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Preface

An underactuated mechanical system (UMS) is a system that has fewer control
inputs than degrees of freedom. In contrast, a fully actuated mechanical system
is one that has the same number of actuators as degrees of freedom. Underactu-
ated mechanical systems arise in many real-life applications such as aircrafts, he-
licopters, spacecrafts, vertical take-off and landing aircrafts, underwater vehicles,
mobile robots, walking robots, just to mention a few. Unlike fully actuated me-
chanical systems, the control of UMSs is quite a challenging task because the latter
present a restriction on the control authority that makes the control design for these
systems rather complicated. Also, very often it gives rise to complex theoretical
problems that are not found in fully actuated systems and that cannot be solved us-
ing classical control techniques. In effect, some established results and properties of
nonlinear systems such as feedback linearizability and passivity are no longer valid
in the case of UMSs. Other undesirable properties like possessing an undetermined
relative degree or being in a non-minimum phase are also customarily present in
these systems. Moreover, several of these systems present a structural obstruction
to the existence of smooth time invariant stabilizing control laws. Also, it is gener-
ally not easy to determine the controllability, at least locally, for these systems and
even when they are controllable, the control laws can be discontinuous, periodic,
and variant in time.

The control of UMSs has been investigated for quite a long time in the control lit-
erature and has been attracting more attention in recent years because of the growing
interests in new robotic applications such as unmanned underactuated aerial or un-
derwater vehicles. Different control strategies have been proposed in the literature,
including backstepping, sliding mode, intelligent control, and much more. Several
authors have attempted to present a classification and a generalization of these sys-
tems with the aim of proposing a systematic control design method for UMSs. De-
spite the diversity and large amount of research on the topic, it is difficult to highlight
the structural properties of UMSs in a sufficiently general and exploitable manner
that allows an unified treatment for the latter. As a matter of fact, there is no general
theory that allows to conduct a systematic analysis and synthesis of control design
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viii Preface

for all UMSs. This has been the main motivating factor for us to write this current
monograph.

The book presents theoretical explorations on the fundamental classification
methods that are available in the literature; namely, the control flow diagram (CFD)-
based classification of Seto and Baillieul and the structural properties-based classifi-
cation of Olfati-Saber. It also proposes some tools for the systematic control design
for underactuated systems. It aims to present a reference material for researchers
and students working in the field of underactuated mechanical control. As such, the
book is primarily intended for researchers and engineers in the system and control
community. It can also serve as a complementary reading for post-graduated stu-
dents studying control system theory.

Amal Choukchou-Braham
Brahim Cherki

Mohamed Djemaï
Krishna Busawon

Tlemcen, Algeria
August 2013
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Chapter 1
Introduction

. . . The highest education is that which does not merely give us
information but makes our life in harmony with all existence.

Rabindranath Tagore

The control of underactuated mechanical systems is an active field of research
in robotics and control system engineering. An underactuated mechanical system
(UMS) is a system that has fewer actuators than configuration variables. Many real-
life mechanical systems, including aircrafts, helicopters, spacecrafts, vertical take-
off and landing aircrafts, underwater vehicles, mobile robots, walking robots, flexi-
ble systems, and nonlinear control benchmarks are examples of underactuated sys-
tems. The origin of underactuation is multiple: it can be natural due to the dynamics
of the systems under study, or it can be artificial either by design or by deliber-
ately removing actuators for the purpose of building challenging systems control or
finally due to actuators’ failure. Very often the control of UMSs gives rise to com-
plex theoretical problems that cannot be solved using classical control techniques.
In effect, the restriction on the control authority makes the control design for these
systems rather complicated. Some established results and properties of nonlinear
systems such as feedback linearizability and passivity are no longer valid in the
case of UMSs. Other undesirable properties like possessing an undetermined rela-
tive degree or being in a non-minimum phase are also customarily present in these
systems. Moreover, several of these systems present a structural obstruction to the
existence of smooth time invariant stabilizing control laws. In effect, it is generally
not easy to determine the controllability, at least locally, for these systems and even
when they are controllable, the control laws can be discontinuous, periodic and time
varying.

Even though these difficulties suggest that the control design for UMSs is chal-
lenging, the very existence of these systems together with their corresponding appli-
cations attracted the attention of many researchers, thereby compelling them to in-
vestigate the subject matter rigorously. As a matter of fact, the recent interest in new
robotic applications involving unmanned underactuated vehicles, such as unmanned
aerial or underwater vehicles, has provided a strong incentive and motivation to fur-
ther develop research in this field. At the same time, this has also enabled researchers
to tackle some underlying complex theoretical problems related to UMSs. Control

A. Choukchou-Braham et al., Analysis and Control of Underactuated Mechanical
Systems, DOI 10.1007/978-3-319-02636-7_1,
© Springer International Publishing Switzerland 2014
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2 1 Introduction

algorithms for underactuated systems can be considered as soft solutions for actua-
tors failure in fully actuated systems that avoid redundancy. Hence, it can be applied
in many applications where safety is critical and can contribute to the success of
delicate missions. Such control procedure naturally brings some benefits in terms
of weight and cost reduction, and hence may encourage manufacturers to directly
design underactuated algorithms.

As UMSs present challenges that are not found in fully actuated systems, dif-
ferent control strategies have been proposed in the literature, including backstep-
ping and forwarding control as investigated in [2, 4–7, 12, 13, 22, 23, 29], en-
ergy and passivity-based control as in [10, 15, 20, 24], sliding mode control in
[1, 9, 18, 26, 28], hybrid and switched control in [3, 8, 11, 17, 21, 30], and intelligent
and fuzzy control as in [14, 16, 27], just to mention a few.

Based on the diversity and large amount of research on the topic, it is difficult to
highlight the structural properties of UMSs in a sufficiently general and exploitable
manner that allows an unified treatment for the latter. In effect, there is no general
theory that allows to conduct a systematic analysis and synthesis of control design
for all UMSs. As a result, most of the time these systems have to be dealt with on a
case by case basis.

The first generalization for underactuated systems analysis is due to Spong in
[25], where it was proven that these systems can be partially linearized by feed-
back, at least locally. Spong proposed changes in the input function according to
actuation variables that transform nonlinear models into partially linear ones, in-
cluding actuated and unactuated subsystems. However, the new control appears in
both transformed subsystems.

Next, Seto and Baillieul [23], gave a first classification for UMSs according to
their corresponding control flow diagram (CFD), which reflects the way generalized
forces are transmitted through degrees of freedom. For underactuated systems with
two degrees of freedom, three structures are identified, namely: chain, tree, and iso-
lated vertex. The respective names of these structures are associated to the serial
connection of degrees of freedom with the control input in the first structure and
the fact that the control is transmitted simultaneously to degrees of freedom in the
second one, and to the fact that the control does not affect some degrees of freedom
in the last one. For high-order systems, the number of structures increases to seven
and are a combination of the three basic ones. The authors of this classification also
defined the degree of complexity of control of underactuated systems in the context
of CFD according to their position in a hierarchy ordering they established. From
this ordering, it appears that systems with chain structures are less complicated than
the other structures. Thus, Seto and Baillieul proposed a systematic backstepping
control design procedure for that class of systems. Unfortunately, a systematic con-
trol design methodology for systems with tree or isolated vertices is still an open
problem.

Finally, Olfati-Saber in his excellent work [19] gives a second classification for
UMSs based on some system structural properties like kinetic symmetry, actua-
tion mode, integrable normalized generalized momentums, and interacting inputs.
According to these properties, the author proposed explicit coordinates changes to
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uncouple the subsystems into cascade nonlinear subsystems and linear subsystems
with structural properties that are convenient for control design purposes. These are
obtained from the application of explicit change of control due to Spong associated
with partial linearization procedures. Thus, three principal normal forms are iden-
tified: strict feedback form, feedforward form, and nontriangular linear-quadratic
form. The respective names of these forms are associated with the particular lower-
triangular, upper-triangular, and nontriangular structure in which the state variables
appear in the dynamics. A classification is then established on the basis of these
different normal forms. In the case of underactuated systems with two degrees of
freedom, three classes are defined, namely Class-I, Class-II, and Class-III associated
with strict feedback, nontriangular quadratic, and feedforward forms, respectively.
For high-order systems, the procedure leads to the definition of five others classes
practically based on the same forms and on slightly modified forms. To bring these
systems to those with low-order, the author applies a reduction process that trans-
forms high-order systems into reduced nonlinear subsystem in cascade with a linear
subsystem. For systems in strict feedback and feedforward normal forms, the con-
trol strategy proposed by Olfati-Saber consists in first stabilizing the reduced order
system followed by a backstepping or a forwarding procedures. The control of the
nontriangular normal forms is still a major open problem.

The purpose of the present book is to assemble the various research done in the
area of classification and control for UMSs and to further contribute to this research
by developing tools for the systematic control design for underactuated systems. It
aims to present reference material for researchers and students working in the field
of underactuated mechanical control. In effect, we propose to analyze and compare
the two classifications in order to establish whether or not they are related in some
way or other. Next, we address stabilization procedures of the open control problem
of tree and isolated vertex structures in the first classification. The strategy employed
is to merge the two classifications. Specifically, the systematic procedure of control
established for the chain structure and the other structures using change of control
and coordinates, deduced from the second classification, is extended.

In addition to this introduction, which has presented both the motivation and an
overview of the control design problem of UMSs, the rest of the book is composed
of four other chapters and four appendices.

• Chapter 2: Generalities and State-of-the-Art on the Control of Underactuated
Mechanical Systems

The second chapter gives a brief overview of the control of UMSs. It provides
the definition of UMS, gives the various origins of underactuation, describes the
problems generated by the lack of control inputs, and presents the motivation
for the control of UMSs. Then, a brief state-of-the-art on various control design
approaches applied to these systems is given.

• Chapter 3: Underactuated Mechanical Systems from the Lagrangian Formalism
The third chapter gives a qualitative description of UMSs obtained from the

Lagrangian formalism. The general model associated with these systems is pre-
sented. The concept of underactuation and the resulting control problems are ex-
plained. Systems with nonholonomic constraints are defined and the difference
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between nonholonomy and underactuation is highlighted. Next, a brief overview
on various control approaches applied to UMSs is presented; in particular, those
based on partial linearization. Finally, some typical examples of UMSs are pre-
sented at the end of the chapter.

• Chapter 4: Classification of Underactuated Mechanical Systems
Chapter 4 is devoted to the study of the classifications of UMSs that cur-

rently exists in the literature; namely the classification according to Seto–Baillieul
and Olfati-Saber. These classifications are done with the aim of finding common
properties that can lead to a systematic control design procedure for UMSs. One
of the objectives of this chapter is to discuss whether the two classifications are
possibly related or not. The typical UMSs examples provided in Chap. 2 are clas-
sified according to two classifications and a comparative study is made.

• Chapter 5: Control Schemes Design for Underactuated Mechanical Systems
Chapter 5 is divided into three parts: The first part is devoted to the presentation

of the backstepping systematic algorithm for global asymptotic stabilization of
UMSs with chain structure. The second part is concerned with the control design
of UMSs with tree structure. Specifically, a systematic control design scheme for
that class of system is given. Additionally, we have a subclass of UMSs with tree
structure that can be transformed into chain structure, under some assumptions,
is presented. A stabilization procedure is proposed for other subclasses of UMSs
that do not satisfy these assumptions.

In the last part of this chapter, some discussions and suggestions on control
design for UMSs with isolated vertices structure are given. Systems with such
structures are considered difficult to control since some states are not reachable.
For each part, simulation results carried out with Mathlab-Simulink software cor-
responding to the application of the respective proposed algorithms are given to
show their effectiveness.

To allow easier reading, some classical results often found in disparate references
are introduced in the appendices.

In the first appendix, a theoretical background on nonlinear system stability and
control is given where the main stability criteria of nonlinear systems are recalled
and some nonlinear control techniques are briefly described. The second appendix
gives a rapid presentation of limits of linearization and dangers of destabilization. In
the third appendix, some classical definitions of differential geometry are recalled.
Finally, some controllability concepts of dynamical systems are revisited in the last
appendix.
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Chapter 2
Generalities and State-of-the-Art on the Control
of Underactuated Mechanical Systems

. . . I only wanted to expose, in this work, what I managed to do
at this moment in time and which may be used as a starting
point for other research of the same kind.

M.A. Lyapunov

Ever since time began, mankind has never stopped dreaming about traveling from
one continent to another and about flying like a bird, exploring the depths of the
ocean and conquering space. His ambitions have compelled him to search for and to
realize and to even improve the means that will permit him to realize his objectives.
Furthermore, it would be difficult or even impossible to achieve such objectives
without having recourse to mechanical systems. Even though the research inter-
est in mechanical systems goes far back to the time of Newton, Lagrange, Kepler,
Hamilton, and many other famous researchers, actually this area of research is even
more active due to its diverse applications in real life and in the industrial domain.

In fact, during the last few decades, a number of scientific, industrial, and mili-
tary applications have instigated the analysis and the rigorous derivation of control
algorithms for mechanical systems. This area of research has also attracted the atten-
tion of mathematicians since the majority of the systems possess a global nonlinear
characteristic, and their linear approximation seems to be inadequate. In combin-
ing their efforts, the engineers and scientists have developed several control design
methodologies that include linear control, optimal control, adaptive, and nonlinear
control, and more recently robust control in order to take into account uncertainties
in a practical and real life context. In fact, the interest in mechanical systems became
even stronger when researchers realized that the latter can be underactuated.

2.1 Underactuated Mechanical Systems: Generalities
and Motivations

A mechanical system is said to be underactuated when the number of control inputs
is less than the number of degrees of freedom to be controlled. This class of systems
has a varied and rich applications, at both the practical and the theoretical level,
in various fields such as in robotics, aeronautical and spatial systems, marine and
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underwater systems, and flexible and mobile systems. In contrast to systems that
have direct practical applications, the pendulum systems, the Acrobot, the Pendubot,
the Tora and the ball and beam systems have a meaning in terms of benchmarks for
nonlinear control where classical procedures cannot be applied.

The underactuation can be due to one of the following reasons [40]:

(i) It can be natural due to the dynamics of the systems such as those of aircrafts,
helicopters, and underwater vehicles.

(ii) It can be imposed by design in order to reduce the costs and weight such as
satellites with two thrusters and flexible-link robots.

(iii) It can be due to actuators’ failure such as in aeroplanes and ships.
(vi) It can be artificially imposed in order to generate low-order complex nonlinear

systems so as to gain insight on the control of high-order UMSs such as the
inverted pendulum and all the above benchmark examples mentioned above.

The restriction of the control authority renders the control of these systems rather
complicated. In some sense, the underactuation characteristics are even more dif-
ficult to handle than the nonlinear characteristics of the underlying system. As a
matter of fact, some well-established results and properties for nonlinear systems
such as linearization by feedback, passivity and matching condition are not gener-
ally valid in the case of UMSs. Furthermore, these systems show other undesirable
properties like an undetermined relative degree or non-minimal phase behavior.

On the other hand, several UMSs present a structural obstruction to the existence
of smooth and time-invariant stabilizing feedback control laws, since they do not
satisfy the well-known and necessary condition of Brockett [11] for smooth time-
invariant feedback stabilization, which is one of the most remarkable contributions
in this area. Typically, a first indication of this obstruction comes from the fact that
the linearization of these systems around any equilibrium point is uncontrollable,
particularly in the absence of gravity terms. Hence, false conclusions on the con-
trollability can be easily drawn.

Although these control difficulties suggest that the objective of asymptotic sta-
bilization is, without any doubt, too demanding for the control of UMSs, the very
existence of these systems and the theoretical challenges they present have forced
many researchers to fully investigate that topic. In addition, mastering the control
of these systems can transform their shortcomings into advantages. In effect, for the
same configuration space, a fully actuated system requires more controls than if it
were underactuated. This increases the weight and cost of the system. Finding the
means to control a version of an underactuated system allows to eliminate certain
control devices, improves global performances, and reduces the cost of realization.

Additionally, underactuation provides a control solution for the safety of sys-
tems. For example, if a fully actuated system becomes faulty and if we have an
underactuated control system, then we can use the latter in critical situations (as for
example in the case of a fault in one of the thrusters of an aeroplane, rocket or space
engine) in order to avoid complete failure of the system or mission. Obviously, such
a solution is more economical than the addition of redundant actuators.

On the other hand, UMSs has been studied on a case by case basis due to the dif-
ficulty in putting forward sufficiently general and exploitable structural properties in
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order to classify them according to their corresponding properties, and, at the same
time, to be able to choose the appropriate control strategy according to their classifi-
cation. Hence, there have been various research works on the control synthesis and
strategies of control for these systems.

2.2 Brief State-of-the-Art on the UMSs Control

The aim of this section is not to give a complete account on the literature on the
control of UMSs but to highlight the main contributions in this area.

Among the most recognized works, there are those based on the energy point
of view. These are mainly the works of Astrom, Bloch, Furuta, Spong, and others
[3, 5, 7, 8, 10, 17, 27, 29, 34, 60–62].

In these works the general control strategy is to swing the systems (mainly of
pendular types such as the Acrobot, the Pendubot, inertial wheel pendulum) in order
to bring them to the neighborhood of their linearity domain. Once this domain is
attained, a switch towards a linear control of LQR type or pole placement is realized.

In a similar fashion, certain passivity-based methods also consist in swinging or
steering the previous systems but this time in order to bring them to their homocline
orbits. After that, a switch towards a linear control is realized such as in the works
of Fantoni, Ortega and Spong in [18, 41, 43, 60]. Other work on passivity due to
Janković and Sepulchre relates to the transformation of the systems in a cascaded
form [31, 56] such as for the Tora system or for the Pendubot, as in the work of
Kolesnichenko [32].

Most of the time, the authors do not deem it necessary to establish a stability
proof of the system with switch. Additionally, the application domain of these meth-
ods are quite restrictive in real applications.

Because of its complexity, the ball and beam system has been the subject of
several studies, namely by using: methods of approximate linearization by Hauser
et al. [25], saturation for stabilization of cascaded system in feedforward by Teel
[65], stabilization by output feedback of Teel and Praly [66], small gains synthesis
by Sepulchre [55] and sliding mode control by Voytsekhovsky and Hirschorn [68].

The VTOL (vertical take-off and landing aircraft) is another example of UMS
that is largely studied, namely for its industrial applications and for its non-minimum
phase property [18, 26, 36] and [14, 39].

Due to their wide application in industry, cranes, and inertia wheel pendulums
have been studied extensively. Reviews on models, applications, and control strate-
gies are presented and discussed, respectively, in [1] and in [9].

Marine and underwater vehicles have also been the subject of numerous research.
For instance, a smooth and continuous control allowing to exponentially reach a
desired position and orientation has been introduced by Egeland [15]. A periodic
control that asymptotically stabilizes the vehicle to the origin has been presented by
Pettersen and Egeland [45]. In addition, inspired by the work of Morin and Sam-
son [37], Pettersen and Egeland [46] have proposed a periodic and non-stationary
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control allowing to obtain an exponential stability of the underactuated marine ve-
hicle. Then, Pettersen and Nijmeijer [47] have proposed a time-varying control law
that led to a global and practical tracking and stabilization of the underactuated ma-
rine vehicle. The work of Ghommam [21] formulates and solves dynamic control
positioning problems and trajectory tracking of underactuated marine vehicles.

In addition to the problem of stabilization of UMSs, the problem of trajectory
tracking has also been tackled in the works of Bullo, Hu, Reyhanoglu and Sandoz,
[35, 44, 48, 52, 72]. On the other hand, some researchers focused their attention to
the case where the condition of Brockett (on the stabilizability of nonlinear systems
using time-invariant continuously differentiable state feedbacks) is not satisfied and
have proposed discontinuous control algorithms. Among these works, we can cite
those of Oriolo and Nakamura and those of Reyhanoglu [42, 49, 50].

Other control strategies have also be derived such as: backstepping and forward-
ing procedures by Gronard, Sepulchre and Seto [23, 56, 57, 71]; sliding mode con-
trol by Fridman, Fahimi, Khalil and Su [2, 16, 38, 64, 68, 70]; hybrid and switching
control by Fierro, Tomlin and Zhang [19, 48, 67, 73], optimization-based design by
[53, 54, 63], inverse dynamics control and differential flatness by [4, 6, 20, 51, 58],
and fuzzy logic and neural networks by Han, Lin and Wai [24, 33, 69].

Recently, some researchers have been interested in the control of biped robots.
For this one can cite the work of Chevallereau [13], Chemori [12], and that of Spong
[22, 28, 30, 59].

2.3 Scope and Objectives of This Book

One can clearly notice that all the previous aforementioned systems have been stud-
ied on a case by case basis. Based on that observation, the main objective of this
book is to attempt to find and present the means that will permit the synthesis of
control laws in a systematic manner for all UMSs but not necessarily with the same
type of control. To meet this objective, it is quite intuitive to look for common (or
even different) properties of UMSs that will permit to classify them.

This book also aims to gather existing classifications for UMSs in the literature.
In fact, there exist two such classifications. The first classification is due to Dambing
Seto and John Baillieul [57], which is of a graphical nature. It consists in tracing the
Control Flow Diagram (CFD) of the given system and describes the ways the control
inputs are transmitted through the degrees of freedom. According to this approach,
three main structures are identified, namely: the chain structure, the tree structure,
and the isolated vertex (or point) structure.

The combination of these structures yields seven structures for this classifica-
tion. The authors of this classification have proposed a systematic control procedure
of backstepping type that can globally and asymptotically stabilize the systems be-
longing to the chain structure. The stabilization problem for the other two classes
are still open problems according to them.

The second classification is due to Reza Olfati-Saber [40] and is rather of an
analytical nature. It considers structural properties of mechanical systems such as
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the actuation of certain degrees of freedom, the coupling between the inputs and the
integrability of generalized momentums. Thus, eight classes are generated among
which three are considered to be the principal ones, namely: the strict feedback
normal form, feedforward normal form, and the non-triangular normal form.

The author of this classification has proposed a control design procedure in two
steps for the first two normal forms: first to stabilize the reduced system and then to
extend the stabilization to the global system by a backstepping or by a forwarding
procedure depending on the considered normal form.

Some control design suggestions have been given for the third form. However,
the procedure proposed for the stabilization of the reduced system requires the ver-
ification of a rather restrictive hypothesis.

This book tries to give some answers to the stabilization of the tree and isolated
vertex structures based on the Seto and Baillieul classification. These two structures
are more difficult to control but have the advantage (or shortcoming, depending on
one’s viewpoint) of representing the majority of UMSs.
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Chapter 3
Underactuated Mechanical Systems
from the Lagrangian Formalism

. . . Happy families are all alike, every unhappy family is
unhappy in its own way.

Léon Tolstoï, Anna Karenina

When one is interested in controlling systems for which the nonlinear dynamics
cannot be neglected, it has been well-known, since the time of Poincaré, that these
nonlinear systems have extremely complex behaviors so that the application of a
particular design method in control theory might not be suitable. It is therefore nec-
essary to clarify, somehow, the class of systems we are interested in.

In this chapter, we are interested in the class of UMSs that are derived from
the Lagrangian formalism. As a result, the first part of this chapter is dedicated
to an introduction on Lagrangian systems. After that, the notion of underactuation
is explained. Then, we give the definition of non-holonomic constraints as well as
highlight the differences and subtleties that exist between underactuation and non-
holonomy. We demonstrate why the control of UMSs leads to challenging theoreti-
cal problems, some of which are still open till now. Finally, the end of this chapter
is dedicated to the presentation of the models of some UMSs.

3.1 Lagrangian System

A Lagrangian system is a system whose behavior is described by Euler–Lagrange’s
equations. They are defined by a set of nonlinear ordinary differential equations
(ODEs). The Lagrangian formalism is a powerful mathematical modeling tool based
on the variational method to model a large class of physical systems; in particu-
lar mechanical systems. A thorough review on variational modeling of mechanical
and electro-mechanical systems can be found in the following respective references
[11, 12] and [18, 37].

Underactuated systems being the basis of mechanical systems, their modeling
can be done using Euler–Lagrange’s equations. For a n degrees of freedom (DOF)
system, the Euler–Lagrange equations are given by [23]

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= F(q)u (3.1)

A. Choukchou-Braham et al., Analysis and Control of Underactuated Mechanical
Systems, DOI 10.1007/978-3-319-02636-7_3,
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where q ∈ Q denotes the configuration vector which belongs to an n-dimensional
configuration manifold, u ∈ Rm and F(q) is the external forces matrix. L(q, q̇)

is the Lagrangian associated to the given system and expressed by the difference
between its kinetic and potential energies:

L(q, q̇) = K − V = 1

2
q̇T M(q)q̇ − V (q) (3.2)

where K denotes the kinetic energy, V the potential energy, and M(q) the positive
definite inertia matrix. The notation q̇T denotes the transpose of q̇ .

The advantage of the Lagrangian formalism is that the form of Euler–Lagrange’s
equations is invariant. Moreover, it allows to directly obtain the equation describing
the evolution of mechanical systems as a function of the applied forces.

Based on these equations, the equations of motion of a mechanical system can
be deduced as follows:

∑

j

mkj (q)q̈j +
∑

i,j

Γ k
ij (q)q̇i q̇j + gk(q) = eT

k F (q)u, k = 1, . . . , n

where ek is the kth standard basis in Rn, gk(q) = ∂qkV (q), and Γ k
ij (q) the Christof-

fel symbol defined by

Γ k
ij (q) = 1

2

(
∂mkj (q)

∂qi

+ ∂mki(q)

∂qj

− ∂mij (q)

∂qk

)

Under a vectorial form, we can write

M(q)q̈ + C(q, q̇)q̇ + G(q) = F(q)u (3.3)

cij = ∑n
k=1 Γ i

kj (q)q̇k is an element of C(q, q̇). The term C(q, q̇)q̇ regroups two
terms involving q̇i q̇j named centrifugal (i = j) and Coriolis (i �= j), and G(q)

contains the gravity terms (for more details see [33]).
The matrix defined by S0 = Ṁ(q) − 2C(q, q̇) is antisymmetric, which then al-

lows to have Ṁ(q) = C(q, q̇)+CT (q, q̇). Taking this property into account and the
fact that M(q) is a symmetric positive definite (SPD) matrix, one can introduce the
Legendre transform defined by

p = ∂L

∂q̇
= M(q)q̇

In this case, the dynamics (3.3) can be rewritten under the following canonical
form:

{
q̇ = M−1(q)p

ṗ = −G(q) + C̄T (q,p)M−1(q)p + F(q)u
(3.4)

where C̄T (q,p) = C(q,M−1p).
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Equation (3.4) is called Legendre normal form for a mechanical system. Setting
x1 = q and x2 = p, (3.4) can be rewritten as

{
ẋ1 = M−1(x1)x2

ẋ2 = −G(x1) + xT
2 Q(x1)x2 + F(x1)u

(3.5)

or in compact form as

ẋ = f (x) + g(x)u (3.6)

Remark 3.1 For mechanical systems Eqs. (3.3) and (3.4) are equivalent. However,
the Legendre normal form is a first-order ODE whereas (3.6) is of second order.

Additionally, a mechanical system written in the form (3.6) belongs to the
control-affine class of systems for which analytical methods for the analysis of con-
trollability, observability, and the design control laws are available.

3.2 Fully Actuated Mechanical Systems

A mechanical system described by (3.1) is said to be fully actuated if m = n, which
is equivalent to saying that F(q) is invertible. For a fully actuated system, the num-
ber of inputs is equal to the dimension of their configuration space.

Consequently, these systems are linearizable via feedback and do not possess a
zero dynamic. This can be demonstrated by applying the following control law:

u = F(q)−1(M(q)v + C(q, q̇)q̇ + G(q)
)

Setting x1 = q and x2 = q̇ we get

ẋ1 = x2

ẋ2 = v

which is a double integrator system. This is why most of the fully actuated mechan-
ical problems can be reduced to linear systems problems [23].

3.3 Underactuated Mechanical Systems

A controlled mechanical system with configuration vector q ∈ Q and Lagrangian
L(q, q̇) satisfying Euler–Lagrange’s equations (3.1) is called an underactuated me-
chanical system if m < n. In other words, UMSs are mechanical systems that have
fewer independent inputs than the number of DOF to be controlled. Consequently,
the generalized inputs cannot control the instantaneous acceleration in every direc-
tions [12, 36].
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Fig. 3.1 Unicycle type
system

As mentioned in the previous chapter, underactuations may occur in different
fashions, the most evident one is due to the system dynamics itself. Typical examples
of these include: planes, helicopters, submarines, and locomotion systems without
wheels. Underactuations can also be due to design with the aim to reduce the load for
certain practical applications such as the satellites or flexible robots. The underactu-
ation can also be caused by the failure of an actuator or can be artificially imposed
in order to generate complex systems of a fairly low order. This is the case for the
well-known inverted pendulum, the Acrobot, the Pendubot, the Tora, the ball and
beam and many more. All these systems will be presented at the end of this chapter.

For some UMSs, the lack of actuators is often interpreted as constraints on the
acceleration; that is, as second-order non-holonomic constraints.

3.4 Non-holonomic Mechanical Systems

A first-order mechanical system with non-holonomic1 constraints is a Lagrangian
system having m velocity constraints (m < n)

WT (q)q̇ = 0

non-integrable (where W is an (m × n) matrix), that is, there is no function ϕ(t)

such that ϕ̇ = WT (q)q̇ .
These systems are characterized by the existence of non-integrable kinematic

constraints. Systems of unicycle types [1] Fig. 3.1, such as wheeled mobile robot,
wheeled vehicles or trailers vehicles are the most common examples.

According to [22, 38] when a mechanical system is subjected to first-order non-
holonomic constraints (velocity constraints), its dynamics can be written as

M(q)q̈ + N(q, q̇) = W(q)λ + F(q)u

WT (q)q̇ = 0

1Holonomic: Greek word that signifies whole, integer.
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where λ ∈ Rm is the vector of Lagrange multipliers, the term W(q)λ can be con-
sidered as the required force to maintain the constraints. The literature on non-
holonomic systems is extremely vast, the reader can refer to [15] for an excellent
review on this domain. One can also refer to [4, 36] for a quick review of the key
concepts for the control of non-holonomic systems and other problems related to
their kinematics.

Unlike non-holonomic systems with first-order constraints (velocity constraints)
which are largely treated in the literature, UMSs are usually seen by many re-
searchers [5, 10, 12, 23, 24, 26] as non-holonomic systems with second-order con-
straints or acceleration constraints.

According to these authors, for an UMS where the configuration variables can be
partitioned, without loss of generality, into q = (q1, q2), q1 ∈ R

m, q2 ∈ R
n−m and if

F(q) = (Im,0)T , the Euler–Lagrange equations are given by

m11(q)q̈ + m12(q)q̈ + N1(q, q̇) = F(q)u

m21(q)q̈ + m22(q)q̈ + N2(q, q̇) = 0
(3.7)

where Ni(q, q̇) contains the centrifugal, Coriolis, and gravitational terms.
The second equation (3.7) represents the underactuated part of the system un-

der the form of second-order constraints, generally non-integrable. In this case the
constraints are not located at the kinematic level but at the dynamic level; since the
number of independent actuators is less than the number of DOF. Common exam-
ples of these systems include marine and underwater vehicles, space robots, and
underactuated articulated arms.

In contrast to the above, a mechanical system with holonomic constraints is one
containing constraints which depend on the generalized coordinates (configuration
variables) and time only.

Oriolo and Nakamura [24] gave the necessary and sufficient conditions for an
UMS to contain non-holonomic constraints of second order or of first order or sim-
ply holonomic constraints.

3.5 Underactuation and Non-holonomy

The control of non-holonomic vehicles and that of underactuated vehicles have been
the subject of distinct studies. This is partly justified by the difference in structures
of the corresponding models. For non-holonomic systems, the difficulty (from the
control engineering point of view) lies at the kinematic model level, while in the
case of underactuated systems, the difficulty is rather related to its dynamics. This
distinction equally implies a hierarchy as far as the difficulty in synthesizing con-
trol systems is concerned. While fairly general methods have been proposed for the
control of non-holonomic systems (and more generally for the control of nonlin-
ear systems), the control of underactuated systems is performed on a case by case
basis due to the difficulty in finding sufficiently general and exploitable structural
properties for the control synthesis.
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The general relation between non-holonomic systems and underactuated systems
is not completely established. Having said that, these two classes of systems pos-
sess numerous common points that are rarely explained in the literature, and the
comprehension of which can permit progress towards a unified treatment of control
problems associated with these systems.

The reader can find in the work of Jarzebowska [14] an excellent comparative
and classification study of non-holonomic constraints of first order, qualified by the
author as material constraints while non-holonomic second-order constraints due to
underactuation are qualified as non-material constraints.

Remark 3.2

• When an UMS contains first-order non-holonomic constraints, a common prac-
tice for the control of these systems is to transform them into a canonical form
that simplifies control design. This canonical form is in the so-called chain form
(3.8) [15, 20, 21].

ξ̇1 = u1

ξ̇2 = u2 (3.8)

ξ̇3 = ξ2u1

Some systems that can be written in this form are mobile robots and traction
vehicles. On the other hand, for UMSs that contain second-order non-holonomic
constraints, some researchers have proposed to transform these systems into a
second-order chain form (3.9) [1]

ξ̈1 = u1

ξ̈2 = u2 (3.9)

ξ̈3 = ξ2u1

While first-order chained systems can have a dimension greater than that in (3.8),
second-order chained systems do not exceed a dimension higher than 3. In addi-
tion, the latter are known to be more difficult to control than the first one.

• Some control engineers prefer to use the term underactuation constraints of sec-
ond order rather than non-holonomic constraints of second order arguing the fact
that, when an UMS is augmented by the missing actuators, it becomes a fully ac-
tuated system. It can then operate correctly while it is subjected to non-holonomic
constraints, the fact of adding actuators cannot solve, for instance, a displacement
problem in a certain direction. For example, to get rid of these constraints in a car
would mean adding additional wheels, and this will bring a change in the kine-
matics of the system, which implies a change in the initial model.

• The general definition of UMS possesses some limitations. As a matter of fact,
suppose that an UMS possesses a first-order non-holonomic constraint; for exam-
ple consider the mobile robot of Fig. 3.1 with generalized coordinates (x, y, θ)

represented by the following equations:
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ẋ = v cos θ

ẏ = v sin θ (3.10)

θ̇ = u

the inputs are v: displacement velocity and u: angular velocity. The system is
subjected to a non-integrable velocity constraint given by

ẋ sin θ − ẏv cos θ = 0

This system with three DOF and two inputs is in fact an UMS. However, as it pos-
sesses a velocity constraint preventing a lateral displacement, it therefore follows
that it is only possible to control two DOF while still having two inputs. Hence,
in some sense, it is as if the system is fully actuated.

Whatever the cause and the consequence of underactuation, the control of the
latter is extremely important due to their wide range of applications. However, the
restriction on the number of control inputs gives rise to principal difficulties in the
control design.

3.6 Problematics Associated with UMSs

Underactuated mechanical systems constitute a rich class of systems both in terms
of applications and control problems. Effectively, these systems have attracted the
attention of both control engineers and mathematicians because of their nonlinear
characteristics and because of the problems related to underactuation. Unlike fully
actuated systems whereby a number of results have been developed and applica-
ble to some classes of systems—such as feedback linearization and passivity—very
few results are valid for entire classes of UMSs since one or several of the aforemen-
tioned properties are no longer valid. In fact, it was shown [31] that these systems
are not fully feedback linearizable, they are not completely decouplable, and they do
not satisfy the passivity property and sometimes the matching condition. Classical
control techniques such as computed torque, backstepping, passivity-based control,
sliding mode control cannot be directly applied except for some specific cases. In ad-
dition, other properties such as an undetermined relative degree or a non-minimum
phase behavior are apparent.

On the other hand, several UMSs present a structural obstruction to the existence
of smooth and time-invariant stabilizing control, since it does not satisfy the well-
known and necessary condition for smooth time-invariant feedback stabilization of
Brockett [8], which is one of the most remarkable contributions in this domain.

Typically, a first indication to this obstruction comes from the fact that a lineariza-
tion of these systems around any equilibrium point is not controllable (especially in
absence of gravity terms). Consequently, false conclusions on the controllability of
the nonlinear system can be drawn.
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In this case, some researchers propose to employ a discontinuous control to over-
come this problem [3, 9, 17, 19, 25, 27, 28, 30].

On the other hand, in the presence of potential terms, a local and exponential
stabilization by a regular feedback, continuous and invariant is evidently possible.

Remark 3.3 For linear systems, controllability implies stabilizability. This is not
true for nonlinear systems. The theorem of Brockett [8] gives a necessary condition
on the stability of nonlinear systems by a continuous control.

Theorem 3.1 [8] Consider a system given by

ẋ = f (x,u) (3.11)

with f (0,0) = 0 and f (·, ·) is definite continuous in a neighborhood of the origin.
Necessary conditions for the existence of a continuous time-invariant control and
that renders the origin asymptotically stable are that:

(i) The linearized system around the origin is stabilizable.
(ii) There exists a neighborhood V of the origin such that for every ζ ∈ V , there

exists a control input uζ (·) defined on [0,∞[ such that this control input steers
the solution of ẋ = f (x,u) from x = ζ at t = 0 towards x = 0 at t = ∞.

(iii) The mapping γ : A × R
m → R

n defined by γ : (x,u) �→ f (x,u) must be sur-
jective in a neighborhood of the origin.

The first condition represents the rank condition of a linear system. Note that
in the linear case, the rank condition is a necessary and sufficient condition for the
controllability and the existence of a continuous and differentiable control law for
linear systems: ẋ = Ax + Bu.

The second property represents the controllability property in the nonlinear case.
This condition is not sufficient to determine a control law with a certain regularity.
Hence the necessity to introduce condition (iii), which corresponds to the necessary
condition of this theorem. In fact, the third condition implies that the mapping must
be locally surjective while the image of the mapping (x,u) �→ f (x,u), for x and u

arbitrarily close to 0, must contain a neighborhood of the origin.
To clarify this situation, consider for example the following system [10]:

ẋ = u = ε1

ẏ = v = ε2

ż = yu − xv = ε3

Does there exist a continuous control (u, v) = (u(x, y, z), v(x, y, z)) that renders
the origin of the above system asymptotically stable?

The third condition of Brockett signifies that the system must contain a solution
(x, y, z,u, v) for each εi (i = 1,2,3) in a neighborhood of the origin. This is not the
case here since the system does not have a solution for ε3 �= 0 and ε1 = 0, ε2 = 0.



3.7 Partial Linearization by Feedback 23

Unlike the previous example, the following example satisfies the third condition:

ẋ = u = ε1

ẏ = v = ε2

ż = xy = ε3

Hence, for this particular example, there exists a continuous control law that
asymptotically stabilizes the system at the origin.

In summary, the UMSs are not completely linearizable by feedback. Conse-
quently, they are not completely decouplable. The controllability of these systems is
difficult to demonstrate, and even if they are controllable, it does not imply that they
are controllable with smooth and continuous control laws. Additionally, the lack of
common and general properties between them implies that these systems are studied
on a case by case basis.

All these difficulties of control design suggest that the objective of asymptotic
stabilization is without doubt too demanding for the control of UMSs. Nevertheless,
an interesting property that is valid for all these systems is the possibility of a partial
linearization by feedback. This property was discovered by Spong [31] and is a
consequence of the positive definiteness of the inertia matrix. This linearization may
be collocated or non-collocated depending on the actuation or nonactuation of the
linearized variables.

3.7 Partial Linearization by Feedback

Consider again the UMS model given by

M(q)q̈ + C(q, q̇)q̇ + G(q) = F(q)τ

where τ ∈ R
m is the control input and F(q) ∈ R

n×m is the non-square matrix of
external forces with m < n.

Suppose that F(q) = [0, Im]T , then the configuration vector can be partitioned
into q = (q1, q2) ∈ R

n−m ×R
m, where q1 represents the non-actuated configuration

vector and q2 the actuated configuration vector, respectively. As a result of this
partition, the inertia matrix and the model of the UMS take the following form:

[
m11(q) m12(q)

m21(q) m22(q)

][
q̈1
q̈2

]
+

[
N1(q, q̇)

N2(q, q̇)

]
=

[
0
τ

]
(3.12)

Due to the lack of control input in the first equation of (3.12), it is not possible to
completely linearize this system by a change of coordinates. However, it is possible
to partially linearize this system so that the dynamics of q2 is transformed into a
double integrator.
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3.7.1 Collocated Partial Linearization

When the actuated dynamics is q2, the linearization procedure of this dynamics is
called collocated partial feedback linearization. In an equivalent fashion, this lin-
earization can be considered as an input–output linearization with respect to the
output y = q2. Spong has shown that all underactuated systems of the form (3.12)
can be partially linearized by using a change in input.

Proposition 3.1 [23] There exists a global and invertible control of the form τ =
α(q)u + β(q, q̇) that partially linearizes the dynamics of (3.12):

q̇1 = p1

ṗ1 = f0(q,p) + g0(q)u

q̇2 = p2

ṗ2 = u

(3.13)

where α(q) is a symmetric positive definite (SPD) (m × m) matrix, g0(q) =
−m−1

11 (q)m12(q)

Proof From the first line of Eq. (3.12), we have

q̈1 = −m−1
11 (q)N1(q, q̇) − m−1

11 (q)m12(q)q̈2

which yields the expression of g0(q); note that m11 is invertible because of the
positive definiteness of M .

By replacing this equation in the second line of (3.12), we obtain

(m22(q) − m21(q)m−1
11 (q)m12(q))q̈2 + N2(q, q̇) − m21(q)m−1

11 (q)N1(q, q̇) = τ

The proof is established by defining

α(q) = (
m22(q) − m21(q)m−1

11 (q)m12(q)
)

β(q, q̇) = N2(q, q̇) − m21(q)m−1
11 (q)N1(q, q̇)

and by observing that α(q) is SPD. �

3.7.2 Non-collocated Partial Linearization

The partial linearization procedure that linearizes the dynamics of the non-actuated
configuration is called non-collocated partial feedback linearization. This partial lin-
earization is possible if the number of control inputs is greater than or equal to the
number of non-actuated configuration variables of the non-actuated configuration.
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Consider the following non-actuated system:

⎡

⎣
m00(q) m01(q) m02(q)

m10(q) m11(q) m12(q)

m20(q) m21(q) m22(q)

⎤

⎦

⎡

⎣
q̈0
q̈1
q̈2

⎤

⎦+
⎡

⎣
N0(q, q̇)

N1(q, q̇)

N2(q, q̇)

⎤

⎦ =
⎡

⎣
τ0
τ1
0

⎤

⎦ (3.14)

where q = (q0, q1, q2) ∈ R
n0 ×R

n1 ×R
n2 with n1 = n2 = m and n0 = n − 2m ≥ 0.

Proposition 3.2 [23] Consider the underactuated system (3.14). There exists a
change in input of the form τ = α1(q)u + β1(q, q̇) that partially linearizes the dy-
namics of (3.14) in the set U = {q ∈R

n/det(m21(q) �= 0)}

q̇0 = p0

ṗ0 = u0

q̇1 = p1

ṗ1 = f0(q,p) + g0(q)u0 + g2(q)u2

q̇2 = p2

ṗ2 = u2

where τ = (τ0, τ1) , u = (u0, u1) and u1 = α0(q)u0 + α2(q)u2 + β2(q, q̇) with

f0(q,p) = −m−1
21 (q)N2(q, q̇)

g0(q) = −m−1
21 (q)m20(q)

g2(q) = −m−1
21 (q)m22(q)

The proof is based on that of collocated partial linearization. For more details,
see [23].

3.7.3 Partial Linearization Under Coupled Inputs

Consider for the underactuated system (3.1) that F(q) can be written as

F(q) =
[
F1(q)

F2(q)

]

such that F2(q) is a (m × m) invertible matrix and q can be decomposed into
(q1, q2) ∈R

(n−m) ×R
m.

The definition of coupled inputs implies that F1(q) �= 0 for all q .
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Proposition 3.3 [23] Consider the underactuated system with coupled inputs, that
is (F1(q) �= 0, det(F2(q)) �= 0 for all q),

[
m11(q) m12(q)

m21(q) m22(q)

][
q̈1
q̈2

]
+

[
N1(q, q̇)

N2(q, q̇)

]
=

[
F1(q)

F2(q)

]
τ (3.15)

and suppose that the matrix Λ(q) = F2(q) − m21(q)m−1
11 (q)F1(q) is invertible for

all q . Then, there exists a change in inputs τ = α(q)u + β(q, q̇) that partially lin-
earizes (3.15) under the form

q̇1 = p1

ṗ1 = f0(q,p) + g0(q)u

q̇2 = p2

ṗ2 = u

where

α(q) = Λ−1(q)
[
m22(q) − m21(q)m−1

11 (q)m12(q)
]

β(q, q̇) = Λ−1(q)
[
N2(q, q̇) − m21(q)m−1

11 (q)N1(q, q̇)
]

f0(q,p) = m−1
11 (q)

[
F1(q)β(q, q̇) − N1(q, q̇)

]

g0(q) = m−1
11 (q)

[
F1(q)α(q) − m12(q)

]

Remark 3.4

• For more details of the proof of these two last propositions, refer to [23] and [31].
• The partial linearization procedure in the proposition (3.3) is particularly used for

autonomous underactuated system with six degrees of freedom such as airplanes
and helicopters.

Another interesting property that is present in several UMSs is that of symmetry.
In what follows, we are going to define the different notions of symmetry in relation
to Lagrangian systems.

3.8 Symmetry in Mechanics

A Lagrangian L(q, q̇) is symmetric with respect to the configuration variable qi if
and only if

∂L

∂qi

= 0, i ∈ {1, . . . , n}
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Several underactuated systems possess certain symmetry property, for example the
Lagrangian of a helicopters or of satellites is independent of their position, which
gives rise to a symmetry (invariance of the Lagrangian).

Let us denote by pi the ith generalized momentum defined by

pi = ∂L

∂q̇i

and consider the non-actuated Euler–Lagrange equation of motion:

d

dt

∂L

∂q̇i

− ∂L

∂qi

= 0

An immediate consequence of the symmetry of the Lagrangian with respect to qi is
the conservation of the ith generalized momentum (ṗi = 0) and vice versa.

The equation ṗi = 0 is equivalent to constraints of first order,

WT (q)q̇ = pi(0)

where W(q) = (mi1(q), . . . ,min(q))T is the ith row of the inertia matrix M(q). If
this constraint is non-integrable, then the analysis of the system reduces to the anal-
ysis of a mechanical system with non-holonomic constraints of first order. Hence,
the existence of symmetry leads to holonomic/non-holonomic velocity constraints
for mechanical systems [23].

We shall employ a different notion of symmetry called kinetic symmetry with
respect to qi ; that is,

∂K

∂qi

= 0

By definition, a mechanical system whose inertia matrix is independent of a set
of configuration variables possesses a kinetic symmetry with respect to these vari-
ables. We call this subset: external variables and its complement: shape variables
(the variables that appear in the inertia matrix). The kinetic symmetry is equivalent
to the classical symmetry in the absence of potential energy.

The last part of this chapter is dedicated to the presentation of some UMSs ob-
tained via the Lagrange formalism.

3.9 Examples of Underactuated Mechanical Systems

In this section, we are going to present some models of UMSs, the majority of which
represent useful benchmarks for nonlinear control. These examples include the cart-
inverted pendulum (or simply cart-pole) system, the sliding mass on cart, the Tora
(Translational oscillator rotational actuator), the Acrobot, the Pendubot, and the ball
and beam system. Each example will be treated briefly.
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Fig. 3.2 The
cart-inverted-pendulum
system

Fig. 3.3 The sliding mass on
cart system

3.9.1 The Cart-Inverted-Pendulum System

The cart-inverted pendulum is without doubt one of the most popular laboratory ex-
periment used to illustrate nonlinear control techniques. The cart-inverted-pendulum
system [2, 39], depicted in Fig. 3.2 is an UMS made of a cart that can move on a
plane surface and a pendulum connected by a hinge on the cart. The overall system
is controlled by an electric motor.

The necessity to control q1 the cart displacement and q2 the pendulum angular
with a single control input τ classify this system under the class of UMSs.

The inertia matrix M(q) and the potential energy V (q) are given by

M(q) =
[

m1 + m2 m2l2 cosq2

m2l2 cosq2 m2l
2
2 + I2

]
and V (q) = m2gl2 cosq2

where m1 is the mass of the cart and m2, l2, I2 are the mass, length from the center
of mass and inertia of the pendulum, respectively.

The cart-inverted pendulum has been the subject of several linear and nonlinear
control algorithms tests. Note that the segway is an extended version of the cart-
inverted-pendulum technology.

3.9.2 The Sliding Mass on Cart System

The sliding mass on cart [29] is illustrated in Fig. 3.3. Assume that there is a friction
coefficient B between the mass m and the cart of mass M . Denoting by x1 the
position of the mass m with respect to the cart and by x2 the position of the cart, the
equations of motion of this system are given by

mẍ1 − B(ẋ1 − ẋ2) = 0

Mẍ2 + B(ẋ1 − ẋ2) = τ
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Fig. 3.4 Tora system

3.9.3 The Tora System

The Tora system2 depicted in Fig. 3.4, is composed of an oscillatory platform which
is controlled via a central mass [35]. The inertia matrix M(q) and the potential
energy V (q) are given by

M(q) =
[

m1 + m2 m2r cosq2

m2r cosq2 m2r
2 + I2

]
and V (q) = 1

2
k1q

2
1 + m2gr cosq2

where q1 is the platform displacement, q2 is the pendulum angular, m1 is the mass
of the cart, m2 the mass of the eccentric mass, r the radius of the rotation, k the
spring constant, I2 the inertia of the arm, g the gravity acceleration, and τ is the
torque input.

3.9.4 The Acrobot and the Pendubot Systems

Consider a two-arm robot with a single control input. The actuation of the variable
q1 or q2 yields two different UMSs: the Acrobot [7, 16], Fig. 3.5(a), where q2 is
actuated and the Pendubot [32], Fig. 3.5(b), whereby q1 is actuated.

In reality, these two systems represent the same system when the latter is fully
actuated. Any actuator failure or suppression of an actuator leads to two different
structures. The inertia matrices of the two systems are given by

m11 = I1 + I2 + m1l
2
1 + m2

(
L2

1 + l2
2

)+ 2m2L1l2 cosq2

m12 = m21 = I2 + m2l
2
2 + m2L1l2 cosq2

m22 = I2 + m2l
2
2

and the corresponding potential energyV (q) is given by

V (q) = (m1l1 + m2L1)g cosq1 + m2l2g cos(q1 + q2)

2Translational Oscillator Rotational Actuator.
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Fig. 3.5 Acrobot and Pendubot systems

Fig. 3.6 Inertia wheel
pendulum system

where mi , Ii , Li , li are the mass, inertia, length, and the length of the center of
mass of the ith arm, respectively (see [10] for more details of the modeling of these
systems).

3.9.5 The Inertial Wheel Pendulum System

The inertia or inertial wheel pendulum [6, 34] illustrated in Fig. 3.6 consists of a
pendulum that has on its extremity a rotative inertial wheel. Here the pendulum is
not actuated and the system is controlled via the wheel. The objective of the control
is to firstly stabilize the pendulum at the vertical position and secondly stabilize the
rotational movement of the wheel.

The entries of the inertia matrix associated with this system are given by

m11 = m1l
2
1 + m2L

2
1 + I1 + I2

m12 = m21 = m22 = I2

The fact that the entries of this system are constant qualifies this system as flat.
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Fig. 3.7 Ball and beam
system

The corresponding potential energy V (q) is given by

V (q) = (m1l1 + m2L1)g cosq1 = m0 cosq1

where m1,m2, I1, I2 are the masses, the inertia of the pendulum and the wheel,
respectively; L1, l1 represent the length and the length of the center of the pendulum.

3.9.6 The Ball and Beam System

The ball and beam system [13] is composed of a beam that can pivot in the vertical
plane via a torque τ at the center/point of rotation and a ball whose aim is to restrict
its displacement to a sliding motion without friction along the beam Fig. 3.7.

In this example, the idea is to control the angular position θ of the beam and the
position r of the ball by the only available control input τ applied at the center of
the beam. The equations of motion are given by

{
mr̈ + mg sin(θ) − mrθ̇2 = 0(
mr2 + I

)
θ̈ + 2mrṙθ̇ + mgr cos(θ) = τ

(3.16)

where I is the inertia of the beam, m the mass of the ball, and g the gravity acceler-
ation.

3.10 Summary

In this chapter, we have presented the modeling of UMSs from the formalism of La-
grange. These systems are defined as having fewer control inputs than the degrees of
freedom to be controlled. We have next explained the different problems associated
to underactuation and then we have given the models of some examples of UMSs.
We have highlighted the fact that these systems possess very few common proper-
ties so that they are studied on a case by case basis. In the next chapter we shall
proceed to classify these systems with the aim to provide a generalized treatment of
these systems or at least for some classes of these systems.
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Chapter 4
Classification of Underactuated Mechanical
Systems

. . . order leads to all virtues but what leads to order?
Georg Christoph Lichtenberg

In order to provide a generalized method for the synthesis of control laws for under-
actuated mechanical systems (UMSs), it is intuitive to try to look for the structural
properties that are common to different UMSs. On the other hand, as has been men-
tioned in previous chapters, very often these systems are treated on a case by case
basis. So far, only two attempts in classifying these systems are available in litera-
ture. The first classification is due to Seto and Baillieul and the second one is due
to Olfati-Saber. The first objective of this chapter is to present these two classi-
fications. The second objective is to investigate whether there is eventually a link
between these two classifications.

4.1 Classification of UMSs According to Seto and Baillieul

One of the two available classifications of UMSs in the literature is due to Dambing
Seto and John Baillieul [5]. For this, a graphical characteristic of UMSs is developed
using the so-called control flow diagram (CFD), which is constructed to represent
the interaction forces through the system’s degrees of freedom. In doing so, three
structures are identified: the chain structure, tree structure, and isolated vertex (or
point) structure.

Seto and Baillieul, in their classification, give a control solution for UMSs having
a chain structure whereby a systematic backstepping control design procedure is
put in place. This is precisely the strong point of this classification. However, the
weak point of this classification is that for the other two structures (tree and isolated
vertex) the problem of deriving a systematic control design approach is still open.

For the rest of the discussion in this chapter, we shall refer to a mechani-
cal system of n degrees of freedom described in the generalized coordinates q =
(q1, q2, . . . , qn) using the Lagrange formalism as explained in the previous chapter:

M(q)q̈ + N(q, q̇) = F(q)τ (4.1)

where N(q, q̇) = C(q, q̇)q̇ + G(q) according to (3.3).

A. Choukchou-Braham et al., Analysis and Control of Underactuated Mechanical
Systems, DOI 10.1007/978-3-319-02636-7_4,
© Springer International Publishing Switzerland 2014
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4.1.1 Principle of Control Flow Diagram

The main idea of the control flow diagram is to understand the relations that exist
between the elements of a system by studying the interacting forces that are coupled
with the degrees of freedom and to develop a graphical representation to capture
the dynamics of a given system. As mentioned before, the three structures chain,
tree, and isolated vertices are identified. Additionally, one can have a combination
of these three structures so that overall we have seven structures. These different
structures define the degree of complexity of a given system.

4.1.1.1 Graphical Characterization of UMSs

In this section, we recall the construction of the control flow diagram (CFD) asso-
ciated to a given mechanical system and identify the different possible structures in
the CFD [5]. Such an analysis can be a starting point for the control synthesis of
UMSs.

For each point (q0, q̇0) and each neighborhood U of (q0, q̇0) we assign to system
(4.1) a digraph called CFD constructed as follows:

1. Rewrite system (4.1) in the form

q̈ = M−1(q)
[
F(q)τ − N(q, q̇)

] = H(q, q̇, τ ) (4.2)

2. Choose n + m vertices q1, . . . , qn and τ1, . . . , τm.
3. For each vertex qi , i ∈ [1, n], draw a branch from τj and qk (j ∈ [1,m], k ∈

[1, n]) with k �= i, towards qi if the function Hi depends explicitly on τj , qk

or q̇k and associate the number aij to the branches between qi and τj and the
number bik to branches linking qk to qi .

The values of aij and bik are determined as follows:

aij =
⎧
⎨

⎩

2 if ∂Hi

∂τj
�= 0 at (q0, q̇0)

−2 if ∂Hi

∂τj
�= 0 ∀(q, q̇) ∈ U except at (q0, q̇0)

bik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if ∂Hi

∂q̇k
�= 0 at (q0, q̇0)

−1 if ∂Hi

∂q̇k
�= 0 ∀(q, q̇) ∈ U except at (q0, q̇0)

2 if ∂Hi

∂q̇k
≡ 0 ∀(q, q̇) ∈ U and ∂Hi

∂qk
�= 0 at (q0, q̇0)

−2 if ∂Hi

∂q̇k
≡ 0 ∀(q, q̇) ∈ U and ∂Hi

∂qk
�= 0 ∀(q, q̇) ∈ U except at (q0, q̇0)

4. Associate a length to each control path from τj to qi (i ∈ [1, n], j ∈ [1,m])
by adding absolute values assigned to each branch. For each configuration vari-
able qi , keep the shortest control path, and among them eliminate all the singular
paths (that is, the control paths containing branches with a negative number).
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This completes the construction of the CFD.

Remark 4.1 It is also possible to construct the CFD of UMSs under first order non-
holonomic constraints, for more details refer to [5].

When a mechanical system is subjected to first order non-holonomic constraints
(Sect. 3.4), its dynamics can be written as follows:

M(q)q̈ + N(q, q̇) = W(q)λ + F(q)τ
(4.3)

WT (q)q̇ = 0

where the term W(q)λ can be considered as a necessary force to maintain the con-
straints. Such forces can be eliminated by studying a family of differential equations
of lower dimension, which represents the system evolution on the constraints mani-
fold and in which the system appears holonomic.

Without loss of generality, the configuration variables are divided into two sets
qa = {q1, . . . , qd} and qb = {qd+1, . . . , qn}, and the matrix W(q) into two submatri-
ces Wa(q) and Wb(q), of dimensions (n×d)×d and (n−d)×(n−d), respectively,
such that det(Wb(q)) �= 0 .

If we define T (q) = [ I

−(W−1
b Wa)

]
then W(q)T (q) = 0.

In this case, one can write (see [1] for more details):

q̈a = [
T T (q)M(q)T (q)

]−1
T T (q)

[
F(q)τ − N

(
q,T (q)q̇a

)− M(q)Ṫ (q)q̇a

]

(4.4)
q̇b = −(

W−1
b (q)Wa(q)

)T
q̇a

where the term W(q)λ is eliminated.

Remark 4.2 The d independent vector fields represented by the columns of the ma-
trix T generate the null space of the matrix W(q). By multiplying Eq. (4.3) by T T

(which is done to obtain (4.4)), the dynamics of the system are projected towards
the null space of W(q). Consequently, the term WT (q) is eliminated. This reduction
is not unique, different partitions of the variables qa and qb lead to different repre-
sentations for (4.4). Moreover, the reduction presented is only local and a theory for
global reduction for non-holonomic systems remains to be developed.

Proof We have

WT (q)q̇ = 0 ⇒ [
WT

a WT
b

][ q̇a

q̇b

]
= 0

which gives

q̇b = −(
Wa(q)W−1

b (q)
)T

q̇a (4.5)

Hence

q̇ =
[
q̇a

q̇b

]
=

[
q̇a

−(Wa(q)W−1
b (q))T q̇a

]
= T (q)q̇a ⇒ ..

q = Ṫ (q)q̇a + T (q)
..
qa
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Fig. 4.1 Construction of a CFD in the general case

Let us multiply (4.3) by T T (q) and replace
..
q by

..
q = Ṫ (q)q̇a + T (q)

..
qa , then

T T M(q)
(
Ṫ (q)q̇a + T (q)

..
qa

)+ T T N(q, q̇) = T T W(q)λ + T T F (q)τ (4.6)

This yields (4.4). �

The CFD for first order non-holonomic systems is obtained as follows:

1. Rewrite (4.3) under the form (4.4) and set q̈a = Ha(q, q̇a, τ ) and q̇b = Hb(q, q̇a)

where Ha = [H 1
a , . . . ,Hd

a ]T and Hb = [Hd+1
b , . . . ,Hn

b ]T .
2. Choose n + m vertices q1, . . . , qn and τ1, . . . , τm.
3. For each qi , i = 1, . . . , d , repeat step 3 for the holonomic systems with Hi re-

placed by Hi
a .

4. For each qi , i ∈ [d + 1, . . . , n], draw a branch from qk , k = 1, . . . , n (k �= i),
towards qi if the function Hi

b depends explicitly on qk or q̇k , and associate the
number cik to each branch that is determined by

cik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∂H i

b

∂q̇k
�= 0 at (q0, q̇0)

−0 if
∂H i

b

∂q̇k
�= 0 ∀(q, q̇) ∈ U except at (q0, q̇0)

1 if
∂H i

b

∂q̇k
≡ 0 ∀(q, q̇) ∈ U and

∂H i
b

∂qk
�= 0 at (q0, q̇0)

−1 if
∂H i

b

∂q̇k
≡ 0 ∀(q, q̇) ∈ U and

∂H i
b

∂qk
�=0 ∀(q, q̇) ∈ U except at (q0, q̇0)

5. Same as step 4 of the previous organigram.

Remark 4.3 The formal notation −0 is adopted to distinguish the case in which the
differential-algebraic constraint in (4.3) has singularities at (q0, q̇0).

A part of the CFD for first order non-holonomic systems is shown in Fig. 4.1 [5].
Let us now define the three different structures: chain structure, tree structure,

and isolated vertices structure.
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Fig. 4.2 Chain structures

Fig. 4.3 Tree structures

Fig. 4.4 Isolated vertex
structure

Definition 4.1 [5] Suppose that Gi is a subgraph of the CFD, and that Gi contains
mi control inputs.

1. Gi has a chain structure if there are mi vertices with mi control path covering
all the vertices in Gi , such that each vertex belongs to one and only one control
path, see Fig. 4.2.

2. Gi has a tree structure if for any mi vertices, every corresponding set of mi

control paths will either leave some vertices in mi not covered Fig. 4.3(a) or
cover all the vertices in mi with some vertices appearing on more than one path
Fig. 4.3(b).

3. Gi has an isolated vertices structure if Gi only contains vertices to which there
are only singular control paths or no control paths in the CFD Fig. 4.4.
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Based on these definitions, Seto and Baillieul defined the notion of degree of
complexity in the context of CFD. This degree indicates the difficulty in controlling
a system.

Definition 4.2 [5] By the degree of complexity of a given system, we mean the
position of the system in the following hierarchy:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) chains only

(2) chains + trees

(3) trees only

(4) chains + isolated vertices

(5) chains + trees + isolated vertices

(6) trees + isolated vertices

(7) isolated vertices only

Remark 4.4

• Clearly, the chain structure is the least difficult to control, it even appears that
systems with such structure can be controlled via feedback linearization or by
backstepping since the degrees of freedom and the control are connected in series.

• On the other hand, systems with tree structure, do not have the same advantages,
because we have to control certain degrees of freedom in parallel; in the sense
that one control input has to control more than one variable simultaneously, which
limits the control objectives.

• For systems with isolated vertices structure, certain control objectives are difficult
or even impossible to attain because the control does not have any influence on
some variables.

4.1.1.2 Interpretation of CFD

Let us define an output function yi = qi , i = 1, . . . , n, and the relative degree for
each output yi .

Definition 4.3 [5] The relative degree for a configuration variable (if it exists) is
the shortest length of the control path leading to this variable.

It is clear that the configuration variables in an isolated vertices structure do not
have a well-defined relative degree.

Considering the relative degree rk of qk , k ∈ [1, n], the controllability of qk is
summarized in Table 4.1

4.1.2 Examples

To illustrate this concept, we have constructed the CFDs of some UMSs.
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Table 4.1 Controllability of configuration variables in a CFD

rk is well
defined at (q0, q̇0)

qk is directly controllable by τ ∈ U : rk = 2

qk is indirectly controllable by τ ∈ U : rk > 2

rk is not well
defined at (q0, q̇0)

qk is in a singular control path and is not affected by τ ∈ U at (q0, q̇0)

qk is not in control path and cannot be controlled

Fig. 4.5 CFD of the sliding
mass on cart system

1. Consider the mechanical system consisting of a sliding mass on a cart as depicted
in Fig. 3.3. The equations of motion are given by

ẍ1 = B

m
(ẋ1 − ẋ2) = H1(ẋ1, ẋ2)

ẍ2 = 1

M

[
τ − B(ẋ1 − ẋ2)

] = H2(ẋ1, ẋ2, τ )

The function H1 does not depend on the input τ , hence the path linking τ to x1

does not exist. However, there is an indirect path linking τ to x1 through x2 of
length (relative degree) a2τ +b12 = 3 Fig. 4.5; the values of a2τ , b21, and b12 are
determined by

∂H2

∂τ
= 1

M
�= 0 in

(
x0, ẋ0

) ⇒ a2τ = 2

∂H1

∂ẋ2
= −B

m
�= 0 in

(
x0, ẋ0

) ⇒ b12 = 1

∂H2

∂ẋ1
= − B

M
�= 0 in

(
x0, ẋ0

) ⇒ b21 = 1

The sliding mass on cart system possesses a chain structure. The variable x2 is
directly controllable by τ , while the variable x1 is controllable via x2.

Remark 4.5 The only examples of UMSs having a chain structure that can be found
in literature are the sliding mass on cart and the robotic arm with joint elasticity [2].
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Fig. 4.6 CFD of the inverted
pendulum system

2. Consider the inverted pendulum on a cart as depicted on Fig. 3.2; the equations
of motion are given by

q̈1 = 1

det(M)

[(
m2l

2
2 + I2

)
τ + (

m2l
2
2 + I2

)
m2l2q̇

2
2 sinq2 − m2

2l
2
2g sinq2

]

= H1(q2, q̇2, τ )

q̈2 = 1

det(M)

[
(−m2l2 cosq2)τ + (m1 + m2)m2gl2 sinq2 − m2

2l
2
2 q̇2

2 sinq2
]

= H2(q2, q̇2, τ )

where det(M) is the determinant of the inertia matrix M(q) as given previously.
The values of a1τ , a2τ , and b12 are determined by

∂H1

∂τ
= m2l

2
2 + I2

det(M)
�= 0 in

(
q0, q̇0) ⇒ a1τ = 2

∂H2

∂τ
= −m2l2 cosq2

det(M)
�= 0 in

(
q0, q̇0) ⇒ a2τ = 2

∂H1

∂q̇2
= 2(m2l

2
2 + I2)m2l2 sinq2

det(M)
q̇2 �= 0 ∀(q, q̇) ∈ U except at

(
q0, q̇0)

⇒ b12 = −1

The function H2 does not depend on q1 or q̇1. Hence, the path linking q1 to q2

(b21) does not exist Fig. 4.6(a).
There are two control paths linking the input variable τ to the variable q1: the

first is a direct path of length (a1τ = 2) and the second one is an indirect path pass-
ing through the variable q2 of length (a2τ+ | b12 |= 3). In this case, we keep the first
control path of shortest length. Moreover, the second path is singular and therefore
must be eliminated. The final CFD is given in Fig. 4.6(b). This system possesses a
tree structure. Hence, it is necessary to control the two variables q1 and q2 simulta-
neously.

Remark 4.6 The Acrobot, the Pendubot, and the Tora system are also UMSs having
a CFD in tree structure.
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Fig. 4.7 CFD of the ball and
beam system

3. Consider the ball and beam system depicted in Fig. 3.7. The equations of motion
are given by

q̈1 = 1

I + mq2
2

(τ − 2mq2q̇1q̇2 − mgq2 cosq1) = H1(q, q̇, τ )

q̈2 = 1

m

(
mq2q̇

2
1 − mg sinq1

) = H2(q, q̇)

where θ is replaced by q1 and r by q2. The values of a1τ , a2τ , and b12 are

∂H1

∂τ
= 1

I + mq2
2

�= 0 in
(
q0, q̇0) ⇒ a1τ = 2

∂H2

∂q̇1
= 2q2q̇1 �= 0 ∀(q, q̇) ∈ U except at

(
q0, q̇0) ⇒ b21 = −1

∂H1

∂q̇2
= −2m

I + mq2
2

q2q̇1 �= 0 ∀(q, q̇) ∈ U except at
(
q0, q̇0) ⇒ b12 = −1

Figure 4.7(a) represents the CFD of the ball and beam example. Note that q1 is
linked to q2 via a centrifugal force mq2q̇

2
1 . In this case, the relative degree of q2 with

respect to τ is not defined when q̇1 = 0. Figure 4.7(b) shows the final CFD (after
eliminating the singular control path) which is an isolated vertex structure.

According to this classification, we conclude that the degree of complexity to
control the systems of the above examples increases in the following order: the
sliding mass on cart system, next the inverted pendulum system, and last the ball
and beam system.

4.2 Classification of UMSs According to Olfati-Saber

The second classification of UMSs is due to Reza Olfati-Saber. His main contri-
bution was to determine an explicit change of coordinates that transforms the cou-
pled subsystems obtained from the partial linearization of Spong into uncoupled
cascaded systems in normal form. The resulting normal forms leads to a second
classification of UMSs based on structural properties.
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The advantage of such a classification is that it allows to define a suitable con-
trol, according to the obtained class. For instance, the control of a system that can
be put into a normal strict feedback form would be done by a backstepping proce-
dure; while those systems having a feedforward normal form would be done via a
forwarding scheme. On the other hand, for those systems having a non-triangular
form, the control problem for the latter is still an open issue (except in some partic-
ular cases).

4.2.1 Normal Forms of UMSs

According to the previous chapter, one can always partially linearize the dynamics
of UMSs. However, the new control appears in the two subsystems: linear (q2,p2)

and nonlinear (q1,p1), that is,

q̇1 = p1

ṗ1 = f0(q,p) + g0(q)u

q̇2 = p2

ṗ2 = u

whereby the new control input u is given by τ = α(q)u + β(q, q̇).
The idea is to decouple these two subsystems via a global change of coordinates.

Theorem 4.1 [3] Consider an UMS with inertia matrix M(q) = {mij (q)}; i, j =
1,2 where q = (q1, q2), q1 = (qi

1) ∈ R
n−m, and q2 = (q

j

2 ) ∈ R
m denote the actuated

and non-actuated configuration variables, respectively. Let us define

g(q) =
[
g0(q)

Im×m

]

where g0(q) = −m−1
11 (q)m12(q) = (g1

0(q), . . . , gm
0 (q)) with g

j

0 (q) ∈ R
n, j =

1, . . . ,m and Im×m is the identity matrix.
Let us define the column-wise full rank distribution Δ(q) (globally non-singular).

Δ(q) = span
{
column of g(q)

}

Then, a necessary and sufficient condition for the distribution Δ(q) to be globally
involutive; that is, completely integrable, is that

∂g
j

0 (q)

∂q1
gi

0(q) − ∂gi
0(q)

∂q1
g

j

0 (q) + ∂g
j

0 (q)

∂qi
2

− ∂gi
0(q)

∂q
j

2

= 0, ∀i, j = 1, . . . ,m (4.7)
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In addition, if the condition (4.7) is verified, then there exists a global change in
coordinates given by

z1 = Φ(q1, q2)

z2 = (
Dq1Φ(q)

)
. p1 + (

Dq2Φ(q)
)
. p2

ξ1 = q2

ξ2 = q̇2

that transforms the dynamics of the system in a normal form

ż1 = z2

ż2 = f (z, ξ1, ξ2)
(4.8)

ξ̇1 = ξ2

ξ̇2 = u

Remark 4.7 The normal form (4.8) is a special case of the well-known Byrnes–
Isidori form with double integrators

ż = f (z, ξ1, ξ2)

ξ̇1 = ξ2 (4.9)

ξ̇2 = u

Once decoupled, the system can take one of the cascaded normal forms as given
below [3].

Definition 4.4 (Cascaded system) A nonlinear system is said to be in the cascaded
form if it has the following structure:

ż = f (z, ξ)
(4.10)

ξ̇ = g(ξ,u)

where f : Rn ×R
m → R

n, g : Rm ×R
p → R

m, (z, ξ) is the composite state and u

is the control input. If ξ̇ = Aξ + Bu, then the system (4.10) is said to be a partially
linear cascade nonlinear system.

Definition 4.5 (Feedback form) A nonlinear system is said to be in the strict feed-
back form if it possesses the following triangular structure:

ż = f (z, ξ1)

ξ̇1 = ξ2

...

ξ̇m = u
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Definition 4.6 (Feedforward form) A nonlinear system is said to be in the feedfor-
ward form if it possesses the following triangular structure:

ẋ1 = x2 + ϕ1(x2, . . . , xn, u)

ẋ2 = x3 + ϕ2(x3, . . . , xn, u)

...

ẋn = u + ϕn(xn,u)

Definition 4.7 (Non-triangular form) A nonlinear system is said to have a non-
triangular form if it possesses the following structure:

ż = f (z, ξ1, ξ2, . . . , ξm)

ξ̇1 = ξ2
(4.11)

...

ξ̇m = u

where z ∈ R
n and where u ∈ R

p . The system (4.11) is also called normal form of
Byrnes–Isidori.

Definition 4.8 (Non-triangular linear-quadratic form) A nonlinear system is said to
have a non-triangular linear-quadratic form if it possesses the following structure:

ż1 = μ(z1)z2 + η(ξ1)ξ2

ż2 = φ(z1, ξ1) + Σ(ξ1, z2, ξ2)
(4.12)

ξ̇1 = ξ2

ξ̇2 = u

where z1, z2 ∈ R
n, u ∈ R

p , μ(z1) is a positive definite matrix, φ : Rn × R
p → R

n

and Σ :Rp ×R
n ×R

p →R
n possesses a quadratic structure in (z2, ξ2)

Σ(ξ1, z2, ξ2) =
[
z2
ξ2

]T

Π(ξ1)

[
z2
ξ2

]

where Π = (Π1, . . . ,Πn) is a cubic matrix with entries in R
n×n and for v ∈ R

n,
vT Πv := (vT Π1v, . . . , vT Πnv)T ∈ R

n. If η ≡ 0, (4.12) is called non-triangular
quadratic form (with respect to ξ2) . If Σ ≡ 0, (4.12) is called non-triangular linear
form (with respect to ξ2).

Olfati-Saber divided the UMSs into eight classes based on the obtained normal
forms. We shall start by presenting the classification of UMSs with two degrees of
freedom and then briefly recall the classification of UMSs of higher order.
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4.2.2 UMSs with Two Degrees of Freedom

These systems can only give three different classes denoted Class I, Class II, and
Class III. The considered systems are those which possess a kinetic symmetry with
respect to q1; that is ∂K

∂q1
= 0 where K is the kinetic energy. In other words M(q) =

M(q2).
Because of this property, the inertia matrix depends on a certain configuration

variable q2, called shape variable and is not dependent on the variable q1 called
external variable.

The general model for UMSs with two degrees of freedom is of the form [3]

m11(q2)q̈1 + m12(q2)q̈2 + m′
11(q2)q̇1q̇2 + m′

12(q2)q̇
2
2 − g1(q1, q2) = τ1

m21(q2)q̈1 + m22(q2)q̈2 − 1

2
m′

11(q2)q̇
2
1 + 1

2
m′

22(q2)q̇
2
2 − g2(q1, q2) = τ2

where gi(q1, q2) = −∂V (q)/∂qi , i = 1,2, and ′ denotes d/dq2.
Class I are those for which q2 is actuated (τ1 = 0). Class II are those for which

q2 is not actuated (τ2 = 0).
It is shown that every underactuated system of Class I can be transformed into a

strict feedback form.

Proposition 4.1 ([3] (Class I)) The global change of coordinates (obtained from
the Lagrangian) given by the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

z1 = q1 + γ (q2)

z2 = m11(q2)p1 + m12(q2)p2 = ∂L
∂q̇1

ξ1 = q2
ξ2 = p2

(4.13)

where γ (q2) = ∫ q2
0 m−1

11 (θ)m12(θ) dθ transforms the dynamics of the system into a
cascaded strict feedback form

ż1 = m−1
11 (ξ1)z2

ż2 = g1
(
z1 − γ (ξ1), ξ1

)
(4.14)

ξ̇1 = ξ2

ξ̇2 = u

such that u is the new control obtained from collocated partial feedback lineariza-
tion and g1(q1, q2) = −∂V (q)/∂q1.

Corollary 4.1 The Acrobot and the Tora are Class I UMSs with two degrees of
freedom that can be transformed into a strict feedback form.
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Proposition 4.2 ([3] (Class II)) The explicit change of coordinates (obtained from
the Lagrangian) given by the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

z1 = q1 + γ (q2)

z2 = m21(q2)p1 + m22(q2)p2 = ∂L
∂q̇2

ξ1 = q2
ξ2 = p2

(4.15)

where γ (q2) = ∫ q2
0 m−1

21 (θ)m22(θ) dθ is defined in the set U = {q2/m21(q2) �= 0}
transforms the dynamics of the system into a cascaded non-triangular quadratic
form:

ż1 = m−1
21 (ξ1)z2

ż2 = g2
(
z1 − γ (ξ1), ξ1

)

+ m′
11(ξ1)

2m2
21(ξ1)

z2
2 +

{
m′

21(ξ1)

m21(ξ1)
− m22(ξ1)m

′
11(ξ1)

2m2
21(ξ1)

}
z2ξ2

(4.16)

+
{

m2
22(ξ1)

2m2
21(ξ1)

m′
11(ξ1) − m22(ξ1)

m21(ξ1)
m′

21(ξ1) + 1

2
m′

22(ξ1)

}
ξ2

2

ξ̇1 = ξ2

ξ̇2 = u

such that u is the new control input obtained by non-collocated partial linearization.

Corollary 4.2 The inverted pendulum, the ball and beam and the Pendubot are
Class II underactuated systems with two degrees of freedom. They can be trans-
formed into a non-triangular quadratic form on the set U = {q2/m21(q2) �= 0}.

Proposition 4.3 ([3] (Class III)) Consider Class-II systems and assume that the
following supplementary conditions are satisfied:

(i) g2(q1, q2) is not dependent on q1; that is, Dq1Dq2V (q) = 0
(ii) m11 is constant

(iii) ψ(q2) = g2(q2)/m21(q2) satisfies ψ ′(0) �= 0 then the change of coordinates
y1 = z1, y2 = m−1

21 (ξ1)z2 transforms the non-triangular form (4.16) into the
feedforward form

ẏ1 = y2

ẏ2 = ψ(ξ1) +
{

m′
22(ξ1)

2m21(ξ1)
− m22(ξ1)

m2
21(ξ1)

m′
21(ξ1)

}
ξ2

2

(4.17)
ξ̇1 = ξ2

ξ̇2 = u
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Corollary 4.3 The inverted cart-pendulum system satisfies the three conditions of
Proposition (4.3) (ψ(q2) = g tan(q2) ⇒ ψ ′(0) = g �= 0). Consequently, the system
is transformable into a feedforward form (4.17).

The above considered systems are UMSs with two degrees of freedom. However,
real systems, which have a definite physical meaning, are those UMSs with higher
degrees of freedom. It is therefore necessary to give the Olfati-Saber’s classification
of these systems as well. Nonetheless, in order to not overload this presentation, we
shall try to be very brief. For more details on this subject see [3] and [4].

4.2.3 Classification of High-Order UMSs

The main idea here is to reduce high-order nonlinear UMSs into a nonlinear low-
order subsystem cascaded with a linear subsystem. The obtained normal forms give
rise to the second classification. At the same time, the control design for the non-
linear subsystem is less complicated but must be extended to the overall system
through backstepping or forwarding procedures according to the obtained normal
forms.

As for two degrees of freedom UMSs, we consider UMSs with kinetic symme-
try where the shape variables that appear in the inertia matrix are denoted by qs ,
while the external variables that do not appear in the inertia matrix are denoted
by qx .

The exploitation of such property has permitted to reduce the complexity of the
control synthesis for UMSs. In effect, under some change of coordinates, the ini-
tial system is transformed into two cascaded subsystems where the first subsystem
is nonlinear and the second one is linear, often in the form of a chain of integra-
tors.

The analytical tools allowing such reduction are the generalized momenta and
their integrals computed from the Lagrangian. Nevertheless, several benchmarks
and real systems does not possess integrable generalized momentums. Then, these
momenta are decomposed into a sum of an integrable part and a non-integrable part,
which is considered as a perturbation of the integrable case and will appear only in
the reduced nonlinear subsystem.

The Euler–Lagrange equations for these systems are given by

mxx(qs)q̈x + mxs(qs)q̈s + Nx(q, q̇) = Fx(q)τ (4.18)

msx(qs)q̈x + mss(qs)q̈s + Ns(q, q̇) = Fs(q)τ (4.19)

where q = (qx, qs) ∈ Q = Qx × Qs , τ ∈ R
m, F(q) = col(Fx(q),Fs(q)), and

rank(F (q)) < n = dim(q).
In his analysis and synthesis, Olfati-Saber has considered a certain number of

cases based on complete, partial or non-actuation of the shape variables, of inputs
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coupling and of generalized momentums integrability. These properties and others
are summarized as follows:

• When the shape variables are actuated for non-coupled inputs, this corresponds
to the situation where Fx(q) = 0 and Fs(q) = Im.

• When the shape variables are non-actuated for non-coupled inputs, this corre-
sponds to the situation where Fx(q) = Im and Fs(q) = 0.

• When the inputs are coupled this corresponds, without loss of generality, to the
situation where Fx(q) �= 0 and Fs(q) is a m × m matrix.

• When the inertia matrix is constant then the associated system is said to be flat.
• When the normalized generalized momentum defined by

πx = q̇x + m−1
xx (qs)mxs(qs)q̇s or by πs = q̇x + m−1

sx (qs)mss(qs)q̇s

conjugated to qx or qs , respectively, is said to be integrable, then there exists
a function h = h(qx, qs) such that ḣ = πx or (πs); otherwise the momentum is
said to be non-integrable. In this case, the procedure is to decompose the non-
integrable momentum into two terms. An integrable momentum called ‘locked
momentum’ and a non-integrable momentum called ‘error momentum’. For ex-
ample: πx = π ′

x + πe
x . Additionally, πe is not dependent on (qx, q̇x) and be-

comes 0 when qs = q̄s , the variable of the locked form.

All in all, this procedure has led Olfati-Saber to establish 16 classes for UMSs.
Nevertheless, due to the redundancy of certain classes and the fact that some of
them are physically non-realizable, the author reduced the 16 classes to only eight
different classes.

For each of them, Olfati-Saber has proposed an order reduction method and a
global change of coordinates allowing to transform these systems into three normal
cascaded forms: strict feedback normal form, feedforward normal form, and non-
triangular quadratic form as defined previously.

In summary, this classification, based on the structural properties of the UMSs—
such as the actuation or non-actuation of the shape variables, coupling or non-
coupling of the inputs, the integrability or non-integrability of the generalized mo-
mentum and supplementary condition—is illustrated in Fig. 4.8.

Remark 4.8

1. First, note that some examples appear in several classes. In fact, for the same
system, we can have underactuation due to the absence of motors at different
locations as is the case for the Acrobot and the Pendubot.

2. Next, the change of coordinates and normal forms obtained for the Classes I, IIa,
IIb, and III are the same for the UMSs with two degrees of freedom. It suffices
to replace (·)1 by (·)x and (·)2 by (·)s .

3. Finally, for the other classes the change of coordinates and the obtained normal
forms are given in [4].
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Fig. 4.8 Classification of UMSs according to Olfati-Saber

4.3 Comparison Between the Classifications

One of the objectives of this chapter is to show whether or not there exist some links
between the available classifications in the literature.

First of all, we can obviously see that the two classification approaches are dif-
ferent, the first classification is graphical while the second one is rather analytical.
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Fig. 4.8 (Continued)

In fact, the Seto and Baillieul classification is based on the construction of the con-
trol diagram flow, which reflects the way generalized forces are transmitted through
components and highlights the interaction between DOF. For UMSs with 2 DOF,
the procedure leads to the definition of three main classes according to the obtained
structure in the CFD, namely: chain, tree, and isolated vertices structures. For higher
order systems, the associated CFDs are combination of the three main structures,
where seven classes are defined and classified according to the control degree of
complexity. On the other hand, the Olfati-Saber classification is based on system
structural properties such as kinetic symmetry, actuation of some variables, and in-
tegrability of generalized momentums. As a starting point, UMSs are transformed
via partial linearizations into a cascade nonlinear and linear subsystems. However,
the new control appears in both of the two subsystems. Then, explicit changes of
coordinates are provided to decouple the two subsystems while leaving the linear
subsystem invariant. The new cascade subsystems are in normal forms namely, sys-
tems in strict feedback form, feedforward form, and non-triangular linear-quadratic
form. For UMSs with 2 DOF, three classes—Class I, Class II, and Class III—are de-
fined according to the obtained normal form. For higher order systems, the nonlinear
subsystems are reduced leading to eight classes.

Next, by constructing the CFDs for systems that belong to the same class in the
classification of Olfati-Saber, we can readily notice that the obtained CFDs can have
different structures see Fig. 4.9(a). In fact, the Acrobot and the Pendubot systems
possess the same tree structure but belong to Classes I and II. Conversely, if we
consider two systems having the same CFD structure in the Seto and Baillieul clas-
sification, then there is a possibility that they belong to two different classes in the
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Fig. 4.9 Comparison
between the two
classifications

Olfati-Saber classification Fig. 4.9(b). Indeed, the ball and beam and the cart pole
systems belong to Class II but their structures are different.

Finally, and from the control point of view, the authors of the first classification
proposed a backstepping systematic control scheme applied in one step for a chain
structure which is the less complicated structure to control. The systematic control
for the other two structures is still an open problem. While the author of the second
classification proposed a control algorithm for systems that can be transformed into
a strict feedback normal form as well as for systems that can be transformed into
the feedforward normal form. Some suggestions of control design for systems in
non-triangular normal forms are also given. In each case, the control is built in two
steps: First, the reduced model of the initial system is stabilized and then the global
system is stabilized by a backstepping or a forwarding procedure depending on the
associated normal form. Olfati-Saber has also given a theorem for the stabilization
of the reduced systems associated to the strict feedback normal form. One of the
hypothesis of the theorem is so restrictive that it is very rarely used and as a result,
the synthesis is not systematic. Moreover, the control is built in two steps leading to
complicated expressions.

It can be concluded that the two classifications are different and independent. In
fact, the principle of classification and the control strategy are different, moreover,
systems that belong to the same class in one classification belong to two different
classes in the other one.

4.4 Summary

In this chapter, we have studied two approaches for the classification of UMSs. The
first classification, due to Seto and Baillieul, is based on a control flow diagram that
is constructed to represent the interaction forces through degrees of freedom of the
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underactuated system. Three structures are identified: chain, tree, and isolated ver-
tices structures. From the combination of these structures one obtains seven struc-
tures. The second classification is due to Olfati-Saber, which takes into account the
structural properties of the considered systems. It gives rise to eight classes that are
transformable into three normal forms.

While attempting to find common points between these two classifications, it ap-
peared that they are independent. Indeed, the ball and beam and the cart-inverted
pendulum do not belong to the same class according to the first classification (iso-
lated vertex structure and tree structure, respectively). However, they are in the same
class (class II) for the other classification. Conversely, two systems of the same class
in the Seto and Baillieul classification, for example the Acrobot and Pendubot, be-
long to two different classes in the Olfati-Saber classification, namely Class I and
Class II. Moreover, classification procedures and control strategies are different.
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Chapter 5
Control Design Schemes for Underactuated
Mechanical Systems

. . . A control theorist’s first instinct in the face of a new problem
is to find a way to use the tools he knows, rather than a
commitment to understand the underlying phenomenon. This is
not the failure of individuals but the failure of our profession to
foster the development of experimental control science. In a
way, we have become the prisoners of our rich inheritance and
past successes.

Y.C. Ho (1982)

In this chapter, the stabilization issue for UMSs is considered. The strategy em-
ployed is based on the classification of Seto and Baillieul for these systems. The au-
thors of this classification proposed a systematic control design procedure of back-
stepping type for the chain structure only. We are therefore concerned here with the
problem of synthesizing control laws for each of the structures of this classification;
thus, providing a general treatment of all the UMSs. For this, we shall firstly extend
the procedure of Seto and Baillieul to a subclass of the tree structure that can be
transformed to a chain structure under some conditions. Next, a procedure to con-
trol the remaining tree structure that cannot be transformed into a chain structure
is presented. Finally, the control of the isolated vertex structure, which is the most
difficult structure to control, is proposed.

5.1 Stabilization of Underactuated Systems in Chained Form

In this section, we recall the systematic backstepping procedure due to Seto and
Baillieul [18], for the stabilization of UMSs with chain structure. Additionally,
we establish different proofs associated with this procedure and illustrate the lat-
ter through the sliding-mass system example.

In a chain structure, the configuration variables and the controls are in series and
each configuration variable (DOF) belongs to a single control path.

We consider the case where the CFD, contains one single control path. Whenever
this not the case, each control path will be treated independently.
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Systems, DOI 10.1007/978-3-319-02636-7_5,
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The most general representation of this structure is given by the following trian-
gular form:

ẍi = Ni(x1, . . . , xi+1, ẋ1, . . . , ẋi+1), i = 1, . . . , n − 1
(5.1)

ẍn = Nn(x, ẋ) + G(x, ẋ)u

where x = [x1, . . . , xn]T ∈R
n and Ni(·), G(·) are smooth functions.

The main idea here is to apply a method inspired by feedback linearization with-
out explicitly linearizing the system. In this case, the coordinates transformation is
avoided, and the variables keep their physical meaning.

However, this approach requires the following hypotheses:

(H1) Ni(0) = 0, i = 1, . . . , n, the origin is an equilibrium.
(H2) For each i = 1, . . . , n − 1, Ni(·) are smooth functions with bounded states

x1, . . . , xi; ẋ1, . . . , ẋi , Ni is bounded only if xi+1 and ẋi+1 are bounded.
In the case of feedback linearization, the latter hypothesis is equivalent to

saying that the nonlinear subsystem of the normal form has the property of
being BIBS (Bounded Input Bounded State ), which is a necessary condition
to avoid the peaking phenomenon in global stabilization.

(H3) G(x, ẋ) �= 0 and either

{
∂Ni/∂ẋi+1 �= 0 or
∂Ni/∂ẋi+1 = 0 but ∂Ni/xi+1 �= 0

This hypothesis ensures that the system is controllable, and that the differ-
ent DOF of the chain are linked to each other.

(H4) For all ∂Ni/∂ẋi+1 �= 0, i = 1, . . . , n−1, the nonlinear system Ni(0, . . . , xi+1,

0, . . . , ẋi+1) = 0 is GAS at x = 0 or when ∂Ni/∂ẋi+1 = 0 but ∂Ni/∂xi+1 �= 0
then the nonlinear system Ni(0, . . . , xi+1,0, . . . ,0) = 0 is GAS at x = 0.

This hypothesis is equivalent to the global stability of the zero dynamics.

Remark 5.1 We assume that y = x1. This choice is justified by the fact that we want
to control the degree of freedom that is farthest from the input; that is, x1.

To describe the stabilization results, we first define the following sequences.
Let us define x̄1 = [ x1

ẋ1

]
, b = [ 0

1

]
, e1 = x̄T

1 Pb (P a positive definite matrix with
all positive elements), G1 = 1 and W1 = 0.

For i = 1, . . . , n − 1

ei+1 = GiNi + Wi + kiei,

Gi+1 = ∂Ni

∂ẋi+1
Gi,

Wi+1 =
i+1∑

j=1

∂ei+1

∂xj

ẋj +
i∑

j=1

∂ei+1

∂ẋj

Nj + ei,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

if
∂Ni

∂ẋi+1
�= 0 (5.2)
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ei+1 = Gi+1ẋi+1 + W(i+1)1 + k(i+1)1e(i+1)1,

e(i+1)1 = GiNi + Wi + kiei,

Gi+1 = ∂Ni

∂xi+1
Gi,

Wi+1 =
i+1∑

j=1

∂ei+1

∂xj

ẋj +
i∑

j=1

∂ei+1

∂ẋj

Nj + e(i+1)1,

W(i+1)1 =
i∑

j=1

(
∂e(i+1)1

∂xj

ẋj + ∂e(i+1)1

∂ẋj

Nj

)
+ ei,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

if
∂Ni

∂ẋi+1
= 0 (5.3)

where k(i+1)1, ki , i = 1, . . . , n − 1, and kn are positive constants.

Theorem 5.1 [18] Under the hypotheses H1–H4, the system (5.1) is globally
asymptotically stable at the origin if the control law is chosen as follows:

u = −(GnG)−1(GnNn + Wn + knen) (5.4)

Remark 5.2

• There is an adaptive version of this theorem in the case of parameter uncertainties,
see [19].

• There also exists a version of this theorem in the case of trajectory tracking.
• The authors in [19] gave a proof of Theorem 5.1 in the adaptive case and for a

control issued from the first sequence (5.2). In the following, we shall give the
proof of the Theorem 5.1 in the absence of uncertainties and for controls issued
from the two sequences (5.2) and (5.3), since ∂Ni

∂ẋi+1
= 0 for some considered ap-

plications.

Proof When ∂Ni

∂ẋi+1
�= 0, the control is calculated from the sequence (5.2).

For each degree of freedom, xi , the variable xi+1 is the “control variable” that
controls the behavior of xi . We also calculate the reference velocity, ẋri+1 for ẋi+1
such that when ẋi+1 → ẋri+1 , xi behaves as desired.

Step 1, i = 1

ẍ1 = N1(x1, x2, ẋ1, ẋ2) (5.5)

Let us define a reference velocity such that

ẋr2 = ẋ2 − N1 − k1x1 − k2ẋ1

The error between the reference velocity and the actual velocity is given by

e2 = ẋ2 − ẋr2 = N1 + k1x1 + k2ẋ1 ⇒ N1 = e2 − k1x1 − k2ẋ1

Let

x̄1 =
(

x1
ẋ1

)
, A =

(
0 1

−k1 −k2

)
, b =

(
0
1

)
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such that ˙̄x1 can be expressed by

˙̄x1 =
(

ẋ1
ẍ1

)
=

(
0 1

−k1 −k2

)(
x1
ẋ1

)
+

(
0
1

)
e2

where k1 and k2 are chosen such that

ẍ1 + k2ẋ1 + k1x1 = 0

is asymptotically stable at (x1, ẋ1) = (0,0). This implies the existence of a definite
positive matrix P such that

AT P + PA = −Q < 0

By applying the above definitions to (5.5), we get

˙̄x1 = Ax̄1 + be2

Consider the following scalar function:

V1 = 1

2

(
x̄T

1 P x̄1 + e2
2

)
(5.6)

The time derivative V̇1 is given by

V̇1 = 1

2

( ˙̄x1P x̄1 + x̄T
1 P ˙̄x1

)+ e2ė2

= 1

2

(
x̄T

1 AT P x̄1 + x̄T
1 PAx̄1 + (be2)

T P x̄1 + x̄T
1 P(be2)

)+ e2ė2

= −1

2

(
x̄T

1 Qx̄1
)+ x̄T

1 Pbe2 + e2ė2

If we set

e1 = x̄T
1 Pb

and

nu1 = 1

2
x̄T

1 Qx̄1

then

V̇1 = −ν1 + e2(ė2 + e1)

= −ν1 + e2(Ṅ1 + k1ẋ1 + k2ẍ1 + e1)

= −ν1 + e2

(
∂N1

∂x1
ẋ1 + ∂N1

∂x2
ẋ2 + ∂N1

∂ẋ1
ẍ1 + ∂N1

∂ẋ2︸︷︷︸
def=G2

ẍ2︸︷︷︸
=
N2

+k1ẋ1 + k2ẍ1 + e1

)
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= −ν1 + e2

(
G2N2 +

(
∂e2

∂x1
− k1

)
ẋ1 + ∂e2

∂x2
ẋ2 +

(
∂e2

∂ẋ1
− k2

)
ẍ1

+ k1ẋ1 + k2ẍ1 + e1

)

= − ν1 + e2

(
G2N2 + ∂e2

∂ẋ1
ẋ1 + ∂e2

∂x2
ẋ2 + ∂e2

∂ẋ1
N1 + e1

︸ ︷︷ ︸
def=W2

)

= − ν1 + e2(G2N2 + W2)

The new control ẋ3 appears through N2. Consequently, we can choose ẋr3 such that
e2(G2N2 + W2) is non-positive.

Step 2, i = 2

ẋr3 = ẋ3 − G2N2 − W2 − k2e2

The difference between the reference and the actual velocity is given by

e3 = ẋ3 − ẋr3 = G2N2 + W2 + k2e2 ⇒ G2N2 + W2 = e3 − k2e2

In this case

V̇1 = −ν1 + e2(e3 − k2e2)

= −(
ν1 − k2e

2
2

)+ e2e3

= −ν2 + e2e3

with ν2 = ν1 + k2e
2
2.

To compensate for e3, we modify the function V1 as

V2 = V1 + 1

2
e2

3

By differentiation of V2, we get

V̇2 = V̇1 + e3ė3

By the same calculation, we obtain the expression of V2:

V̇2 = −ν2 + e3(G3N3 + W3)

where e2 is in the expression of W3 and G3 = G2
∂N2
∂ẋ3

.
The new control ẋ4 appears through N3, consequently we can choose ẋr4 such

that e3(G3N3 + W3) is non-positive.
...
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Step n
After (n − 1) iterations, we can write

V̇n−1 = −νn−1 + en(Gnẍn + Wn)

= −νn−1 + en(GnNn + GnGu + Wn)

with

νn−1 = 1

2
x̄T

1 Qx̄1 +
n−1∑

i=2

kie
2
i

ẍn = Nn + Gu

Gn =
n−1∏

j=1

∂Nj

∂ẋj+1

In order to have V̇n−1 < 0, it is sufficient to choose a control input u such that

u = −(GnG)−1(GnNn + Wn + knen)

The Lyapunov function V that guarantees the global asymptotic stability is such that

Vn = Vn−1

Hence

V̇n = −νn−1 − kne
2
n

Note that GnG is invertible because GnG and G are different from zero by hypoth-
esis (G �= 0 to ensure the controllability and Gn �= 0 as a consequence of hypothe-
sis H3). �

Proof When ∂Ni

∂ẋi+1
= 0, the control is calculated from the sequence (5.3).

In order to keep the calculations simple and because the most of the examples
considered are systems with 2 DOF, we restrict ourselves to the case n = 2.

Step 1, i = 1
When ∂N1

∂ẋ2
= 0 and ∂N1

∂x2
�= 0, the differential equation is reduced to

ẍ1 = N1(x1, x2, ẋ1) (5.7)

In the same manner, we come back to the preceding proof for ∂Ni

∂ẋi+1
= 0. In this

case, instead of looking for a reference velocity ẋr2 for the variable ẋ2, we begin by
looking for a reference position xr2 : xr2 = x2 − N1 − k1x1 − k2ẋ1.

The difference between the reference and the actual position is given by

e21 = x2 − xr2 = N1 + k1x1 + k2ẋ1 ⇒ N1 = e21 − k1x1 − k2ẋ1
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Let x̄1, A and b as defined previously. Using this notation, we obtain

˙̄x1 = Ax̄1 + be21

Let the candidate Lyapunov function be given this time by

V11 = 1

2

(
x̄T

1 P x̄1 + e2
21

)
(5.8)

The derivative V̇11 yields

V̇11 = −1

2
x̄T

1 Qx̄1 + x̄T
1 Pbe21 + e21ė21

If e1 = x̄T
1 Pb and ν11 = 1

2 x̄T
1 Qx̄1, then

V̇11 = −ν11 + e21(ė21 + e1)

= −ν11 + e21(Ṅ1 + k1ẋ1 + k2ẍ1 + e1)

= −ν11 + e21

(
∂N1

∂x1
ẋ1 + ∂N1

∂x2
ẋ2 + ∂N1

∂ẋ1
ẍ1 + ∂N1

∂ẋ2
ẍ2

+ k1ẋ1 + k2ẍ1 + e1

)

= −ν11 + e21

((
∂e21

∂x1
− k1

)
ẋ1 + ∂e21

∂x2
ẋ2 +

(
∂e21

∂ẋ1
− k2

)
ẍ1

+ k1ẋ1 + k2ẍ1 + e1

)

= −ν11 + e21

(
∂N1

∂x2︸︷︷︸
def=G2

ẋ2 + ∂e21

∂x1
ẋ1 + ∂e21

∂ẋ1
N1 + e1

︸ ︷︷ ︸
def=W21

)

= −ν11 + e21(G2ẋ2 + W21)

This time, we cannot reach u through ẋ2 but through ẍ2; so we add a supplemen-
tary step to the preceding proof. This additional step consists in finding a reference
velocity ẋr2 for ẋ2 such that e21(G2ẋ2 + W21) is non-positive:

ẋr2 = ẋ2 − G2ẋ2 − W21 − k21e21

The difference between the reference and the actual velocity is

e2 = ẋ2 − ẋr2 = G2ẋ2 + W21 + k21e21 ⇒ G2ẋ2 + W21 = e2 − k21e21

Hence

V̇11 = −ν11 + e21(e2 − k21e21)
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= −ν11 − k21e
2
21 + e21e2

= −ν1 + e21e2

with ν1 = ν11 + k21e
2
21.

In order to compensate for e2, the function V11 is modified as

V1 = V11 + 1

2
e2

2

By differentiation of V1, we obtain

V̇1 = V̇11 + e2ė2

= −ν1 + e21e2 + e2ė2

= −ν1 + e2(ė2 + e21)

= −ν1 + e2

(
∂e2

∂x1
ẋ1 + ∂e2

∂x2
ẋ2 + ∂e2

∂ẋ1
ẍ1 + e21

︸ ︷︷ ︸
def=W2

+ ∂e2

∂ẋ2︸︷︷︸
G2

ẍ2

)

= −ν1 + e2(G2ẍ2 + W2)

= −ν1 + e2
(
G2(N2 + Gu) + W2

)

Finally, the time derivative of the Lyapunov function is given by

V̇1 = −ν1 + e2(G2N2 + G2Gu + W2) (5.9)

In order to make V̇1 non-positive, u can be chosen such that

e2(G2N2 + G2Gu + W2) = −k2e
2
2 (5.10)

Hence, the expression of the control which globally asymptotically stabilize the
system when n = 2 is given by

u = −(G2G)−1(G2N2 + W2 + k2e2)

For the same reasons as before, G2G is invertible, which guarantees the existence
of the control law.

Step 2, i = 2
The final Lyapunov function is given by

V2 = V1

such that

V̇2 = −ν1 − k2e
2
2 �
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Example 5.1 To illustrate this control procedure, we consider an UMS that naturally
has a chain structure; the mass sliding on cart system represented by Fig. 3.3. The
dynamical model of the system, as given in Chap. 3, is described by the following
equations:

mẍ1 − B(ẋ1 − ẋ2) = 0

Mẍ2 + B(ẋ1 − ẋ2) = τ

where m, M are, respectively, the masses of the small mass and the cart, B is the
friction (which can be nonlinear) between the two masses.

The triangular representation of this model is given by

ẍ1 = B

m
(ẋ1 − ẋ2) = N1(ẋ1, ẋ2)

ẍ2 = 1

M

[
τ − B(ẋ1 − ẋ2)

] = N2(ẋ1, ẋ2) + Gτ

The CFD associated to this system, which was built in Chap. 4, is of chained form.
Consequently, the systematic procedure to synthesize a globally asymptotically

stabilizing control can be applied to the sliding mass on cart. Nevertheless, before
applying the procedure, it is necessary to verify whether the hypotheses H1–H4 are
satisfied.

Remark 5.3

• Even if the control scheme presented before is applicable to every system that
can be put in the form (5.1), the systems considered in this book are essentially
of mechanical nature. In this case, it is customary to suppose, without loss of
generality, that the state variables are bounded and consequently the property of
BIBS is often satisfied.

• Moreover, we suppose that there is no rapid dynamics nor backlash in the gears.

Verification of the hypotheses

(H1) Clearly, Ni(0,0) = 0 for i = 1,2. Hence, the origin is an equilibrium.
(H2) N1 is a smooth function, N1 is bounded for x1 and x2 bounded.
(H3) G(x, ẋ) = 1

M
⇒ G(x, ẋ) �= 0 and ∂N1

∂ẋ2
= −B

m
⇒ ∂N1

∂ẋ2
�= 0 ∀(x, ẋ) ∈R

2n.

(H4) N1(0, ẋ2) = 0 ⇒ −B
m

ẋ2 = 0 ⇒ ẋ2 = 0. This implies that the nonlinear system
N1(0, ẋ2) = 0 is GAS at (x1, x2) = 0.

The hypotheses H1–H4 being verified, we can calculate the control law τ that en-
sures the GAS of the system. To compute this control we will use the sequences
(5.2) because ∂N1

∂ẋ2
�= 0. The use of these sequences leads to the following control

law:

τ = c1(c2x1 + c3ẋ1 + c4ẋ2) (5.11)

where the ci are combinations of the constants defined in the sequence (5.2).
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Fig. 5.1 State trajectories and the applied force to the mass sliding on the cart for the parameters
M = 1 kg, m = 0.2 kg, B = 0.02 and for the initial conditions (0.5,0.5,0,0)

Clearly, the obtained control law is simple and easy to implement. Note that for
B constant, the system and the control law are linear. Hence, this procedure is also
applicable to linear systems.

This control does not give any indication about the choice of the constants. How-
ever, they must be positive to ensure a negative derivative of the Lyapunov function.

The simulation of the controlled mass sliding on cart is illustrated in Fig. 5.1.
It can be seen that the motions of the mass and the cart stabilize rapidly at the

origin with a small time response and a small control amplitude. Evidently, one can
still modify the time response and the control effort by adjusting the constants.

Unfortunately, very few UMSs are naturally under the chained structure, the only
examples found in the literature are those of the mass sliding on cart and the elastic
joint robot presented in [6].

Effectively, most of the UMSs possess: either a tree structure, like the Acrobot,
the Pendubot, the pendular systems, the inertia wheel pendulum and the Tora sys-
tem, or an isolated vertex structure, like the ball and beam system (to cite only
systems with two degrees of freedom).

As such there does not exist any systematic methodology to treat these two struc-
tures. Most of the time, they were dealt with on a case by case basis.

In what follows, we shall propose a systematic control design methodology for
systems with tree structure. This will be done by transforming, under some condi-
tions, a subclass of systems possessing a tree structure into that possessing a chain
structure in such a way that the systematic procedure of backstepping presented
earlier can be applied.
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5.2 Systematic Control of Systems Possessing a Tree Structure

The construction of a CFD for a given system depends on the coordinates system and
the external forces acting on it. Thus, the CFD is not invariant under a coordinate
transformation. Owing to this simple remark it is important to find a change of
coordinates that will transform the latter into a given form.

In fact, it will become apparent that if a given system satisfies the conditions
enumerated in the paragraph below, a CFD that is under a tree structure can be
transformed into that of chain structure. Whenever such is the case, one can use the
same procedure proposed by Seto and Baillieul to synthesize a globally asymptot-
ically stabilizing control. Evidently, we need to revert back to the initial system in
order to retain the physical significance of the variables and the inputs.

Let us consider the general Euler–Lagrange equations of motion of an UMS:

m11(q)q̈1 + m12(q)q̈2 + h1(q, q̇) = τ1
(5.12)

m21(q)q̈1 + m22(q)q̈2 + h2(q, q̇) = τ2

where q ∈ Q is an n-dimensional manifold; we suppose that q can be written under
the form q = col(q1, q2) ∈ Q1 × Q2 where Qi is of dimension ni = dim(Qi) for
i = 1,2 and n1 + n2 = n.

The mij (q) are the elements of M(q), the inertia matrix of the system. The hi ’s
contain the Coriolis, centrifugal, and gravitational terms and the τi ’s are the controls
satisfying one of the following two actuation conditions:

(A1) τ = τ2 ∈ R
n2 is the control and τ1 ≡ 0.

(A2) τ = τ1 ∈ R
n1 is the control and τ2 ≡ 0.

In the two cases, the system (5.12) is an underactuated one. The mode of actuation
A1 or A2 is important and is defined depending on the applications. For example,
the Acrobot, the Tora system, and the inertia wheel pendulum are actuated under
the A1 mode, whereas for the Pendubot, the inverted pendulum is actuated under
the A2 mode.

5.2.1 Stabilization of UMSs Actuated Under Mode A1

Let us make the following hypotheses:

(B1) The considered system possesses a kinetic symmetry; that is, M(q) = M(q2).
(B2) q2 is the actuated variable; that is, the system is actuated under mode A1.
(B3) The quantity m−1

11 (q2)m12(q2) is integrable.

Note that the hypotheses are not very restrictive and are satisfied by a large class of
UMSs.

We now present an important result in the following:
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Theorem 5.2 Assume that hypotheses B1–B3 are satisfied, then an underactuated
system possessing a tree structure can be transformed into a system possessing a
chain structure.

Proof We have seen (Chap. 3, Sect. 3.7) that UMSs under mode A1 can be partially
linearized using the following change of control input:

τ = α(q)u + β(q, q̇) (5.13)

which transforms the dynamics of (5.12) into

q̇1 = p1

ṗ1 = f (q,p) + g0(q)u
(5.14)

q̇2 = p2

ṗ2 = u

where α(q) is an m × m SPD matrix and g0(q) = −m−1
11 (q)m12(q).

Following this control input change, the new control appears both in the linear
subsystem and the nonlinear one at the same time. So, we obtain a system with a
tree CFD structure.

Also, Olfati-Saber showed that if an underactuated system satisfies hypotheses
B1–B3, then it is transformable into a strict feedback normal form.

Effectively, the following change of coordinates:

qr = q1 + γ (q2)
(5.15)

pr = m11(q2)p1 + m12(q2)p2 := ∂L

∂q̇1

transforms the dynamics of the system (5.14) into a nonlinear system in strict feed-
back cascade form:

q̇r = m−1
11 (q2)pr

ṗr = g(qr , q2)
(5.16)

q̇2 = p2

ṗ2 = u

where

γ (q2) =
∫ q2

0
m−1

11 (θ)m12(θ) dθ

g(qr , q2) = −∂V (q)

∂q1
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Fig. 5.2 The Tora system

It suffices now to note that the form (5.16) can be put into a triangular one. More
precisely, we can rewrite (5.16) in the form

q̈r = m−1
11 (q2)g(qr , q2)

(5.17)
q̈2 = u

which is simply a form with a CFD in chain structure. Hence, the tree structure has
been transformed into a chain structure. �

Remark 5.4 For the A2 mode case, when q2 is not actuated, there exist another
change of control (non-collocated) and change of coordinates to transform the sys-
tem into a normal form. However, the obtained normal form is not in strict feedback
form. It means that some underactuated systems (especially those which are actuated
under mode A2) cannot be transformed from a tree structure into a chain structure.
This is the case of the Pendubot, the inverted pendulum, and some other systems.
For such systems, we shall propose a strategy to construct stabilizing control laws
in the following subsections.

In order to illustrate the procedure, let us consider a system that is initially in the
tree structure, for example the Tora system.

5.2.1.1 Application: The Tora System

This system is composed of a platform that can oscillate on the horizontal plane
without friction. On this platform, an eccentric mass is actuated by a DC motor.
Its movement applies a force to the platform, which can be used to dampen the
transverse oscillations; see Fig. 5.2.

The problem of stabilizing this system was introduced by Wan, Brenstein and
Coppola [22] and has recently attracted the attention of many researchers by the
fact that it presents a nonlinear interaction between the translational and rotational
motions. It has also been used as a benchmark for the nonlinear control of cas-
caded systems, especially the passivity-based methods [12, 13, 17], backstepping
[15, 22], robust control and sliding modes [10, 14, 24], dynamical surfaces [16],
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Fig. 5.3 CFD of the Tora
system

LMI (linear matrix inequality) controllers [1, 9], velocity gradient [8], and fuzzy
logic [11, 23]. Here, we shall present a switching control to stabilize the Tora sys-
tem.

Suppose that the torque of the motor is the control variable. The objective is to
determine a control law that stabilizes the rotational and translational motion at the
origin, at the same time.

This system possesses two degrees of freedom (q1, q2), where q1 is the unactu-
ated variable and q2 the actuated variable.

We recall the Euler–Lagrange equations describing the Tora system:

(m1 + m2)q̈1 + m2r cos(q2)q̈2 − m2r sin(q2)q̇
2
2 + kq1 = 0

(5.18)
m2r cos(q2)q̈1 + (

m2r
2 + I2

)
q̈2 + m2gr sin(q2) = τ

or

q̈1 = 1

detM(q2)

(−m2r cos(q2)τ + gm2
2r

2
2 cos(q2) sin(q2)

− (
m2r

2 + I2
)(

kq1 − m2r sin(q2)q̇
2
2

))
(5.19)

q̈2 = 1

detM(q2)

(
(m1 + m2)τ − (m1 + m2)m2gr sin(q2)

+ m2r cos(q2)
(
kq1 − m2r sin(q2)q̇

2
2

))

where detM(q2) = (m1 + m2)(m2r
2 + I2) − (m2r cos(q2))

2.
The construction of the corresponding CFD to this system is given by Fig. 5.3,

which is clearly a tree structure.
After a partial linearization by the change of control:

τ = α(q)u + β(q, q̇) (5.20)

with

α(q2) = (
m2r

2 + I2
)− (m2r cos(q2))

2

m1 + m2
∀q2 ∈ [−π,π]

β(q, q̇) = m2gr sin(q2) − m2r cos(q2)

m1 + m2

(
kq1 − m2r sin(q2)q̇

2
2

)
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The dynamics of the Tora becomes

q̇1 = p1

ṗ1 = f0(q,p) + g0(q)u
(5.21)

q̇2 = p2

ṗ2 = u

with

f0(q,p) = (m2r sin(q2))p2 − kq1

m1 + m2

g0 = m2r cos(q2)

m1 + m2

Note that M(q) = M(q2) and that the Tora is actuated under mode A1. Also, the
function γ (q2) can be explicitly calculated as

γ (q2) =
∫ q2

0

m2r cos(θ)

m1 + m2
dθ = m2r sin(q2)

m1 + m2

As all the hypotheses B1–B3 are verified, the following global coordinate
change:

qr = q1 + m2r sin(q2)

m1 + m2 (5.22)
pr = (m1 + m2)p1 + m2r cos(q2)p2

transforms the dynamics of the Tora into the following strict feedback cascaded
nonlinear form:

q̇r = 1

(m1 + m2)
pr

ṗr = −kqr + kγ (q2)
(5.23)

q̇2 = p2

ṗ2 = u

This system can also be written in the form

q̈r = − k

m1 + m2
qr + km2r

(m1 + m2)2
sin(q2)

(5.24)
q̈2 = u

which corresponds to a system of the form (5.1).
In this case, the CFD associated to (5.24) is given by Fig. 5.4.
Hence, the control change (5.20) and the coordinates change (5.22) transform the

tree structure of the Tora into a chain structure.
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Fig. 5.4 CFD of the
transformed Tora

Now that the Tora is put into a chained structure, we can use the systematic pro-
cedure of Seto and Baillieul to derive a globally asymptotically stabilizing control
law for the transformed Tora. Evidently, the real control to be applied to initial sys-
tem is deduced by an inverse transformation, which is possible since the change of
coordinates is global.

In order to be able to apply this procedure, let us first verify hypotheses H1–H4
for the system below:

q̈r = − k

m1 + m2
qr + km2r

(m1 + m2)2
sin(q2) = N1(qr , q2)

(5.25)
q̈2 = u = N2 + Gu with N2 = 0 and G = 1

As for the previous example, we suppose that there is no rapid dynamics nor back-
lash in the gears.

Verification of the hypotheses

(H1) Ni(0,0) = 0, the origin is an equilibrium.
(H2) N1 is a smooth function, N1 is bounded for qr and p2 bounded.
(H3) G(qr, q2) = 1 ⇒ G(qr , q2) �= 0.

∂N1
∂q̇2

= 0 and ∂N1
∂q2

= c cos(q2), (c constant). Hence, ∂N1
∂q2

�= 0 ∀(qr , q2) ∈
D ⊂ R

2n with D = {(qr , q2)/q2 �= (2k + 1)π/2}.
(H4) N1(0, q2) = 0 ⇒ sin(q2) = 0 ⇒ q2 = 0. This implies that the nonlinear sys-

tem N1(0, q2) = 0 is GAS at (qr , q2) = 0.

The application of the control scheme (5.3) leads to the following control law:

unL = − (m1 + m2)2

k cos(q2)

(
c1q̇r + k

(m1 + m2)2
q̇2

(
c2 cos(q2)− q̇2

)+c3qr +c4 sin(q2)

)

(5.26)
where c1, c2, c3, c4 are positive constants.

Clearly, the obtained control is simple and easy to implement. Moreover, the rate
of convergence can be controlled by adjusting the gains ci .

Nevertheless, this control is valid only if q2 �= (2k + 1)π/2. This is because the
hypothesis H3 is not always verified ∀(q, q̇) ∈ R

2n, as ∂Ni

∂qi+1
�= 0 only for q2 �=

(2k + 1)π/2.
This means the existence of singularities in the control reducing the basin of

attraction, which cannot be the entire space. Consequently, the stability cannot be
global.
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One solution to avoid the divergence of the state is to adjust the gains so to main-
tain the solution near the equilibrium. However, maintaining the solution near the
equilibrium would imply slow convergence rate. Additionally, if the initial condi-
tions for q2 are chosen greater or equal to π/2 then the state will diverge due to this
singularity. Hence, such solution must be avoided.

To solve this problem, we propose two solutions, the first one is based on switch-
ing control [4], the second one is based on Lyapunov method [3]. The two solutions
will permit to find control laws that are valid for any initial conditions despite the
singularity. As a result, the stability will be global.

Bypassing the Singularity: First Solution The idea is to use an hybrid control
that switches between the determined control law (5.26) far away from the singular-
ities and another one near the singularities.

This control technique has been employed recently (Appendix A). Its importance
comes from the fact that some systems cannot attain some objectives through a
single control.

Let us determine the second control law. The idea is to use the linearized model of
the Tora around the singularity to calculate a linear control to be applied in the neigh-
borhood of this point. When the trajectories leave this neighborhood, we switch to
the nonlinear control to achieve the global asymptotic stability of all the states.

The Expression of the Linear Control The linearized model of the Tora system
around (qr ,pr , q2,p2) = (0,0,π/2,0) is given by

δq̇r = 1

(m1 + m2)
δpr

δṗr = −kδqr
(5.27)

δq̇2 = δp2

δṗ2 = δu

The new problem that appears is that the subsystem (δqr , δpr) is uncontrollable.
Fortunately, it is stable. According to Brockett in [2] (Theorem 3.1), when the un-
controllable modes are stable then the entire system can still be stabilized.

In this case, the expression of the linear control is determined in a standard man-
ner and is given by

uL = −K ∗ x (5.28)

where x = [δq2, δp2]T and K = [K1 K2] is a gain matrix calculated by either the
LQR or by pole placement techniques (Appendix D).

The simulation of this hybrid control applied to the Tora system with the pa-
rameters m1 = 10 kg, m2 = 1 kg, k = 5 N/m, r = 1 m, I = 1 kg/m shows the
effectiveness of the proposed control, see Fig. 5.5.

The control law stabilized the Tora system for critical initial conditions such that
the singularity points towards itself, q2 = π/2 (Fig. 5.6), or at a point further away
from the singularity, q2 = π (Fig. 5.7).
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Fig. 5.5 States trajectories and input of the Tora system for the initial conditions (q1, q2,p1,p2) =
(1,0,0,0)

Fig. 5.6 States trajectories and input of the Tora system for the initial conditions (q1, q2,p1,p2) =
(1, π

2 ,0,0)
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Fig. 5.7 States trajectories and input of the Tora system for the initial conditions (q1, q2,p1,p2) =
(1,π,0,0)

Fig. 5.8 Switching intervals
for the control

The switching from one control to the other is controlled by the state q2, in such a
way that when |q2| is outside the interval π

2 ± e, we apply the nonlinear control unL

(5.26) and when |q2| enters this interval we switch to the linear control uL (5.28),
see Fig. 5.8.

The length of the interval is in direct relationship with the control effort. Effec-
tively, one can notice that the small length of the interval corresponding to small
values of e (around 0.2 to 0.3, Fig. 5.9) leads to much more important efforts than
those corresponding to larger values of e (such that 0.5 to 0.6, Fig. 5.5). This is
because with larger intervals we do not allow cos(q2) to become very small in order
to avoid large values for unL.

Stability Proof for the Hybrid Control In Appendix A, we present the conditions
that switching systems must satisfy in order to have a global stability for hybrid
systems. In fact, we need either a common Lyapunov function to all subsystems
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Fig. 5.9 State trajectories and the control of the Tora system for the initial conditions
(q1, q2,p1,p2) = (1,0,0,0) and e = 0.2

or multiple Lyapunov functions, each one associated to one subsystem and some
conditions on the values of the different Lyapunov functions at the switching times.

In the present case, we will prove the stability of the switching control system
with multiple Lyapunov functions.

For the Tora system, these Lyapunov functions are:

VnL = 1

2
q̄T

1 P q̄1 + 1

2
e2

21 + 1

2
e2

2 for the nonlinear subsystem

VL = 1

2
x̃T Rx̃ for the linearized subsystem

where q̄1, P , e21, and e2 are variables defined in the control sequences (5.3) for
q̄1 = x̄1, x̃ = (δqr , δpr , δq2, δp2) are the linearized system’s coordinates and R is a
SPD matrix.

The proof of the nonlinear system stability under the action of the control unL

with the first Lyapunov function has already been done earlier (Sect. 5.1). For the
second subsystem (5.27), as it is linear we can choose a Lyapunov function of the
form

VL = 1

2
x̃T Rx̃
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If the matrix R is chosen to be diagonal, then VL can be expressed as

VL = 1

2

(
R1x̃

2
1 + R2x̃

2
2 + R3x̃

2
3 + R4x̃

2
4

)

by differentiation of VL, we obtain

V̇L = R1x̃1 ˙̃x1 + R2x̃2 ˙̃x2 + R3x̃3 ˙̃x3 + R4x̃4 ˙̃x4

=
(

R1

m1 + m2
− R2k

)
x̃1x̃2 + (R3 − K1R4)x̃3x̃4 − K2R4x̃

2
4

If the elements of the matrix R are chosen such that the conditions
⎧
⎨

⎩

R1

m1 + m2
= R2k

R3 = K1

are satisfied, then

V̇L = −K2R4x̃
2
4

The linear subsystem is only stable, but the principle of invariance of Lasalle ensures
the asymptotic stability.

Hence, the Lyapunov functions VnL and VL guarantee the global asymptotic sta-
bility of the nonlinear and linear subsystem, respectively. We have to show that these
functions are decreasing on each interval where the subsystem is active. In other
words, the value of the Lyapunov function at the end of an interval must be higher
than its value at the end of next interval where the considered subsystem is active.

Unfortunately, it is very difficult to verify such conditions analytically, in most
cases we resort to simulation [7]. In this case, we build by simulation the energy pro-
file. That of the Tora system subjected to a switched control law is given in Fig. 5.10.

Based on this figure, the Lyapunov functions VnL and VL, satisfy the decreasing
condition on the corresponding intervals. Consequently, the Tora system controlled
by a switching control is globally asymptotically stable.

Bypassing the Singularity, Second Solution The main purpose of this second
solution is to avoid the use of a switching control. The idea is to determine a control
which forces the derivative of the Lyapunov function (5.9) to be non-positive. The
control (5.4) proposed by Seto and Baillieul is the most simple way to impose this
condition. However, one needs to have the derivative of connection terms to be non-
zero. This last condition is not necessarily satisfied by many underactuated systems,
in particular, the Tora. We can choose another control which can force the derivative
of the Lyapunov function (5.9) to be non-positive.

Let us therefore recall the expression of the derivative of the Lyapunov function
for N2 = 0 and G = 1:

V̇1 = −ν1 + e2(G2N2 + G2Gu + W2)

= −ν1 + e2G2u + e2W2.
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Fig. 5.10 Switching system energy profile

To force this expression to be negative, let us consider the following control law:

u = −ck2G2e2 − cvarG2W2 (5.29)

where c is a positive constant used to adjust the rate of convergence associated to
different initial conditions, while cvar is variable and will be defined later.

In this case

V̇1 = −ν1 − ck2G
2
2e

2
2 − cvarG

2
2e2W2 + e2W2

= −ν2 + e2W2
(
1 − cvarG

2
2

)

with ν2 = ν1 + ck2G
2
2e

2
2.

Now, we try to force the term e2W2(1 − cvarG
2
2) to 0 such that V̇1 = −ν2.

To do that, we can choose cvar such that cvar = 1
G2

2
.

Again, we find a division by zero. However, this time, the problem can be solved
by modifying cvar into cvar = 1

G2
2+E

near the singularities points, where

{
E = 1 if G2 ≈ 0 i.e. |q2| = |π/2 ± 0.01|
E = 0 if G2 �= 0 i.e. |q2| �= |π/2 ± 0.01|

Let us consider again the derivative of the Lyapunov function,

V̇1 = −ν2 + e2W2
(
1 − cvarG

2
2

)
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Fig. 5.11 States trajectories and control of the Tora system for the initial conditions (q1, q2,

q̇1, q̇2) = (1,0,0,0)

When the term e2W2(1 − cvarG
2
2) = 0, then V̇1 = −ν2 and the global asymptotic

stability is ensured, but when G2 = 0, this term is reduced to e2W2 such that
V̇1 = −ν2 + e2W2. To force the non-positiveness of the derivative of the Lyapunov
function and since e2 and W2 according to (5.3) both depend on the constants k1,
k2, k21, and Pi (elements of P ), we can then choose these constants such that the
condition

|e2W2| < |ν2| (5.30)

is satisfied at all time.
The constants which force the condition (5.30) to hold true are given by k1 = 4;

k2 = 4; k21 = 0.08; p2 = 0.1; p4 = 0.1. The simulations are done using the same
Tora parameters as previously. The application of the proposed control (5.29), for
the initial conditions (q1, q2, q̇1, q̇2) = (1,0,0,0) and for c = 486 gives the simula-
tion results presented in Fig. 5.11.

It can be seen from the figure that for the controlled system, the two translational
and rotational motions are stabilized at the origin with reasonable control effort and
settling time.

The numerical verification of the condition (5.30) shows that the latter is always
true Fig. 5.12.

It is important to note that the computed control law is still valid for any initial
condition. Moreover, the rate of convergence can be adjusted with the constant c.
To confirm this result we choose the initial condition (q1, q2, q̇1, q̇2) = (1,π,0,0).
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Fig. 5.12 Evolution of |e2W2| − |ν2|

To stabilize this system from this initial condition, the trajectories will necessarily
move through the singularities points. The corresponding simulation results, as de-
picted in Fig. 5.13 for c = 500, are very satisfying. It shows the effectiveness of the
proposed control law in taking into account these singularities.

Let us consider now the stabilizing problem of the subclass of UMSs in a tree
structure that cannot be transformed in a chain structure.

5.2.2 Stabilization of UMSs Actuated Under Mode A2

Underactuated mechanical systems models with a tree structure actuated under
mode A2 cannot be transformed into those with a chain structure. In this case,
a backstepping approach cannot be employed. What can then be done to stabilize
such a class of systems?

By examining the CFD of such structure Chap. 4, Fig. 4.6, it appears that the
control acts at the same time on 2 DOF. Therefore, it is necessary to control the two
states simultaneously. Consequently, we will include in the control law expression
some terms related to the stabilization of one variable and other terms to stabilize
the second one. This was the idea used to stabilize the inverted pendulum and which
can be generalized to other systems of the same class.

The mathematical model of the inverted pendulum when the friction terms are
neglected is given by
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Fig. 5.13 State trajectories and control of the Tora system for the initial conditions (q1, q2,

q̇1, q̇2) = (1,π,0,0)

ml cos θẍ + (
I + ml2)θ̈ − mgl sin θ = 0 (5.31)

(M + m)ẍ + ml cos θ θ̈ − ml sin θ θ̇2 = F (5.32)

and from (5.31), we have

ẍ = g tan θ − (I + ml2)

ml cos θ
θ̈ (5.33)

We set θ̈ = Wθ = −k1θ̇ − k2θ for ki , i = 1,2, positive constants. Equation (5.33)
becomes

ẍ = g tan θ − (I + ml2)

ml cos θ
Wθ (5.34)

In this approach, we propose to control the pendulum through the acceleration of
the cart. Thus, the expression of ẍ (5.34) will be considered as the necessary desired
acceleration to stabilize the pendulum. Let

ẍd = g tan θ − (I + ml2)

ml cos θ
Wθ (5.35)

from (5.32), we have

(M + m)Wx + ml cos θWθ − ml sin θ θ̇2 = F (5.36)
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Fig. 5.14 Acceleration, velocity, and position of the cart

with

Wθ = −k1θ̇ − k2θ
(5.37)

Wx = ẍd − kx1(ẋ − ẋd ) − kx2(x − xd)

then, when θ stabilizes, θ → 0, we will have θ̇ → 0 and θ̈ → 0. Consequently,
Wθ → 0. From (5.35), we will also have ẍd → 0, but after integration, ẋ will be a
constant and x a line, which will produce the divergence of x, see Fig. 5.14.

To remedy this problem, we introduced terms to stabilize x in the expression
of Wθ . In this case, (5.37) becomes

Wθ = −k1θ̇ − k2θ − k3ẋ − k4x
(5.38)

Wx = ẍd − kx1(ẋ − ẋd ) − kx2(x − xd)

Hence, when θ → 0, ẍd is no longer zero and tends to Wθ , which in turn tends to
−k3ẋ − k4x and leads x to 0.

Note that only the local stability has been proved.
The choice of the constants ki is optimized using a pole placement procedure.

For the desired spectrum {−1,−2,−3,−4,−5,−6}, the resulting gains are given
by k1 = 14.4085, k2 = 34.815, k3 = 4.64, k4 = 2.20, kx1 = 9.93, kx2 = 28.92.

The application of the control law with these gains produces satisfying results as
shown in Fig. 5.15. The settling time is less than 8 seconds for a large initial angle.
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Fig. 5.15 Trajectories of the pendulum, the cart, and voltage of the motor for the initial conditions
(0,1,0,0)

The trajectories are very smooth and the control effort is acceptable. Evidently, one
can still improve this control effort at the expense of the settling time by playing on
the desired spectrum.

Remark 5.5 In the absence of a Lyapunov function to justify the stability of the
control and the basin of attraction, one can estimate this basin by simulation. It is
found to be around 1.18 radians or 67.609 degrees.

In order to make the generalization of this procedure easier, a more classical
procedure can be employed. This is based on the fact that the control must contain
stabilizing terms for the two variables in parallel. We use a partial linearization and
then determine the expression of the control by including the stabilizing terms of
the two considered degrees of freedom. This technique was applied on the inverted
pendulum and it gave similar results to those of the first procedure based on the
acceleration of the cart.

Let us come back to the pendulum model given by

ml cos θẍ + (
I + ml2)θ̈ − mgl sin θ = 0 (5.39)

(M + m)ẍ + ml cos θ θ̈ − ml sin θ θ̇2 = F (5.40)

from (5.39), we have
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ẍ = g tan θ − (I + ml2)

ml cos θ
θ̈ (5.41)

which we replace in (5.40):

(M + m)

(
g tan θ − (I + ml2)

ml cos θ
θ̈

)
+ ml cos θWθ − ml sin θ θ̇2 = F (5.42)

We set

θ̈ = Wθ = −k1θ̇ − k2θ − k3ẋ − k4x (5.43)

The reasons of this choice were explained previously. The controlled system is given
by

θ̈ = −k1θ̇ − k2θ − k3ẋ − k4x (5.44)

ẍ = g tan θ − (I + ml2)

ml cos θ
(−k1θ̇ − k2θ − k3ẋ − k4x) (5.45)

The choice of the constants ki , i = 1, . . . ,4 is also done through an optimization pro-
cedure, but this time there are fewer parameters to identify. The set of parameters re-
sulting from the desired spectrum {−1,−2,−3,−4} is k1 = 15.3014, k2 = 37.5447,
k3 = 5.0968, k4 = 2.4465.

The simulation results corresponding to these gains are given in Fig. 5.16. The
results are satisfying and are practically of the same order as those obtained with a
control via the cart acceleration.

Finally, we can say that UMSs actuated under the mode A2 can be stabilized
through a partial linearization followed by the synthesis of a control including terms
acting on the different degrees of freedom in parallel.

Now, it remains to find a solution to the problem of stabilizing the class of UMSs
with an isolated vertex structure. It has been shown (Chap. 3, Sect. 4.1.1) that the
systems with such structure are more difficult to control due the fact that some de-
grees of freedom are not influenced by the control. Essentially, this is due to the fact
that the relative degree is not well-defined.

5.3 Stabilization of UMSs with an Isolated Vertex Structure

The proposed idea for the control of these systems is to use an approximate lin-
earization approach (Appendix A) in such a way that the terms constituting an ob-
struction to the definition of the relative degree will be eliminated.

Nevertheless, in the case where the linearization is possible, it is perhaps not the
best solution. In particular, when one modifies the system to allow this linearization
or when it is subjected to parametric variations, it will lead to a non-robust system.
On the other hand, a robust control such as a sliding mode control can compensate
for this lack of robustness.
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Fig. 5.16 Trajectories of the pendulum, the cart and voltage of the motor for the initial conditions
(0,1,0,0)

In order to improve this approach, we will consider a high order approximation
(Appendix A) instead of a simple linear approximation. The two procedures have
been applied to a system with an isolated vertex structure: the ball and beam system.

5.3.1 Control Law via Approximate Linearization

For a single input affine system:

ẋ = f (x) + g(x)u, x ∈ R
n

(5.46)
y = h(x)

The approximate linearization of this system is given by

ż1 = z2

ż2 = z3

... (5.47)

żn−1 = zn

żn = Ln
f h

(
φ−1(z)

) + LgL
n−1
f h

(
φ−1(z)

)
u
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where z = φ(x) is the diffeomorphism allowing this transformation. The next
lemma gives a control algorithm which forces a single input system to reach a slid-
ing surface in finite time [20].

Lemma 5.1 [21] Let s(t) = s(x(t)) be a smooth output of the single input system
(5.46), with ṡ(t) = as(x(t)) + u(t)bs(x(t)). Assume that the set S is defined by

S = {
x|s(x) = 0

}

a one dimensional submanifold of Rn such that 0 is regular value of s. Consider a
nonempty compact and convex subset D of Rn such that D ∩ S �= ∅. Let

u∗(x) = −K sign
(
s(x)

)
sign

(
bs(x)

)
(5.48)

where K > 0 and K|bs(x)| ≥ |as(x)| for all x ∈ D. Then, there exists an open
set D0 ⊂ D such that for a system starting in x0 ∈ D0 with u = u∗ it satisfies the
following: there exists a τ > 0 for which x(t) ∈ S, ∀t ≥ τ .

This result leads to the following theorem:

Theorem 5.3 [21] Consider system (5.47), with a sliding surface:

S = {
z ∈R

n| zn + an−1zn−1 + · · · + a2z2 + a1z1 = 0
}

(5.49)

such that the polynomial:

P(s) = sn−1 + an−1s
n−2 + · · · + a1

is Hurwitz. Let D be a compact and convex neighborhood of z = 0 and let

u
app
MG = −k sign

(
LgL

n−1
f h

(
φ−1(z)

))
sign

(
s(z)

)
(5.50)

with k > 0 and such that

k
∣∣LgL

n−1
f h

(
φ−1(z)

)∣∣ ≥
∣∣∣∣
n−1∑

i=1

aizi+1 + Ln
f h

(
φ−1(z)

)∣∣∣∣ for all z ∈ D,

then there exists an open neighborhood D0 ⊂ D of z = 0 such that system (5.47)
subject to u = u

app
MG and z0 = z(0) ∈ D0 is asymptotically stable.

The proof of this theorem is given in [21].
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5.3.2 Control Law via High Order Approximate Linearization

The high order approximation for the same system (5.46) is given by one of the
forms

ż1 = z2 + Lgh
(
φ−1(z)

)
u ż1 = z2

ż2 = z3 + LgLf h
(
φ−1(z)

)
u ż2 = z3

...
... +Θ2

Eu

żn−1 = zn + LgL
n−2
f h

(
φ−1(z)

)
u żn−1 = zn

żn = Ln
f h

(
φ−1(z)

) + LgL
n−1
f h

(
φ−1(z)

)
u żn = α(z) + β(z)u

(5.51)
In this case the previous theorem is still valid, but one must replace u

app
MG by uMG

given by

uMG = −k sign

(
LgL

n−1
f h

(
φ−1(z)

) +
n−1∑

i=1

aiLgL
i−1
f h

(
φ−1(z)

))
sign

(
s(z)

)

(5.52)
with k > 0 and

k

∣∣∣∣LgL
n−1
f h

(
φ−1(z)

) +
n−1∑

i=1

aiLgL
i−1
f h

(
φ−1(z)

)∣∣∣∣ ≥
∣∣∣∣
n−1∑

i=1

aizi+1 + Ln
f h

(
φ−1(z)

)∣∣∣∣

for all z ∈ D.

5.3.3 Application: The Ball and Beam System

Consider the beam and ball system as depicted in Fig. 5.17.
The objective of the control is to stabilize the beam on the horizontal position

and the ball on the center of the beam with the application of a torque on the axis of
rotation only.

The model issued from the Lagrange formalism is given by

{
mr̈ + mg sin(θ) − mrθ̇2 = 0
(
mr2 + I

)
θ̈ + 2mrṙθ̇ + mgr cos(θ) = τ

(5.53)

A preliminary state feedback

τ = 2mrṙθ̇ + mgr cos
(
θ
)+ (

mr2 + I
)
u
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Fig. 5.17 The ball and beam
system

can be applied to have θ̈ = u. Let (x1, x2, x3, x4)
def= (r, ṙ, θ, θ̇ ). Then, the dynamics

becomes
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = B
(
x1x

2
4 − g sin(x3)

)

ẋ3 = x4

ẋ4 = u

(5.54)

where B =0.72 and g = 9.8.
By considering the output y = h(x) = x1, we have the result by direct calculation

of the Lie derivatives (Appendix C) that

Lgh(x) = 0

LgLf h(x) = 0

LgL
2
f h(x) = 2Bx1x4

LgL
3
f h(x) = 2Bx2x4 − Bg cos(x3)

Since Lgh(x) = LgLf h(x) = 0 and = LgL
2
f h(x) �= 0, the relative degree is 3. On

the other hand, since Lgh(0) = LgLf h(0) = LgL
2
f h(0) = 0 and = LgL

3
f h(0) �= 0,

the robust relative degree is 4 (Appendix A).
Using the transformation

φ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h(x) = x1 = z1

Lf h(x) = x2 = z2

L2
f h(x) = Bx1x

2
4 − Bg sin(x3) = z3

L3
f h(x) = Bx2x

2
4 − Bgx4 cos(x3) = z4

and assuming 2Bx1x4 = 0 for an approximate linearization

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = L4
f h

(
φ−1(z)

) + LgL
3
f h

(
φ−1(z)

)
u

(5.55)
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Fig. 5.18 Trajectories, torque and sliding surface for the ball and beam system for the initial
conditions: x01 = 1 m, x03 = 0.2 rad

while assuming 2Bx1x4 �= 0 for a high order approximate linearization:

ż1 = z2

ż2 = z3

ż3 = z4 + LgL
2
f h

(
φ−1(z)

)

ż4 = L4
f h

(
φ−1(z)

) + LgL
3
f h

(
φ−1(z)

)
u

(5.56)

The expressions of the control law for (5.55) and (5.56) for the same sliding surface:
S = {z ∈R

4| z4 + a3z3 + a2z2 + a1z1 = 0} where a3 = 6, a2 = 12, and a1 = 8
are, respectively, given by

u
app
MG = −k × sign

(
LgL

3
f h

(
φ−1(z)

))× sign
(
s(z)

)
(5.57)

uMG = −k × sign(LgL
3
f h

(
φ−1(z)

) + LgL
2
f h

(
φ−1(z)

)
sign

(
s(z)

)
(5.58)

Simulation results show that the two control laws, when applied to the ball and
beam, are of equal efficiency for small initial conditions, see Fig. 5.18, whereby all
the curves are superposed to each other and tend to 0.

As soon as the initial conditions become more important to enlarge the attraction
domain, one can remark from Fig. 5.19 that the first control, u

app
MG, is no longer

sufficient to stabilize the system while the second one, uMG, remains valid.
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Fig. 5.19 Trajectories, torque, and sliding surface for the ball and beam system for the initial
conditions: x01 = 1 m, x03 = 0.7 rad related to the controls u

app
MG and uMG

Consequently, the higher order approximation permits to enlarge the stability
domain.

Nevertheless, the two control laws can generate chattering due to the discontinu-
ous nature of the control by sliding mode, which can damage the motor.

To remedy this problem, two solutions can be proposed: The first one consists
in using a more regular function than the sign function, for example the arctangent
function [5]. This modification cannot only reduce the chattering Fig. 5.20 but can
also permit to enlarge the basin of attraction with respect to a sign function and this
even when a high order approximation is not employed, see Fig. 5.21.

The second solution consists in synthesizing a second order sliding mode control
law such as the twisting or the super twisting algorithms.

5.4 Summary

In this chapter, the stabilization problems of most of the UMSs with two degrees
of freedom have been considered. The analysis of the CFD of a system constitutes
the starting point of the procedure. Depending on the obtained CFD, different ap-
proaches leading to simple control law design that are easy to implement are pro-
posed. To summarize, one can say that UMSs possessing a CFD in chain form can be
stabilized with a systematic backstepping procedure. For UMSs possessing a CFD
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Fig. 5.20 Trajectories, torque, and sliding surface related to the ball and beam system for the
initial conditions: x01 = 1 m, x03 = 0.2 rad when the function sign is replaced by an Atan function

Fig. 5.21 Trajectories, torque, and sliding surface related to the ball and beam system for the
initial conditions: x01 = 1 m, x03 = 0.7 rad for the control law u

app
MG and for the control law u

app
MG in

which the sign function is replaced by an Atan function
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with tree structure, the idea is to verify the actuation mode of the variable appearing
in the inertia matrix. Thus, when this variable, called shape variable, is actuated, the
CFD in a tree structure can be transformed into a CFD with chain structure allowing
the use of the systematic backstepping procedure. However, due to this transforma-
tion, very often some parts of the hypotheses that ensure the global stability are no
longer verified, due to the fact that the control law possesses singularities at some
points. In this case, two solutions to bypass the singularities are proposed. The first
one consists in employing a switching control depending on the domain of the sin-
gularity. The second solution consists in completely changing the control law and
acting on the gains so as to force one condition to hold true. These two solutions
allow a global stability despite the singularities in the control. Consequently, one of
the hypotheses of the Seto and Baillieul control scheme is relaxed. Next, when the
shape variable is not actuated, this implies that the associated systems cannot be put
in the form of a chain structure. In this case, a procedure based on partial lineariza-
tion by including stabilizing terms of the two degrees of freedom in the control law
in parallel was proposed. For the UMSs possessing a CFD with an isolated vertex
structure, the control objectives can be achieved through an approximate lineariza-
tion or eventually by high order approximations followed by a robust control of
sliding mode type. All these control procedures have been tested on examples of
UMSs, and the simulation results confirmed their efficiencies.

References

1. P. Baranyi, P.L. Varkonyi, Exact tensor product distributed compensation based stabilization
of the Tora system, in WSEAS Int. on Dynamical Systems and Control, Italy (2005), pp. 38–43

2. R.W. Brockett, Asymptotic Stability and Feedback Stabilization (Birkhäuser, Basel, 1983)
3. A. Choukchou-Braham, B. Cherki, A new control scheme for a class of underactuated systems.

Mediterr. J. Meas. Control 7(1), 204–210 (2011)
4. A. Choukchou-Braham, B. Cherki, M. Djemai, Stabilisation of a class of underactuated system

with tree structure by backstepping approach. Nonlinear Dyn. Syst. Theory 12(4), 345–364
(2012)

5. A. Choukchou-Braham, C. Bensalah, B. Cherki, Stabilization of an under-actuated mechanical
system by sliding control, in Proc. 1st Conf. on Intelligent Systems and Automation CISA’09
(American Institute of Physics AIP, New York, 2008), pp. 80–84

6. A.D. Luca, Dynamic control of robots with joint elasticity, in Proc. 31st IEEE Conf. on
Robotics and Automation (1988), pp. 152–158

7. J.M. Flaus, Stabilité des Systèmes Dynamiques Hybrides (Hermes, London, 2001)
8. A.L. Frafkov, I.A. Makarov, A. Shiriaev, O.P. Tomchina, Control of oscillations in Hamilto-

nian systems, in Proc. European Control Conf., Brussels (1997)
9. G. Hancke, A. Szeghegyi, Nonlinear control via TP model transformation: the Tora system

example, in Symposium on Applied Machine Intelligence, Slovakia (2004)
10. J. Huang, G. Hu, Control design for the nonlinear benchmark problem via the output regulation

method. J. Control Theory Appl. 2, 11–19 (2004)
11. L. Hung, H. Lin, H. Chung, Design of self tuning fuzzy sliding mode control for Tora system.

Expert Syst. Appl. 32(1), 201–212 (2007)
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Appendix A
Theoretical Background of Nonlinear System
Stability and Control

. . . Mr. Fourier had the opinion that the main purpose of
mathematics was public utility and explanation of natural
phenomena, but a philosopher like him should have known that
the sole purpose of science is the honor of the human spirit, and
that, as such, a matter of numbers is worth as much as a matter
of the world system.

Letter from Jacobi Legendre, July 2nd, 1830

Automatic control comprises a number of theoretical tools of mathematical charac-
teristics that enable to predict and apply its concepts to fulfill the objectives that are
directly attached to it. These tools are necessary for the synthesis of control laws on
a specific process and are utilized at various stages of the design. This is more so,
particularly during the modeling and identification of the parameters stage as well
as during the construction of control laws and during the verification of the stability
of the controlled system, just to mention a few. In fact, it is well-known that all con-
struction techniques of control laws or observation are narrowly linked to stability
considerations.

As a result, in the first part of this appendix, some definitions and basic concepts
of stability theory are recalled. The second part of the appendix is dedicated to the
presentation of some concepts and techniques of control theory.

Due to the numerous contributions in this area, in the past few years, we have
focused our interest only on points that are more directly related to our own work.

A.1 Stability of Systems

One of the tasks of the control engineer consists, very often, in the study of stability,
whether for the considered system, free from any control, or for the same system
when it is augmented with a particular control structure. At this stage, it might be
useful or even essential to ask what stability is. How do we define it? How to con-
ceptualize and formalize it? What are the criteria upon which one can conclude on
the stability of a system?

A. Choukchou-Braham et al., Analysis and Control of Underactuated Mechanical
Systems, DOI 10.1007/978-3-319-02636-7,
© Springer International Publishing Switzerland 2014

93

http://dx.doi.org/10.1007/978-3-319-02636-7


94 A Theoretical Background of Nonlinear System Stability and Control

A.1.1 What to Choose?

It is clear that drawing up an inventory as complete as possible of the forms of
stability that have appeared throughout the history of automatic control but also
of mechanics would be beyond the scope of this book. There will therefore not
be included in this presentation the stability method of Krasovskii [70], comparison
method, singular perturbations [37], the stability of the UUB (Uniformly Ultimately
Bounded) [15], the input–output stability [94], the input to state stability [71], the
stability of non-autonomous systems [2], contraction analysis [34], and descriptive
functions [70].

In addition, we will not be presenting the proofs of various results in this section.
We will assume that the conditions of existence and the uniqueness of solutions for
the considered systems of differential equations are verified everywhere.

From a notation point of view, we shall denote by x(t, t0, x0) the solution at
time t with initial condition x0 at time t0 or by x(t, t0, x0, u) when the system is
controlled. In addition, for simplicity, we shall frequently use the notation x(t) or
even x, when the dependence on t0, x0 or t is evident. Similarly, we shall consider
in the majority of cases, except in some cases, the initial time t0 = 0.

The class of systems considered will be those that can be put in the following
ordinary differential equation (ODE) form:

ẋ = f (x) (A.1)

where x ∈ R
n is the state vector and f : D → R

n a locally Lipschitzian function
and continuous on the subset D of Rn.

This type of systems is also called autonomous due to the absence of the temporal
term t in the function. Non-autonomous systems of the form ẋ = f (x, t) are not
considered in this work.

For the above equation (A.1), the point of the state space x = 0 is an equilibrium
point if it verifies

f (0) = 0 ∀t ≥ 0 (A.2)

Note that, by a change of coordinates, one can always bring the equilibrium point to
the origin.

A.1.2 The Lyapunov Stability Theory

The Lyapunov stability theory is considered as one of the cornerstones of automatic
control and stability for ordinary differential equations in general. The original the-
ory of Lyapunov dates back to 1892 and deals with the study of the behavior of
solution of differential equation for different initial conditions. One of its applica-
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Fig. A.1 Intuitive illustration
of stability

tions that was contemplated at that time was the study of librations in astronomy.12

The emphasis is focused on the ordinary stability (i.e. stable but not asymptotically
stable), which we can represent as a robustness with respect to initial conditions,
and the asymptotic stability is only addressed in a corollary manner.

The automatic control community having inverted this preference, we will be
concentrating here on the concept of asymptotic stability rather than mere stability.

Note that there are many more complete presentations of Lyapunov stability in
many articles, for example [37, 49, 55, 62, 65, 66, 70, 87], which constitute the main
references of this part; this list also does not claim to be exhaustive.

A.1.2.1 Stability of Equilibrium Points

Roughly speaking, we say that a system is stable if when displaced slightly from its
equilibrium position, it tends to come back to its original position. On the other
hand, it is unstable if it tends to move away from its equilibrium position (see
Fig. A.1).

Mathematically speaking, this is translated into the following definitions:

Definition A.1 [37] The equilibrium point x = 0 is said to be:

• stable, if for every ε > 0, there exists η > 0 such that for every solution x(t) of
(A.1) we have

∥∥x(0)
∥∥ < η ⇒ ∥∥x(t)

∥∥ < ε ∀t ≥ 0

• unstable, if it is not stable, that is, if for every ε > 0, there exists η > 0 such that
for every solution x(t) of (A.1) we have

∥∥x(0)
∥∥ < η ⇒ ∥∥x(t)

∥∥ ≥ ε ∀t ≥ 0

• attractive, if there exists r > 0 such that for every solution x(t) of (A.1) we have
∥∥x(0)

∥∥ < r ⇒ lim
t→∞x(t) = 0

The basin of attraction of the origin is defined by the set B such that

x(0) ∈ B ⇒ lim
t→∞x(t) = 0

1In astronomy, the librations are small oscillations of celestial bodies around their orbits.
2The father of Alexander Michael Lyapunov was an astronomer.
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Fig. A.2 Stability and
asymptotic stability of x̄

• globally attractive, if for every solution x(t) of (A.1) we have

lim
t→∞x(t) = 0. In this case, B = R

n

• asymptotically stable, if it is stable and attractive, and globally asymptotically
stable (GAS), if it is stable and globally attractive.

• exponentially stable, if there exist r > 0, M > 0 and α > 0 such that for every
solution x(t) of (A.1) we have

∥∥x(0)
∥∥ < r ⇒ ∥∥x(t)

∥∥ ≤ M
∥∥x(0)

∥∥e−αt for all t ≥ 0

and globally exponentially stable (GES), if there exist M > 0 and α > 0 such that
for every solution x(t) of (A.1) we have

∥∥x(t)
∥∥ ≤ M

∥∥x(0)
∥∥e−αt for all t ≥ 0

Remark A.1

1. The difference between stable and asymptotically stable is that a small perturba-
tion on the initial state around a stable equilibrium point x̄ might lead to small
sustained oscillations, whereas these oscillations are dampened in time in the
case of asymptotically stable equilibrium point, see Fig. A.2 (U1 is the ball of
center 0 and radius ε and U2 is the ball of center 0 and radius η [46]).

2. For a linear system, all these definitions are equivalent (except for stable and
asymptotically stable). However, for a nonlinear system, stable does not imply
attractive, attractive does not imply stable, asymptotically stable does not imply
exponentially stable whereas exponentially stable implies asymptotically stable.

When the systems are represented by nonlinear differential equations, the verifi-
cation of stability is not trivial. On the contrary, for linear systems the verification
of stability is systematic and is determined as follows.

A.1.2.2 Stability of the Origin for a Linear System

Consider the linear system

ẋ = Ax (A.3)

where A is a square matrix of dimension n. Let λ1, . . . , λs , be the distinct eigenval-
ues with algebraic multiplicity m(λi) of the matrix A.
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Theorem A.1 [37]

1. If ∃j Re(λj ) > 0 or if ∃k Re(λk) = 0 and m(λk) > 1 then x = 0 is unstable.
2. If ∀j Re(λj ) < 0 then x = 0 is exponentially (hence asymptotically) stable.
3. If Re(λj ) < 0 and if ∃k Re(λk) = 0 and m(λk) = 1 then x = 0 is stable but not

attractive.

Unfortunately, there does not exist an equivalent theorem to that of eigenvalues
for nonlinear systems. In some cases, one can characterize the stability of the origin
via the study of the linearized system.

A.1.2.3 Linear Approximation of a System

Consider a system of the form (A.1); we denote by

A = ∂f

∂x
(x̄)

the Jacobian matrix of f evaluated at the equilibrium point x = x̄. The obtained sys-
tem will be of the form (A.3) and is called the linearization (or linear approximation)
of the nonlinear system (A.1).

Theorem A.2 [37]

1. If x = 0 is asymptotically stable for (A.3) then x = x̄ is asymptotically stable for
(A.1).

2. If x = 0 is unstable for (A.3) then x = x̄ is unstable for (A.1).
3. If x = 0 is stable but not asymptotically stable for (A.3) then we cannot conclude

on the stability of x = x̄ for (A.1).

Another criterion that allows to conclude on the stable behavior of the system for
both linear and nonlinear system is described next.

A.1.2.4 Lyapunov’s Direct Method

The principle of this method is a mathematical extension of the following physi-
cal phenomenon: if the total energy (of positive sign) of a mechanical or electrical
system is continuously decreasing then the system tends to reach a minimal energy
configuration. In other words, to conclude on the stability of a system, it suffices to
examine the variations of a certain scalar function called Lyapunov function without
having to solve the explicit solution of the system. This is precisely the strong point
of this method since the equation of motion of x(t) does not have to be computed
in order to characterize the evolution of the solution (the determination of explicit
solutions of nonlinear system is difficult and sometimes impossible).
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Lyapunov Function Consider the system

ẋ = f (x) with f (0) = 0 (A.4)

x = 0 is an equilibrium point for (A.4) and D ⊂ R
n is a domain that contains x = 0.

Let V : D → R be a function that admits continuous partial derivatives. We de-
note

V̇ (x) = ∂V (x)

∂x
· f (x) =

n∑

i=1

∂V (x)

∂xi

· fi(x)

the derivative of the function V in the direction of the vector field f .

Definition A.2 The function V is a Lyapunov function for system (A.4 ) at x = 0
in D, if for all x ∈ D we have

• V (x) > 0 except at x = 0 where V (0) = 0
• V̇ (x) ≤ 0.

Theorem A.3 [37]

1. If there exists a Lyapunov function for (A.4) at x = 0 in a neighborhood D of 0,
then x = 0 is stable.

2. If, in addition, x �= 0 ⇒ V̇ (x) < 0 then x = 0 is asymptotically stable.
3. If, in addition, D = R

n and V (x) → ∞ when ‖x‖ → ∞ then x = 0 is GAS.

Remark A.2

1. V̇ depends only on x, it is sometimes called the derivative of V along the system.
2. This derivative is also called Lie derivative and is denoted by Lf V .
3. To calculate V̇ , we do not require the knowledge of x but of ẋ, that is, of f (x).

Hence, for the same function V (x), V̇ is different for different systems.
4. For every solution x(t) of (A.4), we have d

dt
V (x(t)) = V̇ (x(t)), consequently

if V̇ is negative, V decreases along the solution of (A.4) so that the trajectories
converge towards the minimum of V .

5. When V (x) → ∞ whenever ‖x‖ → ∞, V (x) is said to be radially unbounded.
6. V (x) is often a function that represents the energy or a certain form of energy of

the system.
7. From a geometric point of view, a Lyapunov function is seen as a bowl whose

minimum coincides with the equilibrium point. If this point is stable, then the
velocity vector ẋ (or f ), tangent to every trajectory will point towards the interior
of the bowl, see Fig. A.3 [46].

LaSalle’s Invariance Principle

Definition A.3 A set G ⊆ R
n is said to be positively invariant if every solution x(t)

such that x(0) ∈ G remains in G for all t ≥ 0.
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Fig. A.3 Lyapunov
function V for vector fields f

If x̄ is an equilibrium point then {x̄} is positively invariant.

Theorem A.4 ([37] (Lyapunov–LaSalle)) Let V : D → R
+ be a function having

continuous partial derivatives such that there exists l for which the region Dl defined
by V (x) < l is bounded V̇ (x) ≤ 0 for all x ∈ Dl . Let R = {x ∈ Dl : V̇ (x) = 0}
and let M be the largest positively invariant set that is included in R. Then, every
solution issued from Dl tends to M when t → ∞. In particular if {0} is the only
orbit contained in R then x = 0 is asymptotically stable and Dl is contained in its
basin of attraction.

Theorem A.5 [37] Let V : Rn → R
+ be a function having continuous partial

derivatives. Suppose that V (x) is radially unbounded and that V̇ (x) ≤ 0 for all
x ∈ R

n. Let R = {x ∈ R
n : V̇ (x) = 0} and let M be the largest positively invariant

set that is included in R. Then, every solution tends to M when t → ∞. In particular
if {0} is the only orbit contained in R then x = 0 is GAS.

Remark A.3

1. The criteria for stability and asymptotic stability presented in Theorems A.3, A.4
and A.5 are easy to utilize. However, they do not give any information on how
to construct the Lyapunov function. In reality, there does not exist any general
method for the construction of Lyapunov functions except for some particular
classes of systems (namely for the class of linear systems).

2. The theorems given previously give sufficient conditions in the sense that if for a
certain Lyapunov function V , the conditions on V̇ are not satisfied, this does not
imply that the considered system is unstable (maybe with another function one
can demonstrate the stability of the system).

3. Contrary to Lyapunov functions which guarantee the stability of the equilibrium
points, there are functions, called Chetaev functions, that guarantee the instabil-
ity of the equilibrium points. Note that it is more difficult to demonstrate the
instability rather than stability (refer to [46] for more details).

In some cases, a dynamical system is represented, at a given instant of time t ≥ t0,
not by a single set of continuous differential equations, but by a family of contin-
uous subsystems together with a logic orchestrating the switching between these
subsystems: this is the class of switching systems.
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In this book we have employed some controllers for this class of systems. Con-
sequently, in what follows, we shall present the stability criteria for these systems.
We shall present the controller design for this class of system for a later stage.

A.1.3 Stability of Switching Systems

Mathematically speaking, a switching system can be described by equations of the
form

ẋ = fp(x) (A.5)

where {fp : p ∈ P} is a family of functions sufficiently regular defined from R
n to

R
n and parameterized by a set of indices P.
For the system (A.5), the active subsystem at every instant of time is determined

by a sequence of switches of the form

σ = (
(t0,p0), (t1,p1), . . . , (tk,pk), . . .

)
(t0 ≤ t1 ≤ · · · ≤ tk)

σ is called the switching signal and can depend either on time or on the state or
both. Such systems are said to have variable structures or are called multi-models.
They represent a particularly simple class of hybrid systems [10, 81, 85].

Here, we shall assume that the origin is an equilibrium point that is common
for the individual subsystems fp(0) = 0. We shall also assume that the switching
is done without jumps and does not occur infinitely fast so that the Zeno phe-
nomenon is avoided. The reader who is interested in these properties can refer to
[6, 53, 63, 64].

The class of systems often considered in the literature are those for which the
individual systems are linear

ẋ = Apx (A.6)

Just to mention a few, we cite the following references: [11, 26, 51, 50, 52, 54, 68,
75, 74, 90, 95, 96, 97]. On the other hand, there are only few works in the literature
for the class of nonlinear switching systems [9, 12, 16, 19, 47, 53, 98, 99].

At this stage one might ask the following question: given a switching system,
why do we need a theory of stability that is different from that of Lyapunov?

The main reason is that the stability of switching systems depends not only on
the different dynamics corresponding to several subsystems but also on the transition
law that governs the switchings. In effect, we have the case where two subsystems
are exponentially stable while the switching between the two subsystems drives the
trajectories to infinity.

In fact, it was shown in [12, 19, 47] that a necessary condition for the stability of
switching systems subjected to an arbitrary transition law is that all the individual
subsystems should be asymptotically stable, but this condition was not sufficient.
Nevertheless, it appears that when the switching between the subsystems is suffi-
ciently slow (so as to allow the transition period to settle down and to allow each
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subsystems to be in steady state) then it is very likely that the global system will be
stable.

A.1.3.1 Common Lyapunov Function

It is clear that in the case where the family of systems (A.5) possesses a common
Lyapunov function V (x) such that ∇V (x)fp(x) < 0 for all x �= 0 and all p ∈ P,
then the switching system is asymptotically stable for any transition signal σ [47].
Hence, a possibility for demonstrating the stability of switching systems consists in
finding a common Lyapunov function for all the individual subsystems of (A.5).

However, finding a Lyapunov function for a nonlinear system, even for a single
one is not simple. If, in addition, we allow the switchings between several subsys-
tems, the determination of such a function becomes much more difficult. It is also
the reason for which a non-classical theory of stability is necessary.

A.1.3.2 Multiple Lyapunov Functions

In the case where a common Lyapunov function cannot be determined, the idea is
to demonstrate the stability through several Lyapunov functions. One of the first
results of such procedure was developed by Peleties in [58, 59], then by Liberzon
[47], for the switching systems of the form (A.6).

Given N dynamical systems Σ1, . . . ,ΣN , and N pseudo Lyapunov functions
(Lyapunov-like functions) V1, . . . , VN .

Definition A.4 [19] A pseudo Lyapunov function for system (A.5) is a function
Vi(x) with continuous partial derivatives defined on a domain Ωi ⊂ R

n, satisfying
the following conditions:

• Vi is positive definite: Vi(x) > 0 and Vi(0) = 0 for all x �= 0.
• V̇ is semi negative definite: for x ∈ Ωi ,

V̇i(x) = ∂Vi(x)

∂x
fi(x) ≤ 0 (A.7)

and Ωi is the set for which (A.7) holds true.

Theorem A.6 [19] Suppose that
⋃

i Ωi = R
n. For i < j , let ti < tj be the tran-

sition instants for which σ(ti) = σ(tj ) and suppose that there exists γ > 0 such
that

Vσ(tj )

(
x(tj+1)

)− Vσ(ti )

(
x(ti+1)

) ≤ −γ
∥∥x(ti+1)

∥∥2
. (A.8)

Then, the system (A.6) with fσ(t)(x) = Aσ(t)x and the transition function σ(t) is
GAS.
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Fig. A.4 Energy profile of
the linear switching system
for N = 2

The condition (A.8) is illustrated by Fig. A.4.
The first generalization of this theorem to nonlinear systems is due to Branicky

[9, 10, 11, 12]

Theorem A.7 [9, 10] Given N switching systems of the form (A.5) and N pseudo
Lyapunov functions Vi in the region Ωi associated to each subsystem, and suppose
that

⋃
i Ωi = R

n and let σ(t) be the transition sequence that takes the value i when
x(t) ∈ Ωi . If in addition,

Vi

(
x(ti,k)

) ≤ Vi

(
x(ti,k−1)

)
(A.9)

where ti,k is the kth time where fi is active, that is, σ(t−i,k) �= σ(t+i,k) = i, then (A.5)
is stable in the sense of Lyapunov.

Figure A.5 illustrates the condition (A.9) (in dotted lines) [19]. A more general
result due to Ye [91, 92] concerns the utilization of weak Lyapunov functions for
which condition (A.9) is replaced by

Vi

(
x(t)

) ≤ h
(
Vi

(
x(tj )

))
, t ∈ (tj , tj+1) (A.10)

where h : R+ → R
+ is a continuous function with h(0) = 0 and tj is any transition

instant when the system i is activated.
In this case, it is no longer required that the Lyapunov functions be decreasing.

It suffices that they are bounded by a function that is zero at the origin. Hence, the
energy can grow in the intervals where the same system is activated but must be
decreasing at the end of these intervals, see Fig. A.5 (solid lines).

Liberzon in [47] extends these results by giving a condition on multiple Lya-
punov functions in order to demonstrate the global asymptotic stability.

Consider N subsystems of the form (A.5). When the subsystems of the family
(A.5) are assumed to be asymptotically stable, then there exists a family of Lya-
punov functions {Vp : p ∈ P} such that the value of Vp decreases on each interval
for which the pth subsystem is active.
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Fig. A.5 Energy profile of a
nonlinear switching system
for N = 3

Fig. A.6 Energy profile of
the nonlinear switching
system for N = 2

If for each p, the value of Vp at the end of the interval where the system p is
active is higher than the value of Vp at the end of the following interval when the
system p is active (see Fig. A.6), then the system (A.5) is asymptotically stable.

Remark A.4

1. When N = 1, we obtain the classical results of stability. However, when N = ∞
the previous theorems are no longer valid.

2. These theorem are valid even when fp vary as a function of time.
3. These results can be extended by relaxing certain hypotheses, for example: the

individual subsystems can have different equilibrium points [53] or state jumps
during a switch [64].

Note that all the results of stability using multiple Lyapunov functions are con-
cerned with the decrease of these functions either at the beginning or at the end of
successive intervals where the same subsystem is active. Zhai in [98] has shown
that certain Lyapunov functions may not decrease at the beginning or at the end
of these intervals and yet decrease globally. His demonstration, which establishes
a complementary condition of stability to those that already exist, is based on the
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Fig. A.7 Illustration of the
average values of Vi(x(T

j
i ))

evaluation of the average value of Lyapunov functions during the intervals where
the same subsystem is active.

Evidently, in the case where the subsystems are GAS, the result is practically
equivalent to the previous results. However, his conditions are given with respect to
the decrease of the average Lyapunov functions on the same intervals, see Fig. A.7.

Theorem A.8 [98] Suppose that the N subsystems of (A.5), associated to N radi-
ally unbounded Lyapunov functions are GAS. Define the average value of the Lya-
punov functions during the activation period for each subsystem as

Vi

(
x
(
T

j
i

)) Δ= 1

t
2j
i − t

2j−1
i

∫ t
2j
i

t
2j−1
i

Vi

(
x(τ)

)
dτ

(
t
2j−1
i ≤ T

j
i ≤ t

2j
i

)
(A.11)

Then, the switched system is GAS in the sense of Lyapunov if, for all i,

Vi

(
x
(
T

j+1
i

))− Vi

(
x
(
T

j
i

)) ≤ −Wi

(∥∥x
(
T

j
i

)∥∥) (A.12)

holds for a positive definite continuous function Wi(x).

Additionally, this result is extended to the case when the subsystems are not sta-
ble under the condition that the Lyapunov functions are bounded. In this case, if the
average value of the Lyapunov functions decreases on the set of intervals associ-
ated to a subsystem i, then the switching system (A.5) is asymptotically stable, see
Fig. A.8 [98].

Remark A.5 More recently, a similar result to the above using the average value
of the derivative of the Lyapunov functions, rather than the average value of the
Lyapunov functions, for the stability analysis of linear switching systems has been
given by Michel in [54].

Recall that the stability is the first step in the study of a system in terms of its
performance evaluation. In fact, if a system is not stable (or not stable enough), it
is important to proceed to the stabilization of this system before looking to satisfy
other performances such as trajectory tracking, precision, control effort, perturba-
tion rejection, robustness, etc.
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Fig. A.8 Illustration of the
decrease of energy in the
presence of unstable systems

A.1.4 Stabilization of a System

The problem of stabilization consists in maintaining the system near an equilibrium
point y∗. The aim is to construct stabilizing control laws such that y∗ becomes an
asymptotically stable equilibrium point of the system under these control laws.

Remark A.6

1. The problem of trajectory tracking consists in maintaining the solution of the
system along a desired trajectory yd(t), t ≥ 0. The objective here is to find a
control law such that for every initial condition in a region D, the error between
the output and the desired output

e(t) = y(t) − yd(t)

tends to 0 when t → ∞. In addition, the state must remain bounded.
2. Note that the stabilization problem around an equilibrium point y∗ is a special

case of the problem of trajectory tracking whereby

yd(t) = y∗, t ≥ 0

The control design techniques allowing to construct control laws for the stabiliza-
tion of systems are numerous and varied. In what follows, we are going to present
those that are most useful for the control of underactuated mechanical systems. The
main references where most of the results on this subject were borrowed from, in
the next section, are [32, 37, 41, 43, 44, 66, 67].

A.2 Control Theory

Given a physical system that we want to control and the system behavior we want to
obtain, designing a control amounts to construct control laws such that the system
subjected to these laws (the closed-loop system) presents the desired behavior.
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Nonetheless, the control procedure is only possible if the system in question is
controllable. Otherwise, the uncontrollable modes would need to be stable [13]. For
more details, please refer to Appendix D.

The synthesis of control laws for nonlinear systems is difficult in general. There-
after, we propose some control design techniques for the class of nonlinear control
affine systems of the form

ẋ = f (x) + g(x)u, x ∈ R
n, u ∈R (A.13)

The linearizability is a property that renders the systems more easy to control.
In addition, the control design techniques for linear systems are well-established
and largely developed. We can cite some examples such as pole placement control,
optimal control, and a frequency-based approach just to mention a few. For more
details on these subjects the interested reader can refer to [2, 17, 24, 35, 42, 56, 93].
This list is far from complete obviously.

Thus, it might be useful to highlight this linearizability property for nonlinear
systems too. In what follows, the most employed and well-known procedures are
briefly recalled.

A.2.1 Local Stabilization

Consider the system of the following form:

ẋ = f (x) + g(x)u, f (0,0) = 0

In the presence of the control input u, the linear approximation around the equilib-
rium point is given by

ẋ = Ax + Bu (A.14)

where the matrices A and B are defined by

A = ∂f

∂x
(0,0), B = ∂f

∂u
(0,0).

The obtained form (A.14) justifies the utilization of linear control techniques men-
tioned above.

Unfortunately, the resulting linearized system is typically valid only around the
considered point so that the associated controller is valid only in a neighborhood of
this point. This leads to a local control only. In addition, determining the linearity
domain is not obvious.

In Appendix B, the reader will find more details of the limits of linearization and
the underlying dangers of destabilization.

Hence, even though this method is simple and practical, it is necessary to proceed
differently in order to increase the validity domain of the synthesized controllers.
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To further benefit from the theory of linear control, there exists a control design
technique based on a change of coordinates and a state feedback allowing to render
the nonlinear dynamics equivalent to that of a linear dynamics: this is the so-called
feedback linearization.

A.2.2 Feedback Linearization

When we transform a system via a change of coordinates, some of its properties re-
main unchanged. For example, if a system is unstable then the transformed system is
also unstable. If a system is controllable, then the transformed system is also control-
lable. On the other hand, some systems might seem nonlinear in certain coordinates
while they can become linear in other coordinates and under certain feedback.

Thus, it is interesting, whenever possible, to analyze the dynamics of a system in
a transformed form that is easier to study.

In Appendix C, some results and concepts of differential geometry necessary for
the presentation of this approach are recalled.

Two procedures of linearization by feedback are possible: input–state lineariza-
tion and input–output linearization.

A.2.2.1 Input–State Linearization

The aim here is to transform the system of the form (A.13) via a diffeomorphism
z = ϕ(x) into a system of the form

ż1 = z2

ż2 = z3

... (A.15)

żn−1 = zn

żn = a
(
ϕ−1(z)

) + b
(
ϕ−1(z)

)
u

This form is similar to the canonical form of Brunovsky or the canonical form of
controllability of linear systems.

If such transformation is possible, then for b(ϕ−1(z)) �= 0 the control

u = 1

b(ϕ−1(z))

(
v − a

(
ϕ−1(z)

))
(A.16)

permits to linearize the system, which becomes

ż1 = z2, ż2 = z3, . . . , żn−1 = zn, żn = v

where v is an external control.
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One can then ask the following questions: Is it always possible to linearize a
system by feedback? When this is the case, how do we obtain the transformation
z = ϕ(x)?

The answer to these questions lies in the following theorem:

Theorem A.9 [33] The system (A.13) is input–state linearizable in a domain D if
and only if:

1. The rank of the controllability matrix Cfg = {g,adfg, . . . ,adn−1
fg } is equal to n

for all x ∈ D.
2. The distribution {g,adfg, . . . ,adn−2

fg } is involutive in D.

With regard to the diffeomorphism, when the conditions of linearization are sat-
isfied, then there exist several algorithms that permit to find the latter [14, 37, 65].

A.2.2.2 Input–Output Linearization

Consider the following nonlinear system:

ẋ = f (x) + g(x)u, x ∈R
n, u, y ∈R

(A.17)
y = h(x)

The idea is to generate linear equations between the output y and a certain input
v through a diffeomorphism z = φ(x) constituted of the output and its derivatives
with respect to time up to the order n − 1 when the relative degree r associated to
this system is equal to n:

φ1(x) = h(x)

φ2(x) = Lf h(x)
(A.18)

...

φn(x) = Ln−1
f h(x)

The system thus transformed is written as

ż1 = z2

ż2 = z3

... (A.19)

żn−1 = zn

żn = a
(
φ−1(z)

) + b
(
φ−1(z)

)
u.
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By choosing u of the form (A.16) and assuming that b(φ−1(z)) �= 0 for all z ∈ Rn,
the system becomes

ż1 = z2, ż2 = z3, . . . , żn−1 = zn, żn = v.

Note that in this case, the form (A.19) is the same as in (A.15). In fact, when r = n

the two linearizations are equivalent. Hence, the conditions for applying the second
linearization will be the same as for the first.

For more details on these two linearizations, and for some useful examples, the
reader can refer to [32, 33, 37, 66].

Obviously, for a relative degree r < n, the system is no longer completely feed-
back linearizable. In this case, one can talk of a partial feedback linearization.

A.2.2.3 Partial Feedback Linearization

When r < n, it is only possible to partially linearize a system of the form (A.17)
through the diffeomorphism constituted partly by the output h(x) and its successive
derivatives up to order r − 1: z = φi(x) for 1 < i < r , and completed—by using
the theorem of Frobenius—by n − r other functions: η = φi(x) for r + 1 ≤ i ≤ n,
chosen in such a way that Lgφi = 0 for r + 1 ≤ i ≤ n. In the coordinates (z, η) the
equations of the system are given by

ż1 = z2

ż2 = z3

...

żr−1 = zr (A.20)

żr = a(z, η) + b(z, η)u

η̇ = q(z, η)

y = z1

This particular form is called the normal form.
If b(z, η) �= 0, the input u can be chosen as

u = 1

b(z, η)

(
v − a(z, η)

)
.

In this case, the system takes the form

ż1 = z2

ż2 = z3

...

żr−1 = zr (A.21)
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żr = v

η̇ = q(z, η)

Clearly, this system is composed of a linear subsystem of dimension r that is control-
lable by v—which is responsible for the input–output behavior—and of a nonlinear
subsystem of dimension n − r whose behavior is not affected by the control input.
It follows that the global behavior of the system depends on this internal dynamics
and that the verification of its stability is an essential step.

In [32], it was shown that the stability study of the internal dynamics can be
reduced to that of the zero dynamics. This is obtained when we apply a control u

that brings and maintains the output y to zero. In other words, the zero dynamics is
given by the system η̇ = q(0, η).

Remark A.7

1. When η̇ = q(0, η) is (locally) asymptotically stable then the associated system is
said to have (locally) minimum phase characteristic at the equilibrium point x̄.

2. When η̇ = q(0, η) is unstable then the associated system is said to be a non-
minimum phase system.

Even though the methods of linearization are useful for simplifying the study and
the control of nonlinear systems, they nevertheless present certain limitations. For
example, the lack of robustness in the presence of modeling errors, the verification
of certain conditions such as the involutivity, which, very often, is not verified by
many systems; even those belonging to the class of nonlinear control affine systems,
this is the case of UMSs. In addition, the state must be fully measured and accessi-
ble. Hence, the utilization of such techniques is confined to some classes of systems
only.

Therefore, one must find other linearization techniques that are applicable to a
wide range of systems without demanding restrictive and rigorous conditions as re-
quired by exact linearization. For example, approximative linearization techniques
allow the linearization of the systems up to certain order and neglect certain nonlin-
ear dynamics of high order. The authors that were interested in this technique are
[5, 28, 31, 36, 39, 73], just to mention a few of them.

A.2.2.4 Approximate Feedback Linearization

For certain systems the computation of the relative degree presents some singular-
ities in the neighborhood of the equilibrium point. For other systems the relative
degree is smaller than the order of the system. In this case, the condition of involu-
tivity is not verified.

The key idea of approximate linearization is to find an output function such that
the system approximatively verifies the former condition.

Several linearization algorithms are available; one can cite, for example, lin-
earization by the Jacobian, pseudo-linearization, Krener algorithm, Hunt and
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Turi [39], the algorithm of Krener based on the theory of Poincaré [40], the al-
gorithm of Hauser, and that of Sastry and Kokotović [28]. A comparative study of
these algorithms applied to some examples can be found in [45].

In what follows, we shall recall briefly the algorithm of Hauser et al. [28]. Con-
sider the system of the form (A.17):

ẋ = f (x) + g(x)u

y = h(x)

Suppose that the relative degree associated to this system is equal to r < n. Con-
sequently, the system is not exactly feedback linearizable. In f and g, some terms
prevent the linearization to take place, in the sense that the relative degree in the
presence of these terms is smaller than n.

The idea is to neglect these terms so that we can achieve a complete relative
degree, called robust relative degree.

Definition A.5 [88] The robust relative degree of a regular output associated to
system (A.17) at 0 is the integer γ such that

Lgh(0) = LgLf h(0) = · · · = LgL
γ−2
f h(0) = 0

LgL
γ−1
f h(0) �= 0

In this case, we say that the system (A.17) is approximatively feedback lineariz-
able around the origin if there exists a regular output y = h(x) for which γ = n.

This transformation is possible via the following diffeomorphism z = φ(x):

z1 = h(x)

z2 = Lf h(x)

...

zn = Ln−1
f h(x)

Hence, during an approximate linearization, the nonlinear model (A.17) is simpli-
fied by assuming that the functions Lgh(x) = LgLf h(x) = · · · = LgL

γ−2
f h(x),

preventing the definition of the classical relative degree and that cancel at 0, are
identically zero:

Lgh(x) = LgLf h(x) = · · · = LgL
γ−2
f h(x) = 0

In this case, the system (A.17) is approximated by the following form:

ż1 = z2

ż2 = z3
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... (A.22)

żn−1 = zn

żn = Ln
f h

(
φ−1(z)

) + LgL
n−1
f h

(
φ−1(z)

)
u

which is of the canonical form of Brunovsky.
Hence, if u is conveniently chosen (of type (A.16)) then, for LgL

n−1
f h(φ−1(z) �=

0), the model will be in the linear form and will be locally controllable,

ż1 = z2, ż2 = z3 . . . , żn−1 = zn, żn = v

This method is in many cases satisfactory but naturally the control engineer will
always try to improve it in order to increase its performances and its domain of
validity. This is how the theory of higher order approximations was introduced by
Krener [39] and Hauser [27].

A.2.2.5 Higher Order Approximations

The objective here is to maximize the order of terms to be neglected in order to
have better precision. Hence, fewer terms are neglected. Consequently, the higher
the order of the neglected residue is, the more effective the controller will be and
the larger its domain of validity will be [8].

Theorem A.10 [39] The nonlinear system (A.13) can be approximated by a state
feedback around an equilibrium point if and only if the distribution Δn−2(f, g) is
involutive up to order3 p − 2 on E.

This means that there is a change of coordinates z = Ψ (x) such that, in the new
coordinates z, the dynamics (A.13) is given by

ż1 = z2

ż2 = z3

... +O
p
E(x) + O

p−1
E (x)u

żn−1 = zn

żn = a(z) + b(z)u

(A.23)

with b(Ψ −1(x)) �= 0 in a neighborhood of E.

In other words, for the system (A.13), during a higher order approximation, the
terms Lgh(x) = LgLf h(x), . . . ,LgL

γ−2
f h(x) are no longer assumed to be zero but

will be taken into account in the model and consequently in the expression of the
control law.

3A distribution is involutive up to order p on E if ∀f,g ∈ Δ, [f,g] ∈ Δ + OE(πx).
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The obtained model (A.23) is no longer fully linearizable, but it is at least easier
to control than the initial system (A.13).

Apart from these methods of linearization, there exist several other approaches
that are different from one another for the synthesis of control. The utilization of
one method over another will depend on the class of systems considered. Among
these methods, we shall be interested in three of them, namely: passivity approach,
backstepping, and sliding mode control.

A.2.3 Few Words on Passivity

The notion of passivity is essentially linked to the notion of the energy that is ac-
cumulated in the considered system and the energy brought by external sources to
the system [57, 67, 86]. The principal reference on the utilization of this concept of
passivity in automatic control is due to Popov [61]. The dissipativity, which is an
extension of this concept, is developed in the works of Willems [89].

Even though the concept of passivity is applicable to a large class of nonlinear
systems, we will restrict our attention, only to dynamics modeled by system (A.17).

A dissipative system is then defined as follows:

Definition A.6 [67] The system (A.17) is said to be dissipative if there exists a
function S(x) that is positive and such that S(0) = 0, and a function w(u,y) that is
locally integrable for all u, such that the following condition:

S(x) − S(x0) ≤
∫ 0

t

w
(
u(τ), y(τ )

)
dτ (A.24)

is satisfied over the interval [0, t].

This inequality expresses the fact that the energy stored in the system S(x) is at
most equal to the sum of energies initially stored and externally supplied. That is,
there is no creation of internal energy; only a dissipation of energy is possible.

If S(x) is differentiable, the expression (A.24) can be written as

Ṡ(x) ≤ w(u,y). (A.25)

One particularity form of w permits to define the passivity of a system.

Definition A.7 [67] The system (A.17) is said to be passive if it is dissipative and
if the function w is a bilinear function from the input to the output w(u,y) = uT y.

The passivity is a fundamental property of physical systems that is intimately
linked to the phenomenon of energy loss or dissipation. One can recognize the prin-
ciple similar to that of stability. In effect, the relation between passivity and stability
can be established by considering the storage function S(x) as a Lyapunov func-
tion V (x).
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Remark A.8 Note that the definition of dissipativity and passivity does not require
that S(x) > 0 (it suffices that S(x) ≥ 0). Hence, in the presence of an unobservable
part, x = 0 can be unstable while the system is passive. For passivity to imply stabil-
ity, one must exclude a similar case. That is, one must verify that the unobservable
part is asymptotically stable. The reader should refer to [67] for a complete review
on the stability of passive systems and for some results on Lyapunov functions that
are semi positive definite.

A.2.4 Backstepping Technique

The backstepping is a recursive procedure for the construction of nonlinear control
laws and Lyapunov functions that guarantee the stability of the latter. This technique
is only applicable to a certain class of system which is said to be in strict feedback
form (lower triangular). A quick review of this control design approach is given
below, see [41] for more details.

Consider the problem of the stabilization of nonlinear systems in the following
triangular form:

ẋ1 = x2 + f1(x1)

ẋ2 = x3 + f2(x1, x2)

...
(A.26)

ẋi = xi+1 + fi(x1, x2, . . . , xi)

...

ẋn = fn(x1, , x2, . . . , xn) + u

The idea behind the backstepping technique is to consider the state x2 as a “vir-
tual control ” for x1. Therefore, if it is possible to realize x2 = −x1 − f1(x1), then
the state x1 will be stabilized. This can be verified by considering the Lyapunov
function V1 = 1

2x2
1 . However, since x2 is not the real control for x1, we make the

following change of variables:

z1 = x1

z2 = x2 − α1(x1)

with α1(x1) = −x1 − f1(x1). By introducing the Lyapunov function V1(z1) = 1
2z2

1,
we obtain

ż1 = −z1 + z2

ż2 = x3 + f2(x1, x2) − ∂α1

∂x1

(
x2 + f1(x1)

) := x3 + f̄2(z1, z2)

V̇1 = −z2
1 + z1z2
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By proceeding recursively, we define the following variables:

z3 = x3 − α2(z1, z2)

V2 = V1 + 1

2
z2

2

In order to determine the expression of α2(z1, z2), one can observe that

ż2 = z3 + α2(z1, z2) + f̄2(z1, z2)

V̇2 = −z2
1 + z2

(
z1 + z3 + α2(z1, z2) + f̄2(z1, z2)

)

By choosing α2(z1, z2) = −z1 − z2 − f̄2(z1, z2) , we obtain

ż1 = −z1 + z2

ż2 = −z1 − z2 + z3

V̇2 = −z2
1 − z2

2 + z2z3

Proceeding recursively, at step i, and defining

zi+1 = xi+1 − αi(z1, . . . , zi)

Vi = 1

2

i∑

k=1

z2
k

we obtain

żi = zi+1 + αi(z1, . . . , zi) + f̄i (z1, . . . , zi)

V̇i = −
i−1∑

k=1

z2
k + zi−1zi + zi

(
zi+1 + αi(z1, . . . , zi) + f̄i (z1, . . . , zi)

)

By using the expression αi(z1, . . . , zi) = −zi−1 − zi − f̄i (z1, . . . , zi), we obtain

żi = −zi−1 − zi + zi+1

V̇i = −
i−1∑

k=1

z2
k + zizi−1

At step n, we obtain

żn = f̄n(z1, . . . , zn) + u

Choosing

u = αn(z1, . . . , zn) = −zn−1 − zn − f̄n(z1, . . . , zn)
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for the following Lyapunov function:

Vn = 1

2

n∑

k=1

z2
k

it turns out that

żn = −zn−1 − zn

V̇n = −
n∑

k=1

z2
k

The stability of the system is proven by using simple quadratic Lyapunov func-
tions. One must also note that the dynamic obtained in the z coordinates is linear.
The advantage of the backstepping technique is its flexibility for the choice of the
stabilizing functions αi , which are simply chosen to eliminate all the nonlinearities
in order to render the function V̇i negative.

A.2.5 Sliding Mode Control

The theory of variable structure systems has been the subject of numerous studies
over the last 50 years. Initial works on this type of systems are those of Anosov
[1], Tzypkin [82]. and Emel’yanov [21]. These works have encountered a signifi-
cant revival in the late 1970s when Utkin introduced the theory of sliding modes
[83]. This control and observation technique received increasing interest because of
their relative ease of design, their strength vis-à-vis certain parametric uncertainties
and perturbations, and the wide range of their applications in varied fields such as
robotics, mechanics or power systems.

The principle of this technique is to force the system to reach and then to remain
on a given surface called sliding or switching surface (representing a set of static
relationships between the state variables). The resulting dynamic behavior, called
ideal sliding regime/mode, is completely determined by the parameters and equa-
tions defining the surface. The advantage of obtaining such behavior is twofold: on
one hand, there is a reduction of the system order, and on the other, the sliding mode
is insensitive to disturbances occurring in the same direction as the inputs.

The realization is done in two stages: a surface is determined so that the sliding
mode has the desired properties (not necessarily present in the original system), and
then a discontinuous control law is synthesized in order to make the surface invari-
ant (at least locally) and attractive. However, the introduction of this discontinuous
action, acting on the first derivative with respect to time of the sliding variable, does
not generate an ideal sliding mode. On average, the controlled variables can be con-
sidered as ideally moving on the surface. In reality, the movement is characterized
by high-frequency oscillations in the vicinity of the surface. This phenomenon is
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known as chattering and is one of the major drawbacks of this technique. Further-
more, it may stimulate non-modeled dynamics and lead to instability [23].

The presentation of this theory and its applications would easily constitute an-
other book in itself. Therefore, in what follows, we swiftly present this technique
and we refer the reader to [8, 22, 23, 60, 72, 83] for an excellent presentation of
first order sliding modes and of the Fillipov theory for differential equations with
discontinuous second member as well as of the equivalent vector method of Utkin.

A.2.5.1 Sliding Modes of Order One

Even though the theory of sliding modes is applied to a large class of systems of the
form ẋ = f (x,u) [69], we shall restrict our attention to the class of single-output
control affine systems of the form

ẋ = f (x) + g(x)u (A.27)

where x = (x1, . . . , xn)
T belongs to χ , an open set of Rn, u is the input and f,g are

sufficiently differentiable functions. We define a sufficiently differentiable function
s : χ ×R

+ → R such that ∂s
∂x

is non-zero on χ . The set

S = {
x ∈ χ : s(t, x) = 0

}
(A.28)

is a submanifold of χ of dimension (n − 1), called the sliding surface. The function
s is called the sliding function.

Remark A.9 The systems studied here are governed by differential equations involv-
ing discontinuous terms. The classical theories do not allow to describe the behavior
of the solution in this case. One must, therefore, employ the theory of differential
inclusions [3] and the solutions in the Fillipov sense [22].

Definition A.8 [84] We say that there exists an ideal sliding mode on S if there
exists a finite time ts such that the solution of (A.27) satisfies s(t, x) = 0 for all
t ≥ ts .

The existence of the sliding mode is guaranteed by sufficient conditions: the slid-
ing surface must be locally attractive, which can be mathematically translated as

lim
s→0+

∂s

∂x
(f + gu) < 0 and lim

s→0−
∂s

∂x
(f + gu) > 0 (A.29)

This condition translates the fact that, in a neighborhood of the sliding surface, the
velocity vectors of the trajectories of the system must point towards this surface, see
Fig. A.9 [8].

Hence, once the surface is intersected, the trajectories stay in an ε-neighborhood
of S, and we say that the sliding mode is ideal if we have exactly s(t, x) = 0.
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Fig. A.9 Attractivity of the
surface

The condition (A.29) is often written in the form

sṡ < 0 (A.30)

and is called the attractivity condition.
The control u is constructed such that the trajectories of the system are brought

towards the sliding surface and are then maintained in a neighborhood of the latter.
u is a variable control law defined as follows:

u =
{

u+(x) if s(t, x) > 0,

u−(x) if s(t, x) < 0,
u+ �= u− (A.31)

with u+ and u− being continuous functions. It must be noted that it is this discontin-
uous characteristic of the control law that permits to obtain a convergence in finite
time on the surface as well as the properties of robustness with respect to certain
perturbations.

An example of a classical control by sliding mode that ensures the convergence
towards the surface s = 0 in finite time is as follows: if for the nonlinear system
(A.13) of relative degree r , we have |LgL

r−1
f | > K > 0, Lr

f < M < ∞ then there
exists λ > 0 such that the control [4]

u = − sign
(
LgL

r−1
f

)
λ sign(s) (A.32)

ensures the convergence of s to 0 in finite time.

Remark A.10 Often, we assume that Lgh is positive. In this case, it is sufficient to
take

u = −λ sign(s). (A.33)

Whenever that is not the case, it is more accurate to consider the expression (A.32).

A.2.5.2 Convergence in Finite Time

When on one hand, the control is chosen of the form (A.32) or simply of the form
(A.33), and on the other hand, the previous conditions for the boundedness of certain
functions are verified then the convergence in finite time is ensured. We shall try to
demonstrate this result through an example.
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Example A.1 [4] Consider the following simple example:

ẋ = b + u
(A.34)

u = −λ sign(x − xd)

with xd the desired state, s = x − xd the sliding surface and λ > |b| + sup|ẋd |, then
x converges to xd in finite time and remains on the surface x = xd .

Proof

s = x − xd

ṡ = b − λ sign(s) − ẋd

Consider the Lyapunov function: V = s2

2 . In this case, we have

V̇ = s
(
b − λ sign(s) − ẋd

)

if λ > |b| + sup|ẋd | then V̇ < 0.
Hence, the convergence is demonstrated. It now remains to show that the conver-

gence is achieved in finite time.
Since V̇ < 0, there exists a constant K > 0 such that V̇ < −K|s|.
Now V = s2

2 ⇒ |s| = √
2V therefore V̇ < −√

2K
√

V ,
Set K1 = −√

2K ⇒ V̇ < −K1
√

V , let us take the worst case where the maxi-
mum convergence time is the limit case: V̇ = −K1

√
V

The solution of this equation gives

V −1/2dV = −K1dt

2V 1/2 = −K1t + V0

V (t) =
(−K1t + V0

2

)2

The time from which V (t) = 0 corresponds to t = V0
K1

, which is finite. �

A.2.5.3 The Chattering Phenomenon

In practice, an ideal sliding mode does not exist since it will imply that the control
can switch with an infinite frequency. There then occurs the problem of chattering
which means that we no longer have s(t, x) = 0 but ‖s(t, x)‖ < Δ from t > t0 where
t0 is the convergence time and Δ a constant representing the maximum variations
along the ideal trajectory s = 0.

This maximum depends on the “slew rate ”of the components intervening in the
injection of the input u in the system, on wear, and on the sensitivity of actuator
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Fig. A.10 Chattering
phenomenon

Fig. A.11 Saturation
function

Fig. A.12 Sigmoid function

noise in the case of an analog control hence limiting the variation of speed between
u+ and u−, see Fig. A.10. In the discrete case, the switching speed is limited by
the data measurement which is in turn constrained by the sampling period and the
computation time [8].

This phenomenon constitutes a non-negligible disadvantage because even if it is
possible to filter the output of the process, it is susceptible to excite high-frequency
modes that were not taken into account in the model of the system. This can degrade
the performances and even lead to instability [29].

The chattering also implies important mechanical requirements at the actuator
level. This can cause rapid wear and tear of the actuators as well as non-negligible
energy loss at the power circuits level. Numerous studies have been carried out
in order to reduce this phenomenon. One of them consists in replacing the sign
function by saturation functions Fig. A.11, or by sigmoid functions such as tan(s)

or arctan(s), Fig. A.12 [8].
Nevertheless, it has been proven that to overcome this chattering phenomenon the

best solution is to consider higher order sliding modes such as the twisting algorithm
or the super twisting [25, 60].
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Fig. A.13 Architecture of
multi controllers

A.2.6 Control Design Technique Based on the Switching Between
Several Controllers

The control design techniques based on the switching between several controllers
have been the subject of intensive applications these last few years. The importance
of such methods comes from the existence of systems that are not stabilizable by a
single controller. In effect, a large range of dynamical systems is modeled by a fam-
ily of continuous subsystems and a logic rule orchestrating the switching between
these subsystems, see Fig. A.13

Based on this, switching systems appear as a rigorous concept for studying com-
plexes systems, even if their theoretical properties are still the subject of intensive
research.

A.3 Summary

This appendix has been devoted to the presentation of the theoretical aspects on sta-
bility and control of nonlinear and switching systems. There is no general method-
ology for the design of controller for nonlinear systems as opposed to controller
design for linear systems. Depending on the class of nonlinear systems under study,
some approaches are better suited than others. In addition, we have attempted to
explain in a simple way the principle of some nonlinear control design techniques
that fall within the scope of this book with the aim of using some of them for the
stabilization of underactuated mechanical systems.



Appendix B
Limits of Linearization and Dangers
of Destabilization

A common practice of automatic community is to assume that a system can be
described by a set of differential equations around an operating point as follows:

ẋ = Ax + Bu
(B.1)

y = Cx

Assuming that (B.1) describes the system behavior, we can then exploit linear con-
trol design procedures, where powerful analysis and design tools are available. How-
ever, nonlinear system behaviors can be more complex than what can be represented
by an equivalent linear model.

Neglecting such behaviors, unpredictable instability may arise and may cause
performance degradation. Moreover, the obtained linear system is valid only around
the considered operating point. Hence, it can describe the system only in the neigh-
borhood of this point. On the other hand, some phenomena such as Coulomb fric-
tion, backlash, and hysteresis, called hard nonlinearities, cannot be captured by lin-
ear equations. Therefore, these nonlinearities are neglected.

Additional nonlinear phenomena include finite escape time, multiple equilibrium
points, limit cycles, and chaos. A more complete description of these phenomena
and others is given in [18, 37].

To illustrate the impact of the loss of information due to linearization, let us
consider the following examples [20]:

Example B.1 Several equilibrium points:

ẋ = −x + x2

(B.2)
x(t = 0) = x0

After linearization around x(t) = 0, the obtained dynamic and associated solution
are given by

ẋ = −x(t)
(B.3)

x(t) = x0e
(−t)

A. Choukchou-Braham et al., Analysis and Control of Underactuated Mechanical
Systems, DOI 10.1007/978-3-319-02636-7,
© Springer International Publishing Switzerland 2014

123

http://dx.doi.org/10.1007/978-3-319-02636-7


124 B Limits of Linearization and Dangers of Destabilization

Fig. B.1 Responses of a
nonlinear system for several
initial conditions

Equation (B.3) indicates that for any initial condition x0, the solution exponen-
tially converges towards the equilibrium point.

However, according to (B.2), the nonlinear system possesses a second equilib-
rium point at x(t) = 1.

The impact of negligence of this point can be illustrated by calculating the solu-
tion of the nonlinear system:

x(t) = x0e
−t

1 + x0(e−t − 1)
(B.4)

according to (B.4), note that:
For x0 < 1, the solution tends to 0 when t → ∞ like for the linear case.
For x0 > 1, the solution explodes to infinity in finite time, see Fig. B.1.

Example B.2 The linearized system is not controllable.
Consider the following unicycle robot model (see [7] for other models):

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
cosx3 0
sinx3 0

0 1

⎤

⎦
[
u1
u2

]
(B.5)

Clearly, (B.5) is controllable while the linearized system around the point
x3(t) = 0 given by

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
1 0
0 0
0 1

⎤

⎦
[
u1
u2

]
(B.6)

is not controllable for x2(t)!

Other examples of performance degradation are given in [20].
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On the other hand, the use of linear controller can sometimes lead to destabiliza-
tion; for example, the consequence of the peaking phenomenon on a linear system
can lead to the system instability [78, 80].

To illustrate this concept let us consider the partially linear coupled system de-
scribed by the dynamics:

ẋ = f (x, y)
(B.7)

ẏ = Ay + By

Let us make the following assumptions:

(b1) The pair (A,B) is supposed controllable.
(b2) The nonlinear function f is differentiable to first order with respect to the time.
(b3) The origin is an GAS equilibrium point for the zero dynamic ẋ = f (x,0).

According to (B.7), and assumption (b3), it seems rather clear intuitively that a
linear controller can be designed to lead the dynamics y(t) to 0 exponentially such
that the zero dynamic of the nonlinear system is GAS. However, this strategy can
lead the nonlinear dynamics to instability and its trajectory may escape to infinity in
finite time. For example consider the following system:

Example B.3 Finite escape time:

ẋ = −(1 + y2)

2
x3 (B.8)

ẏ1 = y2

ẏ2 = u

From (B.8), one can verify that the assumption (b3) is satisfied.
By designing a linear controller as follows:

u = −a2y1 − 2ay2 (B.9)

multiple eigenvalues for the closed system result at −a.
Linear analysis tools can be used to find the exact solution y2(t) given by

y2 = −a2te−at (B.10)

and from this solution it appears that the dynamic |y2(t)| rises to a peak, then con-
verges exponentially to 0. By computation, we can show that the peak time is t = 1

a
.

From (B.10), we can conclude that for important values of a, y converges faster
towards 0. Hence, from assumption (b3), it seems that important values of a allow
a fast stabilization of the nonlinear system.

Nevertheless, in [38], it was shown that this is not true. Indeed, if we substitute
(B.10) in (B.8). By integrating, the resulting expression is given by

x2(t) = x2
0

1 + x2
0(t + (1 + at)e−at − 1)

(B.11)
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The peaking phenomenon destabilization effect is now apparent when we replace
the values of x0, a and t in (B.11). For example, for a = 10 and x2

0 = 2.176, the
response x2(t ∼= 0.5) becomes unbounded and we have escape to infinity in finite
time.

Other examples and discussion of this phenomenon are in [38, 78, 80].
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A Little Differential Geometry

This section is devoted to the definition of some concepts and basic tools of dif-
ferential geometry introduced in nonlinear automatic control theory, since the early
1970s, by Eliott, Lobry, Hermann, Krener, Brockett, and others.

Diffeomorphism A diffeomorphism is a nonlinear change of coordinates z =
Φ(x) where Φ is a vectorial function

Φ(x) =

⎛

⎜⎜⎜⎝

Φ1(x1, . . . , xn)

Φ2(x1, . . . , xn)
...

Φn(x1, . . . , xn)

⎞

⎟⎟⎟⎠

with the following properties:

• Φ(x) is a bijective application
• Φ(x) and Φ−1 are differentiable applications.

If these properties are verified for all x ∈ R
n then Φ is a global diffeomorphism.

Otherwise, Φ is a local diffeomorphism.

Proposition C.1 If the Jacobian matrix of Φ , evaluated at the point x = x0 is
nonsingular, then Φ(x) is a local diffeomorphism.

Lie Derivative and Bracket Let f and g be two vector fields on an open Ω of
R

n with all continuous partial derivatives, and denote by ∂f
∂x

and ∂g
∂x

the Jacobian
matrices.

The Lie derivative of g along f is the vector field

Lf g = ∂g

∂x
f.

The Lie bracket of f and g is the vector field

[f,g] = Lf g − Lgf.

A. Choukchou-Braham et al., Analysis and Control of Underactuated Mechanical
Systems, DOI 10.1007/978-3-319-02636-7,
© Springer International Publishing Switzerland 2014
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We define also the vector fields

adff g = [f,g]
adk

f g = [
f,adk−1

f g
]
, k = 2,3, . . .

Distribution, Involutivity and Complete Integrability

• A distribution Δ on a manifold M assigns to each point x ∈ M a subspace of the
tangent space T .

• A set of vectors {g1, . . . , gm} in Ω is said involutive if for all the i and j the
bracket [gi, gj ] is a linear combination of vectors g1, . . . , gm, that is, there exist
functions αk

ij defined in Ω such that

[gi, gj ] =
k=m∑

k=1

αk
ij gk.

That is, if for all the f and g in Δ, [f,g] belongs to Δ (Δ is closed by Lie
bracket).

• A set of linearly independent vectors {g1, . . . , gm} is a complete integrable set, if
the system of n − m partial derivative equations

∂h

∂x
g1 = 0, . . . ,

∂h

∂x
gn−m = 0

admits a solution h : Ω → R
n such that ∂h

∂x
�= 0

Theorem C.1 ([70] (Frobenius)) A set of linearly independent vectors {g1, . . . , gm}
is involutive if and only if it is completely integrable.

For proof and examples see [37].

Relative Degree The relative degree associated with the system

ẋ = f (x) + g(x)u
(C.1)

y = h(x)

in a region Ω ⊂ R
n is given by the integer γ such that

Lgh(x) = LgLf h(x) = · · · = LgL
γ−2
f h(x) = 0

LgL
γ−1
f h(x) �= 0

for all x ∈ Ω .



Appendix D
Controllability of Continuous Systems

One of the main goals of automatic control is to establish control laws so that a
system evolves according to a predetermined objective. This requires controllability
of the system. Intuitively, the controllability means that we can bring a system from
one state to another by means of a control. Conversely, non-controllability implies
that some states are unreachable for any control.

D.1 Controllability of Linear Systems

For controlled linear systems

ẋ = Ax + Bu (D.1)

y = Cx (D.2)

where An×n is the state matrix, x ∈R
n is the vector states, Bn×m the control matrix,

u controls belonging to a set of admissible controls U, Cp×n the output matrix and
y ∈R

p the system outputs.

Definition D.1 [35] The system (D.1) is controllable if for each couple (x0, xd) of
R

n there exist a finite time T and a control u defined on [0, T ] that brings the system
from an initial state x(0) = x0 to a desired state x(T ) = xd .

D.1.1 Kalman Controllability Criterion

An algebraic characterization of linear systems controllability, due to Kalman, is
given as follows:
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Fig. D.1 Static state
feedback stabilization

Theorem D.1 The linear system (D.1) is controllable if and only if the rank of its
controllability matrix

C = (
B AB . . . An−1B

)
(D.3)

is equal to n. We say that the pair (A,B) is controllable.

Details and proofs can be found in [17].
For controllable linear systems, we seek to design a controller that makes the

origin asymptotically stable. Several approaches are available, for example, we can
design control laws by state feedback.

D.1.2 State Feedback Stabilization

A linear state feedback or controller for (D.1) is a control law

u(t) = −Kx(t) (D.4)

where Km×n is a gain matrix.
When the value of u(t) at t depends only on x(t) then the feedback is called

static feedback, Fig. D.1.
The gain matrix can be computed in several ways, for example by pole place-

ment.

Pole Placement Design When a system is controllable, the pole placement prin-
ciple consists of determining a control law u = −Kx such that σ(A − BK) = σd ,
where σ is the spectrum of (A − BK) and σd is the desired spectrum.

The difficulty of this approach lies in the determination of the spectrum since
there is no general methodology for doing so. This method offers the possibility to
place the closed-loop poles anywhere in the negative half-plane, regardless of the
open-loop poles location. As a result, the response time can be controlled. However,
if the poles are placed too far into the negative half-plane, the values of the gain K

are very large and can cause saturation problems and can lead to instability.

Remark D.1 The control law u is designed assuming that the state vector x is avail-
able. This assumption is not always true. Sometimes, some states are not available,
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because it is either difficult or impossible to physically measure these states or it
is too expensive. In this case, we proceed to a reconstruction of the missing states
using observers. However, throughout this book we are interested in the problem of
control under the assumption that states are measurable.

D.2 Controllability Concepts for Nonlinear Systems

The notion of controllability which seems simple and intuitive for linear systems
is rather complicated for nonlinear systems where several definitions of the latter
exist. The first results on nonlinear system controllability are due to Sussmann and
Jurdjevic [79], Lobry [48], Hermann and Krener [30], Sussmann [76, 77] and for a
nice presentation see also Nijmeijer and Van der Schaft [55].

A nonlinear system is generally represented by

ẋ = f (x,u)
(D.5)

y = h(x)

where x ∈ M ⊂ R
n, u ∈R

m, y ∈ R
p , and f,h are C∞.

Definition D.2 Let U be a subset of M and let (x0, xd) ∈ U . We say that xd is
U -accessible from x0 which we denote by xdAux0, if there exist a measurable and
bounded control u and a finite time T , such that the solution x(t) of (D.5), for
t ∈ [0, T ], satisfies

x(0) = x0, x(T ) = xd and x ∈ U for t ∈ [0, T ]

we denote by A(x0) the set of points in M accessible from x0:

A(x0) = {x ∈ M/ xAMx0} (D.6)

Definition D.3 The system (D.5) is controllable at x0 if A(x0) = M and is control-
lable if A(x0) = M for all x ∈ M .

When a system is controllable at x0, it may be necessary to cover a considerable
distance or time for reaching a point near x0. This leads us to introduce a local
version of the concept of controllability.

Definition D.4 The system (D.5) is said locally controllable at x0, if for all neigh-
borhood U of x0, Au(x0) is a neighborhood of x0, where

Au(x0) = {x ∈ U/ xAux0} (D.7)

and it is said to be locally controllable if it is locally controllable for all x ∈ M .
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Fig. D.2 Relationship between the nonlinear controllability concepts

We can weaken the controllability notion:

Definition D.5 The system is said to be weakly controllable at x0, if WA(x0) = M ,
it is said to be weakly controllable if it is weakly controllable for all x ∈ M .

Remark D.2 WAu is the smallest set containing U-accessible pairs (that is,
x

′
WAux

′′
if and only if there exist x0, . . . , xk , such that x0 = x

′
, xk = x

′′
and let

xiAux
i−1 or xi−1Aux

i for i = 1, . . . , k).

The concept of weak controllability is a global concept which does not reflect
the behavior of a system in the neighborhood of a point. Therefore, it is necessary
to introduce the concept of weak local controllability

Definition D.6 The system (D.5) is said to be locally weakly controllable at x0 if
for all neighborhood U of x0, WAu(x0) is a neighborhood of x0 and it is said to be
locally weakly controllable if it is for all x ∈ M .

Different notions of controllability are illustrated by the diagram of Fig. D.2.
For control affine nonlinear systems described by

ẋ = f (x) + g(x)u
(D.8)

y = h(x)

the controllability rank condition is defined as

Definition D.7 System (D.8) satisfies the rank condition if the rank of the nonlinear
controllability matrix

Cfg = [
g(x) adf g(x) ad2

f g(x) . . . adn−1
f g(x)

]
(D.9)

is equal to n for all x.

Theorem D.2 [30] If the system (D.8) satisfies the rank condition then it is locally
weakly controllable.

This theorem highlights the advantage of weak local controllability compared to
previous forms of controllability since verification of such a concept is reduced to a
simple algebraic criterion.
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80. H.J. Sussmann, P. Kokotović, The peaking phenomenon and the global stabilization of nonlin-

ear systems. IEEE Trans. Autom. Control 36(4), 424–440 (1991)
81. C.J. Tomlin, J. Lygeros, S. Sastry, Introduction to Dynamic Systems (Springer, Berlin, 2003)
82. Y.Z. Tzypkin, Theory of Control of Relay Systems (Gostekhizdat, Moscow, 1955)
83. V.I. Utkin, Variable structure systems with sliding mode. IEEE Trans. Autom. Control 22(2),

212–222 (1977)
84. V.I. Utkin, Sliding Modes in Control Optimization (Springer, Berlin, 1992)
85. A. van der Schaft, H. Schumacher, An Introduction to Hybrid Dynamical Systems (Springer,

Berlin, 2002)
86. A. van der Shaft, L2 Gain and Passivity Techniques in Nonlinear Control (Springer, Berlin,

2000)



136 D Controllability of Continuous Systems

87. M. Vidyasagar, Nonlinear Systems Analysis (Prentice-Hall, Englewood Cliffs, 1993)
88. D.A. Voytsekhovsky, R.M. Hirschorn, Stabilization of single-input nonlinear systems using

higher order compensating sliding mode control, in Proc. 45th IEEE Conf. on Decision and
Control and the European Control Conf. (2005), pp. 566–571

89. J.C. Willems, Dissipative dynamical systems. Rational mechanics and analysis 45, 321–393
(1972)

90. X. Xu, G. Zhai, Practical stability and stabilization of hybrid and switched systems. IEEE
Trans. Autom. Control 50(11), 1897–1903 (2005)

91. H. Ye, A.N. Michel, L. Hou, Stability analysis of discontinuous dynamical systems with ap-
plication, in 13th IFAC Congress, USA (1996), pp. 461–466

92. H. Ye, A.N. Michel, L. Hou, Stability theory for hybrid dynamical systems. IEEE Trans. Au-
tom. Control 43(4), 461–474 (1998)

93. S.H. Zak, Systems and Control (Oxford University Press, London, 2003)
94. G. Zames, On the input-output stability of nonlinear time-varying feedback systems. IEEE

Trans. Autom. Control 11(2), 228–238 (1966)
95. G. Zhai, B. Hu, K. Yasuda, A.N. Michel, Stability analysis of switched systems with stable

and unstable subsystems: an average dwell time approach, in Proc. American Control Conf.,
USA (2000), pp. 200–204

96. G. Zhai, D. Liu, J. Imae, T. Kobayashi, Lie algebraic stability analysis for switched systems
with continuous-time and discrete-time subsystems. IEEE Trans. Circ. Syst. 53(2), 152–156
(2006)

97. G. Zhai, H. Lin, X. Xu, A.N. Michel, Stability analysis and design of switched of normal
systems, in Proc. 43rd IEEE Conf. on Decision and Control, USA (2004), pp. 3253–3258

98. G. Zhai, I. Matsune, J. Imae, T. Kobayashi, A note on multiple Lyapunov functions and sta-
bility condition for switched and hybrid systems, in Proc. 16th IEEE Int. Conf. on Control
Application, Singapore (2007), pp. 1189–1199

99. J. Zhao, D.J. Hill, Dissipativity theory for switched systems. IEEE Trans. Autom. Control
53(4), 941–953 (2008)



Index

A
Acrobot, 8, 9, 18, 27, 29, 42, 47, 64, 65
Approximation

high order, 83, 85, 112
linear, 97, 106

B
Backstepping, 10, 11, 35, 40, 44, 49, 55, 64,

114
Ball and beam, 8, 18, 27, 31, 43, 48, 64, 83,

85
BIBS, 56
Brockett, 8, 10, 21, 22, 71
Brunovsky form, 107, 112

C
Centrifugal term, 16
CFD, 10, 35, 40, 55, 65
Chaos, 123
Chattering, 88, 119
Christoffel symbols, 16
Classification, 10, 35, 43, 55

class I, 47
class II, 47, 48

Complete integrability, 128
Constraint

holonomic, 19, 27
non-holonomic, 18, 27, 37

Controllability, 8, 17, 21–23, 40, 108, 129,
131

Coriolis, 16

D
Degree of complexity, 36, 40
Diffeomorphism, 108, 109, 127
Distribution, 128

E
Energy, 9, 113

kinetic, 16
potential, 16, 28, 29

Euler–Lagrange equation, 15, 17, 19, 27,
65

Equilibrium, 94

F
Finite time convergence, 84, 118
Forwarding, 10, 11, 44, 49
Frobenius theorem, 109, 128
Function

Chetaev, 99
Lipscitzian, 94
Lyapunov, 64, 97

common, 101
multiples, 74, 101
weak, 102

G
Generalized momentum, 27, 50

H
Hurwitz, 84

I
Inertial wheel pendulum, 9, 30, 65
Inverted pendulum, 8, 9, 18, 28, 42, 48, 49, 65,

67
Involutivity, 128

J
Jacubezyk–Respondek theorem, 108

K
Kalman criterion, 129

A. Choukchou-Braham et al., Analysis and Control of Underactuated Mechanical
Systems, DOI 10.1007/978-3-319-02636-7,
© Springer International Publishing Switzerland 2014

137

http://dx.doi.org/10.1007/978-3-319-02636-7


138 Index

L
Lagrange vector of multipliers, 19
LaSalle invariance principle, 98
Legendre

normal form, 17
transformation, 16

Lie
bracket, 127
derivative, 127

Limit cycles, 123
Linearization

approximate, 82, 83, 110
feedback, 23, 40, 56, 107
input–output, 108
input–state, 107
limits, 123
partial, 23, 43, 66, 68, 81, 109

collocated, 24
coupled inputs, 25
non-collocated, 24

LQR, 9, 71

N
Normal form, 109

feedforward, 11, 48, 50, 53
non-triangular, 11, 53
non-triangular quadratic, 50
strict feedback, 11, 45–48, 50, 53, 66

O
Observability, 17

P
Passivity, x, 8, 9, 113
Peaking phenomenon, 56, 125
Pendubot, 8, 9, 18, 27, 29, 42, 48, 64, 65, 67
Pendular systems, 64
Pole placement, 9, 71, 80, 130

R
Reduction, 49
Relative degree, 8, 21, 40, 41, 43, 108, 109

robust, 111
Robot

flexible, 8, 18
joint elasticity, 41, 64
walking biped, 10
wheeled, 18

S
Satellites, 8, 18, 27
Sliding mass on cart, 41, 64
Sliding mode, 10, 116
Stability, 93, 94

asymptotic, 96

equilibrium, 95, 96
exponential, 96
global, 96
switching system, x, 100

Stabilization, 8, 10, 11
feedback, 130
local, x, 106
of a system, x, 105

Structural properties, 8, 10, 19, 35, 50
Structure

chain, 10, 35, 39–41, 55
isolated vertex, 10, 35, 39, 40, 43, 55, 82
tree, 10, 35, 39, 40, 42, 55, 64, 78

Switch, 9, 71
Switching control, 10, 71
Symmetry, 26

kinetic, 27, 47, 49
System

aeronautic, 18
aeronautical, 7, 26, 27
autonomous, 94
chain, 20
Lagrangian, 18, 26
marine, 8, 18
mechanical, 7, 27

fully actuated, 21
underactuated, 10, 27, 35

minimum phase, 110
mobile, 8
non-autonomous, 94
non-minimum phase, 21, 110
nonlinear, 15, 19, 66, 96, 106
spatial, 7
switching, 121

T
Tora, 8, 9, 18, 27, 29, 42, 47, 64, 65, 67
Trajectory tracking, 10, 57, 105
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