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PREFACE

The present monograph takes inspiration from the Advanced School
on “Analysis and Control of Mizing with Application to Micro and
Macro Flow Processes” held in Udine, Italy, (June 1-5, 2005) at
the International Center for Mechanical Sciences (CISM). The Ad-
vanced School was made possible by the financial and logistic support
of CISM and by the financial support of the Marie Curie Program
of the European Atelier for Engineering and Computational Sciences
(EUAJX). The Advanced School was complemented by a workshop.
The workshop provided a fertile environment for discussions where
participants in the Advance School, as well as academic and indus-
try experts from fluids, combustion and control disciplines, presented
their most recent results. The Advanced School and the workshop at-
tracted a wide range of scientists and practitioners: postgraduates,
postdoctoral researchers, mechanical, chemical and aeronautical en-
gineers, and applied mathematicians in universities and industries.

The study of mizing two or more fluids with or without chemical
reactions is of great practical relevance to both engineering applica-
tions and natural phenomena. The analysis and control of mixing
at macro and micro scales is receiving great attention because of the
potential for optimizing the performance of many flow processes. In
modern and futuristic industrial applications, the time allowed to find
the appropriate miring action is becoming increasingly shorter while
the demands are increasingly more severe. A better understanding of
mixing is crucial for improving old and designing new mizing devices
that are able to reduce the residence mizring time, improve mizring
homogeneity and allow the process of new materials highly sensitive
to the presence of concentration and temperature gradients. In spite
of much advancement, the understanding of mizing is still somewhat
limited in three-dimensional flows. In particular optimization and
feedback control of mizring are still in their infancy. Consequently,
mixing continues to represent a rich and appealing research field for
both the fundamental and the application oriented scientists.

The Advanced School provided an overview of the physics, math-
ematics and state-of-the-art theoretical/numerical modeling and ex-
perimental investigations of mizing in laminar and turbulent flows
at macro and micro scales. This monograph follows the footsteps of



the Advanced School and contains the following contributions: An-
thony Leonard presents an “Overview of Turbulent and Laminar
Diffusion and Mixing”, Igor Mezi¢ discusses “Mixing and Dynam-
ical Systems”, Stefano Cerbelli presents the “Hyperbolic Behavior of
Laminar Chaotic Flows”, Massimiliano Giona discusses “Advection-
diffusion in Chaotic Flows”, Emmanuel Villermaux elaborates on
“Random Mizing”, Fotis Sotiropoulos presents an “Experimental Vi-
sualization of Lagrangian Coherent Structures Using Fulerian Av-
eraging”, Tatyana Krasnopolskaya discusses “Quality Measures and
Transport Properties” of mixing, Tamds Tel discusses some aspects
of “Reactions in Chaotic Flows”, Mark A. Stremler elaborates on
“Fluid Mizing, Chaotic Advection, and Microarray Analysis”, Jean-
Luc Thiffeault presents “The Size of Ghost Rods”, Bartosz Protas
discusses the utility of “Nonlinear Preconditioning in Problems of Op-
timal Control for Fluid Systems” and, finally, Luca Cortelezzi elabo-
rates on the “Sensitivity of Mizing Optimization to the Geometry of
the Initial Scalar Field”.

We would like to thank all the contributors for their scholarly ded-
ication in making this volume a reality. We would also like to thank
all members of CISM for their help in making the Advanced School
and this monograph a success. In particular, we would like to thank
the Secretary General, Prof. Bernhard A. Schrefier, for encourag-
ing and supporting our Advanced School, Dr. Sara Guttilla, for her
dedicated help in all stages of our Advanced School and, finally, the
Executive Editor Prof. Paolo Serafini for his precious assistance dur-
ing the editing of this monograph.

Luca Cortelezzi and Igor Mezié
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Overview of Turbulent and Laminar Diffusion
and Mixing

A. Leonard

Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, California, USA

1 Introduction

The theme of this short course is mixing. My task is to present some basic
material on convective-diffusive processes that should be useful in under-
standing, e.g., control of mixing and various flow processes that might be
employed to enhance or delay mixing. These latter topics will be discussed
in other chapters.

For our purposes, we shall be interested in characterizing the evolution
in time of a passive scalar distribution function ¢(x,t) that satisfies the
convection-diffusion equation,

99
ot
with appropriate initial and boundary conditions. Here u(x,t) is a specified
velocity field, or one that is computed separately, and D is the diffusion
coefficient for ¢. The velocity field can come in many different varieties, 2D
or 3D, time-independent or time-dependent. The distributions of spatial
scales and of time scales can be important factors also. If U and L are
characteristic velocity and length scales of the flow w then an important
nondimensional parameter is the Peclet number, Pe = UL/D.
We will see that much depends on the character of passive particle paths
x(t) given as the solution to

+u-V¢ = DV?3¢, (1.1)

dx

— =u(x(t),t 1.2
7 = u(a(t), 1 (12)
with (0) = @¢. If these paths have a sensitive dependence on the initial
location, i.e., initially nearby trajectories diverge exponentially, one has so-
called lagrangian chaos. The convective-diffusive behavior of a passive scalar
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depends critically on whether the flow exhibits lagrangian chaos, especially
for high Pe. Steady 2D flows do not produce chaotic particle paths, while
unsteady 2D flows and steady 3D flows may have lagrangian chaos.

2 Laminar Diffusion

2.1 Case u =0

For this simple case (1.1) reduces to

99 o
5 = DV (2.1)

We consider the infinite domain with ¢(x,0) = ¢o(x).
Multiplying (2.1) by 1, @, and |z|?> and integrating over all space we
obtain, respectively,

%/(b(m,t)dm =0, (2.2)
d
7 /w¢(w,t)dw =0, (2.3)
and
% / @2, )de = 2dD/¢(sc,t)dw, (2.4)
where d is the number of spatial dimensions. We will use the above results
subsequently.

One can easily show by substitution that the Gaussian distribution

o—lz—0[?/0% (1)

o(x,t) = (I)OW (2.5)
and
dc%: =4D (2.6)

satisfies (2.1). In fact, as we show below, for a compact initial distribution

$o(x),

oz, t) — ¢(z,t) as t — oo, (2.7)
and, from (2.2) and (2.3), we find that

By — / bo()d, (2.8)
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t), random initial field, o8, = 05, = 1. Left: ¢ = 0, Right:

Figure 1. ¢(z,y,
.81.

1/(14+4Dt) =0
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Figure 2. ¢(z,y,t) random initial field, o5, = 05, = 1. Left: 1/(1+4Dt) =
0.64, Right: 1/(1 +4Dt) = 0.49. Same initial field as in Fig. 1.
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Py = /ﬂféf)o(ﬂ?)dﬂ% (2~9)

and (2.6) follows from (2.4).
To determine a general solution the problem with w = 0 note that

o™ exp[—a? /(08 + 4Dt)]

o Vo2 +4Dt

also satisfies (2.1) in 1D. But the ¢, (z,t) are related to the Hermite poly-
nomials H, (z) because

Yn(2,t) =

(2.10)

871

F exp[—2?] = (=1)"H,(z) exp[—2?]. (2.11)
Thus, in 2D for example, we have the following general solution for a com-
pact initial distribution ¢g(x),

> GmnHp(x/\/ 05, +4Dt)Hy(y/ /05, +4D1)

(03, +4Dt)"+ (03, + 4Dt)"+" (2.12)
2 2
— Y ]
agw +4Dt o5, +4Dt

X exp[—

Note that the term m = n = 0 dominates as t — oo proving the claim (2.7).
The coefficients ¢y, , may be determined from ¢o(x) using the orthogonality
of the H! s:

/ e Hp(2)Hy (2)dz = /72016 . (2.13)
It is a simple matter to generalize (2.12) to 3D. See Figs. 1 & 2 for an
example solution. Here 0 < m,n < 5 with the ¢, chosen randomly from
[—1,1] and weighted by 1/[(m + 1)(n + 1)]°.

2.2 Case of constant strainrate

Here u(z,y,t) = ex and v(z,y,t) = —ey where € = €(t) > 0,u = (u,v),
and = (z,y), i.e., the flow is expanding in the x-direction and contracting
in the y-direction. In this case (1.1) becomes

99 99 9¢

2
0 tergy — g, = DV (2.14)

Now it is advantageous to transform to material coordinates
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=Stz y=S(t)y, (2.15)

where S(t) = exp[fot €(t')dt'], and to change to a new time variable 7,

¢
T = / S2(t)dt'. (2.16)
0
The result is that (2.14) becomes

09 _ 0% D 9%

o 8—§2+—S4(t)@' (2.17)

Notice that diffusion in the Z-direction is greatly reduced by the factor 1/5%.
If we introduce an additional time variable 7 for the Z-direction,

dr
ﬁ )
Then we can use the solutions we generated for (2.1) above just remem-

bering to use 7 for the time variable for y and 7 for x. In particular for a
gaussian initial condition, we have

di = (2.18)

_(@=20)® _ (5=90)*
exp|—77ip7 ~ 2774D7)

O Vo? + 4Dio? + 4Dr

So what does this solution look like in z,y, and ¢? If the strainrate € is
independent of ¢ then

o(z,y,7.7) = (2.19)

1 1

.~ (2t __ _ 2
T= o (1) = 5 (57 - 1) (2.20)
and so
(¥ — 9o)? e(y —yo)?
02+ 4Dt 2D (2'21)

for et >> 1.. That is diffusion comes into equilibrium with compression at
a lengthscale ~ /D /e. However, the prefactor

1 € :
e — [ e € 2.22
Vo2 +4Dt 2D ( )
is becoming exponentially small because of the flux of ¢ in the z-direction
due to straining.

For the Z,7 behavior, we use (2.20) in (2.18) to find
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Figure 3. ¢(z,y,t), random initial field with constant strainrate, D/e =
0.01, 03, = 0g, = 1. Left: t =0, Right: e = 2.
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Figure 4. ¢(z,y,t) random initial field with constant strainrate, D/e =
0.01, 03, = 03, = 1. Left: e = 4, Right: e =8.
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T

g 2.2
T 1+ 2er ( 3)
so that
T ! (2.24)
— — .
T 2€
and
= = \2 . 2
(z — %) (z — 20) (2.25)

o2 +4D7 e2et(a2 +2D/e)

Thus, the “effective” diffusion coefficient in the z-direction is increasing
at an exponential rate in time due to a positive strainrate or expansion in
that direction. See Figs. 3 & 4 for an example of this effect. The initial
field is the same as that in the pure diffusion example of Figs. 1 & 2.

2.3 Standard Diffusion in Steady Velocity Fields

We consider now a typical case of advection-diffusion in a steady velocity
field with nonchaotic particle motions'. The flow is a model for Rayleigh-
Bénard convection and is simply

u = U(cosy, —sinx) (2.26)

The flow takes place within square cells with cell width L = /27 bounded
by separatrices. See Fig. 5a. If D = 0 an initial distribution ¢y confined to
a cell will remain in the same cell for all time.

For high Pe (D small) diffusion from one cell to the next will take place
within a thin layer of thickness ¢ near a separatrix. On each pass a particle
spends time 7 ~ L/U moving along next to a separatrix thus 62 ~ D7. On
the other hand, the effective diffusion coefficient, D, (for © = 0) would be
~ L?/7 if an O(1) fraction of the material in a cell diffused out of the cell
in time 7. However, as discussed above, only a fraction , /L, diffuses to
the next cell time 7. Thus,

L2

DN—%Nw%DNN@ (2.27)
T

Note that D is much larger than D as D — 0 or Pe — oc.
For the case

! This lecture is based on material in “Dynamical Systems Approach to Turbulence”,
Chap. 9, by Bohr, Jensen, Paladin & Vulpiani, Cambridge Press 1998
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Figure 5. Structure of the separatrices for the flow of (a) Eq. (2.26) and
(b) Eq. (2.28) with A = 0.3. [3]

u=U(cosy,—(1+ A)sinz) A#0 (2.28)

one obtains effective diffusion that is strongly anisotropic. This is be-
cause channels of width ~ A appear where the motion is ballistic in the
y-direction. See Fig. 5b. Thus, for small D a diffusive element can travel
a long distance in the y-direction before leaving the channel by diffusion.
Fig. 6 depicts the motion of a diffusive particle in this flow field. In this
case the particle motion is represented by trajectories given by (1.2) plus a
random component,

dx

= ula(t),) +n(0) (229)

where 7 is a gaussian process with zero mean and variance given by

<ni(t)n;(t') >=2D6; j6(t —t'). (2.30)
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Figure 6. (a) 1000 positions (recorded every 6 units of time) of one particle
evolving according to Eq. (2.29) with the velocity field of Fig. 5b and
D =0.001. (b) y vs. t for the same particle. [3]

The length of travel in y of a typical flight is £ = Ut| where ¢ ~ A?%/D.
Thus, the effective diffusion coefficient in the channel or longitudinal direc-
tion Dy is

~= (2.31)

where the factor A/L is the probability of finding an element within the
channel. Thus, we have an interesting example where the longitudinal dis-
persion is actually inversely proportional to the molecular diffusivity. An-
other example of this type is dispersion along the flow direction for laminar
pipe flow or channel flow (see Taylor (1953)[1], Taylor (1954) [2]). Taylor
showed for pipe flow that the longitudinal diffusivity is given by

R2V?
Pi= 13D

where R is the pipe radius and V is the average velocity.

Note that if Pe is fixed and A/L — 0 then the effective diffusion coeffi-
cient will revert to that given by (2.27). Another way to view this competi-
tion is to compare the channel width A to the layer thickness § = \/DL/U
discussed in the square-cell case. If 6 > A then the diffusion mechanism in
the square-cell case will dominate and replacing A by § in (2.31) indeed gives
the result (2.27). This effect is shown nicely in the numerical experiments
of Crisanti et al.(1990) [3]. See Fig. 7. Note in that figure that Dy ~ 1/D

+D, (2.32)
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Figure 7. The longitudinal diffusion coefficient vs. molecular diffusion D
for the velocity field of Eq. (2.28) and A = 0.30 (+), 0.15 (x), 0.075 (O).
The broken lines have slopes -1 and 1/2. [3]

for small D and D) ~ D'/2 for large D with the transition taking place at
o~ A

For diffusion in the transverse direction, a diffusive element in the chan-
nel only travels an effective distance L in time ;. Thus

AL L

D~ 2.
R (2.33)

Again (2.33) will apply as long as A > 6. If § > A we replace A with ¢ in
(2.33) giving the result (2.27) as expected. In Fig. 8 we show the results of
numerical experiments confirming the prediction (2.33) (Fig. 8b) as well as
the prediction (2.31) (Fig. 8a).
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Figure 8. (a) The longitudinal diffusion coefficient vs. D/A3 and a dashed
line with slope -1. (b) The transverse diffusion coefficient vs. D/A (shown
as x/0 in the figure) and a dashed line of slope 1. The symbols correspond
to A =0.30 (+), 0.15 (x), 0.075 (O). [3]

2.4 Anomalous Diffusion

Although in the above examples, the effective diffusion coefficient can be
proportional to various powers of Pe and depend on other parameters, such
as A/L, the diffusion is standard, i.e., the mean square distance traveled by
a diffusive element is asymptotically linear in time, i.e.,

< |z(t) — 2(0)]2 >~ 2, (2.34)

with v = 1/2. In other example flows we might observe anomalous diffusion:
subdiffusion if v < 1/2 or superdiffusion if v > 1/2.
For example, consider advection-diffusion in the simple shear flow

u = (u(y),O), (2'35)

where u(y) is a random periodic function which is given in terms of its
Fourier transform (k) as

u(y) = i e 2™k /A gy (k) dk. (2.36)

k=—oc0
where A is the period. The mean-square velocity is

o0

Urms = Y < |(k)]* >~ / S(k)dk, (2.37)
k

— 00

where dk = 27 /A and the velocity spectrum is
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S(k) = % < la(k)]? > . (2.38)

It has been shown (Young & Jones (1992)[4]) that the diffusion is standard
and

L S(k)
Do ~ — 2.
e~ T /O ) i (2.39)

as long as the integral in (2.39) is bounded. In this case, we obtain a result
similar to the result (2.31) when D is small diffusive elements will travel
long distances in z in one direction before diffusing to an oppositely moving
shear flow. In fact,

/ Slif) dk ~< u? > \2, (2.40)
0
where A is a typical length of the velocity field u(y), e.g., the typical distance
between two zeros of u(y). Thus D, ~ A\?/D rather than the cubic power
of the lengthscale in (2.31) because the total width A contributes to the
diffusion process rather than a fraction ~ A/L in the case of (2.31).

If, on the other hand, if S(k) does not go to zero fast enough as k — 0
then we obtain superdiffusion. In particular if we assume that

S(k) ~ K (2.41)

as k — 0 then standard diffusion occurs if v > 1. However, if -1 <y <1
then we obtain superdiffusion with the exponent v (see (2.34)) given by
3—vy 1
= > —
T4 T2

if y < 1. Fory=1, < |z(t) — 2(0)]? >~ tlogt.

(2.42)

3 Averaged diffusion equation

The effective diffusion coefficients discussed in Section 2 are special cases
of a more general averaging procedure applied to (1.1). If we average (1.1)
locally over a volume of linear dimensions much larger than the typical
length L of the velocity field then we obtain approximately

0<¢> 0 < o>
=D,
5'15 8%8%

where < ¢ > is the averaged ¢. The diffusion coefficients measure the
spreading of a spot of tracer particles over very long times as follows:

(3.1)
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1
’D,L] = lim _t < (l‘z(t)f < x; >)($j(t)* <z >) > 1,7 =1, ..,d (32)

t—o00

where the average is taken over the initial positions or over an ensemble of
test particles. If such a covariance tensor exists, solutions to (3.1) would
then asymptote to an anisotropic Gaussian distribution as discussed in Sec-
tion 2.

In some cases, we can compute the covariance tensor in (3.2) in terms
of the lagrangian velocity covariance tensor as follows. Note that

0
where v(t) = u(x(t),t) is the lagrangian velocity for the particular element
being tracked in (3.3). Assuming we have factored out any net drift, i.e.
< v(t) >= 0, then

t ot
< (@ilt)= < 25 >) (@5 (8)= < 2 >) >=/ / < wit )y (¢) > dt'dt”.
o Jo
(3.4)
For a stationary process < v;(t')v;(t' + 7) > only depends on 7. Letting
t" =t' 4+ 7 in (3.4) and changing the order of integration we find for the
case i = j, for example, that

t

< @i(t)— <z >)? >=/ (t — |7)Cui(r)dr (3.5)

—t
where Cj; (1) =< v;(t)v;(t + 7) >. Thus

< (zi(t)— <z >)? >— 2t /OO Cyi(T)dr (3.6)
0

and referring to (3.2) we see that

D= | " Cumydr (3.7)

assuming the integral is bounded. The result (3.7) was first derived by
Taylor(1921)[5].

4 Turbulent diffusion

Another example of superdiffusion dates back 80 years. In 1926, L. F.
Richardson [6] postulated that a cloud of points in a turbulent fluid would
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Figure 9. Log D vs. Log ¢ from [6]. Also shown is Richardson’s fit,
D = 0.20*3, and a line ~ (2.

be dispersed with an effective diffusion coefficient that depended on the size
of the cloud itself. Specifically, he proposed that D ~ (%3 where / is the
lengthscale of the cloud. Because £2 ~ Dt then (2 ~ (*/3¢ so we have (2 ~ t3
and hence superdiffusion with v = 3/2. To understand this result we can
use Kolmogorov type arguments for inertial range scaling of turbulence to
derive this result. Assuming that only the energy cascade rate € and the
lengthscale ¢ are the important parameters for turbulent diffusion and using
dimensional analysis we find

D(l) ~ /3043, (4.1)

Richardson [6] found that for the global atmosphere
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log (k)

-G Pl

" logk

Figure 10. Energy spectrum (¢(k) = E(k)) from the measurements of [8].
The straight line has slope -5/3.

D(f) = 0.204/3 (4.2)

with ¢ measured in ¢m and D in em?/sec (See Fig. 9). Note that the
growth rate £2 ~ t3, is even faster as than the “ballistic” case £ ~ (vt)2.
This is a result of the fact that as the cloud grows in size, larger more
energetic eddies participate in the dispersion and this effect will continue
as long as ¢ remains within the inertial range of 3D turbulence where the
energy sprectrum FE(k) ~ k=%/3 ~ (5/3. See Fig. 10.

As discussed by C. E. Leith (private communication 1999), Richardson’s
data for the larger lengthscales seems better fitted by D ~ ¢2 (Fig. 9). This
result is consistent with the notion that the largescale global atmospheric
motions fall with the inertial range for 2D turbulence. In this case, the
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Figure 11. Spectra of largescale motions in the atmosphere ([9]) (a) kinetic
energy (b) enstrophy.
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enstrophy cascade rate, n, with dimension [T"~3] combines with £ to yield

Dap ~ /362 (4.3)

so that we have superdiffusion with v — oo within the enstrophy cascade
range. For this range E(k)ap ~ k=3 ~ (3 (see Fig. 11) so evidently the
eddy energies grow so fast with increasing ¢ to give this curious result.

However, a more careful dimensional analysis for the case of dispersion
within the enstrophy cascade range of 2D turbulence gives

o
@ 4.4
o~ ¢ (4.4)

so that /£ is exponential in time £ = £y exp(Cn'/3t). Thus, we can write

1/3 424
~ b (4.5)
log(¢/4o)
giving us a log correction to (4.3),
1/3 2
Dyp ~ — (4.6)

" log (/)

In Pasmanter (1988)[7] anomalous diffusion is discussed for various types
of flow. In this article results for the growth of pollutant clouds in the sea
are reproduced and are shown in Fig. 12. Here agy ~ (2 is plotted vs.
t on a log-log scale for seven different types of sea flows. Note that case
A, dispersion in shallows seas, shows nearly regular diffusion (¢? ~ t0-96)
while case C, dispersion in the open sea, shows a result close to Richardson
diffusion (2 ~ t287). Other cases fall between these two.

5 Convection-diffusion with lagrangian chaos

In this Section, we investigate convection-diffusion in the presence of la-
grangian chaos. In such flows, some particle paths are unstable in the sense
that two nondiffusing particles, initially separated by an infinitesmial dis-
tance dp, will separate exponentially in time, i.e. §(t) = dpe. As we shall
see, such chaos can have a dramatic effect on the convective transport with
or without diffusion.

5.1 Time-dependent Rayleigh-Bénard convection

We illustrate the effect of lagrangian chaos with the example flow of time-
dependent Rayleigh-Bénard convection (Camassa & Wiggins (1991) [10]).



18 A. Leonard

T T
0% 1
— TIME [3)

7

ARZA

-0;3; oet!7®
0° : T

L]
w? ! »
— TIME [s]

Figure 12. Average square size of pollutant clouds in the sea as a function
of time: (A) shallow seas, (B) English estuaries, (C) open sea, (D) American
coastal waters, (E) American estuaries, (F) Baltic coast, (G) fjords. [7]
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X

Figure 13. Stable (solid) and unstable (dashed) manifolds close to the line
z =0 with e=0.1, w=0.6, U =0.1. [10]

If the temperature difference between the top and bottom of an array of
convection cells is increased past a critical value, a time-periodic instability
occurs. A model for this flow is (Solomon & Gollub (1988) [11])

u(z,y,t) = —% cos y(sin kz + ek cos wt cos kx) (5.1)
v(z,y,t) = Usinmy(coskx — ek coswt sin kx) (5.2)

where U is a typical vertical velocity and k is a wavenumber in z. The small
parameter € is proportional to (R — Rc)l/ 2 where R is the Rayleigh number
and R, is the critical Rayleigh number.

If ¢ = 0 we have steady 2D cellular flow similar to the model flow of
Section 2. In the present case, vertical separatrices occur at locations x =
0, +m/k,+2m/k, ... Nondiffusive particles would orbit within two consecutive
vertical separatrices and never escape. If such a particle is on the separatrix,
say at x = 0, then, in infinite time, it will reach the hyperbolic stagnation
point at (0,1). Thus the vertical line = 0 is both a segment of the stable
manifold of the stagnation point (0,1) and the unstable manifold of the
stagnation point (0,0). If diffusive effects at high Pe are included then
elements within a thin layer next to a separatrix have a chance to escape to
the next cell as discussed in Section 2.

To consider the time-dependent case, € = 0, it is useful to consider the
Poincaré map, F, for this time-periodic flow. The Poincaré map displays the
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Rq

Figure 14. Turnstile lobes between cells Ry and Ry. [10]

locations of particles at periodic intervals in time, T' = 27 /w, corresponding
to the period of the velocity field. It is particularly useful for our purposes
to display all such positions for particles lying on the unstable and stable
manifolds of hyperbolic stagnation points in the Poincaré map. In Fig.
13 we show parts of two such manifolds for the present case. Note, for
example, that the unstable manifold shown emanates smoothly from its
hyperbolic point near (0,0) but oscillates wildly near the point (0,1). The
stable manifold for the point near (0,1) acts in similar fashion with respect
to the critical point near (0,0).

Consider two sequential points where the unstable and stable manifolds
intersect. It is clear that such pairs will map to another such pair under the
action of the map F. Thus, the segment of the unstable manifold and the
segment of the stable manifold that connects these points define a “lobe”
of material that is mapped in corresponding fashion (see Fig. 14). For
example the lobe Ly in cell Ry is mapped to lobe FLg; which may be
defined to be in cell R;. On the other hand, as seen in Fig.14, L, o of cell
Ry, is mapped to FLj in cell Ry. Corresponding transfers between cells
R; and Ry are also shown. For this incompressible flow all lobe areas are
equal.

Higher iterates of such “turnstile” lobes become very elongated, fila-
mentary structures. See F¥L; o in Fig. 15 for k = 0,1,2,3. Observing
the intersection of such lobes with other turnstile lobes reveals how transfer
from cell to cell takes place. For example, note that FL; ( resides com-
pletely in within cell Ry being transferred from cell R;. However, a portion
Ly of FLy is within the turnstile lobe L; o and therefore, will be trans-
ferred to cell R_; at the next iterate. A detailed account of this lobe
transport process for this application is given in Camassa & Wiggins (1991)
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Figure 15. Iterates of the lobe Lj . [10]

[10]. (Hereafter referred to as CW.) A more general theoretical development
appears in Rom-Kedar & Wiggins (1990) [12].

Particle motions within these lobes are clearly chaotic given the expo-
nential rate of elongation of their boundaries. See Fig. 15. Thus, we might
expect to model the lobe transport in this application by an effective diffu-
sion process with diffusion coefficient

Ar

where Aj is the lobe area. CW compute the lobe area using Melnikov
theory. They find that (converting to dimensional units)

H
A = 26H2566hu2}—[] (5.4)

where H is the cell height. Using values roughly corresponding to Solomon
& Gollub’s experiment [11]: € = 0.1, w = 0.6sec™!, U = 0.1em/sec, and
H = 1em, we find Ay ~ 0.02cm?. With T = 27/w ~ 10sec we have D ~
0.002¢m?/sec. The molecular diffusion coefficient D for Solomon & Gollub’s
experiment[11] is D ~ 5 x 10~%cm?/sec. The ratio is D/D =~ 400. Thus, we
expect, on short timescales, that the addition of molecular diffusion to the
lobe transport mechanism would have little effect. However, if we consider
a diffusion timescale, Ty;rf, defined by D and maximum lobe width d(e)
then
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Figure 16. Results for no molecular diffusion (solid) and with molecular
diffusion (dashed), e = 0.1, time in number of periods. [10]
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Figure 17. Results for no molecular diffusion (solid) and with molecular
diffusion (dashed), e = 0.01, time in number of periods. [10]
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Figure 18. Paths of 100 sec long trajectories of 12 particles. [13]

2
Tusr = L7+ 2000sec, (5.5)
D

where we have used the result d(e) = ewH/Usech(wH /2U) cosh(m?U /2w H)
as computed by CW. Hence we would expect to see a significant effect of
the addition of molecular diffusion at this longer timescale. Because T =
10 sec., we expect to see the effect at 200 periods. Results of corresponding
numerical experiments by CW are shown in Fig. 16. We see that this
estimate is roughly correct. In Fig. 17 computations for the case ¢ =
0.01 are shown. All other parameters are the same as the previous case.
Here Ty;55 ~ 20sec. Thus, diffusion effects should become apparent at
approximately 2 periods. This estimate seems to work for cell Ry but is too
low for cell R_;.

5.2 Lévy flights

In some applications, a diffusive particle can escape after being stuck in
one cell and then make a long ballistic flight to another cell or, perhaps, back
to the same cell. In Fig.18 such flights are depicted from the experiments of
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H. Swinney’s group (Weeks et al. (1996) [13]). They found that flight time
and sticking time probability distribution functions (PDFs) have power law
decays: P(t) ~ t=* and t~%, respectively. If the flight time PDF decays
slowly such that p < 3 then one obtains superdiffusion and the distribution
function for |r(t)|? is a Lévy distribution. For a slowly decaying sticking
time PDF (v < 3) either subdiffusion or superdiffusion can occur. For p > 3
and v > 3 normal diffusion is recovered.

6 Numerical simulation techniques and applications

In this Section we discuss various approaches to simulate numerically the
advection-diffusion equation. The approach taken will usually depend on:
(1) if the Peclet number is large and (2) if the velocity field must be simu-
lated simultaneously.

6.1 Methods for Large Pe

In the case of large Pe, significant gradients in the scalar field ¢ will
typically be confined to thin sheets that move with the fluid. If F' is the
strain tensor for a particle located on the sheet then the axes of maximum
and intermediate principal strains will (nearly) lie in the plane of the sheet.
The local sheet area will have expanded by a factor e(*1+22)t where )\
and Ay are the first and second finite-time Lyapunov exponents of the local
strain tensor. Gradients along axes of positive strain are greatly reduced as
discussed in Section 2. Perpendicular to the sheet, gradients will be greatly
enhanced by the compressive effect. As discussed in Section 2, the layer
thickness § will scale as 6 ~ \/D/e; where

t t
eLmt / (e = 1 / O (#) + Ao (¥)))dt. (6.1)
t Jo tJo

For small D, or large Pe, it is not usually practical to capture the behav-
ior of such thin moving surfaces with a fixed grid system. The total number
of grid points must be O((£/§)?) where d is the number of dimensions and £
is the scale of the computational domain. An exception to this requirement
is a grid method employing adaptive mesh refinement or AMR. Here sharp
interfaces are “detected” or tracked and temporary localized blocks of fine
meshes are embedded in the basic coarse mesh encompassing the interface.
The use of lagrangian methods can eliminate the use of a mesh system
altogether. For example diffusive elements can tracked by Eq (2.29) with
diffusive effects modeled by Brownian motion as illustrated in Sections 2
and 5. However, if accurate results are required, an extremely large number
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Figure 19. Convection-diffusion simulation using a particle method. Un-
steady cellular flow.[14]
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N of particles would be required because the error is proportional to 1/ VN,
i.e., convergence is very slow with increasing N.

A typical deterministic lagrangian particle method of interest consists of
representing the scalar field as sum of scalar blobs:

aie‘mfmi (t)|2/02(t)

Pl t) = el (6.2)

%

Here the blobs move with the fluid

dx;
C‘ft = wu(zi(t), 1), (6.3)
and the core diameter satisfies
d 2
7 —4D. (6.4)

dt
As discussed in Section 2, (6.4) satisfies the diffusive effects exactly in a
deterministic fashion. Unless 02 — 0 there is a convective error involved
in the use of (6.3) which is zero only for a point particle. This error is
O(0*(0u;/0x;)0%¢/dx;0z;). In addition, the particles must, periodically,
be redistributed onto a regular array of particles with o2 = o2 for one or
both of the following reasons: (1) The o%(t) become too large because of
(6.4), (2) because of the accumulated strain the particles become stretched
apart in some directions and with further stretching (6.2) would no longer
be an accurate representation of ¢.

Figure 19 (Moeleker & Leonard, (2001) [14]) shows a typical computation
using the above deterministic particle method. The flow is similar to the
oscillating Rayleigh-Bénard flow of Section 5 except that chaotic transport
takes place vertically instead of horizontally. Here D = 0.001 and Pe =
w/D = 3,000. A similar such flow was benchmarked by a second-order
finite-difference method and required an 800x800 mesh (640,000 pts.). In
the lagrangian simulation 6000 particles were used at t = 0 and that
number grew to about 25,000 due to the redistribution process. The finite-
difference computation took about 150 times longer in cputime.

6.2 Flame sheet problem

In some applications it may be advantageous to track surfaces of in-
terest by lagrangian methods. Figure 20 depicts a simplified flame sheet
problem. The sheet separates two reactants A and B. The stoichiometry
of the reaction is such that equal masses of each reactant are consumed at
the infinitely thin reaction zone on the flame sheet. A material point p on
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€(p,t)

Figure 20. Flame sheet geometry. [15]

Figure 21. Overlapping of product zones. [15]
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the sheet moves with velocity of the flow. Let y be a relative coordinate
normal to the sheet at p into the space containing A. See Fig. 20 taken from
Leonard et al. (1987) [15]. For a thin flame we require only the first term in
the Taylor series for the relative convection velocity in the direction normal
to the flame sheet. Thus the conservative equation for the mass fraction of
reactant A, @4, is

8<I>A 8(I)A 82(I)A
- =D .
o Yoy a2 (6.5)

where D is the diffusion coefficient and €(t) is the stretching rate of the sheet
at p. This problem may be transformed into the familiar diffusion equation
using the methods of Section 2. We find that

S(t)y
V4Dt

where S and 7 are defined in terms of €(¢) as in Section 2. Thus, except for
the important proviso to be discussed below, the reactant consumption rate
per unit initial area and the volume of reactant consumed per unit initial
area at p can easily be computed from (6.6) [15].

The results given above, however, are only valid up to the point when the
zone of the product at p “collides” with the product zone of another point
on the sheet. See Fig. 21. Thus one must factor in this sort of information
for a general result.

Figure 22 shows the result of such a model computation in 2D with
finite-reaction-rate chemistry (Chang et al. (1991) [16]). The model uses the
assumption of self-similar internal structure within the thin reaction zone to
compute the evolution of reactant, product, reaction rate, and temperature
locally along each point on the sheet. Comparisons with full 2D time-grid
simulations are good. See Fig. 23.

(I)A(pvyat) = erf[ ] (66)

6.3 Turbulent Diffusion at Moderate Re and Pe

If one is simulating a turbulent flow including all the important scales
of motion, then using the same grid system one can simultaneously directly
simulate turbulent diffusion of a passive scalar if the Prandtl number, Pr,
or Schmidt number = v/D, is somewhat less than unity. In other words,
the scalar field has stronger gradients than the velocity field when Pr = 1.
Alternatively one could lower the Re of the turbulence and study turbulent
diffusion at Pr > 1.

The results of one such study are shown in Figs. 24 and 25 (Bogucki
et al. (1997) [16]). The flow is homogeneous turbulence at Rey = 25, 36,
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Figure 22. Model results for (a) reactant field, (b) temperature rise field,
(c) reaction rate field, (d) product concentration field. [16]
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Figure 23. Full finite-difference results for (a) reactant field, (b) tempera-
ture rise field, (c) reaction rate field, (d) product concentration field. [16]
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and 77 with Pr = 3,5, and 7. Forcing is applied at low wavenumbers to
maintain the turbulence and scalar variance. In Fig. 24 we note that the
velocity spectra have a short inertial range (especially visible for the 240°
simulations in x’s) followed by long exponential tail, i.e. the flow is over
resolved. Fig. 25 shows all the scalar spectra. They all show a Batchelor
spectrum Fy ~ k~! of a decade or more followed by an exponential tail.
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Lectures on Mixing and Dynamical Systems

Igor Mezié

Department of Mechanical Engineering
University of California, Santa Barbara, CA 93105-5070.

1 Subject and purpose

The subject of fluid mixing is, from the technological perspective, an old
one. It is encountered almost daily when we pour milk into coffee or try to
achieve a particular paint color. The yearly output of industrial products
for which fluid mixing is a part of the production process is measured in
billions of dollars. If two fluids are in contact, mixing can proceed purely by
molecular diffusion, but it is most commonly achieved by a combination of
stretching of fluid interfaces by the macroscopic velocity field and molecular
diffusion. Within the subject of fluid mechanics this process has been
studied for 100 years, beginning with a paper of Osborne Reynolds. A lot
of work has been devoted to non-diffusive mixing in the applied dynamical
systems community in the past 20 years, after a seminal paper by Hassan
Aref (1984), where he coined the term ”chaotic advection” to mean efficient
non-diffusive mixing in flows with simple time-dependence. Since the 1990’s
the field of chaotic advection has gained increased attention from (at least)
three directions: 1) Scientific investigation of fluid processes at microscale,
usually producing flows with simple time-dependence, accompanying the
fast technological advances in miniaturization and applications to biology
and medicine, 2) Recognition that mixing by large coherent structures can
be described using the chaotic advection theory and 3) Increased interest in
active control of fluid processes, including control of mixing.

This set of lectures is an attempt to describe a mathematical framework
for analysis of fluid mixing for different audiences, with interest in mathe-
matical fluid dynamics and applied dynamical systems, mostly based on di-
rections pursued within my research group. From the perspective of applied
dynamical systems, the focal point of the subject is describing mixing proper-
ties of solutions of ordinary differential equations satisfying the incompress-
ibility (volume-preservation) condition in a three-dimensional space. The
incompressibility condition imposes structure for this class of dynamical
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systems, but less so than in Hamiltonian systems. As for the mathematical
fluid dynamics, the interest mostly lies in understanding the mixing proper-
ties of fluid velocity fields satisfying (in addition to incompressibility) the
Navier-Stokes equation of fluid motion in a bounded domain, given some
fizxed boundary conditions. The goal is a complete description of the change
of mixing properties with nondimensional parameters such as the Reynolds
number for incompressible, Newtonian, viscous fluids. In control theory the
problem of interest is inducing maximal mizing by changing the boundary
conditions in time or introducing additional time-varying forces e.g. in elec-
trically conducting fluids. This problem is different from the problems of
stabilization to a fixed point or some other invariant manifold of the system
that are usually discussed in control theory: it is in its essence the problem
of destabilization and will not be considered in these notes.

Chaotic advection can not exist in planar steady velocity fields - peri-
odic time-dependence is required. In the existing books on the subject of
chaotic advection, those of Ottino (1989) and Wiggins (1992) most of the
analytical developments are cast in the context of geometrical theory of two
dimensional time dependent area-preserving flows. These lectures present
a variety of results applicable to three-dimensional flows.

The theory that we describe here is mature: it has been tested in exper-
iments and besides the relevant mathematics we describe how it is used to
predict experimental results.

This is supposed to be a set of lecture notes that joins concepts from
geometrical dynamical systems theory, ergodic theory and fluid kinematics
into a coherent unit. The historically inclined reader might be familiar with
the treatise of Truesdell (1954) ”The Kinematics of Vorticity” and ponder
how are the ideas and methods here different. Firstly, differential geome-
try and differential topology are used here in the spirit in which they are
used in dynamical systems theory. Secondly, relationship is made with the
statistical theory of deterministic fluid velocity fields using ergodic theory
- both features are absent from Truesdell’s work. Thirdly, experimentation
has reached a level at which the concepts presented here can be amply il-
lustrated. At the time of Truesdell’s writing, there was little interest in
Lagrangian properties of fluid velocity fields. That situation has changed
dramatically in the past 20 years.

The lectures is intended for an audience of beginning graduate students
in applied mathematics or mechanics or advanced undergarduates in the
same field interested in ”interdisciplinary mathematics”. My hope is that
active researchers in fluid dynamics and dynamical systems will find the
lectures interesting from the point of view of both fields.

I would like to thank the many members of my group that contributed
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to various pieces of the work presented here: David Betz, Domenico D’
Alessandro, Umesh Vaidya, George Mathew, Frederic Bottausci and Car-
oline Cardonne. I would also like to thank the collaborators with whom
I worked on some of the experiments that are presented: Jerry Fountain,
Devang Khakhar, Julio Ottino, Fotis Sotiropoulos and Tom Solomon. Spe-
cial thanks go to Stefano Rosa who carefully read and suggested numerous
improvements and corrections in the manuscript. Finaly, I have benefited
from many discussions with the participants of the CISM Workshop, over
many years, and with many other members of the "mixing via dynamical
systems” community.

2 Geometry and Mixing

The main topic of these lectures is the description of statistical properties of
fluid particle motion in terms of the underlying geometrical characteristics.
It has been long recognized that fluid flow kinematics (i.e. description of
the motion of fluid particles) has connections with statistical mechanics (see
Gibbs motivate the ergodic hypothesis in his seminal work on statistical
mechanics (Gibbs (1902)) and dynamical systems theory.

2.1 Velocity fields and maps

In dynamical systems one of the key objects of study is a system of
ordinary differential equations defined on a phase space. The same holds
for fluid particle kinematics, with the phase space being the physical space:
if the fluid is contained in a set A which is a closure of an open subset of
R3, motion of a fluid particle in a velocity field v defined in the set A is
given by

z=v(x,t),x € At € R, (1)

where x(t) is the position of the particle at time ¢. The solutions of (1)
are given by x(¢,xo,t0), which denotes the position at time ¢ of a fluid
particle starting at time ¢o from xg. Note that this means z(to, zo, to) = 0.
Equation (1) is a differential equation and thus the question of existence
and uniqueness of solutions immediately arises. For example,

=%z eR, (2)

has two solutions that start at = 0 at time ¢ = 0. These are x(¢) = 0 and
x(t) = (1/4)t? as can be checked by direct substitution. It turns out that
the key property of the right-hand side of (2) that allows it to have two
solutions starting from the same initial condition is that it does not have a
derivative at x = 0. In fact, by a standard theorem in the theory of ordinary
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differential equations (Arnold (2006)) if the condition

vz, 1) —v(y, )] < clz —yl, 3)

where c is a constant independent of x and vy, is satisfied in an open neighbor-
hood of z¢, then there is a time interval I such that ty € I and z(t, xo, to)
exists for ¢ € I and is unique. The condition (3) is called the local Lip-
shitz condition. It requests that the right-hand side of equation 1 does not
increase faster than linearly in a domain. The problem is, the described
solution might not stay around very long, i.e. it could run off to infinity at
some finite time ¢.. For example,

&t =22z €R,

satisfies the local Lipshitz condition, but has the solution

1

.T(t,l‘(), 0) = m

Clearly, for positive z( the solution will go to infinity when ¢ goes to 1/xq.
However, if the Lipshitz condition (3) is satisfied globally (i.e. the same c
can be used for all z,y € A), then solutions to (1) exist for all time and are
unique.

The velocity fields v(z, t) encountered in theoretical fluid dynamics come
from solutions of an evolution equation for v(x,t) such as the incompressible
Navier-Stokes equation (Chorin and Marsden (1998))

0
p(—v +v-Vv) = —Vp+ plv, (4)

ot
Vv = 0, (5)
(6)

where p is the fluid density and p the pressure, supplemented by the appro-
priate initial and boundary conditions on p and v. The question of whether
the Lipshitz condition is satisfied for these equations is not resolved in some
important situations (Fefferman (2000)).

Geometrically, for fixed to,zo or for fixed xg,t the vector x(t,xo,1o)
depending on time ¢ is a curve in the set A (see figure 1). A vector function
of time (a map from R — R?) ¢ (x0) = x(t,z0,t0) (to,xo held fixed) is
called a pathline, while the vector function of initial time Xio (z9), where
t,zo held fixed and tg <t is called a streakline (see figure 2). By definition

de}, (wo)/dt = v(z(t, z0,t0)).
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In figure 3 a streakline visualization in a three-dimensional flow is shown
in a cylindrical container containing a mixture of glycerin and water. The
streakline is being visualized by releasing continuously dye particles at a
fixed point in space, and physically realized by injection needles shown in
yellow.

Figure 1. Trajectories starting at zy at time ¢y represented in space-time.

If B is a subset of A, we will denote by

1, (B),

the collection at time ¢ of fluid particles starting in B at time to (see figure
4).

Assume that we know position of a fluid particle at time ¢t = 0 and we
are interested only in where it moved at time ¢ = 1. In this case, the position
of the fluid particle at time 1 will be described by a map that transforms
initial positions at time 0 of points in A into their positions at time 1. This
map is defined by

z1 = Pg(xo). (7)

and transforms A into itself in a one-to-one manner if v is globally Lipshitz.
Clearly, for time-dependent velocity fields the map ¢§ will in general be
different from qﬁg“ if to # 0.

The dynamical systems theory studies individual orbits. Ergodic theory
studies collective, statistical properties of orbits. It arose from an attempt
to justify certain hypothesis necessary to obtain closed-form solutions in
statistical mechanics and is thus a statistical theory.
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Figure 2. Pathlines and streamlines.

2.2 Incompressible velocity fields

The continuity equation for a fluid of density p and velocity v reads

ap

17 d
5 z—p+v-Vp+pV~v:—p+pV~v:O.

+Y ()= i 5)

The first restriction that we will put on v in (1) is the one that comes
from the assumption that fluid density is conserved on particle paths, i.e.
dp/dt = 0. This leads to

V-v=0. 9)

In fluid mechanics, flows with the Mach number Ma = max;caxg |[v|/a <
0.3, where maxgecaxr |v(x,t)| is the maximum value of the velocity mag-
nitude are typically treated as ”incompressible”, meaning that they satisfy
the equation (9). The incompressibility condition means that the volume of
a moving system of fluid particles is conserved: let V'(¢) be the volume that
the fluid particles occupy as a function of time ¢. Let V (¢p) be the volume
that is occupied by that system of particles at a fixed time ¢y and S(to) the
surface that bounds that volume, with a unit normal vector field to S(t¢)
denoted by n (see figure 5).
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Figure 3. Dye streaklines in experiments of Fountain et al. (2000).

0
O—" piue

Figure 4. Transformation of a material inside set B by a flow.
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The Reynolds Transport Theorem and the Divergence Theorem (see
Wikipedia) applied in the first and second line give

i|t:to/ dV = g dV—‘r/ v-ndV
dt V(t) ot V(o) S(to)

= / (V-0)dV =0,
V(to)

As the time ¢ is arbitrary, we have

Proposition 2.1. Let v(z,t) be a smooth velocity field of a fluid for which
density is conserved on particle paths. Let V (t1) = fB dV be the volume of
a set B of fluid particles bounded at the time t = t1 by a smooth surface
S(to). Then V(tg) = f‘ﬁi’O(B) dV = V(tl).

Equation (9) has many important consequences. One of them is that
two-dimensional incompressible velocity fields on contractible domains are
Hamiltonian dynamical systems (Meyer and Hall (1992)). First note that
it is immediate that the existence of a C? function 1 (z,t) such that

o

79 b)
o
9 )

& (10)
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implies volume preservation as

Jor Oy

9% Oy _

Jdr Oy
The converse statement - that incompressibility on contractible domains
implies existence of a function ¢ such that (10) is satisfied is the content of
the so-called Poincaré Lemma'. The function v is called a stream function
and its contour levels at a fixed time ¢ are called streamlines. In the case
of a steady flow, the function 1 is conserved on particle paths:

d 8

ds_ 00, 00

at  ox ('3y
This is the simplest case of the velocity field v being integrable - we found a
function that is conserved on particle paths and foliates the space into 1-D
trajectories.

2.3 Steady and unsteady velocity fields
Steady velocity fields

Steady velocity fields give autonomous dynamical systems (i.e. a system
of ordinary differential equations whose right hand side is independent of
time) of the form

z=v(zx),x € A. (11)

Such velocity fields have particularly nice properties. Let z(t,xq,t9) be a
solution of (11). Then

d{E(t + S,.’Eo,to)

o =v(z(t + s,xo,to)).

so x(t + s,x0,tp) is a solution of (11) if x(¢,zg,to) is. Note the difference
with the unsteady case, where

dx(t + s, x0,t0)

pm =v(z(t + s,zg,t0),t + 5).

The term on the right is not necessarily equal to v(z(t + s, g, to),t) and
so for unsteady (or nonautonomous) velocity fields z(t + s, 2, ty) does not
have to be a solution if z(t, xo, to) is.

!see e.g. http://mathworld.wolfram.com/PoincaresLemma.html
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Now (¢, xo,to) is a solution that for ¢ = tq satisfies x(to, xo, to) = xo
and z(t — tg, 2o, 0) is a solution that for ¢t = to satisfies z(tg — to,x0,0) =
2(0,z9,0) = x9. By uniqueness of solutions they must be the same. More
generally, adding a constant to the initial and final time in the solution does
not change it: x(t + s,20,t0 + ) = x(t,xg,to). Thus, the following group
property holds for autonomous systems:

o " (z0) = ¢y (95 (w0)) = 65 (4 (w0)) = &5 © ¢ (20), (12)

for all zg, t, s, where we have as usual used = to announce that we are defin-
ing a new notation. The operation o is called the composition . The nice
feature of (12) is that we can define a 1—parameter family ®* of maps on A,
®t(x) = ¢} (), the parameter being ¢, that completely describes the motion
of fluid particles under the influence of the velocity field v. In the time-
dependent case in general we will be dealing with a two-parameter family,
the parameters being the initial and the final time. The 1—parameter family
' (z) is called a "flow” in the dynamical systems literature while (unfor-
tunately) ”flow” is reserved for the velocity field v in the fluid dynamics
literature. The family ®* is indeed a group :

1. Tt has an operation, the composition o defined above, under which it
is closed i.e. ®f o ®° = ®!*5 which is an element of the family,

2. Tt has the identity element ®° = I, the identity map on A and

3. Every element ®* has an inverse ®~! such that ®*od~t = d~tod! = J.

Some nice properties of solutions of (11) follow from this analysis: While
time-dependent (or nonautonomous ) velocity fields can have solutions that
intersect in A - meaning that two fluid particles starting from zq, yo can end
up at the same point z at two different times ¢y and tq, that is impossible
for autonomous dynamical systems:

Proposition 2.2. Let ¢f (x0) and ¢} (x1) be two different pathlines of
(11). Further assume that x1 # ¢5(xo) for any s,u € R i.e 1 is not on the
same pathline as xo. Then it is impossible that ¢ (xo) = @7, (yo) for any
S, U.

Proof. We will prove this by contradiction. Assume that ¢;°(zo) = ¢7! (1)
for some s, s1. Note that ¢} (z1) = ¢§' " (1) = ®*1 71 (7). We have (12)
B= R m) = B0 (@) (13)

Ptr—s1tso—to (900) _ ¢61_31+80_t0 (xo)’ (14)

which contradicts our assumption. O
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Exercise 2.3. Show that if two streaklines in a steady flow that satisfy
Xi,(z0) = x¢, (21) for some to < ¢; then z1 = xj_(, _, (o). This implies
that in a steady flow, a streakline passing through a point of A is unique.

The above proposition allows for a simple visualization of two-dimensional
steady flows. The solution qﬁo (o) defines either a curve passing through
to, xo at time tg or a single point, if ¢§U (z9) = xg. Such a point is called
a stagnation point in fluid dynamics and a fized point in the dynamical
sytems literature. Both of these terms carry the same meaning: the fluid
particle that is at xg does not move from there. Fixed points of a steady
velocity field v must satisfy the algebraic equation

v(x) = 0. (15)

Thus, the set A is foliated into 1—dimensional curves and points. None
of these objects intersect, due to Proposition 2.2. In fact, the considera-
tions above clarify the often-stated remark that ”trajectories, pathlines and
streaklines are all the same in steady flows”.

Steady, two-dimensional velocity fields

In two dimensions the situation is particularly simple. We know that the
streamfunction 1 is conserved on particle paths. It turns out that the level
sets of ¢ are composed of pathlines - we describe this in detail below. To do
it, we need introduce the concept of a manifold -a key concept in differential
topology. We do it first in the context of 1—dimensional manifolds which
will suffice for now.

1-D manifolds and their tangent spaces

Choose a basis for R, a unit vector e such that any other vector f € R is
given as f = se,s € R. Also, choose an orthonormal basis for R?, vectors e;
and ey such that any other vector f € R? = xe; + yes. Recall that C™ map
means ”r—times differentiable” map.

Definition 2.4. A set of points M C R? is called a C" 1—dimensional
manifold if for any point (z,y) € M there is a neighborhood U of (z,y) in
M and a C" map ¢ : U — V which has a C" inverse p=! : V — U.

A very important concept related to that of a manifold is its tangent
space .

Definition 2.5. The tangent space at a point (z,y) of a 1—dimensional
manifold M in R? is the line tangent to M at (z,y).
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Calculating the tangent space at a point is simple if we know the map
. As ¢! is a map from R to R? it can be represented by two compo-
nents, (p; !, <p,71). Define the derivative of the map ¢~! to be the vector
(071 /0s, 00, /0s). The tangent space of M at (z(s),y(s)) is dp™*(R) =
c(0p; ' /05,00, [Ds),c € R

A simple example of a 1-dimensional manifold in a two-dimensional space
is the graph of a function. Let f:R — R be a C" function defined on the real
line. The set of points G(f) = {(s, f(s)) € R?|s € R} is called the graph of
f. Let V be any interval on R. It is clear that U = {(s, f(s)) € G(f)|s € V'}
is an open subset of G(f), since U = VxRNG(f), intersection of the open set
V xR in R? with G(f). Define ¢ : G(f) — R by ¢(s, f(s)) = s. Clearly this
map is C” and its inverse, given by ¢! (s) = (¢, '(s), 0, ' (s)) = (s, f(s)) is
also C". The derivative dp™' |, = (9, ' /0s, 00, ' /0s) = (1,df /ds|,). Thus,
the tangent space at a point (s, f(s)) is given by all the vectors of the form
(¢, cdf /dsls), ¢ € R. The slope of this line is cleary df /ds|s.

The concept of the manifold was invented exactly as a generalization
of the above example to the case of more complicated object that can be
represented as graphs of functions ”locally” i.e. in a neighborhood of each of
their points. General one-dimensional manifolds are grouped in two classes:
those that can be smoothly transformed (meaning C” mapped) to a circle
and those that can be transformed to the real line.

Manifolds; Invariant manifolds

Let us first define an n—dimensional C” manifold in analogy with previous
definitions for the 1—dimensional case:

Definition 2.6. A set of points M C R™ is called a C" n—dimensional
manifold if for any point (z,y) € M there is a neighborhood U of (z,y) in
M and a C" map ¢ : U — V C R" which has a C" inverse ¢ =1 : V — U.

We also define the tangent space of an n—dimensional manifold:

Definition 2.7. The tangent space at a point (z,y) of an n—dimensional
manifold M in R™ is the set of all the vectors tangent to M at (z,y).

Note that the set of all the vectors tangent to a point of an n—dimensional
manifold is an n—dimensional vector space and thus isomorphic to R™. In
figure 6 the definitions are illustrated in the example of a two-dimensional
surface. A single point is a 0—dimensional manifold, as is a discrete collec-
tion of points. Compact manifolds in low dimensions are classified in simple
universality classes: for example the only compact 1—dimensional manifold
without boundary is a circle (up to a mapping).
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Exercise 2.8. Show that a two-dimensional sphere in R3 is a 2—dimensional
manifold.

The concept of an invariant manifold is a generalization of the pathline
concept:

Definition 2.9. Let v(x) be a steady velocity field in A. A C" manifold
M C A is called an invariant manifold iff (M) C M for every t € R.

Note that the time in the above dfinition can run both through positive
and negative values and thus the fluid particle that is currently at a point
x € M came from a point in M at which it was whenever the motion started
and will stay in M for all the future times.

Example 2.10. Consider a steady 3—dimensional shear flow

T =z,
y=0,
z=0,
Clearly, the 2—dimensional manifolds z = const. are invariant. So are

Yy = const.

Of course, the concept of a 2—dimensional invariant manifold is the same
as that of a material surface in classical fluid mechanics (Truesdell (1954)).
1—dimensional invariant manifolds are unions of pathlines: It is clear that
any union of pathlines is an invariant manifold Let M; be a 1—dimensional
manifold. Assume z,y are two points on the same pathline but = € M,y ¢
M. This cannot be, as y = ®°(z) for some s € R. 0—dimensional invariant
manifolds are unions of fixed points: Let My be a 0—dimensional manifold.
Assume x € My but x is not a fixed point. Then Mj is at least one-
dimensional for v(x) # 0 which, assuming that v is continuous implies that
there is an open neighborhood U of = such that v(x) # 0 on U Assuming
in addition Lipshitz property for v, ®!(z),—u < t < wu,u small enough,
is a part of a unique pathline passing through x contained in U. Given
d®!(x)/dt = v(z) # 0, this pathline is a C* 1—dimensional manifold.

Manifolds can sometimes be defined by functions that vanish on them.
The following theorem tells us when this is true:

Theorem 2.11. Assume f(x) is a differentiable function on R™. Assume
that V f # 0 on the level set f = c. Then the level set is an n—1 dimensional
manifold in R™.
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In other words, to show that the set of points defined by f(x) = cis a
differentiable manifold, it is enough to check that the vector of its derivatives
does not vanish at every point of that set.

Streamlines, streaklines, pathlines in two-dimensional steady
flows

By applying Theorem 6 from differential topology we know that the equation
(x,y) = c defines a 1—dimensional manifold in two dimensions if |0y /0 |+
|0 /Dy| # 0 for any x,y that satisfy ¢(x,y) = c.

Example 2.12. Take (z,y) = 22 + y*> = 1 and let’s pretend that we
do not know this is a circle of radius 1. Note that |0y /dz| + |0y /0y| =
2|lz| + 2|y| = 2|z| + 2|v/1 — 22|. The first and the second term can not be
zero simultaneously, so by the preceeding criterion this equation defines a
1—dimensional manifold. However, (z,y) = 22 + y? = 0 is satisfied only
for £ = y = 0 - not a 1—dimensional manifold. This is the consequence of
the fact that |0y /0x| + |0¢/0y| = 2|z| + 2|y| = 0.

Streaklines and finite time (0 < ¢y < t) pathlines define the same curve in
steady flows. This is clear from their definition: let xj (zo) be a streakline.
We have

Xio (x0) = z(t,x0,t0) = x(t — to,xo,0) = éft" (z0)-

Conversely, let ¢} (o) be a pathline. Then

¢}, (x0) = 2(t, 20, t0) = (0, o, to — t) = Xp, _4(20)-

Both pathlines and streaklines are connected sets . Recall that a set is
called connected if for any two points a,b in the set there is a continuous
path z(s),s € [0,1], 2(0) = a,z(1) = b.Although they are 1-dimensional,
the level sets of 1) do not have to be connected.

Example 2.13. Let the streamfunction be given by v = (1/2)y?+cos(27z).
This is (with appropriate scaling and shifting of the coordinate system) the
streamfunction for the so-called Kelvin’s 'cat’s eye’ velocity field The same
streamfunction is the Hamiltonian function for the mathematical pendulum.
The level sets for ¢ are shown in figure 7 on the domain « € [—1/2,1/2),y €
(—2,2).

There are four types of level sets (and thus four types of pathlines):
1) The fixed points at the origin and at = 0,y = 0. 2) Pathlines in the
"recirculation zone” around the origin. 3) Separating pathlines given by y =
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Figure 6. Tangent space to a two-dimensional manifold (a surface).

Figure 7. Kelvin’s ’cat’s eye’.
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+24/(1 — cos(27x)). 4) Pathlines extending from the left edge (z = —1/2)
of the domain to the right edge (z = 1/2) of the domain, above the upper
separating pathline and below the lower separating pathline. Note that
there is no exchange of type of motion that a fluid particle can perform: if a
particle is in the recirculation zone bounded by the separating pathlines (or
streamlines), it will never leave that zone. Conversely, if a particle is above
the upper separating streamline or below the lower separating streamline,
it will never cross into the recirculation zone.

The types of pathlines introduced in the previous example are typical for
two-dimensional, steady flows. In the region that contains periodic orbits
we can simplify things even further introduce the so-called action-angle
coordinates (Wiggins (1992)) 1,6, where I = 0,0 = w(I). 1 is the area
encircled by the periodic orbit and 6 is the angular coordinate ranging from
0 to 1 on each orbit.

Because the streamfunction is conserved on particle paths, its level sets
are examples of a general concept of invariant manifolds. We define them
in full generality in the next section. The description of three dimen-
sional incompressible steady velocity fields is more complicated that the
two-dimensional case: in general there is no function that is conserved on
particle paths except in the cases when the velocity field possesses some
symmetry. The motion of particles is thus in general not restricted to stay
on two-dimensional level sets of some functions. Given that, very complex
behavior can occur. But we will first get a glimpse of complexities that
await in the case of unsteady, time-periodic velocity fields.

Fixed points in 2-D steady incompressible velocity fields

Let T = (%1, T2) be a fixed point of the 2 — D steady incompressible velocity
field v ie. v(T) = (vi(T1,T2),v2(T1,T2)) = (0,0). Let & = T + y.The
linearization of v around x is obtained by expanding v in Taylor series
around T and reads a linear system of ordinary differential equations:

. 8’01 . 6’111 .
Y1 = o (T)y1 + 90 (T)yo,
v Ova

In shorthand, we write this as

y = Ay, (16)
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where A stands for the matrix

A= Vo (= Vo (=
o (z) O ()

The properties of the motion around T are now determined from A. Note
first that the trace of A is 0 by the incompressibility of v. The determinant

of A reads )
8111) 81}1 6’[}2 .
Det(A) = — — | +t+—
‘ ( ) [(ayl 0y 0y1] (33)

Thus, the eigenvalues of A are given by

++/—4Det(A) (801 ) 2 9uy Ovs
Mg = V) (G0 G dvz 17
b \/ o Y2 Oy (17)

go(@ G (@) ] |

The rate of strain tensor at T is defined by
1 avi (%j _
ez] o 5 (8yj + 5y2> (l‘)7
while the vorticity is given by
W — (‘%2 _ ‘%1) (7)
dy1  Oya '

Physically, it represents the local rotation rate (Aris (1962)). The eigenval-
ues can be written as

w2

)\112 =4+ 6%1 + 6%2 - Z (18)

Irrotational velocity fields are defined by w = 0. In that case, the eigenvalues

of A are given by
Ay ) ? (81}1 > ?
AMo==% — ) +|=—
b2 \/(3% 0y

and are real. The phase portrait of 16 close to 0 is shown in figure 8. The
eigenvectors of A are found by solving

(A—M)e=0,

for e € R2.
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=2

Figure 8. Fixed point with pure strain.

Example 2.14. Consider a steady velocity field
T =yx1,
55.2 = =2,
where v is a constant.

In the case of zero strain rate the eigenvalues are purely imaginary and
the phase portrait of 16 close to 0 is shown in figure 9.

Example 2.15. Consider a steady velocity field

. w

Ty = ExQ,

. w
T2 = *51‘17

where w is a constant.

We found that the eigenvalues of the linearization around a fixed point
in a two-dimensional steady incompressible velocity field can be either pure
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Figure 9. Phase portrait around a fixed point with no strain.

imaginary (and complex conjugate) or real and opposite in sign. This is
always so for Hamiltonian systems - but here we were able to connect the
phase portrait properties with physical quantities of vorticity and strain.

Steady, two-dimensional, spatially periodic velocity fields

In many situations it is interesting to consider velocity fields that are spa-
tially periodic
v(z +1) =v(x),l € R?

The simplest of such velocity fields is the constant velocity field

33:1 = «, (19)
x'2 = ﬂa

where «, § € R.This velocity field has very simple properties when viewed on
R2. The pathlines are given by (bio (210, T20) = (x10+at—atg, xo9+ Ot —Fio).
Fluid particles move along straight lines of the slope 3/«. However, if we
split the plane into squares of side 1, as shown in figure 10 and identify the
top and bottom side and the left and right side of such a square, we obtain
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Figure 10. Representation of the torus on the plane.

a torus. Me call this operation is called "modulo 1” or ”mod 1”. First note
that @« = 0 or § = 0 imply that all the pathlines on the torus are circles.
For a = 0, pathlines on the torus are circles z; = ¢. For § = 0, pathlines
on the torus are circles o = d. Now assume « # 0. There are two types of
motion on the torus that can be induced by the velocity field 19, depending
on whether the ratio 8/« is rational or irrational. To see this, consider the
circle z; = 0. Point starting at to = 0 at (0, 220) returns to 21 = 0 after the
time ¢ = 1/a and lands at x5 = w29 + #/a. Thus we can consider a return
map

xo — o + B/, (20)

defined on a circle of length 1. We can now consider two cases, the rational
and irrational rotation :
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1. B/« rational. In this case 3/a = p/q, where p,q € Z. The map 20
then carries an initial point at z9 to x5, = x99 + pn/q in n steps.
Equivalently, the velocity field 19 carries an initial point (0,z90) to
(0,290 + pn/q) after n rotations in the direction of x;. Clearly, if
n = ¢, Thy = Tgo as Tyo = Top + p on a circle of length 1. In the
context of the velocity field 19 the pathline starting at (0, 220) returns
to that point after circling ¢ times in the direction of ;.

2. B/« irrational. There is clearly no n such that xog+n8/a = x90+p as
this would imply rationality of w = 3/a. Because the map is defined on
a circle of length 1, it can be defined as a map z — exp(i27w)z, where
z € C is a complex number of norm |z| = 1. Let us consider the orbit
starting from z = 1, given by the sequence {z,} , z,, = exp(i2mnw),n €
7. This is a countable sequence in a compact set and thus contains a
subsequence {z,, } (where z,, = exp(i2mniw),n; € Z) that converges
as ny — oo. Choose € = 1/k arbitrarily small (i.e. k arbitrarily large).
The circle is split into k intervals I; of length €, one of them being
(1, exp(i2me)]. It is clear then that there is an N such that for ng_; >
N exp(i27(ny —ng—1)w) is element of (exp(i2me), exp(—i27e)). With-
out loss of generality assume exp(i27(ng—ni—_1)w) € (1, exp(i27e)) for
some fixed ng,nx_1 € Z (note that exp(i2m(ny —ng—1)w) # 1, as that
would imply that the orbit is periodic). Now let m = ny — ng—1 and
consider points s; = exp(i27jmw), j € Z. The sequence {s,} is clearly
a subsequence of {z,}. As 0 < (mw)mod1 < ¢, there is an s; inside
every interval I;. But, if we choose an arbitrary interval I on the circle,
there is always a sufficiently small e such that one of I; is a subset of
I. Thus, the sequence {z,} is dense in the circle i.e arbitrarily close
to any point p on the circle there is an element of the sequence {z,}.
Clearly, if we consider any other orbit the conclusion is stil valid: an
orbit of the map starting at zg is just a translation by zy of the orbit
starting at 1. In terms of the pathlines of the original velocity field 19,
this implies that they are dense on the two-dimensional torus: every
pathline passes arbitrarily close to any chosen point on the torus.

Clearly, in the case when 3/« is irrational the dynamics becomes some-
what complicated. We will se later that such dynamics possesses the prop-
erty of being ergodic : a time average of an arbitrary integrable function f
along any orbit of the map is equal to the spatial average of f on the circle.
Thus, besides being able to come arbitrarily close to any point on the circle,
the orbits of the map sample the circle homogeneously.

In the above considerations, we have, for the first time introduced a
method that will be very useful throughout the notes: instead of studying
the properties of pathlines of the velocity field, we studied properties of its
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Poincaré map-map defined on the circle to which all of the pathlines return

repeatedly.

Three-dimensional steady velocity fields; Poincaré maps

Two-dimensional steady incompressible velocity fields on the plane are rel-
atively simple: the level sets of the streamfunction foliate the plane into
one-dimensional or zero-dimensional manifolds. In general, there is no
a priori smooth function that is conserved on particle paths for three-
dimensional, steady flows, except when velocity field has a symmetry as
will be described later. With no symmetry, particle motion can be chaotic
in three-dimensional, steady fields.

Certainly, it would be simpler to study two-dimensional instead of three-
dimensional dynamics. We can achieve this in some situations for three-
dimensional velocity fields by introducing the concept of a Poincaré map .
In figure 11 we show an orbit of a three-dimensional velocity field piercing
through a surface S that we will call a surface of section

e B
i V- \'I n( ) ||‘
| f e
II P a =1 /f
x | —_—
/ | I'I(/L//
| il

Figure 11. Schematic of the Poincaré map construction in 3D.

Let p, be the point of intersection of a pathline with S. We call the
intersection of a pathline with a surface transversal at p if v(p) - n#0, where
n is the outward normal to S at p.

Definition 2.16. A connected surface of section S in A satisfying v(p)-n#0
is a two-dimensional C'' manifold such that every pathline intersecting S
transversely at a point p intersects it again at a point that we denote P(p).
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Note that connectedness of S and continuity of v implies that v(p)-n does
not change sign on S. This definition allows us to define a map P: S — S
that we call a Poincaré map for the velocity field v. We would now like
to show that incompressibility of v implies that the map P preserves some
area in a generalized sense: let p : S — R be a continuous function. We
will call S area-preserving if there exists a function p such that for any
open, simply-connected set B C S, with the smooth closure B U 0B

/ pdS = / pdS.
BUOB P(BUOB)

We have

Lemma 2.17. Let v be a three-dimensional incompressible steady velocity
field and S its surface of section. Than the Poincaré map P : S — S 1is
area-preserving with function p = v - n.

Proof. Let the volume V be defined as follows: let Z = %B(I)ogtgt(p) (p)
pPe

where t(p) is the time at which the pathline starting at p at time 0 intersects
S. The surface BUOB U Z U P(BU0B), bounds the volume V. Reynolds’
transport theorem together with volume-preservation than gives

/ vondS:/ v - ndS,
BUOB P(BUdB)

which proves the Lemma. O

An example of the surface of section for a vortex breakdown flow is shown
in figure 12. A numerical simulation revealing chaotic and regular parts of
the surface of section is shown in figure 13. Note that in both of these
figures, strictly speaking, only half of the surface (left or right) represents
the surface used in the Poincaré map construction. This is because the
orientation at which the trajectory is piercing the surface has to be the
same for all points on the surface of section.

Unsteady velocity fields

Unsteady velocity fields do not have the nice group property described
above. However, we will now learn a useful construction from dynami-
cal systems that will help us significantly in the study of unsteady systems:
the concept of suspension . Let & = v(x,t) = v(z,t + T) be an unsteady,
time-periodic velocity field on A with period T'. It defines a nonautonomous
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Vortex breakdown bubble |

Poincare section

Figure 12. Surface of section in a three-dimensional vortex breakdown
flow. Courtesy Fotis Sotiropoulos.
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Figure 13. Chaotic surface of section in a three-dimensional vortex break-
down flow. Courtesy Fotis Sotiropoulos.

dynamical system on A. The results that were valid for steady velocity fileds
on nonintersection of pathlines do not hold any more. In fact, pathlines can
now intersect in general and it is not easy to understand their behavior by
plotting a couple of them. The same holds for streaklines. However, at the
expense of introducing another dimension, we can recover the simplicity of
the steady picture we had before.

Let z = (z1,22) € R%, 71 = vi(z,t) = vi(z,t + T), 72 = va(z,t) =
vo(z,t+ T) be an unsteady velocity field on A C R? which is time-periodic
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with period 7. We can instead consider a velocity field defined by

"E.l = vl(xve)a (21)
To = 'UQ(SC,G),
0=1.

on A x R, this velocity field being steady. Clearly, 6(t) = 6(0) + ¢t. Thus,
v(z,0) = (v (x,0),v2(x,0),1) = v(z,0+T) and the velocity field is spatially
periodic in the direction of 8 with period T'. In this case we can identify the
planes § = 0 and 6 = 1 and consider our velocity field as defined on the
space A x ST where ST is a circle of length T' (see figure 14). A reader

Figure 14. Suspension.

might wonder what did we achieve with this device: we have increased
the dimension of the space in which the motion takes place by 1 without
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apparently achieving any simplification. However, recall from our discussion
of steady, three-dimensional velocity fields that the device of Poincaré maps
allows us to reduce the dimension of the space by 1 for a properly chosen
surface of section. Let the surface of section in A x ST be defined by
S = A x {0} (of course, any other 6 besides § = 0 will do; we expand on
this later). The Poincaré map P : S — S is defined by

:z:ll =x1+ [ vi(z(t, (20,0),0),t)dt = x1 + f1(x1,x2),

Ty = a9+ [ valx(t, (20,0),0),8)dt = zo + fola1,x3),

Ot — g T

where (z(t, (x0,0),t9), t) is the solution of 21 passing through (xg = (z1,22) €
A = S5,00 =0) at t = 0. This solution is unique, so the suspension done

previously allowed for this construction. The map P preserves the true area

of the plane S = A as our discussion in the previous section p =v-n =1

(see Lemma 2.17). By the change of variables theorem if P is a C! area-

preserving transformation it must be that the Jacobian of P,

1+ afl 8f1
DP =1 " o™ | "bp |
8%1 6%2

has determinant 1 :

Ofr  Ofs  OfOf, Ofi 0fs
Y o T 0wy T Or 00y Omp 0z,
i.e.
Ofr  Ofs Of Ofs Ofi 0fr

8733‘1 + 87372 + 61‘1 61‘2 6332 8$1 -

Physically, Pz represents the position, after time 7', of a fluid particle
starting at x( at time 0.

Consider a two-dimensional, slightly unsteady, time-periodic (of period
T = 27 Jwr) velocity field

T = 'Ua;(xvy) + €fl'(xayat)a
y = ’Uy(.’IJ,y) + Efy(l'7y7t)a
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If there is a region of periodic orbits for the ¢ = 0 velocity field, we can
simplify the representation of the velocity field in that region by introducing
new, action-angle (Wiggins (1992)) variables I, 6, by

I = % wyd:c (22)
27

0 = Wt(m,y) (23)

(24)

where 1) is the streamfunction of the steady unperturbed (e = 0) velocity
field. Note also that § = —0y/0I.

Example 2.18. For flow with constant vorticity w = 2, & = y,y = —z, and
Y = 22/2 + y?/2. Thus, since I is the area under the constant streamline
curve, I = m(z? + y?)/2m = 2¢p/2 = 1) Then, since 1) = I, it turns out that
6 = —1. Generally 6 = Q(I), where Q(I) is not constant if the system is
nonlinear.

Now, in I, 8 variables we have

=0 (25
0 = Q) (26)
(27)

Thus, [ is constant along streamlines and theta parametrizes the flow along
streamlines.

. 9. OI.
I—ax—i—a—yy—efj(lﬁ,t),
.00 . 00 .
9—%x+8—yy—9(1)+6f9(1,9,t),

Taking the period-T' Poincaré map yields, starting at time 0 from Iy, 0:
T
HT) = 10) + ¢ [ (1t To,00), 000, I, 00). O,
0

T T
e(T)zo(o)+/0 Q(t,fo,oo)dt+e/o Fo(L(t To, 00), Ot To, 00), £)dt,
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Now for any finite time, for sufficiently small e,

I(t, 1o,00) = 1o+ epr(lo,bo),
0(t) = 0o+ epo(lo,bo) (28)

for some functions p; and pg, where I(0) = Iy and 6(0) = 6. Thus,
Q(t, Ip,00) = Q1) + O(e). In turn,

I(T) = Io+efi(lo,00,€), (29)
O(T) = 0o+ QLT + efg(Io, b0, €) = 0eQ(Io) + efo(Io, 00, €), (30)

where Q = 27Q/wr. Thus, in the region of elliptic streamlines (periodic
orbits) we have obtained the following Poincaré map:

I' =T+ e€fi(1,0,¢), (31)
0/:0+Q(I)+€f9(13056)7 (32)

This map is in the class of the perturbation of the so-called ”twist maps”,
provided dQ/dI # 0. For e = 0 we call such a map an ”integrable twist
map”. These are discrete dynamical systems with well-known properties.
For example, any circle I = ¢ is an invariant manifold of the integrable twist
map. On such a circle, rotation #’ = 6 + ¢ is either rational, provided c is
rational, or dense, provided c is irrational. There are also strong theorems
describing their behavior upon perturbation. We describe the most famous
such theorem next.

The Kolmogorov-Arnold-Moser (KAM) theorem (Arnold (1978)) (in
Moser’s version (Siegel and Moser (1971)) considers a perturbation of an
integrable twist map and at least 4 times differentiable. Under the condi-
tion that the perturbed map is area-preserving (in fact that it possesses the
so-called intersection property, that is implied by area-preservation which in
our, incompressible fluid mechanics case is the consequence of incompress-
ibility) KAM theorem states that, for e small enough the majority of initial
conditions stay on 1-dimensional invariant curves close to the unperturbed
invariant curves on which G(y) satisfies the so-called Diophantine condi-
tion.2 The condition means that w can not be approximated too rapidly
by rational numbers of form p/q). It is commonly stated that unperturbed
invariant curves that have sufficiently irrational dynamics “persist” under
perturbation.

2This condition implies strong irrationality: if w is an irrational number that satisfies
the following condition:

w co
ng—plij for ¢,p€Z, pn>2

we say that it satisfies the Diophantine condition.
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2.4 Mixing in the Standard Map

In this section we explain the phenomenology of mixing in two-dimensional
maps based on the classical example of the standard map. We start with
the simple shear flow:

Vgp = Y,
vy, = 0, (33)

and pulse it with a single mode perturbative flow

Vg,p = 0,

vyp = €0(t—nT)sin(2mz), (34)

where § is the Dirac delta function and the period of the perturbation is 7.
Particle trajectories are thus solutions of

To= vy,
y €d(t — nT)sin(2nx), (35)

Between the pulses, a particle starting at xg, yo travels acording to

z(t) = o+ yot,
y(t) = y(0). (36)
Thus at T'=T~
z(T7) = xo+yl ™,
y(r—) = y(0). (37)
After the pulse, at 7T,
a(Th) = «(T7),
y(TT) = y(0)+ esin(2rz(T7)). (38)
Letting flow go for another period,
z(2T7) = z(T7)+y(THT,
y(2T™) = y(TT)=y(T") + esin(2rz(T7)). (39)

Since we can always consider the scaled coordinate Ty instead of y, there is
no loss in generality in setting 7' = 1. Thus we obtained the following map
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that tells us how fluid particle evolves starting at time just before one pulse
and ending at the time just before the next pulse:

/

¥ = x4y+esin2rz) [mod 1]

!

Yy = y+esin2nz) [mod 1] (40)
Note how the form of (40) is the same as the Poincaré map of an unsteady
fluid flow in region of elliptic streamlines, (32), that we derived in the pre-
vious section. For e = 0, the particles are advected by the pure shear flow
for period T = 1. This is shown in figure 15. Consider the density field
shown in that figure, with no vertical variation and a step change in density
at © = 1/2. As time goes on it will get stretched in ”stripes” of width that
decays algebraically, like 1/nT. The rightmost field in that figure, however,
will not get mixed at all. Generally speaking, ”shear-like” flows will mix at
most at an algebraic rate, and there might be density fields for such flows
that do not get mixed at all.

Linear Shear Flow c(z,y) = f(x) co(z,y) = g(y)

Figure 15. The linear shear flow effects the two different density fields
pictured above very differently.

Adding a small pulsed perturbation to the shear flow, as described above,
leads to substantial changes in mixing behavior. For example, out of all
the straight lines that are invariant under the unperturbed map, the ones
for which y is strongly irrational (i.e. satisfies the Diophantine condition)
persist by the KAM theorem described above. The lines for which y is
rational break up. Around them, for small nonzero €, small ”islands” of
rotational motion are formed. From one period to the other, fluid particles
”jump” between such islands. Such zones are called the ”resonance zones”,
the reason behind it being that for y = p/q the period T of forcing is in
rational relationship with the time it takes the shear flow to advance a
particle through one periodic 7cell” in = direction, yT/T = p/q. In other
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words, since T'p = yT'q, after p periods of forcing, the particle will traverse
the basic cell in the z direction ¢ times. For example, for y = 1/2 two
7islands” form, shown in the middle of the figure 16. The zone outside

a LT} ar (=] =11 as (1] ar os LE] 1
‘

Figure 16. Phase space plot of the standard map for 10000 initial condi-
tions on a regular 100 x 100 grid. The parameter ¢ = 0.15.

of the ”islands” contains a lot of trajectories with seemingly space-filling
behavior. They uniformly fill the area they are contained in. It is believed
(although not proven) that the behavior of trajectories in such zones is both
ergodic (the sampling of the area within which the trajectory is contained is
uniform over time) and mixing (if one would distribute dye within any small
subset of such a zone, it would end up uniformly covering the zone, even
if no diffusion is present). These properties are part of the ergodic theory
of dynamical systems and are discussed formally later. It is interesting
to consider the same density fields as those shown in figure 15 evolving
under the perturbed map. It is easy to see that for the perturbed map,
neither of these density fields would be thoroughly mixed over the whole
phase space! In particular, whenever initially blue color covers a whole
”island” that island will be covered by blue forever. Thus, although in
chaotic zones mixing happens thoroughly and rapidly, in islands there is no
mixing whatsoever. The perturbed map shows a somewhat mixed picture
of mixing :-)

In his seminal paper, Aref (1984) has observed these properties in a map
that resulted from ”blinking” (time-periodic) application of point vortices.
He termed the process in which good mixing is established by simple time-
dependent flows ”chaotic advection”. The key property of chaotic advection
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that is useful in applications and separates it from shear-flow type mixing
processess is that it stretches and folds interfaces exponentially fast. The
kinematic complexity of such motion is in a different ”universality class”
than pure shear. Two dimensional steady flows can not possess this prop-
erty, as opposed to three-dimensional steady and unsteady flows and two-
dimensional unsteady flows. In section 4 we discuss an applied area in which
the above kinematic considerations are quite important - that of microfluidic
mixing. Specifically, different mixer designs will be classified along the lines
of kinematic complexity arguments. The key problem in design is that, just
like in the case of the standard map above, a single flow can have regions of
algebraic mixing and regions of exponential chaotic advection mixing. Thus
optimization and control of mixing is an important topic, that we discuss
briefly towards the end of this text.

3 Geometrical methods in 3-D flows

3.1 Geometrical methods in dynamical systems and mixing in
3-D flows

In two dimensional flows, it is quite useful to start from the fact that a
streamfunction exist and, specifically, that for steady flows it leads to simple
trajectories that are the level sets ¥ = const. of the streamfunction ¥. Such
flows are called integrable. Perturbation theories such as KAM theory and
theory of resonance zones lead to quite complete picture of fluid particle mo-
tion in such flows. Thus, it is useful to start from integrable flows to describe
kinematics of three-dimensional, steady flows. But, a problem arises: except
for a few well-known examples such as rotationally symmetric, axially sym-
metric and helically symmetric flows (Batchelor (1967)) it is not common
to talk about streamfunctions in three-dimensional flows. Existence of a
streamfunction in a 3-D steady flow means that fluid particles are restricted
to move on a two-dimensional manifold (cf. Theorem 6). Provided this
two-dimensional surface is a torus, rational or irrational windings described
earlier will ensue on it. Poincaré-Bendixon theorem (Wiggins (1990)) can
be used on other closed surfaces such as a sphere to show that there is no
complicated motion. So steady integrable flows in three dimensions seem
to be a good starting point for discussion of kinematics of integrable flows.

In 1965 Arnold published a note on the integrability of three-dimensional
steady Euler flows (Arnold (1966)). In that note he asserted that three-
dimensional Euler flows are integrable except in the case when vorticity
and velocity are parallel -the case of Beltrami flows. In fact, even when
vorticity and velocity are parallel, but the constant of proportionality varies
with space, such Beltrami flows are still integrable. Both of these facts were
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known to Lamb (Lamb (1932)) and the surfaces spanned by non-parallel
velocity and vorticity are known as Lamb surfaces (see Sposito (1997) for a
detailed discussion of these). In what follows, we connect these observations
to existence of a symmetry for a flow.

Geometrical and dynamical symmetries

A sufficient condition for integrability (i.e. absence of chaotic motion) of a
three-dimensional, incompressible vector field v is that it admits a volume-
preserving symmetry (Mezié (1994); Mezi¢ and Wiggins (1994); Haller and
Mezi¢ (1998)) i.e. that there exists another incompressible vector field s
cuch that the Lie bracket [v,s] is zero. In Cartesian coordinates these
conditions become

[v,s] =v-Vs—s-Vv =0, (41)
V-.s=0. (42)

When general incompressible v, s satisfy (41), a function B defined by the
equation
VB=-vxs (43)

is an integral of motion for both v,s, i.e. B is conserved on trajectories of
both of these vector fields:

d—B:V-VB:—V~V><s:0:—w-v><s:s~VB:d—B7

dt ds

where s is a time-like variable used to parametrize trajectories of the vector
field s. As an example of above general results, consider an incompressible
vector field v which is symmetric with respect to translation along the z
axis i.e. the velocity components (vs,vy,v.) are independent of z. Let
s = (0,0,1). Then (41,42) are clearly satisfied, as in components we have

Ovy _ Ovy _ Ovs _
8z 9z 9z

and 43 becomes
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0B

FrEm
9B _ _
oy e

These equations clearly have a solution for B because v is incompressible.
The cases of rotational and helical symmetry are treated similarly. These
types of symmetries that result, from symmetries of the flow domain have
been called geometrical symmetries in Yannacopoulos et al. (1998). In fact,
in the case when a volume-preserving symmetry exists, the velocity field
can be put in the form

. _oB
Y or

. 9B
2 = oy

z3 = f(21,22).

for appropriately defined variables (z1(x,y, 2), 22(2, y, 2), 23(2, y, 2)) and some
function B(z1, 22, z3) (see Mezi¢ and Wiggins (1994)). Additionally, if z3 is
an angular coordinate (such as in the case of rotationally symmetric flows),
this representation leads to introduction of action-action-angle coordinates
1,0, ¢p-where I,0 come from the two-dimensional portion defined by the
7streamfunction” B and ¢ is a function of I, 6, and z3 Mezi¢ and Wiggins
(1994). In these variables, the flow becomes

I=0
0 =wi (I)
b = wy(I).

(44)

Another type of symmetry that can arise is induced by the evolution
equations of the fluid. The most well-known such symmetry is the content
of the Taylor-Proudman theorem for fast rotating flows: when the Rossby
number of a flow around an axis with angular velocity €2 goes to zero, the
velocity field satisfies

Q-Vv=0.
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Thus, since  is constant, (41,42) are satisfied and such a flow posseses
an integral of motion. More generally, it is clear at once that (41,42) are
satisfied by velocity v and vorticity w = s of an Euler flow (Mezi¢ (1994);
Mezi¢ and Wiggins (1994); Haller and Mezi¢ (1998)). Thus every Euler flow
is integrable with the Bernoulli integral B = (1/2)v? + p/p. The surfaces
of constant B are called Lamb surfaces (see Sposito (1997)). The topology
of these surfaces inside of a bounded analytical surface was shown to be
toroidal or cylindrical by Arnold (1966), with the exception of separating
surfaces between these tori and cylinders.

According to this analysis, a typical integrable flow in a three-dimensional
closed container will look somewhat like that shown in figure 17. In region
I there is a family of tori, on which the particle motion can be described
by equations (44). Region IT also contains invariant tori (not shown). The
separating manifold between these two regions is (topologically) a sphere.
There are two fixed points on the sphere. Both are of spiral-node type.

Fixed points for 3D steady flows

In fact in three-dimensional steady flows, there are only two types of fixed
points provided the linearization of the flow at the fixed point is not de-
generate (i.e. has no zeros among its eigenvalues). This follows from the
divergence-free condition. Let DV;; = [g;’;] be the i, j entry of the Jacobian

matrix DV of the velocity field. The incompressibility condition

0y, n % n ov, 0
ox dy 0z

implies Trace(DV) = 0 which in turn implies A\; + Ao + A3 = 0 where )\; are
eigenvalues of DV taken at some fixed point. Thus, for a three-dimensional
steady flows, the eigenvalues of the linearization imply that nondegenerate
fixed points (i.e. those for which no eigenvalues are 0 are of two basic types:
1) Saddle nodes, with all real eigenvalues. 2) Saddle foci, with a complex
conjugate pair and a real eigenvalue. The types of fixed points that can
occur - that are the same as types of periodic orbits for three-dimensional
unsteady flows - are shown in figure 20.

3.2 Viscosity, Inertia and Chaotic Advection

Based on the above result on integrability of Euler flows, Arnold sug-
gested the special solution of Euler’s equation, the so-called ABC (Arnold-
Beltrami-Childress) flows as possible nonintegrable flows. These are spa-
tially periodic Euler flows for which velocity is proportional to vorticity
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Figure 17. An integrable flow in a three-dimensional container.

(i.e. they are Beltrami flows). Hénon (1966) perfomed a numerical sim-
ulation of ABC flows and found evidence of chaotic behavior. Thus, the
first results in the field of chaotic advection were based on the analysis of
velocity fields that were smooth solutions of Euler equations. In contrast,
the flows discussed in chaotic advection studies in the 80’s and 90’s were
kinematic models that did not satisfy dynamical equations of fluid motion,
solutions of Stokes equations, or weak solutions based on singular vortex
distributions. Only recently, a few studies (Ashwin and King (1995b,a);
Yannacopoulos et al. (1998); Balasuriya et al. (1997) ) appeared that took
account of the restrictions imposed by the fact that Newtonian fluid flows
satisfy Navier-Stokes equations.

One way of interpreting Arnold’s suggestion on importance of ABC flows
is that viscous perturbations to Euler flows can be taken to be small away
from the boundaries and, due to integrability of Euler flows that do not have
velocity and vorticity proportional, chaotic motion can be only caused by
an ABC-type flow. But, ABC flows are in quite special. The condition that
velocity is proportional to vorticity is very hard to establish experimentally
(Solomon (1998)). In fact it can be shown rigorously that - in the region of
the flow where inertial forces are dominant - the assumption that the steady
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flow can be split into dominant inertial part that solves Euler equation and
small viscous part leads to conclusion that the Euler (inertial) part can not
be a chaotic ABC flow (Mezi¢ (2000)). In what follows, we paint quite a
different picture of the physical nature of chaotic fluid particle motion in
three-dimensional steady fluid flows: the cause for chaotic motion lies in
viscous forces and, as Reynolds number increases to infinity, the extent of
chaotic motion starts to decrease in a well-defined way. Consider now an
unbounded steady incompressible Navier-Stokes flow in R3. It satisfies

v -Vw—w-Vv=Re ' Aw (45)

where Re is the Reynolds number of the flow. For such flows a regular
perturbation expansion at large Reynolds numbers would read

v=vg+Re lv,+ O(Re_Q), (46)

where v satisfies Euler’s equation of motion and is thus integrable. This
flow is thus (’)(Re_l), away from an Euler flow. That Euler flow is integrable
(Mezi¢ (2000)). Thus, the flux through any separating surfaces in this flow
will be of the order O(Re™ '), as was pointed out in the introduction of
Mezié (1994), if v; does not possess any symmetries.

The case of 2-D unsteady flows, which was treated rigorously in Bala-
suriya et al. (1997), can be considered also within the theory outlined above
(Haller and Mezi¢ (1998)). Two-dimensional steady flows of incompressible
fluid are known to be integrable (i.e. the possibility of chaotic advection is
excluded) due to the existence of a streamfunction. Consider an unsteady,
2-dimensional Euler flow v time-periodic with period 27 /€. Tts vorticity w
satisfies the two-dimensional Euler equation

%: +v-Vw=0.

which implies that w is a quantity conserved on particle paths and thus the
flow is integrable. In the terms of discussion above, v possesses a dynamical
symmetry. Let the domain in R? in which the flow takes place be denoted
by D. Then the three-dimensional steady flow vg = (v, vy, ) is defined on
DxS'. For example, when D is a region in R? whose boundary is a circle,
then Dx S* has the shape of a donut. The symmetry vector field s such that
[Ve,s] = 0 is given by s = (0w/dy, —0w/dz,0) (Haller and Mezié (1998)).
At large Re, v serves as the first term in the expansion of a Navier-Stokes
flow. If there are no solid boundaries, then this expansion is (46).
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3.3 KAM theory

Kolmogorov-Arnold-Moser theorem on persistence of invariant tori in
Hamiltonian systems has played a historically important role in the devel-
oment of dynamical systems theory (see e.g. Siegel and Moser (1971)). As
we saw above, the Moser version of the theorem has direct applicability to
treatment of two-dimensional, unsteady (time-periodic) flows. It is bit more
difficult to obtain the appropriate result for three-dimensional flows. In the
context of the representation we obtained from symmetry considerations
above, we can consider steady flows of the form

f:6f1(1,9,¢7)
0 =wi(I)+ efo(I,6,9)

¢ = w2(I) +€f3(1707¢)'

where € measures deviations from symmetry. Moser (1968) already proved
that tori I = const. that satisfy the Diophantine condition

niwi (1) +nawa (1) > ¢/(|n1] + |na|)*,

where ni,ns are integer and the constant p > 1 "persist” i.e. the perturbed
(e > 0 sufficiently small) flow also has invariant tori that restrict fluid
particle motion. In the case of a time-periodic perturbation of period T,

j = €f1(1a95¢7t)
9:w1(1) +€f2(-[30a¢7t)
gz;): WQ(I) +€f3(1305¢7t)'

where f;(I,0,0,t) = fi(1,0,¢,t + T), invariant tori I = const. persist,
provided

niwi (1) + nowa (1) + nzws > ¢/ (|n1| + [na| + |n3|)#

where ws = 27/T, nq, ne, ng are integer and the constant g > 2. The major
difference of such results with those in Hamiltonian systems is that the
motion on the tori in the perturbed flow does not necessarily have the same
rotational frequencies as the unperturbed ones (Cheng and Sun (1990)).

3.4 Resonances in 3-D steady flows

Given the important role that resonance zones play in two-dimensional
time-periodic flows, it is important to study such effects in three-dimensional
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flows. Three-dimensional steady flows behave in a similar way to two-
dimensional unsteady ones. For example, tori with resonant particle motion
frequencies wy and wy (w1 (I)/wa(I) = na/ny where nq,ny are integer) are
typically destroyed upon e perturbation and give rise to chaotic zones be-
tween KAM tori. Sometimes this kind of a phenomenon is labeled internal
resonance - since it is the frequencies of motion in two different directions
that are in resonance, not a motion that is inherent to the system and an
external perturbing force.

Experiments by Ottino’s group (Fountain et al. (2000)) confirmed the
effects of resonance in three-dimensional steady flows in a spectacular man-
ner. In the figure 18 we show a) The experimental set-up, that consists of a
container and a disk positioned inside the container. The disc can be tilted,
thus increasing the asymmetry. The flow is visualized by dye of various
colors injected in the flow via needles and laser sheet that cross-sections
the flow as shown. Any time the fluorescent dye passess through the laser
sheet, it illuminates that point. When the disc is not tilted, the flow swirls
around the vertical axis and also on tori caused by upwelling and down-
welling due to Ekman pumping type effect. This causes a flow to be of
integrable Action-Angle-Angle type, with trajectories residing on tori with
either quasiperiodic motion (for the case the rotational frequencies around
the z axis and cross-sectional rotation frequency are in irrational relation-
ship) or periodic motion (for rational ratio of these frequencies of particle
motion). In b) Ratios of frequencies 4/, where ¢ is the angle around
the vertical axis and 6 is the frequency of motion on tori is shown for the
untilted disc (symmetric case). Different curves are for different speeds of
rotation N. For example for N = 30, the curve does not cross the 1/3
level. This means we should not see a period-3 or period-2 resonant island
in the tilted disc case. This is confirmed in figure d) where we see that the
lowest-order period island is that of period-4. Analogously, for N = 60, the
frequency ratio crosses above 1/2 and in figure c¢) we see that the dominant
island is period-2. In figure e) numerical simulations of the Poincaré map
for this flow are shown, corresponding to the physical parameters in figure
d). Similarity between these is evident. The numerical simulation makes
clear the existence of a persisting KAM torus (indicated in the figure) that
separates the period-4 island from the domain close to the container walls.
It is interesting how these invariant tori predicted by perturbation theory
to exist for sufficiently small tilt angles still survive for relatively large tilt
angles. In between the boundary of the container and island areas there
is a chaotic zone in which trajectories fill the two-dimensional cross-section
(and thus fluid trajectories fill the three-dimensional volume).
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Persisting KAM torus

Figure 18. Experiments on a three-dimensional steady rotating flow in a
cylindrical container (Fountain et al. (2000)).

3.5 Resonances in 3-D time-dependent flows.

It is evident from the previous discussion that three-dimensional flows
whose unperturbed (symmetric) form is Action-Angle-Angle behave simi-
larly to two-dimensional Action-Angle maps like the Standard Map: there
are toroidal resonance zones (instead of circular resonance zones as in 2-D)
and chaotic zones. The Action-Angle-Angle form arises because of exis-
tence of an integral of motion for the three-dimensional flow. If besides the
invariant function, B, that arises from the symmetry we can find another
function invariant on trajectories of the flow, the unperturbed flow can be
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transformed to the so-called Action-Action-Angle form

I, =0,
j2 — Y
9ZW(11,IQ)

This would, for example, be the case in above experiments with no disc tilt
-if we switch the roles of variables 6 and ¢ - if there was no Ekman pumping
(i.e. very low Reynolds number flow) and all the fluid particle trajectories
would reside on z = const. surfaces, spinning on circles around the vertical
axis. Thus B = z would be an invariant function due to axial symmetry
along z axis, and B; = r would be another invariant function for this flow
- that also arises due to a symmetry, this time rotational symmetry around
the z axis. Such flows also commonly arise as large-scale ocean eddies that
are mostly two-dimensional due to density stratification.

Now we consider the situation in which the above Action-Action-Angle
flow is perturbed by a small, time-periodic (period T') perturbation. We
take the period-T" Poincaré map and obtain an integrable action-action-
angle map, of the form

I =1,
I, =1, (47)
0 =0+ QI 1),

where Iy € 7; = [al,bl] CRI €2y = [ag,bg] C R and 6 € S. The
domain of definition of I, I5 is denoted by B = Z; x Iy C R2.

Exercise 3.1. Show that the map 47 arises as period-T' Poincaré map of
the flow

jl - 6f1(117[2707t)7
j2 - 6f2(11a12797t)a
9 = w(Ing) =+ Efg(IhIg,e,t).

(Mezié¢ (1994); Mezi¢ and Wiggins (1994)) where f; are T — periodic, when
e = 0. Such a flow for e = 0 and w(I;, Is) = I is depicted in figure 19.

The equations I; = c¢1,Is = ¢ for constant ci,co define an invariant
circle e, ¢, for (47). If Q(I1,12)/27 = p/q, p,q € Z, e, ,c, consists of
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Figure 19. Schematic representation of unperturbed three-dimensional
shear layer leading to the integrable action-action-angle map (47)

periodic orbits with period q. We call these p/g-orbits. Furthermore, a point
belonging to a p/q orbit is called a p/q point. For Q(Iy,I5)/27 irrational,
every orbit on ., ., is dense.

Let us first discuss the nature of two-dimensional invariant manifolds
for maps of the type (47). Obviously, any manifold of the type V x St
where V' is a zero-, one- or two-dimensional manifold in B is invariant. Any
invariant manifold that is not of type V x S! is of resonant type, i.e. each
point (I7,I3,60%) on it satisfies Q(I},I5) = 2nk/j, where j, k € Z. For
simplicity, we will show this only for manifolds that are cut out by analytic
functions. If F(I,1I3,0) = ¢ describes an invariant manifold M of (47),
with F' analytic and OF /060 # 0 (this is equivalent to saying that F' is not
of the type V x S1), then

F(I, 1,0+ Q(, I5)) = F(I1, I5,0). (48)

Assume that on M there is a point (I7, I3, 0*) such that Q(I7, I3) # 2nk/j



78 I. Mezié

for any j, k € Z. Taking the Fourier transform of (48) we obtain
exp(ind)(exp(inQd(I7,13) — 1)) =0

which has to be satisfied for every n for which the corresponding Fourier
mode of F' is non-zero, which gives us contradiction. Because the surfaces
defined by the resonance condition Q(I}, I5) = 2nk/j, where j,k € Z do
not intersect, resonant manifolds can be zero or one-dimensional. As an ex-
ample, consider the map (47) with (I, Iz) = I1. Then a resonant manifold
is defined by

sinf =0,1, = .

3.6 Action-action-angle maps

We are going to concentrate efforts on understanding persistence under
perturbation of the above described two-dimensional manifolds of the type
V x S and zero-dimensional manifolds of resonant type (these are in fact
periodic orbits). It turns out that these issues have to do the most with
transport in action-action-angle maps. Thus, we consider a class of volume-
preserving perturbations of action-action-angle maps of the form

I{ = Il + €f1(117123076)7
Ié =1+ €f2(117]2a97€)7
0 =0+ O, ) + efs(I1, I, 0, ¢). (49)

We assume that Q, f1, fo and f3 are analytic functions of their variables..

Non-existence of two-dimensional invariant manifolds

Feingold, Kadanoff and Piro first performed a beautiful study of such maps
in Feingold et al. (1988). They observed numerically that they behave differ-
ently from action-angle-angle maps in that they could not find any invariant
surfaces persisting and pursued an analytical perturbation argument to im-
ply this statement of non-persistence is true. Such a result would indicate
that, as opposed to the KAM case, there are no surfaces bounding particle
motion in the perturbed system and thus perhaps global chaos could be
expected upon small perturbation. We will see here under which conditions
this is true rigorously.

Consider a map given by (49). In the case ¢ = 0 the phase space is foli-
ated by circles 7, ¢, We denote the resonant manifold Q(Iy,I)/2m = k/j,
J.k € Z by Ry ;. Let V C B be a one-dimensional analytic manifold. As
said before, any manifold of the type V x S' is invariant for the unper-
turbed system (e = 0). In the following theorem we state that typically
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none of such manifolds persist when e # 0 except possibly in the case sim-
ilar to that of proper degeneracy (Arnold (1963)) in Hamiltonian systems.
We will be formal here and state a theorem and then explain the result in
practical terms. The germ of the proof of the theorem below (a first-order
perturbation expansion) can be found in Piro and Feingold (1988).

Theorem 3.2. Let FO(Iy,I5) = 0 define an invariant manifold M of the
system (49) of the type V x S1. Let the Fourier expansions of f1i|e=o, f2]e=0
be given by

fi(1,15,60,0) =Y f(I1, 1) exp(ijh),
JEL

oI, 15,60,0) = > f(I, Io) exp(ij). (50)
JEL

Assume

1. (f, ) - VE* #£0 or
2. (f9,f9)-VFO =0, (f°, f9)-VQ # 0. Moreover, for every j € Z there
ism =mnj, n € Z such that (fl ,f2 ) H/(fl,fQ).
3. (f9,f9y =0, VFO H’VQ and for any p,q € Z there exist m = lyp,n =
lag € Z such that (", f3") If (1", f3").
Then there are no manifolds M¢ defined by F(e, I, 15,0) = 0, F
analytic, such that

hrnF(O 11,12,9) F (11,12)

Note that fO = 1/(2 ) Jo Tt (I1, I5,0)df is the average of the pertur-
bation part of the map. So the first condition states that if we consider
manifolds F'° to which the average of the vector field over unperturbed tra-
jectories and time (recall that we integrated over time to obtain the Poincaré
map and thus the functions f;) projected on the normal on F° is nonzero
(i.e. the average of the perturbation is ”piercing through” the manifold F°),
then that manifold can not persist under perturbed dynamics. This is quite
intuitive.

The proof of the above statement does not depend on the incompressibil-
ity of the underlying flow (and therefore volume-preservation for the map).
However, for sufficiently small ¢, (f2, f2) is a Hamiltonian vector field, with
the Hamiltonian function H.
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Exercise 3.3. The last statement is a consequence of volume-preservation
that implies that the determinant of the Jacobian of the map is 1. Prove
that for small €, (f°, f9) is Hamiltonian by calculating the determinant of
the Jacobian to O(e) and finding the condition for it to be equal to 1.

Thus, looking at the first condition of the theorem, if a manifold of the
type V x St is to persist under a perturbation, V' must be composed of level
sets of H (this follows from the fact that the first condition for non-existence
implies VH - VFY #£ 0).

The second condition can be interpreted as follows: even if the average
of the perturbation is parallel to the manifold F° that we are ”examining”
for persistence, if Q and F° do not coincide, F© will not persist. This is due
to the fact that Q changing value on F© implies there will be rational values
of it and thus periodic orbits. Not all periodic orbits persist (see below) and
thus the surface is broken, provided that additionally some higher terms in
Fourier expansion of the perturbation are not parallel to F°. The third
condition is similar in that it implies that F° must intersect some resonant
surface Q = n/m.

We can now examine the case in which (2, f9) - VQ = 0 and (f?, f9) -
VF? =0, i.e. FYis functionally dependent on € and constant along the
orbits of a vector field (fO(I1, ), f9(I1, I5)). Clearly, if Q/2r = k/j M¢
will generally not persist. But for Diophantine €2 it could. Consider the
system

II = I+€fl(I7 9179276)7
9’1 = 91 + EQl(I) + €f2(179130276)a
0 = 02+ Qa(I) + ef3(1,01, 02, ¢). (51)

Assume that fo% f1(I,01,05,€)d0; = 0 and fo% f2(1,01,05,€)dfs = 0. In
the notation of the theorem,

(F, 1) -V = (0,601 (1)) - (25,0) = 0.

And thus there is a possibility of persistence of M defined by Fo(I) =
Oy (I) = const. where Qg is Diophantine. This case is similar to the proper
degeneracy case in Hamiltonian systems treated in Arnold (1963). In fact,
in Vaidya and Mezié¢ (2006), persistence of invariant tori in such a case was
proven. In fluid dynamics, this case corresponds to the case of rotation-
ally symmetric, no-swirl vortex ring perturbed by small swirl. The result
in Vaidya and Mezi¢ (2006) states that invariant tori will exist upon such
perturbation (under certain additional conditions). In fluid dynamics, this
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has potential relevance to the problem of ”swirl stabilization” in combus-
tion, where the anchoring of the flame is achieved by a toroidal surface
”generated” by an imposed swirl in the flow.

Theorem 3 gives rigorous backing to observations of Piro and Fein-
gold (1988) but also contains additional information: manifolds on which
Q(I1,15) is constant could persist if the average of the perturbation in ac-
tions is tangent to these manifolds. In fact, in Cartwright et al. (1996),
figure 7b shows surfaces that are tangent to the average of the perturbation,
broken at intersections with resonant surfaces. In the following section we
examine the dynamics near the resonant surfaces Q(I1,I3) = p/q.

Persistence of periodic orbits

Every invariant manifold R, , of the map (49) at e = 0 is filled with p/g¢-
orbits. We call the map (49) 7. Consider the ¢-th iterate of that map,
T4:

[iI == Il + 6f1(113127976)a

Ig - 12 + efQ(Ily 12797 €)a

9q:9+qQ(Il,IQ>+6f3([1,[2,976). (52)
For this map R, , is a manifold of fixed points. Let Q(Iy, Iy) = ¢Q(I1, I5) —
27p and consider the map S given by

I{ = Il + 6f1(117]23036)7

Ié - 12 + EfZ(IhIQa 0, 6)7

0 =0+ QI I2) + efs(Ir, I, 0, €). (53)

For this map R, 4 is given by Q(I1,Iz) = 0. We denote the Jacobian of two
functions f and g with respect to variables 4,5 by {f, g}« ;) where i,j can
be I, 15 or . The following has been proven for general perturbations in
Wiggins (1985); Wiggins and Holmes (1987):

Proposition 3.4. Assume that (IY,13,60°) is a point on the manifold M
such that the action part of the perturbation vanishes, i.e.

f1(19,19,6°,0) = fo(1°,19,6°,0) = 0.

Furthermore, assume

N . - o - -
[aTl{fh fo} 00 — @{fl’ F} o)l 19,19,00.0) # O (54)
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Then, for all sufficiently small € there is p(e) = (I1(€), Iz(¢€), 0(¢)), which is
a fized point of (53).

Proof. Tf (I9,19,60°) is a solution of fi|c—g = 0, fa|e—o = 0,9 = 0 by the
implicit function theorem, there exists a solution p(e) = (I1(e), I2(€), 0(¢))
for f1 =0, fo =0,Q+ €f3 = 0 provided the determinant of

Ofi  O0fi 9N
oL, 0L 9
Ofs  Ofx Ofs
oL, oL 09
o0 90
oI, ol

does not vanish at (19, 19,60°,0), which is exactly the condition (54). O

Note that the proof does not use the volume-preserving property of the
perturbation: this condition is going to be used for stability considerations
later. Under the assumptions of the above proposition, there is a finite
set of p/g-orbits on the manifold Q(I1,lz) = p/q that persist after the
perturbation.

The stability of periodic orbits

We can now examine the stability of the fixed points that persist due to
Proposition 3.4. Let

)

| 96 I, 98 DI,

M o0 . -
Y= [%{fl’fQ}(l2’9) - %{flaf2}([179)‘| . (55)

Proposition 3.5. If
X(12,12,6°,0) > 0

the fized point (I1(€), I2(€),0(¢)) is a hyperbolic saddle. If
x(I19,19,6°,0) < 0

the fixed point is a saddle-focus. If the fixed point is a hyperbolic saddle it has
a two-dimensional stable manifold and one-dimensional unstable manifold

if
y
1 12,0°,0) > 0
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and a two-dimensional unstable manifold and one-dimensional stable man-
ifold if
Y

E(I?,IS,GO,O) <0

If the fized point is a saddle focus, the stable and unstable dimensions are
reversed.

Different stability types of periodic orbits are shown in figure 20. The

|
H=0 % =0
Y Sl Y% =20
! s
X =0 ] '-—:JZP
v/% =0 sl

Figure 20. Stability of various types of periodic orbits persisting the per-
turbation in map (47)

O(e) polynomial that we solved in order to obtain a pair of O(4/e) eigen-
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values is obtained from the eigenvalue problem for the matrix

10 &

0 1 eﬁ
o0 o0
oI, 0l

After a calculation we find that the eigenvectors corresponding to 14+/(eX)

(Ve(0f1/00), /(D f2/00), £V X)

(of course, the real eigenvectors are obtained from real and imaginary parts
in the case of X negative). Define again J = (I, I3) and consider the
J — 0 plane. It is easy to show that the angle of the plane spanned by
these eigenvectors with the tangent space of the J — 6 plane is O(1). For
simplicity, let Q(I1,Is) = I;. Then the tangent space of the I1 — 6 plane is
spanned by (1,0,0) and (0,0,1) . The normal to this plane is thus given by
(0,1,0). The normal to the eigenvector plane is given by

3f2/\/ 8fz afl afl/\/ 8fz 8f1

G20

Thus, the angle o between the two planes satisfies

cosa= 21 [Py (B

which is in general of O(1). This observation will prove quite useful in
describing resonant transport later.

For use in an example treated later we record the following: consider the
map

J{ - Jl + 691(']1’ ']2a¢)€)
Jy = Jo+ €ga(J1, Jo, ¢ €)
¢/:¢+J1+693(J17J27¢76)‘ (56)

For the points close to J; = 0 we obtain

Corollary 3.6. If 9g1/0¢ > 0 the fized point (J1(€), J2(€), ¢(€)) is a hy-
perbolic saddle. If Og1/0¢ < O the fized point is a saddle-focus. If the fized
point is a hyperbolic saddle it has a two-dimensional stable manifold and
one-dimensional unstable manifold if

{91792}(J2,¢)(J0 0 ¢070)
agl(J?,Jg,dﬁ 0)

>0



Lectures on Mixing and Dynamical Systems 85

and a two-dimensional unstable manifold and one-dimensional stable man-
ifold if
{g1392}(J2,¢)(']10"]207¢070) <0
879,79, 4°,0)
If the fized point is a saddle focus, the stable and unstable dimensions are
reversed.

While the maps studied up to this point of are three-dimensional per-
turbations of integrable two-dimensional symplectic maps, consider the case
when the unperturbed dynamics is governed by time-dependent equations
of motion

o= M ey e
x - ay x’ y’ Z’ )

= 0y
y_ ax 3372472'7 9
z =0,

where H is periodic in time with period 7. When the time-T" Poincaré map
is taken, on constant 2z planes we obtain an area-preserving map which is
not necessarily integrable. Study of three-dimensional perturbations of such
flows is important in oceanographic context (Pedlosky (1987)). We consider
a perturbation of an area-preserving map of this type, given by

I =L+ fi(li, I5,0) + eqi(I1, I, 0, €),
Ié =1+ 692(11;127976)7
9/:6—|—Il—|—f3(11,I279)+693(—[1712a976)7 (57)

where at € = 0 the map is area-preserving in I; §. As the consequence of
area preservation, we have

af af
I+3n 20

det of of
I+on 1+%

-1, (58)

which implies .

Oft [ Ofs 0fi0fs 0fi 0fs0fi
oL, " o0 "o, 00 o9 oL oo (59)

Let

(1]

ofi  0fs
on, T o0
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We assume that the map (57) for € = 0 has a fixed point at (I{, I3, 6°), i.e.

fl(I?,IS,HO) =0,
I?+f3(‘[?7[20790) 0.

Linearization at (19, I9, 6°) yields two eigenvalues that are real if = > 0 and
complex-conjugate if = < 0. By the implicit function theorem, if there is
a fixed point (I9,6°) on the I} — 6 plane for some I3, then there are fixed
points of the e = 0 map on all of the close enough Is planes provided that

o 0f0fs 0fi 015 0f
det, ol 00 IO 0 00 :717377177371
¢ 1—"—27{:: % ] ( 142> ) 6[1 89 89 811 89 #Oa (60)
but,

0f10fs 0fi 0fs0f

oI, 99 90 oI, 99

by (59) and thus for hyperbolic saddles or elliptic fixed points a line of fixed
points parametrized by I is obtained in the neighborhood of (19, I9,6°). If
|Z| > ¢ > 0 in the domain of the definition of the map, then this line of fixed
points extends throughout the domain of definition of I as suppose not:
then there is an I3 such that there is a sequence I3 of fixed points converging
to I3 each having a neighborhood in I whose size is, by |Z| > ¢ > 0
bounded away from zero. That leads to a contradiction.

Let us now assume that |Z| > ¢ > 0 for some interval J» in the domain
of definition of I,. Thus, there is a line of fixed points (I9(I3), Iz, 0° (1)) for
the unperturbed map parametrized on J5 . In the case when

oh _ 9 _,
ol, 0l ’

— =
—

b

we have the following result:
Proposition 3.7. Assume that
92(I1(13), 13, 6°(13),0) = 0,
for some I3 and Z(I19(13),15,0°(13)) # 0. In addition, let

892 * * *

8712([?([2)7-[2700([2)70) 7é 0.
Then, for sufficiently small € there exists a fixed point of (57) e—close to
(I9(13), I5,0°(13)). In the case = > 0 this fived point is a hyperbolic saddle
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and in the case Z < 0 it is a saddle-focus. In the case = > 0 the hyperbolic
saddle has two unstable and one stable directions if

692/812(19(15), 157 90(‘[;)7 O) >0
and two stable and one unstable directions if
ag?/aIZ(Ig(I;)a I;ﬂ 00(15)7 0) <0.

In the case Z < 0 the the saddle focus has one unstable and two stable
directions if
dg2/0I>(I7(13),15,6°(13),0) > 0,

and two unstable and one stable directions if
892/812(1?(‘[;)’ I;a 00(15)7 0) <O0.

Proof. The persistence part is a straightforward application of the implicit
function theorem. The stability results are obtained from considering the
eigenvalues of the linearization of the map at (IY(13), I3, 60°(13)):

1- A+ 50 +eg2 e L
det 6@ 1—X + €8g2 6%92 — 07
P A IR SRRt Rt
by observing that A =1+ 6892 solves this equation to O (62) . O

3.7 Transport and mixing

Transport and mixing in action-action-angle maps and flows is largely de-
termined by the nature of fixed points and periodic orbits the existence and
type of which was discussed above in the perturbative case. For example,
the two-dimensional stable and unstable manifolds of saddle-foci generically
intersect, establishing a heteroclinic orbit between two such points. Every-
where in the phase space except in the neighborhood of these heteroclinic
orbits and the fixed points themselves, the motion in Iy, I directions is
given by the adiabatic approximation [19] which can be obtained by notic-
ing that I] — I = efY(I1, I2) is a discretization of I = f1(I1, I, 0) for small
€ = 0t. Thus, the map in I, Is can be replaced by its flow version

Ji = fL (1, o),
Jy = (1, J2), (61)
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We know that the system (61) is Hamiltonian, with a Hamiltonian function
H(Jy,J2). On the other hand, close to heteroclinic orbits and fixed points
the system will have very different behavior. Thus, orbits follow the ones
given by the ”adiabatic” approximation (61) until they encounter one of
the resonant surfaces. At these they are governed by the dynamics of het-
eroclinic orbits. It is important to point out that the saddle-foci complex
conjugate eigenvectors, which play the biggest role in transport, do not lie
in the resonance plane but at an angle to it, as we have shown earlier. Thus,
when an orbit encounters the fixed point, it is displaced away from the value
of the adiabatic invariant that it had when it encountered the resonant sur-
face. Note that the right-hand side of (61) plays a prominent role in our
theorem on nonexistence of invariant surfaces. In general, if the surfaces of
constant €2 and adiabatic surfaces coincide and the trajectory is on a sur-
face for which Q is Diophantine, such surface could persist and the global
transport would be prevented, as the jumping from one adiabatic surface
to the other occurs at the intersection of resonant and adiabatic surfaces.
For the case of flows, global transport is possible if all surfaces tangent to
(f2 £9) intersect Q = 0 surface.

A figure that describes the nature of transport in the 3D action-angle an-
gle maps and flows that we studied is 21a. A saddle-focus with 2 stable and
1 unstable direction is shown, directing the dynamics away from one and
towards another adiabatic surface. Globally chaotic dynamics is enabled
by such "hopping” from one adiabatic surface to another. A beautiful ren-
dering of saddle foci that control transport and mixing in an apparatus of
counterrotating disc from the work of Lackey and Sotiropoulos (2006) is
shown in figure 21b.

3.8 Solomon experiments

In Solomon and Mezié (2003) the above ideas on resonances were tested
in an experiment The flow studied in Solomon and Mezi¢ (2003) is domi-
nated by a horizontal chain of alternating vortices (shown in blue in figure
22) with a secondary flow due to Ekman pumping (red), a process that
occurs whenever a vortical flow is bounded by a solid surface (see figure
22). Radial pressure gradients due to the no-slip boundary condition push
the fluid inward just above the solid boundary and up through the vortex
centers. This is a common 3D flow perturbation; we therefore expect the
internal mixing properties observed with this flow to be generic to a wide
variety of vortical flows; basically, laminar vortex flows in the presence of a
rigid boundary, particularly vortex flows in microfluidic devices.

Time dependence takes the form of lateral oscillations of the vortex
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Figure 21. a) A saddle-focus with 2 stable and 1 unstable direction, di-
recting the dynamics away from one and towards another adiabatic surface
b)Saddle foci that control transport and mixing in an apparatus of coun-
terrotating disc Lackey and Sotiropoulos (2006)
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Figure 22. The physical nature of the flow in Solomon experiments. There
are chains of horizontal and vertical vortices, whose centers move in a peri-
odic fashion (see equation (62)).

chain, similar to the oscillatory instability of Rayleigh-Bénard convection.
A model for the above described flow is

& = — cos(mws(t)) sin(my) + esin(2mz,(¢)) sin(nz),
y = sin(mzs(t)) cos(my) + esin(2my) sin(rz), (62)
2 = ecos(mz)(cos(2ma4(t)) + cos(2my))

where 24(t) = z+bsin(wt), where b and w are the non-dimensionalized oscil-
lation amplitude and frequency. Results of the model simulation are shown
in figure 23. Figure 23a) shows the Poincaré section for 2D, time-periodic
case (e = 0,b = 0.01,w = 2.5), determined by plotting locations of five trac-
ers once each period, initially located on the z axis at x = 0.49,0.4,0.3,0.2
and 0.1. Note that the time-dependence is small. As expected, we see
a small chaotic zone around the separatrices for the unperturbed steady
2-dimensional flow (b = 0) and evidence of a big resonant island (crescent-
like structure in the figure). In 23b, the trajectory of tracer in 3D, time-
independent flow (¢ = 0.005,b = 0) rolls around a 2-dimensional torus,
and shows no signs of chaos. In 23c, Poincaré section for a tracer near a
periodic orbit for 3D, time-periodic case (¢ = 0.0001,b = 0.001,w = 2.5),
showing the tracer spiralling off one adiabatic surface (the spiral is very
tightly wound and may be difficult to resolve) and onto a different one,
just as predicted in the previously described theory. In 23d, Horizontal



Lectures on Mixing and Dynamical Systems 91

Figure 23. Results of the simulation of (62). For description, see the text.

slice (—0.1 < z < 0.1) of Poincare section of a single tracer for 3D, time-
periodic case (e = 0.005,b = 0.01,w = 2.5); the tracer is initially located
at (x,y,z) = (0.49,0,0), and the forcing frequency is almost resonant with
tracers circulating in the central crescent island shown in 23a) . In 23e,
horizontal slice of Poincaré section for a non-resonant forcing frequency
(e = 0.005,b = 0.01,w = 4.0) is shown. In absence of resonance, an ex-
cluded zone with poor mixing results. In 23f, the width L of the excluded
region shown in e) (as a fraction of the vortex width d ) is plotted versus
non-dimensional driving frequency (e = 0.005,b = 0.01). Uniform mixing is
achieved for the frequencies where the width goes to zero. These results, in
summary, tell us that global mixing can be achieved in three-dimensional,
time-dependent perturbations of two-dimensional flows, even if the pertur-
bation is very small, provided that resonance conditions are met (in the
case of the model just presented, the time-dependence particulary needs to
be resonant with circulation times in the steady two-dimensional flow for
particles close to the position of the two-dimensional crescent-like island
shown in 23a)).

The conditions that, in the model, lead to global chaotic behavior in the
phase space, lead to good mixing in the corresponding experimental set-up,
as indicated in figure 24. The top view of the apparatus is shown. The dye
is initially put in two ”cells” that appear bright in the figure. From the top
to the bottom, snapshots of the concentration field at 5-minutes intervals
are shown. Despite the fact that the flow in the vertical direction is 1/10
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of the strength of the flow in the horizontal direction, complete mixing is
achieved.

25

min

Figure 24. Experiments on resonant mixing in weakly three-dimensional
time-periodic flows (Solomon and Mezié (2003))

4 Application to micromixers

Engineers would like to design and control mixing, not just analyze it -
although for devices operating at large Reynolds numbers, turbulent mix-
ing usually provides satisfactory results. Microfluidic devices typicaly have
laminar flow due to low Reynolds number but require good mixing. In this
section we expand on the uses, need and some designs for mixing in mi-
crofluidics, and point out where the above described geometric approach is
useful and where new theory can help.

The use of integrated microelectromechanical systems (MEMS) is ex-
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panding rapidly due to improvements in microfabrication technology. MEMS
have applications in a variety of industries, including the automotive,
aerospace, computer, and biomedical industries. Micro total analysis sys-
tems (uTAS) are being developed for drug discovery, drug delivery and
chemical sensing (Chiem et al. (1997)). Technical barriers of these systems
include device packaging and interfacing, chemical surface absorption, and
control of fluid motion on the microscale (Karniadakis and Beskok (2001)).
A recent review of flow physics, including mixing, in microscale devices is
given in Squires and Quake (2005). The performance of these devices can
be limited by the rate at which mixing occurs at the microscale. Mixing
of two fluids is enhanced when the interface between the fluids is increased
through stretching and folding (for a perspective on mixing strongly em-
phasizing the stretching and folding aspect, see Ottino (1989)), so that
diffusion between the fluids only has to occur over a relatively small dis-
tance. At the macroscale, stretching and folding of interfaces is performed
by three-dimensional turbulent eddies that contain a continuous spectrum
of length scales. A turbulent flow regime in channels occurs at a relatively
high Reynolds number, defined as Re = UL /v, where U is the characteristic
velocity, L is the characteristic lengthscale (e.g. the width of the channel),
and v is the kinematic viscosity. A water flow through a 200 pm wide chan-
nel, with a kinematic viscosity, v = 1075 m?/s, and a characteristic velocity
of 1 em/s, has a Reynolds number of 2. The flow at this Reynolds number
is laminar. In microdevices, fluids are often mixed through pure molecular
diffusion. However, depending upon the rate at which diffusion occurs, the
diffusion time scale, tp, defined as tp = L?/D, where L is the relevant
mixing length (i.e. the characteristic width of the flow channel), and D is
the molecular diffusivity, may be too large. As an example, in practical
BioMEMS applications (e.g. biosensors, (Vijayendran et al. (2003))), one is
often interested in transporting and mixing biological molecules. The diffu-
sion coefficient of hemoglobin in water, is D = 70 um?/s, and therefore it
would take up to 570 s for this molecule to diffuse over a length of L = 200
pm. Thus, advective stretching and folding of interfaces is still desirable
in order to improve the effective diffusion coefficients. Microscale mixers
that were designed to achieve such an improvement can be divided into two
broad classifications: passive and active. Passive mixers rely on geometrical
properties of channel shape to induce complicated fluid particle trajectories
and thus mix. Examples include work in Branebjerg et al. (1994, 1996);
Miyake et al. (1993); Liu et al. (2000); Yi and Bau (2000); Stroock et al.
(2002).

As we explained earlier since the induced laminar flows are steady, in
order to produce good (exponential in time) mixing they must rely on three-
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dimensionality of the resulting particle motion. Recent passive designs e.g.
in Liu et al. (2000); Stroock et al. (2002) use the concept of chaotic advec-
tion. As mentioned before, the key advantage of chaotic advection-based
strategies is that exponential rate of mixing is achieved, as opposed to an
algebraic rate (e.g. t~1) that is achieved e.g. by inducing shearing vortical
motion (besides the discussion above, see also the book Ottino (1989), and
-for an example in micromixing- the paper Chou et al. (2001)). In figure
25 design of a passive micromixer along with some results from Stroock
et al. (2002) are shown. The design of the through-flow micromixer shown
in figure 25 consists of periodically repeated ”basic cell” units. Such a basic
cell unit is shown in the lower part figure 25 a). On top of that figure the
cross-sectional streamlines that are induced by the patterns of grooves on
the bottom of the basic cell unit are shown. Because of the low Reynolds
number, the fluid tends to flow along the groove, hit the wall and upwell, to
proceed towards the groove wedge plane and downwell there. Since grooves
in the first part and the second part of the cell have different lengths on
different sides, the vortical motions that are formed are asymmetric. The
dye material that starts in one of the vortical regions will stay there (dif-
fusion being small) over the part of the cell with the same groove pattern.
When the groove pattern changes, there is also exchange between different
vortical regions and exchange of dye between them as shown in figure 25 b).
Even after 5 repeated cell units the layering of the fluorescent dye material
and pure water (dark in the figures) is visible, and thus advection is domi-
nant over diffusion. Thus, methods that we have discussed can be applied
to study this three-dimensional flow on a periodic domain. In particular,
Poincaré map can be generated by considering the surface of section at the
end of the cell.

In contrast to steady designs which initially relied on laminar shear for
mixing, even the first active micromixer, designed by Evans et al. in Evans
et al. (1997), was based on the concept of chaotic advection. As seen on the
example leading to the standard map, an essentially two-dimensional lam-
inar flow can mix well if it is time-periodic (steady two-dimensional flows
can only mix at an algebraic, not exponential rate). One example is that of
a commonly used design, the shear superposition micromizer (SSM) that
was first presented in Volpert et al. (1999), based on the prior theoretical
study of optimal mixing by sequences of shear flows at different angles in
D’Alessandro et al. (1999). In contrast to Evans et al. (1997) this is a con-
tinuous through-flow micromixer consisting of the main channel with three
cross-flow side-channels that are capable of producing time-dependent shear
flow in the direction transverse to the main stream (see figure 26). The phys-
ical mechanism of mixing in SSM is similar to that described mathematically
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in D’Alessandro et al. (1999) and consists of rearrangement of streamwise-
oriented strips to cross-stream oriented strips and subsequent stretching by
parabolic shear (somewhat similar to the tendril-whorl map introduced in
Ottino (1989)), as described in Mueller et al. (2003). In the same paper,
optimization of frequencies for mixing was performed on a two-dimensional
model. The two-dimensional model introduced in Volpert et al. (1999) and
used in Niu and Lee (2003) is kinematic and consists of a superposition of
a parabolic flow profile in the main channel with the solution of Navier-
Stokes equation with oscillatory pressure gradient in the side channels. It
was extended to three dimensions in Bottausci et al. (2004)

This design was also considered in Lee et al. (2001), where a single side-
channel configuration was presented. In Niu and Lee (2003) a study of that
design with periodic repetition of spatial cells was performed using ideas
from chaotic dynamics. In that study, the frequency used for actuation of
every side-channel was the same. Thus, the study was performed on the
periodic domain using a two-dimensional map of the type discussed in the
previous sections. In Volpert et al. (1999) the frequencies of the actuation
for downstream increases. This is based on the physical fact that the first
side channel introduces layering of two fluid streams. Thus, the size of
maximal blobs of non-mixed fluid decreases downstream, and the frequency
necessary for good mixing increases. The methods that we introduced in
the previous sections are applicable to closed domain (this could be either
a closed container or a periodic domain as in the case of the steady mixer
described above and time-periodic actuation of the active spatially periodic
mixer as pursued in Niu and Lee (2003)), time-periodic or steady flows.
However, when time-dependence is more complicated than periodic and/or
the domain is not closed, different techniques of analysis are needed. In the
rest of the lectures, we present a number such techniques, based on concepts
from ergodic theory that apply in a more general context just described.

5 Ergodic theory and mixing

There are a number of problems in the theory of advective mixing that re-
quire a departure from the geometrical approach adopted above. In fact,
historically the statistical approach was the one predominantly used to char-
acterize mixing via discussion of residence times and concentration distribu-
tions Paul et al. (2004). Introduction of dynamical systems methods shed
new light on these statistical issues as well. In the next several sections we
concentrate on a few topics in which Ergodic Theory, a branch of mathe-
matics closely associated with Dynamical Systems Theory is used to discuss
statistical and visualization issues in mixing.



Lectures on Mixing and Dynamical Systems 97

]] i
= (1]
1w ¢ '| i
L
= G
et P o T MsdEd
| .
o ———— i p—
i o “h
. ¥ |
- o
O
R (1) &(3) - Acvively Controibed Pumps seiting V and £

= Iy Wilt) = 207 sin@ TTrL)

Figure 26. Left: Micrograph of the working portion of the mixing mi-
crochip. The active mixing device shown consists of a main mixing channel
and three pairs of secondary channels that perturb the flow in the main
channel. Two unmixed, miscible fluids enter the main channel, and are then
manipulated by pressure-driven flow from the secondary channels. The flow
from the secondary channels is specified to be oscillating at different fre-
quencies, to provide enhanced mixing efficiency. Right: Schematic of the
fluid flow in the channel. The mixing channel is 2h high and 13.5h long,
where h is an adjustable length scale ranging from 50um to 150um, de-
pending on the application of the mixer. The six secondary channels (or
three pairs of secondary channels) are perpendicular to the main channel,
and are h/2 wide, 5h long and separated from each other by a distance of
3h. An approximately parabolic profile develops at the entrance of the main
channel. In the side channels, an oscillatory flow is induced by pumping.
The channels are set to oscillate at phases (0,7,0), while the amplitude
and frequencies are varied to achieve optimal mixing. This gives a versatile
design that can mix efficiently under varying flow conditions.
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5.1 Visualization

There is a variety of ways one can study dynamical systems and their
trajectories besides solving them analytically or integrating them numeri-
cally. Visualization of different regular features in the phase space clearly
plays a major role in this context. In particular, visualization of invariant
sets is of special interest for understanding of mixing in fluids. Specifically,
if the set invariant under advection does not occupy the whole space avail-
able for fluid motion, then at least two separate invariant sets exist and
particles can transition from one to another only through diffusion®. This
puts an immediate bound on how fast the uniformization of the mixture
can proceed: let the diffusion coefficient be D m?/s, and the area of the
boundary of the domain occupied by dye be denoted by A. Denote the
volume inside A by V. Let V be an invariant set. Then the flux across A
is purely diffusive:

= / DVe dA < D -area(A) - max [V|.
A

The idea in Mezi¢ (1994); Mezi¢ and Wiggins (1999) is to compute time
averages of functions on the flow domain, associate these time averages
with the initial conditions and plot the contour plot of the time average
function. This turns out to visualize invariant sets. To see this, consider an
arbitrary continuous function f(x,y,z) defined on a compact flow domain
in R? (note: continuous functions on compact domains have a maximum
and a minimum on the domain). For simplicity we will work with steady
velocity fields. A specific example is velocity component in the direction of
x axis, vy (z,y, z). Starting from an initial point xo = (20, Yo, 20) compute

the time average
1 (T
T/o Fx(t, x0))dt

Taking the limit 7" — oo, define

F*(x0) = lim —/ F(x(t, %0))

This quantity does not depend on the initial point on a specific trajectory
we started from: assume xg and x; are two points on the same trajectory.
Then it must be that x;(t1) = x(t1,%0,0), for some ¢; (see section 2.3).

3To be precise, we should say ”measure 1 set” instead of ”the whole volume” since
invariant sets of zero measure, such as unstable periodic orbits, are embedded in chaotic
regions.



Lectures on Mixing and Dynamical Systems 99

Without loss of generality we can choose t; > 0. For any time T > t;, we
have

T 11
foxttxadr = [ fox(txo)dt + it (63)
0 0 t1
t1 T_tl
= / f(x(t,xo))dt+/ f(x(t,x1))dt. (64)
0 0
Thus
1 /7T
[f(x0) = Th_fgof ; f(x(t,x0))dt (65)

1 1
= i g [ st + i T/ Fx(t %)) dt.
The first term on the right is zero since ¢ is finite and f is bounded. For
the second term, we have

limg o & [T F(x(t,%1))dt (66)

= limp_o % fo (x(t,x1))dt — limp_ o ~ T fT—tl f(x(t,x1))dt, (67)

where the second term is again zero due to finiteness of f and ¢;. Thus,
f*(x0) = f*(x1) and time averages of continuous functions are constant on
trajectories. From this it is clear that level sets of the function f* are in fact
invariant sets. We will call the plots of time averages Mesochronic Plots.

Of course, in computations we are restricted to finite time. The time
averages described above converge with an error of order 1/7 in regions
where particle motion is periodic or quasi-periodic in time. They converge
as 1/+/T where particle motion is chaotic (Mezi¢ and Sotiropoulos (2002)).

When we have a time-periodic velocity field, we consider the Poincaré
map x’ = Tx. The time average f*(xo) under the dynamics corresponding
to some initial point xq is now defined as

and exists almost everywhere in the phase space (Mane (1987)). A sim-
ple observation f*(Tx) = f*(x) implies that f* is an invariant function,
meaning that two points having the same time average for some function
are contained in the same invariant set.

The following computations have been done in Z. Levnajié¢’s thesis work
at UCSB (Levnaji¢ (2006)). We will compute plots of f*(x,yo) for certain



100 I. Mezic

functions f for a grid of 800 x 800 initial points (xg,yo). To begin with
we will set f*(z,y) = fn(z,y) for N = 30,000 i.e. time averages will be
identified with partial time averages computed up to 30,000 iterations.

In Fig. 27a we show trajectories of the standard map for the ¢ = 0.17
case. In Fig. 27b we show contour plot of Lagrangian time averages (i.e.
Mesochronic Plot) of the function f(z,y) = sin(57y + 6my). The features
of the trajectory plot are mimicked closely by the time-average plot. In
figure 28 we show how Mesochronic Plots reflect changes in the phase space
for increase of the parameter value of the standard map. Note that the
functions whose Mesochronic Plots are shown in 28 are different than that
in 27b.

In two dimensions we can plot trajectories and the comparisons above
are just to show the close correspondence to the plot of trajectories. This
technique is quite useful when studying three-dimensional maps, since it is
difficult to analyze three-dimensional trajectory plots. Consider for example
the following 3-D map defined on the three-dimensional box with periodic
boundaries (i.e. a three-dimensional torus):

x = x4 z+ esin(2rz)sin(2my)
Yy = y+ez?+ecos(2nz) (68)
"= 2+ esin(2n2)sin(27y)

Note that z = const. surfaces are invariant for this map at € = 0. The map
is of degenerate action-angle-angle type (since one of the frequencies -ez? is
of the same size as the perturbation). For this special class of maps, it was
shown that KAM-type theorem holds (Vaidya and Mezié¢ (2006)). Thus, we
would expect to see z = const tori (note: because of boundary conditions,
z = const. surfaces are two-dimensional tori) should persist. In the figure
29 we show Mesochronic Plots for f = sin 27z function at the y = 0.5 plane,
for € = 0.001 (top left), ¢ = 0.005 (top right), ¢ = 0.1 (bottom left) and
e = 0.2 (bottom right). The plots were obtained by starting 500 x 500
initial conditions on the y = 0.5 plane and computing time averages of
f- The interpretation of Mesochronic Plot at y = 0.5 is that it represents
intersection of invariant sets in 3D with the y = 0.5 plane. The almost
straight level sets in the top left figure represent a family of invariant tori
that persist via KAM. In the bottom of the Mesochronic Plot, there is a zone
of chaotic motion (grainy features are due to slow convergence in chaotic
zones). That zone gets bigger with the increase of parameter € and leads to
fully chaotic Mesochronic Plot in the bottom right, for e = 0.2.
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6 Conclusions

Statistical description of non-diffusive mixing in fluid flows can be achieved
using ergodic theory. In these lectures we use ergodic theory to provide only
visualization methods, but it can be used for quite a bit more (Mathew
et al. (2005)) The question of mixing is different for naturally occuring,
e.g. oceanographic, fluid flows and those important in engineering appli-
cations such as microfluidics. The latter can typically be influenced via
time-dependent boundary conditions or external forces. Thus, a question
arises that is properly set in the context of control theory: which time-
dependence, or mixing protocol (as introduced in Ottino (1989) ) should be
chosen to achieve maximal mixing? When molecular diffusion is present,
any protocol will achieve uniform final concentration. Thus the question
reduces to the question of the rate of convergence. But in the case of non-
diffusive mixing, both the issue of completeness of mixing and its speed need
to be considered in order to formulate the control-theoretic ”cost function”.
Such issues have become a topic of quite a bit of interest recently, but we
leave them for a discussion elsewhere.
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1 Introduction. A historical perspective on laminar
mixing

The subject of laminar chaotic mixing, also referred to as Lagrangian chaos,
is a relatively new field of investigation, started about two decades ago with
the publication of the article ”Stirring by chaotic advection” (Aref , 1984)
by Hassan Aref published in the Journal of Fluid Mechanics in 1984, which
showed how it is possible to generate unexpectedly complex mixing struc-
tures through the application of a simple stirring protocol (the case of two
two-dimensional ideal vortexes blinking periodically was used as a case study
in the article in question). The idea underlying Aref’s paper was a major
breakthrough in the fluid dynamics community. Yet, a mathematician or a
physicist involved in the study of Hamiltonian mechanics would have con-
sidered this idea not altogether new, since it was known since Poincaré’s
contribution in celestial mechanics (Diacu and Holmes, 1996) that a conser-
vative system whose dynamics is governed by nonlinear equations is apt to
display complex dynamical behavior. In point of fact, an article discussing
the existence of nonintegrable Euler flows was published by Arnold almost
twenty years before Aref’s paper (Arnold, 1966). One may wonder why it
took so many years to appreciate the analogy between a conservative me-
chanical system and the kinematics induced by an incompressible flow!. A
popular answer to this question is that the connection was made when the
availability of cheap computer power made it possible to carry out numerical

! This formal analogy holds, for instance, between a one-degree of freedom periodically
perturbed Hamiltonian system and a two-dimensional time-periodic incompressible
flow, with the x and y coordinates of the flow domain playing the role of position and
momentum of the phase space associated with the mechanical system.
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simulations of fluid particle trajectories and uncover the complex, “erratic”
behavior of the dynamics. However, a more attentive analysis of this is-
sue suggests that experimental tools to detect complex mixing structures
(e.g. fluorescent dye advection, X-ray tracking of radioactive tracers) had
been available long before 1984, whereas experimental results confirming the
existence of physically realizable laminar chaotic flows where published only
after numerical computations had unveiled such possibility (see, e.g. Leong
and Ottino (1989) and therein cited references).

Another possible explanation is that before Aref’s article, it was a com-
mon belief that mixing was tightly connected with velocity fluctuations as-
sociated with flow instability and turbulence, and, as such, its study could
be framed in the same Eulerian reference framework used for describing
the velocity field. This common belief was probably due to the fact that
most of industrial as well as laboratory mixing equipment typically works
in turbulent regime, which, whenever possible, was (and still is) the most
efficient and direct way to blend unmixed fluids. Shifting the attention
from the (possibly fluctuating) pointwise vector velocities to fluid parti-
cle trajectories was all that was needed to start a new and fruitful field
of investigation. The work carried out along twenty years of research in
this direction has undoubtedly contributed, either directly or indirectly, not
only to the improved design of mixers that must operate under laminar
conditions (e.g. those processing shear-sensitive materials or highly viscous
liquids), but also to the understanding of natural phenomena such as chaotic
advection within the ocean and the atmosphere (Kuznetsov et al., 2004). In
the last few years, as closing a virtuous circle, the swiftly growing microflu-
idics technology demands a unified theoretical framework where the design
of optimized micromixers can be carried out on a rational basis. In turn,
this forces the people working in the field of laminar mixing to a critical
analysis of the state of the art of the theory, and to lay out the research
guidelines for the near future. The accomplishment of this goal cannot do
away with an effort to connect the phenomenology arising from the study
of laminar chaotic flows with the more recent advances of the hyperbolic
theory of dynamical systems. The scope of this lecture is to explore this
connection in some detail and highlight some of the issues that could be
taken as common grounds for bridging the gap between theoreticians and
practitioners. The lecture is (roughly) organized into two parts.

In the first part (Section2), the basic tools of the kinematic approach to
mixing are presented, and the phenomenology arising from the application
of this approach is discussed in the context of two-dimensional time-periodic
incompressible flows. The choice of a two-dimensional setting simplifies re-
markably the analysis of mixing dynamics, especially as regards the evolu-
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tion of material interfaces which, in this context, are represented by plane
curves. However, it is important to remark that in microfluidics three-
dimensional effects can be important in that they can trigger the transition
between regular and chaotic flow (see, e.g., Karniadakis et al. (2005) and
references therein).

In the second part of the lecture (Section 3), the interpretation of this
phenomenology is analyzed in the light of the hyperbolic theory of dynamical
systems, with specific reference to Pesins’s theory of nonuniformly hyper-
bolic behavior (Pesin and Barreira, 2002).

2 The kinematic approach to fluid mixing

2.1 Mixing mechanisms

Mixing in single phase flows, be them laminar or turbulent, takes place
through two independent if cooperating mechanisms, namely convection and
molecular diffusion. To refer to a concrete framework, consider a “thought
experiment” where a blob of black dye is being mixed in a colorless fluid
flowing with a prescribed incompressible velocity field, say v(x,t), with
V -v =0, within a certain region €2 of the ordinary space. We assume that
Q is bounded (i.e. it can be embedded in a finite-size ball of R?), and that the
boundary 952 of this region is impermeable to the flow, i.e. v-n|pg = 0 at any
time ¢, where n represents a unit vector normal to 0f) at a generic x € 0f).
At the initial time instant, the blob is uniquely identified by its surrounding
“interface”, i.e. the surface separating colored and colorless fluid. Any time
later, in the presence of molecular diffusion - however small - the distinction
between colored and colorless becomes fuzzy, as the concentration of dye
is bounded away from zero at any point of the mixing space (2. What at
the beginning was black and colorless has instantaneously become a field of
black intensities. At any given point x, and at any give instant of time, ¢,
the intensity of black color depends upon the local concentration of dye say
c(x,t). Quantitatively, the process is described by an evolution equation,
the advection-diffusion equation,

% =-—v-Vc+DVie=Lyp[d, (1)
where Ly p = —v - Ve + DV? is the advection-diffusion operator, and D
denotes the diffusion coefficient. As regards the boundary conditions, we
ask that the normal derivative at any point of the boundary be zero at any
positive time. This implies that the diffusive flux of the scalar ¢ through
the boundary is everywhere zero on 0f2. The evolving concentration field
¢(x,t) undergoes qualitatively different behaviors according to whether D
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is equal to, or greater than, zero. In the latter case, the concentration field
approaches asymptotically a constant (i.e. homogeneous) value, indepen-
dently of the advecting flow?. In the first case, i.e. in a diffusionless flowing
continuum, mixing must be given a different meaning than homogenization,
as at zero diffusivity the value of the concentration at a given point X and a
given time ¢ is just “brought around” by the advecting field while its value
remains unaltered. Thus, convective mizing is a process that acts only on
the support of the initial datum but not on its range of values. Formally,
this concept can be expressed by saying that the trajectories of the Ordinary
Differential Equation (ODE) system

x = v(x,t) (2)

are characteristic lines of the pure advection equation

% — v.Ve 3)

The kinematic approach (Ottino, 1989) consists of analyzing, in a broad
perspective, the dynamics induced in the phase space by the advection
Eq. (2), which carries on the same information as the first-order PDE of
Eq. (3). The term “broad perspective” means that we are interested not
only in the trajectories of tracers (i.e. massless points that are passively
carried around by flow), but also in the local deformation of line elements
(and surface elements in three dimensions), as well as in the global geometric
structure attained by finite-size lines and surfaces that evolve under the flow.
This is because many processes that occur along with advection are more in-
fluenced by the deformation than the displacement associated with the flow.
To give an example, the evolution of a magnetic field embedded within the
flowing continuum can be amplified by the local deformation about the flow
trajectories (in the hypothesis where the feedback of magnetic field onto the
velocity field is neglected, this problem is referred to as fast dynamo, Chil-
dress and Gilbert (1995)). Another example of physical interest where the
local deformation impacts upon the dynamics of physical processes is pro-
vided by the advection-diffusion Eq. (1) discussed above (Toussaint et al.,
2000; Giona et al., 2004). In these examples, the actual influence of con-
vection upon the process is strictly related to the kinematic motion induced
by the flow, meaning that interesting effects are typically associated with
a local hyperbolic structure of the deformation process (i.e. shrinking and
expansion of lengths along transverse directions). Specifically, the existence

2The interaction between convection and diffusion determines, however, the rate at
which homogenization is approached.
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of a shrinking direction is responsible for the amplification of the gradient
of the transported entity, be it a scalar (e.g. concentration of a chemical
species or temperature), or a vector quantity (the magnetic field). This
gradient amplification mechanism is exactly where convection and diffusion
processes meet and interact with each other. Specifically, flows that tend
to regenerate continuously gradients of the transported entity as they are
being erased by diffusion are good candidates for providing short homog-
enization timescales. From these observations, it appears clear why, in a
number of applications, one seeks flow conditions that provide sustained
local hyperbolic deformation for the “largest possible” set of trajectories.
It is a well established fact that this “massive” local hyperbolic dynamics
is invariably associated with a complex behavior of the flow trajectories,
which is generically referred to as chaotic.

Understanding how and why the optimal condition of maximum chaos
is reached is an issue that is far from being trivial, even when very sim-
ple classes of flow protocols are considered. To date, there is no simple
way of predicting the mixing performance associated with a prescribed flow
protocol other than running an experiment or a direct numerical simula-
tion. Therefore, far from being a predictive tool useful to design optimal
protocols, the core of mixing theory is still at the stage of describing, and
quantifying on a rational basis, the mixing performance of prescribed flow
protocols. In this Section, an overview of the modern approach to charac-
terizing mixing in incompressible flows, the so-called kinematic approach, is
discussed.

2.2 Kinematics

The traditional approach to assess mixing performance dates back to the
early 50s and was developed by Danckwerts (Danckwerts, 1952), who de-
fined objective indexes, such as the linear scale of segregation - quantifying
the average linear size of segregated regions - and the intensity of segrega-
tion - a normalized scalar variance - , to quantify the degree of mixedness
associated with a given mixture. Owing to the conceptual simplicity and
the experimental feasibility of Danckwerts’ approach, these indexes are still
largely used to characterize mixing performance, especially when complex
flows are to be dealt with. However, the intrinsic limitation of this ap-
proach is that it uses no information whatsoever about the fluid dynamics
and kinematics governing the evolution of the mixture, making it difficult to
establish a relationship between the dynamics of the indexes and the salient
features of the mixing protocol.

In 1984, starting with Aref’s work (Aref , 1984), a new approach to mix-
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ing spread out in the fluid dynamics community. This approach was moti-
vated by the observation that even simple flows, e.g. possessing just a single
“macroscopic” characteristic lengthscale, can generate incredibly complex
mixing structures, provided they are allowed to act for a sufficiently long
time. The key property that makes this possible is the nonlinear depen-
dence of v(x,t) on the spatial coordinates x. In (Aref , 1984), the author
showed that a time-periodic sequence of two ideal vortexes (specifically, a
piecewise-steady flow) in two dimensions can define, for certain values of
the geometric parameters and of the time period, an efficient stirring pro-
tocol. The importance of this observation can hardly be overestimated, as
soon as one considers that until then the wording mizing and turbulence
were used almost as synonymous, with the underlying understanding that
the mixing action of the velocity field was to be ascribed essentially to
the fluctuating components of the velocity. The fact that a deterministic
(e.g. laminar) flow can provide efficient mixing changed drastically not only
the realm of physical systems that were to be considered worth of inves-
tigation, but also the techniques for quantifying the mixing action of the
flow system. These techniques, straightforwardly derived from dynamical
systems theory, include Poincaré sections, computation of local stretch fac-
tors, finite-time Lyapunov exponents and global characteristic exponents
(e.g. the topological entropy), reconstruction of global invariant manifolds
and characterization of their spatial structure and dynamics. In what fol-
lows, a brief review of these techniques and of the typical phenomenology
of deterministic incompressible mixing flows is discussed. The first point to
be established is what category of systems, with specific reference to fluid
mixing, can be approached through the dynamical system approach.

Flow systems The (classical) dynamical system theory analyzes the qual-
itative features of evolving deterministic systems, i.e. of systems whose past
and future evolution is uniquely identified by the state of the system at a
given time. Basically all of the results of the theory are applicable to sys-
tems whose evolution law does not depend explicitly on time, referred to as
autonomous systems. The time variable can take values over the real line
R (continuous systems) or on the set of relative - positive and negative -
integers Z (discrete systems).

As regards fluid mixing systems, we assume that - (i) the flow domain
Q containing the incompressible fluid is a bounded, impermeable two- or
three-dimensional domain, i.e. v - njpo = 0 at any point x € 99 of the
boundary, whenever it exists®. - (ii) the velocity field is time-periodic

3Many flow systems used as model of two-dimensional flows are defined on boundaryless
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v(x,t) = v(x,t + T) where the positive real number T is the flow period.
This definition clearly includes autonomous flows, which can be regarded
as a time-periodic flow of arbitrary period. From assumption -(i) it follows
that the flow originated by the velocity field is volume-preserving, and that
the dynamics of passive tracers (“fluid particles”) is defined at all times.
Assumption -(ii) is essential for recasting the system into an autonomous
form whenever the velocity field depends explicitly on time. This can be
accomplished with a construction referred to as suspension (Katok and Has-
selblatt, 1995). The idea is quite simple and consists of regarding the time
variable ¢ just like another spatial coordinate, say ¢ = £. From this defini-
tion it follows that § = 1. Thus, one can consider an “enlarged” dynami-
cal system, given by the latter equation together with the original equation
X =v(x,t) = v(x, ), defined on the Cartesian product xR, where the real
axis £ € R represents all the possible times (past and future). Finally, this
unbounded phase space can be transformed into a bounded one by noting
that it is made of an infinite number of identical “pieces” where the velocity
field possess the same structure, namely the sets Qp = Q x [nT, (n + 1)T]
(see Fig. 1). Each of these pieces contains all the information about the
dynamics. Thus one can to study the system within the set QP®" obtained
by folding €2; onto itself and gluing together the end surfaces, which phys-
ically represent the snapshots of the mixing space 2 at times t = nT" and
t = (n+1)T. It can be readily verified that this time-continuous dynamical
system, defined on a toroidal-shaped mixing space (of dimension N + 1, if
N is the dimension of the flow domain) is incompressible.

A further reduction can be obtained by considering a cross-section of
this system, say Q = {y € OPeT|¢ = £}, and the correspondence x
@E(x) between two consecutive intersections, x and @E(x), respectively,
of a continuous trajectory, with the surface of section 2z. The surface of
section Qg is a global Poincaré section of the suspended system Physically, it
represents the state of the system in a stroboscopic time-discrete framework,
th =&+ nT

The Poincaré stroboscopic map (I)E’ henceforth simply denoted by &,
is a volume-preserving map (or area-preserving map, in the case of a two
dimensional flow domain) defined on the same domain 2 as the velocity
field. Note that the area-preserving property of the Poincaré map stems
form the fact that by construction of the suspended system, the normal
velocity component of the flow to the surface is constant independently of
the point position on the surface of section. For a generic three-dimensional

manifolds. For instance, the standard map family, used in these notes as a representa-
tive example of two-dimensional time-periodic flows, is defined on the two-dimensional
torus T2.
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T

time

0

Figure 1. Schematic representation of the suspended system in the case of
a two-dimensional time-periodic flow.

autonomous flow the ratio of velocity magnitudes at x and ®(x) appears
as a weighting factor in defining the invariant measure (see the lecture by
I. Mezic).

The Poincaré map defines the discrete dynamical systems

Xn+1 = (I)(Xn) . (4)

In these notes, we investigate the dynamics associated with Eq. (4) in
the case where the flow domain € is a two-dimensional bounded domain.

A simple model exhibiting mixed behavior In what follows, the
Standard Map family (Casati and Chirikov, 1995) is chosen as a repre-
sentative example of generic protocols defined by two-dimensional time-
periodic velocity fields. Given that the original motivation for introducing
this model comes from low-dimensional Hamiltonian mechanics, a deriva-
tion of the SM model in the context of fluid mixing is next discussed. The
flow domain where the time-periodic flow is defined is the two dimensional-
torus T2, which can be represented by the unit square domain 2 = {x =
(z,y) € 0,1) x [0,1)}, equipped with periodic boundary conditions which
identify opposite edges (i.e. a fluid particle that leaves the unit square cross-
ing an edge, re-enters instantaneously the unit domain at the corresponding
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point on the opposite edge). On this domain, consider the time-periodic
flow generated by blinking alternately the two steady unidirectional flows
vl = (uél),vl(,l)) = (0,sin(27z)), v(?) = (vg),vy)) = (y,0), the first acting
for a generic time 7, the second acting for a unit time as represented in
Fig. 2.

0.75 1 0.75 £
> 0.5 > 0.5
0.25 | 1 0.25 £
LWV (a) (b
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
X X

Figure 2. The two steady flows vy (panel (a)), and vy (panel (b)) that
define the time-periodic protocol giving rise to the SM family. The flow v;
acts for a generic time 7, whereas the flow vo acts always for a unit time.
The overall protocol is periodic with period T'= 7 + 1.

By definition of the protocol, the overall period of the flow is T'= 7+ 1.
The stroboscopic map ®7(x) = M(x) is then defined by

; ¥ = z+4+y+7sin(2rz) [mod. 1

M(x)zM(x,y):(x,y)Z{ IR S S

(5)
and yields the new position x’ = (2/,y’) after one flow period of a point
originally located at x = (z,y). The “mod. 1]” (modulus 1) condition
appearing at the r.h.s. of Eq. (5) means that only the proper fractional
part of each of the displaced coordinates (z’,y’) is considered, whereas the
integer part is discarded (e.g. if ' = 3/2, then 2'[mod. 1] = 1/2). This
takes automatically into account the periodic boundary conditions imposed
on the unit square domain (see Section 3 for further details). As 7 varies
n [0,00), Eq. (5) defines a family of area-preserving maps which display
a variety of different dynamical behaviors. These dynamical behaviors are
qualitatively consistent with those observed in physically realizable two-
dimensional time-periodic flows (e.g. the flow within a lid-driven cavity and
the flow between eccentric cylinders, see Ottino (1989)), as well as with
those arising from Poincaré sections of three-dimensional autonomous flows
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(such as the Poincaré section the partitioned-pipe mixer, see Khakhar et al.
(1987) and the Kenics static mixer, see Hobbs and Muzzio (1997)). Let us
start to analyze these behaviors in terms of trajectories.

Trajectories and invariant sets One of the first issues is to understand
the structure of the phase space associated with a prescribed mixing proto-
col, i.e. how many qualitatively different types of trajectories coexist within
one and the same mixing domain. In the discrete setting of the Poincaré
stroboscopic map, each trajectory associated with a given point x is com-
posed by a countable set of points {x, = M"(x)}, where n € Z, consisting
of the forward and backward iterates of x under the action of M. Stem-
ming from the geometric meaning of M as a Poincaré map of the associated
suspended system, the plot of a sufficiently long segment of trajectory in
the phase space is referred to as Poincaré section. To unveil the global
structure of the dynamics, several trajectories are typically superimposed
onto the same Poincaré section. Figure 3 shows the Poincaré sections asso-
ciated with several initial conditions in different protocols of the SM family.
Different qualitative behaviors are immediately evident, namely trajecto-

0.75 0.75

0.25 0.25

o &2
0 0.25 0.5 0.75

Figure 3. Poincaré section of the Standard Map M for three stirring pro-
tocols characterized by -(a) 7 =1/4, -(b) 7 =1/2, and -(c) 7 = 1.

ries that wander endlessly in a “massive” subregion? of the mixing domain,
referred to as the chaotic region, and trajectories that are confined to a
collection of closed curves, which are referred to as quasiperiodic trajecto-
ries. Globally, the set of all quasiperiodic trajectories is also massive, and
is referred to as the regular region or the island region. As can observed
in Fig. 3, the location, the shape and the relative size of the chaotic and
regular regions depends strongly upon the specific protocol considered. It

“In these notes, the wording massive means “of positive Lebesgue measure” (see,
e.g. Rudin (1986) for an introduction to Lebesgue measure theory).
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is important to stress out that, beyond a handful of simple archetypal cases
(see, e.g., Wojtkowski (1981)), there is no other way to predict the presence
of islands than running a numerical simulation, or, in the case of a physically
realizable flow, an appropriate experiment. Quasiperiodic and chaotic be-
havior are not the only possible qualitative behaviors occurring in nonlinear
area-preserving maps. Other possible types of trajectories include periodic
orbits as well as orbits that are asymptotically attracted to periodic orbits.

Periodic orbits are composed by all the points x, that verify the re-
lationship M!(x,) = x, for some positive integer [ > 1. The smallest
integer that verifies this relationship is called the minimal period of the
orbit. A periodic orbit of minimal period [ is therefore composed by ex-
actly [ points {x1,Xo, --x;}. It is called hyperbolic, parabolic or elliptic
according to whether the Jacobian matrix (i.e. the matrix of the first-order
partial derivatives) of the I-fold map DM!|, = DM |pgi-1(x) DM ppi—2xy - - -
- DM|m(x) - - - DM|x, where x is any point of the periodic orbit, is hy-
perbolic, parabolic or elliptic, respectively.

The existence of nonperiodic points that are asymptotically attracted to
a (hyperbolic) periodic orbit is a straightforward consequence of the exis-
tence of stable and unstable manifolds associated with hyperbolic periodic
points (see Section 3).

Before analyzing what types of deformation mechanisms occur along
each of these qualitative types of dynamical behaviors, we observe that the
sets of points composed by trajectories belonging to each of the different
types of dynamics are globally invariant. In other words, it is impossible for
given type of orbit segment to change its nature along the dynamics (e.g. a
periodic orbit cannot become chaotic or quasiperiodic and viceversa).

2.3 Local deformation along trajectories

From the analysis of Poincaré section a natural question arises, namely
is there any peculiar feature associated with reqular and chaotic orbits that
marks the watershed between these two types of dynamics? We have already
observed that each chaotic trajectory appears to visit a massive region,
whereas regular orbits are confined to sets of null measure. Yet, the exis-
tence of a massive chaotic region is a property that depends globally on the
whole set of chaotic trajectories, and proving the existence of such region
is typically impractical. In order to unveil the difference between regular
and chaotic dynamics, an analysis of the local deformation process along
the evolving orbit is necessary. The simplest approach consists of analyz-

ing the linear approximation to the deformation process. Consider a point
X = (X,Y) and its image x = (z,y) = M(X) = (M,(X,Y), M, (X,Y)).
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Consider a displaced point X + AX = (X + AX,Y + AY), and denote its
image by x + Ax = (v + Az, y + Ay) = (M (X + AX, Y + AY), M, (X +
AX,Y + AY) (see Fig. 4).

.(:v + Az, y + Ay)

(X + AX,Y + AY)

(X,Y)

M

Figure 4. Evolution of a small perturbation about a point.

By expanding the image of the displaced point in Taylor series, we obtain
that

Mo(X +AXY +AY) = Ma(X,Y) + Gl xn AX + 23 x,v) + o([|AX]|?)

My(X + AX,Y + AY) = My(X,Y) + 52| x AX + 22| x.v) + o || AX]?)

(6)

and therefore, by disregarding higher order terms, it results that the dis-
placed segment (Axz, Ay) = (My(X + AX,Y + AY) — M,(X,Y), M, (X +
AX,Y +AY) — M,(X,Y)) is given by

(3)- (e vy (4F) @

When applied recursively for n iterations, Eq. (7) writes in compact form

Ax(™ = DM™|x - AX = [DM|p0n-1(x) - DM|mx) - DM[x] - AX .

(8)
It is important to keep in mind that Eq. (8) represents a linear approxi-
mation to the evolution of the segment AX. This approximation becomes
more and more inaccurate as time elapses (i.e. in the discrete timeframe, as
the number of iterations of Eq. (8) increases), because higher order terms
become more and more important. However, if a limit AX — 0 is consid-
ered, then Eq. (8) is well defined at all times, and it quantifies the dynamics
of an infinitesimal arc segment, say ds,, = M) (dS), attached to the evolv-
ing point x,, = M (X). In other terms, along with Eq. (4), one considers
the nonautonomous linear system

l,4+1 = DM|y, -1, , (9)
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equipped with the initial condition 1o = 1, where 1,, is a vector belonging to
the tangent space (see the lecture by Mezic for a definition of the tangent
space to a manifold) to the manifold €2 representing the flow domain at the
point x,,. A fundamental quantity associated with Eq. (9) is the stretch
factor A\, (X,1/][1]|), defined by

18]

MK = i

(10)

which depends upon the initial point X to which the vector is attached,
and on the initial orientation 1/|[1|| of the vector. The fact that A, depends
only on the orientation of the initial vector, and not upon its magnitude is
a consequence of the linear structure of the evolution in the tangent space.
Thus, the stretch factor A\, is numerically coincident with the norm of the
image vector 1,, associated with a unit norm initial condition ||lI|| = 1. From
the structure of Eq. (9), it is evident that the stretch factor after n iterations
depends on the entire trajectory segment {X;};c[o,n in that the Jacobian
matrices DMy, that appear in the product yielding the Jacobian of the n-th
order map are computed at each point of the orbit segment. Furthermore,
the product of Jacobian matrices is, in general, non-commutative. This
implies that the order according to which points are visited is essential in
defining the overall stretch factor.

Let us next analyze what types of stretch factor dynamics can occur.
Figure 5 shows the result of a numerical simulation for different initial con-
ditions in the SM protocol defined by 7 = 1/4 (see Fig. 3-(a)). Three initial
conditions, referred to as Cy, Cs, and Cgs, are considered. The initial con-
ditions C; and Cj refer to an initial point X = (1/10,1/10) (placed in
the chaotic region) and orientations of the initial vector 1 set to (1,0) and
(0,1), represented by a continuous line and square symbols, respectively.
For the initial condition Cjs, a point X = (1/2,1/10) belonging to the main
island region and an initial orientation 1 = (1,0) was chosen. Owing to
the huge range values attained by the stretch factors, the value of log(\,)
of this particular initial condition (empty circles) was multiplied by a fac-
tor 102 for better visualizing the shape of the curve. The linear growth of
log(Ay,) associated with the initial data attached to the chaotic orbit indi-
cates clearly that the stretch factor increases exponentially along chaotic
trajectories. As regards condition Cgs, the logarithm of the stretch factor,
log(\,,) settles onto an oscillating behavior whose average coincides with a
logarithmic trend (i.e. the stretching increases linearly with time).

A quantitative characterization of the exponential stretching process can
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Figure 5. Stretch factor dynamics for a point belonging to the chaotic re-
gion with different initial orientations of the vector (squares and continuous
line), and for a point falling in a quasiperiodic island (empty circles). The
value of log()\,,) associated with the quasiperiodic orbit is multiplied by a
factor 102 to enhance visualization of stretch dynamics.

be obtained by considering the limit
1
A/ = lim —log(A,) - (1)
n—oo N,

The number A exists for almost all points X, and for an assigned point X,
can attain at most two different values {Aj, Ao} (N different values for a
generic N-dimensional manifold). These values are called Lyapunov expo-
nents associated with the point X (see, e.g., Eckmann and Ruelle (1985) for
a physics-oriented introduction to Lyapunov exponents. The mathematics-
oriented reader is referred to Katok and Hasselblatt (1995), and to the orig-
inal paper by Oseledec (1968), where the existence of Lyapunov characteris-
tic number was proved for the first time). In the case of area-preserving non-
linear maps, the set of Lyapunov exponent must necessarily be of the form
{=A, A}, where A > 0 is shortly referred to as the Lyapunov exponent asso-
ciated with X. This property stems from the fact that Lyapunov exponents

verify the condition Zfil A(X) = log [det ( %/[DMnx] - [DM"\X]*H,
where N is the dimension of the manifold €2, and “[-]*” is the matrix trans-

pose of ‘[-]” (see, e.g., Eckmann and Ruelle (1985)). Given that the Jacobian
matrix of M possess determinant equal to unity at every point X € Q (the
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mapping is area-preserving), then the Lyapunov exponents associated with
any point must sum up to zero.

Figure 6 shows the convergence of the limit in Eq. (11) in the SM protocol
7 = 1/4, for the the same initial conditions used in Fig. 5. As can be

(1/n) log( A,)

01k ]
B,

n

Figure 6. Convergence of the average of log \,, along the orbit towards the
Lyapunov exponent. Symbols are consistent with those of Fig. 5.

noted, the initial condition Cj associated with a point falling inside the
main island quickly decays to zero. Any initial condition associated with
points of the chaotic region would yield the the same value of Lyapunov
exponent, regardless of the initial location X and of the initial orientation
1/|11]]. Thus, this characteristic number can be associated with the entire
chaotic region.

Therefore, the maximal Lyapunov exponent is a characteristic number
that allows to distinguish between quasiperiodic and chaotic orbits in that
these different types of dynamics are characterized by zero and positive Lya-
punov exponent, respectively. However, the positivity of the Lyapunov ex-
ponent, which implies the sensitive dependence of trajectories on the initial
data, is not a safe criterion to establish the chaotic character of a trajectory,
as by definition hyperbolic periodic orbits also possess positive Lyapunov
exponent. In point of fact, chaotic behavior is result of the combination
between the “erratic” (ergodic) behavior of trajectories and the sensitive
dependence on the initial datum.

Another issue that qualifies the tangent vector dynamics in the chaotic
region is that the orientation of the evolving vector displays “fading mem-
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ory” with respect to the initial orientation, i.e. if one considers a stencil
of vectors spanning the 27 angle and attached to the same point X, the
mapped vectors after a sufficiently long time (typically, few iterations) will
be contained in a narrow cone (see Fig. 7).

Figure 7. Orientation properties of tangent vectors in the chaotic region.
After few iterations a stencil of vectors whose orientations span the 27
angle is mapped into a narrow cone (the higher the number of iterations,
the narrower the cone).

This behavior finds a simple explanation in the context of the theory of
hyperbolic dynamical systems, which postulates the existence of expanding
and contracting directions at each point of the chaotic region (see Section
3).

By definition, the Lyapunov exponent is a measure of the average stretch-
ing rate (in fact, it represents the average of the logarithm of one-step
stretching factors) experienced by an infinitesimal arc of a material line.
Yet, the fact that all elementary arcs embedded in the chaotic region expe-
rience the same asymptotic average stretching rate does not tell a complete
story about the stretching process itself.

In order to unveil differences between stretching histories experienced
by arc elements associated with different points of the chaotic region, let us
undertake a statistical approach. Specifically, let us compute the Probabil-
ity Density Function P (log(\y,)) of the logarithm of stretch factors log(A,,)
associated with a swarm of evolving vectors that are uniformly distributed
throughout the chaotic region. Figure 8 shows the result of this computa-
tion for a swarm of 10% vectors stirred by the SM protocol defined by 7 = 1,
for n =2,4,---,18. The z-axis reports log(A,) — Ay, (where A,, = (log A,)
is the average value of the stretching logarithms) in place of log(\,), to
enhance visualization of the PDFs evolution. As time increases (in the
direction of the arrows), the PDFs undergo increasing broadening, thus
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indicating a history of deformation that becomes more and more heteroge-
neous (e.g. the gap between the maximum and minimum value of the n-fold
stretch factor increases with time).

As an overall quantification of the dispersive behavior of stretch factors,
Fig. 8-(b) reports the squared variance o2 = ((log(A,) — A,)?), which un-
dergoes the typical linear growth observed in a large class of area-preserving
nonlinear systems. In the same figure, the linear growth of A,, = nA, where
A is the Lyapunov exponent associated with the chaotic region is also re-
ported.

(b)

Figure 8. Dynamics of stretch factors in the SM protocol defined by 7 = 1.
Panel (a): Probability Density Function P[log(),)]. The arrows indicate
increasing times. Panel (b): Average, A, (circles), and squared variance,
o2 (squares), of P[log(\,,)]. The triangles depict the growth of a finite-sized
line.

The analysis of local deformation can be pushed further to analyze the
evolution of higher order properties. The most significant feature that de-
pends on higher order (in fact, second-order) derivatives of the Poincaré
map M is the local curvature. Consider a smooth - not self-intersecting -
curve I embedded in the flow domain. Let I" be represented by the para-
metric representation x(s) = (x(s),y(s)) where the parameter s € [0, Ly]
represents the arc length, and Lr is the overall length of the curve, i.e. the
curve is parametrized with respect to its fundamental representation. In
differential geometry, the curvature k of the plane curve I' at a point x(3) is
the second spatial derivative k = d?x/ds?|,—s. It is represented® by a vector

5More properly, curvature is a second-order, skew-symmetric tensor (see, e.g., Drum-
mond and Munch (1991) and therein cited references). The “curvature vector” is just a
geometric representation of this tensor in a fixed reference frame, with the understand-
ing that k does not change as a vector quantity under coordinate transformations.
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whose modulus equals the inverse radius of the best osculating circle to the
curve at the specified point, and whose direction is orthogonal to the local
tangent to the curve. The orientation of k points towards the center of the
osculating circle. Dynamical equations for the evolution of the curvature k
can be derived by considering a curve I' and its image v = M(I") under the
transformation M. The modulus knpx) = [[knm(x)|| of the local curvature
of the transformed curve v = M(7) at the image point M(X) € « of a point
X €T is given by
i) — I(DMx - T) x (DDMx : TT) + (DM|x - T) x (DM|x - K))||
o [DM]x - T |
(12)
where T and K are the tangent and curvature vectors of I' at X, and where
DDM is the third-order tensor of second-order spatial derivatives of M,
i.e. DDM = (((0°M;/0z,0x,,))). The double inner product DDM : TT
entering the right hand side of Eq. (12) is thus given by DDM : TT =
(T,T,0°> M; /0x;0,,), and represents a vector quantity.

The dynamics of curvature in the chaotic region possesses the same “fad-
ing memory” features as the that of tangent vectors. There is, however one
important difference, namely that curvature becomes independent of the
initial conditions (i.e. of the initial vectors T and K) as regards both the
modulus and the orientation of k.

A consequence of this phenomenon is that a statistics performed over a
swarm of evolving curvature “vectors” embedded in a chaotic region yields a
sequence of PDFs of curvature moduli that collapse onto an invariant master
curve (see, e.g. Cerbelli at al. (2000)). Therefore the average value and the
variance of curvature PDF converge towards constant values that are specific
of the deformation process inside the entire chaotic region. This invariance
can be put one-to-one with the existence of invariant manifolds associated
with hyperbolic trajectories. In fact, under relatively weak assumptions,
it can be proved that for any point of the chaotic region, the curvature
vector k,, converges exponentially fast to the local curvature of the unstable
manifold associated with the current point x,, of the trajectory. However,
this fact should not lead to the conclusion that the curvature field associated
with the chaotic region is a “well behaved” function. This corresponds to
the fact that unstable manifolds are only locally smooth, but may display
singular points.

Indeed, direct numerical simulations suggest that there exists points at
the boundary of the chaotic region, in the neighborhood of which the local
invariant curvature attains arbitrarily large values. A way to observe this
phenomenon is to track curvature dynamics along a single ergodic trajectory
embedded in the chaotic region. Figure 9 shows the behavior of the function
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K, = maxi<i<n{xi} (i.e. K, is the highest value of curvature experienced
along the orbit up to iteration n).

1100 10% 100 10t 10
n
Figure 9. Supremum of the curvature modulus along a chaotic trajectory

in the SM protocol (7 = 1).

As can be observed, the behavior of the function suggests an unbounded
growth trend, thus implying that there are points of the chaotic region where
curvature “blow up” phenomena can occur. The presence of singular points
for curvature can be connected with the nonuniformly hyperbolic character
of the SM family, or of any other physically realistic map, for that matter
(Cerbelli and Giona, 2005a).

2.4 Deformation of finite-size interfaces

The complex history of local deformation events occurring in the chaotic
region find an even more complicated counterpart in the dynamics of finite-
sized material interfaces, which, in two-dimensions, are represented by curves
evolving under the action of M. Figure 10 shows the first few iterates, n = 4
and n = 5 respectively, of a small segment, say I', anchored at the point
(0,0). The curve quickly develops into a nested folded structure that in-
vades larger and larger portions of the chaotic region (the protocol 7 = 1
of the SM family is considered throughout this section, see Fig. 3). This
picture suggests that eventually the curve will be present in neighborhood
(however small) of any point the chaotic region.

The overall length of the curve increases exponentially, but with an ex-
ponent, say hjine, that is different (strictly greater than) the Lyapunov
exponent. In measure preserving systems, the exponent hj;n. is equal to a
global characteristic exponent, referred to as the topological entropy of the
map, hiop, that is a topological invariant quantifying the “degree of orbit
complexity” (Katok and Hasselblatt, 1995). Heuristically, the difference be-
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Figure 10. Evolutes of a small segment anchored at the origin after -(a)
four, and -(b) five iterations of the SM protocol defined by 7 = 1.

tween the line stretching exponent and the Lyapunov exponent is related
to the fact that, even though the curve will eventually visit densely the
chaotic region, the space-invading process is such that the curve images re-
sult preferentially concentrated in certain zones, where the local stretching
is higher.

The nonuniform character of the space-filling dynamics of the filament
can be analyzed quantitatively by defining a box-counted measure, which
we refer to as w-measure ,ugl ) (x, Ax), which quantifies the fraction of length
of the n-th iterate of the curve that falls within a squared box of size Az
centered around a given point x (Giona and Adrover, 1998). As n increases,
such measure converges towards an invariant measure ji,, (D), where D is a
generic measurable subset of 2. Qualitatively equivalent information can be
gathered by considering the intersections of the curve with an assigned refer-
ence line. Consider, e.g., the horizontal line r = {(z,y)|0 <z <1, y = 1/4}
and the intersections {£;}1<;<n(n), Where N(n) is the total number of in-
tersections between v, and r. Let /LSJL) (z) represent the fraction of the total

number of intersections falling in the interval [0, z]. Figure 11 shows the one-

dimensional measures ugL )(x) for n = 8,10,12. The convergence towards

and invariant curve is so fast that the difference between the approxima-
tions to the invariant measure is barely appreciable. The highly nonuniform
feature of the space-filling process associated with the iterates 7, = M"(I)
is reflected in the singular character of the invariant measure ,ugl) (), which
does not possess a density function. Let us analyze this aspect by consider-
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Figure 11. Convergence of the intersection measure ugl ) towards the in-

variant measure fi,,. Three iterations of the filament are considered, namely
n = 8 (squares), n = 10 (circles), n = 12 (continuous line).

ing the box-counted frequency p(™ (x,, A), where z;, = hA and A is the size
of the intervals covering the reference line, and where p(™ (zj, A) is defined
as the fraction of intersections falling in the interval (xj, z41). We want to
investigate, at fixed n, the behavior of the function p(™ (z},, A) as the size
A of the box covering decreases to zero. For this reason, we consider an
iterate n large enough so that there will be a statistically significant num-
ber of intersections in each of the boxes of the smallest partition considered
in the scaling analysis. Figure 12 shows the result of this computation for
n = 12 and A = 1/N, with N, = 128;256;512 (Figure 12-(a), -(b), -(c),
respectively).

As can be observed, at smaller and smaller values of Az, the function
p™ (zn,A) becomes more and more spiky, suggesting a global diverging
behavior as the norm of the box size, Ax, shrinks to zero.

Periodic points Another interesting issue of physically realistic models
of chaos in two-dimensional time-periodic incompressible flows is the in-
creasingly complicated spatial structure attained by sets of periodic points,
say Per,, whose minimal period does not exceed n. Figure 13 shows the
structure of the set Per, for a stirring protocol, referred to as the sine-flow
model, which possesses qualitative features altogether similar to those of
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Figure 12. Singular character of the density function p™(z,A). The
tenth iterate of the line depicted in Fig. 10 was considered. The density
functions are associated with -(a) Az = 27% -(b) Az = 278 and -(c)
Ax =210,
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Figure 13. Spatial structure of the set Per,, for (a): n =4, and (b): n =25
in the Sine Flow map

The spatial distribution of Per,, is manifestly highly nonuniform. Like-
wise what observed for the distribution of material lines, it turns out that a
measure-theoretical approach can also be used to characterize the set Per,,.
Let Npe,(n) be the cardinality of these sets for each given n (i.e. the total
number of points of Per,). Then, at each fixed n, the following measure
(referred to as the Bowen measure) can be associated with Per,,,

Nper (n

o = 8( 1
.U‘Bow NPM TL Z X xz ) ( 3)

where 0(x — x;) denotes the Dirac’s delta distribution, and x; is a generic
point of Per,. The Bowen measure is a superposition of atomic measures
with support on Per,,, where each point of the set is given the same weight.
For specific classes of systems (expansive systems) it has been proved that
the limit lim,,_, o = ,u/(;(?w converges towards an invariant measure, which we
refer to as ppew (Katok and Hasselblatt, 1995). Results of numerical simu-
lations performed over physically relevant models suggest that this measure
is well defined for a larger class of systems than those for which a rigorous
proof of the convergence has been derived (Giona and Cerbelli, 2005).

5The family of sine-flow maps (Liu et al., 1994) is defined as the Poincaré map of the
time periodic-flow defined by the action of two steady unidirectional blinking flows
vi = (0,sin(27z)), and vo = (sin(27y), 0), each acting alternately for a time 7 = T'/2,
where T' is the overall period of the protocol.
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2.5 Conclusions

The kinematic approach to mixing permits to classify different stirring
protocols on the basis of quantities derived by the convective process, such
as global characteristic exponents (Lyapunov exponent(s), topological en-
tropy), stretch factor statistics, spatial structure of the measure, f,,, asso-
ciated with material interfaces, and of the Bowen measure associated with
the set Per,. In generic flows that depend nonlinearly on the spatial co-
ordinates (i.e. in all the flows of physical interest), the dynamics of these
quantities is characterized by universal qualitative features which can be
summarized as follows

1. Coexistence of regular and chaotic behavior within one and the same
phase space.

2. Dispersive behavior of stretch factors statistics.

3. Nonuniform (multifractal) character of the p,, measure associated
with material interfaces and of the Bowen measure associated with
periodic points.

4. Presence of singular points in the neighborhood of which the local cur-
vature of material interfaces advected by the stirring protocol diverges
to infinity.

The impact of each of this specific phenomena on processes that occur along
with stirring depends strongly on the process considered. For instance,
it has been observed that the selectivity of parallel-competitive chemical
reactions in partially chaotic flows is strongly influenced by the size and
shape of the quasiperiodic islands (Zalc and Muzzio, 1999). As regards
stretch factors, it has been argued that a dispersive dynamics of stretch
factor statistics has quantitatively important consequences on the evolution
of advecting-diffusing magnetic flows (Finn and Ott, 1988). Furthermore,
the presence of islands and the dynamics of stretching strongly influences
the homogenization timescales of advecting-diffusing scalar fields.

3 Hyperbolic theory

In this part of the lecture we are going to analyze to what extent the hy-
perbolic theory of dynamical systems (Katok and Hasselblatt, 1995) can
be used to explain and connect to one another the different dynamical be-
haviors of kinematic quantities that we observed in physically interesting
models of laminar chaotic mixing systems. As the kinematic approach was
discussed in the specific context of two-dimensional time-periodic incom-
pressible flows, the basic ideas of hyperbolic theory will be analyzed in the
framework of a generic area-preserving transformation f of a bounded two-
dimensional manifold M, where bounded means that M can be embedded
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in a finite-size ball of R3. The condition that the manifold M is bounded
is essential in defining the property of the dynamics, since it influences the
recurrence properties of the trajectories. In fact, Poincaré’s recurrence the-
orem ensures that almost all points of a measure-preserving transformation
of a bounded measurable manifold must come back arbitrarily close to their
original position (see, e.g., Arnold (1989) for a proof). The wording “al-
most all” means that the property is true for all the points of the manifold
with the possible exception of a set of points that possesses zero measure
(i.e. roughly speaking, zero “area”).

It is important to highlight that while Poincaré’s theorem ensures that al-
most any orbit of a measure preserving transformation defined on a bounded
measurable manifold must recur, it does not say anything about the spatial
and temporal properties of such recurrence. The simplest example of re-
currence is clearly represented by periodic behavior, where a point returns
exactly at its original position at periodic intervals of time. In Section 2
of this lecture we have already discussed examples of nontrivial recurrence,
namely quasiperiodic and chaotic behavior. Next, we choose the simplest
example of hyperbolic systems to show how the boundedness of the mixing
space directly impacts the property of the dynamics.

3.1 Hyperbolic dynamics in bounded and unbounded manifolds

Let us consider a hyperbolic matrix H; = (1 3) possessing integer entries
and unit determinant. The most obvious way to associate a dynamical
system with the matrix H; is to define a linear operator A : R?2 — R?

that maps points of the xy plane onto itself as (ﬁzgg;) =H; - (y). The

operator A possesses two real eigenvalues A, = 2+ /3, A\, = 2 — /3, to
which two linear eigenspaces E*, E° can be associated, where E* and E°
are the span spaces of the eigenvectors e* = (Af—l) and e’ = (Af,l ) The
dynamics of points of the real plane under A is rather trivial. The origin of
the real plane is a fixed point. The straight lines through the origin with
slopes « = A\, —1/2 and 8 = \; — 1/2, y,, = ax and y; = Sz are invariant
under A (unstable and stable manifold of the origin, respectively). Points
of the unstable manifold are repelled away from the origin at an exponential
rate, points on the stable manifold are attracted exponentially fast to the
origin (see Fig. 14).

The trajectory of any other point of the plane is confined onto hyperbolas
and diverges to infinity along the direction of the unstable manifolds through
the origin’. There are no periodic points other than the origin, which is the

Ts is easy to show that such hyperbolas are invariant under .A.
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Figure 14. Dynamics induced by the linear operator .4 defined on the real
plane.

only point that exhibits (trivial) recurrence. Of course there is no violation
of Poincaré’s theorem in that R? is not a bounded manifold. Next, let us
use the same hyperbolic matrix H; to define a dynamical system whose
behavior is much less trivial than that of A. By exploiting the fact that H;
possesses integer entries we can define a transformation H; : I2 — I2, on
the unit square domain where 12 = (0,1] x (0, 1], as follows

Hiz(z,y) = x+4+2y [mod. 1]
(14)
{ Hiy(z,y) = =x+3y [mod. 1]
By this definition, to each point of I? there corresponds one and only one
image point that still belongs to I?. The “mod. 1”7 condition is automatically
obtained if one identifies the opposite edges of the square, i.e. if one folds
the square into a cylinder first, and then the cylinder into a two-torus (a
“doughnut-shaped” surface, see Fig. 15). Any displacement of integer length
along the x or y directions brings any point back to its original position.
The fact that the matrix H; possesses integer entries ensures that the
transformation H; is continuous (in fact, smooth) in the torus topology,
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— )

Figure 15. Folding the unit square into a two-torus.

i.e. a continuous domain is not broken into pieces when the transformation
is considered defined on the two-torus. The operator H; is an example of
Hyperbolic Toral Automorphism (henceforth denoted as HTA).

Even though they were constructed starting from the same matrix Hy,
the dynamics associated with A and H; are altogether different, the latter
being remarkably more complicated (a comprehensive discussion about the
properties of hyperbolic toral automorphisms can be found in Katok and
Hasselblatt (1995) or in Devaney (1986)). To begin with, there is a countable
infinity of periodic points of arbitrarily large period associated with Hy,
namely all the points of the torus that possess rational coordinates (see,
e.g. Devaney (1986)). Furthermore, it is possible to prove that there are
uncountably many trajectories that fill densely the mixing space. In fact,
the set of all of these trajectories possesses full measure. As regards the
dynamics of tangent vectors, the same properties observed for the linear
operator A defined on R? still hold true, i.e. there exist an expanding and
contracting direction defined at each point of the torus by the span spaces
of the eigenvectors e“, e®, which define the dynamics of tangent vectors
attached to any point of the torus. In fact, consider a point x and a vector
w attached to it. It is possible to decompose w as the sum of two vectors
w, and wg, parallel to E*, E°, respectively. Each of these directions is
invariant under DH\™ = H?. The modulus of the components w'", w{™
is expanded by a factor Al and contracted by a factor A7 = 1/A\? (for
n > 0), respectively. This causes any vector w whose unstable component is
nonvanishing (i.e. “almost any” vector) to be stretched exponentially in the
forward dynamics while being rapidly oriented along the unstable direction
(the opposite is true when negative times are considered).

Let us next analyze the dynamics of finite-sized interfaces, e.g. by con-
sidering a straight initial segment of finite length.

As regards the fate of such segment under iterations of the linear opera-
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tor A defined on the real plane, its dynamics is rather simple. The segment
is stretched and rotated to become more and more parallel to the unstable
direction E" while being displaced at increasing distance from the origin.
Globally, the segment is attracted closer and closer to the unstable manifold
through the origin. It is worth highlighting that there is no straight invari-
ant line other than the stable and unstable manifolds associated with the
origin (even though there exists a foliated decomposition of the plane into
hyperbolas. Note that the length of any finite-sized arc of such hyperbolas
diverges to infinity both in the forward and backward time dynamics).
The dynamics of curves under H; is instead rich and interesting. Con-
sider first a straight segment attached to the origin aligned along the unsta-
ble direction. Figure 16 shows increasing iterates of such segment 8. As n

Figure 16. Increasing iterates (from left to right) of the local unstable
manifold through the origin associated with the HTA H;. The segment
develops towards a dense curve that wraps around the torus surface.

increases, the segment develops towards a continuous curve of exponentially
increasing length that wraps densely around the torus and never intersects
itself. As can be readily appreciated by the analysis of Fig. 16, the spatial
distribution of the segment images within the mixing space is uniform. In
fact, the same type of dynamics pertains to any segment that is aligned with
the unstable direction. The same asymptotic properties will be attained in
the backward time dynamics by any segment that is transverse to the stable
direction E°.

Another property associated with H; which does not find counterpart in
the dynamics induced by A is the so-called mixing property, which can be
defined both in the topological and the measure-theoretical frameworks (see
also the lecture by Mezic). The topological mixing property implies that

8Owing to the continuity of the map, the line is clearly continuous when looked at in
the torus topology.
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however one chooses two open sets, say U and V, there will be an integer
v such that for n > v the intersection Hgn)(U) NV results nonempty. If
one chooses U = V, this definition vaguely recalls the content of Poincaré’s
theorem. Yet, the topological mixing property is much stronger than re-
currence in that it demands that the intersection between U and its images
be eventually nonempty, whereas recurrence implies that such intersection
be nonempty from time to time. The measure-theoretical counterpart of
this definition considers any couple of measurable sets U and V. The
transformation is mixing if (U N Hgn)(V)) — w(U) p(V) as n — oc.
It is relatively straightforward to prove that any HTA possesses both of
these properties. If the measure p is regarded as a probability measure,
the measure-theoretical mixing property basically means that any couple of
events become asymptotically uncorrelated.

3.2 Uniformly Hyperbolic Systems on the two-torus

The HTA paradigm can be generalized by considering the class of (non-
linear) toral diffeomorphisms, i.e. the Hyperbolic Toral Diffeomorphisms
-henceforth denoted as HTD- defined as the set of all toral diffeomor-
phisms that are topologically conjugated to a linear HTA. Roughly speak-
ing, topological conjugacy between two systems, say By and By, means that
there exists a continuous change of coordinates that maps trajectories of
one system into trajectories of the second system. In symbols, one writes
By = G-V o By 0 G, where G is a continuous mapping of the mixing space
(the two-torus in the present case). An example of HTD is the Liverani’s
family of maps (Liverani, 2004) ®.(x,y) given by

ien=(3)= () i

where 0 < z,y < 27 and g.(x) = z — (1 + esinz), with —1 < e < 0.
Figure 17 shows the main kinematic properties of the mapping ®.(z,y) for
e = —0.1. One observes the same qualitative features of kinematic quantities
such as, the nonuniform distribution of advected interfaces (Figure 17-(a)),
characterized by a fractal measure p,, (Figure 17-(c¢) and -(d)), and the
strict inequality between Lyapunov exponent and line stretching exponent
(Figure 17-(b)). The example provided by Liverani’s map contains in their
greatest generality all the basic behaviors that define the class of Uniformly
Hyperbolic Systems-UH, which we next define in general terms.

Let M be a bounded measurable manifold and f a smooth measure-
preserving transformation of M onto itself. Let T} be the tangent plane to
M at the point x, namely the plane that contains all the tangent vectors
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Figure 17. Geometric and statistical properties of Liverani’s map. Panel
(a): structure of the unstable manifold through the origin. Panel (b): statis-
tical properties. Lines a and b depict the average value and the variance of
the logarithm of the n-fold stretch factor for a swarm of 108 evolving vectors,
respectively. Line ¢ shows the growth of the set, Per,,, of periodic points of
period less or equal to n. The slope of the latter curve is numerically equal
to the line stretching exponent htqp. Panels (c) and (d): PDF of the inter-
sections of the unstable manifold with a reference line, at increasing level
of resolution Az. The data suggest a fractal character of the corresponding
w-measure (i.e. the nonexistence of a smooth density function).

to any smooth curve in M passing through x, at the point x. For instance,
in the case of toral diffeomorphisms, T}, is the plane tangent to the torus
surface at x. Let 7 denote the tangent bundle, i.e. the collection of all
tangent planes to any point of the manifold. The assumption that f is a
smooth transformation allows one to define the linearized dynamics of f,
i.e. the dynamics of vectors in the tangent bundle 7. This can be done as
follows. Let v be a vector belonging to the tangent plane at x. We define
a mapping that associates to the vector v belonging to x, the vector v
belonging to T¢(x) given by

V] = Df|x -V y (16)

where Df|y is the differential of f, represented by its Jacobian matrix com-
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puted at the point x.

Shortly, a DS is uniformly hyperbolic if at each point of the manifold M,
the tangent space Ty splits into the sum of two invariant subspaces, referred
to as E¥ (unstable), EZ (stable), characterized by the following properties

1. if v € EY then

| DEM™) |, - v|| < Aexp(—Aq|n|) asn — —oo (17)

and
2. if v e E then

| DE™)|y - v|| < Bexp(—Ag n) as n — 0o (18)

The constants A, B, Ay, Ao are all supposed positive, bounded away from
zero and independent of the point x. In fact the wording “uniformly hy-
perbolic” stems from the fact that the estimates on stretch factors are
uniform on the entire manifold. It can be proved that if the subspaces EY
and Ej exist, then they are necessarily unique and invariant under DF',

Df|x(EY) = Ef(xy  and  Df[x(EY) = Efy, - (19)

The mapping ®.(z,y) defined by Eq. (15) is an example of a uniformly hy-
perbolic system on the torus (see Liverani (2004)). It can be noted that, un-
like the linear case (HTA), the stable and unstable invariant directions are
different at different points of the manifold. This can be directly observed
by the structure of the piece of unstable manifold depicted in Fig. 17-(a),
which results tangent at each of its points to the local unstable direction.
Another interesting geometric aspect associated with uniformly hyperbolic
systems is that the angle between the stable and unstable subspaces EY and
EZ is bounded away from zero over the entire manifold M.

The presence of a field of dilating and contracting invariant directions
allows to link the orientation and the stretching properties associated with
the evolution of tangent vectors that where observed in the SM model. In
fact, the asymptotic directionality property, by which a stencil of initial
vectors associated with a hyperbolic trajectory is swiftly aligned along a
prescribed invariant direction at each point of the trajectory, is readily ex-
plained by the existence of invariant expanding and contracting directions.
Each vector of the stencil possesses a nonvanishing component along the
unstable direction that expands exponentially, whereas all the components
along the stable direction are shrunk to vanishing norm.

The qualitative agreement between some of the kinematic features as-
sociated with UH systems and those associated with physically interest-
ing models of chaos (such as the Standard Map) raises the question as to
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whether the UH paradigm is well suited for representing mixing in incom-
pressible flows as well as chaotic behavior in Hamiltonian systems. Unfortu-
nately, the answer to this question is negative, as there are some qualitative
features of physically interesting models that find no counterpart in Anosov
systems. The first obvious inadequacy is that, by definition, a UH system
does not possess nonhyperbolic points, whereas the presence of such points
in physical models of conservative chaos appears somehow unavoidable (a
macroscopic example of nonhyperbolic region is given by the quasiperiodic
islands). Furthermore, nonhyperbolic points strongly influence the dynam-
ics even inside the chaotic region. For instance, the direct comparison be-
tween the structure of unstable manifold in the SM model (Fig. 10) and
Liverani’s map (Fig. 17-(a)) suggests that, however rich, the invariant geo-
metric properties associated with uniform hyperbolicity are yet too simple
to represent the nature of the stretching and folding process that occurs
in physically relevant chaotic systems. The case of the two-torus is an im-
portant benchmark test in this analysis, since we know by Manning’s and
Frank’s theorems (Manning, 1974) that the even the most general Anosov
(i.e. uniformly hyperbolic) system must be topologically conjugated to a
“linear” HTA. From this property, it follows that every invariant stable
or unstable manifold of a UH toral diffeomorphism must be topologically
conjugated to a straight line (i.e. a line of constant -irrational- slope that
winds densely around the torus surface). This is a strong geometric con-
straint for the structure of invariant manifolds, and a natural question arises
as to whether the invariant manifolds associated with a physically interest-
ing model such as the SM discussed before share the same property of
topological conjugacy with the linear case. In trying to answer this ques-
tion, let us consider again the structure of an invariant leave of the SM
model. We have already observed heuristically that this curve undergoes
“wild bends” at certain locations of the chaotic region. This concept can be
made formally precise by introducing the notion of recursively folding prop-
erty, which turns out to be one of the characteristic fingerprints of mixed
behavior (i.e. of coexistence of regular and chaotic behavior).

Let us first define this property in the general context of a continuous
transformation f of a smooth two-dimensional (orientable) manifold M.

3.3 Recursive folding in physical models of chaotic mixing

Let W be a f-invariant manifold (be it a global stable or unstable man-
ifold) that is dense in a chaotic region P € M. Let an orientation along
W be established (e.g. by introducing the natural parametrization in terms
of the arc length s from an arbitrary point xg € W and by considering
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Figure 18. Sketch of the recursive folding property. There are nearby arcs
of any given invariant manifold that are traveled in opposite directions by a
representative point on the manifold that follows a prescribed orientation.

increasing values of s). By the fact that W is dense in P, it will intersect
the boundary 0B of any e-ball embedded in the chaotic region at infinitely
many points x; € dB.. At each point xy, it is well defined whether, following
the assigned orientation along the curve, the crossing occurs while entering
or leaving B.. We say that the map is recursively folding if for each crossing
point x; where W enters B, there is a crossing point x,,, arbitrarily close to
it where W leaves B, (see Fig. 18).

The property of recursive folding is the geometric watershed between the
UH paradigm and the behavior of physically relevant models of conservative
chaos. As a confirmation of this statement, let us consider the SM model M
discussed in Section 1, and follow the intersections of the unstable manifold
of the origin W with a reference line, say the horizontal segment {0 < z <
1, y = 1/4}, which represents a circumference in the torus topology. Figure
19-(a) shows the signed intersections of W with this circumference.

The sign associated with the intersection is taken as positive or negative
according to whether the crossing of the reference line along W§ occurs
upwards or downwards (i.e. while increasing or decreasing the value of the
y-coordinate), respectively. As can be noted, there are oppositely signed
intersections arbitrarily close to each other. Figure 19-(b) shows the result
of the same computation for a UH system g(x), constructed by using the
SM M(x) as a change of coordinates of an Anosov toral homeomorphism
a(x) = a(z,y) = (r +y,2 + 2y) [mod. 1], i.e. g(x) = M loaoM(x) =
M~ (a[M(x)]), M~! being the inverse of the map M. This example clearly
indicates that recursive folding does not occur in a uniformly hyperbolic
system on the two-torus. Thus, the presence of recursive folding must be
strictly related to that of nonhyperbolic trajectories.

From these considerations, one gathers that in physically relevant sys-



sign

142 S. Cerbelli

i I

0

0 01 02 03 04 05 06 07 08 09 1 (a)

X

sign
o

0 01 02 03 04 05 06 07 08 09 1 (b)

int Xint

Figure 19. Signed intersections of an unstable manifold with a reference
line for (a) the SM model, and (b) a UH system.

tems chaos is typically “massive but not ubiquitous”, and that the pres-
ence of nohyperbolic points embedded in, or laying at the boundary of, the
chaotic region has a dramatic impact on the structure of invariant mani-
folds within the chaotic region. Specifically, the recursive folding property
is the fingerprint of other “pathological issues” of invariant manifolds, such
as the presence of points of the chaotic region where the local curvature of
these manifolds can attain arbitrarily large values (due to space limitation
we refrain from discussing this issue in this lecture. We refer the interested
reader to Cerbelli and Giona (2005a)).

It can be observed that the notion of massively chaotic systems that are
not uniformly chaotic has been given a rigorous mathematical framework
by Pesin in the mid 70’s (Pesin, 1976a,b), is a series of papers (substantially
ignored by the physics and engineering communities) in which the author
introduced the category of nonuniformly hyperbolic systems.

In a two-dimensional phase space, nonuniformly hyperbolic systems are
defined as those systems for which the set of all hyperbolic trajectories (re-
ferred to as the Pesin set, say P) has positive measure. The presence of
nonhyperbolic orbits can influence geometric and statistical properties as-
sociated with points of the Pesin set P. For instance, the existence of a
strictly positive constant entering the bounds of vectors norm dynamics is
granted only pointwise (i.e. one cannot find a constant that works for the
entire set P), and so is the lowerbound for the angle between stable and
unstable invariant directions. The latter property implies that in the Pesin
region of a nonuniformly hyperbolic system, it is possible to find points at
which the angle between stable and unstable directions becomes arbitrar-
ily small, i.e. the stable and unstable manifolds become almost tangent to
each other. The question of how this tangency condition is related to recur-
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sive folding and curvature singularity of invariant manifolds is a subject of
ongoing research (Cerbelli and Giona, 2005a).

In closing this lecture we provide a succinct description of a recently
proposed topological model of conservative chaotic systems whose properties
can be derived analytically to a large extent (Cerbelli and Giona, 2005b).
We expect that this model can provide a starting point for bridging the
gap between the physical and mathematical approach to two-dimensional
area-preserving systems.

3.4 A topological archetype of the Standard map

Next, we describe an archetypal model, the toral homeomorphism H,
which, as regards the geometric picture discussed above, can be envisioned
as a topological analogous of the SM M. A detailed account of all the
statistical and geometric properties of H (most of which can be derived
analytically) can be found in (Cerbelli and Giona, 2005b). Here, we describe
the geometric aspects of the transformation that are strictly pertinent to the
focus of the present discussion. The homeomorphism H(x) = = H(z,y) =
(2',y') is a piecewise linear, globally continuous transformation of the two-
torus defined by

= x4+ fy)
{y’ — a4yt W) (mod. 1), (20)

where (z,y), (/,y") € [0,1) x [0,1) are coordinates on the two-torus, and
f(&) :[0,1] — [0,1] is the tent map defined by f(§) = 2¢ for 0 < & < 1/2,
and f(§) = 2 — 2¢ whenever 1/2 < ¢ < 1. In (Cerbelli and Giona, 2005b),
it is shown that one can break down the torus into two disjoint subsets say
¥, and ¥y (see Fig. 20), where the invariant stable and unstable directions,
E; and EZ respectively, are constant.

For x € ¥, these directions, say E{ and EY', are given by the con-
tracting and expanding eigenspace associated with the hyperbolic matrix
Hy = (132),i.e. Bf = span(s;), and E{ = span(u;), where u; = (2,1++/3),
and s; = (2,1 —+/3). The invariant directions E5 and EY at points
X € Y9 are given by the images of the eigenspaces associated with points
of ¥ through the matrix Hy = (} :?), ie. E5 = span(Hp-s;), and
EY = span (Hp - uy). Figure 21 shows the structure of the stable and un-
stable manifold of the origin 0, W3 and Wy, respectively.

These curves are globally continuous, piecewise-smooth, H-invariant,
and everywhere dense on the torus. They are nonsmooth only at the bound-
ary 0Yo of the set Xs.

The relatively simple structure of the fields of invariant dilating and
contracting directions defined by the linearized dynamics associated with
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Figure 21. Panels (a), (b), (c): forward evolutes of the local unstable
manifold through the origin for (a): n =0, (b): n =5, (c): n = 7. Panels
(d), (e), (f): backward evolutes of a local stable manifold at the origin for
(d): n=0, (e): n =—>5, and (f): n = —7. The thick dashed lines represent
the set of points where the curves are not differentiable.
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‘H allows to prove analytically a number of typical properties of hyper-
bolic systems, and some peculiar features that characterize nonuniformly
chaotic systems, e.g. the strict inequality between the line stretching ex-
ponent (which equals the topological entropy) and the positivity Lyapunov
exponent and the sign-alternating property (Cerbelli and Giona, 2005b).
An analysis of the structure of the stable and unstable manifolds in the
neighborhood of the points x; = (1,1/2) and x2 = (1, 1) provides one with
a direct perception of why the latter property holds true in the H model.
In fact, visual inspection of these structures shows that near x; the sta-
ble and unstable manifolds undergo a (nonsmooth) bend enclosing x;, as
depicted in Fig. 22. Next, consider any point y; of the segment belong-
ing to the parallel to the local unstable direction in the lower half-square
domain and therein embedded. Let y; be such that its forward orbit is
dense in the mixing space (one can show that there is abundance of such
points on the segment considered). Consider a small segment, say oy pass-
ing through y; and parallel to the local stable direction and define as £
the simply connected domain formed by os and the continuous arc of the
unstable manifold enclosing the point x;. Let y2 be the second intersection
point of o5 with the arc of unstable manifold. The domain L is referred to
as a (generalized) lobe (Cerbelli and Giona, 2005a). As lengths on oy are
exponentially shrunk, the images of the lobe under iterations of H will be
such that the mapped points H (") (y1) and H(")(yg) will collapse onto each
other. Besides, since the image of the lobe region is still a simply connected
domain, the local arcs of the unstable manifold at the points H™ (y;) and
H™ (y5) will be still oppositely oriented. but as H(™ (y,) traces a dense
orbit, this means that there are oppositely oriented arcs of the unstable
manifold in the neighborhood of any point of the mixing space.

Another interesting feature of the model is that it can be straightfor-
wardly associated with a symbolic system evolving in the space of (one-
sided) sequences of two symbols (e.g. “0” and “1”) obtained by considering
the binary representation of the coordinates and expressing the action of
the map in this sequence space. This allows to to compute the trajectories
of the system with arbitrary precision.
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Figure 22. Left panel: Structure of the invariant manifolds associated with
the H model near the parabolic-like critical point x; = (1,1/2) originating
the recursive folding property (a different projection chart of the torus is
used in this figure for rendering the continuity of the invariant manifolds).
Both the stable (dashed line) and unstable manifold (continuous line) un-
dergo a sharp bend enclosing the point x;. Right Panel: Zoom in of the
circled region of left panel showing the existence of a lobe (gray shaded area)
formed by two continuous arcs of a stable and an unstable manifold that
intersect only at two points, thus defining a simply connected region. The
existence of the lobe, together with the existence of a dense orbit (topolog-
ical transitivity), implies the recursive folding property of H.
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Advection-diffusion in chaotic flows
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1 Introduction

The aim of these notes is to provide an overview of the different approaches
used to address the advection-diffusion equation, viewed as the mathemat-
ical setting for studying mixing in laminar incompressible flows. In its
beginnigs!, i.e. starting from the paper by Aref (1984), the field of laminar
mixing was essentially a new playground for physicists, fluid dynamicists
and engineers, where the tools of dynamical system theory could be ap-
plied.

In the last few years, laminar mixing is experiencing a second youth.
This is essentially due to the impulse given by miniaturization of mechanical
and chemical equipment, a new research subject which is imposing itself as
a fundamental piece of knowledge in the development of tools such as the
“lab-on-a-chip” or microplants (Ehrfeld et al., 2004; Nguyen and Zu, 2005;
Hessel et al., 2005; Stroock et al., 2002). The perception of this radical
change in the expectations, and in fund raising, connected with laminar
mixing is readily evident from the incipit of a recent article on micromixers:
“Microfluidics is now part of big science and big business ...” Ottino and
Wiggins (2004). The connection with laminar mixing is provided by the
fact that at such small spatial scales, as those involved in microflow devices,
the Reynolds number is tipically well below the turbulent threshold.

Aside from specific microfluidic applications (biomedicals, sensors), a
change of weltanschauwung in the approach to industrial production (at least
for the most advanced products) is becoming appreciable as engineers are
beginning to question the classical paradigm towards the scale-up of large

'In a historical perspective, it should be mentioned that the first contributions of meth-
ods of chaotic dynamics in laminar flows are Arnold (1965); Henon (1966). For further
discussion see Mezic (2001).
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industrial plants, and are re-orienting reseach-and-development efforts to-
wards a different approach (more respectful for the enviroment, more lu-
crative for the companies) based on plant miniaturization (Nguyen and Zu,
2005; Hessel et al., 2005, 2004; Squires and Quake, 2005). Programs like
scaling-down and numbering-up are becoming part of the emerging mani-
festo for the new industrial century. Among the various fields of application
of this new approach, it is sensible to expect a potentially high impact
related to the advances of molecular biology and genetics.

If this scenario will prove a reasonable picture of what will become the
driving force of technological development in the near future, the theoretical
modelling of fluid-flow phenomena at micro and nano scales will necessarily
become one of the founding cornerstones of such development.

The scale of the characteristic lengths involved in microdevices simpli-
fies the fluid-dynamic analysis and the computation of velocity fields inside
micro-flow equipment in that the laminar character of the flow makes it
unnecessary to investigate and model the impact of turbulent fluctuations.
On the other hand, mixing theory (i.e. the characterization of the “mixed-
ness” of a fluid mixture and the optimization of the flow protocol) becomes
a crucial and challenging issue.

A mature and critical analysis of all the technical, formal and compu-
tational tools associated with the description of dispersion and homoge-
nization of a fluid phase becomes urgent?, also in connection with concrete
practical applications of the theory. These notes attempt to provide an in-
sight of what might be relevant in this analysis. This attempt is unavoidably
influenced by the personal research experience of this author in the field.

These notes are organized as follows. In the first part (Sections 2 and
3), a brief description is presented of what “mixing” means and of the
conceptual paradigms for approaching it. Section 4 addresses some basic
functional-theoretical tools useful in the mathematical setting of the prob-
lem. Sections 5 describes some spectral results and the properties of the
advection-diffusion equation in bounded domains. Section 6 develops a crit-
ical analysis of some “controversial issues”, while Section 7 addresses some
current open problems in the theory of mixing. While most of the analysis,
especially as it regards the interplay between advection and diffusion is of
general validity, the numerical examples refer to two-dimensional flows for
which the velocity field is given. The inertial effects on mixing induced e.g.
by the increase of the Reynolds number are not considered.

2In the epistemological approach developed by Imre Lakatos, this critical analysis may
correspond to the conflict between different and competing “research programs”.
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2 Paradigms and approaches

More than half a century of investigation on the theory of fluid mixing
can be outlined by describing the main conceptual paradigms that have
organized and oriented the research in this field, especially as it regards the
definition of what mixing is and how it can be characterized objectively and
quantitatively.

By making a rather brutal simplification, fluid mixing theory can be
subdivided into three main eras and paradigms: (I) the Danckwerts’ era, (I1)
the kinematic (Lagrangian) paradigm, (IIT) and the functional-theoretical
paradigm. As in any scientific activity, no sharp boundaries can be drawn
between these three paradigms, and a certain degree of “interdiffusion”
exists between these three approaches.

The Danckwerts’ era corresponds to the investigation on mixing initiated
in the mid of the last century by P. V. Danckwerts (1952, 1953, 1958).
It is reasonable to argue that the research on mixing at that time was
triggered by the practical need of the growing chemical industry to obtain
reliable quantitative information on the efficiency of mechanical stirring in
chemical reactors and process units. In the 50’s, the chemical industry was
essentially concerned in fluid-phase processing, and the need of quantifying
the degree of mixing was urgent for plant optimization, and cost reduction
(nowadays, solid particle processing associated with pharmaceutical and
electronic industries has shifted the focus on mixing mainly towards particle
processing and granular materials).

The mixing theory proposed by Danckwerts was essentially based on a
black-box statistical approach aimed at providing a set of diagnostic pa-
rameters to quantify the degree of mixedness, independently of the specific
physico-chemical processes occurring within the mixture. At any time £,
the mixture was viewed as a function ¢(x) defined over the points x of the
mixing space 2. By considering ¢(x) as the description of a mixture of two
immiscible liquids A and B (and by indicating with the same symbols A and
B the regions of the mixing space occupied by the two liquids), the function
¢(x) can be expressed as: ¢p(x) =1if x € A, and ¢(x) =0if x € B.

In the Danckwerts’ formulation, mixedness is represented by the spread-
ing of A in B (or viceversa), and consequently it can be described by means
of the squared variance of the representative function ¢(x),

= / (6(x) ~ 92 dx = (6 — B))a, (1)
Q

where ¢ = fQ ¢(x) dx, referred to as the intensity of segregation.
The quantity I was not sufficient in the Danckwerts’ formulation for
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providing an exhaustive account for the structure of a mixture. The in-
formation on the intensity of segregation had to be complemented with
the information on the characteristic linear size of the complex convoluted
structures created within a fluid phase under stirring. The knowledge of
the characteristic linear size S of partially mixed structures was finalized at
obtaining an order-of-magnitude estimate of the characteristic time scales
for homogenization due to the effect of diffusion, t4;y = S?/D (where D
is a characteristic diffusivity). For this reason, Danckwerts introduced the
concept of linear scale of segregation S, which can be estimated starting
from the decay of the autocorrelation function of ¢(x) (Danckwerts, 1952).

The Danckwerts’s approach is still adopted in solving practical mixing
problems due to its simplicity. However, it suffers from some conceptual
weak points. Consider a fluid mixture under stirring and assume the effects
of diffusion are negligible. Let ¢(x,t) be the concentration of a dye, initially
located in a bounded domain of the mixing space. It follows from Eq.
(1) that I(t) = I(0) = constant (see Section 4). This means that the
Danckwerts’ intensity of segregation remains constant in the absence of
diffusion no matter how the mixture is stirred, although it is evident that
the action of a stirring protocol improves the degree of mixedness. For
instance, compare Fig. 1 (A), corresponding to the initial condition of a
blob of dye, and Fig. 1 (B) depicting dye distribution after the action of a
stirring protocol of a model flow.

Figure 1. Action of a stirring protocol on an initial blob of dye. The
flow protocol is a model flow on the 2-torus, the time-periodic Sine Flow at
T = 1.6. (A) Initial blob of dye. (B) Blob after three periods of the stirring
protocol.

Subsequent elaborations of the Danckwerts’” approach have characterized
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other research directions. One of them, referred to as lamellar model, was
very popular 20-30 years ago (Ranz, 1979; Ottino et al., 1979; Ottino, 1989;
Muzzio and Ottino, 1989). In the lamellar model - essentially applied to
describe (bimolecular) reactions in stirring flows - the mixture is regarded
as a superposition of a system of lamellae (strips) each of which initially
composed by either one or the other reactant. Theoretical models (the
warped time approach) were elaborated by simplifying the stirring action
of an advecting flow as a hypothetical stretching flow near a hyperbolic
stagnation point (Batchelor, 1959; Ottino et al., 1979). The major drawback
of the lamellar approach is that it is unable to capture the essential effects of
folding and spatial nonlocality induced by the action of a flow in a bounded
domain. As result, the practical utility of these models is limited.

In the spirit of the early works by Danckwerts, several other global quan-
tities have been introduced, such as the concept of mizedness and unmized-
ness by Dimotakis and Miller (1990), see also (Smith et al., 1997), which
is related to the statistical properties (variance) of the probability density
function pg(¢) of the concentration intensity. Given any scalar field ¢, let
Do (¢) the probability density function associated with the concentration in-
tesities of ¢ within the mixing space, and let ¢,, and ¢,; the minimum and
maximum values attained by ¢ within the mixing space (or the interroga-
tion area considered, such as a mixing layer), respectively. A measure U of
mixedness according to Dimotakis and Miller is given by (Dimotakis and
Miller, 1990; Smith et al., 1997)

1 [

o -
U =9 —om) / _@-9Ppel0)do. o= [ ¢p¢<¢>d<(z>2.)

However, this quantity does not provide any objective description of mix-
ing, as can be argued by the simple observation that the two concentration
fields ¢y (x) and ¢o(x) depicted in Fig. 2 (A)-(B) possess the same degree
of mixedness according to (Dimotakis and Miller (1990)), although visual
inspection and the intuitive perception of what mixing means, suggest the
opposite. The above criticism on the definition of the degree of mixedness
U Eq. (2), as a reliable measure of the state of a mixture, applies to any
global quantity constructed starting from the probability density function
of intensities of any scalar field, since in this way the spatial structure of
the scalar field distribution within the mixing space is neglected.

The Lagrangian (kinematic) approach spread out starting from the cel-
ebrated paper by Aref (1984). Retrospectively, the interest raised by this
approach can be considered a fall-out of the emerging interest in nonlinear
dynamics and chaos that has characterized the scientific community starting
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0.5 ¢ 0.5

[0 1 (x)
¢2(X)

Figure 2. Two concentration function ¢1(z), ¢2(z) on [0, 1] possessing the
same unmizedness according to Dimotakis and Miller (1990).

from the seventies of the last century.

The starting point in the Lagrangian analysis is the kinematic equation of
motion of fluid particles which are passively advected in a stirred continuum
by the velocity field v(x,t)

%:v(x,t) x €. (3)

The paradigm of this approach is simple and evocative, also in view of
the fact that it has implied a radical change of attitude with respect to
dynamic phenomena within the engineering communities (and particularly
amongst chemical engineers), rooted in a static description of processes and
phenomena. Simply, the Lagrangian approach dictates that good mixing
performance can be achieved solely if the kinematic equations of motion ex-
hibit chaotic behavior (i.e. a sensitive dependence on the initial conditions).
The degree of chaos was ipso facto a measure of the mixing efficiency.

The 1984-paper by Aref was a kind of magic box. It gave a simple recipe
to tackle fluid mixing starting from the analysis of the low dimensional,
apparently simple, dynamical system Eq. (3). Once this box was opened,
all the tools of nonlinear dynamical system theory (Eckmann and Ruelle,
1985) were ready and available for a quantitative description of mixing.

Within this paradigm, it was immediately clear that two-dimensional
autonomous flows (such that v = v(x) is independent of time) could not
produce efficient mixing, since for these systems, fluid particle dynamics
cannot be chaotic, as each particle orbit is confined on a streamline of v.
Conversely, two-dimensional time-periodic flow protocols, which induce a
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crossing between instantaneous streamlines at different time instants, could
become candidates for efficient mixing, and could be used as standard pro-
totypes of a mixing system. Poincaré maps and stroboscopic sections were
used as a first, global visual indicator of the goodness of a stirring proto-
col. The statistical apparatus (Lyapunov exponents, topological and metric
entropies, statistics of stretching and curvature) was borrowed from dy-
namical system theory and applied for characterizing mixing, viewed as the
outcome of pure stirring (Ottino, 1989; Muzzio et al., 1991; D’Alessandro et
al., 1999). The role of the unstable manifolds was thoroughly investigated
as the basic template for the evolution of material lines which are boundary
of finite-sized fluid elements in two-dimensional systems (Beigie et al., 1994;
Giona and Adrover, 1998).

After more than two decades of research activity along this track, a
critical examination of the results achieved suggests that the Lagrangian
approach cannot produce a complete and application-oriented quantitative
description of mixing. This observation should not induce to underestimate
the role of Lagrangian analysis. To begin with, the Lagrangian analysis has
contributed to clarify the role of stretching and folding as a basic mecha-
nism of mixing protocols (Smale, 1967; Childress and Gilbert, 1995). Fur-
thermore, it has provided a connection between the geometric features of
mixing (i.e. the spatial structure and the dynamics of mixing patterns)
and the statistical properties associated with the local deformation process
occurring along a typical (i.e. “chaotic”) orbit (Beigie et al., 1994).

In the light of concrete applications to microdevices, the Lagrangian
approach suffers some intrinsic conceptual drawbacks, the most significant of
which is that it does not account for diffusion, which is, ultimately, the only
mechanism that ensures that spatial homogeneity within the mixture will
be eventually reached. Also, even though the Lagrangian approach defines
objective indexes assessing the quality of the mixing process within each
of the invariant sets associated with the kinematic equations of motion, it
does not provide any information about how these region-dependent indexes
should be combined together to construct a global measure of mixing in the
flow domain as a whole. This last issue is clearly connected with the first
in that the only flux exchange of a scalar entity (be it a chemical species
or energy) that is being transported between kinematically invariant sets
relies exclusively on the presence of the diffusion mechanism.

This problem can be clearly appreciated by considering a typical Poincaré
section of a chaotic flow (specifically, the partitioned pipe mixer analyzed
by Khakhar et al. (1987)), depicted in Fig. 3. For generic flows, and
specifically for physically realizable velocity fields (which are solution of the
Navier-Stokes equation in the domain ), the global orbit structure within
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the phase space 2 shows the simultaneous occurrence of regions of regular
(periodic/quasiperiodic) motion intermingled with regions characterized by
chaotic kinematics. Each of these regions is invariant for the Lagrangian
dynamics, and is characterized by a specific set of Lyapunov numbers, en-
tropies, etc. The Lagrangian description captures separately the properties
of each of these invariant regions. This observation suggests that the La-
grangian approach provides a global description of mixing solely for globally
chaotic flows, i.e. for flows exhibiting a single full-measure chaotic region,
such that its closure coincides with the mixing space (2 itself. Apart from
archetypical examples, the occurrence of global chaos has been (numerically)
observed solely in very simple model flows on the torus, i.e. on boundary-
less manifolds. Indeed, to the best of this author’s knowledge there is no
example of a globally chaotic flow defined in a closed and bounded set §2 of
R? or R3. This raises doubts whether globally chaotic flows may exist on
manifolds with boundaries and, most importantly, whether such flows may
be associated with velocity fields that are solutions of the Navier-Stokes
equation in closed and bounded domains.

Figure 3. Poincaré section of a model flow (the partitioned pipe).

It is worth observing that some of the limitations of the Lagrangian ap-
proach can be overcome even within a purely kinematic (i.e. diffusionless)
setting. In point of fact, instead of a Lagrangian description of fluid par-
ticle motion, one can consider the evolution of ensemble of particles, and
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ultimately of particle densities (Lasota and Mackey, 1994). This can be
regarded as the kinematic density approach to fluid mixing.

In the absence of diffusion, the kinematic density approach analyzes the
operator Fy : L1(Q) — L(Q), (L*(Q) is the space of integrable functions
in ), which maps a density ¢(x,t) at the time instant ¢; (¢(x,t1) > 0,
Jo #(x,t1) dx = 1), into the density ¢(x, ¢ +t) at time ty = t; 41, according
to the kinematic protocol expressed by Eq. (3). This operator, mapping
densities into densities, is referred to as the Frobenius-Perron operator (La-
sota and Mackey, 1994).

For flows generated by the velocity field v(x,t), the evolution of the
density is described by the continuity equation for ¢

9+ V- (ve)=0. (4)

Throughout these notes incompressible flows are considered, so that V-v =
0.

If the kinematics of a time-periodic velocity field v(x,t 4+ T) = v(x,t) is
expressed by means of the Poincaré map @, i.e. x,4+1 = ®(x,,) where x,, =
x(nT) (by incompressibility |det(®*(x))| = 1, where ®*(x) = 0P(x)/0x),
the Frobenius-Perron operator F = Fy can be explicited. Letting ¢(™(x) =
o(x,nT), the stroboscopic evolution equation for the density reads

¢V (x) = Flo™ (x)] = o™ (27 (%)), ()

where ¢ (x) = ¢(x,nT).

The application of the density description is motivated by the need of
overcoming the shortcomings of the Lagrangian analysis discussed above.
Within the kinematic density approach, the paradigm of good mixing is
derived from ergodic theory (Arnold and Avez, 1989; Walters, 1982). A
good mixing protocol corresponds to a Frobenius-Perron operator which is
a mizing transformation in the measure-theoretical sense. Let pu be the
normalized Lebesgue measure in Q, p(2) = 1. The map F' is mizing, if for
any pair of measurable sets A, B C ()

Jim p(AN@T"(B)) = u(A) u(B).- (6)

The kinematic density approach can be viewed as a functional approach
since it involves the analysis of an operator, the Frobenius-Perron operator,
which is defined in a suitable metric space of functions, typically L' (). The
Lagrangian analysis and the kinematic density approach are closely related,
since the characteristic lines for the continuity Eq. (4) are the kinematic
equations Eq. (1). However, there is a profound conceptual shift in these
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two approaches, since the former is oriented towards a trajectory-based
description of mixing, while the latter focuses on the collective motion of
measurable ensembles of orbits.

A further generalization is represented by the advection-diffusion ap-
proach, which considers mixing processes as the result of the interplay be-
tween a stirring field v(x, ¢) and diffusion, that, in its simplest formulation,
can be modelled by means of a Fickian term. The starting point is the
Advection-Diffusion Equation (ADE), which in dimensionless form reads

o+ V- (vo) =eVip, (7)

where ¢ is the dimensionless concentration of a chemical species, € the
reciprocal of the Peclet number, e = 1/Pe, where Pe = V' L/D is the ratio
of the characteristic time for diffusion ¢4;; = L?/D to the characteristic time
for advection t,q, = L/V, and L, V, D are a characteristic lengthscale, a
characteristic velocity intensity and the diffusivity, respectively. In deriving
Eq. (7), the time is made dimensionless with respect to the advection time
scale t — tV/L.

The functional approach shifts the focus of mixing theory from the inves-
tigation of a low-dimensional ordinary diffential equation to the analysis of
an infinite-dimensional dynamical system expressed by the parabolic equa-
tion Eq. (7). However, this apparent increase in model complexity is com-
pensated by the fact the while Eq. (1) is intrinsically nonlinear, Eq. (7) is
linear, and many robust results of the theory of linear operators (Reed and
Simon, 1980; Kato, 1980) provide tools and suggestions to set and tackle
mixing problems.

This change of paradigm (from ODE to PDE) shows some similarities
with the transition from the (nonlinear) Newtonian dynamics to the (linear)
quantum mechanical formulation expressed by means of the Schrodinger
equation (in the non-relativistic case). This analogy is even more strict,
by further considering that the spectral theory of operators, (essential in
quantum theory), is equally important in the quantification of mixing (this
claim is explained in the remainder of these notes). Unfortunately, while in
the quantum mechanical case, the relevant operators are Hermitian (self-
adjoint), the advection-diffusion operator does not possess this property,
and the lack of self-adjointness makes the analysis more complex.

In other words, nonlinear vs linear, opposed to finite-dimensional vs
infinite-dimensional is the trade-off associated with the transition from the
Lagrangian to the ADE and the Frobenius-Perron formulations.

The kinematic density approach, i.e. Eq. (4), can be viewed as a partic-
ular case of Eq. (7) for e = 0. However, the physical advantage of Eq. (7)
is that the two main and opposite contributions governing mixing, namely
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’ Paradigms of mixing Formal setting
Danckwerts’ approach Statistical description
based on I and S
Lagrangian theory Dynamic and statistical properties
associated with x = v(x,t)
Functional approach Functional properties of the FP
(kinematic density approach) operator ;¢ + V- (vVep) =0
Functional approach Asymptotic/spectral properties of
(advection-diffusion approach) | the ADE 0, + V - (v$) =eV3¢, >0

Table 1. Schematic review of the paradigms of mixing discussed in Section
2.

advection and diffusion are included in the evolution equation. In many
pratical applications, the inclusion of diffusional effects is strictly necessary
for a correct physical formulation of the problem.

The concept of good mixing within the advection-diffusion formalism is
addressed in the next two Sections, after describing the role of the boundary
conditions and some elementary properties of Eq. (7).

Table 1 reviews the main mixing paradigms discussed throughout this
Section. In an epistemological perspective, it would be interesting to com-
pare and contrast these paradigms by focusing on their reciprocal incom-
mensurabilities (Feyerabend, 1975).

3 Dispersion vs homogenization

The ADE Eq. (7) is a parabolic differential equation. In order to set
properly a mixing problem, the boundary conditions should be specified.
This is a rather obvious observation that sometimes is forgotten in practice.?
Quoting Roache (1972):

“A first-order ordinary differential equation such as df /dz = 0

specifies the solution of the problem up to an additive constant;

the boundary condition determines the value of the constant. A

3For example, the Batchelor approach (Batchelor, 1959), and the warped-time approach
developed by Ranz and Ottino (Ranz, 1979; Ottino et al., 1979) refer to a hypothetical
shear flow around a hyperbolic stagnation point in an infinitely extended continuum
with no boundaries. The results obtained under these conditions do not apply to the
phenomenology observed in bounded closed flows, especially as it regards the long-time
(asymptotic) properties.
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first-order partial differential equation such as 0f(x,y)/dz = 0
specifies very little of the solution; any function g(y) satisfies the
PDE, and the boundary conditions must specify the function. A
PDE such as V29 = ( really contains very little information on
1. All the fantastic flow patterns of common gases and liquids
are solutions of the same PDE’s, the Navier-Stokes equations.
The flows (solutions) are distinguished only by boundary and
initial conditions, and by the flow parameters such as Re.”

There are three main geometrical configurations of the mixing space €2
corresponding to three different formulations of the boundary conditions:

1. Unbounded domains, such as the entire space R? or R?, or infinitely

extended strips { (z,y) | 0 <y <1, x € R }, which are infinitely
extended along one direction.

2. Bounded closed domains, which e.g. represent the mixing space within

a chemical reactor operating under batch condition.

3. Bounded open domains, which e.g. describe channel flows on finite

structures, T-junctions, or static mixers.

Let us review the boundary conditions in these three situations. Let us
consider first unbounded domains, such as R? or R3. In the open space, no
boundary conditions apply besides the regularity condition at infinity.

In bounded closed domains, the boundary 02 is impermeable to mass
transfer. Both the normal component of the velocity field, v, |sgo = v-n|sq =
0 (n is the normal unit vector pointing outward), and the normal component
of the diffusive flux

¢

on| = Vo nln=0 )

vanish at the boundary of €2. Therefore, the boundary conditions on ¢ are
of Neumann type Eq. (8).

In modelling bounded closed flows, boundaryless compact manifolds,
such as the two- and the three-dimensional unit tori, T? and T3, are fre-
quently considered. Boundaryless manifolds simplify the analytical ma-
nipulations associated with the solution of the ADE. Let us consider 72.
A projection chart for 72 is given by the unit square I? = [0,1] x [0,1]
with opposite edges identified. Consequently, the boundary conditions to
be imposed on ¢ are periodic boundary conditions. This simply implies
that the solution of the ADE on T2 can be expressed in a Fourier series
o(x,t) = bp pe?hatky) - where i = /—1. For example, the Sine
Flow (see Appendix B), and the flow associated with the Standard Map
(see Section 7) are defined on T2, while the ABC flow, a classical three-
dimensional autonomous model flow (Dombre et al., 1986), is defined on
T3,
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In bounded open flows, the boundary of the flow domain can be decom-
posed into three different parts

99 = 0 U Sin U Sout » (9)

i.e. into solid walls 99, on which impermeability to mass transfer should
be enforced, an inlet and an outlet section S;;, and S,,:, respectively. The
distinction between S;, and S,,: depends on the direction of the velocity
field, which points inward on S;,, and outward on S,,;. The behavior
of the normal velocity component (pointing outward), and the boundary
conditions on ¢ read

v, =0 on 0 0p/On =0  on 0
vy <0 on Siy, ¢ = ¢7n on Siy, (10)
v, >0 on S,u 0p/On =0 on Spus .

Specifically, it is reasonable to assume that the value of the concentration is
specified on S;;, and equal to ¢g(x), while at the outlet section Danckwerts’
boundary conditions may be applied (Froment and Bischoff, 1979), dictating
that the normal derivative of ¢ vanishes on Syq;.

The assessment of the inlet and outlet boundary conditions have been
subject of intense debate in the past (Wehner and Wilhelm, 1956; Pearson,
1959; Bischoff, 1961). As it regards outlet flow, the Danckwerts boundary
condition d¢/dn|s,,, = 0 is a simple and widely used choice, although there
is no rigorous derivation of it. The Danckwerts setting of the outlet condi-
tion has been criticized by some researchers, e.g. (Smith, 1988). However,
the attempts made to improve it, such as those reported in (Smith, 1988)
apply to a limited number of cases (specifically one-dimensional models of
channel flows) and cannot be extended to generic flow geometries. This
is the reason why, notwithstanding its limitations, the Danckwerts outlet
condition still remains the most widely used in applications.

Instead of

¢ = din on Siy (11)

introduced in Eq. (10), an alternative choice for the inlet condition, due to
Danckwerts is of mixed type, namely

_ 9¢
VpGin = Und — E% on S;y, . (12)

In the case of Eq. (11) the continuity of ¢ at the inlet boundary is ensured,
and moreover the flux of ¢ can be extended continuously to S;,. Conversely,
the inlet condition Eq. (12) implies a discontinuity of the concentration ¢



162 M. Giona

at the inlet boundary. In point of fact, for high Peclet values (Pe > 10?)
the differences between Eq. (11) and Eq. (12) become immaterial.

The nature of the mixing domain €2, and the setting of three different
boundary value problems on Eq. (7) in bounded/unbounded, open/closed
flows specify the physical meaning of the mixing problem, and the math-
ematical techniques to be used to tackle it. Indeed, the bounded vs un-
bounded nature of the flow domain corresponds at least to two different
physical problems, namely homogenization and dispersion.

In unbounded flow domains?*, the relevant phenomenology relies on the
dispersion properties of the concentration field, in a long-time long-distance
perspective. This typically occurs in pollutant dispersion in the environ-
ment, in large-scale oceonographic analysis of dispersion, in the analysis of
the effects of fluid streams on the stability of an ecosystem. The hypothesis
that the flow domain is unbounded implies that the long-time long-distance
properties of the solutions of Eq. (7) are given by the solution of a pure
diffusion equation with constant tensor diffusivities Dj, . The estimate of
Dh, i depends on the properties of the velocity field, and can be obtained
through the application of homogenization theory (Bensoussan et al., 1978).

In homogenization theory, it is convenient to express the advection-
diffusion equation in dimensionless form with respect to the characteristic
diffusional time scale t — tD/L?, so that Eq. (7) becomes (for V -v = 0)

Oy + Pev -V =V2p. (13)

Consider the typical case of a periodic (cellular) flow possessing zero mean.
In the analysis of the long-time long-distance properties of the solution of
Eq. (13), it is natural to assume that the ratio 0 between the velocity and
the concentration lengthscale becomes very small. It is therefore useful to
rescale time and space as x — 0%, t — 6°t, and the concentration ¢ as

bs(x,t) = 6~ (6x, 6%t), (14)

where d is the dimension of the flow domain (d = 2,3). In the long-time,
long-distance limit, the rescaled concentration ¢s(x,t) Eq. (14) approaches

a limit function ¢(x,t), i.e. lims_ops(x,t) = ¢(x,t), which satisfies an

4To avoid misunderstanding it is useful to point out that analytical results derived for
unbounded domain can be applied, under certain conditions, to finite geometries. For
instance, the classical work by Taylor (1953) and Aris (1956) on dispersion in laminar
channel flows can be applied to finite length geometries, such as chromatographic
columns. However, its proper formal setting implies the unboundedness of the channel
along its axial direction. See e.g. the original paper by Aris (1956).
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effective diffusion equation

d

L) J (= 06
7 — (D, ./~ 15
ot b)) Oy < h’kﬁxk> ’ (15)
hk=1
where zp, h = 1,...,d are the spatial coordinates. The tensor diffusivity

decomposes into an isotropic contribution and a convection-enhanced diffu-
sivity tensor Dy, i, Dp k. = On k + Dh i, Where 6p j is the Kronecker symbol.
The tensor diffusivities Dy, j, are determined by the equation

Dh,k = <vCh ' vck>cell 3 h7 k= 17 teey da (16)

where the average (-)ce; is performed on the unit cell of the flow, and the
vector-valued function ¢ = {Ch}ﬁ:l is the solution of a partial differential
equation. Specifically, for steady cellular flow, ¢ is the unique zero-mean
periodic solution of the elliptic equation

V¢, — Pev - V(;, = Peuvy,, h=1,....d. (17)

For further details on homogenization techniques and on dispersion proper-
ties of more complex flows see (Bensoussan et al., 1978; Majda and Kramer,
1999; Fannjang and Papanicolau, 1994).

In the case of unbounded flows, stochastic approaches based on the anal-
ogy between Eq. (7) and a Langevin equation driven by a Wiener process
proves very useful (Chandrasekhar, 1943). Information on the asymptotic
properties can be inferred from the scaling of the mean square displace-
ment of tracer particles, or from other, conceptually analogous, stochastic
indicators.

The situation is completely different, in the case of bounded flows, for
which the analysis of stochastic parameters such as the scaling of the mean
square displacement is of very limited use due to the boundedness of the
domain.

Apart from specific applications to stirred tanks and batch mixing sys-
tems (i.e. to systems of chemical engineering interest), there is however,
another, more deep reason why bounded flow models are of valuable theo-
retical interest. Advection of passive particles (especially in those cases in
which the kinematics gives rise to some form of partial or global chaos) is
essentially related to the stretching and folding action imposed by the stir-
ring field. In unbounded domains, the effects of folding is made immaterial
by the infinite extent of the flow domain. The complex kinematic features
(expressed by the Poincaré sections) of partially chaotic flows, resulting
in the coexistence of regions of mixing (chaos) intertwined with regions of
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quasiperiodic motion, loose their clear dynamic meaning in unbounded do-
mains, although a Lagrangian description of mixing in open flows have been
suggested by several Authors (Pentek et al.; 1999; Tel et al., 2000).

For the reasons outlined above, bounded flows provide the most intrigu-
ing setting for analyzing how the stretching and folding action of a given
flow field interacts with diffusion, and how this interaction determines the
long-term (asymptotic properties) associated with the evolution of concen-
tration fields driven by Eq. (7).

In bounded and closed domains, the problem of mixing corresponds sensu
stricto to a homogenization problem, i.e. to the relaxation of the concentra-
tion field ¢(x,t) towards the uniform distribution ¢ = [, ¢(x, ) dx. Given
an initial condition ¢g(x), the main issue is to determine the characteristic
time scale t,,;, (the mixing time) for achieving a prescribed homogeniza-
tion, i.e. such that, fixing n > 0, fQ(¢>(x,t) —¢)?dx < nfor t > t,i.. The
characterization of the mixing efficiency in bounded and closed domains im-
plies the estimate of the mixing time t,,;,, and in a design perspective its
optimization. This is the first and foremost piece of information requested
by mixing practitioners for a short-cut design of the equipment (Biggs, 1963;
Nienow, 1997) (in industrial equipment also power-consumption properties
are relevant), and this is exactly the result coming out from functional anal-
ysis of the ADE (see Section 5).

For second-order linear operators in bounded domain, the strategy for
achieving a complete characterization of their action is to consider their
spectral (eigenvalues/eigenvector) properties. In point of fact, spectral char-
acterization, i.e. the distribution of the energy content amongst spatial
wavelengths, provides the appropriate setting to define what mixing is, and
to obtain quantitative indicators of the degree of mixedness (Giona et al.,
2002, 2004a,b; Mathew et al., 2005). This is discussed in Sections 4 and 5.

To conclude this Section, let us consider the case of bounded open flows.
For simplicity, let us assume that the inlet function ¢o(x) does not depend
on time. Let yq(x) be a generic, sufficiently smooth function in the weak
sense (Robinson, 2001) such that

xa(x) =1 on Sip (18)
xa(x) = 0xa(x)/O0n=0 on 90 U Sout .

The use of the auxiliary function ¢(x,t) = ¢(x,t) — ¢in(x) xo(x) permits
to homogenize the boundary conditions, since the auxiliary function ¢(x,t)
is the solution of the equation

Ohd+v-Vé=eV3ip+G (19)
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where the forcing term is

G(x) = eV (hin(X)x0(x)) = V(X) - V(din(¥)x0(x)) = T[¢in(x); xa(x)],
(20)
equipped with the boundary conditions ¢ls;, =0, dp/On|sq,us,.,, =0, and
with the initial condition ¢(x,0) = ¢o(x) — ¢in(x)xa(x). We have assumed
for simplicity that the velocity field is autonomous. At steady state, Eq.
(19) reduces to an elliptic problem

Llg] =eV?h—v-Vi=-G, (21)
the solution of which can be formally expressed as
¢ =—L7YG) = ~L7 o T(din: xal (22)
and therefore,
¢ = dinxa — L7 0 T[¢in; xa] = Z[¢in] - (23)

The mapping Z is independent of yq and its restriction to Syut, Zout =
Z|s...» specifies completely the input-output properties of an open-flow de-
vice (such as a static mixer).

Albeit, the spectral approach could be equally well applied to an open-
flow system, it is clear that a quantitative characterization of the homog-
enization induced by open-flow devices on the outlet concentration is con-
tained within the functional properties of the operator Z|g defined by
Eq. (23).

In the remainder of these notes, attention is focused on closed and
bounded flows. The case of open-flow devices is touched in passing in the
open-problem Section 7.

out?

3.1 Infinitely fast reactions

Apart from tracer dispersion and homogenization experiments, the ADE
describes the evolution of a bimolecular chemical reacting system in the limit
of infinitely fast chemical reactions (Sokolov and Blumen, 1991).

Consider a bimolecular reaction

A+ B — Products, (24)

and let c4, cp be the concentrations of the two reactants. Moreover, let us
assume that the diffusivities of the reacting species are equal D4 = D = D.
The balance equations for ¢4 and ¢ in a stirred incompressible mixture read

Oca+v-Vey = EV2CA—T(CA,CB)
Oicg +v-Veg = 6V203—T(CA,CB), (25)
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where r(c4, cp) is the dimensionless reaction rate. By defining ¢ = ¢4 —¢p,
it follows readily that ¢ satisfies the ADE Eq. (7). The most interesting sit-
uation occurs when the reaction rate is arbitrarily large, which is referred to
as the infinitely fast reaction-rate limit. In this case, if A and B are initially
segregated, they remain segregated at all the time, due to the assumption of
instantaneous reaction. For infinitely fast reactions, the difference function
¢ completely specifies the reaction evolution, since

_etlel , _—o+ldl
2 2

In the case of stoichiometric initial loading, which corresponds to equal
masses of the two reactants (the stoichiometric coefficients are assumed to
be equal), ¢(x,0) possesses zero mean, and so does the solution of Eq. (7)
for t > 0.

In the case of infinitely fast reactions, the zero-level set T'g(¢) of the
concentration difference ¢

Lo(t) = {x [ o(x,1) =0} (27)

is the separation manifold between the two reactants, thus defining the re-
action interface. This is the simplest way of defining a physically significant
geometric interface associated with the evolution of the ADE (Giona et al.,
2002).

(26)

4 Functional setting of the ADE and norm
inequalities

This Section addresses the functional setting and some functional-theoretical
properties of the ADE in bounded-closed flows. In closed flows, the ADE
is equipped with Neumann boundary condition Eq. (8). At the end of
this Section, a formulation of mixing processes within the paradigm of the
functional analytical approach is addressed.

We assume that the flow is incompressible and that the domain is suffi-
ciently “regular”. Mathematically this means that the boundary 02 is the
union of a finite number of Lipschitz curve arcs.

In the dynamical system framework, the ADE Eq. (7) can be envisioned
as an evolution equation 96

5 = Lot (28)

defined in a suitable functional space, where L is the differential operator:

L[p:t] = —v(x,t) - Vo +eV3p. (29)
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A first property stemming from mass conservation is that the solution
of the ADE possesses a constant mean ¢(x,t) = ¢(x,0) = ¢, for any ¢ > 0.
This observation has a straightforward consequence. The ADE leaves in-
variant two subspaces: the subspace of constant functions, and the subspace
of nonconstant functions possessing vanishing mean. The practical impli-
cation of this elementary observation is discussed in the remainder of this
Section, in connection with a definition of mixing in bounded and closed
flows.

4.1 Functional setting

As for many parabolic problems, the most simple and convenient func-
tional setting for the ADE Eq. (7) is to regard its solutions as elements of
the functional space L?(f2) of the square summable functions in

2@ ={ 1| [IroPix<ool. (30)

Indeed, the functional space L?(f) can be viewed as the direct sum of two
orthogonal subspaces L?(Q) = ¢(Q) @ L?(Q), where ¢(Q) is the space of con-
stant functions in Q and L?(€) is the subspace of square summable functions
possessing zero mean (i.e. such that if f € L?(Q), then Jo f(x)dx = 0).
From what stated above, it is sufficient to consider the ADE within L2(Q),
since constant functions are left invariant under the advection-diffusion evo-
lution.

The functional spaces L2(2) and L2(Q2) are Hilbert spaces, equipped
with the inner product (+,-)z2 and the norm || - ||z2, defined as

(f.9)2 = /Q g dx, Nl =V e, 61

f,g € L*(), where g* is the complex conjugate of g.

In point of fact, the space LQ(Q) is a too general functional space for a
convenient setting of Eq. (7), since the differential nature of the operator £
requires that any solution of this equation should possess stronger regularity
(differentiability) properties, than solely bounded L?-norm. Such regular-
ity properties are accounted for by considering the Sobolev space H LQ) c
L2 (€2), which is the space of zero-mean square summable functions, possess-
ing square summable first-order generalized derivatives (Robinson, 2001)

Hl(ﬂ)={f‘f€E2(Q), [ wieopix<oo b
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The Sobolev space H* () is a Hilbert space equipped with the inner product

(Fohus = | [ Z o th] . ()

Consequently the H'-norm is given by

1/2 1/2
1Al = [(F )] = [1£132 + 11V £1132] (34)
In the functional space L2 (Q2) a Poincaré inequality applies (Temam, 1997;
Robinson, 2001), and this means that

1flze < collV Sl Vf € L2(9Q), (35)

where ¢y = ¢o(€2) is a positive constant depending exclusively on the ge-
ometry of the mixing space €2 but not on f. The Poincaré inequality is a
useful tool for proving functional-theoretical properties of the solutions of
the ADE.
A first consequence of Eq. (35) is that an equivalent norm for H'(€2) is
given by
Al =1V fl]L2 (36)

and this norm is adopted henceforth.

A solution of Eq. (7), starting from a zero-mean initial condition can be
viewed as an element of H'(2) for any ¢t > 0. Theorems of existence and
uniqueness for the solution of the ADE can be found elsewhere (Temam,
1997; Sell and You, 2002), under mild hypotheses on the regularity of v(x, t),
such as piecewise continuity with respect to x.

For autonomous flows v = v(x), the formal solution of Eq. (7), starting
from the initial condition ¢(x,0) = ¢o(x) can be expressed in the operatorial
form

o(x,t) = exp(Lt) po(x) . (37)
For non-autonomous flows, the formal solution of Eq (7) attains the form
¢(x,t) = exp(W(t))bo(x) - (38)

where the operator W(t) can be expressed via a Magnus expansion (Kowal-
ski, 1994; Iserles et al., 1999).

In the time-periodic case, v(x,t + T) = v(x,t) with T" > 0, one can
define an autonomous operator P, referred to as the Poincaré (or Floquet)
operator associated with Eq. (7) by considering the evolution of the concen-
tration field sampled at periodic instant of time with the period of the flow.
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Therefore, P maps the function ¢(x,n7"), n = 0,1,..., into the function
o(x,(n+ 1)T), solution of Eq. (7) after one period of motion. By making
use of Eq. (38), the Poincaré operator can be formally expressed as

P =exp(W(T)). (39)

A particular case of time-periodic flows is given by blinking steady flows
(also referred to as piecewise steady time-periodic flows), for which the time-
periodic flow protocol is obtained by blinking alternately two steady flows
vi(x) and va(x), each of which for time intervals T} and T3, respectively,
where Tl + TQ =T.

For piecewise steady time-periodic flows, the operator £ Eq. (29) reduces
to two distinct autonomous operators

Ei:—vi(x)-V-FEVQa 7;:1’27 (40)

which act for time intervals 77 and T5, respectively. For this class of flows,
the Poincaré operator can be expressed as

Plg] = 2 0 cC1Tr g (41)

[P0}

where “o” indicates operator composition.

4.2 Norm evolution

Many useful properties of the solutions of Eq. (7) can be inferred from
the analysis of the time evolution of the norms of the scalar field ¢.

Consider a real solution ¢ of Eq. (7). Multiplying Eq. (7) by ¢ and
integrating over £, it follows that

d||¢||7
dt

Eq. (42) states the dissipative nature of the ADE for any € > 0, since the L2-
norm of any solution of Eq. (7) with vanishing initial mean (i.e. belonging
to L?(Q)) is a strictly decreasing function of time. The strict decreasing of
||¢||2, stems from the fact that any function ¢ € L?(Q), different from the
zero function, possesses a non vanishing ||V¢||r2, since constant functions
do not belong to L2(Q).

Eq. (42) indicates that the decreasing of the L?-norm of the solutions of
the ADE is controlled by the L?-norm of its gradient. For this reason, it is
useful to express the evolution equation for ||[V¢||?,. By putting g = V¢,
it follows that

d||g||2. d
HilJL = 72/(Vv) : ggdxf2sz/ Vg;-Vgidx, (43)
Q = Ja

= —2¢[|Voll3- - (42)
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where g; are the entries of g, and the diadic term at the rhs of Eq. (43) has
the meaning

Vv:gg= ijzl O gz gj - (44)
Eq. (43) indicates that the evolution of the gradient norm is the outcome
of two conflicting actions: (i) the stretching effects due of the velocity field
(first term at the rhs of Eq. (43)), which tends to increase the gradient
norm, and (ii) the smoothing action of diffusion (second term at the rhs of
Eq. (44)), which opposes to it and relaxes the gradient.
The proof of Egs. (42) and (43) is just a matter of simple manipulations
based on the divergence theorem. In order to obtain Eq. (42), multiply Eq.
(7) by ¢ and integrate over the flow domain :

/Q¢gfdx=—/9¢v~v¢dx +6/9¢V2¢dx

By enforcing the zero-flux boundary conditions, the incompressibility of v,
and the vanishing of the normal component of the velocity at 02, the three
terms appearing in the above equation can be expressed as:

/Q(;)V.de = / <¢V¢>dx—2/9v V¢? dx
- %/QV-(vqs?)dx:% 6Q¢>2v~nd0=0
/Q¢V2<bdx = /Qv.(qsw)dx—/ﬂw-wdx
— BQ¢V¢~ndx—/QV¢-V¢dx=—/§2V¢'V¢dx~

In a similar way, Eq. (44) can be proved (hint: take the gradient of lhs and
rhs of Eq. (7), multiply by V¢, and integrate over the mixing space ().

4.3 Some functional observations

Before addressing the properties of the solutions of the ADE, some ele-
mentary observations on linear operators in infinite-dimensional spaces may
be useful. This is because new phenomena arise in infinite-dimensional
spaces that find no counterpart in the finite-dimensional case. For a thor-
ough analysis of the content of this Section, see e.g. (Reed and Simon, 1980;
Kato, 1980), or any reference textbook in functional analysis.
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Let C be an infinite-dimensional vector space (e.g. C = L*(Q)) and
A : C — C a linear operator acting on it. Let us assume that C is a Hilbert
space equipped with the inner product (-, -), the norm || || and the distance
function d(-,-), inherited by the definition of the inner product. Let us
further assume that C is separable, i.e. it admits a countable basis.

A linear operator A : C — C is bounded if for any y € C, there exists
a constant k£ > 0 such that ||A[y]|| < E||ly||- By definition, linear bounded
operators are also continuous.

A linear operator A : C — C is compact if it maps bounded sets of C
into precompact sets. The notion of compactness is crucial, and needs a
further discussion, since it is one of the “tricky” features that differentiate
infinite-dimensional spaces from finite-dimensional ones.

Let us recall the definition of compact and precompact sets. Given a
complete metric space C, a subset B C C is compact if for any sequence of
elements {yp}52, belonging to B, it is always possible to extract a conver-
gent subsequence. A subset B C C is precompact if its closure is compact.

In finite-dimensional spaces, any bounded set is also precompact (and
this is the essence of the Weierstrass theorem in R?). This property does
not hold in infinite-dimensional spaces. For example, consider the func-
tional space L2, .([0,1]) of square summable functions of unit period, and
the bounded set B = { ¢ | [|¢[|z> = 1 }, i.e. the unit ball in L2 ,([0,1]).
It is straightforward to observe that B is not compact, simply by consid-
ering that from the sequence of functions {y;, = e?™"*}%° C B it is not
possible to extract any converging subsequence. In this case, the infinite
dimensionality of the space provides an escaping way for the elements y; of
this sequence.

Compact sets in a infinite-dimensional Hilbert spaces can be viewed as
almost finite-dimensional sets. More precisely, let II,, be a projection oper-
ator, mapping C onto a n-dimensional subspace FE,,, spanned by the basis
{e1,...,en}. Let II¢ = Id —1I,,, the complementary projection operator in
C, where Id is the identity operator. For any y € C, y = II,,[y] + II¢ [y], and
moreover ||y||2 = [|TL,[y]||* + ||II¢ [y]||>. The following proposition holds:
a necessary and sufficient condition ensuring that a subset B C C is com-
pact is that B is bounded, and for any n > 0, there exists a finite integer
n =n(n), such that ||1I5[y]|| < n for any y € B.

To make the story short, depending on the nature of the functional
space considered, bounded sets may or may not be precompact. For future
developments, it is important to register that bounded sets of L?(£2) are not
precompact, while bounded sets in H'(f2) are precompact. Observe that
for a bounded set in H'(Q), both the norm an the gradient norm of its
elements f should be bounded.
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The interest in bounded and compact operators lies in their spectral
properties.

Spectral properties of linear operators in infinite-dimensional spaces are
not as simple as their finite-dimensional counterparts. For a linear opera-
tor A in a n-dimensional vector space E,, the spectral characterization is
exhaustive: any finite-dimensional linear operator possesses exactly n eigen-
values (counted with their algebraic multiplicities), and the system of the
generalized eigenvectors of A is a basis for F,.

The spectral theory of operators is fairly more complicated in infinite-
dimensional spaces. Boundedness of the operator tells us very little about its
spectral properties, and it is possible to exhibit simple examples of bounded
operators which does not possess any eigenvalue at all. A typical example
is the Frobenius-Perron operator associated with a mixing transformation,
defined in the space of square summable functions possessing zero mean.
Conversely, it is possible to give elementary examples of Frobenius-Perron
operators associated with autonomous flows, which possess a continuous
spectrum of eigenfunctions.

More definite are the properties of linear compact operators, which are
specified by the Theorem by Riesz and Schauder. The eigenvalue spectrum
of a compact operator is discrete (i.e. finite or countable) and does not
possess any accumulation point except X = 0. Moreover, any nonzero etgen-
value possesses finite multiplicity (which means that the corresponding space
of eigenfunctions is finite-dimensional).

In the next Section, we show that the evolution operator associated with
an ADE with € > 0 is compact (under mild assumptions on the velocity
field). This property can be proved by showing that the H'-norm of the
solutions is bounded. The technique for proving this property makes use of
two useful tools of applied functional analysis: the Young inequality, and
the uniform Grénwall lemma (Temam, 1997; Robinson, 2001).

The Young inequality is a classical inequality for real numbers, stating
that for any a, b, n > 0 and for any p, ¢, such that 1 < p < co and 1/p +
1/q = 1, it results that

—a/p
ab < Dap 4+ T o . (45)
p q

The uniform Gronwall Lemma, derived by Foias and Prodi (1967) can be
stated as follows. Let g(t), h(t), y(t), be three positive localy integrable func-
tions on (tg,00), such that dy(t)/dt is locally integrable on (tg,o0), and
which satisfy:

dy(t)

- <90yt +h(t),  fort >ty (46)
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and

t+7 t+7 t+7
/ g(o)do < Ay, / h(o)do < Ay, / y(o)do < As,
t t ¢

(47)
fort > ty, where Ay, As, Az, T are positive constants. Then:

y(t+7) < <Ij3 + A2> exp(A1) t>t,. (48)

It is possible to derive a slight modification of this Lemma. Let us suppose
that

t+7 t+T
/t glo)do <Ay, h(t) =0, / y(o)do <m(t),  (49)

where m(t) > 0 and 7 > 0. Then, for ¢ > ty, the following inequality holds:

m(t)

y(t+71) < exp(4y). (50)

4.4 Compactness and exponential decay

This Section addresses the compactness of the evolution operator asso-
ciated with the ADE, and the exponential bounds for the solutions. By
the term evolution operator associated with Eq. (7), we mean the lin-
ear operator 7 (t) : L?(Q) — L?(f2), such that the solution ¢(x,t) of Eq.
(7) in a bounded and closed domain at time ¢ > 0 can be expressed as
d(x,t) = T(t)[¢o(x)]. Since initial conditions ¢o(x) possessing zero mean
are considered below, the solution ¢(x,t) of Eq. (7) belongs to L?(2) for
any t > 0.

Throughout this Section, we assume that the velocity field is incompress-
ible and uniformly bounded, i.e. there exists a positive constant V;, such
that

v <V (51)
This assumption implies that for any ¢, v € L?(Q).

Below, the statements of the main results are reported. The proofs of
these propositions can be found in Appendix A.

Theorem 4.1. The L?-norm of the solution of Eq. (7) satisfies the in-
equality

1912 (t) < 1|6]]12(0) exp(—te/c3) - (52)



174 M. Giona

This theorem provides an upper bound for the exponential decay of
the solutions, which corresponds to the diffusional exponential decay. The
exponent of this decay is inversely proportional to the Peclet number (recall
that ¢ = 1/Pe), and depends on the Poincaré constant ¢y of the mixing
domain §2.

Next theorem expresses a stronger property of the solutions, namely that
the H'-norm of the solution of Eq. (7) is eventually bounded.

Theorem 4.2. Ife > 0 then,

16117 (2) = [IV6[72(2) < Cle, ll9]]2(0), [ V|| £2(0)), (53)

where the upper bound C(g,||¢||£2(0),]|V@||£2(0)) > 0 depends on e, ||¢||2(0),
and ||V é||12(0). Moreover, fort > 2e/V2, independently of ||V $(0)|| 2, the
following inequality holds

eV2
IVelIZ:(t) <

< g2 (54)

In Eq. (54), e = 2.718281 ... is the Napier number. The main impli-
cation of Eq. (53) is the compactness of the evolution operator associated
with the ADE Eq. (7), since it maps bounded sets of L2() into precompact
sets of LZ(Q). The latter property stems from the fact that bounded sets
of H}() are precompact.

While the existence of an upper exponential bound for the decay of the
L2-norm of the solutions of Eq. (7) (Theorem 4.1), follows straightforwardly
as a consequence of the Poincaré inequality, the assessment of a lower expo-
nential bound for suitable initial conditions, requires further elaborations.

Theorem 4.3. The function

V2
Q(t) = [IVol[72(t) + 5 llell72(2) (55)
4e
is non-increasing. Moreover,
IV@l[22(t) =0, fort — co. (56)

In order to prove some strict inequality for the asymptotic behavior of
l|¢]]22(t), consider the quantity |[V@|[3.(t)/||¢]|32(¢), since

e g, (IS0
a2 ek ) Ml o
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Eq. (123) (in Appendix A) shows that the quantity ||V ||, (t+7)/||6]32 (t)
is bounded, but this is not sufficient for inferring an exponential decay for
l|¢]|22(t), since T > 0.

This problem can be circumvented in the following way. Consider an
initial condition ¢(x,0) € H'(Q) (i.e. [[V4|[2.(0) < o0), and let

191172 () = [161I72(0) exp(—2(t)) , (58)

where IV8I2.(0)
1) = WY PIL2\7)
SO ANTFERT)

Owing to the Poincaré inequality, the function v(t) is monotonically increas-
ing. From Eq. (42), it follows that

1901220 = 2O 5 ) ety (60)

do . (59)

where (t) indicates the time derivative.

We want to show that the function v(t) cannot eventually increase faster
than a linear function, and consequently that ||¢||3,(¢) possesses an ezpo-
nential decay.

Theorem 4.4. The solutions of the ADE in the presence of uniformly
bounded velocity fields possess a lower bound which decays exponentially.

As consequence of Theorem 4.4, there exists a positive constant K* such
that
t
tim 20 < K*, (61)
t—o0 t
for any (autonomous, time-periodic, aperiodic) flow, the velocity field v(x, t)
of which is uniformly bounded. This completes the analysis of the proper-
ties of the ADE that can be obtained by enforcing elementary functional
analysis.

4.5 Spectral theory of ADE and the definition of mixing

In closed and bounded domains, the functional characterization of com-
pact operators can be grounded on spectral (eigenvalue/eigenfunction) anal-
ysis (Reed and Simon, 1980). Therefore, it is natural to consider the eigen-
value/eigenfunction spectra of the ADE operator (for autonomous flows)
and of the Poincaré operator (for time-periodic flows) as the quantities
yielding an exhaustive description of the dynamics of homogenization (mix-

ing).
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First, consider autonomous flows. It has been shown by several Authors
(Agmon, 1962, 1965; Faierman, 1995) under slightly different assumptions
on the velocity field (a safe assumption is to suppose that v(x) is uniformly
bounded), and on the geometry of the mixing space (a safe assumption is
to suppose that 2 is connected and possesses a Lipschitz boundary) that
the eigenvalue spectrum {A,}7°, of the advection-diffusion operator with
e >0,

L[] = —v(x) - VY + eV = M, (62)

is countable and that the (generalized) eigenfunctions {i(x)}72, form a
basis for L?(€). The eigenvalues \;, are in general complex numbers (since
the ADE operator is not Hermitian), and possess non positive real part.

The eigenvalues A\, = /\ﬁ + i/\{l can be ordered with respect to the real
part, )\,If' > )\f/ﬂ. Due to mass conservation, there exists the eigenvalue
Ao = 0, associated with the constant eigenfunction ¢g(x) = 1, while all the
other eigenvalues possess negative real part )\f” <0,h=1,2,....

The spectral characterization is slighly more complex for time-periodic
velocity fields, and involves the eigenvalues/eigenfunctions of the Poincaré
operator P. Albeit the completeness of the eigenfunctions has not been
proved, strong results have been obtained by Liu and Haller (2004b), who
showed that under mild hypotheses (such as the uniform boundedness of
the velocity field), the ADE possesses an exponentially attracting finite-
dimensional inertial manifold (Temam, 1997), and, restricted to it, the
eigenfunctions of the Poincaré operator form a basis for this manifold. This
result is closely connected with the compactness of the evolution operator
associated with the ADE (Theorem 4.1), and with the exponential lower-
bound for the solutions of the ADE (Theorem 4.4).

However, it is reasonable to conjecture that for typical model flows and
for physically realizable velocity fields, the eigenvalue spectrum of P is
countable, and the eigenfunctions form a basis for L?().

In the case of aperiodic velocity fields, the spectral characterization
looses its meaning. However, Theorems 4.1 and 4.4 indicate that the solu-
tions of the ADE are always upper- and lower-bounded by an exponential
decay, also in the presence of aperiodic flows for which the velocity is uni-
formly bounded.

The completeness of the eigenfunctions provides an exhaustive charac-
terization of homogenization dynamics. For autonomous flows, any solution
o(x,t) € L?(2) can be expressed as

B(x,1) = Pnoe n(x) (63)

h=1
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where 9y, (x) are the complex-valued eigenfunctions, and the coefficients ¢y, o
characterize the initial condition.

For generic initial conditions, the norm decay is controlled by the non-
vanishing eigenvalue \; possessing the largest real part,

CreMt < [|¢]]12 () < Cae™t ¢ — 00, (64)

where 0 < C7; < C5. The real part of A\; with reversed sign is referred to
as the dominant decay rate A = —A¥ of the ADE, and Eq. (64) can be
rewritten as a scaling law

|6]|2(t) ~e™™  for large t . (65)

The exponent A corresponds to the slowest decay rate attainable during the
homogenization dynamics.

An analogous approach applies for time-periodic velocity fields. Let
{un}52, be the eigenvalue spectrum of the Poincaré operator. All the eigen-
values possess a modulus smaller than or equal to 1. The eigenvalue spec-
trum can be ordered in a nonincreasing way with respect to the modulus,
ie. |un| > |pne1|. Mass conservation implies that po = 1 (the associated
eigenfunction is tg(x) = 1), while |up| < 1 for h = 1,2,.... Apart from
1o = 1, the eigenvalue p; controls the decay rate for generic initial condi-
tions. For time-periodic flows, the dominant decay rate entering Eq. (65)
is given by

A = —1oglm] 7
T
where T is the period of the flow protocol.

The description of the spectral properties for typical model flows is de-
veloped in the next Section.

For the time being, it is important to address how the spectral charac-
terization provides the most simple and efficient way to describe homoge-
nization dynamics in bounded closed flows, and how mixing can be defined
in these systems.

First of all, the spectral characterization is intimately associated with
the practical (engineering) description of mixing, since it readily yields the
values of the decay rates controlling the relaxation towards the perfectly
mixed state. The structure of the eigenfunctions is equally important, since
it provides the spatial structure of the characteristic patterns attained by
the scalar field ¢(x, t) during the relaxation process towards perfectly mixed
conditions (the partially mixed structures).

For any finite value of the Peclet number, the optimal time-periodic flow
protocol corresponds to a velocity field yielding the largest value of the

(66)
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dominant rate exponent Eq. (66). This condition, is a kind of normative
(generic) formulation, as it does not account for the properties of the initial
condition ¢g(x), i.e. the fact that the optimal flow protocol up to time ¢
should be tuned-up in order to minimize the mixing time starting from
the given initial condition ¢o(x). The effect of the initial condition can
be easily accounted for within the functional characterization of mixing, by
observing from Eqgs. (58)-(59) that the instantaneous homogenization decay
rate ['(¢, €) at time ¢,

[16l12 () = l|llz2 (0)e T, (67)

is given by the average over the mixing history, i.e. over the interval [0,t),
of the ratio of the square H'-norm to the square L?-norm of ¢ times

1 [fellVelli-(9)
e =g [ o0 (68)

The quantity T'(¢,e) provides for fixed ¢ the most natural and physically
meaningful objective function to be used for flow-protocol optimization in
bounded and closed domains (in open domains the situation is different,
see Section 7). This optimization criterion can be roughly expressed as:
optimal mixing performances correspond to flow protocols which maximize
the time-average of the L?-norm of the normalized gradient.

It is useful to observe that the concept of optimal mizing conditions has
a dichotomic meaning, and a distinction should be drawn between perfectly
mized conditions as a status of a fluid continuum, and good mizedness as
a dynamic process. In a static perspective, perfectly mixed conditions cor-
respond to the occurrence of a constant concentration field throughout the
mixing space. Once this condition is achieved in a closed system, neither
diffusion nor advection can perturb or modify it. Although perfectly mixed
conditions are the ultimate goal of any mixing equipment, the characteriza-
tion of these conditions is trivial, and moreover it is uninteresting in mixing
theory, which is focused on the description and optimization of the evolu-
tion of a fluid mixture as a dynamic process towards the best attainable
mixedness. Good mixedness corresponds to the situation for which the re-
laxation towards perfectly mixed conditions proceeeds at a sufficiently fast
rate. In fact, optimization of mixing in a closed domain implies the finding
of the stirring protocol yielding the minimum possible time to reach the
prescribed homogenization conditions, as stated above.

It is possible to frame these observations on mixedness with the spectral
formulation (Mathew et al., 2005). Since dynamic mixing conditions are
controlled by the norm of the gradient of ¢, it is natural to express the
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functional properties of ¢(x,t) with respect to a functional basis which is
harmonically ordered.
Let us define an ordered H'-basis, as an orthonormal set of functions
{fi(x) 215
[fellzz =1, (fr> fn)rz = O, (69)

which is a basis of L(€2), and such that the sequence of their H'-norms is
nondecreasing, and diverging to infinity

IV ferilles 2 fellze Jim (19 llze — oo (70)

A H'-ordered basis can be referred to as a harmonic basis.

The typical harmonic basis in a closed domain €2 is given by the eigensys-
tem of the Laplacian operator in 2, equipped with the Neumann boundary
conditions on 9. Let {{(x)}%2, be such eigensystem. The eigenfunction
fo(x) = 1 is not considered since it does not belong to L?(£2).

The system {f4(x)}32, forms a basis for L?(Q), and the eigenvalues
— g, V2(x) = =11 (x), are negative and form a sequence of real numbers
diverging to —oco. Moreover, the eigenvalues —vy, are related to the structure
of the corresponding eigenfunction by the equation

VL] |7

ST A =

Essentially, the concept of harmonic basis provides a way to define an
ordering within the spatial harmonics, so that low values of k correspond to
low-frequency spatial harmonics, and large k-values to high frequency spa-
tial components. The integer k plays the role of a wavenumber. Therefore,
the distinction between static perfectly mixed conditions and dynamically
perfect mixedness can be viewed in a wavenumber graph as the difference
between the point &k = 0 at the origin of this graph and the point at infinity
of the wavenumber-axis (see Fig. 4).

Civen a harmonic basis, the concentration field ¢(x,t) € L?(Q) can be
expressed with respect to this basis as

d(x,1) = > () le(x),  or(t) = (&, ) L2 - (72)
k=1

5

Spectral measures® can be defined starting from the decomposition Eq.

5This analysis of spectral measures is an elaboration of the spectral theory developed
by Mathew et al. (2005).
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Figure 4. Difference between static and dynamic perfectly mixed conditions
on the wavenumber axis.

(72). For example,

Vo200 _ S, mslen (D)2
1172 (1) Dt ok ()12
The spectral representation provides a formal way to define powers of a

positive operator such as —V? (Robinson, 2001). For any real «, the action
of the a-th power of —V? on ¢(x,t) can be defined as:

(73)

oo

(=VH2p(x,t) = Y v (¢, Lr) 12 le(x) , (74)

k=1

and consequently the following family of spectral measures o,(¢$) can be
defined for ¢:

0a(9) = (=V?)¢,0)12 = [I(=V*)*?l[7. = Y vilenl*.  (75)

k=1

For example, the mixnorm introduced by Mathew et al. (2005) on S (the
unit circumference) is equivalent for ¢ € L2(S') to the square root of o4 (¢)
with o = —1/2.

In principle, any spectral measure, such as 0,(¢), grounded on the ex-
pansion of the scalar field ¢ with respect to a harmonic basis, is a useful
measure for the degree of mixedness, although specific values of o may be
more significant (e.g. o = 1 or @« = —1/2), for highlighting the dynamic
properties of homogenization. It is advisable to consider normalized spec-
tral measures 0, (¢), obtained by rescaling Eq. (75) by the square of the
L?-norm:

oa(9)

7a(®) = 141, (76)
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To conclude, the spectral expansion provides also a convenient way to
simulate the ADE. By expanding ¢(x, ¢) with respect to the eigensystem of
the Laplacian operator, and by enforcing the orthonormality of the basis
{lr(x)}, the evolution equation for the spectral coefficients ¢ (t) reads:

T = 2 A —enntd) (77)
where
App(t) =— /Q (x)v(x,t) - Vi (x) dx. (78)

Eqgs. (77)-(78) are the classical expressions for the Galerkin expansion of
the ADE Eq. (7) with respect to the eigensystem of the Laplacian operator,
that can be fruitfully applied in order to simulate numerically the outcome
of a homogenization experiment.

It is useful to point out that the (spectral) Galerkin simulation of the
ADE is completely divorced from the spectral analysis of homogenization
described above. More precisely, the spectral characterization via the spec-
tral measures o, (¢) can be applied to any flow system for which the numer-
ical simulations of the corresponding ADE have been performed by using
any of the classical numerical tools of computational fluid dynamics (finite
differences, finite volumes, finite elements). This means that spectral anal-
ysis can be applied also to complex geometries of the mixing domain €2, for
which the Galerkin expansion is not the optimal way to solve numerically
the ADE.

By truncating the number of spectral coefficient up to a finite value IV,
and by defining a “vector of coefficients” c(t) = (¢1(t),...,én ()T, Eq.
(77) can be expressed in matrix form as

dc
i Ac—eDc, (79)
where D = diag(vy,...vy) is the diagional matrix accounting from diffu-
sion. The truncation order IV should be sufficiently large to ensure numerical
accuracy. In point of fact, the compactness of the evolution operator for
the ADE ensures that a finite truncation can be arbitrarily accurate for N
sufficiently large. In practice, the trade-off for N between accuracy and
computational efficiency depends on e, i.e. on the Peclet number. A save
“rule-of-thumb” is the higher Pe, the larger should be the number of modes
considered.

For autonomous flows, Eq. (79) is a linear system of ODE with constant
coefficients, and the evolution operator can be formally expressed as the
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exponential of the coefficient matrix:
c(t) = eA=D)tc(0). (80)

For time-periodic blinking flows, a truncated approximation of the Poincaré

operator reads:
P(T) = (A2 =D) T2 o(A1 D) T} s

i.e. the truncated Poincaré operator is the matrix composition of the two
operators Eq. (80) associated with the two steady blinking flows acting over
the time spans 77 and T3, respectively.

5 Spectral properties of ADE equation in closed flows

In this Section some results in the scaling theory of ADE operators are
described (Adrover et al., 2001; Cerbelli et al., 2003, 2004; Giona et al.,
2004a; Toussaint et al., 1995, 2000). Specifically, the case of parallel flow is
considered, leading to the concept of universal scaling (Giona et al., 2004b).
The implications of this property in connection with physically realizable
flows is also discussed. Numerical simulations are presented for the spectral
properties of the ADE in chaotic flows by considering the Sine-Flow (TPSP)
as a prototype flow system (see Appendix B).

5.1 TUniversality

Consider the ADE for the Autonomomous Sine-Flow (ASF). For ASF,
the advection-diffusion operator becomes

0 0? 0?
L[¢] = —sin(2mx) 8—(5 +e (am(f + 8;3) ; (82)

equipped with periodic boundary conditions on the edges of the unit square
domain.

The salient spectral feature of the Sine Flow is the occurrence of two
spectral branches (Cerbelli et al., 2004; Giona et al., 2004a): (i) a diffusive
branch, the eigenvalues {\,} of which are real and scale linearly with e,
An,dif ~ €, and (i) a convective branch, the eigenvalues of which are com-
plex and possess a real part which scales as )\ﬁcon ~ /e (Fig. 5). The
latter branch possesses qualitatively the same scaling behavior observed in
unbounded cellular flows (Fannjang and Papanicolau, 1994), and referred
to as Convection-Enhanced Diffusion (CoED).

The occurrence of two different spectral branches, as well as other prop-
erties of the advection-diffusion equation, can be explained by introducing
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Figure 5. Dominant decay rate A vs the Peclet number for the diffusive
branch (o) and the CoED branch (e) for the ASF. The solid lines are the
scaling laws A ~ Pe~! (curve a) and A ~ Pe~'/? (curve b).

the following representation

d)(za y) = eii2ﬂ-my¢(x) ) (83)

where m is an integer. By substituting Eq. (83) into Eq. (82), the ADE
splits into a countable family of 1-d problems associated with the operators:

d*y(z)

dx?

LY)(x) =¢ —4r*m?eyp(z) + i2rmsin(2m2)Y(x) . (84)
For m = 0, the eigenvalues of L scale diffusively, while for m # 0 an effective
coupling between advection and diffusion takes place.

Eq. (84) indicates that L[] is the linear combination of two operators: a

diagonal operator —4mm?e, and the second-order complex-valued operator
A[], defined by:

d*y(x)
dx?

Af](z) =¢ + iV (x)(x) , (85)
where V,,,(x) = 2rm sin(27z). The operator A can be viewed as a Schrodinger
operator in the presence of an imaginary potential iV, (x) defined on the
unit circumference.
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Consider the case m = 1, dropping the subscript m, i.e. defining V' (z) =
Vi(x). Let 4 = pr + iw be an eigenvalue of A, and ¢ the corresponding
eigenfunction:

d*4)(z)
dz?
The real and imaginary part of the eigenvalues is related to the spatial

structure of the corresponding eigenfunction 1 by the equations (Giona
et al., 2004b):

€

+iV(2)p(z) = py(z) . (86)

e 1Dy (Vi ) 2
_ _ENWPVIEe = D2 87
12 R TFATEN (87)

where Di(z) = dip(x)/dx. Since ¥(xr) = constant is not an eigenfunc-
tion of A unless V(z) = constant, the latter expression for pp indicates
that the eigenvalues of A possess a strictly negative real part that ensures
dissipativity.

Another useful expression for the eigenvalues of A is:

" / (o) de = i / V(@) (e) dr (8)

which can be expressed as (¢, 1)z = (¢, V) 2.

In order to characterize the dispersion properties of the ADE, the most
important spectral feature of the operator A is the localization of the eigen-
functions belonging to the complex conjugate arms of the spectrum. Figure
6 (A) depicts the modulus [¢(z)| of the dominant eigenfunction for several
values of the Peclet number, and shows that the eigenfunctions are strongly
localized around the critical point . = 1/4 of the potential. In fact, the
dominant eigenfunctions . (x) for different £ — 0 can be rescaled into a
single master curve g(&) (see Figure 6 B):

V(@) = A7) 9(&)lem(—2.)/8(e) (89)

where A(e) is a normalization constant, and the scaling function §(g) > 0
is proportional to /4.

The localization property of the eigenfunctions for the second-order op-
erator A in the presence of an imaginary potential is the indicator of a
universal scaling characterizing the advection-diffusion equation.

Consider a particular class of periodic potentials defined by the prop-
erties that: (i) V(z) possesses a single local maximum at = 0, and a
single local minimum at = x,, > 0, such that V(0) = =V (x,,), and
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Figure 6. Dominant eigenfunction of the operator A for different values
of the Peclet number (¢ = Pe™!). (A) |#(x)| vs . The arrow indicates
increasing values of Pe, Pe = 5102, 103, 5102, 10%, 510%,105,510°. (B)
Validity of Eq. (89) for rescaling the eigenfunction: A(e)|e| vs (x—x.)/0(g),
for different values of Pe = 103, 10*, 10°, 106.

that (ii) V(z) near z = 0 and x = z,,, attains the same nonlinear behavior
characterized by the same exponent ~:

Vi) = Vu—WVi|z|” +o(|z]7) for |z| <n
Vi) = —Vu+WVilz—xn]” +o(|z — xm]") for |x — x| <7,
(90)

where n > 0. For example the sine flow model falls into this class by
considering the translation 2’ = x — 1/4, and is a quadratic potential i.e.
v = 2. In the “pathological” case of a potential V(x) which possesses
maxima and minima, in the neighborhood of which V' (x) is constant (flat
critical points), the value 7 = oo can be assigned to these critical points,
since 7 = oo can be viewed as the limit value for the exponents 7, n =
1,2, .. associated with an analytic sequences of potentials V,,(x) converging
to V(x).

Since we are considering the behavior of the eigenvalues and eigenfunc-
tions as € — 0, we will indicate explicitly their dependence on € as p = u(e)
and 1 = . (x).

Let us assume Eq. (89), i.e. ¥.(z) = A71(¢) g(x/B(¢)). By substituting
this expression into Eq. (86), and performing the change of variable £ =
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x/B(g) it follows that:

e S IDg(e) de o

F2E) a5 e de

—pr(e) =

where Dg(§) = dg(§)/d€. Since the master function g(£) is vanishingly

small outside a narrow interval centered around £ = 0 and since, for ¢ — 0,

the integration limits approach +oo, Eq. (91) implies
€

—ppr(e) = C——, 92
€~ o (92)
where C' = [%_|Dg(&)[2d¢/ [ |g(&)]* de.

Let us now conmder Eq. (87) By applying the scaling assumption for
(), and by making the same approximation regarding the integration
limits, one obtains:

wf s©d=i [ v, (93)
Owing to the fact that g(&) is localized around £ = 0, the integral at the
r.hs. of Eq. (93) depends on the local behavior of V(8(g)§) near € = 0.
Therefore, we can apply the local expansion Eq. (90), thus obtaining a
linear system for the two unknowns pg(e) and w(e):

[ Aor —Aos } [ 1ir(e) ] _ [ ~VarAo1 + Vi (e) A r (o4)
Aor Aor w(e) VamAo,r — V1B (e)A1 R

) )

Ao = / g (€) de Avp = [ € gr(€)de k=R (95)

and ¢g(&) = gr(§) +igr(§). The solution of the linear system (94) is

Vi(Ao,1 A1 r — Ao rRA1T)
—pr(e) = B7(¢g) —a —, (96)
A g+ AG

Vi(Ao 1A1 R — Ao rA1T)

(97)
A r+ AT

—pr() = 47(e)

Let us first consider the scaling behavior of the real part of the eigenvalues
with e. By equating Eqs. (92) and (96) it follows that:

B(e) = B/ (98)
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where B is a positive constant, and therefore from Eq. (92) one obtains
—pr(e) ~ e, (99)
where the exponent « is given by

7y

- 100
T (100)

Eq. (100) is the main result regarding universality, since it expresses the
scaling behavior of the dominant eigenvalue as a function of the local be-
havior near the critical point. In the case of quadratic potentials (as for
the sine-flow) v = 2, and therefore @ = 1/2 as observed numerically. The
formal analogy with the Feigenbaum universality (Feigenbaum, 1979) for
the period-doubling cascade of unimodular maps on the interval is evident,
since in both cases the scaling exponents depend exclusively on the local
behavior near the critical point.

5.2 Implications for physically realizable flows

The scaling behavior predicted by the universal theory, finds application
in the analysis of physically realizable flows, such as the cavity flow (see
Appendix B).

For the cavity flow, the structure of the flow domain indicates that the
velocity component along the streamlines possesses a quadratic behavior,
so that it is reasonable to expect a classical COeD scaling for one of the
spectral branches characterized by an exponent o = 1/2.

Figure 7 shows the behavior of the dominant scaling exponent A for
the autonomous cavity flow. The eigenvalue spectrum can be decomposed
into several distinct eigenvalue branches, each of which characterized by a
different scaling behavior with the Peclet number (for Pe — o0). For the
autonomous cavity flow, two distinct branches can be observed, correspond-
ing respectively to real and complex conjugate eigenvalues, the dominant
exponents of which are depicted in Fig. 7 (dotted lines (a) and (b), respec-
tively). At large Pe, the real branch is characterized by a diffusive scaling
A ~ 1/Pe, inversely proportional to the Peclet number, while the complex
conjugate branch displays a convection-enhanced scaling A ~ Pe~1/2, as
predicted by the universal theory.

It is interesting to analyze further the spatial structure of the eigen-
functions of the cavity flow. Figure 8 (A)-(B) shows the spatial structure
of the eigenfunction Wﬁl)(x) (throughout this Section, all of the eigenfunc-
tions considered are normalized to unit L?-norm) and of the modulus of

the eigenfunction 'yéi) associated with the dominant eigenvalues of the real
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Figure 7. Autonomous cavity flow. Dominant scaling exponent A vs Pe.
Dotted line (a) and (e) refer to the complex conjugate branch of the spec-
trum, dotted line (b) and (o) to the real branch. Lines (c) and (d) represent
the diffusive scaling A ~ Pe~!, line (e) the convection-enhanced scaling
A~ Pe=1/2,

and complex-conjugate branch for Pe = 103. The real eigenfunction (as-
sociated with the diffusive eigenvalue scaling) resembles the structure of
the stream function. Conversely, the dominant eigenfunction of the com-
plex conjugate branch displays, (as expected), higher gradients, localized
near the walls. As Pe increases, the dominant eigenfunctions of the dif-
fusive branch (the real branch) converges towards an invariant shape the
contour plot of which corresponds to that of the streamfucntion. This is
depicted in Fig. 8 (C) showing the dominant real eigenfunction ”yﬁl)(x)
at Pe = 10*. This result is not surprising, since the family the dominant
eigenfunctions of the diffusive branch are characterized by the property
limpe—oo ||VY(X)||z2 = C = constant, i.e. their gradients converge to-
wards a constant quantity. The higher-order eigenfunctions of the diffusive
branch of the spectrum can be viewed as higher-order modulations of a fun-
damental shape possessing as level sets the streamlines of the stirring flow.
For example, Fig. 8 (D) shows the second dominant eigenfunction %@(x)
at Pe = 10%.

The case of the flow between concentric cylinders can be also tackled
within the universal theory. It gives a COeD exponent « = 1/3, confirmed
by numerical simulations. For details see (Giona et al., 2004b,c).
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5.3 ADE in chaotic flows

In this Section, we consider the spectral properties of the ADE in chaotic
flows by taking the Sine-Flow as a prototype. Indeed, the Sine-Flow is
particularly handy for spectral analysis, since the evolution of the Fourier
coefficients of the scalar field ¢ reduces in the first half-period of motion
Ty = T/2 to a system of ODE, the coefficient matrix of which is tridiagonal:

d(bzl’i:(t) = —den?(r? + 52) ¢ro(t) — T (Prs—1(t) — dror1(t)). (101)
Analogous expression holds for the second half-period with indexes r and s
reversed. Let 1), s = fs + id}f’s. A general property of the Time-Periodic
Sine Flow (TPSF) is the occurrence of two spectral branches, referred to as
the C (for cosine) and S (for sine) branches, respectively. The C' branch is
formed by those eigenvalues for which the spectral coefficient of the associ-
ated eigenfunctions admit vanishing imaginary part ( {13 =0, for all r,s),
and consequently, the eigenfunctions of this branch can be expressed as a
cosine series. Conversely, the S branch is characterized by the eigenfunction
property ¢£,s =0 for all r, s.

The aim of the spectral analysis is to describe the properties of the
spectral branches characterizing the Poincaré operator associated with the
ADE, the spatial structure of the associated eigenfunction, and how this
properties are related to the global kinematic properties of the flow.

Figure 9 (A)-(B) shows the structure of the Poincaré section of the TPSF
for several values of the period T. In general, the simultaneous occurrence
of regular and chaotic regions characterizes these flows. For T' = 1.6, a
single massive chaotic region invades the mixing space €2, and numerical
simulations suggest that this region possesses full measure. This claim is
based exclusively on numerical simulations and does not stem from any
analytical results. The case T'= 1.6 is a candidate for studying the spectral
properties in (almost) globally chaotic conditions.

Figure 10 shows the dominant scaling exponents associated with the
eigenvalues of the two spectral branches C and S. For large Peclet numbers,
the dominant eigenvalue which is real and belongs to the S branch, turns
out to be independent of Pe, i.e.

A ~ constant for Pe — oo, (102)

which can be referred to as Chaos Enhanced Diffusion (ChED). It is inter-
esting to observe that not only the dominant eigenvalue of this branch, but



190 M. Giona

Figure 8. Three-dimensional plots of the eigenfunctions of advection-
diffusion operator for the autonomous cavity flow. (A) Dominant eigen-

function 7" of the diffusion-controlled branch for Pe = 10°. (B) Modu-
lus of the dominant eigenfunction 'ygé) of the convection-enhanced branch
for Pe = 10%. (C) Dominant eigenfunction '751) of the diffusion-controlled

branch for Pe = 10*. (D) Second dominant eigenfunction 752) of the
diffusion-controlled branch for Pe = 10%.

also the second, the third eigenvalue as so forth possess the same scaling Eq.
(102). For this reason, ChED regime may be referred to as a homogeneous
coupling between convection and diffusion. It is worth mentioning that Eq.
(102) has been obtained by other Authors (Toroczkai et al., 2001; Fereday
et al., 2002; Pikovsky and Popovych, 2003; Sukhatme and Pierrechumbert,
2002; Thiffeault and Childress, 2003), not for the real advection-diffusion
equation, but for the simplified pulsed-system model, which is obtained
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Figure 9. Poincaré sections of the time-periodic Sine Flow. (A) T' = 0.4.
(B) T =0.56. (C) T=0.8. (D) T =1.18.

by splitting the interplay between advection and diffusion in two separate
steps: a first step in which advection is active and no diffusion occurs, a
second step without advection, in which diffusion smoothes the gradients
(see Section 6).

Figure 11 (A) shows the contour plot of the normalized dominant eigen-
function for Pe = 10°, and Fig. 11 (B) the contour plot of the norm of its
gradient. It can be observed that the spatial region characterized by high
values of the gradient tends to invade the entire mixing region, and that
the contour plot (or the reaction interface associated with the dominant
eigenfunction) closely resembles the structure of the leaves of the unstable
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Figure 10. Dominant scaling exponents for the two spectral branches C'
(o) and S the TPSF at T' = 1.6 vs the Peclet number. Empty (o) and filled
(e) circles refer to the dominant eigenvalues of the S branch estimated by
the eigenvalue spectrum and by means of the power method, respectively.
Triangles (A) refer to the first complex eigenvalue of the C' branch, and
boxes () to the first real eigenvalue of the C' branch. Solid lines are simply
interpolating curves, depicted for visual aid.

Consider the behavior of the TPSF at lower values of T', in the case of
partially chaotic flows. The review of the scaling behavior of the dominant
decay rate A for these flow protocols is depicted in Fig. 12. The dominant
decay exponent A display for large Peclet a power-law scaling

A~ Pe™® =g“ for large Pe values, (103)

where the exponent a attains values between 0 (ChED) and 1 (diffusive
scaling). Table 2 summarizes the values of the exponent « vs the flow
period T. The occurrence of the scaling behavior expressed by Eq. (103)
with o < 1 (strictly) for the dominant decay rate (or for the dominant
decay rate associated with a secondary, faster branch of the spectrum), is
connected with the phenomenon referred to as the occurrence of strange
eigenfunctions by some authors Liu and Haller (2004a). Indeed, if a < 1,
the family of eigenfunctions 1).(x) associated with the dominant eigenvalue
and parametrized with respect to the Peclet number, displays the property
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Figure 11. Contour plot of the dominant eigenfunction and of its gradient
for the TPSF at T = 1.6, Pe = 10°.

lim. o |[Vbe|[32/|[the| |72 = o0, i.e. their normalized gradient norms diverge
as Pe — o0.

Due to space limitations, solely the case T' = 0.8 is discussed below in
some detail.

In the analysis of spectral structure, it is useful to register the analogy
betwen the ADE and bimolecular infinitely fast reactions (Section 3). Keep-
ing in mind this analogy, positive and negative regions of the eigenfunctions
can be viewed as the portion of the mixing space within which the two re-
actants are localized. While discussing the case of T' = 0.8, this analogy is
frequently used.

The case T = 0.8 is particularly interesting in order to highlight the
complex role of the quasiperiodic islands in the interplay between diffusion
and advection, and the role of symmetry. Figure 13 shows the scaling of
the dominant decay rates of the C' and S branches. In this case, both
these eigenvalues are real, but their scaling is different. The smallest C
eigenvalue, which is dominant in the Peclet range [10%,10%], follows Eq.
(103) with o = 0.745, while the S dominant eigenvalue scales diffusively, i.e.
proportional to 1/ Pe. The functional decoupling between C' and S branches,
which is typical of the SF system, indicates that for very large Peclet values
(approximatively of the order of 2 x 10°), a crossing will occur between
these two branches, and the S-branch diffusive eigenvalue will eventually
dominate the asymptotic scaling. The physical nature of this phenomenon
can be fully appreciated by the analysis of the eigenfunctions associated
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Figure 12. Dominant decay exponent A vs Pe for the TPSF system. The
dominant eigenvalues follows the scaling Eq. (103). (a) T' = 0.4, a = 1.0;
(b) T = 0.56, o = 0.865; (¢) T'= 0.8, o = 0.745; (d) T = 1.18, o = 0.55;
() T =16, a=00(f) T =20, a = 0.37.

Period T' @ Observations
0.4 1 -
0.56 0.865 -
0.8 0.745 for Pe < 108
K 1 for Pe > 210° (extrapolated)
1.18 0.55 -
1.6 0 ChED
2.0 0.37 -
oo (Aut.) 1 CoED may occur with o = 1/2

Table 2. Review of the scaling exponent « for the TPSF at different periods
T of the flow protocol.
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with these two branches. Figures 14, 15, 16 show, respectively, the shapes
(Fig. 14), the contour plots (Fig. 15) of the dominant eigenfunctions of
the two branches, and the contour plots of their normalized gradient norm
(Fig. 16). Essentially, the two different scalings associated with the C
and S branches correspond to two different mixing conditions and to two
different geometric localization properties of the eigenfunctions within the
quasiperiodic islands.

In the case of the C' branch, the two reacting species in a hypothetical
infinitely fast bimolecular reaction (which correspond respectively to posi-
tive and negative values of the eigenfunction) are localized within the two
different super-islands separated by the main chaotic region (see Fig. 14, 15
A). (In order to avoid ambiguity the four main egg-like islands appearing
in the Poincaré section of the SF system at T = 0.8, can be regarded as
organized in two main super-islands, since each couple of nearby islands is
connected to each other via a chain of smaller islets, see Fig. 9 (C).

As a consequence, transport is mediated by the action of advection
within the chaotic region, and this transfer mechanism can be appreciated
by the inspection of the gradient norm (Fig. 16 A), the contour plot of
which shows the occurrence of typical flamelets embedded within the chaotic
region. This situation can be described as an inter-island transfer (i.e. be-
tween different islands) mediated by chaotic advection, thus quantitatively
resulting in a dominant exponent possessing an intermediate scaling law
between purely diffusive regime and CoED.

The structure of the dominant eigenfunction of the S branch displays
a completely different transfer mechanism. Both the reactants are present
within each of the two main super-islands, as can be observed by the local-
ization of the plus and minuses of the dominant eigenfunction (Fig. 14 B)
and by the distribution of white and black spots in its contour plot (Fig.
15 B). It results an intra-island transfer (i.e. within the same island), fully
localized within each super-island, and in which the role of advection, acting
in the main chaotic region, is immaterial. This phenomenon can be clearly
observed by the inspection of the contour plot of the gradient modulus of
the S-branch dominant eigenfunction (Fig. 16 B), showing that the gradient
is completely localized within the quasiperiodic islands, without smearing
the chaotic region, and without “interacting” with it.

6 Conjectures and refutations

This Section is named after the title of one of the most widely known work
by Karl Popper (1969). Although the Popperian theory of the scientific
method is essentially normative, the falsification principle, which charac-
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Figure 13. Dominant decay exponents for the two spectral branches (C' and
S) of the sine flow at T' = 0.8 vs the Peclet number. The solid lines represent
the scalings A\, = APe~® (C branch) with o = 0.745, and A, = B/Pe (S
branch) respectively. A and B are two positive constants.

terizes his epistemological approach, can be a useful guideline particularly
in connection with applied mathematical research linked to a robust physi-
cal phenomenology. For this branch of the scientific investigation, models,
theories and paradigms can be checked and falsified by means of sound
numerical simulations, and simple analytical counterexamples.

In this Section, few conjectures and claims are briefly addressed in the
light of the falsificationism, gently observing that it is sufficient to provide
and exhibit a clear and well-posed example of the lack of validity of a specific
conjecture (or claim) to undermine its validity.

6.1 Pulsed systems

Pulsed-system modelling has become a popular tool for approaching mix-
ing problems, in which a temporal splitting of the action of advection from
that of diffusion is performed (Childress and Gilbert, 1995; Toroczkai et al.,
2001; Fereday et al., 2002; Pikovsky and Popovych, 2003).

Restricting the analysis to time-periodic flows, the pulsed system ap-
proach consists in substituting the Poincaré operator P(T') Eq. (81),

P(T) = o(A2—eD)Ts (A1 —eD) T)
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Figure 14. Profiles of the dominant eigenfunctions of the TPSF system at
T = 0.8 for Pe = 4 x 10*. (A) C branch. (B) S branch.

where Ty + Ty, = T, with the “pulsed operator”

Ppulsed(T) = O_EDTCAZTZCAlT1 = C_EDTF (104)

where F is the Frobenius-Perron operator associated with a purely kine-
matic motion.

Apart from typical and striking situations, for which the pulsed-system
approach gives completely unphysical anwsers (such as for uniformly hyper-
bolic toral automorphisms), since it predicts a decay of the L?-norm which is
faster than any exponential (actually a decay which behaves as the exponen-
tial of an exponential), it is important to observe that any pulsed operator
is to some extent arbitrary and divorced from a specific flow protocol.

In order to investigate this issue, this Section analyzes the behavior of
a pulsed system, arising from a nonlinear map - the Standard Map - and
compares quantitatively its asymptotic behavior with that of the solutions
of the advection-diffusion equation associated with a flow, the stroboscopic
representation of which coincides with the Standard Map.

The Standard Map is defined by the equation x,+1 = ®(x,), where
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Figure 15. Contour plots of the dominant eigenfunctions for the TPSF
system at T = 0.8 for Pe =4 x 10*. (A) C branch. (B) S branch.

Xp = (xnayn)7 and
Tpp1 = Tn+ %sin(?wyn) mod. 1

Yntl = Tp+Yn+ % sin(27y,, ) mod. 1 (105)
defined on the two-torus (i.e. on the unit square with opposite edges iden-
tified). We consider the case p = 9.5. A family of incompressible time-
periodic flows can be defined by blinking in a periodic way two steady
parallel flows vq(x), va(x), which within a period are defined as v;(x) =
(vo2 8in(27y), 0) for 0 <t < 17, and vi(x) = (0,ve0z) for T) <t < Ty + Tb.
where v,1, Vo2, T1, To are real parameters. The stroboscopic representation
of this flow after a period T' = T} + T coincides with the Standard Map
Eq. (105) provided that v, T = p/27 and v,eTe = 1. We consider the case
Ty =T, =T, vp1 = p/(27T,) and vee = 1/T,. These flows, parametrized
with respect to T, are referred to as the family of Standard-Map flows.
A first, preliminary, observation follows immediately from the definition of
Standard-Map flows: the definition of a pulsed system is not one-to-one
with a continuous time-period flow, which admits the same map as its stro-
boscopic representation. In general, given an assigned pulsed system, an
uncountable family of different flow protocols may be defined, all of which
can be viewed as its time-continuous counterparts.
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Figure 16. Contour plots of gradient modulus of the dominant eigenfunc-
tions for the TPSF system at 7' = 0.8 for Pe = 4 x 10*. (A) C branch. (B)
S branch.

This formal ambiguity reflects itself into a quantitative disagreement
between the prediction of a pulsed system, and of any of its associated
advection-diffusion equations. This phenomenon is depicted in Fig. 17 (A)-
(B), which shows the L?-norm decay for the pulsed system associated with
the Standard Map (driven by the pulsed system operator), compared to
the decay of the solutions of the ADE driven by the Standard-Map flows,
for several values of the parameter T,, at two different values of the Peclet
number Pe = 103, 10*. In order to make a “fair” comparison, the pulsed
system is defined over a unit period, while the results of the numerical
simulation of the advection-diffusion equation are rescaled to unit period
(by defining the dimensionless time ¢/7"). This implies that, if A(Pe) is
the dominant scaling exponent of the advection-diffusion equation for the
Standard-Map flow possessing period T, the effective scaling exponent to be
compared with the predictions of the pulsed system model is Aqff(Pe) =
A(Pe)T.

For the solutions of the advection-diffusion equations and of the corre-
sponding pulsed-system model, the decay of the L?-norm is exponential,
but the actual decay exponents A.;s(Pe), corresponding to the slopes of
the curves depicted in Fig. 17 (A)-(B) in a log-normal plot, are completely
different. More precisely, for high Peclet values (such as Pe = 10%, Fig.
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Figure 17. ||¢||12(¢) vs t/T for the advection-diffusion equation driven by
the family of Standard-Map flows compared with the pulsed Standard Map.
(A) Pe =103, (B) Pe = 10*. Lines (a)-(c) refer to the Standard-Map flow
with T, = 0.4, 1,4, respectively. The period is T' = 27T.. Dotted line (d)
and (e) refer to the pulsed Standard Map.

17 (B)), the initial (transient) behavior (up to t/T° < 4 in Fig. 17 (B)) of
the solutions of the advection-diffusion equations (approximatively for any
value of T,) and of the pulsed system model is similar. This is physically
reasonable, since in the initial transient, homogenization is dominated by
the advecting term, and the influence of diffusion is negligible.

This phenomenon is further highlighted in Fig. 18, which depicts the
behavior of Acs¢(Pe) for the advection-diffusion equation associated with
Standard-Map flows as a function of T, for several values of Pe = 102, 103,
10*. The dotted horizontal lines correspond to the values of the decay
exponent for the three different values of Pe considered pertaining to the
pulsed system model. It can be observed that for any value of T, i.e. for
any Standard-Map flow, the scaling exponents associated with asymptotic
decay are intrinsically different from that associated with the pulsed model.

As stated at the beginning of this Section, there is an intrinsic ambiguity
in associating a pulsed system with a flow model, which makes practically
useless the application of pulsed system approach to derive quantitative
predictions on a specific advection-diffusion problem. This ambiguity is
unavoidably associated with the time-discrete parametrization of the ad-
vection kinematics, through the use of a stroboscopic map in the pulsed
system approach, decoupled from diffusive dynamics.

The analysis of the data depicted in Fig. 18 enables us to derive an-
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Figure 18. Dominant decay rate A.sp(Pe) vs T—! for the family of
Standard-Map flows. Solid lines and (e) refer to Pe = 10% (a), Pe = 103
(b), Pe = 10* (c). Dotted horizontal lines correspond to the value of the
dominant eigenvalue for the pulsed Standard Map at Pe = 10%, 10® and
104, respectively.

other interesting result: the scaling exponent of the pulsed model coincides
with that of advection-diffusion in the limit for 7 — 0, i.e. if the period
of the advecting action tends to zero. Although, formally interesting, this
result is again of very little use in practice, since it narrows the application
of pulsed models to a very limited class of flow systems (substantially, of
limited physical and practical interest in many applications). This result is
consistent with the original formulation due to Backus (1958) of the “jerky
approzimation” for the action of an advecting velocity field. This approxi-
mation is a computational technique (similar to time-splitting algorithms),
in which a velocity field is n-closely approximated by means of a series of
summable flow “jerks”, over time scales of order O(n).

The divorce from physical reality of the pulsed system approach makes
this author wonder why this technique has become so popular and wide-
spread. This question is even more justified if one considers that, apart
from simple toy models, the numerical simulation of pure advection (in the
absence of diffusion) is computationally more complex than the simulation
of the corresponding ADE (the smoothing action of diffusion helps the nu-
merics, and makes it more stable). The above observations do not imply
that pulsed systems are completely divorced from any physically relevant
problem. What is reasonable to argue is that pulsed systems can be fruit-
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fully viewed as a mollification of the Frobenius-Perron operator associated
with a given flow for e = Pe~! — 0, which simplifies its analysis due to com-
pactness of the pulsed system operator. Consequently, the proper realm for
the use of pulsed models is the study of pure advection (i.e. in the absence
of diffusion), which can be viewed, through the use of the Frobenius-Perron
operator, as a linear problem in an infinite-dimensional functional space.

7 Open problems

The aim of this Section is to highlight some open problems that are still
awaiting a conclusive answer. This author considers that the answer to
these problems could be significant for the advancement of laminar mixing
theory.

7.1 Spectral and global characterization of mixing

The “holy Graal” of mixing theory and practice is the definition of mix-
ing indexes. A mixing index is any functional M : L?(2) — R, which
specifies the mixedness status of a fluid continuum. The intensity of segre-
gation I and the scale of segregation S in Danckwerts’ theory are the mixing
indexes associated with this approach.

The spectral analysis carries along its own indexes. Given a concentra-
tion field ¢(x,t) in a closed and bounded mixing space €2, the instantenous
rate r(¢),

_ IVellz.
161172

is a measure of mixedness (the larger r(¢), the better mixing efficiency),
since its integral is proportional to the decay rate I'(¢;e) Eq. (68).

In general, any normalized spectral measure o, (¢) defined by Eq. (76)
can be viewed as a mixing index. This is also the case of the mixnorm
My n (Mathew et al., 2005), which admits a simple geometric meaning
as the average with respect to the mixing space and to the lengthscale of
the square of the local concentration averages. The maximum mixedness
corresponds to Mysn[¢] = 0, while high values of My n[¢] (Mun[¢] < 1)
correspond to poor mixing conditions.

The mixnorm is closely connected with the spectral characterization,
and can be viewed as a kind of spectral measure Eq. (75), i.e. as the norm
of ¢ in the Sobolev space H~/2(Q).

The choice and the tuning of mixing indexes derived from spectral analy-
sis is certainly bound to be considered an important issue in the near future,
with practical implications in the design of microdevices.

(¢) (106)
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Whatever mixing index M|[¢] is considered, its functional form should
satisfy some elementary constraints. Consider the hypothetical profiles de-
picted in Fig. 19: ¢1(x) = sin(2mx)+1, ¢o(x) = ¢1(x) —dy, d3(x) = A1 (),
with A = 5.

0y(x)

0,(x)
(=]

03(x)
»

Figure 19. Three model functions that should possess the same “mixing

index”. (A) ¢1(z). (B) do(x) = é1(x) — 6. (C) da() = A ().

It is intuitive to claim that the “mixedness” associated with these three
profiles is the same. Consequently, whatever the functional form of the
mixing index M|[¢] is, it should satisfy the constraints

Mlp+c]=Mg] foranyceR

M[C¢] = M[Qﬂ for any c € R, (107)

i.e. it should be invariant for summation and multiplication by a constant.
Specifically, Egs. (107) imply that for any ¢ € L?(Q)

esh ]
¢ — BllL2

The first condition Eq. (107) is associated with the analysis developed in
Section 4 on the difference between perfectly mixed conditions as a static
property, and mixedness as a dynamic quantity.

Mg =1 | (108)

7.2 Kinematics and global behavior

Beside the intrinsic relevance of Lagrangian and kinematic analysis of
mixing as a tool for understanding the connections between topological, ge-
ometrical and dynamical properties associated with the evolution of passive
fluid particles driven by a velocity field, a crucial point to be addressed is
the real impact of these approaches in the quantification and optimization
of mixing equipment. This means essentially the possibility of extracting
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reliable mixing indexes from the kinematic (trajectory-based or density-
based) description, to be applied in physical problems where diffusion is
unavoidably present.

Even though this author suspects that the answer to this question is in
general negative, (e.g. there are paradigmatic cases for which the kinematic
approach fails in assessing practical design criteria), it is instructive to con-
sider a further example of the interplay between advection and diffusion in
the Time-Periodic (TP) cavity flow (see Appendix B).

Fig. 20 depicts the Poincaré sections of the kinematics for different peri-
ods of the flow protocol. The situation is similar to what already observed
for the TPSF, i.e. the simultaneous presence of regions of chaotic motion
and quasiperiodic islands, for all the flow periods considered.

The analysis of the solutions of the ADE reveals interesting and seem-
ingly unexpected phenomena. Consider the TP cavity flow for T'= 1, 1.5, 2,
4 (the Poincaré sections associated with these protocols are depicted in
Fig. 20), and the time-behavior of the homogenization dynamics at Pe =
10°, starting from a segregated initial condition ¢g(x) = /2 for z < 1/2,
and ¢o(x) = —/2. This initial profile can be viewed as the representation
of two completely segregated reacting species A and B.

Fig. 21 (A) shows the decay of the L2-norm of ¢(x,t) for several TP pro-
tocols, compared to the corresponding decay observed in the autonomous
cavity flow. The behavior of the quantity |[V¢|[3./(Pel|¢||32) (which is
the integrand of the function T'(¢;e) Eq. (68)) for the same numerical ex-
periments is depicted in Fig. 21 (B). An interesting phenomenon may be
observed: time-periodic protocols (curves (b)-(d) in Fig. 21 (A)), which
give rise to Lagrangian chaos (at least in some regions of the mixing space)
behave significantly worse, as it regards mixing performance (viewed as the
timescale to achieve a certain degree of homogenization) than the corre-
sponding autonomous flow protocol (Fig. 21 line (a)). For example, the TP
cavity flow protocol at T" = 2.0, which possesses a massive central chaotic
region, shows a significantly slower decay rate in the relaxation towards ho-
mogenization than the autonomous cavity flow. This phenomenon does not
refer exclusively to the asymptotic behavior (when the L?-norm is small),
but can be significant even in the early stages of the homogenization pro-
cess (i.e. for time-scales for which ||¢||z2(t)/||¢||z2(0) > 5 x 1072). This
seemingly unexpected phenomenon occurs for a broad range of Pe values
ranging from 500 up to 5000. To complete the analysis, for T' = 4.0, better
mixing performance is achieved than in the autonomous case (see Fig. 21
(A), line (e)).

This is just a simple example how things can get complicated when
diffusion enters the scenes, disrupting the invariant kinematic structure and
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Figure 20. Poincaré sections of TP cavity flows. (A) T'=1. (B) T = 1.5.
)T =2 (D)T=4.

forcing an “information exchange” (actually a mass exchange) between the
otherwise not interacting kinematically segregated (invariant) regions.

The situation is even more complex, by further considering that initial
concentration profiles that possess qualitatively similar kinematic behavior
(viewed through the kinematic density approach, i.e. making use of the
evolution equation for densities) may excite different spectral branches, or
different eigenmodes within the same branch, leading to completely differ-
ent homogenization dynamics in the presence of small but non-vanishing
diffusivities.
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Figure 21. TP and autonomous cavity flows at Pe = 103. (A) ||||z2(t)
vs t. (B) ||V¢|[32/(Pe||¢]|32) vs t. The thicker line (a) refers to the au-
tonomous cavity flow, line (b) to TP cavity flow at T' = 1, line (c¢) to TP
cavity flow at T' = 1.5, line (d) to TP cavity flow at T' = 2, line (e) to TP
cavity flow at T' = 4.

7.3 Partially chaotic flows

The analysis of the spectral properties of the ADE in chaotic flows (Sec-
tion 5) has highlighted the occurrence of different mixing regimes, which
correspond to different values of the scaling exponent « entering Eq. (103).
Two cases give rise to well-defined values of this exponent, namely diffu-
sive scaling, A ~ Pe~!, and ChED, A ~ constant, which represent the
extremes in the range of variability of «, namely o = 1 in pure diffusion
and a = 0 in globally chaotic advection (ChED). The latter situation may
occur either in two- and three-dimensional time-periodic flows, and even in
three-dimensional autonomous stirring protocols.

The other broad class of mixing regimes may be referred to as mized-
mode regimes. This class encompasses autonomous 2-d stirring protocols,
and time-periodic protocols giving rise to partially chaotic Lagrangian kine-
matics. The main phenomenological properties of this class of mixing
regimes are the following: (i) occurrence of different eigenvalue branches
possessing different scaling laws Eq. (103), i.e. different exponents «; (ii)
values of « in the range (0,1); (iii) localization of the dominant eigenfunc-
tions around the poorly mixed regions (quasiperiodic islands). Therefore,
both spectral and spatial heterogeneities characterize this class of flows.

To date, no theory is available for predicting the mixing regimes and
the value of the scaling exponent « entering the scaling equation Eq. (103)
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for flow systems, the kinematic Poincaré sections of which exhibit regions
of chaotic motions and regions of periodic/quasiperiodic behavior. This
issue is tricky, as the exponent o does not depend in a simple way on the
“size” of the regular islands, but it is influenced also by their location and
symmetries.

Any advancement in this direction is certainly significant at least for two
main reasons: (i) it would give a conclusive setting to the theory of mixing
in bounded closed flows and, more importantly for practical applications,
(ii) it would provide a way for predicting a-priori the behavior of real mix-
ing systems, since it is almost unaivoidable to observe invariant regions of
regular kinematics in physically realizable flows.

7.4 Open flows

The core of these notes is centered around bounded and closed flows. The
case of bounded open flows, which is even more important in microfluidic
applications, deserves some specific observations.

While it is certainly true that the functional setting is an appropri-
ate approach to tackle even open flows, spectral analysis grounded on the
eigenvalues/eigenfunctions of the advection-diffusion operator (central in
the analysis of bounded and closed flows) is probably the less convenient
answer. This is essentially due to the following reasons: (i) the eigenval-
ues of the advection-diffusion operator are the characteristic time scales of
the homogenization process, but are of limited use in devices in which the
characteristic processing time ¢, is controlled by the global axial velocity
V and by the linear size of the system L, tpoc = L/V, i.e. the mixing
process within the device is characterized by its own timescale tp,oc, (ii)
open flow devices behave as input-output systems, and the input-output
characterization is the core of their use in flow circuits.

For these reasons, a convenient and practical quantification of the mixing
properties of an open-flow device should be grounded on spectral measures
of the scalar field restricted to the outlet, compared to the corresponding
properties of the concentration field entering the device, i.e. at the inlet
section. If M is such a mixing index, attaining the value 1 for the worst
possible mixing conditions, and the value 0 for the optimal ones, the mixing
efficiency 7, of an open flow device can be measured by any quantity of
the form

2M[¢|Sout] (109)

mix — 1 YT
! 1+ M[dls,,]

where ¢|s,,, and ¢|g,, are the concentrations at the outlet and inlet section
respectively. In fact, 7, = 0 for a non-mixing flow unit (M|[é|s,,,] = 1)

in
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and Nmiz = 0 for a perfectly mixing open-flow device (M[¢|s,.,] = O,
M](dls,,] > 0). Tt is worth pointing out that the definition of 7)., is purely
indicative of what can be regarded as a performance index for mixing in
open-flow systems. Specific theoretical efforts aimed at these devices will
certainly result in the definition of more appropriate mixing indexes.

8 Appendix A

Proof of Theorem 4.1 - Consider Eq. (42). Poincaré inequality applied
to ||[Vo|[2. gives:

dl|¢|[7.
dt

2e
= —2¢||Vol[72 < 3 I9ll72 - (110)
0

The application of the classical Gronwall lemma to Eq. (110) yields Eq.
(52). o.

Proof of Theorem 4.2 - Multiply Eq. (7) by —V?2¢ and integrate ove 2.
By enforcing the Neumann boundary conditions, it follows that

o¢ 1d[|V¢|[7.
_ 2499 g — 2 UV OlL2
/Qv o X= s (111)
Therefore,
1d||V9||2,
”¢|L:—g||v2¢||%2+/v2¢v-v¢dx, (112)
2 dt 0
and
/V2¢V-V¢dx < /\v2¢| |v-qu|dx§Vm/|V2qb| |Vo|dx =
Q Q Q
= Vi (IV?9], V)12 - (113)

(The symbol |-| indicates both the absolute value of a scalar and the modulus
of a vector quantity. This does not induce confusion, since the scalar /vector
nature of a quantity can be inferred from the context). The use of the
Cauchy inequality |(f,9)rz] < [|fllzzll9llz2), and the application of the
Young inequality Eq. (45) (with p = ¢ = 2, a = [|V2¢||12, b = [|[V¢||12)
yields

n 1
(IV201, IVl L2 < |[V20|L2 [Vl L2 < S[IV?9lI72 + %I\Wﬁllin (114)
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where n > 0 is an arbitrary positive constant. By making use of Egs.
(113)-(114), Eq. (112) becomes

1d||v¢||2L2 < _ <€ _ Vinn

Vi
20|32 + 72 11
LANOl: ) IVl + g2 Vel (115)

By setting n = 2¢/V;,, the first term at the right-hand side of Eq. (115)
vanishes so that

d|Vell7. _ Va 2
— _m 2
S N (116)
and therefore,
IVol[72(t) < 1IV@l[72(0) exp(tV;n/2e) ,  ¢>0. (117)

In order to prove the boundness of the H!-norm it is useful to recall
Eq. (42). By integrating this equation between t and ¢ + 7, where 7 > 0 it
follows that

t+1 9
| I91Ra(0) 0 = 5 (ol () = lela(e +7) < 19022

, (118)
since ||¢||2,(¢) is a monotonically decreasing function of . Eq. (116) and the
inequality Eq. (118) are the two fundamental conditions for the application
of the uniform Gronwall lemma. By using the same notation as in Section
4, ie. setting y(t) = |VoI[22(1), g(t) = V2/(2¢), h(t) = 0, Ay = 7V2 /2,
Ay =0, A = ||#]]22(0)/2¢, it follows, for any 7 > 0 and ¢ > 0, that

> 161172 (0) >
190l 4+ 7) < O vz oy, (119
Gathering together Eqs. (117) and (119), it follows that ||[V¢[|*(t) < C,

where the constant C' is given by:

2,00
C = inf max {||V¢|%2 (0) exp(TV,2 /2¢) , ||¢!§2( ) exp(TV;2 /2¢) } . (120)
T T
which proves Eq. (53). The second part of the theorem, Eq. (54), follows
from Eq. (119) by taking the local minimum of ||V¢||2,(t+7) as a function
of 7, which occurs for 7 = 2¢/V2. o

Proof of Theorem 4.3 - From Eqs. (42),(117), it follows that

dQ(t) _ d||Vell7.(t) = V2 dlloll7-(t) 2 Ve V2
= _m < R m _ Tm
dt dt t e dt SNV 2 2%

(121)
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which proves the first part of the Theorem. In order to prove Eq. (56),
consider Eq. (118). The following, more strict inequality can be applied

1

t+71
/t IVollZ2(6)do < o |llZ= (1) - (122)

The modified formulation of the uniform Gronwall lemma can be thus ap-
plied to yield

1ot V2
IVl ) < P2 oxp (227 (123

for t > 0 and 7 > 0. Since ||¢||2.(t) — 0 for t — oo, Eq. (56) follows. ¢
L

Proof of Theorem 4.4 - Let us suppose that ||¢||12(t) decays faster than
any exponential. This means that for any k£ > 0

Jim 6|25 () = 0 Jim e ||V l|2.(t) = 0. (124)

Consider the auxiliary scalar field u(x,t) = e*@(x,t), which satisfies the
equation
dlful |72 (t)
dt
Eq. (124) imples that for any n > 0, there exists a time instant ¢* such that
[|Vu|[3,(t) < n for t > t*. From Eq. (125), it follows that for ¢ > ¢*

= 2k||ul|2: — 2¢||Vul |2, . (125)

d

s (e_%tHuHQLz (t)) = —25e_2kt||VuH%2 (t) > —2eme 2kt (126)
and therefore
2 (8) > =) [JlulfF %) = 3] + 5 (127)

By chosing k such that k > en/||ul|3.(¢), it follows from Eq. (127) that

2 €n
lullz=(t) = -~ (128)
But this contradicts that starting assumption of a decay faster than ex-
ponential, and the theorem is proved. Indeed, it is convenient to proceed
further. By enforcing the Poincaré inequality Eq. (35) applied to u, and

considering Eq. (128) one obtains

en
2k

1
IVullZ2 (1) = %||u||%2(t) T (129)
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Therefore,
IV6I[3(t) > e (130)
cok
Since ||V@|[3.(t + 7) < G(7)]|9||32(t), where the function G(7) is defined
by Eq. (123), it follows that

—2kT
2 ene —2kt
t) > 5— 131
I613(6) > Smrse ™™, (131)
from which the exponential lower bound for the solutions of the ADE Eq.
(7) follows. ©

9 Appendix B

Throughout these notes, two model flows are mainly considered: the Sine-
Flow (SF) (Liu et al., 1994a), and the Cavity Flow.

The SF system is defined on the two-dimensional torus 72 as the periodic
sequence of two steady sinusoidal flows, vi(x) = (v1,5,v1,4) = (sin(27y),0),
and va(x) = (0,sin(27z)), acting alternately for a time 7'/2 on points of
the two-dimensional torus, or equivalently, on the points x = (z,y) of the
unit square with opposite edges identified. In particular, we refer to such
protocols as TPSF (Time-Periodic Sine Flow), as opposed to the stationary
flow defined by the velocity field v;(x) acting for an infinite time (ASF -
Autonomous Sine Flow).

Since in the SF case the stirring protocol is generated by periodically
blinking each T/2 time units the two steady flows vy(x) and va(x), the
Poincaré map ® can be obtained explicitly:

~( x+(T/2) sin(2my)
o= ( y+ (T/2) sin[2m(x + (T/2) sin(2my))] > mod. 1 (132)

where the “mod. 1”7 condition accounts for the spatial periodicity of the
flow domain. The fact that the flow is divergence-free (V - v = 0) reflects
into the area-preserving property of ®.

The other model flow which is physically realizable, is the two-dimensional
cavity flow under creeping flow conditions, defined on the two-dimensional
unit square Q = {(z,y) | 0 < z,y <1 }. The cavity flow derives from a
streamfunction ¥(z,y), and the components of the velocity field v = (v, v2)
are given by

ov ov

=== == 1
ay . 2T o (133)

U1
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Under creeping flow conditions, the streamfunction ¥ is the solution of the
biharmonic equation VW = 0, equipped with vanishing boundary condi-
tions on ¥ and O¥/0n all over the boundary except on y = 1, for which
U1|y:1 = 8\1//8y|y:1 =1.

An approximation for the streamfunction is considered, which derives
from a first-order expansion of the solution of the biharmonic equation ob-
tained by applying the method of weighted residuals. Within this approxi-
mation, the streamfunction ¥(z,y) reads as (Chella and Ottino, 1985)

\Il(x’y) = C$2(1 - $)2k0(y) ’ (134>

where C' = 21, ko(y) = Ascosh(d1y)sin(day) + sinh(d1y)[B sin(day) +
By cos(day)], where 61 = 4.1503, do = 2.28582, and the coefficients A,,
B, and Bs are given by:

A — 91 sinh(01) sin(d2)
(62 sinh(d1))2 — (91 sin(d2))?
B, ~ 01 cosh(d1) sin(d2) — d2 sinh(d1) cos(d2)
(62 sinh(d1))2 — (41 sin(d2))?
B, = —A(?fQ . (135)

Within this approximation, the velocity at the moving boundary is given
by v1|y=1 = C2?(1 — z)2.

A time-periodic flow protocol can be obtained by blinking alternately the
two steady flows associated with the streamfunctions UV (z,y) = ¥(z,y)
(giving rise to the velocity field v(1)) for the first half period T/2, and
U@ (z,y) = —U(z,1 —y) (velocity field v(?)) for the second half period,
where T is the period of the flow protocol. The TP cavity flow defined above
originates from the instantaneous switching of the upper (y = 1) and lower
(y = 0) wall motion, with a wall velocity oriented in positive z-direction,
ie. v\V),—1 = v?],—o = 22(1 — 2)2. The assumption of instantaneous
switching between the two steady flows is an approximation. As discussed
by Liu et al. (1994b), this approximation is reasonably accurate at low
Reynolds numbers such as Re < 1.
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Abstract We study the relaxation of initially segregated scalar
mixtures in randomly stirred media, aiming at describing the over-
all concentration distribution of the mixture, its shape, and rate
of deformation as it evolves towards uniformity. Two distinct ex-
periments, one involving an ever dispersing mixture, the other a
mixture confined in a channel, both in high Reynolds, three di-
mensional flows, behave very differently. We show how these dif-
ferences are reminiscent of two concomitant aspects of the process
of mixing, namely the distribution of individual histories on one
hand examined in the present review, and the interaction between
the fluid particles on the other, examined separately in Duplat and
Villermaux [2008]. The particles are stretched sheets whose rates
of diffusive smoothing and coalescence build up the overall mixture
concentration distribution. The randomness of the particle’s net
elongation at a given instant of time induces a distribution of the
mixing time from which molecular diffusion becomes effective in
erasing the concentration differences. This ingredient is shown to
rule the composition of an ever dispersing mixture, providing a de-
tailed analytic description of the overall concentration distribution.
It compares favorably with experiments using three different pas-
sive scalars suggesting that the mixture composition results from a
one step lengthening process distributed among the sheets. Con-
sequences of these processes on the spectral, and some geometrical
facets of random mixtures are also examined.

1 Introduction

A mixture is a transient state between the initial segregation of the con-
stituents, and their ultimate homogeneity. The constituents are segregated
as long as they stand at distinct spatial locations at the molecular level;
homogeneity is an appreciation of the residual concentration fluctuations of
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the constituents in the mixture compared to their mean. The omnipresence
across spatial scales in the physical world of the process consisting in follow-
ing how initially segregated phases put together on a, either spontaneously
or externally stirred substrate, interpenetrate and mix, from micro-fluidic
devices or living organisms, industrial stirred tanks, the earth’s mantle and
atmospheric or ocean circulation to interstellar accretion disks, is enough to
introduce the subject as a fundamental topic with dendritic relations with
geometry, kinetics and structures (Ottino [1990], Villermaux et al. [1999]).

Among the basic issues, making mixing a paradigm for irreversible phe-
nomena (see Chapter XII of Gibbs [1901]), is the problem of the decay of
passive scalar concentration fluctuations on a permanently, randomly stirred
substrate. As noted by Dimotakis [2005], this is only one of the many facets
of the problem as a whole, but this apparently simple question, in spite of
efforts coming from several schools of thought and recent important pro-
gresses, has resisted a detailed physical description.

The overall mixing process of say, a drop of colored particles in the
same colorless medium, as illustrated on figure 1, involves two concomitant
phenomena : a process of dispersion of the particles constitutive of the drop
by which the phases interpenetrate, and a process of interaction between
the particles from which homogeneity arises. While it is usually believed
that the dispersion aspects mainly rely on kinematics in random media
(Welander [1955]), the role of molecular diffusion is confined to the last
stage for erasing the concentration differences (Eckart [1948]). These two
processes, however, occur simultaneously in a stirred medium and have no
reason to be independent. Moreover, we will illustrate in the present work
how, depending on the dispersion properties of the underlying stirring field
and the boundary conditions of the flow domain, a mixture may evolve
quite differently. In order to address this question, we will discuss how the
normalized histogram P(C,t) of the concentration content of the mixture
deforms throughout the stirring process, aiming at describing the fraction
of the fluid particles in the mixture P(C,t)dC which bear a concentration
level between C and C'+dC' at time ¢. To this respect, the literature is rich
of a number of interestingly convergent observations, albeit made in quite
different systems. The concentration distribution P(C, t) presents in general
a bell-shape centered around its average, except for extreme cases including
one discussed here (see also Villermaux et al. [1998)]); it is usually skewed,
and presents broad, exponential-like tails. These observations are common
place in various instances including turbulent convection (Castaing et al.
[1989]), grid turbulence (Warhaft [1991], Jayesh and Warhaft [1991, 1992],
Thoroddsen and Van Atta [1992]), shear layers, jets (Villermaux and Rehab
[2000]), randomly stirred two dimensional flows (Holzer and Siggia [1994],
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Figure 1. A drop a colored fluid deposed in a layer of the same viscous
fluid is stirred according to a two-dimensional protocol. The mixture evolves
towards uniformity as the number of stirring cycles increases from left to
right (after Villermaux and Duplat [2003])

Williams et al. [1997], Jullien et al. [1980]), polymer solutions (Groisman
and Steinberg [2001]), microfluidic devices (Simonet and Groisman [2005],
Villermaux et al. [2008]) to quote a few among many examples.

The very nature of the route to uniformity which leaves, however, room
for large fluctuations has prompted a number of interpretations belonging
essentially to two main categories:

1.1 Particle interaction

It has been thought that the crucial ingredient to account for is the in-
teraction of fluid particles in the mixture. The interaction has been devised
in a such a way that, by accumulation, all the concentration levels tend to
be alike. This evolution process was first proposed in a detailed manner
by R. L. Curl (Curl [1963]) and is since then referred to as the celebrated
coalescence-redispersion model: particles meet at random, coalesce in equal-
izing their concentration levels before breaking up to meet other particles
in a sequential fashion. A very similar construction was imagined by von
Smoluchowski [1917] to represent the kinetic aggregation of colloidal parti-
cles and the distribution of the particles clusters sizes. Pumir et al. [1991]
have, in a sligtly different context, developed the same idea which leads
to an evolution principle for P(C,t) based on its convolution with itself,
reflecting the random addition of the scalar levels C' in the mixture. Pope
[1985], Dopazo [1994] and Fox [2004] give a general exposition of this and
others stochastic models of mixing aiming at deriving an evolution equation
for P(C\t).
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1.2 Distributed histories

Recent developments on scalar turbulence disregard the interaction be-
tween the particles in itself, but rather focus on the distribution of histo-
ries among the particles in the mixture. In particular, (see e.g. Shraiman
and Siggia [1994], Chertkov et al. [1995], Balkovsky and Fouxon [1999],
Son [1999], Kalda [2000], Fereday and Haynes [2004], Sukhatme and Pier-
rehumbert [2002]) these exponentials tails are interpreted as reflecting the
fluctuations in the stretching induced elongation of the fluid particles along
their path in the fluid, thus giving rise to a distribution of the time when
molecular diffusion is effective, and therefore to a distribution of concen-
tration. In this vision, the probability that a fluid element has not been
stretched enough to mix is a Poisson process with a decaying exponential
distribution of life, or mixing times, from which the exponential distribution
of concentration follows. The same lines of thought relating the Lagrangian
trajectories of particles in the flow and global statistics have succeeded in de-
scribing the statistics of concentration differences in the medium (Shraiman
and Siggia [2000], Falkovich et al. [2001]).

Both of these point of views happen to have some relevance, one or
the other being the dominant effect depending on the precise situation in
the experiments we discuss below. The two set of experiments are very
simple and both consist in injecting a colored stream of diffusive substances
in a colorless sustained turbulent medium. In one set of experiments, the
injected stream is free to disperse at will in the medium as it mixes and is
the subject of the present paper. In the other set of experiments presented
in Duplat and Villermaux [2008], the mixture is confined in a channel and
evolves keeping its average concentration constant.

2 Setup and methods

2.1 Flow configurations

The present experiments aim at understanding the shape of the con-
centration distribution P(C,t) and its rate of deformation as the mixture
progresses towards uniformity in stirred, turbulent media. We therefore
choose flow configurations with a mean advection velocity where space can
be easily converted to time, and for which the development of the turbulent
velocity field is decoupled from the process of mixing itself.

In a first set of experiments, the scalar is injected in a sustained, large
scale turbulent flow in which it is free to disperses while it mixes (Villermaux
and Innocenti [1999], Villermaux et al. [2001]). As shown on figure 2, the
scalar is injected continuously in the far field and on the axis of a turbulent
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Figure 2. Experimental set-up. The tank is Imx1m wide and 1.2 m tall.
It is entirely filled with water. The orifice of the main turbulent jet is seen
on the bottom and at the center of the tank. The exit of the scalar injection
tube is placed at the entrance of the confinement channel. The channel can
be removed to study the ever dispersing mixture.
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jet via a small tube whose diameter d is smaller than the local integral scale
L. We have mainly used three tube such that d/L = 0.05, 0.1 and 0.16. The
injection tube is placed 30 to 50 diameters downstream of the turbulence
generator jet exit. The local integral scale is of the order of L = 6 cm to 8
cm and the root mean square (r.m.s.) velocity u' is about 25 percent of the
mean velocity u, giving a turbulent Reynolds number Re = v/L/v = 6000
for w = 0.4 m/s, and Re = w'L/v = 12000 for v = 0.8 m/s where v
denotes the fluid kinematic viscosity. The injection point behaves neither
as a source, nor as a sink of momentum, in the mean, since the injection
velocity uin; through the injection tube is set equal to the average flow
velocity u. The properties of the flow (stirring scale L, r.m.s. velocity u’)
are constant during the uniformization period of the scalar. The presence
of the injection tube was checked to perturb a region of not more than 2
diameters (Villermaux et al. [2001]).

These experiments have been repeated with three types of scalars aiming
at varying the intrinsic diffusive properties of the scalar being mixed and
quantify its impact on the process, by varying the Schmidt number Sc =
v/D where D is the scalar diffusivity. The scalars were temperature in
air (Sc = 0.7), temperature in water (Sc = 7) and the concentration of
disodium fluorescein in water (Sc¢ = 2000).

A second set of experiments allows to follow the mixture in a confined
space. A turbulent jet of water plus diluted fluorecein discharges in a square,
transparent, long duct. The jet and the duct are immersed in a large tank
filled with transparent water at rest. The jet exit velocity u is such that
Re = ud/v ~ 10* with a turbulence intensity u’/u about 8 percent in
that case (Schlichting [1987]). For a given duct cross section, the injection
diameter d and the velocity of the co-flow at the entrance of the duct can be
varied so that the average concentration of the dye in the channel can be set
at will. Since the cross-section of the duct and the average velocity of the
mixture in the downstream direction are constant, the average concentration
is conserved. The experiments presented here have been done with d = 8
mm and a square (L x L with L= 3 cm) duct.

Some experiments at very high Reynolds number (Re = u/'L/v ~ 107)
have been made in the in the return vein of ONERA Modane wind tunnel,
16 meters in diameter and where the air flows at typically 30 m/s with u'/u
about 10 percent, at an average temperature of about 50 degrees Celsius.
The measurements were made downstream of side entries at the wall of the
tunnel through which cold air was engulfed from outside in the main vein.
These entries have the form high slots, 70 cm wide. The different flows and
conditions are summarized on Table 1.
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Flow type: Dispersing Confined Modane
u (m/s) 0.2-0.8 0.2-04 30
u'fu 0.25 0.08 0.1
L (cm) 6-8 3 70
Re=u'L/v 6000-45000 103-10* 107
d (mm) 3-10 8 700
Sc=v/D 0.7, 7 and 2000 2000 0.7

Table 1. Summary of the types of flows and corresponding range of vari-
ables.

2.2 Measurement methods

Point measurements of the concentration and temperature are made by
a fiber optics probe, a cold film thermometer and a cold wire thermometer
constructed at the laboratory, respectively. The optical probe is made of
two 100 pm optical fibers positionned at right angle. One fiber illuminates
the medium seeded with dye, and the other collects the fluorescence signal
whose intensity is measured by a photodiode. The overall signal to noise
ratio is over 50. Temperature in water was measured by a 250 pm TSI cold
film providing an overall signal to noise ratio about 100. Temperature in air
was measured by a 1 pym in diameter and 200 pm in length cold wire with a
signal to noise ratio larger than 100. The signals were further amplified and
digitized by a 16 bits A/D converter. The resolution of the probes matches
the Kolmogorov scale, in all cases.
Planar measurements of the fluorescent scalar field were done by shining
a plane, monomode (488 nm) argon laser sheet through the water tank in a
plane containing the axis of the mean flow. The images were recorded by a
cooled, 12 bits, 1280x1024 pixels wide CCD camera. All these experiments
are made using low concentration levels of dye (Co=10"% mol.l"!) with
no appreciable attenuation on the corresponding optical path, and weak
temperature differences so that the scalars are always passively advected by
the flow. The relative density differences & = Ap/p due to the presence of
dye, or heated fluid particles are such that the associated buoyancy effects
are sensitive on a lengthscale {5 = u\/L/ag of the order of 10 meters, much
larger that the set-up typical size. In the following, distances are counted in
the direction downstream from the scalar injection location, and we relate
space to time by
x=ut (1)

where u is the mean flow convection velocity, and we convert frequencies f
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Figure 3. A snapshot of a dispersing plume made by the injection of a
dye through a small tube of d = 8 mm in diameter on the axis of a larger
turbulent jet whose integral scale is L = 8 cm at the injection location.
Re=u'L/v = 10"

into wavenumbers k via Taylor hypothesis i.e. 2nf = ku. Concentrations
are normalized by the injection concentration so that C' stands for C'/Cy.

3 Mixtures: limit cases

A mixture may evolve by ever dispersing in an ocean of diluting medium,
or may be confined in a closed volume. In the latter case, its average
concentration (C) is a constant of time, while in the first case, the average
concentration diminishes gradually in time. The comparison between these
extreme cases is of interest.

3.1 The ever dispersing mixture

A plume of scalar is released in a large scale, sustained turbulent medium
on the axis and in the far field of a turbulent jet. The scalar is initially
seggregated from the environment in which it is free to disperse while it
mixes. As it is seen on figure 3, which displays an instantaneous planar
cut through the field, the support of the scalar rapidly takes the form of
an intermittent set of stretched sheets separated by larger and larger voids,
some of the sheets possibly coalescing as they spread out and fade away.
Figure 3 also illustrates that at a given location in the flow and even far
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Figure 4. Left: Temporal traces of the concentration signal recorded at
x/d = 10 and converted, with Taylor hypothesis, to instantaneous one di-
mensional cuts of the concentration field, for three different Schmidt num-
bers Sc¢ = 2000,7 and 0.7 with d/L = 0.05. Right: Evolution of the con-
centration distribution P(C) of the ever dispersing shown in figure 3 for
increasing distances from the injection point z/d = 0,2.5,5,7.5,10,12.5, 15,
and two distinct Schmidt numbers and Re = 10%.
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Figure 5. Concentration distributions P(C) of the ever dispersing mix-
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from the injection exit coexist sheets which bear a concentration close to
the injection concentration and sheets which are almost fading away in the
diluting medium.

The distribution of concentration P(C') is measured on the centerline of
the main turbulent jet at various downstream distances. Since the scalar
plume meanders in the radial direction, these measurements made at loca-
tions fixed in space probe the entire concentration levels available in the
distribution P(C) at each position. The traces of the concentration sig-
nal recorded in three distinct experiments with Sc = 2000, 7 and 0.7 at
x/d = 10 display the expected trend that the concentration fluctuations are
weaker when the dye is more diffusive (figure 4).

The distributions P(C') exhibit a cusped shape at the origin close to the
concentration at the diluting concentration C' = 0. That cusp is followed by
an exponential-like behavior around an inflexion point (figure 5) which itself
precedes a rapid fall-off for larger values of C at the tail of the distribution.
Lavertu and Mydlarski [2005] make the same qualitative observation down-
stream of a line source in grid turbulence. The argument of the exponential
tangent at the inflexion point steepens with downstream distance as

P(C) ~ exp (—aC)  with oz:%f(Sc) (2)

where f(Sc) is a slowly increasing function of the Schmidt number. Indeed,
as also shown on figure 5, the slopes of these exponentials tangent to P(C')
at the inflexion point depend, for a given value of /d, on the dye diffusivity;
a fit consistent with the data is a weak power-law f(Sc) ~ Sc'/® although
a logarithmic dependence f(Sc¢) ~ In(Sc), is not inconsistent as well. The
use of three different injection diameters indicates that d is actually the
relevant lengthscale which sets the argument of the exponential decrease,
and of the overall shape of the distribution. This is apparent as well on the
first moment of P(C'), namely the average concentration

(©) = / CP(C)dC (3)

whose downstream evolution is shown on figure 6 in the scaled coordinates
x/d for three different injection diameters. The asymptotic trend is consis-
tent with

©~(5)" o

independently of the Schmidt number. This relation is an immediate conse-
quence of mass conservation and of the continuity of the scalar flux, advected
at a mean velocity v and issuing in the medium from a section of diameter
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Figure 6. Downstream evolution of the average concentration (C) in
the ever dispersing mixture of figure 3 for three different injection di-
ameters and two Schmidt numbers. Insert: Downstream evolution
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Figure 7. Mixing of a dye discharging from a jet of diameter d = 8 mm in
a square (L x L with L= 3 cm) duct. From 1 to 4, successive instantaneous
planar cuts of the scalar field at increasing downstream locations in the duct
showing the progressive uniformization of the dye concentration.
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d. The radius of exploration of the plume downstream of the tube exit in-
creases in proportion to distance x for z < L as a result of the persistent
ballistic motion within one integral turnover time (Taylor [1921]), hence
providing the equation above (see also Villermaux and Innocenti [1999]).
In particular, the exponent —2 has a purely geometrical origin. It would
be —1 immediately downstream of a line source for + < L and —1/2 for
x> L in the normal diffusive regime (see e.g. the measurements of Lavertu
and Mydlarski [2005]). Because of this geometrical constraint, it is thus
not surprising that the downstream evolution of the mean concentration in
equation (4) is independent of the Schmidt number.

3.2 The confined mixture

The scalar plume is now released at the entrance of a square, transparent,
long duct by means of a tube. The jet and the duct are immersed in a large
tank filled with transparent water at rest. The jet exit velocity u is such
that Re = ud/v ~ 10%.

The flow is made visual by means of a plane Argon laser sheet slicing the
duct along its axis, and the evolution of the mixture from the entrance of
the duct to farther downstream is followed by computing the concentration
fluctutations in each section. For a given duct cross section, the injection
diameter d and the velocity of the co-flow at the entrance of the duct can be
varied so that the average concentration of the dye in the channel (C) can be
set at will. Since the cross-section of the duct and the average velocity of the
mixture in the downstream direction are constant, the average concentration
is conserved in that case.

As can be seen on figure 7, the dye rapidly invades the whole duct
cross section and the concentration differences are progressively erased as
it travels downstream to relax towards a more or less uniform mixture.
After the dye has filled the channel cross section and evolves around a
constant average concentration, the distribution P(C) presents a skewed,
bell shape which gets narrower around (C) in time. Axial distances are
converted to time through the average axial velocity with confidence as it is
known that radial velocity profiles in a turbulent duct are flat (u’/u ~ 0.08
see Schlichting [1987]). As shown on figure 8, the shape of P(C) is very
well described by a family of one parameter distributions, namely Gamma
distributions of the form

P(X = C/(C)) = 2 xn1gnX (5)

The parameter n is adjusted at each downstream location for the Gamma
distribution of equation (5) to fit the experimental one. It is seen on figure
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Figure 8. Downstream evolution of the concentration distribution P(C)
as the dye progresses along the duct as shown on figure 7. The concentra-
tion distribution of the evolving mixture gets narrower around the average
concentration (C') = 0.3. Solid line: experimental distributions, dashed
line: distributions given by equation (5). Insert: Fitting parameter n of
the distributions 5 as a function of the downstream distance (x — d)/L. o:
Re = 10%,0: Re =5 x 103.
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Figure 9. An example of contour length extraction when the thresh-
old concentration Cs(z) is adjusted for the contour to concern a fixed
fraction of the fluid particles in the mixture at each location x, namely

JE@ p(c,z)dC = 0.93.

8 that the fairness of the fit holds for the whole concentration range, down
to low probability levels, and accounts for the downstream deformation of
P(C) through the single parameter n, whose dependence on the downstream
location is quite strong: figure 8 suggests a power-law type of dependence
with an exponent between 2 and 3; the line drawn has a slope 5/2. The
dependence of n on the jet Reynolds number is, if noticeable, very weak
when Re is varied by a factor 2.

4 Material contours

Stirring motions increase the length of material lines. We quantify the
increase of the scalar support contour length from the two-dimensional slices
through the field by a procedure illustrated on figure 9, which holds for both
the dispersing, and confined mixtures.

From a large number of images of the field like the one on figure 9,
we compute the amount of contour area ¢(x) within a window of width £
around each downstream location & when the field has been thresholded
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at a given concentration Cs. The threshold concentration C; may be kept
constant for all downstream locations, or may be adjusted such that the
contour contains a given fraction of the whole field. Specifically, the contour
may be defined at each x location such that

Cs(z)
Co@) = C* or /O P(C,2)dC = C, (6)

the constants being equal to a fraction determined a-priori. The evolution
of contour lengths according to the first rule (Cs(x) = C*) were studied
by Villermaux and Innocenti [1999] in the ever dispersing mixture. In that
case, the length first increases as a consequence of the motions in the flow,
and then, as the concentration levels diminish, decreases. The fraction of
the fluid particle in the mixture whose concentration has remained above
the threshold at a given location = diminishes as well with . The trend is
independent of the choice of Cy, only the chronology is (figure 10).

We have here also examined the case when the threshold concentration
is adjusted for the contour to concern a fixed fraction of the fluid particles
in the mixture. We find that the early increase of the amount of contour
within £y is superimposed on that of the fixed threshold rule, and that the
increase goes on in a linear fashion with downstream distance.

A direct way to understand this trend is to consider the separation ve-
locity (or pair dispersion) Ar/At between two material points separated by
r, that we take for simplicity here as

(5 )=t (7)

on ensemble average, where 7(¢) is a —possibly time-dependent— stretching
rate.

Let N(r,t) be the number of segments of length r needed to cover the
contour of a material element at time ¢. The element current length viewed
at scale r is thus ¢(r,¢t) = rN(r,t). Conservation of the number of segments
stretched by the base flow writes N(r + Ar,t + At) = N(r,t) and gives

ON /Ar\ ON _
At

e o 0 ®)
With 7(t) = f(f ~(¢")dt', equations (8) and (7) amount to

ON 0N
or T om) " ©)
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Figure 10. Downstream increase of contour lengths £(z) measured in a
window of width ¢5/2 = 5 mm and averaged over many realizations, repre-
sented versus downstream distance x, for three different injection diameters:
e, d=10mm, o, d =6 mm, B, d = 3 mm. The contours are extracted with
a constant concentration threshold Cy = 0.9.

indicating that N(r,t) propagates at speed unity in the {In(r),7} space.
Solutions are thus of the form N(r,t) = f[In(r) —7]. For an initially smooth
contour

_b

N(r,t =0) .

(10)

one has at any posterior time ¢

N(rt) = %exp (/Ot'y(t’)dt’) (11)

A more refined scale dependence in equation (7) would in addition account
for the fractal character of the contour (Sreenivasan [1991]), with a dimen-
sion —dIn N (r,t)/dr depending on scale r (Catrakis and Dimotakis [1996])
and increasing as time elapses (Villermaux and Innocenti [1999]).

The increase of the net material blob contour length therefore defines
the effective stretching rate v(t). A constant stretching rate v(t) = v will
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obviously lead to exponential growth. Let v(t) = ac/(1 + ot) where o is
some elongation rate, one expects in that case

L0t) = lin%{rN(r, t)} = lo(1+ ot)® (12)
The observations reported on figure 10 indicate that
lx) — by ~x (13)

independently of the injection diameter d. Therefore, one has from equation
(12), o = 1 and, with & = ut, the effective stretching rate

t) = 14
1) = (14
and elongation rate
u
=— 15
o= (15)

As the mixture disperses and mix, the length of a contour bordering a fixed
fraction of the mixture increases in proportion of time. Conversely, since
these measurements have been done on two-dimensional slices through a
three dimensional field, it is believable, that surfaces of material elements
increase like £(t)? ~ t2. This observation holds for both the dispersing
mixture, and for the confined mixture.

5 Stretching enhanced diffusion

Consider the dispersing mixture of figure 3 and focus at the scale of the
elementary scalar sheets visible from the intercept with the visualization
plane. It is known that a succession of random stretching motions applied
to passive objects form sheets (Betchov [1956], Girimaji and Pope [1990],
Duplat and Villermaux [2000]). Due to possible folding motions in the
flow, those are brought close to each other. Before we analyze the overall
scalar composition of any complex configuration, it is useful to consider the
elementary interaction between two scalar lamellae, as shown on figure 11.

Two pieces of a folded sheet embedded in a saddle point of the underly-
ing displacement field are brought close to each other. The two pieces bear
a slightly different concentration of scalar and at one point, the diffusive
boundaries of the concentration profiles across the sheets interpenetrate to
give rise to a single sheet, whose concentration profile is the addition of
the concentration profiles of each individual sheet. This elementary interac-
tion rule is a consequence of the linearity of the Fourier diffusion equation
(Fourier [1822]).
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Figure 11. A folded sheet seen at consecutive instants of time embedded
in a three-dimensional, turbulent flow and undergoing coalescence. The
sheet is made visual by a planar two-dimensional cut through the medium.
Length and time scales are given in figure 18.

Let us consider a single sheet first, and let C' be the scalar concentra-
tion in the vicinity of the sheet and z a coordinate in the direction normal
to the isoconcentration surface C' (figure 12). The diffusive uniformisation
of the dye is enhanced by the stretching of the underlying motions. The
convection-diffusion transport equation for C' reduces (see e.g. Leveque
[1928], Mohr et al. [1957], Marble and Broadwell [1977], Ranz [1979], Allegre
and Turcotte [1986], Marble [1988], Ottino [1989], Beigie et al. [1991], Me-
unier and Villermaux [2003], Fannjiang et al. [2004]) to a one dimensional
problem when the radius of curvature of the isoconcentration surface is
large compared to the lamellae thickness (Dimotakis and Catrakis [1999]).
Let s(t) be the distance between two material particles in the direction z
perpendicular to a sheet, and

dIn{s(t)}
—au (16)
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s(t)

C(z,t) ?

Figure 12. Sketch of an isolated stretched scalar lamellae being compressed
in its transverse direction, and associated concentration profile.

its rate of compression. The mass conservation equation of a species with
diffusion coefficient D then writes

oC  dln{s(t)} oC _ D82C

= =D—. 17
ot dt 0 022 (a7)
By the change of variables
toar z
=D d &= —, 18
=0 [ €= 1)
equation (17) is reduced to a simple diffusion equation
oc  9*C
=~ _ 19
or 0&2 (19)

Suppose that the lamellae has an initial width sg, and uniform concen-
tration Cy so that its concentration profile is a “top hat”. At any later time,
its concentration profile writes, in the scaled coordinates of equation (18)

) =3 [erf( ’5;\15/2) —erf( 52_\}7/2)} . (20)

The evolution of this profile is ruled by two antagonist phenomena: sub-
strate compression opposes to diffusive spreading. The sheet thickness re-
duction process goes on until the rate of diffusive spreading of the concen-
tration profile across the lamellae balances the rate of compression of the
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concentration gradient transverse to the lamellae. This instant defines the
mizing time tg after which the maximal concentration in the lamellae

C(0,t) = exf (4\%) (21)

starts to decay. The lamellae has reduced to a sheet which vanishes in
the diluting medium. The time ¢ is readily estimated by noticing that the
maximal concentration C(0,t) decays as soon as 1/44/7 is of order unity, the
warped time 7 being itself a function of the real time ¢ throught equation
(18). This time depends a-priori on the lamellae initial thickness sg, the
diffusion coefficient D and on an elongation rate o setting the compression
rate which itself reflects the strength of the stirring field; those quantities
define a dimensionless parameter
o2

Pe = D (22)

known as a Péclet number. Non-trivial i.e. non purely diffusion dominated
problems are such that s3/D > o~!, and are thus such that Pe > 1. The
formulation of equations (18) to (20) is general and can be adapted to any
particular situation where the rate of increase of material line length, con-
versely the rate compression between adjacent points, is known. Its interest
is to map a convection—diffusion problem onto a pure diffusion problem in
suitably chosen variables, for which all the solutions are known. We describe
below several generic examples:

The simple shear with one direction of elongation We consider in-
compressible flows in two dimensions which increase the length of material
lines in proportion to time as ot. Many flows in two dimensions present a
persistent shear with this property (see e.g. Ranz [1979], Marble [1988], Me-
unier and Villermaux [2003] and figure 13). The mean transverse thickness
of the scalar filaments decrease as

50

5(t) = —m—— 23
0= S (23)
and thus D (o1)?
t ot
=% (5 2y
providing

—3/2 1
C(O,t)~<> for t>t, with t,~ —Pe'/3 (25)
ag

S

where the condition 7 = O(1) has been used to compute t;.
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Figure 13. Roll-up of a blob of fluorescent dye in a point vortex at ¢ = 0
(upper left), t = 2sec (upper right), t = 5sec (lower left) and ¢t = 10sec
(lower right). Each picture covers a field 4.8 x 4.8 cm? wide and the circu-

lation of the vortex is 14.2cm?/s. Adapted from Meunier and Villermaux
[2003].
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Figure 14. Snapshots of the destabilization of an inner round seeded jet by
a fast annular jet. Left: Planar cut containing the jet axis. Right: Trans-
verse cut at one inner diameter downstream. Adapted from Villermaux and
Rehab [2000].

The simple shear with two directions of elongation We consider
an incompressible flow in three dimensions which increases isotropically the
length of material lines in proportion to time as ot. The rate of increase
of surfaces is thus proportional to (ot)?. An example of such a flow is an
unstable shear layer which rolls-up in the spanwise direction and produces
concomitantly longitudinal vortices in the axial direction (see e.g. Viller-
maux and Rehab [2000] and figure 14).
The transverse size of a blob is in that case given by

50
)= —2 _ 26
s(t) 1+ (ot)? (26)
and, from equation (18),
Dt 2 1
= (14 Z(ot)? + =(ot)* 27
r=tr (1+ 3002+ 5001). (27)
thus
1 ¢ —5/2
ty ~ —Pe/® and C(O,t)~<t> for t>t,. (28)
ag S

On figure 16 are plotted various quantities such as the sheet thickness
oc defined from the variance of the concentration profile

ffooo 220(z,t)

ffooc C(z,t) (29)

o =
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Figure 15. Mixing states at successive downstream positions in a mi-
crochannel fitted with bas-relief structures inducing transverse motions
which stretch and fold the fluid. The width of the channel is of the order
of 100pum and the Péclet number is Pe = 2 x 10°. Adapted from Stroock
et al. [2002] (see also Villermaux et al. [2008]).

and the maximal concentration in the course of time (see also Villermaux
and Rehab [2000]). It is seen that the thickness of the diffusion profile
follows the decrease imposed by the kinematics of the flow up to the mixing
time. At that moment, the lamellae has reduced to a sheet which is aligned
parallel to the streamlines of the flow after what, for ¢ > t,, the maximal
concentration C(0,t) decays as (ot) >/ and the sheet thickness re-increases
diffusively like (Dt)'/? (the rate of compression dln s(t)/dt decays like 1/t
so that molecular diffusion becomes finally dominant).

Exponential stretching We consider incompressible flows in which the
length of a material line increases exponentially in time as e’® or, in other
words, whose rate of stretch is independent of its length. This kind of
stretching is for instance achieved in the vicinity of a permanent saddle
point flow. It is in practice realized by a succession of stretching and folding
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Figure 16. Evolutions as a function of ot and for Pe = os3/D = 107 of:
dotted line, thickness s(t)/so given by equation (26); continuous line, stan-
dard deviation o¢ of the concentration profile across the lamellae given by
equation (20) normalized by sq; dashed line, maximal concentration C(0,t)
at the center of the sheet given by equation (21).

motions, at a scale which compares with the scalar blob being mixed, a
procedure sometimes referred to as the “baker transform” (see figure 15 for
an example in the microfluidics context Stroock et al. [2002]).

It is also usually admitted that disordered, turbulent flows have the
property of increasing material lines exponentially (see e.g. Kida and Goto
[2002]), although laboratory measurements, like those reported here on fig-
ure 10, often suggest a weaker (closer to a power-law) time dependence (see
also Villermaux and Gagne [1994], Villermaux and Innocenti [1999] and fig-
ure 17). There is no fundamental reason dictating that the length of a line
with macroscopic dimensions should increase exponentially. We will not
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Figure 17. Snapshots of the evolution of a passive smoke ribbon immersed
in a grid-generated turbulence. Adapted from Villermaux and Gagne [1994].

discuss here these subtle differences which rely on the interplay between the
particle pair dispersion properties of the flows (Richardson dispersion, after
Richardson [1926]), and the geometry of material contours (see a discussion
in Cocke [1971]). We rather consider as an illustration a two-dimensional
flow in which a simple linear shear as in section 5 is successively applied
to a blob in alternated perpendicular directions (Hinch [1999]). For a time
lapse At, the blob elongates in one direction up to sgy/1 + (0 At)? ~ soo At
if oAt > 1, and is then submitted to a perpendicular shear ¢’ applied for
a duration At’. The blob length is thus given in course of time by

so(oAte’ At/ (At+AL) (30)

For a symmetric cycle such that o = ¢’ and At = At’, one sees that the
blob length will increase like sge?* with

In(cA
- n(o t).

V=0 (31)
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Figure 18. Left: Spatial concentration profiles C(z,t) of the folded coa-
lescing sheet shown on figure 11, superimposed for successive instants of
time. The sheet moves perpendicular to itself as its two pieces gets closer;
the figure shows the concentration profiles resulting from the intersection of
the sheet on figure 11 with a line fixed in space. Right: The distance s(t)
between the maxima of concentration of the profiles (o), and the evolution
of the maximal concentration C(0,t) of the overall profile (o) as a function
of time.

Conversely, the transverse size of the blob is given, in two dimensions, by

s(t) = spe” " (32)
and, from equation (18),
D 2+t

= (Mt 33
re g (1), (33)

thus )
ts ~ > InPe and C(0,t) ~e 7" for t>t,. (34)

Y

For that type of exponential deformation, the thickness of the sheet, as it
vanishes in the diluting medium, remains equal to

s(ts) = \/é for t>t. (35)

sometimes called the Batchelor scale, after Batchelor [1959].
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The times ts given in equations (25), (28) and (34) are the relevant
mixing times of a scalar blob as soon as the inverse of the elongation rate
o~ ! is smaller than the diffusive time of the blob constructed on its initial
size s%/D, that is for Pe > 1. In this limit, ¢, is essentially given by the time
needed to deform the blob ¢~! and molecular diffusion, although a crucial
step in the ultimate uniformization, plays only a weak correction role in the
kinetics of the process; a fact known in the engineering practice for a long

time (Nagata [1975]).

5.1 Rules of thumb

Qualitatively, the mixing time can be estimated in any concrete situation
from the knowledge of the rate of compression of two material points due
to stretching, and the diffusional properties of the scalar. Let s(¢) be the
distance between two material points near a scalar sheet. The reduction
of the concentration profile width in the sheet goes on until the rate of
compression d In s(t) /dt balances the rate diffusive broadening on its current
size D/s(t)? that is

D 1ds

27 sdt
and this balance defines the mixing time t, of the sheet. Taking for instance
the generic form

(36)

s(t) = so(1 + ot)~" (37)
where o is a rate of elongation, then the balance condition writes
1
2\ 231
0sg
ts ~ | —= 38
ot~ (52) (39)

From this characteristic time, the maximal concentration in the sheet C(0, t)
which is such that C(0,t)(Dt)'/?/s(t) is, by mass conservation, constant,
decreases like

C(0,8) ~ (t/ts) 7712 (39)
The value of the exponent 5/2 is now transparent: the surface of the sheet
increases like t2 and the width of the diffusion profile like ¢!/2; the concentra-
tion in the sheet is thus such that C'(0,t) x % x t'/2 is, by mass conservation,
constant. The same argument obviuously applies to the previous case in two
dimensions where 3/2 actually means 1+1/2.

6 Distributed individual trajectories

Our reasoning has up to now involved a single elongation rate o and there-
fore a single mixing time ts. We now consider possible fluctuations in the
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Figure 19. Stretching field in a two-dimensional experiment (adapted from
Voth et al. [2002]) for two consecutive instants of time (marked in red, and
blue), and corresponding stretching intensity distribution.

net elongation along the path of the fluid particles in the medium, fluc-
tuations whose natural consequence is the distribution of the mixing times
themselves. This phenomenon is evident from figure 3, or looking at the
more familiar smoke puff shown on figure 20 (see also Voth et al. [2002]
and figure 19): at a given location in the flow coexist sheets which still
bear the injection concentration and sheets which are almost fading away in
the diluting medium. Another example is the mixing properties of a point
vortex considered by Meunier and Villermaux [2003]: fluid particles close
to the vortex center are more elongated, at a given instant of time, than
those initially located farther from the center, giving rize to a distribution
of mizing times, itself inducing the concentration distribution of the scalar
wrapped around the vortex.

6.1 Distribution of elongations

We now envisage this ingredient and examine its consequences on the
shape of P(C). Regarding turbulent, random flows, the fundamental ques-
tion to ask is whether the distribution of elongation among fluid particles at
a fized time results from a sequential process with many independent steps,
or from a single event distributed in intensity. Another, less important as-
pect, is whether the flow is of a stretching type, that is if material lengths
increase exponentially in time, or of a lengthening type, that is if material
lengths grow algebraically. Starting with a collection of identical particles
of size £y, they will fall in a distribution of elongation P(¢,t) an instant of
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Figure 20. A smoke plume forming a folded ascending curtain from a
cigarette, illuminated by a uniform white light. The distributed stretching
histories is obvious from the different optical depths of the smoke (whose
diffusivity is essentially zero) through the curtain.

time t later whose two first moments, either on a linear scale
(0 = / (Pl and o2 = () — (0)? (40)
or on a logarithmic scale
(Inf) = / In(6)P(L,t)dl and o, = (In(£)?) — (In(£))? (41)

define its width relative to its mean. Several scenarii may arise. We describe
some of them, explore the consequences on the evolution of material lengths,
and compare with our experimental findings.

1. One step lengthening
Let £ = ¢y + ot, with the elongation rate o distributed (differ-
ent particles are lengthened at different rates, but for each fluid par-
ticle the elongation rate is constant). The distribution of length
P, t) = 1/tP,((¢ — £y)/t) is given by the distribution of o. Con-
sequently, P(¢,t) is self-similar in ¢ as time ¢ is varied, and the mo-
ments grow in time as (¢) ~ ¢, o ~ t, (In¥f) ~ Int, and oy,, ~ C*®.
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Measurements and numerical simulations in various chaotic flows by
Muzzio and Ottino (see e.g. Szalai and Muzzio [2003] and references
therein) indicate that the distribution of the elongation ¢/¢; does tend
asymptotically, in this context, towards a bell-shape curve translated
self-similarly in log—log coordinates.

One step stretching

Let ¢ = £y exp(vt), with the streching rate v fixed but distributed
among the different particles. The distribution of length P(¢,¢) =
1/(t)Py(In(£/€y)/t) gets broader with time. The distribution of In(¢)
is similar to P,, and one has (In(f)) ~ t and oy, ~ t. The mean
length (¢) grows faster than exponentially, as is more and more im-
pacted by higher stretching rates : for instance, with P, gaussian
with mean (v), and variance 02, one has (£) ~ [ dyexp(yt) exp(—(y—
(1))?/202), i.e. (£) ~ exp((y)t + 02t?/2) and oy ~ exp({y)t + 02t?).

Multistep lengthening with steps defined on determined time
intervals, and stationary elongation distribution

Let d¢/dt = o; with the elongation o; fixed for one particle during
the time interval [¢; ¢;41]. This is a typical case for application of
the Central Limit Theorem : If the distribution of elongation is in-
dependent on time, and the time intervals have a constant duration,
the distribution P(¢,t) at large ¢ is nearly gaussian with (¢) ~ ¢ and

(0) ~ V1.

. Multistep stretching with steps defined on determined time

intervals, and stationary stretching distribution

Let d¢/dt = ~;¢ with the stretching 7, fixed for one particle during
the time interval [¢; t;11]. This is another typical case of application
of the Central Limit Theorem, applied for In(¢). If the distribution
of stretching rates is independent on time, the distribution P(¢,t) at
large ¢ is nearly lognormal with (In(¢)) ~ t and (o,(¢)) ~ V. Taking
P(¢,t) as an exact lognormal distribution (i.e. if the stretching rates
i are gaussians) leads to (£) ~ exp({In(¢) + Ufn(e)/2) ~ exp(at) and
o ~ exp((In(£)) + o)) ~ exp(ft) with 0 < a < f two positive
constants.

. Multistep stretching with steps defined on constant time in-

tervals, and decaying stretching rates

Let d¢/dt = ~;£ with the stretching ; fixed for one particle during
the time interval [t; t;11], and let the self-similar distribution of ~; be
given by 1/(v;)P(vi/{vi)). Let {v;) ~ ¢t~ be a decaying function of
time. In(¢) is a sum of random variables with mean (In(¢)) ~ [ ¢'~*d¢’
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and variance 0’12n(£) ~ [dt't=2* . Then for 1/2 < a < 1 the variance
of the sum tends to a finite limit as time tends to infinity, whereas
its mean diverges. The variance —and the shape— of the distribution
of In(¥¢) is mostly determined by the first steps, and there is no con-
vergence toward a gaussian; besides, the mean (In(¢)) may tend to
infinity. In such decaying stretching process, the shape of the distri-
bution P(4,t) is essentially fixed by the first steps. The subsequent
events induce a narrowing of the distribution of stretchings.

The distribution P (4, t) is nearly self similar in £ as time ¢ is varied,
and completely determined by the value of (¢(t)). We can now exhibit
two particular cases : If (y(¢)) = 1/t, then (¢) ~ ¢ and one recovers
case (1) above, whereas if (y(t)) = 3/2t, then (£) ~ t3/2 which is the
classical Richardson dispersion.

This latter scenario is however very unlikely for turbulent flows :
the particular behavior of P is not only due to the decay of the stretch-
ing rate, but also to a specific choice for the temporal auto-correlation
of the stretching: the correlation time of the stretching in this scenario
is constant, and independent on the stretching rate.

6. Multistep stretching with decaying stretching rates, but a
fixed persistency

Stretching rates are broadly distributed in random flows (Voth
et al. [2002]). However what matters as far as material length growth
is concerned is the product of the rate of stretch by its correlation time
7, which defines the persistency. The stretching of a material element
in turbulent flows is likely to persist for a time inversely proportional
to its intensity : most likely the stretching rate ; at the i*" step is con-
stant for a time 7; such that v;7; &~ 1 (Duplat and Villermaux [2000]).
In this scenario, the length attained after n steps is independent of
the individual trajectory (¢, = exp(n)fp), but the time ¢, spent to
reach this length is distributed among the particles. It is then useful
to introduce the probability 7 (¢, t) as the distribution of time ¢ needed
to reach the length ¢. This probability is unambiguously defined as
soon as we consider that £ is a strictly increasing function of time, so
that for each trajectory there exist a unique correspondence between
¢ and t.

The relation between 7 and P can be obtained as follows : Let
us consider a particular time ¢t* and a particular length £*. A certain
proportion of fluid particles have a length larger than £*, at time t*
which, by definition of P is

o0
/ P14 dl.

5
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For these particles, the length ¢* was reached before the time t*, so
that this proportion is also

.
/ T, t)dt.
0

and thus
(42)

The distribution of time 7 (¢, ) is determined by the self similar distri-
bution of time 7; associated with each steps Py ;(7;) = 1/(m)P(7/(7:)).
The decrease of the stretching rate implies that (1) ~ [“ with a > 0.
As l; ~ lyexp(i), we have 7; ~ 19 exp(«i). After n steps, the average
time is (t) ~ 7o(exp(an) — 1)/(exp(a) — 1). The last step lasts for a
proportion (1 —exp(—«)) of the total duration. The variance for time
after n steps is 07 ~ 78 (exp(2an) — 1)/(exp(2a) — 1), is also mostly
given by the last step, for sufficient large a.

Then, for a stretching decaying sufficiently fast (i.e. for « suffi-
ciently large) the distribution 7 (¢,¢) is nearly equal to the distribu-
tion for the last step. It is then characterized by a single time scale
(te) :

T(6,8) = 1/(t) Pt/ (1)),
consequently

Pt = S P ) (43)

The case o = 1 corresponds to a linear growth of material lengths
with time, whereas o = 2/3 corresponds to a Richardson-like expan-
sion ((£2) ~ t3).

The scenarii described above do not cover all the possibilities but repre-
sent several relevant cases and limits. The experimental facts in section 3.1
actually suggest that the overall statistical content of the ever dispersing
mixture depends solely on a single, Schmidt dependent timescale since the
distributions shapes are identical, albeit a rescaling involving Sc only (see
figure 5), at a given location from the source. The width of the distribution
is proportional to its mean. This self-similarity property rules out cases
(2) and (3) listed above and since material lines grow linearly in time, only
cases (1) and (6) remain as compatible candidates to represent P(¢,t). We
do not consider case (5) because of the varying persistency, which is unlikely
in stationary flows.
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These two cases (1 and 6) lead to similar behaviors for P (¢, t) and T (¢,t).
The latter is fully determined by the mean time (t;) that grows like ¢/u for a
linear growth of material line with time. In that case, an obvious assumption
is to postulate that the distribution of times to reach a length ¢ is such that

0 e\ T/
— T U _ —uT /Ll
/T T(¢,t)dt 51tlin0 <1 E/u) e (44)

according to the usual Poisson estimate, so that
T(0,t) = %e*ut/@ (45)

and equivalently, owing to equation (43) giving the distribution of elonga-
tions £ at time t as an Inverted Gamma distribution

ut _,
ﬁ e t/f (46)

sometimes encountered in other contexts (Bouchaud and Potters [2003]).

P,t) =

6.2 Distribution of mixing times

Associated to the distribution of the elongation ¢ is a distribution of the
mixing times ts. Indeed, 7 (¢,t) is defined for all length ¢, and in particular
for £5 = u(ts) the elongation of the particle at the mixing time. As 7 ({,t) is
self similar in time as £ is varied, T5(ts) = T (U, ts) = (ts)/{te)T (€, ts(te)/{ts)).

At a given instant of time, particles have been more elongated than
others, because /¢ is distributed. As a result, some particle have not yet
reached their mixing time because they have not been elongated enough
and still bear the initial concentration, while some other which are more
elongated have a concentration which has already started to decay.

The construction and meaning of 7 (ts) is very similar to the “distri-
bution of doubling-times” (Boffetta and Sokolov [2002], Rivera and Ecke
[2005]), that is the time it takes to increase the distance between two parti-
cles by a prescribed amount. This distribution is also encountered in other
contexts (Coppersmith et al. [1996]). It is found to have an exponential
tail directly associated to the fact that the elongation events are Poisson
distributed.

From equation (45), we thus have the distribution of mixing times as

1 t
Ts(ts) = — - 47
0= e (<35 o
over the whole range of t,, a distribution which was already obtained from
similar arguments (Shraiman and Siggia [1994], Villermaux et al. [1998])
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Figure 21. Concentration distributions of the ever dispersing mixture
recorded at x/d = 5,7.5,10,12.5 and 15 with d = 0.6 cm that is d/L = 0.1
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or in the short time-correlation limit (Balkovsky and Fouxon [1999]). This
expression for the distribution of mixing time is consistent with any one-
step scenario (i.e. case 1, 2, 5 and 6). However this particular distribution
implies a particular distribution of elongation rate (case 1) and of stretching
rate (case 2, 5 and 6) :

e In case (1), 0 = £;/ts so that o is distributed as

P = e (oi )

e For case (2) one as v = 1n(¢4s/ly)/ts, so that v is distributed as

_ Il /b)) (_In(t/t)
T ) p( 7 (ts) )

e In case (5), the dispersion of stretching rates is due to the first step

PW(V)

only, and one has ¢ ~ {yexp(y171 + f:l dt’(y)). To reach the mixing
length ¢4 the cumulative stretching of any element is fixed, so that

ts
= (Um) e ft) ~ [t ()
With (y(t)) oc t7%, 41 = A — Bt!=® with A and B two positive
constants. Since t, is exponentially distributed, so that, for tg > 7,

i.e. y < In(fy/lo)/m1, one has
o= e (45%) oo [ (452) 0]

o For case (6), ts = Tp(ts)/(Tn) = T In(ls/ly)/ In(¢,,/ln_1) is approx-
imately proportionnal to 7, the duration of the last step. Since
gn = Zn—l exp(’ynTn)a

In(4,,/ln—1 In(4,,/ln—1
0= B (),

which is the same distribution as in case (2). Another way of finding
the same result is to note that since the persistency of a stretching
event y7 = 1 is fixed, the distribution of mixing times is dominated
by the distribution of the last event, which lasts for a time 7. With 7
distributed exponentially, the stretching rate is distributed like

Py(y) = %meXp (—@) :




256 J. Duplat, C. Innocenti and E. Villermaux

6.3 Concentration distribution

Finally, the distribution of concentration P(C,t) derives from similar
arguments. Similarly as the way P(¢,t) is deduced from 7 (¢,t), one may
define 7 (C,t) the distribution of time at which a certain level of concentra-
tion C is reached. Since C is a decreasing function of time

P(C*,t") = + % (/Ot T(C,t)dt)

T(C,t) results of a one dominating step process, and is therefore a self-
similar function of time, as the concentration C is varied. It is completely
defined by the distribution of mixing time 7;(ts) (see equation (47)) and the
average time associated to each concentration level (t¢). The latter is given
by the time dependence of the concentration C(t) of a fluid particle before,
and after the mixing time given by the microscopic convection—diffusion
problem. We have showed in section 5 that C(¢) remains close to 1 for ¢ < t
and that C(t) = (0s2/D)"?(ot)™ with v = 5/2 for t > t,. A convenient
(but not restrictive) crossover function bridging these two extremes is

(48)

C=C*

C(t) = (1 + t) B (49)

ts

leading to
(te) = (to) (717 =1), (50)

and providing finally the concentration distribution P(C,t) as a function of
time ~ "
t O~ t
Py =1 g <_) 51
=T —— 1)

where t = t/(t,).

The change of variables ¢ = C~1/¥ —1 allows to compute all the moments
(C?) of P(C) as
1 (> (1 vq :
(cy = / C1P(C)AC = i / (Gl P P (52)
0 0 ¢
which are given by
(C) =T(1+vq)U(vq,0,1) (53)

where I' and U are the Gamma and the Confluent Hypergeometric functions,
respectively. The asymptotic behavior in time is (C) LimdN I(1 4 vg)t—"
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(Abramowitz and Stegun [1964]) so that the width of the distribution be-
comes of the order of the mean
(C?)  T(1+2v) v=5/2 512

(€2 " T+ ) T5r (54)

As can be seen on figure 21 where equation (51) fits the experimental distri-
butions over the entire concentration range. The slight mismatch at large
excursion reflects the fact that sheets do slightly interact in this flow, and
aggregate in a way discussed in Duplat and Villermaux [2008], but in an
extent that does not alter much P(C,t). Signs of aggregation between the
sheets will be further given section 8.

Of particular interest is the behavior of the distribution of equation (51)
around its inflection point as this makes contact with the direct measure-
ments presented in section 3.1. The local slope at that point was found to
steepen linearly in time, with a prefactor depending on the scalar diffusivity
(figure 5). The shape of P(C) about its inflection point (in log-lin scales) is
essentially dominated by the exponential factor exp(—i/(C~7» — 1)) so that

821n P(C)/9C? = 0 for
. v—1\"
o = <u+1> (55)

_ w1V ("H)UH{ (56)

and that
Oln P
oC

4v v—1

C*

which actually represents precisely the observed trends for P(C), an expo-
nential shape with an argument increasing in proportion of time like ¢/(ts),
as seen on figure 5.

The agreement of this prediction with the experimental measurements
indicates a posteriori the relevant limits and mechanisms involved in the
process :

e Individual trajectories result from a complex, time dependent, possi-
bly sequential stirring process, however the effective stretching rate is
dominated by the last step sampled in the distribution, consistent with
an effective one step lengthening process (scenario (1)): the standard
deviation of P(¢,t) is proportional to its mean.

e Consequently, the distribution of mixing times has a single character-
istic timescale (ts). It is exponential, as for a Poisson process.

e The average growth of material lines is linear, which implies an alge-
braic decay of the individual concentration levels C(t) with v = 5/2.
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7 Kinetics

The rate of deformation in time of the distributions P(C) is prescribed by a
characteristic time, i.e. the mixing time t,;. For the particular flows we have
in the present experiments, where material lines grow linearly in time like
ot, in three dimensions, we have shown in section 5 that this time writes

1 (o83 1/
to~— | — 57
(%) 7

where sg is the initial size of the scalar blobs subsequently stretched into
sheets. The composition of the medium solely depends on z/d = ut/d ~ t/t
in the dispersing mixture suggesting that the mixing time t; scales like
o~! ~ d/u in that case. The mixture composition depends on x/L in the
confined case, where L is the channel width, suggesting that ¢5 ~ L/u in
this other situation (see also Duplat and Villermaux [2008]).

The fair independence of both the shape of P(C), and of its rate of de-
formation with the flow Reynolds number (see figures 5 and 8) suggests that
this characteristic time is itself independent of Re. That independence is
recovered if the size s¢ is itself a function of the elongation rate. The typi-
cal scale of the velocity gradient in a turbulent flow is given by the balance
between the stretching time o~1, and the time of diffusion of vorticity s3/v
with v the kinematic viscosity of the fluid. This defines

S0 ~ \ﬁ (58)

as an analogous to the Taylor microscale of the flow (Taylor [1935], Pope
[2000]). This scale represents the transverse size of the sheets initially
“peeled-off” from the source by the (unsteady) relative motions in the flow.
This observation is consistent with the one step lengthening process of sce-
nario (1) in section 6 (see also Villermaux et al. [1998], and Villermaux and
Rehab [2000] for an example with a sustained shear). With this estimate,
the mixing time above becomes

1
ty ~ ;Scl/f’ (59)

where Sc = v/D is the Schmidt number, and is indeed independent of the
Reynolds number. The quantitative comparison on figure 21 indicates that
ts = 2d/u for Sc = 7 in the dispersing mixture with r.m.s. velocity such
that u'/u =~ 0.25, so that t, ~ 1.35(d/u)Sc'/® or t, ~ 0.4(d/u’)Sc'/>. A
fluid particle emanating from a source of size d such that, say, d/L ~ 0.1
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Figure 22. Dependence on the Schmidt number f(Sc) of the argument «
in the exponential wings at the inflexion point of the distributions P(C) for
the ever dispersing mixture (section 3.1). Left: Logarithmic adjustment.
Right: Power law adjustment. The line has a slope equal to 1/5.

has thus experienced roughly (L/u)/ts = 5 mixing times during its transit
within a local integral scale L. The mixture has thus appreciably decayed
within a stationary stirring field.

For the confined mixture, the residence time of the mixture in the channel
spans many stirring times L /u and thus o ~ u/L providing ¢, ~ (L/u)Sc'/?,
consistently with the observations of figures 5 and 8. These are fully com-
patible with Yeung [2001] who finds from Direct Numerical Simulations that
the Lagrangian correlation time of the scalar is of the order of the integral
timescale, independently of the Reynolds number.

7.1 Power law versus exponential

Although the flow is turbulent in both the channel and the free jet exper-
iment, material lines grow in proportion to time instead of exponentially.
This apparent power law has several causes, and may be interpreted as
a transient effect reflecting the birth of an ultimate, genuine exponential
regime.

In addition, the essentially identical description between the exponential
and the power law stretchings is further assessed by the Schmidt number
dependence of the mixing time revealed, for instance, by the slopes « of the
histograms P(C') of the ever dispersing mixture (figure 5). The exponen-
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tial stretching anticipates a ~ In(S¢) while the linear stretching in three
dimensions rather predicts o ~ Sc!/%) as shown in section 5. As can be
seen from figure 22, deciding between the two trends is a matter of mood,
although the Schmidt number varies on three orders of magnitude. The
indecidability comes from the fact that a weak power law (in the present
case 1/5) mimics a logarithmic behavior.

8 Lengthscales and Spectra

We describe some geometric aspects of the mixture and comment on their
relationship with the mechanisms building the concentration field itself.

8.1 Scalar support lengthscales

The concentration signal recorded at one point downstream of the source
in the ever dispersing mixture is organized as a succession of blobs and voids
(see figure 3). These blobs are the trace of bundles of merged sheets. Let
P(r) be the distribution of the blobs transverse thickness, and Q(r) that of
the voids. Those two distributions are extracted from the temporal traces
of the concentration signal owing to Taylor hypothesis in this advected flow.
It is observed from figure 23 that P(r) is well represented by

1 Citr
P(r) = ;exp (_ad/u’L> , (60)

where a depends on the Schmidt number. The physical content of equation
(60) is readily understood as a Poisson process. Denote by f = [, COO P(C)dC
the probability to find a concentration level larger than Cy at that location
in the flow. Let n be the smallest size of the scalar field (i.e. spectrum
cut-off or minimum coarse grained scale). The probability that a blob has
a size r + 0r is obviously

Pr+or) = PO =L () (1 + ‘%m f) : (61)

Therefore P(r) ~ exp(;In f) and with f ~ exp(—£C) characteristic of
the ever dispersing mixture, one expects '

t ., r
P(r) ~ ——Cs— 62
) ~ew (-10.0) (62)
which, with  ~ LSc¢=2/5 (see the coarse grained scale in Duplat and Viller-

maux [2008]), reproduces the tails of the experimental distributions ade-
quately in shape, and parameter dependences.
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Figure 23. Distribution of the blobs widths P(r) and its sensivity to the
experimental parameters. a) definition sketch of the width r and void b
between two adjacent blobs. b) Distribution P(r) at ut/d = 10 and cor-
responding concentration distributions (insert) for d = 3 mm (dashed line)
and d = 6 mm (continuous line) and for two values of the concentration
threshold at Sc¢ = 2000. c¢) Distribution P(r) at ut/d = 7.5 and corre-
sponding concentration distributions (insert) for d = 3 mm (dashed line)
and d = 6 mm (continuous line) and for two values of the concentration
threshold at Sc = 7. d) Distribution P(r) at ut/d = 5 for d = 6 mm for in-
creasing values of the concentration threshold (Cs = 0.1,0.2,0.3,0.4,0.5 in
the direction of the arrow) at Se¢ = 2000. e) Distribution P(r) at ut/d =5
for d = 6 mm for two values of the Schmidt number at fixed concentration
threshold Cy = 0.2. f) Argument of the tail of P(r) in equation (60) for
various d and Cy and two values of Sc.
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Figure 24. Distribution of the voids lengths and average void size. a)
inter-blobs voids widths distribution Q(b/L) multiplied by b/L and by the
total number of voids N, in the signal for the corresponding conditions:
Csut/d = 0.25, e; Csut/d = 0.75, O; Csut/d = 2.25, B; C,ut/d = 3.75, ;
Csut/d = 4.25 A for both d = 3 mm and d = 6 mm and for 0.1 < Cs < 0.3.
Sc = 2000. The number of voids diminishes with downstream distance and
small voids disappear at the expense of the formation of larger and larger
voids. b) Average void size (b) as a function of downstream distance for two
Schmidt numbers.

The distribution of the voids Q(b) has a power-law like shape up to a
sharp cut-off C(b/b*) at a void size b* increasing exponentially with down-

stream distance.
b AN C b 63
an~ (1) <(3). (63)

The apparent exponent ( is of order unity, slightly decreasing, and

NN@pmm<fq>, (64)

S

as shown on figure 24. The average void size increase follows the depen-
dence of the cut-off void size b* with downstream distance. The number of
voids diminishes with downstream distance and small voids disappear at the
expense of the formation of larger and larger voids. Note that the average
void can be as large as 10 local integral scale L.



On Random Mixing 263

8.2 Spectra

Tt is a notorious fact that a scalar mixture with concentration field C(r, t)
stirred in a turbulent fashion (Re = u’'L/v > 10*) displays a power spec-

R (e I

proportional to k~5/3 in the well-mixed limit that is far from the sources and
for t > ¢, (Onsager [1949], Obukhov [1949], Corrsin [1951]). An example
can be seen on figure 25.

It is conversely also known that for a very intermittent scalar field for
which the fluctuations of concentration are of the order of the mean, as for
instance in the near field of a spatially localized scalar injection, the spectral
signature is essentially k! in the inertial range of scales (Villermaux et al.
[2001]). Some measurements also report an intermediate, power law-like
spectrum whose exponent depends on the Reynolds number, increasing in
absolute value from 1 towards 5/3 for increasing Reynolds number (Miller
and Dimotakis [1996], Sreenivasan [1996], Mydlarski and Warhaft [1998],
Warhaft [2000]). It has been suggested that this crossover, notably observed
in shear flows, is a sign of a large scale persistent shear which alters the pair
dispersion law (Celani et al. [2005]).

As outlined above, the blobs and voids widths are broadly distributed
in the ever dispersing mixture. The concentration within each blob is itself
variable, and its statistics is the concentration distribution P(C) at that
location in the flow. We show below how the knowledge of the distributions
of the blobs P(r) and that of the voids Q(b) fully determine the shape of
the concentration power spectrum F(k).

Spectrum of a random square wave signal We schematically repre-
sent the concentration signal (i.e. a one-dimensional cut through the scalar
field) as a set of consecutive blobs starting at x;, ending at y; with amplitude
C; for the blob number i. The concentration signal thus writes formally

ZC (x —x;) — H(z —y;)) (66)

where H is a Heavyside function (figure 3). The signal spectrum F(k) is
the square of its Fourier transform

F(k) = / kT (O (2)O(x + r))dr = C(k)C* (k) (67)
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Figure 25. Spectrum of temperature temporal fluctuations recorded at one
point in the Modane wind tunnel. Frequencies actually mean wavenumbers
through a constant convection velocity of the order of 30 m/s. The Taylor
scale based Reynolds number is Ry = v/Re ~ 3000 (adapted from Gagne

et al. [1999]).

where C is the Fourier transform of C' and C* its complex conjugate. With

one has

C(k) = Z Ci% (ehvi — k) (68)

1/, . , -
Fk) = Z Cﬂwﬁ (ezk(yifyi/) 4 gik(@imay) _ giklyi—ay) _ elk(xi*yi/))

i

(69)
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Figure 26. Compensated power spectra kF(k) of the scalar fluctuations
at different successive times compared to the expected shape (kd = d/r).
Se = 2000, d/L = 0.1, L = 6 cm, v = 0.4 m/s. In the direction of the
arrow, xr = ut = 1.5, 3, 4.5, 6, 7.5 and 9 cm.

The change of indices j =i’ — i leads to

F(k‘) — Z Cikc;i""j (eik(yi_yi+j) + etk(wi—zity) _ oik(yi—wits) _ eik(xi—yuj))
0,J
(70)
We proceed with the two following assumptions, well verified in practice:

e The distributions of the blobs P(r) and of the voids Q(r) are statisti-
cally independent. In particular, there is no correlation between the
sizes of two neighboring blobs.

e The amplitude C; is independent of the blob size.
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Thus for a given index j,
1 (Ui — s s
E CiCitjrs <elk(y1' ylﬂ)) (71)

is given by the Fourier transform of the probability to find two blobs of
concentrations C; and C;y; and whose ends are at a distance 6 = (y; — yi+;)
apart. The sum over all 7 ensures that all combinations have been accounted
for. The trivial case j = 0 leads to

N
k2

where N is the number of blobs, and (C?) is the average of the C?. When
j > 01in the interval [y; y;+;], one finds j voids and j blobs. The probability
P; that 0 = y;+; — y; is thus, since no correlation is assumed between
neighbors is the probability that j voids and j blobs put together have a
total length 6. This probability is given by the convolution of j times the
probability P times the convolution of j times the probability @

(C?) (72)

P; = P® @ Q. (73)
which translates in the Fourier domain in
Py =PI (74)

The weighting factor C;C;4; is independent of j and is (C?), thus
1 k(Y —Yits N D*J )*]
D iy (0 v) = (O PIQY. (75)
and for j < 0 one has equivalently

1 - N N
> Gy (M0 ) = S(COV2PIQ (76)

A similar treatment of the other terms in equation (69) leads finally to

)
(2= P(k) = Q(k))(P(k)Q(K))’ (77)
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that is
Flk) = 2% ((<C2> —(©)Re (1~ P) +(CPR <(1 zlli)(;Q_)Q)))
(78)
k) = 25 ((C7) — (O Re(1 ~ P) 4 (CRel))  (79)
with ) . )
== + -1 (80)

S 1-P 1-Q

Note finally that % = Pif P(r [.7° P(r')dr’ denotes the probability
that a blob has a size larger than r. One thus has

e

(k) = 25 (%) — (P Im(P) + (C)*Re(s")) (81)
with )
R A (82)
S P4

The comparison of the calculated and experimental spectra is shown on
figure 26. The knowledge of the statistics of the blobs and of the voids sizes
implies the shape of the spectrum. Precisely, since P decays faster than
Q, the shape of the spectrum is essentially fixed by the distribution of the
voids 9, by contrast with usual interpretations of the Batchelor regime in
scalar turbulence (Batchelor [1959], Kraichnan [1974]). The slow decay of
the theoretical spectrum at large k is an artifact of the discontinuous edges
of the blobs (square wave signal). In reality, the edges are smooth (with a
width given by the Batchelor scale), and the spectrum fall-off is steeper, as
the experiment shows.

9 Conclusion

The evolution of the concentration level C' of a fluid particle in a deforming
substrate results from the balance between the substrate rate of deformation
and molecular diffusion. The microscopic associated problem is solved in
closed form (section 5), illustrating the central concept of the mizing time
ts.

The natural randomness among the fluid particles net elongation at a
given instant of time induces a distribution of the mixing times from which
molecular diffusion becomes effective in erasing the concentration differ-
ences. This ingredient, analyzed in section 6 has been found to represent
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very accurately the evolution of the concentration distribution of P(C,t) in
an ever dispersing mixture. Its shape and rate of deformation is found to
depend on a single, Schmidt number dependent timescale (ts) (section 3.1).

The analysis suggests that the mixture composition results from a one
step lengthening process distributed among the sheets, as opposed to a
sequential cascade of uncorrelated stretchings. It infers a prediction for the
corresponding distribution of the mixing times (equation (47)) consistent
with earlier predictions (Shraiman and Siggia [1994], Chertkov et al. [1995],
Villermaux et al. [1998], Balkovsky and Fouxon [1999]) and finally a detailed
analytic description of P(C,t) (equation (51)).

The ever dispersing limit reveals the distribution of individual trajecto-
ries within the mixture inherent to turbulent motions among fluid particles
evolving essentially independently of each other. This is no more true when
the spatial density of particles is increased so that their mutual interaction
is enforced. The composition P(C,t) given in equation (51) is only valid
for a single plume dispersing in a large scale stirring field. As soon as mul-
tiple sources are present, the picture is different. More generally, a set of
constantly overlapping and merging sheets selects a different route towards
uniformity, which is examined in Duplat and Villermaux [2008].
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Experimental Visualization of Lagrangian Coherent
Structures Using Eulerian Averaging
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Abstract. Time-averaging of Eulerian light intensity measurements in
flow visualization experiments is proposed as a powerful, non-intrusive
technique for visualizing Lagrangian coherent structures in dynamically
rich flows. For steady and time-periodic laminar flows a formal theory has
been developed that explains the success of such technique by showing the
equivalency between Eulerian and Lagrangian averages of quantities con-
served along particle paths. Similar Eulerian averaging ideas, however,
have been successfully used to visualize and extract the coherence time
scale of Lagrangian coherent eddies in an aperiodic (turbulent) flow. Re-
cent examples from the application of these ideas to visualize Lagrangian
coherent structures in laminar and turbulent flows are presented.

1 Introduction

The term Lagrangian coherent structures (LCS) denotes large-scale, deterministic
patterns that emerge and persist for sufficiently long times (relative to an appropri-
ate Eulerian time scale of the flow) in the advection of a passive tracer in flows
with rich Lagrangian dynamics. In chaotically advected laminar flows, for exam-
ple, LCS are known as the invariant sets of the flow or more commonly as
unmixed islands. These, often topologically complex, structures can trap tracers
for very long times (comparable to the time scale of molecular diffusion) thereby
reducing the portion of the flow domain that is occupied by chaotically advected
trajectories and consequently diminishing the overall mixing efficiency. In turbu-
lent, large-scale, geophysical flows, on the other hand, LCS emerge in the form of
long-lived, coherent eddies, which dominate global transport and mixing (Proven-
zale, 1999). In spite of significant recent strides in theoretical and numerical
studies of LCS (Haller and Yuan, 2000; Haller, 2002; Mezi¢ and Wiggins, 1999;
Poje et al. 1999; Mezi¢, 1994; etc.), however, experimental studies in this area
remain relatively sparse. Thus, whether one is interested in optimizing mixing in
low Reynolds number flows or in understanding global transport in geophysical
and environmental flows, the development of experimental techniques for eluci-



276 F. Sotiropoulos

dating the dynamics of LCS in laboratory and/or field experiments is a pacing
research issue.

The first successful attempt to visualize unmixed island chains in a steady cha-
otically advected three-dimensional flow was reported by Fountain et al. (2000).
They employed a series of injection needles to deliver small blobs of dye at vari-
ous locations within the chaotically advected region of the flow they studied, thus,
specifying a set of initial “particle” locations. The intersections of the resulting
streaks of dye with a laser sheet constitute, by definition, the Poincaré map of the
flow. Fountain et al. (2000) applied this technique to a creeping flow in a open
cylindrical container driven by a rotating tilted disk and were able to construct
experimental Poincaré maps that were in excellent agreement with numerical
computations. In spite of their success, however, this technique is intrusive and
very cumbersome to implement and, thus, it is not suitable for complex three-
dimensional flows—see related discussion in Fountain et al. (2000).

In unsteady, aperiodic flows the concept of LCS is closely linked with that of
finite-time stable and unstable manifolds (e.g. Haller and Yuan, 2000). A tech-
nique for extracting finite-time manifolds from PIV velocity measurements in a 2D
time-periodic, chaotically advected flow was proposed by Voth et al. (2002).
They carried out precision measurements of particle tracer trajectories to directly
measure the time-dependent stretching field, whose local maxima have been
shown to coincide with stable and unstable manifolds of LCS (Haller and Yuan,
2000). Their technique was applied to a time periodic flow but in principle is ap-
plicable to aperiodic flows as well.

In a series of papers, Sotiropoulos and co-workers (Sotiropoulos et al. 2002;
Mezi¢ and Sotiropoulos 2002; Chrisohoides and Sotiropoulos, 2003) introduced a
novel, non-intrusive, simple to implement experimental technique that relies on
averaging Eulerian scalar concentration measurements. Even though the relation-
ship of Eulerian measurements and LCS is not readily apparent, Mezi¢ and
Sotiropoulos (2002) showed that a theoretically rigorous connection can be made
for the case of steady and time-periodic chaotically advected flows via concepts of
ergodic theory. In the case of aperiodic flows the theoretical link is not yet estab-
lished but the technique has been adapted and successfully applied to visualize
LCS in an aperiodic, turbulent free-surface flow (Chrisohoides and Sotiropoulos,
2003).

In this chapter I will first briefly review the concept of Lagrangian averaging
and its relationship to invariant sets in chaotically advected flows. Subsequently I
will discuss the link between Lagrangian and Eulerian averages and show how the
latter, which can be readily constructed from laboratory measurements, can be
used to visualize LCS experimentally. Results will be presented both for a chaoti-
cally advected, 3D steady flow and a turbulent, aperiodic flow. The section on the
theory of Lagrangian averaging is based on the works of Mezi¢ (1994) and Mezi¢
and Wiggins (1999) while the discussion of the experimental implementation
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reviews the works of Mezi¢ and Sotiropoulos (2001), Sotiropoulos et al. (2002),
Chrisohoides and Sotiropoulos (2003) and the recent computational work of Paik
and Sotiropoulos (2005).

2 Lagrangian averaging and invariant sets

The concept of Lagrangian averaging and its relation to invariant sets in chaoti-
cally advected flows is central to the development of the subsequently discussed
experimental techniques. For that reason in this section I will briefly discuss the
concept of Lagrangian averaging and present an example of how it can be applied
to numerically visualize the invariant sets of the Poincaré map of a 3D, steady,
chaotically advected flow. The subsequent discussion is only intended to provide
a summary of the key underlying ideas. For a more comprehensive and rigorous
treatment the reader is referred to Mezi¢ (1994) and Mezi¢ and Wiggins (1999),
and Mezi¢ and Sotiropoulos (2002).

Consider a laminar, chaotically advected flow. The trajectory of a passive
tracer ¥ = )'g(t) introduced into the flow at an initial location )}C)o = (xa, ya,zn) at

time #, and advected by the flow velocity field = ﬁ(k),t) is obtained by solving
the following set of equations:

IR0 (1)

with initial conditions:

5e)=¥, @)
The solution of the initial value problem (1) and (2) can be written as follows:
K=K )= (e, o) (v, 0) 2(2,00) 3

For the sake of brevity the specific particle whose trajectory is given by Eqn. (3)
will be denoted by its initial location, i.e. as particle x, .

Letnow f¢ (t) =f ()‘C), t) denote the Eulerian description of any property of the
flow—e.g. velocity, pressure, vorticity, etc.—at a given point§ = (x, y,z). Prop-
erty f can also be expressed in Lagrangian terms by considering the values of f'
sampled by particle x, as it moves through the flowfield along its trajectory given

o

by Eqn. (3). We can, thus, formulate the Lagrangian description of f'as follows:

o)

£ (0)=f((x,.0) @)
The Lagrangian average of property f associated with particle k’ is readily de-
fined as the average over all possible values of f¢ sampled by the particle as it

moves along its trajectory and can be formally defined as follows:
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71E)= lim% [ (R o)) ®)
The fact that for an incompressible flow in a bounded domain the average in equa-
tion (5) exists follows directly from Birkhoff’s ergodic theorem. Note that
Birkhoff’s ergodic theorem is valid for almost every initial condition (in the sense
of measure theory) and thus its validity is not restricted only to chaotic or to regu-
lar regions of the flow.

Mezi¢ (1994) and Mezi¢ and Wiggins (1999) proposed an approach to visual-
ize numerically the invariant sets of the Poincaré map of a chaotically advected
flow using the concept of Lagrangian averaging. The overall procedure is summa-
rized as follows:

1. Define a set of initial conditions )‘c)o ;
2. Compute the Lagrangian time averages of a chosen function f,

j_’ L(fu), over the fluid particle trajectories (streamlines in a steady

flow) originating from the points )’c) ;

3. Map the so computed f t (QO) to )[c) and plot the level sets of the re-

sulting scalar field
Ergodic theory can be used to rigorously show that the iso-contours of ]_” L(g)

will indeed visualize the unmixed regions in the flow (invariant sets) (Petersen
1983)—see Mezi¢ (1994) and Mezi¢ and Wiggins (1999) for more details.

An important aspect of the above method concerns the integration time re-
quired for the averages to converge to their mean value. It is known that along
chaotically advected trajectories convergence is extremely slow (Meiss 1994) and
the trajectory integration needs to be carried out for millions of time steps. As
shown in Mezi¢ and Sotiropoulos (2002), however, along periodic trajectories
convergence is very rapid, about t'. This property of periodic orbits suggest that
Lagrangian averaging can be used to develop an efficient computational technique
for identifying unmixed islands in complex, 3D flows.

The utility of Lagrangian averaging in numerical studies of chaotic advection
was demonstrated in the recent study by Lackey (2004) and Lackey and Sotiro-
poulos (2006) who employed this approach to visualize invariant sets in a steady,
chaotically advected flow in a cylindrical container with two exactly counter-
rotating lids.
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3 Experimental Visualization of LCS in Steady Laminar Flows

The fact that Lagrangian averaging can be used to visualize the invariant sets of a
chaotically advected flow is useful in numerical studies (see Lackey and Sotiro-
poulos, 2006) but it is not at all clear how or if the same concept can be extended
to laboratory studies as Lagrangian averages can not be constructed experimen-
tally. Instead in laboratory experiments it is straightforward to obtain Eulerian
time series of a flow quantity pr(t): f (J:c),t) (by carrying out measurements at
fixed points ¥ ) and, thus, only Eulerian averages are available:

7 ®)=tim [k (©)

It has been rigorously shown by Mezi¢ and Sotiropoulos (2002), however, that in a
steady, incompressible flow the Eulerian time average of a quantity conserved
along particle paths at a point is equal to the Lagrangian average of the same
quantity along the particle path that originates from that point. That is, if the

material derivative of fis zero:
7®=7® )

In the context of the previous discussion on Lagrangian averaging, this important
finding proves that the level sets of the Eulerian time-average field of a quantity
that is conserved along particle paths will visualize unmixed regions in the flow.

The equivalence between Lagrangian and Eulerian averaging has been ex-
ploited to construct a very simple, non-intrusive experimental visualization
technique (Mezi¢ and Sotiropoulos 2002; Sotiropoulos et al. 2002). The technique
relies on the standard laser-induced fluorescent (LIF) technique and consists of the
following steps:

1) Introduce, within the chaotically advected region of the flow, a non-
uniform concentration of fluorescent dye at the initial time.

2) [lluminate the surface of section for the Poincaré map using a laser
sheet.

3) Time-average the instantancous concentration of dye (quantified in
terms of the intensity of the scattered light in LIF experiments—see
Figure 2) at the surface.
4) Plot the level sets of the time-averaged concentration field.
The fact that contour plots of the time-averaged light intensity field will visualize
the unmixed regions of the flow follows from the fact that, neglecting molecular
diffusion, concentration is conserved along a particle trajectory.
It is important to emphasize that there are two prerequisites for successful ap-
plication of this technique: 1) the initial spatial distribution of fluorescent dye
within the chaotically advected region must be non-uniform; and 2) the averaging
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time must be smaller than the molecular diffusion time scale of the flow but much
larger than a characteristic time scale of the flow—see Mezi¢ and Sotiropoulos
(2002) for an extensive theoretical discussion of the various aspects of this tech-
nique.

The experimental technique described above was applied successfully to re-
solve the invariant sets of Poincaré maps in the interior of steady vortex
breakdown bubbles by Sotiropoulos et al. (2002). Incompressible Newtonian fluid
of kinematic viscosity v fills a closed cylindrical container (see Figure 1). The
bottom endwall is rotated at a constant angular velocity (2 while the top wall is
held stationary. The two non-dimensional parameters that determine the various
flow regimes are the aspect ratio, H/R, and the Reynolds number Re=(2R*/v.
Ekman suction and pumping drive a meridional flow and give rise to the formation
of a columnar vortex along the container axis. Above a threshold Reynolds num-
ber the columnar vortex breaks down and forms one or more vortex breakdown
(VB) bubbles, which remain steady for a wide range of Re (Escudier, 1984).
Even though axisymmetric numerical simulations have successfully captured most
Eulerian aspects of the flow (Lopez, 1990), laboratory visualization experiments
have consistently revealed small, albeit clearly visible, asymmetries at the down-
stream end of the VB bubble, which in the experiments appears open and
asymmetric (Escudier, 1984; Spohn et al., 1998; etc.). Sotiropoulos et al. (2002)
studied the same problem numerically by solving the three-dimensional Navier-
Stokes equations and showed that the flow within stationary vortex breakdown
bubbles could exhibit chaotic particle paths. Consequently, very small three-
dimensional perturbations, which are bound to be present in any experiment, could
have a profound effect on the Lagrangian dynamics of the flow in the interior of a
VB bubble. That is, even though the flow could be essentially axisymmetric from
an Eulerian sense it can never be visualized as such in a real-life laboratory ex-
periment in which disturbances can never be fully eliminated. Sotiropoulos et al.
(2001) provided a detailed description of the topological aspects of vortex break-
down including a discussion of the specific chaos-inducing mechanism and
numerically calculated Poincaré sections.

Sotiropoulos et al. (2002) reported a set of LIF experiments using the ergodic
experimental technique described in this section, which confirmed all computa-
tional findings and reveal new insights into the dynamics of VB bubbles (see
Sotiropoulos et al. (2002) for the details of the experiments). Figure 2 shows typi-
cal instantaneous LIF images (iso-contours of the instantaneous light intensity
field) for the steady, vortex breakdown bubble for Re=1850 and H/R=1.75. Fig-
ure 3 compares the numerically calculated Poincaré map for the same flow
(Sotiropoulos et al., 2001) with the invariant sets of the flow obtained by applying
the ergodic experimental technique—i.e. by time-averaging a sufficiently long
series of instantaneous LIF images such as those shown in Figure 2 and plotting
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the level sets of the resulting time-average field. It is seen that the unmixed island
chains that are present in the numerically constructed Poincaré map are in excel-
lent agreement with those marked by the level sets of the time-averaged light
intensity field obtained experimentally. Both numerical and experimental images
reveal the presence of period two, three, and four islands (invariant sets) embedded
within well stirred stochastic regions (uniform colored regions in the experimental
map). This level of agreement validates the proposed visualization technique and
underscores its potential as a powerful tool for experimental investigations of a
variety of flows exhibiting chaotic advection.

4 Eulerian averaging and aperiodic flows

The formal theory developed by Mezi¢ and Sotiropoulos (2001) has established
the equivalence between Lagrangian and Eulerian averages of quantities con-
served along particle paths both for steady and unsteady, time-periodic flows.
Whether, however, the same ideas can be exploited to develop an experimental
technique for visualizing LCS in aperiodic flows is far from obvious. The first
evidence that an averaging-based technique could hold promise in numerical stud-
ies of aperiodic flows was reported by Poje et al. (1999). They showed that
Lagrangian finite-time averaging can capture the finite-time geometry of LCS with
remarkable clarity provided that an optimal averaging window is selected. Unlike
steady or time-periodic flows, however, where Lagrangian averaging can be rigor-
ously linked to Eulerian averaging, in aperiodic flows no such formal theoretical
link has been established so far. Yet Chrisohoides and Sotiropoulos (2002) were
able to develop and successfully apply a novel flow visualization technique for
aperiodic flows that is based on finite-time averaging of Eulerian light intensity
measurements. In this section we briefly describe this technique and present sam-
ple results from its application to visualize LCS in a turbulent, free-surface flow
(Chrisohoides and Sotiropoulos, 2003). Recent computational results that confirm
the validity of the experimental technique (Paik and Sotiropoulos, 2005) are also
reported below.

The flowfield under consideration takes place in a straight rectangular open
channel with a rectangular block mounted midway through the channel at one of
its corners (see Figure 4). The general features of the flow at the free surface, as
derived from experiments (Chrisohoides and Sotiropoulos, 2003) and numerical
simulations (Paik and Sotiropoulos, 2005), are illustrated in the sketch shown in
Figure 4. As the upstream flow approaches the obstacle, it encounters a strong
transverse pressure gradient that diverts it around the obstacle. A large region of
recirculating flow forms at the upstream junction between the obstacle and the
channel side wall. The flow within this region is slowly evolving but very com-
plex consisting of multiple, large-scale eddies, which appear and disappear in a
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seemingly random manner. Paik and Sotiropoulos (2005) recently showed com-
putationally that this region is energized continuously by vorticity from the shear
layer forming at the interface with the fast moving outer fluid, which is entrained
into the recirculation region at the saddle point of attachment on the obstacle up-
stream face. They also showed that the temporal dynamics in this region takes
place on a quasi-periodic torus. A large recirculating zone is also present at the
downstream end of the obstacle and a shear layer develops at the interface between
the slow moving fluid within this zone and the flow diverted around the obstacle.
The results presented in this section focus on the LCS emerging in the recirculat-
ing zone upstream of the obstacle. The Reynolds number (based on obstacle length
and the average velocity) is Re = 4.2x10°. A detailed description of the experimen-
tal flume and other experimental details can be found in Chrisohoides and
Sotiropoulos (2003).

To visualize LCS, small tracer particles (paper pieces) are manually intro-
duced on the free-surface upstream of the obstacle. A digital camera is mounted
above the obstacle with the aid of an airlift and clamps so that it could be adjusted
both vertically and transversely. The sampling rate of the camera is 30 frames per
second. Instantaneous images collected with the digital camera suggest a general
recirculating flow pattern but do not provide any information about the rich dy-
namics of LCS that dominate particle transport in this region. To extract LCS we
employ a technique that is analogous to long-time exposure photography, which is
commonly used for qualitative visualization of flow structures in laboratory ex-
periments, as follows.

To construct time series of light intensity, we digitize instantaneous images by
assigning to every pixel (x,,3,)—where x, and y, are the Cartesian coordinates of
the pixel—an instantaneous brightness index 3(x,,y,,?), i.e., a number quantifying
the intensity of light emitted by the pixel at that instant in time. Assume now that
in a given region of the flow field a LCS forms and persists over a finite time in-
terval t.—the coherence time scale of the LCS. In Chrisohoides and Sotiropoulos
(2002) it was postulated that information about the finite-time geometry of such a
LCS should be embedded within the chaotic light intensity time series and can be
extracted if the dynamics of the time series is considered at the intermediate time

scale 7=z.. A new time series, J,, is thus constructed by averaging I over a fi-

nite-time window 7 as follows:
t+7/2

Sr(xp,yp,t):— j:i(xp,yp,t'}it'
T
t—1/2
Level sets of 3, can visualize LCS and elucidate their dynamics with clarity

provided that 7 is selected to be close to the coherence time scale of the LCS,
which can be defined as the time-scale at which the time series is dominated by
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non-trivial, deterministic effects. Chrisohoides and Sotiropoulos (2003) further
proposed a technique for extracting the coherence time scale from the light inten-
sity time series. The technique is based on the fluctuation analysis approach
presented in Rand and Wilson (1995) and Keeling et al. (1997). In these refer-
ences, fluctuation analysis was proposed as the means for extracting the coherence
length scale in spatio-temporally chaotic, artificial ecology models. For a given

averaging window size 7, the standard deviation, £, of J,about J (the long-term

time average of J,) is calculated to quantify the fluctuations of J, about I for
various window sizes. For sufficiently large 7, adjacent windows would become
independent and according to the central limit theorem £, should begin to scale as
772, The coherence time scale 7, is thus defined as the window size for which the
standard deviation begins to scale in accordance to the central limit theorem. The
reader is referred to Chrisohoides and Sotiropoulos (2003) for further details on
the implementation of this technique to actual experimental time series of light
intensity.

In Figures 5 and 6 we compare the experimental results of Chrisohoides and
Sotiropoulos (2003) with the recent computations of Paik and Sotiropoulos (2005),
who employed the detached-eddy simulation approach to study the dynamics of
coherent structures induced by the obstacle (see reference for details). The results
in Figure 5 are shown for one instant in time when the flow in the core region of
the recirculating region is dominated by two co-rotating eddies—see Paik and
Sotiropoulos (2005) for a detailed discussion of the various states of the coherent
structures in this region. The experimental image in Figure 5a corresponds to the
raw experimental image depicting the instantaneous arrangement of paper parti-
cles. Figures 5b and c show the effect of successively increasing the averaging
window 7, which for 7= 2 sec ultimately leads to the emergence of two clearly
defined eddies connected at a saddle. As shown in Chrisohoides and Sotiropoulos
(2002) further increasing the averaging windows starts diminishing the clarity of
the image ultimately causing the two-eddy structure to disappear. Chrisohoides
and Sotiropoulos (2002) also applied the fluctuation analysis technique discussed
above to verify that indeed the coherence time scale of the two-eddy structure is
close to 2 sec. It is also worth noting that video animations of the finite-time aver-
aged light intensity fields in this core region of the flow reveal complex coherent
dynamics consisting of rotation of the two eddies, merging into a single eddy,
subsequent splitting, etc., which are not visible in the raw visualization images.

To confirm the experimental results Paik and Sotiropoulos (2005) developed a
numerical technique, which is the numerical equivalent of the experimental tech-
nique. At some instant in time f,, a set of initial release locations for passive
Lagrangian markers on the surface is distributed uniformly within the region of
interest (see Figure 5a). The tracers are advected by the resolved DES flowfield by
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performing time-accurate_integration of the Lagrangian equations of motion to
determine the trajectory )‘c)k of the k™ tracer at time ¢. The numerical integration for
each tracer is carried out say for N time steps to obtain the set of N discrete posi-
tions )‘c)k (n=1,N) visited by the " tracer during the time interval [z,, , + NAt]:

B =B +nar)=F Iﬂf (e),tJae

where 4 is the resolved velocity field. For each %, a streak is drawn on the plane
connecting all consecutive (x X, 1)palrs The resulting numerical images are
essentially equivalent to the experimental images obtained by Chrisohoides and
Sotiropoulos (2003) by superimposing instantancous digital images of particle
locations collected over the same time interval.

As seen in Figures 5 (a)-(c) the progression of the clarity level of the com-
puted images is remarkably similar to that in the experiments. Note for instance
that for 7=0.5s, both in the experiments and simulations only the lower left eddy
has begun to emerge while the second eddy is not visible yet. For 7=2.0s, on the
other hand, both eddies have appeared clearly in the experimental and simulated
images. It is also worth noting that as seen in Figure 5(c) the spatial heterogeneity
in the distribution of length and brightness of the streaks is very similar in the
experimental and computed images. Given the procedure we adopted to construct
these streaks, this finding is very important as it implicitly suggests reasonable
agreement between the laboratory and simulated velocity fields in this region of
the flow. This conclusion is further reinforced in the comparisons shown in Figure
6, which depicts experimental and computational results for the upper corner of
the recirculation region—i.e. near the saddle of separation. The experiments re-
veal very complex eddy structure in this region, which evolves at time scales
slower than in the core region. Both experiments and calculations start yielding
similar structures with similar level for clarity for T =4.0sec.

S Summary and Conclusions

In this chapter, I reviewed recent progress toward the development of averaging-
based experimental techniques for visualizing LCS in flows with rich large-scale
dynamics. The lack of a simple and easy to implement in real-life flows experi-
mental technique for studying LCS has been a pacing item in the areas of
chaotically advected steady and time-periodic flows as well as in turbulent flows
where transport is dominated by coherent structures. The techniques reviewed
here have shown significant promise to fill this void and evolve into powerful
experimental research tools to supplement theoretical and numerical studies.

The unifying element of the techniques for visualizing LCS in chaotically ad-
vected laminar flows and aperiodic flows is the use of averaging of Eulerian
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measurements of light intensity. This quantity is directly proportional to scalar
concentration and when considered at time scales much shorter than that of the
molecular diffusion it can be assumed that it is conserved along particle paths. For
steady and time-periodic chaotically advected flows this property of light intensity
can be exploited to rigorously link its Eulerian average at a point to its Lagrangian
average along the particle path passing through that point using the theory of
Mezi¢ and Sotiropoulos (2002). This key finding places the concept of Eulerian
averaging firmly within the context of the ergodic theory of Mezi¢ (1994) and
Mezi¢ and Wiggins (1999), which established that mapping Lagrangian averages
to initial release locations and plotting the level sets of the resulting field will visu-
alize the invariant sets of the flow. Therefore, in the context of steady and time-
periodic flows the technique is well established and the reasons for its success are
well understood. Future work in this area should focus on the demonstration of its
applicability to time-periodic flows and applications to other chaotically advected
flows to further establish its capabilities and versatility.

In the context of aperiodic flows the results of finite-time Eulerian averaging
have been very promising so far but many issues remain to be resolved both theo-
retical and practical. The recent computations of Paik and Sotiropoulos (2003)
provided striking evidence establishing the capabilities of the finite-time averaging
approach as well as the fluctuation analysis approach for determining the coher-
ence time-scale of LCS proposed by Chrisohoides and Sotiropoulos (2003). Yet
the precise link between the level-sets of the finite-time averaged light intensity
field and the finite-time geometry of the LCS is not understood and theoretical
work is needed to fill this fundamental knowledge gap. Another important issue
that needs to be resolved for the technique to evolve into a powerful experimental
tool is with regard to determination of the temporal variation of the coherent time
scale of the LCS in a given region of the flow. As discussed in Chrisohoides and
Sotiropoulos (2005) it is reasonable to expect that t. will vary in time for a given
region of the flow. The fluctuation analysis technique in its current form, how-
ever, can not be used to detect such temporal variability and needs to be modified.
Working to address these issues, however, could be proven very useful because
the finite-time averaging approach is inherently suited for experimental investiga-
tions of LCS at field scale experiments for a broad range of geophysical and
environmental flows.
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Rovating lid

Figure 1. Schematic of the container with meridional streamlines
for (Re=1850; H/R=1.75).

Figure 2. Typical instantaneous iso-contours of light intensity for a
steady vortex breakdown bubble (Re=1850; H/R=1.75). From Sotiro-
poulos et al. (2002).
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Figure 3. Left: Calculated Poincare map for the steady vortex breakdown
bubble (Re=1850; H/R=1.75); Right: Invariant sets of the Poincare map for
the same vortex breakdown bubble visualized by time-averaging a suffi-
ciently long series of LIF images as those shown in Figure 2. From
Sotiropoulos et al. (2002).
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Figure 4. Schematic of the flume and obstacle geometry with rep-
resentative flow patterns. Left: cross-sectional view; Right: top
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(c

Figure 5. Effect of the size of the time-averaging window on the clarity of the La-
grangian coherent structures in the central area of the upstream recirculating region.
Left: finite-time averaging experimental technique; Right: numerical simulation. a)
Raw image (t =0s); b) t=0.5s; ¢) t=2.0 s. From Paik and Sotiropoulos (2005).
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Figure 6. Effect of the size of the time-averaging window on the clarity of the La-
grangian coherent structures in the upper corner of the upstream recirculating region.
Left: finite-time averaging experimental technique; Right: numerical simulation. a) t
=2.05); b) t=4.0 s. From Paik and Sotiropoulos (2005).
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Abstract Three criteria for estimating the quality of mixing are
developed. The idea of our approach traces back to the fundamen-
tal works of Gibbs, Danckwerts and Welander and consists of using
the concept of a ‘coarse grained’ density of the mixed component.
Numerical data are presented showing the change in time of the
statistical values of the square density and the intensity of segrega-
tion for Gibbs’ classical example of fluid mixing. Computation of
the measures shows a complete reversibility in spite of irreversibility
of some individual points. The coarse-grained representations over
an investigation area show a ‘residence place’ for the dyed material
at any instant. For study of transport properties of materials in
chaotic two-dimensional stirring Spencer and Wiley (1951) matrix
method is suggested. The exchange matrix can show transport of
patches or particles from any place in the area under consideration
to an arbitrary location and time if it happens.

1 Introduction

Mixing operations are widely used in polymer, chemical and food processing
and are the subject of considerable study and research for several decades —
see for detail review articles by Irving and Saxton (1967), Edwards (1985),
Ottino (1990), Aref (2002) and separate chapters in the textbooks by Brod-
key (1967), Middleman (1977), Ottino (1989). Despite these efforts, a
proper definition of mixing quality is not in common use (see Krasnopol-
skaya et al., 1999, and Krasnopolskaya and Meleshko, 2004).

The study of distributive mixing (i.e. stirring) is based on the description
of the paths of the individual particles of dyed fluid. The dyed particle is
supposed to be inertialess, it is not subjected to diffusion, and no interfacial
tension is operative. The idea of such an approach, connecting the Eule-
rian and Lagrangian representations of fluid flow, was laid down already by
Maxwell (1870) and developed later by Riecke (1879), Morton (1913) and
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first put forward by Aref (1984) in investigation of chaotic advection (in
this pioneering paper it was shown that chaotic mixing of a passive tracer
may occur even in deceptively simple flow systems).

A formal mathematical definition of mixing was first introduced by
Poincaré and developed in the mid-thirties by Birkhoff, von Neumann and
Hopf (see, for example, Hopf, 1934, for a general discussion). This defi-
nition reads (Arnold and Avez, 1968) as follows: the process is called the
mixing process if for any given non-intersecting at initial moment regions
A and B with measures u(A) and u(B), respectively, in a space V with
measure £(V'), the measure p(AN B) of the image of the region A, which is
contained in the region B, after a sufficiently long time will have the value
1(A) p(B)/ (V).

The problem of mechanical mixing, which we deal with in this paper
differs essentially from the mathematical mixing systems. We restrict our
consideration to finite times and are mainly interested in how to optimize
mixing.

In his book Gibbs (1902), while considering ensembles in phase space
going to statistical equilibrium (by the process which he called ‘stirring’),
suggested an analogy for this process the mixing of an insoluble coloured
fluid in water. He derived that the ‘colour’ density (of value 0 or 1) at any
point remains unchanged, while with fixed box sizes of the spatial elements
the mean square density decreases to minimum, provided that mixing is
continued indefinitely long. In order to sharpen this distinction the Ehren-
fests (1911) introduced the terms ‘fine-grained density’ and ‘coarse-grained
density’ for these two conceptions. Gibbs’ statement of irreversibility, when
going to an uniform state, has led to vast and active discussion (see, for ex-
ample, Tolman, 1938; Krylov, 1979; Sklar, 1993). It was argued by Zermelo
(1906), reviewing on his own German translation of Gibbs’ book, that for
any mechanical (Hamiltonian) system one cannot properly approach equi-
librium because of Poincaré’s theorem (Poincaré, 1890) that every such a
system eventually returns arbitrary close to its initial state. This theo-
rem, however, refers to a trajectory of one individual point in the phase
space. When considering an ensemble of points (e.g. a coloured blob) this
return will happen at different times for different points. Consequently, at
any instant only a fraction of points of the ensemble is close to its initial
positions.

2 Evaluation of Mixture Quality

The purpose of mixing is to achieve a uniform distribution of the compo-
nents. But the main practical question is, however, not whether the system
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will eventually approach this uniform distribution, but much more how far,
at any moment in time, the mixing state deviates from a uniform state.
For this we need a measure. We will adopt Gibbs’ approach and use the
‘coarse-grained density’ of the distribution as a basic measure for the three
criteria of the mixed state: averaged square density (Welander, 1955), en-
tropy (Gibbs, 1902) and intensity of segregation (Danckwerts, 1952). All
three criteria show the dynamics of mixing in their own scales and may be
used descriptively but never causatively, which was explained by Ben-Naim
(1986). By using these criteria we can estimate the time necessary for the
mixed state to be uniform within some specified range, for a given volume
element size (the ‘grain’). The larger the element size, the faster this desired
mixed state is reached. At any moment in time the different current values,
given the criteria chosen and their values in a perfectly mixed state (which
are known from the beginning) can be calculated. It is important to no-
tice that the three criteria are not independent and that they are statistical
measures of the first order (Tucker, 1993). For more a complete description
of a mixture, we will also introduce the ‘scale of segregation’ (Danckwerts,
1952) which is a statistical measure of the second order. It represents an
average of the size of the clumps of the mixed component.

Let us consider in details how the course-grained density is applied to
quantify mixing on an example two-dimensional problem of stirring when
initial state of black blob is located in the center of cavity as shown in Figure
1. Cover the cavity by the grid of square cells with the side § and with the
area S5 = 62 each. Let Ns is the number of cells which cover the cavity,
then the area of the cavity is equal to S = Ny S5. In Figure 1 the cavity as
the square container (with each side equals to 32 selected units and the total
area S = 32x32 = 1024) has the black blob in the center (with the side of
16 units and area S, = 256) and is covered by two types of cells. In Figure
1 (a) Ss = 16, N5 = 64, and in Figure 1 (b) S5 =1, N5 = 32x32 = 1024.

We consider the process of stirring, when the area of coloured blob S
should be conserved. The property of conservation of the black area during
deformation of the blob gives the possibility to introduce a probability func-
tion of the dyed material distribution inside a phase space cell with number
n as proportional to value of the area occupied by coloured matter SZE") in

this cell. A ratio of Sén) and Ss denoted as D,, = Sgn)/S(; may be called as
a probability density. If we simply averaged this value over the cavity space
S, i.e. calculate the sum (keeping the cell area constant, so we could not
use integration procedure)

Ny

1 . 1 (n)
F&ZDH ~ NsSs Zsb ’

n=1 n=1
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Figure 1. Square cavity with black blob in the center: (a) — covering by
cells with 6 =4 and (b) —withd =1 .

we get the ratio Sp,/S, i.e. the ratio of the area of the coloured matter Sy,
and the total area of the cavity S. This value does not change in the course
of stirring and is the mean or uniform density of the coloured blob in the
cavity (D)

(D)= 5> D= 1)

The angle brackets here and later denote an average over the cavity.
However, using the square density defined by

D2 = (85,"/55)?

and averaging over the area of the cavity, keeping the cell area constant as
before, we get the inequality:

(DY) = —> D2 - ZD s < @)

because D,, < 1.
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In Figure 1 for two types of cell grid all cells with the black matter are
covered by dye completely, i.e. for those cells D,, = 1, and for cells without
the black dye D,, = 0. So, we may get for both patterns in Figure 1 (a) and
(b)

(D) =256/1024 = 1/4,

(D?) = 256/1024 = 1/4. (3)

Let the stirring of the blob is such that the mixture has the pattern at
some moment in time as shown in Figures 2. Let use the same covering by
two different grids of cells as in Figure 1. In the case shown in Figure 2 (a),

Figure 2. Mixing pattern: (a) — with covering by cells with 6 = 4 and (b)
— covering by cells with § =1 .

when § = 4, each cell which has some black dye covered either by half (i.e.
D,, =1/2) or by three quatre (i.e. D,, = 3/4). Then as could be calculated
using Figure 2 (a)

(D) = 1/64]26/2 + 12/4] = 1/4;

(D?) = 1/64[26(1/2)* + 4(3/4)?] = 35/256 = 0.14 < 1/4. (4)
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In Figure 2 (b) the same mixture is covering by cells with § = 1 and all cells
with dye are covered completely, i.e. D) =1 and

(D*) = 256/1024 = 1/4,
(D*?) = 256/1024 = 1/4. (5)

Therefore, using the cells with § = 4 the value of (D?) is changed com-
paratively to its value for the initial situation in Figure 1 (a) and calculated
in (2.3), namely is decreasing with decreasing a width of the black filament.
And the value of (D?) calculated in the cell grid with § = 1 is constant and
does not change if dye matter occupied the whole cell or does not occupied
at all (for the "empty” cell). In terms of statistical mechanics, D,, is the
‘coarse-grained density’, which is different from the ‘fine-grained density’
fa of the infinitesimal, super-differential elements dSy, which are always
assumed to be small compared to the width of the area of the coloured
matter. Moreover, dS; is always so small that it either is located inside the
coloured matter and f; equals to one or it is outside the coloured matter
and fy equals to zero. Thus, behaviour of f; is similar to D} in Figure 2
(b), where it is either one for black cells or zero for ”empty” cells.

It was shown by Gibbs (for the special case, considered in the next
section, of mixing two fluids which approaches statistical equilibrium, i.e.
the perfect mixed state), that the final state of mixing is characterized by
a minimum statistical square density, i.e. for the variation it holds

{(Dn = (D)) = (D?) = (D)* 0. (6)

Thus, going to a uniform mixture in time, the mean square density (D?)
will approach its minimum <D>2. The rate of decrease of these values is not
only time dependent but also depends on the cell sizes.

It is also possible to use the analogy of entropy, —D,, log D,,, instead of
D? as a statistical measure. If the dyed material occupies a box completely
or is absent —D,, log D,, equals to zero. The entropy measure changes only
in those boxes, where 0 < D,, < 1. Moreover, for 0 < D,, < 1, —log D,
is always positive, so the more boxes the dyed material covers the bigger is
— 2221 D, log D,,. As a result, for a good mixing process, the entropy of
the mixture

e = —(Dlog D) (7)
will grow in time to its maximum
eo = —(D) log (D), (8)

The entropy measure is not independent of the square density measure, both
of them have a first-order statistics (one element of area at a time).
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Danckwerts (1952) has defined two properties that are useful in evalu-
ating the quality of mixing with diffusion and chemical reactions: the ‘scale
of segregation’ Lo and the ‘intensity of segregation’ Io. The scale of seg-
regation is a measure of a size of clumps in a mixture, while the intensity
of segregation refers to the variance in composition. For the intensity of
segregation he introduced the formula

1 dsC= (028 (o)) o

(@a-(c)s (o)1 -{C))

where C' is the local concentration, which is in Gibbs’s and Welander’s
definitions equal to the fine-grained density f; (i.e. behaviour is similar to
Dy in Figure 2 (b) or in the equations (5)). It is easy to see that for the
fine-grained density ((fa— (f4))2) = (f4) — (f2)* and in that case I always
equals to one. Consequently, for mixing without diffusion and chemical
reactions the intensity of segregation I is not decreasing, but equals the
constant, initial value.

Therefore, we suggest a modification of the intensity of segregation, by
making the Gibbs’ mean square density (6) dimensionless by dividing by
(D)(1 — (D)), namely

(Dn = (D))?)

(D)1 (D))
For good mixing ((D — (D))?) tends to zero, which means that I also tends
to zero.

Our definition of I is different from a similar mixing measure Ip used
by Ottino (1989). Io is defined as the square root of the mean square den-
sity divided by (D)?, so I3 = (D - (DY)2)/(D)?. For calculation of I, as
is proposed in (10) and what is the coarse grain modification of I, it is
necessary to use an additional assumption in investigation of mixing by set
of N points. This assumption should say that every of N points (which to-
gether represent the dyed blob behaviour) carries undeformed under mixing
process a small area equals to S,/N, what can be correct approximation for
continiuos mixing flow with large stretching and folding.

The scale of segregation Lo was defined by Danckwerts (1952) by means
of the correlation function

Ke(n) = ((C1 = (O)(C2 = (C))) (11)

which shows how the concentration fluctuations C' — (C) at points 1 and 2,
separated by the vector 7, differ from each other. The normalized correla-
tion function is called the correlation coefficient

(G — ()G — ()
Pelm) = TG o

I= (10)

(12)
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It is obvious that p(0)= 1. When || exceeds a certain value, the relationship
between the concentrations in points may become random and K¢ (n) (11)
drops to zero. If a mixture consists of clumps, || at which K¢(n) (11) is
equal to zero (say, |n| = £) is approximately an average size of the clumps in
the direction 1. More precisely, the average radius of clump in the direction
of ;. is

13
Lo(n) = / pe(m)din| (13)

The mixing patterns which we are going to discuss do not consist of
a random distribution of clumps, but of layered structures. However, the
coarse grain representations of these patterns may look like clumps. If we
cover area by cells for which the density D, is larger than (D) with black,
the cells, where D,, equals to (D) with grey, and cells where 0 < D,, < (D)
with white colour, then such representation can be considered as white and
black clumps with grey clumps that serve as transitional ones. Moreover,
with the coarse-grained correlation function defined as

K(n) = (D1 = (D))(D2 — (D)), (14)

(where Dy and Dy correspond to coarse-grained density in the boxes 1 and
2 separated by vector 1) the short term regularity ( when K > 0) of it in
the interval (0,£) gives important information about the mixture pattern
and can be examined. Short term regularity means that in average in two
boxes at any distance |n| < & the fluctuations D,, — (D) have the same
sign (i.e. the same colour) and thus K > 0. For |n| = ¢ the fluctuations
become uncorrelated and therefore K = 0. Thus, the distance |n| = £ in
the direction 7 is related to the size of average clump in this direction, and
the value

S (D1 = (D)(D2 — (D))
Lin) = / i) (15)

gives the average radius of the clump. Complementary to intensity of seg-
regation I, the scale of segregation L can be used as a measure of clump
sizes of the coarse-grained description of mixing patterns. The dynamics of
such scales should reflect the changes of sizes of unmixed regions, where D,,
is always larger than (D) .

3 Gibbs’ Classical Example of Fluid Stirring

Here we consider the famous Gibbs’ example of fluid stirring. Gibbs (1902)
described the case when black fluid differs only by colour and occupied the
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Figure 3. Initial distribution of black dye.

sector of 90° between two infinite cylinders. The cross section of area be-
tween two cylinders is shown in Figure 3. Consider two-dimensional flow of
incompressible viscous fluid in an annular cavity between the two cylinders
of the radius » = 1 and r = 2, coursed by tangential constant in time ve-
locity external cylinder V5. The inner cylinder is motionless, V; = 0 when
r = 1. The radial component of velocity u, is equal to zero for the whole
process, so there is only the azimuthal ug component which can be written
in the form (see Krasnoposlaya and Meleshko, 2004)
B Vob Voa?b
ug = Ar + —, A= —"—, B=———,
o + r b? — a? b2 — a?
For the case under consideration a = 1 and b = 2, therefore, A = 2/3V5 and
B = —2/3V;. Advection equations can be presented as
dr 0 do
_— = — = U
a0 dt "
and with initial conditions r = r;,, 8 = 6;, t = 0 describe motion of passive
Lagrangian particle occupied point (r,6) in time ¢ in the known Eulerian
velocity field.

(16)

(17)
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The system (17) can be written in rectangular coordinates z = rsinf, y =

rcosf as
dz _ i7 @:Ax—i— ﬂ7 (18)
dt 2 + 92 dt 2 + 92

where A and B are as in (16).

For obtaining mixing pattern we follow deformation of interface between
black and white fluids. Every point of the interface moves according to
advection equations (17)-(18). At the initial moment the interface is de-
scribed by relations: 1 < r < 2 and 6 = 0 (horizontal part of the boundary),
0 <6 < 7/2and r =2 (upper curved part), 2 >r > 1 6 = w/2 (vertical
part), 7/2 > 6 >0 r =1 (lower part of the boundary).

After 12 complete turns of the external cylinder mixture has pattern
shown in Figure 4 (a). The black fluid is now in the whole area between
the cylinders. In the course of time black windings will be more and more.
Under infinite number of turns number of windings becomes infinite and
mixture is uniform. Let us apply such measures as square density and in-
tensity of segregation to quantify mixing quality. In Figure 4 (b) mixture
pattern corresponding to Figure 4 (a) is shown as square density D,, dis-
tribution when cell size is § = 0.2. In Figure 4 (c¢) the same pattern is
presented in the cells with § = 0.1. From comparison of graphs we may
conclude that in bigger cells the mixture looks as uniform and in smaller is
nonuniform (having some empty cells without black fluid).

Dynamics of measure criteria such as intensity I (10), calculated with
0 = 0.1, when t/T is the number of half turns and function of square density
(D?)/(D)* — 1 are shown in Figure 5. We may see that mixture becomes
more uniform with increasing turn number. The intensity of segregation is
more convenient as criterion because it is changing between two number:
from one to zero.

We used the special numerical algorithm for two-dimensional contour line
tracking for representation of the interface between the black and white flu-
ids which provides an area-preservation mapping in the flow and conserves
all topological properties of black fluid enclosed inside the boundaries of in-
terface (see Krasnopolskaya et al., 1999, and Krasnopolskaya and Meleshko,
2004). In our algorithm the key idea is the use of a non-uniform distribu-
tion of points at the initial contour to present this interface in such a way
that: (i) the distance between neighbouring points remains between some
chosen values (for that points are added when the distance becomes long
enough and points are removed when it becomes too short) and (ii) the an-
gle between any neighbouring straight lines is larger than some prescribed
value. The principal advantage of our algorithm is that area preservation
of the blob enclosed by the contour is guaranteed even after high stretch-
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Figure 4. Mixture pattern — (a), square density distribution with 6 = 0.02

— (b) and with 6 = 0.01 — (¢).
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Figure 5. Dependence of criterions on number of half turns.

ing and complicated folding. Knowing the position of the contour line (the
boundary of the black fluid) we can construct an Eulerian description of the
mixing process, giving an opportunity to quantify mixing at any moment
of time.

It is worth noting that the more traditional approach, based upon the
presentation of the blob as a collection of N points uniformly distributed
over the area Sy, of the dyed material, can provide a reasonable treatment of
mixing with excellent correspondence with the experiments, even in complex
domains (Jana, Metcalfe and Ottino, 1994). For long time evolutions, how-
ever, this approach provides only a quantitative general picture of mixing
(see, Liu, Muzzio and Peskin, 1994; Blake and Otto, 1996, for several exam-
ples). Fine details, especially the question if an ‘empty’ space surrounded by
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a cluster of points really means the absence of the to be mixed component,
remain unclear. Basically, the uniformly distributed multipoint approach
can not provide a valid description of dyed blob stretching and folding, if
the thickness of filaments becomes less than (S,/N)'/2, or if the length of
the contour line becomes more than 2(NS,)'/2. Besides, being distributed
uniformly at the initial moment, the points tend to spread out nonuniformly
and, sometimes, collect into dense clusters. Any ‘box-counting’ calculations
based upon the preservation of a Lebesgue measure of the set of N points
(with an ‘area’ related to each point S;/N), can provide only qualitative
estimates for quality of mixing (Ottino, 1989).

An important issue is connected with the time reversibility of all mea-
sures. There are two questions in this issue. One concerns the reversibility of
individual points, representing the contour line after some time Ty, to their
initial positions at time 27gk. The second question is connected with the
conservation of the dyed area and, therefore, reversibility of all measures.
Our calculations with 100000 points uniformly distributed along the initial
circular contour line , for example, have shown the accurate reversibility
after ten periods of periodical distributive stirring in the wedge cavity (for
details see Krasnopolskaya et. al., 1999). In spite of the accurate calcu-
lations of the individual point positions already after the two first periods
the blob area was not conserved, the relative error after the nine periods
was, for example, 70% (meaning that 70% of the original blob area has
been ‘lost’). The calculations based on our algorithm with nonuniform dis-
tribution of points conserved the blob area for twelve periods of forward
and twelve periods of backward motions of periodical distributive stirring
in the wedge cavity (a check on area conservation leaned that even after
12 periods of forward motion less than 1% of the dyed material was lost).
In this case the computations of all coarse grained measures based on the
value of the blob area are reliable. Nevertheless, for such computations not
all points come back to their initial positions. After the reverse process
some of the points are located along pieces of the unstable manifold for the
backward motion (which coincides with the stable manifold for the forward
motion). The contribution of these spurious lines to the blob area equals
zero. Thus, we can conclude that computation of the measures shows a
complete reversibility in spite of irreversibility of some individual points.

4 Evaluation of Transport Properties by Exchange
Matrix Method

The study of transport properties is an important issue. This part of the
paper deals with exchange matrix method described by Spencer and Wiley
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(1951). In general chaotic dynamics of particles motion in efficient mix-
ing could be studied in different ways, for example, by means of Poincaré
sections. However, we are interested in the short term history of fluid trans-
port. Poincaré sections present the history of motion of points in some area
during a long time interval, say, during a thousand periods of flow. On the
contrary, we need to know which part of the Eulerian space will be mixed in
a short time and, more importantly, how much dyed matter will leak to some
specific part of the area under consideration. The orbit expansion method
developed by Beerens, Ridderinkhof and Zimmerman (1995) for a quantifi-
cation of the chaotic transport does not give answers to those questions. In
our case, it is important to know not the mixing region (where presumably
mixing is instantaneous) obtained by the long time tool - Poincaré sections,
— or the rate of material exchange (which could be high in a very narrow
domain), but how uniformly this mixing region is distributed over the whole
area during a specific finite interval of time. We suggest a different approach
for an estimation and quantification of transport properties. Here we briefly
present a methodology for the quantification of the chaotic transport based
on the matrix method.

First step is to divide the whole area of investigating by cell grid in the
square boxes with the side size § and the area Ss = §2. We may number
all cells starting from 1 to N. The next step is to compute the exchange
matrix coefficients D;; using Spencer and Wiley (1951) method.

Coefficient D;; is equal to the fraction of the material (say, dyed mat-
ter) originally occupying completely the j box which is moving by flow field
to the ¢ cell. This is the basic step in the matrix method. In order to
compute the value of coefficient D;; we put dyed patch as a square blob
continuously occupying the j cell. Then we use a contour tracking algo-
rithm that conserves both area and topological properties (connectedness
and non-self-intersection) to find the blob’s boundary in Eulerian space un-
der investigation at the moment of time which we called as the end of cycle
in flow field (end of period for periodical flows and end tidal for tidal flow).
Then we project the found blob’s boundary in to the 4 cell. The ration of
dyed material in that 4 cell Sél)end to the area of initial dyed blob S,Ej Jstart
in the j box is equal D;;, namely

S(i)end S(i)end
Dij = (b')start = =2 (19)
Sy’ S5

Then using this matrix we can predict transport of dyed matter from
any place (any box) in the area to an arbitrary location and determine the

time when it happens. If ago) is the initial course grained density in the j
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cell, the density in the ¢ cell after n operations are given by the elements of
the matrix

n 0 n 0 n
0] = laf)1Dy]" = la”)[D;}] (20)
If al(") is not zero then dyed material polluted the ¢ cell and n number
(n)

shows after how many operations it is happened. For zero a, ’ it is neces-
(n)
ij -
for computing of Dgl) we need to know flow field. It could be done by ana-
lytical presentation or by numerical approximation or even by experimental

observations.

sary to have either zero value of the a§0) or D We want to stress that
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Abstract In this pedagogical review we summarize recent results
on reactivity in chaotic hydrodynamical flows, in both open regimes
and closed containers. In open flows, reaction is concentrated on the
fractal filaments of the unstable manifold of a chaotic saddle. In
closed flows, the product does not show a well-defined fractal prop-
erty, nevertheless, there is a transient filamentary structure present.
We derive a rate equation both for frontal (autocatalytic-like) and
acid-base reactions in both types of flows. In open flows, this equa-
tion indicates that reactions are enhanced by the unstable manifold,
which serves as a fractal catalyst. In closed flows, the effect of tran-
sient filamentary patterns can be taken into account by the coupling
of the reactive dynamics to a time-dependent effective dimension.

1 Introduction

We are witnessing an increasing interest in the properties of chemical reac-
tions taking place in time-dependent two-dimensional flows whose advection
dynamics is chaotic. After a strong theoretical approach of the last decade
(for a review, see Tél et al. (2005)), and an early attempt (Paireau and
Tabeling, 1997), there is a series of experimental works currently appear-
ing. Recent studies investigate reactions in the blinking vortex flow (Nugent
et al., 2004), in cellular flows (Paoletti and Solomon, 2005; Schwartz and
Solomon, 2008), in an electrolytic flow (Arratia and Gollub, 2006; Paoletti
et al., 2006), in vortex rings (Rogers and Morris, 2005; Rogers et al., 2008),
and in vertically oasillating fluids (Fernandez-Garcia et al., 2008). The type
of reactions ranges from excitable media, via autocatalytic, to acid-base re-
actions.

A relevant field of application of these studies is in microfluidics (Stroock
et al., 2002; Bottausci et al., 2004; Miiller et al., 2004; Ottino and Wiggins,
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2004; Stremler et al., 2004) (see also the lecture by Mezi¢ (2008)) since there
is an industrial demand for micromixers in which efficient and controlled re-
actions can take place. The problem of reactive chaotic flows is important
for other fields as well, ranging from chemical engineering and combustion
(Menzinger and Dutt, 1990; Kiss et al., 2004) to environmental aspects,
like the spreading of reactive pollutants, the ozone loss in the stratosphere
(Wonhas and Vassilicos, 2002; Groof} et al., 2005), and the plankton bloom-
ing in the ocean (Abraham et al., 2000; Bracco et al., 2000; Martin, 2003;
Sandulescu et al., 2006, 2007, 2008).

Although the experiments have been done in closed containers, the theo-
retical understanding indicates that some features appear in a much cleaner
form in open flows (for a review see Tél et al. (2005)). In open flows there is
a fluid current flowing through the region of observation to which particles,
once escaped downstreams, cannot return within the observation time. For
simplicity, we concentrate on two-dimensional, smooth, icompressible flows.

Based on detailed studies of passive chaotic advection (see Aref (2002,
2008)), we can see that there is a basic dichotomy between the advection
dynamics in open and closed flows, as shown in Table 1. In the open case
there is a very clean and time-independent fractal dimension associated to
the chaotic advection dynamics. The chaotic advection dynamics itself is,
however, unavoidably transient, i.e., of finite lifetime. In the closed case,
chaos is permanent, but produces structures whose degree of filamentarity
changes in time. Hence filamentarity is of transient character. This di-
chotomy is also reflected in the reaction outcome in these different types of
flows.

Table 1. Properties of passive advection in open and closed flows.

open flow  closed flow

chaos transient ~ permanent
filamentarity —permanent  transient

In open flows, there exists a fractal set of particle trajectories that never
escape the region of observation, this is called the chaotic set. The set of
these trajectories is unstable in the sense that though typical trajectories
might approach it for a transient time, but eventually they leave it along its
unstable manifold. This unstable manifold is a filamentary fractal of zero
measure in two-dimensional flows, and it becomes the skeleton of active
processes (Toroczkai et al., 1998) (see Fig. 1).

In closed flows, however, the unstable filamentation is dense over the full
domain, and there is no invariant set which had a well-defined dimension



Reactions in Chaotic Flows 309

Figure 1. Distribution of product C of the autocatalytic reaction A4+C
— 2C (A: white, C: black) in the plane of the blinking vortex-sink system.
The flow, introduced by Aref et al. (1989) and studied in detail by Karolyi
and Tél (1997), is a combination of the blinking vortex (Aref, 1984) and the
pulsed sink system (Jones and Aref (1988), see also Stremler (2008)). The
flow is open since particles leaving via the sinks never return. The sinks are
situated at (x = £1,y = 0), and a period starts with the opening of the
left sink. Panel a (b) shows the distribution after 4 (6) periods. The initial
condition is a small square of C particles in a sea of A. The distribution
becomes periodic with the same period as the flow after about 2 periods: a
steady state sets in due to a balance between the chemical production and
the hydrodynamical outflow.
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strictly lower than 2, the dimension of the flow. In the absence of fluid
transport barriers in closed flows, autocatalytic (Neufeld et al., 2002a) or
excitable reactions (Neufeld, 2001; Neufeld et al., 2002b) or even acid-base
reactions lead to a steady state in which the full fluid domain is either occu-
pied by the product or no product is present at all. The asymptotic state is
thus homogeneous, and hence much less interesting than in the open case.
This is fully consistent with the observation that the product is distributed
along the unstable manifolds (Metcalfe and Ottino, 1994; Cartwright et al.,
2004). Before reaching the asymptotic state, the chemical product appears,
however, to have filamentary features (Neufeld et al., 2002a,b; Neufeld, 2001;
Wonhas and Vassilicos, 2002) (see Fig. 2).

2 Local chemical dynamics across the stretching
direction of the flow

Much insight can be gained into any kind of reaction dynamics by analyz-
ing the concentration dynamics across the unstable filamentation (Clifford
et al., 1999; Vikhansky, 2004; Vikhansky and Cox, 2006). A particularly
useful approach is the so-called Lagrangian filament slice model (Neufeld,
2001). The idea is to investigate a long, straight segment of the unstable
manifold and follow the reaction perpendicular to this segment only, since
due to a fast stretching, the concentration distribution can be assumed to
be homogeneous along the manifold. Consider a reaction, assumed to be
governed by a single relevant component, of dimensionless concentration ¢
according to the rate equation ¢ = kR(c), in a medium at rest, where k is
the rate constant, and function R(c) specifies the reaction. The effect of the
flow transversal to the manifold is a local exponential contraction governed
by the contracting Lyapunov exponent. Taking the z coordinate as the one
measuring the distance from the unstable manifold, the typical flow field can
be written as —\z, since in incompressible two-dimensional flows the aver-
age contracting Lyapunov exponent coincides with the expanding one \ (in
modulus). The Lagrangian filament slice model is thus a one-dimensional
approximation, a partial differential equation for the dimensionless concen-
tration distribution ¢(z,t) in the form of

dc  ~ dc 9?
——dx— =k Daig ¢, 1

gr Moy~ FEO T Daing e @)
with Dg;g as the diffusion coefficient. Note that this is a generalization of the
reduced convection-diffusion equation (the limit of & = 0 of (1)) investigated
in the lectures of Leonard (2008), see also Villermaux and Rehab (2000);

Villermaux and Duplat (2003) for the reactive case.
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1

Figure 2. Distribution of product C of the autocatalytic reaction A+C —
2C (A: white, C: black) in the double sine flow, introduced by Franjione and
Ottino (1992); Liu et al. (1994); Pierrchumbert (1994). The flow is double
periodic over the unit square and is periodic in time. It is closed since there
is no outflow: particles leaving across one edge re-enter across the opposite
one. Panel a (b) shows the distribution after 4 (6) periods. The initial
condition is a narrow band of C particles in a sea of A. There is a drastical
difference in the pattern. The chemical product is gradually accumulating
in the system: the filaments (of approximately the same width) cover an
increasing area, and appear therefore to have a fractal dimension increasing
in time. The asymptotic steady state is a macroscopically homogeneous
distribution of C which sets in after about 15 periods.
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By measuring time in units of 1/\ and length in units of some linear
scale L, the equation becomes

Jdc Jc 1 02
E*I@—D&R(C)‘FR@C, (2)

where two dimensionless parameters remain (Tél et al., 2005):

L2
Daig’

Da = E, and Pe= (3)
A

The first one is the Lagrangian Damkdhler number (Tél et al., 2005) which

is the ratio of the time scale of the chaotic advection (1/), the Lyapunov

time) to the time scale of the reaction. The other dimensionless quantity is

the Lagrangian Péclet number which characterizes the relative strength of

the advection and diffusion, and is typically large: Pe > 1.

In what follows we consider a simplified version of this model where the
distribution is sharp so that it can be modelled by a step function on which
the concentration value is the constant ¢, and whose support is of width
0(t). For a pictorial view see Fig. 3 Such sharp transitions are expected to
be present for fast rections: Da > 1 (Giona et al., 2002; Straube et al.,
2005; Giona, 2008). The problem reduces then to the bandwidth dynamics
of ¢ which can be described by ordinary differential equations (Tél et al.,
2000,2004).

Consider first reactions with front propagation, e.g., an autocatalytic
reaction A + C — 2C. In such cases material C is spreading into the medium
of material A with a constant front velocity v (see left panel of Fig. 3).. The
width of the band in which material C is distributed along the unstable
manifold increases therefore with the speed of 2v, but in a chaotic flow it is
also shrinking with the rate —\d. In a domain of linear size L, the dynamics
of the relative width d = ¢/L is thus

d=—Xd+2v/L. (4)

This equation is expected to be valid for any reaction with frontal propa-
gation. According to Luther’s law (Cross and Hohenberg, 1993), the front
velocity is proportional to the square root of the reaction rate k and of the
diffusion coefficient Dgig:

v = Oé(deiff)l/2. (5)

With « of order unity, this law holds for an amazing variety of reactions
ranging from bistable and excitable ones to flames (Cross and Hohenberg,
1993).
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Figure 3. Concentration distribution ¢(z) along the contracting direction
x of the flow and the definition of the bandwidth §(t). Left panel: auto-
catalytic reaction, material A is in abundance outside of C. The transition
region, the reaction front, is propagating with a fixed velocity v relative to
the fluid. Right panel: acid-base reaction. The motion of the transition
region, relative to the flow, is due to diffusion; there is no intrinsic front
velocity v in this problem. If the transition region between material C and
the other components is narrow enough, the concentration of material C
can be well approximated by a function which is constant (of value ¢) over
an interval of length §(¢), and zero outside. Concentrations are considered
here as number densities. Each band of width ¢ is imagined to surround a
filament of the unstable manifold.
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In the case of an acid-base type reaction A+B — 2C, we imagine that
components A and B are distributed uniformly on the two sides of the
manifold and reaction takes place within bands of average width §(¢). Inside
this band the C-concentration is assumed to be a constant ¢ (see right panel
of Fig. 3.). The width is changing due to diffusion with a rate Dgig/d. Note
that § = Dyie /0 has the usual § = /62 + 2Dg;gt solution. This ¢ is thus
proportional to the quantity o treated in the lecture by Leonard (2008):
o = /26. In a chaotic flow, this diffusive spreading is counteracted by the
simultaneous presence of exponential contraction. The full dynamics of the
dimensionless bandwidth d = §/L is now governed by

d = —Xd+ Daig/(L*d). (6)

We can unify and generalize these cases by writing the bandwidth dy-

namics as ) ~
d = —Adg(d), (7)

where function g(d) is dimensionless. Based on the examples, we assume
that there is a steady state solution d* > 0 for which

g9(d") =0, (8)

and the steady state is stable (¢'(d*) > 0).
The steady state bandwidth for the particular reactions (4) and (6) is

d*=2U and d* =Pe /2 (9)

respectively. Here U = v/(AL) is a dimensionless front velocity, which can
be written in view of (5), as U = a(Da/Pe)!/? (see (3)). Equations (9) show
that acid-base type reactions are essentially diffusion limited, while in the
frontal case the reaction rate also plays an important role.

3 Global dynamics due to fractality in open flows

As mentioned earlier, the product is concentrating along the unstable man-
ifold of the chaotic set present in the open flow, whose filaments are com-
plicatedly folded. After some finite transient time, t., we can assume that
the product has spread along all the branches of the unstable manifold
with a more or less uniform width §(¢), whose dynamics is governed by the
filament slice model (7). Due to the foldings, however, several manifold fila-
ments come arbitrarily close. Consequently, many bands filled with product
concentration ¢ do overlap. Such bands cannot be resolved one-by-one. The
smaller the bandwidth, the better the separation. The effect of foldings and
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overlaps can thus be taken into account by applying the rule of fractal ge-
ometry (Mandelbrot, 1982), according to which the number N(g) of boxes
needed to cover a set with linear size € depends on the size, the resolution,
as

N() ~e P, (10)
with a non-integer power, the fractal dimension, D. Accordingly, with boxes
of linear size 0(t)/L = d, the number of boxes needed to cover all the

bands occupied with product of width §(¢) around the fractal manifold
of dimension D is proportional to d~”. Since the area of a box is §2,
the total area of the bands in a square of size L is therefore, d>~PL? (for
simplicity, the prefactor has been taken to be unity). The product content
is C(t) = ed(t)®> P L?, and the average dimensionless concentration is then
c(t) = O(t)/(eL?), i.e.,
c(t) =d(t)*P. (11)
By taking the time derivative of this concentration, using (7), and expressing
d with ¢, we find
¢=—(2— D)Ag(c/C=P))c. (12)
According to a general rule of the theory of transient chaos (Tél, 1990; Tél
and Gruiz, 2006), the combination (2 — D)\ is precisely the escape rate &
from the chaotic saddle. This quantity tells us how rapidly the number of
non-reactive particles decays in any preselected region with time, due to
the outflow. The decay follows the rule N(t) ~ exp (—«t). With the escape

rate, we find
¢ = —kg(c/ =P, (13)

This is a rate equation for the overall concentration in a square-shaped
region of the fluid, in which a chemical reaction, specified with the local
width dynamics (7), takes place superimposed on an open flow. It is re-
markable that the flow’s properties are reflected in two parameters of the
passive advection process: the escape rate and the dimension. Moreover,
the dimension appears in the exponent 1/(2 — D) which is always larger
then unity, since D is between 1 and 2 in two-dimensional flows. By taking
into account that function ¢ contains a negative power of its argument (cf.
(4), (6), (7)), we see that a negative power of the concentration appears. In
particular, for the frontal and acid-base reactions governed by (4) and (6)
we obtain

2
¢=—ke+2Uke™?, and é= —ke+ P—Hcf(HQ’B)v (14)
e

respectively, with
6= > 0. (15)
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The powers of ¢ are negative in both cases, leading to a singularity of the
product terms due to the underlying fractal pattern. This shows that hav-
ing only a small amount of product in the region of observation, the rate of
reaction is enhanced. This is a consequence of the fractal catalyst property
of the unstable manifold: if there is less reacting material present the bands
become more finely resolved, and the activity becomes faster. On the con-
trary, when the product is abundant, material flows out rapidly from the
region of observation.

Equations (14) illustrate that a steady state can set in with a finite
amount of concentration ¢* < 1, in which the production is compensating
the loss due to the outflow from the region of interest. In the general setting
we find that this concentration is expressed as a non-integer power of the
steady state bandwidth:

¢ =d?*P, (16)

Using the particular forms of (4) and (6) we find
¢* ~ (Da/Pe)'"P/2 and ¢ ~ Pe 1HP/2) (17)

respectively. This implies an anomalous scaling with the reaction rate and
the diffusion coefficient.

4 Global dynamics due to temporally changing
filamentarity in closed flows

The case of closed flows can be considered as the limit of vanishing escape
of open flows: kK — 0. Equation (13) is said to hold after a transient time,
te, needed for the product material to be distributed roughly uniformly
along the filaments of the unstable manifold. Approaching the limit of
closed flows, the filaments becomes denser and denser, the dimension tends
towards 2. Consequently, the transient time ¢, becomes very large. This is
consistent with the fact that for x — 0 Equation (13) leads to the trivial
statement ¢ = 0. For closed flows (13) is thus only valid in the limit of very
long times.

To understand the interesting part of the dynamics, preceding the ap-
proach towards the steady state, we observe that in closed flows a patch of
product is quickly stretched in filaments, but the length of this filament is
growing over a long period of time. We are applying therefore the width
dynamics to an unstable manifold segment whose length is growing in time.
Due to area preservation (incompressibility) the typical rate of contraction
(Xin (4)) towards the unstable manifold must be the same as the stretching
rate of typical line segments, which should grow initially as exp(\t).
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The increase of the length £ of a material line of finite width §(t) is
exponential over short times only, later saturation sets in at some L£* since
the width dynamics reaches a steady state *. In a square-shaped container
of area L?, the total length is £* = L/d*. As a simple, though general, form
we write the equation for the dimensionless length [ = £/L as

[ =X (1— f(ld"). (18)

We do not specify the functional form of f (£/L£*) > 0, but require f(0) =0
and f(1) =1 to ensure an initial exponential growth and a saturation.

Fractal dimension of curves can be considered as a measure of their
foldedness. Since a long line can fit into a finite area only if it is strongly
folded, we define an instantaneous effective dimension D(t) (Villermaux and
Gagne, 1994; Karolyi, 2005) by counting the number N of boxes needed
to cover all the bands containing product C with boxes of size d(t), and
requiring that N scales as a power of d: N (d(t)) = d(t)"P® (1 < Deg < 2).
To total length can then be written as

I(t) = d(t)}=PW, (19)

The product content in the container is C(t) = ¢£5 = ¢L?d(t)>~P® | where
¢ is the concentration inside the bands. The average dimensionless concen-
tration is then c(t) = C(t)/(¢L?), and we find from (19) that

e(t) = d(t)I(t) = d(t)* PO, (20)

which is a generalization of (11).
By taking the time derivative of the left equality and using (7) and (18),
we obtain

¢ = cA[1—g(c"t7) = f(c7Pd)], (21)
where
B(t) = f@—l)‘(; (22)

It is remarkable that a negative power (—/3(t)) of the average concentration
occurs in the chemical rate equation, just like in open flows (c.f. (14)).

Differentiating the right equality of (20), and using (7), (21) and (22),
an equation for the effective dimension follows:

D A

EoDP e PO QA [Py —1]} (23)

g

Equations (21) and (23) form a coupled set of equations for the concentra-
tion ¢ and the dimension-dependent exponent 3.
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For short times, ¢t < 1/5\7 we can assume that f = 0 since saturation is
not yet in effect. If the product is distributed along a line initially, so that
the effective dimension is D(0) = 1, implying 5(0) = 0, we find from (21)

¢ = A1 —g(c)]. (24)

Substituting here (4) and (6), we find for frontal and acid-base reactions

S = At
c(t) =co+2UN, and c(t) =4/c2 +2\t/Per cy+ Po’ (25)
Co -

respectively, implying a linear initial growth. Note that an exponential
growth would only follow from (24) if g were constant, which is not the
case.

In order to see how the trivial ¢ — 1, D — 2, d — d* final state
is reached, we take into account that ¢!*# = d and ¢ ?d* = cd*/d, and
linearize Eqs. (7), (21) and (23) as

d = —bAd"(d — d*) (26)
¢=—aX(c—1) = A(b—a/d*)(d — d*), (27)
b= B0 a9

respectively, where D(t) is used instead of 3(t), and notations a = f’(1) and
b = ¢'(d*) have been introduced. We immediately observe that the dynam-
ics of the dimension D(t) simply follows the dynamics of the concentration
¢, as we approach the steady state: comparing (27) and (28) we see that
D = —¢/Ind*. The convergence ¢ — 1 is governed by the largest of the
eigenvalues of the Jacobian in Egs. (26,27). The eigenvalues turn out to be
—aX and —bd* ), hence we have

¢—1~exp(—ot), Deg—2~ exp(—ot), (29)

with -
o = min{aX, bd*\}. (30)

It is easy to check from the definition of g(d) that for frontal and acid-base
reactions bd* = 1, and bd* = 2, implying

o =min{a), A}, and o = min{a), 2}, (31)

respectively. Finally, we mention that for very long times, t > 1/0, close
to the fully homogeneous state, the rule (29) might break down since if the
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distance between neighbouring C-bands is smaller than the bandwidth (9),
the bands might desintegrate into drops and the basic assumption of the
theory is then no longer valid.

It is worth pointing out that, in contrast to the open case, the (time-
dependent) dimension is different in the passive and in the active cases.
When both diffusion and reaction are absent, we have g = 1 and f = 0, since
there is no saturation in filament length. From (21) ¢ = 0 follows, as should
be in a closed container. From (23) we find that 3 = —\/In¢ = const,
consequently 3(t) = 3(0) — (\/In¢)t. From (22) D = (1+23)/(1+ ), i.e.,

2 — D(0)
11— (2-D(0)Xt/Inc’

D(t) =2 (32)

The time evolution of the effective dimension is much slower in passive
advection than in reacting cases, since the decay is governed by a power
law.

5 Discussion

The behavior indicated by these arguments has been verified by a number of
numerical experiments both in open (Toroczkai et al., 1998; Tél et al., 2005)
and closed flows (Kérolyi and Tél, 2005, 2007). The anomalous scaling of
the overall product with the diffusion coefficient, as indicated by (17), has
been found in a model of atmospheric chemical reactions based on realistic
wind data Wonhas and Vassilicos (2002). Recent experiments (Arratia and
Gollub, 2006) are in agreement with both the initial non-exponential growth
(25) of the chemical product in closed containers, and the exponential con-
vergence towards to homogeneous distribution (29).

As a conclusion, we augment the qualitative comparison of Table 1.
with quantitative relations, including features characterizing the chemical
product (see Table 2.).

Table 2. Properties of open and closed reactive chaotic flows.

open flow closed flow
chaos transient permanent
remaining particles N (t) ~ e~ "' x = const N = const, k=0
filamentarity permanent transient
dimension D = const < 2 D(t) -2~ et
concentration ¢ determined by k, D ¢ coupled to D

asymptotics in ¢ ct=d2 P ct)y—1~e ot c* =1
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The theory presented here has been shown (Tél et al., 2005) to be ex-
tendable in the open case to temporally non-periodic, e.g., chaotically time
dependent flows, to flows with transport barriers, and to three-dimensional
flows. In the last case, the unstable manifold might be a fractal surface, im-
plying that the products are distributed along curtains in three-dimensional
flows. The theory can also be extended to other types of chemical re-
activity (Benczik et al. (2005); Benczik (2005); Cox (2006); Menon and
Gottwald (2007); Pérez-Munuzuri and Ferndndez-Garcia (2007); Straube
and Pikovsky (2007)), and in particular to biological activity. In this re-
spect, notable examples are, besides the plankton problem (Abraham et
al., 2000; Bracco et al., 2000; Martin, 2003; Sandulescu et al., 2006, 2007,
2008), the competition of populations (Scheuring et al., 2003a; Kérolyi et
al., 2005), the problem of early evolution (Kdrolyi et al., 2000; Scheuring et
al., 2003b), and metabolic networks (Karolyi et al., 2002) in flows.

The essential observation of our arguments has been the presence of some
kind of fractality in all these cases, which leads to a singular enhancement
of the reactivity. Since this fractal feature is universal in chaotic advection,
on which the reactivity is superimposed, we expect that our treatment of
closed flows, and the essence of the features summarized in Table 2., remain
valid in all the cases mentioned above.
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Fluid Mixing, Chaotic Advection,
and Microarray Analysis

Mark A. Stremler

Department of Engineering Science and Mechanics
Virginia Polytechnic and State University, Blacksburg, VA 24061, U.S.A.

Abstract Chaotic advection has developed into one of the primary
tools for analyzing stirring and estimating mixing in laminar flows.
Much of the current interest in laminar mixing is focused on small-
scale systems, and many of the key applications are in biomedical
systems. Here I discuss the use of chaotic advection in designing a
mixing protocol to improve DNA microarray analysis. The accuracy
and sensitivity of the results can be improved by mixing the solu-
tion of unknown DNA across the microarray surface by periodically
operating an arrangments of sources and sinks. Optimal operating
parameters are predicted using an investigation of chaotic advection
in a mathematical model of the system. The findings of the chaos
analysis are consistent with experimental mixing results, supporting
the use of chaotic advection for predicting and optimizing mixing
when designing fluid-based biomedical devices.

1 Introduction

Microarray analysis is a massively parallel biomolecule screening technique
that is used widely in genomic and proteomic research (Heller, 2002; Ng and
Tlag, 2003; Stoll et al., 2004). In a standard implementation, the microarray
is a glass slide with ‘probe’ molecules immobilized on one surface. Probes
are arranged in an array of circular ‘spots’, with each spot containing thou-
sands of probe molecules of a single sequence or type. Depending on the
complexity of the genome being analyzed, for example, the microarray may
contain 10,000 or more unique probe spots. Unknown ‘target’ molecules are
analyzed by distributing them across the microarray in a fluid solution and
observing which probe spot(s) capture these molecules. A target molecule
is captured by a probe molecule when a sufficient number of binding events
have occurred to overcome the energy of disassociation. With DNA analysis,
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binding, or hybridization, occurs as a result of ionic bonding between the nu-
cleotide bases of the respective molecules, and probe DNA hybridize specif-
ically with complementary target DNA. Thus, a target DNA molecule is
captured by a specific spot on the microarray surface based on its sequence.
Similar behavior can be achieved with protein—protein, protein—-DNA, and
protein—drug interactions (Stoll et al., 2004). The resulting distribution of
target molecules then gives a profile of the types and relative quantities of
target in the original sample. This technology has been established as an
important tool for gene expression profiling (Schena et al., 1995), disease
diagnosis (Mohr et al., 2002), and drug discovery (Debouck and Goodfel-
low, 1999), and its use is spreading to other areas such as forensic DNA
‘fingerprinting’ (Willse et al., 2005).

A typical microarray analysis involves covering a centimeter-scale mi-
croarray surface with a volume of fluid roughly 10-100 pm thick. The (rel-
atively) large surface area is required to accommodate the thousands of
probe spots needed for massively-parallel screening, and the sample volume
is kept small in order to minimize the necessary quantity of unknown tar-
get and facilitate interaction of these molecules with the probe molecules.
Bond distances between hybridized nucleotides are sub-nanometer, so the
complementary probe and target DNA must be quite close together for hy-
bridization to occur. In a standard implementation, diffusion is the primary
mechanism for achieving this proximity. Since the DNA targets are large
macromolecules, transport by molecular diffusion is slow. For those target
molecules that are initially close to a complementary probe, diffusion is suf-
ficient. However, effective use of the microarray requires that every probe
spot interact with as many target molecules as possible from the entire
fluid volume. Thus, reliance on diffusive transport has severely restricted
the speed and reliability of this technique; consistent results require tests
to be run for as long as three days, with typical tests lasting 12—-14 hours
(Sartor et al., 2004), and as much as 94% of the resulting data is considered
statistically unreliable (Iyer et al., 1999).

A number of researchers have demonstrated that improvements in the
speed and reliability of microarray analysis can be achieved by flowing the
hybridization solution across the microarray (McQuain et al., 2004; Adey
et al., 2002; Liu et al., 2003; Cheek et al., 2001; van Beuningen et al., 2001;
Erickson et al., 2004; Vanderhoeven et al., 2004, 2005; Benoit et al., 2001).
One approach has been to modify the geometry of the microarray itself
(van Beuningen et al., 2001; Benoit et al., 2001). This present work is
focused instead on improving conventional glass-based microarray analysis;
leveraging the existing infrastructure should greatly increase the potential
for truly impacting current and emerging microarray applications.
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The microarray community recognizes that the ‘appropriate’ fluid mo-
tion is one that mixes targets across the microarray. The size and geometry
of the microarray system restricts practical operation to well within the
range of laminar flow (Sharp and Adrian, 2004), and achieving efficient
mixing is typically difficult as a result. Viscous forces dominate the fluid
motion, limiting the options for driving the flow. Even with motion, many
laminar flows will naturally tend to segregate different regions of the fluid.
Diffusion will, of course, cause mixing between these regions, but, as noted
above, the diffusive time scale is too long to provide adequate levels of mix-
ing across the large microarray surface. Optimizing the performance of a
microarray system thus involves establishing a flow protocol that efficiently
mixes target molecules across the entire microarray surface.

The most popular approach to mixing across standard microarrays has
been to periodically drive the fluid with a combination of flow sources and
sinks. The first device of this type in the literature uses a flexible mem-
brane at each end of the top surface to push fluid back and forth across the
microarray surface (Adey et al., 2002). A commercial version of this sys-
tem is available (MAUI from BioMicro Systems, Inc., Salt Lake City, UT),
and other vendors have developed similar systems (e.g., Lucidea SlidePro
Hybridizer, Amersham Biosciences, Buckinghamshire, UK). Each of these
devices uses a single source—sink pair, which tends to push a target molecule
back and forth between (roughly) the same two points on the microarray.
Other mixing approaches include the ‘planetary centrifugal mixer’ (Bynum
and Gordon, 2004), which overcomes the dominance of viscous forces by
subjecting the microarray to approximately 100g of acceleration. Shear
mixing (Vanderhoeven et al., 2004, 2005), in contrast, relies on viscosity to
move the fluid as one of the parallel surfaces is moved. Finally, mixing has
also been produced by acoustically oscillating bubbles placed strategically
throughout the fluid volume (Liu et al., 2003). Operation of these systems is
based primarily on empirical observations of mixing or DNA hybridization.

One tool for systematic evaluation of mixing in laminar flow systems
is the theory of chaotic advection, a phenomenon in which passive parti-
cles advected by a periodic velocity field exhibit chaotic trajectories. This
mathematical approach has been used to predict rapid mixing in a large
number of laminar flows; see, e.g., Ottino (1989); Aref (1990, 2002); Ottino
and Wiggins (2004b). A previous investigation of chaotic advection in a
simple pulsed source-sink system (Jones and Aref, 1988) suggests that this
approach can be used to enhance microarray operation, but there is not yet
a clear connection between a theoretical analysis and a practical optimiza-
tion. The work I review here is aimed at accomplishing this connection.

In the following sections I discuss a system for enhancing microarray
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analysis that uses two pulsed source—sink pairs, as described in §2. This
approach can result in efficient mixing across the entire microarray surface.
In §3, I review an experimental analysis (Cola et al., 2006) that indicates
this device can be optimized for mixing. Optimal performance of a model
system has been determined using an analysis of chaotic advection (Strem-
ler and Cola, 2006), and I review these results in §4. Good correspondence
between the experimental and modeling results support the (careful) use of
chaotic advection for identifying optimal mixing performance. New mod-
eling results in §4 show that improved mixing should be obtained simply
by interchanging the connectivity of the sources and sinks. Finally, in §5 I
conclude by discussing the application of this system to DNA microarray
analysis (McQuain et al., 2004).

2 The pulsed source—sink system

@@ 21 fnm @) ®
le———71 mm > (D)
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fluid chamber microarray T — —

Figure 1. (a) Schematic of the pulsed source-sink system in configuration A.
(b) Two-dimensional representation of the fluid chamber in configuration A. Source
locations are indicated by @ and labeled (z4); and sink locations by & and (z_);.
Source (z4)1 and sink (z_ )1 are operated together as a pair, as are (z4 )2 and (z—)2.
For configuration B, (z—)1 and (z_)2 switch locations. (¢) Computed trajectory
of a particle leaving (z4)1 at ¢t = 0 for & = 20% in the mathematical model of
configuration A. Circles show the locations of the particle after each pulse. This
particle is extracted through (z—): during the 5th pulse and reinjected through
(24 )2 during the 6th pulse. From Stremler and Cola (2006).

The device in Figure 1 uses two interconnected source—sink pairs to mix
fluid across a microarray surface. This system is based on the microflu-
idic mixer introduced by Evans et al. (1997). The sources and sinks are
generated by driving fluid through four small holes in the top surface with
two syringe pumps. These holes are located near the corners of the fluid
chamber as shown, and they are connected to the pumps with, for example,
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flexible tubing (McQuain et al., 2004) or microfabricated channels (Cola
et al., 2006). For the configuration illustrated in Figure 1, (z1); and (z_)1
are operated together as a source and a sink, respectively, while (z; )2 and
(z_)2 are ‘turned off” by pinching closed the corresponding channels. The
active source and sink each have strength (), which is the volumetric flowrate
injected or extracted through each hole. The system is operated steadily in
the configuration shown for a pulse time, T},,. During this pulse, the source
(or sink) will inject (or extract) a pulse volume V, = Q/T,. Valve states
then switch and the pumps reverse direction, and the system is operated
steadily for T, with (24)2 and (z_)2 as the source-sink pair with strength
Q. Operation proceeds by periodically switching between these two con-
figurations. In order to minimize the needed volume of working fluid and
to enhance mixing, any fluid extracted from the chamber through a sink is
later reinjected through the connected source; e.g., fluid extracted through
(z_)1 is reinjected through (z4 )2, as illustrated in Figure 1(c¢). The diame-
ters of the channels are chosen small enough that generally at least 90% of
the extracted fluid is reinjected during the next pulse.

With the domain geometry and hole locations fixed as shown in Figure 1,
the mixing capabilities of this system depend primarily on the connectivity
of the sources and sinks and on the magnitude of the pulse volume. I will
refer to the source-sink connectivity shown in Figure 1 as configuration A.
For configuration B, the locations of (z_); and (z_)s are switched, so that
holes in opposite corners are connected and, for example, the top two holes in
Figure 1(b) are operated together as a source—sink pair. Fluid is periodically
relocated from sink to source in both A and B.

Raynal et al. (2004) have independently considered a variation of con-
figuration A. Their device is square, but otherwise has essentially the same
geometry and hole locations as in Figure 1. However, in their approach
each hole acts alternately as a source and a sink, with any fluid extracted
from the chamber subsequently reinjected through the same hole. That is,
Raynal et al. (2004) use reinjection without relocation, as in the systems
mentioned in §1 that use a single source—sink pair. I discuss the impact of
this operating procedure on chaos and mixing in §4.

When operated at low Reynolds numbers and high Peclet numbers as
intended, the mixing characteristics of this system should not depend on the
scale of the fluid chamber or the magnitude of Q). It is convenient then to
work in terms of the dimensionless pulse volume a = V,,/V., where V. is the
volume of the fluid chamber, and the dimensionless time 7 = Qt/V,. With
this scaling, the dimensionless pulse time, QT,/V., is equal to a; that is,
the dimensionless pulse volume « can also be viewed as the time it takes to
complete one pulse relative to the time it would take to inject (and extract)
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a fluid volume V.. Since the depth of the fluid chamber is constant, « is
also the fraction of the microarray surface that is covered by injected fluid
during a single pulse.

3 Mixing experiments

Cola et al. (2006) present mixing experiments for the pulsed source-sink
system in configuration A. Mixing is evaluated by initially injecting a small
amount of dye at (z;); and monitoring the distribution of that dye during
device operation. Digital images of the fluid domain, such as those in Fig-
ure 2, are recorded after each pulse of the system, and it is assumed that the
signal intensity at each pixel is proportional to the local dye concentration.
The quality of mixing can be quantified by the coefficient of variation in
intensity for each image,

COV = 0/ Iaye, (1a)

where I, is the average intensity in the image and o is the standard de-
viation of the intensity. Normalizing the COV to account for variations in
initial conditions gives as a measure of mixing the mizing index

0 = COV/COV s, (1b)

where COV .« is the maximum coefficient of variation in intensity for a
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Figure 2. (left) Dye distribution after 19 pulses in configuration A for three
values of «. (right) Evolution of the mixing index 7 in the experiment. Curves
are labeled according to the value of a. Estimated error in 7 is £0.05. From Cola
et al. (2006).
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given experimental run. Thus, the most poorly mixing image in a single
experimental run gives = 1, and as the fluid is mixed 7 decreases.

Temporal evolution of the mixing index is shown in Figure 2 for five
different values of «. For the three cases that mix well (i.e. for o ~ 14,17,
and 45%), the limiting value of 7 is roughly 0.14. Assuming an error in 7 of
+0.05, both o =~ 14 and 17% are well mixed (i.e. n < 0.19) by 7 ~ 4. This
dimensionless time does not account for any delay that may occur between
sequential pulses, which is neglected for this discussion; comments on the
impact of a ‘delay time’ can be found in either Cola et al. (2006) or Stremler
and Cola (2006). The system also mixes well for o &~ 45%, but in this case it
takes roughly twice as long to achieve 1 < 0.19 as for a =~ 17%. For a =~ 10
and 26%, mixing initially proceeds at a rate similar to the other cases, but
for 7 > 2 mixing (temporarily) plateaus with 1 ~ 0.4-0.5. This delay in
the mixing is caused by segregation of the fluid domain, which is evident
in the experimental images in Figure 2. For a ~ 10%, dye that starts in
the top (or bottom) half of the domain remains in the top (or bottom) half
for a large number of pulses. For a &~ 26%, repeating patterns appear in
the dye distribution, with significant portions of the fluid being consistently
extracted and reinjected together.

These experiments suggest that optimal mixing in the pulsed source—
sink configuration A can be achieved through appropriate selection of the
pulse volume. The parameter space for this optimization is quite large, as
there are an infinite number of choices for a. It would also be useful to
include options such as configuration B in the consideration. The scale of
the problem motivates considering transport and mixing in a model of the
flow.

4 Chaotic advection analysis

As first noted by Hele-Shaw (1898), low-Reynolds-number flow in a thin
planar gap (with depth §) can be represented by a velocity potential that
is proportional to the local pressure. This analogy between Hele-Shaw flow
and potential flow has long been used to experimentally visualize inviscid
flows, and sources and sinks are commonly used to generate various flow
structures. Jones and Aref (1988) document chaotic advection due to pulsed
operation of one source and one sink in the unbounded plane. The analytical
solution for steady, simultaneous operation of one source and one sink with
equal strength ¢ = @/0 in the unbounded plane is given by Lamb (1932).
For a source and a sink located at z; (= x4 +1y4) and z_, respectively, in
the complex plane, the complex potential for flow in a rectangular domain
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is (Stremler and Cola, 2006)

F(2) = o= {log[0(2) - o(24)] + log[o(2) — o (24)]

- 2T
—log[o(2) — (2_)] — log[o(z) — a*(z_)]} (2a)

with o(z) = sn[(x/L+ia) K(k), k], where the asterisk denotes complex con-
jugation, sn(z, k) is the Jacobian elliptic sine, K (k) is the complete elliptic
integral of the first kind, L is the width of the domain, and k is determined
from the aspect ratio of the domain, a, via

a=K(/1—-k2)/2K(k). (2b)

Consider, then, potential flow due to piecewise continuous operation
of two alternating source—sink pairs as a model of the device operation de-
scribed in §2. Chaotic advection in this system can be quantified by applying
numerous tools from dynamical systems theory. The tools considered here,
namely Poincaré sections, Lyapunov exponents, and Kolmogorov-Sinai en-
tropy, rely on tracking passive particles in the flow. Streamlines generated
by steady operation of one source—sink pair are given by the imaginary part
of Fin (2), and the motions of passive particles are obtained by integrating
numerically along these streamlines. During the operation of several pulses,
a particle will follow a zig-zag trajectory across the microarray surface,
as illustrated in Figure 1(c) for configuration A. This zig-zag trajectory is
caused by the periodic crossing of streamlines (Ottino and Wiggins, 2004a),
which plays an important role in mixing while fluid is transported across
the domain.

In the model representation it is necessary to specify the method by
which particles extracted through a sink are reinjected through a source.
The device operation outlined in §2 uses a ‘first in, last out’ reinjection
procedure; that is, the first particle extracted from the chamber is the last
to be reinjected. Other reinjection procedures could be considered (Jones
and Aref, 1988), but the experimental system is best represented by this
‘first in, last out’ procedure. The present model analysis also assumes that
any fluid extracted during a single pulse is reinjected during a single (but
later) pulse, and that a particle leaves the source with the same angle 6 at
which it entered the sink. In reality, the reinjection angle is likely to be
somewhat random, but a stochastic model precludes the use of standard
dynamical systems tools. One of the interesting results of this work is the
finding that this ideal model does a reasonable job of predicting optimal
mixing despite the underlying assumptions.
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Figure 3. Poincaré sections for the model flow in (left) configuration A and
(right) configuration B. Panels are labeled according to the value of . Initial
particle locations vary between panels and are chosen to highlight island structure.
The Poincaré sections for o = 20 and 40% in configuration A are from Stremler
and Cola (2006).

Poincaré sections such as those in Figure 3 are generated for this system
by recording the position of a passive particle in the domain after every pe-
riod of operation, i.e. after every 2a. For the trajectory in Figure 1(c), the
solid circles contribute to the Poincaré section. This system exhibits peri-
odic points of various order for different values of «, which is reflected in the
elliptic island structure in the Poincaré sections. The fluid contained within
an elliptic island is isolated from the remainder of the fluid, is stretched only
linearly in time, and is thus ‘not well mixed’. In contrast, fluid in the sur-
rounding chaotic sea is rapidly and repeatedly stretched and folded and is
thus, by some measure, ‘well mixed’.

The fraction of a Poincaré section that is covered by chaotic sea, us,
is quantified in Figure 4(a) for configuration A. Some of the existing work
on optimal mixing focuses exclusively on maximizing s (which occurs for
a ~ 40% in configuration A) or on systems that exhibit mixing in the ergodic
theory sense (i.e. that always have pus = 100%). The presence of large elliptic
islands will, of course, have a negative impact on global mixing; fluid in the
chaotic sea may be rapidly mixed, but fluid trapped in an elliptic island will
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remain separate from the mixed fluid. However, non-ideal behavior such as
diffusion tends to quickly ‘smear out’ the effects of small elliptic islands in
most, if not all, practical implementations. This pulsed source—sink work
suggests that focusing exclusively on flow protocols with minimal, or no,
elliptic islands may be inappropriate when attempting to predict optimal
mixing in a practical system.

The exponential stretching rate of fluid in the domain is related to the
maximum Lyapunov exponent for the flow, o,. Within the chaotic sea, the
length [ of a material line will grow exponentially in time as | ~ [, exp(o, 7),
where [, is the initial (infinitesimal) length. The maximum Lyapunov expo-
nent can also be defined for the Poincaré map as o,, = 2a 0, in which case
it quantifies the stretching rate per period of operation. Both o, and o, for
configuration A are shown in Figure 4(b, ¢). The stretching rate per period,
or o,, generally increases with increasing o. However, larger pulse volumes
require more time to complete, and as a result o, generally decreases with
increasing «. Within an elliptic island, in contrast, fluid experiences only
linear stretching in time, and the corresponding Lyapunov exponents are
Z€ro.

The net effect of stretching and folding in the flow can be quantified by
the Kolmogorov—Sinai, or KS, entropy (Lichtenberg and Lieberman, 1992),

hy = Ms O, (3)

which can be viewed as an area-weighted average of the Lyapunov expo-
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Figure 4. Chaos diagnostics from the model analysis, including, for configu-
ration A, (a) ps, the fraction of a Poincaré section covered by the chaotic sea;
(b) or, the maximum Lyapunov exponent for the flow; and (¢) oy, the maximum
Lyapunov exponent for the map. KS entropy, Ak, is shown for (d) configuration A
with fluid relocation; (e) configuration B with fluid relocation; and (f) configu-
ration A without fluid relocation, as in Raynal et al. (2004). Curves (a)—(d) are
from Stremler and Cola (2006).
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nents in the chaotic sea and the elliptic islands. Large KS entropy thus
generally indicates rapid stretching and folding over a large fraction of the
flow domain, and the conditions that maximize entropy are also likely to
mix well. Ideally, the theoretical determination of maximum entropy will
predict optimal mixing; this study is aimed, in part, at testing this connec-
tion between theory and practice. KS entropy has been used to examine a
model system that exhibits mixing in the ergodic theory sense (D’Alessandro
et al., 1999), and Stremler and Cola (2006) introduced its use for examining
decomposable systems, which contain both regular and chaotic regions.

The KS entropy is shown in Figure 4(d) for source—sink configuration A
with fluid relocation from sink to source. The trend in KS entropy suggests
that very small pulse volumes optimize mixing. For these cases, however,
particles remains trapped in either the top or bottom half of the domain
for a large number of periods. This division, or segregation, of the domain
is observed in the model analysis of configuration A for a < 10%, which
is consistent with the experimental results discussed in §3. Fluid within
each half of the domain is rapidly stretched and folded, but this fluid is
not mixed well throughout the entire domain. Thus, for a < 10% the KS
entropy does not accurately predict mixing in configuration A. However,
comparison with the mixing experiments shows that KS entropy gives a
reasonable prediction of the mixing rate for > 10%. Optimal mixing is
achieved for o =~ 15%, mixing is relatively poor for 23% < a < 32%, and
mixing improves for 32% < o < 45%.

One approach to eliminating the domain segregation for small « in con-
figuration A is to switch the identification of (z_); and (z_)2, which leads
to consideration of configuration B. Fluid extracted from the top half of the
domain is now reinjected into the bottom half, for example. The KS en-
tropy for this configuration is shown in Figure 4(e). Maximum entropy is
(interestingly) achieved for o ~ 15% without neglecting 5% < o < 15%.
This maximum value for hy is roughly 1.7 times that for configuration A at
a =~ 15%! The KS entropy for configuration B is quite sensitive to changes
in «, so it is not clear that a such a significant improvement over configura-
tion A would be seen in practice. However, hy, is greater for configuration B
than for A at almost every value of «, so these model results predict that
configuration B is the better choice even if it is difficult to pinpoint optimal
performance.

Finally, consider the device operation examined by Raynal et al. (2004),
which corresponds to using configuration A without relocating the fluid.
That is, fluid is driven between opposite corners during a given pulse, and
each hole operates alternately as a source and a sink. The KS entropy for
this case is shown in Figure 4(f). The stretching per period (i.e. 0,,) is sim-
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ilar to that shown in Figure 4(c), but each period of operation requires four
pulses instead of two. Furthermore, for o > 60% the domain is dominated
by regular transport, with ps < 45%. The net result is a KS entropy that
is significantly lower than that for configuration A with fluid relocation.

5 Conclusions

Fluid in a rectangular Hele-Shaw cell can be mixed effectively by pulsing two
source—sink pairs that are placed at the corners of the domain. Maximum
KS entropy is found to occur in a model of the flow when the sources and
sinks are connected in configuration B, extracted fluid is relocated from sink
to source, and the system is operated with a pulse volume o ~ 15%. For
almost every pulse volume examined, the KS entropy for configuration B is
greater than that for configuration A, on which our research had previously
focused (McQuain et al., 2004; Stremler and Cola, 2006; Cola et al., 2006).
Relocating the fluid from sink to source always produces a higher KS entropy
than when the fluid is simply reinjected at the location from which it was
extracted, as in Raynal et al. (2004).

Comparison of the chaotic advection analysis with the experimental mix-
ing results for configuration A shows that, when interpreted carefully, rel-
ative values of KS entropy can predict mixing performance in a pulsed
source—sink system. In the case of configuration A, this approach incor-
rectly identifies small o as optimal. However, this same analysis clearly
shows segregation between the two halves of the domain for a@ < 10%, as
observed in the experiments. When this segregation does not occur (i.e. for
a > 10%), the experimentally observed mixing performance corresponds
well with KS entropy. This segregation does not appear in configuration B,
and I expect that in this case the KS entropy provides a reliable prediction
of mixing performace over all of the pulse volumes examined.

Configuration A has been applied to microarray analysis for the case
a = 30%, and the details are reported in McQuain et al. (2004). This
application was actually conducted before any of the work in §3 and §4, and
it has served as motivation for the detailed study I review here. Thus, the
microarray application remains, at this point, a preliminary study. Mixing
the fluid solution during the analysis resulted in higher overall levels of
hybridization, more uniform hybridization across an array, and significantly
shorter analysis times relative to a standard analysis with no fluid motion.
It is my expectation that noticeable improvement over these results can
be achieved by mixing the hybridization fluid with configuration B using
a ~ 15%.
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for their assistance. This publication was made possible by grant number
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Abstract “Ghost Rods” are periodic structures in a two-dimensional
flow that have an effect on material lines that is similar to real stir-
ring rods. An example is a periodic island: material lines exterior
to it must wrap around such an island, because determinism forbids
them from crossing through it. Hence, islands act as topological ob-
stacles to material lines, just like physical rods, and lower bounds
on the rate of stretching of material lines can be deduced from the
motion of islands and rods. Here, we show that unstable periodic
orbits can also act as ghost rods, as long as material lines can “fold”
around the orbit, which requires the orbit to be parabolic. We in-
vestigate the factors that determine the effective size of ghost rods,
that is, the magnitude of their impact on material lines.

1 Introduction

Topological kinematics is the application of topology to chaotic advection in
fluids. In two dimensions, braids are the natural mathematical construct to
use for a topological analysis. Boyland et al. used braids very effectively to
analyse the motion of stirring rods in viscous flow (Boyland et al., 2000) and
point vortices in ideal flow (Boyland et al., 2003). A braid is associated with
the motion of the rods or vortices by plotting their trajectory in a space-
time diagram: the resulting “spaghetti plot” is obviously a braid. Here,
we shall not be too concerned with the precise mathematical properties of
braids—the intuitive, capillary notion of what a braid resembles will suffice.

Rods and points vortices share the common feature that they are topo-
logical obstacles to material lines in two dimensions. Of course, any fluid
particle is such an obstacle, and recently one of us analysed braids formed
by particle trajectories (Thiffeault, 2005). The fact that particle orbits are
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topological obstacles puts a lower bound on the topological entropy—the
growth rate of material lines (Boyland et al., 2000; Newhouse and Pig-
nataro, 1993). Imagine a material line that is initially linked around the
topological obstacles under consideration (rods or fluid particles). Then as
the position of these obstacles evolves the material line is dragged along,
and as the particles braid around each other the material line must grow by
at least a certain amount. The properties of the braid thus imply a lower
bound on the growth rate of material lines in the fluid.

For time-periodic flows, the natural topological obstacles to study are
fluid parcels associated with particular periodic orbits. Recently, we intro-
duced to fluid mechanics the concept of “ghost rods” (Gouillart et al., 2006).
We analysed the motion of material rods, stable periodic orbits (islands),
and unstable periodic orbits from a topological perspective. We showed
that periodic orbits associated with islands behave very similarly to mate-
rial rods: they are large topological obstacles ploughing through the fluid,
and material lines must get out of their way or else wrap around them.
Periodic islands have the advantage of being easily identifiable visually, and
can clearly be regarded as “rods.” Figure 1 illustrates this: there is only one
physical rod stirring the flow, but a ghostly second rod is clearly visible in
the centre-left portion of the plot, around which material lines are wrapped.
Indeed, there is a regular island in that region (Gouillart et al., 2006).

Figure 1. A material line being stirred by a moving rod in a viscous fluid.
The rod is the circle visible in the centre-right portion of the fluid, but
observe that there is a rod-like structure in the centre-left portion. This is
a periodic island that acts like a rod—a ghost rod.
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The foregoing description is topological in nature. The size of the rods
is immaterial to the topological entropy (Boyland et al., 2000; Finn et al.,
2003). Of course, in practice their size matters a lot: if the rods are made
smaller, so does the region of the fluid for which the topological entropy
lower bound applies. In the limit of infinitely small rods, one might expect
this region to shrink to zero. This is certainly true of physical rods: if they
were made infinitely small, the fluid would not even notice their presence
and nothing would happen, except in a vanishingly small region. There is
currently no theory that gives the size of the affected region given the size
of the rods and their path, but in practice it is observed (in viscous flows)
that it is of the order of the size of the rods and the size of the region swept
by their motion.

So much for physical rods. But what about ghost rods? As their name
indicates, they have no material existence. However, since they behave
much like physical rods, we may ask what is their effective size. That is,
topologically a ghost rod is supposed to mimic a real physical rod, but how
much of an impact does it effectively have on the surrounding fluid? For
periodic islands, the answer is clear: the effective size of the ghost rod is the
size of the island. Figure 1 convincingly illustrates that, as far as material
lines are concerned, there is a stirring rod of the size of the periodic island
in the centre-left portion of the flow.

For unstable periodic orbits, the answer is much less clear, since in prin-
ciple ghost rods of this type have zero size. In this paper, we shall investigate
the effective size of ghost rods associated with unstable periodic orbits. In
fact, as we shall see, not all unstable periodic orbits can even be said to be
ghost rods. Rather, only unstable periodic orbits of parabolic (as opposed
to hyperbolic) type can hope to qualify as ghost rods. The local linear
structure near an hyperbolic orbit prevents material lines from “wrapping”
around the periodic point, so that it does not appear as a rod at all. For
parabolic orbits of a certain type, the unstable manifold terminates at the
periodic orbit, allowing material lines to wrap around the point without en-
countering the invariant manifold. Thus, the periodic orbit appears visually
as a tiny rod, which is our criterion for considering periodic orbits to be
ghost rods.

2 Unstable Periodic Orbits

In an incompressible flow, the linearised flow around an unstable periodic
orbit can be one of two types. Figure 2 depicts the most common, called
a hyperbolic orbit, or hyperbolic point if one is speaking of the Poincaré
section (stroboscopic map) of the time-periodic flow. There are two distin-
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/ stable
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Figure 2. The stable and unstable manifolds of a hyperbolic point.

guished directions along which points respectively get away from or converge
to the periodic orbit. These directions can be nonlinearly extended into the
unstable and stable manifolds of the periodic orbit. A sufficient condition
for the periodic orbit to be hyperbolic is that its Floquet matrix have non-
degenerate eigenvalues. (The Floquet matrix is obtained by linearising the
system about the periodic orbit and integrating over a full period of the
orbit, as we will do in Section 3 for a specific flow.) Even though they are
topological obstacles to material lines in the flow, such orbits can hardly
be called ghost rods. This is because material lines must align with the
unstable manifold of the periodic orbit, a phenomenon sometimes referred
to as asymptotic directionality (Giona et al., 1998; Thiffeault, 2004). A
material line cannot possibly fold around such a periodic orbit, since the
unstable manifold goes straight through the orbit and appears linear in its
neighbourhood. Hence, the periodic orbit does not “look” like a tiny little
rod to the naked eye: it looks like any other point on the material line, and
only a detailed knowledge of the velocity field allows its detection, usually
by numerical means. We conclude that hyperbolic periodic orbits do not
form “proper” ghost rods, since they cannot be detected visually.

That leaves the second type of unstable periodic orbit: parabolic orbits.
In that case the Floquet matrix has degenerate eigenvalue that must both
be equal to unity, by incompressibility of the fluid. For parabolic points, we
cannot deduce the behaviour of points near the periodic orbit by examining
only the linearised system—mnonlinear terms must be considered. As we
shall see in the following section, a particular type of nonlinear structure
gives rise to parabolic points that exhibit the appropriate behaviour for a
ghost rod.

3 Case Study: The Sine Flow

We shall now illustrate the type of unstable periodic orbit that gives rise
to ghost rods by examining a specific system, namely the Zeldovich sine
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flow (Pierrehumbert, 1994). This is a nice system to work with because its
Poincaré map can be obtained analytically, and for special parameter values
we can also determine some periodic orbits analytically. These orbits were
exploited by Finn et al. (2006) to show the presence of chaos. The sine flow
is given by the velocity field
w(a,t) = {(O'7 sin27rx), nT §1t< (n+ 1)
(sin27y, 0), (n+3)7 <t < (n+1)7,

where n is an integer. The equation & = u(x,t) can then be integrated over
one period to give the sine map

Tng1l = Tp + 5 7 SIN27TYp 415 @)

1 .
Yn+1 = Yn + 5 T SIN 27Xy ,

with @, = x(n7). As an example, we will take 7 = 1, because then we
can determine many periodic orbits analytically. For instance, there is a
period-4 orbit starting at @y = (1/12,1/2), with iterates

(1/12,1/2) — (7/12,3/4) — (7/12,1/2) — (1/12,1/4) — (1/12,1/2). (3)

The initial location of this orbit is inside the small square in Fig. 3(a),
which also shows a material line advected for a few periods of the sine flow.
Figure 3(b) is a blow-up of the material line near this periodic orbit. Notice
how the material line is sharply folded around the periodic orbit. In fact,
Fig. 3(a) contains several such sharp folds. They are quite generic in chaotic
flows, and are associated with regions of anomalously low stretching (Liu
and Muzzio, 1996; Thiffeault, 2004).

We are interested in the behaviour of the map (2) in the neighbourhood
of this periodic orbit, so we define a variable X =z xg. Then, we can

expand the map to second order in X ,
)?':)?—277}7+a§)}2+ﬁ§}72+7§)?17, (4)
}7/:? +a7)~(2+63~,1~/2+7§/}~(}7,

where the primes denote four iterations of the sine map, so that the periodic
orbit has become a fixed point of the map (4) at X = (0,0). The periodic
orbit is parabolic, as can easily be seen from the fact that the linear part
of (4) (the Floquet matrix) has matrix representation

g = (é ‘f”) , (5)
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Figure 3. (a) A material line stretched and folded by the sine flow. The
parabolic periodic point at (z,y) = (1/12,1/2) is shown boxed. (b) Blow-up
of the periodic point. Note that the material line is folded near, but not
quite tightly around, the parabolic fixed point.

which implies unit eigenvalues for the map. However, this matrix is not
diagonalisable: it only has one eigenvector, (0 1)7 (this can only occur
for a parabolic point). We will see that it is this nondiagonalisable nature
that allows the “folding” of material lines around the periodic point. In
general, a matrix J has this property if (J — )2 = 0, for J # I, which given
that det J = 1 is equivalent to trJ = 2, with J #£ L.
After a linear transformation and a near-identity area-preserving quadratic

transformation, Eq. 4 can be brought into the form

X =X4+Y+aXY,

6
Y=Y +a(3X*+XY), (©)

where the coefficients are such that the map is area-preserving to linear
order. (The transformation used to get to (6) is not generally orientation-
preserving.) As long as the linear part of the system is a Jordan block of
the form (5), we can transform the system to Eq. (6). We have thus reduced
the dynamics near the parabolic point to a one-parameter map (basically a
Hénon map), which we proceed to analyse.
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3.1 Invariant Manifolds and Dynamics Near the Origin

We now want to find the shape of the unstable and stable manifolds of
the fixed point of (6) at the origin. Unlike hyperbolic fixed points, for a
parabolic point the invariant manifolds cannot be determined solely from
the linear part. Rather, we use the invariance property of the manifold: we
parametrise the invariant manifold by (X, ¥, (X)) and iterate the map,

X=X + Vi (X) + o X Yino (X)), (7a)
}/inv(X,) :YIHV(X)—FOC(%XQ—’_XY;HV(X)) ’ (7b)

where we wrote Y/ = Y,y (X’) since, by the invariance property, the iter-
ated point must still belong to the invariant manifold. We can then substi-
tute (7a) into (7b),

YEnV(X + Yinv(X) + OéX}/inv(X)) = Yinv(X) + « (%XQ + XY]IIV(X)) ) (8)

which is an equation that must be solved for Yi,,(X). We are interested in
the small X form of the manifold, so we assume Yi,,(X) = 0 X? and try to
balance the leading order terms:

c(X+0X’+acX') =0X°+a(1X? +0oX'). (9)

Where we go next depends on the magnitude of §. If § = 1, we get the
equation o(1 + o) = o for the coeflicients of the linear terms, which im-
plies o = 0, an unacceptable state of affairs since then the quadratic term
is unbalanced. If § < 1, we get the leading-order balance

o (0X?)? =0X°, (10)

This can only be satisfied for § = 1, a contradiction, or § = 0, which
again leads to an unbalanced quadratic term. Hence, our only choice is to
take 0 > 1, which gives the leading-order balance

O'(X—FUX(S)(S:O'X(S—I—%O&XQ, (11)

where we have kept an extra order, because the leading terms cancel after
expanding the exponent,

X’ (1+ 06X ) =0X’ +LaXx?, (12)

and we get finally
26X = laX?, (13)
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yielding § = 3/2, 0 = +4/a/3. We can thus write the shape of the invariant
manifolds as

Yine(X) = £/ L aX X, (14)

to leading order, where we have written X under the square root to show
that X and a must have the same sign. Note an important fact: for a
parabolic point of this type, the manifolds exist only on one side of the X
axis, in contrast to a hyperbolic point (Fig. 2) where the manifolds must
radiate from the fixed point in four directions.

The two solutions for o correspond to the stable and unstable manifolds.
We can determine which sign goes with which manifold by looking at an
iterate of X in Eq. (7a),

X'=X+/laXX, (15)

where we neglected higher-order terms (X°/2). Thus, for a > 0, which
implies X > 0, the ‘4’ solution takes X farther from the origin (unstable
manifold), whilst the ‘—’ solutions takes the point closer to the origin (stable
manifold). The situation is reversed for o < 0.

Figure 4 shows a few iterates of horizontal lines under the action of the
map (6). The linear part of the map acts as a “shear flow” that sweeps
the line around the origin, but the nonlinear terms prevent the line from
crossing the unstable manifold. The net result is a line folded around the
unstable manifold. This is why it is appropriate to refer to (6) as the
‘folding normal form’: inside every sharp fold of the flow lurks such a map.!
Since nearby material lines align with the unstable manifold of the periodic
orbit, the folding is made possible by the one-sidedness of the unstable
manifold: unlike hyperbolic points (Fig. 2), the manifold does not traverse
the parabolic periodic point, but instead terminates there. This allows
material lines to wrap around the periodic point without encountering the
invariant unstable manifold, which cannot be crossed.

3.2 Curvature

As time progresses the folds in the material lines in Fig. 4 come closer
and closer to the periodic orbit. There seems to be no limit to how close
they can come, which is consistent with the ghost rod having zero effective
size. The best we can do is to characterise the effective size of the ghost
rod by how quickly the curvature of the folds evolve. We shall now examine
how the curvature of a material line evolves near the parabolic orbit.

LAt the workshop, Stefano Cerbelli and Massimiliano Giona pointed out that their
research also seems to support this.
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Figure 4. Tteration of a few material lines by the map (6) for « = 1. The
lines fold around the unstable manifold (dashed curve). The X axis has
been rescaled by 1073, the Y axis by 1074

Consider a material line going through the origin of (6), as depicted in
Fig. 4. The tangent map of (6) at the origin tells us how the tangent to the

curve evolves,
0X' 1 1) (X
(5}/’) = (o 1> (51/) ! (16)

where (60X 6Y)T is the tangent. The second variation of (6) is

22X\ (1 1) (82X n 0XoY (17)
s2y’) —\o 1)\a2y ) T\ 5x)2+5x6Y )
For the case shown in Fig. 4, the initial tangent is parallel to (1 0)”, which
is an eigenvector of the matrix in (16): the tangent doesn’t change. Given
that 62X and §2Y are zero initially (the line is straight), we can solve (17)

for 62Y,
§%Y =na(dX)?, (18)



348 J-L. Thiffeault, E. Gouillart and M.D. Finn

where n is the number of iterations. The curvature of the line is given by
(Liu and Muzzio, 1996)

_OXO%Y —6Y8’X
lox |

Now given the solution (18) and the fact that JY = 0 for all time, the
curvature evolves as

(19)

K=na, (20)

so the curvature of the material line grows linearly with time. This is verified
by a calculation with the sine flow, for the periodic orbit (3): Figure 5
shows that the curvature of a material line anchored at the periodic orbit

12000

100001 1
8000  slope = (3/2)v/3x° 1

60001 1

curvature

40001 1

2000 1

G L L
0 5 10 15
periods

Figure 5. The evolution of the curvature of a material line passing through
the periodic point shown in Fig. 3, with orbit given by Eq. (3). The cur-
vature at the point increases linearly with the number of periods, showing
that the line is getting more tightly folded around the parabolic point.

does indeed grow linearly with the number of iterations, and the slope is in
perfect agreement with the results from the folding normal form.

Note that this linear evolution of the curvature is not an artefact of our
choice of orientation of the material line. If we choose the line to be orthog-
onal to the one in Fig. 4, we find that the tangent evolves as (6X §Y)T =
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(n 1)T4Yp, which means that the tangent aligns with the direction of the
unstable manifold for large n. The curvature will then grow asymptotically
at the rate given by (20).

It is clear from Fig. 4 that the point of highest curvature is not at origin.
Nevertheless, the increase in curvature is linear in the neighbourhood of the
periodic orbit, and all material lines near the orbit eventually wrap around
it, so the orbit can still be said to be acting as a ghost rod.

We conclude that o measures the “size” of the rod: a higher o means
that material lines converge towards the periodic orbit more rapidly, so that
the ghost rod has a smaller apparent impact on the flow. Visually, o could
be estimated by looking at the rate at which material lines “bunch up” near
a periodic orbit, as in Fig. 4, but in practice this is quite difficult.

4 Discussion

Of course, this paper is just a sketch of a theory for the size of ghost rods:
a comprehensive theory remains to be developed. Rather, we tried to give
an indication of the factors that influence a ghost rod’s apparent size.

The motivation behind this study, and the ghost rod framework in gen-
eral, is to try to determine some stirring properties of a flow from visual
cues. It is obvious that we can determine the size of physical rods by just
looking at them. The effective size of ghost rods that are elliptic islands
can also be determined visually, as is apparent in Fig. 1. Ghost rods as-
sociated with parabolic points are harder to identify: they typically occur
inside sharp folds in material lines, as in Fig. 3. Even if they are identified,
measuring their effective impact on the flow is far from trivial: one can
attempt to measure the evolution of curvature near the point, in the same
spirit as in Section 3.2, or see how rapidly material lines bunch-up near the
periodic orbit, effectively a measure of the coefficient .

The sharp folds observed in material lines are the spots where the stretch-
ing is weakest, because there is usually a competition between stretching
and curvature (Liu and Muzzio, 1996; Thiffeault, 2004). Hence, folds are
associated with inhomogeneities in the stretching field, and thus typically
decrease the efficiency of stirring since uniformity is desirable. Knowing how
fast the curvature grows (as measured by «) gives a hint of how much inho-
mogeneity a fold introduces, and thus quantifies its impact on the quality
of mixing.

The parabolic points may be the “relevant” ghost rods, i.e. the ones
on which one can construct a braid that captures exactly the topological
entropy of the flow (Gouillart et al., 2006). We have no proof of this assertion
yet; however, since the folds determine the skeleton around which a material
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line will wrap, these points certainly play a distinguished role.
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Nonlinear Preconditioning in Problems of Optimal
Control for Fluid Systems

Bartosz Protas "

* Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario,
Canada

Abstract This note discusses certain aspects of computational solution of
optimal control problems for fluid systems. We focus on approaches in
which the steepest descent direction of the cost functional is determined
using the adjoint equations. In the first part we review the classical for-
mulation by presenting it in the context of Nonlinear Programming. In the
second part we show some new results concerning determination of descent
directions in general Banach spaces without Hilbert structure. The proposed
approach is illustrated with computational examples concerning a state es-
timation problem for the 1D Kuramoto—Sivashinsky equation.

1 Introduction

Problems of optimal control arise in very many areas of science and engineering.
Given a (possibly nonlinear) system u(x,¢) = 0, where x is the state of the system
and ¢ is an actuation, control problems consist in determining the control ¢, so that
this control and the corresponding state minimize some performance criterion, i.e.,

Xerﬁg‘éuﬂ(xm (Ta)
subject to u(x,0) =0, (1b)

where U represents the set of admissible controls, whereas X is the space of sys-
tem states. Applications of such problems in Fluid Mechanics are ubiquitous. Here
we mention just some of the most important examples, admitting that this list is
far from being exhaustive:
e shape optimization with application to aircraft design, e.g., Mohammadi and
Pironneau (2001); Martins et al. (2004),
e flow control for drag reduction, e.g., Bewley et al. (2001); Protas and Sty-
czek (2002),
e variational data assimilation in dynamic meteorology, e.g., Kalnay (2003),
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e mixing enhancement.

In the above examples the performance criterion 7 and the control ¢ may take
different forms reflecting the structure of the problem at hand. The equation (1b)
governing the state of the system is usually some form of the Navier—Stokes equa-
tion. In fact, from the formal point of view, optimal control problems are examples
of inverse problems [see, e.g., Isakov (1997)].

In practice, problems of the type (1) involving minimization of a cost func-
tional subject to some constraints are solved using optimization methods. Since
the constraint is a partial differential equation (PDE), such problems are examples
of PDE—constrained optimization. One of the first studies to analyze systemat-
ically such problems was the seminal work by Lions (1968). In the context of
Fluid Mechanics these problems were further investigated by Abergel and Temam
(1990) and Gunzburger (2002). When such infinite—-dimensional problems are
solved in practice, suitable discretization is used to obtain a corresponding finite—
dimensional problem which, at least in principle, can be solved using methods of
Nonlinear Programming (NLP). There are, however, some aspects of the problem
that make this approach quite challenging. First of all, since the discrete systems
are obtained from discretizations of PDEs, the dimension of the discrete state vec-
tor x can be extremely large. Consequently, it is impossible to store the linear
operators involved in the solution process as matrices. Consequently, many exist-
ing software packages designed to solve finite—dimensional NLP problems cannot
be used and “matrix—free” alternatives have to be developed. Secondly, given the
size of the discrete system and difficulties involved in calculating second—order
derivatives of the cost functional, the Hessian information is usually unavailable
and Newton’s method can rarely be used. Consequently, one needs to use first—
order (gradient) approaches such as, for instance, the Conjugate Gradient (CG)
method. Moreover, the physical systems of interest to us are often characterized
by a broad range of interacting length— and time—scales and, as a result, the op-
timization problem is very poorly conditioned. The purpose of the present paper
is to discuss some recent ideas useful for accelerating convergence of iterative so-
lution to such optimization problems. In particular, we will focus on nonlinear
preconditioning strategies which, by performing locally a nonlinear change of the
metric, attempt to increase the range of validity of the tangent linear approximation
which is crucial to the present approach.

The structure of the paper is as follows: in the next Section we introduce a
simple, yet relevant from the Fluid Mechanics perspective, optimization problem
based on the Kuramoto—Sivashinsky equation that we will use as our “toy model”,
then we present a standard adjoint—based optimization approach typically used to
solve such problems; in Section 3 we will introduce the idea of nonlinear precon-
ditioning and show how it can be formulated in terms of gradient extraction in
spaces without Hilbert structure; in Section 4 we will present some computational
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results indicating the utility of the proposed method; conclusions and discussion
of further perspectives are deferred to Section 5. The present report is of a rather
exploratory nature, and more complete results concerning this problem are already
available in Protas (2008).

2 Adjoint-Based Optimization

Here we show how problem (1) can be efficiently solved using methods of Non-
linear Programming. In its initial formulation this is a constrained optimization
problem in which both the state x and the control ¢ are variables to be optimized.
This is a rather inconvenient situation, since x is a solution of a (time—dependent)
PDE and its discretization may contain a very large number of degrees of freedom
in space and in time. On the other hand, the state x may be considered a func-
tion of the control, i.e., x = x(¢), which allows us to express problem (1) in the
corresponding unconstrained form

(Ipréigj (x(9).9) = min J (), 2

where 7 : U — R is called the reduced cost ﬁmctionall. An advantage of this
formulation over (1) is that now optimization is carried out with respect to one
variable only with discretization usually involving much fewer degrees of freedom.
Moreover, problem (2) is unconstrained so that optimization methods required to
solve it are simpler, however, the price to be paid for this is that the functional
dependence of 7 on ¢ is now much more involved.

As mention in Introduction, we are concerned here with situations where cal-
culation of the Hessian of (2) is impossible or impractical. We will therefore focus
on first-order gradient—based methods. The necessary condition characterizing the
minimum of the cost functional 7(¢) is the vanishing of its Giteaux differential
7 UxU—R,ie.

9 (Gop:0') =0, V' € U, 3)

where the Gateaux differential is defined as 7'(¢;¢') = lime_ w and
®op: is the minimizer. In most applications, and also in the case considered here,
the cost functional 7 is quadratic in both x and ¢, however, x = x(¢) is often a
nonlinear mapping and the optimization problem (2) may be therefore nonconvex.
As aresult, it may admit nonunique solutions and (3) will characterize only a local
minimizer ¢,,,. Given some initial guess ¢<0) , such a minimizer can be found using
gradient—based descent method of the general form

¢(k+1) :¢(k) +d®, k=1,2,..., S

ISince this is the formulation we will focus on below, hereafter we will skip the adjective “reduced”,
unless needed for clarity.
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such that limkﬂm(b(k) = Qopr, Where k is the iteration count. At every iteration k the
descent direction d®) is determined based on the gradient V 7 of the cost functional
calculated at (). As will be shown below, this gradient can be extracted from
7 (®™:0'). A convenient expression for 7/(¢*);¢’) can be found using methods
of Nonlinear Programming [see Lewis (2001) for a discussion of NLP techniques
in the context of PDE—constrained optimization]

I@0)=(Dp1.0) = (Ded0)  +(DuT.(Dp) )

Ux U xxx*

where D,F denotes the Fréchet derivative of the mapping F = F(a) [see Berger
(1977)]. In (5) U* is the dual space with respect to U and (-, ) ¢x ¢+ represents
the standard duality pairing between the spaces U and U*. Below we will show
how the cost functional differential in (5), and in particular the term Dy 7, can be
expressed using an appropriately—defined adjoint state. Using the implicit function
theorem, the term Dyx can be expressed as

Dyx = —(Dxu) ' Dyu, (6)
so that the second term on the RHS in (5) can be transformed as follows
<DJ ; (D) <|>’> =— <D,J, (Dxu)_lD¢u¢’>
X X X*
= —(Dyu (Dsu) D74 )

X xX*

A * T 4/
2 (ppd 8

(N
where an asterisk denotes a Banach space adjoint. Putting together (5) and (7) we
see that the adjoint operator D;x : X* — U* can be used to express the differential

of the cost functional (5) in a convenient form as

Uxu

7@:0) = (DeT+DpxDJ0) = (Dys.8') ®)
As is evident from the above relationship, the first argument in the duality pairing
can be identified with the gradient of the reduced cost functional 7 : U — R in
the metric induced by the space U. It must be emphasized that the gradient in fact
belongs to the dual space Dy J € U* and, since in most infinite—dimensional cases
the dual space U* is not contained in the original space U, this gradient may not
be used as a descent direction in U. In the special case when U is a Hilbert space
we can invoke Riesz’ representation theorem [Berger (1977)] which allows us to
map Dy J € U* to the corresponding element VJ € U as

UxU Ux U

7' @:¢) = <D¢]’¢/>faxfu* - (V],(b/)d ©)
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where (-,-)q represents the inner product on the Hilbert space U, so that now
V7 € U can be used to construct a descent direction in 7. On the other hand,
when U is not a Hilbert space, Riesz’ theorem does not apply and identification
(9) is not possible. However, in Section 3 we will present a method for constructing
an equivalent of V7 in the space U in such a general case.

Now we illustrate these somewhat abstract considerations by analyzing a con-
crete example of PDE—constrained optimization. We will focus on a model prob-
lem introduced in Protas et al. (2004) which concerns estimation of the initial
condition for the 1D Kuramoto—Sivashinsky equation. This particular problem is
selected as it models the variational data assimilation, known as 4DVAR, in Dy-
namic Meteorology [see Kalnay (2003)]. The Kuramoto—Sivashinsky equation is
chosen, since it is endowed with chaotic and multiscale behavior and as such is an
attractive model for the Navier—Stokes system. We follow here Protas et al. (2004)
as regards the set—up of this problem and below highlight only the main points of
the derivation, while the Reader is referred to the original source for further details.

For simplicity, we will consider the 1D Kuramoto—-Sivashinsky equation on a
periodic spatial domain Q = [0,2] and a time interval [0, T]

Oy +40v+Kk (v +vow) =0, xeQ, t€[0,T],
0'v(0,1) = div(2m,1), te€l0,7T], i=0,...,3,. (10)
v(x,0) = ¢, xeQ.

Given incomplete and possibly noisy measurements y = Hv, +1 € 9, where
Vaer (+,1) € X is the actual system trajectory, #H : X — 9 is an observation operator
and n is (Gaussian) noise, our optimization problem consists in finding an initial
condition ¢ in (10) such that the corresponding system trajectory best matches
the available measurements y. In other words, we minimize the following cost
functional

9(0) = 5 |[#4v(0) e ORI

Consistently with the properties of system (10), we will assume that ¢ € U =
L,(Q). Since J depends on the control variable ¢ implicitly through the state equa-
tion (10), expression (11) represents in fact the reduced cost functional [cf. (2)].
We will assume that the observation operator # has the form of projection on a
set of cosine modes with the wavenumbers in some set A,, i.e.

2

Lz(O,T;Lz(Q

2n
H=Y T, where Pz= H/O cos(rx’)z(x’)dx’} cos(rx).  (12)

reA,
The Gateaux differential of (11) is given by [cf. (5)]

T 2=
]/(q);(])’):/o/o (Hv —y)HV dxdt, (13)
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where the perturbation v/ (¢;¢") is obtained by solving the Kuramoto—Sivashinsky
equation linearized around the state ¢, i.e.

LV =3V +40p +x [01 +vdn/ 4+ (9)V] =0, x€Q,1€(0,T],
0.V (0,¢) = 91V (2m, 1), te0,7T], i=0,...,3,
V(x,0) = ¢, x€Q,

(14)
with the operator £ : X — X* understood in the weak sense. Relation (13) can
now be transformed to a form consistent with (8) by introducing an adjoint operator
L* : X — X* and the corresponding adjoint state v* € X* via the following identity

<v*,L\/> = <L*v*,v’> +by. (15)
X xX* X xX*

Using integration by parts and the definition of £ in (14), we obtain

LY = —opv* + 48;461/* +K (a};v* — vaxv*) , and (16)
=T

2
b= [ / vy dx} .
0 =0

We remark that b, does not contain any boundary terms (resulting from integration
by parts), since all of them vanish due to periodicity. Defining an adjoint system
as

LYV =H"(Hv—y), xe€Q, te][0,T],

v*(0,1) = dv*(2m,t), t€[0,T], i=0,...,3, (17)

vi(x,T) =0, x€Q,

and using (14), (15) and (16) we can now express the Gateaux differential (13) in
the desired form (5)

7'0:0) = [ T

Thus, this differential (i.e., the sensitivity of the cost functional J with respect to
perturbations of the initial condition) can be expressed using the solution of the
adjoint system (17).

Relationship (18) can now be employed to extract the gradient required in a
descent optimization algorithm. Since U = L,(0,2n), we immediately obtain

W (18)

21

o) = [

/ — Ly / Ly — ¥
Y (V ],¢)L2(Q) —Viy=v| . (19

Despite its simplicity, in many cases this is not an optimal choice, as it may result
in poor conditioning of the corresponding discrete optimization problem. In Protas
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et al. (2004) a set of regularization options was identified which can, at least par-
tially, alleviate some of such difficulties. In relation to gradient extraction it was
shown that it can be beneficial to extract the cost functional gradient in a more gen-
eral Hilbert space, Sobolev spaces being natural candidates [see also Neuberger
(1997)]. In particular, gradient extraction was considered in the Sobolev space
H'(Q) characterized by the inner product

1

(ZI,Z2)HI(Q) = m /02n [Zl 2+15(0:2) (axzz)} dx, (20)

where [, is an adjustable length-scale. Identification 7' (d;¢') = (VH 'y L0 )Hl(g)
yields, after integration by parts, the gradient V¥ : 7 defined via solutions of the
following Helmholtz boundary value problem

1
1413
VA 3(0) = VH' J(2m).

[1-B]VH 7=

t=0 (21)

Thus, the Sobolev space gradient V¥ ] J is obtained by applying the inverse
Helmbholtz operator to the classical L, gradient. Interestingly, when regarded in
Fourier space, the inverse Helmholtz operator is equivalent to a low—pass filter
with the cut—off given by the inverse of the length—scale /, parametrizing the in-
ner product (20). Consequently, extracting gradients in Sobolev spaces with inner
products given by (20) has the effect of de—emphasizing components with char-
acteristic length—scales smaller than ;. As was shown in Protas et al. (2004),
adjusting this length—scale during solution of an optimization problem can ac-
celerate convergence of iterations. In particular, starting with /, large and then
progressively decreasing it to zero results in a multiscale procedure targeting first
the large—scale structures and then homing in on smaller scale components of the
solution Qg ;.

3 Nonlinear Preconditioning using Descent Directions in
General Banach Spaces

In this Section we address the issue of gradient extraction in general Banach spaces
and the potential advantage this technique may offer as a method of nonlinear pre-
conditioning. Similar ideas were already discussed by Lewis (2001) and elaborated
in greater detail by Neuberger (1997), however, they were not concerned with pre-
conditioning nonlinear optimization problems. The present approach relies on the
assumption that the Banach space U, where the descent direction is to be identi-
fied, be reflexive, i.e., that U** = U. As already mentioned in Section 2 in relation
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to formula (9), the gradient is a linear functional on the space U and therefore
belongs to the dual space U*. For example, if U is the Sobolev space WO1 P op#2,
defined as
Wo (@) = {u: Q = R, Jullyrp <o, vlao =0},
1/p (22)
whete [[ully1, = Ug(w +ipP)de|

where [, € RT is a weight, then the dual space U* =W ~19, where L — 1 [see
Adams and Fournier (2005)]. Since a dual space is usually “larger”, its elements
do not necessarily belong to the original space U and therefore cannot be used to
represent descent directions in that space. Consequently, it is necessary to propose
a different approach which allows one to extract a descent direction g from 7’ (¢;¢’)
such that g € U. As shown by Lewis (2001) and Neuberger (1997), this can be
done defining g as a unit-norm element of ¥ which minimizes expression (9).
In other words, we postulate to find g as a solution of the following constrained
minimization problem

in (D 23
||g1ﬁl;21< ¢],g>ﬂ*xu (23)

which can be converted to the more convenient unconstrained form
. lft P .
Dy.8) K = : 24
min [< 0J.8) . T pllgllu} gggG(g) (24)

where p is an integer, u is the Lagrange multiplier and G : U — R. This problem
can be solved with a method analogous to the approach described earlier in Section
2. Thus, the descent direction g is characterized by the vanishing of the Gateaux
differential of (24), i.c.

Vyeu G&E)=(DeG@®.E) =0 25
geu G (&:8) eG@.8) =0 (25)
where Dg G : U — U*. Thus, we obtain

DgG(8) =0 inU" (26)

as an equation determining the direction § € U. Below we will show how this
direction can be determined when 7 is one of the Banach spaces commonly arising
in the analysis on nonlinear PDEs. This analysis will be carried out in the setting
of the optimization problem for the Kuramoto—Sivashinsky equation introduced
in Section 2. We begin with the Lebesgue spaces L,(Q) with norms defined as
[Adams and Fournier (2005)]

1/p
PdQ 1 <p<oo,
lull ) = </sz o ) =P 27)

ess sup, g |u] p=ce.
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Considering for the moment the case with 1 < p < oo, the unconstrained cost func-
tional (24) and its Gateaux differential (25) take the form

* M
G(9) = | ("] g8+ “lgl") a0 (283)
Q p
Vyer, @ Glg:8)= /Q (v, _og + Hslgl ") g de, (28b)
so that the descent direction gy, is characterized by the algebraic relation
i ~(p— L,
gl ==y (29)
The solution of (29) is
)L | — even
ﬂv t=0’ p ’
g, = (30)

* )— 1
—sgn(v*| _,) " ’llﬁ vi| ol p —odd.

We thus see that when p # 2, the descent direction in L,(Q) is obtained by ap-
plying a nonlinear transformation to the original gradient V227 = v*|,—o. In the
special case p = 2 we immediately obtain

- 1,
ng = _ﬁv |t:0 (31)

which is the classical expression obtained in Section 2. As regards the constant y,
which serves as a Lagrange multiplier in the unconstrained formulation (24), it is
chosen to normalize g to unit norm ||g||¢; = 1. In the second special case p = oo, it
can be shown that

. =—sgn(v'] _,) (32)
consistently with taking the limit p — oo in expressions (30). We also remark that
in the case p = 1 the descent direction g7, cannot be defined, since the space L; (Q)
is not reflexive.

We now proceed to discuss the problem of determining the descent direction
when U = W' where W' is the Sobolev space defined in (22). Considering the
case 1 < p < oo, the unconstrained cost functional and its Gateaux differential take
the form

6(6) = [, |V, ot+ B + 1) a2 (30)

. u . )
G'(g;g’)=/g{v L:og”rl—) [glgl(” 2)g’ — 120,(0xg[0xg| 2))8’]}619 (33b)



360 B. Protas

As before, the boundary terms due to integration by parts vanish because of peri-
odicity of g and g’. Since the descent direction g is characterized by G'(g;g') =0,
Vgeq, it can be obtained as a solution of the following problem in U* (due to
nondifferentiability of the absolute value function | - |, this equations is formulated
in the weak sense)

1
N (R e

8(0) = g(2m).

The second term on the LHS in the first equation in (34) is usually referred to as
the p—Laplacian [Neuberger (1997)], as it represents a nonlinear generalization
of the familiar Laplace operator. Evidently, in the case p =2, W'?(Q) = H'(Q)
is a Hilbert space and the p—Laplacian reduces to the classical Laplace operator.
As a result, (34) simplifies to (21) and we recover the Hilbert space framework
discussed in Section 2. The Lagrange multiplier x can be adjusted in order to
normalize the descent direction to the unit norm. We can conclude that identifi-
cation of descent directions in Banach spaces (such as L,(€), or W!7(Q), when
p # 2) results in nonlinear transformations of the adjoint field v*|;—o. As regards
equations with the p—Laplacian operator such as (34), a variety of their interesting
properties is discussed by Ishii and Loreti (2005) (see also references contained
therein).

We now comment briefly on the utility of extraction descent directions in gen-
eral Banach spaces as a nonlinear preconditioning technique. The purpose of pre-
conditioning is to modify the metric in which a given iterative process takes place,
so as to accelerate convergence. For linear problems with quadratic functionals
this can also be regarded as decreasing the condition number of the Hessian of the
reduced cost functional. In such cases linear preconditioning techniques are effi-
cient enough (in fact, in many situations there exist specific guidelines regarding
the choice of an optimal preconditioner). However, for nonlinear problems linear
preconditioning may not be sufficient and a nonlinear change of the metric may
lead to better results. In the framework proposed here, choosing a preconditioner
is in fact equivalent to choosing a Banach space U in which the descent direction
is identified. The question of how to choose this space is important. Unlike certain
linear problems, most nonlinear PDEs result in optimization problems with struc-
ture that is too complicated to allow for a thorough analysis. In such situations
finding the most suitable preconditioning strategy is a matter of experimentation.
There are, however, certain general conditions that need to be satisfied. In gen-
eral, for the evolution equation (10) to be well-posed, the control ¢ must belong
to some appropriate space U (identical with L,(Q) in the present case). There-
fore, if at the k—th iteration we want to precondition the gradient by extracting it

=0’ (34)

in some Banach space ‘Zl<k), it must be ensured that this gradient V{UU() 7 will still
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belong to the original space U, in other words UM C U, Viez. Such precondi-
tioning is equivalent to restricting the iterates to a family of subspaces nested in U.
Computational results concerning linear preconditioning reported by Protas et al.
(2004) indicate that the best results were obtained when the subspaces formed the
following hierarchy

10 C W C...C Q) C---CLy(Q). (35)

When considering general Banach spaces, additional guidance for constructing hi-
erarchies like (35) can be obtained by considering the family of Sobolev Imbedding
Theorems [Adams and Fournier (2005)]. Imbedding Theorems provide criteria that
allow one to determine whether or not one Sobolev (or Lebesgue) space is “con-
tained” in another one. In the following Section we present computational results
that address some of these issues.

4 Computational Results

In this Section we show some computational results illustrating the utility of the
nonlinear preconditioning techniques developed in Section 3. We treat the results
from Protas et al. (2004) as our point of reference, so we consider here precisely
the same problem of state estimation for the Kuramoto—Sivashinsky equation. The
observation operator in (12) uses projections on the first » = 50 cosine modes (i.e.,
Ar={1,...,50}) and we set k¥ = 4000 in equation (10). Both equation (10) and its
adjoint (17) are solved using a dealiased pseudo—spectral Fourier—Galerkin method
with N = 1024 grid points. The Reader is referred to Protas et al. (2004) for further
numerical details. The nonlinear equation (34) involving the p—Laplacian opera-
tor is solved using Newton’s method applied to the system of nonlinear algebraic
equations obtained after discretization.

In order to see the effect of nonlinear preconditioning we will present results
obtained for two optimization horizons (given in terms of the time step Az = 10~%)
T =300 and T = 500. Since the effect of nonlinear preconditioning appears most
pronounced for the longer optimization horizon T = 500, some of the results will
be presented for that case only. We begin presentation of the results by examining
the shape of the descent directions g obtained in different Banach spaces. To fix
attention, we consider the first iteration in the problem with 7" = 500 with a zero
initial guess *) = 0. In Figure 1 we compare the descent directions g extracted
in the Banach spaces L,(Q), L..(Q) and W!#(Q) with I; = 10.0 [cf. (22)] with
the standard gradient V22 extracted in the space L;(€2). We observe that for
increasing p the descent directions obtained in the spaces L, () approach a square
wave.

In computational solution of our optimization problem we found the precondi-
tioning involving descent directions in the Sobolev spaces W!?(Q), where p > 3,
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X

Figure 1. Shapes of the descent directions obtained at the first iteration in the data
assimilation problem with 7 = 500 and determined in: (solid line) L, (Q), (dashed
line) Ls(Q), (dotted line) L..(Q) and (dash—dotted line) W'*(Q). For clarity, only
half of the domain € is shown.

to be more efficient than the preconditioning using descent directions in L,(£2).
This is the case we will focus on exclusively below. In Figures 2a and 2b, cor-
responding to optimization with 7 = 300 and 7" = 500, we study the effect that
the quantity /,,, the characteristic “length—scale” parametrizing the definitions of
the norm ||u||y 1., has on optimization efficiency. Given that the value of the cost
function (11) before optimization (i.e., for ¢<0) = 0) is normalized to unity, Figures
2a and 2b show the decrease of the cost functional at the first iteration for the de-
scent directions obtained in the spaces W!3(Q) and W'#(Q) with values of /3 and
l4 indicated on the abscissa. For comparison, we also show the results obtained
with the gradient extracted in L. We note that the decrease of the cost functional
significantly depends on the choice of [, (p = 3,4). For T = 300 the window of
[, giving improvement over optimization with the L, gradients exists for descent
directions in W!3(Q) only and is rather narrow. The advantage of determining
descent directions in a Banach space becomes much more evident for 7 = 500,
where the windows of /, giving improvement over gradients in L, are unbounded.

Now we proceed to analyze the effect of nonlinear preconditioning on the
whole optimization process involving many iterations. As regards optimization
with the descent directions obtained in the Banach spaces W!?(Q) we follow the
strategy outlined in Section 3: for a given choice of the space W!?(Q) we start
with the value of /, which was determined to give the best results at the first iter-
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Figure 2. Decrease of the cost functional (11) at the first iteration in optimization
with (a) T = 300 and (b) T = 500. The descent directions are extracted in the
spaces (solid line) L,(Q), (dashed line) W'3(Q) and (dotted line) W'#(Q) for
values of /3 and /4 indicated on the abscissa.



364 B. Protas

ation and then progressively decrease it to zero, so that the corresponding descent
directions approach the L, descent direction. As aresult, our preconditioning strat-
egy is equivalent to extracting the descent directions in a sequence of nested spaces
WP(Q), all contained in the “master” space L,(Q). This strategy, initially inves-
tigated by Protas et al. (2004) for the case of gradient extraction in the Sobolev
space H' (Q) = W!2(Q), was found to give good results. In Figures 3a and 3b we
show the decrease of the cost functional 7(¢*)) as a function of the iteration count
k for T =300 and T = 500, respectively. In both cases the descent directions are
extracted in the spaces W'*#(Q) with the initial values of /; equal to 10~ and 10
in the two cases, respectively. For comparison, in the two Figures we also show
the decrease of the cost functional obtained with gradients obtained in the space
L (). We note that when T = 300 nonlinear preconditioning offers little advan-
tage over the unpreconditioned case, in contrast to the case with 7' = 500 where a
significant convergence acceleration is observed. In order to further emphasize this
point in Figures 4a and 4b we show the data for the error in the reconstruction of
the initial condition, i.e., ||[0*) — ¢ue|| L,(@) corresponding to the same cases as in
Figure 3. We note that these results provide further evidence for the trends already
shown in Figure 3. We also examined nonlinear preconditioning in the case of
shorter optimization horizons 7' < 300, however, no acceleration of convergence
comparing to the optimization with the L, gradients was observed. Hence, we do
not show these results here.

5 Conclusions and Outlook

In this paper we first reviewed the formulation of an optimal control problem for
a fluid system using the language of Nonlinear Programming. We focused on a
particular aspect relevant from the computational point of view, namely, determi-
nation of well-preconditioned descent directions for the cost functional. We ex-
tended an earlier approach and showed how a descent direction can be determined
in a general Banach space without Hilbert structure. In particular, we showed that
extracting this descent direction in a Sobolev space W1 (Q) leads to solution of
an elliptic problem with a p—Laplacian. Such a preconditioning strategy has the
effect of a nonlinear change of the metric in the space where optimization is per-
formed. When employed judiciously, this approach may have the potential to mit-
igate the effect of nonlinearities present in the system. Indeed, our computational
results indicate that such a nonlinear preconditioning can accelerate convergence
of iterations in an optimization problem for a nonlinear PDE. Interestingly, effec-
tiveness of the proposed approach increases with the length of the optimization
interval [0, 7] and becomes more evident for problems with large 7, i.e., in situa-
tions when nonlinear effects play a more significant role. Research is underway to
apply a similar approach to precondition optimization of more realistic problems,
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Figure 3. Decrease of the cost functional 7 (q>(’<>) in function of iterations for op-
timizations with (a) T = 300 and (b) T = 500. The results are obtained with the
descent directions in (solid line) L, and (dotted line) W174(Q) where the parameter
l4 progressively decreases with iterations.
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Figure 4. Decrease of the error of the reconstruction of the initial condition
[0®) = b | L,(@) in function of iterations for optimizations with (a) 7 = 300 and
(b) T =500. The results are obtained with the descent directions in (solid line)
L and (dotted line) W'#(Q) where the parameter /4 progressively decreases with

iterations.
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such as the state estimation in a 3D turbulent channel flow already investigated
by Bewley and Protas (2004). Another possibility is to investigate descent direc-
tions in more general Banach spaces and here Besov spaces [see, e.g2., Adams and
Fournier (2005)] are attractive candidates. A thorough treatment of this subject is
given in Protas (2008).

In the present investigation the space giving “optimal” preconditioning was
chosen by trial and error. A very challenging theoretical question is to develop
a rigorous procedure that will determine guidelines for choosing such an optimal
space. Such procedures are in fact available for certain optimization problems
formulated for some linear PDEs, however, no such results appear available for
nonlinear PDEs. Encouraging computational results reported in the present paper
may therefore serve to motivate further theoretical research in this direction.
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Sensitivity of mixing optimization to the
geometry of the initial scalar field.

Oleg Gubanov and Luca Cortelezzi
Department of Mechanical Engineering, McGill University, Montreal, Canada.

Abstract. In this study, we address the conceptual problem of de-
signing a mixing device able to maintain a uniform mixing quality
for different initial configurations of the mixture. As a case study,
we consider as a mixing device a two-dimensional, piecewise steady,
nonlinear flow, the sine flow. To promote mixing in the sine flow, we
generate an optimized stirring protocol using the short time horizon
procedure. We use the mix-norm as a measure of the mixing effi-
ciency and as the cost function of the optimization. We assess the
sensitivity to the geometry of the initial configuration of the short-
time-horizon optimal protocols in terms of their mixing efficiency.
We use the periodic and recursive symmetry-breaking protocols as
benchmarks for our assessment. We show that the optimized pro-
tocols are generally quite insensitive to the geometry of the initial
scalar field when compared to the periodic and recursive symmetry-
breaking protocols. We show that the on-line optimization is essen-
tial for achieving a uniform mixing efficiency. We characterize the
effect of the switching time horizon on the sensitivity of the opti-
mized protocols to the geometry of the initial configuration. Our
results indicate that the optimization over very short time horizons
could be in principle used as an on-line procedure for maintaining a
uniformly high quality of mixing for different initial configurations
of the mixture.

1 Introduction

Many industrial applications involve mixing of two or more different fluids.
For example, mixing is encountered in pharmaceutical, food, polymer, and
biotechnological processes, to name a few. Often, it is desirable to pro-
mote mixing at low speed to prevent damage to shear-sensitive materials
or reduce energy consumption, especially for highly viscous substances. In
many applications, the ones targeted by this study, it is impractical and
often impossible to promote turbulence to enhance mixing, consequently
mixing should be induced in a laminar flow regime. In general, laminar
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mixing is poor because fluid motion is dominated by viscous forces. In lam-
inar regimes, severe manufacturing problems such as insufficient product
yield or quality, or excessive generation of byproducts often require costly
corrections in the apparatus. Thus, the problem of optimization and control
of laminar fluid mixing is of great practical importance.

Often, the quality of mixing induced by a mixing device in a laminar flow
regime depends on the initial geometrical configuration of the mixture. The
effect of the initial configuration is particularly evident on the performance
of industrially-relevant static mixers. A static mixer is a mixing device
which consists, for example, of a series of motionless elements installed in
a pipe. These elements promote mixing of two or more fluids which flow
through the pipe due to a pressure gradient. For more details on static
mixers, the reader is referred to a comprehensive review by Thakur et al.
(2003). Hobbs and Muzzio (1997) investigated the sensitivity of the mixing
efficiency induced by the Kenics static mixer to the injection location of a
small stream of a passive tracer. They evaluated mixing qualitatively by
examining the spread of the tracer on cross-sectional slices of the mixer and
quantitatively by computing the variation coefficient as a function of the
axial position. The authors found that the mixing efficiency of the Kenics
mixer is highly sensitive to the injection location over the first few elements
of the mixer. In particular, they found that the least effective injection
location requires up to four additional mixing elements to achieve the same
target value of the variation coefficient as the most effective injection loca-
tion. The authors noted that the sensitivity of the mixing efficiency induced
by the Kenics mixer to the injection location can be reduced by adding extra
mixing elements. Hobbs and Muzzio (1997) concluded that for a typical in-
dustrial application using a 6- or 12-element Kenics mixer, the sensitivity to
the injection location could have a significant impact on the product quality.
Zalc et al. (2003) investigated the effect of injection location on the mixing
efficiency induced by a four-element SMX static mixer. They measured mix-
ing qualitatively by examining mixing patterns on cross-sectional slices of
the mixer and quantitatively by computing the variation coefficient and the
average rate of stretching. The authors found that the off-center injection
location considerably reduces the homogeneity of the mixture when com-
pared to the centerline injection location. Zalc et al. (2003) conclude that
a poorly chosen injection location can substantially affect the performance
of the SMX mixer. The authors noted that reducing the sensitivity to the
injection location by adding extra mixing elements may be impractical be-
cause this also increases the required pressure gradient and, consequently,
the cost of operation.

The above examples indicate that in industrial applications the initial ge-
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ometrical configuration of the mixture could vary with time. Consequently,
the product quality generated by current industrial mixers could also change
with time. Therefore, the design of a novel mixer able to maintain a uni-
form product quality for a time-dependent injection configuration is of great
practical importance. A possible solution is a mixer which implements an
on-line optimization, i.e. a mixer which is able to measure on-line the ge-
ometrical configuration of the mixture and, in response, induce the most
efficient mixing action. Thus motivated, we consider, as a case study, lam-
inar mixing optimization in a simplified mixer. Our goal is to assess the
sensitivity of the mixing efficiency obtained with this optimization to the
geometry of the initial configuration of the mixture.

Laminar mixing has become a subject of study over the past twenty
years. The concept of chaotic advection was introduced in the pioneering
work by Aref (1984); then, laminar mixing became a subject of numerous
studies (Ottino, 1989; Aref and El Naschie, 1995; Alvarez et al., 1998; Zalc
and Muzzio, 1999; Aref, 2002; Szalai et al., 2003; Gleeson, 2005; Gouillart
et al., 2006; Phelps and Tucker, 2006; Vikhansky and Cox, 2007, to name a
few). A sufficiently general mathematical theory of laminar mixing has only
started emerging over the past decade (Sturmap et al., 2006, and references
therein).

Under laminar mixing conditions, one could expect that an initial con-
centration field could be homogenized by intelligently coordinating the ac-
tion of two mixing mechanisms: advection (mechanical stirring) and dif-
fusion (mixing at molecular level). Advection dominates during the early
stages of the homogenization process, its purpose is to maximize the gra-
dients of the concentration field. Large concentration gradients stimulate
diffusion, which prevails during the final stages of the homogenization pro-
cess, fading away remaining concentration gradients (Eckart, 1948; Aref,
2002). The quality of the resulting mixture strongly depends on a how ef-
fectively and uniformly the initial concentration field has been stirred. The
time sequence of actuations used to stir a given mixture is referred to as
a stirring protocol. In the absence of advection, or with a poor choice of
a stirring protocol, fluid homogenization can be achieved mainly by sole
means of diffusion, which takes much longer than demanded by practical
applications (Ottino and Wiggins, 2004; Sturmap et al., 2006).

Early studies of laminar mixing and chaotic advection have character-
ized the effects induced on a given concentration field by periodic stirring
protocols. For this class of protocols, in the absence of diffusion, mixing
efficiency can be conveniently analyzed using dynamical systems tools such
as Poincaré maps and Lyapunov exponents. However, the analysis of dif-
ferent mixing devices showed that periodic protocols often create mixtures
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where islands of regular motion are surrounded by a chaotic sea (Aref, 2002;
Finn et al., 2004; Paul et al., 2004, and references therein). Islands of reg-
ular motion emerge around elliptic fixed points and greatly reduce mixing
efficiency. In order to overcome this difficulty, Liu et al. (1994) suggested
to enhance mixing by using aperiodic protocols, which have no elliptic fixed
points and thus are more likely to induce mixtures free of islands of regular
motion. An interesting example of an aperiodic protocol is the recursive
symmetry-breaking protocol. This non-random, self-similar stirring protocol
was initially derived by Franjione et al. (1989), who analyzed a periodic
flow in terms of its symmetries. The authors suggested to break the sym-
metries of the flow in a systematic way so as to destroy the islands of
regular motion. The recursive symmetry-breaking protocol, as well as sev-
eral other, random protocols considered by Liu et al. (1994) was found to
induce chaotic advection over the entire mixing domain under conditions for
which the corresponding periodic protocols induced regular motion almost
everywhere.

Unfortunately, mixing efficiency of aperiodic protocols cannot be eval-
uated using Poincaré sections nor Lyapunov exponents. Hence, Liu et al.
(1994) introduced other diagnostics such as the stretching field statistics
and the spreading rate of passive tracers. Several other useful measures
were reported in literature. Finn et al. (2004) summarized and investigated
correlations between various mixing diagnostic emerging from statistical,
physical and dynamical systems contexts. Recently, Mathew et al. (2005)
introduced the miz-norm, a new indicator of mixing. The mix-norm is de-
fined as the root mean square of the average values of the concentration field
over a dense set of subsets contained in the flow domain. The mix-norm is
capable of quantify the mixing efficiency of periodic and aperiodic protocols
when applied to purely advective or advective-diffusive flows. Unlike some
other diagnostics, such as Lyapunov exponents, the mix-norm can be used
to evaluate mixing efficiency of a stirring protocol in the context of a given
concentration field.

In general, the performance of a stirring protocol depends on the ini-
tial geometrical configuration of the mixture. Particularly affected are the
protocols that generate islands of regular motion, because the portion of
mixture initially lying within an insland is eventually poorly mixed (Tucker
and Peters, 2003). For globally chaotic protocols, the choice of initial condi-
tion affects the mixing efficiency during the early stages of mixing but does
not affect the asymptotic efficiency of the protocol (Muzzio et al., 2000;
Tucker and Peters, 2003). Hence, the geometrical configuration of the ini-
tial concentration field should be taken into consideration when optimizing
mixing over a finite period of time.
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An ideal mixing device should be able to produce an homogenized mix-
ture in the shortest time possible using the least amount of work. To this
basic requirements one could add, for example, the requirement that the
stirring field should generate shear-stresses as uniform as possible over the
entire mixing domain and with intensity below a given threshold. The first
step towards the design of such devices is to derive robust optimization or
control procedures able to generate optimal or sub-optimal mixing protocol
for a given mixing device.

Fluid mixing in a prototypical mixing device was formulated as a con-
trol problem by D’Alessandro et al. (1999). The authors consider the egg-
beater flow (Franjione and Ottino, 1992), in which a fluid constrained on
a two-dimensional torus is stirred by two velocity fields vy and v, acting
orthogonally. The control problem is stated as follows: given the shapes
of the stirring velocity profiles and a measure of mixing, find a stirring
protocol which minimizes this measure by intelligently blinking vy and v;.
Using entropy as a measure of mixing and simple shear velocity profiles
vo(y) = ay, vi(z) = bz, ab > 0, D’Alessandro et al. (1999) derived a
periodic protocol which maximizes entropy among all admissible periodic
protocols.

The control approach to fluid mixing suggested by D’Alessandro et al.
(1999) has been applied in recent studies by Gibout et al. (2006), Mathew
et al. (2007), Cortelezzi et al. (2008) and Thiffeault and Pavliotis (2008).
Gibout et al. (2006) studied optimization of mixing in a steady, three-
dimensional flow in a curved pipe equipped with motionless mixing elements
of four different types. The authors obtained numerically the concentration
field in the cross-section of the outlet applying a mapping method to an
anisotropic unstructured mesh. As a measure of mixing efficiency and as
the cost function of optimization, Gibout et al. (2006) used the discrete in-
tensity of segregation of the concentration field. As a stirring protocol, the
authors defined a sequence of the types of mixing elements. By evaluating
the mixing efficiency of all possible stirring protocols of a given length, Gi-
bout et al. (2006) showed that the most of the stirring protocols induce a
poor mixing. The authors showed that mixing-efficient protocols can be ob-
tained at low computational cost applying the genetic algorithm approach.
Mathew et al. (2007) considered as an actuator the fluid flow induced on a
two-dimensional torus by a finite set of prescribed force fields modulated in
time. They considered as a control problem the problem of finding a pro-
tocol which minimizes a weighted sum of the degree of mixedness and the
stirring action per unit mass. As the measure of mixing, the authors used
the mix-norm. Mathew et al. (2007) solved the control problem numerically
using a conjugate gradient descent algorithm and obtained a sub-optimal
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protocol. Thiffeault and Pavliotis (2008) considered optimization of mixing
in a perturbed uniform flow and a simple cellular flow. The optimization
problem was to find the source distribution that maximizes mixing for a
given velocity field. As a measure of mixing, the authors used a generalized
variance of the concentration field, which is a parameterized quantity closely
related to the mix-norm for a specific value of the parameter. Thiffeault
and Pavliotis (2008) solved the optimization problem using a variational
approach. They summarized common features exhibited by the optimal
source distributions and described how these distributions change with the
value of the diffusivity and the value of the parameter that governs the
measure of mixing.

Cortelezzi et al. (2008) considered the eggbeater model stirred by two or-
thogonal, sinusoidal velocity profiles vg(y) = sin(27y) and vy (x) = sin(27x).
This model, which is also known as the sine flow (Liu et al., 1994), has been
a popular playground for investigation of laminar mixing (Liu et al., 1994;
Pierrehumbert, 1994; Antonsen et al., 1996; Alvarez et al., 1998; Muzzio
et al., 2000; Szalai et al., 2003; Thiffeault et al., 2004; Phelps and Tucker,
2006). Cortelezzi et al. (2008) considered the problem of finding the optimal
protocol able to induce the lowest value of the mix-norm at a given final
time. The authors showed that the cost function, i.e. the mix-norm, asso-
ciated with optimization in time has a complex structure with many nearly
equal local minima making conventional optimization algorithms ineffec-
tive. In order to overcome this difficulty, Cortelezzi et al. (2008) introduced
a short time horizon optimization procedure. This procedure considers all
admissible stirring subprotocols for a given time horizon and, among these
subprotocols, it selects an optimal stirring subprotocol which minimizes the
mix-norm. The selected subprotocol is then used to stir the mixture up
to the beginning of the next time horizon. These steps are repeated until
a given final time is reached. The selected subprotocols are concatenated
together to compose a sub-optimal stirring protocol, the short time horizon
optimal protocol. Cortelezzi et al. (2008) drew two important conclusions
from their results. First, among all possible stirring protocols, the short
time horizon optimization procedure is able to find a suboptimal protocol
which is nearly as mixing efficient as the optimal protocol. Second, protocols
obtained using a less expensive optimization over very short time horizons
are competitively mixing efficient with respect to protocols optimized over
longer time horizons. These conclusions indicate that the short time hori-
zon optimization procedure could be used to optimize and control mixing
in engineering applications.

In this study we model homogenization of two fluids in a static mixer
using the sine flow model. We restrict our study to purely advective flows as
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we focus on mixing over times which are small with respect to the charac-
teristic diffusion times. The sine flow is suitable for our study because this
model captures the complex behavior of industrially-relevant mixing devices
such as Kenics static mixer. The laminar flow in a static mixer is closely
related to the Poiseuille flow, which is a laminar flow driven by a pres-
sure gradient in an unobstructed pipe. However, mixing elements installed
within a static mixer are able to efficiently redistribute flow in the radial
direction. As the result, the velocity profile in a static mixer approaches the
velocity profile of the plug flow rather than the parabolic velocity profile of
the Poiseuille flow (Thakur et al., 2003). In other words, the flow velocity in
a static mixer is nearly constant across any cross-section orthogonal to the
main flow direction. Therefore, the dynamics induced in a cross-section of a
three-dimensional flow in a static mixer can be represented qualitatively by
the dynamics induced in the two-dimensional sine flow (Hobbs et al., 1997).
In this study we consider, as a hyphothetical enhancement of a static mixer,
a continuous-injection mixing device able to optimize mixing on-line. We
model this device using the sine flow in which mixing is enhanced with the
short time horizon procedure by Cortelezzi et al. (2008).

The goal of this study is to assess how sensitive is the mixing efficiency
induced by the stirring protocols obtained with the short time horizon op-
timization procedure to the geometry of the initial concentration field. To
perform this assessment, we consider five different configurations of the ini-
tial concentration field. For each configuration, we use the short time hori-
zon optimization procedure to obtain an optimized protocol. We quantify
the mixing efficiency of the optimized protocols by comparing the time-
evolution of the mix-norm induced by them. Subsequently, we quantify the
sensitivity of the optimized protocols by computing the time evolution of
the spreading of the mix-norm induced by these protocols for the five ini-
tial configurations. We use the periodic and recursive symmetry-breaking
protocols as benchmarks for our assessment. We show that the short time
horizon optimization procedure generates protocols of nearly the same mix-
ing efficiency regardless of the initial configuration. In other words, we
show that the performance of the protocols obtained with this optimiza-
tion procedure is generally quite insensitive to the geometry of the initial
scalar field when compared to the performance of the periodic and recursive
symmetry-breaking protocol.

The remainder of the article is organized as follows. In section 2, we
define the sine flow system and review the solution to the purely advective
problem. In the same section, we also define the mix-norm and sketch
its computation. In section 3, we provide the definition of the recursive
symmetry-breaking protocol and review the short time horizon optimization
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procedure by Cortelezzi et al. (2008). In section 4, we present, discuss and
compare the mixing efficiency and its sensitivity to the geometry of the
initial configuration for the protocols obtained with the short time horizon
optimization procedure as well as for the periodic and recursive symmetry-
breaking protocols. We summarize our findings in section 5.

2 Mathematical description of the problem

In this section, we define the sine flow system and review the numerical
solution to the purely advective sine flow problem. We also sketch the
computation of the mix-norm and discuss the choice of the computational
grid which is used to obtain the numerical solution.

2.1 The sine flow system

In this study we adopt the sine flow (Liu et al., 1994) as a model mixer
to develop and test our optimization procedures. In the sine flow model, a
passive scalar field (e.g., concentration field) is stirred iteratively by a pair
of orthogonal, sinusoidal velocity fields

vo(z,y) = [Sin(27ry)v O]Ta vi(z,y) = [07 Sin(Qﬂ—x)]Tv (1)
inside a unit square domain with periodic boundaries. During each iteration,
the concentration field is advected by one of the two velocity fields over a
switching time 7. A stirring protocol is defined as a sequence of N binary
digits {ay }_,, where N is the total number of iterations to be performed.
Entries «ay set to zero and one are associated with velocity fields vy and
vy, respectively. The set of 2V binary strings of length N represents all
admissible protocols that can be used to stir the mixture by a given final
time T'= 7N.

2.2 Solution to the purely advective sine flow problem

Pure advection of a scalar concentration field ¢(x,y,t) is governed by
the dimensionless equation

— =-v-Vo. (2)

Characteristic velocity and length chosen for nondimensionalization are the
maximum absolute value of the stirring velocity field and the length of the
square domain, respectively. Equation (2) states that in the absence of
diffusion the concentration associated with any fluid particle is preserved in
time. Hence, the time evolution of the concentration field can be obtained
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from the time evolution of fluid particles moving under the action of the
stirring velocity fields (1).

The time evolution of a fluid particle (X (¢), Y (t)) under the action of the
stirring velocity field vg is described by the system of ordinary differential
equations

dX dYy
with initial conditions
X(tg) = Xo, Y(to) =Y. (4)

Integrating this system and applying initial conditions, we obtain the coor-
dinates of the particle at time t = tg + 7:

X(to+ 1) = Xo + 7sin(27Yp) mod 1,

5

Y(to+7)=Y mod 1. (5)
Note that the module one on the right hand side of (5) enforces periodic
boundary conditions, i.e. it restricts the motion of the particle to lie within
the unit square domain. Similarly, the time evolution of a fluid particle
under the action of vy is given by

X(to-l—’]’) :Xo mod 1, (6)

Y(to+7) =Yy + 7sin(27Xy) mod 1.

Consequently, the time evolution of a fluid particle under the action

of the stirring protocol {ak}fgvzl with switching time 7 can be obtained

combining (5) and (6). In particular, the coordinates of the particle at time
tge1 =7(k+1), k=1,...,N, are given by the map

X + 7sin(2rY;
( ”Ti’jn( T k)> mod 1, if ap =0,
k

Xkt1
= 7
<Yk+1) x @)
. F mod 1, if ap=1.
Yi + 7sin(27 X})

Hence, the solution of the advection equation (2) is obtained leveraging
the fact that in a purely advective flow the initial concentration associated
with a fluid particle remains constant in time. Thus, in order to obtain the
concentration (X, Yy, tx) for k = 1,..., N, it is sufficient to consider a
particle located at (X, Yy) at t = ¢, track the particle position backward
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in time to its initial position (Xg,Yp) at ¢ = 0, and determine the initial
concentration field ¢(Xy, Yy, 0), i.e.

So(ma:%tk) :SQ(XOaYE)aO) (8)

The initial position of the particle, (X, Yp), is obtained from its position
(Xk, V) = (z,y) at time ¢t = t), using the inverse of the map (7),

< T}S/m( T )> mod 1, if «, =0,

Xm—l _
(31) - ©)
X mod 1, if a,, =1,
Y, — msin(27X,,)

form==k,...,1.

To compute numerically the concentration field at time t = t;, the unit
square domain is discretized into M x M nonoverlapping equal square cells,
where M, the grid resolution, is an integer number. The concentration
within the (i,7)™" cell is approximated by the concentration of the fluid
particle (X% (t),Y*%I(t)) located at time t = ;. in the center of the cell, i.e.

- . D)

X5 = X (1) = L= M/ :
M BiELe M (10)

Y9 = Yy = T,

The concentration p(Xy7, Y7 1;) at time ¢ = t; in the (i,5)™ cell is ob-
tained by tracking the position of the (i, j)™ particle backwards in time us-
ing (9) and then substituting the initial position of the particle, (X7, Yy"),
into (8).

2.3 Computation of the mix-norm

The optimization procedures considered in this study generate optimal
mixing protocols by minimizing a cost function, the mix-norm. Conse-
quently, it is important to compute the mix-norm efficiently and accurately.
The mix-norm is a multi-scale measure of the mixedness of a scalar concen-
tration field. It was introduced by Mathew et al. (2005) and is defined as
the root mean square of the average values of the concentration field over
a dense set of subsets contained in the flow domain. The mix-norm p, of
the scalar concentration field ¢(x,y,t) with zero mean can be computed as
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follows (Mathew et al., 2005)

e
Heo = (11)
2 A

where {®y}reze is the spectral representation of the concentration field.
For more details on computation of the mix-norm, the reader is referred to
Mathew et al. (2007).

An approximate spectral representation of the concentration field
o(z,y, tr) can be obtained by computing the Fast Fourier Transform (FFT)
of the concentration matrix {; ;(tx)}M "i=1- Obviously, the mix-norm of the
concentration matrix depends on the grid resolution M. As the grid reso-
lution increases, the concentration matrix approximates the concentration
field more precisely. At the same time, the computational cost of comput-
ing the mix-norm, which is of order O(M?), becomes more expensive when
the grid resolution is increased. To find the optimal grid resolution, we
computed the time evolution of the mix-norm induced by a periodic pro-
tocol at switching time 7 = 0.8 for M? = 5122, 10242, 20482, 40962 and
81922, Note that for this value of 7 the periodic protocol induces a globally
chaotic flow. Consequently, we test the mix-norm under the worst possible
conditions. For the above resolutions, the wall-clock time needed to com-
pute the mix-norm of a concentration field on a computer with a 3.4GHz
Pentium-4 processor with 1Mb L2 cache and 2Gb of RAM is 17, 71, 320,
1576 and 27633 milliseconds, respectively. At the same time, the relative
errors between the mix-norm at time ¢ = 6 computed for M? = 81922 and
the mix-norms at time ¢ = 6 computed for M? = 5122, 10242, 20482 and
40962 are 38%, 17%, 7% and 2.5%, respectively. Based on these data, we
found the grid resolution M = 2048 to be acceptable. This resolution was
used to obtain the results presented in this study.

3 Stirring protocols

As it was mentioned in the introduction, the goal of this study is to as-
sess the sensitivity of the short time horizon optimal protocols to the ge-
ometry of the initial configuration. We use the periodic and the recursive
symmetry-breaking protocols as benchmarks for this assessment. In this sec-
tion, we review the definitions of the periodic, recursive symmetry-breaking
and short-time-horizon optimal protocols.
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3.1 Periodic protocol

The periodic protocol is the traditional protocol used in the sine flow
system. This protocol is defined by the alternating sequence {0,1,0,1,...}.
Although the periodic protocol is simple, it is known to induce an unsteady
flow which exhibits a chaotic dynamics for a range of the switching time
values (Zalc and Muzzio, 1999).

3.2 Recursive symmetry-breaking protocol

The recursive symmetry-breaking protocol (Franjione et al., 1989) can
be defined as follows: The first two iterations of this protocol are {0,1}.
Then, the protocol of a desired length can be obtained by iterative concate-
nation of existing protocol with its inverse. The inverse of a given protocol
{aq,...,an} is the protocol {f,...,0n} in which §; =0 if a; =1, and
B; =1 when a; =0,i=1,...,N. For example, the first four entries of the
recursive symmetry-breaking protocol are {0,1,1,0}, the first eight entries
are {0,1,1,0,1,0,0,1}, and so on. For a detailed derivation of this protocol
the reader is referred to Franjione et al. (1989). As it was shown by Liu
et al. (1994), the recursive symmetry-breaking protocol enhances mixing
efficiency in the sine flow when compared to the periodic protocol because
it does not generate islands of regular motion.

3.3 Short time horizon optimal protocols

A procedure for generating short time horizon optimal protocols has been
proposed by Cortelezzi et al. (2008). For a given switching time 7 and a total
number of iterations N, a short time horizon optimal protocol is obtained
through a sequence of optimizations. Each optimization in this sequence
identifies a subprotocol that minimizes the mix-norm over a given time
horizon ¢t = 7v. The parameter v, the switching time horizon, a submulti-
ple of N, defines the number of short time horizon optimizations, m, needed
to reach the final time T = 7IN = Tmv. Starting at ¢ = 0, the short time
horizon optimization considers all possible subprotocols {aq, a9, ..., a.}.
For each of these protocols, the solution to the purely advective equation is
computed using a given initial condition, ¢(x,y,0), up to one time horizon,
t = v7. The mix-norms of each solution, p(z,y, v7), are then evaluated, and
the protocol which induced the lowest mix-norm is selected. The concen-
tration field ¢(x,y,v7) induced by the selected subprotocol is used as the
initial condition for optimization over the next time horizon, v7 <t < 2vT.
The m subprotocols selected by the short time horizon optimizations are
concatenated together to compose a suboptimal stirring protocol, which is
referred to as a short time horizon optimal protocol.
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Figure 1. The ‘vertical’ (V), the ‘diagonal’ (D), the ‘envelope’ (E), the ‘cir-
cle’ (C) and the ‘cornersquare’ (CS) initial conditions. The initial concen-
tration ¢(z,y,0) is equal to —1 and +1 inside the black and white regions,
respectively.

4 Results

In this section, we compare the mixing efficiency and sensitivity to the ge-
ometry of the initial concentration field of the periodic, recursive symmetry-
breaking and short time horizon optimal protocols. In order to character-
ize the performance of these protocols, we consider five initial concentra-
tion fields, see figure 1, ‘vertical’, ‘diagonal’; ‘envelope’, ‘circle’ and ‘cor-
nersquare’. We consider the ‘vertical’ initial concentration field to model
a continuous injection mixing device with injection streams that feed the
black and white fluids from the right and left side, respectively. We model
a possible distortion of this injection configuration by considering the ‘diag-
onal’ initial concentration field, see figure 1. As another possible injection
configuration, we consider configuration in which the black and white fluids
are separated in the radial direction, i.e. when the black fluid is surrounded
by the white fluid. We model this injection configuration with the ‘circle’
initial concentration field. We model a possible distortion of this injection
configuration by considering the ‘cornersquare’ initial concentration field,
see figure 1. Finally, we consider the ‘envelope’ initial concentration field to
model the injection configuration in which the black fluid is injected from
the top and bottom sides, and the white fluid is injected from the left and
right sides. Hence, we investigate how the geometry of the initial concen-
tration field affects the mixing efficiency of the protocols generated by the
short time horizon optimization procedure in comparison with the periodic
and recursive symmetry-breaking protocol.

We restrict our study to the final optimization time 7" = 6 because this
final time is sufficiently large for the structure in the mixture to be fully
developed. We consider three values of the switching time 7 = 0.1, 0.4 and
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0.8 because for these switching times the periodic protocol, which we use as
a benchmark for optimization procedures, induces in the mixture, by time
T, three well-defined flow structures (Zale and Muzzio, 1999). For 7 = 0.1,
the mixture is dominated by two islands of regular motion occupying the
entire low domain. For 7 = 0.4, the mixture presents four islands of regular
motion are surrounded by a chaotic sea. For 7 = 0.8, the chaotic sea invades
the entire flow domain and there are no detectable islands of regular motion
in the mixture.

In order to clearly discuss the mixing efficiency of different stirring pro-
tocols with respect to given initial conditions, we introduce the following
notation: The short time horizon optimization procedures with switching
time horizons v = 1, 4 and 8 are identified by vy, v4 and vg, respectively.
The five initial conditions ‘vertical’, ‘diagonal’, ‘envelope’, ‘circle’ and ‘cor-
nersquare’ are identified by the symbols V, D, E, C and CS (see figure 1).
Hence, a particular stirring protocol is identified by an abbreviation iden-
tifying the optimization procedure and the initial condition used. For ex-
ample, vg(CS) identifies a protocol obtained with the short time horizon
optimization procedure with switching time horizon v = 8 applied to the
‘cornersquare’ initial concentration field.

4.1 Optimization for 7 = 0.1

We consider first the switching time 7 = 0.1 because for this value of
switching time the flow induced by the periodic protocol is laminar and
presents two islands of regular motion occupying the entire flow domain.
Figure 2(a) shows the time evolutions of the mix-norm induced by the peri-
odic protocol applied to the five initial concentration fields shown in figure 1.
The lines with the filled circle markers, the square markers, the triangle
markers, the circle markers, and the filled square markers correspond to the
‘circle’, the ‘cornersquare’, the ‘diagonal’; the ‘envelope’ and the ‘vertical’
initial concentration fields, respectively. As it is shown by the spread of
the curves in the lin-log plot (see figure 2(a)), the mixing efficiency of the
periodic protocol depends greatly on the geometry of the initial concentra-
tion field. In particular, the periodic protocol applied to the ‘circle’ initial
configuration is the most mixing efficient, while the same protocol applied
to the ’envelope’ initial configuration is the least mixing efficient. Towards
the final time T' = 6, the time evolution of the mix-norm induced by the
periodic protocol when applied to the ‘cornersquare’, ‘vertical’ and ‘diag-
onal’ initial configurations approaches the time evolution of the mix-norm
induced by the periodic protocol when applied to the ‘circle’ initial config-
uration, see figure 2(a). The final value of the mix-norm induced in these
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Figure 2. Time evolutions of the mix-norm induced by the periodic (a) and
recursive symmetry-breaking (b) protocols applied to the ‘circle’ (—e—), the
‘cornersquare’ (—o—), the ‘diagonal’ (—v—), the ‘envelope’ (—o—) and the
‘vertical’ (—m—) initial concentration fields for 7 = 0.1.

cases is about 1.3 x 107!, which is considerably less than the final value of
mix-norm 3.3 x 10~! induced by the periodic protocol when applied to the
‘envelope’ case.

To quantify the sensitivity of the periodic protocol to the geometry of
the initial configuration, we compute the time evolution of the spreading of
the mix-norm curves presented in figure 2(a). In other words, we consider,
at any given time ¢, the relative difference §(¢) between the extreme values
of the mix-norm induced by this protocol for the five initial configurations
shown in figure 1. We compute the relative difference as follows

- Nmax(t) — .Umin(t)
) = T e ©) T i)
2

; (12)

where fimax(t) and pmin(t) are the extreme values of the mix-norm. The
time evolution of the relative difference § induced by the periodic protocol
for 7 = 0.1 is shown by the line with empty triangle markers in figure 3.
Note that the initial value of the spreading, 6(¢ = 0), is already nonzero
since the initial configurations shown in figure 1 have different values of the
mix-norm. Under the stirring action induced by the periodic protocol, the
initial relative difference increases with time, see the line with empty triangle
markers in figure 3. Therefore, the periodic protocol is highly sensitive to
the geometry of the initial configuration.
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Figure 3. Time evolutions of the relative difference between the extreme
values of the mix-norm, 6(t), for the periodic protocol (—v—), the recur-
sive symmetry-breaking protocol (—¥—), the protocols obtained with opti-
mization procedures vy (—o—), vy (—a—), vg (—m—), and protocol vg(V)
(—v—) for switching time 7 = 0.1.

Figure 2(b) shows the time evolutions of the mix-norm induced by the
recursive symmetry-breaking protocol applied to the five initial conditions
(see figure 1) for 7 = 0.1. Surprisingly, the overall performance of this pro-
tocol is similar to the performance of the periodic protocol, as it can be
seen by comparing figures 2(a) and 2(b). As for the periodic protocol, the
recursive symmetry-breaking protocol applied to the ‘circle’ initial configu-
ration is the most mixing efficient, while the same protocol applied to the
‘envelope’ initial configuration is the least mixing efficient. The latter fact
indicates that the symmetry-breaking protocol is not effective in destroying
the islands of regular motion in the early stages of stirring. The spreading of
the mix-norm values induced by the recursive symmetry-breaking protocol
is shown by the line with filled triangle markers in figure 3. The relative
difference between the extreme values of the mix-norm induced by the re-
cursive symmetry-breaking protocol increases with time and approaches the
value of about 0.75 towards the final time 7" = 6. Surprisingly, this indi-
cates that the recursive symmetry-breaking protocol is also highly sensitive
to the geometry of the initial configuration, although not as sensitive as the
periodic protocol.

The poor performance of the periodic protocol when applied to the ‘en-
velope’ initial condition is not surprising because the lines separating the
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Figure 4. Snapshots at time ¢ = 4 of the concentration field p(z,y,t)
stirred by the periodic protocol applied to the ‘envelope’ (a) and the ‘circle’
(b) initial conditions for switching time 7 = 0.1.

white and black fluids nearly coincide with the stable and unstable mani-
folds of the flow induced by the periodic protocol. In other words, this initial
configuration segregates nearly all white fluid in one island, while the black
fluid is nearly segregated in the other. Hence, very little mixing is obtained
by the periodic protocol because the stable and unstable manifolds act as
barriers to mass transport. This is illustrated in figure 4(a), which presents
the instantaneous snapshot of the concentration field at time ¢ = 4. On the
other hand, the good performace of the periodic protocol when applied to
the ‘circle’ initial condition can be explained with a similar argument. In
this case in fact, the initial configuration guarantees that there is the same
amount of black and white fluids in each island. Furthermore, the stripe of
white fluid in the center of the island separates two pockets of black fluid
located in the corners. Hence, in each island the black and white fluids can
be mixed by the swirling motion induced by the periodic protocol. This is
illustrated in figure 4(b), which presents the instantaneous snapshot of the
concentration field at time ¢ = 4.

The similarity between the performance of the periodic and recursive
symmetry-breaking protocol can also be seen by comparing the concentra-
tion fields induced by these protocols, i.e. by comparing figures 4 and 5.
Figures 5(a) and 5(b) show the instantaneous snapshots of the concentra-
tion field induced by the recursive symmetry-breaking protocol applied to
the ‘envelope’ and ‘circle’ initial conditions at time ¢ = 4. Clearly, the loca-
tion and size of islands of regular motion presented in figure 5 are similar to
those presented in figure 4. However, the structure of the mixtures presents
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Figure 5. Snapshots at time ¢ = 4 of the concentration field p(z, y, t) stirred
by the recursive symmetry-breaking protocol applied to the ‘envelope’ (a)
and ‘circle’ (b) initial conditions for switching time 7 = 0.1.

some peculiarities. On the one hand, for the ‘envelope’ initial condition,
the recursive symmetry-breaking protocol is moderately more mixing effi-
cient than the periodic protocol because the former induces finer lamellae
in vicinity of stable and unstable manifolds, see figures 4(a) and 5(a). The
corresponding values of the mix-norm, 3.34 x 10! and 3.25 x 10~!, can be
read from the curves with empty circle markers in figures 2(a) and 2(b),
respectively. On the other hand, for the ‘circle’ initial condition the recur-
sive symmetry-breaking protocol induces thicker lamellae inside the islands
of regular motion than the periodic protocol, as it can be seen from fig-
ures 4(b) and 5(b). Consequently, for this initial condition the recursive
symmetry-breaking protocol is moderately less mixing efficient than the pe-
riodic protocol. This is reflected by the values of the mix-norm 1.41 x 107!
and 1.54 x 107! corresponding to the snapshots in figures 4(b) and 5(b).
These mix-norm values can be read from the curves with filled circle markers
in figures 2(a) and 2(b), respectively.

Figure 6(a) shows the time evolutions of the mix-norm induced by the
protocols v1(C), v1(CS), v1(D), v1(E) and v1(V) obtained with the sim-
plest optimization procedure v; for 7 = 0.1. Note that in general these
protocols are all different because the short time horizon optimization pro-
cedure generates an optimal sequence which depends on the initial condi-
tion. The overall performance of these protocols is much better than the
performance of the periodic and recursive symmetry-breaking protocols as
it is shown by figures 2(a), 2(b) and 6(a). The protocols 11 (V) and v1(D)
are more mixing efficient than 4 (CS), which, in turn, is more mixing effi-
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Figure 6. Panel (a): Time evolutions of the mix-norm induced by the
protocols obtained with optimization procedure vy applied to the ‘circle’
(—e—), the ‘cornersquare’ (—o—), the ‘diagonal’ (—v—), the ‘envelope’
(—o—) and the ‘vertical’ (—m—) initial concentration fields for 7 = 0.1.
Panel (b): Snapshot at time ¢ = 4 of the concentration field ¢(z,y, t) stirred
by the protocol v (C) for switching time 7 = 0.1.

cient than the protocols v1(C) and v (E). The spreading of the mix-norm
values induced by the protocols obtained with optimization procedure v
is shown by the line with empty square markers in figure 3. In this case,
the initial spreading tends to increase with time but does not exceed the
value of about 0.428. Therefore, the protocols obtained with optimization
procedure v; are considerably less sensitive to the geometry of the initial
configuration than the periodic and recursive symmetry-breaking protocols.

It is interesting to relate the value of the mix-norm to the geometry of the
partially mixed concentration field induced by the periodic and optimized
protocols. Figure 6(b) shows the snapshot at time ¢t = 4 of the structure
of the concentration field generated by protocol v4(C). The stirring action
of this protocol induces fine lamellar structures by recursively stretching
and folding the concentration field. The corresponding value of the mix-
norm, 8.6 x 1072, can be read from the curve with filled circle markers in
figure 6(a). Figure 4(b) shows the snapshot at time ¢ = 4 of the structure
of the concentration field generated by the periodic protocol when applied
to the ‘circle’ initial configuration. In contrast with v;(C), the stirring
action of the periodic protocol applied to the ‘circle’ initial condition for
7 = 0.1 induces the swirling flow structure with relatively thick lamellae.
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The corresponding value of the mix-norm, 1.4 x 107!, can be read from
the curve with filled circle markers in figure 2(a). The protocol v1(C) is
substantially more mixing efficient than the periodic protocol because under
its stirring action the average lamellae thickness decreases exponentially in
time, whereas the stirring action of the periodic protocol is able to decrease
the average lamellae thickness only linearly in time.

Figure 7 shows the time evolutions of the mix-norm induced by the pro-
tocols obtained with optimization procedures v4 and vg when applied to the
five initial configurations (see figure 1) for 7 = 0.1. Figure 7 shows that the
protocols generated by v4 and vg have similar mixing efficiency and induce
a final value of the mix-norm of about 3 x 1072. The overall performance
of these protocols is much better than the performance of the periodic and
recursive symmetry-breaking protocols, as it is shown by figures 2 and 7.
Figure 7(a) shows that the protocols v4(V) and v4(D) are more mixing
efficient than v4(CS), which, in turn, is more mixing efficient than v4(C)
and v4(E). However, towards the final time 7' = 6, the time evolutions of
the mix-norm induced by these protocols approach each other. Figure 7(b)
shows that the protocol vg(V) is more mixing efficient than vg(C), vg(CS),
vg(D) and vg(E). The spreading of the mix-norm induced by the protocols
obtained with optimization procedures vy and vg is shown in figure 3 by
the lines with grey square markers and filled square markers, respectively.
The protocols obtained with procedures vy, v4 and vg induce similar relative
difference within the interval 0 < ¢ < 3.3. For times ¢ > 3.3 the spreading
induced by the protocols obtained with v4 and vg is substantially less than
the spreading in the case of v1. Thus, the computationally expensive pro-
tocols obtained with optimization procedures v4 and vg are less sensitive to
the geometry of the initial configuration than the protocols obtained with
optimization procedure vy .

Finally, we characterize the sensitivity to initial concentration field of
the stirring protocol vg(V) obtained with optimization procedure vg for
the ‘vertical’ initial configuration. We choose a protocol optimized for the
‘vertical’ initial configuration because this configuration is widely used in
literature. Figure 8 shows the time evolutions of the mix-norm induced by
the protocol vg(V) applied to the five initial concentration fields (see fig-
ure 1) for 7 = 0.1. As it is shown by the spread of the curves presented
in figure 8, the protocol vg(V) is quite sensitive to the geometry of the
initial concentration field. In particular, the protocol vg(V) applied to the
‘vertical’ initial configuration is the most mixing efficient, while the same
protocol applied to the ‘envelope’ initial configuration is the least mixing
efficient. The spreading of the mix-norm induced by the protocol vg(V) is
shown by the line with gray triangle markers in figure 3. This figure shows
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Figure 7. Time evolutions of the mix-norm induced by the protocols ob-
tained with optimization procedures v4 (a) and vg (b) applied to the ‘circle’
(—e—), the ‘cornersquare’ (—o—), the ‘diagonal’ (—7—), the ‘envelope’
(—o—) and the ‘vertical’ (—m—) initial concentration fields for 7 = 0.1.

that the relative difference tends to increase during the interval 0 < t < 4.8,
reaches its peak value of about 0.62 at ¢ = 4.8 and then decreases during
the interval 4.8 < t < 6.0. Clearly, the protocol vg(V) is less sensitive
to the geometry of the initial configuration than the periodic and recur-
sive symmetry-breaking protocols but is more sensitive than the protocols
obtained with optimization procedures v, v4 and vg, see figure 3.

4.2 Optimization for 7 = 0.4

We consider next the switching time 7 = 0.4. For this value of switch-
ing time the flow induced by the periodic protocol is partly chaotic and
presents four islands of regular motion surrounded by a chaotic sea. Fig-
ure 9(a) shows the time evolutions of the mix-norm induced by the periodic
protocol applied to the five initial concentration fields shown in figure 1. As
it is shown by the spread of the curves in figure 9(a), the mixing efficiency
of the periodic protocol is greatly sensitive to the geometry of the initial
concentration field. The periodic protocol applied to the ‘circle’ initial con-
figuration is the most mixing efficient, while the same protocol applied to
the ‘envelope’ configuration is the least mixing efficient. On the other hand,
the periodic protocol has similar mixing efficiency when applied to the ‘cor-
nersquare’, ‘vertical’ and ‘diagonal’ initial configurations. The spreading of
the mix-norm induced by the periodic protocol is shown by the line with
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Figure 8. Time evolutions of the mix-norm induced by the protocol vg(V)
applied to the ‘circle’ (—e—), the ‘cornersquare’ (—o—), the ‘diagonal’
(——), the ‘envelope’ (—o—) and the ‘vertical’ (—a—) initial concentration
fields for 7 = 0.1.

empty triangle markers in figure 10. As for the switching time 7 = 0.1,
the relative difference increases with time under the stirring action of the
periodic protocol. Thus, the periodic protocol is highly sensitive to the
geometry of the initial configuration.

Figure 9(b) shows the time evolutions of the mix-norm induced by the re-
cursive symmetry-breaking protocol applied to the five initial conditions (see
figure 1) for 7 = 0.4. Unlike the case of 7 = 0.1, the overall mixing efficiency
of this protocol is much better than the mixing efficiency of the periodic pro-
tocol, as it can be seen by comparing figures 9(a) and 9(b). In particular,
the recursive symmetry-breaking protocol applied to the ‘vertical’ initial
configuration is the most mixing efficient, while the same protocol applied
to the ‘envelope’ configuration is the least mixing efficient. The spreading
of the mix-norm induced by the recursive symmetry-breaking protocol is
shown by the line with filled triangle markers in figure 10. The recursive
symmetry-breaking and periodic protocols induce similar spreading within
the interval 0 < ¢t < 4.8. In particular, the relative difference induced by
these protocols increases with time and reaches the value of about 0.68 at
t = 4.8. However, for t > 4.8 the relative difference tends to decrease in the
case of the recursive symmetry-breaking protocol, whereas it continues to
increase in the case of the periodic protocol. Thus, the recursive symmetry-
breaking protocol is, over time, less sensitive to the geometry of the initial
configuration than the periodic protocol.



Sensitivity of Mixing Optimization. .. 391

1 1

Figure 9. Time evolutions of the mix-norm induced by the periodic (a) and
recursive symmetry-breaking protocol (b) applied to the ‘circle’ (—e—), the
‘cornersquare’ (—o—), the ‘diagonal’ (—v—), the ‘envelope’ (—o—) and the
‘vertical’ (—m—) initial concentration fields for 7 = 0.4.
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Figure 10. Time evolutions of the relative difference between the extreme
values of the mix-norm, 6(t), for the periodic protocol (—v—), the recur-
sive symmetry-breaking protocol (—¥—) and the protocols obtained with
optimization procedures vy (—o—), vy (—a—) and vg (—m—) for switching
time 7 = 0.4.
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Figure 11. Snapshots at time T = 6 of the concentration field p(z,y,t)
stirred by the periodic protocol applied to the ‘envelope’ (a) and the ‘circle’
(b) initial conditions for switching time 7 = 0.4.

The poor performance of the periodic protocol when applied to the ‘en-
velope’ initial condition is not surprising because this initial configuration
segregates black fluid in two of the four islands of regular motion induced by
this protocol, while white fluid is segregated in the other two islands. Hence,
mixing is poor within the island of regular motion because the boundaries
of the islands act as barriers to mass transport. This is illustrated in fig-
ure 11(a), which presents the instantaneous snapshot of the concentration
field at time 7" = 6. On the other hand, the good performance of the peri-
odic protocol when applied to the ‘circle’ initial condition can be explained
with a similar argument. In this case, the initial configuration guarantees
that there is comparable amount of black and white fluids in each island.
Hence, the black and white fluids can be mixed by the swirling motion
induced in each island by the periodic protocol. This is illustrated in fig-
ure 11(b), which presents the instantaneous snapshot of the concentration
field at time T = 6.

The difference in performance between the periodic and recursive
symmetry-breaking protocol for 7 = 0.4 can be seen by comparing the
concentration fields induced by these protocols. Figure 12 shows the in-
stantaneous snapshots of the concentration field induced by the recursive
symmetry-breaking protocol applied to the ‘envelope’ and ‘circle’ initial
conditions at time 7' = 6. As it can be seen from this figure, the recur-
sive symmetry-breaking protocol induces no islands of regular motion. This
protocol is more mixing efficient for the ‘circle’ initial configuration than
for the ‘envelope’ configuration. The corresponding values of the mix-norm,
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Figure 12. Snapshots at time T = 6 of the concentration field p(z,y,t)
stirred by the recursive symmetry-breaking protocol applied to the ‘enve-
lope’ (a) and the ‘circle’ (b) initial conditions for switching time 7 = 0.4.

4.1 x 1072 and 6.0 x 102, can be read from the curves with filled circle
and empty circle markers in figure 9(b). These mix-norm values are smaller
than the values 1.9 x 10~ and 8.0 x 10~2 induced by the periodic protocol
at time T' = 6. The above values of the mix-norm induced by the periodic
protocol correspond to the snapshots of the concentration field shown in
figure 11 and can be read from the curves with filled circle and empty circle
markers in figure 9(a).

Figure 13(a) shows the time evolutions of the mix-norm induced by the
protocols v1(C), v1(CS), v1(D), v1(E) and v1(V) obtained with the sim-
plest optimization procedure vy for 7 = 0.4. The overall performance of
these protocols is much better than the performance of the periodic protocol
and slightly better than the performance of the recursive symmetry-breaking
protocol, as it can be seen from figures 9(a), 9(b) and 13(a). The protocol
v1(E) is visibly less mixing efficient than the other protocols obtained with
v1. The protocols v1(C), 11(CS), v1(D) and v1(V) are similarly mixing
efficient. The stirring action of the protocols obtained with optimization
procedure v is illustrated in figure 13(b), which presents the instantaneous
snapshot of the concentration field induced by the protocol v1(E) at time
T = 6. As it can be seen from figure 13(b), this protocol induces no islands
of regular motion. The stirring action of v1(E) seems to be similar to the
stirring action of the recursive symmetry-breaking protocol, as it can be
seen by comparing figures 12(a) and 13(b). The spreading of the mix-norm
induced by the protocols obtained with optimization procedure v; is shown
by the line with empty square markers in figure 10. For these protocols, the
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Figure 13. Panel (a): Time evolutions of the mix-norm induced by the
protocols obtained with optimization procedure vy applied to the ‘circle’
(—e—), the ‘cornersquare’ (—o—), the ‘diagonal’ (—v—), the ‘envelope’
(—o—) and the ‘vertical’ (—m—) initial concentration fields for 7 = 0.4.
Panel (b): Snapshot at time T' = 6 of the concentration field ¢(x,y, )
stirred by the protocol v (E) for switching time 7 = 0.4.

relative difference increases within the interval 0 < ¢ < 2 where reaches the
value of about 0.4, and then it fluctuates near this value. Thus, the proto-
cols obtained with optimization procedure v are considerably less sensitive
to the geometry of the initial configuration than the periodic and recursive
symmetry-breaking protocols.

Figure 14 shows the time evolutions of the mix-norm induced by the
protocols obtained with optimization procedures v4 and vg when applied to
the five initial configurations (see figure 1) for 7 = 0.4. Figure 14 shows
that these protocols have similar mixing efficiency and induce a final value
of the mix-norm of about 3 x 1072. The overall performance of the pro-
tocols obtained with v4 and vg is quite similar and much better than the
performance of the periodic protocol, as it is shown by figures 9(a) and 14.
Figure 14(a) shows that the protocol v4(E) is clearly less mixing efficient
than the four other protocols. Figure 14(b) shows that the protocol vg(V)
is more mixing efficient than protocols vg(C), vs(CS) and vg(D), which, in
turn, are more mixing efficient than vg(E). The spreading of the mix-norm
induced by the protocols obtained with optimization procedures v4 and vg
is shown in figure 10 by the lines with grey square markers and filled square
markers, respectively. The relative difference does not exceed the value of
about 0.38 in the case of v, and the value of about 0.32 in the case of vg.
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Figure 14. Time evolutions of the mix-norm induced by the protocols ob-
tained with optimization procedures v4 (a) and vg (b) applied to the ‘circle’
(—e—), the ‘cornersquare’ (—o—), the ‘diagonal’ (—7—), the ‘envelope’
(—o—) and the ‘vertical’ (—m—) initial concentration fields for 7 = 0.4.

Thus, the protocols obtained with these optimization procedures are a little
less sensitive to the geometry of the initial configuration than the protocols
obtained with optimization procedure v; and are considerably less sensitive
than the periodic and recursive symmetry-breaking protocols.

4.3 Optimization for 7 = 0.8

We consider next the switching time 7 = 0.8. For this value of switching
time the periodic protocol induces a globally chaotic flow, i.e. a flow without
detectable islands of regular motion. Obviously, this case poses a challenge
for the short time horizon optimization procedure. Figure 15(a) shows the
time evolutions of the mix-norm induced by the periodic protocol applied to
the five initial concentration fields shown in figure 1. The periodic protocol
applied to the ‘circle’ and ‘envelope’ initial conditions is less mixing efficient
than this protocol applied to the ‘cornersquare’, ‘diagonal’ and ‘vertical’
initial conditions. By comparing the spread of the curves presented in the
figures 2(a), 9(a) and 15(a), one can see that the mixing efficiency of the
periodic protocol for 7 = 0.8 is considerably less sensitive to the initial
concentration field than the mixing efficiency of the periodic protocol for
switching times 7 = 0.4 and 0.1. The spreading of the mix-norm induced by
the periodic protocol is shown in figure 16 by the line with empty triangle
markers. The relative difference increases within the interval 0 < ¢ < 2.4,
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Figure 15. Time evolutions of the mix-norm induced by the periodic
(a) and recursive symmetry-breaking (b) protocols applied to the ‘circle’
(—e—), the ‘cornersquare’ (—o—), the ‘diagonal’ (—v—), the ‘envelope’
(—o—) and the ‘vertical’ (—=—) initial concentration fields for 7 = 0.8.

reaches the value of about 0.4 at ¢ = 2.4 and then decreases to the value
of about 0.17 towards the final time 7" = 6. Not surprisingly, the periodic
protocol for 7 = 0.8 is considerably less sensitive to the geometry of the
initial configuration than for 7 = 0.1 and 0.4 since for 7 = 0.8 this protocol
induces a globally chaotic flow.

Figure 15(b) shows the time evolutions of the mix-norm induced by the
recursive symmetry-breaking protocol applied to the five initial conditions
(see figure 1) for 7 = 0.8. This protocol applied to the ‘vertical’ initial
configuration is the most mixing efficient, while it is the least mixing efficient
when applied to the ‘envelope’ initial configuration. The spreading of the
mix-norm induced by the recursive symmetry-breaking protocol is shown in
figure 16 by the line with filled triangle markers. The recursive symmetry-
breaking and periodic protocols induce similar spreading within the interval
0 <t < 24. Surprisingly, for t > 2.4, the relative difference induced
by the periodic protocol starts to decrease whereas the relative difference
induced by the recursive symmetry-breaking protocol starts to increase and
reaches the value of about 0.62 at 7" = 6. Thus, the recursive symmetry-
breaking protocol is considerably more sensitive to the geometry of the
initial configuration than the periodic protocol.

Figure 17 shows the time evolutions of the mix-norm induced by the
protocols v1(C), v1(CS), v1(D), 11 (E) and (V) obtained with the sim-
plest optimization procedure vy for 7 = 0.8. The protocol v1(V) is more
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Figure 16. Time evolutions of the relative difference between the extreme
values of the mix-norm, 6(t), for the periodic protocol (—v—), the recur-
sive symmetry-breaking protocol (—¥—) and the protocols obtained with
optimization procedures vy (—o—), v4 (—a—) and vg (—m—) for switching
time 7 = 0.8.

mixing efficient than v;(CS) and v;(D), which, in turn, are more mixing
efficient than v1(C) and v1(E). The spreading of the mix-norm induced by
the protocols obtained with optimization procedure v is shown in figure 16
by the line with empty square markers. Within the interval 0 < ¢ < 2.4,
these protocols and the periodic protocol induce similar relative difference.
For t > 2.4, the relative difference induced by the optimized protocols fluc-
tuates near the value of about 0.38. Therefore, the protocols obtained with
optimization procedure v; are more sensitive to the geometry of the initial
concentration field than the periodic protocol and are less sensitive than the
recursive symmetry-breaking protocol.

Figure 18 shows the time evolutions of the mix-norm induced by the
protocols obtained with optimization procedures v4 and vg when applied to
the five initial configurations (see figure 1) for 7 = 0.8. Figure 18(a) shows
that the protocol v4(V) is more mixing efficient than protocols v4(D) and
v4(CS), which, in turn, are more mixing efficient than protocols v4(E) and
v4(C). Figure 18(b) shows that the protocol vs(V) is more mixing efficient
than protocols vg(CS) and vg(D), which, in turn, are more mixing efficient
than protocols vg(C) and vg(E). The spreading of the mix-norm induced
by the protocols obtained with optimization procedures v4 and vg is shown
in figure 16 by the lines with grey square markers and filled square markers,
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Figure 17. Time evolutions of the mix-norm induced by the protocols
obtained with optimization procedure vy applied to the ‘circle’ (—e—), the
‘cornersquare’ (—o—), the ‘diagonal’ (—v—), the ‘envelope’ (—o—) and the
‘vertical’ (—m—) initial concentration fields for 7 = 0.8.

respectively. Within the interval 0 < ¢ < 3, the protocols obtained with
optimization procedures vy, v4 and vg induce similar relative difference.
Surprisingly, within the interval 3 < ¢ < 5.6, the relative difference induced
by the protocols obtained with v4 and vg is greater than in the case of
v1. Thus, the protocols obtained with v4 and vg are more sensitive to the
geometry of the initial configuration than the protocols obtained with v;.
At the same time, the protocols obtained with v4 and vg and the recursive
symmetry-breaking protocol induce similar relative difference within the
interval 0 < ¢t < 5, see figure 16. For ¢ > 5, the relative difference induced by
the optimized protocols decreases and becomes considerably less than in the
case of the recursive symmetry-breaking protocol. Therefore, the protocols
obtained with optimization procedures v, and vg are a little less sensitive
to the geometry of the initial configuration than the recursive symmetry-
breaking protocol.

4.4 Analysis of the structure of stirring protocols

In this subsection, we investigate the correlation between the structure of
the optimized protocols and the geometry of the initial scalar filed. For this
reason we visualize the structure of a stirring protocol {aq,...,an} with
N black or white squares arranged in a column from top to bottom. Black
and white squares identify velocity fields v; and v, respectively. The i*®
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Figure 18. Time evolutions of the mix-norm induced by the protocols
obtained with optimization procedure v4 (a) and vg (b) applied to the ‘circle’
(—e—), the ‘cornersquare’ (—o—), the ‘diagonal’ (—v—), the ‘envelope’
(—o—) and the ‘vertical’ (—=—) initial concentration fields for 7 = 0.8.

square represents velocity field v,,, which is active during the i*! iteration
of the sine flow, i =1,..., N.

Figure 19 shows the structure of the protocols obtained with optimiza-
tion procedures v, v4 and vg when applied to the five initial configurations
(see figure 1) for 7 = 0.1. We choose this switching time because it allows
an easier identification of the structure of stirring protocols. As mentioned
before, the protocols are all different because each optimization procedure
generates protocol which depends on the initial condition. Protocols present
the difference in the sequence during the first 10-15 iterations, see figure 19.
For example, protocol v1 (V) applies the velocity field v during the first 14
iterations, whereas protocol v1(C) prescribes alternately the velocity fields
v and v; during the first 6 iterations and then applies velocity field v;
during the next 5 iterations, as it is shown in figure 19(a). Hence, we re-
fer to the first 10-15 iterations of a stirring protocol as the transient part
of the protocol. On the other hand, the remaining 45-50 iterations of the
protocols shown in figure 19 share similar structures. Specifically, during
these iterations the protocols are nearly periodic, see figure 19. We refer to
the last 45-50 iterations of a stirring protocol obtained for 7 = 0.1 as the
quasi-periodic part of the protocol.

The quasi-periodic parts of the protocols obtained with optimization
procedure v consist of series of 516 iterations with on average 10 iterations
in a series, see figure 19(a). For optimization procedure vy, the quasi-
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Figure 19. Visualizations of the stirring protocols obtained with optimiza-
tion procedures v4 (a), v4 (b) and vg (c) for 7 = 0.1. Abbreviations above

the protocol visualizations indicate the geometry of the initial condition

‘circle’ (C), ‘cornersquare’ (CS), ‘diagonal’ (D), ‘envelope’ (E)

and ‘vertical’ (V).

chosen:
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periodic part of the protocols consist of series of only 4-9 iterations with on
average 8 iterations in a series, see figure 19(b). For optimization procedure
vg, the quasi-periodic part of the protocols consist of series of 6-9 iterations
with on average 8 iterations in a series, see figure 19(c). We conclude
that the quasi-periodic part of the protocols obtained with optimization
procedure v resemble the periodic protocol at the switching time 7 = 1.0,
whereas the quasi-periodic parts of the protocols obtained with optimization
procedures v4 and vg resemble the periodic protocol at switching time 7 =
0.8.

In contrast with the case of 7 = 0.1, the protocols obtained with opti-
mization procedures vy, v4 and vg when applied to the five initial configu-
rations shown in figure 1 for the switching times 7 = 0.4 and 0.8 have no
transient parts. For 7 = 0.4, these protocols consist of series of 1-3 itera-
tions with on average 2 iterations in a series. For 7 = 0.8, these protocols
consist of series of 1-2 iterations with on average 1 iteration in a series. As
a result, the optimized protocols obtained for 7 = 0.4 and 0.8 resemble the
periodic protocol at 7 = 0.8, which induces a globally chaotic dynamics.

5 Summary and conclusions

In this study, we considered the conceptual problem of designing a mixing
device able to maintain a uniform quality of mixing for different initial con-
figurations of the mixture. As a case study, we considered as a model device
a two-dimensional, piecewise steady, nonlinear flow, the sine flow. To pro-
mote mixing in this device, we optimized on-line a stirring protocol using
the short time horizon procedure. This procedure considers all admissible
stirring subprotocols over a sequence of time horizons and selects a subopti-
mal stirring protocol which maximizes the quality of mixing at a given final
time. As a measure of the quality of mixing and as the cost function of the
optimization, we used the mix-norm, an average multi-scale measure of the
scalar variance over different coarse graining of the mixing domain.

We assessed the sensitivity of the short-time-horizon optimal protocols
to the geometry of the initial configuration by considering five different
configurations of the initial concentration field. For each configuration, we
used the short time horizon procedure to obtain an optimized protocol. We
quantified the mixing efficiency of the optimized protocols by comparing
the time evolutions of the mix-norm induced by them. Subsequently, we
quantified the sensitivity of the optimized protocols by computing the time
evolution of the spreading of the mix-norm induced by these protocols for
the five initial configurations. We used the performance of the periodic and
recursive symmetry-breaking protocols as benchmarks for our assessment.
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We showed that for the small values of the switching time, such as 7 = 0.1
and 0.4, the performance of the optimized protocols is quite insensitive to
the geometry of the initial configuration when compared to the performance
of the periodic and recursive symmetry-breaking protocols. For these values
of 7, the recursive symmetry-breaking protocol is only a little less sensitive
than the periodic protocol. Surprisingly, we found that for large values of
the switching time, such as 7 = 0.8, optimized protocols are more sensitive
to the geometry of the initial configuration than the periodic protocol. On
the one hand, the sensitivity of the periodic protocol is expected to be quite
small for 7 = 0.8 because for this value of the switching time this protocol
induces a globally chaotic dynamics. On the other hand, it is not clear why
for 7 = 0.8 the periodic protocol is even less sensitive than the optimized
protocols.

We hypothesized that on-line optimization of mixing is essential to
achieve a uniform mixing efficiency for different initial configurations of the
mixture. To corroborate this hypothesis, we applied the stirring protocol
optimized for one initial configuration to the four other initial configura-
tions. We found that this protocol is considerably more sensitive to the
geometry of the initial configuration than the protocols optimized for the
five initial configurations.

We characterized the effect of the switching time horizon v and the
switching time 7 on the sensitivity of the optimized protocols to the geom-
etry of the initial configuration. For switching times 7 = 0.1 and 0.4, the
protocols optimized over the shortest time horizon, v = 1, are competitively
sensitive to the geometry of the initial configuration with respect to the pro-
tocols optimized over longer time horizons, v = 4 and 8. For the switching
time 7 = 0.8, the protocols optimized over v = 1 are even less sensitive than
the protocols optimized over ¥ = 4 and 8. In addition, for all of the above
values of the switching time the protocols optimized over v = 1 are compet-
itively mixing efficient with respect to the protocols optimized over v = 4
and v = 8. Consequently, the simplest optimization, v = 1, is more suitable
for practical applications than the more complex optimizations, v = 4 and
v=_.

We observed that the structure of the optimized protocols strongly de-
pends on the initial configuration for which the protocols were generated.
For the small switching time, 7 = 0.1, the protocols have different structure
within the transient part, the first 10-15 iterations. The structure of the
remaining part of these protocols, the last 45-50 iterations, is quasi-periodic.
The period is about 1.0 for the protocols optimized over » = 1 and about
0.8 for the protocols optimized over v = 4 and v = 8. For large switching
times, 7 = 0.4 and 0.8, the optimized protocols have no transient parts and
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are quasi-periodic with the period of about 0.8. Therefore, for all the values
of the switching time, 7 = 0.1, 0.4 and 0.8, the optimized protocols gener-
ally resemble the periodic protocol at 7 = 0.8, a protocol which is known
to induce a globally chaotic dynamics.

The results obtained in this study indicate that the optimization over
very short time horizons could be in principle used as an on-line procedure
for maintaining a uniformly high quality of mixing for a time-dependent
initial configuration.
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