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Lectures on Mixing and Dynamical Systems 37



38 I. Mezić
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Lectures on Mixing and Dynamical Systems 59



60 I. Mezić
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Lectures on Mixing and Dynamical Systems 89



90 I. Mezić
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Lectures on Mixing and Dynamical Systems 93



94 I. Mezić
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(a) (b)

Figure 10. Evolutes of a small segment anchored at the origin after -(a)
four , and -(b) five it erations of the 8M proto col defined by T = 1.

tween the line st retc hing exponent and the Lyapunov exponent is related
to the fact that , even though the curve will eventually visit densely the
chaot ic region , the space-invading process is such that the curve images re­
sult pr eferen tially conc entrated in cert ain zones, where the local stretchin g
is higher.

The nonuniform char acte r of the space-filling dyn amics of the filam ent
can be analyzed quantitatively by defining a box-counted measure, which

we refer to as w-measure JLt'\x, 6.x) , which quantifies the fract ion of length
of the n-th iterate of t he curve that falls wit hin a squared box of size 6.x
centered arou nd a given point x (Giona and Ad rover , 1998). As n increases,
such measu re converges towards an invariant measure ILwCD) , where V is a
generic measurable subset of fl. Qu alitatively equivalent information can be
gathered by consider ing the intersections of the curv e wit h an ass igned refer­
ence line. Consider, e.g. , the horizontal line T = {(:r,y) IO ::; x::; 1, Y = 1/4}
and the int ersections {~ih :O: i :O: N (n l ' where N (n) is the total number of in-

tersections between "In an d T . Let fL~~' l (x) represent the fraction of the total
number of intersections falling in the interval [0, x]. Figure 11 shows the one­

dimensional measures JL f: l(x) for n = 8,1 0,12. The convergenc e towards
and invariant curve is so fas t that the difference between the approxima­
tions to the invariant measure is barely appreciab le. The highly nonuniform
feature of the space-filling process associated with the it erates "In = Mn(r)
is reflected in the singular character of the invariant measure ILLnl (:r) , which
does not possess a density function. Let us analyze this aspect by consider-
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the SM family" .

131
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F igure 13 . Spati al structure of the set P er.; for (a) : n = 4, and (b) : n = 5
in the Sine Flow map

The spat ial distribution of P er.; is manifest ly highly nonuniform . Like­
wise what observed for the distribution of material lines, it turns out that a
measure-theoretic al approach can also be used to characterize the set P erno
Let N pe,.(n ) be the cardina lity of these sets for each given n (i.e. the total
number of points of P ern). Then, at each fixed ri , the following measure
(referred to as th e Bo wen m easure) can be associated with P ern ,

Nl' er (n )

2: 6(X-Xi) ,
i = 1

(13)

where 6(x - Xi) denotes the Dirac 's delta distribution, and Xi is a gene ric
point of P erno The Bowen measure is a superposit ion of atomic measures
wit h support on P ern, where each point of the set is given the same weight .
For specific classes of systems (expansive systems) it has been proved th at

the limit limn-too = ILCj;2w converges towards an invariant measure, which we
refer to as ILBow (Katok and Hasselblat t , 1995) . Results of numerical simu­
lat ions performed over physically relevant models suggest that this measure
is well defined for a larger class of systems than those for which a rigorous
proof of the convergence has been derived (Giona and Cerbelli , 2005).

GT he family of sine-flow maps (Liu et al ., 1994 ) is defined as the Poincare map of t he

time peri odic-flow defin ed by the ac t ion of t wo st eady unidirecti on a l blinking flows

VI = (O, sin (2rrx )) , a nd V2 = (sin (2rry), O), each act ing al t ern a tely for a t ime T = T/ 2,
whe re T is t he overall period of t he protocol.
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(B)

Figure 8. T hree-dimensiona l plots of the eigenfunct ions of advection­
diffusion operator for the autonomous cavity flow. (A) Dominan t eigen­

function 1~1) of the diffusion-controlled branch for Pe = 103 . (B) Modu­

lus of t he dominant eigenfunction ,~~) of the convection-enhanced branch
for Pe = 103 . (C) Dominan t eigenfunction 1~1 ) of the diffusion-controlled

branch for P e = 104 . (D) Second dominan t eigenfunction 1 ,(2) of the
diffusion-cont rolled branch for Pe = 101 .

also t he second, the t hird eigenvalue as so forth possess the same sca ling Eq .
(102) . For this reason , ChED regime may be referred to as a hom ogen eous
coupling between convection and diffusion . It is worth ment ioning that Eq.
(102) has been obtained by other Authors (Toroczkai et al., 2001; Fereday
et a l., 2002; Pikovsky and Popovych, 2003; Sukhatrne an d Pierrehum bert,
2002; T hiffeault an d Childress , 2003), not for the real advection-di ffusion
equation , bu t for the simplified pul sed-system model, which is obt ained
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F ig ure 9. Poincare sect ions of the t ime-pe riodic Sine Flow. (A) T = 0.4 .
(B) T = 0.56. (C) T = 0.8. (D) T = 1.18.

by splitting the interplay between advection and diffusion in two separa te
ste ps: a first ste p in which advect ion is active and no diffusion occurs, a
second step without advect ion, in which diffusion smoothes the gradients
(see Section 6).

Figure 11 (A) shows the contour plo t of th e normalized dominan t eigen­
fun ction for P e = 105, and Fig. 11 (B) the cont our plo t of the norm of it s
gradient . It can be observed that the spatial region charact er ized by high
valu es of the gradient tends to invad e th e ent ire mixing region , and that
the contour plot (or the reaction interface associated with the dominant
eigenfunct ion) closely resembles th e st ructure of the leaves of the uns table
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Figure 11. Contour plot of th e dominant eigenfunction an d of its gradient
for the TPSF at T = 1.6, Pe = 105 .

limc: --->o I1V'?j;c:ll idll?j;c:1li z = 00 , i.e. t heir normalized gradient norms diverge
as P e ---7 00 .

Due to space limita tions, solely the case T = 0.8 is disc ussed below in
some detail.

In the analysis of spectral structure, it is useful to register the analogy
bctwcn the ADE an d bimolecul ar infini tely fast reactions (Section 3) . Keep­
ing in min d t his analogy, pos it ive an d negative regions of the eigenfunctions
can be viewed as the por tion of the mixing space within which the two re­
ac tants are localized. 'While discussing the case of T = 0.8, t his analogy is
frequent ly used .

The case T = 0.8 is particularly interesting in order to highlight the
com plex role of the quasiperiodic islands in the int erplay between diffusion
and advection , an d the role of symme try. Figur e 13 shows the sca ling of
the dominant decay rates of the C an d S branches. In this case, bot h
these eigenva lues are real , but their scaling is different . The smallest C
eigenvalue , which is dominant in t he Pec let range [102 , 106 ], follows Eq.
(103) wit h a = 0.745, while the S dominan t eigenvalue sca les diffusively, i.e.
proportional to 1/P e. The functional decoup ling between C an d S branches,
which is typ ical of the SF system, ind icates that for very large Peclct values
(approximatively of the order of 2 x 106 ) , a crossing will occur between
these two bran ches, and the S-branch diffusive eigenvalue will eventually
dom inate the asympto tic sca ling . T he physical nature of this phenomenon
can be fully ap preciated by the analysis of the eigenfunct ions associated
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F igur e 14. Profiles of the dominan t eigenfunctions of the TPSF syst em at
T = 0.8 for Pe = 4 x 104 . (A) C branch . (13) S branch .

whe re T1 + T2 = T , with the "pulsed operator"

(104)

where F is the Frobenius-Perron operator associated with a purely kine­
matic motion.

Apart from typ ical and st riking situat ions , for wh ich th e pul sed- syst em
approach gives complete ly unphysical anwsers (such as for uniformly hyp er­
bol ic to ral automor phisms), since it predict s a decay of the L 2-norm which is
fast er th an any exponent ia l (actually a decay which behaves as the exponen­
t ial of an exponential) , it is importan t to observe that any pul sed ope rator
is to some extent arbitrary and divorced from a spec ific How proto col.

In order to investiga te this issue, t his Section analyzes the behavior of
a pulsed system, arising from a nonlinear map - the Standard Map - and
com pares qu ant it atively it s asymptot ic behavio r with that of the solutions
of the advect ion-diffusion equ ation associated with a flow, the stroboscopic
representation of which coincides with the St andard Map .

The Standard Map is defined by the equation x n +1 = <I> (xn ) , where



(B)
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Figure 15 . Contour plots of t he dominant eigenfunc t ions for the TPSF
system at T = 0.8 for Pe = 4 x 104

• (A) C branch. (B) S branch.

x ., = (xn ,Yn ), and

Xn+l Xn + :7f sin( 27fYn) mod. 1

p .
Yn+l Xn + Yn + - sm( 27fYn) mod. 1 (105)

27f

defined on the two-torus (i.e. on the un it squa re with opposite edges iden­
tified ). We consider the case p = 9.5. A family of incompressible t ime­
periodi c flows can be defined by blinkin g in a periodi c way two steady
parall el flows VI(x) , V2(X), which within a period ar e defined as VI(x) =

(vo2sin (27fY),0) for 0 ::; t < T l , and VI(X) = (0 ,Vo2X) for T j ::; t < Ti + T2.
where Vol , Vo2 , T l , T2 are real parameters. The st roboscopic representat ion
of t his flow after a period T = T l + T2 coinc ides with t he Standard Ma p
Eq. (105) provided that vol T I = p127f and Vo2 T2 = 1. We consider the case
TI = T2 = Te, Vp l = pl(27fTe) and Vo2 = l iTe. These flows, parametrized
with respec t to Te , are referred to as the family of St and ard-Map flows.
A first , preliminary, observati on follows immediately from the definition of
Standard-Map flows: the defin it ion of a pulsed system is not one-to-one
with a continu ous time- period flow, which adm its the same map as its stro­
boscopic representation. In general, given an assigned pul sed system, an
uncountabl e family of different flow proto cols may be defined , all of which
can be viewed as its t ime-continu ous counte rparts.
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(A) (B)

Figure 16. Contour plots of gradient modulus of t he dominant eigenfunc­
tions for the T P SF sys tem at T = 0.8 for P c = 4 X 104

. (A) C branch. (D)
S branch.

This formal am biguity reflect s itself into a quantit ative disagreement
between the prediction of a pul sed system, and of any of it s associated
advection-diffusion equations. This phenomenon is depicted in Fig. 17 (A)­
(B), which shows the L2-norm decay for the pulsed system associated wit h
the Standard Map (driven by the pulsed sys tem operator), com pared to
th e decay of the solut ions of the ADE driven by the Standard-Map flows,
for several valu es of th e parameter Te , at two different valu es of the Peclet
number P e = 103 , lO4. In order to make a "fair" comparison , t he pulsed
system is defined over a uni t period, while the resul ts of the numeri cal
simulation of th e advec tion-diffusion equation are rescaled to un it period
(by defining the dimensionless time t i T ). This implies that , if A(Pc) is
t he dominan t scaling exponent of the advection-diffusion equation for the
Standard-Map flow possessing period T , the effect ive sca ling exponent to be
com pared with th e predi ctions of the pul sed system model is Aeff (Pc ) =

A(Pe)T .
For th e solutions of the ad vection-diffusion equ ations and of th e corre­

sponding pulsed- system model , the decay of the L2-norm is exponent ia l,
but the actua l decay exponents Aef f(Pe), corr esponding to the slopes of
th e cur ves depict ed in Fig. 17 (A)- (B) in a log-no rmal plot , are com pletely
different. More precisely, for high Peclet values (such as Pe = lO4, Fig .
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x (A) x (B)

x (C) x (D)

Figure 20. Poincare sections of TP cav ity flows. (A) T = 1. (B) T = 1.5.
(C) T = 2. (D) T =4.

forcing an "informat ion exchange" (actually a mass exchange) between the
otherwise not interact ing kinematica lly segregated (invariant) regions .

The situation is even more comp lex, by further cons idering that init ial
concentration profiles t hat possess qualitatively similar kinematic behavior
(viewed thro ugh the kinem atic density approach , i.e. making use of the
evolut ion equat ion for densities) may excite different spectral bran ches, or
different eigcnmodes wit hin the same branch, lead ing to completely differ­
ent homogenizati on dynamics in the presence of small but non -vanishing
diffusivit ies.
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Experimental Visualization of Lagrangian Coherent 
Structures Using Eulerian Averaging 

Fotis Sotiropoulos  

Saint Anthony Falls Laboratory, Department of Civil Engineering 
 University of Minnesota, Minneapolis, MN, USA 

Abstract.  Time-averaging of Eulerian light intensity measurements in 
flow visualization experiments is proposed as a powerful, non-intrusive 
technique for visualizing Lagrangian coherent structures in dynamically 
rich flows.  For steady and time-periodic laminar flows a formal theory has 
been developed that explains the success of such technique by showing the 
equivalency between Eulerian and Lagrangian averages of quantities con-
served along particle paths. Similar Eulerian averaging ideas, however, 
have been successfully used to visualize and extract the coherence time 
scale of Lagrangian coherent eddies in an aperiodic (turbulent) flow. Re-
cent examples from the application of these ideas to visualize Lagrangian 
coherent structures in laminar and turbulent flows are presented. 

1 Introduction 

The term Lagrangian coherent structures (LCS) denotes large-scale, deterministic 
patterns that emerge and persist for sufficiently long times (relative to an appropri-
ate Eulerian time scale of the flow) in the advection of a passive tracer in flows 
with rich Lagrangian dynamics.  In chaotically advected laminar flows, for exam-
ple, LCS are known as the invariant sets of the flow or more commonly as 
unmixed islands.  These, often topologically complex, structures can trap tracers 
for very long times (comparable to the time scale of molecular diffusion) thereby 
reducing the portion of the flow domain that is occupied by chaotically advected 
trajectories and consequently diminishing the overall mixing efficiency.  In turbu-
lent, large-scale, geophysical flows, on the other hand, LCS emerge in the form of 
long-lived, coherent eddies, which dominate global transport and mixing (Proven-
zale, 1999).  In spite of significant recent strides in theoretical and numerical 
studies of LCS (Haller and Yuan, 2000; Haller, 2002; Mezi  and Wiggins, 1999; 
Poje et al. 1999; Mezi , 1994; etc.), however, experimental studies in this area 
remain relatively sparse. Thus, whether one is interested in optimizing mixing in 
low Reynolds number flows or in understanding global transport in geophysical 
and environmental flows, the development of experimental techniques for eluci-
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dating the dynamics of LCS in laboratory and/or field experiments is a pacing 
research issue. 

The first successful attempt to visualize unmixed island chains in a steady cha-
otically advected three-dimensional flow was reported by Fountain et al. (2000). 
They employed a series of injection needles to deliver small blobs of dye at vari-
ous locations within the chaotically advected region of the flow they studied, thus, 
specifying a set of initial “particle” locations.  The intersections of the resulting 
streaks of dye with a laser sheet constitute, by definition, the Poincaré map of the 
flow.  Fountain et al. (2000) applied this technique to a creeping flow in a open 
cylindrical container driven by a rotating tilted disk and were able to construct 
experimental Poincaré maps that were in excellent agreement with numerical 
computations.  In spite of their success, however, this technique is intrusive and 
very cumbersome to implement and, thus, it is not suitable for complex three-
dimensional flows—see related discussion in Fountain et al. (2000).  

In unsteady, aperiodic flows the concept of LCS is closely linked with that of 
finite-time stable and unstable manifolds (e.g. Haller and Yuan, 2000).  A tech-
nique for extracting finite-time manifolds from PIV velocity measurements in a 2D 
time-periodic, chaotically advected flow was proposed by Voth et al. (2002).  
They carried out precision measurements of particle tracer trajectories to directly 
measure the time-dependent stretching field, whose local maxima have been 
shown to coincide with stable and unstable manifolds of LCS (Haller and Yuan, 
2000). Their technique was applied to a time periodic flow but in principle is ap-
plicable to aperiodic flows as well. 

In a series of papers, Sotiropoulos and co-workers (Sotiropoulos et al. 2002; 
Mezi  and Sotiropoulos 2002; Chrisohoides and Sotiropoulos, 2003) introduced a 
novel, non-intrusive, simple to implement experimental technique that relies on 
averaging Eulerian scalar concentration measurements. Even though the relation-
ship of Eulerian measurements and LCS is not readily apparent, Mezi  and 
Sotiropoulos (2002) showed that a theoretically rigorous connection can be made 
for the case of steady and time-periodic chaotically advected flows via concepts of 
ergodic theory.  In the case of aperiodic flows the theoretical link is not yet estab-
lished but the technique has been adapted and successfully applied to visualize 
LCS in an aperiodic, turbulent free-surface flow (Chrisohoides and Sotiropoulos, 
2003).   

In this chapter I will first briefly review the concept of Lagrangian averaging 
and its relationship to invariant sets in chaotically advected flows.  Subsequently I 
will discuss the link between Lagrangian and Eulerian averages and show how the 
latter, which can be readily constructed from laboratory measurements, can be 
used to visualize LCS experimentally.  Results will be presented both for a chaoti-
cally advected, 3D steady flow and a turbulent, aperiodic flow.  The section on the 
theory of Lagrangian averaging is based on the works of Mezi  (1994) and Mezi  
and Wiggins (1999) while the discussion of the experimental implementation 
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reviews the works of Mezi  and Sotiropoulos (2001), Sotiropoulos et al. (2002), 
Chrisohoides and Sotiropoulos (2003) and the recent computational work of Paik 
and Sotiropoulos (2005). 

2 Lagrangian averaging and invariant sets

The concept of Lagrangian averaging and its relation to invariant sets in chaoti-
cally advected flows is central to the development of the subsequently discussed 
experimental techniques.  For that reason in this section I will briefly discuss the 
concept of Lagrangian averaging and present an example of how it can be applied 
to numerically visualize the invariant sets of the Poincaré map of a 3D, steady, 
chaotically advected flow.  The subsequent discussion is only intended to provide 
a summary of the key underlying ideas.  For a more comprehensive and rigorous 
treatment the reader is referred to Mezi  (1994) and Mezi  and Wiggins (1999), 
and Mezi  and Sotiropoulos (2002). 

Consider a laminar, chaotically advected flow.  The trajectory of a passive 
tracer txx  introduced into the flow at an initial location oooo zyxx ,,  at 
time to and advected by the flow velocity field txuu ,  is obtained by solving 
the following set of equations: 

              txutx
dt
d ,             (1) 

with initial conditions: 
                 oo xtx              (2) 

The solution of the initial value problem (1) and (2) can be written as follows: 
           tzztyytxxtxxx oooo ,,,,,,       (3) 

For the sake of brevity the specific particle whose trajectory is given by Eqn. (3) 
will be denoted by its initial location, i.e. as particle ox . 

 Let now txftf E
x ,  denote the Eulerian description of any property of the 

flow—e.g. velocity, pressure, vorticity, etc.—at a given point zy,xx , .  Prop-
erty f can also be expressed in Lagrangian terms by considering the values of f 
sampled by particle ox  as it moves through the flowfield along its trajectory given 
by Eqn. (3).  We can, thus, formulate the Lagrangian description of f as follows:  
  

txxftf o
L

xo
,            (4) 

The Lagrangian average of property f associated with particle ox is readily de-
fined as the average over all possible values of  sampled by the particle as it 
moves along its trajectory and can be formally defined as follows:  

L
xo

f
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t

o

o

t

o
L dttxxf

t
xf ,1

lim          (5) 

The fact that for an incompressible flow in a bounded domain the average in equa-
tion (5) exists follows directly from Birkhoff’s ergodic theorem.  Note that 
Birkhoff’s ergodic theorem is valid for almost every initial condition (in the sense 
of measure theory) and thus its validity is not restricted only to chaotic or to regu-
lar regions of the flow. 

Mezi  (1994) and Mezi  and Wiggins (1999) proposed an approach to visual-
ize numerically the invariant sets of the Poincaré map of a chaotically advected 
flow using the concept of Lagrangian averaging.  The overall procedure is summa-
rized as follows:  

1. Define a set of initial conditions ox ; 
2. Compute the Lagrangian time averages of a chosen function f, 

o
L xf , over the fluid particle trajectories (streamlines in a steady 

flow) originating from the points ox ;  

3. Map the so computed o
L xf  to ox and plot the level sets of the re-

sulting scalar field 
Ergodic theory can be used to rigorously show that the iso-contours of o

L xf  
will indeed visualize the unmixed regions in the flow (invariant sets) (Petersen 
1983)—see Mezi  (1994) and Mezi  and Wiggins (1999) for more details.   

 An important aspect of the above method concerns the integration time re-
quired for the averages to converge to their mean value.  It is known that along 
chaotically advected trajectories convergence is extremely slow (Meiss 1994) and 
the trajectory integration needs to be carried out for millions of time steps.  As 
shown in Mezi  and Sotiropoulos (2002), however, along periodic trajectories 
convergence is very rapid, about t-1.  This property of periodic orbits suggest that 
Lagrangian averaging can be used to develop an efficient computational technique 
for identifying unmixed islands in complex, 3D flows.  

 The utility of Lagrangian averaging in numerical studies of chaotic advection 
was demonstrated in the recent study by Lackey (2004) and Lackey and Sotiro-
poulos (2006) who employed this approach to visualize invariant sets in a steady, 
chaotically advected flow in a cylindrical container with two exactly counter-
rotating lids.     
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3 Experimental Visualization of LCS in Steady Laminar Flows  

 
The fact that Lagrangian averaging can be used to visualize the invariant sets of a 
chaotically advected flow is useful in numerical studies (see Lackey and Sotiro-
poulos, 2006) but it is not at all clear how or if the same concept can be extended 
to laboratory studies as Lagrangian averages can not be constructed experimen-
tally.  Instead in laboratory experiments it is straightforward to obtain Eulerian 
time series of a flow quantity txftf E

x ,  (by carrying out measurements at 
fixed points x ) and, thus, only Eulerian averages are available: 

t

ot

E dttxf
t

xf ,1
lim           (6) 

It has been rigorously shown by Mezi  and Sotiropoulos (2002), however, that in a 
steady, incompressible flow the Eulerian time average of a quantity conserved 
along particle paths at a point is equal to the Lagrangian average of the same 
quantity along the particle path that originates from that point.  That is, if the 
material derivative of f is zero: 

xfxf LE            (7) 
In the context of the previous discussion on Lagrangian averaging, this important 
finding proves that the level sets of the Eulerian time-average field of a quantity 
that is conserved along particle paths will visualize unmixed regions in the flow.  

 The equivalence between Lagrangian and Eulerian averaging has been ex-
ploited to construct a very simple, non-intrusive experimental visualization 
technique (Mezi  and Sotiropoulos 2002; Sotiropoulos et al. 2002).  The technique 
relies on the standard laser-induced fluorescent (LIF) technique and consists of the 
following steps:  

1) Introduce, within the chaotically advected region of the flow, a non-
uniform concentration of fluorescent dye at the initial time.  

2) Illuminate the surface of section for the Poincaré map using a laser 
sheet.  

3) Time-average the instantaneous concentration of dye (quantified in 
terms of the intensity of the scattered light in LIF experiments—see 
Figure 2) at the surface.  

4) Plot the level sets of the time-averaged concentration field.   
The fact that contour plots of the time-averaged light intensity field will visualize 
the unmixed regions of the flow follows from the fact that, neglecting molecular 
diffusion, concentration is conserved along a particle trajectory.   

It is important to emphasize that there are two prerequisites for successful ap-
plication of this technique: 1) the initial spatial distribution of fluorescent dye 
within the chaotically advected region must be non-uniform; and 2) the averaging 
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time must be smaller than the molecular diffusion time scale of the flow but much 
larger than a characteristic time scale of the flow—see Mezi  and Sotiropoulos 
(2002) for an extensive theoretical discussion of the various aspects of this tech-
nique. 

The experimental technique described above was applied successfully to re-
solve the invariant sets of Poincaré maps in the interior of steady vortex 
breakdown bubbles by Sotiropoulos et al. (2002).  Incompressible Newtonian fluid 
of kinematic viscosity  fills a closed cylindrical container (see Figure 1).  The 
bottom endwall is rotated at a constant angular velocity  while the top wall is 
held stationary.  The two non-dimensional parameters that determine the various 
flow regimes are the aspect ratio, H/R, and the Reynolds number Re= R2/ .  
Ekman suction and pumping drive a meridional flow and give rise to the formation 
of a columnar vortex along the container axis.  Above a threshold Reynolds num-
ber the columnar vortex breaks down and forms one or more vortex breakdown 
(VB) bubbles, which remain steady for a wide range of Re (Escudier, 1984).   
Even though axisymmetric numerical simulations have successfully captured most 
Eulerian aspects of the flow (Lopez, 1990), laboratory visualization experiments 
have consistently revealed small, albeit clearly visible, asymmetries at the down-
stream end of the VB bubble, which in the experiments appears open and 
asymmetric (Escudier, 1984; Spohn et al., 1998; etc.).  Sotiropoulos et al. (2002) 
studied the same problem numerically by solving the three-dimensional Navier-
Stokes equations and showed that the flow within stationary vortex breakdown 
bubbles could exhibit chaotic particle paths.  Consequently, very small three-
dimensional perturbations, which are bound to be present in any experiment, could 
have a profound effect on the Lagrangian dynamics of the flow in the interior of a 
VB bubble.  That is, even though the flow could be essentially axisymmetric from 
an Eulerian sense it can never be visualized as such in a real-life laboratory ex-
periment in which disturbances can never be fully eliminated.   Sotiropoulos et al. 
(2001) provided a detailed description of the topological aspects of vortex break-
down including a discussion of the specific chaos-inducing mechanism and 
numerically calculated Poincaré sections.  

Sotiropoulos et al. (2002) reported a set of LIF experiments using the ergodic 
experimental technique described in this section, which confirmed all computa-
tional findings and reveal new insights into the dynamics of VB bubbles (see 
Sotiropoulos et al. (2002) for the details of the experiments). Figure 2 shows typi-
cal instantaneous LIF images (iso-contours of the instantaneous light intensity 
field) for the steady, vortex breakdown bubble for Re=1850 and H/R=1.75.  Fig-
ure 3 compares the numerically calculated Poincaré map for the same flow 
(Sotiropoulos et al., 2001) with the invariant sets of the flow obtained by applying 
the ergodic experimental technique—i.e. by time-averaging a sufficiently long 
series of instantaneous LIF images such as those shown in Figure 2 and plotting 
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the level sets of the resulting time-average field.  It is seen that the unmixed island 
chains that are present in the numerically constructed Poincaré map are in excel-
lent agreement with those marked by the level sets of the time-averaged light 
intensity field obtained experimentally. Both numerical and experimental images 
reveal the presence of period two, three, and four islands (invariant sets) embedded 
within well stirred stochastic regions (uniform colored regions in the experimental 
map).  This level of agreement validates the proposed visualization technique and 
underscores its potential as a powerful tool for experimental investigations of a 
variety of flows exhibiting chaotic advection.  

4 Eulerian averaging and aperiodic flows 

The formal theory developed by Mezi  and Sotiropoulos (2001) has established 
the equivalence between Lagrangian and Eulerian averages of quantities con-
served along particle paths both for steady and unsteady, time-periodic flows.  
Whether, however, the same ideas can be exploited to develop an experimental 
technique for visualizing LCS in aperiodic flows is far from obvious.  The first 
evidence that an averaging-based technique could hold promise in numerical stud-
ies of aperiodic flows was reported by Poje et al. (1999).  They showed that 
Lagrangian finite-time averaging can capture the finite-time geometry of LCS with 
remarkable clarity provided that an optimal averaging window is selected.  Unlike 
steady or time-periodic flows, however, where Lagrangian averaging can be rigor-
ously linked to Eulerian averaging, in aperiodic flows no such formal theoretical 
link has been established so far.  Yet Chrisohoides and Sotiropoulos (2002) were 
able to develop and successfully apply a novel flow visualization technique for 
aperiodic flows that is based on finite-time averaging of Eulerian light intensity 
measurements.  In this section we briefly describe this technique and present sam-
ple results from its application to visualize LCS in a turbulent, free-surface flow 
(Chrisohoides and Sotiropoulos, 2003).  Recent computational results that confirm 
the validity of the experimental technique (Paik and Sotiropoulos, 2005) are also 
reported below. 

The flowfield under consideration takes place in a straight rectangular open 
channel with a rectangular block mounted midway through the channel at one of 
its corners (see Figure 4).  The general features of the flow at the free surface, as 
derived from experiments (Chrisohoides and Sotiropoulos, 2003) and numerical 
simulations (Paik and Sotiropoulos, 2005), are illustrated in the sketch shown in 
Figure 4.  As the upstream flow approaches the obstacle, it encounters a strong 
transverse pressure gradient that diverts it around the obstacle.  A large region of 
recirculating flow forms at the upstream junction between the obstacle and the 
channel side wall.  The flow within this region is slowly evolving but very com-
plex consisting of multiple, large-scale eddies, which appear and disappear in a 
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seemingly random manner.  Paik and Sotiropoulos (2005) recently showed com-
putationally that this region is energized continuously by vorticity from the shear 
layer forming at the interface with the fast moving outer fluid, which is entrained 
into the recirculation region at the saddle point of attachment on the obstacle up-
stream face. They also showed that the temporal dynamics in this region takes 
place on a quasi-periodic torus. A large recirculating zone is also present at the 
downstream end of the obstacle and a shear layer develops at the interface between 
the slow moving fluid within this zone and the flow diverted around the obstacle.  
The results presented in this section focus on the LCS emerging in the recirculat-
ing zone upstream of the obstacle. The Reynolds number (based on obstacle length 
and the average velocity) is Re = 4.2 105. A detailed description of the experimen-
tal flume and other experimental details can be found in Chrisohoides and 
Sotiropoulos (2003). 

To visualize LCS, small tracer particles (paper pieces) are manually intro-
duced on the free-surface upstream of the obstacle.  A digital camera is mounted 
above the obstacle with the aid of an airlift and clamps so that it could be adjusted 
both vertically and transversely. The sampling rate of the camera is 30 frames per 
second. Instantaneous images collected with the digital camera suggest a general 
recirculating flow pattern but do not provide any information about the rich dy-
namics of LCS that dominate particle transport in this region. To extract LCS we 
employ a technique that is analogous to long-time exposure photography, which is 
commonly used for qualitative visualization of flow structures in laboratory ex-
periments, as follows.   

To construct time series of light intensity, we digitize instantaneous images by 
assigning to every pixel (xp,yp)—where xp and yp are the Cartesian coordinates of 
the pixel—an instantaneous brightness index (xp,yp,t), i.e., a number quantifying 
the intensity of light emitted by the pixel at that instant in time. Assume now that 
in a given region of the flow field a LCS forms and persists over a finite time in-
terval c—the coherence time scale of the LCS.  In Chrisohoides and Sotiropoulos 
(2002) it was postulated that information about the finite-time geometry of such a 
LCS should be embedded within the chaotic light intensity time series and can be 
extracted if the dynamics of the time series is considered at the intermediate time 
scale c. A new time series, , is thus constructed by averaging  over a fi-
nite-time window   as follows: 

            tdt,y,xt,y,x
/t

/t
pppp

2

2

1
 

Level sets of  can visualize LCS and elucidate their dynamics with clarity 
provided that  is selected to be close to the coherence time scale of the LCS, 
which can be defined as the time-scale at which the time series is dominated by 
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non-trivial, deterministic effects. Chrisohoides and Sotiropoulos (2003) further 
proposed a technique for extracting the coherence time scale from the light inten-
sity time series.  The technique is based on the fluctuation analysis approach 
presented in Rand and Wilson (1995) and Keeling et al. (1997). In these refer-
ences, fluctuation analysis was proposed as the means for extracting the coherence 
length scale in spatio-temporally chaotic, artificial ecology models.  For a given 
averaging window size , the standard deviation, E , of  about  (the long-term 
time average of ) is calculated to quantify the fluctuations of  about  for 
various window sizes.  For sufficiently large , adjacent windows would become 
independent and according to the central limit theorem E  should begin to scale as 

-1/2.  The coherence time scale c is thus defined as the window size for which the 
standard deviation begins to scale in accordance to the central limit theorem.  The 
reader is referred to Chrisohoides and Sotiropoulos (2003) for further details on 
the implementation of this technique to actual experimental time series of light 
intensity.   

In Figures 5 and 6 we compare the experimental results of Chrisohoides and 
Sotiropoulos (2003) with the recent computations of Paik and Sotiropoulos (2005), 
who employed the detached-eddy simulation approach to study the dynamics of 
coherent structures induced by the obstacle (see reference for details).  The results 
in Figure 5 are shown for one instant in time when the flow in the core region of 
the recirculating region is dominated by two co-rotating eddies—see Paik and 
Sotiropoulos (2005) for a detailed discussion of the various states of the coherent 
structures in this region. The experimental image in Figure 5a corresponds to the 
raw experimental image depicting the instantaneous arrangement of paper parti-
cles.  Figures 5b and c show the effect of successively increasing the averaging 
window , which for  = 2 sec ultimately leads to the emergence of two clearly 
defined eddies connected at a saddle.  As shown in Chrisohoides and Sotiropoulos 
(2002) further increasing the averaging windows starts diminishing the clarity of 
the image ultimately causing the two-eddy structure to disappear.  Chrisohoides 
and Sotiropoulos (2002) also applied the fluctuation analysis technique discussed 
above to verify that indeed the coherence time scale of the two-eddy structure is 
close to 2 sec.  It is also worth noting that video animations of the finite-time aver-
aged light intensity fields in this core region of the flow reveal complex coherent 
dynamics consisting of rotation of the two eddies, merging into a single eddy, 
subsequent splitting, etc., which are not visible in the raw visualization images.   

To confirm the experimental results Paik and Sotiropoulos (2005) developed a 
numerical technique, which is the numerical equivalent of the experimental tech-
nique.    At some instant in time to, a set of initial release locations for passive 
Lagrangian markers on the surface is distributed uniformly within the region of 
interest (see Figure 5a). The tracers are advected by the resolved DES flowfield by 
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performing time-accurate integration of the Lagrangian equations of motion to 
determine the trajectory kx  of the kth tracer at time t. The numerical integration for 
each tracer is carried out say for N time steps to obtain the set of N discrete posi-
tions k

nx  (n=1,N) visited by the kth tracer during the time interval [to, to + N t]: 
tnt

t

k
o

k
no

k
n

k
n

o

o

dtttxutxtntxx ,   

where u  is the resolved veloc ty ield. For each k, a streak is drawn on the plane 
connecting all consecutive 

i f
k
n

k
n xx 1, pairs. The resulting numerical images are 

essentially equivalent to the experimental images obtained by Chrisohoides and 
Sotiropoulos (2003) by superimposing instantaneous digital images of particle 
locations collected over the same time interval. 

As seen in Figures 5 (a)-(c) the progression of the clarity level of the com-
puted images is remarkably similar to that in the experiments.  Note for instance 
that for =0.5s, both in the experiments and simulations only the lower left eddy 
has begun to emerge while the second eddy is not visible yet. For =2.0s, on the 
other hand, both eddies have appeared clearly in the experimental and simulated 
images.  It is also worth noting that as seen in Figure 5(c) the spatial heterogeneity 
in the distribution of length and brightness of the streaks is very similar in the 
experimental and computed images. Given the procedure we adopted to construct 
these streaks, this finding is very important as it implicitly suggests reasonable 
agreement between the laboratory and simulated velocity fields in this region of 
the flow.  This conclusion is further reinforced in the comparisons shown in Figure 
6, which depicts experimental and computational results for the upper corner of 
the recirculation region—i.e. near the saddle of separation.  The experiments re-
veal very complex eddy structure in this region, which evolves at time scales 
slower than in the core region.  Both experiments and calculations start yielding 
similar structures with similar level for clarity for  =4.0sec.   

5 Summary and Conclusions 

In this chapter, I reviewed recent progress toward the development of averaging-
based experimental techniques for visualizing LCS in flows with rich large-scale 
dynamics.  The lack of a simple and easy to implement in real-life flows experi-
mental technique for studying LCS has been a pacing item in the areas of 
chaotically advected steady and time-periodic flows as well as in turbulent flows 
where transport is dominated by coherent structures.  The techniques reviewed 
here have shown significant promise to fill this void and evolve into powerful 
experimental research tools to supplement theoretical and numerical studies.   

The unifying element of the techniques for visualizing LCS in chaotically ad-
vected laminar flows and aperiodic flows is the use of averaging of Eulerian 
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measurements of light intensity.  This quantity is directly proportional to scalar 
concentration and when considered at time scales much shorter than that of the 
molecular diffusion it can be assumed that it is conserved along particle paths.  For 
steady and time-periodic chaotically advected flows this property of light intensity 
can be exploited to rigorously link its Eulerian average at a point to its Lagrangian 
average along the particle path passing through that point using the theory of 
Mezi  and Sotiropoulos (2002).  This key finding places the concept of Eulerian 
averaging firmly within the context of the ergodic theory of Mezi  (1994) and 
Mezi  and Wiggins (1999), which established that mapping Lagrangian averages 
to initial release locations and plotting the level sets of the resulting field will visu-
alize the invariant sets of the flow.  Therefore, in the context of steady and time-
periodic flows the technique is well established and the reasons for its success are 
well understood.  Future work in this area should focus on the demonstration of its 
applicability to time-periodic flows and applications to other chaotically advected 
flows to further establish its capabilities and versatility. 

In the context of aperiodic flows the results of finite-time Eulerian averaging 
have been very promising so far but many issues remain to be resolved both theo-
retical and practical.  The recent computations of Paik and Sotiropoulos (2003) 
provided striking evidence establishing the capabilities of the finite-time averaging 
approach as well as the fluctuation analysis approach for determining the coher-
ence time-scale of LCS proposed by Chrisohoides and Sotiropoulos (2003).  Yet 
the precise link between the level-sets of the finite-time averaged light intensity 
field and the finite-time geometry of the LCS is not understood and theoretical 
work is needed to fill this fundamental knowledge gap.  Another important issue 
that needs to be resolved for the technique to evolve into a powerful experimental 
tool is with regard to determination of the temporal variation of the coherent time 
scale of the LCS in a given region of the flow.   As discussed in Chrisohoides and 
Sotiropoulos (2005) it is reasonable to expect that c will vary in time for a given 
region of the flow.  The fluctuation analysis technique in its current form, how-
ever, can not be used to detect such temporal variability and needs to be modified.  
Working to address these issues, however, could be proven very useful because 
the finite-time averaging approach is inherently suited for experimental investiga-
tions of LCS at field scale experiments for a broad range of geophysical and 
environmental flows. 
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Figure 1. Schematic of the container with meridional streamlines 
for (Re=1850; H/R=1.75). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 Figure 2. Typical instantaneous iso-contours of light intensity for a 

steady vortex breakdown bubble (Re=1850; H/R=1.75). From Sotiro-
poulos et al. (2002). 
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Figure 3. Left: Calculated Poincare map for the steady vortex breakdown 
bubble (Re=1850; H/R=1.75); Right: Invariant sets of the Poincare map 
the same vortex breakdown bubble visualized by time-averaging a suffi-
ciently long series of LIF images as those shown in Figure 2. From 
Sotiropoulos et al. (2002). 
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Figure 4. Schematic of the flume and obstacle geometry with rep-
resentative flow patterns. Left: cross-sectional view; Right: top 
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Figure 5. Effect of the size of the time-averaging window on the clarity of the La-
grangian coherent structures in the central area of the upstream recirculating region.  
Left: finite-time averaging experimental technique; Right: numerical simulation. a) 
Raw image (  = 0s); b)  = 0.5 s; c)  = 2.0 s.  From Paik and Sotiropoulos (2005). 
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Figure 6. Effect of the size of the time-averaging window on the clarity of the La-
grangian coherent structures in the upper corner of the upstream recirculating region.  
Left: finite-time averaging experimental technique; Right: numerical simulation. a) 
= 2.0 s); b)  = 4.0 s. From Paik and Sotiropoulos (2005). 

 

 
 
 
 
 
 
 





292 T. Krasnopolskaya and V. Meleshko



Quality Measures and Transport Properties 293



294 T. Krasnopolskaya and V. Meleshko



Quality Measures and Transport Properties 295



296 T. Krasnopolskaya and V. Meleshko



Quality Measures and Transport Properties 297



298 T. Krasnopolskaya and V. Meleshko



Quality Measures and Transport Properties 299



300 T. Krasnopolskaya and V. Meleshko



Quality Measures and Transport Properties 301



302 T. Krasnopolskaya and V. Meleshko



Quality Measures and Transport Properties 303



304 T. Krasnopolskaya and V. Meleshko



Quality Measures and Transport Properties 305



306 T. Krasnopolskaya and V. Meleshko





308 T. Tél and G. Károlyi



309

2

2

x

o

o

Reactions in Chaotic Flows
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Figure 1. Distribution of product C of the aut ocatalyt ic reaction A+ C
----+ 2C (A: white, C: bla ck) in t he plane of the blinking vortex-sink syste m.
T he flow, int roduced by Aref et al. (1989) and st udied in det ail by Karolyi
and T el (1997), is a combination of th e blinking vortex (Aref, 1984) and the
pul sed sink sys tem (J ones and Aref (1988), see also Stremler (2008)) . The
flow is open since par t icles leaving via the sinks never return. The sinks are
sit uated at (x = ± 1, y = 0), and a period starts with the opening of the
left sink. Panel a (b) shows the distribution after 4 (6) periods. The ini tial
condition is a sma ll square of C par ticles in a sea of A. T he distribution
becomes periodic with the same period as the flow after ab out 2 periods: a
steady state sets in due to a balan ce between the chemical production and
the hydrodyn ami cal ou tflow.
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Reactions in Chaotic Flows
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Figure 2. Dist ribution of product C of th e autocatalyt ic react ion A+ C ----+

2C (A: white , C: black) in the double sine flow, introduced by Franjione and
Ottino (1992); Liu et at. (1994); Pi errchumbcrt (1994). The flow is double
per iodi c over the uni t square and is per iodi c in time. It is closed since there
is no outflow: particles leavin g across one edge re-en ter across the opposit e
one. Panel a (b) shows th e dist ribution after 4 (6) pe riod s. T he initial
condit ion is a narrow band of C particles in a sea of A. There is a dr astical
difference in the pattern. The chemical product is gradua lly accumulating
in the sys tem: the filam ents (of approx imately the same width) cover an
increasing area , and appear therefore to have a fract al dimension increasing
in t ime. The asy mptotic steady state is a macroscopically homo geneous
distribution of C which sets in afte r about 15 periods.
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Nonlinear Preconditioning in Problems of Optimal
Control for Fluid Systems

Bartosz Protas *

* Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario,
Canada

Abstract This note discusses certain aspects of computational solution of
optimal control problems for fluid systems. We focus on approaches in
which the steepest descent direction of the cost functional is determined
using the adjoint equations. In the first part we review the classical for-
mulation by presenting it in the context of Nonlinear Programming. In the
second part we show some new results concerning determination of descent
directions in general Banach spaces without Hilbert structure. The proposed
approach is illustrated with computational examples concerning a state es-
timation problem for the 1D Kuramoto–Sivashinsky equation.

1 Introduction

Problems of optimal control arise in very many areas of science and engineering.
Given a (possibly nonlinear) system u x 0, where x is the state of the system
and is an actuation, control problems consist in determining the control , so that
this control and the corresponding state minimize some performance criterion, i.e.,

min
x

˜ x (1a)

subject to u x 0 (1b)

where represents the set of admissible controls, whereas is the space of sys-
tem states. Applications of such problems in Fluid Mechanics are ubiquitous. Here
we mention just some of the most important examples, admitting that this list is
far from being exhaustive:

shape optimization with application to aircraft design, e.g., Mohammadi and
Pironneau (2001); Martins et al. (2004),
flow control for drag reduction, e.g., Bewley et al. (2001); Protas and Sty-
czek (2002),
variational data assimilation in dynamic meteorology, e.g., Kalnay (2003),
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mixing enhancement.

In the above examples the performance criterion ˜ and the control may take
different forms reflecting the structure of the problem at hand. The equation (1b)
governing the state of the system is usually some form of the Navier–Stokes equa-
tion. In fact, from the formal point of view, optimal control problems are examples
of inverse problems [see, e.g., Isakov (1997)].

In practice, problems of the type (1) involving minimization of a cost func-
tional subject to some constraints are solved using optimization methods. Since
the constraint is a partial differential equation (PDE), such problems are examples
of PDE–constrained optimization. One of the first studies to analyze systemat-
ically such problems was the seminal work by Lions (1968). In the context of
Fluid Mechanics these problems were further investigated by Abergel and Temam
(1990) and Gunzburger (2002). When such infinite–dimensional problems are
solved in practice, suitable discretization is used to obtain a corresponding finite–
dimensional problem which, at least in principle, can be solved using methods of
Nonlinear Programming (NLP). There are, however, some aspects of the problem
that make this approach quite challenging. First of all, since the discrete systems
are obtained from discretizations of PDEs, the dimension of the discrete state vec-
tor x can be extremely large. Consequently, it is impossible to store the linear
operators involved in the solution process as matrices. Consequently, many exist-
ing software packages designed to solve finite–dimensional NLP problems cannot
be used and “matrix–free” alternatives have to be developed. Secondly, given the
size of the discrete system and difficulties involved in calculating second–order
derivatives of the cost functional, the Hessian information is usually unavailable
and Newton’s method can rarely be used. Consequently, one needs to use first–
order (gradient) approaches such as, for instance, the Conjugate Gradient (CG)
method. Moreover, the physical systems of interest to us are often characterized
by a broad range of interacting length– and time–scales and, as a result, the op-
timization problem is very poorly conditioned. The purpose of the present paper
is to discuss some recent ideas useful for accelerating convergence of iterative so-
lution to such optimization problems. In particular, we will focus on nonlinear
preconditioning strategies which, by performing locally a nonlinear change of the
metric, attempt to increase the range of validity of the tangent linear approximation
which is crucial to the present approach.

The structure of the paper is as follows: in the next Section we introduce a
simple, yet relevant from the Fluid Mechanics perspective, optimization problem
based on the Kuramoto–Sivashinsky equation that we will use as our “toy model”,
then we present a standard adjoint–based optimization approach typically used to
solve such problems; in Section 3 we will introduce the idea of nonlinear precon-
ditioning and show how it can be formulated in terms of gradient extraction in
spaces without Hilbert structure; in Section 4 we will present some computational
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results indicating the utility of the proposed method; conclusions and discussion
of further perspectives are deferred to Section 5. The present report is of a rather
exploratory nature, and more complete results concerning this problem are already
available in Protas (2008).

2 Adjoint–Based Optimization

Here we show how problem (1) can be efficiently solved using methods of Non-
linear Programming. In its initial formulation this is a constrained optimization
problem in which both the state x and the control are variables to be optimized.
This is a rather inconvenient situation, since x is a solution of a (time–dependent)
PDE and its discretization may contain a very large number of degrees of freedom
in space and in time. On the other hand, the state x may be considered a func-
tion of the control, i.e., x x , which allows us to express problem (1) in the
corresponding unconstrained form

min ˜ x min (2)

where : is called the reduced cost functional1. An advantage of this
formulation over (1) is that now optimization is carried out with respect to one
variable only with discretization usually involving much fewer degrees of freedom.
Moreover, problem (2) is unconstrained so that optimization methods required to
solve it are simpler, however, the price to be paid for this is that the functional
dependence of on is now much more involved.

As mention in Introduction, we are concerned here with situations where cal-
culation of the Hessian of (2) is impossible or impractical. We will therefore focus
on first–order gradient–based methods. The necessary condition characterizing the
minimum of the cost functional is the vanishing of its Gâteaux differential

: , i.e.
opt ; 0 (3)

where the Gâteaux differential is defined as ; lim 0 and
opt is the minimizer. In most applications, and also in the case considered here,

the cost functional ˜ is quadratic in both x and , however, x x is often a
nonlinear mapping and the optimization problem (2) may be therefore nonconvex.
As a result, it may admit nonunique solutions and (3) will characterize only a local
minimizer opt . Given some initial guess 0 , such a minimizer can be found using
gradient–based descent method of the general form

k 1 k d k k 1 2 (4)

1Since this is the formulation we will focus on below, hereafter we will skip the adjective “reduced”,
unless needed for clarity.
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such that limk
k

opt , where k is the iteration count. At every iteration k the
descent direction d k is determined based on the gradient of the cost functional
calculated at k . As will be shown below, this gradient can be extracted from

k ; . A convenient expression for k ; can be found using methods
of Nonlinear Programming [see Lewis (2001) for a discussion of NLP techniques
in the context of PDE–constrained optimization]

; D D ˜ Dx ˜ D x (5)

where DaF denotes the Fréchet derivative of the mapping F F a [see Berger
(1977)]. In (5) is the dual space with respect to and represents
the standard duality pairing between the spaces and . Below we will show
how the cost functional differential in (5), and in particular the term D , can be
expressed using an appropriately–defined adjoint state. Using the implicit function
theorem, the term D x can be expressed as

D x Dxu
1D u (6)

so that the second term on the RHS in (5) can be transformed as follows

Dx ˜ D x Dx ˜ Dxu
1D u

D u Dxu Dx ˜ D xDx ˜

(7)
where an asterisk denotes a Banach space adjoint. Putting together (5) and (7) we
see that the adjoint operatorD x : can be used to express the differential
of the cost functional (5) in a convenient form as

; D ˜ D xDx ˜ D (8)

As is evident from the above relationship, the first argument in the duality pairing
can be identified with the gradient of the reduced cost functional : in
the metric induced by the space . It must be emphasized that the gradient in fact
belongs to the dual space D and, since in most infinite–dimensional cases
the dual space is not contained in the original space , this gradient may not
be used as a descent direction in . In the special case when is a Hilbert space
we can invoke Riesz’ representation theorem [Berger (1977)] which allows us to
map D to the corresponding element as

; D (9)
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where represents the inner product on the Hilbert space , so that now
can be used to construct a descent direction in . On the other hand,

when is not a Hilbert space, Riesz’ theorem does not apply and identification
(9) is not possible. However, in Section 3 we will present a method for constructing
an equivalent of in the space in such a general case.

Now we illustrate these somewhat abstract considerations by analyzing a con-
crete example of PDE–constrained optimization. We will focus on a model prob-
lem introduced in Protas et al. (2004) which concerns estimation of the initial
condition for the 1D Kuramoto–Sivashinsky equation. This particular problem is
selected as it models the variational data assimilation, known as 4DVAR, in Dy-
namic Meteorology [see Kalnay (2003)]. The Kuramoto–Sivashinsky equation is
chosen, since it is endowed with chaotic and multiscale behavior and as such is an
attractive model for the Navier–Stokes system. We follow here Protas et al. (2004)
as regards the set–up of this problem and below highlight only the main points of
the derivation, while the Reader is referred to the original source for further details.

For simplicity, we will consider the 1D Kuramoto–Sivashinsky equation on a
periodic spatial domain 0 2 and a time interval 0 T

tv 4 4
xv

2
xv v xv 0 x t 0 T

i
xv 0 t i

xv 2 t t 0 T i 0 3

v x 0 x

(10)

Given incomplete and possibly noisy measurements y vact , where
vact t is the actual system trajectory, : is an observation operator
and is (Gaussian) noise, our optimization problem consists in finding an initial
condition in (10) such that the corresponding system trajectory best matches
the available measurements y. In other words, we minimize the following cost
functional

1
2

v y
2

L2 0 T ;L2

1
2

T

0
v y 2 d (11)

Consistently with the properties of system (10), we will assume that
L2 . Since depends on the control variable implicitly through the state equa-
tion (10), expression (11) represents in fact the reduced cost functional [cf. (2)].
We will assume that the observation operator has the form of projection on a
set of cosine modes with the wavenumbers in some set r, i.e.

r r

r where rz
1 2

0
cos rx z x dx cos rx (12)

The Gâteaux differential of (11) is given by [cf. (5)]

;
T

0

2

0
v y v dxdt (13)
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where the perturbation v ; is obtained by solving the Kuramoto–Sivashinsky
equation linearized around the state , i.e.

v tv 4 4
xv

2
xv v xv xv v 0 x t 0 T

i
xv 0 t i

xv 2 t t 0 T i 0 3

v x 0 x
(14)

with the operator : understood in the weak sense. Relation (13) can
now be transformed to a form consistent with (8) by introducing an adjoint operator

: and the corresponding adjoint state v via the following identity

v v v v b (15)

Using integration by parts and the definition of in (14), we obtain

v tv 4 4
xv

2
xv v xv and (16)

b
2

0
v v dx

t T

t 0

We remark that b does not contain any boundary terms (resulting from integration
by parts), since all of them vanish due to periodicity. Defining an adjoint system
as

v v y x t 0 T
i
xv 0 t i

xv 2 t t 0 T i 0 3

v x T 0 x

(17)

and using (14), (15) and (16) we can now express the Gâteaux differential (13) in
the desired form (5)

;
2

0
v

t 0
dx (18)

Thus, this differential (i.e., the sensitivity of the cost functional with respect to
perturbations of the initial condition) can be expressed using the solution of the
adjoint system (17).

Relationship (18) can now be employed to extract the gradient required in a
descent optimization algorithm. Since L2 0 2 , we immediately obtain

;
2

0
v

t 0
dx L2

L2

L2 v
t 0

(19)

Despite its simplicity, in many cases this is not an optimal choice, as it may result
in poor conditioning of the corresponding discrete optimization problem. In Protas
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et al. (2004) a set of regularization options was identified which can, at least par-
tially, alleviate some of such difficulties. In relation to gradient extraction it was
shown that it can be beneficial to extract the cost functional gradient in a more gen-
eral Hilbert space, Sobolev spaces being natural candidates [see also Neuberger
(1997)]. In particular, gradient extraction was considered in the Sobolev space
H1 characterized by the inner product

z1 z2
H1

1

1 l22

2

0
z1 z2 l22 xz1 xz2 dx (20)

where l2 is an adjustable length–scale. Identification ; H1

H1

yields, after integration by parts, the gradient H1
defined via solutions of the

following Helmholtz boundary value problem

1

1 l22
1 l22

2
x

H1
v̄

t 0

H1
0 H1

J 2

(21)

Thus, the Sobolev space gradient H1
is obtained by applying the inverse

Helmholtz operator to the classical L2 gradient. Interestingly, when regarded in
Fourier space, the inverse Helmholtz operator is equivalent to a low–pass filter
with the cut–off given by the inverse of the length–scale l2 parametrizing the in-
ner product (20). Consequently, extracting gradients in Sobolev spaces with inner
products given by (20) has the effect of de–emphasizing components with char-
acteristic length–scales smaller than l2. As was shown in Protas et al. (2004),
adjusting this length–scale during solution of an optimization problem can ac-
celerate convergence of iterations. In particular, starting with l2 large and then
progressively decreasing it to zero results in a multiscale procedure targeting first
the large–scale structures and then homing in on smaller scale components of the
solution opt .

3 Nonlinear Preconditioning using Descent Directions in
General Banach Spaces

In this Section we address the issue of gradient extraction in general Banach spaces
and the potential advantage this technique may offer as a method of nonlinear pre-
conditioning. Similar ideas were already discussed by Lewis (2001) and elaborated
in greater detail by Neuberger (1997), however, they were not concerned with pre-
conditioning nonlinear optimization problems. The present approach relies on the
assumption that the Banach space , where the descent direction is to be identi-
fied, be reflexive, i.e., that . As already mentioned in Section 2 in relation
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to formula (9), the gradient is a linear functional on the space and therefore
belongs to the dual space . For example, if is the Sobolev spaceW 1 p

0 , p 2,
defined as

W 1 p
0 u : u W1 p v 0

where u W1 p v p l pp xv
p d

1 p (22)

where lp is a weight, then the dual space W 1 q, where 1
p

1
q 1 [see

Adams and Fournier (2005)]. Since a dual space is usually “larger”, its elements
do not necessarily belong to the original space and therefore cannot be used to
represent descent directions in that space. Consequently, it is necessary to propose
a different approach which allows one to extract a descent direction g̃ from ;
such that g̃ . As shown by Lewis (2001) and Neuberger (1997), this can be
done defining g̃ as a unit–norm element of which minimizes expression (9).
In other words, we postulate to find g̃ as a solution of the following constrained
minimization problem

min
g 1

D g (23)

which can be converted to the more convenient unconstrained form

min
g

D g
μ
p

g p min
g

g (24)

where p is an integer, μ is the Lagrange multiplier and : . This problem
can be solved with a method analogous to the approach described earlier in Section
2. Thus, the descent direction g̃ is characterized by the vanishing of the Gâteaux
differential of (24), i.e.

g g̃;g Dg g̃ g 0 (25)

where Dg : . Thus, we obtain

Dg g̃ 0 inU (26)

as an equation determining the direction g̃ . Below we will show how this
direction can be determined when is one of the Banach spaces commonly arising
in the analysis on nonlinear PDEs. This analysis will be carried out in the setting
of the optimization problem for the Kuramoto–Sivashinsky equation introduced
in Section 2. We begin with the Lebesgue spaces Lp with norms defined as
[Adams and Fournier (2005)]

u Lp
u p d

1 p

1 p

ess supx u p

(27)
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Considering for the moment the case with 1 p , the unconstrained cost func-
tional (24) and its Gâteaux differential (25) take the form

g v t 0g
μ
p
g p d (28a)

g Lp G g;g v t 0g μg g p 2 g d (28b)

so that the descent direction g̃Lp is characterized by the algebraic relation

g̃ g̃ p 2 1
μ
v t 0 (29)

The solution of (29) is

g̃Lp

p 1 1
μ
v t 0 p — even

sgn v t 0
p 1 1

μ
v t 0 p — odd

(30)

We thus see that when p 2, the descent direction in Lp is obtained by ap-
plying a nonlinear transformation to the original gradient L2 v t 0. In the
special case p 2 we immediately obtain

g̃L2

1
μ
v t 0 (31)

which is the classical expression obtained in Section 2. As regards the constant μ,
which serves as a Lagrange multiplier in the unconstrained formulation (24), it is
chosen to normalize g̃ to unit norm g̃ 1. In the second special case p , it
can be shown that

g̃L sgn v t 0 (32)

consistently with taking the limit p in expressions (30). We also remark that
in the case p 1 the descent direction g̃L1 cannot be defined, since the space L1

is not reflexive.
We now proceed to discuss the problem of determining the descent direction

when W 1 p, whereW 1 p is the Sobolev space defined in (22). Considering the
case 1 p , the unconstrained cost functional and its Gâteaux differential take
the form

g v t 0g
μ
p

g p lpp xg
p d (33a)

g;g v t 0g
μ
p
g g p 2 g lpp x xg xg

p 2 g d (33b)
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As before, the boundary terms due to integration by parts vanish because of peri-
odicity of g̃ and g . Since the descent direction g̃ is characterized by g̃;g 0,

g , it can be obtained as a solution of the following problem in (due to
nondifferentiability of the absolute value function , this equations is formulated
in the weak sense)

g̃ g̃ p 2 l pp x xg̃ xg̃
p 2 1

μ
v t 0

g̃ 0 g̃ 2
(34)

The second term on the LHS in the first equation in (34) is usually referred to as
the p–Laplacian [Neuberger (1997)], as it represents a nonlinear generalization
of the familiar Laplace operator. Evidently, in the case p 2, W 1 2 H1

is a Hilbert space and the p–Laplacian reduces to the classical Laplace operator.
As a result, (34) simplifies to (21) and we recover the Hilbert space framework
discussed in Section 2. The Lagrange multiplier μ can be adjusted in order to
normalize the descent direction to the unit norm. We can conclude that identifi-
cation of descent directions in Banach spaces (such as Lp , or W 1 p , when
p 2) results in nonlinear transformations of the adjoint field v t 0. As regards
equations with the p–Laplacian operator such as (34), a variety of their interesting
properties is discussed by Ishii and Loreti (2005) (see also references contained
therein).

We now comment briefly on the utility of extraction descent directions in gen-
eral Banach spaces as a nonlinear preconditioning technique. The purpose of pre-
conditioning is to modify the metric in which a given iterative process takes place,
so as to accelerate convergence. For linear problems with quadratic functionals
this can also be regarded as decreasing the condition number of the Hessian of the
reduced cost functional. In such cases linear preconditioning techniques are effi-
cient enough (in fact, in many situations there exist specific guidelines regarding
the choice of an optimal preconditioner). However, for nonlinear problems linear
preconditioning may not be sufficient and a nonlinear change of the metric may
lead to better results. In the framework proposed here, choosing a preconditioner
is in fact equivalent to choosing a Banach space in which the descent direction
is identified. The question of how to choose this space is important. Unlike certain
linear problems, most nonlinear PDEs result in optimization problems with struc-
ture that is too complicated to allow for a thorough analysis. In such situations
finding the most suitable preconditioning strategy is a matter of experimentation.
There are, however, certain general conditions that need to be satisfied. In gen-
eral, for the evolution equation (10) to be well–posed, the control must belong
to some appropriate space (identical with L2 in the present case). There-
fore, if at the k–th iteration we want to precondition the gradient by extracting it

in some Banach space k , it must be ensured that this gradient
k

will still
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belong to the original space , in other words k , k . Such precondi-
tioning is equivalent to restricting the iterates to a family of subspaces nested in .
Computational results concerning linear preconditioning reported by Protas et al.
(2004) indicate that the best results were obtained when the subspaces formed the
following hierarchy

0 1 k L2 (35)

When considering general Banach spaces, additional guidance for constructing hi-
erarchies like (35) can be obtained by considering the family of Sobolev Imbedding
Theorems [Adams and Fournier (2005)]. Imbedding Theorems provide criteria that
allow one to determine whether or not one Sobolev (or Lebesgue) space is “con-
tained” in another one. In the following Section we present computational results
that address some of these issues.

4 Computational Results

In this Section we show some computational results illustrating the utility of the
nonlinear preconditioning techniques developed in Section 3. We treat the results
from Protas et al. (2004) as our point of reference, so we consider here precisely
the same problem of state estimation for the Kuramoto–Sivashinsky equation. The
observation operator in (12) uses projections on the first r 50 cosine modes (i.e.,
r 1 50 ) and we set 4000 in equation (10). Both equation (10) and its

adjoint (17) are solved using a dealiased pseudo–spectral Fourier–Galerkin method
with N 1024 grid points. The Reader is referred to Protas et al. (2004) for further
numerical details. The nonlinear equation (34) involving the p–Laplacian opera-
tor is solved using Newton’s method applied to the system of nonlinear algebraic
equations obtained after discretization.

In order to see the effect of nonlinear preconditioning we will present results
obtained for two optimization horizons (given in terms of the time step t 10 8)
T 300 and T 500. Since the effect of nonlinear preconditioning appears most
pronounced for the longer optimization horizon T 500, some of the results will
be presented for that case only. We begin presentation of the results by examining
the shape of the descent directions g̃ obtained in different Banach spaces. To fix
attention, we consider the first iteration in the problem with T 500 with a zero
initial guess 0 0. In Figure 1 we compare the descent directions g̃ extracted
in the Banach spaces L2 , L and W 1 4 with l4 10 0 [cf. (22)] with
the standard gradient L2 extracted in the space L2 . We observe that for
increasing p the descent directions obtained in the spaces Lp approach a square
wave.

In computational solution of our optimization problem we found the precondi-
tioning involving descent directions in the Sobolev spacesW 1 p , where p 3,
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0 /2
x

g

Figure 1. Shapes of the descent directions obtained at the first iteration in the data
assimilation problem with T 500 and determined in: (solid line) L2 , (dashed
line) L5 , (dotted line) L and (dash–dotted line)W 1 4 . For clarity, only
half of the domain is shown.

to be more efficient than the preconditioning using descent directions in Lp .
This is the case we will focus on exclusively below. In Figures 2a and 2b, cor-
responding to optimization with T 300 and T 500, we study the effect that
the quantity lp, the characteristic “length–scale” parametrizing the definitions of
the norm u W1 p , has on optimization efficiency. Given that the value of the cost
function (11) before optimization (i.e., for 0 0) is normalized to unity, Figures
2a and 2b show the decrease of the cost functional at the first iteration for the de-
scent directions obtained in the spacesW 1 3 andW 1 4 with values of l3 and
l4 indicated on the abscissa. For comparison, we also show the results obtained
with the gradient extracted in L2. We note that the decrease of the cost functional
significantly depends on the choice of lp (p 3 4). For T 300 the window of
lp giving improvement over optimization with the L2 gradients exists for descent
directions in W 1 3 only and is rather narrow. The advantage of determining
descent directions in a Banach space becomes much more evident for T 500,
where the windows of lp giving improvement over gradients in L2 are unbounded.

Now we proceed to analyze the effect of nonlinear preconditioning on the
whole optimization process involving many iterations. As regards optimization
with the descent directions obtained in the Banach spacesW 1 p we follow the
strategy outlined in Section 3: for a given choice of the space W 1 p we start
with the value of lp which was determined to give the best results at the first iter-
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Figure 2. Decrease of the cost functional (11) at the first iteration in optimization
with (a) T 300 and (b) T 500. The descent directions are extracted in the
spaces (solid line) L2 , (dashed line) W 1 3 and (dotted line) W 1 4 for
values of l3 and l4 indicated on the abscissa.
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ation and then progressively decrease it to zero, so that the corresponding descent
directions approach the Lp descent direction. As a result, our preconditioning strat-
egy is equivalent to extracting the descent directions in a sequence of nested spaces
W 1 p , all contained in the “master” space L2 . This strategy, initially inves-
tigated by Protas et al. (2004) for the case of gradient extraction in the Sobolev
space H1 W 1 2 , was found to give good results. In Figures 3a and 3b we
show the decrease of the cost functional k as a function of the iteration count
k for T 300 and T 500, respectively. In both cases the descent directions are
extracted in the spaces W 1 4 with the initial values of l4 equal to 10 1 and 10
in the two cases, respectively. For comparison, in the two Figures we also show
the decrease of the cost functional obtained with gradients obtained in the space
L2 . We note that when T 300 nonlinear preconditioning offers little advan-
tage over the unpreconditioned case, in contrast to the case with T 500 where a
significant convergence acceleration is observed. In order to further emphasize this
point in Figures 4a and 4b we show the data for the error in the reconstruction of
the initial condition, i.e., k

act L2
corresponding to the same cases as in

Figure 3. We note that these results provide further evidence for the trends already
shown in Figure 3. We also examined nonlinear preconditioning in the case of
shorter optimization horizons T 300, however, no acceleration of convergence
comparing to the optimization with the L2 gradients was observed. Hence, we do
not show these results here.

5 Conclusions and Outlook

In this paper we first reviewed the formulation of an optimal control problem for
a fluid system using the language of Nonlinear Programming. We focused on a
particular aspect relevant from the computational point of view, namely, determi-
nation of well–preconditioned descent directions for the cost functional. We ex-
tended an earlier approach and showed how a descent direction can be determined
in a general Banach space without Hilbert structure. In particular, we showed that
extracting this descent direction in a Sobolev space W 1 p leads to solution of
an elliptic problem with a p–Laplacian. Such a preconditioning strategy has the
effect of a nonlinear change of the metric in the space where optimization is per-
formed. When employed judiciously, this approach may have the potential to mit-
igate the effect of nonlinearities present in the system. Indeed, our computational
results indicate that such a nonlinear preconditioning can accelerate convergence
of iterations in an optimization problem for a nonlinear PDE. Interestingly, effec-
tiveness of the proposed approach increases with the length of the optimization
interval 0 T and becomes more evident for problems with large T , i.e., in situa-
tions when nonlinear effects play a more significant role. Research is underway to
apply a similar approach to precondition optimization of more realistic problems,
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Figure 3. Decrease of the cost functional k in function of iterations for op-
timizations with (a) T 300 and (b) T 500. The results are obtained with the
descent directions in (solid line) L2 and (dotted line)W 1 4 where the parameter
l4 progressively decreases with iterations.
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Figure 4. Decrease of the error of the reconstruction of the initial condition
k

act L2
in function of iterations for optimizations with (a) T 300 and

(b) T 500. The results are obtained with the descent directions in (solid line)
L2 and (dotted line)W 1 4 where the parameter l4 progressively decreases with
iterations.
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such as the state estimation in a 3D turbulent channel flow already investigated
by Bewley and Protas (2004). Another possibility is to investigate descent direc-
tions in more general Banach spaces and here Besov spaces [see, e.g., Adams and
Fournier (2005)] are attractive candidates. A thorough treatment of this subject is
given in Protas (2008).

In the present investigation the space giving “optimal” preconditioning was
chosen by trial and error. A very challenging theoretical question is to develop
a rigorous procedure that will determine guidelines for choosing such an optimal
space. Such procedures are in fact available for certain optimization problems
formulated for some linear PDEs, however, no such results appear available for
nonlinear PDEs. Encouraging computational results reported in the present paper
may therefore serve to motivate further theoretical research in this direction.
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