developed in Section 8.5, which results in the following formal economic
model of software engineering costs.

The procedure to determine an expected project cost according to the

FEMSEC model given in Theorem 12.3 can be illustrated in Fig. 12.12.

Estimated
size (pS)

Ideal
workload

(W1)

Expected
project cost

(C)

Average
salary
(CL)

Shortest
expected
duration

(Tmin)

Optimal labor
Allocation

(L0)

Expected
workload

(W)

 Average
 productivity

 (ρ)

Empirical
project

database
(PDB)

Real project
data

(C’, W, W1,
pS , ρ, T, CL)

Figure 12.12 Illustration of the FEMSEC model

The 45th Law of Software Engineering

Theorem 12.3 The Formal Economic Model of Software Engineering
Cost (FEMSEC) states that, on the basis of the workload-driven project
organization laws (Theorems 8.4 and 8.7), the expected project cost C
can be rigorously determined with the optimal labor allocation L0 and the
shortest duration Tmin by the following 6 steps:

 1) Estimate the project size pS
 2) Determine the ideal workload W1
 3) Allocate the optimal labor L0
 4) Determine the shortest duration Tmin
 5) Determine the expected workload W
 6) Determine the expected project cost C

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 999

In the FEMSEC model, some of the steps require the availability of
empirical and historical data of a specific organization, such as project size

pS , average productivity ρ, and average salary CL. The completion of each
project will generate a new set of historical data, which will then be used to
update the historical database. In case the historical data are not available in a
certain organization, the sector’s benchmarks may be used as an initial base.

12.6.2.2 The FEMSEC Method for Software Engineering Project Costs
 Determination

The following subsections formally describe the mathematical models

for each of the six steps in the rational project costs determination process of
FEMSEC.

12.6.2.2.1 Project Size Estimation

Knowing the size of a software engineering project is the starting point
of cost estimation. Project sizes are usually represented by the symbolic size
Ss of software systems in the unit of thousand lines of code (kLOC).

Definition 12.29 Project size can be estimated by a weighted average

of its symbolic size, pS , as follows:

 1 = (+ 4 +) [kLOC]
6p max exp minS S S S (12.51)

where Sexp is the most likely expectation of the size of the project, Smax and
Smin are the maximum or minimum expectation, respectively.

 In Eq. 12.51, it can be seen that the weighted average size estimation
give a higher weight to the most likely expectation. The size estimation
model as defined in Definition 12.29 is a fairly accurate technique when
empirical data are available on similar projects as references.
 However, the empirical comparability is not always available at the
whole project level in software engineering. Therefore, a more generic
approach to size estimation is to use the strategy of division and conquer as
described below.

Definition 12.30 Assuming a software system encompasses n
subsystem, and each subsystem consists of m components, the size of this
project can be estimated as a sum of the weighted average of estimated sizes
of all components, ijS , i.e.:

© 2008 by Taylor & Francis Group, LLC

1000 Part III Organizational Foundations of SE

 =1 =1

=1 =1

 =

1((() + 4 () + ()) [kLOC]
6

n m

p ij
i j
n m

max exp min
i j

S S

S i, j S i, j S i, j=

∑ ∑

∑ ∑

 (12.52)

Since smaller components are easier to be estimated and more similar
references exist, the sum of component level estimations is much more
accurate than the one-level estimations as described in Definition 12.29.

12.6.2.2.2 Ideal Workload Determination

Once the size of a given project is obtained as discussed in the previous
subsection, the workload can be determined on the basis of software
productivity benchmarks of a specific organization or the software industry.

Definition 12.31 The ideal workload of a software project is

determined by the ratio of the estimated project size pS and the software
productivity ρ in terms of kLOC/PY, i.e.:

 1 12 [PM]pS
W

ρ
= • (12.53)

where a typical benchmark is ρ = 3,000 LOC/PY where management, quality
assurance, and supporting activities are considered [Boehm, 1987; Dale and
Zee, 1992; Jones, 1981/86; Livermore, 2005], and the units PY and PM stand
for person-year or person-month, respectively.

12.6.2.2.3 Optimal Labor Allocation

According to Theorem 8.7 and the pigeon diagram as shown in Fig.
8.5, the optimal labor allocation, L0, for a given ideal workload is solely
determined by the rate of interpersonal coordination r of the project when
multiple persons are working on it, i.e.:

 0
1.414 []L P

r
⎡ ⎤= ⎢ ⎥
⎢ ⎥

 (12.54)

In software engineering, the coordination rate is within the scope

1% 90%r≤ ≤ . Applying Eq. 12.54, this results in the optimal labor
allocation for a software engineering project is constrained by the scope of:

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1001

 015 1 []L P≥ ≥ (12.55)

Therefore, the team organization forms for very large-scale projects
have to adopt hierarchical multi-group structures, provided that each such
group must still obey the same law for group size limitation and optimization.
Detailed organizational strategies for multi-group large-scale projects are
described in the system and social organization theories presented in Sections
10.3.5 (The system organization tree) and 13.4.2 (The formal model of social
organization), respectively.

12.6.2.2.4 The Shortest Duration Determination

After the ideal workload W1 and the optimal labor allocation L0 are
determined, the duration of a software engineering project or subproject (if
multi-groups are needed) is ready to be derived.
 According to Theorem 8.7, the shortest duration of a given project is
determined by the following formula:

min 0

1 0
0

1.414{ | }

1 2()
2

T T L L
r

W rL r
L

⎡ ⎤= = = ⎢ ⎥
⎢ ⎥

= − +
 (12.56)

The duration Tmin can also be determined by using a set of the pigeon

diagrams as show in Fig. 8.5.

12.6.2.2.5 Expected Workload Determination

When the optimal labor allocation and shortest duration of the project is
determined via the methods provided in Sections 12.6.2.2.1 through
12.6.2.2.4, the expected effort or real workload of the project can be
obtained.

According to Theorem 8.4, the expected workload is determined by the
product of the optimal labor allocation L0 and the shortest project duration
Tmin, i.e.:

exp 0 min

0 1 0
0

2
1 0 0

=

1 2()
2

1
(2) [PM]

2

W L •T

L • W rL r
L

W rL rL

= − +

= − +

 (12.57)

© 2008 by Taylor & Francis Group, LLC

1002 Part III Organizational Foundations of SE

Empirical workload estimations that are not based on the optimal labor
allocation and the shortest project duration may result in a significant loss of
effort, thus a much more expensive project, as shown in Example 8.5.

12.6.2.2.6 Expected Project Cost Determination

On the basis of the expected workload of software engineering project
obtained in the preceding subsection, the cost of the given project can be
determined as follows.

Definition 12.32 The expected cost of a software project C is a product
of the expected workload W [PM] and the average cost of labor CL [$/PM],
i.e.:

 exp exp

0

=

 [$]
L

min L

C W •C

L •T •C=
 (12.58)

Example 12.5 Given the estimated size of a software engineering

project is pS = 2,000LOC, determine the expected cost of this project, with
the historical data or benchmarks r = 8.0%, ρ = 3.0kLOC/PY, and CL =
$80,000/PY.

According to the FEMSEC model, the cost of the given software

project can be analyzed as follows:

a) Ideal workload determination (Eq. 12.53)

1 12

2,000= 12
3,000

= 8.0 [PM]

pS
W

ρ
= •

•

b) Optimal labor allocation (Eq. 12.54)

0
1.414

1.414= = 5.0 []
0.08

L
r

P

⎡ ⎤= ⎢ ⎥
⎢ ⎥
⎡ ⎤
⎢ ⎥
⎢ ⎥

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1003

c) The shortest duration determination (Eq. 12.56)

min 1 0
0

8.0(0.08 5.0 0.08 2/ 5.0)

2.9 []

1 2()
2
0.5

M

T W rL r
L

• • − +

=

= − +

=

d) Expected workload determination (Eq. 12.57)

exp 0 min

2.9

14.5

=

= 5.0

 [PM]

TW L •

•

=

e) Cost Determination (Eq. 12.58)

exp exp=

14.5 80, 000/12

$96,666.66 [$]

L•C W C

•=

=

Example 12.6 For a large-scale software engineering project with pS =

10,000LOC and r = 8.0%, determine the expected cost of this project
according to the FEMSEC model with the same benchmarks as given in
Example 12.5.

a) Ideal workload determination (Eq. 12.53)

1 12

10,000= 12
3,000

= 40.0 [PM]

pS
W

ρ
= •

•

b) Optimal labor allocation (Eq. 12.54)

0
1.414

1.414= = 5.0 []
0.08

L
r

P

⎡ ⎤= ⎢ ⎥
⎢ ⎥
⎡ ⎤
⎢ ⎥
⎢ ⎥

© 2008 by Taylor & Francis Group, LLC

1004 Part III Organizational Foundations of SE

c) The shortest duration determination (Eq. 12.56)

min 1 0
0

40.0(0.08 5.0 0.08 2/ 5.0)

14.4 []

1 2()
2
0.5

M

T W rL r
L

• • − +

=

= − +

=

d) Expected workload determination (Eq. 12.57)

exp 0 min

14.4

72.0

=

= 5.0

 [PM]

TW L •

•

=

e) Cost Determination (Eq. 12.58)

exp exp=

72.0 80, 000/12

$480, 000.00 [$]

L•C W C

•=

=

The above examples show that the key to reduce software project cost

is to improve the productivity ρ. However, Theorem 1.6 states that ρ is
constrained by the conservative human cognitive capability. Therefore, the
only rational way is to improve automation rate in software development,
i.e., to adopt automatic and intelligent software code generation systems
[Wang, 2007a].

Theorem 12.4 indicates that no matter how tough it is, intelligent and

automatic software code generation systems should be developed and
implemented in the future of software engineering, in order to release human
labor, the low-tech means of programming, in the high-tech discipline of
software engineering. A pilot automatic code generation system will be

The 45th Principle of Software Engineering

Theorem 12.4 The ultimate objective of software engineering states that
automatic code generation is the only silver bullet to overcome the
natural constraints on conservative software development productivity, to
reduce software development costs, and to improve software quality as a
result of reduced human involvement and uncertainty.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1005

discussed in Chapter 15 on intelligent code generation [Tan, Wang, and
Ngolah, 2006].

12.6.3 SOFTWARE ENGINEERING PROJECT COSTS
 ESTIMATION USING COCOMO

COCOMO, standing for Constructive Cost Model, is proposed by
Barry Boehm in 1981 and revised in 2000 [Boehm, 1981/84; Boehm et al.,
2000]. The COCOMO model is an empirical software cost model using
multiple weighted nonlinear approximation techniques calibrated on the basis
of 63 software projects.

12.6.3.1 The Conceptual Model of COCOMO

The basic concept of COCOMO is that the software project cost is
determined by a number of factors and attributes. Therefore, empirical
calibrations of these attributes based on historical data may be useful to
predicate those of future projects.

Definition 12.33 The cost factors of software projects identified in

COCOMO are software size, effort, duration, and multiple cost drivers. Their
relationships are perceived as follows:

Cost = f(size, effort, duration, cost drivers) (12.59)

It is noteworthy that some of the cost factors in Eq. 12.59 may not

independent of each other. In other words, some of the factors are derivatives
of others. For example, both effort and duration are derived quantities of
project size. Further, effort is determined by the duration for a given project.

The cost drives of software projects can be classified into four
categories known as the product, computer, personnel, and project attributes.
Fifteen cost attributes in the four categories have been identified [Boehm,
1981/84] as summarized in Table 12.5.

Boehm (1981/84) identified three different project types known as the
development modes. They are the organic, semidetached, and embedded
modes as described below:

• The organic mode is a type of project with a small team,

experienced programmers, and familiar in-house
environment in which the size of project is less than 50
kLOC.

© 2008 by Taylor & Francis Group, LLC

1006 Part III Organizational Foundations of SE

Table 12.5
The Cost Driver Attributes of COCOMO

Cat. No. Serial No. Category Attributes
1 Product attributes
1.1 1 Required software reliability
1.2 2 Database size
1.3 3 Product complexity
2 Computer attributes
2.1 4 Execution time constraint
2.2 5 Main storage constraint
2.3 6 Virtual machine volatility
2.4 7 Computer turnaround time
3 Personnel attributes
3.1 8 Analyst capability
3.2 9 Applications experience
3.3 10 Programmer capability
3.4 11 Virtual machine experience
3.5 12 Programming language

experience
4 Project attributes
4.1 13 Modern programming

practices
4.2 14 Use of software tools
4.3 15 Required development

schedule

• The embedded mode is a type of project with tight

constraints such as hardware, environment, timing, and
performance.

• The semi-detached mode is a type of project that lies
between the organic and embedded modes in which the size
of project is between 50-300kLOC.

The estimations of software engineering project costs by COCOMO

can be carried out at three levels known as the basic level, intermediate level,
and detailed level using different approximate curves and models.

12.6.3.2 The Basic COCOMO Model

The basic COCOMO model provides a rough estimation of software
project effort for small, simple, and repetitive projects [Boehm, 1981/84].

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1007

Definition 12.34 The software project effort WM in the basic
COCOMO model is determined by the following empirical curve that is
proportional to the size of the software KDSI and project type weights k and
C, i.e.:

 WM = C (KDSI)k (12.60)

where WM stands for the project effort in work-month, k and C are the
project type or development mode constants, and KDSI is thousands of
delivered source instructions.

12.6.3.3 The Intermediate COCOMO Model

The intermediate COCOMO model considers more effort factors in a
software project affected by the 15 cost driver attributes as shown in Table
12.5 [Boehm, 1981/84].

Definition 12.35 The software project effort WM in the intermediate

COCOMO model is determined by the following empirical curve that is
proportional to the size of the software KDSI and project type weights ei, C,
and EM, i.e.:

 WM = C(WDSI)

 =
15

1
() ie

j
j

C KDSI EM
=
∏ , i ∈ {1, 2, 3} (12.61)

where WDSI denotes the weighted delivered source instructions; C the
project type or development mode constants; ei exponent used for the ith
project type where i ∈ {1, 2, 3} represents the type of organic, embedded, or
semi-detached, respectively; and EMj are effort multiplier determined by the
jth cost driver attribute within the range of 0.7 (very low complexity) to 1.66
(very high complicity).

12.6.3.4 The Detailed COCOMO Model

The detailed COCOMO model is similar to the intermediate one, but
the life cycle of a project is divided into four phases known as the phases of
product design, detailed design, coding/unit test, and integration/test. Each
phase will be iteratively calculated by Eq.12.61 with different project type
weights C, ei, and EM [Boehm, 1981/84].

© 2008 by Taylor & Francis Group, LLC

1008 Part III Organizational Foundations of SE

12.6.3.5 The COCOMO II Model

COCOMO II [Boehm et al., 2000] is a revision of the 1981 version of
COCOMO. A software costs and effort analysis in COCOMO II still starts
from the estimation of the size of the project in unit of thousand source lines
of code (kSLOC). It is noteworthy that the counting methods for SLOC are
greatly varying, and the result is highly dependent on programming
languages.

COCOMO II adopts a set of five scale drivers to replace the
development modes known as the project types. The scale drivers are
precedentedness, development flexibility, architecture/risk resolution, team
cohesion, and process maturity. The exponent used in the effort equation is
determined by the scale drivers. COCOMO II extends the cost drivers from
15 to 17 to weight the effort required to complete a project.

Definition 12.36 The effort E of a software project in COCOMO II is
estimated by the following empirical approximation, i.e.:

 E = 2.94 EAF • (kSLOC)C [PM] (12.62)

where EAF stands for effort adjustment factor derived from the 17 cost
drivers, C is an exponent determined by the five scale drivers.

The unit of project effort E is supposed to be person-month (PM).

However, it is not clear how a set of pure quantities in Eq. 12.62 may be
transferred into a physical unit PM according to the convention of dimension
analysis.

When the project effort is determined in terms of person-month (PM),
the project duration D may be estimated as follows.

Definition 10.37 The duration D of a software project can be estimated

by the following empirical approximation, i.e.:

 D = 3.67 • ESE [M] (12.63)

where SE is the schedule exponent derived from the five scale drivers, and
the unit of project duration is month (M).

Note that the effort E is a product of project duration D and number of
persons N working in the project, i.e., E = DN. Then, N, the average staffing
in COCOMO II, can be estimated as follows.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1009

Definition 10.38 The average staffing N of a software project is the
number of persons needed in the project, which can be determined by the
following empirical approximation, i.e.:

 N = E / D [P] (12.64)

where the unit of average staffing is number of persons (P).

It is noteworthy that the duration D is estimated first in the COCOMO
approach and the basic assumption is that the simple product of duration and
number of persons results in the effort of the project. Therefore, the duration
of a project may be determined first, and then to seek how many
programmers are needed.

However, theoretically, the effort product E = DN is not a linear
function according to Law 23 and Law 25 of software engineering proven in
Theorems 8.4 and 8.7. In other words, a person is not simply equivalent to a
month in the hybrid product of person-month according to Theorems 8.8 and
8.9. A rule of thumb is that the more the persons are involved in a project,
the less the contribution per person to the collective person-months. A more
rigorous treatment of project duration and the equivalency between labor and
time in the mythical man-month is provided in Sections 12.6.2, 8.5, and
13.5.2.

12.6.4 ECONOMIC ANALYSES OF SOFTWARE
 PROJECTS

The software project costs determined by the FEMSEC and COCOMO
models, presented in Sections 12.6.2 and 12.6.3, respectively, focused on the
operational cost in economics. There are additional costs such as office,
facilities, and developing environment. A complete economic analysis of
software engineering project taking into account all of the categories of
developing costs is provided in this subsection.

12.6.4.1 Estimations of Costs and Revenues of Software Projects

The economic data of an engineering project can be classified into
categories of costs, revenues, and other derived cash flows. With a set of
sample data on a project of a new software development organization as
given in Table 12.6, economical analyses can be carried out based on the
theories of engineering economics developed in Section 12.5 for this 5-year
software engineering project.

On the basis of the raw figures of the software project as described in
Table 12.6, the derived costs, benefit-cost ratio, return period, and return rate
of this project are calculated in the following subsections, which also explain
how the derived data of Table 12.6 are obtained.

© 2008 by Taylor & Francis Group, LLC

1010 Part III Organizational Foundations of SE

Table 12.6
Estimations of Costs and Revenues of a Software Project

Cat. No Serial
No

Category Item Sample
value ($)

Equivalent
present value of

5-year
operation ($)

I A COSTS (3,370,000) (5,546,824)
1.1 A1 (2,590,000) (2,590,000)

1.1.1 a Land 1,000,000 1,000,000
1.1.2 b Buildings 800,000 800,000
1.1.3 c Equipment 500,000 500,000
1.1.4 d Installation 100,000 100,000
1.1.5 e Patent and

License fees
60,000 60,000

1.1.6 f Legal fees 30,000 30,000
1.1.7 g Start-up costs 30,000 30,000
1.1.8 h Operating capital 50,000 50,000
1.1.9 i

Capital (fixed)
costs

Contingency
costs

20,000 20,000

1.2 A2 Operating
costs

A2 = A21 + A22 (780,000)
[Annual]

(2,956,824)
[5 years]

1.2.1 A21 (640,000) -
1.2.1.1 j Labor 600,000 -
1.2.1.2 k Material 30,000 -
1.2.1.3 l

Direct costs

Utilities 10,000 -
1.2.2 A22 (140,000) -

1.2.2.1 m Administrative
costs

30,000 -

1.2.2.2 n Selling costs 20,000 -
1.2.2.3 o Other 10,000 -
1.2.2.3 p

Overhead costs

Depreciation of c 80,000 303,264
II B (2,300,000)

[Annual]
(8,718,840)

[5 years]
2.1 q Sales 1,600,000 -
2.2 r

REVENUES

Service incomes 700,000 -

III C Net income (before taxes) =
B - A + p

-990,000 3,475,280

IV D Net taxable income = C - p -1,070,000 3,172,016
V E Net income (after taxes) =

D(1 - t) [Tax rate t = 20%]
-1,070,000 2,537,613

VI F Net revenues (after taxes) = E + p -1,070,000
[year 1]

2,840,877
[year 5]

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1011

12.6.4.2 Cumulated Value of Operating Costs

According to Definition 12.30, the cumulated present value PΣ for the
first five-year revenues of the project can be determined as follows:

5

5

(1+) -1
()

(1)
(1+0.1) -1

$780,000
0.1(1 0.1)

$780,000 3.7908

$2,956,824

n

OP n
i

P C A
i i

Σ =
+

= •
+

= •

=

where the interest rate i is assumed at 10%.

This result is shown in Line A2 of Table 12.6. Note that the capital
costs as shown in Line A1 of Table 12.6 are a set of one-off investment
committed in year 1 of the project.

12.6.4.3 Cumulated Present Value of Revenues

The cumulated value of revenues of this project in the first five years
can be conducted similarly as that of the cumulated operating costs below.

(1+) -1
()

(1)
$2, 300, 000 3.7908

$8,718, 840

n

n
i

P R A
i i

Σ =
+

= •

=

This result is shown in Line B of Table 12.6.

12.6.4.4 Annual and Cumulated Depreciations of Equipment

The depreciation of the fixed capitals, particularly equipment,
buildings, and land, can be quantitatively analyzed. There are special
regulations for land and building depreciations [Park et al., 2001]. Assuming
only equipment is depreciated in this project and the salvage value of all
equipment of this project is $100,000, the annual depreciation of this project
can be determined according to Definition 12.19, i.e.:

© 2008 by Taylor & Francis Group, LLC

1012 Part III Organizational Foundations of SE

 $500,000 - $100,000
5

$80,000

P - SD
n

=

=

=

The cumulated value of annual equipment depreciations in five years

can be derived according to Definition 12.30:

 5

5

(1+) -1
()

(1)
(1+0.1) -1

$80, 000
0.1(1 0.1)

$80, 000 3.7908

$303,264

n

n
i

P D A
i i

Σ =
+

= •
+

= •

=

D and PΣ(D) are shown in Line p of Table 12.6, respectively.

12.6.4.5 Project Benefit-Cost Ratios

The benefit-cost ratio BC is a useful indicator of the economical
feasibility of a software engineering project. The total benefit (revenue) and
cost of the given software engineering project for the first five years are
summarized in Table 12.6. According to Definition 12.25, the benefit-cost
ratio of this project can be determined as follows:

 8,718, 840
5,546, 824
1.57

BBC
C

=

=

=

 (12.65)

Because the project yields a benefit-cost ratio BC = 1.57 > 1, it fulfills

the economical criterion for an acceptable project as provided in Definition
12.26. In other words, this project is a profit-making project.

12.6.4.6 Project Payback Periods

Observing Table 12.6 it can be seen that this project is a uniform series
of cash flow as illustrated below, where A’ denotes the net revenue of each
year that is yielded by A’ = A - Cop.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1013

 1 2

 …

 0 5
n

A = 2,300k

Cop = -780k

P = -2,590k

A’ = A-Cop
 = 1,520k

Figure 12.13 The cash flow of the software engineering project

According to Eq.12.30, PΣ(A’) of each year in the project life span can

be determined as follows:

1
1

'(')
1
1,520k / 1.1

$1,381, 818

AP A
iΣ =

+
=

=

2 2

2

2

(1+) -1
(') '

(1)

1.1 -1
1,520k

0.1 1.1
1,520k 1.7355

$2,637,960

n

n
i

P A A
i iΣ =
+

= •
•

= •

=

 Similarly, 3(') $3,780, 088P AΣ = , 4(') $4, 818,248P AΣ = , and 5(')P AΣ =
$5,762, 016 are obtained.

It is apparent that the floor of payback year ⎣ ⎦n = 1 for this project.
Therefore, the payback period ρ can be determined below according to Eq.
12.46:

 ρ ={n | P = PΣ(n)}

⎣ ⎦
⎣ ⎦

⎡ ⎤ ⎣ ⎦

() - ()
() - ()

2,590,000 - 1, 381,8181
2,637,960 - 1, 381,818
1,208,182

1
1,256,142

1.96 [year]

P n P n
n

P n P n
Σ

Σ Σ
≈ +

= +

= +

=

© 2008 by Taylor & Francis Group, LLC

1014 Part III Organizational Foundations of SE

12.6.4.7 Project Rate of Return

Based on the analysis result of the previous subsection, the rate of
return of this project can be derived according to Eq.12.49 as follows:

1 100%

1 100%
1.96
51.03%

γ
ρ

= •

= •

=

It indicates that this project’s rate of return is much higher than given

interest rate at 10%. Therefore, this is a profitable software project that the
initial investment may be recovered less than two years (ρ = 1.96 years).

12.6.5 THE SOFTWARE LEGACY COST MODEL

A special phenomenon in software engineering economics is known as
the software legacy maintenance costs. A software legacy maintenance cost
model can be quantitatively described based on the relationship between the
development cost and maintenance cost in a software development
organization.

12.6.5.1 Development Costs vs. Maintenance Costs

Definition 12.39 The development cost Cd is the marginal cost

determined as follows:

 Cd = k • np • nd (12.66)

where np is the average number of projects completed per year, nd is the
average number of developers per project, and k is the average cost per
person.

Definition 12.40 The maintenance cost Cm is a cumulated cost over
time t as follows:

 Cm(t) = k • nm • NL
 = k • nm • t • np (12.67)

where NL is the number of existing legacy systems, and nm is the average
number of maintainers per legacy project, and t is time in year.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1015

Definition 12.41 The total costs C of software engineering is the sum
of development cost Cd and maintenance cost Cm, i.e.:

 C = Cd + Cm (12.68)

12.6.5.2 The Software Legacy Maintenance Cost Model

Definition 12.42 The ratio of the maintenance cost Cm in the total costs

C, rm, is the rate of percentage as follows:

 100%
+
m

m
d m

Cr
C C

= • (12.69)

Example 12.7 Assume a software development organization develops

and completes three new systems each year (np), the number of development
persons needed per system is ten (nd), and the number of maintenance
persons needed per delivered (legacy) system is three (nm). Let all the
delivered (legacy) systems have a lifespan of 20 years.

The development cost Cd, the maintenance cost Cm, the total cost C, and
the ratio of maintenance cost rm% for the legacy systems produced by this
organization over 20 years can be determined according to Eqs. 12.66
through 12.69 as shown in Table 12.7.

Using the data obtained in Table 12.7, the curves of relative costs and

the ratios of legacy maintenance cost can be plotted as shown in Fig. 12.14.

Table 12.7
Ratio of Maintenance Costs in a Software Development Organization

n (year) 0 1 2 3 4 5 6 7 8 9 10 15 20
Cd 30 30 30 30 30 30 30 30 30 30 30 30 30
Cm 0 9 18 27 36 45 54 63 72 81 90 135 180

Cd+m 30 39 48 57 66 75 84 93 102 111 120 165 210

rm (%) 0 23.1 37.5 47.4 54.5 60 64.3 67.7 70.6 73 75 81.8 85.7

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t [year]

R
el

at
iv

e
co

st
s

Cd+m

Cm

r (%)

Cd

Figure 12.14 The Software Legacy Maintenance Cost (SLMC) model

© 2008 by Taylor & Francis Group, LLC

1016 Part III Organizational Foundations of SE

It is noteworthy that the SLMC curves as shown in Fig. 12.14 are based
on application software projects. For system software developers, the curves
Cm and rm% can be increased much faster than those of the trends in Fig.
12.14, because the maintenance effort would be multiple times higher when a
large number of users cumulated for a system software such as operating
systems and database management systems.

It can be observed in Fig. 12.14 that the year t0 in which the

maintenance cost overtakes the development cost in the given organization is
at t0 ≈ 3.4 year. More formally, it can be determined as follows.

Example 12.8 Using the data provided in Table 12.7, the overtaken

time ny for the software development organization as given in Example 12.7
can be estimated below:

 to ={t | Cm = Cd}

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎣ ⎦

() - ()
() - ()

30-273
36-27

3 0.33

3.33 [year]

m m

m m

C t C t
t

C t C t
≈ +

= +

= +

=

Corollary 12.5 The overtaken time to in which the maintenance cost
exceeds the development cost in a software development organization can
be determined using the following expression, i.e.:

⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎣ ⎦

= { = }

() - ()
 [year]

() - ()

0 m d

m m

m m

t t | C C

C t C t
t

C t C t
≈ +

 (12.70)

 The 46th Principle of Software Engineering

Theorem 12.5 The exponential Software Legacy Maintenance Costs
(SLMC) states that the ratio of maintenance cost Cm in a software
development organization, rm%, tends to exponentially increase over time
t, and it is proportional to the total number of legacy systems NL that the
organization produced.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1017

The fairly short overtaken time due to maintenance costs domination in
the software industry indicates a real crisis on legacy maintenance in
software engineering and for the modern information-based society.

Based on the SLMC model, a corollary on an important phenomenon

called Software Maintenance Crisis can be derived, which will be further
analyzed in Section 14.3.3.

12.7 Summary

Economics is the study of how resources are used to produce and distribute
commodities and how services are provided in society. Engineering
economics is a branch of microeconomics dealing with engineering related
economic decisions. Fundamental economic structures are the underlying
forces of socialization and social organization. In turn, the fundamental
economic structures are determined by the current and predominantly highest
level of unsatisfied fundamental human needs.

Software engineering economics is a branch of applied
microeconomics that studies how resources are used to produce software
systems and services and how optimal decisions may be made for software
engineering projects. Therefore, a successful software engineer requires
certain knowledge of economics in addition to science and engineering.

This chapter has introduced fundamental principles and methodologies
utilized in engineering economics and their applications in software
engineering. It has also applied formal methodology into economic analysis
and modeling. The first part of this chapter has reviewed classic thought and
principles of economics, and a number of empirical economic models have
been formalized with rigorous mathematical models. The second part of this
chapter has been focused on the theories and principles of software
engineering economics. Formal economic models for software engineering
have bee developed such as the cost models and the FEMSEC model of
software engineering. Applications of economic analysis and problem
solving methodologies in a variety of contexts of software project decision
making have been discussed. This has led to the development of the law of
software legacy maintenance costs, and the finding of a hidden but
significant phenomenon in software engineering known as the Software
Maintenance Crisis (SMC). As a result, the economics foundations of
software engineering have been established.

© 2008 by Taylor & Francis Group, LLC

1018 Part III Organizational Foundations of SE

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Economics Foundations of Software
Engineering, readers have achieved the following strategic goals with the
knowledge structure as summarized below.

Chapter 12. Economics Foundations of SE

■ Fundamental Principles of Economics
 • Basic axioms of economics
 - Demand vs. supply
 - The principle of resource scarcity
 - The ultimate objective of markets
 - The law of maximizing profit
 - The unlimited demanding behaviors of consumers
 - The profit-driven behaviors of producers
 - The law of market conservation

 • Economic equilibrium between demands and supplies
 • The behaviors of market systems
 - Simple modes of economic equilibriums
 - Complex modes of economic equilibriums
 - The adaptive equilibrium mechanisms of market systems
 - The formal model of the invisible hand

■ Economic Models
 • Production models
 • Cost models
 • Market models

■ Dynamic Values of Money and Assets
 • Dynamics of money
 • Dynamics of asset’s values
 • Cumulative values of cash flows
 - The uniform payment series
 - The linear gradient payment series
 - The geometric gradient payment series

■ Economic Analyses
 • Project cost analyses
 • Project benefit-cost analyses
 • Project payback period analyses
 • Project rate of return analyses

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1019

■ Software Engineering Economics
 • Elements of software engineering costs
 - Analysis of software engineering costs
 - Analysis of software engineering revenues

 • Software engineering project costs estimation using FEMSEC
 - The FEMSEC model of software engineering costs
 - The FEMSEC method for software engineering project costs
 determination

 • SE project costs estimation using COCOMO
 - The conceptual model of COCOMO
 - The basic COCOMO model
 - The intermediate COCOMO model
 - The detailed COCOMO model
 - The COCOMO II model

 • Economic analyses of software projects
 - Estimations of costs and revenues of software projects
 - Cumulated value of operating costs
 - Cumulated present value of revenues
 - Annual and cumulated depreciations of equipment
 - Project benefit-cost ratios
 - Project payback periods
 - Project rate of return

 • The software legacy maintenance cost model
 - Development costs vs. maintenance costs
 - The software legacy maintenance cost model

SIGNIFICANT FINDINGS OF THIS CHAPTER

• The theoretical framework of economics is based on a number of
basic axioms, which form the fundamental models of economics, such as
generic constraints of resource scarcity, the ultimate objective of markets,
unlimited demanding behaviors of consumers, profit-driven behaviors of
producers, and the law of market conservation.

• The most basic yet important principle of economics is the

recognition of a pair of contradictive phenomena, resource scarcity vs.
unlimited human demands, in human activities and the society.

• The equilibrium model of market systems is a negative feedback
system, in which the increase or decrease of price in the market will result in

© 2008 by Taylor & Francis Group, LLC

1020 Part III Organizational Foundations of SE

a negated feedback, and so do the changes of quantities of demands and
supplies on prices, both which intends to resist the tendency of deviating
from the current equilibrium.

• The adaptive economic equilibrium states that a market with

autonomic interactions between demands and supplies is a self-regulated and
self-organized system, where any change in demand, supply, or both will be
autonomously adjusted to an equilibrium (Theorem 12.1).

• The result of interactions between dynamic demands and
supplies, through prices result in an automatic stabilization of the price
at a new equilibrium that is close to the current equilibrium.

• There are four simple modes that may drive a market away
from an equilibrium considered in conventional economics. They are
demand increase E(D+), demand decrease E(D-), supply increase
E(S+), and supply decrease E(D-).

• There are four complex modes based on the above simple
modes, which could not formally modeled in conventional economics
textbooks. They are compound demand/supply increases E(D+, S+),
compound demand increase and supply decrease E(D+, S-), compound
demand decrease and supply increase E(D-, S+), and compound
demand decrease and supply decrease E(D-, S-).

• The adaptive equilibrium mechanism is applicable to both
simple and compound modes and situations as described above.

• The adaptive equilibrium mechanism of market systems as

described in Theorem 12.1 is the invisible hand, which self-regulates and
self-organizes the equilibrium of quantities and prices affected by the
interactions between demands and supplies.

 • Equilibrium market is a conservative system. Once an equilibrium is
established in a market, the price may gradually waving around and slowly
shift from Pe, but may not be increased or decreased abruptly and
dramatically.

• A set of algorithms is provided for numerical solutions of cost and
investment in present (P), future (F), cumulative present value (P Σ), future
value (R Σ), return-period (n), and return-rate (ρ). By applying these
algorithms, complicated mathematical problems in dynamic cost and
investment estimation in software engineering can be solved easily. They are
useful not only for project managers to plan and analyze software

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1021

development costs, but also for customers to estimate investment benefit and
risk of software projects.

• The differences between the cost models of system and application

software need to be distinguished, where system software are operating
systems and fundamental system tools such as language compliers, database
management systems, and network/communication software; while
application software are those of user developed built on top of the system
software.

• The software revenue models between system and application

software are quite different, although their cost models are fairly similar.
That is, system software may create much higher revenues than those of
application software systems.

• The cost of a software engineering project is not a linear function
of the size of the project. It is more directly related to the given workload in
terms of person-month.

• The Formal Economic Model of Software Engineering Cost

(FEMSEC) reveals that the cost of a software engineering project is not
simply determined by the size of the project, but is a complicated function
related to the expected workload, form of labor allocation, and if the shortest
project duration is achieved.

• The optimal labor allocation, L0, for a given project is solely
determined by the interpersonal coordination rate r, i.e.,

0
1.414 []L P

r
⎡ ⎤= ⎢ ⎥⎢ ⎥

.

• The shortest duration of a given project is determined by:

min 0 1 0
0

1 2{ | } ()
2

T T L L W rL r
L

= = = − + .

• The expected workload is determined by the product of the
optimal labor allocation L0 and the shortest project duration Tmin, i.e.:

2
exp 0 min 1 0 0

1 = (2) [PM]
2

W L •T W rL rL= − + .

• The expected cost of a software project C is a product of the
expected workload Wexp [PM] and the average cost of labor CL [$/PM],
i.e.: exp exp 0 = [$].L min LC W •C L •T •C=

• The ultimate objective of software engineering states that

automatic code generation is the only silver bullet to overcome the natural

© 2008 by Taylor & Francis Group, LLC

1022 Part III Organizational Foundations of SE

obstacles of the conservative software development productivity, in order to
reduce software development costs and to improve software quality as a
result of reduced human involvement and uncertainty.

• The Software Legacy Maintenance Costs (SLMC) model states that
the fairly short overtaken time due to maintenance costs domination in the
software industry indicates a real crisis on legacy maintenance in software
engineering and for the modern information-based society. According to the
SLMC model, a corollary on an important phenomenon called Software
Maintenance Crisis will be derived in Chapter 14.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Fundamental principles of economics

• Demands and supplies are the fundamental behaviors of dynamic
market systems, which form the context of economics.

• Demand is the required quantities for a product or service that
consumers are willing and able to buy at a given range of prices.

• Supply is the required quantities for a product or service that
producers are willing and able to sell at a given range of prices.

• Resource scarcity states that the total resources at a given time or the

means of production represented by their values, such as land, building,
materials, labor, and capital, are constrained by an invariable nature, which is
always inadequate to meet the ever growing total demands.

• The law of market conservation states that the prices of goods or
services in a market system behave conservatively and complementally to the
quantities of demands and supplies.

• The ultimate objective of markets, and of the producers and

consumers in them, are to pursue the maximum profit Pmax, or in other words,
to maximize the revenues Rmax and to minimize the costs Cmin at the same
time.

• The law of maximizing profit states that the demands and supplies

of goods or services in a market system are driven by the tendency to
maximize profits leveraged by the changes of prices.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1023

• Equilibrium of demand and supply e is a point of quantity Qe(t)
where the demand D(t) equals to the supply S(t), i.e., e = {Qe(t) | D(t) = S(t)},
where the price at e, Pe(t), is called the equilibrium price.

• The equilibrium mechanism interacting between the quantities of

demands, supplies, and the prices of them in a market system is the invisible
hand.

• The predictability of new equilibrium states that a newly

established equilibrium on price P’e is determined by the effect P’ and
feedback effect P’’ of the driving forces deviating from the current
equilibrium.

Economic models

• A set of economic models, such as the production model, cost model,
and market model, is derived to explain the relations among a great variety of
economic phenomena and their behaviors.

• Product models: Productivity, or the average product, P , is a ratio

between the total output O and the variable input or labor Iv.

• The marginal product P∆ is a ratio between the incremental
output and the incremental input.

• Law of diminishing returns states that specialization
efficiency is over turned by overhead of using more variable input.

 • Cost models: Total cost of a production system C is the sum of fixed

cost cf and variable cost cv.

• The average cost in production C is the unit cost per product.

• Marginal cost C∆ is the ratio between the incremental total
cost and incremental output.

• The economical scale of production is the maximum output that
yields the minimum average cost under a certain productivity.

• The market models: The market is an economic domain in which

buyers and sellers exchange commodity and services.

• A perfect competitive market is a free-entry market where
many sellers supply identical products or services, so that none of them
may dominatingly influence the market prices.

© 2008 by Taylor & Francis Group, LLC

1024 Part III Organizational Foundations of SE

• A monopolistic market is a market where only a sole supplier
provides a good or service without any close substitutes.

• Real-world markets are operating in between the perfect
competitive and monopolistic market modes. Usually, the large-scale
and global industries are oligopolistic, local utility industries are
monopolistic, and the remainder is perfect competitive or semi-
competitive.

Dynamic values of money and assets

• A basic concept of economics is that the values of physical assets and
their denoted representation, money, are a relative quantity. Both of their
values change over time, or more rigorously, their value is a function of time
and the interest rate.

• The dynamic value of money, V(t), is its present worth P projected

at a given point of time t for a given average or predicated interest rate i
during [0, t], i.e., V(t) = f(P, i, t).

• The value with simple interest at end of nth interest payment
period, V(n), or the future value F(n), for a given average interest i can
be determined by V(n) = F(n) = P (1 + i • n).

• The value with compound interest that considers the interest
based at each given period of n periods is the future value F(n) at the
end of each period, i.e., F(n) = P(1+i)n.

• The dynamic value of assets: For a given asset, the continuous

decreasing of value over time is known as depreciation.

• The depreciation of assets can be classified as: a) Physical
depreciation that refers to the reduction in asset’s capacity to perform
its intended service due to physical impairment; b) Functional
depreciation that refers to obsolescence; c) Economic depreciation that
refers to the total values lost during the life span of an asset; and d)
Accounting depreciation that refers to a systematic allocation of the
initial cost of an asset in parts over time.

• Cumulated values of a series of cash flows can be derived as a sum

of individual payments at the same point of time, such as at present or at the
end of n period in the future.

• The uniform payment series is a series of identical payments A
at the end of each period by a fixed frequency.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1025

• A linear gradient payment series is a series of linearly
increased payments G by a fixed frequency.

• A geometric gradient payment series is a series of nonlinearly
increased payments g by a fixed frequency.

• In a generic situation, the cash flows may be a composite series

formed by the combination of the primitive series as discussed in the
previous subsections. In this case, the cumulated value can be calculated as
the sum of individual component series.

Economic analysis

• Economic analyses cover cost and investment in present (P), future
(F), cumulative present value (P Σ), future value (R Σ), return-period (n),
and return-rate (ρ).

• Benefit-cost ratio BC of a project is a ratio between the total benefit
B and the total cost C, i.e., BC = B/C.

• The economic evaluation criterion to accept a project is that
its benefit-cost ratio is larger than one, i.e., BC > 1, where BC = 1 or
BC < 1 represents a risky or unacceptable project, respectively.

• The payback period ρ of a project is the expected point of time n at

which the initial investment P will be recovered by the revenues of the
project PΣ for a given interest rate i, i.e., ρ = {n | P = PΣ(n)}.

• The rate of return γ of a project is the equivalent interest rate yield

by a cash flow PΣ for recovering the initial investment P for a given period
n, i.e., γ = {i | P = PΣ }.

Software engineering economics

• Software Engineering Costs Analyses: The conventional cost
models in economics consider only the fixed costs and variable costs, which
are oriented to the manufacturing industry characterized by mass production.
For software engineering projects, more cost categories need to be studied,
such as the development costs and service costs.

• The Formal Economic Model of Software Engineering Cost
(FEMSEC) states that, on the basis of the workload-driven project
organization laws (Theorems 8.4 and 8.7), the expected project cost C can be

© 2008 by Taylor & Francis Group, LLC

1026 Part III Organizational Foundations of SE

determined rigorously with the optimal labor allocation L0 and the shortest
duration Tmin in the following 6 steps:

 1) Estimate the project size pS
 2) Determine the ideal workload W1
 3) Allocate the optimal labor L0
 4) Determine the shortest duration Tmin
 5) Determine the expected workload W

 6) Determine the expected project cost C

• The COCOMO Model: The cost factors of software projects
identified in COCOMO are software size, effort, duration, and multiple cost
drivers. Their relationships are perceived as Cost = f (size, effort, duration,
cost drivers).

• The basic COCOMO model: The software project effort WM
in the basic COCOMO model is determined by the following empirical
curve that is proportional to the size of the software KDSI and project
type weights k and C, i.e., WM = C (KDSI)k, where WM stands for the
project effort in work-month, k and C are the project type or
development mode constants, and KDSI is thousands of delivered
source instructions.

• The Intermediate COCOMO Model: The software project
effort WM in the intermediate COCOMO model is determined by the
following empirical curve that is proportional to the size of the software
KDSI and project type weights ei, C and EM, i.e., WM = C(WDSI) =

15

1
() ie

j
j

C KDSI EM
=
∏ , i ∈ {1, 2, 3}, where WDSI denotes the weighted

delivered source instructions; C the project type or development mode
constants; ei exponent used for the ith project type where i ∈ {1, 2, 3}
represents the type of organic, embedded, or semi-detached,
respectively; and EMj are effort multiplier determined by the jth cost
driver attribute with the range of 0.7 (very low complexity) to 1.66
(very high complicity).

• The Detailed COCOMO Model: The detailed COCOMO
model is similar to the intermediate one, but the life cycle of a project is
divided into four phases known as the phases of product design,
detailed design, coding/unit test, and integration/test. Each phase will
be iteratively calculated as those in the intermediate model with
different project type weights C, ei, and EM.

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1027

• The COCOMO II Model: COCOMO II adopts a set of five
scale drivers to replace the development modes or known as the project
types. The scale drivers are precedentedness, development flexibility,
architecture/risk resolution, team cohesion, and process maturity.

• The effort E of a software project is estimated by the following
empirical approximation, i.e., E = 2.94 EAF • (kSLOC)E [PM], where
EAF stands for effort adjustment factor derived from the 17 cost
drivers, E is an exponent determined by the five scale drivers, and the
unit of project effort is person-month (PM).

• The duration D of a software project can be estimated by the
following empirical approximation, i.e., D = 3.67 • ESE [M], where SE
is the schedule exponent derived from the five scale drivers, and the
unit of project duration is month (M).

• The average staffing N of a software project is the number of
persons needed in the project, which can be determined by the
following empirical approximation, i.e., N = E / D [P], where the unit of
average staffing is number of persons (P).

• It is noteworthy that the duration D is estimated first in the

COCOMO approach and the axiom is that the simple product of duration and
number of persons results in the effort of the project.

• The software project costs determined by the FEMSEC and
COCOMO models focused on the operational cost in economics. There are
additional costs such as office, facilities, and developing environment. A
complete economic analysis of software engineering project that takes into
account of all the categories of developing costs is provided in Section
12.6.4.

• The software legacy maintenance cost model can be quantitatively

described by the relation between the development cost and maintenance cost
in a software development organization.

• The exponential Software Legacy Maintenance Costs (SLMC) states

that the ratio of maintenance cost Cm in a software development organization,
rm%, tends to exponentially increase over time t, and it is proportional to the
total number of legacy systems NL that the organization produced.

© 2008 by Taylor & Francis Group, LLC

1028 Part III Organizational Foundations of SE

Questions and
Research Opportunities

12.1 Explain the axioms of economics on: a) The principle of resource

scarcity; b) The law of market conservation; c) The ultimate
objective of markets; and d) The law of maximizing profit.

12.2 What is an economic equilibrium? Try to use system theory

(Theorems 10.9 and 10.10) to explain that the economic
equilibrium or the market behavior is conservative.

12.3 What is the mathematical model of Adam Smith’s hypothesis of

the invisible hand?

12.4 Given a shifted equilibrium of a software market that is affected

by demand increases results in the following effects (Pe, P’, P’’)
= ($100, $80, $160).

 (a) Predicate what is the newly established equilibrium P’e.

 (b) Analyze what the increment of price ∆P is caused by the
shifts of equilibriums.

12.5 Draw a diagram to show the chain of reactions of the economic

equilibrium mechanism in Mode 5 – Compound Demand
Increase/Supply Increase E(D+, S+) as formally described in the
following formula:

 E(D+, S+) =

'e

P
D

S P
P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↓
↑ → →→ ↑ → ↑

12.6 Draw a diagram to show the chain of reactions of the economic

equilibrium mechanism in Mode 6 – Compound Demand
Increase/Supply Decrease E(D+, S-) as formally described in the
following formula:

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1029

 E(D+, S-) =

'e

P
D

S P
P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

⇒→→ ↑
↓ → →→ ↓ → ↓

12.7 Draw a diagram to show the chain of reactions of the economic

equilibrium mechanism in Mode 7 – Compound Demand
Decrease/Supply Increase E(D-, S+) as formally described in the
following formula:

 E(D-, S+) =

'e

P
D

S P
P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↓
↑ → →→ ↑ → ↑

12.8 Draw a diagram to show the chain of reactions of the economic
equilibrium mechanism in Mode 8 – Compound Demand/Supply
Decreases E(D-, S-) as formally described in the following
formula:

 E(D-, S-) =

'e

P
D

S P
P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↑
↓ → →→ ↓ → ↓

12.9 What are the three basic factors that uniquely determine the

dynamic value of a given amount of money for a given time?

12.10 How may depreciation be used to represent and predict the

dynamic value of assets?

12.11 Calculate the cumulated present value of Cash Flow 4 as given in

Table 12.2 using the simple sum of present equivalent values of
individual future paybacks according to Eq. 12.27.

12.12 Determine the payback period ρ of Cash Flow 4 as given in Table

12.2.

12.13 Determine the rate of return γ of Cash Flow 4 as given in Table

12.2.

© 2008 by Taylor & Francis Group, LLC

1030 Part III Organizational Foundations of SE

12.14 Calculate the benefit-cost ratio BC of Cash Flow 4 as given in

Table 12.2 assuming where the costs of the project is the initial
investment plus $20,000 operating cost per year. Then, assess if
the project is economically acceptable.

12.15 What are the differences of the cost models of application and

system software in the categories of design, production, and
services?

12.16 For a software engineering project, given the estimated size pS =

2,000LOC, interpersonal coordination rate r = 20.0%,
productivity ρ = 3.0kLOC/PY, and average salary CL =
$80,000/PY, analyze and determine the expected cost of this
project according to the FEMSEC model (Theorem 12.3 and Fig.
12.12).

12.17 Compare your programming experience and the theoretical result
using FEMSEC as derived in Ex. 12.16, and explain the impact of
the interpersonal coordination rate r on software engineering
project efforts and costs.

12.18 Re-analyze Example 12.6 assuming that the whole project is

divided into three lightly-coupled parallel subprojects, therefore
each subproject can be conducted independently by an individual
subgroup. Then, discuss the impact of different organizational
forms on project duration and costs.

12.19 Try to draw a block diagram for the COCOMO II model, and

compare it with the Formal Economic Model of Software
Engineering Cost (FEMSEC) as given in Fig. 12.12.

12.20 On the basis of Exs. 12.16 and 12.19, analyze how software effort

and costs are derived from FEMSEC and COCOMO II,
respectively, and what their advantages and disadvantages are.

12.21 Recalling the 45th law as stated in Theorem 12.3, analyze if the

COCOMO methodology is in line with the theoretical constraints.
Why?

12.22 How may the FEMSEC model be used to economic optimization

for software engineering projects?

© 2008 by Taylor & Francis Group, LLC

Chapter 12 Economics Foundations of SE 1031

12.23 Why should the ultimate objective of software engineering be put
on automatic code generation tools rather than programmer-based
development?

12.24 Refers to Section 12.6.4, what is the whole framework and major

categories in software engineering economic analyses according
to engineering economics? How is conventional software costs
estimation classified in the framework?

12.25 Try to conduct a complete economic analysis for a software

engineering project as described in Section 12.6.4, where all items
of raw data are doubled as given in Table 12.6.

12.26 Based on the Software Legacy Maintenance Costs (SLMC) model

as stated in Theorem 12.5, explain what a software maintenance
crisis in the software industry is.

12.27 Read the following classic article in software engineering:

Barry Boehm (1984), Software Engineering Economics,

IEEE Trans. on Software Engineering, 10(1), pp. 4-12.

Discuss the following topics in a group or individually:

 • About the author.

• What is the architecture of software engineering economic
according to the author in the 1980s?

 • What is the software cost model proposed in this article?
 • What are the differences between software engineering

economics and the generic engineering economics? What
makes software engineering economics unique?

 • What conclusions of the article interested you? Why?
 • Your arguments or counter-points on any of the conclusions

derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 13

SOCIOLOGY FOUNDATIONS
OF SOFTWARE
ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

9.
Cognitive
Informatics
Foundations
of SE

13.1 Introduction 13.4 Theory of Social Organization
13.2 Principles of Sociology 13.5 Sociology and SE
13.3 Social Psychology 13.6 Summary

10.
System
Science
Foundations
of SE

11.
Management
Science
Foundations
of SE

12.
Economics
Foundations
of
SE

13.
Sociology
Foundations
of
SE

8.
Engineering
Foundations
of
SE

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

1034 Part III Organizational Foundations of SE

Knowledge Structure

 Principles of Sociology

 • Social Structures
 • Social Behaviors
 • Social Norms

 Social Psychology

 • The Fundamental Human Traits
 • Human Perceptions and Behaviors
 • Collective Behaviors

 Theory of Social Organization

 • Classic Thought of Social Organization
 • The Formal Model of Social Organization
 • The Formal Model of Socialization

 Sociology and Software Engineering

 • Social Organization of SE
 • Theory for Large-Scale SE Project Organization
 • Human Factors in SE

Learning Objectives

 • To gain knowledge on fundamental principles of sociology in terms of social
structures, behaviors, and norms.

 • To understand the fundamental human traits in social contexts and
engineering.

 • To know human collective behaviors and the driving force of motivation and
attitudes.

 • To understand the model of social organization and its applications in
software engineering.

 • To understand the formal model of socialization and interactions between
sociology, economics, and human basic needs.

 • To understand the social environment and principle of diversity for software
engineering.

 • To be familiar with the theory and laws of large-scale software engineering
project organization.

 • To be aware of human factors (strengths, weakness, and uncertainty) and
ergonomics of software engineering.

13. Sociology Foundations of SE

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1035

“What I myself do not wish will never be imposed to others.”

Confucius (551 – 479BC)

“From a long-life-span system perspective, the current generation who enters

 a society of the nth generation, which was designed by the (n-1)th generation, will be
responsible for the design of such a system for the (n+1)th generation .”

Yingxu Wang (2003)

13.1 Introduction

ociology studies how a human society may be organized efficiently
and effectively on certain constraints of resources and environments.
The objects of study in sociology are human societies. Therefore, to

some extent, it may be perceived that management science is the
microsociology while sociology is the macro management science. In both
fields, the theories of system science and methodologies of system
organizations play important roles in formalization of the theoretical
frameworks of them.

Definition 13.1 Sociology is a branch of science that studies the
structure, organization, operation, and development of human societies.

A human society is constructed by individuals, groups, organizations,

and sectors from the bottom up [Wiggins et al., 1994; Macionis et al., 1997].
A group is the basic social unit formed by two or more persons working
towards a particular purpose. The group is needed because of the
interdependency among members when a given work cannot be carried out
by a single individual limited by the scarcity of either resources or functions.

Various types of social organizations have been formed as results of
historical, political, and/or economical processes. However, few natural laws
have been sought in sociology. This chapter presents a rigorous treatment of
social organization in the engineering context. The coordinative work
organization theory developed in Chapter 8 can be directly applied in
sociology to explain group mechanisms and behaviors. Organizational
psychology and collective social behaviors within groups and organizations
will be explored, which helps to explain how structures of groups and
organizations may impact people’s behaviors, productivity, and performance
in software engineering.

S

© 2008 by Taylor & Francis Group, LLC

1036 Part III Organizational Foundations of SE

Theories and methodologies of work organization [Wang, 2007d] have
been one of the main thread across Chapters 8, 10, 11, 12, and 13 from
engineering science, system science, management science, and economics
foundations to sociology foundations. The final piece of the puzzle of the
systematic theory on coordinative work organization will be completed in
this chapter at the highest level of scopes in work organization – the society
level – towards large-scale software engineering project organization. The
abstract work organization theory will provide a systematic methodology for
optimal allocation of labor, resources, and schedules for a given workload in
a society in general, and in a software engineering context in particular.

This chapter presents a formal treatment of the sociological theories,

models, and their applications in software engineering. In the remainder of
this chapter, the sociology foundations of software engineering will be
presented in four sections. Section 13.2 reviews fundamental principles of
sociology, which covers social structures, social behaviors, and social norms.
Section 13.3 explores social psychology such as the fundamental human
traits, collective behaviors, and the perceptual influence on them, which form
the underlying theory for explaining the human factor in engineering systems
and societies. Section 13.4 develops theories of social organization that
provide an essential understanding on coordinative work organization at
various levels of societies. Based on the sociological models and theories,
Section 13.5 extends sociology into the domain of software engineering. It
explores the social organization of software engineering and ergonomics for
software engineering, and explains how human strengths, weaknesses, and
uncertainty may be dealt with in the context of software engineering. The
coordinative work organization theory at the system level will be completed
towards large-scale software engineering project organization. Then, the
theoretical foundation of quality assurance in creative work such as
programming and software engineering is developed.

13.2 Principles of Sociology

Sociology studies structures and behaviors of human societies. Sociology
may be perceived as system science at the most complicated level of human
societies and their organization. This section describes social structures,
behaviors, and norms of human societies, and their basic principles.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1037

13.2.1 SOCIAL STRUCTURES

A society is a huge organized human system in which people are
grouped, coordinated, interconnected, and interacted by a variety of
organizations. A society as a whole is constructed by individuals, groups,
organizations, and sectors from the bottom up as shown in Fig. 13.1.

Figure 13.1 The hierarchical structure of a society

Social structures study the hierarchical architectures of societies at
different levels and their social characteristics and interactions. This section
focuses on the taxonomy and static structures. More formal treatment of
groups and organizations will be discussed in Section 13.4 on theories of
social organization.

13.2.1.1 Individuals

An individual is the bottom level and basic social unit of a society. The
individuals are the most dynamic factor and the underlying driving force of a
society.

Definition 13.2 An individual is a single human being that forms the
basic social unit of a society.

When the behavior of individuals is studied, sociology puts emphases

on relationships and interactions of individuals and related social structures;
while social psychology focuses on human traits, characteristics, and
behaviors. This section describes the former. The latter will be discussed in
Section 13.3.

Sectors

Organizations

Groups

Individuals

The
Society

© 2008 by Taylor & Francis Group, LLC

1038 Part III Organizational Foundations of SE

13.2.1.2 Groups

When multiple individuals work together towards a particular goal or
interact intensively, a permanent or temporary group is formed.

Definition 13.3 A group is a formal or informal social unit formed by

two or more persons working towards a particular purpose.

A group is the second level unit of a society, or a subsystem of the
society according to system theory as discussed in Chapter 10. The
individuals of a group are interdependent and they are identified with a single
identity of that of the group.

When a number of individuals are treated as a whole, both internal
relationships and external interactions of the group with the environment
need to be studied.

The importance of studies on groups is well explained by Kurt Lewin
in 1948 [Lewin, 1948; Zander, 1979].

“Although the scientific investigations of group work are but a

few years old, I don’t hesitate to predict that group work – that is,
the handling of human beings not as isolated individuals, but in the
social setting of groups – will soon be one of the most important
theoretical and practical fields.”

The basic architectures of groups in term of interrelationships among

members can be classified into the forms of serial, parallel, star, network,
hierarchical, and their combinations.

Work groups strongly influence the overall behaviors and performance
of members. The cohesive bounds that keep members of a group together are
identified as the bounds of membership, goals, norms, and external
oppressions [Wiggins et al., 1994]. Lemma 13.1 explains that the
interdependency is the essential natural force that keeps a group together.

13.2.1.3 Organizations

An organization is a superset of groups and the third-level subsystem of

the society from the bottom-up.

Lemma 13.1 A group is needed because of the interdependency among
members when a given work cannot be carried out by an individual
limited by either resource dependency or functional dependency.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1039

Definition 13.4 An organization is a formal and stable social unit
formed by one or more groups of people working towards a particular
purpose.

A group is formed because of the extended needs for either the resource
dependency or the functional dependency. When the scale of a group is
increasing to a certain extent, internal coordination and synchronization
between members in the group will be the dominant problem. This problem
forces a large group to adopt more structured forms of organization.

More formal treatment of groups and organizations will be discussed in
Section 13.4 on theories of social organization.

13.2.1.4 Sectors

A sector is a functional level of the hierarchical societies, where
multiple organizations associate and interact due to their dependency and/or
similarity.

Definition 13.5 A sector is a distinct branch of a society with multiple

organizations that produce the same category of products or provide the same
category of services.

Sectors are a macro categorization of organizations. A sector may
geographically cross large areas in the scope of a country even of the world.
The top-level sectors of an economy can be classified into the primary, the
secondary, and the tertiary sectors as described in Table 13.1.

Table 13.1
Main Sectors of the Economy

No. Sector Description Example
1 Primary Collects or produces materials

directly from the natural
environment

The mining, agriculture,
forestry industry

2 Secondary Manufactures goods from raw
materials

The tools, petroleum, and
automobiles industry

3 Tertiary Provides services for the society Bank, education, food
services

It is noteworthy that, in the postindustrial society, a fourth major sector

emerging in the underpinning economy is the information sector. This trend
will be analyzed in Section 13.4.

© 2008 by Taylor & Francis Group, LLC

1040 Part III Organizational Foundations of SE

13.2.1.5 Societies

A society is the top level structure in the hierarchy of human
organizations. Societies at the top level may be studied by the mechanisms
and behaviors of lower level structures.

Definition 13.6 A society is the community of people in which

members of it are geographically connected and socially integrated with
common customs, organizations, and values.

There are different societies constrained by the economic structures and
their levels of development. The economic structures in turn are driven by
the fundamental human needs and demands. The relationships and
interactions between the human needs, economic structures, and social types
will be discussed in Section 13.4.2 on the formal socialization model of
human societies.

13.2.2 SOCIAL BEHAVIORS

The dynamic aspect of human societies is their social behaviors. The
study of social behaviors can be carried out hierarchically via social
functions, relations, roles, and systems from the bottom up in a society.

13.2.2.1 Social Functions and Relations

Social functions are the minimum functional components of a society.
The behaviors of a dynamic society can be modeled by a huge set of
interacting functions.

Definition 13.7 A social function F is a set of tasks and/or actions

within a society that can be carried out by individuals.

 High-level social functions can be divided into two categories: public
functions and private functions. The former can be any job function in an
organization or company. The latter can be such as family members and
friends.

Definition 13.8 A social relation R is a function between two or more
persons, p, in a society, i.e.:

R(p) = r : p → P (13.1)

where P is all the individuals, p ∈ P, in the given society.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1041

Social relations provide a constructive force for the building of a
society. A person’s membership in a society is highly indicated by the
person’s internal relations with other members in the society.

13.2.2.2 Social Roles

The conception of oneself is dependent on the roles that one performs
in a society. In his work on The Study of Man [Linton, 1936], Robert Linton
proposed the role theory. The role theory analogizes a person as an actor who
plays an assigned role in accordance with a script specified by culture and the
society. According to Linton, a role is a set of social expectations that apply
to the behavior of specific categories of people in particular contexts. With
the understanding of the roles, we can predicate who does what, when, and
where in a given society. Glen Elder extended the role theory to a life-course
framework in 1975 that explains the roles of members of a society according
their ages and life stages [Elder, 1975].

Informally, a social role can be defined as follows.

Definition 13.9 A social role is a set of coherent social functions that is
represented by a title of a category and is expected to be conformed in the
society.

More formally, the social roles of a person are given below.

Definition 13.10 The social roles SR of a person p is a relation between

the person p and a set of social functions F, F ⊆ F, i.e.:

 SR(p) = f : p → F (13.2)

where F is a subset of all defined social functions F.

In 1922, Robert Park pointed out that it is in roles that we come to

know ourselves as sociological man [Park, 1922]. A social role can be public
or private such as an engineer and a father. The functions, tasks, and
expectations for a given role may be well defined. For example, a software
engineer is a professional whose roles and skills are regulated by the
software engineering discipline and processes. Examining the requirements
for functions of software engineers in software engineering at the technical,
managerial, and organizational levels, a variety of roles can be identified as
shown in Table 13.2 [Wang and King, 2000a].

© 2008 by Taylor & Francis Group, LLC

1042 Part III Organizational Foundations of SE

Table 13.2
Roles of Software Engineers in Software Engineering

No. Category Roles
1 Software engineering

organization

1.1 Software development organization manager
1.2 Organizational software engineering process designer
1.3 Software engineering environment and tools

maintainer
1.4 Delivered systems manager
1.5 System services monitor
2 Software development
2.1 System architect
2.2 Domain engineer
2.3 Requirements capture engineer
2.4 Programmer
2.5 Software testing engineer
2.6 System integration and configuration engineer
2.7 Field trial engineer
3 Software engineering

project management

3.1 Project manager
3.2 Project planning and estimation engineer
3.3 Project contract and requirements manager
3.4 System analyst
3.5 Quality assurance engineer
3.6 Project configuration and document manager
4 User supporting

mechanisms

4.1 User problems and requirements analyst
4.2 Customer solution consultant
4.3 User development coordinator
4.4 User testing coordinator
4.5 Technical trainer
4.6 Maintenance and supporting engineer
4.7 Technical menus author

A significant finding in observing Table 13.2 is that a software

engineer may be responsible for only one or limited role(s) rather than a
master of all the skills in software engineering processes. This is one of the

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1043

fundamental principles of engineering that is so obvious and so often to be
ignored in practice. This is what we learnt from the universal principles of
industrial engineering methodologies.

In a modern society, a person usually takes multiple roles from family,
groups, organizations, and the society. It is interesting to observe the
switching among the roles of individuals, as well as the influence and
interference between them, in organizational sociology of engineering and
science.

13.2.2.3 Social Systems

Contemporary social theories view human societies as a system.
Therefore, system theories developed in Chapter 10 may be applied in the
rigorous treatment and quantitative analyses of human societies.

Definition 13.11 A society is a dynamic human system that is
interacting not only among members of the society via social relations, but
also between the society, other societies, and the natural environment.

There are various types of societies characterized by the structures of
economies of the societies. From a historical point of view, according to the
economic structures underpinning the societies, human societies have
evolved through five phases known as the hunting/gathering,
horticultural/pastoral, agrarian, industrial, and postindustrial societies.

As social relations adhere people to people in a society, social roles
adhere people to social functions. Therefore, social relations and social roles
are the fundamental mechanisms in the construction of society. Because both
social relations and social roles can be 1-to-1, 1-to-n, n-to-1, and n-to-m, the
natural structures of human societies are hierarchical trees and networks.

13.2.3 SOCIAL NORMS

Norms are the shoulds of a society for regulating social behaviors that
members of the society share and are expected to conform. Social norms can
be considered from the aspects of cultures and values.

13.2.3.1 Cultures

A culture refers to a shared way of life [Macionis et al., 1997]. The
custom of a social unit is a set of traditional and widely accepted habits of
social behaviors shared by the members of the unit through long-term
interactions.

© 2008 by Taylor & Francis Group, LLC

1044 Part III Organizational Foundations of SE

Definition 13.12 The culture of a society is the collected ideas,
customs, behaviors, and values shared by members of the unit.

Culture shapes what individuals do and influences individuals’

behaviors and personality. The basic components shared by different cultures
are symbols, language, value, norms, and material objects.

Languages play an important role in cultures because they are the
media of cultures and the means of transmission from person to person and
from generation to generation. Two anthropologists and linguistics, Edward
Sapir and Benjamin Whorf, observed that people perceive the world through
the cultural lens of language known as the Sapir-Whorf hypothesis [Sapir,
1929; Whorf, 1941].

13.2.3.2 Values

Values are guidelines of a culture shared by people for social judgment
and behavioral normalization.

Definition 13.13 Values of a social unit are a set of ethical principles or
standards shared by the unit that are used to judge and normalize social
behaviors.

In 1970, Robin Williams identified the top nine central values of typical
North America people [Williams, 1970] as follows:

• Equal opportunity
• Achievement/success
• Activity/work
• Material comfort
• Practicality/efficiency
• Progress
• Science
• Democracy/free enterprise
• Freedom

It is noteworthy that cultures are a dynamic entity undergoing

continuous changes via cultural invention, discovery, and diffusion. Due to
technological and economical advances, such as new communication
techniques, travel, and migration, a global culture is emerging that is formed
from a conjunction of traditionally different cultures [Macionis et al., 1997].

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1045

13.2.3.3 Socialization

Although each individual experiences a different life, statistically, the
life courses of all individuals are similar in a society. That is because the
current generation of individuals enters a given society predesigned and
normalized by the earlier generations. Although they have no chance to
shape the existing society, they are able to transfer it for the general welfare
of the next generation. This is the historical view of socialization [Wang,
2005k].

Definition 13.14 Socialization is a conforming process that a person is
integrated into a society at various levels of its hierarchy by adopting certain
roles, relations, cultures, customs, value systems, and norm behaviors.

A society is an invisible network with unwritten rules, norms, and

standards established well before a young person’s entry. No matter observed
or not, people feel the socialization stress and synchronization pressure at
work. Therefore, social psychologists believe that travel is one of the best
releases for people because travel enables one to temporarily escape from the
invisible social networks.

13.2.3.4 The Social Philosophy of Confucianism

Confucianism, created by Confucius (551 – 479BC), a Chinese
philosopher, educationist, and sociologist, is a crystallization of the Chinese
social philosophy and ethical values during a five thousand year civilization.
The essences of Confucianism may be summarized by the nine key words:
humaneness, integrity, ritual, righteousness, loyalty, piety, tolerance,
introspectiveness, and gentlemanliness. The essential values of Confucianism
establish a set of unified and stable social norms as explained below:

 • Humaneness (ren, in Chinese) is the norm of social attitude and
justice. A best interpretation of humaneness is by the words of
Confucius: “What I myself do not wish will never be imposed to
others.”

 • Integrity or honesty (xin) is the norm of social values.
 • Ritual or politeness (li) is the norm of personal behavior.
 • Righteousness (yi) is the norm of ethical values.
 • Loyalty (zhong) is the norm of socialization.
 • Piety (xiao) is the norm of family relationship, particularly

towards seniors.
 • Tolerance (ren rang) is the norm of interpersonal relationships.
 • Introspectiveness (zi xing) is the norm of inner purity.
 • Gentlemanliness (junzi) is the norm of morals.

© 2008 by Taylor & Francis Group, LLC

1046 Part III Organizational Foundations of SE

It is not a surprise at all that accurate counterparts of concepts and
values of North America values and Confucianism may be found in other
civilizations, cultures, or languages. This observation leads to the following
lemma.

The identification of a common set of values may be helpful to

normalize individual and collective behaviors in an organization, especially a
software development organization in software engineering that produces
information products for a global market.

13.3 Social Psychology

Social psychology is a branch of psychology that studies social interactions
and their effects on human behaviors [Wiggins et al., 1994]. Because the
basic objects under study in sociology are individual human beings and their
interactions, social psychology is the key to understand a wide range of
complicated social phenomena and the driving forces underpinning them.

This section explores the fundamental human traits and the basic needs
of individuals in a society. Motivations and attitudes are studied in order to
understand the natural drives and constraints of human social behaviors. The
characteristics of collective behaviors of individuals are analyzed in the
social context.

The study on human traits forms the foundation of sociology, because
every individual’s social behavior is driven and constrained by those
axiomatic human traits and characteristics and the derived needs based on
them. The study on human traits also forms the foundation for engineering
organization.

13.3.1 THE FUNDAMENTAL HUMAN TRAITS

Human traits and needs are the fundamental force underlying almost all
phenomena in human task performances, engineering organizations, and

Lemma 13.2 The union of all proven social norms from different
societies, or at least their intersection, represents a set of univeral values
of humanity.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1047

societies. This subsection explores the cognitive foundations of human traits
and cognitive properties of human factors in engineering. The fundamental
traits of human beings are identified, and the hierarchical model of basic
human needs is formally described. The characteristics of human factors and
their influences in engineering organizations and socialization are explored.
Based on the models of basic human traits, needs, and their influences, the
driving forces behind the human factors in engineering and society are
revealed. A formal model of human errors in task performing is derived, and
case studies of the error model in software engineering are presented.

13.3.1.1 Axiomatic Human Traits

The basic evolutional need of humans is the tendency to maximize the
inclusive fitness of individuals and the whole mankind.

Definition 13.15 Egoism is a social behavior of human beings in which
individuals put their own interests first in decision makings.

Both sociologists and economists believe that egoism drives most of the

behaviors of individuals. However, statistically, all individual behaviors as a
whole form the natural force towards the development and welfare of the
entire society.

The basic forms of egoism of individuals are to maximize personal
lifespan, profit, pleasure, esteem, power, and information, and to minimize
costs, energy consumption, and inconvenience. It is noteworthy that most
forms of egoism are dependent on the cooperation or recognition of others or
the society. This basic constraint is the sociological foundation of altruism.

Definition 13.16 Altruism is a social behavior in which individuals

sacrifice their own interests for the welfare of a group or society.

Altruism can be explained by the term of inclusive fitness as defined
below.

Definition 13.17 The inclusive fitness of human beings is their own
reproductive success and those of generically related individuals [Fried and
Hademenos, 1999].

Lemma 13.3 Egoism is constrained by altruism; and the implementation
of altruism is dependent on the natural egoism.

© 2008 by Taylor & Francis Group, LLC

1048 Part III Organizational Foundations of SE

Lemma 13.3 provides an explanation of the relationship between
egoism and altruism. Based on Lemma 13.3, the following theorem can be
derived.

The history indicates that evolution favors species like human beings

and other organisms that are able to seek the maximum inclusive fitness.

13.3.1.2 The Hierarchical Model of Basic Human Needs

As an individual, the basic biological need of humans is a stable inner
environment regulated by a mechanism known as homeostasis.

Definition 13.18 Homeostasis is an adaptive biological mechanism of

the human body that maintains a relatively constant state in order to live and
function.

At the psychological level, Sigmund Freud perceived that humans are
motivated by internal tension states known as drives that build up until they
are released. The basic drives that Freud identified are self-preservation, sex,
and aggression. However he focused only on the last two drives later in his
theory [Freud, 1895; Leahey, 1980].

Clark Hull proposed the drive-reduction theory that states motivation
stems from a combination of drive and reinforcement of unfulfilled needs
[Hull, 1943]. The primary drives are innate drives such as hunger, thirst, and
sex; the secondary drives are acquired drives such as studying, socializing,
and earning money.

The hierarchy of human needs is identified by Abraham Maslow at five
levels known as the needs of physiological, safety, social, esteem, and self-
actualization from the bottom up [Maslow, 1962/70]. The five basic levels of
human needs are described in Table 13.3. Except those at Level 5, most
needs identified by Maslow as shown in Table 13.3 are deficiency needs,
which are a need generated by a lack of something. The Level 5 needs for
self-actualization can be perceived as a growth needs.

 The 46th Law of Software Engineering

Theorem 13.1 The basic essences for evolution state that the basic
evolutional needs of mankind are to preserve both the species’ biological
traits via gene pools, and the cumulated knowledge via various
information systems.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1049

Table 13.3
Maslow’s Hierarchy of Needs

Level Category Needs Description
1 Physiological Needs for biological maintenance such as

food, water, sex, sleep etc.
2 Safety Needs for physical and social security,

protection, and stability such as shelter
3

Lower order
needs

Belongingness Needs for love, affection, socialization
4 Esteem Needs for respect, prestige, recognition, and

self-satisfaction
5

Higher order
needs

Self-actualization Need to express oneself, grow, and to fulfill
one’s maximum potential toward success

On the basis of the needs taxonomies of Maslow, Hull, and Freud, a

formal human needs hierarchy model is provided in Definition 13.19, Fig.
13.2, and Table 13.4.

Definition 13.19 The Human Needs Hierarchy (HNH) model is a
hierarchical model that encompasses five-level fundamental human needs
known from the bottom-up as N0 – physiological needs, N1 – psychological
needs, N2 – cognitive needs, N3 – social needs, and N4 – self-expressive
needs.

Figure 13.2 The Human Needs Hierarchy (HNH) model

The HNH model can be illustrated as shown in Fig. 13.2. Detailed
explanations of each of the basic needs are provided in Table 13.4.

 Social

Cognitive needs

Psychological needs

Physiological needs

Self-
expressive

© 2008 by Taylor & Francis Group, LLC

1050 Part III Organizational Foundations of SE

Table 13.4
The Human Needs Hierarchy (HNH) Model

Level Basic Needs Description
N0 Physiological Needs for maintaining homeostasis, such as food, water,

clothes, sex, sleep, and shelter
N1 Psychological Needs for feeling safe, comfortable, and wellbeing
N2 Cognitive Needs for satisfaction of curiosity, knowledge, pleasure,

and interaction with the environment
N3 Social Needs for work, socialization, respect, prestige, esteem,

and recognition
N4 Self-expressive Need to express oneself, grow, and to fulfill one’s

maximum potential toward success

Definition 13.20 The predominant need of an individual is the needs at

the lowest unsatisfied level of the HNH model.

Maslow suggests that human needs should be satisfied level by level.
That is, the lower level needs should be satisfied before any higher level need
comes into play [Maslow, 1970]. This observation leads to the following
corollary.

Understanding of the nature of basic human needs is not only useful in

predicating motivations of human beings in a given context, but also
important in identifying the driving forces for the approach of engineering
organization, the types of societies, and the corresponding economic
structures.

13.3.2 HUMAN PERCEPTIONS AND BEHAVIORS

Perception is the third layer of human cognitive processes modeled in
LRMB as developed in Chapter 9. This subsection presents a rigorous

Corollary 13.1 When multiple needs of a person are unsatisfied at a
given time, satisfaction of the most predominant need is most pressing.

Lemma 13.4 The lower the level of a need in the HNH hierarchy, the
more concrete or material-oriented the need. In other words, the higher
the level of a need, the more virtualized or perception-oriented the need.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1051

treatment of human perceptual processes such as emotions, motivations, and
attitudes, and their influences on human behaviors [Wang, 2007i]. A set of
mathematical models and cognitive processes is developed. The interactions
and relationships between motivation and attitude are formally described.
Applications of the mathematical models of motivations and attitudes in
software engineering are demonstrated.
 According to Definition 9.9, perception is a set of sensational cognitive
processes at the subconscious cognitive function layers such as emotion,
motivation, and attitudes. Perception may be considered as the sixth sense of
human beings that almost all cognitive life functions rely on it.

13.3.2.1 Emotions

Emotions are a set of states or results of perception that interprets the
feelings of human beings on external stimuli or events in the binary
categories of pleasant or unpleasant.

Definition 13.21 An emotion is a personal feeling derived from one’s

current internal status, mood, circumstances, historical context, and external
stimuli.

Emotions are closely related to desires and willingness. A desire is a
personal feeling to possess an object, to conduct an interaction with the
external world, or to prepare for an event to happen. A willingness is the
faculty of conscious, deliberate, and voluntary choice of actions.

According to the study of Fischer and his colleagues [Fischer et al.,
1990], the taxonomy of emotions can be described as shown in Table 13.5.

Table 13.5
Taxonomy of Emotions

Level Description
Supper level Positive (pleasant) Negative (unpleasant)
Basic level Joy Love Anger Sadness Fear

Sub-category
level

Bliss,
pride,
contentment

Fondness,
infatuation

Annoyance,
hostility,
contempt,
jealousy

Agony,
grief,
guilt,
loneliness

Horror,
worry

It can be observed that human emotions at the perceptual layer may be

classified into only two opposite categories: pleasant and unpleasant.
Various emotions in the two categories can be classified at five levels
according to its strengths of subjective feelings as shown in Table 13.6,
where each level encompasses a pair of positive/negative or
pleasant/unpleasant emotions.

© 2008 by Taylor & Francis Group, LLC

1052 Part III Organizational Foundations of SE

Table 13.6
The Hierarchy of Emotions

Level
(Positive/Negative)

Description

0 No emotion -
Comfort Safeness, contentment, fulfillment, trust 1 Week

emotion Fear Worry, horror, jealousy, frightening, threatening
Joy Delight, fun, interest, pride 2 Mediate

emotion Sadness Anxiety, loneliness, regret, guilt, grief, sorrow,
agony

Pleasure Happiness, bliss, excitement, ecstasy 3 Strong
emotion Anger Annoyance, hostility, contempt, infuriated,

enraged
Love Intimacy, passion, amorousness, fondness,

infatuation
4 Strongest

emotion
Hate Disgust, detestation, abhorrence, bitter

Definition 13.22 The strength of emotion |Em| is a normalized measure

of how strong a person’s emotion on a scale of 0 through 4, i.e.:

0 ≤ |Em| ≤ 4 (13.3)

An organ known as the hypothalamus in the brain is supposed to

interpret the properties or types of emotions in terms of pleasant or
unpleasant [Smith, 1993; Leahey, 1997; Sternberg, 1998].

Definition 13.23 Letting Te be a type of emotion, ES the external

stimulus, IS the internal perceptual status, and BL the Boolean values true or
false, the perceptual mechanism of hypothalamus can be described as a
function, i.e.:

 Te : ES × IS → BL (13.4)

It is interesting that sometime the same event or stimulus ES may be
explained in different types due to the difference of the real-time context of
the perceptual status IS of the brain. For instance, walking from home to
office may be interpreted as a pleasant activity for one who likes physical
exercises, but the same walk due to a car breakdown will be interpreted as
unpleasant.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1053

Although there are various emotional categories in different levels, the

binary emotional system of the brain provides a set of pairwise universal
solutions to express human feelings. For example, anger may be explained as
a default solution or generic reaction for an emotional event when there was
no better solution available; otherwise, delight will be the default emotional
reaction.

13.3.2.2 Motivations

Motivation is an innate potential power of human beings that energizes
behavior. It is motivation that transforms thought (information) into action
(energy). In other words, human behaviors are the embodiment of
motivations. Therefore, any cognitive behavior is driven by an individual
motivation.

Definition 13.24 A motivation is a willingness or desire triggered by an
emotion to pursue a goal or a reason for triggering an action.

As described in the LRMB model [Wang et al., 2006], motivation is a
cognitive process of the brain at the perception layer that explains the
initiation, persistence, and intensity of personal emotions and desires, which
are the faculty of conscious, deliberate, and voluntary choices of actions.

Motivation is a psychological and social modulating and coordinating
influence on the direction, vigor, and composition of behavior. This
influence arises from a wide variety of internal, environmental, and social
sources, and is manifested at many levels of behavioral and neural
organizations.

The taxonomy of motives can be classified into two categories known
as learned and unlearned [Wittig, 2001]. The latter is the primary motives
such as the survival motives (hunger, thirst, breathing, shelter, sleep,
eliminating), and pain. The former is the secondary motives such as the need
for achievement, friendship, affiliation, dominance of power, and relief from
anxiety.

Definition 13.25 The strength of motivation M is a normalized measure
of how strong a person’s motivation is on a scale of 0 through 100, i.e.:

 0 ≤ M ≤ 100 (13.5)

Corollary 13.2 The human emotional system is a binary system that
interprets or perceives an external stimulus and/or internal status as
pleasant or unpleasant.

© 2008 by Taylor & Francis Group, LLC

1054 Part III Organizational Foundations of SE

where M = 100 is the strongest motivation and M = 0 is the weakest
motivation.

It is observed that the strength of a motivation is determined by
multiple factors [Westen, 1999; Wang, 2007d] such as:

 a) The absolute motivation |Em|: The strength of the emotion.

 b) The relative motivation E - S: A relative difference or inequity

between the expectancy of a person E for an object or an action
towards a certain goal and the current status S of the person.

 c) The cost to fulfill the motivation C: A subjective assessment of

the effort needed to accomplish the expected goal.

Therefore, the strength of a motivation can be quantitatively analyzed

and estimated by the subjective and objective motivations and their cost as
described in the following theorem [Wang, 2007d].

In Theorem 13.2, the strength of a motivation is measured in the scope

of [0 … 100], i.e., 0 ≤ M ≤ 100. When M > 1, the motivation is considered
being a desired motivation. The higher the value of M, the stronger the
motivation.

According to Theorem 13.2, in the software engineering context, the
rational action of a manager of a group is to encourage individual emotional
desire, and the expectancy of the programmer, and to decrease the required
effort for the employees by providing additional resources or adopting
certain tools.

 The 47th Principle of Software Engineering

Theorem 13.2 The strength of motivations states that a motivation M is
proportional to both the strength of emotion |Em| and the difference
between the expectancy of desire E and the current status S, of a person,
and is inversely proportional to the cost to accomplish the expected
motivation C, i.e.:

 2.5 | | (-)mE E S
M

C
• •= (13.6)

where 0≤ |Em| ≤ 4, 0 ≤ (E,S) ≤ 10, and 1 ≤ C ≤ 10.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1055

It is noteworthy that motivation is only a potential mental power of

human beings, and a strong motivation will not necessarily result in a
behavior or action. The condition for transforming a motivation into a real
behavior or action is dependent on multiple factors, such as values, social
norms, expected difficulties, availability of resources, and the existence of
alternative goals.

The motivation of a person is constrained by the attitude and decision
making strategies of the person. The former is the internal (subjective)
feasibility of the motivation, and the latter is the external (social) feasibility
of the motivation as discussed in Section 11.3. Attitude and decision making
will be analyzed in the following subsections.

13.3.2.3 Attitudes

As described in the previous section, motivation is the potential power
that may trigger an observable behavior or action. Before the behavior is
performed, it is judged by an internal regulation system known as the
attitude.

The following humor tells an interesting coincidence between attitudes
and behaviors:

Let A, B, ..., Z be assigned a percentage 1%, 2%, .., 26%,
respectively. The importance of the following words or phrases may be
described by the sum of the percentages of the letters contained in
them, i.e.:

 ∑ (‘KNOWLEDGE’) = (11+14+15+23+12+5+4+7+5)% = 96%
 ∑ (‘HARD WORK’) = (8+1+18+4+23+15+18+11)% = 98%
 ∑ (‘ATTITUDE’) = (1+20+20+9+20+21+4+5)% = 100%

The above results interestingly “prove” a common saying that
attitude is more important than knowledge or hard work.

Psychologists perceive attitude in various ways. R. Fazio describes an

attitude as an association between an act or object and an evaluation [Fazio,
1986]. A. Eagly and S. Chaiken define attitude as a tendency of a human to
evaluate a person, concept, or group positively or negatively in a given
context [Eagly and Chaiken, 1992]. More recently, Arno Wittig describes
attitude as a learned evaluative reaction to people, objects, events, and other

Corollary 13.3 There are super strong motivations toward a resolute goal
by a determined expectancy of a person at any cost.

© 2008 by Taylor & Francis Group, LLC

1056 Part III Organizational Foundations of SE

stimuli [Wittig, 2001]. The remainder of this subsection presents a rigorous
definition and a formal model of attitude.

Definition 13.26 An attitude is a subjective tendency towards a

motivation, an object, a goal, or an action based on an intuitive evaluation of
its feasibility.

The modes of attitudes can be positive or negative, which can be

quantitatively analyzed using the following definition.

Definition 13.27 The mode of an attitude A is determined by both an

objective judgment of its conformance to the social norm N and a subjective
judgment of its empirical feasibility F, i.e.:

1,

0,

N F
A

N F

= ∧ =⎧⎪⎪= ⎨⎪ = ∨ =⎪⎩

T T

F F
 (13.7)

where A = 1 indicates a positive attitude; otherwise, it indicates a negative
attitude.

13.3.2.4 The Motivation/Attitude-Driven Behavioral Model

This section discusses the relationship between a set of interlinked

perceptual psychological processes such as emotions, motivations, attitudes,
decisions, and behaviors. A motivation/attitude-driven behavioral model will
be developed for formally describing the cognitive processes of motivation
and attitude.

It is observed that motivation and attitude have considerable impact on
behavior and influence the way a person thinks and feels [Westen, 1999]. A
reasoned action model is proposed by Martin Fishbein and Icek Ajzen in
1975 that suggests human behavior is directly generated by behavioral
intensions, which are controlled by the attitude and social norms [Fishbein
and Ajzen, 1975]. An initial motivation before the judgment by an attitude is
only a temporal idea; with the judgment of the attitude, it becomes a rational
motivation [Wang and Wang, 2006; Wang, 2007i], also known as the
behavioral intention.

The relationship between an emotion, motivation, attitude, and
behavior can be formally and quantitatively described by the
Motivation/Attitude-Driven Behavioral (MADB) model as illustrated in Fig.
13.3 [Wang, 2007i]. In the MADB model, motivation and attitude have been
defined in Eqs. 13.6 and 13.7. It is noteworthy that, as shown in Fig. 13.3, a
motivation is triggered by an emotion or desire. The rational motivation,
decision, and behavior can be quantitatively analyzed according to the
following definitions.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1057

 Strengthen/weaken

Motivation Behavior
Rational

motivation Outcome

Attitude
(Perceptual
feasibility)

Values/
social
norms

 Experience

Availability
of time,

resources,
and energy

Decision
(physical

feasibility)

Stimuli

Internal process

External process

 Satisfy/dissatisfy

M

Mr

 A D

 B

 N F
T/R/P

 Emotion

Figure 13.3 The model of motivation/attitude-driven behavior (MADB)

Definition 13.28 A rational motivation Mr is a motivation regulated by

an attitude A with a positive or negative judgment, i.e.:

2.5 | | (-)

r

m

M M A

E E S
A

C

=

•=

i

i
i

 (13.8)

Definition 13.29 A decision for confirming an attitude, Da, for
executing a motivated behavior is a binary choice on the basis of the
availability of time T, resources R, and energy P, i.e.:

1, =

0, = a

T R P
D

T R P

∧ ∧⎧⎪⎪= ⎨⎪ ∨ ∨⎪⎩

T

F
 (13.9)

Therefore, the formal model of MADB can be described as follows,
where a behavior is determined by a product of the strength of motivation
and the approval of the decision by a positive attitude.

Lemma 13.5 A behavior B driven by a motivation Mr and an attitude is a
realized action initiated by a motivation M and supported by a positive
attitude A and a positive decision Da toward the action, i.e.:

2.5 | | (-)
, 1

,

m
r a a

E E S
M D A D

CB
otherwise

⎧⎪⎪ = >⎪⎪= ⎨⎪⎪⎪⎪⎩

i i
i i iT

F
 (13.10)

© 2008 by Taylor & Francis Group, LLC

1058 Part III Organizational Foundations of SE

The MADB model presented in Lemma 13.5 and Fig. 13.3 provides a
formal explanation of the mechanism and relationship between motivation,
attitude, and behavior. The model can be used to describe how the motivation
process drives human behaviors and actions, and how the attitude as well as
the decision making process help to regulate the motivation and determines
whether the motivation should be implemented.

The techniques and models of more rational decision making processes
may be referred to Section 11.3 on decision making theories.

13.3.3 COLLECTIVE BEHAVIORS

Organizational psychology studies collective behaviors within groups
and organizations, and how structures of them impacts people’s behaviors,
productivity, and performance. Psychological experiments indicate that
individual’s behavior may vary in a group influenced by the interactions with
other members of the group, which is identified as collective behaviors
[Zander, 1979; Wiggins et al., 1994].

Definition 13.30 A collective behavior is an integrated behavior of a

group in which individuals’ behaviors are influenced in different ways by the
group.

Collective behaviors are one of the most important social properties of

groups and organizations. It is perceived in sociology that any human social
behavior may be compared and analyzed against the social norms, which
forms a qualitative or quantitative standard for the behavior [Wiggins et al.,
1994].

This subsection describes observable phenomena of collective

behaviors such as social conformity, social synchronization, coaction,
coordination, groupthink, group polarization, social dilemmas, and social
loafing. Two social effects attached to social loafing are the free-rider and
sucker effects.

13.3.3.1 Social Conformity

Individuals intend to adjust their behavior or actions, which reflect their
thought, to the common goal and norms of a group that they involve and
think belong to. This social phenomenon is called conformity.

Lemma 13.6 Individuals’ behavior in the social context is measurable
and analytical in term of performance against the social norms.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1059

Definition 13.31 Social conformity is a social phenomenon in which an
individual’s behavior is approached to a social norm or standard in forms of
ethical values, role expectations, and laws.

Conformity may be explained by the principle of minimum energy
consumption, especially when there is no obvious or intuitive best choice.

13.3.3.2 Social Synchronization

Individuals intend to set their behavior or actions to the timing of the

group. This social phenomenon is called synchronization [Wang, 2005k/05l].

Definition 13.32 Social synchronization is a social phenomenon in

which an individual’s behavior is timed to a social norm of a group.

Synchronization is a special type of social conformity. Synchronization
may be explained by the principles of system synchronization and minimum
energy consumption, because synchronization contributes to the maximum
output of a group.

13.3.3.3 Coactions

It is found that in temporary social situations and informal groups
where no or little coordination is required, people still influence each other
when their actions or tasks are identical or have similarity.

Definition 13.33 A coaction is a social phenomenon in which the
identical or similar actions or tasks are carried out by different individuals
with little interaction.

Coaction influences the performance of individuals because it puts the

individual in a social context. The phenomena of coaction indicate there is a
natural law, as described below, which constrains collective social behaviors
of human beings even in a noncohesive social context and a highly
temporary and random social relation.

Lemma 13.7 An autonomous synchronization tendency between
individuals exists in any permanent or temporary social context where
people automatically adjust to conjunctive goals and cooperative timing.

© 2008 by Taylor & Francis Group, LLC

1060 Part III Organizational Foundations of SE

The coaction influences on individual’s performance can be positive or
negative. The former can be a higher expectation, an awareness of difference,
and a learning of better practice; while the latter can be a distraction or
disappointment.

13.3.3.4 Coordination

Coaction discussed above is an ad hoc cooperation in an informal
group where there is no common goal as well as predefined means of
cooperation and communication. In contrary to coaction, coordination
happens in a formal group where common goals as well as means of
cooperation and communications exist.

Definition 13.34 A coordination is a social phenomenon in which the

identical or similar action or task is carried out via intensive interactions
between different individuals.

Coordination may influence the performance of individuals

dramatically in a group context. Organizational theories of work coordination
and efficiencies of group coordination have been extensively studied in
Section 8.5, 10.5, and 11.2.3 in engineering science, system science, and
management science, respectively.

13.3.3.5 Groupthink

Groupthink and group polarization are two preventable social
phenomena of collective behaviors [Janis, 1971].

Definition 13.35 Groupthink is a social phenomenon in which the

decision-making process within a highly cohesive group is dominated by
group consensus that restrains critical thinking of members in the group.

Groupthink may occur in a highly cohesive group where decisions are

made by the group and individuals lose their ability to critically evaluate
situations or information. Groupthink symptoms identified by Irving Janis in
1971 include illusion of invulnerability, illusion of morality, stereotypes of
outsiders, pressure for conformity, self-censorship, and illusion of unanimity
[Janis, 1971].

Groupthink acting as a filter of critical ideas may result in another

social phenomenon known as group polarization that turns a group to a
positive-feedback system.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1061

Definition 13.36 Group polarization is a social phenomenon in which
group members intend to shift toward the extreme of an already preferred
position of the group.

The tendency of group polarization is a powerful positive-feedback
mechanism that may result in an instable status of a social unit or system.
According to system theories discussed in Chapter 10, the behaviors of a
positive-feedback system are sometime unpredictable even destructive. The
art of leadership for a group, to some extent, is to prevent the polarization
situation from happening.

The rule of thumb is that, in a group polarization situation, the one who

hesitates in the group is perhaps the wiser one. Therefore, Lemma 13.8
indicates that the negative-feedback mechanism is not only suitable for a
natural system, but also applicable to social groups and social systems,
particularly for software engineering organization.

13.3.3.6 Social Dilemmas

Definition 13.37 The social dilemma is a social phenomenon in which
members of a group face a conflict choice between the maximization of
group’s interests by cooperative actions and the maximization of own
individual’s interests by noncooperative actions.

The collective behaviors of social dilemmas have been identified by

many sociologists and social psychologists since 1985 [Komorita and Barth,
1985; Coleman, 1990]. If only egoism is adopted in a society, the social
dilemma may exist forever. However, when altruism is recognized to balance
egoism as described in Lemmas 13.3, social dilemmas may be resolved
systematically.

13.3.3.7 Social Loafing

The collective behavior known as social loafing was first identified in
Max Ringelmann’s experiments on rope-pulling before World War I [Kravits
and Martin, 1986]. The same experiment was replicated by Alan Ingham et
al. in 1974. This collective phenomenon is then termed as social loafing by
Latane and his colleagues in 1979 based on extended studies [Latane et al.,
1979; Hardy and Latane, 1986].

Lemma 13.8 A weighting system that encourages and appreciates
negative or hesitant feedback towards a current group’s position is a
stable system.

© 2008 by Taylor & Francis Group, LLC

1062 Part III Organizational Foundations of SE

Definition 13.38 Social loafing is a social phenomenon in which exists
the tendency for people to work less hard on a cooperative task in a group
than they do individually.

Three independent experiments on the efficiency of coordinated group

tasks as shown in Table 13.7 reveal similar patterns of efficiency decreasing
when more persons are involved in collective group tasks. These are the main
evidences of social loafing. However, it can also be scientifically explained
by Theorem 8.4 on coordinate overhead and efficiency.

Table 13.7
Experiments on Efficiency of Coordinated Group Work

A group Collective tasks An
individual 2 persons 3 persons 2-6 persons 8 persons

Force (lb.) 130 352 546 Rope-
pulling1 Efficiency 100% 90.3% 52.5%
Rope-pulling2 100% 90% 85%
Cheerleaders3 100% 92%

 Note: Experiment 1 is based on Max Ringelmann [Kravits and Martin, 1986]
 Experiment 2 is based on Alan Ingham et al. in 1974.

 Experiment 3 is based on Hardy and Latane in 1986.

A typical collective behavior of social loafing is the free-rider effect

[Kerr, 1983].

Definition 13.39 The free-rider effect is a social phenomenon in which
exists the tendency for a member of a group to act noncooperatively based on
the assumption that one’s individual cooperative action may not be necessary
because others will do for the interests of the group.

Another social loafing phenomenon is identified by Jackson and
Harkins (1985) known as the sucker effect.

Definition 13.40 The sucker effect is a social phenomenon in which
exists the tendency for a member of a group to act noncooperatively based on
the assumption that others may take advantage of one’s individual
cooperative contribution to the group.

Social loafing may happen in a group where tasks are parallel allocated
and the sum of all parallel capacity is much larger than the workload of the
group, for instance, a group of porters and a team of programmers. More
rigorous discussion on cooperative work organization [Wang, 2007d] at the
system level will be presented in Sections 13.4.2 and 13.5.2.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1063

13.4 Theory of Social Organization

Studies in sociology are mainly empirical and observation-based as described
in the preceding sections. This section presents a formal treatment of social
organization on the basis of classical thought in sociology. A mathematical
model of social organization is developed known as the organization trees.
Then, a formal model of socialization is established that explains the
inherited interrelationships and interactions between the basic human needs,
economic structures, and social types. An important finding based on the
formal models of socialization is that the social type and underpinning
economic structure of the postindustrial society is transitioning towards a
new type of society called the information society driven by the current
highest level of unsatisfied human needs. This indicates that software science
and engineering will play more and more important roles in human society
development and evolution.

13.4.1 CLASSIC THOUGHT OF SOCIAL
 ORGANIZATION

From a geographical point of view, a society is formed by individuals,
families, communities, districts, areas, provinces, and countries from the
bottom up. From a functional point of view, a society is formed by
individuals, groups, organizations, sectors, and the whole economy. This
subsection reviews the classical thought on socialization and the
conventional forms of social organization.

13.4.1.1 Principles of Social Organization

According to Definition 13.4, an organization is a social entity in
which a number of groups of people are interconnected and interacting
toward common goals. An organization can be formal or informal, permanent
or temporary, large or small, public or private, etc. A summary of the types
of organizations is provided in Table 13.8.

© 2008 by Taylor & Francis Group, LLC

1064 Part III Organizational Foundations of SE

Table 13.8
Taxonomy of Organizations

No Method of categorization Types of organizations

1 Social status Formal, informal
2 Life span Permanent, temporary
3 Size Large, medium, small
4 Ownership Public, private, collective
5 Sector Industry, services, government
6 Purpose Utilitarian, normative, coercive
7 Membership criteria Open, closed
8 Business mode Proprietorship, partnership, corporation
9 Commercial status Profit, nonprofit

10 Operating scope Global, national, regional

The performance of an organization is determined by both its internal

model and its external environment.

Definition 13.41 An organizational environment is the external

constraints of a society that affect the operation of an organization.

Typical environment constraints for an organization are resources,

technologies, politics, population patterns, and the economy.

13.4.1.2 Classic Models of Social Organization

There are various organizational models and methodologies, such as
bureaucracy, division of labor, and system organization. System science and
system models as discussed in Chapter 10 have provided a formal approach
for in social studies, and will be discussed further in Section 13.4.2. This
subsection focuses on the conventional approaches of social organization,
i.e., bureaucracy and division of labor.

13.4.1.2.1 Bureaucracy

Bureaucracy is originated from the classical forms of public
administration in which governments are operated by civil servants known as
bureaus.

Definition 13.42 Bureaucracy is a classical organizational model of
society in which decisions are made from the top-down.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1065

Practical social organizational structures and methodologies were
introduced 2,500 year ago in oriental civilizations. The Chinese philosopher
and educationist, Confucius (551 – 479BC), proposed that government
officers should be systematically selected from the most talented and
educated men by civil service examinations. Since then, similar social
organizations have been adopted all over the world at almost all levels from
governments to businesses. Therefore, Confucius’ bureaucracy may be
perceived as the earliest sociological inventions of the ancient Chinese
civilization.

In modern sociology, Max Webber elicited the basic characteristics of
bureaucratic organization in The Theory of Social and Economic
Organization [Weber, 1947]. He identified the following characteristics:
specialization, hierarchical structures, rule of law, professional competence,
impersonality, and formal documentation.
 Formal documentation is considered as the central methodology of
bureaucracy because written and historical files form a systematic archival
system that guides the stable operation of an organization. Based on this it is
said that the center of bureaucracy is not people but paperwork [Macionis et
al., 1997].
 It is noteworthy that bureaucratic organization is designed to improve
efficiency. However, it may be alienated in many situations to be inefficient
as explained by Parkinson’s laws [Parkinson, 1957] and Peter’s law below
[Peter and Hull, 1969].

 However, the difficulty is, in many situations, the effort ad duration of
a non-repetitive task is very difficult to be estimated and predicated. In such
cases, a payment system based on the completion of the task rather than the
time spent on it will be more efficient.

Peter’s law indicates that the maximum competitive level of a person in

the hierarchy of a bureaucratic system is n-1, where n is the highest level the
person ever achieved without further promotion.

The alienation of bureaucratic organizations is an example of system
dissimilation in sociology as presented in Theorem 10.12.

Lemma 13.9 The Parkinson’s law states that work intends to expand to
fill the time available for its completion.

Lemma 13.10 The Peter‘s law states that bureaucrats rise to their level of
incompetence in a bureaucratic system.

© 2008 by Taylor & Francis Group, LLC

1066 Part III Organizational Foundations of SE

13.4.1.2.2 Division of Labor

Work organization by division of labor and specialization was adopted
in bureaucracy [Confucius, 551-479BC]. Division of labor was introduced
into industry and mass manufacturing during the industrial revolution [Smith,
1776; Tayler, 1911], which forms the important characteristics of
industrialization [Warner and Low, 1947]. Instead of working in a cottage
economy fashioning a product through all the processes individually,
industrialized mass production demands specialization. The advantages of
division of labor are higher productivity and lower entry skills. It is formally
presented in Theorem 11.2 that when people are repetitively working on
subtasks in a process, the productivity can be greatly improved [Wang,
2005k].

Mcdonaldization is identified as a modern type of division of labor in

work organization. The basic organizational principles revealed from
Mcdonaldization are efficiency, quantification, uniformity, and automation
[Ritzer, 1983/93]. Ritzer observed that the most unreliable element in the
Mcdonaldization process is human beings, because people are unstable,
sometimes letting their minds wander, or simply trying something
nonstandard. This factor may be eliminated by using automatic tools and
standard process regulations.

Sectors are a macro type of division of labor in a society, where labors

are allocated by their organizations oriented to different kinds of products or
services. Professionalism is another type of division of labor in postindustrial
societies, where people are specialized in various highly skilled disciplines.

13.4.2 THE FORMAL MODEL OF SOCIAL
 ORGANIZATION

Empirical and practical social organizations have been formed as
results of historical, political, and economical processes. However, a few
natural laws had been sought in sociology in order to understand the
fundamental constraints of human societies. Toward this aim, this subsection
presents a set of formal sociological models on the basis of system theory
and the System Organization Tree (SOT) as developed in Section 10.3.5. A
rigorous treatment of social organization in engineering is developed. Based
on the sociological models, the theories and laws behind coordinative work
organizations at the social organization and the top system level are revealed,
which will be used as the foundation for large-scale software engineering
project organization.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1067

13.4.2.1 The Formal Organization Tree

The most common organizational structures in science and nature are
tree-type architectures [Pattee, 1978; Wang, 2005k]. The complete n-nary
tree has been described in Section 10.3.5 as a normalized tree in which each
node of it can have at most n children, and all subtrees and nodes except the
the rightmost subtrees and leaves have the maximum number of possible
nodes. In other words, a tree that is said to be complete means that all levels
of the tree have been allocated the maximum number of possible nodes; only
the leave-level nodes and the rightmost subtrees may be exceptional.

Definition 13.43 A normalized Organization Tree (OTn) is a complete

n-nary tree in which all leave nodes represent employees and the remainder
represent managers. When the leaves (employees) do not reach in the
maximum possible numbers in the OT, the right most leaves and associated
subtrees will be left open.

A ternary OT, OT3, is given in Fig. 13.4. The important properties of
OTs have been studied in Section 10.3.5, particularly Corollary 10.6 [Wang,
2005k/05l], which are recited in Lemma 13.11 below for self-containment of
this section on formal organization trees.

One of the advanced characteristics of OTs are that their structural and
functional properties are highly predictable as stated in Corollary 13.4.

 E1 E2 E3 E4 E5 E6 E7 E8 E9 E13 E11 E15 E22 E23 E24 …

 M21 M22 M23 M24 M25 M26 M27 M28 M29

 M11 M12 M13

 M1

 … … … …

 …

 Figure 13.4 A normalized organization tree (n = 3)

© 2008 by Taylor & Francis Group, LLC

1068 Part III Organizational Foundations of SE

Definition 13.44 The organizational overhead rOT(n) of an n-nary

organization tree OTn is determined by the ratio between the number of
management Nm and the total members of OTn, NOT, i.e.:

Lemma 13.11 A normalized n-nary organization tree OTn with the total
number of leave nodes Ne, possesses the following properties:

 a) The optimal number of fan-out of any node fon :

 fon n= (13.11)

 b) The maximum number of nodes at a given level k, nk:

nk = nk (13.12)

 c) The depth of the OT, d:

 log
log

eNd
n

⎡ ⎤= ⎢ ⎥⎢ ⎥⎢ ⎥
 (13.13)

 d) The maximum number of nodes in OT, NOT:

0

d
k

OT
k

N n
=

= ∑ (13.14)

 e) The maximum number of employees (on all leaves) in OT, Ne:

 d
eN n= (13.15)

f) The maximum number of managers (nodes except all leaves)
 in OT, Nm:

-1

0
-

d
k

m OT e
k

N N N n
=

= = ∑ (13.16)

Corollary 13.4 An OT(fon , Ne) is fully determinable iff its number of
employees (leaves) Ne and the optimal number of fan-out of
groups fon are given.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1069

-1

0

0

1()

d
k

m k
OT d

OT k

k

n
Nr n
N n

n

=

=

= = ≈
∑

∑
 (13.17)

Definition 13.45 The organizational efficiency eOT(n) of an n-nary
organization tree OTn is determined by the ratio between the number of
employees Ne and the number of management Nm, i.e.:

 -1

0

d
e

OT d
m k

k

N ne n
N

n
=

= = ≈

∑
 (13.18)

The theory of OT provides a mathematical model for formally
analyzing the architectures of social organizations and their efficiency. The
applications of OT are demonstrated in the following subsection.

13.4.2.2 Formal Models of Social Organization

Lemma 13.12 indicates that when the importance of organizational

efficiency overpasses the initial purposes of a group for sharing resources and
functions, an organization with multiple groups is required.

Theorem 8.10 as well as Corollaries 8.41 and 8.7 developed in Chapter
8 on optimal project team organization reveal there are natural laws
constraining the size of groups for a given workload. Based on Theorem
8.10, the optimal sizes of groups with acceptable efficiency are constrained
by the following theorem.

Lemma 13.12 An organization is needed when the size of a group is too
large that it exceeds the optimal size of the group, and therefore is no
longer efficient.

 The 47th Law of Software Engineering

Theorem 13.3 The organizational coordination efficiency states that the
natural constraints for social organization that forces the architecture of
large groups to be evolved and adapted to tree-form hierarchical
structures in an organization is the need to maintain acceptable
coordinating efficiency at each level of the organization tree.

© 2008 by Taylor & Francis Group, LLC

1070 Part III Organizational Foundations of SE

This law forces the architecture of large groups to be reformed to tree-
type hierarchical structures of groups in order to maintain acceptable
coordinating efficiency [Wang, 2005k/05l/07d].

Corollary 13.5 can be proven by Theorem 8.10. A set of typical data

between the expected duration and expected workload against different labor
allocations is given in the pigeon diagram as shown in Fig. 8.5, where the
trends of expected project durations against different labor allocations and
the interpersonal coordination rate r in the group are illustrated.

Generally, for a certain ideal workload W1(r), the corresponding
optimal labor allocation L0 and the shortest duration Tmin can be determined
according to Theorem 8.7. Theorem 8.7 provides a solution to determine the
average optimal fan-out fon of OTs. On the basis of Theorem 8.7, an optimal
organization tree can be determined according to the following corollary.

Corollary 13.6 The optimal architecture of a normalized organization
tree, OT(r, Ne) for an organization with Ne members on the first line (the
leaves of the tree) and a given average interpersonal coordination rate r is
determined as follows:

 a) The average optimal fan-out of the OT, fon :

 0
1.414

, 0 []fo Gn n L r P
r

⎡ ⎤= = = ≠⎢ ⎥
⎢ ⎥

 (13.20)

 b) Number of optimal groups (subprojects) of the OT, NG:

 = e
G

fo

NN
n
⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥

 (13.21)

 c) Depth of the OT, dOT:

log log = =
log log

e e
OT

fo o

N Nd
n L

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

 (13.22)

Corollary 13.5 The optimal architecture of large-scale organizations, by
which an optimized structure can be maintained at each level of its
hierarchy, is an OT where the average optimal fan-out of a node fon or
the size of the group nG, is larger than 3 and smaller than 10, i.e.:

 3 10fo Gn n≤ = ≤ (13.19)

where fon is the optimum labor allocation.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1071

Example 13.1 Given an organization with Ne = 100 employees in the
first line and the work cooperation rate r = 10%, analyze the optimal
architecture of the organization tree OT1 for this organization.

According to Corollary 13.6, the optimal architecture of the
organization tree can be derived as follows:

(a) The average optimal fan-out of OT1:

 0
1.414

= 5.0 [P]
0.1fon L ⎡ ⎤= = ⎢ ⎥

⎢ ⎥

(b) Number of optimal groups of OT1:

 =

100.0= 20.0
5.0

e
G

fo

NN
n
⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥
⎡ ⎤ =⎢ ⎥
⎢ ⎥

(c) Depth of OT1:

 0

log =
log
log100.0 2.0 3.0
log 5.0 0.70

e
OT

Nd
L

⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

Referring to Fig. 13.4, readers may draw a diagram of the organization

tree based on the derived characteristics of OT1.

Example 13.2 What is the optimal architecture of the OT of a large

organization with Ne = 100,000 employees in the first line given L0 = 10.0P?
According to Corollary 13.6, the characteristic of OT2 can be derived as

follows:

 a) The average optimal fan-out of OT2: fon = L0 = 10.0P
 b) Number of optimal groups of OT2: NG = 104
 c) Depth of OT2: dOT2 = 5

Example 13.3 Given a country with a billion people in the working

force at the leave level, i.e., Ne = 1 • 109, what is the optimal architecture of
the organization tree OT3 when the average optimal fan-out fon = 10? What
is the number of managers required for optimal organization in OT3? What is
the ratio or overhead of management of OT3?

© 2008 by Taylor & Francis Group, LLC

1072 Part III Organizational Foundations of SE

According to Corollary 13.6, the characteristic of OT3 can be derived as
follows:

 a) Number of optimal groups of OT3: NG: = 108
 b) Depth of OT3: dOT3 = 9
 c) Number of managers of OT3: According to Eq. 13.16,

-1 8 9 9

8

0 0

10 1010 1 10
10

d
k k

m fo
fok k

N n
n= =

= = ≈ = = •∑ ∑

 d) Ratio of management of OT3:

 1 1
10

m
OT3

fo

N
r

L n
= ≈ = .

It is noteworthy that the more advance development in a society, the

smaller the optimal group size fon due to higher coordination among people;
therefore, the larger the ratio of management in the total population.

13.4.2.3 Coordinative Work Organization

The preceding subsections discussed the optimal structures of social
organizations in the form of normalized organization trees. This subsection
describes the structures of work organization and allocation on the basis of
the theory of the maximum output of abstract system in Section 10.5.4.
Major methods of work organizations are serial and parallel structures, as
well as their combinations known as hybrid structures.

13.4.2.3.1 Serial Structures

Definition 13.46 A serial work organization is a work allocation

structure in which a given work is decomposed into a series of tasks and each
task is allocated to a person or a group.

The serial structure of work organization can be illustrated in Fig. 13.5,
where W and Wos are the input and output work of a serial system.

 W1 W2 … Wn

 Wos W

Figure 13.5 The serial structure of work organization

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1073

13.4.2.3.2 Parallel Structures

Definition 13.47 A parallel work organization is a work allocation
structure in which a given work is done repetitively or jointly by multiple
persons or group.

The parallel structure of work organization can be illustrated in Fig.

13.6, where W and Wop are the input and output work of a parallel system.

 Wop
W

 W1

 W2

 Wn

 …

Figure 13.6 The parallel structure of work organization

Lemma 13.13 The output work of a serial work organization Wos equals
to the minimum work done by the least capable unit Wmin, i.e.:

min

min(| 1)os iW W i n

W

= ≤ ≤

=
 (13.23)

Corollary 13.7 The capacity of a serial work system is determined by the
least capable unit Wmin known as the bottleneck.

Corollary 13.8 The key to optimal serial work organization is there is no
bottleneck in the social system, i.e.:

 minos iW W W W= = = (13.24)

© 2008 by Taylor & Francis Group, LLC

1074 Part III Organizational Foundations of SE

Recalling the discussion on the phenomena of social loafing in Section
13.3.3, it may be seen that the parallel organization of work in a group may
allow it to happen. This is formally described as in Corollary 13.11.

 Complex work organizations may adopt a hybrid structure of serial and
parallel organizations.

13.4.3 THE FORMAL MODEL OF SOCIALIZATION

Not only task performances and engineering organizations are
influenced by the fundamental human factors and needs. The forms of
societies and their organizations are indirectly determined by the basic
human needs as well.

There are various types of societies corresponding to different
economic structures and their levels of development. The relationships
between the basic human needs, economic structures, and social types can be
explained by the following model.

Lemma 13.14 The output work of an n parallel work organization Wop is
equal to the sum of work done by each unit Wi, i.e.:

1

n

op i
i

W W
=

=∑ (13.25)

Corollary 13.9 The capacity of a parallel work system is dominated by
the most capable unit Wmax known as the critical unit.

Corollary 13.11 The necessary condition of social loafing is that a group
is parallel organized, where the output work of a unit Wj is zero, i.e.:

1

' () -
n

op i j
i

W W W
=

= ∑ (13.27)

where 1 ≤ j ≤ n.

Corollary 13.10 The key to optimal parallel work organization is not to
over-allocated work capacity in any unit of the system, i.e.:

1

n

op i
i

W W
=

=∑ (13.26)

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1075

Definition 13.48 The Formal Socialization Model (FSM) is a relational
model that describes the relationships between the basic human needs,
economic structures, and social types, as shown in Fig. 13.7.

Basic human
Needs

Economic
structures

Type of
societies

Benchmarks

N0:
Physiological

E0:
Primitive (foods)

 S0:
 Hunting/
 catching

0

max(| 0 4)

iE i

E

≤ ≤

=

N1:
Psychological

E1:
Primary (foods &
 materials)

 S1:
 Agrarian/
 pastoral

1

max(| 0 4)

iE i

E

≤ ≤

=

N2:
Cognitive

E2:
Secondary (goods &
tools)

 S2:
 Industrial 2

max(| 0 4)

iE i

E

≤ ≤

=

N3:
Social

E3:
Tertiary (services &
 social security)

 S3:
 Post-
 industrial

3

max(| 0 4)

iE i

E

≤ ≤

=

N4:
Self-
expressive

E4:
Information (knowledge
& intelligent services)

 S4:
 Information 4

max(| 0 4)

iE i

E

≤ ≤

=

Figure 13.7 The Formal Socialization Model (FSM) of human societies

The FSM model reveals that natural rules exist between the types of

society, the underlying economic structures, and the dominant sector in the
economy, because both social architectures and economic structures are
driven by the current level of predominantly unsatisfied fundamental human
needs.

There are various types of societies corresponding to different
economic structures and their levels of development. The relationships
between the basic human needs, economic structures, and social types can be
described below by Lemma 13.15.

Lemma 13.15 The type of society

iST , 0 i 4≤ ≤ , is determined by the
dominated sector

iET of the corresponding economic structure, which is
constituted by the current level of predominately unsatisfied human needs

iNT , 0 i 4≤ ≤ , i.e.:

 i i

i

S E

N

T = max (T)

= max (T), 0 i 4≤ ≤
 (13.28)

© 2008 by Taylor & Francis Group, LLC

1076 Part III Organizational Foundations of SE

Example 13.4 According to Statistics Canada, Catalogue Nos. 93-151
(1986) and 93-327 (1991), the Canadian economic structures during 1870 to
1991 are shown in Table 13.9.

Table 13.9
The Canadian Statistics of Social Development

Sector (%) Year
Primary

(E1)
Secondary

(E2)
Tertiary

(E3)
1991 4.6 16.5 75.0
1961 12.8 24.7 58.2
1870 41.2 22.4 36.0

Based on Lemma 13.15, it can be determined that the dominant type of

economy and corresponding types of society in years 1870, 1961, and 1991
in Canada are as follows:

a) In 1870:

i iS E

1

1

T (1870) = max (T), 0 i 4

= E (Primary economy dominated)

S (Argrarian society)

≤ ≤

⇒

b) In 1961:

i iS E

3

3

T (1961) = max (T), 0 i 4

= E (Tertiary economy dominated)

S (Postindustrial society)

≤ ≤

⇒

c) In 1991:

i iS E

3

3

T (1991) = max (T), 0 i 4

= E (Stronger tertiary economy dominated)

S (Postindustrial society, and a trend

 to the information society)

≤ ≤

⇒

It is noteworthy that the trend of socialization according to Lemma

13.15 may be predicated that the emerging information-based economy will
drive the society into a new era, the information society, where the major

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1077

sector of the information society will be information processing related and
intelligent services providing professions.

The fundamental driving forces for this trend are that the higher level

human needs built upon the satisfied lower-level ones, such as cognitive
(N2), social (N3), and self-expressive (N4) needs, will be the new focus of
post-industrialized societies. Because all N2 through N4 needs are based on
information and intelligent services when the material level needs are
satisfied, the form of economy and type of society will be evolved into the
information-oriented society naturally.

13.5 Sociology and Software
 Engineering

As discussed in Section 13.4.3 the type of society and the associated
economy is evolving towards the information-oriented ones in order to
satisfy the higher-level human needs in the postindustrial society. As a
logical consequence, the fundamental theories and techniques for information
processing, such as software engineering, computing, information science,
and cognitive informatics, will be increasingly important over time.

This section explores the applications of sociology in software
engineering, and discusses how software engineering may be scientifically
and efficiently organized.

13.5.1 SOCIAL ORGANIZATION OF SOFTWARE
 ENGINEERING

Theorems 13.1 through 13.3 developed in preceding sections provide
the theoretical foundation for software engineering organization. Optimal

Corollary 13.12 The next type of society after post-industrialization is the
information society driven by the current level of predominantly
unsatisfied social and self-expressive needs and the underlying
information-oriented economy.

© 2008 by Taylor & Francis Group, LLC

1078 Part III Organizational Foundations of SE

social and project organization of a software enterprise can be designed and
implemented using the quantitative analysis techniques of organization trees.

13.5.1.1 The Role of the Information Economy in Postindustrial Societies

The top-level application of sociology in software engineering is the

identification of the central role of all information-related theories and
techniques in modern societies.

According to the formal socialization model (FSM), the information
sector will be the fourth main sector following the primary, secondary, and
ternary sectors, in order to meet the current highest level of unsatisfying
human needs. Therefore, the new economy is information- and knowledge-
based economy, and the future type of society after the post-industrialization
is the information society. Thus, it can be predicated that software
engineering and computing will play an increasingly important role in the
transition of the new economy.

13.5.1.2 Maximizing Strengths of Individual Motivations in Software
 Engineering

Sociology provides a rich theoretical basis for perceiving insights into

the organization of software engineering. It is noteworthy that in a software
organization, according to Theorem 13.2, the strength of a motivation of
individuals M is proportional to both the strength of emotion Em and the
difference between the expectancy E and the current status S of a person. At
the same time, it is inversely proportional to the cost to accomplish the
expected motivation C. The job of management at different levels of the
organization tree is to encourage and improve Em and E, and to help
employees to reduce C.

Example 13.5 In software engineering project organization, the
manager and programmers may be motivated to the improvement of software
quality in different extents. Assuming the following factors as shown in
Table 13.10 are collected from a project on the strengths of motivations to
improve the quality of a software system, analyze how the factors influence
the strengths of motivations of the manager and the programmers,
respectively.

Table 13.10

Motivation Factors of a Project

Role Em C E S
The manager 4 3 8 5
Programmers 3.6 8 8 6

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1079

According to Theorem 13.2, the strengths of motivations of the
manager M1 and the programmer M2 can be estimated using Eq. 13.6,
respectively:

1
2.5 | | (-)

()

2.5 4 (8 - 5)
3

10.0

mE E S
M manager

C
=

=

=

i i

i i

and

 2
2.5 3.6 (8 - 6)

()
8

2.3

M programer =

=

i i

The results show that the manager has much stronger motivation to

improve the quality of software than that of the programmer in the given
project. Therefore, the rational action of the manager is to encourage the
expectancy of the programmers or to reduced the required effort for the
programmers by providing additional resources or adopting additional
development tools.

13.5.1.3 Social Environments of Software Engineering

According to social psychology discussed in Section 13.3, social
environment, such as culture, ethical norms, and attitude, greatly influences
people’s motivation, behavior, productivity, and quality toward coordinative
work. The chain of individual motivation in a software organization can be
illustrated as shown in Fig. 13.8.

Basic
human
needs

of
individuals

Organizational

objectives

Behavior

Attitude

Motivation Productivity

The social environment of software engineering

Quality

 Figure 13.8 The chain of motivation in a software organization

Cultures and values of a software development organization help to
establish a set of ethical principles or standards shared by individuals of the

© 2008 by Taylor & Francis Group, LLC

1080 Part III Organizational Foundations of SE

organization for judging and normalizing social behaviors. The identification
of larger set of values and organizational policy towards social relations may
be helpful to normalize individual and collective behaviors in the software
development organization that produces information products for a global
market.

Another condition for supporting creative work of individuals in a
software development organization is to encourage diversity in both ways of
thinking and work allocation. It is observed in social ecology that a great
diversity of species and a complex and intricate pattern of interactions among
the populations of a community may confer greater stability on an ecosystem.

Definition 13.49 Diversity refers to the social and technical differences
of people in working organizations.

Diversity includes a wide range of differences between people such as
those of race, ethnicity, age, gender, disability, skills, educations, experience,
values, native language, and culture.

The principle of system mutation indicates that if the number of
components of a system reaches a certain level – the critical mass, then the
functionality of the system may be dramatically increased as stated in
Theorem 10.5 in Section 10.5.2. That is, the increase of diversity in a system
is the condition to realize the system fusion effect, which results in a totally
new system.

13.5.1.4 Ergonomics for Software Engineering

The term ergonomics was proposed by Wojciech Jastrzebowski in
1857. It is derived from the Greek words ergos (work) and nomos (study of)
[Salvendy, 2006].

Definition 13.50 Ergonomics is a branch of engineering and behavioral

science that studies human efficiency in different working environments.

Ergonomics is the science of work such as abilities, limitations, and
characteristics of human beings and their adaptation to the working
environment. Ergonomics can be divided into two overlapped branches
known as the industrial ergonomics and human factors. The former focuses

Lemma 13.16 The diversity lemma states that the more diverse the
workforce in an organization (particularly the creative software industry),
the higher the opportunity to form new relations and connections that
leads to the gain of the system fusion effect.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1081

on engineering biomechanics, or the physical aspects of human capabilities,
such as force, posture, and repetition. The latter study engineering
psychology, or the mental aspects of human capability, such as the strengths
and weaknesses of human brain in the working environment.

In general, ergonomics aims at fitting tasks, processes, tools, and
environments to people, in order to improve productivity, quality, and safety
[Chaffin and Andersson, 1984]. Applications of ergonomics can be found in
a wide range of engineering disciplines, industrial psychologists,
occupational physicians, industrial hygienists, safety monitors, and quality
engineers.

Recent emphases of human factors research have been put on
improving the ways of information usages known as information design.

 Definition 13.51 Information design is a branch of ergonomics that
studies the design of signs, symbols, and instructions of information and
software systems in order to enable their meaning can be quickly and safely
comprehended.

Virtually everyone has experienced the frustration of using computer

software that doesn't work the way they expect it to. For the majority of end
users of computer programs, if the system is not working they have no
recourse but to call for technical help, or find creative ways around system
limitations, using those parts that are usable, and circumventing the rest or
increasing stress levels by using a substandard system. Often the problems in
systems could have been avoided, if a more complete understanding of the
users' tasks and requirements had been present from the start. The
development of easily usable human-computer interfaces is a major issue for
ergonomists today.

13.5.2 THEORY FOR LARGE-SCALE SOFTWARE
 ENGINEERING PROJECT ORGANIZATION

Comparatively analyzing the results shown in Examples 12.6 and 12.5,
it can be observed that for large-scale software engineering projects as given
in Example 12.6, a more efficient organizational form is to break the project
up into n lightly-coupled parallel subprojects as that of Example 12.5, where
n = 5, and each subproject is dealt with by an independent subgroup. Based
on this organizational strategy, an n-fold shorter project duration may be
achieved under the same level of workload and project costs. This leads to an
important law of software engineering organization as stated in Theorem
13.4.

The 48th law of software engineering as stated in Theorem 13.4
presents the theoretical foundation of the empirical principles of division and

© 2008 by Taylor & Francis Group, LLC

1082 Part III Organizational Foundations of SE

conquer, modularization, and system decomposition in software engineering.
It is a natural extension of Theorem 8.10 in the contexts of large-scale
systems and social environments, which completed the entire theory of
coordinative work organization in system/management science in general and
in software engineering in particular. Theorem 13.4 also indicates that the
much balanced the partitions among the subsystems, the more efficient the
gain for reducing project duration in large-scale software development in
software engineering.

The following examples demonstrate how Theorem 13.4 explains the
differences between the organizational forms of the structured multi-group
projects and the unstructured large-single-group projects in software
engineering.

Example 13.6 Assume the large-scale project as given in Example 12.6

is divided into five lightly-coupled parallel subprojects, and each subproject
can be conducted independently by an individual subgroup that obeys the
generic constraint on group size in coordinative work (Theorem 8.10). Then,
discuss the effects and impacts of this organizational form on project
duration and costs.

When the large-scale project given in Example 12.6 is evenly

partitioned into five parallel subjects, the analysis results of each of them are

The 48th Law of Software Engineering

Theorem 13.4 Time-oriented optimization for large-scale project
organization states that in order to further reduce the shortest duration
Tmin of an entire large-scale project constrained by Theorem 8.7, the
optimal form of organization is to evenly partition the whole project into
n lightly-coupled parallel subprojects that may be conducted by
independent groups with a shorter duration Ti

min, 1 ≤ i ≤ n, so that an
average n-fold time deduction can be gained, i.e.:

min min

1

min

1

1

n
i i

i
T T

n

T
n

ϖ

=
=

= +

∑
 (13.29)

where min
iT is the average shortest duration of all subsystem, and ϖ is a

positive overhead needed for system integration or composition.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1083

the same as those obtained in Example 12.5. The results are closely met with
the predications as those directly derived on the basis of Theorem 13.4, i.e.:

min min
1

1 114.4 14.4
5 10
2.9 1.4

4.3 [M]

iT T
n

ϖ= +

= • + •

= +

=

where the integration overhead is assumed as 10% of the shortest project
duration of the whole project before partition.

The above comparative study also demonstrates that the linear partition
of a large-scale project and the form of n-group OT organization may reduce
the project duration up to n times without change the entire project workload
and total costs. In other words, OT/SOT is an ideal organizational
mechanism for large-scale project and society-level organizations, which
enables labor to be traded with time in the system infrastructure of OT/SOT.

Therefore, Law 25 (Theorem 8.7) and Law 48 (Theorem 13.4), or the
coordinative work organization theory and the social system organization
theory in terms of OT/SOT, provide a complete theoretical framework for
explaining the age-old mythical man-month at the group level and the system
level, respectively.

Example 13.7 Suppose, in order to reduce the project duration, the

large-scale project given in Example 12.6 is not partitioned into multiple

Corollary 13.13 Large-scale projects should always be organized as a
structured system in the form of OT or SOT because it enables
complicated work to be done in a linear predictability in terms of effort
and costs while gaining greatly for up to n-fold reduction of project
duration.

Corollary 13.14 In large-scale projects organization, project duration
cannot be reduced in a single-group structure by increasing the size of the
group contingently, because nonoptimal man-powered groups against the
laws of group size constraints (Theorems 8.7 and 8.10) will result in an
exponential incremental of project duration, expected workload, and
costs.

© 2008 by Taylor & Francis Group, LLC

1084 Part III Organizational Foundations of SE

subprojects as Theorem 13.4, Corollary 13.13, and Corollary 13.14
suggested, but is subjectively organized with an extended group of L = 25.0P
deviated from the optimal allocation L0 = 5.0P. What would be the
consequences of this irrational decision?

According to the FEMSEC model and Example 12.6, the above project

can be analyzed below:
The expected duration T can be estimated using Eq. 12.56, i.e.:

1

40.0 (0.08 25.0 0.08 2/25.0)

40.0 []

1 2()
2
0.5

M

T W rL r
L

• • − +

=

= − +

=

The expected workload can be estimated using Eq. 12.57, i.e.:

 40.0

1, 000.0

=

= 25.0

 [PM]

TW L •

•

=

The total cost can be estimated using Eq. 12.58, i.e.:

=

1, 000.0 80, 000/12

$6,666,667.00 [$]

L•C W C

•=

=

According to Corollary 8.5, the wasted effort and budget would be as

high as the follows, respectively:

exp

=1,000.0 72.0

928.0 [PM]

W W W∆ = −

−

=

exp

= 6,666,667.0 480, 000.0

6,186,667.0 [PM]

C C C∆ = −

−

=

These results have already indicated a mission impossible for this given

project in the irrational organization form. Nevertheless, the results could
have been worse if r of the project were higher. This is why it is identified in

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1085

Theorem 1.5 that the key problems of software engineering are not only pure
technical issues rather than organizational and cognitive issues.

13.5.3 THE HUMAN FACTORS IN SOFTWARE
 ENGINEERING

The human factors are not only a constantly important constraint in
almost all disciplines of science and engineering, but also the most active and
dynamic factors to be considered. Nevertheless, human beings themselves
are directly the object of study in a number of disciplines such as
psychology, cognitive science, ergonomics, sociology, cognitive informatics,
medical science, neuroscience, and natural intelligence.

Definition 13.52 The human factors are the roles and effects of humans

in a system that introduces additional strengths, weaknesses, and uncertainty.

13.5.3.1 Taxonomy of Human Factors

There are numerous human factors identified in science, engineering,
sociology, psychology, and everyday life. The taxonomy of human factors in
engineering can be classified into human strengths, weaknesses, and
uncertainties as shown in Table 13.11.

Table 13.11

Taxonomy of Human Factors

No Category Basic factor
1 Strengths Natural intelligence, autonomic behaviors, complex decision-

making, highly skilled operations, intelligent senses, perception
power, complicated human coordination, adaptivity

2 Weaknesses Low efficiency, slow reactions, error-prone, tiredness, and
distraction

3 Uncertainties Productivity, accuracy, reaction time, persistency, reliability,
attitude, performance, and motivation to try uncertain things

Widely varying productivities are one of the major factors of human

beings, particularly in creative work such as software development. It is
found that the productivity of human creative work is conservative. That is,
the creative productivity is independent from languages and processes;
however, it depends on human cognitive, physiological, and psychological
capabilities.

© 2008 by Taylor & Francis Group, LLC

1086 Part III Organizational Foundations of SE

Definition 13.53 Conservative productivity is a basic constraint of
software engineering due to cognitive complexity and due to the cognitive
mechanism in which abstract artifacts need to be represented physiologically
in the brain via growing synaptic neural connections.

Human psychology, such as motivations and attitudes, influences
human factors very much [Fischer et al., 1990; Eagly and Chaiken, 1992;
Wang, 2007i]. The great variety of human psychological and cognitive
capacity influenced by motivations, attitudes, focuses, and attentions are the
major reasons of human uncertainties on productivity, accuracy, reaction
time, persistency, and task performance.

13.5.3.2 Types of Human Errors

It is a fact that people do make mistakes, and fortunately, most of them
may be corrected by additional undo or redo actions. However, in safety- or
mission-critical contexts, the impact of human errors can be catastrophic,
such as in the nuclear and chemical industries, rail and sea transports, and
aviation.

Definition 13.54 A human error is an error of human caused by wrong

actions and inappropriate behaviors.

Christopher Wickens and his colleagues identified a long list of reasons
that cause operator errors in systems, such as inattentiveness, poor work
habits, lack of training, poor decision making, personality traits, social
pressure [Wickens et al., 1998]. The Systematic Human Error Reduction and
Prediction Approach (SHERPA) proposed by D. Embry in 1986 identified
sixteen potential psychological errors [Embry, 1986]. J. Reason developed a
similar system in 1987 known as the Generic Error Modeling System
(GEMS) [Reason, 1987/90]. The set of human behavioural errors identified
in SHERPA are as follows:

 • Action omitted
 • Action too early
 • Action too late
 • Action too much
 • Action too little
 • Action too long
 • Action too short
 • Action in wrong direction

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1087

 • Right action on wrong object
 • Wrong action on right object
 • Misalignment
 • Information not obtained/transmitted
 • Check omitted
 • Check on wrong object
 • Wrong check
 • Check mistimed

A comparative study of the above work indicates that there is still a

need to seek a more logical taxonomy of human errors, which will be
developed in the next subsection.

13.5.3.3 The Mathematical Model of Human Errors

A formal behavioral model of human errors [Wang, 2005f] is derived

in this subsection according to Theorem 3.10 on human and system
behaviors as developed in Section 3.4.2.

Definition 13.55 A human behavior B is constituted by four basic

elements known as the object (O), action (A), space (S), and time (T), i.e.:

 B = (O, A, S, T)
 = O × A × S × T (13.30)

Any incorrect configuration of any of these four elements results in a

human error in task performance. Therefore, there are 16 modes of human
errors on the basis of the combinations of these four basic elements, which
form the Behavioral Model of Human Errors (BMHE) as shown in Table
13.12.

Corresponding to Table 13.12, a Human Error Tree (HET) is illustrated
in Fig. 13.9. It is noteworthy that the identification of the object is the most
important task in a chain of actions, because it is obvious that a correct action
in a correct location at a correct time but on a wrong object is still an error
action. Observing Fig. 13.9 and Table 13.12, it may be found that for a
human operator, there is only 1/16 chance to get a given action or behavior to
be correct, but there are 15/16 chance to get it wrong. That is, the
probabilities of human success p(+) and human error p(-) in performing a
specific task, respectively, are:

© 2008 by Taylor & Francis Group, LLC

1088 Part III Organizational Foundations of SE

1() 6.25%
16
15() 73.75%
16

p

p

⎧⎪⎪ + = =⎪⎪⎪⎨⎪⎪ − = =⎪⎪⎪⎩

 (13.31)

Table 13.12
The Behavioral Model of Human Errors (BMHEs)

No. Objects Behavior Space Time Error Mode

0 T T T T Mode 0: Correct action

1 T T T F Mode 1: Wrong timing

2 T T F T Mode 2: Wrong place

3 T T F F Mode 3: Wrong timing and place

4 T F T T Mode 4: Wrong action

5 T F T F Mode 5: Wrong action and timing

6 T F F T Mode 6: Wrong action and place

7 T F F F Mode 7: Wrong action, place and timing

8 F T T T Mode 8: Wrong object

9 F T T F Mode 9: Wrong object and timing

10 F T F T Mode 10: Wrong object and place

11 F T F F Mode 11: Wrong object, place and timing

12 F F T T Mode 12: Wrong object and action

13 F F T F Mode 13: Wrong object, action and timing

14 F F F T Mode 14: Wrong object, action and place

15 F F F F Mode 15: All wrong

The BMHE and HET models indicate that the natural rate of human

errors in performing tasks would be very high. Fortunately, a well trained
human being is fault-tolerant when performing tasks and a well established
engineering process is fault-tolerant too. The major means for fault-tolerant
in task performing is checking and rechecking. By adopting all checking and
monitoring techniques in each step of HET, the error ratio as shown in Eq.
13.31 can be greatly decreased.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1089

Object

 C

 E

 E

 E

 E

 E

 E

 E

 E

 Action

 Space

Time

Time

Time

Time

Time

Time

Time

Time

 Space

 Space

 Space

 Action

 T

 F

 T

 T

 T

 T

 T

 T

 T

 T

 T

 T

 T

 T

 T

 F

 F

 F

 F

 F

 F

 F

 F

 F

 F

 F

 F

 F
 T

 F

 E

 E

 E

 E

 E

 E

 E

Correct
action

Error

Figure 13.9 The model of Human Error Tree (HET)

13.5.3.4 The Random Properties of Human Errors

On the basis of various fault-tolerant measures and referring to Fig.
13.9, the following statistical properties of human errors may be observed.

Properties (a) through (c) reveal the random nature of human errors on

object, action, space, and time during performing tasks in a group.

Lemma 13.17 The statistical properties of human errors are as follows:

 a) Oddness: Although individuals make different errors in

performing tasks, the chance of making a single error for a
given task is most of the cases than that of multiple errors.

 b) Independence: Different individuals have different error
patterns in performing the same task.

 c) Randomness: Most of the different individuals make the same
error in different times in performing tasks.

© 2008 by Taylor & Francis Group, LLC

1090 Part III Organizational Foundations of SE

13.5.3.5 The Theoretical Foundation of Quality Assurance in
 Creative Work

The findings as stated in Lemma 13.17 and Corollary 13.15 form a
theoretical foundation for fault-tolerance and quality assurance in software
engineering. They indicates that human errors mat be prevented from
happening or be corrected after their presence as soon as possible in a
coordinative group context by means of peer reviews.

Example 13.8 A software engineering project is under development by

a group of four programmers. Given the individual error rates of the four
group members as: re(1) = 10%, re(2) = 8%, re(3) = 20%, and re(4) = 5%,
estimate the error rate of the final software system by adopting the following
quality assurance techniques: (a) Pairwise reviews between Programmers 1
vs. 2 and Programmers 3 vs. 4; and (b) 4-nary reviews between all group
members.

 a) The pairwise reviews between Programmers 1–2 and
Programmers 3–4 will result in the following error rates Re1 and
Re2:

2

1
1

()

10% 8%

0.8%

e e
k

R r k
=

=

=

=

∏
i

 The 49th Law of Software Engineering

Theorem 13.5 The n-fold error reduction structure states that the error
rate of a work product can be reduced up to n folds from the average
error rate of individuals re in a coordinative group via n-nary peer reviews
based on the random nature of error distributions and independent nature
of error patterns of individuals, i.e.:

1

()
n

e e
k

R r k
=

= ∏ (13.32)

Corollary 13.15 The random nature of human errors during performing
tasks in a group is determined by the statistical properties that the
occurrences of the same errors by different individuals are most likely at
different times.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1091

4

2
3

()

20% 5%

1.0%

e e
k

R r k
=

=

=

=

∏
i

 b) The 4-nary reviews between Programmers 1 through 4 will yield

the following error rate Re3:

4

3
1

()

10% 8% 20% 5%

0.008%

e e
k

R r k
=

=

=

=

∏
i i i

Theorem 13.5 and Example 13.8 explain why multiple peer reviews

may greatly reduce the probability of error in program development and
software engineering. Theorem 13.5 is also applicable in the academic
community where quality peer-reviewed results may virtually prevent most
mistakes in a final article before its publication.

In software engineering quality assurance, a four-level quality

assurance system is needed for certain critical software functions and
projects as shown in Table 13.13.

Table 13.13

The Four-Level Quality Assurance System of Software Engineering

Level Checker Means
1 Programmer Self checking, module-level testing
2 Senior member Peer review, module-level testing
3 Tester / quality engineer System-level testing, audit, review, quality evaluation
4 Manager Quality review, delivery evaluation, customer survey

Example 13.9 For a given program reviewed according to the four-

level quality assurance system as shown in Table 13.13, assuming re(10) =
10%, re(2) = 5%, re(3) = 2%, and re(4) = 10%, estimate the quality of the
final result of this program.

According to Eq. 13.32, the 4-nary quality assurance system can yield
an expected error rate Re4:

© 2008 by Taylor & Francis Group, LLC

1092 Part III Organizational Foundations of SE

4

4
1

()

10% 5% 2% 10%

0.001%

e e
k

R r k
=

=

=

=

∏
i i i

 The results indicate that the error rate of the above system has been
significantly reduced from initial 100bugs/kLOC to 1bugs/kLOC. This
demonstrates that the hierarchical organizational form for software system
reviews can greatly increase the quality of software development and
significantly decrease the requirement for individual capability and error
rates in software engineering.

13.6 Summary

Sociology studies the structure, organization, operation, and development of
human societies. The objects under study in sociology are human societies
and social relations. Therefore, to some extent, it may be perceived that
management science is the microsociology, while sociology is the macro
management science. In both fields, the theories of system science and
methodologies of system organizations play an important role in
formalization of the theoretical framework of sociology.

This chapter has presented a rigorous treatment of social
organization in the engineering context. A human society has been
constructed by individuals, groups, organizations, and sectors from the
bottom up. Theories and methodologies of coordinative work organization
have been served as one of the main threads across chapters from
engineering science, system science, management science, and economics
foundations to sociology foundations. The final piece of the puzzle of the
cooperative work organization theory has been completed in this chapter
at the highest level of scopes in work organization, which provides a
systematic methodology for optimal allocation of labor, resources, and
schedules for a given workload in a society in general, and in a software
engineering context in particular.

Social psychology such as the fundamental human traits, collective
behaviors, and the perceptual influence on them have been presented, which
form the underlying theory for explaining the human factors in engineering

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1093

systems and societies. Theories of social organization have provided an
essential understanding for coordinative work organization at various levels
of societies with the new structure of the social organization trees. Then,
sociology has been extended into the domain of software engineering, where
social organization and ergonomics for software engineering have been
analyzed that explains how human strengths, weaknesses, and uncertainty
may be dealt with in the context of software engineering. As a result, the
sociology foundations of software engineering have been established.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Sociology Foundations of Software Engineering,
readers have achieved the following strategic goals with the knowledge
structure as summarized below.

Chapter 13. Sociology Foundations of SE

■ Principles of Sociology
 • Social Structures
 - Individuals
 - Groups
 - Organizations
 - Sectors
 - Societies

 • Social Behaviors
 - Social functions and relations
 - Social roles
 - Social systems

 • Social Norms
 - Cultures
 - Values
 - Socialization
 - The social philosophy of Confucianism

■ Social Psychology
 • The Fundamental Human Traits
 - Axiomatic human traits
 - The hierarchical model of basic human needs

 • Human Perceptions and Behaviors
 - Emotions
 - Motivations

© 2008 by Taylor & Francis Group, LLC

1094 Part III Organizational Foundations of SE

 - Attitudes
 - The motivation/attitude-driven behavioral model

 • Collective Behaviors
 - Social conformity
 - Social synchronization
 - Coactions
 - Coordination
 - Groupthink
 - Social dilemmas
 - Social loafing

■ Theory of Social Organization
 • Classic Thought of Social Organization
 - Principles of social organization
 - Classical models of social organization

 • The Formal Model of Social Organization
 - The formal organization tree
 - Formal models of social organization
 - Coordinative work organization

 • The Formal Model of Socialization

■ Sociology and Software Engineering
 • Social Organization of Software Engineering
 - The role of the information economy in postindustrial societies
 - Maximizing strengths of individual motivations in software
 engineering
 - Social environments of software engineering

 • Ergonomics for Software Engineering
 • Human Factors in Software Engineering
 - Taxonomy of human factors
 - Types of human errors
 - The mathematical model of human errors
 - The random properties of human errors
 - The theoretical foundation of quality assurance in creative work

SIGNIFICANT FINDINGS OF THIS CHAPTER

• There are various types of societies characterized by the underpinning
structures of their economies. According to the foundational economic
structures, human societies have evolved through five phases known as the

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1095

hunting/gathering, horticultural/pastoral, agrarian, industrial, and
postindustrial societies.

• A group is needed because the interdependency among members

when a given work cannot be carried out by separated individuals limited by
their resource dependency or functional dependency.

• When the scale of a group increases to a certain extent, internal
coordination and synchronization between members in the group will
become the dominant problem. This problem forces a large group to adopt
more complicated structural forms, which extend the group into an
organization.

• As social relations adhere people to people in a society, social roles
adhere people to social functions. Because both social relations and roles can
be 1-to-1, 1-to-n, n-to-1, and n-to-m, the natural structures of human societies
are hierarchical trees and networks.

• The human emotional system is a binary system that interprets or

perceives an external stimulus and/or internal status as pleasant or
unpleasant.

• Although there are various emotional categories at different
levels, the binary emotional system of the brain provides a set of
pairwise universal solutions to express human feelings. For example,
anger may be explained as a default solution or generic reaction for an
emotional event when there is no better solution available; otherwise,
delight will be the default emotional reaction.

• Motivation is a psychological, social modulating and coordinating

influence on the direction, vigor, and composition of behaviors. This
influence arises from a wide variety of internal, environmental, and social
sources, and is manifested at many levels of behavioral and neural
organizations.

• The strength of a motivation is determined by multiple factors such

as: a) The absolute motivation |Em|: it is the strength of the emotion. b) The
relative motivation E - S: it is the relative difference or inequity between the
expectancy of a person E for an object or an action towards a certain goal
and the current status S of the person. c) The cost to fulfill the motivation C:
A subjective assessment of the effort needed to accomplish the expected
goal.

© 2008 by Taylor & Francis Group, LLC

1096 Part III Organizational Foundations of SE

• The theorem of strength of motivations states that a motivation M is
proportional to both the strength of emotion |Em| and the difference between
the expectancy of desire E and the current status S, of a person, and is
inversely proportional to the cost to accomplish the expected motivation C,
i.e., 2.5 | | (-)mE E S

M
C

• •= , where 0 ≤ |Em| ≤ 4, 0 ≤ (E, S) ≤ 10, and 1 ≤ C

≤ 10.

• The relationship between an emotion, motivation, attitude, and

behavior can be formally and quantitatively described by the
Motivation/Attitude-Driven Behavioral (MADB) model. It states that a
behavior B driven by a motivation Mr and an attitude is a realized action
initiated by a motivation M and supported by a positive attitude A and a
positive decision Da toward the action, i.e.:

2.5 | | (-)
, 1

,

m
r a a

E E S
M D A D

CB
otherwise

⎧⎪⎪ = >⎪⎪= ⎨⎪⎪⎪⎪⎩

i i
i i iT

F

• A motivation is only a potential mental power of human beings, and a

strong motivation will not necessarily result in a behavior or action. The
condition for transforming a motivation into a real behavior or action is
dependent on multiple factors, such as values, social norms, expected
difficulties, availability of resources, and the existence of alternative goals.

• The motivation of a person is constrained by the attitude and

decision making strategies of the person. The attitude is the internal
(subjective) feasibility of the motivation, and the decision making
strategies is the external (social) feasibility of the motivation.

• A society is a dynamic human system that is interacting not only

among members of the society via social relations, but also between the
society, other societies, and the natural environment.

• Socialization is a conforming process that a person is integrated into

a society at various levels of its hierarchy by adopting certain roles, relations,
cultures, customs, value systems, and norm behaviors.

• The identification of a common set of values is helpful to normalize

individual and collective behaviors in an organization, especially a software
development organization in software engineering that produces information
products for a global market.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1097

• The basic essences for evolution state that the basic evolutional
needs of mankind are to preserve both the species’ biological traits via gene
pools, and the cumulated knowledge via various information systems.

• The lower the level of a need in the HNH hierarchy, the more
concrete or material-oriented the need. In other words, the higher the level
of a need, the more virtualized or perception-oriented the need.

• Understanding of the nature of basic human needs is not only useful

in predicating motivations of human beings in a given context, but also
important in identifying the driving forces for the approach of engineering
organization, the types of societies, and the corresponding economic
structures.

• An autonomously synchronization tendency between individuals

exists in any permanent or temporary social context where people
automatically adjust to conjunctive goals and cooperative timing.

• A weighting system that encourages and appreciates negative or
hesitant feedback towards a current group’s position is a stable social
system.

• Social loafing may happen in a group where tasks are parallel
allocated and the sum of all parallel capacity is greater than the workload of
the group.

• Empirical and practical social organizations have been formed as
results of historical, political, and economical processes. However, a few
natural laws had been sought in sociology in order to understand the
fundamental constraints of human societies. Toward this aim, a set of formal
sociological models has been developed on the basis of system theory and
the System Organization Tree (SOT). A rigorous treatment of social
organization in engineering is developed. Based on the sociological models,
the laws and principles behind coordinative work organization are revealed.
Some of the results are particularly useful for software engineering
organization.

• The organizational coordination efficiency states that the natural
force of social organization that requires the architecture of large groups to
be evolved and adapted to tree-form hierarchical structures in an organization
is the need to maintain acceptable coordinating efficiency at each level of the
organization tree.

• The optimal architecture of large-scale organizations, by which an

optimal structure can be maintained at each level of its hierarchy, is an OT

© 2008 by Taylor & Francis Group, LLC

1098 Part III Organizational Foundations of SE

where the average optimal fan-out of a node fon or the size of the group nG is
larger than 3 and smaller than 10, i.e., 3 10fo Gn n≤ = ≤ , where fon is the
optimum labor allocation.

• The capacity of a series work system is determined by the least
capable unit Wmin known as the bottleneck. The key to optimal serial work
organization is there is no bottleneck in the social system.

• The capacity of parallel work system is dominated by the most
capable unit Wmax known as the main unit. The key to optimal parallel work
organization is there is no over-allocated work capacity.

• The Formal Socialization Model (FSM) is a relational model that

describes the relationships between the basic human needs, economic
structures, and social types.

• The type of society
iST , 0 i 4≤ ≤ , is determined by the

dominant sector
iET of the corresponding economic structure, which is

constituted by the current level of predominately unsatisfied human
needs

iNT , 0 i 4≤ ≤ , i.e.,
i i iS E NT = max (T) = max (T), 0 i 4.≤ ≤ .

• The next type of society after post-industrialization is the
information society driven by the current level of predominantly
unsatisfied social and self-expressive needs and the underlying
information-oriented economy.

• The fundamental driving forces for this trend are that the higher

level human needs built upon the satisfied lower-level ones, such as
cognitive (N2), social (N3), and self-expressive (N4) needs, will be the new
focus of post-industrialized societies. Because all N2 through N4 needs are
based on information and intelligent services when the material level needs
are satisfied, the form of economy and type of society will be evolved into
the information-oriented society naturally.

• The diversity lemma states that the more diverse the workforce in an

organization (particularly the creative software industry), the higher the
opportunity to form new relations and connections that leads to the gain of
the system fusion effect.

• The random feature of human errors: The following phenomena

reveal the random nature of human errors on object, action, space, and time
in performing tasks in a group:

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1099

 a) Although individuals make different errors in performing tasks,
the chance of making a single error for a given task is most of the
cases than that of multiple errors.

 b) Different individuals have different error patterns in performing
tasks.

 c) Most of the different individuals make the same error in different
times in performing tasks.

• In software engineering quality assurance, a hierarchical quality

assurance system is needed at four levels known as those of programmers,
senior members, testers/quality engineers, and managers.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Principles of sociology

• A society is a huge organized human system in which people are
grouped, coordinated, interconnected, and interacted by a variety of
organizations. A society as a whole is constructed by individuals, groups,
organizations, and sectors from the bottom up.

• Social structures study the hierarchical architectures of societies at

different levels and their social characteristics and interactions.

• An individual is a single human being that forms the basic
social unit of a society.

• A group is a formal or informal social unit formed by two or
more persons working towards a particular purpose.

• An organization is a formal and stable social unit formed by
one or more groups of people working towards a particular purpose.

• A sector is a distinct branch of a society with multiple
organizations that produce the same category of products or provide the
same category of services.

• A society is the community of people in which members of it
are geographically connected and socially integrated with common
customs, organizations, and values.

• Social behaviors can be studied hierarchically via social functions,

relations, roles, and systems from the bottom up in a society.

© 2008 by Taylor & Francis Group, LLC

1100 Part III Organizational Foundations of SE

• A social function F is a set of tasks and/or actions within a
society that can be carried out by individuals.

• A social relation R is a function between two or more persons,
p, in a society, i.e., R(p) = g : p → P, where P is all the individuals, p
∈ P, in the given society.

• A social role is a set of coherent social functions that is
represented by a title of a category and is expected to be conformed in
the society. The social roles RL of a person p is a relation between the
person p and a set of social functions F, F ⊆ F, i.e., RL(p) = f : p → F,
where F is a subset of all defined social functions F.

• Social norms are the ‘shoulds’ of a society for regulating social

behaviors that members of the society share and are expected to conform.
Social norms can be considered from the aspects of cultures and values.

• The culture of a society is the collected ideas, customs,
behaviors, and values shared by members of the unit.

• Values of a social unit are a set of ethical principles or
standards shared by the unit that are used to judge and normalize social
behaviors.

• The union of all proven social norms from different societies,
or at least their intersection, represents a set of univeral values of
humanity.

Social psychology

• Social psychology is a branch of psychology that studies social
interactions and their effects on human behaviors. Because the basic studying
objects of sociology are individual human beings and their interactions,
social psychology is the key to understand a wide range of complicated
social phenomena and the driving forces underpinning them.

• The study on human traits forms the foundation of sociology,

because every individual’s social behavior is driven and constrained by those
axiomatic human traits and characteristics and the derived needs based on
them. The study on human traits also forms the foundation for engineering
organization.

• Human traits and needs are the fundamental force underlying
almost all phenomena in human task performances, engineering
organizations, and societies.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1101

• The basic evolutional need of humans is the tendency to maximize
the inclusive fitness of individuals and the whole mankind.

• Egoism is a social behavior of human beings in which
individuals put their own interests first in decision makings.

• Altruism is a social behavior in which individuals sacrifice
their own interests for the welfare of a group or society.

• Relationship: Egoism is constrained by altruism; and the
implementation of altruism is dependent on the natural egoism.

• The Hierarchical Model of Basic Human Needs: As an individual,

the basic biological need of humans is a stable inner environment regulated
by a mechanism known as homeostasis. Homeostasis is an adaptive
biological mechanism of the human body that maintains a relatively constant
state in order to live and function.

• The Maslow hierarchy of human needs is identified at five
levels known as the needs of physiological, safety, social, esteem, and
self-actualization from the bottom up.

• The Human Needs Hierarchy (HNH) model is a hierarchical
model that encompasses five levels of fundamental human needs
known from the bottom-up as N0 – physiological needs, N1 –
psychological needs, N2 – cognitive needs, N3 – social needs, and N4 –
self-expressive needs.

• The predominant need of an individual is the needs at the lowest

unsatisfied level of the HNH model. When multiple needs of a person are
unsatisfied at a given time, satisfaction of the most predominant need is most
pressing.

• Perception is a set of sensational cognitive processes at the

subconscious cognitive function layers such as emotion, motivation, and
attitudes. Perception may be considered as the sixth sense of human beings
that almost all cognitive life functions rely on it.

• An emotion is a personal feeling derived from one’s current
internal status, mood, circumstances, historical context, and external
stimuli.

• A motivation is a willingness or desire triggered by an emotion
to pursue a goal or a reason for triggering an action.

© 2008 by Taylor & Francis Group, LLC

1102 Part III Organizational Foundations of SE

• An attitude is a subjective tendency towards a motivation, an
object, a goal, or an action based on an intuitive evaluation of its
feasibility.

• Organizational psychology studies collective behaviors within

groups and organizations, and how structures of them impact people’s
behaviors, productivity, and performance.

• A collective behavior is an integrated behavior of a group in which

individuals’ behaviors are influenced in different ways by the group.

• Individuals’ behavior in the social context is measurable and
analytical in term of performance against the social norms.

• Social conformity is a social phenomenon in which an
individual’s behavior is approached to a social norm or standard in
forms of ethical values, role expectations, and laws.

• Social synchronization is a social phenomenon in which an
individual’s behavior is timed to a social norm of a group.

• A coaction is a social phenomenon in which the identical or
similar actions or tasks are carried out by different individuals with
little interaction.

• A coordination is a social phenomenon in which the identical
or similar action or task is carried out via intensive interactions between
different individuals.

• Groupthink is a social phenomenon in which the decision-
making process within a highly cohesive group is dominated by group
consensus that restrains critical thinking of members in the group.

• Group polarization is a social phenomenon in which group
members intend to shift toward the extreme of an already preferred
position of the group.

• Social dilemma is a social phenomenon in which members of a
group face a conflict choice between the maximization of group’s
interests by cooperative actions and the maximization of own
individual’s interests by noncooperative actions.

• Social loafing is a social phenomenon in which exists the
tendency for people to work less hard on a cooperative task in a group
than they do individually.

• The free-rider effect is a social phenomenon in which exists
the tendency for a member of a group to act noncooperatively based on

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1103

the assumption that one’s individual cooperative action may not be
necessary because others will do for the interests of the group.

• The sucker effect is a social phenomenon in which exists the
tendency for a member of a group to act noncooperatively based on the
assumption that others may take advantage of one’s individual
cooperative contribution to the group.

• The Parkinson’s law states that work intends to expand to fill the

time available for its completion.

• The Peter’s law states that bureaucrats rise to their level of

incompetence in a bureaucratic system.

Theory of social organization

• From a geographical point of view, a society is formed by
individuals, families, communities, districts, areas, provinces, and countries
from the bottom-up. From a functional point of view, a society is formed by
individuals, groups, organizations, sectors, and the whole economy.

• The performance of an organization is determined by both its

internal model and its external environment.

• An organizational environment is the external constraints of a
society that affect the operation of an organization.

• There are various organizational models and methodologies, such as

bureaucracy, division of labor, and system organization. System science and
system models as discussed in Chapter 10 have provided a formal approach
in social studies.

• Bureaucracy is a classical organizational model of society in
which decisions are made from the top-down.

• Division of labor was introduced into industry and mass
manufacturing during the industrial revolution, which forms the
important characteristics of industrialization

• The Formal Organization Tree: A normalized organization tree

(OTn) is a complete n-nary tree in which all leave nodes represent employees
and the remainder represent managers. When the leaves (employees) are not
reached in the maximum possible numbers in the OT, the right most leaves
will be left open.

© 2008 by Taylor & Francis Group, LLC

1104 Part III Organizational Foundations of SE

• An OT is fully determinable iff its number of employees
(leaves) Ne and the optimal number of fan-out fon are given. The OT
provides a mathematical model for formally analyzing the
architectures of social organizations and their efficiency.

• An organization is needed when the size of a group is too large
that it exceeds the optimal size of the group, and therefore is no longer
efficient.

• The organizational efficiency eOT(n) of an n-nary organization
tree OTn is determined by the ratio between the number of employees
Ne and the number of management Nm, which is approaching n when
the size of the organization is large enough.

• Cooperative Work Organization: The structures of work

organization and allocation can be organized on the basis of the theory of the
maximum output of abstract system.

• A series work organization is a work allocation structure in
which a given work is decomposed into a series of parts and each part
is allocated to a person or a group.

• A parallel work organization is a work allocation structure in
which a given work is done repetitively or jointly by multiple persons
or group.

Sociology for software engineering

• Social organization of software engineering: Cultures and values
of a software development organization help to establish a set of ethical
principles or standards shared by individuals of the organization for judging
and normalizing social behaviors.

• The identification of larger set of values and organizational
policy towards social relations may be helpful to normalize individual
and collective behaviors in the software development organization that
produces information products for a global market.

• Another condition for supporting creative work of individuals in
a software development organization is to encourage diversity in both
ways of thinking and work allocation.

• Diversity refers to the social and technical differences of people
in working organizations. Diversity includes a wide range of
differences between people such as those of race, ethnicity, age,

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1105

gender, disability, skills, educations, experience, values, native
language, and culture.

• The principle of system mutation indicates that if the number
of components of a system reaches a certain level – the critical mass,
then the functionality of the system may be dramatically increased.
That is, the increase of diversity in a system is the condition to realize
the system fusion effect, which results in a totally new system.

• Ergonomics is a branch of engineering and behavioral science that

studies human efficiency in working environment. Ergonomics is the science
of work such as abilities, limitations, and characteristics of human beings and
their adaptation to the working environment.

• Ergonomics can be divided into two overlapped branches
known as the industrial ergonomics and human factors. The former
focuses on engineering biomechanics, or the physical aspects of human
capabilities, such as force, posture, and repetition. The latter studies
engineering psychology, or the mental aspects of human capability,
such as the strengths and weaknesses of human brain in the working
environment.

• Information design is a branch of ergonomics that studies the
design of signs, symbols, and instructions of information and software
systems in order to enable their meaning can be quickly and safely
comprehended.

• The human factors are the roles and effects of humans in a system

that introduces additional strengths, weaknesses, and uncertainty.

• The human factors are a constantly important constraint in
almost all disciplines of science and engineering, even the most active
and dynamic factors to be considered. Nevertheless, human beings
themselves are directly the object of study in a number of disciplines
such as psychology, cognitive science, ergonomics, sociology,
cognitive informatics, medical science, neuroscience, and natural
intelligence.

• Conservative productivity is a basic constraint of software
engineering due to cognitive complexity and due to the cognitive
mechanism in which abstract artifacts need to be represented
physiologically in the brain via growing synaptic neural connections.

• The Behavioral Model of Human Errors (BMHE): A human error

is a human operator error caused by wrong actions and inappropriate
behaviors.

© 2008 by Taylor & Francis Group, LLC

1106 Part III Organizational Foundations of SE

• A human behavior B is constituted by four basic elements
known as the object (O), action (A), space (S), and time (T), i.e., B =
(O, A, S, T). Any incorrect configuration of any of these four elements
results in a human error in task performance.

• Therefore, there are 16 modes of human errors on the basis of
the combinations of these four basic elements.

• The random nature of human errors in performing tasks in a
group is the statistical phenomenon that the occurrences of the same
errors by different individuals are most likely at different times.

• The theoretical foundation of quality assurance in creative work:

The n-fold error reduction by reviewing states that the error rate of a work
product can be reduced up to n folds of the average error rate of individuals
re in a group via n-nary peer reviews based on the random nature of error
distributions and independent nature of error patterns of individuals, i.e.,

1
()

n

e e
k

R r k
=

= ∏ .

 • The hierarchical review system in software engineering can greatly
increase the quality of software and decrease the requirement for individual
capability and error rates in software engineering.

Questions and
Research Opportunities

13.1 Why may sociology be perceived as a special type of system

science of human organizations?

13.2 Why are group studies one of the centers of sociology?

13.3 What are the natural forces and needs that expand groups into

organizations?

13.4 Why can a society be modeled as a set of social functions, roles,

and relations?

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1107

13.5 What are the roles of cultures and value systems in forming social
norms?

13.6 Why do software development organizations need to identify a

common set of values in order to normalize individual and
collective behaviors in software engineering?

13.7 What are the axiomatic human traits and their relationships?

13.8 What is Maslow’s hierarchy of basic human needs?

13.9 What is the Human Needs Hierarchy (HNH) model and what are

its differences from Maslow’s hierarchy of needs?

13.10 Why does the human emotional system tend to be a binary

system?

13.11 According to Theorem 13.2, explain what determines the strength

of human motivations.

13.12 What determines the mode of human attitudes?

13.13 According to the Motivation/Attitude-Driven Behavior (MADB)

model, explain why an observable behavior is a result of long-
chain social and psychological reasoning.

13.14 Use a table to describe the eight categories of collective behaviors

such as social conformity, social synchronization, coaction,
coordination, groupthink, group polarization, social dilemmas,
and social loafing.

13.15 Why is a weighting system that encourages and appreciates

negative or hesitant feedback towards the current position of the
group a stable system?

13.16 What are the conditions of social loafing and how to avoid it?

13.17 What are the classic models of social organization?

13.18 What is Parkinson’s law in social organization? How may it be

formally explained by using the coordinative work organization
theory developed in Chapter 8? (Hint: Consider the unlimited or
unconstrained interpersonal coordination rate.)

© 2008 by Taylor & Francis Group, LLC

1108 Part III Organizational Foundations of SE

13.19 Use an organization tree (OT) to explain when a group has to be

expanded into an organization.

13.20 For an OT(r, Ne) = OT(10%, 100) as given in Example 13.1, draw

a structural diagram for it in the form of a complete 5-nary tree.

13.21 According to Corollary 13.6, determine the optimal structures of a

OT(r, Ne) = OT(20%, 30), and draw a structural diagram for it.

13.22 Given a software development organization with L = Ne = 100

employees in the first line and r = 20%, analyze the optimal
architecture of the normalized organization tree (OT) for the
following architectural attributes:

 a) The average optimal fan-out fon

 b) Number of optimal groups NG

 c) Depth of the organization tree d

 d) The maximum number of managers required for the
software company Nm.

13.23 Draw the diagram of the organization tree OT(10, 10,000) based

on the derived architectural attributes as obtained in Ex.13.22.

13.24 What are the optimal architectural attributes of an organization

with OT(fon , Ne) = OT(10, 10,000)?

13.25 What are the optimal architectural attributes of a country with 100

million people in the working force at the leave level, i.e.,
OT(fon , Ne) = OT(20, 100,000,000)?

13.26 The complete theory of engineering work organization at the

group and system levels, respectively, can be presented by Law
25 (Theorem 8.7) and Law 48 (Theorem 13.4), i.e., the
coordinative work organization theory and the social system
organization theory in terms of OT/SOT. Try to summarize their
mathematical models and physical meanings in software
engineering context.

13.27 On the bases of Theorem 13.4, Corollaries 13.13/13.14, and

Example 13.7, discuss why are the key problems of software
engineering not only pure technical issues rather than
organizational issues.

© 2008 by Taylor & Francis Group, LLC

Chapter 13 Sociology Foundations of SE 1109

13.28 An usual practice in the software industry is to layoff a manager
when there is a financial crisis, because it’s thought that such a
decision is most directly and financially effective and efficient to
get out of the crisis.

According to Theorem 13.3 and corollary 13.5, explain why the
above decision is not a rational action rather than one that may
worsen the situation.

13.29 According to the Formal Socialization Model (FSM), explain why

the next form of society after the post industrial society is the
information society. What is the role of software industry and
software engineering in the information society?

13.30 Discuss the roles of individual motivation and cultural diversity in

the social environments of software engineering.

13.31 What are the characteristics and effects of human factors in

systems where humans are part of them?

13.32 Should human beings be encouraged or limited to be incorporated

into system solutions? Why?

13.33 What is the Behavioral Model of Human Errors (BMHE) and how

may it be used to explain the techniques in quality assurance for
creative work such as software engineering review and
inspection?

13.34 Read the following chapter in social psychology:

James A. Wiggins et al. (1994), Chapter 4, Social

Relationships and Groups, Social Psychology, 5th ed.,

McGraw-Hill Inc, NY.

Discuss the following topics in a group or individually:

 • About the author.

 • Which factor plays a key role in groups: social relationship
or interpersonal cooperation? Why?

© 2008 by Taylor & Francis Group, LLC

1110 Part III Organizational Foundations of SE

 • When a group is getting too large, what kind of structural
changes should be made? What is the main reason that
drives the changes?

 • What conclusions of the article interested you? Why?

 • Your arguments or counter-points on any of the conclusions
derived in this article.

© 2008 by Taylor & Francis Group, LLC

PART IV

PERSPECTIVES
ON

SOFTWARE SCIENCE

I. Fundamental
 Principles of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

 14. Retrospect
 on SE

15. Prospect on
 Software Science

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

1112 Part IV Perspectives on Software Science

oftware engineering is immature because it lacks a theoretical
framework with underpinning foundations. A vast volume of
empirical knowledge has been documented in software engineering

without efficient and intensive theoretical processing and refinement.
Therefore, the formal documentation of software engineering theories and
fundamental body of knowledge is the key towards the maturity of software
engineering. This book is devoted as a rational attempt to establish the formal
and coherent theoretical framework of software engineering for its maturity.

The knowledge structure of Part IV on Perspectives on Software
Science is as follows:

 • Chapter 14. Retrospect on Software Engineering
 • Chapter 15. Prospect on Software Science

This part addresses the theoretical and empirical framework of software

science and engineering. The preceding chapters of this book have revealed
that almost all the fundamental problems that could not be solved in the last
four decades in software engineering stemmed from the lack of coherent
theories in the form of software science. The objective of this part is to
demonstrate how software science may be established on the basis of the
theoretical foundations about it, the empirical observations on it, and the
transdisciplinary knowledge gained from other much matured disciplines.

Chapter 14, Retrospect on Software Engineering, wraps up the entire
framework of theoretical and empirical foundations of software engineering.
On the basis of the first three parts of this book on principles, constraints,
theoretical foundations, and organizational foundations of software
engineering, this chapter moves the focus onto the entire picture. It studies
the infrastructure of software engineering and discusses the organization of
the software industry, particularly the organizational structure and
methodologies of the software industry, and the hidden phenomenon of
software maintenance crisis in software engineering. The formalized
principles and laws of software engineering developed throughout this book
are summarized, which form the essential body of knowledge for excellent
software engineers and researchers.

Chapter 15, Prospect on Software Science, presents a perspective on the
emergence of software science complementing to software engineering. The
former is the theoretical inquiry of software and the laws constraining it;
while the latter is the empirical study of engineering methodologies and
techniques for software development and software industry organization. It is
recognized that without theoretical physics there would be no matured
applied physics; and without dynamics there would be no matured
mechanical engineering. So it is with software science and software
engineering. The formal structure of generic knowledge systems for all the
science and engineering discipline is described first. Based on the generic
knowledge system model, the theoretical framework of software engineering

S

© 2008 by Taylor & Francis Group, LLC

 Part IV Perspectives on Software Science 1113

knowledge towards software science is modeled. Potential impacts of
software science theories and methodologies on computing and conventional
software engineering are discussed. New trends in software science and
engineering are presented.

Part IV will wrap up this book by a retrospect on the coherent
framework of software engineering theories, and a prospect on the structure
of the emerging software science. This part reveals that software engineering
encompasses not only a wider domain of empirical applications, but also a
richer set of theoretical essences that are closer to the root of human
knowledge in terms of mathematics, philosophy, cognitive informatics,
computation, sociology, and system science. In software science and matured
software engineering, denotational mathematics, intelligent code generation,
hyper-programming, and rational work organization methodologies will play
the most significant roles in this discipline.

© 2008 by Taylor & Francis Group, LLC

Chapter 14

RETROSPECT ON
SOFTWARE ENGINEERING

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

14. Retrospect on
 Software Engineering

14.1 Introduction 14.4 Essential Knowledge towards Excellent Software Engineers
14.2 Infrastructures of SE 14.5 Expected Impact of the Theoretical Foundations for SE
14.3 Software Industry Organization 14.6 Summary

15. Prospect on
 Software Science

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

1116 Part IV Perspectives on Software Science

Knowledge Structure

 Infrastructures of software engineering

 • The process infrastructure of software engineering
 • Process-based software engineering (PBSE)

 Software industry organization

 • The nature of the software industry
 • Principles of software industry organization
 • A perspective on the software maintenance crisis

 Essential knowledge towards excellent software engineers

 • Basic constraints of software engineering
 • Empirical principles of software engineering
 • Laws of software engineering
 • Formal principles of software engineering

 Impact of the theoretical foundations to software engineering

 • The cognitive model of multidisciplinary knowledge
 • Expected impacts of Wang’s laws and theorems for software engineering
 • Students’ feedback

Learning Objectives

 • To understand the process infrastructure of software engineering.

 • To understand the basic methodologies for software industry organization.

 • To know how to organize process-based software engineering.

 • To know how to organize distributed time-shared development in software
engineering.

 • To be familiar with the knowledge structure for excellent software engineers,
which encompasses empirical and formal principles and laws for software
engineering.

 • To know the cognitive model of multidisciplinary knowledge.

 • To be aware of the impact of the theoretical foundations for software
 engineering.

14. Retrospect on Software Engineering

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1117

 “An investment in learning software engineering principles is a particularly
good investment for a software professional to make because that knowledge will last

a whole career – not be half obsolete within three years.”

Steve McConnell (1999)

“All objects in nature and their relations are constrained by invariable laws,
no matter one observed them or not at a given time.”

Yingxu Wang (2004)

“We shall do a much better programming job, provided that we approach

the task with a full appreciation of its tremendous difficulty, provided that we stick to
modest and elegant programming languages, provided

that we respect the intrinsic limitations of the human mind and
approach the task as very humble programmers.”

Edsger W. Dijkstra (1930 - 2002)

14.1 Introduction

istorically, software engineering has been perceived as a branch of
computer science. Following the systematical study of this book, it
is revealed that software engineering encompasses not only a wider

domain of empirical applications, but also a richer set of theoretical essences
that are closer to the root of human knowledge in terms of mathematics,
philosophy, cognitive informatics, computation, sociology, and system
science.

Software engineering was immature because it lacks a coherent
theoretical framework and solid foundations. A vast volume of empirical
knowledge has been documented without further theoretical processing and
refinement. The formal documentation of software engineering theories and
the fundamental body of knowledge in this book is a systematic attempt to
establish the formal and coherent knowledge framework of software
engineering towards a matured discipline.

On the basis of the first three parts of this book on principles,
constraints, theoretical foundations, and transdisciplinary foundations of
software engineering, this chapter moves the focus onto the entire picture,
which explores the infrastructure of software engineering and discusses the
organization of the software industry. Then, in order to wrap up this book,
this chapter provides a retrospect on software engineering theories and

H

© 2008 by Taylor & Francis Group, LLC

1118 Part IV Perspectives on Software Science

foundations, and reviews what readers have achieved so far in acquiring
essential knowledge toward excellent software engineers and researchers.
The impacts of the interdisciplinary foundations for software engineering are
discussed, and students’ feedback on this book in the form of lecture notes is
reported. The theoretical framework of software engineering presented in this
book encompasses the fundamental principles and constraints of software
engineering, theoretical foundations of software engineering, and
transdisciplinary foundations of software engineering.

In the remainder of this chapter, the retrospect on software engineering
will be presented in five sections. Section 14.2 establishes the infrastructure
of software engineering, particularly the process framework of software
engineering and process-based software engineering. Section 14.3 explores
the organizational structure and methodologies of the software industry,
where hidden phenomenon in software engineering called the software
maintenance crisis is identified and analyzed. Section 14.4 reviews the
essential knowledge developed in this book towards excellent software
engineers. The impact of the theoretical framework of software engineering
in research and practice is discussed in Section 14.5.

14.2 Infrastructures of Software
 Engineering

A recent trend in empirical software engineering is the shift from a focus on
laboratory-oriented software engineering to a more industry-oriented view of
software engineering processes. This complements preceding ideas about
software engineering in terms of organization and process-orientation. From
the domain coverage point of view, many of the existing software
engineering approaches have mainly concentrated on the technical aspects of
software development. Important areas of software engineering, such as the
organizational and managerial infrastructures, have been left untouched. As
software systems increase in scales, issues of complexity and professional
practices become involved. Software development as an academic or
laboratory activity has to engage with software development as a key
industrialized process.

This expanded domain of software engineering exposes the limitations
of existing methodologies that often address only individual sub-domains.
There is, therefore, a demand for an overarching approach that provides a
basis for theoretical and practical infrastructures capable of accommodating

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1119

the whole range of modern software engineering practices and requirements.
One approach is provided by process-based software engineering [Wang,
2001c; Wang and Bryant, 2002]; part of the more general trend towards a
focus on the process infrastructure. Typical approaches and techniques for
the establishment, assessment, and improvement of software engineering
process systems are introduced in the following subsections, and further
details may be referred to [Wang and King, 2000a].

14.2.1 THE PROCESS INFRASTRUCTURE OF
 SOFTWARE ENGINEERING

As the scale of software increases continually at an ever faster rate,
greater complexity and professional practices become critical. Software
development is no longer solely a black art or laboratory activity; instead, it
has moved inexorably toward a key industrialized engineering process. In
software engineering, the central role is no longer that of the programmers;
project managers and corporate management have critical roles to play. As
programmers use programming technologies, software corporation managers
seek organizational and strategic management methodologies, and project
managers seek professional management and software quality assurance
methodologies. These developments have resulted in a modern, expanded
domain of software engineering which includes three important aspects:
development methodology, organization and infrastructure, and management.

Understanding the need to examine the software engineering process
follows naturally from the premise that has been found to be true in other
engineering disciplines, that is, that better products result from better
processes. For the expanded domain of software engineering, the existing
methodologies that cover individual subdomains are becoming inadequate.
Therefore, an overarching approach is sought for a suitable theoretical and
practical infrastructure to accommodate all the modern software engineering
practices and requirements. An interesting approach, which is capable of
accommodating the complete domain of software engineering, has been
recognized and termed the software engineering process. Research into and
adoption of the software engineering process paradigm will encompass all
the approaches to software engineering.

Generally, a process may be described as a set of linked activities that
takes an input and transform it to create an output. The software engineering
process as a system is no different; it takes a software requirement as its
input, while the software product is its output.

Definition 14.1 A software engineering process is a set of sequential

practices that are functionally coherent and reusable for software engineering
organization, development, and management.

© 2008 by Taylor & Francis Group, LLC

1120 Part IV Perspectives on Software Science

The software engineering process is usually referred to as the software
process, or simply the process. As such it is part of a more general trend that
focuses on process, pushing structure and product into the background
[Wang and King, 2000a].

To model the software engineering processes, a number of software
process system models have been developed in the last decade. The variety
and proliferation of software engineering process research and practices
characterize the software engineering process as a young subdiscipline of
software engineering that still needs integration and fundamental research.
Studies in the software process reflect a current trend that shifts from
controlling the quality of the final software product to the optimization
of the processes that produce the software. It is also understood that the
software engineering process, rather than the software products themselves,
can be well established, stabilized, reused, and standardized.

The technical and organizational infrastructures of software
engineering rely on the software engineering processes. The processes of
software engineering are complex systems as described by various process
models and standards such as CMM [Humphrey, 1988/89/95; Paulk et al.,
1991/93/95], ISO 9001 [ISO 9001, 1989/94; ISO 9000-3, 1991],
BOOTSTRAP [Koch 1993; Haase et al. 1994; Kuvaja et al. 1994], ISO/IEC
15504 [ISO/ICT, 2000; Dorling, Wang et al., 1999], and SEPRM [Wang et
al., 1998b/99a; Wang and King, 2000a]. These models collected a set of
processes ranging from 18 to 51. This section comparatively explores current
process models and the relationships among them.

CMM was initially developed as an assessment model for software
engineering management capabilities. As such it was expected that it would
provide useful measures of organizations bidding or tendering for software
contracts. However, it was soon realized that the concept of process for
software engineering had more utility than that of capability assessment.
Software development organizations may use the process model as an
infrastructure for internal process organization and improvement. As a result
of this deeper understanding, new practices in process-based software
engineering have been emerging in the last decade. This may be considered
as one of the important inspirations arising from CMM and related research.
 In the software industry, software development is commonly perceived
as a one-off activity. On the other hand, one of the most interesting findings
in software engineering practices is that the processes of software
development are relatively stable, repeatable, and reusable. Therefore,
software engineering processes can be adopted as the infrastructure for
software engineering. This leads to the development of the concept and
technology known as process-based software engineering.
 The Software Engineering Process Reference Model (SEPRM) was
developed in 1998 [Wang et al., 1998b/99a; Wang and King, 2000a], which
provides a comprehensive process framework of 51 processes and 444 base

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1121

practice activities for software engineering. SEPRM is an integration and
extension of the major process models of CMM, ISO 9001, BOOTSTRAP,
and ISO/IEC 15504 as shown in Fig. 14.1. The process framework and
capability model of SEPRM has been presented in Section 11.5.2, which
encompasses three process subsystems known as the organization,
engineering, and management processes.

 ISO / IEC Bootstrap
 15504

 CMM ISO 9001

 SEPRM
 Reference Model

Figure 14.1 The role of the SEPRM reference model for software engineering

14.2.2 PROCESS-BASED SOFTWARE ENGINEERING
 (PBSE)

Software engineering is a discipline that has emerged from computer
science and is based on interdisciplinary theoretical and empirical
methodologies. Initial approaches developed thus far have concentrated on
technical aspects of software engineering, such as programming
methodologies, software development models, and formal methods, while a
cutting-edge approach, process-based software engineering, has been formed
[Wang and Bryant, 2002] in the last decades for integrating the modern
domain of software engineering.

Definition 14.2 Process-Based Software Engineering (PBSE) is an

organizational methodology for software engineering, by which the
infrastructure of software engineering, encompassing the three process
subsystems of organization, development, and management, is integrated by
a well-defined process reference model.

This expanded view of the domain exposes the limitations of

conventional approaches, methodologies, and tools; but this is not to imply
that the wealth of experience that they embody should be jettisoned. On the
contrary, we would advocate the development of an inclusive and integrative
approach that offers a suitable theoretical and practical infrastructure capable

© 2008 by Taylor & Francis Group, LLC

1122 Part IV Perspectives on Software Science

of accommodating both new demands and existing expertise: Hence the
process-oriented view.

The software process approach towards software engineering
encompasses systematic, organizational, and managerial infrastructures for
software engineering. It is necessary to expand the horizons of software
engineering in this way because of the rapidly increasing complexity and
scale demanded by software products. The need to ensure software quality
and to increase productivity also provides impetus for PBSE.

14.2.2.1 The Organization Model of PBSE

In software engineering process research, it has been assumed that a

process system should have already existed in a software development
organization so that a process assessment and improvement project could be
carried out directly. However convenient this assumption is, it is not true that
the majority of software organizations have formal and definable processes.

In reality, a process assessment project starts by the mapping of a
software organization’s existing processes to a process model that has been
chosen for the assessment. The usual cases are that a software development
organization has only some loose and informal practices, rather than a
defined and coherent process system. This scenario leads to the observation
that rigorous PBSE has to start from process establishment rather than
process assessment in a software development organization. Therefore, the
right order of events in achieving software engineering process excellence in
an organization is first, process establishment; second, process assessment;
and then process improvement as shown in Fig. 14.2.

Figure 14.2 Software engineering process system establishment

Process system
improvement

Process system
assessment

Process system establishment

The software engineering process
reference model

Process
system

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1123

For modeling a process system, processes are elicited and integrated
from the bottom up. Processes in the development subsystem are first
analyzed and modeled. Corresponding to the development processes, the
management processes are then deployed as measures to support and control
the development processes. The third step is to design the organization
processes, which are the top-level management processes oriented to the
whole software development organization, and which are applicable to all
software engineering projects within the organization.

It is generally considered that there would be a number of parallel
development and management processes for individual projects within a
software development organization. For the purpose of controlling a process
system, software engineering processes are implemented and activated top
down, from the organization level to the project level. Therefore, the
relationship between the organization, management, and development
processes can be further refined [Wang and King, 2000a; Wang and Bryant,
2002] as shown in Fig. 14.3.

 Organization’s
 Organization process reference
 process model
 (OPRM)

 organization bus

 process bus

 Management Management Management
 Project’s process 1 Project’s process 2 Project’s process n
 tailored tailored tailored
 process process process
 model 1 Development model 2 Development model n Development
 (PTPM 1) process 1 (PTPM 2) process 2 (PTPM n) process n

 Project 1 Project 2 Project n

Figure 14.3 Practices in process-based software engineering

Fig. 14.3 shows the common practices in organizing a software

engineering process system. It is noteworthy that there is only one
organization process subsystem in a software development organization,
which will be based on the Organization’s Process Reference Model
(OPRM).

Definition 14.3 A process reference model is an established, validated,

and proven software engineering process model that consists of a
comprehensive set of software processes and reflects the benchmarked best
practices in the software industry.

© 2008 by Taylor & Francis Group, LLC

1124 Part IV Perspectives on Software Science

At the top level, a software development organization may adopt an
existing international standard or an established process model as its OPRM;
or, it can develop a specific organization-oriented OPRM based on the
existing models and the organization’s own practices and experiences in
software engineering. The OPRM plays a crucial rule in the regulation,
coordination, and standardization of an organization’s software engineering
practices.

At project level, a number of parallel development and management
processes may exist based on the individual Project’s Tailored Process
Model (PTPM), which are derived models of the OPRM reference model. In
Fig. 14.3, the process reference model OPRM is the key for empirical PBSE.
If an OPRM is well established in an organization, the PTPMs at project
level can easily be derived.

In PBSE, the OPRM reference model could, and usually should, be
tailored or adapted to a specific project according to the nature of the project,
taking into account application domain, scope, complexity, schedule,
experience of project team, reuse opportunities identified and/or resources
availability, and so on. For a PTPM of an individual project, the management
and development processes should be one-to-one designed and synchronized.
Tailoring of a PTPM from a comprehensive OPRM makes the software
project leaders’ tasks dramatically easier. Using this approach, project
organization and conduct can be effectively performed within an
organization’s unified software engineering process infrastructure.

14.2.2.2 Software Engineering Process System Establishment

An initial and fundamental step in PBSE is process system
establishment. The major aim of process establishment is to build up a
software engineering process reference model for a software development
organization. When a process system is established and experienced,
improvement can be initiated effectively via process assessment and
benchmarking.

14.2.2.2.1 Procedure to Derive a Software Project Process Model

There are three basic steps for deriving a software project process
model. Referring to the illustration of PBSE methodologies in Fig. 14.3, the
procedure to derive a process model at the project level is explored in the
following subsections.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1125

(a) Select and Reuse a Process System Reference Model at Organization
 Level

The most efficient way to establish a process system is to reuse a
standard or well-accepted process model. In selecting an existing process
model as an organization’s reference model, one of the key issues is that the
reference model should be reasonably comprehensive in order to enable an
easy derivation of working process models at project level. Another issue is
that the reference model should be able to serve many purposes in software
engineering such as multi-type process assessment, improvement, training,
and internal standardization. The third issue is the flexibility of the reference
model, i.e., the selected reference model should allow incorporation of the
host organization’s experience and special needs into the reference model
and derived models.

When an organization’s process system is determined, the next step is
to uphold it as the organization’s official and unified software engineering
platform. Based on this, various process models should be derived for
different projects.

(b) Derive a Process Model at Project Level

Before commencing a new project, the first thing that a project manager
needs to do is to derive the project’s process model as the infrastructure for
the project. The project process model will serve as a blueprint for
organizing all activities that are going to be enacted within the scope of the
project, including technical, managerial, organizational, customer, and
supporting activities.

A checklist of factors for consideration in deriving a project process
model from the chosen reference model is shown in Table 14.1. When all
factors are weighted by high (H), medium (M), or low (L), a rating for what
kind of project process model is needed can be determined according to Eqs.
14.1 and 14.2.

Assuming that Si is the ith weight for factor i and n is the number of
total factors, the average score, S, or the level of requirement for a derived
model is defined as:

1

1 n

i
i

S S
n =

= ∑ (14.1)

According to the average score S, the type of derived model determined
by the weighted factors can be estimated as follows:

> 3, the need is for a project process model
= 3, the need is for a project process model
< 3, the need is for a project process model

complete
S medium

light

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 (14.2)

© 2008 by Taylor & Francis Group, LLC

1126 Part IV Perspectives on Software Science

Table 14.1
Determining Type of Derived Process Models for a Project

Weight No Project Factor

H M L

Score

1 Importance a S1 = 5
2 Difficulty a S2 = 1
3 Complexity a S3 = 5
4 Size a S4 = 3
5 Domain knowledge requirement a S5 = 3
6 Experience requirement a S6 = 5
7 Special process needed a S7 = 1
8 Schedule constraints a S8 = 3
9 Budget constraints a S9 = 5

10 Other process constraints a S10 = 5
Total 25 9 2 S = 3.6

 Note: H = High (5), M = Medium (3), L = Low (1).

For instance, applying Eq. 14.1 to the weights of the ten factors as

shown in Table 14.1 results in an estimated average score S = 3.6. According
to Eq. 14.2, the project process model has to be a relatively complete model
that covers almost related process areas modeled in the reference model.

Note the factors shown in Table 14.1 are examples for demonstrating

how the type of project process model may be determined in a formal way. It
is by no means exhaustive. Therefore, readers may add, delete, and/or modify
the factors in order to make them suitable for their specific projects.

 (c) Apply the Derived Project Process Model

When a project process system model is derived, the next step is to
accept, as a common platform, the process model at both project and
individual levels, and to apply the project process model to all activities
within the project scope.

It can be seen that the reference model approach to implement software

engineering provides project managers with a means to derive and organize a
project process model in a consistent and transparent manner. It also provides
software engineers and others in a software project with a clear picture of
their roles, interactions, and relationships to each other.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1127

14.2.2.2.2 Methods for Deriving a Software Project Process Model

To establish a process model for a software project, three types of
methods may be introduced. They are process model tailoring, extension, and
adaptation, ordered increasingly according to their technical difficulty in
applications.

(a) Process Model Tailoring

Definition 14.4 Process model tailoring is a model customization

method for making a process model suitable for a specific software project
by eliminating unnecessary processes.

Model tailoring is the simplest method to derive a project process

model from a comprehensive organizational process reference model. The
only technique is to delete what is not needed in order to establish a specific
software project based on an understanding of both the reference model and
the nature of the project.

(b) Process Model Extension

Definition 14.5 Process model extension is a model customization
method for making a process model suitable for a specific software project
by adding additional processes.

Model extension requires a project manager capable of integrating new

processes, adopted from either process models or best practices repositories,
into the current project process model or organizational process reference
model. When new processes are introduced, a validation phase is needed for
monitoring their fitness and performance in the whole process system.

(c) Process Model Adaptation

Definition 14.6 Process model adaptation is a model customization
method for making a process model suitable for a specific software project
by modifying, updating, and fine-tuning related processes.

Model adaptation is useful when a project manager is experienced with

respect to one process reference model and prepared to monitor the
performance of adapted processes during a project life span. All of the above
three approaches for process model derivation and establishment can be used
individually or together to derive an effective project process model for
software engineering.

© 2008 by Taylor & Francis Group, LLC

1128 Part IV Perspectives on Software Science

14.2.2.3 Software Engineering Process System Assessment

It is believed that if one cannot measure a process system, one cannot
improve it. Therefore, Software Process Assessment (SPA) is critical for
process improvement. Various methodologies for SPA have been developed
in the last decade. This section describes the integrated SPA framework of
SEPRM, and demonstrates that current process models, such as CMM, ISO
9001, BOOTSTRAP, and ISO/IEC 15504, can be perfectly fitted into this
framework.

14.2.2.3.1 Process Assessment Methods against Different Reference Systems

From the viewpoint of reference systems there are four types of
assessment methods: model-based, standard-based, benchmark-based, and
integrated (model-and-benchmark-based) assessment.

(a) Model-Based Assessment

Definition 14.7 Model-based assessment is an SPA method by which a

software development organization is evaluated against a specific process
and capability model, and according to a specific capability determination
method provided by the model.

Model-based assessment is a kind of absolute assessment approach.

Using this approach, a software development organization is evaluated
against a fixed process framework and a defined capability scale. The
assessment result reports a capability level of a software development
organization against the capability scale of the model. CMM and
BOOTSTRAP are examples of model-based assessment methodologies.

(b) Standard-Based Assessment

Definition 14.8 Standard-based assessment is an SPA method by
which a software development organization is evaluated against a specific
process and capability model defined by a standard, and according to a
specific capability determination method provided in the standard.

Standard-based assessment is a special type of model-based assessment

method. It also provides an absolute assessment approach by which a
software development organization’s process capability is rated against a
defined capability scale. ISO/IEC 15504 and partially ISO 9001 are examples
of standard-based assessment methodologies.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1129

(c) Benchmark-Based Assessment

Definition 14.9 Benchmark-based assessment is an SPA method by
which a software development organization is evaluated against a set of
benchmarks of software processes, and according to a specific capability
determination method.

Benchmark-based assessment is a kind of relative assessment approach.
By this approach a software development organization is evaluated against a
set of benchmarks. Thus, the assessment result associated with a software
development organization’s capability level may be presented in three
relative levels: below, equal, or above the benchmark of each process.

(d) Integrated Assessment

 Definition 14.10 Integrated assessment is a kind of composite model-

based and benchmark-based SPA method in which a software development
organization is evaluated against both a benchmarked process model and a
capability model, and according to a specific capability determination
method provided in the model.

The integrated assessment method inherits the advantages of both

absolute and relative SPA methods as described in this section. Using the
integrated assessment method, a software development organization can be
evaluated against both a benchmark and an absolute capability scale at the
same time. The SEPRM model is such an integrated SPA model. Another
advantage of the integrated assessment method is its ability to provide a
quantitative guide for software process improvement.

14.2.2.3.2 Process Assessment Methods Based on Different Model
 Structures

From the viewpoint of model framework structures, there are three
types of assessment methods. They are: checklist-based assessment, 1-D
process-based assessment, and 2-D process-based assessment, as illustrated
in Fig. 14.4.

Fig. 14.4 shows that a 2-D process model allows all processes to be
performed and rated at any process capability level. A 1-D process model is a
special case of 2-D models, where a group of processes is defined and rated
at a certain capability level. For example, according to the 1-D process
model, processes 7 – 13 in Fig. 14.4 can only be performed, and therefore
rated at level 3 or below. Similarly, the checklist-based process model
is a simpler 1-D process model, where all processes are defined and rated at
a single level with equal importance.

© 2008 by Taylor & Francis Group, LLC

1130 Part IV Perspectives on Software Science

 PCL
k 2 1
...
5
4
3 C
2
1
0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 i ... m
 process
 Note: 1 -- 1-D, 2 -- 2-D, C -- checklist, P C L -- process capability level

Figure 14.4 Structures of process assessment models

(a) Checklist-Based Assessment

Definition 14.11 Checklist-based assessment is an SPA method that is

based on a pass/fail checklist for each practice and process specified in a
process model.

A checklist-based assessment model is the simplest assessment

methodology. This kind of method is only suitable for SPA. It is not much
help in step-by-step process improvement. The ISO 9001 model provides a
checklist-based assessment method.

(b) 1-D Process-Based Assessment

Definition 14.12 1-D-based assessment is an SPA method that

determines a software development organization’s capability from a set of
processes in a single process dimension.

The 1-D assessment is an extension of the checklist-based assessment.

This type of model is suitable for process improvement in project or
organization scopes while, at the same time, being relatively weak in detailed
process scope simply because processes have been grouped and pre-allocated
at specific capability levels as shown in Fig. 14.4. CMM and BOOTSTRAP
are examples of 1-D assessment models.

An issue presenting in such methods is that there are no widely
accepted criteria prescribing how a set of software processes are grouped and
mapped onto different capability levels. In principle, the processes defined in
a model would be practiced at any capability level. That is, software
processes in practice have no inherited capability levels; only the software
development organizations and the people who are performing the processes
can be measured by capability levels.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1131

(c) 2-D Process-Based Assessment

Definition 14.13 2-D process-based assessment is an SPA method that

employs both process and capability dimensions in a process model, and
derives process capability by evaluating the process model against the
capability model.

The 2-D assessment method enables every process in the process

dimension to be performed and evaluated against the capability dimension at
all levels. This is a flexible approach to software process assessment,
although effort spent in a 2-D process assessment would be much higher than
that of a 1-D or checklist assessment. This type of model is suitable for
process improvement from process scope to project and organization scopes
because it provides precise measurement for every process at all the
capability levels. ISO/IEC 15504 and SEPRM are examples of 2-D
assessment models.

Conventionally, 1-D methods were considered to have provided a

process dimension in process assessment. By comparing this with the 2-D
assessment methods described above and in Fig. 14.4, it may be predicted
that there is another kind of 1-D process assessment model which
implements only the capability dimension, while leaving the process
dimension open for a software development organization or the process
model providers to design and implement. This would provide a level of
flexibility in software process assessment and standardization.

14.2.2.4 Software Engineering Process System Improvement

Software engineering process system improvement is the goal of
process assessment, acting on issues found in an assessment and enhancing
the performances of processes in the process system. This section attempts to
describe major philosophies in Software Process Improvement (SPI) and
alternative SPI methodologies.

14.2.2.4.1 Software Process Improvement Philosophies

There are various philosophies underpinning SPI. Key categories of

SPI philosophy are goal-oriented process improvement, benchmark-based
process improvement, and continuous process improvement. This subsection
discusses philosophies behind the process improvement methodologies. The
usability of various SPI approaches and their relationships are also
commented upon.

© 2008 by Taylor & Francis Group, LLC

1132 Part IV Perspectives on Software Science

(a) Goal-Oriented Process Improvement

Definition 14.14 Goal-oriented process improvement is an SPI

approach by which process system capability is improved by moving towards
a predefined goal, usually a specific process capability level.

This approach is simple, and is the most widely adopted philosophy in

software engineering. For example, ISO 9001 provides a pass/fail goal with a
basic set of requirements for a software process system. CMM, ISO/IEC
15504, and SEPRM provide a 5/6-level capability scale that enables software
development organizations to set more precise and quantitative improvement
goals.

(b) Benchmark-Based Process Improvement

Definition 14.15 Benchmark-based process improvement is an SPI

approach by which process system capability is improved by moving towards
an optimum combined profile according to software engineering process
benchmarks, rather than a maximum capability level.

This is a realistic and pragmatic philosophy for process improvement. It

is argued that in order to maintain sufficient competence, a software
organization does not need to push all its software engineering processes to
the highest level because it is neither necessary nor economic. This
philosophy provides alternative thinking to the idea “the higher the better for
process capability” as is presented in the goal-oriented process improvement
approach.

Using the benchmark-based improvement approach, an optimized
process improvement strategy identifies a sufficient (the minimum required)
and economic target process profile, which provides an organization with
sufficient margins of competence in every process. It does not necessarily set
them all at the highest level of a capability scale.

(c) Continuous Process Improvement

 Definition 14.16 Continuous Process Improvement is an SPI approach

by which a process system’s capability is required to be improved all the
time, and toward ever higher capability levels.

This is considered an oriental philosophy that accepts no top limits or

discrete goals because “ideal” standards are continuously changing. It is this
assumption that change is normal that is in tune with modern management
theory. Continuous process improvement has been proven effective in
engineering process optimization and quality assurance. Using this approach,

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1133

SPI is a continuous, spiral-like procedure. The Deming Circle, plan-do-
check-act, is a typical component of this philosophy.

 In continuous process improvement there is no end to process
optimization, and all processes are supposed to be improved all the time.
There is a criticism that the goals for improvement are not explicitly stated in
this philosophy. Therefore, when adopting continuous process improvement,
top management should make clear the current goals, as well as the short,
middle, and long-term ones.

 Generally, goal-oriented methodologies will still constitute the
mainstream in SPI. However, 2-D process models provide more precise
process assessment results, and the benchmark-based process models provide
empirical indications of process attributes, benchmark-based improvement
will gain wider application. Also, the continuous process improvement
approach will provide a basis for sustainable long-term strategic planning.

14.2.2.4.2 Software Process Improvement Methodologies

The above discussion on the philosophies for process improvement

yields the basis for an investigation of possible software process
improvement methodologies. There are two basic SPI methods – assessment-
based and benchmark-based process improvement. The former improves a
process system from a given level in a defined scale to a next higher level;
the latter provides improvement strategies by identifying gaps between a
software development organization’s process system and a set of established
benchmarks. In addition, a combined approach may be adopted.

(a) Model-Based Improvement

Definition 14.17 Model-based improvement is an SPI method by which

a process system can be improved by basing its performance and capability
profile on a model-based assessment.

Using this idea, the processes inherent in a software development

organization are improved according to a process system model with step-by-
step suggestions. CMM and BOOTSTRAP are examples of such a model-
based process improvement methodology.

(b) Standard-Based Improvement

Definition 14.18 Standard-based improvement is an SPI method in

which a process system can be improved by basing its performance and
capability profile on a standard-based assessment.

© 2008 by Taylor & Francis Group, LLC

1134 Part IV Perspectives on Software Science

Using this approach, the processes inherent in a software development
organization are improved according to a standardized process system model.
ISO/IEC 15504 provides a standard-based improvement method. However,
it is noteworthy that ISO 9001 is probably not suitable because it lacks a
process improvement model and a step-by-step improvement mechanism
[Wang and King, 2000a].

(c) Benchmark-Based Improvement

Definition 14.19 Benchmark-based improvement is an SPI method in

which a process system can be improved by basing its performance and
capability profile on a benchmark-based assessment.

Benchmark-based improvement is a kind of relative improvement
approach. Using this approach, the processes inherent in a software
development organization are improved according to a set of process
benchmarks. It provides an optimized and economical process improvement
solution. SEPRM is the first benchmarked model for enabling benchmark-
based process improvements [Wang et al., 1998b/99a; Wang and King,
2000a].

(d) Integrated Improvement

Definition 14.20 Integrated improvement is a combined model-based

and benchmark-based SPI method in which the process system can be
improved by basing its performance and capability profile on an integrated
model-based and benchmark-based assessment.

The integrated process improvement method inherits the advantages of

both absolute and relative SPI methods. Using the integrated improvement
method, the processes of a software development organization are improved
according to a benchmarked process system model. SEPRM is designed to
support integrated model- and benchmark-based process improvement.

14.3 Software Industry Organization

Although Brooks perceived that there is “no silver bullet in software
engineering [Brooks, 1987],” software engineering itself has already been a
silver bullet for other engineering disciplines. This is because, as discussed in

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1135

Section 10.5.2, the most powerful means for describing complex system
behaviors and relations is software and supporting denotational mathematics.

 Therefore, the IT industry in general, and the software industry in
particular, is gaining its profound importance in the information society.
However, the organizational theories and methodologies for the software
industry, as an important part of software engineering in the large, have been
almost overlooked in this discipline.

This subsection explores the nature of the software industry, and
describes fundamental principles of software industrial organization.
Important methodologies of software industrial organization are proposed on
the basis of the engineering, system, management, and economics
foundations of software engineering developed throughout this book.

14.3.1 THE NATURE OF THE SOFTWARE INDUSTRY

 Software engineering in the large has been organized with the mass
production metaphors in the industry, which analogizes the machine-building
origins of manufacture engineering and the system of mass production by
interchangeable parts that grew out of them.

 In the Dagstuhl Seminar Series #9635 on History of Software
Engineering held in Germany in August 1996 [Aspray et al., 1996], the
organizers, W. Aspray, R. Keil-Slawik, and D.L. Parnas, identified the
characteristics and idiosyncracies of computer science in general and
software engineering in particular as follows:

 • Highly innovative and rapidly changing field with no broadly
recognized core of material that every practitioner must know.

 • Few results are supported by empirical or comparative studies.

 • Work within the field older than 3–4 years is rarely
acknowledged or referenced.

 • Old problems are given new names and old solutions overlooked.

 • Evolution of the discipline is tightly coupled to economic and
 societal demands.

 • There is a need for interdisciplinary work comprising, e.g.,
 mathematics, psychology, business, or management science,

• Continuing debate about whether there should be a discipline
 called software engineering, and if so, whether this should be
 treated as another discipline among the set of traditional
 engineering disciplines.

© 2008 by Taylor & Francis Group, LLC

1136 Part IV Perspectives on Software Science

 Barry Boehm classified software engineering problems into two areas
[Boehm, 1976/83]: a) Detailed design and coding of systems software by
experts in a relatively economics-independent context; and b) Requirements
analysis, design, text, and maintenance of application software by technicians
in an economics-driven context. The former is the domain for software
scientists whilst the latter is for software engineers. Boehm thought that,
although those scientific principles available to support software engineering
address problems in Area (a), the most pressing software engineering
problems are in Area (b).

 Michael Mahoney wrote: “That the search continues after twenty five
years suggests that software may be fundamentally different from any of the
artifacts or processes that have been the object of traditional branches of
engineering: it is not like machines, it is not like masonry structures, it is not
like chemical processes, it is not like electric circuits or semiconductors
[Aspray, et al., 1996].”

 Further, Stuart Shapiro identified the uniqueness of software
engineering [Aspray et al., 1996]:

"Misconceptions of the nature of engineering aside, though,

computing and software appear fundamentally different from other
areas of technological practice owing to their wide ranging applicability.
Computers are general-purpose problem-solving devices and their wide
utility is a function of this. However, their utility in a specific context is
due to the software which turns them into special-purpose problem-
solving devices. Software can play this role because it is abstract and
thus unusually malleable. With this abstractness, however, comes a
complexity which challenges both the cognitive processes of the
individual and the degree to which the software development process
can be automated.

"Because computer systems span a virtually limitless number of
problem domains but must function within specific ones, fundamental
problem-solving processes are of exceptional concern in computing and
this is one reason for the seeming inadequacy of any one model of
professional activity. Moreover, this irreducible tension between
specificity and generality marks both software development techniques
as well as software applications. Software technologists must find a
balance between sophisticated and powerful context-dependent
features usable in a narrow domain and less sophisticated and
powerful features amenable to more general usage. This is one reason
why a software 'industrial revolution' seems quite unlikely, as it
suggests the difficulty of producing high-level yet widely usable
standard software components.”

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1137

 According to economics, in a normal market where equivalent
alternatives exist, either increasing price or lowering quality will result in a
loss of market share of the producer. Whilst if monopoly exists in a market, a
producer may behave so without affecting its market share. The software
market, particularly the system software one, is basically a monopolistic
market. Therefore, the minimization of price and assurance of quality are
difficult to be guaranteed, at least at the same time.

 The software market is a sector of the information processing market,
where standardization and human cognitive familiarity play an important
role in market share. Therefore, international or industrial standards, as well
as intellectual properties, are important virtual capitals in the software
industry.

14.3.2 PRINCIPLES OF SOFTWARE INDUSTRY
 ORGANIZATION

With the understanding of the uniqueness of the software industry as
discussed in Section 14.3.1, this subsection attempts to explore the basic
principles of software industry organization and useful organizational forms
for the software industry, such as separation of software designers, builders,
and quality assurors in software engineering, as well as the new trend of
software engineering known as Distributed Time-Shared Development
(DTSD).

14.3.2.1 Basic Principles of Software Industrial Organization

The key organization principles for the software industry are as
follows:

 • To improve productivity

 • To practice specialization or division of labor

 • To deal with the labor-time interlock constraint

The basic forms of software industrial organizations [Baker, 1972;
Aron, 1983; Perry et al., 1994; ISO 9001, 1989/94; Schael, 1998; Wang and
Bryant, 2002; Wang, 2007d] can be summarized in Table 14.2.

The major organizational methodology for the software industry is
PBSE as presented in Section 14.2. Based on a generic software engineering
process model such as SEPRM [Wang et al., 1998b/99a; Wang and King,
2000a], software engineering activities and processes at personal, project
(team), and enterprise levels can be well organized in the three essential
aspects of software technology, organization, and management.

© 2008 by Taylor & Francis Group, LLC

1138 Part IV Perspectives on Software Science

Table 14.2
Forms of Software Industrial Organization

No Form of Organization Category of Organization

1 Programmer teams
2 Chief programmers
3 Coordinative work organization

Project oriented

4 Division of work/roles
5 Architecture centered
6 Component based development
7 Production lines
8 Process-based SE (PBSE)

Process oriented

14.3.2.2 Separation of Software Designers, Builders, Quality Assurors,
 and Maintainers in Software Engineering

 Major current strategic problems in the software industry may be
identified as follows:

• Referees are also players: All the responsibilities in software
design, implementation, and quality assurance are carried out by
the same organization, even the same engineer or group. As a
consequence of this confused and overlapped allocation of
responsibilities, whenever time, budget, or skills are limited,
quality tends to be the first victim in a software engineering
project under this form of organization.

• Too high requirements and responsibility are put onto the

shoulders of customers: The fact that is often overlooked in
software engineering is that customers may not be able to
understand and evaluate the requirements, functionality, quality,
reliability, and complete correctness of complex software systems.
Therefore in software engineering it is unwise to rely on
customers for complete or thoughtful system requirements. It is
also unwise to let or to agree by any party that customers should
ensure the sole responsibility for testing and evaluating a new
software system.

In order to solve the above inherited problems, a separation of roles in

the software industry is necessary. As shown in Table 14.3, the software
industry is ideally split into four sectors known as the organizations of

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1139

software designers, software builders, software quality assurors, and software
maintainers with totally separated and explicitly designated roles and
responsibilities.

Table 14.3
Specialization of Roles and Responsibilities in Software Engineering

No Category of
Profession

Work Allocation Category of
Organization

1 Software architects
and system analysts

- Expertise on domain knowledge
- Acquire requirements
- Provide professional and feasible
 solutions
- Define architectural and functional
 specifications
- Define conformance criteria

Software designers

2 Programmers - Refine a specification into detailed
 design
- Coding
- Module testing
- System integration and testing
- Internal quality control
- Trial a system

Software builders

3 Software testers
and inspectors

- Design test cases
- Test acceptance
- Test quality

Software quality
assurors

4 Maintainers and
technical supporters

- Knowledge on legacy systems
- System maintenance
- System updating
- System reengineering

Software maintainers

14.3.2.3 Distributed Time-Shared Development in Software Engineering

Distributed time-shared development is a new approach of division of
labor in the time-dimension in contrary to division of labor in the functional
or specialization dimension.

Definition 14.21 Distributed Time-Shared Development (DTSD) is a
software engineering methodology that geographically allocates software
development work broadly distributed in time zones with a wide-area
Intranet.

© 2008 by Taylor & Francis Group, LLC

1140 Part IV Perspectives on Software Science

This methodology takes advantages of geographically allocated project
teams distributed in different time zones, but interconnected through a wide-
area Intranet and supported by remote execution capabilities. Well organized
and synchronized DTSD projects may gain time greatly in development,
because DTSD provides a virtual 24-hour software development organization
with the teams deployed in two or three countries globally.

14.3.3 A PERSPECTIVE ON THE SOFTWARE
 MAINTENANCE CRISIS

Although the software crisis has been predicted since the 1950s before
the establishment of software engineering as a discipline, experts perceive it
differently. Some of them may still doubt if it has ever existed; the rest may
claim that we were able to cope with the crisis via software engineering
techniques in the last decades. Despite the continuous argument on the
generic software crisis, the author perceives there is a real and hidden crisis
in software engineering and the software industry known as the software
maintenance crisis.

One of the important findings according to the economic models of

software engineering as developed in Chapter 12 is the tendency for software
maintenance crisis in the software industry [Wang, 2005d]. The economical
and technical reasons behind the software maintenance crisis will be
explored and possible solutions will be presented in this subsection from a
software industry organizational perspective.

14.3.3.1 The Mathematical Model of Software Maintenance Crisis

The Software Legacy Maintenance Cost (SLMC) model developed in

Section 12.6.5 and Theorem 12.5 on the exponential growth of maintenance
costs reveals that the ratio of maintenance cost Cm in a software development
organization, rm%, tends to exponentially increase over time, and it is
proportional to the number of legacy systems NL that the organization has
produced.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1141

Definition 14.22 Software Maintenance Crisis (SMC) is a phenomenon
that happens when the demand for software maintenance exceeded the
capability that a software development organization can provide, or when the
costs of legacy software maintenance predominantly override the investment
for new software development.

Based on Theorem 12.5 and Definition 14.19, the following theorem on

software maintenance crisis can be derived.

A wide range of economic behaviors of the software industry may be

explained on the basis of Theorems 14.1 and Theorem 12.5. For example, it
explains why the usual lifespan of software systems is quite short, why
software venders are voluntarily upgrading their systems from time to time,
why a user would not expect to use a software system for a few decades, and
why so many new software companies have been establishing while so many
famous software brands have faded away in last decades.

14.3.3.2 Reasons behind Software Maintenance Crises

According to Law 39 of software engineering as stated in Theorem
10.10, it can be explained that SMC is actually a special phenomenon of
software organization dissimilation in software engineering. The reasons
behind SMC can be analyzed from the technical, economical, psychological,
and sociological aspects as summarized in Table 14.4.

 The 48th Principle of Software Engineering

Theorem 14.1 The mechanism of Software Maintenance Crisis (SMC)
states that a software development organization may face a situation
known as the software maintenance crisis, in which the ratio of the
maintenance costs rm% is approaching 100% of the total costs that the
organization spent.

© 2008 by Taylor & Francis Group, LLC

1142 Part IV Perspectives on Software Science

Table 14.4
Causal Analysis of Software Maintenance Crises

No Technical Economical Psychological Sociological

1 Lack suitable
maintenance
process

The SLMC
model
(Theorem
12.5)

Unappreciated task High risk

2 Difficulty in
knowledge/
experience
transfer

Long
lifespan

Higher cognitive
complexity (work
products of previous
processes are not available
or lost)

Intricate
impacts

3 Low document
availability

Low
depreciation

Existence of possible
retire options during the
course of maintenance

Wide scope of
needs

4 Urgent when
maintenance is
required

High
retirement
costs

Need knowledge of
obsolete technology

High liability

5 Randomness and
unpredictability

 Risky task

14.3.4.3 Solutions to Software Maintenance Crisis

The following solutions may be taken to deal with the SMC problems
in software engineering and in the software industry.

a) Enhance technologies: i) To enhance software lifecycle

processes to include software maintenance and retirement; ii) To
increase depreciation of software systems; iii) To adopt a public agent
acting like a library to store all code and documents of commercial
software systems. Whenever the maintenance services can not continue
as caused by an SMC, the design documentation and code will become
a public resource. This measure will help to deal with document losses
in individual organizations caused by programmer turnover, application
migration across platforms, outsourced development, ceased
maintenance, and shut downs of businesses.

 b) Software industry reorganization: iv) To create a new

affiliated service industry to maintain the legacy systems as that of
garages for the automobile industry; v) To establish software insurance
agencies who take responsibility for supporting any interrupted service
of vendors.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1143

c) Honor the responsibility: The current abnormal practice for
releasing the liability in the software industry is either by shutting down
the business (or change names of companies), or by forcing users to
retire existing systems. Therefore, measures (i) through (v) proposed
above should be adopted for establishing a more responsible software
industry.

Learning from the automobile industry, one of the rational solutions to

the problems of SMC may be derived below.

When the society is highly dependent on the functionality of various

software systems, the risks and impacts of SMC are too high to be ignored.
Considering that the automobile industry and related maintenance garages
have created a significant industrial sector for the societies on the wheels, a
software maintenance sector will create a significant amount of important
services in societies of the information era.

14.4 Essential Knowledge towards
 Excellent Software Engineers

Steven McConnell (1999) wrote: “An investment in learning software
engineering principles is a particularly good investment for a software
professional to make because that knowledge will last a whole career – not
be half obsolete within three years.”

Corollary 14.1 There is a need of a sector in the software industry,
known as the professional software legacy maintainers or “software
garages.”

© 2008 by Taylor & Francis Group, LLC

1144 Part IV Perspectives on Software Science

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

4. Mathematical
 Foundations
 of SE

5. Computing
 Foundations
 of SE

6. Linguistics
 Foundations
 of SE

7. Information
 Foundations
 of SE

9. Cognitive Inf.
 Foundations
 of SE

1. Introduction

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

2. Principles
 of SE

8. Engineering
 Foundations
 of SE

3. Philosophical
 Foundations
 of SE

11. Management
 Science Foundations
 of SE

12. Economics
 Foundations
 of SE

13. Sociology
 Foundations
 of SE

14. Retrospect
 on SE

15. Prospect on
 Software
 Science

10. System Science
 Foundations
 of SE

Figure 14.5 Summary of the architecture of this book

 The preceding chapters of this book have systematically explored the
principles of software engineering in a rigorous and transdisciplinary
approach. The principles of software engineering are formally documented as
a comprehensive set of theorems and laws. This section summarizes the
theoretical framework of software engineering principles and laws, which
form the fundamental, durable, and enlightening knowledge for researchers
and practitioners in software engineering.

As a summary of the architecture of this book, the key subject areas of
software engineering foundations are highlighted in Fig. 14.5. Throughout
this book, new theories for software engineering and related fields are
developed, and formal treatments of existing theories and empirical practice
are presented. This demonstrates the bidirectional impact of this work on the
transdisciplinary investigation into the theoretical foundations of software
engineering.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1145

14.4.1 BASIC CONSTRAINTS OF SOFTWARE
 ENGINEERING

The essential knowledge on the 14 basic constraints of software
engineering as developed in Chapter 1 can be summarized in Table 14.5.
Further details and explanations of these constraints may be referred to
Section 1.3.

Table 14.5

Basic Constraints of Software Engineering

No Constraints Description Remark

1 Cognition A set of innate cognitive attributes of software and the
nature of the problems in software engineering that create
the intricate relations of software objects and make
software engineering inheritably difficult.

Def. 1.8

1.1 Intangibility

Software is abstract artifacts which is not constituted by
physical objects or presence, and is difficult to be defined
or expressed.

Def. 1.9

1.2 Complexity Software is innately complex and its intricate internal
connections and external couplings make it extremely
difficult to be expressed or cognized.

Def. 1.10

1.3 Indeterminacy

The events, behaviors, or their sequence of occurring in a
software system are not fully determinable on the basis of
a given algorithm during design time; Instead, some of
them may only be determined until run-time.

Def. 1.11

1.4 Diversity The great variety of software in types, styles,
architectures, behaviors, platforms, application domains,
implementation techniques, usability, reliability, and
quality.

Def. 1.12

1.5 Polymorphism The approaches and styles of both software design and
implementation are multifaceted and polyglottic.

Def. 1.13

1.6 Inexpressive-

 ness

Software architectures and behaviors are inherently
difficult to be expressed, modeled, represented, and
quantified both formally and rigorously.

Def. 1.14

1.7 Inexplicit
embodiment

Architectures and behaviors of software systems should
be explicitly described by coherent symbolic notations in
order to be processed and executed by computers.

Def. 1.15

1.8 Unquantifi-
able quality
measures

The model of software quality has intricate facets and is
difficult to be quantitatively modeled and measured.

Def. 1.16

© 2008 by Taylor & Francis Group, LLC

1146 Part IV Perspectives on Software Science

2 Organization A set of coordinative and managerial requirements for
software engineering that enables coordinative work to be
efficiently carried out among a group of software
engineers with different roles.

Def. 1.17

2.1 Time
dependency

Almost all organizational issues in software engineering,
such as software development scheduling, business goal
of time to market, and labor allocation, are dependent on
time.

Def. 1.18

2.2 Conservative
productivity

Abstract artifacts and their relations in system designs
need to be represented physiologically in the brain via
growing synaptic connections, which is constrained by
natural laws and its speed is not consciously controllable.

Def. 1.19

2.3 Labor-time
interlock

The nature of software project organization is dominated
by the extremely high interpersonal coordination rate,
which prevents the workload (effort) from free
decomposition into a sum of products of arbitrary amount
of labor and periods of time.

Def. 1.20

3 Resources The development costs and budgets, human resources,
and the supporting and operating platforms of hardware.

Def. 1.21

3.1 Costs Software engineering costs are incurred from both
necessary and futility costs, and from both development
and maintenance costs.

Def. 1.22

3.2 Human
dependency

All software engineering activities and processes are
human-based and constrained by basic human traits,
cognitive and creative capabilities, as well as motivations
and attitudes.

Def. 1.23

 3.3 Hardware
dependency

Software behaviors and functionality can only be
embodied via the computing platform and related
interactive I/O devices.

Def. 1.24

14.4.2 EMPIRICAL PRINCIPLES OF SOFTWARE
 ENGINEERING

Empirical software engineering principles are a set of fundamental
and heuristic theories for software engineering. The essential knowledge
on the 31 empirical principles of software engineering as developed in
Chapter 2 can be summarized in Table 14.6. Further details and explanations
of these empirical and heuristic principles may be referred to Section 2.2
through 2.4.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1147

Table 14.6
Empirical Principles of Software Engineering

No Principle Description Remark

1 Abstraction To elicit essential properties of a set of objects while
omitting inessential details of them.

Def. 2.3

2 Decomposition
and
modularization

To partition and divide the functions of a software
system into individual modules or components.

Def. 2.4

3 Information
hiding

To mask and simplify unnecessary information of
software at a given level from the lower level details.

Def. 2.5

4 Engineering
approach

To adopt the proven generic engineering methodology
and practice in software development and its
organization.

Def. 2.6

5 Professionalism To recognize the competence or skills expected for a
professional software engineer gained in training and
practice.

Def. 2.7

6 Tools and
environments

To adopt software development tools and software
engineering supporting environment in order to
facilitate efficient organization of coordinative work or
extend human physical and intelligent capability in
software development.

Def. 2.8

7 Documentation To represent system design and architectures, record
work products, maintain traceability of serial decisions,
log problems and maintenance solutions, and enable
postmortem analysis.

Def. 2.9

8 Stepwise
refinement

To deductively extend a conceptual model of the
requirement for a given software system by a series of
expatiated and incremental specifications at increased
degrees of details.

Def. 2.10

9 Prototyping To evaluate or validate a design and feasibility of a
required system based on the implementation of a
prototype of the system.

Def. 2.11

10 Adopting
engineering
notations

To abstract, denote, and model user requirements and
system specifications expressively and explicitly.

Def. 2.12

11 Process
modeling

To deal with organizational and managerial issues in
software engineering as well as software behaviors.

Def. 2.13

12 Reuse To adopt higher-level building blocks, such as
algorithms, methods, processes, patterns, frameworks,
in order to improve efficiency, productivity, and quality
of software engineering.

Def. 2.14

13 Measurements To elicit generic software attributes, quantify their Def. 2.15

© 2008 by Taylor & Francis Group, LLC

1148 Part IV Perspectives on Software Science

and metrics measurement, and unify their metrics.

14 Cognitive
complexity
control

To deal with the innate difficulty in both architectural
and behavioral design and implementation of software
systems by a variety of means such as abstraction,
modularization, descriptive notations, stepwise
refinement, and prototyping.

Def. 2.16

15 Formal
requirement
specification

To formally and rigorously specify customers’
nonprofessional requirements for a software system in
order to avoid any misinterpretation and ambiguity, and
to eliminate any conceptual gaps and inconsistency.

Def. 2.17

16 Systematic
quality
assurance

To systematically tackle software quality as multiple
faceted; therefore, a systematic tackle is needed on all
attributes and their quantitative measurements.

Def. 2.18

17 Review and
inspection

To find and eliminate software design and
implementation defects via reading and examining the
work products by peer or more experienced reviewers.

Def. 2.19

18 Management
engineering

To recognize the crucial facet of software engineering
for the need of a suitable theory for organizing and
coordinating large groups in large-scale projects.

Def. 2.20

19 Acquiring
domain
knowledge

To acquire four aspects of domain knowledge such as:
a) the nature of a problem, b) the environment and
context of the problem, c) current customer practice for
dealing with the problem, and d) existing regulations
and constraints in the application area, before a system
design for the given problem may proceed.

Def. 2.21

20 Customer
involvement

To involve all stakeholders, particularly the end users
of a software system, throughout the entire lifecycle of
the system by customer reviews and joint meetings.

Def. 2.22

21 Feasibility
analysis

To rigorously estimate and evaluate both technical and
economical feasibilities of a given software project
before the later-phase processes may be continued.

Def. 2.23

22 Improve
comprehensi-

bility

To explicitly and expressively describe the intangible
problem and its solution with improved
understandability, readability, and cognitive capability.

Def. 2.24

23 Exception
handling

To consider system design and specification not only
customer required functions for a given system, but also
all possible exceptions that may drive the system into
illegal state(s) in the entire state space of the system.

Def. 2.25

24 Divide-and-
Conquer

To suppose if a complex system may be divided into
multiple components, the individual components of the
system will be easier to be dealt with than the whole
system.

Def. 2.26

25 Explicit
embodiment

To deal with the implicitness and inexpressiveness in
software engineering by introducing more powerful

Def. 2.27

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1149

descriptive means at a higher level of abstraction and
precision.

26 Establishing
theoretical
foundations

To elicit rigorous theories and generic laws once there
are a wide variety of observed phenomena and
alternative practices.

Def. 2.28

27 Architecture and
behavior
modeling

To understand software system models are a hybrid
model where both architectures and behaviors should
be coherently described.

Def. 2.29

28 Standardization To integrate, regulate, unify, and optimize existing
principles, best practices, and industrial norms into
standards.

Def. 2.30

29 Systems
engineering

To adopt system science theories and approaches to
deal with complicated architectures and behaviors of
software.

Def. 2.31

30 Engineering
organization

To recognize that the organization issue is as important
as that of pure technical and the cognitive issues in
software engineering.

Def. 2.32

31 Cognitive
engineering

To be aware that the cognitive complexity is the
dominant problem in almost all processes of software
design, implementation, and maintenance, which should
be tackled by cognitive informatics theories.

Def. 2.33

14.4.3 LAWS OF SOFTWARE ENGINEERING

A law of software engineering is a proven statement of a causality
between a deducted result and its formal conditions. The essential knowledge
on laws of software engineering developed in this book can be summarized
in Table 14.7 highlighted by the 50 Wang’s laws. Further details and
explanations of these set of laws of software engineering may be referred to
previous chapters using the links provided under the title of each law.

Table 14.7

Laws of Software Engineering

No Law Description Mathematical model

1 The
characteristics
of theoretical
and empirical
problems

Software engineering problems must be
treated by both theoretical and
empirical methodologies. The former is
characterized by abstract, inductive,
mathematics-based, and formal-
inference-centered studies; while the
latter is characterized by concrete,

© 2008 by Taylor & Francis Group, LLC

1150 Part IV Perspectives on Software Science

(Theorem 1.1) deductive, data-based, and
experimental-validation-centered
studies.

2 The
Information-
Matter-Energy
(IME)
model

(Theorem 1.2)

The natural world (NW) which forms the
context of human intelligence and
software science is a dual world: one
aspect of it is the physical world (PW),
and the other is the abstract world (AW),
where matter (M) and energy (E) are
used to model the former, and
information (I) to the latter, where p, a,
and n are functions that determine a
certain PW, AW, or NW, respectively.

||ˆ

(,) || ()

(, ,)

NW PW AW

M E I

I M E

=

=

=

p a

n

3 Abstract
objects under
study

(Theorem 1.3)

The nature of software stems from
intangibility of the abstract objects
under study, intricate inner connections
of software systems, adaptive
interactions to external events and
environments, and the cognitive
complexity to explicitly describe them.

4 Explicit
descriptivity

(Theorem 1.4)

Only a higher-level abstract, precise,
and rigorous means is adequate to
express an object at a given level of
abstraction, where denotational
mathematics is the top-level abstraction
means.

5 The basic
constraints of
SE

(Theorem 1.5)

Software engineering faces the
cognitive, organizational, and resources
constraints.

6 Conservative
productivity

(Theorem 1.7)

Software productivity is physiologically
constrained by the growing speed of
synaptic connections inside the brain,
because before any creative artifact is
generated externally, it must be created
and represented physiologically inside
the brain by the synaptic connections.

7 Universal
constraints

(Theorem 3.1)

Both the natural world and the perceived
abstract world are constrained by certain
known restrictions and laws, or by those
yet to be known due to both current
limitations of natural resources and/or
human cognitive capability.

8 Law of
causality

A condition must be both necessary and
sufficient to qualify as a cause, where
the necessary condition is a condition
that must be present in order for the

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1151

(Theorem 3.3) effect to occur, while the sufficient
condition is a condition that will always
produce the effect.

9 Inclusive
intelligent
capability

(Theorem 3.5)

Artificial intelligence (AI) is a subset of
natural intelligence (NI).

AI ⊆ NI

10 Behavior
space of
software

(Theorem 3.11)

The software behavior space Ω is
innately three-dimensional, which can
be described by a Cartesian product of
computational operations OP, time T,
and memory space S.

Ω = OP × T × S

11 Utility of
mathematics

(Theorem 4.1)

Denotational mathematics is the means
and rules to rigorously and explicitly
express design notions and conceptual
models on abstract architectures and
complex interactive behaviors at the
highest level of abstraction and in the
largest scope of systems.

12 Cumulative
Relational
Model (CRM)
of processes

(Theorem 4.3)

A process P is the basic unit of an
applied computational behavior that is
composed by a set of statements si, 1 ≤ i
≤ n-1, with left-associated cumulative
relations, where si ∈ P and rij ∈ R.

1

1

1 12 2 23 3 1,

 (s), 1

(...((() s) s) ... s)

n

i ij j
i

n n n

s r j i

s r r r

R
−

=

−

= = +

=

P

13 Express power
of algebraic
modeling

(Theorem 4.8)

The express power of RTPA states that
the total number of the possible
computational operations N is a set of
combinations between two arbitrary
meta processes P1, P2 ∈ P composed by
each of the process relations R ∈ R in
RTPA.

#

2
#=

17!=17 •
2!(17-2)!

=17 • 136

=2,312

C• P
RN

14 Essential
facets of
software
system
modeling

(Theorem 4.9)

Software systems can be formally
specified by its architectures, static
behaviors, and dynamic behaviors with
multiple-level refinements.

15 The root of
computing
and
information
science

(Theorem 5.1)

The most fundamental data object
model shared in both computing and
information science is binary digits
(bits).

16 Domain Letting Dm, Dl, and Du be the domains of Du ⊆ Dl ⊆ Dm

© 2008 by Taylor & Francis Group, LLC

1152 Part IV Perspectives on Software Science

constraints of
data objects

(Theorem 5.6)

mathematical (logical), language
defined, or user defined, respectively,
the following relationship between the
domains of an identifier in programming
is always held.

17 The generic
mathematical
model of
programs

(Theorem 5.7)

A software system or a program ℘is a
set of complex embedded cumulative
relational processes Pk dispatched by
system-level events ek .

1

1
1

1

(@)

 [@

 (() () s ())],

 1

m

k k
k

m

k
k
n

i ij j
i

e P

e

s k r k k

j i

R
R
R

=

=

−

=

℘=

=

= +

S

S

18 Tradeoff
between
syntaxes and
semantics

(Theorem 6.1)

In the DGE system, the complexities of
the syntactic rules (or grammar) Csyn and
of the semantic rules Csem are inversely
proportional, i.e.:

1
syn

sem
C

C
∝

19 Asynchroni-
city of
program
semantics

(Theorem 6.2)

The semantics of a relatively timed
program is invariant with the changes of
executing speed, as long as any absolute
time constraint is met.

20 The least
complete
set of
instructions
in
programming

(Theorem 6.3)

A program is composable with
sufficient descriptive power in a given
language iff both the sufficient sets of
meta instructions (P, Theorem 4.6) and
compositional rules (R, Theorem 4.7)
are rigorously defined.

21 Informatics
laws of
software

(Theorem 7.2)

Software architectures, behaviors, and
processes are constrained by the 19
informatics laws of basic information
properties.

22 Conservation
of basic
engineering
constraints

(Theorem 8.2)

The three basic constraints of
engineering goals known as time (T),
costs (C), and utility (U) are
conservative in a given engineering
context, where both δ and k are a
constant.

ft(T-1) + fc(C-1) + fu(U)

= Uk
T C•

= δ

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1153

23 Coordinative
workload in
engineering

(Theorem 8.4)

The actual workload W of a
coordinative project is a function of the
average interpersonal coordination rate r
and the number of labor L in the project,
where T1 is the indicative duration
needed to complete the work by only
one person, and W1 is the ideal
workload without the interpersonal
overhead h or that of a single person
project.

1

1

1

(1)

(1)

(1)
(1)

2
 [PM]

W L T

L T h

W h

L L
W r

= •

= • +

= +

−= + •

24 Interchange-

ability of labor
and time (ILT)

(Theorem 8.6)

For a given workload W, labor L and
duration T are transformable under the
condition as given in the mathematical
model.

1

1 2

1

(1)
(1)

2
1 1(1)
2 2

1 2
()

2

WT
L

L LW r
L

W rL rL
L

W rL r
L

=

−= + •

= − +

= − +

25 The shortest
duration of
coordinative
work

(Theorem 8.7)

There exists the shortest duration Tmin
under the optimum labor allocation L0
for a given ideal workload W1 with a
certain interpersonal coordination rate
r.

min 0

1 0
0

0

{ | }

1 2() []
2

1.414 , 0 []

T T L L

W rL r M
L

L r P
r

⎧⎪⎪ = =⎪⎪⎪⎪⎪⎪⎪ = − +⎨⎪⎪⎪⎪ ⎡ ⎤⎪ = ≠⎪ ⎢ ⎥⎪⎪⎩ ⎢ ⎥⎪

26 Quantitative
advantage of
human brain

(Theorem 9.1)

The magnitude of the memory capacity
of the brain is tremendously larger than
that of the closest species.

27 Qualitative
advantage of
human brain

(Theorem 9.2)

The possession of the abstract layer of
memory and the abstract reasoning
capacity makes the human brain
profoundly powerful on the basis of the
quantitative advantage.

28 Generic forms
of information

(Theorem 9.4)

There are four categories of internal
information I in the brain known as
knowledge (K), behaviors (B),
experience (E), and skills (S).

(, , ,)k b e s=I I I I I

29 The nature of
intelligence

(Theorem 9.5)

Intelligence I is a capability that
transfers between data, information,
knowledge, and behaviors known as the
perceptive intelligence Ip, cognitive
intelligence Ic, instructive intelligence
Ii, and reflective intelligence Ir.

 p

 c

i

r

: (Perceptive)

 || : (Cognitive)
 || : (Instructive)
 || : (Reflective)

D I

I K
I B
D B

→

→
→
→

I I

I

I

I

30 Dynamic
properties of
neural clusters

The LTM is dynamic. New neurons (to
represent objects or attributes) are
assigning, and new synaptic connections

© 2008 by Taylor & Francis Group, LLC

1154 Part IV Perspectives on Software Science

(Theorem 9.9)
(to represent relations) are creating and
reconfiguring all the time in the brain.

31 Establishment
cycle of LTM

(Theorem 9.11)

The cycle of LTM establishment
requires at least 24 hours, where the 24-
hour cycle includes any kind of
combinations of awake, asleep, and
siesta.

LTM establishment

 cycle ≥ 24 [hrs]

32 Holism
complexity of
systems

(Theorem 10.1)

Within the 7-level magnitudes of
systems, known as the empty, small,
medium, large, giant, immense, and
infinite systems, almost all systems are
too complicated to be cognitively
understood or mentally handled as a
whole, except small systems or those
that can be decomposed into small
systems.

33 Generic
topology of
normalized
systems

(Theorem 10.2)

Systems tend to be normalized into a
hierarchical structure in the form of a
complete n-nary tree.

34 System gain of
functionality

(Theorem 10.4)

System conjunction or composition
between two systems S1 and S2 creates
new relations ∆R12 and/or new
behaviors (functions) ∆B12 that are
solely a property of the newly
established super system S, which can
be determined by the sizes of the two
intersected component sets #C1 and #C2.

∆R12 = #R - (#R1 + #R2)

 = (#(C1 + C2))2 –

 ((#C1)2 +(#C2)2)

 = 2 (#C1 • #C2)

35 System
mutation

(Theorem 10.5)

The gradual increment of quantity of
system, i.e., ∆C or ∆R, in a system
beyond the point of the critical mass Qcm
triggers the abrupt generation of
functionality (quality) Fcm of the system.

36 System gain of
work

(Theorem 10.6)

Work done by a system is always
greater than any of its components, but
must not greater than the sum of those
of its components

1
() (), 100%

() max(()),

n

i
i

i i S

W S W C

W S W C C E

η
=

⎧⎪⎪ ≤ ≤⎪⎪⎨⎪⎪ > ∈⎪⎪⎩

∑

37 Conservative
work of
equilibrium
systems

(Theorem 10.9)

The sum of all types of work is always
zero in an equilibrium system, where
W(Ci) is the abstract work of a system
component Ci.

1
() 0

n

i
i

W C
=

=∑

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1155

38 Conditions of
system self-
organization

(Theorem
10.10)

The necessary and sufficient condition
of self-organization is the existence of at
least one minimum on the state curve of
a system f(x), which satisfies the
following requirements, where f ’(x) and
f ’’(x) are the first and second order
derivatives of f(x) on (a, b).

 ' (| ()) = 0

''(| ()) 0
min min

min min

f x x a, b

f x x a, b

⎧ ∈⎪⎪⎪⎨⎪ ∈ ≠⎪⎪⎩

 ' (| ()) = 0

''(| ())< 0

''(| ())> 0

min min

min

min

f x x a, b

f x x x a, b

f x x x a, b

⎧⎪ ∈⎪⎪⎪⎪ < ∈⎨⎪⎪⎪ > ∈⎪⎪⎩

39 System
synchroni-
zation

(Theorem
10.11)

A system reaches its maximum utility
maxS when all components’ efforts

1 2 and S S are synchronized.

1 2

max 1 2| | | |

S S S

S S S

⎧⎪ = +⎪⎪⎨⎪ = +⎪⎪⎩

40 System
dissimilation

(Theorem
10.12)

Any system tends to undergo a
continuous degradation that leads to the
eventual loss of its designed utility and
against its initial purposes to form the
system.

41 Cognitive
complexity of
software

(Theorem
10.14)

The cognitive complexity of a software
system S, Cc(S), is a product of the
operational complexity Cop(S) and the
architectural complexity Ca(S).

1 1

1

1

() () ()

{ (,)}

{ OBJ()

+ OBJ()} [FO]

C k

CLM

C

f op a

n m

k i
n

k
k
n

k
k

S S C S C S

w k i

CLM

C

= =

=

=

= •

= •∑∑

∑

∑

42 Gain of
management

(Theorem 11.1)

Management is required to reduce the
complexity of working group
organization, to improve the efficiency
of groups (e(n)), and to simplify the
forms of interpersonal coordination.

2

2

()
() = 100%

()
()

(1) 100%
()
n+1(1) 100%
(1)

m

m n
e n

C n
c n
c n

n n -

∆

= −

= −

i

i

i
i

43 Gain of
division of
labor

(Theorem 11.2)

The relative gain gr(k) via division of
labor in work organization is
proportional to the repetitive times k at
specialized subtask-level, where c is a
positive constant, 1 < c < e.

-11

() - ()
() = 100%

()
()

(1-) 100%
()

1
()

(1-) 100%

d
r

d

k

ki

E k E k
g k

E k
E k
E k

e
c
k

=

=

=

∑

i

i

i

© 2008 by Taylor & Francis Group, LLC

1156 Part IV Perspectives on Software Science

44 Adaptive
economic
equilibrium

(Theorem 12.1)

A market with autonomic interactions
between demands D and supplies S is a
self-regulated and self-adaptive system,
where any change in demand, supply, or
both will be autonomously adjusted via
the leverage of price P to an
equilibrium.

Market conservation Maximizing profits
[] []

Lemma 12.xx Lemma 12.xx

D D
P P

S S

D D
P P

S S

↑→ ↓→⎧ ⎫⎪ ⎪⎪ ⎪→ ↑ ⇒ → ↓⎪ ⎪⎪ ⎪→ →↓ ↑⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪↓→ ↑→⎪ ⎪⎪ ⎪→ ↓ ⇒ → ↑⎪ ⎪→ →⎪ ⎪↑ ↓⎪ ⎪⎪ ⎪⎩ ⎭

+

45 Formal
Economic
Model of
Software
Engineering
Cost
(FEMSEC)

(Theorem 12.3)

On the basis of the workload-driven
project organization laws, the expected
project cost C can be rigorously
determined with the optimal labor
allocation L0 and the shortest duration
Tmin by the following 6 steps:

1) Estimate the project size pS

2) Determine the ideal workload W1

3) Allocate the optimal labor L0

4) Determine the shortest duration Tmin

5) Determine the expected workload W

6) Determine the expected project

 cost C

1
= (+4 +)[kLOC]

6p max exp minS S S S

 1 12 [PM]pS
W

ρ
= •

0
1.414 []L P

r
⎡ ⎤= ⎢ ⎥
⎢ ⎥

min 1 0
0

1 2()
2

T W rL r
L

= − +

1

2
0 0

1
2

 (2) [PM]

W W

rL rL

=

− +

0 [$]min LC L •T •C=

46 Basic essences
for evolution

(Theorem 13.1)

The basic evolutional needs of mankind
are to preserve both the species’
biological traits via gene pools, and the
cumulated knowledge via various
information systems.

47 Organiza-
tional
coordination
efficiency

(Theorem 13.3)

The natural constraints for social
organization that forces the architecture
of large groups to be evolved and
adapted to tree-form hierarchical
structures in an organization is the need
to maintain acceptable coordinating
efficiency at each level of the
organization tree.

48 Time-oriented
optimization
for large-scale
project
organization

(Theorem 13.4)

Time-oriented optimization for large-
scale project organization states that in
order to further reduce the shortest
duration Tmin of an entire large-scale
project constrained by Theorem 8.7, the
optimal form of organization is to
evenly partition the whole project into n
lightly-coupled parallel subprojects that
may be conducted by independent
groups with a shorter duration Ti

min, 1 ≤ i
≤ n, so that an average n-fold time

min min
1

min

1

1

n
i i

i
T T

n

T
n

ϖ

=
=

= +

∑

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1157

deduction can be gained.

49 The n-fold
error
reduction
structure

(Theorem 13.5)

The error rate of a work product can be
reduced up to n folds from the average
error rate of individuals re in a
coordinative group via n-nary peer
reviews based on the random nature of
error distributions and independent
nature of error patterns of individuals.

1
()

n

e e
k

R r k
=

= ∏

50 Power of
multi-
disciplinary
knowledge

(Theorem 14.2)

The ratio of knowledge space Ω
Σ

between the knowledge of an expert
with coherently m disciplinary
knowledge KΣ and that of a group of m
experts with separated individual
disciplinary knowledge K

m
 is shown in

the mathematical model, where n is the
number of average knowledge objects or
concepts in the disciplines.

2

m
2

i=1

2

2

(,)

()!
2!(-2)!

()!
2!(-2)!

()

C
C

m

m n

n

K
m n

K

mn
mn

m n
n

mn
m

mn

Σ
Σ

•

Ω =

=

=

≈ =

∑

14.4.4 FORMAL PRINCIPLES OF SOFTWARE
 ENGINEERING

Formal principles of software engineering are a systematical elicitation
and formalization of new and conventional heuristic principles for software
engineering. The essential knowledge on theoretical principles of software
engineering developed in this book can be summarized in Table 14.8,
highlighted by the 51 Wang’s principles. Further details and explanations of
these theoretical principles may be referred to previous chapters using the
links provided under the title of each principle.

Table 14.8
Formal Principle of Software Engineering

No Principle Description Mathematical model

1 Polymorphous
solutions

(Theorem 1.6)

The solution space SS of software
engineering for a given problem is a
product of the number of possible
design options Nd and the number of
possible implementation options Ni.

d iSS N N= •

© 2008 by Taylor & Francis Group, LLC

1158 Part IV Perspectives on Software Science

2 Formalization
of principles

(Theorem 2.1)

The empirical principles for software
engineering are heuristic and data-
based; while the formal principles for
software engineering are rigorous and
mathematics-based, which are elicited
and refined from the empirical
principles.

3 Validation of
abstract
propositions

(Theorem 3.2)

The abstract and information-based
propositions and work products, such as
a design or a specification of a system,
is bounded by logical verifications,
mathematical proofs, systematical
reviews, behavioral simulations and
tests, and/or in field trials.

4 Compatible
intelligent
capability

(Theorem 3.4)

Natural intelligence (NI) and artificial
intelligence (AI) are compatible by
sharing the same mechanisms of
intelligent capability.

AI ∝ NI

5 Deductive
inference

(Theorem 3.6)

Given an arbitrary nonempty set X, let
p(x) be a proposition for ∀x ∈ X, a
specific conclusion on ∃a ∈ X, p(a) can
be drawn as in the mathematical models.

∀x ∈ X, p(x) ∃a ∈ X, p(a)

or

(∀x ∈ X, p(x) ⇒ q(x))

(∃a ∈ X, p(a) ⇒ q(a))

6 Inductive
inference

(Theorem 3.7)

If ∃a, k, succ(k) ∈ X, p(a) and p(k) ⇒
p(succ(k)) are three valid propositions,
then a generic conclusion on ∀x ∈ X,
p(x) can be drawn as in the
mathematical models.

((∃a ∈ X, p(a)) ∧

(∃k, succ(k) ∈ X, (p(k) ⇒
p(succ(k)))) ∀x ∈ X, p(x)

or

((∃a ∈ X, p(a) ⇒ q(a)) ∧
(∃k, succ(k) ∈ X, ((p(k) ⇒
q(k)) ⇒ (p(succ(k)) ⇒
q(succ(k)))))

∀x ∈ X, p(x) ⇒ q(x)

7 Abductive
inference

(Theorem 3.8)

Based on a general implication ∀x ∈ X,
p(x) ⇒ q(x), a specific conclusion on ∃a
∈ X, p(a) can be drawn as in the
mathematical models.

(∀x ∈ X, p(x) ⇒ q(x))

(∃a ∈ X, q(a) ⇒ p(a))

or

(∀x ∈ X, p(x) ⇒ q(x) ∧ r(x)
⇒ q(x)) (∃a ∈ X, q(a) ⇒
(p(a) ∨ r(a)))

8 Analogical
inference

Based on a specific predicate ∃a ∈ X,
p(a), a similar specific conclusion can
be drawn iff ∃x ∈ X, p(x) as in the

∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a)
 ∃b ∈ X ∧ b ≠ a, p(b)

or

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1159

(Theorem 3.9) mathematical models.

(∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a)
⇒ q(a)) (∃b ∈ X ∧ b ≠ a,
p(b) ⇒ q(b))

9 Necessary and
sufficient
conditions of
software usage

(Theorem 3.10)

Those that warrant the requirements for
software solutions are the system
behaviors of repeatability,
programmability, and run-time
determinability.

10 Principle of
abstraction

(Theorem 4.2)

Given an arbitrary set X and any
property p, there is a set A such that the
elements of A are exactly those members
of X which have the property p.

A = {a | a ∈ X ∧ p(a)}

11 Primary types
of
computational
objects

(Theorem 4.4)

The RTPA type system T encompasses
17 primitive types elicited from
fundamental computing needs.

T = {N, Z, R, S, BL, B, H, P, TI, D,
DT, RT, ST, @eS, @tTM,
@int ,ⓢsBL}

12 Type
equivalence

(Theorem 4.5)

Two types T1 and T2 are equivalent, iff
the domain of type T1 is either identical
to or a subset of that of T2.

T1(x) = T2(y) ⇒ T1(x) T2(y)

or

T1(x) ⊆ T2(y) ⇒ T1(x) T2(y)

13 Meta software
processes

(Theorem 4.6)

The RTPA meta process system P
encompasses 17 fundamental
computational operations elicited from
the most basic computing needs.

P = {:=, , ⇒, ⇐, , , ,

| , | , @, , ↑, ↓, !, ⊗, , §}

14 Software
composing
rules

(Theorem 4.7)

The RTPA process relation system R
encompasses 17 fundamental algebraic
and relational operations elicited from
basic computing needs.

R = {→, , |, |…|…,

*R , R+
,

iR , , , ||,

∯ , |||, », , t, e, i}

15 The primitive
computational
behaviors

(Theorem 5.2)

The most fundamental computational
operations are logical, arithmetic, and
memory access operations on bits.

16 Nature of
requirements
and
specifications

(Theorem 5.3)

Requirement elicitation focuses on
desired functions of a system δ, while
system specification focuses on the
entire behavioral space of the system Ω,
including both δ and the undesired but
potential system transitions represented
by δ in the behavioral space.

SΩ = # #δ δ+

 = #S • #∑

© 2008 by Taylor & Francis Group, LLC

1160 Part IV Perspectives on Software Science

17 The
weaknesses of
automata

(Theorem 5.4)

Automata and FSMs as a system
composition and modeling method built
on event-driven mechanisms are
inadequate to model the complete basic
computational requirements, particularly
the lack of the descriptive power for:

a) System architectures and data objects
 modeling;

b) Nonevent-driven transitional process
 modeling;

c) Detailed behavioral descriptions;

d) Mathematical operations and
 processing of complicated languages.

18 Fundamental
computational
capabilities

(Theorem 5.5)

The essential capabilities for
computation are as follows:
• A memory for storing bit information;

• A simple addressing capability for
 accessing information in the memory;

• Read/write operations for retrieving or
 updating the memory;

• A conditional and quantitative
 evaluation capability for interpreting
 the inputted information;

• A stored-information-driven
 mechanism for determining the next
 step.

19 Primitive form
of information

(Theorem 7.1)

The most fundamental form of
information that can be represented and
processed is binary digit where k = b =
2.

⎡ ⎤
⎡ ⎤2

:

 log

log []

b b

b

I f M S

M

M bit

= →

=

=

20 Relationship
between a
hypothesis
and a theory

(Theorem 8.1)

The necessary and sufficient conditions
for a hypothesis Hg(C, O, G, P, F) to be
proven as a theory T are iff it fulfills the
following criteria.

Hg T, iff C ∧ O ∧ G ∧ P ∧
F = T

21 Engineering
Maturity
Model (EMM)

(Theorem 8.3)

The applied engineering disciplines
have four maturity levels known as the
levels of emergence (L1), art (L2),
engineering (L3), and post-engineering
(L4).

1 2 3 4:EMM L L L L⊆ ⊆ ⊆

22 Incompre-
ssible
workload

A given ideal workload W1 in software
engineering can not be compressed by
any kind of labor allocation, and in the
best case when there is only one person
involved, the minimum workload W =

W ≥ W1 = Wmin

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1161

(Theorem 8.5) W1 = Wmin may be reached.

23 Exchange-

ability from
labor to time

(Theorem 8.8)

The exchange rate from labor to time
γL∼T in a coordinative work organization
is determined by the ratio between the
increment of time ∆T and the increment
of labor ∆L.

1

0 1
 [M/P]

-

L T

min

T
L

T - T
L L

γ ∆=
∆

=

∼

24 Exchange-
ability from
time to labor

(Theorem 8.9)

The exchange rate from time to labor
γT∼L in a coordinative work organization
is determined by the ratio between the
increment of labor ∆L and the increment
of time ∆T.

0 1

1 min

 -
 [P/M]

T L
L
T

L L
T - T

γ ∆=
∆

=

∼

25 Constraint on
group size in
coordinative
work

(Theorem 8.10)

There exists an upper limit of group size
Smax in coordinative work organization
in software engineering. Therefore,
large projects must be partitioned into
multiple parallel groups that each of the
groups obeys the same natural
constraint.

Smax = max (L0(r)) = 20 [P]

26 The risk of
nonoptimal
work
organization

(Theorem 8.11)

The risks R due to irrational decisions
of work organization are proportional to
the coordination rate r in a project. That
is, the higher the r, the higher the risk
under nonoptimal labor allocation.

r∝R

27 Cognitive
Models of
Memory
(CMM)

(Theorem 9.3)

The architecture of human memory is
parallel configured by the Sensory
Buffer Memory (SBM), Short-Term
Memory (STM), Long-Term Memory
(LTM), and Action-Buffer Memory
(ABM).

CMM SBM

 || STM

 || LTM

 || ABM

28 Generic forms
of learnings

(Theorem 9.6)

There are sufficiently four categories of
learning L known as those of knowledge
(Lk), behaviors (Lb), experience (Le),
and skills (Ls).

(, , ,)k b e s=L L L L L

29 Representa-
tion of
learning
results

(Theorem 9.7)

The internal memory in the form of the
OAR structure can be updated by a
conjunction between the existing OAR
and the newly created sub-OAR.

OAR’ ST OARST ∪
 sOARST
 = OARST ∪ (Os, As, Rs)

30 Principal
intelligent
advantages

(Theorem 9.8)

On the basis of two principal advantages
known as the qualitative properties
(Theorem 9.1) and quantitative
properties (Theorem 9.2), humans gain
the power as the most intelligent species

© 2008 by Taylor & Francis Group, LLC

1162 Part IV Perspectives on Software Science

in the world.

31 Cognitive
mechanism of
sleeping

(Theorem 9.10)

Sleeping is a subconscious process for
LTM establishment.

Cognitive purpose of sleep

 = LTM establishment

32 Mechanism of
LTM
establishment

(Theorem 9.12)

The entire memory of information
represented as an OAR model in the
brain is updated by incorporating the
sub-OARs formed in STM based on the
following selective criteria:

 a) A new sub-OAR in STM was

more frequently used in the
previous 24 hours;

 b) A new sub-OAR in STM was
related to the existing OAR in
LTM at a higher level of the
neural cluster hierarchy;

 c) A new sub-OAR in STM was
given special attention so that it
obtained a higher retention
weight.

33 Equivalence
between open
and closed
systems

(Theorem 10.3)

An open system S and a closed system

S in the same context is transformable
when their environments SΘ and SΘ

(S C SΘ = ⊄) are taken into

consideration, respectively.

S

S

 = S

S =

S

S

⎧⎪ Θ⎪⎪⎨⎪ Θ⎪⎪⎩

34 The bottleneck
principle of
systems

(Theorem 10.7)

The output work of a serial system W(Ss)
is determined by the least powerful
component of the system.

W(Ss) = min (W(Ci) |

 Ci ∈ Cs ∧ 1 ≤ i ≤ n))

35 The linear
sum principle
of systems

(Theorem 10.8)

The output work of a parallel system
W(Sp) is a sum of the work done by all
its components less the overhead of the
system ϖ.

n

1
() () - ,

 , > 0

p i
i

i p

W S W C

C C

ϖ

ϖ
=

=

∈

∑

36 Orientation of
software
engineering
complexity
theories

(Theorem
10.13)

The complexity theories of computation
and software engineering are different.
The former is focused on the problems
of high throughput complexity that are
computing time efficiency centered;
while the latter puts emphases on the
problems of functional complexity that
are human cognition time and workload
oriented.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1163

37 Normalized
software
system
architectures

(Theorem
10.15)

Components of different subsystems
should not be coupled directly, rather
than be invoked through their top layer
components shared in the same
subsystem.

38 Properties of
games

(Theorem 11.3)

A formal game G is deterministic and
conservative. That is, once the game G =
(P, D, M, S) is set, the properties of G
are determined and predictable, but not
changeable by any player in the game.

39 Conditions of
win-win
decisions

(Theorem 11.4)

The states that a win-win decision can
be achieved when the following
condition of a nonzero-sum game is
satisfied, where σ is the sum of the
game that is a positive nonzero constant,
si is the expected score of player i, and
ns is the number of sets of matches in
the game.

1

1 n

i
s i

s
n

σ
=

≥ ∑

40 Property of
decision grids

(Theorem 11.5)

The decision distance Dt in a decision
grid is a constant that is determined by
the number of decision trials ti spent in
the time series, where dr and dw
represent numbers of right and wrong
decisions, respectively.

t i r wD t d d= = +

41 Random
series of
unlimited
trials

(Theorem 11.6)

Random decisions, or equal probability
right and wrong trials, will not lead to a
success in any series of decisions under
unlimited trials.

42 Random
series of
limited trials

(Theorem 11.7)

Random decisions, or equal probability
right and wrong trials, will not lead to a
success in any series of decisions under
limited trials.

43 Conditions of
quality control
systems

(Theorem 11.8)

The necessary conditions for
implementing a quality control system
for a given product, service, or system
are that all attributes of its quality can
be:

 a) Abstractly identified

 b) Quantitatively defined, and

 c) Independently measurable.

© 2008 by Taylor & Francis Group, LLC

1164 Part IV Perspectives on Software Science

44 Predictability
of new
equilibrium

(Theorem 12.2)

A newly established equilibrium on
price P’e is determined by the effect P’
and feedback effect P’’ of the driving
forces deviating from the current
equilibrium, and the increment of price
caused by the shifting of equilibriums is
as shown in the mathematical models,
where ∆P may be positive or negative
that represents a upward or downward
shifting of the current equilibrium,
respectively.

' - ''
' ''

2
' ''

, ' '
2

e

e

P P
P P

P P
P P

= +

+= >

' -

' ''
, ' '

2

e e

e e

P P P

P P
P P P

∆ =

+= − >

45 Ultimate
objective of
software
engineering

(Theorem 12.4)

Automatic code generation is the only
silver bullet to overcome the natural
obstacles of the conservative software
development productivity, to reduce
software development costs, and to
improve software quality as a result of
reduced human involvement and
uncertainty.

46 Exponential
Software
Legacy
Maintenance
Costs (SLMC)

(Theorem 12.5)

The ratio of maintenance cost Cm in a
software development organization,
rm%, tends to exponentially increase
over time t, and it is proportional to the
total number of legacy systems NL that
the organization produced.

47 Strength of
motivations

(Theorem 13.2)

A motivation M is proportional to both
the strength of emotion |Em| and the
difference between the expectancy of
desire E and the current status S, of a
person, and is inversely proportional to
the cost to accomplish the expected
motivation C, where 0≤ |Em| ≤ 4, 0 ≤
(E,S) ≤ 10, and 1 ≤ C ≤ 10.

2.5 | | (-)mE E S
M

C
• •=

48 Mechanism of
Software
Maintenance
Crisis (SMC)

(Theorem 14.1)

A software development organization
may face a situation known as the
software maintenance crisis, in which
the ratio of the maintenance costs rm% is
approaching 100% of the total costs that
the organization spent.

49 Rigorous
levels of
empirical and
theoretical
knowledge

(Theorem 15.1)

An empirical truth is a truth based on or
verifiable by observations, experiments,
or experiences. In contrary, a theoretical
proposition is an assertion based on
formal theories or logical inferences.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1165

50 Necessary and
sufficient
conditions of
IC

(Theorem 15.3)

The conditions of IC, CIC, are the
possession of event Be, time Bt, and
interrupt Bint driven computational
behaviors.

(, ,)IC e t intC B B B=

51 Necessary and
sufficient
conditions of
AC

(Theorem 15.3)

The conditions of AC, CAC, are the
possession of goal Bg and inference Binf
driven computational behaviors, in
addition to the event Be, time Bt, and
interrupt Bi driven behaviors.

(, , , ,)AC g inf e t intC B B B B B=

It is interesting to compare and contrast the above set of formal

principles and those of the heuristic ones as summarized in Table 14.6 and
presented in Chapter 2. The comprehensive set of the 50 Wang’s laws and 51
Wang’s principles form the core of the theoretical framework of software
engineering and the foundation towards a matured discipline. They are the
crystallization of software engineering theories, which are exploratively
elicited, carefully refined, and rigorously formalized from a vast set of
empirical knowledge of software engineering and best software industrial
practices.

14.5 Impact of the Theoretical
 Foundations to Software
 Engineering

The theoretical framework of software engineering developed throughout
this book, as summarized in Section 14.4, provides a set of essential
knowledge for excellent software engineers. This section introduces a set of
cognitive principles of knowledge engineering. Based on them, the efforts
and complexities for both knowledge and skill creation and acquisition are
analyzed. Then, the expected impacts of the theoretical foundations of
software engineering are discussed. A set of student feedback is reported that
presents a fresh angle in perceiving the impacts of this book and related
courses at both undergraduate and graduate levels.

© 2008 by Taylor & Francis Group, LLC

1166 Part IV Perspectives on Software Science

14.5.1 THE COGNITIVE PRINCIPLES OF KNOWLEDGE
 ENGINEERING

This subsection creates a set of cognitive models of knowledge
acquisitions and analyzes their complexities. This leads to the explanation
why multidisciplinary knowledge is necessary and possible to be acquired by
individuals. It is also helpful to explain why software engineering problems
as a whole need to be investigated via the transdisciplinary approach.

14.5.1.1 The Effort Model of Knowledge Creation and Acquisition

According to the OAR model developed in Section 9.4.2, a knowledge
is a relation between two or more abstract objects or concepts in long-term
memory, while a behavior is a relation between a concept and an action in
the action buffer memory. In other words, knowledge is meant what to be,
while behaviors are meant what to do. Therefore, to some extent, Francis
Bacon’s assertion (1561-1626) that “knowledge is power” may be expressed
more accurately as “intelligence is power” on the basis of Theorem 9.9,
because it is intelligence rather than knowledge that transfers information
and motivations into actions and behaviors.

It is amazing that human knowledge creation and development is so
difficult where the solving of a hard problem always requires tremendous
effort for years, decades, even centuries. However, once the knowledge is
created, an ordinary effort may just be needed by individuals to understand
and acquire it fairly quickly with no difficulty. This phenomenon in
intelligence and knowledge science can be described more formally below.

Eq. 14.3 can be explained by the cognitive informatics theories and the

OAR model developed in Section 9.4.2. It is recognized that the creation of
knowledge is a process that establishes a novel relation between two or more
objects or concepts by searching and evaluating a vast space of possibilities
in order to explain a set of natural phenomena or abstract problems. Because
the memory capacity of the brain can be as high as 8,43210 bits as estimated in
Section 9.4.5, the complexity in searching for new knowledge is necessarily
infinitive, if not a short cut should be discovered by chance or extensive and

Lemma 14.1 For a specifically new knowledge K, the effort spent in its
creation Ec(K) is much greater than that of its acquisition Ea(K), i.e.:

 Ec(K) >> Ea(K) (14.3)

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1167

persistent thoughts. However, the acquisition of knowledge is to simply add a
known relation in the LTM of an existing knowledge structure. This is why
the speed for acquiring a given knowledge is relatively very high than that of
knowledge creation.

It is noteworthy that the speed for acquiring skills could be much
slower than that of knowledge acquisition, because of the need for hands on
actions and the creation of a permanent internal behavioral model in the
action buffer memory.

Another angle for analyzing the effort of creative work in software

engineering is by estimating the workload according to the coordinative work
organization theory in Section 8.4. For instance, based on the statistical data
in authoring this book, the workload can be estimated below with the time
spent known as T ≈ 10,000 hrs = 42.0 months, i.e.:

 1 =

= 1 42.0 42.0 [PM]

W L T•

• =

If this book were authored by multiple experts from 12 individual

disciplines as covered in this book and resulting in the same degree of
seamless coherency and consistency as that in this book, i.e., not an edited
assembly of individual views toward software engineering, the effort
according to Theorem 8.4, subject to r = 30%, would be the following:

1
(1)

(1)
2
12.0(12.0 1)

42.0 (1 0.3)
2

873.6 [PM]

L L
W W r

−= + •

−= + •

=

The result is about 72.8 person-years when the given interpersonal

coordination rate r = 30%, which indicates a mission virtually impossible!
This example demonstrates that highly complicated problems may be
feasibly and efficiently resolved by a single brain with enhanced and
necessary multidisciplinary knowledge, rather than by a group of individuals.
That is why a software engineering project should not involve too many

Lemma 14.2 The effort of skill acquisition Ea(S) is much greater than that
of knowledge acquisition Ea(K), i.e.:

 Ea(S) >> Ea(K) (14.4)

© 2008 by Taylor & Francis Group, LLC

1168 Part IV Perspectives on Software Science

architects in early phase no matter how complicated it is. This is also the
experience of the author gained in the creation of this book on
transdisciplinary foundations of software engineering.

14.5.1.2 The Complexity Model of Knowledge Creation

According to the relational complexity theory of systems as developed
in Section 10.3.3, the domain and magnitude of experts’ knowledge can be
estimated based on the number of abstract objects or concepts and relations
among them.

Definition 14.23 The potential number of relations among the
combination of knowledge from n disciplines, Cr(n), is in the order of n², i.e.:

 Cr(n) = O(n²)
 = n • (n-1) (14.5)

where it is assumed that a pairwise relation r is asymmetric, that is, r(a, b) ≠
r(b, a), as given in Lemma 10.10.

Example 14.1 Recall that this book elicited and integrated fundamental
theories of 12 disciplines. Assuming each discipline has 1,000 concepts in
average, the entire knowledge or the total number of consumed concepts that
an expert needs to cohesively acquire within all the 12 disciplines, Cr(n),
would turn up to be:

Cr(n) = n • (n-1)

 ≈ 12 • (12-1) • 106
 = 1.32 × 108 (14.6)

This figure shows that totally about 132 million new relations between

multidisciplinary concepts need to be generated in the brain before the
written of a book like this is possible.

In other words, the relational complexity of the multidisciplinary

knowledge system (Eq. 10.6) is huge enough to enable new concepts,
principles, and theories to be created that may not belong to any individual
disciplines but on their edges. This reveals the advantages of an expert or a
reader who possesses multidisciplinary knowledge toward a set of intricate
problems under study, particularly in software engineering.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1169

Constrained by the cognitive, organizational, and resources limitations
and their complicated interrelations, most fundamental problems in software
engineering theories are not a trivial one. Many of the problems have well
been known in the very beginning of the emergence of software engineering
40 years ago; some of them may be traced back to more than 100 years in
management science and even earlier in system philosophy. This is why
Brooks classified these fundamental problems encountered in software
engineering as the essential ones rather than the accidental ones [Brooks,
1975/95]. If only empirical studies are conducted on these problems, perhaps
many additional decades are still needed to find some theoretical solutions
for them, such as Theorem 8.7 – the 23rd Law of software engineering on the
optimal labor allocation and the shortest duration in cooperative work, and
Theorem 10.6 – the 34th Law of software engineering on the conservation of
system gains.

14.5.1.3 The Cognitive Model of Knowledge Spaces of Multidisciplinary
 Knowledge

Most hard but interesting problems in research are on the edges of

conventional disciplines. Therefore, transdisciplinary and multidisciplinary
research are necessary. In addition, the maintaining of a global and holistic
view is the key insight for fundamental research, which will be formally
stated in Corollary 14.4.

The above lemma can be proven on the basis of the OAR model for

internal knowledge representation in the following theorem and related
corollaries.

Lemma 14.3 The impact of an expert with coherently m disciplinary
knowledge KΣm is much greater than those of m experts with separated
individual disciplinary knowledge Km, i.e.:

1

m

m m
i

K KΣ
=

>>∑ (14.7)

© 2008 by Taylor & Francis Group, LLC

1170 Part IV Perspectives on Software Science

Example 14.2 Reusing the data and context as given in Example 14.1,
i.e., m = 12 and n = 1,000, with Eq. 14.8, the knowledge space of an expert
with coherently 12 disciplinary knowledge can be determined as: Ω

Σ
(m,n) =

Ω
Σ
(12, 1,000) = 12, i.e., 12 times greater than that of the same of the 12

experts with separated individual disciplinary knowledge.

Corollary 14.2 The ratio of knowledge space Ω

1
 between the knowledge

of an expert with coherently m disciplinary knowledge KΣm
 and that of a

single expert with one of the individual disciplinary knowledge K
1
 is:

1

1
2

2
2

(,)

C
C

m

m n

n

Km n
K

m

Σ

•

Ω =

= =
 (14.9)

where n is the number of average knowledge objects or concepts in a
given discipline.

 The 50th Law of Software Engineering

Theorem 14.2 The power of multidisciplinary knowledge states that the
ratio of knowledge space ΩΣ between the knowledge of an expert with
coherently m disciplinary knowledge KΣm and that of a group of m
experts with separated individual disciplinary knowledge Km is:

2 2

m 2
2

i=1

(,)

()!
2!(-2)! ()

()!
2!(-2)!C

C

m

m

m n

n

Km n
K

mn
mn mn

m n mn
n

m

Σ
Σ

•

Ω =

= = ≈

=

∑
 (14.8)

where n is the number of average knowledge objects or concepts in the
disciplines.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1171

Example 14.3 Similar to the settings of Example 14.2, applying
Corollary 14.2 the knowledge space of a single multidisciplinary expert with
coherently 12 disciplinary knowledge is Ω

1
(m, n) = Ω

1
(12, 1,000) = 122, i.e.,

144 times greater than that of one of the 12 experts with separated individual
disciplinary knowledge.

Corollary 14.3 explains the usage of the transdisciplinary approach

towards the establishment of the theoretical framework of software
engineering. The following corollary explains which is more important in
research and software engineering if there is a need to choose one from
broadness and depth of individuals’ knowledge structures.

Corollary 14.4 is perfectly in line with the philosophy of holism as

discussed in Section 3.2 on philosophies of engineering sciences.

14.5.2 EXPECTED IMPACTS OF WANG’S LAWS AND
 THEOREMS TO SOFTWARE ENGINEERING

Throughout the development of this book, it is observed that, because
of its inherited complexity, wide applications, and both human and machine
intelligent dependency, software engineering is not only a discipline that
requires multidisciplinary knowledge, but is also an ideal testbed for
evaluating existing theories and for developing new theories for the related
disciplines.

The closely related disciplines are such as scientific philosophy,
mathematics, computer science, engineering science, linguistics, information
science, cognitive informatics, system science, management science,
economics, sociology, and natural/machine intelligence. This book
demonstrates that a wide range of new or enhanced theories, methodologies,
and techniques may be developed for those disciplines during the
systematical investigations of the theoretical and transdisciplinary
foundations of software engineering as shown in Table 14.9. In table 14.9,

Corollary 14.4 In knowledge acquisition and knowledge engineering,
broadness is more important than depth.

Corollary 14.3 The more the interdisciplinary knowledge one acquires,
the larger the knowledge space, and hence the higher the possibility for
creation and innovation.

© 2008 by Taylor & Francis Group, LLC

1172 Part IV Perspectives on Software Science

the expected impacts of the theoretical foundations of software engineering
are classified as theories newly created, significantly advanced, and/or
formalized from empirical observations.

Table 14.9

The Impact of Software Engineering Theories on Related Disciplines

Impact Chapter
/Section

Discipline Theory
Newly
created

Significantly
advanced

Formalized

1.3 The Information-Matter-
Energy (IME) model of SE

1.3 Hierarchical Abstraction
Model of System Descrip-
tivity (HAMSD) of SE

1.3 Basic constraints of SE
(cognitive/organizational/
resources)

2.3

Software
engineering

The unified framework of SE
principles (31 principles)

3.3 Formal inference
methodologies

3.4 The nature of software

3.5

Philosophy

The Philosophy of software
engineering

 4.5 Denotational mathematics

4.5 The big-R notation

 4.6 Real-Time Process Algebra
(RTPA)

4.8

Mathematics

Notations of software
engineering

5.2 Essences of computing: Data
objects/behaviors/
programs/resources modeling
and manipulation

5.2 Cognitive computers

5.3 Formal type theory

5.4 The abstract model of
software and computing
platforms

5.5

Computing

The unified mathematical
model of programs

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1173

6.2 The formal model of the
Generic English Grammar
(GEG)

6.5 Deductive semantics of SE

6.6

Linguistics

Deductive semantics of
RTPA

7.1 Bit: the common root of
information science and
computer science

7.3 Role of information to
mankind evolution

7.4

Information
science

Informatics laws of software

8.2 The Engineering Objective
Model (EOM)

8.2 The Engineering Maturity
Model (EOM)

8.5 Coordinative Work
Organization (CWO) theory

8.5 Laws of software engineering
organization

8.5

Generic
engineering

Formal model of the mythical
man-month

9.2 Cognitive informatics

9.2 The Cognitive Model of
Memory (CMM)

9.3 The Layered Reference
Model of the Brain (LRMB)

9.3 The cognitive model of the
brain

9.3 Equivalence between NI and
AI

9.4 The OAR model of internal
knowledge representation

9.6

Cognitive
informatics

Cognitive complexity of
software

10.3 Mathematical models of
abstract systems

10.3 System topology and
magnitudes

10.3

System
science

System Organization Trees
(SOTs)

© 2008 by Taylor & Francis Group, LLC

1174 Part IV Perspectives on Software Science

10.3 System algebra

10.5 The formal framework of
system principles

10.7

Software system complexity
theory

11.2 Formal principles of
management science

11.3 Cognitive process of decision
making

11.3 The decision grid (DG)
theory

11.3 Formal game theory

11.4 Formal model of quality

11.5

Management
Science

The process infrastructure of
SE

12.2 Fundamental laws of
economics

12.2 Formal models of economic
equilibrium

12.2 Mathematical model for the
invisible hand (Adam Smith)

12.6 Mathematical models of
software engineering costs

12.6 The Formal Economic Model
of SE Costs (SEMSEC)

12.6 Optimization of SE economic
decisions

12.6

Economics

The software legacy
maintenance cost model

13.2 Formalization of sociology
principles

13.3 The motivation/attitude-
driven behavioral model

13.4 The formal model of social
organization

13.4 The formal organization tree
(OT)

13.5 Coordinative work
organization theory for large-
scale SE projects

13.5

Sociology

Mathematical model of

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1175

human errors

13.5

Quality assurance in creative
work

14.2 Infrastructure of SE

14.3 Theory for software industry
organizations

14.3 Software maintenance crisis

14.5 Cognitive principles of
knowledge engineering

15.2 The Formal Knowledge
System (FKS) theory

15.3 The framework of Software
Science

15.4 Autonomic computing

15.4 Intelligent code generation

15.4

Software
engineering
and
software
science

Hyper-programming

Details of the newly developed theories have been reviewed in Section

14.4. Further discussions and explanations may be referred to related
chapters and sections throughout this book.

14.5.3 STUDENTS’ FEEDBACK

Graduate and undergraduate students majoring in software engineering
at the University of Calgary have experienced the development of this book
and its earlier versions in the form of lecture notes. The following feedback
of graduate students from the graduate course on “Theoretical Foundations of
Software Engineering” and “Empirical Foundations of Software
Engineering” may reflect some of the influences of this work and its
approach towards the rigorous treatment of software engineering foundations
and theories, and the queries on fundamental laws underpinning software
engineering organization and practice.

The following citations are student feedback from the above courses in
their own words:

“I think the course provides an excellent understanding of the
theoretical foundations of software engineering. The logical organization
of the material and the well thought out presentations facilitated

© 2008 by Taylor & Francis Group, LLC

1176 Part IV Perspectives on Software Science

learning and made the large amount of information manageable. There are
three main themes of learning that I feel I gained from this course:

“First, an understanding of the theoretical foundations of software
engineering is invaluable to any new researcher. The opportunity to have a
‘guided tour’ of the literature and to have highlighted not only the areas
of inquiry that fall under each category or study but also to see the
‘state of the art’ in terms of these fundamental areas was enlightening.
It was particularly instructive to see how some of the core areas of
software engineering are changing (e.g., computation) while other areas
are spawning new avenues of inquiry (e.g., cognitive informatics).

“Second, an appreciation for the multidisciplinary nature of the
problematic area was also demonstrated. While some of the fundamental
areas expressed this theme better than others it was evident from the
readings that the software engineering problematic is an abstract area of
inquiry that could benefit from new perspectives from its traditional
strongholds but that emerging areas like cognitive informatics need to be
multidisciplinary in order to garner the full appreciation needed for
software engineering. I find this theme particularly reassuring since I
am in a related but separate field of study from software engineering but
my research interests overlap many of the questions discussed in this
course.

“Finally, the readings from the software engineering literature
highlighted a crucial role of the researcher that I was somewhat
surprised and particularly pleased to observe. That is, open critique of
the field. I think one of the key functions of the academic community is
to provide a forum for open debate and critique of practices that are
detrimental to the field and of course to provide evidence to the ill
effects of such practices and offer alternative approaches based upon
solid research. The readings of the Turing award winners were
surprisingly critical of many of the current practices but despite these
critiques the authors shared an optimism that I feel is well deserved.

“If software engineering can continue to attract the caliber of
researchers exemplified by the readings I have no doubt that many of
the challenges highlighted in this course will be met. In addition, the
opportunities that these challenges represent are extremely exciting for
a new researcher like myself since they represent opportunities to make
fundamental contributions to the field.”

“In terms of impact I think that the most promise is held in the

‘cognitive’ stream since I think this area of research seems to hold the
greatest opportunity in terms of articulating the relationship between

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1177

energy-matter and information which serves as the basis for software
engineering and many other areas of inquiry. This is certainly not meant
to imply that similar impacts could not arise from the mathematical based
approaches. In fact, I think that the findings in cognitive informatics
approaches will drive the development of new forms of mathematical
inquiry that better supports the needs of software engineering.”

“From this course I learn to judge software standing on a relatively
high level in critical thinking. Once I wondered how I put these theories
into practice. After reading, thinking, and analyzing those lecture notes
again and again, every time I have new findings. These theories indeed
exist everywhere in the software industry. They propose the problems
yet to be solved in this area; they extend software engineering to a
larger scope; they expound essence of software in a philosophical way.
Like building a house, whether it has a good foundation is very critical.
This course set up a good foundation for my software engineering
building. As a programmer, I would think about algorithm complexity and
code complexity; as a designer, I would consider using specification
language to describe system rigorously; as a project manager, I would
specialize in coordination between systems, developers and users. I have
acquired a clear sketch of software engineering in a top-down approach.”

“In my particular case, as with any knowledge gain, I was once again
reminded that “the more you know, the more you realize how little you
know”. The course showed me that some of the problems or issues the
software industry faces are rooted deeper than I thought.

“I always blamed “bad” processes for most of the issues associated
with software development. The information gained from the course
allows me to see that some of the problems are a result of software
being unable to follow the natural laws of the physical world. While I
always knew that software development or software engineering activity
was like no other discipline, I had no idea in how many ways it does not fit
the traditional understanding of a given product’s or entity’s (our
software system) relationship with the rest of the world.”

“The classical papers provided an excellent appreciation for the
discussions that have occurred and also pointed to emerging issues in the
field. I think insights into the emerging aspects of software engineering
were also introduced throughout as part of the current ‘state-of-the-art’
in each of the fundamental areas. I found this particularly useful as a new
researcher and I suspect that those practicing software engineering also

© 2008 by Taylor & Francis Group, LLC

1178 Part IV Perspectives on Software Science

benefited from knowing the current state of affairs in the field in
addition to the historical discussions. Interestingly, many of the
fundamentals issues introduced by the classical authors still hold true
today albeit in different forms and to varying degrees but it does point
to the importance of addressing fundamental issues which solve a host of
problems rather than simply addressing one problem that applies to only
one situation under certain conditions.

 “The first issue of interest was the strong theoretical base that is
evidenced in the writings of each of these individuals. I find this
somewhat surprising since even now a lot of the software engineering
research is aimed at ‘practical’ problem solving and not more theoretical
issues. I find this particularly interesting since while these individuals
certainly eventually migrated towards academic careers they also had
periods in industry, albeit often in research roles. This highlights a point
often lost on many people not involved in research; that there is a need
for solid research skills in both academia and industry. This sentiment
was echoed in several of the papers in various forms such as a call for
relevancy or for the need for closer ties by industry with the academic
community. The classical papers also demonstrated one of the benefits of
an emerging area of research, which is it attracts researchers from
diverse backgrounds. These multiple perspectives and research
backgrounds I think served the field well and the benefits of such
approaches can be seen in more recent areas of inquiry like cognitive
informatics which by design employs a multidisciplinary approach.”

“The problems that we face and want to solve today can be traced
to the foundations of software engineering. It is helpful for us to tackle
the problems via revisiting the classical theories and practices in history.
We can get good understanding about the nature of the current problems
when we connect them to their headstreams in other disciplines in history
and then try to find the solutions based on such understanding. From the
point of view of history and tradition, it is possible for us to see some
problems that have not appeared in our vision.
 “With the perception of the history and tradition of software
engineering, we can understand the ideas of pioneers and masters of the
art more deeply. The development of theories, practices and technologies
of software is no longer a set of broken fragments for us; they are now
organic and vivid in our perception as a whole. Some mythical
breakthroughs of technologies to us before are now logical and
reasonable development of solutions for the original problems. Without
this course, we could not have had such understanding and insight.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1179

“One of the most important gains from the course is the methodology
of research. Software engineering is not isolated from other disciplines,
some of which have been well developed and some that are still not
developed, but related tightly with other disciplines. The progress of
other disciplines will potentially make contributions to software
engineering and vice versa. This gives our researchers an opportunity to
address some theoretical or practical problems of software engineering
on the edge of investigation. The methodology of research in software
engineering could be detailed in the following two steps:

(a) Each current problem is or can be found to have originated from
some historical problems. Revisiting the classical theories related
with the problem can help generate a different vision and
understanding to tackle the problem.

(b) Nearly all the disciplines follow such a rule: the theories get

developed when more and more theories and technologies that
have already been developed in other disciplines are introduced
into this area. So the hot spots of research are always on the
edge.

“The knowledge acquired from the course is very useful as it gives

the students some insight into the foundations of software engineering
and broadens their outlook. The knowledge enables the students to
understand the theory of computation and other inter-related issues in
software engineering. The different views from leading scientists in the
area of computer science made the course a very interesting one.

“Finally, I think the course highlights the wealth of opportunities
that exist within software engineering to make fundamental contributions
to research. What more could a researcher ask for!?”

14.6 Summary

The theoretical framework of software engineering developed in this book
reveals that software engineering not only encompasses a wider domain of
empirical applications, but also possesses much more theoretical essences

© 2008 by Taylor & Francis Group, LLC

1180 Part IV Perspectives on Software Science

that are closer to the root of human knowledge in terms of mathematics,
philosophy, cognitive informatics, computation, economics, sociology, and
system science.

A vast volume of empirical knowledge has been cumulated in software
engineering in the last four decades that is yet to be theoretically processed
and refined. The formal documentation of software engineering theories and
the fundamental body of knowledge presented in this book are the first
attempt to establish the formal and coherent knowledge framework of
software engineering towards a matured discipline. The theoretical
framework of software engineering presented in this book encompasses the
fundamental principles and constraints of software engineering, theoretical
foundations of software engineering, and transdisciplinary foundations of
software engineering.

On the basis of the first three parts of this book on principles,
constraints, theoretical foundations, and transdisciplinary foundations of
software engineering, this chapter has put the focuses onto the entire
infrastructure of software engineering and discussed the organization of the
software industry. This chapter has also summarized the formalized body of
knowledge towards software engineering. The impacts of the
interdisciplinary foundations for software engineering have been discussed,
and students’ feedback on this book in the form of lecture notes has been
reported.

ARCHITECTURAL SUMMARY OF KNOWLEDGE

Through this chapter, Retrospect on Software Engineering, readers
have achieved the following strategic goals with the knowledge structure as
summarized below.

Chapter 14. Retrospect on Software Engineering

■ Infrastructures of software engineering
 • The process infrastructure of software engineering
 • Process-based SE (PBSE)
 - The organizational model of PBSE
 - Software engineering process system establishment
 - Software engineering process system assessment
 - Software engineering process system improvement

■ Software industry organization
 • The nature of the software industry
 • Principles of software industry organization

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1181

 - Basic principles of software industrial organization
 - Separation of software designer, builders, quality assurors, and
 maintainers in software engineering
 - Distributed time-shared development in software engineering

 • A perspective on the software maintenance crisis
 - The mathematical model of software maintenance crisis
 - Reasons behind software maintenance crises
 - Solutions to software maintenance crisis

■ Essential knowledge towards excellent software engineers
 • Basic constraints of software engineering
 • Empirical principles of software engineering
 • Laws of software engineering
 • Formal principles of software engineering

■ Impact of the theoretical foundations to software engineering
 • The cognitive principle of knowledge engineering
 - The effort model of knowledge creation and acquisition
 - The complexity model of knowledge creation
 - The cognitive model of knowledge spaces of multidisciplinary
 knowledge

 • Expected impacts of Wang’s laws and theorems to SE
 • Students’ feedback

SIGNIFICANT FINDINGS OF THIS CHAPTER

• Process-Based Software Engineering (PBSE) is an organizational
methodology for software engineering, by which the infrastructure of
software engineering, encompassing the three process subsystems of
organization, development, and management, is integrated by a well-defined
process reference model.

 • The process reference model can be tailored or adapted to a specific
project according to the nature of a project determining by the project
factors such as application domain, scope, complexity, schedule, experience
of project team, reuse opportunities identified, and/or resources availability.

• Tailoring of a PTPM from a comprehensive OPRM makes the
software project leaders’ tasks greatly simplified. Using this approach,
project organization and conduct can be effectively performed within an
organization’s unified software engineering process infrastructure.

© 2008 by Taylor & Francis Group, LLC

1182 Part IV Perspectives on Software Science

• The organizational theories and methodologies for the software
industry, as important part of software engineering in the large, have been
almost overlooked in this discipline. Towards a matured software
engineering discipline, the nature of the software industry and the
fundamental principles of software industrial organization need to be studied.

 • The software market is a sector of the information processing market,
where standardization and human cognitive familiarity play an important
role in market share. Therefore, international or industrial standards, as well
as intellectual properties, are important virtual assets in the software industry.

• Major current strategic problems in the software industry are

identified as follows:

 a) Referees are also players: All the responsibilities in software
design, implementation, and quality assurance are carried out by the
same organization, even the same engineer or group. As a consequence
of this confused allocation of responsibilities, when time, budget, or
skills are limited, quality tends to be the first victim in a software
engineering project under this form of organization.

 b) Too high requirements and responsibility are put onto the
shoulders of customers: The fact that is often overlooked in software
engineering is that customers may not be able to understand and
evaluate the requirements, functionality, quality, reliability, and
complete correctness of complex software systems. Therefore in
software engineering it is unwise to rely on customers for a complete or
thoughtful system requirements. It also unwise to let or to agree by any
party that customers should ensure the sole responsibility for testing
and evaluating a new software system.

• Distributed Time-Shared Development (DTSD) is a software

engineering methodology that geographically allocates software development
work broadly in distributed time zones with a wide-area Intranet.

• The mechanism of Software Maintenance Crisis (SMC) states that a
software development organization may face a situation known as the
software maintenance crisis, in which the ratio of the maintenance costs rm%
is approaching 100% of the total costs that the organization spent.

• The major solutions to deal with the SMC problems in software

engineering and in the software industry are:

a) Enhance technologies such as: i) to enhance software lifecycle
processes to include software maintenance and retirement; ii) to
increase depreciation of software systems; iii) To adopt a public agent

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1183

acting like a library to store all code and documents of commercial
software systems.

b) Software industry reorganization such as: iv) To create a
new affiliated service industry to maintain the legacy systems as that of
garages for the automobile industry; and v) To establish software
insurance agencies who take responsibility for supporting any
interrupted service of vendors.

c) Honor the responsibility and liability of the vendor.

• The power of multidisciplinary knowledge states that the ratio of
knowledge space ΩΣ between the knowledge of an expert with coherently m
disciplinary knowledge KΣ and that of a group of m experts with separated

individual disciplinary knowledge K
m
 is (,)

m

K
m n m

K
Σ

ΣΩ = ≈ , where n is

the number of average knowledge objects or concepts in the disciplines.

• The ratio of knowledge space Ω

1
 between the knowledge of an

expert with coherently m disciplinary knowledge KΣ and that of an expert

with individual disciplinary knowledge K
1
 is 2

1
1

(,)
K

m n m
K

ΣΩ = ≈ .

• The more the interdisciplinary knowledge one acquires, the larger the
knowledge space, and hence the higher the possibility for creation and
innovation in software engineering.

• In knowledge acquisition and knowledge engineering, broadness is

more important than depth.

• Through out the development of this book, it is observed that,
because of its inherited complexity, wide applications, and both human and
machine intelligence dependency, software engineering is not only a
discipline that requires multidisciplinary knowledge, but is also an ideal
testbed for evaluating existing theories and for developing new theories for
the related disciplines.

FUNDAMENTAL THEORIES DEVELOPED IN
THIS CHAPTER

Infrastructure of software engineering

• As the scale of software increases continually at an ever faster rate,
greater complexity and professional practices become critical, which requires

© 2008 by Taylor & Francis Group, LLC

1184 Part IV Perspectives on Software Science

the studies on the infrastructure of software engineering in the form of
process-based software engineering (PBSE).

• A software engineering process is a set of sequential practices that is

functionally coherent and reusable for software engineering organization,
development, and management. It is usually referred to as the software
process, or simply the process.

• A process reference model is an established, validated, and proven

software engineering process model that consists of a comprehensive set of
software processes and reflects the benchmarked best practices in the
software industry.

• The organization model of PBSE: The common practices in

organizing a software engineering process system are given in Fig. 14.3.

• At the entire enterprise level, a common organization’s process
reference model (OPRM) is established.

• At project level, a number of parallel development and
management processes may exist based on the individual project’s
tailored process model (PTPM), which are derived models of the
OPRM reference model. The OPRM process reference model is the key
for empirical PBSE. If an OPRM is well established in an organization,
the PTPMs at project level can easily be derived. For a PTPM of an
individual project, the management and development processes should
be one-to-one designed and synchronized.

• Software Engineering Process System Establishment: An initial

and fundamental step in PBSE is process system establishment. The major
aim of process establishment is to build up a software engineering process
reference model for a software development organization. When a process
system is established and experienced, improvement can be initiated
effectively via process assessment and benchmarking.

• The three basic steps for deriving a software project process
model are: a) Select and reuse a process system reference model at
organization; b) Derive a process model at project level; and c) Apply
the derived project process model.

• Software Engineering Process System Assessment: From the

viewpoint of reference systems there are four types of assessment methods:
the model-based, standard-based, benchmark-based, and integrated (model-
and-benchmark-based) assessment.

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1185

• Software Engineering Process System Improvement: Process
system improvement is the goal of process assessment, acting on issues
found in an assessment and enhancing the effectiveness of processes in the
process system. Key categories of process improvement methodologies are
goal-oriented process improvement, benchmark-based process improvement,
and continuous process improvement.

Software industry organization

• The overall organizational methodology for the software industry is
PBSE. Based on a generic software engineering process model such as
SEPRM, software engineering activities and processes at personal, project
(team), and enterprise levels can be well organized in the three essential
aspects of organization, development, and management.

• The key organization principles for the software industry are: a) To

improve productivity, b) To practice specialization or division of labor; and
c) To deal with the labor-time interlock constraint.

• In order to solve the inherited problems, a separation of roles in the
software industry is necessary. That is, the software industry is ideally split
into four sectors known as the organizations of software designers, software
builders, software quality assurors, and software maintainers with totally
separated and explicitly designated roles and responsibilities.

• Distributed Time-Shared Development (DTSD) is a new approach

of division of labor in the time-dimension contrary to division of labor in the
functional or specialization dimension. This methodology takes advantages
of geographically allocated project teams distributed in different time zones,
but interconnected through a wide-area Intranet and supported by remote
execution capabilities. Well organized and synchronized DTSD projects may
gain time greatly in development, because DTSD provides a virtual 24-hour
software development organization with the teams deployed in two or three
countries globally.

• Software Maintenance Crisis (SMC) is a phenomenon that happens
when the demand for software maintenance exceeds the capability that a
software development organization can provide, or when the costs of legacy
software maintenance predominantly override the investment for new
software development.

• There is a need of a sector in the software industry known as the

professional software legacy maintainers or the software garages.

© 2008 by Taylor & Francis Group, LLC

1186 Part IV Perspectives on Software Science

Essential knowledge towards excellent software engineers

• Throughout this book, the theoretical and empirical foundations of
software engineering have been explored in a rigorous and transdisciplinary
approach. The principles of software engineering are formally documented as
a comprehensive set of theorems and laws. This section summarizes the
theoretical framework of software engineering principles and laws, which
form the fundamental, durable, and enlightening knowledge for researchers
and practitioners in software engineering.

• The essential knowledge on the 14 basic constraints of
software engineering on cognition, organization, and resources is
summarized in Table 14.5.

• The essential knowledge on the 31 empirical principles of
software engineering is summarized in Table 14.6.

• The essential knowledge on the 50 laws of software
engineering is summarized in Table 14.7.

• The essential knowledge on 51 formal principles of software
engineering is summarized in Table 14.8.

Impact of the theoretical foundations of software
engineering

• A formal and rational documentation of a comprehensive and
essential body of software engineering knowledge with rigorous
treatments.

• Principles of knowledge engineering: The relationship between
knowledge creation and acquisition is as follows:

• For a specifically new knowledge K, the effort spent in its
creation Ec(K) is far more than that of its acquisition Ea(K), i.e., Ec(K)
>> Ea(K).

• The effort of skill acquisition Ea(S) is far more than that of
knowledge acquisition Ea(K), i.e., Ea(S) >> Ea(K).

• This book demonstrates that a wide range of new or enhanced

theories, methodologies, and techniques have been developed not only for
software engineering, but also for the closely related disciplines such as
scientific philosophy, mathematics, computer science, engineering science,
linguistics, information science, cognitive informatics, system science,

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1187

management science, economics, sociology, and natural/machine
intelligence.

Questions and
Research Opportunities

14.1 What are the problems in software industry organization? How

may the software industry be systematically organized?

14.2 What is Process-Based Software Engineering (PBSE)? Why may

process techniques be adopted as the infrastructure of software
engineering?

14.3 What are the basic organization principles for the software

industry?

14.4 Why is there a need to separate software designers, builders,

quality assurors, and maintainers in software engineering? What
are the main responsibilities of each of the four sectors?

14.5 What is the Distributed Time-Shared Development (DTSD)

technology in software engineering? What is the impact of DTSD
on the software industrial organization?

14.6 How is software maintenance crisis discovered and modeled?

14.7 What are the main reasons behind software maintenance crises

and potential solutions?

14.8 What are the roles of the special sector in the software industry

known as the software legacy maintainers?

14.9 There is an argument that programming has no scientific

foundations because both professionals and amateurs can write
programs. Do you agree with this observation? Why?

14.10 Why did Brooks consider there is no silver bullet for software

development in the 1970s? Are those claims still true?

© 2008 by Taylor & Francis Group, LLC

1188 Part IV Perspectives on Software Science

14.11 Why has software engineering been considered as silver bullet in

other disciplines where large-scale software systems are needed?

14.12 Identify some useful theories and techniques provided in this

book that would be the potential silver bullets for software
engineering.

14.13 Consider what would be the potential silver bullet for software

engineering after learning the transdisciplinary theories and
methodologies for software engineering presented in this book.

14.14 Summarize and describe how many metaphors of software and

software engineering have been explored in this book, and
provide a description for each of them.

14.15 It’s believed that automatic code generation technologies may

replace programmers in the future. Towards archiving this
objective in software engineering, what are the potential impacts
on the design means (denotational mathematics) and the
implementation tools (compilers, programming environments, and
testing systems)?

14.16 Software engineering is dependent on multidisciplinary

foundations. Summarize the closely related disciplines to software
engineering as described in this book.

14.17 Which laws of software engineering are you most interested in?

why?

14.18 Which formal principles of software engineering are you most

interested in? why?

14.19 According to Theorem 14.2 and Corollary 14.2, explain why the

knowledge space of multidisciplinary experts may be m2 times
greater than that of an expert with individual disciplinary
knowledge.

14.20 Why is broadness more important than depth (Corollary 14.3) in

knowledge acquisition and knowledge engineering?

14.21 May software engineering methodologies and approaches be

exported and applied to other engineering disciplines? Can you
provide an example?

© 2008 by Taylor & Francis Group, LLC

 Chapter 14 Retrospect on SE 1189

14.22 Summarize the structure of knowledge on the transdisciplinary

theoretical foundations of software engineering presented in this
book in a hierarchical diagram, and describe their
interrelationship and possible impacts on software engineering.

14.23 What are the common characteristics of the pioneers in software

engineering as reviewed in the classic articles listed in the last
question of each chapter?

14.24 Read the following classic article in software engineering:

John Backus (1978), Can Programming be Liberated

from the von Neumann Style? A Functional Style and

its Algebra of Programs, The 1977 Turing Award

Lecture, Communications of the ACM, 21(8), pp. 613-

641.

Discuss the following topics in a group or individually:

 • About the author.

• What are the von Neumann architecture and programming
styles based on it?

• What were the functional and algebraic styles proposed by
the author?

 • What conclusions of the article interested you? Why?
 • Your arguments or counter-points on any of the conclusions

derived in this article.

© 2008 by Taylor & Francis Group, LLC

Chapter 15

PROSPECT ON
SOFTWARE SCIENCE

I. Principles and
 Constraints of
 Software
 Engineering

III. Organizational
 Foundations of
 Software
 Engineering

IV. Perspectives
 on
 Software
 Science

14. Retrospect on
 Software Engineering

15.1 Introduction 15.4 Impacts of Software Science on Computing
15.2 The Formal Knowledge Systems 15.5 Epilogue
15.3 A Discipline of Software Science

15. Prospect on
 Software Science

II. Theoretical
 Foundations of
 Software
 Engineering

Software Engineering Foundations
– A Software Science Perspective

© 2008 by Taylor & Francis Group, LLC

1192 Part IV Perspectives on Software Science

Knowledge Structure

 The formal knowledge systems

 • The framework of formal knowledge
 • The roles of theoretical and empirical knowledge

 A discipline of software science

 • Software science: software engineering in the 21st century
 • Architecture of software science
 • Denotational mathematics for software science

 Impact of software science on computing

 • Autonomic computing
 • Intelligent code generation
 • Hyper-programming: New Faces of the Software Architectural Framework

 Epilogue

Learning Objectives

 • To understand the essences of the formal knowledge systems and its
applications in software engineering.

 • To know the roles of theoretical and empirical knowledge in software
engineering.

 • To recognize the emergence of the discipline of software science, and its
relationship with software engineering.

 • To understand the theoretical structure of software science and the
underpinning denotational mathematics.

 • To be aware of trends in future developments between the interactions of
software science, software engineering, and computing.

15. Prospect on Software Science

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1193

“If I have seen farther, it is because I have stood on the shoulders of giants.”

 Isaac Newton (1643 - 1727)

“Things that were valuable a decade ago will be valuable decades from now.
The field is moving too fast to chase them. ”

 Davis L. Parnas (1997)

15.1 Introduction

hroughout this book, software has been recognized as an entire range
of very widely and frequently used objects and phenomena in human
knowledge. As a logical consequence, the results of this book

provide a foundation leading to the emergence of software science
complementing to software engineering. The former is the theoretical inquiry
of software and the laws constrain it; while the latter is the empirical study of
engineering methodologies and techniques for software development and
software engineering organization.

The relationship between software science and software engineering
can be analogized to those of theoretical physics and applied physics, or
dynamics and mechanical engineering. Without theoretical physics there
would be no matured applied physics; without dynamics there would be no
matured mechanical engineering. So is software science with software
engineering. The ultimate purpose of this book is an attempt to demonstrate
that almost all the fundamental problems which could not be solved in the
last four decades in software engineering simply stemmed from the lack of
coherent theories in the form of software science. The vast cumulated
empirical knowledge and industrial practice in software engineering have
made this possible to enable the emergence of software science.
 Another aim of this concluding chapter is to demonstrate that
researchers and practitioners are enabled to rationally predict the future
trends in software engineering based on the theoretical foundations about it,
the empirical observations on it, and the transdisciplinary knowledge gained
from more matured disciplines. Therefore, to a certain extent, the theoretical
and empirical theories developed in this book provide a predictability for the
future developments and a foundation for explaining unknowns in software
engineering.
 In the remainder of this chapter, the perspectives on software science
and engineering will be presented in three sections. Section 15.2 describes

T

© 2008 by Taylor & Francis Group, LLC

1194 Part IV Perspectives on Software Science

the formal structure of generic knowledge systems, which provides a
blueprint for organizing the theoretical framework of software engineering
knowledge. Section 15.3 introduces the emerging discipline of theoretical
software science as a natural extension of empirical software engineering.
Then, Section 15.4 discusses potential impacts of software science on
computing and applied software engineering, in the facets of autonomic
computing, intelligent software code generation, and hyper-programming.

15.2 The Formal Knowledge System

The entire human knowledge can be classified as either empirical or formal
knowledge. The former is the direct knowledge about the physical world,
while the latter is the derived knowledge about both the physical and abstract
worlds. A formal knowledge system is needed to maintain a stable, efficient,
and rigorous inference base, in which only true or false conclusions may be
derived and there is no gray area in between the conclusions of a rigorous
inference.

This section presents a framework of the formal knowledge system.
The taxonomy of human knowledge as a formal system is reviewed. The
roles of formal and empirical knowledge are contrasted.

15.2.1 THE FRAMEWORK OF FORMAL KNOWLEDGE

Mathematical thoughts provide a successful paradigm to organize and
validate human knowledge, where once a truth or a theorem is established, it
is true till the axioms or conditions that it stands for are changed or extended.
A proven truth or theorem in mathematics does not need to be argued each
time when one applies it as a basis of reasoning. This is the advantage and
efficiency of formal knowledge in science and engineering. In other words, if
any theory or conclusion may be argued from time-to-time based on a
seemed wiser idea or a trade-off, it is an empirical result rather than a formal
theory.

The framework of Formal Knowledge System (FKS) of mankind
[Wang, 2007a] can be described as shown in Fig. 15.1. The FKS framework
shows the interrelationships between a comprehensive set of terms of formal
knowledge, where the taxonomy of formal knowledge and their definitions
are presented in Table 15.1.

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1195

The Formal Knowledge System

Discipline Doctrine

Theories

Facts
Laws

Truths

Algorithms

Hypotheses Propositions

 Theorems

Arguments

Concepts

Rules

Principles

Methods

Definitions

Empirical verifications

Formal proofs
Lemmas

Corollaries

Statistical norms

Case studies

Instances

Models

Questions

Phenomena

Figure 15.1 The framework of Formal Knowledge System (FKS)

The FKS system is centered by a set of theories. A theory is a statement
of how and why certain objects, facts, or truths are related. An empirical
truth is a truth based on or verifiable by observation, experiment, or
experience. A theoretical proposition is an assertion based on formal theories
or logical reasoning, which is a formalization of generic truth and proven
empirical knowledge. According to Lemmas 14.1 and 14.2, theoretical
knowledge may be easier to acquire when it is existed and proven. However,
empirical knowledge is very difficult to be gained without hands-on practice.

According to the FFK model, an immature discipline of science and
engineering is characterized as that its body of knowledge is not formalized
or is mainly empirical. When there is no theory in a field of human enquiry,
the practice in it is risk-prone. Instead of a set of proven theories, the
immature disciplines usually document a large set of observed facts,
phenomena, and their possible or partially working explanations. In such
disciplines, researchers and practitioners might be able to argue every

© 2008 by Taylor & Francis Group, LLC

1196 Part IV Perspectives on Software Science

informal conclusion documented in natural languages from time-to-time
probably for hundreds of years, until it is formalized and proven rigorously.

Table 15.1

Taxonomy of Formal Knowledge

No Term Description
1 Algorithm A generic and reusable method described by rules or processes in

problem-solving.
2 Argument A reason or a chain of reasons on the truth of a proposition or theory.
3 Case study An applied study of a generic theory in a particular setting or

environment.
4 Concept A cognitive unit in reasoning by which the meaning and semantics of

real-world or abstract entities may be represented and embodied.
5 Corollary A proposition that follows from or appended to a theorem already

proved.
6 Definition An exact and usually formal description of a concept or fact as a basis of

reasoning.
7 Discipline A branch of knowledge that studies a category of objects with a set of

doctrines, frameworks, theories, and methodologies.
8 Doctrine A set of coherent theories.
9 Empirical

verification
A proof of a truth, accuracy, or validity of a proposition or theory based
on observation and experience.

10 Factor A thing or relation that is observed or proven true.
11 Hypothesis A proposed proposition as a basis for reasoning or investigation in order

to prove its truth or falsity.
12 Instance An example or particular case of a general phenomenon.
13 Law A proven statement of a causality between a deducted phenomenon or

variable and its conditions.
14 Lemma A subsidiary or intermediate theorem in a chain of argument or proof.
15 Method An established procedure or approach to solve a class of problems, or to

carry out a kind of task.
16 Model A description of an architecture, mechanism, and/or behavior of a system

or process.
17 Phenomenon An observed fact or state with known or unknown causality.
18 Principle A generalized axiom or proposition that explains a wide range of cases

or instances in a field of study.
19 Proof An established fact or validated statement by evidences and arguments.
20 Proposition A formal statement of an assertion of judgment or a problem.
21 Question A doubt about the truth of a proposition, or a request for a solution to a

problem.
22 Rule A proposition that describes or prescribes allowable conditions and

domains of a law or principle.
23 Statistical A typical, average, or standard quality, quantity, or state of a

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1197

norm phenomenon or system based on a large set of observations and statistic
analyses.

24 Theorem A generic proposition expressed formally and established by means of
accepted truths.

25 Theory A system of generic and formalized principles, theorems, laws, relations,
and models independent of objects to be explained or practices are to be
based.

26 Truth An established, proven, or accepted constant state of a term or
proposition in reasoning that is either true or false.

Software engineering is such an immature discipline in which a huge

volume of empirical knowledge has been documented and nobody can prove
whether this kind of knowledge is universally true or not; what their
applicable axioms, conditions, and contexts are; and if they are coherent and
complete. The formal documentation of software engineering theories and
fundamental body of knowledge in this book is the first attempt to establish a
formal theoretical framework of software engineering towards a matured
discipline.

The disciplines of mathematics and physics are successful paradigms
that adopt the formal knowledge system. The advantages of FKS are its
stability and efficiency. The former is a property of formal knowledge that
once it is established and proven, users who refer to it will no longer need to
reexamine or reprove it. The latter is a property of formal knowledge that is
exclusively true or false that saves everybody’s time to argue a proven
theory.

15.2.2 THE ROLES OF FORMAL AND EMPIRICAL
 KNOWLEDGE

In contrasting the nature of empirical knowledge and theoretical

knowledge, the following principle on software engineering knowledge can
be derived below.

The 49th Principle of Software Engineering

Theorem 15.1 The rigorous levels of empirical and theoretical
knowledge states that an empirical truth is a truth based on or verifiable
by observations, experiments, or experiences. In contrary, a theoretical
proposition is an assertion based on formal theories, logical, or
mathematical inferences.

© 2008 by Taylor & Francis Group, LLC

1198 Part IV Perspectives on Software Science

Based on Theorem 15.1, a corollary on application domains of
theoretical and empirical knowledge is stated as follows.

The differences of the validated domains between theoretical and

empirical knowledge indicates the levels of refinements of different forms of
knowledge and their reliability.

Empirical knowledge answers how; while theoretical knowledge
reveals why. Theoretical knowledge is a formalization of generic truth and
proven empirical knowledge. Although the discovery and development of a
theory or a law may take decades even centuries, its acquisition and
exchange are much easier and faster with ordinary effort. However, empirical
knowledge is very difficult to be gained. One may consider that a person can
learn multiple scientific disciplines such as the fields covered in this book,
but few think that a person may be an expert in multiple engineering
disciplines such as in all areas of electrical, mechanical, chemical, and
computer engineering. The reasons behind this are that each engineering area
requires specific empirical knowledge, skills, and tools. All of them need a
long period of training and practice to be an expert.

Huge empirical knowledge were created and disappeared over time. For
example, there are tons of empirical knowledge on software engineering
published each year in the last decades. However, those that would be
included in a textbook on software engineering theories as proven and
general truth, rather than specific cases partially working on certain given or
nonspecified constraints, would be no more than a few handful pages.

According to Corollary 15.1, the major risk of empirical knowledge is
its uncertainty when applying in a different environment, even the same
environment but at different time, because empirical knowledge and common
sense are often error-prone. Consider the following examples:

 • In early age of human civilization, people commonly believed that

the earth is flat and mankind lived in the center of the universe,
until Nicholas Copernicus (1473-1543) proven that these common
senses were false in the early 16th century.

 • Managers believed that the larger the project, the larger the team
required. However, Theorem 8.7 (Law 23 of software

Corollary 15.1 The validation scope of theoretical knowledge is
universal in its domain such as ∀x ∈ S ⇒ p(x); while the validation scope
of empirical knowledge is based on limited observations such as ∃x ∈ S
⇒ p(x), where S is the domain of a problem x under study, and p a proven
proposition or derived theory on x.

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1199

engineering) and Theorem 13.4 (Law 48 of software engineering)
reveal that for a given workload, the optimal labor allocation and
the shortest project period are constrained by natural laws. That
is, putting more than the optimal number of persons into a group
is not only counterproductive, but also dramatically increasing the
real workload of the project – a major hidden reason of most
failures in software engineering project organization.

According to Theorem 3.1, all recurrent objects in nature and their

relations are constrained by certain invariant laws, no matter one observed
them or not at a given time. This is one of the essences that may be gained in
this book. In software engineering, we were told to not use goto statement.
According to Theorem 4.7, jump or goto statement is one of the 17 essential
computational operations in process algebra for describing software system
behaviors. We were told extreme or pairwise programming is the latest
solution to software engineering. However, according to Theorem 8.11,
pairwise working is only efficient and suitable for a certain small scope of
software projects because in this approach the interpersonal coordination rate
r is too high, which may result in a huge additional real workload for a large-
scale software project that may be risk prone.

15.3 A Discipline of Software
Science

It is recognized that theoretical software engineering focuses on foundations
and basic theories of software engineering; whilst empirical software
engineering concentrates on heuristic principles, tools/environments, and
best practices by case studies, experiments, trials, and benchmarking.
Throughout this book it is noteworthy that, because software is the most
abstract instructive information, software engineering is one of the most
complicated branches of engineering, which requires intensive theoretical
investigations rather than only empirical studies. The widely impacted and
applicable objects and the complicated theories in software engineering lead
to the emergence of a scientific discipline known as software science.

This section provides perspectives on the emerging discipline of
software science along with the maturity of software engineering theories
and methodologies in fundamental research as presented throughout this
book. The architecture and roadmap of software science will be presented.

© 2008 by Taylor & Francis Group, LLC

1200 Part IV Perspectives on Software Science

The theoretical framework, mathematical foundations, and basic
methodologies of software science will be briefly introduced.

15.3.1 SOFTWARE SCIENCE: SOFTWARE
 ENGINEERING IN THE 21ST CENTURY

In the history of science and engineering, a matured discipline always
gave birth to new disciplines. This generic evolutionary tendency has been
formally described in the EMM model in Theorem 8.3. For instance,
theoretical physics was emerged from general and applied physics, and
theoretical computing was emerged from computer engineering. So will
software science emerge and grow in the field of software, computer,
information, knowledge, and intelligent engineering [Wang, 2007a].

Definition 15.1 Software science is a discipline of human enquiry that
studies the theoretical framework of software as instructive and behavioral
information, which can be embodied and executed by generic computers in
order to create expected system behaviors and machine intelligence.

The discipline of software science enquiries the common objects in the

abstract world such as software, information, data, knowledge, instruction,
executable behavior, and their processing by natural and machine
intelligence. In other words, software science studies instructive and
behavioral information and the mechanism of its translation into system
behaviors.

The relationship between software science (SS) and software
engineering (SE) can be analogized with those of theoretical physics (TP)
and applied physics (AP) as follows:

 SS : SE = TP : AP (15.1)

Software science is the theoretical inquiry of software as an entire

range of very widely and frequently used objects and phenomena in human
knowledge; while software engineering is the empirical study of engineering
methodologies and techniques for software development and software
industry organization applying theories of software science. Without
theoretical physics there would be no matured applied physics; without
dynamics there would be no matured mechanical engineering. So do software
science with software engineering.

Based on Definition 15.1 and Eq. 15.1, software engineering may be
perceived as applied software science. Therefore, the intension of software
engineering as provided in Definition 1.6 can be refined as follows.

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1201

Definition 15.2 Software engineering is an engineering discipline that
applies software science theories and methodologies to efficiently,
economically, and reliably organize and develop large-scale software
systems.

This book has revealed that almost all the fundamental problems that
could not be solved in the last four decades in software engineering were
simply stemmed from the lack of software science.

It is noteworthy that cognitive informatics perceives information as
anything that can be inputted into and processed by the brain; while software
science perceives software as any instructive information that can be
executed and transformed into computational behaviors by computers. This
forges a relationship between cognitive informatics and software science,
which indicates that the former is the foundation for natural intelligence
science, and the latter is the foundation for artificial intelligence science and
software engineering.

15.3.2 ARCHITECTURE OF SOFTWARE SCIENCE

The architecture of software science can be classified into four
categories namely theories and methodologies, denotational mathematics,
cognitive informatics, and organizational theories as shown in Fig. 15.2.

Concept algebra

Software Science

Computing theories

Linguistics theories

Intelligence science Coordinative work
organization theories

Management theories

System modeling
and refinement

Economics theories

System and Sociology
theories

Neural informatics

Code generation
theories

 Theories and
Methodologies

 Denotational
Mathematics

Cognitive
Informatics

 Organization
Theories

Knowledge science

Autonomic computing

System algebra

RTPA

Formal inference
processes

Figure 15.2 The architecture of software science

© 2008 by Taylor & Francis Group, LLC

1202 Part IV Perspectives on Software Science

Theories and methodologies of software science encompass system
modeling and refinement methodologies, computing theories, formal
linguistic theories, and software code generation theories. Both imperative
and autonomic computing theories as well as their engineering applications
are explored in this category.

Denotational mathematics for software science is the enquiry for its
mathematical foundations in the forms of formal inference methodologies,
concept algebra, system algebra, and RTPA. In the contemporary
mathematics for software science and software engineering, concept algebra
is designed to deal with the to be problems and knowledge manipulation.
System algebra is developed to formally treat the to have problems in terms
of dynamic relations and possessions beyond set theory. RTPA is adopted to
formalize the to do problems such as system architectures, static and dynamic
behaviors. Further discussion on denotational mathematics for software
science will be presented in Section 15.3.3.

Cognitive informatics for software science encompasses intelligence
science, neural informatics, knowledge science, and autonomic computing.
Cognitive informatics helps to understand and explain the fundamental
mechanisms of natural intelligence and its products in terms of information
and knowledge. It also studies the software implementation of intelligent
behaviors by autonomic computing. Advances in cognitive informatics will
help to overcome the cognitive barriers and inherited complicities in software
engineering, which is called the intellectually manageability by Dijkstra and
the essential difficulties by Brooks in software engineering. The entire
structure of cognitive informatics may be referred to Chapter 9, and the
theory of autonomic computing will be extended in Section 15.4.1.

Organizational theories of software science encompass coordinative
work organization theories, management theories, economics theories, and
system/sociology theories. The organizational facet of software science
studies how large-scale software engineering projects may be optimally
organized and what the underpinning laws are at different levels of
complexities. The theoretical framework of software engineering
organization has been outlined in Chapters 8 through 13 in this book.

15.3.3 DENOTATIONAL MATHEMATICS FOR
 SOFTWARE SCIENCE

It is recognized that many branches of mathematics were emerged in
engineering sciences in order to meet their abstract, rigorous, and expressive
needs. These phenomena may be conceived as that new problems require
new forms of mathematics. Also, the history of sciences and engineering
shows that the maturity of a new discipline mainly characterized by the
maturity of its mathematical means that enables rigorous modeling and
reasoning in the discipline. Conventional analytic mathematics are unable to

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1203

solve the fundamental problems inherited in software science/software
engineering, cognitive informatics, intelligence science, and knowledge
science. Therefore, contemporary denotational mathematical structures and
means beyond mathematical logic are yet to be sought.

As identified in Table 6.3, the descriptivity of humans and systems
behaviors may be classified into three basic categories known as to be, to
have, and to do. All mathematical means and forms, in general, are an
abstract and formal description of these three categories of denotational
needs and their rules as shown in Table 15.2.

Table 15.2
Denotational Mathematical Means for Software Science

Mathematical Means Function Category
Conventional Denotational

Identify objects and attributes To be (|=) Logic Concept algebra
Describe relations and possession To have (|⊂) Set theory System algebra

Describe status and behaviors To do (|>) Functions RTPA

In Table 15.2, the conventional and denotational mathematical means

are contrasted. According to Table 15.2, the generic usage of mathematics is
the means and rules to rigorously and generically express thought and
notions at a higher-level of abstraction and rigor.

15.3.3.1 Concept Algebra

A concept is a cognitive unit [Ganter and Wille, 1999; Quillian, 1968;
Wang, 2006e] by which the meanings and semantics of a real-world entity or
an abstract entity may be represented and embodied based on the OAR model
[Wang, 2007g].

Definition 15.3 An abstract concept c is a 5-tuple, i.e.:

 (, , , ,)c i oc O A R R R (15.2)
where

• O is a nonempty set of object of the concept, O = {o1, o2, …, om}
= ÞU, where ÞU denotes a power set of a finite or infinite
nonempty set of objects.

• A is a nonempty set of attributes, A = {a1, a2, …, an} = ÞM, where
M is a finite or infinite nonempty set of attributes.

• Rc ⊆ O × A is a set of internal relations.
• Ri ⊆ C′ × C is a set of input relations, where C′ is a set of external

concepts.

© 2008 by Taylor & Francis Group, LLC

1204 Part IV Perspectives on Software Science

• Ro ⊆ C × C′ is a set of output relations.

A structural concept model of c = (O, A, Rc, Ri, Ro) can be illustrated in
Fig. 15.3, where c, A, O, and R, R = {Rc, Ri, Ro}, denote the concept, its
attributes, objects, and internal/external relations, respectively.

Definition 15.4 Concept algebra is a new mathematical structure for
the formal treatment of abstract concepts and their algebraic relations,
operations, and associative rules for composing complex concepts and
knowledge [Wang, 2006e].

 Rc

 A

 O Ri Ro Other Cs Other Cs

 c

 Θ

Figure 15.3 The structural model of an abstract concept

Concept algebra deals with the algebraic relations and associational
rules of abstract concepts. The associations of concepts form a foundation to
denote complicated relations between concepts in knowledge representation.
The associations among concepts can be classified into nine categories, such
as inheritance, extension, tailoring, substitute, composition, decomposition,
aggregation, specification, and instantiation as shown in Fig. 15.4 [Wang,
2006e]. In Fig. 15.4, R = {Rc, Ri, Ro}, and all nine associations describe
composing rules among concepts, except instantiation that is a relation
between a concept and a specific object.

Definition 15.5 A generic knowledge K is a relation Rk that mapping a

certain concept C into a set of n existing concepts Ci in the brain in the form
of OAR, i.e.:

 : X
n

()→k i
i=1

K = R C C (15.3)

where Rk ∈ { , , , , , , , , } =
+

Γ ⇒ ⇒ ⇒⇒ .

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1205

c1

O1

A1

R1

c2

O2

A2

R2

o21

A21 R21

⇒

⇒
+

Inheritance

 Extension

 Tailoring

Substitute

 Composition

 Decomposition

Aggregation

Specification

Instantiation

⇒
-

⇒
~

Figure 15.4 Concept association operations in concept algebra

In Definition 15.5 the relation Rk is one of the concept operations

defined in concept algebra [Wang, 2006e] that serves as the knowledge
composing rules.

Definition 15.6 A concept network CN is a hierarchical network of
concepts interlinked by the set of nine associations ℜ defined in concept
algebra, i.e.:

 : X X→

n n

κ i j
i=1 i= j

CN = R C C (15.4)

where Rk ∈ Γ.

Because the relations between concepts are transitive, the generic

topology of knowledge is a hierarchical concept network. The advantages of
the hierarchical knowledge architecture K in the form of concept networks
are as follows: a) Dynamic: The knowledge networks may be updated
dynamically along with information acquisition and learning without
destructing the existing concept nodes and relational links. b) Evolvable: The
knowledge networks may grow adaptively without changing the overall and
existing structure of the hierarchical network. A summary of the algebraic
relations and operations of concepts defined in concept algebra is provided in
Table 15.3. Further details may be referred to [Wang, 2006e].

© 2008 by Taylor & Francis Group, LLC

1206 Part IV Perspectives on Software Science

15.3.3.2 System Algebra

Systems are the most complicated entities and phenomena in the
physical, information, and social worlds across all science and engineering
disciplines. System algebra is a new abstract mathematical structure that
provides an algebraic treatment of abstract systems as well as their relations
and operational rules for forming complex systems [Wang, 2006d].
 System algebra is created for the rigorous treatment of abstract systems
and their algebraic relations and operations. A summary of the algebraic
relations and operations of abstract systems defined in system algebra is
provided in Table 15.3. Further descriptions of system algebra may be
referred to Section 10.4 and [Wang, 2006d].

15.3.3.3 RTPA

A key metaphor in system modeling, specification, and description is
that a software system can be perceived and described as the composition of
a set of interacting processes. C.A.R. Hoare, R. Milner, and others developed
various algebraic approaches to represent communicating and concurrent
systems, known as process algebra [Hoare, 1978/85; Milner, 1989]. A
process algebra is a set of formal notations and rules for describing algebraic
relations of software processes. RTPA [Wang, 2002a/02b/03c/06a/07a]
extends process algebra to time/event, architecture, and system dispatching
manipulations in order to formally describe and specify architectures and
behaviors of software systems.

RTPA is a set of formal notations and rules for describing algebraic and
real-time relations of software processes. A process in RTPA is a
computational operation that transforms a system from a state to another by
changing its inputs, outputs, and/or internal variables. A process can be a
single meta-process or a complex process formed by using the process
combination rules of RTPA known as process relations.

RTPA models 17 meta processes P = {:=, , ⇒, ⇐, , , , | ,

| , @ , , ↑, ↓, !, , ⊠ , §} and 17 process relations R = {→, , |, |…|,
*R , R+ ,

iR , , , ||, ∯ , |||, », , t, e, i}.
Based on RTPA, an important finding about the nature of programs is

that according to Theorem 5.7, the generic mathematical model of programs
is a finite and nonempty set of cumulatively embedded relational processes
between a current statement and all previous ones that formed the semantic
context or environment of computing.

The definitions, syntaxes, and formal semantics of RTPA may be
referred to Sections 4.6, 4.7, and 6.6, respectively [Wang,
2002a/02b/03c/06a/07a]. A summary of the meta processes and their
algebraic operations in RTPA is provided in Table 15.3.

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1207

Table 15.3
Taxonomy of Denotational Mathematics for Software Science and Engineering

Real-Time Process Algebra (RTPA) Operations

Concept
Algebra

System
Algebra Meta Processes Relational Operations

Super/sub relation / ≺ / Assignment := Sequence →

Related/independent ↔ / ↔ / Evaluation Jump

Equivalent = = Addressing ⇒ Branch |

Consistent ≅ Memory allocation ⇐ Switch |…|…
Overlapped Π Memory release While-loop *R

Conjunction + Read Repeat-loop R+

Elicitation * Write For-loop iR

Comparison ~ Input | Recursion

Definition Output | Procedure call

Difference Timing @

Parallel ||

Inheritance ⇒ ⇒ Duration Concurrence ∯

Extension +⇒ +⇒ Increase ↑ Interleave |||

Tailoring ⇒ ⇒ Decrease ↓ Pipeline »

Substitute ⇒ ⇒ Exception
detection

! Interrupt

Composition Skip Time-driven dispatch t

Decomposition Stop ⊠ Event-driven dispatch e

Aggregation/
generalization

 System § Interrupt-driven
dispatch

 i

Specification

Instantiation

The three new structures of denotational mathematics have extended

the abstract objects under study in mathematics from basic mathematical
entities of numbers and sets to a higher level, i.e., concepts, systems, and
behavioral processes. A wide range of applications of the denotational
mathematics in the context of software science and engineering has been
identified [Wang, 2002b; Wang, 2006d; Wang, 2006e].

Under the overarching structure of denotational mathematics and with
the paradigms as shown in Table 15.3, novel mathematical forms and
structures, new mathematical entities, engineering applications, and
comparative studies on denotational and analytic mathematics will be sought

© 2008 by Taylor & Francis Group, LLC

1208 Part IV Perspectives on Software Science

in order to develop a family of denotational mathematical structures for the
needs in software science and engineering. This will be described in a
succeeding volume of this series of books in software engineering.

15.4 Impacts of Software Science on
 Computing

This book has revealed that almost all the fundamental problems that could
not be solved in the last four decades in software engineering were simply
stemmed from the lack of software science. The preceding chapters of this
book present the impacts of the multidisciplinary theories and rigorous
foundations on software engineering. As a consequence, the discipline of
software science is emerging.

On the basis of the software science framework, this section explores
how software science and the formalized theories of software engineering
may influence the other disciplines synergized in this book, especially
computer science and computing methodologies. This will be focused on
three important emerging methodologies for computing known as autonomic
computing, intelligent software code generation, and hyper-programming
[Wang, 2007a].

15.4.1 AUTONOMIC COMPUTING

Recalling the discussions on basic computation models in Section 5.2,
autonomic computing is introduced as the latest development in
computational machines following automata, Turing machines, and von
Neumann machines. The general-purpose computers may do anything unless
a specific program is loaded. In other words, they are only a class of general
behavioral servos of human instructions [Wang, 2003d/04a/07a]. However,
autonomic computers are not only servos, but also instructors and goal-
driven controllers [IBM, 2001/06; Pescovitz, 2002; Kephart and Chess, 2003;
Murch, 2004; Wang, 2003d/04a/07a/07b/07c/07e/07f].

Autonomic computing is a mimicry and simulation of the natural
intelligence possessed by the brain by using generic computers. This
indicates that the nature of software in autonomic computing is the
simulation and embodiment of human behaviors, and the extension of human

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1209

capability, reachability, persistency, memory, and information processing
speed.

Autonomic computing was first proposed by IBM in 2001, while the
history towards autonomic computing, as long as computer science, has been
reviewed in Section 5.2.5. IBM perceived that “Autonomic computing is an
approach to self-managed computing systems with a minimum of human
interference. The term derives from the body's autonomic nervous system,
which controls key functions without conscious awareness or involvement
[IBM, 2001].” Various studies on autonomic computing have been reported
based on this proposal [Pescovitz, 2002; Kephart and Chess, 2003]. The
cognitive informatics foundations of autonomic computing have been
investigated in [Wang, 2003d/04a/07a/07f].

Based on cognitive informatics theories [Wang, 2002a/03a/07b],

autonomic computing is proposed as a new and advanced technology for
computing built upon the routine, algorithmic, and adaptive systems as
shown in Table 15.4

Table 15.4

Classification of Computing Methodologies and Systems

Behavior (O)
Constant Variable

Constant Routine Adaptive Event (I)
Variable Algorithmic Autonomic

Type of behavior Deterministic Nondeterministic

The first three categories of computing techniques, such as routine,

algorithmic, and adaptive computing, as shown in Table 5.4, are imperative.
In contrast, the autonomic computing systems do not rely on imperative and
procedural instructions, but are dependent on goal, perception, and inference
driven mechanisms.

Definition 15.7 An Imperative Computing (IC) system is a passive
system that implements deterministic, context-free, and stored-program
controlled behaviors.

Definition 15.8 An Autonomic Computing (AC) system is an intelligent
system that implements nondeterministic, context-dependent, and adaptive
behaviors based on goal- and inference-driven mechanisms.

© 2008 by Taylor & Francis Group, LLC

1210 Part IV Perspectives on Software Science

The following subsections explore the theoretical foundations and
engineering paradigms of AC.

15.4.1.1 From Imperative Computing to Autonomic Computing

IC relies on stored programs that transfer a computer as a general
behavioral implementing machine to different specific intelligent
applications. However, AC is based on internal inference engines and goal-
driven mechanisms in order to implement autonomic and adaptive
computing.

The IC system is a traditional and passive system that implements
deterministic, context-free, and stored-program controlled behaviors, where a
behavior is defined as a set of observable actions of a given computing
system. However, the AC system is an active system that implements
nondeterministic, context-dependent, and adaptive behaviors. The AC
systems do not rely on instructive and procedural information, but are
dependent on internal status and willingness formed by long-term historical
events and current rational or emotional goals.

In its AC manifesto, IBM proposed eight conditions setting forth an AC
system known as self-awareness, self-configuration, self-optimization, self-
maintenance, self-protection (security and integrity), self-adaptation, self-
resource-allocation, and open-standard-based [IBM, 2001]. Kinsner pointed
out that the above characteristics indicate that IBM perceives AC as a
mimicry of human nervous systems [Kinsner, 2007]. In other words, self-
awareness (consciousness) and nonimperative (goal-driven) behaviors are
the main characteristics of AC systems [Wang, 2007c/07f].

According to cognitive informatics, the eight characteristics of AC
identified by IBM may be sufficient to identify an adaptive system rather
than an autonomic system. Because adaptive behaviors can be implemented
by IC techniques, but autonomic behaviors may only be implemented by
nonimperative and intelligent means. This leads to the formal description of
the conditions and basic characteristics of AC, and what distinguish AC
systems from conventional IC systems.

The 50th Principle of Software Engineering

Theorem 15.2 The necessary and sufficient conditions of IC, CIC, are the
possession of event Be, time Bt, and interrupt Bint driven computational
behaviors, i.e.:

 (, ,)IC e t intC B B B= (15.5)

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1211

As an extension of IC, AC systems are constrained by the following
theorem.

Theorem 15.3 reveals the relationship between the computing

capabilities of IC and AC systems, which can be stated as follows.

As stated in Theorem 3.4, it is recognized that Artificial Intelligence

(AI) is a subset of natural intelligence (NI) [Wang, 2007a]. Therefore, AC
may also be referred to natural intelligence and human behaviors. According
to the LRMB reference model [Wang et al., 2006], a systematical view
towards the formal description and modeling of architectures and behaviors
of AC systems is obtained, which explains the functional mechanisms and
cognitive processes of the natural intelligence with 39 cognitive processes at
six layers known as the sensation, memory, perception, action, meta, and
higher cognitive layers from the bottom up. All fundamental goal-driven and
perceptive inferring mechanisms of AC systems can be rigorously described
and implemented based on LRMB.

15.4.1.2 Behaviorism Foundations of Autonomic Computing

Behaviorism is a doctrine of psychology and intelligence science that

reveals the associations between a given stimulus and an observed response
of NI or AI systems developed on the basis of associationism [Sternberg,
1998]. Cognitive informatics classifies human and machine behaviors into
four categories known as the perceptive behaviors, cognitive behaviors,

The 51st Principle of Software Engineering

Theorem 15.3 The necessary and sufficient conditions of AC, CAC, are
the possession of goal Bg and inference Binf driven computational
behaviors, in addition to the event Be, time Bt, and interrupt Bi driven
behaviors, i.e.:

 (, , , ,)
(,)

AC g inf e t int

IC g inf

C B B B B B
C B B
=
=

 (15.6)

Corollary 15.2 The behavioral space of IC CIC is a subset of AC CAC. In
other words, CAC is a natural extension of CIC, i.e.:

 IC ACC C⊆ (15.7)

© 2008 by Taylor & Francis Group, LLC

1212 Part IV Perspectives on Software Science

instructive behaviors, and reflective behaviors [Wang, 2007k]. This section
investigates the behavioral spaces and the basic properties of IC and AC.

On the basis of Theorem 15.2 and Definitions 5.65 on the Generic
Computing System (GCS), the mathematical model of a generic IC system
can be described as follows.

Definition 15.9 The Imperative Computing System, §IC, is an abstract

logical model of conventional computing platforms denoted by a set of
parallel or concurrent computing resources and behaviors as shown in Fig.
15.5.

 §IC Imperative-SysIDS ::

 { <
-1

0

procn

i
R

=

N

N
 PiST> // Processes

 || <
-1

0

MEMn

addr
R

=

H

P
MEM[ptrP]RT> // Memory

 || <
-1

0

PORTn

ptr
R

=

H

P
PORT[ptrP]RT> // Ports

|| <§tTM> // The system clock

|| <
-1

0

en

k
R

=

N

N
@ekS ↳Pk> // Event-driven behaviors

|| <
-1

0

tn

k
R

=

N

N
@tkTM ↳Pk> // Time-driven behaviors

|| <
int -1

0

n

k
R

=

N

N
@intk ↳Pk > // Interrupt-driven behaviors

|| <
-1

0

Vn

i
R

=

N

N
ViRT> // System variables

|| <
-1

0

Sn

i
R

=

N

N
SiBL> // System statuses

 }

Figure 15.5 The imperative computing system model

Fig. 15.5 shows that an IC system §IC is the executing platform or the
operating system that controls all the computing resources of an abstract
target machine. The IC system is logically abstracted as a set of process
behaviors and underlying resources, such as the memory, ports, the system
clock, and system status. An IC behavior in terms of a process Pk is

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1213

controlled and dispatched by the system §IC, which is triggered by various
external, system timing, or interrupt events [Wang, 2007k].

AC extends the conventional behaviors of IC as discussed in the
preceding subsection to more powerful and intelligent ones such as goal-
driven and inference-driven behaviors. According to Theorem 15.3, with the
possessing of all the five forms of intelligent behaviors, AC has advanced
closer to the basic intelligent power of human brains from conventional IC.

Definition 15.10 A goal-driven behavior, denoted by g, is a machine
cognitive process in which the kth behavior in term of process Pk is triggered
by a given goal @gkST, i.e.:

 g
=1

@R
n

k k
k

g PST (15.8)

where the goal @gkST is in the system type ST that denotes a structured
description of the goal (Definition 9.30).

Therefore, to some extent, AC is an intelligent goal-driven problem
solving machines that searches a solution for a given problem or finds a path
to reach a given goal [Rubinstein and Firstenberg, 1995; Chiew and Wang,
2004]. There are two categories of problems in problem solving: a) The
convergent problems where the goal of problem solving is given but the
paths of problem solving may be known or unknown; and b) The divergent
problems where the goal of problem solving is unknown, but the paths are
either known or unknown. The combination of the above cases in problem
solving can be summarized in Table 15.5. A special case in Table 15.5 is that
when both the goal and path are known, the case is a solved instance of a
given problem.

Table 15.5
Classification of Problems and Goals

Type of
problem

Goal Path Type of solution

Known Unknown Proof (Specific) Convergent
Known Known Instance (Specific)
Unknown Known Case study (Open-ended) Divergent
Unknown Unknown Explorative (Open-ended)

According to Theorem 15.3, inference capability is the second

extension of AC on top of the capabilities of IC, which is a cognitive process

© 2008 by Taylor & Francis Group, LLC

1214 Part IV Perspectives on Software Science

that reasons a possible causality from given premises based on known causal
relations between a pair of cause and effect proven true by empirical
arguments, theoretical inferences, or statistical regulations.

Definition 15.11 An inference-driven behavior, denoted by fnf, is a
machine cognitive process in which the kth behavior in terms of process Pk is
triggered by a given result of inference process @infkST, i.e.:

 inf
=1

@R ST
n

k k
k

inf P (15.9)

Formal inferences can be classified into the deductive, inductive,

abductive, and analogical categories [Wang, 2007a/07h]. On the basis of the
definitions of the behavioral space of AC, a generic AC system may be
rigorously modeled below.

Definition 15.12 The AC System, §AC, is an abstract logical model of a
computing platform denoted by a set of parallel or concurrent computing
resources and behaviors as shown in Fig. 15.6.

15.4.1.3 Cognitive Informatics Foundations of Autonomic Computing

The theory and philosophy behind AC are cognitive informatics

[Wang, 2002a/03a/07b/07f]. Cognitive processes of the brain, particularly
the perceptive and inference cognitive processes, are the fundamental means
for describing AC paradigms, such as robots, software agent systems, and
distributed intelligent networks. In recent research in cognitive informatics,
perceptivity is recognized as the sixth sense that serves the brain as the
thinking engine and the kernel of the natural intelligence. Perceptivity
realizes self-consciousness inside the abstract memories of the brain. Almost
all cognitive life functions rely on perceptivity such as consciousness,
memory searching, motivation, willingness, goal setting, emotion, sense of
spatiality, and sense of motion.
 A fundamental question in cognitive psychology is how consciousness
can be the product of physiological processes in the brain. Similarly, the
fundamental question for AC is how autonomic behaviors may be generated
by nonimperative processes on generic computers. The cognitive models
developed in this section reveal, as that of IC is controlled by stored-
programs, AC should be controlled by nonprocedural and/or learned
cognitive processes by the machines. According to the CMM model
(Theorem 9.3), an AC system can be implemented by mimicking the
following abstract brain models.

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1215

 §AC Autonomic-SysIDS ::

 { <
-1

0

procn

i
R

=

N

N
 PiST> // Processes

 || <
-1

0

MEMn

addr
R

=

H

P
MEM[ptrP]RT> // Memory

 || <
-1

0

PORTn

ptr
R

=

H

P
PORT[ptrP]RT> // Ports

|| <§tTM> // The system clock

|| <
-1

0

en

k
R

=

N

N
@ekS ↳Pk> // Event-driven behaviors

|| <
-1

0

tn

k
R

=

N

N
@tkTM ↳Pk> // Time-driven behaviors

|| <
int -1

0

n

k
R

=

N

N
@intk ↳Pk > // Interrupt-driven behaviors

|| <
-1

0

tn

k
R

=

N

N
@gkST ↳Pk> // Goal-driven behaviors

|| <
int -1

0

n

k
R

=

N

N
@infkST ↳Pk > // Inference-driven behaviors

|| <
-1

0

Vn

i
R

=

N

N
ViRT> // System variables

|| <
-1

0

Sn

i
R

=

N

N
SiBL> // System statuses

 }

Figure 15.6 The autonomic computing system model

Definition 15.13 The cognitive informatics model of an AC system,

ACS, is equivalent to the high-level logical model of the brain as given in
Model 9.6, i.e.:

 _
 ||
 (_
 || _
)
 || (
 ||
 ||
 ||
)

ACS NI Sys
CMM

NI OS
NI App

LTM
STM
SBM
ABM

=

 (15.10)

© 2008 by Taylor & Francis Group, LLC

1216 Part IV Perspectives on Software Science

Eq. 15.10 indicates that although the thinking engine NI-Sys is
considered the center of the natural intelligence, the memories are essential to
enable the NI-Sys to properly functioning and to keep internal information
and acquired knowledge stable and retrievable.

15.4.1.4 Denotational Mathematics Foundations of Autonomic
 Computing

As that of IC is based on the mathematical foundation of Boolean

algebra, the more intelligent capability of AC should be processed by more
powerful mathematical structures known as denotational mathematics in the
forms of system algebra [Wang, 2006d], concept algebra [Wang, 2006e], and
RTPA [2002a] as described in Section 15.3. The three new structures of
contemporary mathematics extend the abstract objects under study in
mathematics from basic entities such as numbers and sets to complex ones
such as concepts, systems, and behavioral processes as shown in Table 15.2.

It is recognized that the intelligent inference capability of AC systems
is based on the cognitive process of abstraction. Abstraction is not only a
powerful means of philosophy and mathematics, but also a preeminent trait
of the human brain identified in cognitive informatics studies [Wang,
2007a/07h]. All formal logical inferences and reasoning, as described in
Section 3.3, can only be carried out on the basis of abstract properties shared
by a given set of objects under study. Detailed descriptions of the formal
cognitive inference processes for AC may be referred to Section 3.3 [Wang,
2007h], which can be used to simulate machine cognitions and the
implementation of inference engines for AC systems on the basis of
denotational mathematics.

15.4.1.5 Intelligence Science Foundations of Autonomic Computing

Intelligence is perceived as the driving force or the ability to acquire

and use knowledge and skills, or to reason in problem solving. It was
conventionally perceived that only human beings possess advanced
intelligence. However, the development of computers, robots, and autonomic
systems indicates that intelligence may also be created or implemented by
machines and man-made systems. This is the intelligent behavioral
foundation for designing and implementing AC systems.

The Generic Intelligence Model (GIM) and the nature of intelligence
have been described in Section 9.3.3. The GIM model and Theorem 9.4
reveal that NI and AI share the same cognitive informatics foundations. In
other words, they are compatible. Therefore, on the basis of Theorem 9.4, the
studies on NI and AI may be unified into a common framework in the
context of AC.

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1217

The intelligent behavioral foundations of AC as given in the GIM
model provide a new paradigm of AC systems, in which an AC system may
not only implement the reflective and instructive intelligence, but also
implement the cognitive and perceptive intelligence according to the theory
of the intelligent behavioral paradigm.

15.4.2 INTELLIGENT CODE GENERATION

One of the key objectives of software engineering is to increase the

productivity of software development by intelligent code generation. That is,
strategic software engineering methodologies and technologies should focus
on how people may be released from coding rather than bound with it.
However, it is recognized that software engineering, as one of the high-tech
disciplines, is using the lowest-tech – human labor – in contingent software
development [Wang, 2006a]. Software scientists and engineers were busy
most of the time to study the approaches to help customers to develop
specific software applications. Now, it seems to be the time to turn the focus
on the basic needs of the discipline rather than on contingent and individual
applications, i.e., theories, methodologies, and universal tools for automatic
code generation for the entire range of applications in software engineering.

According to the Engineering Objective Model (EOM) model as stated
in Theorem 8.2, productivity is the principal objective and major purpose of
any engineering discipline, particularly in software engineering [Bain, 1962;
Wang, 2006a]. However, the productivity of software development has
remained considerably low in the last four decades [Boehm, 1987; Dale and
Zee, 1992; Jones, 1981/1986; Livermore, 2005], because it is found that
human creative and cognitive productivity is conservative as stated in
Theorem 1.6 and as described in Section 9.5.1 [Wang, 2007a]. Therefore, the
improvement of software engineering productivity by technical innovation is
the key to achieve other important engineering objectives such as quality and
time-to-the-market. The automatic switching system revolutions in the 1940s
and 1990s demonstrated how technical innovations have helped to improve
productivity in the telecommunication industry [Wang and Patel, 2000].
Thus, it is inevitable that software science and engineering should set its
paramount goal on the improvement of productivity in software development
by automatic software code generators using cognitive and intelligent
methodologies on the basis of rigorous mathematical models of software
systems in denotational mathematics [Wang, 2006j].

In software engineering, automatic software generation has been
recognized as a tough challenge, because of its inherent complexity and the
lack of suitable mathematical means [McDermid, 1991; Brooks, 1975/95;
Bjorner, 2000]. The investigation into intelligent and automatic software
code generation will focus on theories, methodologies, supporting tools, and

© 2008 by Taylor & Francis Group, LLC

1218 Part IV Perspectives on Software Science

environments for code generation. The latest advances in software
engineering [McDermid, 1991;Pressman, 1992; Sommerville, 1996; Pfleeger,
1998; Peters and Pedrycz, 2000; Vliet, 2000; Wang and King, 2000a; Wang
and Patel, 2000; Broy and Denert, 2002; Wang and Bryant, 2002; Wang,
2000/05a/05d/05f/05g/05h/05i/05j/05k/05l/06a/06c/06f/06g/06h/06i] and
cognitive informatics [Wang, 2002a/2006c/2007a; Wang and Kinsner, 2006]
have provided a rich set of theoretical foundations for the design and
implementation of intelligent and automatic program generation systems on
the basis of formal system models and semantics [Hoare, 1969; Scott and
Strachey, 1971; Wegner, 1972; Ollongren, 1974; Dijktra, 1975/76; Guttag
and Horning, 1978; Jones, 1980; Gries, 1981; Bjorner and Jones, 1982;
Scott, 1982; Marcotty and Ledgard, 1986; Wikstrom, 1987; Schmidt,
1988/94/96; Goguen et al., 1977/96; Wang, 2006a], particularly the latest
development of the denotational mathematics known as system algebra,
concept algebra, and RTPA [Wang, 2002a/05a/06d/06e/06f/06j/07a], as well
as deductive semantics [Wang, 2006a].

A pilot C++ and Java code generation system based on RTPA has been
designed and implemented [Tan, Wang, and Ngolah, 2006]. By the
integration of denotational mathematics, deductive semantics, and cognitive
models of formal inferences [Wang, 2007h], the mathematical and cognitive
means will be adequate to design and implement an autonomic and intelligent
software code generation system, which will seamlessly and autonomously
transfer the mathematical model of a software system into code. As a result,
the outcomes of this program will enable the release of human labor from the
late-phase processes in software development.

Therefore, intelligent code generators will lead to the development of
cutting-edge techniques for the software industry in order to replace the
intensive labor-dependent programming practice in software engineering.

15.4.3 HYPER-PROGRAMMING: NEW FACETS OF THE
 SOFTWARE ARCHITECTURAL FRAMEWORK

As discussed in Section 10.6.2, the work products of different software
engineering processes are different. How to integrate all these abstract work
products into a coherent framework in order to improve software
descriptivity and integrity is a critical need in software engineering. Hyper-
programming is a new software engineering methodology that intends to
extend the descriptive power of multi-facet software architectures and
behaviors, and to extend the scope of documentation to cover all software
engineering processes and their workproducts in a coherent framework
[Wang, 2005g; Huang and Wang, 2006; Wang et al., 2008].

This section presents the hyper-programming methodology and tool for
integrated and coherent software engineering documentation. A hyper-
programming tool is designed for automatically creating hyperlinks between

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1219

system conceptual models in UML, formal models in RTPA, and code in a
programming language such as C++ and Java. The three types of design
documents for a system in UML, RTPA, and C++ program are stored in a
standard HTML file format. When a built-in hyperlink in a system model is
clicked, the corresponding HTML page in the integrated file shows up. The
hyper-programming method provides a powerful and convenient integration
of traditionally separated system design documents by hyperlinks in a
coherent environment. Under the support of the hyper-programming tool,
programmers can traverse from any point of interested objects to any other
one among the conceptual and formal models of systems as well as
corresponding code. Therefore, the readability and maintainability of large-
scale software systems may be dramatically improved.

15.4.3.1 The Architecture of Hyper-Programming

Definition 15.14 A hyper-program is a new type of nonlinear
framework for software description and documentation that integrates
software architectures, behaviors, code, and related design workproducts into
a coherent and multidimensional framework by bidirectional hyperlinks.

Conceptual model
(Requirements)

Formal model
(Specifications)

Implementations
(Code & test cases)

Architecture Behaviors

xxxx
|| ……
|| ……

xxxx
 ……
| ……

……..
|…….
|…….
……..

……..
|……..
……...
……...

xxx (…)
|…….
|…….

xxx (…)
……
………..
.

… (…)
|…….
|…….

… (…)
……
………..
.

§ (Sys A)

Sub s ys 1 Sub s ys 2 Sub s ys n

Co mpo nen t 1.1 Comp on ent 2.1

Compo n en t 2.2

Compo n en t n.2

Co mp o nent
n.1

Figure 15.7 The architecture of hyper-programs

© 2008 by Taylor & Francis Group, LLC

1220 Part IV Perspectives on Software Science

The major characteristics of a hyper-program are that its architecture is
multidimensional rather than linear in program code documentation, and it
integrates all design workproducts in software engineering processes, such as
requirements analysis, system specification, system architecture, code, test
cases, and system configuration/deployment in a coherent framework as
shown in Fig. 15.7.

It is recognized that system architects, programmers, maintainers, and
customers need an integrated programming and documentation platform to
read and check system consistency among all forms of design and
implementation documents and intermediate work products in software
engineering [Wang, 2005g]. This leads to the design of hyper-programming
methodology [Huang and Wang, 2006; Wang et al., 2008] as shown in Fig.
15.8, where LUR, LRU, LRC, and LCR denote the hyperlinks between UML-
RTPA, RTPA-UML, RTPA-C++, and C++-RTPA, respectively.

UML
Model

RTPA
Model

C++
Code

LUR LRC

LRU LCR

Figure 15.8 The integrated hyper-programming framework

More formally, the hyperlinks can be defined below.

Definition 15.15 A hyperlink is a pointer in a hypertext that refers

and transfers a term to another in the scope of the same document or separate
documents. For instances:

UR UML RTPA

RU RTPA UML

RC RTPA C

CR C RTPA

L E E

L E E

L E E

L E E

++

++

 (15.11)

where and, , UML RTPA CE E E ++ are a syntactical entity in UML, RTPA, and

C++, respectively.

The hyper-programming system is designed to automatically create

hyperlinks between different levels of system documentation from the
conceptual model and formal specification to code in the abstraction and
refinement hierarchy of system design as stated in Theorem 1.3 [Wang,
2005g]. Hyper-programming implements system documentation integration

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1221

by hyperlinks among UML class diagrams, RTPA specifications, and C++
source codes (or in other programming languages).

15.4.3.2 Syntactic Relations between RTPA, UML, and C++

This subsection comparatively analyzes the syntaxes of RTPA [Wang,
2002a/02b/03c/07a], UML [Rumbaugh et al, 1998; OMG, 2005; Wang,
2001a], and C++ [Stroustrup, 1986; Horstmann and Budd; 2004]. RTPA is
used to formally and explicitly specify software systems in order to enhance
the understandability of their architecture, semantics, and behaviours. The
architecture of a C++ program can be outlined by RTPA as shown in Fig.
15.9, which provides a formal description of the generic architecture of C++
programs.

C++Program {
 MacroDefinition
 || MainFunction
 || ClassImplementation
 }

C++Program.Mainfunction {
 DataStructureDeclaration
 || I/ODeclaration
 || ClassDeclaration
 || SystemFunction
 }

C++Program.Mainfunction.ClassDeclaration {

1

n

i
R
=

AttributeDeclaration (iN)

 ||
1

n

i
R
=

MethodDeclaration (iN)

 }

C++Program.ClassImplementation {

1

n

i
R
=

MethodsImplementation (iN)

 }

Figure 15.9 The formal model of a generic C++ program architecture

(a) RTPA vs. C++

The focuses of hyper-programming are class declarations and

implementations. Hyper-programming is designed to map between RTPA

© 2008 by Taylor & Francis Group, LLC

1222 Part IV Perspectives on Software Science

class specifications and C++ class implementations. Class declaration,
method declaration, and method implementation in C++ are mapped to
corresponding RTPA syntactical entities in terms of processes.

Class specifications in RTPA have been formalized in [Vu and Wang,

2004; Wang and Huang, 2005]. In RTPA, the type suffix is used to denote
type information of a given identifier. For example, xN means the identifier x
is in the type integer, and an identifier suffixed by AC and CC denotes a class.
For example, classIDAC and classIDCC are used to denote classes in types of
abstract class AC and concrete class CC, respectively.

(b) RTPA vs. UML

A hyperlinked RTPA specification and C++ code is shown in Fig.

15.10, where the bidirectional hyperlinks between class identifiers
CivicFactoryCC and ArchitectureST in RTPA, and the class name
CivicFactoryAC in C++ source code can be automatically created. Readers
interested in the design and implementation of the system can traverse freely
among system design models, specifications, and code in an integrated and
coherent environment.

The process specifications of static behaviors in RTPA are

corresponding to the class method declaration and implementation in C++,
respectively. A process declaration in the static behavior section in RTPA is
mapped to a class/method declaration in a class, while a process definition in
the static behaviors is mapped to a class/method implementation. Because
UML is a diagram-based system modeling language [OMG, 2005], a UML
diagram seems highly readable. However, its semantics is inaccurate and
nonrigorous. Different persons may obtain different information and perceive
different meanings from a UML model. UML diagrams may be used to
describe the conceptual models of software systems for human
communication, particulally for non-professional customers.

The HTML format of UML class diagrams is adopted in hyper-

programming for inserting and processing the required hyperlinks. In the
HTML format of the UML model, a class diagram is denoted by a group of
three rectangle boxes with texts denoting the class name, attributes, and
member methods, respectively. The text in the second or third box may be
omitted for a specific case.

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1223

// Formal Specification in RTPA
CivicFactoryCC {
 [LRU1 | LRC1] Architecture: ST
 || StaticBehaviors: ST
 || DynamicBehaviors: ST
 }

CivicFactoryCC.ArchitectureST {
 [LRU2 | LRC2] <WheelObj : CivicWheelST>;
 <BodyObj : CivicBodylST>;
 …
 }

CivicFactoryCC.StaticBehaviorsST {
 CreateFactory (<I:: FactoryNameS>; <O:: >)
 [LRU3 | LRC3]
 || CreateWheel (<I:: NumInstN>; <O:: CivicWheelInstST>)
 [LRU4 | LRC4]
 || CreateBody (<I:: ColorInstS>; <O:: CivicBodyInstST>)
 [LRU5 | LRC5]
}

HondaFactoryCC() : CivicFactoryCC
 [LRU6 | LRC6] { … }

// Source Code in C++
class CivicFactoryCC {
 [LCR1]
 public:
 void CreateFactory(char FactoryNameS);
 CivicWheelInstST CreateWheel(int NumInstN);
 CivicWheelInstST CreateBody(char *ColorInstS);
 private:
 [LCR2]
 CivicWheel WheelObj;
 CivicBody BodyObj;
};

void CreateFactory (char FactoryNameS)
{ … [LCR3]
}

HondaWheel* CivicFactoryCC::CreateWheel (int NumInstN)
{ … [LCR4]
 return WheelObj.CreateWheel (NumInstN);
}

HondaBody* CivicFactoryCC::CreateBody (char *ColorInstS)
{ … [LCR5]
 return BodyObj.CreateBody(*ColorInstS);
}

class HondaFactoryCC : public CivicFactoryCC
{ … [LCR6]
}

Figure 15.10 Mapping between RTPA models and C++ code

© 2008 by Taylor & Francis Group, LLC

1224 Part IV Perspectives on Software Science

The UML class diagram for a software pattern know as Civic factory
with hyperlinks is shown in Fig. 15.11, where a hyperlink LURi in the UML
model is corresponding to a reverse hyperlink in the RTPA specification
LRUi.

CivicFactoryCC [LUR1]

CreateFactory() [[LUR3]
CreateWheel() [LUR4]
CreateBody() [LUR5]

HondaFactoryCC [LUR6]

CreateFactory()
CreateWheel()
CreateBody()

Attributes [LUR2]

Figure 15.11 Hyperlinks created in a UML class diagram

15.4.3.3 The Framework of the Hyper-Programming Environment

 A hyper-programming environment encompasses four major
components, as shown in Fig. 15.12, which are the file scanners, the parsers,
the hyperlink generator, and the hyperlinked file generator.

UML file in
HTML

RTPA file in
HTML

C++ Source File
In HTML

The HTML
file

scanners

The HTML
file

parsers

The
hyperlink
generator

Hyperlinked UML
model

Hyperlinked RTPA
model

Hyperlinked C++
model

 Figure 15.12 The framework of the hyper-programming system

(a) The File Scanners

 There are three file scanners in hyper-programming for processing
UML, RTPA, and C++ files. The C++ source file scanner is a preprocessor
that separates a C++ source file into a list of syntactical tokens. The RTPA
file scanner filters the HTML tags and translates the HTML escape
characters into ASCII characters. It also translates the special hexadecimal

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1225

characters into ASCII characters. The UML file scanner analyzes the HTML
tags and separates class information from other HTML style tags.

 (b) The Parsers

Corresponding to the three file scanners, hyper-programming
implements three parsers for each type of the input files in UML, RTPA, and
C++ under the support of ANTLR [Parr, 2000]. The C++ parser analyzes
each token and creates a set of class parser trees. An HTML node in the class
tree includes the class name, method name, node type, file position, tag
value, and reference tag value. The RTPA parser analyzes the inputted tokens
and creates a set of class trees. Every node in the tree includes the same
information as in the C++ parser. Similarly, the UML parser creates
equivalent parser trees for the UML file in the HTML format.

Hyperlinks are created based on syntactical equivalence in the three
types of documents, such as identical names of classes/processes,
methods/processes, and/or variables as shown in Figs. 15.9 and 15.10. For a
given hyper node, the file positions include an identifier’s start and end
positions, which are used to mark the location of an identifier in the token
file. When a link needs to be generated, the start point is marked by <a> and
the end point is marked by in an HTML tag. If two links like [LRUi |
LRCi] need to be created for a certain identifier as shown in Fig. 15.9, the
middle position of it is calculated. The first link is marked from the start
position to the middle position; and second link is marked from the middle
position to the end position. Different cursor styles are employed for the
identifier that has been inserted in the bidirectional links. Identifiers in the
RTPA file usually have two links: One is linked to UML diagram (LRUi),
while the other is for the C++ source code (LRCi).

The tag value of a node is used to generate HTML tag <a> name
attribute, where the identifier enclosed by <a> tag can be referred by its name
attribute. The reference tag value is used to generate the HTML tag <a> href
attribute, where a click on the identifier will bring the user to the file position
defined by the href attribute. Tag and reference tag are cross referenced. Tag
value in the node of RTPA parser tree is used as the reference tag value in
C++ parser node. Tag values in the node of C++ parser tree are used as
reference tag value in RTPA parser node. Tag value in the node of UML
class tree is used as the second reference tag value for the node of the RTPA
parser.

(c) The Hyperlink Generator

The hyperlink generator utilizes class names in the indexed parser trees

to create reference tags. For example, when a class name, method name, or
node type is identical in the C++ and RTPA parser trees, the hyperlink
generator will copy the tag value of the node in C++ parser tree to the
reference tag value in the node of RTPA parser tree and update position
indexed list at the same time.

© 2008 by Taylor & Francis Group, LLC

1226 Part IV Perspectives on Software Science

(d) The Hyper-Program Generator

Hyper-programming generates HTML files with built-in hyperlinks.
The C++ hyperlinked file generator scans a source file and compares the file
pointer with file start position stored in the position indexed node list. If the
current file position equals to the file start position stored in the list, it inserts
the HTML <a> tag and corresponding attributes set for that tag. If the current
file position equals to the file end position stored in the previous node it
inserts an HTML tag.

Other two types of hyperlinked files in RTPA and UML use the same
method.

15.4.3.4 Applications of the Hyper-Programming System

 The hyper-programming system has been successfully implemented as
an integrated system programming and documentation tool [Huang and
Wang, 2006]. An application case study of hyper-programming is
demonstrated below.

The Abstract factory is one of the popular software design patterns
[Gamma et al., 1995; Vu and Wang, 2004; Huang and Wang, 2006]. A
virtual Honda vehicle factory can be derived on the basis of the abstract
factory, which consists of the UML model as shown in Fig. 15.13 with
automatically generated hyperlinks. The virtual Honda factory builds two
models called the Civic and Accord, respectively. A vehicle in the factory is
composed by two components known as the wheel and body.

Figure 15.13 UML class diagram with hyperlinks

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1227

When clicking on the name and member methods of the class, the
system jumps to the corresponding syntactical entities in the RTPA
specification. For example, if the method CreateBody in the class
AccordFactory is clicked, the page as shown in Fig. 15.11 will show up. If
one moves the mouse to the front part of AccordFactoryCC.CreateBody text
and clicks on it the page listed in Fig. 15.13 will be returned. However, if the
click is on the rear part of AccordFactoryCC.CreateBody, the C++ source
code as implemented in Fig. 15.14 will be displayed. If one clicks the text
with hyperlinks in C++ documentation, the corresponding RTPA
specification is shown up appropriately to explain the design notions as
shown in Fig. 15.15.

Figure 15.14 C++ source code with hyperlinks

Two pairs of the bidirectional hyperlinks, as shown in Fig. 15.8, have

been built among UML, RTPA, and C++ in hyper-programming. The hyper-
programming methodology and tool provide a handy and easy environment
for designers and users to create and integrate hyper-programming and
design documentation in a coherent system.

© 2008 by Taylor & Francis Group, LLC

1228 Part IV Perspectives on Software Science

Figure 15.15 RTPA specification with hyperlinks

Frederick Brooks (1987) pointed out that there was “no silver bullet” in

software engineering. However, recalling what Albert Einstein said that:
“Problems that are created by our current level of thinking cannot be solved
by that same level of thinking,” it may be perceived that the silver bullet for
software engineering lies in software science, which provides the theoretical
foundations and fundamental methodologies for software engineering.

In the conclusion of this book, the author believes that readers have

obtained a comprehensive and adequate set of theoretical and empirical
foundations for software engineering on the basis of software science. Thus,
the ideal pyramid structure and relationship between software science,
software engineering education, and its practices/applications set forth in the
beginning of this book as shown in Fig. 1.1 has been satisfactorily
established.

© 2008 by Taylor & Francis Group, LLC

Chapter 15 Prospect on Software Science 1229

15.5 Epilogue

Throughout this book, I have used the third person mode in presentations,
descriptions, discussions, and reasoning in order to maintain an objective
view towards the investigation of theoretical and empirical foundations of
software engineering. Now, I would like to communicate with readers in the
mode of the first person at the end of this book.

In Art of Scientific Investigation, W.I. Beveridge (1957) recalled that
Claude Bernard (1813-1878) reportedly expressed:

“Those who do not know the torment of the unknown cannot
have the joy of discovery.”

I would like to extend Bernard’s assertion in order to say that those

who do not experience the torment of authoring a large volume book cannot
know the cognitive complexity that one may face, the mental tenacity that
one may need, the intensive satisfaction that one may gain, and the great joy
that one may obtain.

 I was greatly unsatisfied about the phenomenon that there was a lack of
coherent theoretical foundations for software engineering and most people in
this field were used to taking it for granted. The phenomenon that kids are
able to programming and sometimes even do it better is an indication that the
discipline of software engineering was immature. Based on the development
of the coherent theories for software engineering in this book and new
challenges discovered at the edge of the exploration, I wish readers will find
that software engineering and software science will be better built on the
basis of rigorous fundamental researches.

 When I checked the electronic manuscript for the final time, I found
that I have commutatively spent over 10,000 hours on this book in the last
decade, and the final version of this book contains about 356,800 words. It is
indeed a persistent effort that leads to the completion of this book, which
reminds me what Louis Pasteur (1822-1895) described on his academic
motivation [Beveridge, 1957]:

“Let me tell you the secret that has led me to my goal. My only
strength lies in my tenacity.”

© 2008 by Taylor & Francis Group, LLC

1230 Part IV Perspectives on Software Science

Once working at Oxford University, C.A.R. Hoare told me that theories
are durable while techniques are temporary. He is perfectly in line with
Immanuel Kant (1724-1804) who believed: “There is nothing more practical
than a good theory.” The message is that as long as the fast development of
software engineering methodologies remains viable, software engineering
techniques will need to evolve as quickly. However, what will be kept stable
and durable are the fundamental principles and the formally documented
theories and laws of software science and software engineering, which are
crystallized during age-long elicitations, evaluations, verifications, and
refinements.

In concluding this book, I would like to quote what David L. Parnas
expressed in his keynote in FSE/ESEC’97 in Zurich [Parnas, 1997]:

“Things that were valuable a decade ago will be valuable decades from
now. The field is moving too fast to chase them. ”

© 2008 by Taylor & Francis Group, LLC

Bibliography

ABET (1986), 1985 Annual Report, Accreditation Board for Engineering and
Technology (ABET) New York, NY.

Abran, A., P. Bourque, and R. Dupuis (1999), Progress on the Fundamental
Principles of Software Engineering, Proc. 3rd IEEE International Software
Engineering Standards Symposium (ISESS’99), IEEE CS Press, Curitiba,
Brazil, May.

Adewumi, A. and Y. Wang (2004), Formal Description of a Generic Graph
Model with RTPA, Proc. 17th Canadian Conference on Electrical and
Computer Engineering (CCECE'04), IEEE CS Press, Niagara Falls, ON,
Canada, May, pp. 1537-1540.

Aho, A.V. and J.D. Ullman (1972), The Theory of Parsing, Translation, and
Compiling, Vol. 1: Parsing, Prentice Hall, Englewood Cliffs, NJ.

Aho, A.V., R. Sethi, and J.D. Ullman (1985), Compilers: Principles,
Techniques, and Tools, Addison-Wesley Publication Co., New York.

Albrecht, A.J. and J.E. Gaffney (1983), Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation,
IEEE Transactions on Software Engineering, 9(6), pp.639-648.

Alexander, C. et al. (1977), A Pattern Language, Oxford Univ. Press, NY.

Anthony, R. N. (1965), Planning and Control Systems: A Framework for
Analysis, Harvard University Graduate School of Business Administration,
Cambridge, MA.

Arbib, M.A. (1969), Theories of Abstract Automata, Prentice Hall,
Englewood Cliffs, NJ.

Arbib, R., A. Michael, and J.L. Rhodes (1968), Complexity and Graph
Complexity of Finite State Machines and Finite Semi-Groups, in M.A. Arbib
ed., Algorithmic Theory of Machines, Languages and Semi-Groups,
Academic Press, NY, pp. 127-145.

© 2008 by Taylor & Francis Group, LLC

1232 Bibliography

Aristotle, Morality and Human Nature (1925), The Nicomachean Ethics,
W.D. Ross trans., Oxford University Press, Oxford.

Arnold, A. and I. Guessarian (1996), Mathematics for Computer Science,
Prentice Hall International, London, UK.

Arnowitz, J., M. Arent, and N. Berger (2006), Effective Prototyping for
Software Makers, Morgan Kaufmann.

Aron, J, D. (1983), The Program Development Process, Part 2 – The
Programming Team, Addison-Wesley, Reading, MA.

Ashby, W.R. (1956), An Introduction to Cybernetics, Chapman & Hall.

Ashby, W.R. (1958a), General Systems Theory as a New Discipline, General
Systems Yearbook, 3(1).

Ashby W.R. (1958b), Requisite Variety and Implications for Control of
Complex Systems, Cybernetica, 1, pp. 83-99.

Ashby W.R. (1962), Principles of the Self-Organizing System, in: Principles
of Self-Organization, von Foerster H. and Zopf G. (eds.), Pergamon, Oxford,
p. 255-278.

Ashby, W.R. (1970), Information Flows Within Coordinated Systems, in J.
Rose ed., Progress in Cybernetics, Vol. 1, Gordon and Breach, London, pp.
57-64.

Ashby, W.R. (1972), Systems and Their Informational Measures, in G.J.
Klir ed., Trends in General Systems Theory, Wiley, NY, pp. 78-97.

Ashby, W.R. (1973), Some Peculiarities of Complex Systems, Cybernetic
Medicine, 9:2, pp. 1-6.

Ashenhurst, R.L. and S. Graham (1987), ACM Turing Award Lectures, The
First Twenty Years: 1966 - 1985, Anthology Series, ACM Press, Addison-
Wesley Publishing Company, NY, pp. 458 - 466.

Aspray, W., R. Keil-Slawik, and D.L. Parnas (1996), History of Software
Engineering, Dagstuhl Seminar Series Report #9635, Germany, August.

Backus, J. (1978), Can Programming be Liberated from the von Neumann
Style? A Functional Style and its Algebra of Programs, The 1977 Turing
Award Lecture, Communications of the ACM, 21(8), pp. 613-641.

Baddeley, A. (1990), Human Memory: Theory and Practice, Allyn and
Bacon, Needham Heights, MA.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1233

Baeten, J.C.M. and J.A. Bergstra (1991), Real Time Process Algebra, Formal
Aspects of Computing, 3, pp.142-188.

Bain, D. (1962), The Productivity Prescription: The Manager’s Guide to
Improving Productivity and Profits, McGraw-Hill, NY.

Baker, F. T. (1972), Chief Programmer Team Management of Production
Programming, IBM Systems Journal, 11(1), pp.56-73.

Basili, V.R. (1980a), Models and Metrics for Software Management and
Engineering, IEEE Computer Society Press, Los Alamitos, CA.

Basili, V.R. (1980b), Qualitative Software Complexity Models: A Summary
in Tutorial on Models and Methods for Software Management and
Engineering, IEEE Computer Society Press, Los Alamitos, CA.

Basili, V.R. and R.W. Selby (1991), Paradigms for Experimentation and
Empirical Studies in Software Engineering, Reliability Engineering and
System Safety, 32(1-2), pp. 171-193.

Basili, V.R., R.W. Selby, and D.H. Hutchens (1986), Experimentation in
Software Engineering, IEEE Transactions of Software Engineering, 12(7),
pp.733-743.

Bate, R. et al. (1993), A System Engineering Capability Maturity Model,
Version 1.1, CMU/SEI-95-MM-03, Software Engineering Institute,
Pittsburgh, PA, 841993.

Bauer, F.L (1972), Software Engineering, Information Processing, 71.

Bauer, F.L. (1976), Software Engineering, in Ralston, A. and Meek, C. L.
(eds.), Encyclopedia of Computer Science, Petrocelli/Charter, New York.

Bayana, S. (2006), Learning to Deal with COTS, ProQuest/UMI.

Bell, D.A. (1953), Information Theory, Pitman, London.

Berger, J. (1990), Statistical Decision Theory – Foundations, Concepts, and
Methods. Springer-Verlag.

Bertsekas, D.P. (1995), Dynamic Programming and Optimal Control,
Volume 1, Belmont, MA., Athena Scientific.

Beveridge, W.I. (1957), The Art of Scientific Investigation, Random House
Trade Paperbacks, London, UK.

Bhandarhar, D. and D.W. Clark (1991), Performance from Architecture:
Comparing a RISC and a CISC with Similar Hardware Organization,
Communications of the ACM, Sept., pp.310-319

© 2008 by Taylor & Francis Group, LLC

1234 Bibliography

Binet, A. (1905), New Methods for the Diagnosis of the Intellectual Level of
Subnormals, L’Annee Psychologique, 12, pp.191-244.

Bjorner, D. (2000), Pinnacles of Software Engineering: 25 Years of Formal
Methods, Annals of Software Engineering, 10, Kluwer Academic Publishers,
USA, Nov., pp.11-66.

Bjorner, D. and C.B. Jones (1982), Formal Specification and Software
Development, Prentice Hall, Englewood Cliffs, NJ.

Boehm, B.W. (1976), Software Engineering, IEEE Transactions on
Computers, 25(12), pp.1226-1241.

Boehm, B.W. (1981), Software Engineering Economics, Prentice Hall,
Englewood Cliffs, NJ.

Boehm, B.W (1983), Seven Basic Principles of Software Development,
Journal of System and Software, 3(1), March.

Boehm, B.W. (1984), Software Engineering Economics, IEEE Trans. on
Software Engineering, 10(1), pp. 4-12.

Boehm, B.W., T.E. Gray, and T. Seewaldt (1984), Prototyping Versus
Specifying: A Multiproject Experiment, IEEE Trans. on Software
Engineering, 10(3), pp. 290-302.

Boehm, B.W. (1987), Improving Software Productivity, IEEE Computer,
20(9), pp.43.

Boehm, B.W. (1988), A Spiral Model for Software Development and
Enhancement, IEEE Computer, 21(5), May, pp.61-72.

Boehm, B.W et al. (2000), Software Cost Estimation with COCOMO II,
Prentice Hall, Englewood Cliffs, NJ.

Boehm, B. and P. Bose (1994), A Collaborative Spiral Software process
Model based on Theory W, Proc. 3rd International Conference on the
Software Process, IEEE Computer Society Press, Reston, VA, October,
pp.59-68.

Booch, G. (1986), Object-Oriented Development, IEEE Transactions on
Software Engineering, IEEE Computer Society Press, 12(2).

Boucher, A. and R. Gerth (1987), A Timed Model for Extended
Communicating Sequential Processes, Proc. ICALP’87, Springer LNCS
267.

Boulding, K. (1974), Economics and General Systems, Int. J. Gen. Sys.,
1(1), pp. 67-73.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1235

Boulding, K. (1956), General Systems Theory - The Skeleton of Science,
General Systems Yearbook, 1, pp. 11-17.

Bourque, P. and A. Abran (1996), An Experimental Framework for Software
Engineering Research, Proc. Forum on Software Engineering Standards
Issues (SES'96), IEEE SESC, Montreal, Canada, Oct.

Bowen, J.P., A. Fett, and M.G. Hinchey eds. (1998), Proc. the Z Formal
Specification Notation, Lecture Notes in Computer Science, Vol. 1493,
Springer-Verlag, Berlin.

Brillouin, L. (1953), Negentropy Principle of Information, J. of Applied
Physics, 24(9), pp. 1152-1163.

Brinch, H.P. (1973), Operating System Principles, Prentice-Hall, Englewood
Cliffs, NJ.

Brinch-Hansen, P. (1971), Short-Term Scheduling in Multiprogramming
Systems, Proc. the Third ACM Symposium on Operating Systems Principles,
Oct., pp.103-105.

Bronson, R. and G. Naadimuthu (1997), Schaum’s Outline of Theory and
Problems of Operations Research, 2nd ed., McGraw-Hill, NY.

Brooks, R.A. (1970), New Approaches to Robotics, American Elsevier, 5,
NY, pp. 3-23.

Brooks, F.P. Jr. (1975), The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley Longman, Inc., Boston.

Brooks, F.P. Jr. (1987), No Silver Bullet: Essence and Accidents of Software
Engineering, IEEE Computer, 20(4), pp. 10-19.

Brooks, F.P. Jr. (1995), The Mythical Man-Month: Essays on Software
Engineering, Anniversary ed., Addison-Wesley Longman, Inc., Boston.

Brookes, S.D., C.A.R. Hoare, and A.W. Roscoe (1984), A Theory of
Communicating Sequential Processes, Journal of ACM, 31(7), pp.560-599.

Broy, M. and E. Denert eds. (2002), Software Pioneers, Springer, Berlin.

Broy, M., C. Pair, and M. Wirsing (1984), A Systematic Study of Models of
Abstract Data Types, Theoretical Computer Science, 33, pp.139-1274.

Brue, S.L. (2001), Economics, McGraw-Hill.

Buckland, J.A. et al. (1991), Total Quality Management in Information
Systems, QED Information Sciences, Wellesley, Dedham, MA.

© 2008 by Taylor & Francis Group, LLC

1236 Bibliography

Bunge, M. (1978), General Systems Theory Challenge to Classical
Philosophy of Science, Int. J. Gen. Sys., 4(1).

Bunge, M. (1981), Systems All the Way, Nature and Systems, 3(1), pp. 37-
47.

Cannan E. ed. (1994), The Wealth of Nations, A. Smith (1776), Modern
Library, Co., London.

Cardelli, L. (1987), Basic Polymorphic Typechecking, Science of Computer
Programming, 8(2).

Cardelli, L. and P. Wegner (1985), On Understanding Types, Data
Abstraction and Polymorphism. ACM Computing Surveys, 17(4), pp.471-
522.

Carlsson, C. and E. Turban (2002), DSS: Directions for the next decade,
Decision Support Systems, 33, pp. 105-110.

Casti J.L. and A. Karlqvist eds. (1986), Complexity, Language, and Life:
Mathematical Approaches, International Institute for Applied Systems
Analysis, Laxenburg, Austria.

CCITT (1988), Recommendation Z.100 – Specification and Description
Language SDL, Blue Book, Vol.20 – 24, ITU, Geneva.

Chaffin, D.B. and G.B. Andersson (1984), Occupational Biomechanics,
Wiley & Sons Co.

Chaitin, G.J. (1977), Algorithmic Information Theory, IBM J. Res. Develop.,
21(4), pp. 350-359.

Chaitin, G.J. (2004), Algorithmic Information Theory, Cambridge Univ.
Press, UK.

Chan, C., W. Kinsner, Y, Wang, and D. Miller eds. (2004), Proc. the Third
IEEE International Conference on Cognitive Informatics (ICCI'04), Victoria,
Canada, August, IEEE Computer Society Press, Los Alamitos, CA.

Chiew, V. and Y. Wang (2002), Software Engineering Process
Benchmarking, Proc. 4th International Conference on Product Focused
Software Process Improvement (PROFES'02), Springer LNCS 2559,
Rovaniemi, Finland, Dec., pp.519-531.

Chiew, V. and Y. Wang (2004), Formal Description of the Cognitive Process
of Problem Solving, Proc. 3rd IEEE International Conference on Cognitive
Informatics (ICCI'04), IEEE CS Press, Canada, August, pp. 74-83.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1237

Chomsky, N. (1956), Three Models for the Description of Languages, I.R.E.
Transactions on Information Theory, 2(3), pp.113-124.

Chomsky, N. (1957), Syntactic Structures, Mouton, The Hague.

Chomsky, N. (1959), On Certain Formal Properties of Grammars,
Information and Control, 2, pp.137-167.

Chomsky, N. (1962), Context-Free Grammar and Pushdown Storage,
Quarterly Progress Report, MIT Research Laboratory, 65, pp.187-194.

Chomsky, N. (1965), Aspects of the Theory of Syntax, MIT Press,
Cambridge, MA.

Chomsky, N. (1982), Some Concepts and Consequences of the Theory of
Government and Binding, MIT Press, Cambridge, MA.

Chorafas, D.N. (1998), Agent Technology Handbook, McGraw-Hill, NY.

Christensen, L.B. (1997), Experimental Methodology, 7th ed., Allyn and
Bacon, Needham Heights, MA.

Coleman, J.S. (1990), Fundamentals of Social Theory, The Belknap Press of
Harvard Univ Press, Cambridge, MA.

Comer, D.E. (2000), Internetworking with TCP/IP, Vol. I: Principles,
Protocols, and Architecture, 4th ed., Prentice Hall International, Inc.

Comer, D.E. and D.L. Stevens (1996), Internetworking with TCP/IP, Vol. III:
Client-Server Programming and Application, Prentice Hall International, Inc.

Corsetti E., A. Montanari, and E. Ratto (1991), Dealing with Different Time
Granularities in Formal Specifications of Real-Time Systems, The Journal of
Real-Time Systems, 3(2), Kluwer Academic Publishers, June, pp.191-215.

Cries, D. (1981), The Science of Programming. Springer-Verlag, New York.

Crosby, P.B. (1977), Quality is Free: The Art of Making Quality Certain,
McGraw-Hill, NY.

Curtis, B., H. Krasner, V.Y. Shen, and N. Iscoe (1987), On Building
Software Process Models under the Lamppost, Proc. 9th International
Conference on Software Engineering, IEEE Computer Society Press,
Monterey, CA., pp. 96-103.

Cutnell, J.D. and K.W. Johnson (1998), Physics, 4th ed., John Wiley & Sons,
Inc., NY.

© 2008 by Taylor & Francis Group, LLC

1238 Bibliography

Dahl, O.-J., E.W. Dijkstra, and C.A.R. Hoare (1972), Structured
Programming, Academic Press, NY.

Dale, C. J. and Zee, H. (1992), Software Productivity Metrics: Who Needs
Them? Information and Software Technology, 34(11), 731-738.

David, J.C.M. (2002), Information Theory, Inference and Learning
Algorithms, Cambridge Univ. Press, UK.

Davis, A.M. (1994), Fifteen Principles of Software Engineering, IEEE
Software, Nov., pp.94-96.

Dawson, M.R.W. (1998), Understanding Cognitive Science, Blackwell
Publishing Ltd., Oxford, UK.

Day, J.D. and H. Zimmermann (1983), The OSI Reference Model, Proc. of
the IEEE, 71, Dec., pp. 1334-1340.

Debenham, J.K. (1989), Knowledge Systems Design, Prentice Hall, NY.

Deming, W.E. (1982),Quality, Productivity and Competitive Position, MIT
Press, Center for Advanced Engineering Study, Cambridge, MA.

Deming, W.E. (1986), Out of the Crisis, MIT Press, Cambridge, MA.

Derrick, J. and E. Boiten (2001), Refinement in Z and Object-Z: Foundations
and Advanced Applications, Springer-Verlag, London.

Descartes, R. (1979), Meditations on First Philosophy, D. Cress trans.,
Indianapolis: Hackett Publishing Co. Inc.

Dierks, H. (2000), A Process Algebra for Real-Time Programs, LNCS Vol.
1783, Springer, Berlin, pp. 66-76.

Dijkstra, E.W. (1965), Programming Considered as a Human Activity, in W.
A. Kalenich (ed.), Proc. IFIP Congress 65, Spartan Books, Washington,
D.C.

Dijkstra, E.W. (1968a), The GOTO Statement Considered Harmful,
Communications of the ACM, 11(3), March, pp. 147-148.

Dijkstra, E.W. (1968b), The Structure of the THE Multiprogramming
System, Communications of the ACM, May, 11(5), pp. 341-346.

Dijkstra, E.W. (1972), The Humble Programmer, 1972 Turing Award
Lecture, Communications of the ACM, 15(10), pp.859-866.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1239

Dijkstra, E.W. (1975), Guarded Commands, Nondeterminacy, and the
Formal Derivation of Programs, Communications of the ACM, 18(8), pp.453-
457.

Dijkstra, E.W. (1976), A Discipline of Programming, Prentice Hall,
Englewood Cliffs, NJ.

Donnelly, J.H. Jr., J.L. Gibson, and J.M. Ivancevich (1998), Fundamentals of
Management, 10th ed., McGraw-Hill Co. Inc., Boston.

Doren, C.V. (1992), A History of Knowledge: Past, Present, and Future,
Ballantine Books, NY.

Dorling, A., Y. Wang et al. (1999), Reference Model Extensions to ISO/IEC
TR 15504-2 for Acquirer Processes, ISO/IEC JTC1/SC7/WG10, Curitiba,
Brazil, May, pp. 1-34.

Dougherty, D.M. and D.B. Stephens (1984), The Lasting Quality of PERT,
R&D Management, Jan., pp.47-56.

Dromey, G. (1995), A Model for Software Product Quality, IEEE Trans. on
Software Engineering, 21(2), pp. 146-162.

DTI (1987), The TickIT Guide, Department of Trade and Industry, London.

Dunn, M. and G. Epstein ed. (1977), Modern Uses of Multiple-Valued Logic,
Springer, Berline.

Dunn R.H. and R.S. Ullman (1994), TQM for Computer Software, 2nd ed.,
McGraw-Hill, Inc., NY.

Dupuis, R., P. Bourque, A. Abran, S. Wolff, and J. Moore (1999), Progress
Report on the Fundamental Principles of Software Engineering, 1999, IEEE
SESC.

Dutta, S., S. Kulandaiswamy, and L.V. Wassenhove (1998), Benchmarking
European Software Management Best Practices, Comm. ACM, 41(6), June,
pp.77-86.

Eagly, A.H. and S. Chaiken (1992), The Psychology of Attitudes, Harcourt
Brace, San Diego.

Earhart, S.V. ed. (1986), AT&T UNIX Programmer’s Manual, Holt,
Rinehart, and Winston, New York, NY.

Edwards, W. and B. Fasolo (2001), Decision Technology, Annual Review of
Psychology, 52, pp.581-606.

© 2008 by Taylor & Francis Group, LLC

1240 Bibliography

EFQM (1993), Total Quality Management - the European Model for Self-
Appraisal 1993, Guidelines for Identifying and Addressing Total Quality
Issues, European Foundation for Quality Management, Brussels, Belgium.

Eide, A.R., R.D. Jenison, L.H. Mashaw, and L.L. Northup (1979),
Engineering Fundamentals and Problem Solving, McGraw-Hill Book Co.,
New York, NY.

Eigen, M. and P. Schuster (1979), The Hypercycle: A Principle of Natural
Self-Organization, Springer, Berlin.

Elder, G.H. Jr. (1975), Age Differentiation and the Life Course, Annual
Review of Sociology, 1, Palo Alto, CA.

Ellis, D. O. and J.L. Fred (1962), Systems Philosophy, Prentice Hall,
Englewood Cliffs, NJ.

Ellis, W.D. ed. (1938), A Source Book of Gestalt Psychology, Routledge &
Kegan Paul, London.

Embry, D.E. (1986), SHERPA: A Systematic Human Error Reduction and
Prediction Approach, Proc. the International Topical Meeting on Advances
in Human Factors in Nuclear Power Systems, Knoxville, Tennessee.

Emerson, E.A. (1990), Temporal and Modal Logic, in J. van Leeuwen ed.,
Handbook of Theoretical Computer Science, Vol. B: Formal Model and
Semantics, Elsevier, pp. 995-1072.

Fabrycky, W. J., M. Ghare, and P.E. Torgersen (1984), Applied Operations
Research and Management Science, Prentice Hall, N.J.

Fayad, M. and D. Schmidt (1997), Object-Oriented Application Frameworks.
CACM, 40(1)0.

Fayad, M.E., D.C. Schmidt, and R.E. Johnson ed. (1999), Building
Application Frameworks: Object-Oriented Foundations of Frameworks
Design, John Wiley & Sons Inc., NY.

Fayol, H. (1929), General and Industrial Management, Translated by C.
Storrs, Sir Isaac Pitman and Sons, London.

Fazio, R.H. (1986), How do Attitudes Guide Behavior? In R.M. Sorrentino
and E.T. Higgins eds., The Handbook of Motivation and Cognition:
Foundations of Social Behavior, Guilford Press, NY.

Fecher, H. (2001), A Real-Time Process Algebra with Open Intervals and
Maximal Progress, Nordic Journal of Computing, 8(3), pp.346-360.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1241

Fenton, N.E. and Pfleeger, S.L. (1997), Software Metrics – A Rigorous and
Practical Approach, 2nd ed., PWS Publishing, London.

Fenton, N.E. (1991), Software Metrics: A Rigorous Approach, Chapman &
Hall, London.

Feynman, R.P. and L.M. Brown (2000), Selected Papers of Richard
Feynman, World Scientific Pub. Co., Singapore.

Finfer, M. (1989), Panel Report: What Makes a Good Software Engineer?
Proc. 1998 Conference on Tri-Ada, ACM Press, NY, pp.367-370.

Fischer, K.W., P.R. Shaver, and P. Carnochan (1990), How Emotions
Develop and How They Organize Development, Cognition and Emotion, 4,
pp.81-127.

Fishbein, M. and I. Ajzen (1975), Belief, Attitude, Intention, and Behavior:
An Introduction to Theory and Research, Addison-Wesley, Reading, MA.

Ford, J. (1986), Chaos: Solving the Unsolvable, Predicting the
Unpredictable, in Chaotic Dynamics and Fractals, Academic Press.

Frank, R.H. (1997), Microeconomics and Behaviors, 3rd ed, McGraw-Hill
Co. Inc., NY.

Freud, S. (1895), Project for a Scientific Psychology, in J. Strachey (1966)
ed, The Standard Edition the Complete Psychological Works of Sigmund
Freud, 1, Hogarth Press, London.

Fried, G.H. and G.J. Hademenos (1999), Schaum’s Outline of Theory and
Problems of Biology, 2nd ed., McGraw-Hill, NY.

Friedman, K. (1996), The Decision Tree, Heart Publishing Co.

Gabrieli, J.D.E. (1998), Cognitive Neuroscience of Human Memory, Annual
Review of Psychology, 49, pp. 87-115.

Gaines, B.R. (1979), General Systems Research, General Systems Yearbook,
24, pp. 1-9.

Gaines, B.R. (1972), Axioms for Adaptive Behavior, Int. J. of Man-Machine
Studies, 4, pp. 169-199.

Gaines, B.R. (1976), On the Complexity of Causal Models, IEEE Trans. On
Sys., Man, and Cyb., 6, pp. 56-59.

Gaines, B.R. (1977), System Identification, Approximation and Complexity,
Int. J. Gen. Sys., 3(145), pp. 145-174.

© 2008 by Taylor & Francis Group, LLC

1242 Bibliography

Gaines, B.R. (1978), Progress in General Systems Research, in G.J. Klir ed.,
Applied General Systems Research, Plenum, NY, pp. 3-28.

Gaines, B.R. (1983), Precise Past - Fuzzy Future, Int. J. Man-Machine
Studies, 19, pp. 117-134.

Gaines, B.R. (1984), Methodology in the Large: Modeling All There Is,
Systems Research, 1(2), pp. 91-103.

Gamma E., R.Helm, R. Johnson, and J. Vlissides (1995). Design Patterns:
Elements of Reusable Object Oriented Software, Addison-Wesley, Reading,
MA.

Ganter, B. and R. Wille (1999), Formal Concept Analysis, Springer, Berlin.

Gantt, H. L. (1919), Organizing for Work, Harcourt Brace and Howe, NY.

Garvin, D.A. (1987), Competing in the Eight Dimensions of Quality,
Harvard Business Review, Vol. 1987, Nov./Dec.

Garvin, D.A. (1991), How the Baldrige Award Really Works, Harvard
Business Review, Vol. 1991, Nov./Dec., pp.80-93.

Gerber, R., E.L. Gunter, and I. Lee (1992), Implementing a Real-Time
Process Algebra, in Archer, M., J.J. Joyce, K.N. Levitt and Phillip J. Windley
eds., Proc. the International Workshop on the Theorem Proving System and
its Applications, IEEE Computer Society Press, Los Alamitos, CA, USA,
August, pp.144-154.

Gersting, J. L (1982), Mathematical Structures for Computer Science, W. H.
Freeman & Co., San Francisco.

Giarrantans, J. and G. Riley (1989), Expert Systems: Principles and
Programming, PWS-KENT Pub. Co., Boston.

Gilb, T. (1988), Principles of Software Engineering Management, Addison-
Wesley, Reading, MA.

Gilb, T. and D. Graham (1993), Software Inspection, Addison-Wesley,
Reading, MA.

Gisselquist, R. (1998), Engineering in Software, Communications of the
ACM, 41(10), Oct., pp. 107-108.

Gleason, H.A. Jr. (1961), An Introduction to Descriptive Linguistics, Holt,
Rinehart and Winston, Toronto.

Gleason, J.B. (1997), The Development of Language, Introduction to
Descriptive Linguistics, 4th ed., Allyn and Bacon, Boston, MA.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1243

GMOD (1992), V-Model: Software Lifecycle Process Model, General Report
No. 250, German Ministry of Defense.

Goguen, J.A. (1978), Some Design Principles and Theory for OBJ-0, A
Language for Expressing and Executing Algebraic Specifications of
Programs, Proc. of the International Conference on Mathematical Studies of
Information Processing, Kyoto, pp.425-473.

Goguen, J.A., J.W. Thatcher, E.G. Wagner, and J.B. Wright (1977), Initial
Algebra Semantics and Continuous Algebras, Journal of the ACM, 24(1),
January, pp. 68-59.

Goguen, J.A. and G. Malcolm (1996), Algebraic Semantics of Imperative
Programming, MIT Press.

Goldberg, A. and D. Robson (1983), Smalltalk-80: The Language and its
Implementation, Addison-Wesley Publishing Company.

Goldman, S. (1953), Information Theory, Prentice Hall, Englewood Cliffs,
NJ, USA.

Gray, B. (1989), Collaborating: Finding Common Ground for Multiparty
Problems, San Francisco, Jossey-Bass.

Gregory, M.S. (1971), History of Development of Engineering, Longman
Group Ltd., London.

Gries, D. (1981), The Science of Programming, Spinger-Verlag, Berlin.

Grune, D., H.E. Bal, C.J.H. Jacobs, and K.G. Langendoen (2000), Modern
Compiler Design, John Wiley & Sons, England.

Gunter, C.A. (1992), Semantics of Programming Languages: Structures and
Techniques, in M. Garey and A. Meyer ed., Foundations of Computing, MIT
Press.

Gunter, C.A. and J.C. Mitchell, ed. (1994), Theoretical Aspects of Object-
Oriented Programming. MIT Press.

Gustavsson, A. (1989), Maintaining the Evaluation of Software Objects in an
Integrated Environment, Proc. 2nd International Workshop on Software
Configuration Management, ACM, Princeton, NJ, October, pp.114-117.

Guttag, J.V. (1975), The Specification and Application to Programming of
Abstract Data Types, PhD Thesis, University of Toronto.

Guttag, J.V. (1977), Abstract Data Types and the Development of Data
Structures, Communications of the ACM, 20(6), pp.396-404.

© 2008 by Taylor & Francis Group, LLC

1244 Bibliography

Guttag, J.V. and J.J. Horning (1978), The Algebraic Specification of Abstract
Data Types, Acta Informatica, 10, pp.27-52.

Guttag, J.V. (2002), Abstract Data Types, Then and Now, in M. Broy and E.
Denert eds., Software Pioneers, Springer, Berlin, pp.443-452.

Haase, V., R. Messmarz, G. Koch, H.J. Kugler, and P. Decrinis (1994),
BOOTSTRAP: Fine-Tuning Process Assessment, IEEE Software, 11, July,
25-35.

Haken, H. (1977), Synergetics, Springer-Verlag, NY.

Haken, H. (1983), Advanced Synergetics – Instability Hierarchies of Self-
Organizing Systems and Devices, Springer-Verlag, Berlin.

Haken, H., A. Wunderlin, S. Yigitbasi (1995), An Introduction to
Synergetics, Open Systems and Information Dynamics, 3(1), pp. 97-130.

Hagstrom, J. N. (1988), Computational Complexity of PERT Problems,
Networks, 18, pp.139–147.

Hall, A. D. (1967), A Methodology for Systems Engineering, Van Nostrand
Reinhold, New York.

Hall, A.S. and R.E. Fagan (1956), Definition of System, General Systems
Yearbook, 1, pp. 18-28.

Halstead, M.H. (1977), Elements of Software Science, Elsevier North –
Holland, New York.

Harauz, J. (1997), Workshop Report on System Engineering Principles and
Scenarios, Summary Report of the Second International Symposium on
Software Engineering Standards (ISESS’97), IEEE SESC, Sept.

Hardy, C. and B. Latane (1986), Social Loafing on a Cheering Task, Social
Science, 71, pp.165-172.

Hardy, C. and N. Phillips (1998), Strategies of Engagement: Lessons from
the Critical Examination of Cooperation and Conflict in an
Interorganizational Design, Organization Science, 9(2), Feb., pp.217-230.

Harnish, R.M. (2002), Minds, Brain, Computers: An Historical Introduction
to the Foundations of Cognitive Science, Blackwell Publishers, Ltd.,
Oxford, UK.

Harre, R. (2002), Cognitive Science: A Philosophical Introduction, SAGE
Publishing Ltd., London, UK.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1245

Hartmanis, J. and R.E. Stearns (1965), On the Computational Complexity of
Algorithms, Trans. AMS, 117, pp. 258-306.

Hartmanis, J. (1994), On Computational Complexity and the Nature of
Computer Science, 1994 Turing Award Lecture, Communications of the
ACM, Vol.37, No.10, pp.37-43.

Harvey, R. L. (1994), Neural Network Principles, Prentice Hall International,
Englewood Cliffs, NJ.

Hastie, R. (2001), Problems for Judgment and Decision Making, Annual
Review of Psychology, Vol. 52, pp.653-683.

Hayes, I.J. (ed.) (1987), Specification Case Studies, Prentice Hall, London.

Hennessy, J.L. and D.A. Patterson (1996), Computer Architecture: A
Quantitative Approach, 2nd ed., Morgan Kaufmann, CA.

Hermes, H. (1969), Enumerability, Decidability, Computability, Springer-
Verlag, New York.

Hester, S.D., D.L. Parnas, and D.F. Utter (1981), Using documentation as a
Software Design Medium, Bell System Technical Journal, 60(8), Oct., pp.
1941-1977.

Higman, B. (1977), A Comparative Study of Programming Languages, 2nd
ed., MacDonald.

Hoare, C.A.R. (1969), An Axiomatic Basis for Computer Programming,
Communications of the ACM, 12(10), pp.576-580.

Hoare, C.A.R. (1973), Hints on Programming Language Design, Proc. ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages,
pp. 31-40.

Hoare, C.A.R. (1975), Software Engineering, Computer Bulletin, 2(6), Dec.,
pp. 6-7.

Hoare, C.A.R. (1978), Communicating Sequential Processes,
Communications of the ACM, 21(8), pp.666-677.

Hoare, C.A.R. (1980), The Emperor’s Old Clothes, The 1980 Turing Award
Lecture, Communications of the ACM, 24(2), pp.75-83.

Hoare, C.A.R. (1985), Communicating Sequential Processes, Prentice Hall
International, Englewood Cliffs, NJ.

Hoare, C.A.R. (1986), The Mathematics of Programming, Clarendon Press,
Oxford, UK.

© 2008 by Taylor & Francis Group, LLC

1246 Bibliography

Hoare, C.A.R. and Jones, C.B. (eds.) (1989), Essays in Computing Science,
Prentice Hall, Englewood Cliffs, NJ.

Hoare, C.A.R. and N. Wirth (1966), A Contribution to the Development of
ALGOL, Communications of the ACM, 9(6), pp.413-431.

Hoare, C.A.R., I.J. Hayes, J. He, C.C. Morgan, A.W. Roscoe, J.W. Sanders,
I.H. Sorensen, J.M. Spivey, and B.A. Sufrin (1987), Laws of Programming,
Communications of the ACM, 30(8), August, pp. 672-686.

Hoffman, D.M. and D.M. Weiss eds. (2001), Software Fundamentals:
Collected Papers by David L. Parnas, Addison-Wesley, Inc., Boston.

Hopcroft, J.E. and J.D. Ullman (1979), Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley Publishing Co., MA.

Horowitz, E. (1984), Fundamentals of Programming Languages, 2nd ed.,
Computer Science Press, Rockville, MD.

Horstmann, C. and T. Budd (2004), Big C++, John Wiley & Sons, Inc.,
Danvers, MA.

Huang, J. and Y. Wang (2006), Design of an Integrated Hyper Specification
Documentation Tool, Proc. 5th IEEE International Conference on Cognitive
Informatics (ICCI'06), IEEE CS Press, Beijing, China, July, pp. 370-379.

Hull, C.L. (1943), Principles of Behavior: An Introduction to Behavior
Theory, Oxford Univ. Press, NY.

Humphrey, W. (1996), Using a Defined and Measured Personal Software
Process, IEEE Software, May, pp. 77-88.

Humphrey, W. S. (1995), A Discipline for Software Engineering, SEI Series
in Software Engineering, Addison-Wesley, Reading, MA.

Humphrey, W.S. (1988), Characterizing the Software Process: A Maturity
Framework, IEEE Software, 5(2), March, pp. 73-79.

Humphrey, W.S. (1989), Managing the Software Process, Addison-Wesley
Longman, Reading, MA.

Hurley, P.J. (1997), A Concise Introduction to Logic, 6th ed., Wadsworth
Pub. Co., Belmont, CA.

Huseman, R. C., and E.W. Miles (1988), Organizational Communication in
the Information Age, Journal of Management, 14, pp.181-204.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1247

Huxham, C. (1996), Advantage or Inertia? Making Cooperation Work, in
Paton, R., Clark, G., Jones, G., Lewis, J. and Quinlan, P. (eds.), The New
Management Reader, Routledge, London, New York.

IBM (1996), Software Development Performance and Practices in Europe: A
Benchmark of Software Development in Europe – Self Assessment
Questionnaire, V.2.0, IBM Eurocoordination, pp. 1-11.

IBM (1997), IBM European Benchmark of Software Development Practices,
pp.1-240.

IBM (2001), IBM Autonomic Computing Manifesto, http://www.research.
ibm.com/autonomic/.

IBM (2006), Autonomic Computing White Paper: An Architectural Blueprint
for Autonomic Computing, 4th ed., June, pp. 1-37.

IBM and IVF (1997), 1997 National Benchmarking Survey of Performance
and Practices in Swedish Software Producing Units, V.2.0, pp.1-15.

IEEE (1983), Software Engineering Standards, 1983 Collection, IEEE
Computer Society Press, Los Alamitos, CA.

IEEE (1988), Software Engineering Standards, 1988 Collection, IEEE
Computer Society Press, Los Alamitos, CA.

IEEE (1998), Software Engineering Code of Ethics and Professional
Practice (v.5.2), Recommended by the IEEE/ACM Joint Task Force on
Software Engineering Ethics and Professional Practices.

IEEE 610.12 (1991), IEEE STD 610.12 – 1990, IEEE Standard Glossary of
Software Engineering Terminology, Corrected Edition, Feb.

IEEE/ACM (2001), Software Engineering Body of Knowledge (SWEBOK),
V.0.95, May, pp. 1-213.

IEEE/ACM (2003), Computing Curricula – Software Engineering (CCSE),
http://sites.computer.org/ccse/.

IPA (1970), The International Phonetic Alphabet, http://www.arts.gla.ac.uk/
IPA/ipa.html.

ISO 9000-1 (1994), Quality Management and Quality Assurance Standards
(Part 1) - Guidelines for Selection and Use, International Organization for
Standardization, Geneva.

ISO 9000-2 (1994), Quality Management and Quality Assurance Standards
(Part 2) – Generic Guidelines for Application of ISO 9001, ISO 9002 and
ISO 9003, International Organization for Standardization, Geneva.

© 2008 by Taylor & Francis Group, LLC

http://www.research.ibm.com
http://www.research.ibm.com
http://www.arts.gla.ac.uk
http://www.arts.gla.ac.uk
http://sites.computer.org

1248 Bibliography

ISO 9000-3 (1991), Quality Management and Quality Assurance Standards
(Part 3) - Quality Management and Quality Assurance Standards (Part 3) -
Guidelines to Apply ISO 9001 for Development, Supply and Maintenance of
Software, International Organization for Standardization, Geneva.

ISO 9000-4 (1993), Quality Management and Quality System (Part 4) -
Guidelines for Dependability Programme Management, International
Organization for Standardization, Geneva.

ISO 9001 (1989), Quality Systems - Model for Quality Assurance in Design,
Development, Production, Installation, and Servicing, International
Organization for Standardization, Geneva.

ISO 9001 (1994), Quality Systems - Model for Quality Assurance in Design,
Development, Production, Installation, and Servicing, Revised Edition,
International Organization for Standardization, Geneva.

ISO 9002 (1994). Quality Systems - Model for Quality Assurance in
Production, Installation and Servicing, International Organization for
Standardization, Geneva.

ISO 9003 (1994), Quality Systems - Model for Quality Assurance in Final
Inspection and Test, International Organization for Standardization, Geneva.

ISO 9004-1 (1994), Quality Management and Quality System Elements (Part
1) – Guidelines, International Organization for Standardization, Geneva.

ISO 9004-2 (1991), Quality Management and Quality System Elements (Part
4) - Guidelines for Quality Management and Quality Systems Elements for
Services, International Organization for Standardization, Geneva.

ISO 9004-4 (1993), Quality Management and Quality System Elements (Part
2) - Guidelines for Quality Improvement, International Organization for
Standardization, Geneva.

ISO 9126 (1991), Information Technology – Software Product Evaluation –
Quality Characteristics and Guidelines for their Use, International
Organization for Standardization, Geneva.

ISO/IEC 12207 (1995), Information Technology – Software Life Cycle
Processes, International Organization for Standardization, Geneva.

ISO/IEC 15504 (2000), Software Process Assessment - Parts 1 ~ 9, ISO/IEC,
Geneva.

ISO/IEC 15288 (1999), Information Technology – Life Cycle Management –
System Life Cycle Processes, ISO/IEC JTC1/SC7 N2184, Geneva, pp.1-42.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1249

Jackson, J.M. and S.G. Harkins (1985), Equity in Effort: An Explanation of
the Social Loafing Effect, Journal of Personality and Social Psychology, 49,
pp.1199-1206.

James, W. (1890), Principles of Psychology, New York, Holt.

James, W.M. (1998), Software Engineering Standards: A User’s Road Map,
IEEE Computer Society Press, Los Alamitos, CA.

Janis, I. (1971), Groupthink, Psychology Today, Nov., pp.43-46.

Jeffrey, A. (1992), Translating Timed Process Algebra into Prioritized
Process Algebra, in J. Vytopil ed., Proc. the 2nd International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS Vol.
571, Springer-Verlag, Nijmegen, The Netherlands, pp.493-506.

Jenner, M.J. (1995), Software Quality Management and ISO 9001, John
Wiley & Sons, Inc., New York.

Jennings, N.R. (2000), On Agent-Based Software Engineering, Artificial
Intelligence, 177(2), pp. 277-296.

Jensen, J. (1990), Morphology: Word Structure in Generative Grammar,
John Benjamins, Amsterdam.

Jensen, K. (1978), Pascal User Manual and Report, 2nd ed., Springer
Verlag.

Johansson, H.J., and P. Mchugh (1993), Business Process Reengineering,
John Wiley & Sons, Engl.

Johnson, S.C. (1975), Yacc – Yet Another Compiler Compiler, AT&T Bell
Laboratories, Computing Science Technical Report No.32, AT&T Bell Labs.,
Murray Hill, NJ.

Jones, C. (1981), Programming Productivity – Issues for the Eighties, IEEE
Press, Silver Spring, MD.

Jones, C. (1986), Programming Productivity, McGraw-Hill Book Co., NY.

Jones, C. (1996), Patterns of Software System Failure and Success,
International Thomson Computer Press, Boston, MA.

Jones, C.B. (1980), Software Development: A Rigorous Approach, Prentice-
Hall International, London.

Juran, J. M. (1988), Juran on Planning for Quality, Macmillan, New York.

© 2008 by Taylor & Francis Group, LLC

1250 Bibliography

Juran, J.M. (1989), Juran on Leadership for Quality, The Free Press, New
York.

Juran, J.M., L.A. Seder, and F.M. Gryna eds. (1962), Quality Control
Handbook, 2nd ed., McGraw-Hill, New York.

Juran, J.M. and F.M. Gryna (1980), Quality Planning and Analysis,
McGraw-Hill, New York.

Kandel, E.R., J.H. Schwartz, and T.M. Jessell eds. (2000), Principles of
Neural Science, 4th ed., McGraw-Hill, New York.

Kant, I. (1956), Ethics Founded on Reason, in Groundwork of the
Metaphysics of Morals, London, Unwin Hyman Ltd.

Kephart, J. and D. Chess (2003), The Vision of Autonomic Computing, IEEE
Computer, 26(1), Jan, pp. 41-50.

Kearney, J.K., R.L. Sedlmeyer, W.B. Thompson, M.A. Gary, and M.A.
Adler (1986), Software Complexity Measurement, Chapter 28, ACM Press,
New York, pp. 1044 -1050.

Keen, P.G. and M.S. Morton (1978), Decision Support Systems: An
Organizational Perspective, Addison-Wesley, Reading, MA.

Kelley, J.E. (1961), Critical-Path Planning and Scheduling: Mathematical
Basis. Operations Research, 9, pp. 296–320.

Kemere, C.F. (1998), Progress, Obstacles, and Opportunities in Software
Engineering Economics, Communications of the ACM, August, 41(8).

Kephart, J. and D. Chess (2003), The Vision of Autonomic Computing, IEEE
Computer, 26(1), Jan, pp. 41-50.

Kerr, N.L. (1983), Motivation Losses in Small Groups: A Social Dilemma
Analysis, Journal of Personality and Social Psychology, 45, pp.819 – 828.

Khaden, R. and A. Schultzki (1983), Planning and Forecasting Using a
Corporate Model, Managerial Planning, Jan./Feb.

Kinsner, W., D. Zhang, Y. Wang, and J. Tsai eds. (2005), Proc. the Fourth
IEEE International Conference on Cognitive Informatics (ICCI'05), Irvine,
California, USA, IEEE Computer Society Press, Los Alamitos, CA., July.

Kinsner, W. (2007a), Towards Cognitive Machines: Multiscale Measures and
Analysis, The International Journal on Cognitive Informatics and Natural
Intelligence (IJCINI), 1(1), pp. 28-38.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1251

Kinsner, W. (2007b), Is Entropy Suitable to Characterize Data and Signals
for Cognitive Informatics? The International Journal on Cognitive
Informatics and Natural Intelligence (IJCINI), 1(2), pp. 34-57.

Kleene, S.C. (1952), Introduction to Metamathematics, North Holland,
Amsterdam.

Kleene, S.C. (1956), Representation of Events by Nerve Nets, in C.E.
Shannon and J. McCarthy eds, Automata Studies, Princeton Univ. Press, pp.
3-42.

Klir, G.J. ed. (1972), Trends in General Systems Theory, John Wiley, New
York.

Klir, G.L. (2001), Facets of Systems Science, 2nd ed., Kluwer
Academic/Plenum Publishers, New York.

Klir, R.G. (1988), Systems Profile: the Emergence of Systems Science,
Systems Research, 5(2), pp. 145-156.

Klusener, A.S. (1992), Abstraction in Real Time Process Algebra, in J. W. de
Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg eds., Proc. Real-
Time: Theory in Practice, LNCS, Springer, Berlin, pp. 325-352.

Knuth, D.E. (1965), On the Translation of Languages from Left to Right,
Information and Control, 8, pp.607-639.

Knuth, D.E. (1974), Structured Programming with GOTO Statements, ACM
Computing Surveys, 6(4), December, pp. 261 - 302.

Knuth, D.E. (1984), Literate Programming, The Computer Journal, 27(2),
pp.97-111.

Koch, G.R. (1993), Process Assessment: The ‘BOOTSTRAP’ Approach,
Information and Software Technology, 35(6/7), Butterworth-Heinemann
Ltd., Oxford, June/July, pp.387-403.

Kolb, D.A. and A.L. Frohman (1970), An Organization Development
Approach to Consulting, Sloan Management Review, 12(1), Fall, pp.51-65.

Kolmogorov, A.N. (1965), Three Approaches to the Quantitative Definition
of Information, Problems of Information Transmission, 1(1), pp. 1-7.

Komorita, S.S. and J.M. Barth (1985), Components of Reward in Social
Bargaining, Journal of Personality and Social Psychology, 48, pp. 364-373.

Kotulak, R. (1997), Inside the Brain, Andrews McMeel Publishing Co.,
Kansas City, MO.

© 2008 by Taylor & Francis Group, LLC

1252 Bibliography

Kramosil, I. (2001), Probabilitic Analysis of Belief Functions, Kluwer
Academic/Plenum Publishers, NY.

Kravits, D.A. and B. Martin (1986), Ringelmann Rediscovered: The Original
Article, Journal of Personality and Social Psychology, 50, pp. 936-941.

Krohn, K.B. and Rhodes, J.L. (1963), Algebraic Theory of Machines, in J.
Fox ed., Mathematical Theory of Automata, Polytechnic Press, Brooklyn,
NY, pp. 341-384.

Kuhn, T. (1970), The Structure of Scientific Revolutions, The Univ. of
Chicago, Chicago.

Kuvaja, P. and A. Bicego (1994b), BOOTSTRAP – A European Assessment
Methodology, Software Quality Journal, June.

Kyburg, H.E. (1984), Theory and Measurement, Cambridge University
Press, Cambridge, UK.

Labrosse, J.J. (1999), MicroC/OS-II, The Real-Time Kernel, 2nd ed., R&D
Books, Gilroy, CA, December.

Laplante, P.A. (1977), Real-Time Systems Design and Analysis, 2nd ed.,
IEEE Press.

Latane, B., K.D. Williams, and S.G. Harkins (1979), Many Hands Make
Light the Work: The Cause and Consequences of Social Loafing, Journal of
Personality and Social Psychology, 37, pp.822-832.

Lawrence Jr., J.A. and B. Pasternack (2002), Applied Management Science:
A Computer Integrated Approach for Decision Making, 2nd ed., Wiley.

Leahey, T.H. (1980), A History of Psychology: Main Currents in
Psychological Thoughts, 4th ed., Prentice Hall, Upper Saddle River, N.J.

Lehman, M.M. (1985), Program Evolution: Processes of Software Change,
Academic Press, London.

Lesk, M.E. (1975), Lex – A Lexical Analyzer Generator, AT&T Bell
Laboratories, Computing Science Technical Report No.39, Murray Hill, NJ.

Leveson, N.G. (1995), Software: System Safety and Computers, Addison
Wesley.

Leveson, N.G. (1997), Software Engineering: A Look Back and a Path to the
Future, Communications of the ACM, Feb., pp. 1-5.

Lewin, Z.K. (1948), Resolving Social Conflicts: Selected Papers on Group
Dynamics, in G.W. Lewin ed., Harper and Row, NY.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1253

Lewis, B. and D. Berg (1998), Multithreaded Programming with Threads,
Sun Microsystems Press, Upper Saddle River, NJ.

Lewis, H.R. and Papadimitriou, C.H. (1998), Elements of the Theory of
Computation, 2nd ed., Prentice Hall International, Englewood Cliffs, NJ.

Linton, R. (1936), The Study of Man, Appleton Century Crofts, NY.

Lipschutz, S. (1964), Schaum’s Outline of Theory and Problems of Set
Theory and Related Topics, McGraw-Hill, Inc., New York.

Lipschutz, S. and M. Lipson (1997), Schaum’s Outline of Theories and
Problems of Discrete Mathematics, 2nd ed., McGraw-Hill Inc., New York,
NY.

Liskov, B. and S. Zilles (1974), Programming with Abstract Data Types,
ACM SIGPLAN Notices, 9, pp.50-59.

Little, J.D.C. (1961), A Proof of the Queuing Formula L=λW, Operations
Research, 9.

Liu, J. (2000), Real-Time Systems, Prentice Hall, Upper Saddle River, NJ.

Livermore, J. (2005), Measuring Programmer Productivity, http://home.
sprynet.com/~jgarriso/jlpaper.htm.

Locke, J. and J.A. St. John (1902), The Philosophical Works of John Locke.

Louden K.C. (1993), Programming Languages: Principles and Practice,
PWS-Kent Publishing Co., Boston.

Macionis, J.J., J.N. Clarke, and L.M. Gerber (1997), Sociology, 2nd ed.,
Prentice Hall Allyn and Bacon Canada, ON.

Mackintosh, N.J. (1998), IQ and Human Intelligence, Oxford University
Press, USA.

MaCulloch, W.S. and Pitts, W. (1943), A Logic Calculus of the Ideas
Imminent in Nervous Activity, Bull. Math. Biophysics, 5, pp.115-133.

Makridakis, S. and E.R. Weinstraub (1971), On the Synthesis of General
Systems, General Systems Yearbook, 16, pp. 43-54.

Makridakis, S. and C. Faucheux (1973), Stability Properties of General
Systems, General Systems Yearbook, 18, pp. 3-12.

Mandrioli, D. and C. Ghezzi (1987), Theoretical Foundations of Computer
Science, John Wiley & Sons, New York.

© 2008 by Taylor & Francis Group, LLC

http://www.earthlink.net/
http://www.earthlink.net/

1254 Bibliography

Maquet, P. (2001), The Role of Sleep in Learning and Memory, Science,
294(5544), November, pp. 1048 – 1051.

Marcotty, M. and H. Ledgard (1986), Programming Language Landscape,
2nd ed., SRA, Chicago.

Marieb, E.N. (1992), Human Anatomy and Physiology, 2nd ed., The
Benjamin/Cummings Publishing Co., Inc., Redwood City, CA.

Marshall, A. (1938), Principles of Economics, The Macmillan Co., London.

Marshall, T. (1989), Worth the RISC, Byte, 14(2), pp. 245.

Martin-Lof, P. (1975), An Intuitionistic Theory of Types: Predicative Part, in
H. Rose and J. C. Shepherdson eds., Logic Colloquium 1973, NorthHolland.

Maslow, A.H. (1962), Towards a Psychology of Being, Van Nostrand,
Princeton, NJ.

Maslow, A.H. (1970), Motivation and Personality, 2nd ed, Harper & Row,
NY.

Matlin, M.W. (1998), Cognition, 4th ed., Harcourt Brace College Publishers,
Orlando, FL.

McCabe, T.H. (1976), A Cyclomatic Complexity Measure, IEEE Trans.
Software Engineering, 2(6), pp.308-320.

McCarthy, J.L. (1987), Generality in Artificial Intelligence, The 1971 Turing
Award Lecture, Communications of the ACM, 30(12), pp. 1029-1035.

McConnell, S. (1999), Software Engineering Principles, IEEE Software,
16(2), March/April, pp.1-4.

McConnell, S. (2000), Ten Best Influences on Software Engineering, IEEE
Software, 17(1), Jan./Feb.

McCue, G.M. (1978), IBM’s Santa Teresa Laboratory: Architectural Design
for Program Development, IBM Systems Journal, 17(1), pp. 4-25.

McCulloch, W.S. and W.H. Pitts (1943), A Logic Calculus of the Ideas
Immanent in Nervous Activity, Bulletin of Mathematical Biophysics, USA,
Vol. 5.

McCulloch, W.S. (1965), Embodiments of Mind, MIT Press, Cambridge,
MA.

McCulloch, W.S. (1993), The Complete Works of Warren S. McCulloch,
Intersystems Pub., Salinas, CA.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1255

McDermid, J.A. ed. (1991), Software Engineer’s Reference Book,
Butterworth-Heinemann Ltd., Oxford, UK.

Meek, B.L. (1991), Early High-Level Languages, Chapter 43, in J.
McDermid ed., Software Engineer’s Reference Book, Butterworth
Heinemann Ltd., Oxford, UK.

Melton, A. ed. (1996), Software Measurement, Int. Thomson Computer
Press, London,

Meyer, B. (1990), Introduction to the Theory of Programming Languages,
Prentice Hall, Englewood Cliffs, NJ.

Meystel, A.M. and J.S. Albus (2002), Intelligent Systems, Architecture,
Design, and Control, John Wiley & Sons, Inc.

Milenkovic, M. (1992), Operating Systems: Concepts and Design, 2nd ed.,
McGraw-Hill, New York.

Mill, J.S. (1843), A System of Logic, University Press of the Pacific,
Honolulu.

Mill, J.S. (1861), Defence of Utilitarianism, in Utilitarianism.

Miller, G.A. (1956), The Magical Number Seven, Plus or Minus two: Some
Limits of Our Capacity for Processing Information, Psychological Review,
63, pp. 81-97.

Mills, H.D. (1975), The New Math of Computer Programming,
Communications of the ACM, 18(1), Jan., pp. 43-48.

Mills, H.D., M. Dyer, and R.C. Linger (1987), Cleanroom Software
Engineering, IEEE Software, 4(5), Sept., pp.19-25.

Mills, H.D., D. O’Neill, R.C. Linger, M. Dyer, and R.E. Quinnan (1980),
The Management of Software Engineering, IBM System Journal, 24(2),
pp.414-477.

Milner, R. (1980), A Calculus of Communicating Systems, LNCS 92,
Springer-Verlag.

Milner, R. (1989), Communication and Concurrency, Prentice Hall,
Englewood Cliffs, NJ.

Mitchell, J.C. (1990), Type systems for programming languages. In
Handbook of Theoretical Computer Science, J. van Leeuwen, ed. North
Holland, pp.365-458.

Mitchell, J.C. (1996), Foundations for programming languages, MIT Press.

© 2008 by Taylor & Francis Group, LLC

1256 Bibliography

Mooney, J.D. (1947), The Principles of Organization, Harper and Row, NY.

Murch, R. (2004), Autonomic Computing, Person Education, London.

Murty, K. (1983), Linear Programming. John Wiley & Sons, New York.

Myerson, R.B. (1997), Game Theory: Analysis of Conflict, Harvard Univ.
Press.

NASA (2000), http://shemehs.larc.nasa.gov/Gifs/humor-cat.gif .

Naur, P. ed. (1963), Revised Report on the Algorithmic Language Algol 60,
Communications of the ACM, 6(1), pp.1-17.

Naur, P. and B. Randell (eds.) (1969), Software Engineering: A Report on a
Conference Sponsored by the NATO Science Committee, NATO.

Naur, P. (1978), The European Side of the Last Phase of the Development of
Algol, ACM SIGPLAN Notices, 13, pp.15-44.

Negoita, C.V. (1989), Review: Fuzzy Sets, Uncertainty, and Information,
Cybernetes, 18(1), pp. 73-74.

Ngolah, C.F., Y. Wang, and X. Tan (2004), The Real-Time Task Scheduling
Algorithm of RTOS+, IEEE Canadian Journal of Electrical and Computer
Engineering, 29(4), pp. 237-243.

Ngolah, F.C. and Y. Wang (2005), An Operational Semantics of RTPA,
Proc. 18th Canadian Conference on Electrical and Computer Engineering
(CCECE’05), Saskatoon, SA, Canada, May 1-4, pp. 1810-1813.

Ngolah, F.C., Y. Wang and X. Tan (2005), An RTPA Supporting
Environment for Java Code Generation, Proc. 18th Canadian Conference on
Electrical and Computer Engineering (CCECE’05), Saskatoon, SA, Canada,
May 1-4, pp. 717-720.

Ngolah, C.F., Y. Wang, and X. Tan (2006), Implementing the Real-Time
Processes of RTPA Using Real-Time Java, Proc. 19th Canadian Conference
on Electrical and Computer Engineering (CCECE’06), Ottawa, ON, Canada,
May 8 -10, pp. 1609-1612.

Nicollin, X. and J. Sifakis (1991), An Overview and Synthesis on Timed
Process Algebras, Proc. 3rd International Computer Aided Verification
Conference, pp. 376-398.

Nielson, M.A. and I.L. Chuang (2000), Quantum Computing and Quantum
Information, Cambridge Univ. Press, UK.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1257

Nordstrom, B., K. Petersson, and J.M. Smith (1990), Programming in
Martin-Lof’s Type Theory, Oxford Science Publications.

O’Grady, W. and J. Archibald (2000), Contemporary Linguistic Analysis: An
Introduction, 4th ed., Pearson Education Canada Inc., Toronto.

Ollongren, A. (1974), Definition of Programming Languages by Interpreting
Automata, Academic Press, New York.

OMG (2002), IDL Syntax and Semantics, July, pp. 1-74.

OMG (2005), Unified Modeling Language (UML): Superstructure, Object
Management Group, version 2.0, August.

Osborne, M. and A. Rubinstein (1994), A Course in Game Theory, MIT
Press.

Osgood, C. (1953), Method and Theory in Experimental Psychology, Oxford
Univ. Press, UK.

Pagan, F.G. (1981), Semantics of Programming Languages: A Panoramic
Primer, Prentice Hall, Englewood Cliffs, NJ.

Park, C.S., R. Pelot, K.C. Porteous, and M.J. Zuo (2001), Contemporary
Engineering Economics, 2nd ed., Addison Wesley Longman, Toronto, ON,
Canada.

Park, R.E. (1922), The Immigrant Press and Its Control, Harper, NY.

Parkinson, C.N. (1957), Parkinson’s Law and Other Studies in
Administration, Ballantine Books, NY.

Parnas, D.L. (1971), Information Distribution Aspects of Design
Methodology, Proc. 1971 IFIP Congress, Booklet TA-3, pp.26-30.

Parnas, D.L. (1972), On the Criteria to be Used in Decomposing Systems
into Modules, Communications of ACM, 15(12), Dec., pp.1053-1058.

Parnas, D.L., J.E. Shore, and D. Weiss (1976), Abstract Types Defined as
Classes of Variables, Proc. of Conference on Data Abstraction, Definition,
and Structure, Salt Lake City, March, pp.22-24.

Parnas, D.L. (1978), Some Software Engineering Principles, Infotech State of
the Art Report on Structured Analysis and Design, Infotech International,
pp.1-10.

Parnas, D.L. (1979), Design Software for Ease of Extension and Contraction,
IEEE Trans. Software Engineering, 5(3), March, pp. 128-138.

© 2008 by Taylor & Francis Group, LLC

1258 Bibliography

Parnas, D.L. and P.C. Clements (1986), A Rational Design Process: How and
Why to Fake It, IEEE Trans. on Software Engineering, 12(2), pp. 251-257.

Parnas, D.L. (1994a), Professional Responsibilities of Software Engineering,
Proc. IFIP World Congress 1994, Vol.II, August, pp.332-339.

Parnas, D.L. (1994b), Software Aging, Proc. 16th International Conference
on Software Engineering, Sorento, Italy, May, pp.279-287.

Parnas, D.L. (1995), On ICSE’s “Most Influential Papers”, ACM Software
Engineering Notes, 20(3), July, pp.29-32.

Parnas, D.L. (1996), Teaching Programming as if it were Engineering, in C.
Neville Dean and M.G. Hinchey eds., Teaching and Learning Formal
Methods, Academic Press, pp.43-55.

Parnas, D.L. (1997), Software Engineering: An Unconsummated Marriage,
Communications of the ACM, 40(9), Sept., pp. 128.

Parnas, D.L. (1998), Software Engineering Programs are not Computer
Science Programs, Annals of Software Engineering, 6, pp. 19-37.

Parr, T. (2000), ANTLR Reference Manual, http://www.antlr.org/.

Pasquero, J. (1991), Supraorganizational Cooperation: The Canadian
Environmental Experiment, Journal of Applied Behavioral Science, 27(2),
pp.38-64.

Patel, S., D. Patel, and Y. Wang eds. (2003), Proc. 2nd IEEE International
Conference on Cognitive Informatics (ICCI'03), IEEE Computer Society
Press, July, 227pp.

Pattee, H.H. (1978), Complementarity Principle in Biological and Social
Structures, Journal of Social and Biological Structures, 1.

Pattee, H.H. (1986), Universal Principles of Measurement and Language
Functions in Evolving Systems, in J.L. Casti and A. Karlqvist eds. (1986),
Complexity, Language, and Life: Mathematical Approaches, Springer-
Verlag, Berlin, pp. 268-281

Paulk, M.C., B. Curtis, M.B. Chrissis et al. (1991), Capability Maturity
Model for Software, Version 1.0, Software Engineering Institute, CMU/SEI-
91-TR-24, August.

Paulk, M.C., B. Curtis, M.B. Chrissis, and C.V. Weber (1993), Capability
Maturity Model, Version 1.1, IEEE Software, 10(4), July, pp.18-27.

© 2008 by Taylor & Francis Group, LLC

http://www.antlr.org

Bibliography 1259

Paulk, M.C., C.V. Weber, and B. Curtis (1995), The Capability Maturity
Model: Guidelines for Improving the Software Process, SEI Series in
Software Engineering, Addison-Wesley, Reading, MA.

Payne, D.G. and M.J. Wenger (1998), Cognitive Psychology, Houghton
Mifflin Co., Boston, NY.

Pedrycz, W. (1981), On Approach to the Analysis of Fuzzy Systems, Int. J.
of Control, 34, pp. 403-421.

Perry, D., N. Staudenmayer, and L. Votta (1994), Finding Out What Goes on
in a Software Development Organization, Special Issue on Measurement
Based Process Improvement, IEEE Software, 11(4), July.

Pescovitz, D. (2002), Autonomic Computing: Helping Computers Help
Themselves, IEEE Spectrum, 39(9), pp.49–53.

Peter, L.J. and R. Hull (1969), The Peter Principle: Why Things Always Go
Wrong? William Morrow, NY.

Peter, R. (1967), Recursive Functions, Academic Press, New York.

Peters, J.F. and W. Pedrycz (2000), Software Engineering: An Engineering
Approach, John Wiley & Sons, Inc., NY.

Peterson, J.L. and A. Silberschantz (1985), Operating System Concepts.
Addison-Wesley, Reading, MA.

Pfleeger, S.L. (1998), Software Engineering: Theory and Practice, Prentice
Hall, Englewood Cliffs, NJ.

Pierce, B.C. (2002), Types and Programming Languages, MIT Press.

Pinel, J.P.J. (1997), Biopsychology, 3rd ed., Allyn and Bacon, Needham
Heights, MA.

Pinneau, S.R. (1961), Changes in Intelligence Quotient: Infancy to Maturity,
Houghton Mifflin, Boston.

Planck, M. (1936), Philosophy of Physics, WW Norton & Co., Inc.

Plato (1961), Knowledge and True Belief, F.M. Cornford trans., The
Theattetus, England, Champman & Hall Ltd.

Plato (1975), Critique of the Divine Command Theory, G.M.A. Grube trans.,
The Euthyphro, in the Trial and Death of Socrates, Indianapolis, Hackett
Publishing Co.

© 2008 by Taylor & Francis Group, LLC

1260 Bibliography

Pressman, R.S. (1992), Software Engineering: A Practitioner’s Approach,
3rd ed., McGraw-Hill International Editions, New York.

Prigogine, I. and I. Stengers (1984), Order Out of Chaos: Man’s New Dialog
with Nature, Bantam Books.

Prigogine, I. and I. Stengers (1997), The End of Certainty, Time, Chaos, the
New Laws of Nature, Free Press, 1997.

Pnueli, A. (1977), The Temporal Logic of Programs, Proc. 18th IEEE
Symposium on Foundations of Computer Science, IEEE, pp.46-57.

Qian, X.S., J.Y. Yu, and R.W. Dai (1990), A New Scientific Field – Open
Complex Giant Systems and Methodologies, Nature, 13(1), pp. 3-11.

Quatrani, T. (1999), Visual Modeling with Rational Rose 2000 and UML,
Addison-Wesley Professional.

Rabin, M.O. and D. Scott (1959), Finite Automata and their Decision
Problems, IBM Journal of Research and Development, 3, pp. 114-125.

Radnor, M. et al. (1970), Implementation in Operations Research and R&D
in Government and Business Organization, Operations Research, 18(6),
pp.976-991, Nov./Dec.

Ramaswami, V. and P.E. Wirth (1997), Teletraffic Contributions for the
Information Age, Elsevier Science.

Rapoport, A. (1962), Mathematical Aspects of General Systems Theory,
General Systems Yearbook, 11, pp. 3-11

Reason, J. (1987), Generic Error-Modeling System (GEMS): A Cognitive
Framework for Locating Common Human Error Forms, in J. Rasmussen et
al. eds., New Technology and Human Error, Wiley, NY.

Reason, J. (1990), Human Error, Cambridge Univ. Press, Cambridge, UK.

Reed, G.M. and A.W. Roscoe (1986), A Timed model for Communicating
Sequential Processes, Proc. ICALP’86, LNCS 226, Springer-Verlag, Berlin.

Reisberg, D. (2001), Cognition: Exploring the Science of the Mind, 2nd ed.,
W.W. Norton & Co., NY.

Reza, F.M. (1961), An Introduction to Information Theory, Dover
Publications, Inc., NY.

Richardson, A.R. (1966), Business Economics, Macdonald & Evans,
Braintree, MA.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1261

Ritzer, G. (1983), Sociological Theory, Alfred A. Knopf, NY.

Ritzer, G. (1993), The McDonaldization of Society: An Investigation into the
Changing Character of Contemporary Social Life, Pine Forge Press,
Thousand Oaks, CA.

Roberts, N.C. and R.T. Bradley (1991), Stakeholder Cooperation and
Innovation: A Study of Public Policy Initiation at the State Level, Journal of
Applied Behavioral Science, 27(2), pp.209-227.

Rosen, R. (1977), Complexity as a Systems Property, Int. J. of Gen. Systems,
3(4), pp. 227-232.

Rosenzmeig, M.R., A.L. Leiman, and S.M. Breedlove (1999), Biological
Psychology: An Introduction to Behavioral, Cognitive, and Clinical
Neuroscience, 2nd ed., Sinauer Associates, Inc., Publishers, Sunderland, MS.

Royce, W.W. (1970), Managing the Development of Large Software
Systems: Concepts and Techniques, Proc. WESCON, August, USA.

Rubinstein, M.F. and I.R. Firstenberg (1995), Patterns of Problem Solving,
2nd ed., Prentice Hall, Inc., Englewood Cliffs, NJ.

Rumbaugh, J. et al. (1991), Object-Oriented Modeling and Design, Prentice
Hall.

Rumbaugh, J., I. Jacobson, and G. Booch (1998), The Unified Modeling
Language Reference Manual, ACM Press, New York.

Russell, B. (1961), Basic Writings of Bertrand Russell, George Allen &
Unwin Ltd., London.

Russell, B. (1948), Other Minds are Known by Analogy from One’s Own
Case, in Human Knowledge: Its Scopes and Limits, London, Unwin Hyman
Ltd.

Sabloniere, P. (2002), GRID in E-Business, Keynote speech, Proc. 8th
International Conference on Object-Oriented Information Systems
(OOIS’02), Montpellier, France, Sept., pp.4.

Salvendy, G. (2006), Handbook of Human Factors and Ergonomics, 3rd ed.,
Wiley.

Sapir, E. (1929), The Status of Linguistics as a Science, Language, 5, pp.
207-214.

Schael, T. (1998), Workflow Management Systems for Process
Organizations, Second Edition, Lecture Notes in Computer Science, 1096,
Springer-Verlag, Berlin.

© 2008 by Taylor & Francis Group, LLC

1262 Bibliography

Schedrovitzk, G.P. (1962), Methdological Problems of Systems Research,
General Systems Yearbook, 11, pp. 27-53.

Schein, E.H. (1961), Management Development as a Process at Influence,
Industrial Management Review, 2(2), Spring, pp.59-77.

Schilpp, P.A. (1946), The Philosophy of Bertrand Russell, American
Mathematical Monthly, 53(4), p.210.

Schmenner, R.W. and M.L. Swink (1998), On Theory in Operations
Management, Journal of Operations Management, 17, pp.97–113.

Schmidt, D. (1988), Denotational Semantics: A Methodology for Language
Development, W. C. Brown Publishers, Dubuque, IA.

Schmidt, D.A. (1994), The Structure of Typed Programming Languages.
MIT Press.

Schmidt, D. (1996), Programming Language Semantics, ACM Computing
Surveys, 28(1), March.

Schneider, S.A. (1989), Correctness and Communication in Real-Time
Systems, D. Phil. Thesis, Oxford University.

Schneider, S.A. (1991), An Operational Semantics for Timed CSP,
Programming Research Group Technical Report PRG-1-91, Oxford
University.

Schonberger, R.J. (1981), Why Projects are ‘Always’ Late: A Rationale
Based on Manualsimulation of a PERT/CPM Network. Interfaces, 11, pp.
66-70.

Scott, D. (1982), Domains for Denotational Semantics, In Automata,
Languages and Programming IX, Springer-Verlag, Berlin, pp. 577-613.

Scott, D.S. and C. Strachey (1971), Towards a Mathematical Semantics for
Computer Languages, Programming Research Group Technical Report
PRG-1-6, Oxford University.

Sepulveda, J.A., W.E. Souder, and B.S. Gottfried (1984), Schaum’s Outline
of Theories and Problems of Engineering Economics, McGraw-Hill Inc.,
NY.

SESC (1996), Proc. Forum on Software Engineering Standards Issues
(SES’96), IEEE SESC, Montreal, Canada, Oct.

SESC (1997), Proc. 2nd IEEE International Software Engineering Standards
Symposium (ISESS’97), IEEE SESC, Walnut Creek, California, June.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1263

SESC (1999), Proc. 3rd IEEE International Software Engineering Standards
Symposium (ISESS’99), IEEE CS Press, Curitiba, Brazil, May.

Shannon, C.E. (1948), A Mathematical Theory of Communication, Bell
System Technical Journal, 27, pp.379-423 and 623-656.

Shannon, C.E. (1949a), Communication in the Presence of Noise, Proc. IRE,
37, pp.10-21.

Shannon, C.E. (1949b), Communication Theory of Secrecy Systems, Bell
System Technical Journal, 28, pp.656-715.

Shannon, C.E. (1951), Prediction and Entropy of Printed English, Bell
System Technical Journal, 30(27), pp.50-64.

Shannon, C.E. (1959), Coding Theorems for a Discrete Source with a
Fidelity Criterion, IRE National Convention Record, Part 4, pp. 142-163.

Shannon, C.E. and W. Weaver (1949), The Mathematical Theory of
Communication, Illinois University Press, Urbana, IL, USA.

Shannon, C.E. ed. (1956), Automata Studies, Princeton U. Press, Princeton.

Shao, J. and Y. Wang (2003), A New Measure of Software Complexity
based on Cognitive Weights, Canadian Journal of Electrical and Computer
Engineering, 28(2), pp.69-74.

Shewhart, W.A. (1939), Statistical Method from the Viewpoint of Quality
Control, The Graduate School, George Washington University, Washington,
D.C.

Siever, E., A. Weber, S. Figgins, and A. Oram (2003), Linux in a Nutshell,
4th ed., O'Reilly & Associates.

Silberschatz, A., P. Galvin and G. Gagne (2003), Applied Operating System
Concepts, John Wiley & Sons, Inc., Danvers, MA.

Simon H.A. (1957), Models of Man: Social and Rational, Wiley, London.

Simon, H.A. (1960), The New Science of Management Decision, Harper &
Row, New York.

Simon, H. (1965), Architecture of Complexity, General Systems Yearbook,
10, pp. 63-76.

Sintzoff, M. (1989), The Scientific Engineering of Software,
Communications of the ACM, 32(2), pp. 258.

© 2008 by Taylor & Francis Group, LLC

1264 Bibliography

Skarda, C.A. and W.J. Freeman (1987), How Brains Make Chaos into Order,
Behavioral and Brain Sciences, 10.

Skilling, J. (1989), Classic Maximum Entropy, in J. Skilling ed., Maximum
Entropy and Bayesian Methods, Kluwer, New York, pp. 45-52.

Skinner, B.E. (1948), Determinism Rules Out Freedom, in Walden Two,
Macmillan Publishers.

Slavin, S.L. (1988), Economics: A Self-Teaching Guide, John Wiley & Sons,
Inc., NY.

Sloane, A. (1993), Computer Communications: Principles and Business
Applications, McGraw-Hill Book Co.

Slonneg, K. and B. Kurts (1995), Formal Syntax and Semantics of
Programming Languages, Addison-Wesley Pub. Co.

Smith, A. (1776), An Inquiry into the Nature and Causes of the Wealth of
Nations, Volumes 1 and 2, W. Strahan & T. Cadell, London.

Smith, R.E. (1993), Psychology, West Publishing Co., New York.

Snyder, A. (1987), Inheritance and the Development of Encapsulated
Software Components, in Shriver and Wagner, eds., Research Directions in
Object-Oriented Programming, MIT Press, Cambridge, MA, pp.165-188.

Soanes, C. and A. Stevenson (2003), Oxford Dictionary of English, 2nd ed.,
Oxford University Press, UK.

Sober, E. (1995), Core Questions in Philosophy: A Text with Readings, 2nd
ed., Prentice Hall, Englewood Cliffs, NJ.

Solso, R.L. ed. (1999), Mind and Brain Science in the 21st Century, The MIT
Press, Cambridge, MS.

Sommerville, I. (1996), Software engineering, 5th ed., Addison-Wesley,
1996.

Sparks, S., K. Benner, and C. Faris (1996), Managing Object-Oriented
Framework Reuse, IEEE Computer, September, pp 52-62

Spencer, A. (1991), Morphological Theory, Blackwell, Cambridge, MA.

Spivey, J.M. (1988), Understanding Z: A Specification Language and Its
Formal Semantics, Cambridge University Press.

Spivey, J.M. (1992), The Z Notation: A Reference Manual (2nd ed.) Prentice-
Hall, London.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1265

SQPL (1990), SQPA: Software Quality and Productivity Analysis at Hewlett
Packard, Hewlett Packard Software Quality and Productivity Laboratory, HP
Report.

Squire, L.R., B. Knowlton, and G. Musen (1993), The Structure and
Organization of Memory, Annual Review of Psychology, 44, pp.453 – 459.

Stallings, W. (1987), Computer Architecture and Organization, Macmillan,
NY.

Stallings, W. (2000), Local and Metropolitan Area Networks, 6th ed.,
Prentice Hall Inc.

Sternberg, R.J. (1998), In Search of the Human Mind, 2nd ed., Harcourt Brace
& Co., Orlando, FL.

Steven, A. (1980), Decision Support Systems: Current Practice and
Continuing Challenges, Addison-Wesley, Reading, MA.

Stickgold, R., J.A. Hobson, R. Fosse, and M. Fosse (2001), Sleep, Learning,
and Dreams: Off-Line Memory Reprocessing, Science, 294(5544),
November, pp. 1048-1051.

Stillings, N., M.H. Feinstein (1987), Cognitive Science: An Introduction,
MIT Press, Cambridge, MA.

Stoy, J.E. (1997), Denotational Semantics: The Scott-Strachey Approach to
Programming Language Semantics, The MIT Press, Cambridge, MA.

Stroustrup, B. (1982), Classes: An Abstract Data Type Facility for the C
Language, ACM Software Engineering Notes, 17, pp. 42-52.

Stroustrup, B. (1986), The C++ Programming Language, Addison-Wesley
Publishing Co., MA.

Stroustrup, B. (1987), What is ‘Object-Oriented Programming?’ Proc.
European Conference on OO Programming (ECOOP’87), Paris.

Stubbs, D.F. and N.W. Webre (1985), Data Structures with Abstract Data
Types and Pascal, Brooks/Cole Publishing Co., Monterey, CA.

Taguchi, G. (1986), Introduction to Quality Engineering: Designing Quality
into Products and Processes, The Organization, Tokyo.

Taibi, T. and D.C.L. Ngo (2003), Formal Specification of Design Patterns -
A Balanced Approach, Journal of Object Technology, 2(4), pp. 127-140.

Takahara, Y. and T. Takai (1985), Category Theoretical Framework of
General Systems, Int. J. Gen. Sys., 11(1), pp. 1-33.

© 2008 by Taylor & Francis Group, LLC

1266 Bibliography

Tan, X. and Y. Wang (2003), Specification of Abstract Data Types using
Real-Time Process Algebra, Proc. 16th Canadian Conference on Electrical
and Computer Engineering (CCECE'03), IEEE CS Press, Montreal, Canada,
May, pp.1293-1296.

Tan, X. and Y. Wang (2005), A Denotational Semantics of RTPA, Proc.
18th Canadian Conference on Electrical and Computer Engineering
(CCECE’05), Saskatoon, SA, Canada, May 1-4, pp. 2003-2006.

Tan, X. and Y. Wang (2006), Transforming RTPA Mathematical Models of
System Behaviors into C++, Proc. 5th IEEE International Conference on
Cognitive Informatics (ICCI'06), IEEE CS Press, Beijing, China, July, pp.
362-369.

Tan, X., Y. Wang, and C.F. Ngolah (2004a), A Novel Type Checker for
Software System Specifications in RTPA, Proc. 17th Canadian Conference
on Electrical and Computer Engineering (CCECE'04), IEEE CS Press,
Niagara Falls, ON, Canada, May, pp. 1549-1552.

Tan, X., Y. Wang, and C.F. Ngolah (2004b), Specification of the RTPA
Grammar and Its Recognition, Proc. 3rd IEEE International Conference on
Cognitive Informatics (ICCI'04), IEEE CS Press, Canada, August, pp. 54-63.

Tan, X., Y. Wang, and F.C. Ngolah (2005), Implementation of the Kernel
Techniques of Real-Time Process Algebra (RTPA), Proc. 18th Canadian
Conference on Electrical and Computer Engineering (CCECE’05),
Saskatoon, SA, Canada, May 1-4, pp.1019-1022.

Tan, X., Y. Wang, and C.F. Ngolah (2006), Design and Implementation of an
Automatic RTPA Code Generator, Proc. 19th Canadian Conference on
Electrical and Computer Engineering (CCECE’06), Ottawa, ON, Canada,
May 8 -10, pp. 1605-1608.

Tanenbaum, A.S. (1994), Distributed Operating Systems, Prentice Hall Inc.

Tanenbaum, A.S. and A. Tanenbaum (2001), Modern Operating Systems,
Prentice Hall Inc.

Tarski, A. (1944), The Semantic Conception of Truth, Philosophic
Phenomenological Research, 4, pp.13-47.

Tayler, F.W. (1911), Principles of Scientific Management, Harper and Row,
NY.

Terman, L.M. and M. Merrill (1961), Stanford-Binet Intelligence Scale,
Manual for the Third Revision, Houghton Mifflin.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1267

Thomas, I. (1994), Software Processes and Business Processes, Proc. 3rd
International Conference on Software Processes (ICSP3), Reston, VA, Oct.

Thomas, L. (1974), The Lives of a Cell: Notes of a Biology Watcher, Viking
Press, NY.

Thomas, R., L.R. Rogers, and J.L. Yates (1986), Advanced Programmer’s
Guide to Unix System V, Osborne McGraw-Hill, Berkeley, CA.

Tomassi, P. (1999), Logic, Routledge, London and New York.

Tribus, M. (1961), Information Theory as the Basis for Thermostatistics and
Thermodynamics, Journal of Applied Mechanics, 28, pp.108.

Tripp, L. (1996), Underlying Principles for IEEE Software Engineering
Standards, Business Planning Group, IEEE Software Engineering Standards
Committee, Proc. 1st IEEE International Software Engineering Standards
Symposium (ISESS’96).

Turing, A.M. (1936), On Computable Numbers, with an Application to the
Entscheidungs Problem, Proc. London Mathematical Society, 2(42), pp.230-
265, and 2(43), pp.544-546, 1036.

Turing, A.M. (1950), Computing Machinery and Intelligence, Mind, 59, pp.
433-460.

Ure, A. (1835), The Philosophy of Manufactures, Chas. Knight, London.

van Heijenoort, J. (1997), From Frege to Godel, A Source Book in
Mathematical Logic 1879-1931, Harvard Univ. Press, Cambridge, MA.

Vereijken, J.J. (1995), A Process Algebra for Hybrid Systems, in A.
Bouajjani and O. Maler eds., Proc. 2nd European Workshop on Real-Time
and Hybrid Systems, Grenoble, France, June.

Vliet, H.V. (2000), Software Engineering: Principles and Practice, 2nd ed.,
John Wiley & Sons Ltd., West Sussex, England.

von Bertalanffy, L. (1952), Problems of Life: An Evolution of Modern
Biological and Scientific Thought, C.A. Watts, London.

von Neumann, J. (1946), The Principles of Large-Scale Computing
Machines, Annals of History of Computers, 3(3), pp. 263-273.

von Neumann, J. (1958), The Computer and the Brain, Yale Univ. Press,
New Haven.

von Neumann, J. (1963), General and Logical Theory of Automata, A.H.
Taub ed., Collected Works, Vol. 5, Pergamon, pp. 288-328.

© 2008 by Taylor & Francis Group, LLC

1268 Bibliography

von Neumann, J. and A.W. Burks (1966), Theory of Self-Reproducing
Automata, Univ. of Illinois Press, Urbana, IL.

von Neumann, J. and Morgenstern, O. (1980), Theory of Games and
Economic Behavior, Princeton Univ. Press.

Votta, L.G., and A. Porter (1995), Experimental Software Engineering: A
Report on the State of the Art, Proc. International Conference on Software
Engineering (ICSE’95), Seattle, Washington USA, pp.277-279.

Vu, N.-C. and Y. Wang (2004), Specification of Design Patterns using Real-
Time Process Algebra (RTPA), Proc. of 2004 Canadian Conference on
Electrical and Computer Engineering (CCECE’04), IEEE CS Press, Niagara
Falls, ON, Canada, May, pp. 1545-1548.

Wald, A. (1950), Statistical Decision Functions, John Wiley & Sons.

Wang, Y. (2007a), The Theoretical Framework of Cognitive Informatics,
The International Journal of Cognitive Informatics and Natural Intelligence
(IJCINI), IPI Publishing, USA, 1(1), Jan., pp. 1-27.

Wang, Y. (2007b), Cognitive Informatics: Exploring Theoretical
Foundations for Natural Intelligence, Neural Informatics, Autonomic
Computing, and Agent Systems, The International Journal of Cognitive
Informatics and Natural Intelligence (IJCINI), IPI Publishing, USA, 1(1),
Jan., pp. (e)1-10.

Wang, Y. (2007c), Exploring Machine Cognition Mechanisms for
Autonomic Computing, The International Journal of Cognitive Informatics
and Natural Intelligence (IJCINI), IPI Publishing, USA, 1(2), March, pp.
(e)1-10.

Wang, Y. (2007d), On Laws of Work Organization in Human Cooperation,
The International Journal of Cognitive Informatics and Natural Intelligence
(IJCINI), IPI Publishing, USA, 1(2), March, pp. 1-15.

Wang, Y. (2007e), Perspectives on Autonomic Computing, The International
Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IPI
Publishing, USA, 1(3), July, pp. (e)1-9.

Wang, Y. (2007f), Towards Theoretical Foundations of Autonomic
Computing, The International Journal of Cognitive Informatics and Natural
Intelligence (IJCINI), IPI Publishing, USA, 1(3), July, pp. 1-16.

Wang, Y. (2007g), The OAR Model of Neural Informatics for Internal
Knowledge Representation in the Brain, The International Journal of
Cognitive Informatics and Natural Intelligence (IJCINI), IPI Publishing,
USA, 1(3), July, pp. 64-75.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1269

Wang, Y. (2007h), The Cognitive Processes of Formal Inferences, The
International Journal of Cognitive Informatics and Natural Intelligence
(IJCINI), IPI Publishing, USA, 1(4), Dec., pp. 75-86.

Wang, Y. (2007i), Formal Description of the Cognitive Processes of
Perceptions with Emotions, Motivations, and Attitudes, The International
Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IPI
Publishing, USA, 1(4), Dec., pp. 1-13.

Wang, Y. (2007j), Cognitive Informatics: A Transdisciplinary Field
Exploring Natural and Artificial Intelligence, IPI Publishing Co., USA, to
appear.

Wang, Y. (2007k), Cognitive Informatics Foundations of Natural
Intelligence, keynote speech, Proc. 6th IEEE International Conference on
Cognitive Informatics (ICCI'07), IEEE CS Press, July, to appear.

Wang, Y. (2007l), Formal Linguistics and the Deductive Grammar, Proc. 6th
IEEE International Conference on Cognitive Informatics (ICCI'07), Lake
Tahoe, California, USA, IEEE CS Press, July, to appear.

Wang, Y. (2006a), On the Informatics Laws and Deductive Semantics of
Software, IEEE Transactions on Systems, Man, and Cybernetics (C), 36(2),
March, pp.161-171.

Wang, Y. (2006b), Cognitive Informatics - Towards the Future Generation
Computers that Think and Feel, Keynote speech, Proc. 5th IEEE
International Conference on Cognitive Informatics (ICCI'06), Beijing, China,
IEEE CS Press, July, pp. 3-7.

Wang, Y. (2006c), Cognitive Complexity of Software and Its Measurement,
Proc. 5th IEEE International Conference on Cognitive Informatics
(ICCI'06), IEEE CS Press, Beijing, China, July, pp. 226-235.

Wang, Y. (2006d), On Abstract Systems and System Algebra, Proc. 5th
IEEE International Conference on Cognitive Informatics (ICCI'06), IEEE CS
Press, Beijing, China, July, pp. 332-343.

Wang, Y. (2006e), On Concept Algebra and Knowledge Representation,
Proc. 5th IEEE International Conference on Cognitive Informatics
(ICCI'06), IEEE CS Press, Beijing, China, July, pp. 320-331.

Wang, Y. (2006f), On the Big-R Notation for Describing Iterative and
Recursive Behaviors, Proc. 5th IEEE International Conference on Cognitive
Informatics (ICCI'06), IEEE CS Press, Beijing, China, July, pp. 132-140.

© 2008 by Taylor & Francis Group, LLC

1270 Bibliography

Wang, Y. (2006g), A Mathematical Model for Explaining the Mythic Man-
Month, Proc. 19th Canadian Conference on Electrical and Computer
Engineering (CCECE’06), Ottawa, ON, Canada, May 8 – 10, pp. 2358-2361.

Wang, Y. (2006h), A Unified Mathematical Model of Programs, Proc. 19th
Canadian Conference on Electrical and Computer Engineering
(CCECE’06), Ottawa, ON, Canada, May 8 – 10, pp. 2346-2349.

Wang, Y. (2006i), On Constraints and Counter-Measures for Software
Engineering, Proc. 19th Canadian Conference on Electrical and Computer
Engineering (CCECE’06), Ottawa, ON, Canada, May 8 – 10, pp. 2354-2357.

Wang, Y. (2006j), Cognitive Informatics and Contemporary Mathematics for
Knowledge Representation and Manipulation, Proc. 1st Int. Conf. on Rough
Sets and Knowledge Technology (RSKT’06), Chongqing, China, Lecture
Note on AI, LNAI 4062, pp. 69-78.

Wang, Y. (2005a), On the Mathematical Laws of Software, Proc. 18th
Canadian Conference on Electrical and Computer Engineering
(CCECE’05), Saskatoon, SA, Canada, May 1-4, pp. 1086-1089.

Wang, Y. (2005b), A Novel Decision Grid Theory for Dynamic Decision
Making, Proc. 4th IEEE International Conference on Cognitive Informatics
(ICCI'05), IEEE CS Press, Irvine, California, USA, August, pp. 308-314.

Wang, Y. (2005c), Cognitive Informatics and Internal Signal Processing in
the Brain, Proc. 26th Annual Meeting of the Canadian and Applied Industrial
Mathematics Society (CAIMS’05), Univ. of Manitoba, Winnipeg, June, pp.
20-21.

Wang, Y. (2005d), Economic Models of Software Engineering and the
Software Maintenance Crisis, Proc. 18th Canadian Conference on Electrical
and Computer Engineering (CCECE’05), Saskatoon, SA, Canada, May 1-4,
pp. 1814-1817.

Wang, Y. (2005e), Mathematical Models and Properties of Games, Proc. 4th
IEEE International Conference on Cognitive Informatics (ICCI'05), IEEE CS
Press, Irvine, California, USA, August, pp. 294-300.

Wang, Y. (2005f), On Cognitive Properties of Human Factors in
Engineering, Proc. 4th IEEE International Conference on Cognitive
Informatics (ICCI'05), IEEE CS Press, Irvine, California, USA, August, pp.
174-182.

Wang, Y. (2005g), On the Cognitive Foundations and Abstract Means of
System Designs, Proc. 2nd International Conference on Design Education,

© 2008 by Taylor & Francis Group, LLC

Bibliography 1271

Innovation, and Practice, Kananaskis, AB., Canada, July 18-20, 2005, pp.
T3.1-3.8.

Wang, Y. (2005h), The Development of the IEEE/ACM Software
Engineering Curricula, IEEE Canadian Review, 51(2), May, pp.16-20.

Wang, Y. (2005i), On the Organization Laws of Software Engineering, Proc.
18th Canadian Conference on Electrical and Computer Engineering
(CCECE’05), Saskatoon, SA, Canada, May 1-4, pp. 1818-1821.

Wang, Y. (2005j), Psychological Experiments on the Cognitive Complexities
of Fundamental Control Structures of Software Systems, Keynote Speech,
Proc. 4th IEEE International Conference on Cognitive Informatics
(ICCI'05), IEEE CS Press, Irvine, California, USA, August, pp. 4-5.

Wang, Y. (2005k), Sociological Models of Software Engineering, Proc. the
18th Canadian Conference on Electrical and Computer Engineering
(CCECE’05), Saskatoon, SA, Canada, May 1-4, pp. 1806-1809.

Wang, Y. (2005l), System Science Models of Software Engineering, Proc.
18th Canadian Conference on Electrical and Computer Engineering
(CCECE’05), Saskatoon, SA, Canada, May 1-4, pp. 1802-1805.

Wang, Y. (2004a), On Autonomic Computing and Cognitive Processes,
Keynote Speech, Proc. 3rd IEEE International Conference on Cognitive
Informatics (ICCI'04), IEEE CS Press, Canada, August, pp. 3-4.

Wang, Y. (2004b), On Cognitive Informatics Foundations of Software
Engineering, Proc. 3rd IEEE International Conference on Cognitive
Informatics (ICCI'04), IEEE CS Press, Canada, August, pp. 22-31.

Wang, Y. (2004c), On the Engineering Foundations of Software
Engineering, Proc. 6th Canadian Conference on Computer and Software
Engineering Education (C3SEE'04), U of C Press, Calgary, Canada, March,
pp.105-116.

Wang, Y. (2003a), Cognitive Informatics: A New Transdisciplinary Research
Field, Brain and Mind: A Transdisciplinary Journal of Neuroscience and
Neurophilosophy, 4(2), pp.115-127.

Wang, Y. (2003b), On Cognitive Informatics, Brain and Mind: A
Transdisciplinary Journal of Neuroscience and Neurophilosophy, 4(2),
pp.151-167.

Wang, Y. (2003c), Using Process Algebra to Describe Human and Software
Behaviors, Brain and Mind: A Transdisciplinary Journal of Neuroscience
and Neurophilosophy, 4(2), pp.199-213.

© 2008 by Taylor & Francis Group, LLC

1272 Bibliography

Wang, Y. (2003d), Cognitive Informatics Models of Software Agent Systems
and Autonomic Computing, Keynote Speech, Proc. 1st International
Conference on Agent-Based Technologies and Systems (ATS'03), Univ. of
Calgary Press, Calgary, Canada, August, pp.25.

Wang, Y. (2003e), On Cognitive Mechanisms of the Eyes: the Sensor vs. the
Browser of the Brain, Keynote Speech, Proc. 2nd IEEE International
Conference on Cognitive Informatics (ICCI'03), IEEE CS Press, London,
UK, August, pp.225.

Wang, Y. (2003f), The Measurement Theory for Software Engineering,
Proc. 16th Canadian Conference on Electrical and Computer Engineering
(CCECE'03), IEEE CS Press, Montreal, Canada, May, pp.1321-1324.

Wang, Y. (2002a), The Real-Time Process Algebra (RTPA), Annals of
Software Engineering: An International Journal, Baltzer Science Publishers,
Oxford, 14, Oct., pp. 235-274.

Wang, Y. (2002b), The Real-Time Process Algebra (RTPA) and Its
Applications, Invited Speech, Proc. 10th Anniversary Colloquium of the
United Nations University / International Institute for Software Technology
(UNU/IIST'02), Lisbon, Portugal, March, pp.72.

Wang, Y. (2002c), A New Mathematics for Describing Notions and
Thoughts in Software Design, Proc. First IEEE International Conference on
Cognitive Informatics (ICCI'02), Calgary, AB., Canada, IEEE CS
Press, August, pp.193-202.

Wang, Y. (2002d), On Cognitive Informatics, Keynote Speech, Proc. First
IEEE International Conference on Cognitive Informatics (ICCI'02), Calgary,
AB., Canada, IEEE CS Press, August, pp.34-42.

Wang, Y. (2002e), The Latest Development in Cognitive Informatics,
Keynote Speech, Proc. 8th International Conference on Object-Oriented
Information Systems (OOIS'02), Montpellier, France, Sept., LNCS 2452,
Springer, pp.5.

Wang, Y. (2002f), On Software Engineering Measurement Deployment in
GQM, Proc. 2nd ASERC Workshop on Quantitative and Soft Computing
Based Software Engineering (QSSE'02), Banff, AB, Canada, Feb., pp.1-8.

Wang, Y. (2002g), On the Information Laws of Software, Keynote Speech,
Proc. First IEEE International Conference on Cognitive Informatics
(ICCI'02), Calgary, AB., Canada, IEEE CS Press, August, pp.132-144.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1273

Wang, Y. (2002h), On Formal Methods Education in Software Engineering,
Proc. 5th Canadian Conference on Computer and Software Engineering
Education (C3SE2'02), Winnipeg, Canada, May, pp.71-79.

Wang, Y (2002i), On Teaching Theoretical Foundations of Software
Engineering, Proc. 5th IEEE Canadian Conference on Computer and
Software Engineering Education (C3SE2'02), Winnipeg, Canada, May,
pp.49-57.

Wang, Y. (2001a), Formal Description of the UML Architecture and
Extendibility, The International Journal of the Object, Hermes Science
Publications, Paris, 6(4), pp.469-488.

Wang, Y. (2001b), Software Engineering Standards: Review and
Perspectives, Chapter 28, in S.K. Chang ed., Handbook of Engineering and
Knowledge Engineering, World Scientific Publishing Co., pp.277-304.

Wang, Y. (2001c), A Process-Oriented Infrastructure for Software
Engineering Education, Proc. 4th Canadian Conference on Computer
Engineering Education (CCCEE'01), IEEE and Univ. of New Brunswick,
NB, Canada, May, pp.119-126.

Wang, Y. (2001d), A Software Engineering Measurement Framework
(SEMF) for Teaching Quantitative Software Engineering, Proc. 4th
Canadian Conference on Computer Engineering Education (CCCEE'01),
IEEE and Univ. of New Brunswick, NB, Canada, May, pp.88-101.

Wang, Y. (2001e), A Web-Based European Software Process Benchmarking
Server, Proc. 23rd IEEE International Conference on Software Engineering
(ICSE'01), Toronto, May, pp.439 - 440.

Wang, Y. (2001f), Formal Description of Object-Oriented Software
Measurement and Metrics in SEMS, Proc. 7th International Conference on
Object-Oriented Information Systems (OOIS'01), Calgary, August, Canada,
pp.123-132.

Wang, Y. (2001g), Software Engineering: Hard Problems, Extending
Domains, and Fundamental Objectives, Proc. 4th Canadian Conference on
Computer Engineering Education (CCCEE'01), IEEE and Univ. of New
Brunswick, Canada, May, pp.127.

Wang, Y. (2000), Progress and Trends in Software Engineering, Keynote
Speech, Proc. 2000 Conference of IEEE Sweden, Stockholm, May, pp.1-16.

Wang, Y. (1996), A New Sorting Algorithm: Self-Indexed Sort, ACM
SIGPLAN, 31(3), March, USA, pp. 28-36.

© 2008 by Taylor & Francis Group, LLC

1274 Bibliography

Wang Y., G. King, I. Court, M. Ross, and G. Staples (1997), On Testable
Object-Oriented Programming, ACM Software Engineering Notes (SEN),
July, 22(4), pp.84-90.

Wang Y., G. King, D. Patel, I. Court, G. Staples, M. Ross, and S. Patel
(1998a), On Built-in Test and Reuse in Object-Oriented Programming, ACM
Software Engineering Notes (SEN), 23(4), pp.60-64.

Wang Y., G. King, A. Dorling, D. Patel, I. Court, G. Staples, and M. Ross
(1998b), A Worldwide Survey on Software Engineering Process Excellence,
Proc. of 2oth IEEE International Conference on Software Engineering (IEEE
ICSE’98), Kyoto, April, IEEE Press, pp.439-442.

Wang Y., G. King, A. Doling, and H. Wickberg (1999a), A Unified
Framework of the Software Engineering Process System Standards and
Models, Proc. 4th IEEE International Software Engineering Standards
Symposium (IEEE ISESS’99), IEEE CS Press, Brazil, May, pp.132-141.

Wang Y., G. King, A. Dorling, M. Ross, G. Staples, and I. Court (1999b), A
Worldwide Survey on Best Practices Towards Software Engineering Process
Excellence, ASQ Journal of Software Quality Professional, 2(1), Dec., pp.
34-43.

Wang Y., H. Wickberg, and A. Dorling (1999c), Establishment of a National
Benchmark of Software Engineering Practices, Proc. 4th IEEE International
Software Engineering Standards Symposium (IEEE ISESS’99), IEEE CS
Press, Brazil, May, pp.16-25.

Wang, Y., G. King, D. Patel, S. Patel, and A. Dorling (1999d), On Coping
with Software Dynamic Inconsistency at Real-Time by the Built-in Tests,
Annals of Software Engineering: An International Journal, Baltzer Science
Publishers, Oxford, 7, pp.283-296.

Wang, Y., I. Chouldury, D. Patel, S. Patel, A. Dorling, H. Wickberg, and G.
King (1999e), On the Foundations of Object-Oriented Information Systems,
The International Journal of the Object, 5(1), Feb, pp.9-27.

Wang, Y. and G. King (2000a), Software Engineering Processes: Principles
and Applications, CRC Book Series in Software Engineering, Vol.1, CRC
Press, USA.

Wang, Y. and G. King (2000b), A New Approach to Benchmark-Based
Process Improvement, Proc. 2000 European Software Process Improvement
(EuroSPI'00), Copenhagen, Nov., pp.1.40-1.49.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1275

Wang Y., G. King, M. Fayad, D. Patel, I. Court, G. Staples, and M. Ross
(2000), On Built-in Tests Reuse in Object-Oriented Framework Design,
ACM Journal on Computing Surveys, 32(1es), March, pp.7-12.

Wang, Y. and D. Patel (2000), Comparative Software Engineering: Review
and Perspectives, Annals of Software Engineering: An International Journal,
Baltzer Science Publishers, Oxford, 10, Dec., pp.1-10.

Wang, Y. and H. Leung (2001), A Benchmark-Based Adaptable Software
Process Model, Proc. 2001 IEEE EuroMicro Conference on Software
Process and Product Improvement (EuroMicro'01), Warsaw,
Poland, September, pp.216-224.

Wang, Y. and A. Bryant (2002), Process-Based Software Engineering:
Building the Infrastructure, Annals of Software Engineering: An
International Journal, 14, Oct., pp. 9-37.

Wang, Y. and N.C. Foinjong (2002), Formal Specification of a Real-Time
Lift Dispatching System, Proc. 15th IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE'02), Winnipeg,
Manitoba, Canada, May, Vol.2, pp.669-674.

Wang, Y., R.H. Johnston, and M.R. Smith, eds. (2002), Proc. 1st IEEE
International Conference on Cognitive Informatics (ICCI'02), IEEE
Computer Society Press, July.

Wang, Y. and D. Gafurov (2003), The Cognitive Process of Comprehension,
Proc. 2nd IEEE International Conference on Cognitive Informatics
(ICCI'03), IEEE CS Press, London, UK, August, pp.93-97.

Wang, Y., D. Liu, and Y. Wang (2003), Discovering the Capacity of Human
Memory, Brain and Mind: A Transdisciplinary Journal of Neuroscience and
Neurophilosophy, 4(2), pp.189-198.

Wang, Y. and C.F. Noglah (2003), Formal Description of Real-Time
Operating Systems using RTPA, Proc. 16th Canadian Conference on
Electrical and Computer Engineering (CCECE'03), IEEE CS Press,
Montreal, Canada, May, pp.1247-1250.

Wang, Y. and J. Shao (2003), Measurement of the Cognitive Functional
Complexity of Software, Proc. 2nd IEEE International Conference on
Cognitive Informatics (ICCI'03), IEEE CS Press, London, UK, August,
pp.67-74.

Wang, Y. and Y. Zhang (2003), Formal Description of an ATM System by
RTPA, Proc. 16th Canadian Conference on Electrical and Computer

© 2008 by Taylor & Francis Group, LLC

1276 Bibliography

Engineering (CCECE'03), IEEE CS Press, Montreal, Canada, May, pp.1255-
1258.

Wang, Y. and D. Liu (2004), Statistical Analysis of International Software
Engineering Programs, Proc. 6th Canadian Conference on Computer and
Software Engineering Education (C3SEE'04), U of C Press, Calgary,
Canada, March, pp.249 - 290.

Wang, Y., and S. Patel (2004), On Modeling Object-Oriented Information
Systems, The International Journal of Software and System Modeling, 3(4),
pp.258-261.

Wang, Y., W. Kinsner, and M. Smith eds. (2004), Proc. 2004 Canadian
Conference on Computer and Software Engineering Education (C3SEE'04),
Univ. of Calgary Press, Calgary, Canada.

Wang, Y. and J. Huang (2005), Formal Models of Object-Oriented Patterns
using RTPA, Proc. 18th Canadian Conference on Electrical and Computer
Engineering (CCECE’05), Saskatoon, SA, Canada, May 1-4, pp. 1822-1825.

Wang, Y. and W. Kinsner (2006), Recent Advances in Cognitive
Informatics, IEEE Transactions on Systems, Man, and Cybernetics (C),
36(2), March, pp.121-123.

Wang, Y. and Y. Wang (2006), Cognitive Informatics Models of the Brain,
IEEE Transactions on Systems, Man, and Cybernetics (C), 36(2), March,
pp.203-207.

Wang, Y., Y. Wang, S. Patel, and D. Patel (2006), A Layered Reference
Model of the Brain (LRMB), IEEE Transactions on Systems, Man, and
Cybernetics (C), 36(2), March, pp.124-133.

Wang, Y. and G. Ruhe (2007), The Cognitive Process of Decision Making,
The International Journal of Cognitive Informatics and Natural Intelligence
(JCINI), IPI Publishing, USA, 1(2), March, pp. 73-85.

Wang, Y., J. Huang, and Y. Tian (2008), On Hyper-Programming, The
International Journal of Cognitive Informatics and Natural Intelligence
(JCINI), IPI Publishing, USA, 2(3), July, to appear.

Warner, W.L. and J.O. Low (1947), The Social System of the Modern
Factory, Yankee City Series, Vol. 4, Yale Univ. Press, New Haven, CN.

Wasserman, A. (1996), Toward a Discipline of Software Engineering, IEEE
Software, Nov., pp.23-31.

Weber, M. (1947), The Theory of Social and Economic Organization, A.M.
Henderson and T. Parsons trans., Oxford Univ. Press, NY.

© 2008 by Taylor & Francis Group, LLC

Bibliography 1277

Wegner, P. (1972), The Vienna Definition Language, ACM Computing
Surveys, Vol.4, No.1, pp.5-63.

Weinberg, G.M. (1971), The Psychology of Computer Programming, Van
Nostrand Reinhold, New York.

Westen, D. (1999), Psychology: Mind, Brain, and Culture, 2nd ed., John
Wiley & Sons, Inc., NY.

Whorf, B.L. (1941), The Relation of Habitual Thought and Behavior to
Language, in Language, Thought, and Reality, The Technology Press of
MIT, Cambridge, MA.

Wickens, C.D., S.E. Gordon, and Y. Liu (1998), An Introduction to Human
Factors Engineering, Addison Wesley Longman, Inc., NY.

Widrow, B. and M.A. Lehr (1990), 30 Years of Adaptive Neural Networks:
Perception, Madeline, and Backpropagation, Proc. of the IEEE, Sept., 78(9),
pp. 1415-1442.

Wiener, N. (1948), Cybernetics or Control and Communication in the
Animal and the Machine, MIT Press, Cambridge, MA.

Wiener, R. and L.J. Pinson (2000), Fundamentals of OOP and Data
Structures in Java, Cambridge University Press.

Wiggins, J.A., B.B. Eiggins, and J.V. Zanden (1994), Social Psychology, 5th
ed., McGraw-Hill, Inc., NY.

Wikstrom, A. (1987), Functional Programming using Standard ML, Prentice
Hall, Englewood Cliffs, NJ.

William, B. (1991), Creating Value for Customers: Design and
Implementing a Total Corporate Strategy, John Wiley & Sons, New York.

Williams, R.M. Jr. (1970), American Society: A Sociological Interpretation,
3rd ed., Alfred A. Knopf, NY.

Wilson, L.B. and R.G. Clark (1988), Comparative Programming Language,
Addison-Wesley Publishing Co., Wokingham, UK.

Wilson, R.A. and F.C. Keil (2001), The MIT Encyclopedia of the Cognitive
Sciences, MIT Press.

Wirth, N. (1974), On the Design of Programming Languages, Proc. 1974
IFIP Congress, North-Holland, Amsterdam, pp.386-393.

Wirth, N. (1976), Algorithm + Data Structures = Programs, Prentice Hall,
Englewood Cliffs, NJ.

© 2008 by Taylor & Francis Group, LLC

1278 Bibliography

Wittig, A.F. (2001), Schaum’s Outlines of Theory and Problems of
Introduction to Psychology, 2nd ed., McGraw-Hill, NY.

Wood, D.J. and B. Gray (1991), Towards a Comprehensive Theory of
Cooperation, Journal of Applied Behavioral Science, 27(2), 139-162.

Woodcock, J. and J. Davies (1996), Using Z: Specification, Refinement, and
Proof, Prentice Hall International, London.

Wright, P.H. (2002), Introduction to Engineering, 3rd ed., John Wiley &
Sons, Inc., New York, NY.

Wundt, W.M. (1873), Principles of Physiological Psychology, Partially
translated by S. Diamond, in R.W. Rieber. Ed. (1980), W. Wundt and the
Making of a Scientific Psychology, Plenum, New York.

Yao, Y.Z. and Y. Wang (2004), A New Approach to Test Cases Generation
Based on Real-Time Process Algebra, Proc. 17th Canadian Conference on
Electrical and Computer Engineering (CCECE'04), IEEE CS Press, Niagara
Falls, ON, Canada, May, pp. 1515-1518.

Zachary, W., R. Wherry, F. Glenn, and J. Hopson (1982), Decision
situations, decision processes, and decision functions: Towards a theory-
based framework for decision-aid design. Proc. of 1982 Conference on
Human Factors in Computing Systems.

Zadeh, L.A. (1965), Fuzzy Sets and Systems, J. Fox ed, Systems Theory,
Polytechnic Press, Brooklyn, NY, pp. 29-37.

Zadeh, L.A. (1973), Outline of a New Approach to Analysis of Complex
Systems, IEEE Transactions on Systems, Man, and Cybernetics, 1(1), pp. 28-
44.

Zadeh, L. A. (1982), Fuzzy Systems Theory: Framework for Analysis of
Buerocratic Systems, in R.E. Cavallo ed., System Methods in Social Science
Research, Kluwer-Nijhoff, Boston, pp. 25-41.

Zander, A. (1979), The Psychology of the Group Process, Annual Review of
Psychology, p.418.

Zhong, Y. (1996), Principles of Information Science, BPTU Press, Beijing,
China.

Zuse, H. (1997), A Framework of Software Measurement, Walter de Gruyter,
Berlin.

© 2008 by Taylor & Francis Group, LLC

 Appendix A Symbols, Notations, and Abbreviations 1279

Appendix A

MATHEMATICAL SYMBOLS,
NOTATIONS, AND
ABBREVIATIONS

Mathematical
symbols

Description

 Logic

∧ Conjunction
∨ Disjunction
¬ Negation
⇒ Implication
⇔ Equivalence
∀ Universal qualifier, for all, or for every
∃ Existential quantifier, there exist

 Connectives, ∈ {∧, ∨, ¬}

 Set
{…} A set
(…) A pair or tuple
<…> A sequence
∅ The empty set
U The universal set
∈ Is member of set
∪ Union of sets
∩ Intersection of sets
\ Deference

© 2008 by Taylor & Francis Group, LLC

1280 Appendix A Symbols, Notations, and Abbreviations

Cardinal calculus, number of elements in a set
⊂ Is subset
⊆ Is subset or equal
× Cartesian product
⊕ Symmetric difference

S Complement of set S
ÞS A power set of set S
| … constraints or membership conditions of an element

N Set of natural numbers [1, ∞]
N0 Set of natural numbers [0, ∞]
Z Set of integers
R Set of real numbers
B Set of binary bytes
H Set of hexdecimals

BL Set of Boolean variables (T, F)

 Algebra
 Definition
≡ Equivalence

 Yield
 To be relation

® Cumulated relation
 Concatenation

π Addressing function
π-1 Memory allocation
ο Composition of functions
∑ Repeat sum
∏ Repeat multiplication

 R Repeat a function (big-R calculus)
⎣ ⎦ Bottom of a decimal, the nearest minimum integer
⎡ ⎤ Ceiling of a decimal, the nearest largest integer
⊥ Bottom, undefined
~ Otherwise, else
∝ Proportional to
iff If and only if

 RTPA

© 2008 by Taylor & Francis Group, LLC

 Appendix A Symbols, Notations, and Abbreviations 1281

P The set of meta processes
R The set of process relations (process operations)
T The set of primitive types
T An arbitrary type (T ∈ T)
T* An arbitrary type for constant (T* ∈ T*)
§ The system
℘ A program
P A process
s A statement

@ System event prefix
 System status prefix
 System interrupt point suffix

Meta Processes P
:= Assignment

 Evaluation
⇒ Addressing
⇐ Memory allocation

 Memory release
 Read
 Write

| Input
| Output
@ Timing

 Duration
↑ Increase
↓ Decrease
! Exception detection
⊗ Skip

 Stop
§ System

Process Relations R
→ Sequence

 Jump

| Branch
| … | … Switch

*R While-loop

© 2008 by Taylor & Francis Group, LLC

1282 Appendix A Symbols, Notations, and Abbreviations

R+
 Repeat-loop

iR For-loop

 Recursion

 Function call

|| Parallel

∯ Concurrence

||| Interleave
» Pipeline

 Interrupt
t Time-driven dispatch
e Event-driven dispatch
i Interrupt-driven dispatch

Primitive types T
N Natural number
Z Integer
R Real
S String

BL Boolean
T, F Boolean constants
B Byte
H Hexadecimal
P Pointer

TI = hh:mm:ss:ms Time
D = yy:MM:dd Date

DT = yyyy:MM:dd:
hh:mm:ss:ms

Date/Time

RT Run-time determinable type
ST System architectural type

@eS Event
@tTM Timing

@int Interrupt
sBL Status

 System Algebra
 / Super/sub relation

↔ / Related/independent

© 2008 by Taylor & Francis Group, LLC

 Appendix A Symbols, Notations, and Abbreviations 1283

= Equivalent
Π Overlapped

 Conjunction

 Difference

⇒ Inheritance
+
⇒ Extension
⇒ Tailoring
⇒ Substitute

 Composition
 Decomposition
 Aggregation/generalization
 Specification
 Instantiation

 Concept Algebra
 / ≺ Super/sub relation

↔ / Related/independent
= Equivalent
≅ Consistent
+ Conjunction
* Elicitation
~ Comparison

 Definition
⇒ Inheritance
+
⇒ Extension
⇒ Tailoring
⇒ Substitute

 Composition
 Decomposition
 Aggregation/generalization
 Specification
 Instantiation

Notations Description

R The big-R nation
§ A system

O() Order of complexity
Ξ Instruction set of a given language
Ω Behavioural space, constraints of a system
Θ Environment of a system

© 2008 by Taylor & Francis Group, LLC

1284 Appendix A Symbols, Notations, and Abbreviations

Θt Type environment
O The empty system

U The universal system

 Formal Linguistics
N Noun
V Verb
A Adjective
Λ Adverb
P Preposition
τ Determiner
δ Degree word
κ Qualifier
α Auxiliary
γ Conjunction word
¬ Negative

NP Noun phrase
VP Verb phrase
AP Adjective phrase
ΛP Adverb phrase
PP Prepositional phrase
CP Complement phrase
|= To be
|⊂ To have
|> To do

|>> … |> Indirect to do
 EBNF
S ::=
 S1 S2 … Sn

Serial

S ::=
 S1 [S2] … Sn

Serial with option

S ::=
 (S1 S2 … Sn)*

Repeat serial for 0 or more times

S ::=
 (S1 S2 … Sn)+

Repeat serial for 1 or more times

S ::=
 S1 | S2 | … | Sn

Alternative

S ::= Alternative with option

© 2008 by Taylor & Francis Group, LLC

 Appendix A Symbols, Notations, and Abbreviations 1285

 [S1 | S2 | … | Sn]
S ::=
 (S1 | S2 | … | Sn)*

Repeat alternative for 0 or more times

S ::=
 (S1 | S2 | … | Sn)+

Repeat alternative for 1 or more times

Abbreviation Description

ABM Action Buffer Memory
AC Autonomic Computing
ACM Association of Computing Machinery
ADT Abstract Data Types
AI Artificial Intelligence
ANTLR ANother Tool for Language Recognizer
ASQ American Society of Quality
AST Abstract Syntax Tree
ATM Automated Teller Machine
BCS Basic Control Structure
BIT Built-In Test
BNF Backus-Naur Form
BPA Base Process Activity
CASE Computer-Aided Software Engineering
CCITT International Telegraph and Telephone Consulting

Committee (now ITU)
CCS The Calculus of Communicating Systems
CCSE Computing Curricula – Software Engineering
CFG Control Flow Graph
CH Cohesion
CI Cognitive Informatics
CIM Cognitive Information Model
CLM Component Logical Model
CMM Capability Maturity Model
CMM Cognitive Model of Memory
CNS Central Nervous System
COCOMO Constructive Cost Model
COTS Commercial Off-The-Shelf (software components)
CP Coupling
CPM Critical Path Method

© 2008 by Taylor & Francis Group, LLC

1286 Appendix A Symbols, Notations, and Abbreviations

CPU Central Processing Unit
CSCW Computer-Supported Cooperative Work
CSP Communication Sequential Processes
CU Cognitive Unit
CWO Cooperative Work Organization
DMA Direct Memory Access
DOL Division Of Labor
DSS Decision Support System
DTSD Distributed Time-Shared Development
EBNF Extended Backus-Naur Form
EMM Engineering Maturity Model
FCFS First-Come-First-Served
FIFO First-In-First-Out
FKS Formal Knowledge System
FO Function Object
FSM Finite State Machine
FSM Formal Socialization Model
GIM Generic Intelligence Model
GUI Graphic User Interface
HAMSD Hierarchical Abstraction Model of System Descriptivity
HNC Hierarchical Neural Cluster (model of memory)
HNH Human Needs Hierarchy model
HTML Hyper-Text Marking Language
IC Imperative Computing
ICM Intelligent Capability Metric
IE Inference Engine
IEC The International Electrotechnical Commission
IEEE The Institute of Electrical and Electronics Engineers
IME Information-matter-energy
IPO Input-Process-Output model of systems
IQ Intelligent Quotient
ISO International Organization for Standardization
ISR Interrupt Service Routine
IT Information Technology
ITU International Telecommunication Union
LAN Local Area Network
LDS Lift Dispatching System

© 2008 by Taylor & Francis Group, LLC

 Appendix A Symbols, Notations, and Abbreviations 1287

LIFO Last-In-First-Out
LOC Lines Of Code
LRMB Layered Reference Model of the Brain
LTM Long-Term Memory
MODEM Modulator and demodulator
MPMC Multi-Processor Multi-Clock
MPSC Multi-Processor Single-Clock
NeI Neural Informatics
NI Natural Intelligence
NI-App Natural Intelligent Applications
NI-OS Natural Intelligent Operating System
NI-Sys Natural Intelligent System
OAR Object-Attribute-Relation
OO Object-Orientation
OOP Object-Oriented Programming
OPRM Organization’s Process Reference Model
OSI Open Systems Interconnection
OT Organization Tree
PBSE Process-Based Software Engineering
PCB Process Control Blocks
PE Perception Engine
PERT Program Evaluation and Review Technique
PTPM Project’s Tailored Process Model
RCB Resource Control Block
RPC Remote Procedure Call
RTOS Real-Time Operating System
RTOS+ Real-Time Operating System plus
RTPA Real-Time Process Algebra
SBM Sensory Buffer Memory
SDL Specification and Description Language (ITU)
SE Software Engineering
SECM Software Engineering Constraint Model
SEPRM Software Engineering Process Reference Model
SESC Software Engineering Standardization Committee

(IEEE)
SLMC Software Legacy Maintenance Cost
SMC Sequential Message Chart

© 2008 by Taylor & Francis Group, LLC

1288 Appendix A Symbols, Notations, and Abbreviations

SMC Software Maintenance Crisis
SOT System Organization Tree
SPA Software Process Assessment
SPI Software Process Improvement
SPL A Sample Programming Language
SPSC Single-Processor Single-Clock
SQA Software Quality Assurance
SS Software Science
STM Short-Term Memory
TCP/IP Transmission Control Protocol/Internet Protocol
TCSE IEEE Technical Council on Software Engineering
TQM Total Quality Management
TSS Telephone Switching System
UG Universal Grammar
UML Unified Modelling Language
USB Universal Serial Bus
VM Virtual Machine
VNA von Neumann Architecture
VNM Von Neumann Machine
WA Wang Architecture
WAN Wide Area Network
YACC Yet Another Compiler-Compiler

© 2008 by Taylor & Francis Group, LLC

 Appendix B Constraints of SE 1289

Appendix B

CONSTRAINTS OF
SOFTWARE ENGINEERING

No Constraints Description Remark

1 Cognition A set of innate cognitive attributes of software and the
nature of the problems in software engineering that create
the intricate relations of software objects and make
software engineering inheritably difficult.

Def. 1.8

1.1 Intangibility

Software is abstract artifacts which is not constituted by
physical objects or presence, and is difficult to be defined
or expressed.

Def. 1.9

1.2 Complexity Software is innately complex and its intricate internal
connections and external couplings make it extremely
difficult to be expressed or cognized.

Def. 1.10

1.3 Indeterminacy

The events, behaviors, or their sequence of occurring in a
software system are not fully determinable on the basis of
a given algorithm during design time; Instead, some of
them may only be determined until run-time.

Def. 1.11

1.4 Diversity The great variety of software in types, styles,
architectures, behaviors, platforms, application domains,
implementation techniques, usability, reliability, and
quality.

Def. 1.12

1.5 Polymorphism The approaches and styles of both software design and
implementation are multifaceted and polyglottic.

Def. 1.13

1.6 Inexpressive-

 ness

Software architectures and behaviors are inherently
difficult to be expressed, modeled, represented, and
quantified both formally and rigorously.

Def. 1.14

1.7 Inexplicit
embodiment

Architectures and behaviors of software systems should
be explicitly described by coherent symbolic notations in
order to be processed and executed by computers.

Def. 1.15

© 2008 by Taylor & Francis Group, LLC

1290 Appendix B Constraints of SE

1.8 Unquantifi-
able quality
measures

The model of software quality has intricate facets and is
difficult to be quantitatively modeled and measured.

Def. 1.16

2 Organization A set of coordinative and managerial requirements for
software engineering that enables coordinative work to be
efficiently carried out among a group of software
engineers with different roles.

Def. 1.17

2.1 Time
dependency

Almost all organizational issues in software engineering,
such as software development scheduling, business goal
of time to market, and labor allocation, are dependent on
time.

Def. 1.18

2.2 Conservative
productivity

Abstract artifacts and their relations in system designs
need to be represented physiologically in the brain via
growing synaptic connections, which is constrained by
natural laws and its speed is not consciously controllable.

Def. 1.19

2.3 Labor-time
interlock

The nature of software project organization is dominated
by the extremely high interpersonal coordination rate,
which prevents the workload (effort) from free
decomposition into a sum of products of arbitrary amount
of labor and periods of time.

Def. 1.20

3 Resources The development costs and budgets, human resources,
and the supporting and operating platforms of hardware.

Def. 1.21

3.1 Costs Software engineering costs are incurred from both
necessary and futility costs, and from both development
and maintenance costs.

Def. 1.22

3.2 Human
dependency

All software engineering activities and processes are
human-based and constrained by basic human traits,
cognitive and creative capabilities, as well as motivations
and attitudes.

Def. 1.23

 3.3 Hardware
dependency

Software behaviors and functionality can only be
embodied via the computing platform and related
interactive I/O devices.

Def. 1.24

© 2008 by Taylor & Francis Group, LLC

 Appendix C Empirical Principles of SE 1291

Appendix C

EMPIRICAL PRINCIPLES OF
SOFTWARE ENGINEERING

No Principle Description Remark

1 Abstraction To elicit essential properties of a set of objects while
omitting inessential details of them.

Def. 2.3

2 Decomposition
and
modularization

To partition and divide the functions of a software
system into individual modules or components.

Def. 2.4

3 Information
hiding

To mask and simplify unnecessary information of
software at a given level from the lower level details.

Def. 2.5

4 Engineering
approach

To adopt the proven generic engineering methodology
and practice in software development and its
organization.

Def. 2.6

5 Professionalism To recognize the competence or skills expected for a
professional software engineer gained in training and
practice.

Def. 2.7

6 Tools and
environments

To adopt software development tools and software
engineering supporting environment in order to
facilitate efficient organization of coordinative work or
extend human physical and intelligent capability in
software development.

Def. 2.8

7 Documentation To represent system design and architectures, record
work products, maintain traceability of serial decisions,
log problems and maintenance solutions, and enable
postmortem analysis.

Def. 2.9

8 Stepwise
refinement

To deductively extend a conceptual model of the
requirement for a given software system by a series of
expatiated and incremental specifications at increased
degrees of details.

Def. 2.10

© 2008 by Taylor & Francis Group, LLC

1292 Appendix C Empirical Principles of SE

9 Prototyping To evaluate or validate a design and feasibility of a
required system based on the implementation of a
prototype of the system.

Def. 2.11

10 Adopting
engineering
notations

To abstract, denote, and model user requirements and
system specifications expressively and explicitly.

Def. 2.12

11 Process
modeling

To deal with organizational and managerial issues in
software engineering as well as software behaviors.

Def. 2.13

12 Reuse To adopt higher-level building blocks, such as
algorithms, methods, processes, patterns, frameworks,
in order to improve efficiency, productivity, and quality
of software engineering.

Def. 2.14

13 Measurements
and metrics

To elicit generic software attributes, quantify their
measurement, and unify their metrics.

Def. 2.15

14 Cognitive
complexity
control

To deal with the innate difficulty in both architectural
and behavioral design and implementation of software
systems by a variety of means such as abstraction,
modularization, descriptive notations, stepwise
refinement, and prototyping.

Def. 2.16

15 Formal
requirement
specification

To formally and rigorously specify customers’
nonprofessional requirements for a software system in
order to avoid any misinterpretation and ambiguity, and
to eliminate any conceptual gaps and inconsistency.

Def. 2.17

16 Systematic
quality
assurance

To systematically tackle software quality as multiple
faceted; therefore, a systematic tackle is needed on all
attributes and their quantitative measurements.

Def. 2.18

17 Review and
inspection

To find and eliminate software design and
implementation defects via reading and examining the
work products by peer or more experienced reviewers.

Def. 2.19

18 Management
engineering

To recognize the crucial facet of software engineering
for the need of a suitable theory for organizing and
coordinating large groups in large-scale projects.

Def. 2.20

19 Acquiring
domain
knowledge

To acquire four aspects of domain knowledge such as:
a) the nature of a problem, b) the environment and
context of the problem, c) current customer practice for
dealing with the problem, and d) existing regulations
and constraints in the application area, before a system
design for the given problem may proceed.

Def. 2.21

20 Customer
involvement

To involve all stakeholders, particularly the end users
of a software system, throughout the entire lifecycle of
the system by customer reviews and joint meetings.

Def. 2.22

21 Feasibility
analysis

To rigorously estimate and evaluate both technical and
economical feasibilities of a given software project
before the later-phase processes may be continued.

Def. 2.23

© 2008 by Taylor & Francis Group, LLC

 Appendix C Empirical Principles of SE 1293

22 Improve
comprehensi-

bility

To explicitly and expressively describe the intangible
problem and its solution with improved
understandability, readability, and cognitive capability.

Def. 2.24

23 Exception
handling

To consider system design and specification not only
customer required functions for a given system, but also
all possible exceptions that may drive the system into
illegal state(s) in the entire state space of the system.

Def. 2.25

24 Divide-and-
Conquer

To suppose if a complex system may be divided into
multiple components, the individual components of the
system will be easier to be dealt with than the whole
system.

Def. 2.26

25 Explicit
embodiment

To deal with the implicitness and inexpressiveness in
software engineering by introducing more powerful
descriptive means at a higher level of abstraction and
precision.

Def. 2.27

26 Establishing
theoretical
foundations

To elicit rigorous theories and generic laws once there
are a wide variety of observed phenomena and
alternative practices.

Def. 2.28

27 Architecture and
behavior
modeling

To understand software system models are a hybrid
model where both architectures and behaviors should
be coherently described.

Def. 2.29

28 Standardization To integrate, regulate, unify, and optimize existing
principles, best practices, and industrial norms into
standards.

Def. 2.30

29 Systems
engineering

To adopt system science theories and approaches to
deal with complicated architectures and behaviors of
software.

Def. 2.31

30 Engineering
organization

To recognize that the organization issue is as important
as that of pure technical and the cognitive issues in
software engineering.

Def. 2.32

31 Cognitive
engineering

To be aware that the cognitive complexity is the
dominate problem in almost all processes of software
design, implementation, and maintenance, which should
be tackled by cognitive informatics theories.

Def. 2.33

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1295

Appendix D

MODELS OF ENTITIES
AND STRUCTURES OF

SOFTWARE ENGINEERING

No Model Description Remark

1 IME

The Information-Matter-Energy (IME) model is a general
worldview, which reveals that human beings are living in
a dual world, which can be modeled by information,
matter, and energy.

Def. 1.1

2 Software The product properties (Sec. 1.2.1.2)
The mathematical properties (Sec. 1.2.1.1)
The Information properties (Def. 1.4, Def. 7.12)
The intelligent behavioral properties (Def. 9.5)
The cognitive complexity properties (Theorem 10.14)
The system properties (Table 10.1)

Def. 1.3

3 Software
engineering

A discipline that adopts engineering approaches, such as
established methodologies, processes, measurement,
tools, standards, organisation methods, management
methods, quality assurance systems and the like, in the
development of large-scale software seeking to result in
high productivity, low cost, controllable quality, and
measurable development schedule.

An engineering discipline that studies the nature of
software, approaches and methodologies of large-scale
software development, and the theories and laws behind
software behaviors and software engineering practices.

Def. 1.5

Def. 1.6

4 HAMSD The abstract levels of cognitive information of both the
objects and their behaviors can be divided into five levels
such as those of analogue objects, diagrams, natural
languages, professional notations, and mathematics.

Def. 1.7

5 SECM The software engineering constraint model Fig. 1.4

© 2008 by Taylor & Francis Group, LLC

1296 Appendix D Models of Entities and Structures of SE

6 Cumulative
relation ®

An ordered list of embedded relations where a relation Rij,
j = i +1, 1 ≤ i < n-1, 1 < j ≤ n, is related to all previous
relations R12 through Ri-1,j, i.e.:

 ®(s1, s2, …, sn) = (… ((R12) ο R23) ο …) ο Rn-1,n
 = (… ((s1R12s2)R23s3) … sn-1)Rn-1,n sn,

 si ∈ Ξ, Rij ∈ R

where Ξ is a set of predefined instructions in a given
programming language, and R a set of designated
compositional rules in the same language.

Def. 4.21

7 The big-R
notation

A generic mathematical operator that is used to denote:
(a) a set of repetitive behaviors, or (b) a finite set of
recurring architectural constructs in computing, in the
following forms:

 (a)
exp =
R

F

BL T
P (b)

i =1
R

n

N
P(iN)

where BL and N are the type suffixes of Boolean and
natural numbers, respectively; T and F are the Boolean
constants true and false, respectively.

Def. 4.59

8 A process P A composed component of n meta statements si and sj,
1 ≤ i < n, j = i + 1, according to certain composing
relations rij, i.e.:

1 12 2 23 3 1,(...((())) ...)n n nP s r s r s r s−=

where rij is a set of process relations as defined in RTPA.

Def. 4.64

9 Cumulative
Relational
Model (CRM)
of processes

A process P is the basic unit of an applied computational
behavior that is composed by a set of statements si, 1 ≤ i ≤
n-1, with left-associated cumulative relations, , i.e.:

1

1

1 12 2 23 3 1,

 (s), 1

(...((() s) s) ... s)

n

i ij j
i

n n n

P s r j i

s r r r

R
−

=

−

= = +

=

where si ∈ P and rij ∈ R.

Theorem
4.3

10 The structure
of RTPA

An algebraic software engineering notation system
encompassing six subsystems as follows:
 RTPA Meta processes
 || Process relations
 || System architecture models
 || Primary types
 || Abstract dada types
 || Specification refinement schemes

Def. 4.66

11 Primary types The RTPA type system T encompasses 17 primitive types Theorem

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1297

of RTPA elicited from fundamental computing needs, i.e.:

T = {N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST,
 @eS, @tTM, @int ,ⓢsBL}

4.4

12 Meta
processes of
RTPA

The RTPA meta process system P encompasses 17
fundamental computational operations elicited from the
most basic computing needs, i.e.:

 P = {:=, , ⇒, ⇐, , , , | , | , @, , ↑, ↓,

 !, ⊗, , §}

Theorem
4.6

13 Processes
relations of
RTPA

The RTPA process relation system R encompasses 17
fundamental algebraic and relational operations elicited
from basic computing needs, i.e.:

 R = {→, , |, |…|…,
*R , R+

,
iR , , ,

 ||, ∯ , |||, », , t, e, i}

Theorem
4.7

14 The express
power of RTPA

The total number of the possible computational operations
N in RTPA is a set of combinations between two arbitrary
meta processes P1, P2 ∈ P composed by each of the
process relations R ∈ R in RTPA, i.e.:

#

2
#=

17!
= 17 •

2!(17-2)!
= 17 • 136

= 2,312

C•N
P

R

Theorem
4.8

15 A system
model in
RTPA

An RTPA system model, §(SysIDST), encompasses the
following three subsystems, i.e.:

 §(SysIDST) SysIDST.Architecture
 || SysIDST.StaticBehaviors
 || SysIDST.DynamicBehaviors

where ST is the system type suffix.

Def. 4.105

16 Component
Logical Model
(CLM)

An abstract model of a system architectural component
that represents a hardware interface, an internal logical
model, a data structure, and/or a common control
structure of a system.

Def. 4.106

17 Finite State
Machine
(FSM)

An FSM is a 5-tuple, i.e.:

 FSM (∑, S, s, T, δ)

Def. 5.1

18 A Turing A TM is a 6-tuple, i.e.: Def. 5.4

© 2008 by Taylor & Francis Group, LLC

1298 Appendix D Models of Entities and Structures of SE

Machine (TM) TM (∑, S, s, H, M, δ)

19 von Neumann
Architecture
(VNA)

A VNA of computers is a 5-tuple, i.e.:

 VNA (ALU, CU, M, I/O, B)

Def. 5.7

20 Wang
Architecture
(WA) of
computers

A WA computer is a cognitive machine with a parallel
structure encompassing an Inference Engine (IE) and a
Perception Engine (PE), i.e.:

WA (IE || PE)
 = (KMU // The Knowledge Manipulation Unit
 || BMU // The Behavior Manipulation Unit
 || EMU // The Experience Manipulation Unit
 || SMU // The Skill Manipulation Unit
)
 || (BPU // The Behavior Perception Unit
 || EPU // The Experience Perception Unit
)

Def. 5.10

Fig. 5.7

21 System
memory model

MEMST is a system architectural type ST with a finite
linear space, i.e.:

 MEMST [addr1H … addr2H]RT

Def. 5.21

22 System I/O
port model

PORTST is a system architectural type ST with a finite
linear space, i.e.:

 PORTST [ptr1H … ptr2H]RT

Def. 5.22

23 A type rule An assertion of the validity of the conclusion of a
judgment on a type tΘ A based on the inference of a

number of n premise judgments t tΘ A , 0 ≤ p ≤ n,

denoted by the following convention:

t 1 t n

t

Θ A , ..., Θ A()
Θ A

=Premise s
Conclusion

where the conclusion holds iff all of the premises are
satisfied.

Def. 5.32

24 Abstract Data
Type (ADT)

An ADT is a logical model of data objects, which defines
both the logical architecture and valid operations of the
data object, with the following schema:

 ADT_IDST ADT_IDS ::
 (Architecture

 || Static behaviors
 || Dynamic behaviors
)

Def. 5.37

25 Basic Control
Structures

A set of essential flow control mechanisms that are used Def. 5.39

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1299

(BCS’s) for constructing logical architectures of software systems,
i.e.:

 BCS’s ⊆ R = {→, |, |…|…,
*R , R+

,
iR , ,

 , || (∯), }

26 The generic
mathematical
model of
programs

A software system or a program ℘ is a set of complex
embedded cumulative relational processes Pk dispatching
by system-level events ek, i.e.:

1

1

1 1

(@)

[@ (() () s ())], 1

m

k k
k
m n

k i ij j
k i

e P

e s k r k k j i

R
R R

=

−

= =

℘=

= = +

S

S

Theorem
5.7

27 A class A dynamic construct in object-oriented programming to
build hierarchical architectures of a system as given in
Eqs. 5.72 through 5.74.

Def. 5.55

28 A generic
software
pattern

A generic pattern is formally described by the four-level
hierarchical model, as shown in Fig. 5.26, known as the
interfaces, implementations, instantiations, and
associations among the interfaces, implementations, and
instantiations.

Def. 5.63

29 The Generic
Computing
System (GCS)

GCS, §, is an abstract logical model of the executing
platform of a target machine denoted by a set of parallel
or concurrent computing resources and processes as
modeled in Eq. 5.87.

Def. 5.65

30 RTOS state
transition
diagram

Refer to Fig. 5.42. Fig. 5.42

31 Deductive
Grammar of
English (DGE)

Refer to Figs. 6.3 and 6.4. Figs.
6.3/6.4

32 Type 0
grammar G0

A grammar that has no restrictions on its productions.

Def. 6.22

33 Type 1
grammar G3

A grammar that satisfies the following conditions:

 ∀p ∈ G1, p: α → ∅ ∨ (p: α → β ⇒ |α| ≤ |β |)

Def. 6.23

34 Type 2
grammar G3

A grammar that satisfies the following conditions:

 ∀p ∈ G2, p: A → β

Def. 6.24

35 Type 3
grammar G3

A grammar that satisfies the following conditions:

 ∀p ∈ G3, p: s0 → ∅ ∨ p: A → a ∨ p: A → aB

where s0 is the start symbol, A and B are nonterminals,
and a is a single terminal.

Def. 6.25

© 2008 by Taylor & Francis Group, LLC

1300 Appendix D Models of Entities and Structures of SE

36 Context-
sensitive
grammar Gs

A grammar that is constrained by the following condition:

 ∀p ∈ Gs, p: αAα’ → αβα’

where αAα’ is the context, and A is a nonterminal symbol
that can be replaced in the given context.

Def. 6.26

37 Context-free
grammar Gf

A grammar that is constrained by the following condition:

 ∀p ∈ Gf, p: A → β

where p is context-independent.

Def. 6.27

38 Regular
grammar Gr

A grammar that is constrained by the following condition:

 ∀p ∈ Gr, p: s0 → ∅ ∨ p: A → a ∨ p: A → aB

Def. 6.28

39 LL(k)
grammar

A class of context-free grammars, where the first L
defines that the parsing is from left to right, and the
second L specifies that the next production is derived by
left-most derivation, and k, k ≥ 1, denotes that at most k-
symbol looking ahead into the unmatched part of the
input string is required in order to uniquely determine the
next production.

Def. 6.30

40 LR(k)
grammar

A class of context-free grammars, where the letter L
defines that the parsing is from left to right, and the letter
R specifies that the next production is derived by right-
most derivation in reverse, and k, k ≥ 1, denotes that at
most k-symbol looking ahead into the unmatched part of
the input string is required in order to uniquely determine
the next production.

Def. 6.31

41 Relations
among
grammars

Summarize the following grammars and their
relationships in a table basis of

• Chomsky grammars type G0, G0, G0, and G3;
• The context-sensitive Grammar Gs, the context-free
 grammar Gf, and the regular grammar Gr;
• The LL(k) grammar and the LR(k) grammar

Corollaries
6.1 and
6.2

42 Extended
Backus-Naur
form (EBNF)

EBNF is a 5-tuple:

 EBNF (∑, T, V, P, S’)

Def. 6.37

43 The semantic
environment
Θ

The run-time behavioral space Ω projected onto the
Cartesian plane determined by T and S, i.e.:

2

2

,

(, ,)

t T s S
t s

OP T S
t s

T S

∂ ΩΘ = ∈ ∧ ∈
∂ ∂
∂ Ω=
∂ ∂

= ×

where, T is a finite set of discrete steps of program
execution, S is a finite set of memory locations or their

Def. 6.60

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1301

logical representations by identifiers of variables.

44 Deductive
semantics of a
statement p,
θ(p)

A double partial differential of the semantic function fθ(p)
on executing steps T and the sets of variables S on Θ, i.e.:

 θ (p) =
2

()f p
t s θ
∂

∂ ∂

 =
() # ()

0 1
(,)

T p S p

p i j
i j

v t sR R
= =

 =
1 2 m#{s , s , ..., s }1

0 1
(,)p i j

i j
v t sR R

= =

 = 01 02 0

11 12 1

m

m

v v v

v v v

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

1 2 m

0

0 1

s s s
t

(t , t]

where t denotes the discrete time immediately before and
after the execution of p during (t0, t1], and # is the
cardinal calculus that counts the number of elements in a
given set, i.e., n = #T(p) and m=#S(p).

Def. 6.63

45 Deductive
semantics of a
process P, θ(P)

A double partial differential of the semantic function fθ(P)
on the sets of variables S and executing steps T on Θ, i.e.:

θ(P)=
2

()f P
t s θ
∂

∂ ∂
2 21

1
() # () # () # ()1

1 0 1 0 1

{[()] [()]}, 1

{[(,)] [(,)]}
k k l l

k l

n

k kl l
k

T P S P T P S Pn

P i j kl P i j
k i j i j

f P r f P l k
t s t s

v t s r v t s

R

R R R R R

θ θ

−

=

−

= = = = =

∂ ∂= = +
∂ ∂ ∂ ∂

=

=

1−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠⎟⎟

1

2

n

p G

p G

p G

V V

V V

V V

where

kpV , 1≤ k ≤ n-1, is a set of values of local

variables that belongs to processes Pk, and VG is a finite
set of values of global variables.

Def. 6.65

46 Deductive
semantics of a
program℘,

θ (℘)

A combination of the semantic functions of all processes
θ(Pk), 1≤ k ≤ n, on Θ, i.e.:

Def. 6.66

© 2008 by Taylor & Francis Group, LLC

1302 Appendix D Models of Entities and Structures of SE

2# ()

1
()

1
() # ()# ()

1 0 1

() ()

 ()

[(,)]
k k

k

K

k
K

k
k

T P S PK

P i j
k i j

f
t s

P

v t s

R

R

R R R

θθ

θ

℘

=

℘

=

℘

= = =

∂℘ = ℘
∂ ∂

=

=

where #K(℘) is the number of processes or components
in the program.

47 Information

(classic
informatics)

A weighted probabilistic measure of the variability of
messages (signals) that is expected from a message source
via a transmission channel.

The total information variability transmitted by a source
or sender, I, is the weighted sum of the probability of all
its n possible signs Ii, 1 ≤ i ≤ n, known as the alphabet, in
the message, i.e.:

1

1

1

1log

- log [bit]

n

i i
i
n

i 2
ii

n

i 2 i
i

I p I

p
p

p p

=

=

=

= •

= •

= •

∑

∑

∑

Def. 7.1

Def. 7.2

48 Information

(contemporary
informatics)

Any property or attribute of the natural world that can be
generally abstracted, quantitatively represented, and
mentally processed.

The measurement of information, Ik, is defined by the cost
of code to abstractly represent a given size of internal
message M in the brain in a digital system based on k, i.e.:

⎡ ⎤

:

 log
k k

k

I f M S

M

= →

=

where Ik is the content of information in a k-based digital
system, and Sk the measurement scale based on k. The unit
of Ik is the number of k-based digits.

Def. 7.8

Theorem
7.1

49 Information

(cognitive
informatics)

Abstract artifacts and their relations that can be modeled,
processed, stored, and processed by human brains.

The measurement of cognitive information, Ik, is defined
by the cost of code to abstractly represent a given size of
internal message X in the brain in a digital system based
on k, i.e.:

 ⎡ ⎤: logk k kI f X S X= → =

Def. 7.10

Def. 7.11

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1303

where Ik is the content of information in a k-based digital
system, and Sk the measurement scale based on k.

50 The
transformabi-
lity between
I-M-E

According to the IME model, the three essences of the
world are predicated to be transformable between each
other as described by the following generic functions f1 to
f6:

 I = f1 (M)
 M = f2 (I) ≟ f1

-1(I)
 I = f3 (E)
 E = f4 (I) ≟ f3

-1(I)
 E = f5 (M)
 M = f6 (E) = f5

-1(E)

where a question mark on the equal sign denotes a
hypothesis on the existence of such a reverse function.

Corollary
7.3

51 Engineering
Maturity
Model

(EMM)

The applied engineering disciplines have four maturity
levels known as the levels of emergence (L1), art (L2),
engineering (L3), and post-engineering (L4), i.e.:

 1 2 3 4:EMM L L L L⊆ ⊆ ⊆

Theorem
8.3

52 Abstract work
organization
model

The actual workload W of a coordinative project is a
function of the average interpersonal coordination rate r
and the number of labor L in the project, i.e.:

1

1

1

(1)

(1)

(1)
(1) [PM]

2

W L T

L T h

W h

L L
W r

= •

= • +

= +

−= + •

where T1 is the indicational duration needed to complete
the work by only one person, and W1 is the ideal
workload without the interpersonal overhead h or that of a
single person project.

Theorem
8.4

53 The shortest
duration of
coordinative
work

There exists the shortest duration Tmin under the optimum
labor allocation L0 for a given ideal workload W1 with
certain interpersonal coordination rate r, i.e.:

min 0

1 0
0

0

{ | }

1 2 () []
2

1.414 , 0 []

T T L L

W rL r M
L

L r P
r

⎧⎪⎪ = =⎪⎪⎪⎪⎪⎪⎪ = − +⎨⎪⎪⎪⎪ ⎡ ⎤⎪ = ≠⎪ ⎢ ⎥⎪⎪⎩ ⎢ ⎥⎪

Theorem
8.7

54 The pigeon
diagram

The model of actual time against number of labors in
software engineering projects.

Fig. 8.5

55 Optimal work It must be carried out in the following order for a given
cooperative project:

Corollary

© 2008 by Taylor & Francis Group, LLC

1304 Appendix D Models of Entities and Structures of SE

organization

a) To determine the optimum labor allocation L0
(Eq. 8.16);

b) To obtain the shortest duration of the
cooperative work Tmin under L0 (Eq. 8.15).

8.1

56 Exchange-
ability from
labor to time

The exchange rate from labor to time γL∼T in a cooperative
work organization is determined by the ratio between the
increment of time ∆T and the increment of labor ∆L, i.e.:

1

0 1
 [M/P]

-

L T

min

T
L

T - T
L L

γ ∆=
∆

=

∼

Theorem
8.8

57 Exchange-
ability from
time to labor

The exchange rate from time to labor γT∼L in a cooperative
work organization is determined by the ratio between the
increment of labor ∆L and the increment of time ∆T, i.e.:

0 1

1 min

 -
 [P/M]

T L
L
T

L L
T - T

γ ∆=
∆

=

∼

Theorem
8.9

58 Cognitive
Models of
Memory
(CMM)

The architecture of human memory is parallel configured
by the Sensory Buffer Memory (SBM), Short-Term
Memory (STM), Long-Term Memory (LTM), and
Action-Buffer Memory (ABM), i.e.:

 CMM SBM
 || STM
 || LTM
 || ABM

Theorem
9.3

59 SBM The functional model of SBM is a set of queues
corresponding to each of the sensors of the brain.

Model 9.1

60 STM The functional model of STM is a set of stacks.

Model 9.2

61 LTM The functional model of LTM is hierarchical neural
clusters with partially connected neurons via synopses.

Model 9.3

62 ABM The functional model of ABM is a set of parallel queues,
each of them represents a sequence of actions or a
process.

Model 9.4

63 NI-Sys A real-time natural intelligent system with an inherited
operating system (thinking engine) NI-OS and a set of
acquired life applications NI-App, i.e.:

 NI-Sys NI-OS
 || NI-App

where NI-OS represents the inherited life functions, NI-

Model 9.5

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1305

App the developed life functions, and || a parallel relation.

64 BRAIN The functional model of the brain describes the functional
configuration of the brain and how the NI-Sys interacts
with the memory system, i.e.:

_
 ||
 (_
 || _
)
 || (
 ||
 ||
 ||
)

BRAIN NI Sys
CMM

NI OS
NI App

LTM
STM
SBM
ABM

=

Model 9.6

65 Functional
model of LTM

A set of Hierarchical Neural Clusters (HNC) with
partially connected neurons via synapses.

Model 9.7

66 OAR The Object-Attribute-Relation (OAR) model of LTM can
be described as a triple, i.e.:

 OAR (O, A, R)

Model 9.8

67 EOAR The Extended OAR model states that the external world is
represented by real entities, and the internal world by
virtual entities and objects. The internal world can be
divided into two layers known as the image layer and the
abstract layer.

Model 9.9

68 Human
memory
capacity model

Assuming there are n neurons in the brain, and on average
there are s connections between a given neuron and a
subset of the rest of them in the form of synapses, the
magnitude of the brain's memory capacity Cm can be
expressed by the following mathematical model:

 n
11

3 11 3

10 ! [bit]
10 !(10 10)!

C
=

−

s
mC

where n is the total number of neurons, and s the number
of average partial connections between neurons via
synapses.

Model
9.10

69 Framework of
cognitive
informatics

The theoretical framework of cognitive informatics Fig. 9.7

70 LRMB The layered reference model of the brain Table 9.5

71 CIM The Cognitive Information Model (CIM) classifies
cognitive information into four categories, according to
their types of I/O information, known as knowledge,
behavior, experience, and skill, i.e.:

Def. 9.16

Table 9.6

© 2008 by Taylor & Francis Group, LLC

1306 Appendix D Models of Entities and Structures of SE

 a) Knowledge K: I → I
 b) Behavior B: I → A
 c) Experience E: A → I
 d) Skill S: A → A

72 Generic forms
of cognitive
information

There are four categories of internal information I in the
brain known as knowledge (Ik), behaviors (Ib),
experience (Ie), and skills (Is), i.e.:

 (, , ,)k b e s=I I I I I

Theorem
9.4

73 Abstract
information
representation

The abstract objects in the brain such as data (D),
information (I), knowledge (K), and behavior (B) can be
formally modeled as follows:

min: log , =2d k kD r M S M k→ =

 : , i iI r D C r→ ∈R

 n

1
i=1

: () , Xk i n kK r C C r+→ ∈R

1

1

1 1

 (@)

 [@ (() () ())], 1,

m

k k
k

m n

k i ij j ij
k i

B

e P

e p k r k p k j i r

R
R R

=

−

= =

℘

=

= = + ∈R

where C is a concept as given in Definition 15.3, R is the
set of process relations as defined in Theorem 4.7, and the
behavior B is equivalent to a program℘.

Def. 9.18

74 The nature of
intelligence

Intelligence I can be classified into four forms called the
perceptive intelligence Ip, cognitive intelligence Ic,
instructive intelligence Ii, and reflective intelligence Ir as
modeled below:

 p

 c

i

r

: (Perceptive)

 || : (Cognitive)
 || : (Instructive)
 || : (Reflective)

D I

I K
I B
D B

→

→
→
→

I I

I

I

I

Theorem
9.5

75 Generic
Intelligence
Model (GIM)

GIM describes the mechanisms of the natural intelligence,
as shown in Fig. 9.10.

Def. 9.21

76 Generic forms
of learning

There are sufficiently four categories of learning L known
as those of knowledge (Lk), behaviors (Lb), experience
(Le), and skills (Ls), i.e.:

 (, , ,)k b e s=L L L L L

Theorem
9.6

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1307

77 Relationship
between the
brain

It can be analogized by:

 Brain : mind = computer : program

Def. 9.32

78 A closed
system

A closed systemS is a 4-tuple, i.e., S = (C, R, B, Ω),
where

• C is a nonempty set of components of the system,
 C = {c1, c2, …, cn}.
• R is a nonempty set of relations between pairs of the
 components in the system, R = {r1, r2, …, rm},
 R ⊆ C × C.
• B is a set of behaviors (or functions), B = {b1, b2, …,
 bp}.
• Ω is a set of constraints on the memberships of
 components, the conditions of relations, and the scopes
 of behaviors, Ω = {ω1, ω2, …, ωq}.

Def. 10.3

Fig. 10.4

79 An open
system

An open system S is a 7-tuple, i.e.:

 S = (C, R, B, Ω, Θ)
 = (C, Rc, Ri, Ro, B, Ω, Θ)

where the extensions of entities beyond the closed system
are as follows:

• Θ is the environment of S with a nonempty set of
 components CΘ outside C.
• Rc ⊆ C × C is a set of internal relations.
• Ri ⊆ CΘ × C is a set of external input relations.
• Ro ⊆ C × CΘ is a set of external output relations.

Def. 10.4

Fig. 10.5

80 Taxonomy of
systems

Taxonomy of Systems Table 10.1

81 The universal
system U

The universe U is an infinite system with unlimited sets of
components U, as well as unlimited relations RU,
behaviors BU, and constraints ΩU, i.e.:

 U = (U, RU, BU, ΩU)

where U encompasses any component c ever identifiable
in the physical world, i.e., ∀ c, c ∈ U.

Def. 10.12

82 The empty
system O

The empty system O is the smallest finite system in which
the sets of components C∅, relations R∅, behaviors B∅,
and constraints Ω∅ are empty, i.e.:

 O = (C∅, R∅, B∅, Ω∅)
 = (∅, ∅, ∅, ∅)

Def. 10.13

© 2008 by Taylor & Francis Group, LLC

1308 Appendix D Models of Entities and Structures of SE

83 Size of a
system

The size of a system Ss is the number of components
encompassed in the system, i.e.:

 #s cS C n= =

Def. 10.31

84 Magnitude of
systems

The magnitude of system relations Ms is the number of
asymmetric binary relations among the nc components of
the system including the reflexive relations, i.e.:

2

= #

= #()

s

r

c

M R
n

C C

n

=

×

=

Def. 10.32

85 Holism
complexity of
systems

The holism complexity of systems states that within the 7-
level magnitudes of systems, known as the empty, small,
medium, large, giant, immense, and infinite systems,
almost all systems are too complicated to be cognitively
understood or mentally handled as a whole, except small
systems or those decomposed into small systems.

Theorem
10.1

Table 10.2

86 A complete n-
nary tree Tc

A normalized tree in which each node of Tc can have at
most n children, the level k of Tc can have at most nk
nodes, and at all levels expect the leave level, have the
maximum number of possible nodes.

Def.10.35

87 Generic
topology of
normalized
systems

The generic topology of systems tends to be normalized
into a hierarchical structure in the form of a complete n-
nary tree.

Theorem
10.2

88 System
Organization
Tree (SOT)

An n-nary complete tree in which all leave nodes
represent a component and the remainder, all nodes above
the leaves, represent a subsystem.

Def. 10.37

Fig. 10.7

89 Hierarchical
structure of
software
systems

A hierarchical structure of software systems Fig. 10.20

90 Hierarchical
structure of SE
products

The hierarchical structure of software engineering
processes and work products

Fig. 10.21

91 Big-O
notation

If a function f(x) has an asymptotic function fa(x), the
function f(x) is said to be of order of fa(x), denoted by:

 f(x) = O(fa(x))

where O is known as the big O notation.

Def. 10.85

92 Time
complexity

For a given size of a problem n, the time complexity of an
algorithm for solving the problem is a function of the
maximum required number of dominate operations Ct(n),
i.e.:

Def. 10.86

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1309

 Ct(n) = O(fa(n))

where O(fa(n)) is the order of the maximum number of the
dominate operations c(n), and fa(n) is called the
asymptotic function of Ct(n).

93 Space
complexity

The space complexity of an algorithm for a given problem
is the maximum required space for both working memory
w and target code memory o, i.e.:

 Cm(n) = O(f(w+o))
 ≈ O(f(w))

where w refers to the memory for data objects under
processing such as input/output and intermediate
variables, and o refers to the memory for executable code.

Def. 10.87

94 Symbolic
complexity

The symbolic complexity of a software system S, Cs(S), is
the linear length of its statements measured in the unit of
lines of code (LOC), i.e.:

1

() () [LOC]
cn

s s
k

C S C k
=

= ∑

where Cs(k) represents the complexity of component k in
S.

Def. 10.88

95 Cyclomatic
complexity

The cyclomatic complexity of a software system S, Cm(S),

is determined by the number of regions contained in the
CFG G, r(G), provided that G is connected, i.e.:

 Cm(S) = r(G)

 = e - n + 2

where, e is the number of edges in G representing
branches and cycles, n number of nodes in G where each
node is equivalent to a block of sequential code.

Def. 10.89

96 Operational
complexity

The operational complexity of a software system S,
Cop(S), is determined by the sum of the cognitive weights
of its n linear blocks composed by individual BCS’s,
where each block may consist of q layers of embedded
BCS’s, and within each of the layers there are m linear
BCS’s, i.e.:

,

1

1 11

() = ()

= ((, ,) [F])

c

k jkc

n

op op k
k

mqn

k ij

C S C C

w k j i

=

= ==

∑

∑ ∑∏

Def. 10.90

97 Architectural
complexity

The architectural complexity of a software system S,
Ca(S), is determined by the number of data objects at the
system and component levels, i.e.:

Def. 10.92

© 2008 by Taylor & Francis Group, LLC

1310 Appendix D Models of Entities and Structures of SE

1 1

() OBJ())

OBJ() + OBJ() [O]
CLM C

a

n n

k k
k k

C S S

CLM C
= =

=

= ∑ ∑

where OBJ is a function that counts the number of data
objects in a given CLM (number of global variables) or
components (number of local variables).

98 Cognitive
(functional)
complexity

The cognitive complexity of software states that the
cognitive complexity of a software system S, Cc(S), is a
product of the operational complexity Cop(S) and the
architectural complexity Ca(S), i.e.:

1 1

1 1

() () ()

{ (,)}

{ OBJ() + OBJ()} [FO]

C k

CLM C

f op a

n m

k i
n n

k k
k k

S S C S C S

w k i

CLM C

= =

= =

= •

= •∑∑

∑ ∑

Theorem
10.14

99 Cohesion The cohesion of a software system S, CH(S), is a ratio of
the system’s number of internal relations #Rc and its total
number of internal and external relations #Rc + #Ri + #Ro,
i.e.:

#
() = 100%

+ # +

c

c i o
R

CH S
R R R

•

where 0% ≤ CH(S) ≤ 100%.

Def. 10.97

100 Coupling The coupling of a software system S, CP(S), is a ratio of
the system’s number of external relations #Ri + #Ro and
its total number of internal and external relations #Rc +
#Ri + #Ro, i.e.:

+ #() = 100%
+# +

i o

c i o
R RCP S

R R R
•

where 0% ≤ CP(S) ≤ 100% and a lower value indicates a
better architectural design.

Def. 10.98

101 Framework of
management
systems

The structure of a management system.

Fig. 11.2

102 Natural group A working group of people with peers in which work is
carried out via temporal pairwise coordination when work
has to be done by any pair of the peers.

Def. 11.8

103 Managed
group

A working group of people with peers and a manager, in
which work is carried out via one-to-many coordination
by the manager.

Def. 11.9

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1311

104 Framework of
decision
theories

The structure of decision theories. Fig. 11.8

105 A decision A decision d is a selected alternative a ∈A from a
nonempty set of alternatives A, A ⊆ U, based on a given
set of criteria C, i.e.:

 d = f (A, C)
 = f: A × C → A, A ⊆ U, A ≠ ∅

where × represents a Cartesian product.

Def. 11.23

106 Taxonomy of
decision
making

Taxonomy of strategies and criteria for decision making.

Table 11.3

107 Payoff table A payoff table is a 2-D matrix as shown in Table 11.4 that
quantifies the utility, value or level of satisfaction, uij, for
each given pair of alternative ai and situation sj, where 1 ≤
i ≤ n, and 1 ≤ j ≤ k.

Def. 11.27

108 Certain
decision

A decision making under certainty dmax or dmin is a
selection of an certain alternative ai among A that meets a
given criterion C which is either the maximum of utility
or profit max(ui), and the minimum of costs or effort
min(ei), i.e.:

 dmax = f: A × C → A
 = {ai | max (ui) ∧ ai ∈ A}
or

 dmin = f: A × C → A

 = {ai | min (ei) ∧ ai ∈ A}

Def. 11.28

109 Optimistic
decision

An optimistic decision making under uncertainty dmaximax
or dminimin yields a decision with the maximum-maximum
strategy for utility or a minimum-minimum strategy for
cost, respectively, i.e.:

 dmaximax = f: A × C → A
 = {ai | max (max (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)
or
 dminimin = f: A × C → A

 = {ai | min (min (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)}

Def. 11.30

110 Pessimistic
decision

A pessimistic decision making under uncertainty dmaximin
or dminimax yields a decision with the maximum-minimum
strategy for utility or a minimum-maximum strategy for
cost, i.e.:

 dmaximin = f: A × C → A

Def. 11.31

© 2008 by Taylor & Francis Group, LLC

1312 Appendix D Models of Entities and Structures of SE

 = {ai | max (min (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)}
or

 dminimax = f: A × C → A

 = {ai | min (max (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)}

111 Uncertain
minimum
regret
decision

A minimum regret decision making under uncertainty
dminimax yields a decision with the minimum-maximum
regret strategy for utility gain or cost save, i.e.:

 dminimax = f: A × C → A
 = {ai | min (max (rij | 1 ≤ i ≤ n)}

Def. 11.33

112 Risky decision
with max.
expected
utility

A decision making under risk with maximum expected
utility dmaxEU yields a decision with the maximum expected
utilities of all alternatives, i.e.:

 dmaxEU = f: A × C → A

 = {ai | max (EUi | 1 ≤ i ≤ n)}

Def. 11.36

113 Risky decision
with max.
utility of max.
probability

A decision making under risk with maximum utility of
maximum probability dmaximax-p yields a decision with the
maximum utility of the maximum probability of outcome
of all alternatives, i.e.:

 dmaximax-p = f: A × C → A

 = {ai | max (uij | (max (pj | 1 ≤ j ≤ k)), 1 ≤ i ≤ n}

Def. 11.37

114 A formal game A formal game G is a 4-tuple, i.e., G = (P, D, M, S),
where

• P is a finite set of players P = {p1, p2, …, pn}, and n is
 the number of players, n ≥ 2.
• D is a finite set of decisions for certain moves, D = {d1,
 d2, …, dk}, k ≥ 1. All players in G have the same
 number of alternative decision.
• M is a finite set of matches between player, M = {m1,
 m2, …, mq}, q ≥ 1.
• S is a finite set of cumulated scores for each player, S

 = {s1, s2, …, sn}.

Def. 11.39

115 Zero-sum
game

A zero-sum game is a game where the total scores of all n
players in the game is zero, i.e.:

1

0
n

i
i

s
=

=∑

Def. 11.43

116 Nonzero-sum
game

A nonzero-sum game is a game where the total scores of
all players in the game is a positive nonzero value, i.e.:

Def. 11.44

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1313

1

0
n

i
i

s
=

>∑

117 A decision
grid

The formal model of a decision grid DG is a 4-tuple, i.e.,
DG = (T, D, E, S), where

• T is a finite or infinite set of trials T = {t1, t2, …, tn},
 and n is the time points of trials where n may be
 infinitive.
• D is the decision distance of a series of decision trials,
 D = ti - t0 = ti, 1 ≤ i ≤ n.
• E is the effort of a specific trial towards the success
 state in the grid, 0 ≤ E ≤ n.
• S is a finite or infinite set of success states of the grid,
 S = {s1, s2, …, sk}, 1 ≤ k ≤ n.

Def. 11.46

118 Quality Quality Q is a generic and collective attribute of a
product, a service, or a system that is proportional to both
its average utility U and the available duration T of the
utility, i.e.:

 Q = U • T [Fh]

where the unit of utility is function (F), and the unit of
duration is hour (h), and these result in the unit of quality
as Function-hour or shortly Fh.

Def. 11.54

119 Integrated
quality

The integrated quality with dynamic utility, Q(t), is an
integral of the utility function U(t) over the entire
lifecycle of the utility [0, T], i.e.:

0

0
-

() ()

(1)

= - (1 -) [Fh]

T

T t T

T

Q t U t dt

U e dt

Q U e

−

=

= −

∫
∫

where U is the initial quality of the product, service, or
system.

Lemma
11.12

120 Benefit of
quality

The benefit of a product or a system B is the quality
gained per unit cost (C) in terms of resources, labor, and
time, i.e.:

 =

= [Fh/$]

Q
B

C
U •T

C

Def. 11.57

121 Generic
quality system

A generic quality control system. Fig. 11.19

© 2008 by Taylor & Francis Group, LLC

1314 Appendix D Models of Entities and Structures of SE

122 Equilibrium
model of
market
systems

A negative feedback system, in which the increase or
decrease of price in the market will result in a negated
feedback, and so do the changes of quantities of demands
and supplies on prices, both which intend to resist the
tendency of deviating from the current equilibrium.

Def. 12.7

123 E(D+) mode The reactions of the equilibrium mechanism to an event of
demand increase, E(D+), can be described by the
following chain of reactions:

(+) = 'e
P

E D D P
S P

→ ↑ →
↑ → ⇒→→ ↑ → ↓

Mode 12.1

124 E(D-) mode The reactions of the equilibrium mechanism to an event of
demand decrease, E(D-), are formally described as
follows:

() = 'e
P

E D- D P
S P

→ ↓ →
↓ → ⇒→→ ↓ → ↑

Mode 12.2

125 E(S+) mode The reactions of the equilibrium mechanism to an event of
supply increase, E(S+), are formally described as follows:

() = 'e
P

E S S P
S P

→ ↓ →
+ ↑ → ⇒→→ ↑ → ↑

Mode 12.3

126 E(S-) mode The reactions of the equilibrium mechanism to an event of
supply decrease, E(S-), can be formally described as
follows:

() = 'e
P

E S- S P
S P

→ ↑ →
↓ → ⇒→→ ↓ → ↓

Mode 12.4

127 E(D+, S+)
mode

The reactions of the equilibrium mechanism to an
compound event of demand/supply increases, E(D+, S+),
are described as follows:

(,) = 'e

P
D

S P
E D S P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

+ + ⇒→→ ↓
↑ → →→ ↑ → ↑

Mode 12.5

128 E(D+, S-)
mode

The reactions of the equilibrium mechanism to an
compound event of demand increase/supply decrease,
E(D+, S-), are described as follows:

(, -) 'e

P
D

S P
E D S P

P
S

D P

→ ↑ →
↑ → →→ ↑ → ↓

+ = ⇒→→ ↑
↓ → →→ ↓ → ↓

Mode 12.6

129 E(D-, S+)
mode

The reactions of the equilibrium mechanism to an
compound event of demand decrease/supply increases,
E(D-, S+), are described as follows:

Mode 12.7

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1315

(-,) = 'e

P
D

S P
E D S P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

+ ⇒→→ ↓
↑ → →→ ↑ → ↑

130 E(D-, S-)
mode

The reactions of the equilibrium mechanism to an
compound event of demand/supply decreases, E(D-, S-),
are described as follows:

(-, -) = 'e

P
D

S P
E D S P

P
S

D P

→ ↓ →
↓ → →→ ↓ → ↑

⇒→→ ↑
↓ → →→ ↓ → ↓

Mode 12.8

131 Equilibrium
behaviors of
market
systems

Adaptive equilibrium behaviors of market systems.

Table 12.1

132 Dynamic value
of money

The dynamic value of money or an asset, V(t), is its
present worth P projected at a given point of time t for a
given average or predicated interest rate i during [0, t],
i.e.:

 V(t) = f(P, i, t)

Def 12.17

133 Linear
depreciation of
assents

Assume an asset provides an equal amount of utility or
service in each year of its life-span n, the linear
depreciation of the asset in each year D is:

 P - SD
n

=

where P is the initial value of the asset, and S the salvage
value by the year end of n.

Def. 12.19

134 Benefit-cost
ratio

Benefit-cost ratio BC of a project is a ratio between the
total benefit B and the total cost C, i.e.:

0

BC =B
C

B
C C

= ′+

Def. 12.25

135 Elements of
software costs

Elements of software costs.

Table 12.3

136 Elements of
software
revenues

Elements of software revenues.

Table 12.4

137 FEMSEC The Formal Economic Model of Software Engineering
Cost (FEMSEC) states that, on the basis of the workload-

Theorem
12.3

© 2008 by Taylor & Francis Group, LLC

1316 Appendix D Models of Entities and Structures of SE

driven project organization laws (Theorems 8.4 and 8.7),
the expected project cost C can be determined optimally
with the optimal labor allocation L0 and the shortest
duration Tmin in the following 6 steps:

 1) Estimate the project size pS

 2) Determine the ideal workload W1

 3) Allocate the optimal labor L0

 4) Determine the shortest duration Tmin

 5) Determine the expected workload W

 6) Determine the expected project cost C

Fig. 12.12

138 COCOMO The cost factors of software projects identified in
COCOMO are software size, effort, duration, and
multiple cost drivers. Their relationships are perceived as
follows:

 Cost = f(size, effort, duration, cost drivers)

Def. 12.33

139 COCOMO II The effort E of a software project in COCOMO II is
estimated by the following empirical approximation, i.e.:

 E = 2.94 EAF • (kSLOC)E [PM]

where EAF stands for effort adjustment factor derived
from the 17 cost drivers, E is an exponent determined by
the five scale drivers, and the unit of project effort is
person-month (PM).

Def. 12.36

140 Overtaken
time of legacy
maintenance
costs

The overtaken time to in which the maintenance cost
exceeds the development cost in a software development
organization can be determined using the following
expression, i.e.:

⎣ ⎦

⎣ ⎦

⎡ ⎤ ⎣ ⎦

= { = }

() - ()
 [year]

() - ()

0 m d

m m

m m

t t | C C

C n C n
n

C n C n
≈ +

Lemma
12.5

141 Group A group is a formal or informal social unit formed by two
or more persons working towards a particular purpose.

Def. 13.3

142 Organization An organization is a formal and stable social unit formed
by one or more groups of people working towards a
particular purpose.

Def. 13.4

143 Society A society is the community of people that members of it
are geographically connected and socially integrated with
common customs, organizations, and values.

Def. 13.6

144 Social
relations

A social relation R is a function between two or more
persons, p, in a society, i.e.:

 R(p) = g : p → P

Def. 13.8

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1317

where P is all the individuals, p ∈ P, in the given society.

145 Social roles The social roles RL of a person p is a relation between the
person p and a set of social functions F, F ⊆ F, i.e.:

 RL(p) = f : p → F

where F is a subset of all defined social functions F.

Def. 13.10

146 Maslow
hierarchy of
human needs

The Maslow hierarchy of human needs is at five levels
known as the needs of physiological, safety, social,
esteem, and self-actualization from the bottom up.

Table 13.3

147 Human Needs
Hierarchy
(HNH)

The Human Needs Hierarchy (HNH) model is a
hierarchical model that encompasses five levels of
fundamental human needs known from the bottom-up as
N0 – physiological needs, N1 – psychological needs, N2 –
cognitive needs, N3 – social needs, and N4 – self-
expressive needs.

Def. 13.19

148 Formal model
of emotion

The strength of emotion |Em| is a normalized measure of
how strong a person’s emotion on a scale of 0 through 4,
i.e.:

 0 ≤ |Em| ≤ 4

Def. 13.22

149 Formal model
of motivation

The strength of motivation M is a normalized measure of
how strong a person’s motivation on a scale of 0 through
100, i.e.:

 0 ≤ M ≤ 100

where M = 100 is the strongest motivation and M = 0 is
the weakest motivation.

Def. 13.25

150 Formal model
of attitude

The mode of an attitude A is determined by both an
objective judgment of its conformance to the social norm
N and a subjective judgment of its empirical feasibility F,
i.e.:

 1,

0,

N F
A

N F

= ∧ =⎧⎪⎪= ⎨⎪ = ∨ =⎪⎩

T T

F F

where A = 1 indicates a positive attitude; otherwise, it
indicates a negative attitude.

Def. 13.27

151 Formal model
of Behavior

A behavior B driven by a motivation Mr and an attitude is
a realized action initiated by a motivation M and
supported by a positive attitude A and a positive decision
Da toward the action, i.e.:

2.5 | | (-)
, 1

,

m
r a a

E E S
M D A D

CB
otherwise

⎧⎪⎪ = >⎪⎪= ⎨⎪⎪⎪⎪⎩

i i
i i iT

F

Lemma
13.5

152 Normalized A normalized organization tree (OTn) is a complete n- Def. 13.43

© 2008 by Taylor & Francis Group, LLC

1318 Appendix D Models of Entities and Structures of SE

organization
tree

nary tree in which all leave nodes represent employees
and the remainder represent managers. When the leaves
(employees) are not reached the maximum possible
numbers in the OT, the right most leaves of it will be left
open.

153 Series work
organization

A series work organization is a work allocation structure
in which a given work is decomposed into a series of
parts and each part is allocated to a person or a group.

Def. 13.46

154 Parallel work
organization

A parallel work organization is a work allocation
structure in which a given work is done repetitively or
jointly by multiple persons or group.

Def. 13.47

155 Formal
socialization
model (FSM)

The Formal Socialization Model (FSM) is a relational
model that describes the relationships between the basic
human needs, economic structures, and social types, as
shown in Fig. 13.7.

Def. 13.48

156 Behavioral
space

A human behavior B is constituted by four basic elements
known as the object (O), action (A), space (S), and time
(T), i.e.:

 B = (O, A, S, T)

Def. 13.55

157 BMHE The Behavioral Model of Human Errors (BMHEs).

Table
13.12

158 HET The model of Human Error Tree (HET).

The random nature of human errors in performing tasks
in a group is the statistical phenomenon that the
occurrences of the same errors by different individuals are
most likely at different times.

Corollary
13.15

Fig. 13.9

159 Error
reduction
model of
review

The n-fold error reduction by reviewing states that the
error rate of a work product can be reduced upto n folds
of the average error rate of individuals re in a group via n-
nary peer reviews based on the random nature of error
distributions and independent nature of error patterns of
individuals, i.e.:

1

()
n

e e
k

R r k
=

= ∏

Theorem
13.5

160 DTSD
programming

Distributed Time-Shared Development (DTSD) is a
software engineering methodology that geographically
allocates software development work in broadly
distributed time zones with a wide-area Intranet.

Def. 14.21

161 Software
Maintenance
Crisis (SMC)

A phenomenon that happens when the demand for
software maintenance exceeds the capability that a
software development organization can provide, or when
the costs of legacy software maintenance predominately
override the investment for new software development.

Def. 14.22

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1319

162 Framework of
SE

The theoretical framework of software engineering.

Fig. 14.5

163 Impact of SE The impact of software engineering theories on related
disciplines.

Table 14.9

164 Formal
knowledge

Taxonomy of formal knowledge. Table 15.1

165 Framework of
Formal
Knowledge
Systems (FKS)

The framework of Formal Knowledge System (FKS). Fig. 15.1

166 Software
Science

Software science is a branch of knowledge that studies the
theoretical framework of software as instructive and
behavioral information, which can be embodied and
executed by generic computers in order to create expected
system behaviors and machine intelligence.

Def. 15.1

167 Framework of
Software
Science

The Theoretical Framework of software science

Fig. 15.2

168 Denotational
mathematics
for SS

Denotational mathematical means for software science.

Table 15.2

169 Abstract
concept

An abstract concept c is a 5-tuple, i.e.,
(, , , ,)c i oc O A R R R , where

• O is a nonempty set of object of the concept, O = {o1,
 o2, …, om} = ÞU, where ÞU denotes a power
 set of U.
• A is a nonempty set of attributes, A = {a1, a2, …, an} =
 ÞM.
• Rc ⊆ O × A is a set of internal relations.
• Ri ⊆ C′ × C is a set of input relations, where C′ is a set
 of external concepts.
• Ro ⊆ C × C′ is a set of output relations.

Def. 15.3

170 Concept
algebra

Concept algebra is a new mathematical structure for the
formal treatment of abstract concepts and their algebraic
relations, operations, and associative rules for composing
complex concepts and knowledge

Def. 15.4

171 Generic
knowledge
model

A generic knowledge K is an n-nary relation Rk among a
set of n multiple concepts in C, i.e.:

 : Xk i
i=1

K = R C C→
n

()

where =U i
i=1

C C
n , and

Def. 15.5

© 2008 by Taylor & Francis Group, LLC

1320 Appendix D Models of Entities and Structures of SE

Rk ∈ { , , , , , , , , }
+

ℜ ⇒ ⇒ ⇒⇒ = .

172 Concept
network

A concept network CN is a hierarchical network of
concepts interlinked by the set of nine associations ℜ
defined in concept algebra, i.e.:

 : X X→
n n

κ i j
i=1 i= j

CN = R C C

where Rk ∈ R.

Def. 15.6

173 Taxonomy of
denotational
mathematics

Taxonomy of denotational mathematics for software
science and engineering

Table 15.3

174 Imperative
Computing
(IC) behaviors

The necessary and sufficient conditions of IC, CIC, are the
possession of event Be, time Bt, and interrupt Bint driven
computational behaviors, i.e.:

 (, ,)IC e t intC B B B=

Theorem
15.2

175 Autonomic
Computing
(AC) behaviors

The necessary and sufficient conditions of AC, CAC, are
the possession of goal Bg and inference Binf driven
computational behaviors, in addition to the event Be, time
Bt, and interrupt Bi driven behaviors, i.e.:

 (, , , ,)AC g inf e t intC B B B B B=

Theorem
15.3

176 Imperative
Computing
System (ICS)

The Imperative Computing System, §IC, is an abstract
logical model of conventional computing platforms
denoted by a set of parallel or concurrent computing
resources and behaviors as shown in Fig. 15.5.

Def. 15.9

177 Autonomic
Computing
System (ACS)

The AC System, §AC, is an abstract logical model of
computing platform denoted by a set of parallel or
concurrent computing resources and behaviors as shown
in Fig. 15.6.

Def. 15.12

178 Cognitive
model of ACS

The cognitive informatics model of an AC system, ACS, is
equivalent to the high-level logical model of the brain as
given in Model 9.6, i.e.:

 _
 ||
 (_
 || _
)
 || (
 ||
 ||
 ||
)

ACS NI Sys
CMM

NI OS
NI App

LTM
STM
SBM
ABM

=

Def. 15.13

© 2008 by Taylor & Francis Group, LLC

 Appendix D Models of Entities and Structures of SE 1321

179 Hyper-
programming

A hyper-program is a new type of nonlinear framework
for software description and documentation that integrates
software architectures, behaviors, code, and related design
workproducts into a coherent and multidimensional
framework by bidirectional hyperlinks.

Def. 15.14

Fig. 15.7

© 2008 by Taylor & Francis Group, LLC

 Appendix E Wang’s Laws of SE 1323

Appendix E

WANG’S LAWS OF
SOFTWARE ENGINEERING

No Law Description Mathematical model

1 The
characteristics
of theoretical
and empirical
problems

(Theorem 1.1)

Software engineering problems must be
treated by both theoretical and
empirical methodologies. The former is
characterized by abstract, inductive,
mathematics-based, and formal-
inference-centered studies; while the
latter is characterized by concrete,
deductive, data-based, and
experimental-validation-centered
studies.

2 The
Information-
Matter-Energy
(IME)

model

(Theorem 1.2)

The natural world (NW) which forms the
context of human intelligence and
software science is a dual world: one
aspect of it is the physical world (PW),
and the other is the abstract world (AW),
where matter (M) and energy (E) are
used to model the former, and
information (I) to the latter, where p, a,
and n are functions that determine a
certain PW, AW, or NW, respectively.

||ˆ

(,) || ()

(, ,)

NW PW AW

M E I

I M E

=

=

=

p a

n

3 Abstract
objects under
study

(Theorem 1.3)

The nature of software stems from
intangibility of the abstract objects
under study, intricate inner connections
of software systems, adaptive
interactions to external events and
environments, and the cognitive
complexity to explicitly describe them.

4 Explicit
descriptivity

Only a higher-level abstract, precise,
and rigorous means is adequate to
express an object at a given level of

© 2008 by Taylor & Francis Group, LLC

1324 Appendix E Wang’s Laws of SE

(Theorem 1.4) abstraction, where denotational
mathematics is the top-level abstraction
means.

5 The basic
constraints of
SE

(Theorem 1.5)

Software engineering faces the
cognitive, organizational, and resources
constraints.

6 Conservative
productivity

(Theorem 1.7)

Software productivity is physiologically
constrained by the growing speed of
synaptic connections inside the brain,
because before any creative artifact is
generated externally, it must be created
and represented physiologically inside
the brain by the synaptic connections.

7 Universal
constraints

(Theorem 3.1)

Both the natural world and the perceived
abstract world are constrained by certain
known restrictions and laws, or by those
yet to be known due to both current
limitations of natural resources and/or
human cognitive capability.

8 Law of
causality

(Theorem 3.3)

A condition must be both necessary and
sufficient to qualify as a cause, where
the necessary condition is a condition
that must be present in order for the
effect to occur, while the sufficient
condition is a condition that will always
produce the effect.

9 Inclusive
intelligent
capability

(Theorem 3.5)

Artificial intelligence (AI) is a subset of
natural intelligence (NI).

AI ⊆ NI

10 Behavior
space of
software

(Theorem 3.11)

The software behavior space Ω is
innately three-dimensional, which can
be described by a Cartesian product of
computational operations OP, time T,
and memory space S.

Ω = OP × T × S

11 Utility of
mathematics

(Theorem 4.1)

Denotational mathematics is the means
and rules to rigorously and explicitly
express design notions and conceptual
models on abstract architectures and
complex interactive behaviors at the
highest level of abstraction and in the
largest scope of systems.

© 2008 by Taylor & Francis Group, LLC

 Appendix E Wang’s Laws of SE 1325

12 Cumulative
Relational
Model (CRM)
of processes

(Theorem 4.3)

A process P is the basic unit of an
applied computational behavior that is
composed by a set of statements si, 1 ≤ i
≤ n-1, with left-associated cumulative
relations, where si ∈ P and rij ∈ R.

1

1

1 12 2 23 3 1,

 (s), 1

(...((() s) s) ... s)

n

i ij j
i

n n n

s r j i

s r r r

R
−

=

−

= = +

=

P

13 Express power
of algebraic
modeling

(Theorem 4.8)

The express power of RTPA states that
the total number of the possible
computational operations N is a set of
combinations between two arbitrary
meta processes P1, P2 ∈ P composed by
each of the process relations R ∈ R in
RTPA.

#

2
#=

17!=17 •
2!(17-2)!

=17 • 136

=2,312

C• P
RN

14 Essential
facets of
software
system
modeling

(Theorem 4.9)

Software systems can be formally
specified by its architectures, static
behaviors, and dynamic behaviors with
multiple-level refinements.

15 The root of
computing
and
information
science

(Theorem 5.1)

The most fundamental data object
model shared in both computing and
information science is binary digits
(bits).

16 Domain
constraints of
data objects

(Theorem 5.6)

Letting Dm, Dl, and Du be the domains of
mathematical (logical), language
defined, and user defined, respectively,
the following relationship between the
domains of an identifier in programming
is always held.

Du ⊆ Dl ⊆ Dm

17 The generic
mathematical
model of
programs

(Theorem 5.7)

A software system or a program ℘is a
set of complex embedded cumulative
relational processes Pk dispatched by
system-level events ek .

1

1

1

1

(@)

 [@

 (() () s ())],

 1

m

k k
k

m

k
k

n

i ij j
i

e P

e

s k r k k

j i

R
R
R

=

=

−

=

℘=

=

= +

S

S

18 Tradeoff
between
syntaxes and
semantics

(Theorem 6.1)

In the DGE system, the complexities of
the syntactic rules (or grammar) Csyn and
of the semantic rules Csem are inversely
proportional, i.e.:

1
syn

sem
C

C
∝

© 2008 by Taylor & Francis Group, LLC

1326 Appendix E Wang’s Laws of SE

19 Asynchroni-
city of
program
semantics

(Theorem 6.2)

The semantics of a relatively timed
program is invariant with the changes of
executing speed, as long as any absolute
time constraint is met.

20 The least
complete set
of instructions

in
programming

(Theorem 6.3)

A program is composable with
sufficient descriptive power in a given
language iff both the sufficient sets of
meta instructions (P, Theorem 4.6) and
compositional rules (R, Theorem 4.7)
are rigorously defined.

21 Informatics
laws of
software

(Theorem 7.2)

Software architectures, behaviors, and
processes are constrained by the 19
informatics laws of basic information
properties.

22 Conservation
of basic
engineering
constraints

(Theorem 8.2)

The three basic constraints of
engineering goals known as time (T),
costs (C), and utility (U) are
conservative in a given engineering
context, where both δ and k are a
constant.

ft(T-1) + fc(C-1) + fu(U)
= Uk

T C•

= δ

23 Coordinative
work load in
engineering

(Theorem 8.4)

The actual workload W of a
coordinative project is a function of the
average interpersonal coordination rate r
and the number of labor L in the project,
where T1 is the indicational duration
needed to complete the work by only
one person, and W1 is the ideal
workload without the interpersonal
overhead h or that of a single person
project.

1

1

1

(1)

(1)

(1)
(1)

2
 [PM]

W L T

L T h

W h

L L
W r

= •

= • +

= +

−= + •

24 Interchange-

ability of labor
and time (ILT)

(Theorem 8.6)

For a given workload W, labor L and
duration T are transformable under the
condition as given in the mathematical
model.

1

1 2

1

(1)
(1)

2
1 1(1)
2 2

1 2
()

2

WT
L

L LW r
L

W rL rL
L

W rL r
L

=

−= + •

= − +

= − +

© 2008 by Taylor & Francis Group, LLC

 Appendix E Wang’s Laws of SE 1327

25 The shortest
duration of
coordinative
work

(Theorem 8.7)

There exists the shortest duration Tmin
under the optimum labor allocation L0
for a given ideal workload W1 with a
certain interpersonal coordinative rate r.

min 0

1 0
0

0

{ | }

1 2
() []

2
1.414 , 0 []

T T L L

W rL r M
L

L r P
r

⎧⎪⎪ = =⎪⎪⎪⎪⎪⎪⎪ = − +⎨⎪⎪⎪⎪ ⎡ ⎤⎪ = ≠⎪ ⎢ ⎥⎪⎪⎩ ⎢ ⎥⎪

26 Quantitative
advantage of
human brain

(Theorem 9.1)

The magnitude of the memory capacity
of the brain is tremendously larger than
that of the closest species.

27 Qualitative
advantage of
human brain

(Theorem 9.2)

The possession of the abstract layer of
memory and the abstract reasoning
capacity makes the human brain
profoundly powerful on the basis of the
quantitative advantage.

28 Generic forms
of information

(Theorem 9.4)

There are four categories of internal
information I in the brain known as
knowledge (Ik), behaviors (Ib),
experience (Ie), and skills (Is).

(, , ,)k b e s=I I I I I

29 The nature of
intelligence

(Theorem 9.5)

Intelligence I is a capability that
transfers between data, information,
knowledge, and behaviors known as the
perceptive intelligence Ip, cognitive
intelligence Ic, instructive intelligence
Ii, and reflective intelligence Ir.

 p

 c

i

r

: (Perceptive)

 || : (Cognitive)
 || : (Instructive)
 || : (Reflective)

D I

I K
I B
D B

→

→
→
→

I I

I

I

I

30 Dynamic
properties of
neural clusters

(Theorem 9.9)

The LTM is dynamic. New neurons (to
represent objects or attributes) are
assigning, and new synaptic connections
(to represent relations) are creating and
reconfiguring all the time in the brain.

31 Establishment
cycle of LTM

(Theorem 9.11)

The cycle of LTM establishment
requires at least 24 hours, where the 24-
hour cycle includes any kind of
combinations of awake, asleep, and
siesta.

LTM establishment
 cycle ≥ 24 [hrs]

32 Holism
complexity of
systems

(Theorem 10.1)

Within the 7-level magnitudes of
systems, known as the empty, small,
medium, large, giant, immense, and
infinite systems, almost all systems are
too complicated to be cognitively
understood or mentally handled as a
whole, except small systems or those
that can be decomposed into small
systems.

© 2008 by Taylor & Francis Group, LLC

1328 Appendix E Wang’s Laws of SE

33 Generic
topology of
normalized
systems

(Theorem 10.2)

Systems tend to be normalized into a
hierarchical structure in the form of a
complete n-nary tree.

34 System gain of
functionality

(Theorem 10.4)

System conjunction or composition
between two systems S1 and S2 creates
new relations ∆R12 and/or new
behaviors (functions) ∆B12 that are
solely a property of the newly
established super system S, which can
be determined by the sizes of the two
intersected component sets #C1 and #C2.

∆R12 = #R - (#R1 + #R2)

 = (#(C1 + C2))2 –

 ((#C1)2 +(#C2)2)

 = 2 (#C1 • #C2)

35 System
mutation

(Theorem 10.5)

The gradual increment of quantity of
system, i.e., ∆C or ∆R, in a system
beyond the point of the critical mass Qcm
triggers the abrupt generation of
functionality (quality) Fcm of the system.

36 System gain of
work

(Theorem 10.6)

Work done by a system is always
greater than any of its components, but
must not greater than the sum of those
of its components

1
() (), 100%

() max(()),

n

i
i

i i S

W S W C

W S W C C E

η
=

⎧⎪⎪ ≤ ≤⎪⎪⎨⎪⎪ > ∈⎪⎪⎩

∑

37 Conservative
work of
equilibrium
systems

(Theorem 10.9)

The sum of all types of work is always
zero in an equilibrium system, where
W(Ci) is the abstract work of a system
component Ci.

1
() 0

n

i
i

W C
=

=∑

38 Conditions of
system self-
organization

(Theorem
10.10)

The necessary and sufficient condition
of self-organization is the existence of at
least one minimum on the state curve of
a system f(x), which satisfies the
following requirements, where f ’(x) and
f ’’(x) are the first and second order
derivatives of f(x) on (a, b).

 ' (| ()) = 0

''(| ()) 0
min min

min min

f x x a, b

f x x a, b

⎧ ∈⎪⎪⎪⎨⎪ ∈ ≠⎪⎪⎩

 ' (| ()) = 0

''(| ())< 0

''(| ())> 0

min min

min

min

f x x a, b

f x x x a, b

f x x x a, b

⎧⎪ ∈⎪⎪⎪⎪ < ∈⎨⎪⎪⎪ > ∈⎪⎪⎩

39 System
synchroni-
zation

(Theorem
10.11)

A system reaches its maximum utility
maxS when all components’ efforts

1 2 and S S are synchronized.

1 2

max 1 2| | | |

S S S

S S S

⎧⎪ = +⎪⎪⎨⎪ = +⎪⎪⎩

40 System
dissimilation

Any system tends to undergo a
continuous degradation that leads to the
eventual loss of its designed utility and

© 2008 by Taylor & Francis Group, LLC

 Appendix E Wang’s Laws of SE 1329

(Theorem
10.12)

against its initial purposes to form the
system.

41 Cognitive
complexity of
software

(Theorem
10.14)

The cognitive complexity of a software
system S, Cc(S), is a product of the
operational complexity Cop(S) and the
architectural complexity Ca(S).

1 1

1

1

() () ()

{ (,)}

{ OBJ()

+ OBJ()} [FO]

C k

CLM

C

f op a

n m

k i
n

k
k
n

k
k

S S C S C S

w k i

CLM

C

= =

=

=

= •

= •∑∑

∑

∑

42 Gain of
management

(Theorem 11.1)

Management is required to reduce the
complexity of working group
organization, to improve the efficiency
of groups (e(n)), and to simplify the
forms of interpersonal coordination.

2

2

()
() = 100%

()
()

(1) 100%
()
n+1(1) 100%
(1)

m

m n
e n

C n
c n
c n

n n -

∆

= −

= −

i

i

i
i

43 Gain of
division of
labor

(Theorem 11.2)

The relative gain gr(k) via division of
labor in work organization is
proportional to the repetitive times k at
specialized subtask-level, where c is a
positive constant, 1 < c < e.

-11

() - ()
() = 100%

()
()

(1-) 100%
()

1
()

(1-) 100%

d
r

d

k

ki

E k E k
g k

E k
E k
E k

e
c
k

=

=

=

∑

i

i

i

44 Adaptive
economic
equilibrium

(Theorem 12.1)

A market with autonomic interactions
between demands D and supplies S is a
self-regulated and self-adaptive system,
where any change in demand, supply, or
both will be autonomously adjusted via
the leverage of price P to an
equilibrium.

Market conservation Maximizing profits
[] []

Lemma 12.xx Lemma 12.xx

D D
P P

S S

D D
P P

S S

↑→ ↓→⎧ ⎫⎪ ⎪⎪ ⎪→ ↑ ⇒ → ↓⎪ ⎪⎪ ⎪→ →↓ ↑⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪↓→ ↑→⎪ ⎪⎪ ⎪→ ↓ ⇒ → ↑⎪ ⎪→ →⎪ ⎪↑ ↓⎪ ⎪⎪ ⎪⎩ ⎭

+

45 Formal
Economic
Model of
Software
Engineering
Cost
(FEMSEC)

(Theorem 12.3)

On the basis of the workload-driven
project organization laws, the expected
project cost C can be rigorously
determined with the optimal labor
allocation L0 and the shortest duration
Tmin by the following 6 steps:

1) Estimate the project size pS

2) Determine the ideal workload W1
3) Allocate the optimal labor L0
4) Determine the shortest duration Tmin
5) Determine the expected workload W
6) Determine the expected project
 cost C

1
= (+4 +)[kLOC]

6p max exp minS S S S

 1 12 [PM]pS
W

ρ
= •

0
1.414 []L P

r
⎡ ⎤= ⎢ ⎥
⎢ ⎥

min 1 0
0

1 2()
2

T W rL r
L

= − +

1

2
0 0

1
2

 (2) [PM]

W W

rL rL

=

− +

0 [$]min LC L •T •C=

© 2008 by Taylor & Francis Group, LLC

1330 Appendix E Wang’s Laws of SE

46 Basic essences
for evolution

(Theorem 13.1)

The basic evolutional needs of mankind
are to preserve both the species’
biological traits via gene pools, and the
cumulated knowledge via various
information systems.

47 Organiza-
tional
coordination
efficiency

(Theorem 13.3)

The natural constraints for social
organization that forces the architecture
of large groups to be evolved and
adapted to tree-form hierarchical
structures in an organization is the need
to maintain acceptable coordinating
efficiency at each level of the
organization tree.

48 Time-oriented
optimization
for large-scale
project
organization

(Theorem 13.4)

Time-oriented optimization for large-
scale project organization states that in
order to further reduce the shortest
duration Tmin of an entire large-scale
project constrained by Theorem 8.7, the
optimal form of organization is to
evenly partition the whole project into n
lightly-coupled parallel subprojects that
may be conducted by independent
groups with a shorter duration Ti

min, 1 ≤ i
≤ n, so that an average n-fold time
deduction can be gained.

min min
1

min

1

1

n
i i

i
T T

n

T
n

ϖ

=
=

= +

∑

49 The n-fold
error
reduction
structure

(Theorem 13.5)

The error rate of a work product can be
reduced up to n folds from the average
error rate of individuals re in a
coordinative group via n-nary peer
reviews based on the random nature of
error distributions and independent
nature of error patterns of individuals.

1
()

n

e e
k

R r k
=

= ∏

50 Power of
multi-
disciplinary
knowledge

(Theorem 14.2)

The ratio of knowledge space Ω
Σ

between the knowledge of an expert
with coherently m disciplinary
knowledge KΣ and that of a group of m
experts with separated individual
disciplinary knowledge K

m
 is shown in

the mathematical model, where n is the
number of average knowledge objects or
concepts in the disciplines.

2

m
2

i=1

2

2

(,)

()!
2!(-2)!

()!
2!(-2)!

()

C
C

m

m n

n

K
m n

K

mn
mn

m n
n

mn
m

mn

Σ
Σ

•

Ω =

=

=

≈ =

∑

© 2008 by Taylor & Francis Group, LLC

 Appendix F Wang’s Formal Principles of SE 1331

Appendix F

WANG’S
FORMAL PRINCIPLES

OF SOFTWARE ENGINEERING

No Principle Description Mathematical model

1 Polymorphous
solutions

(Theorem 1.6)

The solution space SS of software
engineering for a given problem is a
product of the number of possible
design options Nd and the number of
possible implementation options Ni.

d iSS N N= •

2 Formalization
of principles

(Theorem 2.1)

The empirical principles for software
engineering are heuristic and data-
based; while the formal principles for
software engineering are rigorous and
mathematics-based, which are elicited
and refined from the empirical
principles.

3 Validation of
abstract
propositions

(Theorem 3.2)

The abstract and information-based
propositions and work products, such as
a design or a specification of a system,
are bounded by logical verifications,
mathematical proofs, systematical
reviews, behavioral simulations and
tests, and/or in field trials.

4 Compatible
intelligent
capability

(Theorem 3.4)

Natural intelligence (NI) and artificial
intelligence (AI) are compatible by
sharing the same mechanisms of
intelligent capability.

AI ∝ NI

5 Deductive
inference

Given an arbitrary nonempty set X, let
p(x) be a proposition for ∀x ∈ X, a
specific conclusion on ∃a ∈ X, p(a) can

∀x ∈ X, p(x) ∃a ∈ X, p(a)

or

© 2008 by Taylor & Francis Group, LLC

1332 Appendix F Wang’s Formal Principles of SE

(Theorem 3.6) be drawn as in the mathematical models. (∀x ∈ X, p(x) ⇒ q(x))

(∃a ∈ X, p(a) ⇒ q(a))

6 Inductive
inference

(Theorem 3.7)

If ∃a, k, succ(k) ∈ X, p(a) and p(k) ⇒
p(succ(k)) are three valid propositions,
then a generic conclusion on ∀x ∈ X,
p(x) can be drawn as in the
mathematical models.

((∃a ∈ X, p(a)) ∧
(∃k, succ(k) ∈ X, (p(k) ⇒
p(succ(k)))) ∀x ∈ X, p(x)

or
((∃a ∈ X, p(a) ⇒ q(a)) ∧
(∃k, succ(k) ∈ X, ((p(k) ⇒
q(k)) ⇒ (p(succ(k)) ⇒
q(succ(k)))))

∀x ∈ X, p(x) ⇒ q(x)
7 Abductive

inference

(Theorem 3.8)

Based on a general implication ∀x ∈ X,
p(x) ⇒ q(x), a specific conclusion on ∃a
∈ X, p(a) can be drawn as in the
mathematical models.

(∀x ∈ X, p(x) ⇒ q(x))

(∃a ∈ X, q(a) ⇒ p(a))
or
(∀x ∈ X, p(x) ⇒ q(x) ∧ r(x)
⇒ q(x)) (∃a ∈ X, q(a) ⇒
(p(a) ∨ r(a)))

8 Analogical
inference

(Theorem 3.9)

Based on a specific predicate ∃a ∈ X,
p(a), a similar specific conclusion can
be drawn iff ∃x ∈ X, p(x) as in the
mathematical models.

∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a)
 ∃b ∈ X ∧ b ≠ a, p(b)

or

(∃x ∈ X, p(x) ∧ ∃a ∈ X, p(a)
⇒ q(a)) (∃b ∈ X ∧ b ≠ a,
p(b) ⇒ q(b))

9 Necessary and
sufficient
conditions of
software usage

(Theorem 3.10)

Those that warrant the requirements for
software solutions are the system
behaviors of repeatability,
programmability, and run-time
determinability.

10 Principle of
abstraction

(Theorem 4.2)

Given an arbitrary set X and any
property p, there is a set A such that the
elements of A are exactly those members
of X which have the property p.

A = {a | a ∈ X ∧ p(a)}

11 Primary types
of
computational
objects

(Theorem 4.4)

The RTPA type system T encompasses
17 primitive types elicited from
fundamental computing needs.

T = {N, Z, R, S, BL, B, H, P, TI, D,
DT, RT, ST, @eS, @tTM,
@int ,ⓢsBL}

12 Type
equivalence

Two types T1 and T2 are equivalent, iff
the domain of type T1 is either identical

T1(x) = T2(y) ⇒ T1(x) T2(y)
or

© 2008 by Taylor & Francis Group, LLC

 Appendix F Wang’s Formal Principles of SE 1333

(Theorem 4.5)

to or a subset of that of T2.

T1(x) ⊆ T2(y) ⇒ T1(x) T2(y)

13 Meta software
processes

(Theorem 4.6)

The RTPA meta process system P
encompasses 17 fundamental
computational operations elicited from
the most basic computing needs.

P = {:=, , ⇒, ⇐, , , ,

| , | , @, , ↑, ↓, !, ⊗, , §}

14 Software
composing
rules

(Theorem 4.7)

The RTPA process relation system R
encompasses 17 fundamental algebraic
and relational operations elicited from
basic computing needs.

R = {→, , |, |…|…,

*R , R+
,

iR , , , ||,

∯ , |||, », , t, e, i}

15 The primitive
computational
behaviors

(Theorem 5.2)

The most fundamental computational
operations are logical, arithmetic, and
memory access operations on bits.

16 Nature of
requirements
and
specifications

(Theorem 5.3)

Requirement elicitation focuses on
desired functions of a system δ, while
system specification focuses on the
entire behavioral space of the system Ω,
including both δ and the undesired but
potential system transitions represented
by δ in the behavioral space.

SΩ = # #δ δ+

 = #S • #∑

17 The
weaknesses of
automata

(Theorem 5.4)

Automata and FSMs as a system
composition and modeling method built
on event-driven mechanisms are
inadequate to model the complete basic
computational requirements, particularly
the lack of the descriptive power for:

a) System architectures and data objects
 modeling;
b) Nonevent-driven transitional process
 modeling;
c) Detailed behavioral descriptions;
d) Mathematical operations and
 processing of complicated languages.

18 Fundamental
computational
capabilities

(Theorem 5.5)

The essential capabilities for
computation are as follows:

• A memory for storing bit information;
• A simple addressing capability for
 accessing information in the memory;
• Read/write operations for retrieving or

© 2008 by Taylor & Francis Group, LLC

1334 Appendix F Wang’s Formal Principles of SE

 updating the memory;
• A conditional and quantitative
 evaluation capability for interpreting
 the inputted information;
• A stored-information-driven
 mechanism for determining the next
 step.

19 Primitive form
of information

(Theorem 7.1)

The most fundamental form of
information that can be represented and
processed is binary digit where k = b =
2.

⎡ ⎤
⎡ ⎤2

:

 log

log []

b b

b

I f M S

M

M bit

= →

=

=

20 Relationship
between a
hypothesis
and a theory

(Theorem 8.1)

The necessary and sufficient conditions
for a hypothesis Hg(C, O, G, P, F) to be
proven as a theory T are iff it fulfills the
following criteria.

Hg T, iff C ∧ O ∧ G ∧ P ∧
F = T

21 Engineering
Maturity
Model (EMM)

(Theorem 8.3)

The applied engineering disciplines
have four maturity levels known as the
levels of emergence (L1), art (L2),
engineering (L3), and post-engineering
(L4).

1 2 3 4:EMM L L L L⊆ ⊆ ⊆

22 Incompre-

ssible
workload

(Theorem 8.5)

A given workload W1 in software
engineering can not be compressed by
any kind of labor allocation, and in the
best case when there is only one person
involved, the minimum workload W =
W1 = Wmin may be reached.

W ≥ W1 = Wmin

23 Exchange-

ability from
labor to time

(Theorem 8.8)

The exchange rate from labor to time
γL∼T in a coordinative work organization
is determined by the ratio between the
increment of time ∆T and the increment
of labor ∆L.

1

0 1
 [M/P]

-

L T

min

T
L

T - T
L L

γ ∆=
∆

=

∼

24 Exchange-
ability from
time to labor

(Theorem 8.9)

The exchange rate from time to labor
γT∼L in a coordinative work organization
is determined by the ratio between the
increment of labor ∆L and the increment
of time ∆T.

0 1

1 min

 -
 [P/M]

T L
L
T

L L
T - T

γ ∆=
∆

=

∼

25 Constraint on
group size in
coordinative
work

There exists an upper limit of group size
Smax in coordinative work organization
in software engineering. Therefore,
large projects must be partitioned into
multiple parallel groups that each of the
groups obeys the same natural

Smax = max (L0(r)) = 20 [P]

© 2008 by Taylor & Francis Group, LLC

 Appendix F Wang’s Formal Principles of SE 1335

(Theorem 8.10) constraint.

26 The risk of
nonoptimal
work
organization

(Theorem 8.11)

The risks R due to irrational decisions
of work organization are proportional to
the coordination rate r in a project. That
is, the higher the r, the higher the risk
under nonoptimal labor allocation.

r∝R

27 Cognitive
Model of
Memory
(CMM)

(Theorem 9.3)

The architecture of human memory is
parallel configured by the Sensory
Buffer Memory (SBM), Short-Term
Memory (STM), Long-Term Memory
(LTM), and Action-Buffer Memory
(ABM).

CMM SBM

 || STM
 || LTM
 || ABM

28 Generic forms
of learnings

(Theorem 9.6)

There are sufficiently four categories of
learning L known as those of knowledge
(Lk), behaviors (Lb), experience (Le),
and skills (Ls).

(, , ,)k b e s=L L L L L

29 Representa-

tion of
learning
results

(Theorem 9.7)

The internal memory in the form of the
OAR structure can be updated by a
conjunction between the existing OAR
and the newly created sub-OAR.

OAR’ ST OARST ∪
 sOARST
 = OARST ∪ (Os, As, Rs)

30 Principal
intelligent
advantages

(Theorem 9.8)

On the basis of two principal advantages
known as the qualitative properties
(Theorem 9.1) and quantitative
properties (Theorem 9.2), humans gain
the power as the most intelligent species
in the world.

31 Cognitive
mechanism of
sleeping

(Theorem 9.10)

Sleeping is a subconscious process for
LTM establishment.

Cognitive purpose of sleep
 = LTM establishment

32 Mechanism of
LTM
establishment

(Theorem 9.12)

The entire memory of information
represented as an OAR model in the
brain is updated by incorporating the
sub-OARs formed in STM based on the
following selective criteria:

 a) A new sub-OAR in STM was

more frequently used in the

© 2008 by Taylor & Francis Group, LLC

1336 Appendix F Wang’s Formal Principles of SE

previous 24 hours;

 b) A new sub-OAR in STM was
related to the existing OAR in
LTM at a higher level of the
neural cluster hierarchy;

 c) A new sub-OAR in STM was
given special attention so that it
obtained a higher retention
weight.

33 Equivalence
between open
and closed
systems

(Theorem 10.3)

An open system S and a closed system

S in the same context is transformable
when their environments SΘ and SΘ

(S C SΘ = ⊄) are taken into

consideration, respectively.

S

S

 = S

S =

S

S

⎧⎪ Θ⎪⎪⎨⎪ Θ⎪⎪⎩

34 The bottleneck
principle of
systems

(Theorem 10.7)

The output work of a serial system W(Ss)
is determined by the least powerful
component of the system.

W(Ss) = min (W(Ci) |
 Ci ∈ Cs ∧ 1 ≤ i ≤ n))

35 The linear
sum principle
of systems

(Theorem 10.8)

The output work of a parallel system
W(Sp) is a sum of the work done by all
its components less the overhead of the
system ϖ.

n

1
() () - ,

 , > 0

p i
i

i p

W S W C

C E

ϖ

ϖ
=

=

∈

∑

36 Orientation of
software
engineering
complexity
theories

(Theorem
10.13)

The complexity theories of computation
and software engineering are different.
The former is focused on the problems
of high throughput complexity that are
computing time efficiency centered;
while the latter puts emphases on the
problems of functional complexity that
are human cognition time and workload
oriented.

37 Normalized
software
system
architectures

(Theorem
10.15)

Components of different subsystems
should not be coupled directly, rather
than be invoked through their top layer
components shared in the same
subsystem.

38 Properties of
games

(Theorem 11.3)

A formal game G is deterministic and
conservative. That is, once the game G =
(P, D, M, S) is set, the properties of G
are determined and predictable, but not
changeable by any player in the game.

© 2008 by Taylor & Francis Group, LLC

 Appendix F Wang’s Formal Principles of SE 1337

39 Conditions of
win-win
decisions

(Theorem 11.4)

A win-win decision can be achieved
when the following condition of a
nonzero-sum game is satisfied, where σ
is the sum of the game that is a positive
nonzero constant, si is the expected
score of player i, and ns is the number of
sets of matches in the game.

1

1 n

i
s i

s
n

σ
=

≥ ∑

40 Property of
decision grids

(Theorem 11.5)

The decision distance Dt in a decision
grid is a constant that is determined by
the number of decision trials ti spent in
the time series, where dr and dw
represent numbers of right and wrong
decisions, respectively.

t i r wD t d d= = +

41 Random
series of
unlimited
trials

(Theorem 11.6)

Random decisions, or equal probability
right and wrong trials, will not lead to a
success in any series of decisions under
unlimited trials.

42 Random
series of
limited trials

(Theorem 11.7)

Random decisions, or equal probability
right and wrong trials, will not lead to a
success in any series of decisions under
limited trials.

43 Conditions of
quality control
systems

(Theorem 11.8)

The necessary conditions for
implementing a quality control system
for a given product, service, or system
are that all attributes of its quality can
be:
 a) Abstractly identified
 b) Quantitatively defined, and
 c) Independently measurable.

44 Predictability
of new
equilibrium

(Theorem 12.2)

A newly established equilibrium on
price P’e is determined by the effect P’
and feedback effect P’’ of the driving
forces deviating from the current
equilibrium, and the increment of price
caused by the shifting of equilibriums is
as shown in the mathematical models,
where ∆P may be positive or negative
that represents a upward or downward
shifting of the current equilibrium,
respectively.

' - ''
' ''

2
' ''

, ' '
2

e

e

P PP P

P P P P

= +

+= >

' -

' ''
, ' '

2

e e

e e

P P P

P P
P P P

∆ =

+= − >

45 Ultimate
objective of
software
engineering

Automatic code generation is the only
silver bullet to overcome the natural
obstacles of the conservative software
development productivity, to reduce
software development costs, and to

© 2008 by Taylor & Francis Group, LLC

1338 Appendix F Wang’s Formal Principles of SE

(Theorem 12.4)

improve software quality as a result of
reduced human involvement and
uncertainty.

46 Exponential
Software
Legacy
Maintenance
Costs (SLMC)

(Theorem 12.5)

The ratio of maintenance cost Cm in a
software development organization,
rm%, tends to exponentially increase
over time t, and it is proportional to the
total number of legacy systems NL that
the organization produced.

47 Strength of
motivations

(Theorem 13.2)

A motivation M is proportional to both
the strength of emotion |Em| and the
difference between the expectancy of
desire E and the current status S, of a
person, and is inversely proportional to
the cost to accomplish the expected
motivation C, where 0≤ |Em| ≤ 4, 0 ≤
(E,S) ≤ 10, and 1 ≤ C ≤ 10.

2.5 | | (-)mE E S
M

C
• •=

48 Mechanism of
Software
Maintenance
Crisis (SMC)

(Theorem 14.1)

A software development organization
may face a situation known as the
software maintenance crisis, in which
the ratio of the maintenance costs rm% is
approaching 100% of the total costs that
the organization spent.

49 Rigorous
levels of
empirical and
theoretical
knowledge

(Theorem 15.1)

An empirical truth is a truth based on or
verifiable by observations, experiments,
or experiences. In contrary, a theoretical
proposition is an assertion based on
formal theories or logical inferences.

50 Necessary and
sufficient
conditions of
IC

(Theorem 15.3)

The conditions of IC, CIC, are the
possession of event Be, time Bt, and
interrupt Bint driven computational
behaviors.

(, ,)IC e t intC B B B=

51 Necessary and
sufficient
conditions of
AC

(Theorem 15.3)

The conditions of AC, CAC, are the
possession of goal Bg and inference Binf
driven computational behaviors, in
addition to the event Be, time Bt, and
interrupt Bi driven behaviors.

(, , , ,)AC g inf e t intC B B B B B=

© 2008 by Taylor & Francis Group, LLC

 Appendix G The Type System of SE 1339

Appendix G

THE TYPE SYSTEM OF
SOFTWARE ENGINEERING

No. Primitive
Type

Syntax for
Variables

Syntax for
Constants

Mathematical
Domain

1 Natural number N N* {0, ..., +∞}
2 Integer Z Z* {-∞, ..., +∞}
3 Real R R* {-∞, ..., +∞}
4 String S S* {0, ..., #(S)}
5 Boolean BL BL* {T, F}
6 Byte

B B* {0, ..., 256}

7 Hexadecimal H H* {0, ..., +∞}
8 Pointer P P* {0, ..., +∞}
9 Time TI =

Hh:mm:ss:ms
TI* =
hh:mm:ss:ms
*

hh ∈ {0, ..., 23},
mm, ss ∈ {0, ..., 59},
ms ∈ {0, ..., 999}

10 Date

D =
Yy:MM:dd

D* =
yy:MM:dd*

yy ∈ {0, ..., 99},
MM ∈ {1, ..., 12},
dd ∈ {1, ..., 31}

11 Date/Time DT =
yyyy:MM:dd:
hh:mm:ss:ms

DT* =
yyyy:MM:dd:
hh:mm:ss:ms
*

yyyy ∈ {0, ..., 9999},
MM ∈ {1, ..., 12},
dd ∈ {1, ..., 31},
hh ∈ {0, ..., 23},
mm, ss ∈ {0, ..., 59},
ms ∈ {0, ..., 999}

12 Run-time
determinable

RT –

–

© 2008 by Taylor & Francis Group, LLC

1340 Appendix G The Type System of SE

type
13 System

architectural
type

ST –

–

14 Event @eS – @eS ∈ §
15 Timing @tTM – @tTM ∈ §
16 Interrupt @int – @int ∈ §
17 Status ⓢsBL – {T, F}

© 2008 by Taylor & Francis Group, LLC

 Appendix H Meta Processes of SE 1341

Appendix H

META PROCESSES OF
SOFTWARE ENGINEERING

No. Meta Process Notation Syntax

1 Assignment := yT := xT, T ∈ T

2 Evaluation expBL ∈ {T, F}, expN ∈ PN

3 Addressing ⇒ idT ⇒ MEM[ptrP] T

4 Memory allocation ⇐ idT ⇐ MEM[ptrP] T

5 Memory release idT MEM[⊥]T

6 Read MEM[ptrP]T xT

7 Write xT MEM[ptrP]T

8 Input | PORT[ptrP]T | xT

9 Output | xT | PORT[ptrP]T

10 Timing

@ @tTM @ §tTM

TM = yy:MM:dd
 | hh:mm:ss:ms
 | yy:MM:dd:hh:mm:ss:ms

11 Duration @tnTM ∆ §tnTM + ∆nTM

12 Increase ↑ ↑(nT)

13 Decrease ↓ ↓(nT)

14 Exception detection ! ! (@eS)

15 Skip ⊗ ⊗

16 Stop

17 System § §(SysIDS)

© 2008 by Taylor & Francis Group, LLC

 Appendix I Algebraic Process Relations of SE 1343

Appendix I

ALGEBRAIC
PROCESS RELATIONS OF

SOFTWARE ENGINEERING

No. Process Relation Notation Syntax
1 Sequence → P → Q
2 Jump P Q

3 Branch | expBL = T → P

| ~ → Q

4 Switch | …
 …
| …

 expiT = i
 → Pi

| ~ → ⊗

where T ∈ {N, Z, B, S}

5 While-loop *R

exp =
R

F

BL T
P

6 Repeat-loop
 R+

 P →
exp =
R

F

BL T
P

7 For-loop iR

1

n

i
R
=

N

N
P(iM)

8 Recursion 0

i n
R
=N N

PiM PiM-1

9 Function call P F

© 2008 by Taylor & Francis Group, LLC

1344 Appendix I Algebraic Process Relations of SE

10 Parallel || P | | Q
11 Concurrence ∯ P ∯Q

12 Interleave ||| P ||| Q
13 Pipeline » P » Q
14 Interrupt P Q
15 Time-driven dispatch t @tiTM Pi
16 Event-driven dispatch e @eiS Pi
17 Interrupt-driven dispatch i @inti Pi

© 2008 by Taylor & Francis Group, LLC

 Appendix J Deductive Semantics of SE 1345

Appendix J

DEDUCTIVE SEMANTICS
OF SOFTWARE ENGINEERING

Meta Processes (RTPA)

Notation Syntax Semantics

Assignment

:=

yT := xT,

 T ∈ T

2

(y := x) # (y := x)

0 1

1 2

0 1

(y := x) (y := x)

 (,)

 (,)

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

RT RT RT RT

RT RT RT RT

RT RT
RT
RT RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x x

R R

R R

θθ

0

0 1

x y
t

(t , t]

Evaluation

expBL ∈
 {T, F},

expN ∈ PN

2

() # ()

0 1

1 2

0 1

1 2

1 2'

(())

(())

 (,)

 (,)

()
()

BL BL BL BL

BL BL

BL BL

B BL BL
BL BL

T T
F F

T exp S exp

i j
i j

i j
i j

exp

exp

f exp
t s

v t s

v t s

exp
exp

R R

R R

θ

θ

δ

→ →

= =

= =

→
∂ →

∂ ∂

=

=

⎛ ⎞
⎜ ⎟⊥⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0 1(t , t]
(t , t]
(t , t]

© 2008 by Taylor & Francis Group, LLC

1346 Appendix J Deductive Semantics of SE

2

() # ()

0 1

1 2

0 1

1 2

()

()

 (,)

 (,)

()
()

T T T T

T T

T T

T T T

T T

T T

T exp S exp

i j
i j

i j
i j

exp

exp

f exp
t s

v t s

v t s

exp
exp
n n

R R

R R

θ

θ

δ

→ →

= =

= =

⊥

→
∂ →

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0 1(t , t]
(t , t]

Addressing

⇒

idT ⇒
MEM[ptrP] T 2

(id ptr) # (id ptr)

0 1

1 2

0 1

)

()

(id ptr)

(,)

 (,)

(

S P S P

S P

S P

S P
S
S S H

T S

i j
i j

i j
i j

id ptr

f
t s

v t s

v t s

id
id id

R R

R R

θ

θ

π

⇒ ⇒

= =

= =

⊥

⇒

∂
⇒

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

id ptr
t

(t , t]

Memory
allocation

⇐

idT ⇐
MEM[ptrP] T 2

(id MEM[ptr]) # (id MEM[ptr])

0 1

1 3

0 1

(id MEM[ptr])

(id MEM[ptr])

(,)

 (,)

() MEM[]

S P RT S P RT

S P RT
S
S S H P RT

S P RT

S P RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

id
id id ptr

R R

R R

θ

θ

π

⇐ ⇐

= =

= =

⊥ ⊥

⇐
∂ ⇐

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

id ptr MEM
t

(t , t]

© 2008 by Taylor & Francis Group, LLC

 Appendix J Deductive Semantics of SE 1347

Memory
release

idT
MEM[⊥]T 2

(MEM[]) # (MEM[])

0 1

1 3

0 1

() MEM()

(MEM[])

(MEM[])

 (,)

 (,)

()

⊥ ⊥

⊥

⊥

S RT S RT

RT P RT
S S H P RT

S RT

S RT

T id S id

i j
i j

i j
i j

id ptr

id

f id
t s

v t s

v t s

id

R R

R R

θ

π

θ

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⊥ ⊥⎝ ⎠

0

0 1

id ptr MEM
t

(t , t]

Read

MEM[ptrP]T
 xT 2

(MEM[ptr] x) # (MEM[ptr] x)

0 1

1 3

0 1

(MEM[ptr] x)

(MEM[ptr] x)

(,)

 (,)

P RT RT P RT RT

P RT RT

P RT RT

RT P P RT
RT
RT P RT

 T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x ptr MEM[ptr]
t

(t , t]

Write

xT
MEM[ptrP]T 2

(MEM[ptr] x) # (MEM[ptr] x)

0 1

1 3

0 1

(x MEM[ptr])

(x MEM[ptr])

(,)

 (,)

P RT RT P RT RT

RT P RT

RT P RT

RT P P RT
RT
RT P RT

 T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x ptr MEM[ptr]
t

(t , t]

© 2008 by Taylor & Francis Group, LLC

1348 Appendix J Deductive Semantics of SE

Input

|

PORT[ptrP]T
| xT 2

(PORT[ptr] x) # (PORT[ptr] x)

0 1

1 3

0 1

(PORT[ptr] x)

(PORT[ptr] x)

 (,)

 (,)

PORT[] PORT[]

P RT RT P RT RT

P RT RT

P RT RT

P P RT RT
P
P P RT P RT

 T S

i j
i j

i j
i j

f
t s

v t s

v t s

ptr
ptr ptr ptr

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜
⎝ ⎠

0

0 1

ptr PORT[ptr] x
t

(t ,t] ⎟

Output

|

xT |
PORT[ptrP]T 2

(x PORT[ptr]) # (x PORT[ptr])

0 1

1 3

0 1

(x PORT[ptr])

(x PORT[ptr])

(,)

 (,)

RT P RT RT P RT

RT P RT

RT P RT

RT P P RT
RT
RT P RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x ptr PORT[ptr]
t

(t , t]

Timing
@

@tTM @ §tTM

TM =
yy:MM:dd
 |
hh:mm:ss:ms
 |
yy:MM:dd:hh:m
m:ss:ms

2

(@ t @§t) # (@ t @§t)

0 1

1 2

0 1

(@ t @§t)

(@ t @§t)

(,)

 (,)

§t
§t §t

TM TM TM TM

TM TM

TM TM

TM TM
TM
TM TM

T S

i j
i j

i j
i j

f
t s

v t s

v t s

R R

R R

θ

θ

= =

= =

⊥

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

§t @t
t

(t , t]

© 2008 by Taylor & Francis Group, LLC

 Appendix J Deductive Semantics of SE 1349

Duration

@tnTM ∆ §tnTM
+ ∆nTM 2

(@ t §t) # (@ t §t)

0 1

1 3

0 1

d

(@ t §t + d)

(@ t §t + d)

 (,)

 (,)

§t
§t d §t

TM TM TM TM

TM TM Z

TM TM Z

N
TM N TM
TM
TM N TM N

T S

i j
i j

i j
i j

f
t s

v t s

v t s

d

R R

R R

θ

θ

∆ ∆

= =

= =

∆ ⊥

∆ ∆

∂ ∆ ∆
∂ ∂

=

=

∆⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟∆ + ∆⎝ ⎠

0

0 1

§t d @t
t

(t , t]

Increase

↑

↑(nT)

2

((x)) # ((x))

0 1

1 1

0 1

((x))

((x))

(,)

 (,)

1

RT RT

RT

RT

RT
RT

RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x

R R

R R

θ

θ

↑ ↑

= =

= =

↑
∂ ↑

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟+⎝ ⎠

0

0 1

x
t

(t , t]

Decrease

↓

↓(nT)

2

((x)) # ((x))

0 1

1 1

0 1

-

((x))

((x))

(,)

 (,)

1

RT RT

RT

RT

RT
RT

RT

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x

R R

R R

θ

θ

↓ ↓

= =

= =

↓
∂ ↓

∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

x
t

(t , t]

© 2008 by Taylor & Francis Group, LLC

1350 Appendix J Deductive Semantics of SE

Exception
detection

!

! (@eS)
2

(!(@e) # (!(@e)

0 1

1 3

0 1

(!(@e)

(!(@e)

 (,)

 (,)

@
@ @

S S

S

S

P P S
S
S P S

S

T S

i j
i j

i j
i j

f
t s

v t s

v t s

e
e ptr e

R R

R R

θ

θ

= =

= =

∂
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⊥ ⊥⎜ ⎟
⎜ ⎟
⎝ ⎠

0

0 1

@e ptr PORT(ptr)
t

(t , t]

Skip
⊗

⊗

1 1

1

1

1

2
1

() # ()

0 1

1 2

0 1

() ()

()

(,)

 (,)

\

⊗

k k k k

k k

k k

k k

k k

T P P S P P

i j
i j

i j
i j

P P

P P

S

P P

f P P
t s

v t s

v t s

S
S S

R R

R R

θ

θ θ

− −

−

−

−

−

= =

= =

⊥

∂=
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

k-1 kP P

0

0 1

S S
t

(t , t]

Stop

2

(§) # (§)

0 1

1 2

0 1

() (§)

(§)

(,)

 (,)

\
P

T P S P

i j
i j

i j
i j

§

§ P

S

P

f P
t s

v t s

v t s

S
S S

R R

R R

θ

θ θ

= =

= =

⊥

∂=
∂ ∂

=

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

§ P

0

0 1

S S
t

(t , t]

© 2008 by Taylor & Francis Group, LLC

 Appendix J Deductive Semantics of SE 1351

System
§

§(SysIDS)

int

-1

-1

-1

-1

2

2

0

0

0

0

(§) (§)

{ (@)

 || (@)

 || (@)

 }

{ (@)

N

N

N

N

N

N

NT

BL F N

S

TM

S

S

e

t

e

n

i i
i

n

j j
j

n

k k
k

n

i i
SysShuntDown i

f
t s

f e P
t s

t P

int P

e P

R

R

R

R R

θ

θ

θ

=

=

=

= =

∂
∂ ∂

∂=
∂ ∂

=

int

-1

-1

0

0

 || (@)

 || (@)

 }

N

N

N

N

TM

S

tn

j j
j

n

k k
k

t P

int P

R

R
=

=

Process Relations (RTPA)

Notation Syntax Semantics

Sequence
→

P → Q 2

2 2

() # ()

0 1

() # ()

0 1

(# ()

0 1

() ()

() ()

 (,)

 (,)

 (,)

T P S P

P i j
i j

T Q S Q

Q i j
i j

T PQ S P Q

i j
i j

1P 1PQ

2Q 2PQ

P Q f P Q
t s

f P f Q
t s t s

v t s

v t s

v t s

V V
V V

R R

R R

R R

θ

θ θ

θ

= =

= =

∪

= =

∂→ →
∂ ∂

∂ ∂= →
∂ ∂ ∂ ∂

= →

=

⎛ ⎞
⎜ ⎟⊥ ⊥ ⊥⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

=

P Q PQ

0

0 1

1 2

P P

s s s
t

(t , t]
(t , t]

V V⎛ ⎞
⎜ ⎟
⎝ ⎠

Q

Q PQV V

© 2008 by Taylor & Francis Group, LLC

1352 Appendix J Deductive Semantics of SE

Jump

P Q

Branch
|

 expBL = T

 → P

| ~ → Q

2

2

2

() # ()

0 1

() # ()

0 1

(| ~)

(| ~)

 ()

 | ~ ()

 (,)

 | ~ (,)

()

RT

RT

BL

BL

BL
BL

T P S P

P i j
i j

T Q S Q

Q i j
i j

exp P Q

f exp P Q
t s

exp f P
t s

f Q
t s

exp v t s

v t s

exp

R R

R R

θ

θ

θ

θ

δ

= =

= =

⊥ ⊥ ⊥

→ →
∂ → →

∂ ∂
∂= →

∂ ∂
∂→

∂ ∂

= →

→

=

P Q PQ

0 1

1 2

exp S S S
(t , t]
(t , t 2-T

F
2P PQ

3Q 3PQ

V V
- V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠1 2'

]
(t , t]

2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

(,) (,)

 (,)

()

H

S H

T P S P T Q S Q

P i j Q i j
i j i j

T PQ S P Q

i j
i j

1P 1PQ

3Q 3PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
Q

V V

R R R R

R R

θ

θ θ

θ

π

= = = =

∪

= =

⊥ ⊥

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

=
− − −
−

P Q PQ

0 1

1 2

2 3

S S S addr
[t , t]
(t , t]
(t , t]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

© 2008 by Taylor & Francis Group, LLC

 Appendix J Deductive Semantics of SE 1353

Switch
 | … | …

 expiT = i

 → Pi
| ~ → ⊗

where

T∈{N, Z, B,S}

0

i i
2

i i

2

2

1

2

() # ()

0 1

(P | ~)

(P | ~)

= ()

 | ...

 | 1 ()

 | ()

= (,)

 | ...

 | 1

⊗

⊗

⊗

RT

RT

RT

RT

RT

RT

RT

0 0

0

n

T P S P

P i j
i j

i

exp

f exp
t s

exp 0 f P
t s

exp n f P
t s

exp n f
t s

exp 0 v t s

exp n

R R

θ

θ

θ

θ

θ

−

= =

=

→ →

∂ → →
∂ ∂

∂= →
∂ ∂

∂= − →
∂ ∂

∂= →
∂ ∂

= →

= − →
1 1

1

1

() # ()

0 1
 (,)

 |

(exp)

1

⊗RT

RT
RT

n n

n

0

n

T P S P

P i j
j

2 P G

2 P G

G

v t s

exp n

0 V V

n V V

n V

R R

δ

− −

−

−

=

⊥ ⊥ ⊥

= →

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟=
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

0 n-1

0

n-1

n

P P G

0 1

1 2

1 2

1 2

exp S S S

[t , t]
(t , t]

(t , t]

(t , t]

While-loop

*R exp =

R
F

BL T
P

2

exp = exp =

2

exp =

() # ()

0 1exp =

* *(()) (())

*(())

* ((,))

(exp)

(exp)

⊗

⊗

F F

BL T BL T

F

BL T

F

BL T

BL

T
F

T
F

BL

BL

T P S P

P i j
i j

P

P

P f P
t s

f P
t s

v t s

V

V

R RR

R R
R

θ

θ

θ

δ

δ

= =

∂
∂ ∂

∂=
∂ ∂

=

⎛
⎜ ⊥⎜
⎜
⎜
⎜= ⎜
⎜

−⎜

⎝

P

0 1

1 2

1 2'

3 4

4 5

4 5'

exp S
[t , t]
(t , t]
(t , t]

(t , t]
(t , t]
(t , t]

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

© 2008 by Taylor & Francis Group, LLC

1354 Appendix J Deductive Semantics of SE

Repeat-loop

 R+

P →

exp =
R

F

BL T
P

2

exp = exp =

2

exp =

() # ()

0 1exp =

'

(()) (())

(())

* ((,))

(exp)

(exp)

⊗

F F

BL T BL T

F

BL T

F

BL T

BL

T

T

BL

F

BL

P

T P S P

P i j
i j

P

P

V

P f P
t s

f P
t s

P v t s

V

V

R R

R R

R
R

θ

θ

θ

δ

δ

= =

⊥

∂+ +
∂ ∂

∂+=
∂ ∂

= →

−

=

−

P

0 1

1 2

2 3

2 3'

4 5

5 6

5 6

exp S
[t , t]
(t , t]
(t , t]
(t , t]

(t , t]
(t , t]
(t , t] ⊗F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 For-loop

iR 1

n

i
R
=

N

N
P(iM)

n n

n

n

2

i =1 i =1

2

k = 1
() # ()

0 1k =1

(P(i)) (P(i))

 (())

((,))

1
1

N N

N

N

N

Pk Pk

k

i

T S

P i j
i j

P

P

f
t s

f P
t s

v t s

V

n
n V

R R

R R

R
R

θ

θ

θ

= =

⊥

∂
∂ ∂

∂=
∂ ∂

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

P

0 1

1 2

n-2 n-1

n-1 n

k S
[t , t]
(t , t]

(t , t]
(t , t]

Function
call

P F

1 2 2 3

2

2 2

() # () # () # ()

0 1 0 1

([] (] (]) # ()

0 1

() ()

() ()

(,) (,)

 (,)
0 1

T P S P T Q S Q

P i j Q i j
i j i j

T t ,t t ,t t ,t S P Q

i j
i j

1P 1PQ

2Q 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
v V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

⊥ ⊥ ⊥

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

−=
−

P Q PQ

0

0 1

1 2

S S S
t

(t , t]
(t , t] PQ

3P 3PQV V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠2 3(t , t]

© 2008 by Taylor & Francis Group, LLC

 Appendix J Deductive Semantics of SE 1355

 Recursion

0

i n
R
=N N

(PiM

 PiM-1)

1

0

' 1

'

2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

(,) (,)

 (,)

n

n

n

n

T P S P T P S P

i j i j
i j i j

T P S P

i j
i j

P

P

P

P

P

P P f P P
t s

f P f P
t s t s

v t s v t s

v t s

V
V

V

V
V

R R R R

R R

θ

θ θ

θ

−

−

= = = =

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

=

P

0 1

1 2

3 4

5 6

6 7

S
[t , t]
(t , t]

(t , t]

(t , t]
(t , t]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Parallel
 | |

P | | Q 2

2 2

() # () # () # ()

0 1 0 1

max(# (),# ()) # ()

0 1

1

(||) (||)

() || ()

(,) || (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T P T Q S P Q

i j

0P 0Q 0PQ

1P 1Q PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V
V V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

=

P Q PQ

0

0 1

1 2

S S S
t

(t , t]
(t , t] 2 2Q PQV V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

Concurrence

 ∯
P ∯ Q

2

2 2

() # () # () # ()

0 1 0 1

max(# (),# ()) # ()

0 1

 () ()

() ()

(,) (,)

 (,)

RT

T P S P T Q S Q

P i j Q i j
i j i j

T P T Q S P Q

i j
i j

0P 0P 0P 0com

1P 1

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V V
V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

−=

∫∫ ∫∫

∫∫

∫∫

P Q PQ

0

0 1

S S S com
t

(t , t] PQ 1com

2P 2Q 2PQ 2com

3P 3PQ 3com

V
V V V V
V V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

1 2

2 3

(t , t]
(t , t]

© 2008 by Taylor & Francis Group, LLC

1356 Appendix J Deductive Semantics of SE

Interleave
|||

P ||| Q

0 1 1 2 2 3 3 4 4 5

2

2 2

() # () # () # ()

0 1 0 1

([t ,t] (t ,t] (t ,t] (t ,t] (t ,t]) # ()

0 1

(|||) (|||)

() ||| ()

(,) ||| (,)

(,)

T P S P T Q S Q

P i j Q i j
i j i j

T S P Q

i j
i j

0P 0Q 0PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

=

P Q PQ

0

0

S S S
t

(t '

'

''

''

'''

1P 1PQ

2Q 2PQ

3P 3PQ

4Q 4PQ

5P 5PQ

V V
V V

V V
V V

V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

1

1 2

2 3

3 4

4 5

, t]
(t , t]
(t , t]
(t , t]
(t , t]

Pipeline
»

P » Q 2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

= (,) (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T PQ S P Q

i j
i j

0P 0PQ 0Q

1P 1PQ

2PQ 2Q

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V

V V

V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

⎛⎜⎜⎜⎜⎜⎜= ⎜⎜ −

−⎝

P Po Qi Q

0

0 1

1 2

S S = S S

t

(t , t]

(t , t]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎠⎜ ⎟

© 2008 by Taylor & Francis Group, LLC

 Appendix J Deductive Semantics of SE 1357

Interrupt

P Q 2

2 2

() # () # () # ()

0 1 0 1

(' '') # ()

0 1

'

() ()

() ()

(,) (,)

 (,)

[,

T P S P T Q S Q

P i j Q i j
i j i j

T P Q P S P Q

i j
i j

1P 1PQ

2PQ 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
V V

R R R R

R R

θ

θ θ

θ

= = = =

∪

= =

∂
∂ ∂

∂ ∂=
∂ ∂ ∂ ∂

=

=

⊥ ⊥
− −

=

P Q PQ

0 1

1 2 int

S S S int
t t]

(t , t]
(t

'

''

3Q 3PQ

4PQ 4

5P 5PQ

V V
V V

V V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

2 3

3 4 int

4 5

, t]
(t , t]
(t , t]

Time-
driven

dispatch

t

@tiTM Pi

1 1

1

2

2

() # ()

0 1

() # ()

1
0 1

() # ()

0 1

1

1

(@ P) (@ P)

(@ ())

(@ (,))

@ (,)

 | ...

 | @ (,)

TM TM

TM

TM

TM

TM

TM

k k

k

n n

n

k k k k k k

k k

T P S P

k P i j
i j

T P S P

P i j
i j

T P S P

n P i j
i j

k

n

k
n

k

t f t
t s

t f P
t s

t v t s

t v t s

t v t s

R R

R R

R R

R

R

θ

θ

θ

= =

= =

= =

=

=

∂
∂ ∂
∂== →

∂ ∂

= →

= →

→

=

@ St

1

...

()TM

n

k

1 P

n P

@t
@t V

@t V

δ ⊥ ⊥

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

1 nP P

0 1

1 2

1 n

S

[t , t]
(t , t]

(t , t]

© 2008 by Taylor & Francis Group, LLC

1358 Appendix J Deductive Semantics of SE

Event-
driven

dispatch

e

@eiS Pi

1 1

1

2

2

() # ()

0 1

() # ()

1
0 1

() # ()

0 1

1

1

(@e P) (@e P)

(@ ())
() ()

(@ (,))

@ (,)

 | ...

 | @ (,)

S S

S

S

S

S

S

k k

k

n n

n

k e k k e k

k k
k k

T P S P

k P i j
i j

T P S P

P i j
i j

T P S P

n P i j
i j

n

k
n

k

f
t s

e f P
t P s P

e v t s

e v t s

e v t s

R R

R R

R R

R

R

θ

θ

θ

= =

= =

= =

=

=

∂
∂ ∂

∂= →
∂ ∂

= →

= →

→

=

P@ Ske

1

...

()S

n

k

1 P

n P

@e
@e V

@e V

δ ⊥ ⊥

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

1 nP

0 1

1 2

1 n

S

[t , t]
(t , t]

(t , t]

Interrupt-
driven

dispatch

i

@inti Pi

1 1

1

2

i i

2

() # ()

0 1

() # ()

1
0 1

() # ()

0 1

1

1

(@ P) (@ P)

(@ ())
() ()

(@ (,))

@ (,)

 | ...

 | @ (

S S

S

S

S

S

k k

k

n n

n

k k k k

k k
k k

T P S P

k P i j
i j

T P S P

P i j
i j

T P S P

n P
i j

n

k
n

k

int f int
t s

int f P
t P s P

int v t s

int v t s

int v t

R R

R R

R R

R

R

θ

θ

θ

= =

= =

= =

=

=

∂
∂ ∂

∂= →
∂ ∂

= →

= →

→

1

,)

...

()

S
S

n

i j

k

1 P

n P

s

@int
@e V

@e V

δ ⊥ ⊥

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

1 nP P

0 1

1 2

1 n

@ S S

[t , t]
(t , t]

(t , t]

kint

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1359

Appendix K

FORMAL MODEL OF THE
ATM SYSTEM IN RTPA

K.1 DESCRIPTION OF SYSTEM ARCHITECTURE

§(ATM) ATM.Architecture
 || ATM.StaticBehaviors
 || ATM.DynamicBehaviors

1.1 ATM System Architecture

ATM.Architecture <ATMProcessor : ST | [1]>
 || <SystemClock : ST | [1]>
 || <CardReader : ST | [1]>
 || <Keypad : ST | [1]>
 || <Monitor : ST | [1]>
 || <AccountDatabase : ST | [1]>

 || <CashBank : ST | [1]>
 || <CashDisburser : ST | [1]>

 || <Events : ST>
 || <Status : ST>

ATM.Architecture.EventsST @SysInitialS
 | @SysClock1msIntS

© 2008 by Taylor & Francis Group, LLC

1360 Appendix K Formal Model of the ATM System in RTPA

 | @‘PNN = 0’
 | @‘PNN = 1’
 | @’PNN = 2’

| @’PNN = 3’
| @’PNN = 4’
| @’PNN = 5’
| @’PNN = 6’

 | @’PNN = 7’
 | @’PNN = 8’

| @’ⓈCardEjectedBL := T’

| @’ⓈCardReaderFaultBL = T’
| @’ⓈCashAvailableBL = F’

| @’ⓈCashAvailableBL = T’

| @’ⓈCashBankFaultyBL = T’

| @’ⓈCashDisbursedBL = T’
| @’ⓈMonitorFaultBL = T’
| @’ⓈOperationTimeOutBL = T’
| @’ⓈServiceCompletedBL = T’

| @’ⓈServiceCancelledBL = T’

| @’ⓈSsytemFailureBL = T’

| @’ⓈSystemFailureBL := F’

| @’ⓈSysShutDownBL = T’

| @’ⓈOperationTimeOutBL = T’
| @’ⓈValidAmountBL := T’
| @’ⓈValidAmountBL = F’
| @’ⓈValidBalanceBL = F’
| @’ⓈValidBalanceBL = T’
| @’ⓈValidCardBL = F’

| @’ⓈValidCardBL = T’
| @’ⓈValidPINBL := T’
| @’ⓈValidPINBL = F’

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1361

ATM.Architecture.StatusST ⓈCardEjectedBL

| ⓈCardReaderFaultBL
| ⓈCashAvailableBL

| ⓈCashBankFaultyBL

| ⓈCashDisbursedBL

| ⓈMonitorFaultBL
| ⓈOperationTimeOutBL

| ⓈServiceCompletedBL

| ⓈServiceCancelledBL

| ⓈSsytemFailureBL
| ⓈSstShutDownBL

| ⓈValidAmountBL
| ⓈValidBalanceBL
| ⓈValidCardBL

| ⓈValidPINBL

1.2 System CLM Schemas/Objects

CardReaderST CardReaderS ::
 (<Data : N | 0 ≤ DataN ≤ 1000000>,
 <Status : BL | T = Normal ∧ F = Faulty>,
 <CardStatus : BL | T = Inserted ∧ F = NoCard>,
 <CardEjectDriver : BL | T = On ∧ F = Off >,
 <Port : B | PortB = FFF1H >
)

KeypadST KeypadS ::
 (<Digits : N | 0 ≤ DigitsN ≤ 9>,
 <EnterKey : BL | T = Pressed ∧ F = Unpressed>,
 <CancelKey : BL | T = Pressed ∧ F = Unpressed>,
 <Port : B | PortB = FFF2H >
)

© 2008 by Taylor & Francis Group, LLC

1362 Appendix K Formal Model of the ATM System in RTPA

MonitorST MonitorS ::
 (<Instruction : S | 0 ≤ #(InstructionS) ≤ 255>,
 <Status : BL | T = Normal ∧ F = Faulty>,

 <Port : P | PortP = FFF3H >
)

SysDatabaseST SysDatabaseS (<AccountNum : N |

 0 ≤ AccountNumN ≤ 1000000>)::
 (<Status : BL | T = Active ∧ F = Inactive>,
 <PIN : N | 000000 ≤ PINN ≤ 999999>,
 <Balance : N | 0 ≤ BalanceN ≤ 10000>,
 <MaxAllowableWithdraw : N | MaxAllowableWithdrawN = 500>
)

CashBankST CashBankS ::
 (<CashLevel : N | 0 ≤ CashLevelN ≤ MaxLevelN>,
 <Status : BL | T = Active ∧ F = Inactive>
)

CashDisburserST CashDisburserS ::
 (<Status : BL | T = Normal ∧ F = Faulty>,

<CashDisburseAmount : N | 5 ≤ CashDisburseAmountN ≤ 500>,
<CashDisburseDriver : BL | T = On ∧ F = Off>,

 <Port : B | PortB = FFF4H >
)

SysClockST SysClockS ::
 (<§t : N | 0 ≤ §tN ≤ 1M>,

<CurrentTime : hh:mm:ss:ms | 00:00:00:000 ≤
 CurrentTimehh:mm:ss:ms ≤ 23:59:59:999>,

<Timer : ss | 0 ≤ Timerss ≤ 3600>,
 <MainClockPort : B | MainClockPortB = FFF0H>,
 <ClockInterval : N | TimeIntervalN = 1ms>,

<InterruptCounter : N | 0 ≤ InterruptCounterN ≤ 999>
)

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1363

K.2 ATM STATIC BEHAVIORS

2.1 ATM Static Behaviors

ATM.StaticBehaviors SysInitial (<I:: ()>; <O:: ()>)
 | SysClock (<I:: ()>; <O:: ()>

| Welcome (<I:: ()>; <O:: AccountNumN, PNN, ⓈValidCardBL>)
| CheckPIN (<I:: AccountNumN>; <O:: PNN, ⓈValidPINBL,

 ⓈServiceCancelledBL>)
| CheckCashAmount (<I:: () >; <O:: AmountToWithdrawN, PNN,

 ⓈValidAmountBL, ⓈServiceCancelledBL >)
| VerifyAccount (<I:: AccountNumN, AmountToWithdrawN>;

 <O:: PNN, AmountToWithdrawN, ValidBalanceBL,
 ⓈServiceCancelledBL>)

| VerifyCashAvailability (<I:: AmountToWithdrawN>;
 <O:: PNN, ⓈCashAvailableBL,

 ⓈServiceCancelledBL>)
| DisburseCash (<I:: AccountNumN, AmountToWithdrawN>;

 <O:: PNN, ⓈCashDisbursedBL,

 ⓈServiceCompletedBL, ⓈServiceCancelledBL>)

| EjectCard (<I:: ()>; <O:: PNN, ⓈCardEjectedBL>)
| SystemFailure (<I:: ()>; <O:: ⓈSystemFailureBL,

ⓈSysShutDownBL>)

2.2 Refined ATM Static Behaviors

2.2.1 System Initialization

SysInitial (<I:: ()>; <O:: ()>)
{

Initial ATM_CLMsST
→ SysClock.§tN := 0

© 2008 by Taylor & Francis Group, LLC

1364 Appendix K Formal Model of the ATM System in RTPA

→ SysClock.CurrentTimehh:mm:ss:ms := CurrentTimehh:mm:ss:xx
 → SysClock.InterruptCounterN := 0
 → SysClock.TimerN := 0
 → PNN := 1
 → ⓈSystemFailureBL := F
}

2.2.2 System Clock

SysClock (<I:: ()>; <O:: ()>)
{

↑(SysClock.InterruptCounterN) // 1ms clock interrupt
 → SysClock.InterruptCounterN = 999 // Set to 1 second
 (→ SysClock.InterruptCounterN = 0
 → ↑(SysClock.§tN)
 → ↑(SysClock.CurrentTimehh:mm:ss)
 → ↓ (SysClock.Timerss)
 → SysClock.CurrentTimehh:mm:ss:ms = 23:59:59:xxx
 (→ SysClock.CurrentTimehh:mm:ss:ms := 00:00:00:xxx
 → SysClock.§tN := 0
)
)
}

2.2.3 Transactional States

// State 1
Welcome (<I:: ()>; <O:: AccountNumN, PNN, ⓈValidCardBL>)
{

CardInserted

R
=

T

BL F
(PORT(MonitorST.PortP).StatusBL |⋗ MonitorStatusBL

 → PORT(CardReaderST.PortP).StatusBL |⋗
 CardReaderStatusBL

 → (MonitorStatusBL = T ∧ CardReaderStatusBL = T

 → ‘Welcome!’ |⋖
 PORT(MonitorST.PortP).InstructionS

 → ‘Please insert your card.’ |⋖
 PORT(MonitorST.PortP).InstructionS

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1365

 → PORT(CardReaderST.PortP).StatusBL |⋗
 CardInsertedBL
 | ~

 → (MonitorStatusBL = F
 → ! (@‘MonitorFaultBL = T’)
 | CardReaderStatusBL = F
 → ! (@’CardReaderFaultBL = T’)
)
 → PNN := 8 // To system failure

 → ⊗
)

→ Port(CardReaderST.PortP).DataN |⋗ AccountNumN
 → (SysDatabaseST(AccountNumN).StatusBL := T

 →ⓈValidCardBL = T
 → SysClockST.Timerss := 10 // To wait for PIN, 10s
 → PINEnterTimesN := 3

 → PNN := 2 // To check PIN again
 | ~

 →ⓈValidCardBL = F
 → PNN := 7 // To eject card
)
}

// State 2
CheckPIN(<I: AccountNumN>; <O:: PNN,
 ⓈValidPINBL,ⓈServiceCancelledBL>)
{

DataEntered

R
=

T

BL F
(PORT(MonitorST.PortP).StatusBL |⋗ MonitorStatusBL

 → Port (CardReaderST.PortP).StatusBL |⋗
 CardReaderStatusBL
 → (SysClockIDS.Timerss ≠ 0 ∧ MonitorStatusBL = T
 ∧ CardReaderStatusBL = T
 → ‘Enter your PIN.’ |⋖

 PORT(MonitorST.PortP).InstructionS

© 2008 by Taylor & Francis Group, LLC

1366 Appendix K Formal Model of the ATM System in RTPA

 → PORT(KeypadST.PortP).EnterKeyBL |⋗
DataEteredBL

 | ~

 → (SysClockIDS.Timerss = 0

 → ⓈTimeoutBL = T

 → ! (‘ⓈOperationTimeOutBL = T’)
 → PNN := 7 // To eject card
 | MonitorStatusBL = F
 → ! (@ ‘MonitorFaultBL = T’)
 → PNN := 8 // To system failure
 | CardReaderStatusBL = F
 → ! (@ ’CardReaderFaultBL = T’)
 → PNN := 8 // To system failure
)

 → ⊗
)
)

 → PORT(KeypadST.PortP).DataN |⋗ PINN
 → (PINN = SysDatabaseST(AccountNumN).PINN)

 → ⓈValidPINBL := T
 → SysClockST.Timerss := 10 // Wait for amount enter
 → PNN := 3 // To check cash amount
 | ~

 → ⓈValidPINBL = F
 → ↓ (PINEnterTimesN)
 → (PINEnterTimesN > 0

 → ‘Wrong PIN. Do you want to try again?’ |⋖
 PORT(MonitorST.PortP).InstructionS

 →
TimeOut

R
=

T

BL F
 (∆tN := §tN + 3 // Delay 3s

 → TimeOutBL = T
)
 → PORT(KeypadST.PortP).EnterKeyBL |⋗
 EnterKeyPressedBL
 → PORT(KeypadST.PortP).CancelKeyBL |⋗

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1367

 CancelKeyPressedBL
 → (EnterKeyPressedBL = T
 → PNN := 2 // To retry PIN

 | CancelKeyPressedBL = T

 → ⓈServiceCancelledBL = T
 → PNN := 7 // To eject card

)
| ~

 → ‘Invalid PIN.’ |⋖ PORT(MonitorST.PortP).InstructionS

 → ⓈValidPINBL = F
 → PNN := 7 // To eject card

)
)
}

// State 3
CheckCashAmount (<I:: ()>; <O:: AmountToWithdrawN, PNN,
 ⓈValidAmountBL,ⓈServiceCancelledBL>)
{

DataEntered
R

=

T

BL F
 (PORT(MonitorST.PortP).StatusBL |⋗ MonitorStatusBL

 → PORT(CardReaderST.PortP).StatusBL |⋗
 CardReaderStatusBL
 → (SysClockIDS.Timerss ≠ 0 ∧ MonitorStatusBL = T
 ∧ CardReaderStatusBL = T
 → ‘Enter the amount you wish to withdraw
 ($5 … $500).’ |⋖
 PORT(MonitorST.PortP).InstructionS
 → PORT(KeypadST.PortP).EnterKeyBL |⋗
 DataEteredBL

 | ~

 → (SysClockIDS.Timerss = 0

 → ⓈOperationTimeOutBL = T
 → ! (@ ‘OperationTimeOutBL = T’)
 → PNN := 7 // To eject card

© 2008 by Taylor & Francis Group, LLC

1368 Appendix K Formal Model of the ATM System in RTPA

 | MonitorStatusBL = F
 → ! (@ ‘MonitorFaultBL = T’)
 → PNN := 8 // To system failure
 | CardReaderStatusBL = F
 → ! (@ ‘CardReaderFaultBL = T’)
 → PNN := 8 // To system failure
)

 → ⊗
)
)

 → PORT(KeypadST.PortP).DataN |⋗ AmountToWithdrawN
 → (5 ≤ AmountToWithdrawN ≤ MaxAllowableWithdrawN

 → ⓈValidAmountBL := T
 → PNN := 4 // To check balance of account
 | ~

 → ⓈValidAmountBL = F
 → ‘Amount required is out of range.’ |⋖
 PORT(MonitorST.PortP).InstructionS

 →
TimeOut

R
=

T

BL F
 (∆tN := §tN + 3 // Delay 3s

 → TimeOutBL = T
)
 → PORT(KeypadST.PortP).EnterKeyBL |⋗ EnterKeyPressedBL

 → PORT(KeypadST.PortP).CancelKeyBL |⋗
CancelKeyPressedBL

 → (EnterKeyPressedBL = T
 → SysClockST.Timerss := 10 // Reset timer
 → PNN := 3 // To retry PIN
 | CancelKeyPressedBL = T

 → ⓈServiceCancelledBL = T
 → PNN := 7 // To eject card

)
)
}

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1369

// State 4
VerifyAccount (<I:: AccountNumN, AmountToWithdrawN>;

<O:: PNN, AmountToWithdrawN, ValidBalanceBL,
ⓈServiceCancelledBL>)

{
 PORT(MonitorST.PortP).StatusBL |⋗ MonitorStatusBL

 → Port (CardReaderST.PortP^).StatusBL |⋗ CardReaderStatusBL
 → (MonitorStatusBL = F
 → ! (@‘MonitorFaultBL = T
 → PNN := 8 // To system failure

 → ⊗
 | CardReaderStatusBL = F
 → ! (@’CardReaderFaultBL = T’)
 → PNN := 8 // To system failure

 → ⊗
)
 → (AmountToWithdrawN ≤ SysDatabaseST(AccountNumN).BalanceN)

 → ⓈValidBalanceBL := T
 → PNN := 5 // To check cash availability
 | ~

 → ⓈValidBalanceBL = F
 → ‘Account balance is insufficient to withdraw. Retry a new
 amount?’ |⋖ PORT(MonitorST.PortP).InstructionS

 →
TimeOut

R
=

T

BL F
 (∆tN := §tN + 3 // Delay 3s

 → TimeOutBL = T
)
 → PORT(KeypadST.PortP).EnterKeyBL |⋗ EnterKeyPressedBL

 → PORT(KeypadST.PortP).CancelKeyBL |⋗
 CancelKeyPressedBL
 → (EnterKeyPressedBL = T
 → SysClockST.Timerss := 10 // Set timer
 → PNN := 3 // To reenter amount
 | CancelKeyPressedBL = T

 → ⓈServiceCancelledBL = T

© 2008 by Taylor & Francis Group, LLC

1370 Appendix K Formal Model of the ATM System in RTPA

 → PNN := 7 // To eject card
)
)
}

// State 5
VerifyCashAvailability (<I:: AmountToWithdrawN>; <O:: PNN,
 ⓈCashAvailableBL, ⓈServiceCancelledBL>)
{
 PORT(MonitorST.PortP).StatusBL |⋗ MonitorStatusBL

 → PORT(CardReaderST.PortP).StatusBL |⋗ CardReaderStatusBL
 → (MonitorStatusBL = F
 → ! (@‘MonitorFaultBL = T
 → PNN := 8 // To system failure

 → ⊗
 | CardReaderStatusBL = F
 → ! (@’CardReaderFaultBL = T’)
 → PNN := 8 // To system failure

 → ⊗
)
 → (CashBankST.StatusBL) = T

 → (CashBankST.CashLevelN ≥ AmountToWithdrawN

 → ⓈCashAvailableBL = T
 → PNN := 6 // To disburse cash
 | ~

 → ⓈCashAvailableBL = F
→ ‘No sufficient cash available in this machine. Retry a

 new amount?’ |⋖
 PORT(MonitorST.PortP).InstructionS

 →
TimeOut

R
=

T

BL F
 (∆tN := §tN + 3 // Delay 3s

 → TimeOutBL = T
)
 → PORT(KeypadST.PortP).EnterKeyBL |⋗
 EnterKeyPressedBL

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1371

 → PORT(KeypadST.PortP).CancelKeyBL |⋗
 CancelKeyPressedBL
 → (EnterKeyPressedBL = T
 → SysClockST.Timerss := 10 // Set timer
 → PNN := 3 // To reenter amount
 | CancelKeyPressedBL = T

 → ⓈServiceCancelledBL = T
 → PNN := 7 // To eject card

)
)
 | ~
 → (!(@‘CashBankFaultyBL = T’)
 → PNN := 8 // To system failure
 → ⊗
)
}

// State 6
DisburseCash (<I:: AccountNumN, AmountToWithdrawN>;
 <O:: ⓈCashDisburseBL, PNN, ⓈServiceCompletedBL,

 ⓈServiceCancelledBL>)
{
 PORT(MonitorST.PortP).StatusBL |⋗ MonitorStatusBL

 → PORT(CardReaderST.PortP).StatusBL |⋗ CardReaderStatusBL
 → (MonitorStatusBL = F
 → ! (@‘MonitorFaultBL = T’)
 → PNN := 8 // To system failure

 → ⊗
 | CardReaderStatusBL = F
 → ! (@‘CardReaderFaultBL = T’)
 → PNN := 8 // To system failure

 → ⊗
)
 → PORT(CashDisburserST.PortP).StatusBL |⋗ CashDisburserStatusBL
 → (CashDisburserStatusBL = T

 → AmountToWithdrawN |⋖

© 2008 by Taylor & Francis Group, LLC

1372 Appendix K Formal Model of the ATM System in RTPA

 PORT(CashDisburserST.PortP).CashDisburseAmountN
 → ⓈCashDisburseBL |⋖
 PORT(CashDisburserST.PortP^).CashDisburseDriverBL
 → ⓈCashDisburseBL = T
 → CashBankST.CashLevelN - AmountToWithdrawN

→ SysDatabaseST(AccountNumN).BalanceN -
AmountToWithdrawN

 → ⓈServiceCancelledBL = T
 → PNN := 7 // To eject card
 | ~

 → ⓈCashDisburseBL = F
 → (!(@‘CashDisburserFaultyBL = T’)

 → ‘System failure. Please use another machine.’ |⋖
 Port (MonitorST.PortP).InstructionS

 → PNN := 8 // To eject card
 → ⊗

)
}

// State 7
EjectCard (<I::()>; <O:: PNN, ⓈCardEjectedBL>)
{
 (ⓈServiceCompletedBL = T

 → ‘Please collect your card.’ |⋖ Port (MonitorST.PortP).InstructionS
 → EjectCardBL := T
 → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL

 → ⓈCardEjectedBL := T
 → PNN := 1
 | ⓈServiceCancelledBL = T

 → ‘Please collect your card.’ |⋖ Port (MonitorST.PortP).InstructionS
 → EjectCardBL := T
 → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL

 → ⓈCardEjectedBL := T
 → PNN := 1
 | ⓈOperationTimeOutBL = T

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1373

 → ‘Service time out. Please collect your card.’ |⋖
 PORT(MonitorST.PortP).InstructionS
 → EjectCardBL := T
 → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL

 → ⓈCardEjectedBL := T
 → PNN := 1
 | ? ⓈValidCardBL = F

 → ‘Invalid Card.’ |⋖ PORT(MonitorST.PortP).InstructionS
 → EjectCardBL := T
 → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL

 → ⓈCardEjectedBL := T
 → PNN := 1
 | ⓈValidPINBL = F

 → ‘Invalid PIN.’ |⋖ PORT(MonitorST.PortP).InstructionS
 → EjectCardBL := T
 → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL

 → ⓈCardEjectedBL := T
 → PNN := 1
}

// State 8
SystemFailure (<I::()>; <O:: ⓈSystemFailureBL, ⓈSysShutDownBL>)
{
 ⓈSystemFailureBL = T

→ (!(@‘ⓈSystemFailureBL = T’)

 → ‘System failure. Please use another machine.’ |⋖
 PORT(MonitorST.PortP).InstructionS
 → EjectCardBL := T
 → EjectCardBL |⋗ PORT(CardReaderST.PortP).CardEjectDriverBL

 → ⓈCardEjectedBL := T

 → ⓈSysShutDownBL := T
 → ⊗
}

© 2008 by Taylor & Francis Group, LLC

1374 Appendix K Formal Model of the ATM System in RTPA

K.3 ATM DYNAMIC BEHAVIORS

3.1 ATM Dynamic Behaviors

ATM.DynamicBehaviors
{
 §
 || // Base level
 (SysInitial
 | Welcome
 | CheckPIN
 | CheckAmount
 | VerifyAccountBalance
 | VerifyCashAvailability
 | DisburseCash
 | EjectCard
 | SystemFailure
)
 || // Interrupt level
 (SysClock
 || SysDiagnosis
)
}

3.2 ATM Process Deployment

ATM.ProcessDeployment
{ // Basic level processes
 @SysInitialS
 ↳ (SysInitial

 ↳
SysShutDown

R
=

T

BL F
 ATMProcessDispatching

 → ⊠
)
 || // Interrupt level processes

© 2008 by Taylor & Francis Group, LLC

 Appendix K Formal Model of the ATM System in RTPA 1375

 ⊙ @SysClock1msIntS
 (SysClock
 ↳ SysDiagnosis
)
 ⊙
}

3.3 ATM Process Dispatch

ATMProcessDispatch
{
 @‘PNN = 0’ → ∅

| @‘PNN = 1’ ↳ Welcome (<I:: ()>; <O:: AccountNumN, PNN,

 ⓈValidCardBL>)

| @’PNN = 2’ ↳ CheckPIN (<I:: AccountNumN>; <O:: PNN,

 ⓈValidPINBL, ⓈServiceCamcelledBL>)

| @’PNN = 3’ ↳ CheckCashAmount (<I:: ()>; <O:: AmountToWithdrawN,

PNN, ⓈValidAmountBL, ⓈServiceCancelledBL>)

| @’PNN = 4’ ↳ VerifyAccount (<I:: AccountNumN,
AmountToWithdrawN>; <O:: PNN,
AmountToWithdrawN, ⓈValidBalanceBL,

ⓈServiceCancelledBL>)

| @’PNN = 5’ ↳ VerifyCashAvailability (<I:: AmountToWithdrawN>;

 <O:: PNN, ⓈCashAvailableBL, ⓈServiceCancelledBL>)

| @’PNN = 6’ ↳ DisburseCash (<I:: AccountNumN,

 AmountToWithdrawN>; <O:: ⓈCashDisbursedBL, PNN,

 ⓈServiceCompletedBL, ⓈServiceCancelledBL>)

| @’PNN = 7’ ↳ EjectCard (<I:: ()>; <O:: PNN, ⓈCardEjectedBL>)

| @’PNN = 8’ ↳ SsytemFailure (<I:: ()>; <O:: ⓈSystemFailureBL,

 ⓈSysShutDownBL>)
}

© 2008 by Taylor & Francis Group, LLC

Appendix L List of Figures 1377

Appendix L

LIST OF FIGURES

No. Figure Caption

Chapter 1 Introduction

1 1.1 Relationship between software engineering foundations,
education, and practices/applications

2 1.2 The IME model of the worldview
3 1.3 The hierarchical abstraction model of system descriptivity

(HAMSD) for software engineering
4 1.4 The Software Engineering Constraint Model (SECM)
5 1.5 Polymorphism of the software solution space for a

given problem
6 1.6 Architecture of this book

Chapter 2 Principle of Software Engineering

7 2.1 Brooks’ constraints of software engineering
8 2.2 Principles of software engineering as measures for its

constraints
9 2.3 The software engineering principles vs. the cognitive

constraints (I)
10 2.4 The software engineering principles vs. the cognitive

constraints (II)
11 2.5 The software engineering principles vs. the

organizational constraints
12 2.6 The software engineering principles vs. the resource

constraints

© 2008 by Taylor & Francis Group, LLC

1378 Appendix L List of Figures

Chapter 3 Philosophical Foundations of SE

13 3.1 Philosophies of sciences and their transitions
14 3.2 The 3-dimensional behavior space of software
15 3.3 The cognitive properties of software
16 3.4 Virtualization vs. realization
17 3.5 Problem domains: infinite vs. limited
18 3.6 Effort distribution in software development and mass

production
19 3.7 The role of software in computerization

Chapter 4 Mathematical Foundations of SE

20 4.1 The CSP notations
21 4.2 The scheme of system modeling and refinement in RTPA
22 4.3 RTPA meta architectures
23 4.4 The architecture of a sample system
24 4.5 The component architectural schema of buttons in an

elevator system
25 4.6 Specification of an ADT model of Queue in

predicate logic
26 4.7 The architectural model of the Queue specified in RTPA
27 4.8 The static behavioral model of the Queue specified in RTPA
28 4.9 The dynamic behavioral model of the Queue specified in

RTPA
29 4.10 The conceptual model of the ATM architecture
30 4.11 The conceptual model of the ATM behaviors
31 4.12 The architecture of the ATM system
32 4.13 The architecture of the ATM CardReaderST
33 4.14 The Welcome process of the ATM system
34 4.15 The ATM process deployment process
35 4.16 The ATM process dispatch process

Chapter 5 Computing Foundations of SE

36 5.1 The state diagram of FSM1
37 5.2 The abstract FSM model of the ATM
38 5.3 Refinement of an FSM by sub-FSMs
39 5.4 A Turing machine
40 5.5 The von Neumann architecture of computers

© 2008 by Taylor & Francis Group, LLC

Appendix L List of Figures 1379

41 5.6 Typical modern computer architecture based on VNA
42 5.7 The architecture of a cognitive machine
43 5.8 The type system of Pascal
44 5.9 The type system of Java
45 5.10 The type system of IDL
46 5.11 The logical memory model of computing
47 5.12 Specification of the architecture of system clock in

RTPA
48 5.13 A stack ADT
49 5.14 The architecture of the stack ADT
50 5.15 The static behaviors of the stack ADT
51 5.16 The specification of detailed behaviors of the stack ADT
52 5.17 The dynamic behaviors of the stack ADT
53 5.18 Formal description of the MaxFinder program
54 5.19 The CFG of the program MaxFinder
55 5.20 The linear architecture of iterations
56 5.21 The nested architecture of recursions
57 5.22 The architectural model of a digraph
58 5.23 Formal specification of the architecture of the digraph
59 5.24 Implementation of dynamic memory allocation process in

RTPA
60 5.25 Implementation of the memory release process in RTPA
61 5.26 A statement as an IPO process
62 5.27 RTPA specification of the algorithm of In-Between Sum
63 5.28 The generic mathematical model of software patterns
64 5.29 The structure of the Builder pattern
65 5.30 The behaviors of the Builder pattern
66 5.31 The telephone switching system (TSS)
67 5.32 The architectural framework of the TSS system
68 5.33 The static behavioral framework of the TSS system
69 5.34 The process deployment framework of the TSS system
70 5.35 The process dispatching framework of the TSS system
71 5.36 Architecture of the operating system of a GCS
72 5.37 The role of an operating system in a general-purpose computer
73 5.38 The architecture of Unix™
74 5.39 The architecture of Windows™ XP
75 5.40 The OSI reference model and TCP/IP

© 2008 by Taylor & Francis Group, LLC

1380 Appendix L List of Figures

76 5.41 The architecture of RTOS+
77 5.42 Process state transition diagram of RTOS+
78 5.43 Real-time process deployment in RTOS+
79 5.44 Dynamic behaviors of the RTOS+ task scheduler

Chapter 6 Linguistic Foundations of SE

80 6.1 Relationships among components of universal grammar
81 6.2 The Universal Language Processing (ULP) model
82 6.3 The Deductive Grammar of English (DGE)
83 6.4 The schema of a generic sentence based on DGE
84 6.5 The syntax structure of the generic sentence schema in DGE
85 6.6 An abstract syntax representation of the sample language SPL
86 6.7 An abstract syntax description of SPL using NBNF
87 6.8 Processes of programming language compilations
88 6.9 The syntactic structure of expressions in SPL
89 6.10 ASTs generated by parsers
90 6.11 An EBNF syntax diagram of RTPA CLM schemas
91 6.12 Syntactic analysis of RTPA specifications
92 6.13 The abstract syntax model of SPL
93 6.14 The semantic diagram of a process
94 6.15 Relationship between software behavior space and the

semantic environment
95 6.16 The semantic diagram of the sequential process relation
96 6.17 The semantic diagram of the jump process relation
97 6.18 The semantic diagram of the branch process relation
98 6.19 The semantic diagram of the switch process relation
99 6.20 The semantic diagram of the while-loop process relation

100 6.21 The semantic diagram of the repeat-loop process relation
101 6.22 The semantic diagram of the for-loop process relation
102 6.23 The semantic diagram of the function call process

relation
103 6.24 The semantic diagram of the recursive process relation
104 6.25 The semantic diagram of the parallel process relation
105 6.26 The semantic diagram of the concurrent process relation
106 6.27 The semantic diagram of the interleave process relation
107 6.28 The semantic diagram of the pipeline process relation
108 6.29 The semantic diagram of the interrupt process relation
109 6.30 The semantic diagram of time-driven dispatch relation

© 2008 by Taylor & Francis Group, LLC

Appendix L List of Figures 1381

110 6.31 The semantic diagram of the event-driven dispatch relation
111 6.32 The semantic diagram of the interrupt-driven dispatch relation

Chapter 7 Information Science Foundations of SE

112 7.1 Relationship between the three-generation informatics
113 7.2 The transformability between I-M-E

Chapter 8 Engineering Foundations of SE

114 8.1 Engineering vs. science
115 8.2 The engineering objective model (EOM)
116 8.3 The engineering maturity model (EMM)
117 8.4 Overhead of interpersonal coordination when

r ∈ {0.001 … 1}
118 8.5 The pigeon diagram: actual time against number of

labors (W1 = 10PM)
119 8.6 Actual time against number of labors when

W1 = 100PM
120 8.7 Actual effort against number of labors when

W1 = 10.0PM
121 8.8 The architecture of software engineering trials
122 8.9 The procedure of software engineering trials
123 8.10 IBM (Europe) benchmark of software engineering practices
124 8.11 The SEPRM software engineering process capability

benchmarks

Chapter 9 Cognitive Informatics Foundations of SE

 125 9.1 Synaptic transmission
126 9.2 Summation of input signals in neural networks
127 9.3 Structure of the brain
128 9.4 Brain capacities of human beings and other animals
129 9.5 Trend of growth of the human brain
130 9.6 Relationship between cognitive informatics and related

science disciplines
131 9.7 The theoretical framework of cognitive informatics
132 9.8 The Layered Reference Model of the Brain (LRMB)
133 9.9 Formal description of the LRMB model of the brain
134 9.10 The Generic Intelligence Model (GIM)
135 9.11 The functional model of the brain

© 2008 by Taylor & Francis Group, LLC

1382 Appendix L List of Figures

136 9.12 LTM: hierarchical and partially connected neural clusters
137 9.13 The OAR model of internal knowledge representation
138 9.14 The EOAR model of the brain
139 9.15 The cognitive model of the comprehension process
140 9.16 Formal description of the comprehension process in RTPA

Chapter 10 System Science Foundations of SE

141 10.1 A hierarchical view of system structures
142 10.2 Horse racing: King Qi vs. Ji Tian – System strategy (I)
143 10.3 Horse racing: King Qi vs. Ji Tian – System strategy (II)
144 10.4 The abstract model of a closed system
145 10.5 The abstract model of an open system
146 10.6 Growth of complete binary trees
147 10.7 The ternary system organization tree SOT(3, 24)
148 10.8 The conjunction of two open systems
149 10.9 The difference of two open systems (S S1 = S2)

150 10.10 Basic forms of system compositions
151 10.11 The hierarchical organization chart of system compositions
152 10.12 System fusion and the critical mass
153 10.13 The generic IPO system model
154 10.14 The positive/negative feedback systems IPOf+ or IPOf-

155 10.15 System synchronization and coordination
156 10.16 System dissimilation (nonmaintainable system, T = 20)
157 10.17 The entire lifecycle of system dissimilation (nonmaintainable

system, T = T’ = 20)
158 10.18 The entire lifecycle of system dissimilation

(maintainable system, T = 20)
159 10.19 The abstract model of the Generic Computing System (GCS)
160 10.20 The layered model of software systems
161 10.21 Work products of software engineering processes
162 10.22 The system model of intra- and inter-organization processes
163 10.23 Taxonomy of problems in computing
164 10.24 Typical asymptotic functions of software time complexities
165 10.25 The relative cognitive weights of BCS’s of software systems
166 10.26 The IBS algorithm (a) specified in RTPA
167 10.27 The semantic space of software systems
168 10.28 The IBS algorithm (b) specified in RTPA

© 2008 by Taylor & Francis Group, LLC

Appendix L List of Figures 1383

169 10.29 The MaxFinder algorithm specified in RTPA
170 10.30 The SIS_Sort algorithm specified in RTPA
171 10.31 The relational and symbolic complexities as the upper/lower

bounds of functional complexity of software systems
172 10.32 The normalized system architecture for component couplings

Chapter 11 Management Science Foundations of SE

173 11.1 The functions of management
174 11.2 Structure of a management system
175 11.3 Gain and efficiency of management
176 11.4 Division of labor: labor specializes (repeats) at the subtask-

level
177 11.5 Gains of division of labor
178 11.6 Gains of division of labor (e/c = 1.09)
179 11.7 Gains of division of labor (e/c = 2.72)
180 11.8 Overview of decision theories and decision strategies
181 11.9 The cognitive process of decision making
182 11.10 The RTPA definition of the cognitive process of decision

making
183 11.11 A decision tree based on the strategy of maximum expected

utility
184 11.12 Sets of matches in the zero-sum game G1
185 11.13 Sets of matches of the 2 × 3 zero-sum game G2
186 11.14 Sets of matches of the 2 × 2 nonzero-sum game G3
187 11.15 A decision grid DG1 with (Dmin = 4)
188 11.16 Properties of decision grid (Dmin = 4)
189 11.17 Time and effort losses of wrong decisions in decision grid

(Dmin = 4)
190 11.18 A decision grid DG2 with (Dmin = 3)
191 11.19 The configuration of a generic quality control system
192 11.20 The Deming cycle: plan-do-check-action
193 11.21 The hierarchical structure of SEPRM
194 11.22 The SEPRM process assessment algorithm and method

Chapter 12 Economics Foundations of SE

195 12.1 Behaviors of prices influenced by demands and supplies
196 12.2 Behaviors of demands and supplies influenced by prices
197 12.3 The equilibrium between demands D(t) and supplies S(t)

© 2008 by Taylor & Francis Group, LLC

1384 Appendix L List of Figures

198 12.4 The equilibrium mechanism of Mode 1: E(D+)
199 12.5 The equilibrium mechanism of Mode 2: E(D-)
200 12.6 The equilibrium mechanism of Mode 3: E(S+)
201 12.7 The equilibrium mechanism of Mode 4: E(S-)
202 12.8 The economical scale of production
203 12.9 Surplus vs. shortage markets
204 12.10 Linear gradient series
205 12.11 Geometric gradient series
206 12.12 Illustration of the FEMSEC model
207 12.13 The cash flow of the Software engineering project
208 12.14 The Software Legacy Maintenance Cost (SLMC) model

Chapter 13 Sociology Foundations of SE

209 13.1 The hierarchical structure of a society
210 13.2 The Human Needs Hierarchy (HNH) model
211 13.3 The model of motivation/attitude-driven behavior (MADB)
212 13.4 A normalized organization tree (n =3)
213 13.5 The serial structure of work organization
214 13.6 The parallel structure of work organization
215 13.7 The Formal Socialization Model (FSM) of human societies
216 13.8 The chain of motivation in a software organization
217 13.9 The model of Human Error Tree (HET)

Chapter 14 Retrospect on Software Engineering

218 14.1 The role of the SEPRM reference model for software
engineering

219 14.2 Software engineering process system establishment
220 14.3 Practices in process-based software engineering
221 14.4 Structures of process assessment models
222 14.5 Summary of the architecture of this book

Chapter 15 Prospect on Software Science

223 15.1 The framework of Formal Knowledge System (FKS)
224 15.2 The architecture of software science
225 15.3 The structural model of an abstract concept
226 15.4 Concept association operations in concept algebra
227 15.5 The imperative computing system model
228 15.6 The autonomic computing system model

© 2008 by Taylor & Francis Group, LLC

Appendix L List of Figures 1385

229 15.7 The architecture of hyper-programs
230 15.8 The integrated hyper-programming framework
231 15.9 The formal model of a generic C++ program architecture
232 15.10 Mapping between RTPA models and C++ code
233 15.11 Hyperlinks created in a UML class diagram
234 15.12 The framework of the hyper-programming system
235 15.13 UML class diagram with hyperlinks
236 15.14 C++ source code with hyperlinks
237 15.15 RTPA specification with hyperlinks

© 2008 by Taylor & Francis Group, LLC

Appendix M List of Tables 1387

Appendix M

LIST OF TABLES

No. Table Caption

Chapter 1 Introduction

1 1.1 Theoretical vs. empirical problems in software engineering
2 1.2 Contrast of representative definitions of software engineering
3 1.3 Abstract levels of knowledge and cognitive information
4 1.4 Domain coverage of the approaches to software engineering
5 1.5 Structure of this book

Chapter 2 Principle of Software Engineering

6 2.1 The IEEE SESC proposed principles of software engineering
7 2.2 The integrated set of software engineering principles
8 2.3 Mapping software engineering principles into its constraints

Chapter 3 Philosophical Foundations of SE

9 3.1 Approaches to implement intelligence
10 3.2 Sound argument by deductive validation
11 3.3 Cogent argument by inductive validation
12 3.4 Methodologies for validating software products

Chapter 4 Mathematical Foundations of SE

13 4.1 Definitions of basic set operations
14 4.2 Laws of set algebra
15 4.3 Properties of relations
16 4.4 Truth tables of relational and conditional logical operations

© 2008 by Taylor & Francis Group, LLC

1388 Appendix M List of Tables

17 4.5 Laws of propositional inference
18 4.6 Basic expressive power for denotational mathematics
19 4.7 Characteristics of software system behaviors
20 4.8 Primitive types of RTPA
21 4.9 RTPA meta processes
22 4.10 RTPA process relations and algebraic operations
23 4.11 Priority levels of processes in dynamic behavior specification

Chapter 5 Computing Foundations of SE

24 5.1 Objects under study in computer science and software
engineering

25 5.2 Basic operations in computing
26 5.3 The schema of a state transition table of FSMs
27 5.4 The state transition table of FSM1
28 5.5 The state transition table of the ATM
29 5.6 The state transition table of the TM1
30 5.7 RTPA primitive types and their domains
31 5.8 Event types of RTPA
32 5.9 Classifications of scope of life-span and accessibility of

variables
33 5.10 Formal definition of identifiers
34 5.11 Types of constants and their usages
35 5.12 The formal type system of RTPA
36 5.13 Abstract data types defined in RTPA
37 5.14 Taxonomy of fundamental instructions in computing
38 5.15 BCS’s and their mathematical models
39 5.16 Typical addressing modes in computing
40 5.17 Event types of RTPA
41 5.18 Taxonomy of class types
42 5.19 OO associations and their mathematical semantics in RTPA
43 5.20 Classification of software patterns
44 5.21 Taxonomy of system frameworks
45 5.22 Types of I/O devices

Chapter 6 Linguistic Foundations of SE

46 6.1 Semantic relations of sentences
47 6.2 Definition of lexical categories of languages
48 6.3 Fundamental elements in natural languages

© 2008 by Taylor & Francis Group, LLC

Appendix M List of Tables 1389

49 6.4 Taxonomy of lexical entities
50 6.5 Description of typical syntactic entities and structures
51 6.6 Semantic analysis of integer arithmetic expressions
52 6.7 Semantic analysis of assignments
53 6.8 Semantic analysis of branch construct
54 6.9 Semantic analysis of while loop construct
55 6.10 Semantic analysis of a whole program in SPL
56 6.11 Comparative analysis of natural and programming language

theories

Chapter 7 Information Science Foundations of SE

57 7.1 Information-oriented quality attributes of software

Chapter 8 Engineering Foundations of SE

58 8.1 Characteristics of engineering and science
59 8.2 The Engineering Maturity Model (EMM)
60 8.3 Roles of software engineers in software engineering
61 8.4 Characteristics of software engineering practices at different

levels of EMM
62 8.5 A summary of IEEE/ACM software engineering code of

ethics and professional practice
63 8.6 Key factors affecting the rate of interpersonal coordination in

software engineering
64 8.7 Overhead of interpersonal coordination h(r, L)
65 8.8 Actual time T(r, L) and actual workload W(r, L) distribution
66 8.9 Actual time and actual workload distribution (W=100PM)
67 8.10 The optimum labor allocation and the shortest duration

Chapter 9 Cognitive Informatics Foundations of SE

68 9.1 Scientific discoveries impacting on human esteem
69 9.2 Neural physiological foundations of memories
70 9.3 Foundations of cognitive informatics
71 9.4 Subject areas of cognitive informatics
72 9.5 Classification of cognitive processes in LRMB
73 9.6 The Cognitive Information Model (CIM)
74 9.7 Approaches to implement natural intelligence and artificial

intelligence

© 2008 by Taylor & Francis Group, LLC

1390 Appendix M List of Tables

75 9.8 The meta cognitive models of the brain
76 9.9 The relative cognitive weights of BCS’s

Chapter 10 System Science Foundations of SE

77 10.1 Taxonomy of systems
78 10.2 The system magnitude model
79 10.3 The ISO/IEC 15288 system engineering model of software

engineering
80 10.4 Comparative measurement of software system complexities
81 10.5 Measurement of software system cohesions and couplings

Chapter 11 Management Science Foundations of SE

82 11.1 Gains of efficiency by management
83 11.2 Gains of division of labor
84 11.3 Taxonomy of strategies and criteria for decision making
85 11.4 The structure of a payoff table
86 11.5 The payoff table of a software engineering project
87 11.6 Maximax decision making for the software engineering

project
88 11.7 Maximin decision making for the software engineering project
89 11.8 Minimax regret decision making for the software engineering

project
90 11.9 Decision making based on the maximum expected utility for

the software engineering project
91 11.10 Decision making based on the maximax utility probability for

the software engineering project
92 11.11 The payoff table of M = {m11, m12, m21, m22}
93 11.12 Attributes of typical games
94 11.13 The payoff table of G2 = (P, D, M, S)
95 11.14 The payoff table of G3 = (P, D, M, S)
96 11.15 Properties of decision grid (Dmin = 4)
97 11.16 Properties of the decision grid DG2
98 11.17 Comparison of quality concept in management science and

software engineering
99 11.18 Structure of the ISO 9001 framework

100 11.19 ISO 9126 software quality model
101 11.20 Structure of managerial foundations of software engineering
102 11.21 Classification of software engineering organization and

© 2008 by Taylor & Francis Group, LLC

Appendix M List of Tables 1391

management methodologies
103 11.22 The SEPRM process model
104 11.23 Performance rating scale of the BPAs
105 11.24 The SEPRM process capability model
106 11.25 The SEPRM process capability scale

Chapter 12 Economics Foundations of SE

107 12.1 Adaptive equilibrium behaviors of market systems
108 12.2 Cash flows of a project
109 12.3 Elements of software costs
110 12.4 Elements of software revenues
111 12.5 The cost driver attributes of COCOMO
112 12.6 Estimations of costs and revenues of a software project
113 12.7 Ratio of maintenance costs in a software development

organization

Chapter 13 Sociology Foundations of SE

114 13.1 Main sectors of the economy
115 13.2 Roles of software engineers in software engineering
116 13.3 Maslow’s hierarchy of needs
117 13.4 The human needs hierarchy (HNH) model
118 13.5 Taxonomy of emotions
119 13.6 The hierarchy of emotions
120 13.7 Experiments on efficiency of coordinated group work
121 13.8 Taxonomy of organizations
122 13.9 The Canadian statistics of social development
123 13.10 Motivation factors of a project
124 13.11 Taxonomy of human factors
125 13.12 The behavioral model of human errors (BMHEs)
126 13.13 The four-level quality assurance system of software

engineering

Chapter 14 Retrospect on Software Engineering

127 14.1 Determining type of derived process models for a project
128 14.2 Forms of software industrial organization
129 14.3 Specialization of roles and responsibilities in software

engineering
130 14.4 Causal analysis of software maintenance crises

© 2008 by Taylor & Francis Group, LLC

1392 Appendix M List of Tables

131 14.5 Basic constraints of software engineering
132 14.6 Empirical principles of software engineering
133 14.7 Laws of software engineering
134 14.8 Formal principle of software engineering
135 14.9 The impact of software engineering theories on related

disciplines

Chapter 15 Prospect on Software Science

136 15.1 Taxonomy of formal knowledge
137 15.2 Denotational mathematical means for software science
138 15.3 Taxonomy of denotational mathematics for software science

and engineering
139 15.4 Classification of computing methodologies and systems
140 15.5 Classification of problems and goals

© 2008 by Taylor & Francis Group, LLC

	Cover
	Software Engineering Foundations: A Software Science Perspective
	Software Engineering Foundations: A Software Science Perspective
	Summary of Contents
	Table of Contents
	Preface
	The Objectives of this Book
	The Features of this Book
	The Architecture of this Book
	Part I. Principles and Constraints of Software Engineering
	Part II. Theoretical Foundations of Software Engineering
	Part III. Organizational Foundations of Software Engineering
	Part IV. Perspectives on Software Science

	The Readership of this Book

	Acknowledgments
	About the Author
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	PART I: PRINCIPLES AND CONSTRAINTS OF SOFTWARE ENGINEERING
	PART I: PRINCIPLES AND CONSTRAINTS OF SOFTWARE ENGINEERING
	Chapter 1: INTRODUCTION
	1. Introduction
	Knowledge Structure
	Learning Objectives

	1.1 Overview
	1.1.1 SOFTWARE ENGINEERING: STATUS AND PROBLEMS
	1.1.2 MYTHS ON SOFTWARE ENGINEERING

	1.2 Characteristics of Software Engineering
	1.2.1 PERCEPTIONS ON SOFTWARE
	1.2.1.1 The Mathematical Metaphor of Software
	1.2.1.2 The Product Metaphor of Software
	1.2.1.3 The Informatics Metaphor of Software

	1.2.2 PERCEPTIONS ON SOFTWARE ENGINEERING
	1.2.3 SOFTWARE ENGINEERING AS AN ENGINEERING DISCIPLINE
	1.2.4 HIERARCHY OF ABSTRACTION AND DESCRIPTIVITY IN SOFTWARE ENGINEERING
	1.2.4.1 The Hierarchical Abstraction Model of System Descriptivity (HAMSD)
	1.2.4.2 Software Engineering Practice: Can Microtech be Used to Denote Nanotech?

	1.3 Basic Constraints of Software Engineering
	1.3.1 THE SOFTWARE ENGINEERING CONSTRAINT MODEL
	1.3.2 COGNITIVE CONSTRAINTS OF SOFTWARE ENGINEERING
	1.3.2.1 Intangibility
	1.3.2.2 Complexity
	1.3.2.3 Indeterminacy
	1.3.2.4 Diversity
	1.3.2.5 Polymorphism
	1.3.2.6 Inexpressiveness
	1.3.2.7 Inexplicit Embodiment
	1.3.2.8 Unquantifiable Quality Measures

	1.3.3 ORGANIZATIONAL CONSTRAINTS OF SOFTWARE ENGINEERING
	1.3.3.1 Time Dependency
	1.3.3.2 Conservative Productivity
	1.3.3.3 Labor-Time Interlock

	1.3.4 RESOURCES CONSTRAINTS OF SOFTWARE ENGINEERING
	1.3.4.1 Costs
	1.3.4.2 Human Dependency
	1.3.4.3 Hardware Dependency

	1.4 Approaches to Software Engineering
	1.4.1 PROGRAMMING METHODOLOGIES
	1.4.2 SOFTWARE DEVELOPMENT MODELS
	1.4.3 AUTOMATED SOFTWARE ENGINEERING
	1.4.4 FORMAL METHODS
	1.4.5 SOFTWARE ENGINEERING PROCESSES
	1.4.6 THEORETICAL FOUNDATIONS OF SOFTWARE ENGINEERING

	1.5 Transdisciplinary Foundations of Software Engineering
	1.5.1 PHILOSOPHICAL FOUNDATIONS
	1.5.2 MATHEMATICAL FOUNDATIONS
	1.5.3 COMPUTING FOUNDATIONS
	1.5.4 LINGUISTICS FOUNDATIONS
	1.5.5 INFORMATION SCIENCE FOUNDATIONS
	1.5.6 ENGINEERING FOUNDATIONS
	1.5.7 COGNITIVE INFORMATICS FOUNDATIONS
	1.5.8 SYSTEM SCIENCE FOUNDATIONS
	1.5.9 MANAGEMENT SCIENCE FOUNDATIONS
	1.5.10 ECONOMICS FOUNDATIONS
	1.5.11 SOCIOLOGY FOUNDATIONS

	1.6 The Architecture of this Book
	1.7 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Software Engineering as a Discipline
	Fundamental Constraints of Software Engineering
	Approaches to Software Engineering
	Transdisciplinary Foundations of Software Engineering

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 2: PRINCIPLES OF SOFTWARE ENGINEERING
	Chapter 2: PRINCIPLES OF SOFTWARE ENGINEERING
	2. Principles of Software Engineering
	Knowledge Structure
	Learning Objectives

	2.1 Introduction
	2.2 Pioneer Pursuits of Principles for Software Engineering
	2.2.1 PARNAS’ PRINCIPLES OF SOFTWARE ENGINEERING
	2.2.1.1 Information Hiding
	2.2.1.2 Modularization
	2.2.1.3 Engineering Approach
	2.2.1.4 Professional Responsibility
	2.2.1.5 Documentation

	2.2.2 HOARE’S PRINCIPLES OF SOFTWARE ENGINEERING
	2.2.2.1 Professionalism
	2.2.2.2 Vigilance
	2.2.2.3 Sound Theoretical Knowledge
	2.2.2.4 Using Tools
	2.2.2.5 Abstraction
	2.2.2.6 Structured Programming
	2.2.2.7 Readability

	2.2.3 BROOKS’ PRINCIPLES OF SOFTWARE ENGINEERING
	2.2.3.1 Complexity
	2.2.3.2 Conformity
	2.2.3.3 Changeability
	2.2.3.4 Invisibility

	2.2.4 WASSERMAN’S PRINCIPLES OF SOFTWARE ENGINEERING
	2.2.4.1 Abstraction
	2.2.4.2 Methods and Notations
	2.2.4.3 Prototyping
	2.2.4.4 Modularity and Architecture
	2.2.4.5 Lifecycle and Process
	2.2.4.6 Reuse
	2.2.4.7 Metrics
	2.2.4.8 Tools and Integrated Environments

	2.2.5 IEEE SESC’S PRINCIPLES OF SOFTWARE ENGINEERING
	2.2.6 IEEE SOFTWARE MAGAZINE’S PRINCIPLES OF SOFTWARE ENGINEERING
	2.2.6.1 Reviews and Inspections
	2.2.6.2 Information Hiding
	2.2.6.3 Incremental Development
	2.2.6.4 User Involvement
	2.2.6.5 Automated Revision Control
	2.2.6.6 Internet Development
	2.2.6.7 Programming Languages Hall of Fame
	2.2.6.8 Capability Maturity Model
	2.2.6.9 Object-Oriented Programming
	2.2.6.10 Component-Based Development
	2.2.6.11 Metrics and Measurement

	2.3 A Unified Framework of Software Engineering Principles
	2.3.1 ELICITATION OF FUNDAMENTAL PRINCIPLES OF SOFTWARE ENGINEERING
	2.3.2 THE UNIFIED FRAMEWORK OF SOFTWARE ENGINEERING PRINCIPLES
	2.3.3 DESCRIPTION OF THE FUNDAMENTAL PRINCIPLES OF SOFTWARE ENGINEERING
	2.3.3.1 Abstraction
	2.3.3.2 Decomposition/Modularization
	2.3.3.3 Information Hiding
	2.3.3.4 Engineering Approach
	2.3.3.5 Professionalism
	2.3.3.6 Tools and Environments
	2.3.3.7 Documentation
	2.3.3.8 Stepwise Refinement
	2.3.3.9 Prototyping
	2.3.3.10 Adopting Engineering Notations
	2.3.3.11 Process Modeling
	2.3.3.12 Reuse
	2.3.3.13 Measurements and Metrics
	2.3.3.14 Cognitive Complexity Control
	2.3.3.15 Formal Requirement Specification
	2.3.3.16 Systematic Quality Assurance
	2.3.3.17 Review and Inspection
	2.3.3.18 Management Engineering
	2.3.3.19 Acquiring Domain Knowledge
	2.3.3.20 Customer Involvement
	2.3.3.21 Feasibility Analysis
	2.3.3.22 Comprehensibility
	2.3.3.23 Exception Handling
	2.3.3.24 Divide and Conquer
	2.3.3.25 Explicit Embodiment
	2.3.3.26 Establishing Theoretical Foundations
	2.3.3.27 Architecture and Behavior Modeling
	2.3.3.28 Standardization
	2.3.3.29 Systems Engineering
	2.3.3.30 Engineering Organization
	2.3.3.31 Cognitive Engineering

	2.4 Software Engineering Principles as Measures to its Constraints
	2.4.1 PRINCIPLES FOR COPING WITH THE COGNITIVE CONSTRAINTS
	2.4.2 PRINCIPLES FOR COPING WITH THE ORGANIZATIONAL CONSTRAINTS
	2.4.3 PRINCIPLES FOR COPING WITH THE RESOURCE CONSTRAINTS
	2.4.4 A SYSTEMATIC VIEW ON MAPPING BETWEEN THE PRINCIPLES AND CONSTRAINTS

	2.5 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	PART II: THEORETICAL FOUNDATIONS OF SOFTWARE ENGINEERING
	PART II: THEORETICAL FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 3: PHILOSOPHICAL FOUNDATIONS OF SOFTWARE ENGINEERING
	3. Philosophical Foundations of SE
	Knowledge Structure
	Learning Objectives

	3.1 Introduction
	3.2 Philosophy of Sciences and Engineering
	3.2.1 THE NATURAL WORLD AND THE ABSTRACT WORLD
	3.2.2 THE BASIC AXIOMS ABOUT NATURE
	3.2.3 EPISTEMOLOGY AND FOUNDATIONALISM
	3.2.4 HOLISM VS. REDUCTIONISM
	3.2.5 POSITIVISM VS. RATIONALISM
	3.2.6 EMPIRICISM AND OBJECTIVITY
	3.2.7 DETERMINISM VS. INDETERMINISM
	3.2.8 NATURAL INTELLIGENCE VS. ARTIFICIAL INTELLIGENCE
	3.2.9 ETHICAL PHILOSOPHIES OF ENGINEERING

	3.3 Formal Inference Methodologies
	3.3.1 LOGICAL ARGUMENTATIONS
	3.3.2 DEDUCTIVE INFERENCES
	3.3.3 INDUCTIVE INFERENCES
	3.3.4 ABDUCTIVE INFERENCES
	3.3.5 ANALOGICAL INFERENCES

	3.4 The Nature of Software
	3.4.1 THE THREE SITUATIONS WHERE SOFTWARE IS NEEDED
	3.4.2 THE BEHAVIORAL SPACE OF SOFTWARE
	3.4.3 PROPERTIES OF SOFTWARE
	3.4.3.1 The Cognitive Properties of Software
	3.4.3.2 The Intelligent Behavioral Properties of Software
	3.4.3.3 The System Properties of Software

	3.5 Philosophy of Software Engineering
	3.5.1 THE COGNITIVE CHARACTERISTICS OF SOFTWARE ENGINEERING
	3.5.1.1 The Abstraction and Intangibility of Software
	3.5.1.2 The Inherent Complexity and Diversity
	3.5.1.3 The Changeability or Malleability of Software
	3.5.1.4 The Difficulty of Establishing and Stabilizing Requirements
	3.5.1.5 The Requirement of Varying Problem Domain Knowledge
	3.5.1.6 The Indeterminacy and Polysolvability in Design
	3.5.1.7 The Polyglotics and Polymorphism in Implementation
	3.5.1.8 The Dependability of Interactions between Software, Hardware, and Humans

	3.5.2 THE NATURE OF SOFTWARE ENGINEERING
	3.5.2.1 Programming: Virtualization vs. Realization
	3.5.2.2 Problem Domains: Infinitive vs. Limited
	3.5.2.3 Effort Distribution: Design Intensive vs. Repetitive Production
	3.5.2.4 Implementation: Specificity vs. Generality
	3.5.2.5 Universal Logical Description vs. Domain-Specific Description
	3.5.2.6 Process Standardization vs. Product Standardization

	3.5.3 SOFTWARE ENGINEERING VALIDATION METHODOLOGIES

	3.6 Murphy's Laws: The Practitioners' Philosophy for Software Engineering
	3.6.1 MURPHY'S LAWS ON GENERAL ENGINEERING
	3.6.2 MURPHY'S LAWS ON SOFTWARE ENGINEERING

	3.7 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Philosophies of Science and Engineering
	Formal Inference Methodologies
	The Nature of Software
	The Philosophy of Software Engineering

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 4: MATHEMATICAL FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 4: MATHEMATICAL FOUNDATIONS OF SOFTWARE ENGINEERING
	4. Mathematical Foundations of SE
	Knowledge Structure
	Learning Objectives

	4.1 Introduction
	4.2 Set Theory
	4.2.1 SETS AND PROPERTIES
	4.2.1.1 Set Notations and Terminologies
	4.2.1.2 Set Operations
	4.2.1.3 Algebraic Laws of Sets

	4.2.2 SEQUENCES AND ORDERED SETS
	4.2.2.1 Pairs and Tuples
	4.2.2.2 Sequences
	4.2.2.3 Lists
	4.2.2.4 Ordered Sets

	4.2.3 RELATIONS
	4.2.3.1 Binary Relations
	4.2.3.2 Compositions of Relations
	4.2.3.3 Properties of Relations
	4.2.3.4 Cumulative Relations of Programs

	4.3 Algebra Systems
	4.3.1 ABSTRACTION IN ALGEBRA SYSTEMS
	4.3.1.1 Abstract Algebra
	4.3.1.2 Boolean Algebra
	4.3.1.3 Process Algebra
	4.3.1.4 Concept Algebra
	4.3.1.5 System Algebra

	4.3.2 FUNCTIONS
	4.3.2.1 Notations of Functions
	4.3.2.2 Inverse Functions
	4.3.2.3 Composition of Functions

	4.3.3 ALGEBRAIC OPERATIONS

	4.4 Mathematical Logic
	4.4.1 PROPOSITIONAL LOGIC
	4.4.1.1 Propositions
	4.4.1.2 Propositional Logic Operations
	4.4.1.3 Laws of Propositional Algebra and Logical Inferences

	4.4.2 PREDICATE LOGIC
	4.4.2.1 Taxonomy of Predicates
	4.4.2.2 Concept Construction with Predicate Logic
	4.4.2.2.1 Logical Functions
	4.4.2.2.2 Logical Terms
	4.4.2.2.3 Logical Formulae

	4.4.2.3 Inferences in Predicate Logic

	4.5 Denotational Mathematics for Software Engineering
	4.5.1 FUNDAMENTAL ELEMENTS IN MODELING SOFTWARE SYSTEMS
	4.5.2 THE NEED FOR DENOTATIONAL MATHEMATICS IN SOFTWARE ENGINEERING
	4.5.2.1 Problems Yet to be Solved
	4.5.2.2 New Problems Require New Forms of Mathematics

	4.5.3 THE BIG-R NOTATION

	4.6 Real-Time Process Algebra (RTPA)
	4.6.1 THE PROCESS METAPHOR OF SOFTWARE SYSTEMS
	4.6.1.1 Process Algebra
	4.6.1.2 Real-Time Process Algebra (RTPA)

	4.6.2 THE STRUCTURE OF RTPA
	4.6.3 THE TYPE SYSTEM OF RTPA
	4.6.3.1 Primitive Types and the Type-Suffix Convention
	4.6.3.2 Definitions of the Primitive Types of RTPA
	4.6.3.3 Equivalence between Primitive Types

	4.6.4 META PROCESSES OF RTPA
	4.6.4.1 Structure of the RTPA Meta Processes
	4.6.4.2 Formal Description of the RTPA Meta Processes
	4.6.4.2.1 Assignment
	4.6.4.2.2 Evaluation
	4.6.4.2.3 Addressing
	4.6.4.2.4 Memory Allocation
	4.6.4.2.5 Memory Release
	4.6.4.2.6 Read
	4.6.4.2.7 Write
	4.6.4.2.8 Input
	4.6.4.2.9 Output
	4.6.4.2.10 Timing
	4.6.4.2.11 Duration
	4.6.4.2.12 Increase
	4.6.4.2.13 Decrease
	4.6.4.2.14 Exception Detection
	4.6.4.2.15 Skip
	4.6.4.2.16 Stop
	4.6.4.2.17 System

	4.6.5 PROCESS RELATIONS AND ALGEBRAIC OPERATIONS OF RTPA
	4.6.5.1 Structure of the RTPA Process Relations
	4.6.5.2 Formal Description of the RTPA Process Relations
	4.6.5.2.1 Sequence
	4.6.5.2.2 Jump
	4.6.5.2.3 Branch
	4.6.5.2.4 Switch
	4.6.5.2.5 While-Loop
	4.6.5.2.6 Repeat-Loop
	4.6.5.2.7 For-Loop
	4.6.5.2.8 Recursion
	4.6.5.2.9 Function Call
	4.6.5.2.10 Parallel
	4.6.5.2.11 Concurrence
	4.6.5.2.12 Interleave
	4.6.5.2.13 Pipeline
	4.6.5.2.14 Interrupt
	4.6.5.2.15 Time-Driven Dispatch
	4.6.5.2.16 Event-Driven Dispatch
	4.6.5.2.17 Interrupt-Driven Dispatch

	4.7 The RTPA Methodology for Software System Modeling and Refinement
	4.7.1 THE RTPA METHODOLOGY
	4.7.2 SYSTEM ARCHITECTURE MODELING AND REFINEMENT IN RTPA
	4.7.2.1 The System Architecture
	4.7.2.2 The CLM Schema
	4.7.2.3 The CLM Objects

	4.7.3 SYSTEM STATIC BEHAVIOR MODELING AND REFINEMENT
	4.7.3.1 System Static Behaviors
	4.7.3.2 Process Schemas
	4.7.3.3 Process Implementation

	4.7.4 SYSTEM DYNAMIC BEHAVIOR MODELING AND REFINEMENT
	4.7.4.1 System Dynamic Behaviors
	4.7.4.2 Dynamic Behaviors Deployment
	4.7.4.3 Dynamic Behaviors Dispatch

	4.8 RTPA: Notations for Software Engineering
	4.8.1 MODELING COMPONENT-LEVEL PROBLEMS USING RTPA
	4.8.1.1 Existing Approaches to ADT Specification
	4.8.1.2 Architectural Specification in RTPA
	4.8.1.3 Static Behavior Specification in RTPA
	4.8.1.4 Dynamic Behavior Specification in RTPA

	4.8.2 MODELING SYSTEM-LEVEL PROBLEMS USING RTPA
	4.8.2.1 The Conceptual Model of the ATM
	4.8.2.2 Formal Description of the ATM Architectures
	4.8.2.3 Formal Description of the ATM Static Behaviors
	4.8.2.4 Formal Description of the ATM Dynamic Behaviors

	4.9 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 4. Mathematical Foundations of SE

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Fundamental Mathematics
	Denotational Mathematics for Software Engineering
	Real-Time Process Algebra (RTPA)
	The RTPA Methodology for Software System Modeling and Refinement

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANGŽS LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANGŽS FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF FIGURES

	Chapter 5: COMPUTING FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 5: COMPUTING FOUNDATIONS OF SOFTWARE ENGINEERING
	5. Computing Foundations of Software Engineering
	Knowledge Structure
	Learning Objectives

	5.1 Introduction
	5.2 Basic Computational Models
	5.2.1 BASIC OPERATIONS IN COMPUTING
	5.2.2 AUTOMATA
	5.2.2.1 Automata and Finite State Machines (FSMs)
	5.2.2.2 Approaches to Describe FSMs
	5.2.2.3 Description of Software Behaviors by FSMs
	5.2.2.4 FSM Composition and Refinement
	5.2.2.5 Deterministic and Nondeterministic Automata
	5.2.2.6 Usage of Automata

	5.2.3 TURING MACHINES
	5.2.3.1 The Abstract Model of Computing
	5.2.3.2 Formal Description of Turing Machines
	5.2.3.3 The Nature of Computing

	5.2.4 VON NEUMANN MACHINES
	5.2.4.1 The Stored-Program Concept
	5.2.4.2 The von Neumann Architecture of Computers

	5.2.5 COGNITIVE MACHINES
	5.2.5.1 The Wang Architecture of Computers
	5.2.5.2 Cognitive Computers

	5.3 Data Object Modeling and Manipulation
	5.3.1 TYPES AND DATA STRUCTURES
	5.3.1.1 Type Systems of Programming Languages
	5.3.1.2 Primitive Types
	5.3.1.3 Derived and Advanced Types
	5.3.1.3.1 Dynamic Run-Time Types
	5.3.1.3.2 Time Types
	5.3.1.3.3 Event Types
	5.3.1.3.4 Status Types

	5.3.1.4 System Architectural Types
	5.3.1.4.1 The System Type
	5.3.1.4.2 The System Memory Type
	5.3.1.4.3 The System Port Type

	5.3.2 BASIC DATA MODELING TECHNIQUES
	5.3.2.1 Identifiers
	5.3.2.2 Variables and Constants
	5.3.2.3 Expressions

	5.3.3 FORMAL TYPE THEORY
	5.3.3.1 Type Rules
	5.3.3.2 Formal Type Systems
	5.3.3.3 Complex Type Rules for the RTPA Derived Types
	5.3.3.3.2 The Type Rules for Processes in RTPA
	5.3.3.3.2 The Type Rules for Processes in RTPA

	5.3.4 ABSTRACT DATA TYPES
	5.3.4.1 The Generic Model of ADTs
	5.3.4.2 Modeling Complex Data Structures and Component Architectures by ADTs
	5.3.4.3 Typical ADTs Modeled in RTPA

	5.4 Behavioral Modeling and Manipulation
	5.4.1 INTERNAL BEHAVIORS MODELING
	5.4.1.1 Basic Control Structures (BCS’s)
	5.4.1.2 Control Flow Graphs

	5.4.2 ITERATIVE AND RECURSIVE BEHAVIORS MODELING
	5.4.2.1 Formal Description of Iterations
	5.4.2.2 Formal Description of Recursions
	5.4.2.2.1 Properties of Recursions
	5.4.2.2.2 The Mathematical Model of Recursions

	5.4.2.3 Comparative Analysis of Iterations and Recursions

	5.4.3 EXTERNAL AND INTERACTIVE BEHAVIORS MODELING
	5.4.3.1 Memory Manipulations
	5.4.3.1.1 Modes of Addressing
	5.4.3.1.2 Memory Read and Write
	5.4.3.1.3 Dynamic Memory Allocation

	5.4.3.2 Events Handling
	5.4.3.2.1 Operating Event Handling
	5.4.3.2.4 Exceptional Event Handling

	5.5 Program Modeling: Coordination of Computational Behaviors with Data Objects
	5.5.1 THE UNIFIED MATHEMATICAL MODEL OF PROGRAMS
	5.5.1.1 The Abstract Model of Statements
	5.5.1.2 The Abstract Model of Processes
	5.5.1.3 The Abstract Model of Programs

	5.5.2 PROGRAMS MODELING AT COMPONENT LEVEL
	5.5.2.1 Algorithms
	5.5.2.2 Classes and Object-Orientation
	5.5.2.2.1 Mathematical Models of Classes
	5.5.2.2.2 Associations between Classes and Objects
	5.5.2.2.3 Basic Attributes of Object-Orientation

	5.5.2.3 Patterns
	5.5.2.3.1 The Concept of Software Patterns
	5.5.2.3.2 The Mathematical Model of Patterns
	5.5.2.3.3 Pattern Modeling: Formal Models vs. UML Models

	5.5.3 PROGRAMS MODELING AT SYSTEM LEVEL – FRAMEWORKS

	5.6 Resources and Processes Modeling and Manipulation
	5.6.1 ABSTRACT MODELS OF COMPUTING SYSTEMS
	5.6.2 ARCHITECTURES OF OPERATING SYSTEMS
	5.6.2.1 The Generic Architecture of Operating Systems
	5.6.2.2 The Unix™ and Linux™ Operating Systems
	5.6.2.3 The Windows™ XP Operating System

	5.6.3 COMPUTING RESOURCES MANIPULATION
	5.6.3.1 Process Management
	5.6.3.2 CPU Scheduling
	5.6.3.3 Memory Management
	5.6.3.4 File System Management
	5.6.3.5 I/O System Management
	5.6.3.6 Communication Management
	5.6.3.7 Network Management

	5.6.4 REAL-TIME/EMBEDDED RESOURCES AND PROCESSES MANIPULATION
	5.6.4.1 The Architecture of RTOS+
	5.6.4.2 The Task Scheduler of RTOS+
	5.6.4.3 Process Dispatching of RTOS+

	5.7 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 5. Computing Foundations of SE

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Basic Computation Models
	Data Object Modeling and Manipulation
	Operational Behavioral Modeling and Manipulation
	Program Modeling: Coordination of Computational Behaviors with Data Objects
	Resources and Processes Modeling and Manipulation

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANGŽS LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANGŽS FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 6: LINGUISTIC FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 6: LINGUISTIC FOUNDATIONS OF SOFTWARE ENGINEERING
	6. Linguistics Foundations of SE
	Knowledge Architecture
	Learning Objectives

	6.1 Introduction
	6.2 Fundamentals of Linguistics
	6.2.1 TAXONOMY OF LINGUISTICS
	6.2.2 SYNTAXES
	6.2.3 SEMANTICS
	6.2.4 GRAMMARS
	6.2.4.1 Properties of Grammars
	6.2.4.2 The Universal Grammar
	6.2.4.3 The Deductive Grammar of English

	6.3 Formal Language Theory
	6.3.1 ALPHABET
	6.3.2 STRINGS
	6.3.3 EXPRESSIONS
	6.3.4 GRAMMAR THEORIES
	6.3.4.1 Production Rules of Grammars
	6.3.4.2 Taxonomy of Grammars
	6.3.4.2.1 Chomsky Grammars
	6.3.4.2.2 Grammars Classified by Relations with the Contexts
	6.3.4.2.3 Formal Description of Context-Free Grammars
	6.3.4.2.4 Grammars Classified by Language Recognition Techniques

	6.3.5 LANGUAGES
	6.3.6 BNF AND EBNF

	6.4 Syntaxes of Programming Languages
	6.4.1 LEXICAL ANALYSES
	6.4.1.1 Taxonomy of Lexical Entities in Programming Languages
	6.4.1.2 Lexical Analyses of Programs

	6.4.2 SYNTAX DEFINITIONS AND DESCRIPTIONS
	6.4.3 SYNTACTICAL ANALYSES
	6.4.3.1 Basic Syntactical Analysis Techniques
	6.4.3.1.1 Top-Down Parsing
	6.4.3.1.2 Bottom-Up Parsing

	6.4.3.2 Description of Parsing Results by Syntax Trees

	6.4.4 SYNTACTICAL ANALYSES OF RTPA
	6.4.4.1 Description of the RTPA Syntax in LL(k)
	6.4.4.2 Description of Special RTPA Grammar Rules by Syntactic Predicates
	6.4.4.3 Parsing RTPA Specifications

	6.5 Semantics of Programming Languages
	6.5.1 TAXONOMY OF SEMANTICS
	6.5.1.1 Target Semantics
	6.5.1.2 Operational Semantics
	6.5.1.3 Denotational Semantics
	6.5.1.4 Axiomatic Semantics
	6.5.1.5 Algebraic Semantics
	6.5.1.6 Deductive Semantics

	6.5.2 DENOTATIONAL SEMANTICS
	6.5.2.1 Syntactic and Semantic Domains of Denotational Semantics
	6.5.2.2 Description of Syntactic Domains of the Sample Language SPL
	6.5.2.3 Semantic Analysis using Denotational Semantics
	6.5.2.3.1 Semantics of Integer Arithmetic Expressions
	6.5.2.3.2 Semantics of Assignments
	6.5.2.3.3 Semantics of Branch Statements
	6.5.2.3.4 Semantics of While-Loop Statements

	6.5.2.4 Semantics of Programs in SPL

	6.5.3 DEDUCTIVE SEMANTICS
	6.5.3.1 The Mathematic Model of Software Semantics
	6.5.3.2 Deductive Semantics of Programs at Different Levels of Compositions
	6.5.3.3 Properties of Software Semantics

	6.6 Semantics of RTPA
	6.6.1 SEMANTICS OF RTPA META PROCESSES
	6.6.1.1 The Assignment Process
	6.6.1.2 The Evaluation Process
	6.6.1.3 The Addressing Process
	6.6.1.4 The Memory Allocation Process
	6.6.1.5 The Memory Release Process
	6.6.1.6 The Read Process
	6.6.1.7 The Write Process
	6.6.1.8 The Input Process
	6.6.1.9 The Output Process
	6.6.1.10 The Timing Process
	6.6.1.11 The Duration Process
	6.6.1.12 The Increase Process
	6.6.1.13 The Decrease Process
	6.6.1.14 The Exception Detection Process
	6.6.1.15 The Skip Process
	6.6.1.16 The Stop Process

	6.6.2 SEMANTICS OF RTPA PROCESS RELATIONS
	6.6.2.1 The Sequential Process Relation
	6.6.2.2 The Jump Process Relation
	6.6.2.3 The Branch Process Relation
	6.6.2.4 The Switch Process Relation
	6.6.2.5 The While-Loop Process Relation
	6.6.2.6 The Repeat-Loop Process Relation
	6.6.2.7 The For-Loop Process Relation
	6.6.2.8 The Function Call Process Relation
	6.6.2.9 The Recursive Process Relation
	6.6.2.10 The Parallel Process Relation
	6.6.2.11 The Concurrent Process Relation
	6.6.2.12 The Interleave Process Relation
	6.6.2.13 The Pipeline Process Relation
	6.6.2.14 The Interrupt Process Relation

	6.6.3 SEMANTICS OF SYSTEM AND SYSTEM PROCESS DISPATCHING
	6.6.3.1 The System Process
	6.6.3.2 The Time-Driven Dispatching Process Relation
	6.6.3.3 The Event-Driven Dispatching Process Relation
	6.6.3.4 The Interrupt-Driven Dispatching Process Relation

	6.7 Linguistic Perceptions on Software Engineering
	6.7.1 COMPARATIVE ANALYSIS OF NATURAL AND PROGRAMMING LANGUAGE THEORIES
	6.7.2 PRINCIPLES OF PROGRAMMING LANGUAGE DESIGN
	6.7.2.1 Abstraction and Complexity Control
	6.7.2.2 Efficiency
	6.7.2.3 Expressivity
	6.7.2.4 Simplicity
	6.7.2.5 Uniformity
	6.7.2.6 Orthogonality
	6.7.2.7 Comprehensibility and Readability

	6.7.3 CHARACTERISTICS OF PROGRAMMING LANGUAGES
	6.7.3.1 Fundamental Requirements for Programming
	6.7.3.2 Characteristics of Programming Languages

	6.8 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 6. Linguistics Foundations of SE

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Fundamentals of Linguistics
	Formal Language Theory
	Syntax of Programming Languages
	Semantics of Programming Languages
	Linguistics Perceptions on Software Engineering

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 7: INFORMATION SCIENCE FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 7: INFORMATION SCIENCE FOUNDATIONS OF SOFTWARE ENGINEERING
	7. Information Science Foundations of SE
	Knowledge Structure
	Learning Objectives

	7.1 Introduction
	7.2 Classic Information Theory
	7.2.1 SHANNON’S PERCEPTION ON INFORMATION
	7.2.2 THE PHYSICAL MEANING OF CLASSIC INFORMATION
	7.2.2.1 The Concept of Entropy
	7.2.2.2 The Laws of Thermodynamics
	7.2.2.3 Transformation between Information Entropy and Thermal Entropy

	7.2.3 DOMAIN OF CLASSIC INFORMATION THEORY
	7.2.4 SUBJECTIVITY OF CLASSIC INFORMATION THEORY

	7.3 Contemporary Informatics
	7.3.1 INFORMATION: THE THIRD ESSENCE OF NATURE
	7.3.2 MEASUREMENT OF INFORMATION
	7.3.3 FROM MACHINE INFORMATICS TO COGNITIVE INFORMATICS
	7.3.3.1 Cognitive Informatics
	7.3.3.2 Perspective on Information in Cognitive Informatics
	7.3.3.3 The Role of Information in Mankind Evolution

	7.4 Informatics Laws of Software
	7.4.1 EQUIVALENCE BETWEEN I-M-E
	7.4.1.1 Equivalence of Matter and Energy
	7.4.1.2 Transformation between Matter, Energy, and Information

	7.4.2 INFORMATICS LAWS AND PROPERTIES OF SOFTWARE
	7.4.2.1 Abstraction
	7.4.2.2 Generality
	7.4.2.3 Cumulativeness
	7.4.2.4 Dependency on Cognition
	7.4.2.5 Multi-Dimensional Behavioral Space
	7.4.2.6 Sharability
	7.4.2.7 Physically Dimensionless
	7.4.2.8 Weightless
	7.4.2.9 Transformability between I-M-E
	7.4.2.10 Multiple Representation Forms
	7.4.2.11 Multiple Carrying Media
	7.4.2.12 Multiple Transmission Forms
	7.4.2.13 Dependency on Media
	7.4.2.14 Dependency on Energy
	7.4.2.15 Wearless and Time Dependency
	7.4.2.16 Conservation of Information Entropy and Thermal Entropy
	7.4.2.17 Information-Based Quality Attributes
	7.4.2.18 Susceptible to Distortion
	7.4.2.19 Scarcity

	7.5 Information Theories for Software Engineering
	7.5.1 THE INFORMATICS METAPHOR OF SOFTWARE
	7.5.2 INFORMATICS LAWS THAT CONSTRAIN SOFTWARE BEHAVIORS
	7.5.3 THE INFORMATICS ATTRIBUTES OF SOFTWARE QUALITY

	7.6 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 7. Information Science Foundations of SE

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Classic Information Theory
	Contemporary Informatics
	Informatics Laws of Software
	Information Theories for Software Engineering

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	PART III: ORGANIZATIONAL FOUNDATIONS OF SOFTWARE ENGINEERING
	PART III: ORGANIZATIONAL FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 8: ENGINEERING FOUNDATIONS OF SOFTWARE ENGINEERING
	8. Engineering Foundations of SE
	Knowledge Structure
	Learning Objectives

	8.1 Introduction
	8.2 Generic Engineering Approaches
	8.2.1 ENGINEERING: A CONCEPT EMERGED FROM THE INDUSTRIAL REVOLUTIONS
	8.2.2 SCIENCE AND THE GENERIC SCIENTIFIC METHOD
	8.2.3 ENGINEERING VS. SCIENCE
	8.2.3.1 Science and Scientists
	8.2.3.2 Engineering and Engineers
	8.2.3.3 Relationship between Science and Engineering

	8.2.4 FUNDAMENTAL GOALS AND CONSTRAINTS OF ENGINEERING
	8.2.5 GENERIC ENGINEERING APPROACHES
	8.2.6 THE GENERIC ENGINEERING MATURITY MODEL (EMM)

	8.3 Basic Engineering Principles
	8.3.1 PRINCIPLES OF ENGINEERING ORGANIZATION
	8.3.2 PRINCIPLES OF ENGINEERING TECHNOLOGY
	8.3.3 PRINCIPLES OF ENGINEERING MANAGEMENT
	8.3.4 PRINCIPLES OF ENGINEERING PROFESSIONALISM

	8.4 Engineering Principles for Software Engineering
	8.4.1 THE ENGINEERING CHARACTERISTICS OF SOFTWARE ENGINEERING
	8.4.2 DIVISION OF LABOR
	8.4.3 CHARACTERISTICS OF SOFTWARE ENGINEERING IN THE ENGINEERING AGE
	8.4.4 UNIQUE PRINCIPLES OF SOFTWARE ENGINEERING
	8.4.5 PROFESSIONALISM OF SOFTWARE ENGINEERING
	8.4.5.1 Professionalism of Software Engineers
	8.4.5.2 Ethical Practice in Software Engineering

	8.5 The Theory of Software Engineering Organization
	8.5.1 BASIC PROPERTIES OF COORDINATIVE WORK IN ENGINEERING
	8.5.1.1 The Mechanisms of Coordinative Workload and Effort
	8.5.1.2 The Rate of Interpersonal Coordination
	8.5.1.3 The Overhead of Interpersonal Coordination
	8.5.1.4 The Nature of Coordinative Work in Engineering

	8.5.2 LAWS OF WORK ORGANIZATION IN SOFTWARE ENGINEERING
	8.5.2.1 The Laws of Incompressibility of Software Engineering Workload
	8.5.2.2 The Law of Interchangeability between Labor and Time in Software Engineering
	8.5.2.3 The Laws of the Shortest Duration of Coordinative Work in Software Engineering

	8.5.3 THE MYTHICAL MAN-MONTH EXPLAINED
	8.5.4 DECISION OPTIMIZATION IN SOFTWARE ENGINEERING
	8.5.4.1 Optimization of Project Organization for the Shortest Duration
	8.5.4.2 Optimization of Project Organization for the Lowest Effort /Cost
	8.5.4.3 Optimization of Project Organization by Controlling the Interpersonal Coordination Rate

	8.6 Empirical Software Engineering
	8.6.1 SOFTWARE ENGINEERING CASE STUDIES
	8.6.2 SOFTWARE ENGINEERING EXPERIMENTS
	8.6.3 SOFTWARE ENGINEERING TRIALS
	8.6.4 SOFTWARE ENGINEERING BENCHMARKING
	8.6.4.1 The IBM European Benchmarks on Software Engineering Practices
	8.6.4.2 The SEPRM Benchmarks on Software Engineering Processes

	8.6.5 SOFTWARE ENGINEERING STANDARDIZATION
	8.6.5.1 Software Development Standards
	8.6.5.2 Software Quality Standards
	8.6.5.3 Software Engineering Process Standards

	8.7 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 8. Engineering Foundations of SE

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Generic Engineering Approaches
	Basic Engineering Principles
	Engineering Principles for Software Engineering
	The Theory of Software Engineering Organization
	Empirical Software Engineering

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 9: COGNITIVE INFORMATICS FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 9: COGNITIVE INFORMATICS FOUNDATIONS OF SOFTWARE ENGINEERING
	9. Cognitive Informatics Foundations of SE
	Knowledge Structure
	Learning Objectives

	9.1 Introduction
	9.2 Cognitive Informatics
	9.2.1 COGNITIVE PHILOSOPHY
	9.2.2 NEURAL INFORMATICS FOUNDATIONS OF THE BRAIN
	9.2.2.1 Neurons and Synapses
	9.2.2.2 Physiological Structure of the Brain
	9.2.2.3 Cognitive Models of Memories
	9.2.2.3.1 The Magnitude of Human Brain
	9.2.2.3.2 Taxonomy of Human Memories
	9.2.2.3.3 Functional Models of Memories
	9.2.2.3.4 Neurophysiological Foundations of Memories

	9.2.3 THE EMERGENCE OF COGNITIVE INFORMATICS
	9.2.4 THE THEORETICAL FRAMEWORK OF COGNITIVE INFORMATICS
	9.2.4.1 The Fundamental Theories of Cognitive informatics
	9.2.4.2 The Domain of Cognitive Informatics

	9.3 Cognitive Informatics Models of the Brain
	9.3.1 THE LAYERED REFERENCE MODEL OF THE BRAIN (LRMB)
	9.3.1.1 The Architecture of LRMB
	9.3.1.2 The Functional Layers of LRMB
	9.3.1.2.1 Layer 1: The Sensation Layer
	9.3.1.2.2 Layer 2: The Memory Layer
	9.3.1.2.3 Layer 3: The Perception Layer
	9.3.1.2.4 Layer 4: The Action Layer
	9.3.1.2.5 Layer 5: The Meta Cognitive Process Layer
	9.3.1.2.6 Layer 6: The Higher Cognitive Process Layer

	9.3.1.3 The Configuration of the Cognitive Processes of LRMB

	9.3.2 COGNITIVE PROPERTIES OF INTERNAL INFORMATION
	9.3.3 NATURAL INTELLIGENCE VS. ARTIFICIAL INTELLIGENCE
	9.3.3.1 The Nature of Intelligence
	9.3.3.2 Taxonomy of Intelligence
	9.3.3.3 The Model of Natural Intelligence
	9.3.3.4 Measurement of Intelligence
	9.3.3.4.1 Intelligent Quotient
	9.3.3.4.2 The Turing Test
	9.3.3.4.3 Wang’s Intelligent Capability Metrics

	9.3.3.5 Theory of Learning and Knowledge Acquisition

	9.3.4 THE COGNITIVE MODEL OF THE BRAIN

	9.4 Cognitive Informatics Models of Knowledge Representation
	9.4.1 THE HIERARCHICAL NEURAL CLUSTER (HNC) MODEL OF MEMORY
	9.4.2 THE OBJECT-ATTRIBUTE-RELATION (OAR) MODEL OF INTERNAL INFORMATION REPRESENTATION
	9.4.3 THE EXTENDED OAR MODEL OF THE BRAIN
	9.4.4 THE COGNITIVE MECHANISMS OF LONG-TERM MEMORY
	9.4.4.1 Cognitive Properties of LTM
	9.4.4.2 When is Memory Created in LTM?
	9.4.4.3 How is Memory Created in LTM?

	9.4.5 THE MEMORY CAPACITY OF HUMAN BRAINS

	9.5 Cognitive Informatics for Software Engineering
	9.5.1 COGNITIVE CONSTRAINTS ON SOFTWARE PRODUCTIVITY
	9.5.2 SOFTWARE ENGINEERING PSYCHOLOGY
	9.5.3 THE COGNITIVE FOUNDATION OF SOFTWARE COMPREHENSION
	9.5.4 SOFTWARE ENGINEERING SKILLS AND EXPERIENCES
	9.5.5 SOFTWARE AGENT SYSTEMS

	9.6 Cognitive Complexity of Software
	9.6.1 THE RELATIVE COGNITIVE WEIGHTS OF GENERIC SOFTWARE STRUCTURES
	9.6.2 PSYCHOLOGICAL EXPERIMENTS ON THE COGNITIVE WEIGHTS
	9.6.3 CALIBRATION OF THE RELATIVE COGNITIVE WEIGHTS OF BCS’S

	9.7 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Cognitive informatics
	Cognitive informatics models of the brain
	Cognitive informatics models of knowledge representation
	Cognitive informatics for software engineering
	Cognitive complexity of software

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 10: SYSTEM SCIENCE FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 10: SYSTEM SCIENCE FOUNDATIONS OF SOFTWARE ENGINEERING
	10. System Science Foundations of SE
	Knowledge Structure
	Learning Objectives

	10.1 Introduction
	10.2 System Philosophies
	10.2.1 THE SYSTEM METAPHOR FOR MODELING COMPLEX ENTITIES
	10.2.2 HOLISM
	10.2.3 SYSTEMATIC THINKING

	10.3 Abstract Systems and System Topology
	10.3.1 MATHEMATICAL MODELS OF ABSTRACT SYSTEMS
	10.3.1.1 The Mathematical Model of Closed Systems
	10.3.1.2 The Mathematical Model of Open Systems

	10.3.2 TAXONOMY OF SYSTEMS
	10.3.2.1 Concrete and Abstract Systems
	10.3.2.2 Physical and Social Systems
	10.3.2.3 Finite and Infinite Systems
	10.3.2.4 Closed and Open Systems
	10.3.2.5 Static and Dynamic Systems
	10.3.2.6 Linear and Nonlinear Systems
	10.3.2.7 Continuous and Discrete Systems
	10.3.2.8 Precise and Fuzzy Systems
	10.3.2.9 Determinate and Indeterminate Systems
	10.3.2.10 White-Box and Black-Box Systems
	10.3.2.11 Intelligent and Nonintelligent Systems
	10.3.2.12 Maintainable and Nonmaintainable Systems

	10.3.3 MAGNITUDES OF SYSTEMS
	10.3.3.1 System Sizes, Magnitudes, and Complexities
	10.3.3.2 Taxonomy of System Magnitudes

	10.3.4 HIERARCHICAL ARCHITECTURES OF SYSTEMS
	10.3.5 THE SYSTEM ORGANIZATION TREE
	10.3.6 SYSTEM COHESION AND COUPLING
	10.3.6.1 The Border of Systems
	10.3.6.2 System Cohesion and Coupling

	10.4 System Algebra
	10.4.1 RELATIONAL OPERATIONS OF SYSTEMS
	10.4.1.1 Algebraic Relations of Closed Systems
	10.4.1.2 Algebraic Relations of Open Systems
	10.4.1.3 Relations between Closed and Open Systems

	10.4.2 ALGEBRAIC OPERATIONS OF SYSTEMS
	10.4.2.1 System Conjunction
	10.4.2.2 System Difference
	10.4.2.3 System Composition
	10.4.2.4 System Decomposition

	10.5 Principles of System Science
	10.5.1 SYSTEM FUSIONS
	10.5.2 SYSTEM FUNCTIONS AND BEHAVIORS
	10.5.3 WORK DONE BY SYSTEMS
	10.5.4 THE MAXIMUM OUTPUT OF SYSTEMS
	10.5.5 SYSTEM EQUILIBRIUM AND ORGANIZATION
	10.5.5.1 The Generic IPO Model of Systems
	10.5.5.2 Laws of System Equilibrium and Organization

	10.5.6 SYSTEM SYNCHRONIZATION AND COORDINATION
	10.5.7 SYSTEM DISSIMILATION
	10.5.7.1 Dissimilation of Nonmaintainable Systems
	10.5.7.2 Dissimilation of Maintainable Systems

	10.6 Software System Engineering
	10.6.1 THE ABSTRACT MODEL OF COMPUTING SYSTEMS
	10.6.2 THE HIERARCHICAL MODEL OF SOFTWARE SYSTEMS
	10.6.2.1 The Hierarchical Structure of Software Systems
	10.6.2.2 The Hierarchical Structure of Software Engineering Processes and Work Products

	10.6.3 THE ISO/IEC 15288 SYSTEM ENGINEERING MODEL FOR SOFTWARE ENGINEERING
	10.6.4 SOFTWARE ENGINEERING PHENOMENA AS SYSTEM ENGINEERING PROBLEMS

	10.7 The Complexity Theory of Software Systems
	10.7.1 COMPUTATIONAL COMPLEXITY
	10.7.1.1 Taxonomy of Computational Problems
	10.7.1.2 Time Complexity of Algorithms
	10.7.1.3 Space Complexity of Algorithms

	10.7.2 SYMBOLIC AND CONTROL FLOW COMPLEXITIES
	10.7.2.1 Symbolic Complexity of Software Systems
	10.7.2.2 Control Flow Complexity of Software Systems

	10.7.3 THE COGNITIVE COMPLEXITIES OF SOFTWARE SYSTEMS
	10.7.3.1 The Operational Complexity of Software Systems
	10.7.3.2 The Architectural Complexity of Software Systems
	10.7.3.3 The Cognitive Complexity of Software Systems

	10.7.4 SOFTWARE SYSTEM COMPLEXITY ANALYSIS
	10.7.4.1 Comparative Case Studies on the Complexity Models of Software Systems
	10.7.4.2 The Symbolic vs. Cognitive Sizes of Software Systems

	10.7.5 COHESION AND COUPLING COMPLEXITIES OF SOFTWARE SYSTEMS
	10.7.5.1 Cohesion of Software Systems
	10.7.5.2 Coupling of Software Systems
	10.7.5.3 Comparative Analysis of Software System Cohesions and Couplings

	10.8 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	System philosophies
	System Abstraction
	System topology
	System Algebra
	System principles
	Software System engineering
	The complexity theory of software systems

	Questions and Research Opportunities
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES
	Bibliography

	Chapter 11: MANAGEMENT SCIENCE FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 11: MANAGEMENT SCIENCE FOUNDATIONS OF SOFTWARE ENGINEERING
	11. Management Science Foundations of SE
	Knowledge Structure
	Learning Objectives

	11.1 Introduction
	11.2 Principles of Management Science
	11.2.1 CLASSIC MANAGEMENT THOUGHT
	11.2.2 ARCHITECTURE OF MANAGEMENT SCIENCE
	11.2.2.1 Functions of Management
	11.2.2.2 The System Model of Management

	11.2.3 FUNDAMENTAL THEORY OF MANAGEMENT SCIENCE
	11.2.3.1 Why Management is Needed in Work Organization?
	11.2.3.2 The First Principle of Management
	11.2.3.3 Gains from Division of Labor
	11.2.3.4 The Second Principle of Management
	11.2.3.5 Wang’s Work Organization Theory for Coordinative Work Management

	11.3 Decision Theories
	11.3.1 THE MATHEMATICAL MODEL OF DECISION MAKING
	11.3.1.1 The Principle of Choices
	11.3.1.2 Decisions and Decision Making
	11.3.1.3 Strategies and Criteria for Decision Making
	11.3.1.4 The Structure of Rational Decision Making

	11.3.2 DECISION MAKING PROCESSES
	11.3.2.1 The Cognitive Process of Decision Making
	11.3.2.2 Formal Description of the Decision Making Process

	11.3.3 STATIC DECISION MAKING STRATEGIES
	11.3.3.1 Decision Making under Certainty
	11.3.3.2 Decision Making under Uncertainty
	11.3.3.2.1 Optimistic Decision Making under Uncertainty
	11.3.3.2.2 Pessimistic Decision Making under Uncertainty
	11.3.3.2.3 Minimum Regret Decision Making under Uncertainty

	11.3.3.3 Decision Making under Risks
	11.3.3.3.1 Decision Making under Risk with Maximum Expected Utility
	11.3.3.3.2 Decision Making under Risk with Maximax Utility Probability

	11.3.4 GAME THEORY
	11.3.4.1 The Formal Model of Games
	11.3.4.2 Properties of Games
	11.3.4.3 Behaviors of Zero-Sum Games
	11.3.4.4 Behaviors of Nonzero-Sum Games

	11.3.5 DECISION GRID THEORY
	11.3.5.1 The Formal Model of Decision Grids
	11.3.5.2 Serial Decision Making with Unlimited Trials
	11.3.5.3 Serial Decision Making with Limited Trials

	11.4 Quality Systems
	11.4.1 QUALITY PRINCIPLES
	11.4.1.1 Attributes of Quality
	11.4.1.2 Formal Models of Quality

	11.4.2 QUALITY CONTROL AND ASSURANCE
	11.4.2.1 Quality Control Systems
	11.4.2.2 Quality Assurance Techniques

	11.4.3 QUALITY MANAGEMENT SYSTEMS
	11.4.3.1 Total Quality Management (TQM)
	11.4.3.2 The ISO 9000 Quality System
	11.4.3.3 The ISO 9126 Quality System

	11.5 Software Engineering Management
	11.5.1 TAXONOMY OF SOFTWARE ENGINEERING MANAGEMENT
	11.5.2 THE SOFTWARE ENGINEERING PROCESS REFERENCE MODEL (SEPRM)
	11.5.2.1 The SEPRM Process Model
	11.5.2.2 The SEPRM Process Capability Model
	11.5.2.3 The SEPRM Process Capability Determination Methodology

	11.6 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 11. Management Science Foundations of SE

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Principles of management science
	Decision theories
	Quality theories
	Software engineering management

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANGŽS LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANGŽS FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 12: ECONOMICS FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 12: ECONOMICS FOUNDATIONS OF SOFTWARE ENGINEERING
	12. Economics Foundations of SE
	Knowledge Structure
	Learning Objectives

	12.1 Introduction
	12.2 Fundamental Principles of Economics
	12.2.1 BASIC AXIOMS OF ECONOMICS
	12.2.1.1 Demand vs. Supply
	12.2.1.2 The Principle of Resource Scarcity
	12.2.1.3 The Law of Market Conservation
	12.2.1.4 The Law of Maximizing Profits

	12.2.2 ECONOMIC EQUILIBRIUM BETWEEN DEMANDS AND SUPPLIES
	12.2.3 THE BEHAVIORS OF MARKET SYSTEMS
	12.2.3.1 Simple Modes of Economic Equilibriums
	12.2.3.2 Complex Modes of Economic Equilibriums
	12.2.3.3 The Adaptive Equilibrium Mechanisms of Market Systems

	12.3 Economic Models
	12.3.1 PRODUCTION MODELS
	12.3.2 COST MODELS
	12.3.3 MARKET MODELS

	12.4 Dynamic Values of Money and Assets
	12.4.1 DYNAMICS OF MONEY
	12.4.2 DYNAMICS OF ASSET’S VALUES
	12.4.3 CUMULATIVE VALUES OF CASH FLOWS
	12.4.3.1 The Uniform Payment Series
	12.4.3.2 The Linear Gradient Payment Series
	12.3.3.3 The Geometric Gradient Payment Series

	12.5 Economic Analyses
	12.5.1 PROJECT COSTS ANALYSES
	12.5.2 PROJECT BENEFIT-COST ANALYSES
	12.5.3 PROJECT PAYBACK PERIOD ANALYSES
	12.5.4 PROJECT RATE OF RETURN ANALYSES

	12.6 Software Engineering Economics
	12.6.1 ELEMENTS OF SOFTWARE ENGINEERING COSTS
	12.6.1.1 Analysis of Software Engineering Costs
	12.6.1.2 Analysis of Software Engineering Revenues

	12.6.2 SOFTWARE ENGINEERING PROJECT COSTS ESTIMATION USING FEMSEC
	12.6.2.1 The FEMSEC Model of Software Engineering Costs
	12.6.2.2 The FEMSEC Method for Software Engineering Project Costs Determination
	12.6.2.2.1 Project Size Estimation
	12.6.2.2.2 Ideal Workload Determination
	12.6.2.2.3 Optimal Labor Allocation
	12.6.2.2.4 The Shortest Duration Determination
	12.6.2.2.5 Expected Workload Determination
	12.6.2.2.6 Expected Project Cost Determination

	12.6.3 SOFTWARE ENGINEERING PROJECT COSTS ESTIMATION USING COCOMO
	12.6.3.1 The Conceptual Model of COCOMO
	12.6.3.2 The Basic COCOMO Model
	12.6.3.3 The Intermediate COCOMO Model
	12.6.3.4 The Detailed COCOMO Model
	12.6.3.5 The COCOMO II Model

	12.6.4 ECONOMIC ANALYSES OF SOFTWARE PROJECTS
	12.6.4.1 Estimations of Costs and Revenues of Software Projects
	12.6.4.2 Cumulated Value of Operating Costs
	12.6.4.3 Cumulated Present Value of Revenues
	12.6.4.4 Annual and Cumulated Depreciations of Equipment
	12.6.4.5 Project Benefit-Cost Ratios
	12.6.4.6 Project Payback Periods
	12.6.4.7 Project Rate of Return

	12.6.5 THE SOFTWARE LEGACY COST MODEL
	12.6.5.1 Development Costs vs. Maintenance Costs
	12.6.5.2 The Software Legacy Maintenance Cost Model

	12.7 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 12. Economics Foundations of SE

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Fundamental principles of economics
	Economic models
	Dynamic values of money and assets
	Economic analysis
	Software engineering economics

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANGŽS LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANGŽS FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 13: SOCIOLOGY FOUNDATIONS OF SOFTWARE ENGINEERING
	Chapter 13: SOCIOLOGY FOUNDATIONS OF SOFTWARE ENGINEERING
	13. Sociology Foundations of SE
	Knowledge Structure
	Learning Objectives

	13.1 Introduction
	13.2 Principles of Sociology
	13.2.1 SOCIAL STRUCTURES
	13.2.1.1 Individuals
	13.2.1.2 Groups
	13.2.1.3 Organizations
	13.2.1.4 Sectors
	13.2.1.5 Societies

	13.2.2 SOCIAL BEHAVIORS
	13.2.2.1 Social Functions and Relations
	13.2.2.2 Social Roles
	13.2.2.3 Social Systems

	13.2.3 SOCIAL NORMS
	13.2.3.1 Cultures
	13.2.3.2 Values
	13.2.3.3 Socialization
	13.2.3.4 The Social Philosophy of Confucianism

	13.3 Social Psychology
	13.3.1 THE FUNDAMENTAL HUMAN TRAITS
	13.3.1.1 Axiomatic Human Traits
	13.3.1.2 The Hierarchical Model of Basic Human Needs

	13.3.2 HUMAN PERCEPTIONS AND BEHAVIORS
	13.3.2.1 Emotions
	13.3.2.2 Motivations
	13.3.2.3 Attitudes
	13.3.2.4 The Motivation/Attitude-Driven Behavioral Model

	13.3.3 COLLECTIVE BEHAVIORS
	13.3.3.1 Social Conformity
	13.3.3.2 Social Synchronization
	13.3.3.3 Coactions
	13.3.3.4 Coordination
	13.3.3.5 Groupthink
	13.3.3.6 Social Dilemmas
	13.3.3.7 Social Loafing

	13.4 Theory of Social Organization
	13.4.1 CLASSIC THOUGHT OF SOCIAL ORGANIZATION
	13.4.1.1 Principles of Social Organization
	13.4.1.2 Classic Models of Social Organization
	13.4.1.2.1 Bureaucracy
	13.4.1.2.2 Division of Labor

	13.4.2 THE FORMAL MODEL OF SOCIAL ORGANIZATION
	13.4.2.1 The Formal Organization Tree
	13.4.2.2 Formal Models of Social Organization
	13.4.2.3 Coordinative Work Organization
	13.4.2.3.1 Serial Structures
	13.4.2.3.2 Parallel Structures

	13.4.3 THE FORMAL MODEL OF SOCIALIZATION

	13.5 Sociology and Software Engineering
	13.5.1 SOCIAL ORGANIZATION OF SOFTWARE ENGINEERING
	13.5.1.1 The Role of the Information Economy in Postindustrial Societies
	13.5.1.2 Maximizing Strengths of Individual Motivations in Software Engineering
	13.5.1.3 Social Environments of Software Engineering
	13.5.1.4 Ergonomics for Software Engineering

	13.5.2 THEORY FOR LARGE-SCALE SOFTWARE ENGINEERING PROJECT ORGANIZATION
	13.5.3 THE HUMAN FACTORS IN SOFTWARE ENGINEERING
	13.5.3.1 Taxonomy of Human Factors
	13.5.3.2 Types of Human Errors
	13.5.3.3 The Mathematical Model of Human Errors
	13.5.3.4 The Random Properties of Human Errors
	13.5.3.5 The Theoretical Foundation of Quality Assurance in Creative Work

	13.6 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 13. Sociology Foundations of SE

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Principles of sociology
	Social psychology
	Theory of social organization
	Sociology for software engineering

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANGŽS LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANGŽS FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	PART IV: PERSPECTIVES ON SOFTWARE SCIENCE
	PART IV: PERSPECTIVES ON SOFTWARE SCIENCE
	Chapter 14: RETROSPECT ON SOFTWARE ENGINEERING
	14. Retrospect on Software Engineering
	Knowledge Structure
	Learning Objectives

	14.1 Introduction
	14.2 Infrastructures of Software Engineering
	14.2.1 THE PROCESS INFRASTRUCTURE OF SOFTWARE ENGINEERING
	14.2.2 PROCESS-BASED SOFTWARE ENGINEERING (PBSE)
	14.2.2.1 The Organization Model of PBSE
	14.2.2.2 Software Engineering Process System Establishment
	14.2.2.2.1 Procedure to Derive a Software Project Process Model
	14.2.2.2.2 Methods for Deriving a Software Project Process Model

	14.2.2.3 Software Engineering Process System Assessment
	14.2.2.3.1 Process Assessment Methods against Different Reference Systems
	14.2.2.3.2 Process Assessment Methods Based on Different Model Structures

	14.2.2.4 Software Engineering Process System Improvement
	14.2.2.4.1 Software Process Improvement Philosophies
	14.2.2.4.2 Software Process Improvement Methodologies

	14.3 Software Industry Organization
	14.3.1 THE NATURE OF THE SOFTWARE INDUSTRY
	14.3.2 PRINCIPLES OF SOFTWARE INDUSTRY ORGANIZATION
	14.3.2.1 Basic Principles of Software Industrial Organization
	14.3.2.2 Separation of Software Designers, Builders, Quality Assurors, and Maintainers in Software Engineering
	14.3.2.3 Distributed Time-Shared Development in Software Engineering

	14.3.3 A PERSPECTIVE ON THE SOFTWARE MAINTENANCE CRISIS
	14.3.3.1 The Mathematical Model of Software Maintenance Crisis
	14.3.3.2 Reasons behind Software Maintenance Crises
	14.3.4.3 Solutions to Software Maintenance Crisis

	14.4 Essential Knowledge towards Excellent Software Engineers
	14.4.1 BASIC CONSTRAINTS OF SOFTWARE ENGINEERING
	14.4.2 EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	14.4.3 LAWS OF SOFTWARE ENGINEERING
	14.4.4 FORMAL PRINCIPLES OF SOFTWARE ENGINEERING

	14.5 Impact of the Theoretical Foundations to Software Engineering
	14.5.1 THE COGNITIVE PRINCIPLES OF KNOWLEDGE ENGINEERING
	14.5.1.1 The Effort Model of Knowledge Creation and Acquisition
	14.5.1.2 The Complexity Model of Knowledge Creation
	14.5.1.3 The Cognitive Model of Knowledge Spaces of Multidisciplinary Knowledge

	14.5.2 EXPECTED IMPACTS OF WANG’S LAWS AND THEOREMS TO SOFTWARE ENGINEERING
	14.5.3 STUDENTS’ FEEDBACK

	14.6 Summary
	ARCHITECTURAL SUMMARY OF KNOWLEDGE
	Chapter 14. Retrospect on Software Engineering

	SIGNIFICANT FINDINGS OF THIS CHAPTER
	FUNDAMENTAL THEORIES DEVELOPED IN THIS CHAPTER
	Infrastructure of software engineering
	Software industry organization
	Essential knowledge towards excellent software engineers
	Impact of the theoretical foundations of software engineering

	Questions and Research Opportunities
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Chapter 15: PROSPECT ON SOFTWARE SCIENCE
	Chapter 15: PROSPECT ON SOFTWARE SCIENCE
	15. Prospect on Software Science
	Knowledge Structure
	Learning Objectives

	15.1 Introduction
	15.2 The Formal Knowledge System
	15.2.1 THE FRAMEWORK OF FORMAL KNOWLEDGE
	15.2.2 THE ROLES OF FORMAL AND EMPIRICAL KNOWLEDGE

	15.3 A Discipline of Software Science
	15.3.1 SOFTWARE SCIENCE: SOFTWARE ENGINEERING IN THE 21ST CENTURY
	15.3.2 ARCHITECTURE OF SOFTWARE SCIENCE
	15.3.3 DENOTATIONAL MATHEMATICS FOR SOFTWARE SCIENCE
	15.3.3.1 Concept Algebra
	15.3.3.2 System Algebra
	15.3.3.3 RTPA

	15.4 Impacts of Software Science on Computing
	15.4.1 AUTONOMIC COMPUTING
	15.4.1.1 From Imperative Computing to Autonomic Computing
	15.4.1.2 Behaviorism Foundations of Autonomic Computing
	15.4.1.3 Cognitive Informatics Foundations of Autonomic Computing
	15.4.1.4 Denotational Mathematics Foundations of Autonomic Computing
	15.4.1.5 Intelligence Science Foundations of Autonomic Computing

	15.4.2 INTELLIGENT CODE GENERATION
	15.4.3 HYPER-PROGRAMMING: NEW FACETS OF THE SOFTWARE ARCHITECTURAL FRAMEWORK
	15.4.3.1 The Architecture of Hyper-Programming
	15.4.3.2 Syntactic Relations between RTPA, UML, and C++
	(a) RTPA vs. C++
	(b) RTPA vs. UML

	15.4.3.3 The Framework of the Hyper-Programming Environment
	(a) The File Scanners
	(b) The Parsers
	(c) The Hyperlink Generator
	(d) The Hyper-Program Generator

	15.4.3.4 Applications of the Hyper-Programming System

	15.5 Epilogue
	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

	Bibliography
	Appendix A: MATHEMATICAL SYMBOLS, NOTATIONS, AND ABBREVIATIONS
	Appendix B: CONSTRAINTS OF SOFTWARE ENGINEERING
	Appendix C: EMPIRICAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix D: MODELS OF ENTITIES AND STRUCTURES OF SOFTWARE ENGINEERING
	Appendix E: WANG’S LAWS OF SOFTWARE ENGINEERING
	Appendix F: WANG’S FORMAL PRINCIPLES OF SOFTWARE ENGINEERING
	Appendix G: THE TYPE SYSTEM OF SOFTWARE ENGINEERING
	Appendix H: META PROCESSES OF SOFTWARE ENGINEERING
	Appendix I: ALGEBRAIC PROCESS RELATIONS OF SOFTWARE ENGINEERING
	Appendix J: DEDUCTIVE SEMANTICS OF SOFTWARE ENGINEERING
	Appendix K: FORMAL MODEL OF THE ATM SYSTEM IN RTPA
	Appendix L: LIST OF FIGURES
	Appendix M: LIST OF TABLES

