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classically electrical force

classically magnetic force

eigenfunctions of I .

distribution function of a random variable that
can take values < x

arbitrary function, gravitational acceleration
ground state

coherence of the n-th order
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measure of purity
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Hamiltonian or of the number operator
number of elements of a given set
normalization constant

number operator

Jj-th eigenvalue of the observable 0
eigenket of the observable 0

Jj-th eigenket of the observable 0
generic operators, generic observables
observable in the Heisenberg picture
observable in the Dirac picture
observable in the Schrédinger picture
apparatus’ pointer

observable of the object system
non-demolition observable

super-ket (or S-ket)

classical generalized momentum component

three-dimensional momentum operator
one-dimensional momentum operator
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kinetic energy operator

time reversal operator
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energy density
k-th mode function of the electromagnetic field
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beam splitting unitary operator
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unitary controlled-not operator

boolean unitary transformation
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unitary Hadamard operator

unitary momentum translation
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space-reflection operator
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operator
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operator

unitary rotation operator
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for time interval t
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£ to the system and apparatus S + A at time ¢

antiunitary operator

time reversal

generic transformation that can be either unitary
or antiunitary
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potential energy

scalar potential of electromagnetic field
centrifugal-barrier potential energy

classical potential energy

potential energy operator
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coupling between object system and apparatus
coupling between object system and meter
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number of possible configurations of bosons and
fermions, respectively

arbitrary variable, arbitrary (wave) function
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angle, spherical coordinate

generic amplitude

amplitude operator connecting a
premeasurement (| k) ), a unitary evolution (U,),
and a measurement (|m) )

theta component of the spherical harmonics

part of the spherical harmonics depending on the
polar coordinate 6

arbitrary transformation (superoperator)
constant, parameter

internal state of a system

parameter

wavelength

compton wavelength of the electron
thermal wavelength

constant used in the Paschen—Bach effect
Lindblad operator

classically magnetic dipole momentum
orbital magnetic momentum of a massive
particle

spin magnetic momentum

Bohr magneton

magnetic permeability

frequency

random variable, variable

change of variable for the radial part of the wave
function
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eigenkets of é‘

heaviside step function

parity operator

(classical) probability density

density matrix (pure state)

time-evolved density matrix
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5 mixed density matrix
of density matrix for the final state of a system
Oi density matrix for the initial state of a system
0 reduced density matrix of the j-th subsystem
OSA density matrix of the system plus apparatus
OSAE density matrix of the system plus apparatus plus
environment
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Oy standard deviation (square root of the variance)
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| ¢) ket of the object system
T time interval, interaction time between two or
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T, =y} (%)2 decoherence time
¢ angle, spherical coordinate
(;3 angle operator
| &) eigenket of the angle operator
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o(&) eigenfunctions of the observable with
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©r(x) plane waves
ok(r) spherical waves
@p(x) momentum eigenfunctions in the position
representation
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@po(Px) momentum eigenfunctions in the momentum
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O] flux of electric current
Dy magnetic flux
| D) generic ket for compound systems
xe(m) = f dF(x)e'™ classical characteristic function of a random
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set of eigenstates of a path observable
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Introduction

Why yet another book on quantum mechanics? Quantum mechanics was born in the first
quarter of the twentieth century and has received an enormous number of theoretical and
experimental confirmations along the years. It is considered to be the fundamental physical
paradigm, and has a wide range of applications, from cosmology to chemistry, and from
biology to information sciences. It is one of the greatest intellectual achievements of the
past century. As an effect of its discovery, the very concept of physical reality was changed,
and “observation,” “measurement,” “prediction,” and “state of the system” acquired a new
and deeper meaning.

Probability was not unknown in physics: it was introduced by Boltzmann in order to
control the behavior of a system with a very large number of particles. It was the missing
concept in order to understand the thermodynamics of macroscopic bodies, but the struc-
ture of the physical laws remained still deterministic. The introduction of probability was
needed as a consequence of our lack of knowledge of the initial conditions of the sys-
tem and of our inability to solve an enormous number of coupled non-linear differential
equations.

In quantum mechanics, the tune is different: if we have 10° radioactive atoms no intrinsic
unknown variables decide which of them will decay first. What we observe experimentally
seems to be an irreducible random process. The original explanation of this phenomenon in
quantum mechanics was rather unexpected. All atoms have the same probability of having
decayed: only when we observe the system do we select which atoms have decayed in the
past. In spite of the fact that this solution seems to be in contrast with common sense, it
is the only possible one in the framework of the conventional interpretation of quantum
mechanics. Heisenberg, de Broglie, Pauli, Dirac, and many others invented a formalism
that was able to explain and predict the experimental data and this formalism led, beyond
the very intention of the men who constructed it, to this conceptual revolution. Then, the
old problem of the relations among the observer and the observed object, discussed for
centuries by philosophers, had a unexpected evolution and now it must be seen from a
new, completely different perspective.

Once established, quantum mechanics became a wonderful and extremely powerful
tool. The properties of the different materials, the whole chemistry, became for the first
time objects that could be predicted from the theory and not only phenomenological rules
deduced from experiments. The technological discovery that shaped the second half of this
century, the transistor (i.e. the basis of all the modern electronics and computers) could not
have been invented without a deep command of quantum mechanics.

The progresses in recent years have not only concentrated on the problems of interpre-
tation that could be (wrongly) dismissed by some people as metaphysical, because they



Introduction

are beyond experimental tests. In the last 30 years, the whole complex of problems con-
nected to quantum mechanics and the meaning of measurements started to be studied from
a new perspective. Real, not only Gedanken experiments began to be done on some of
the most elusive properties of quantum mechanics, i.e. the existence of correlations among
spatially separated systems that could not be explained using the traditional concept of
probability. The precise quantum mechanical meaning of measurements started to be ana-
lyzed in a more refined way (e.g. quantum non-demolition measurements were introduced)
and various concepts from statistical mechanics and other fields of physics began to be
used.

This is not only an academic or philosophical problem. The possibility of construct-
ing a quantum computer, which would improve the speed of present day computers by an
incredible factor, is deeply rooted in these achievements. It is now clear that a quantum
computer can solve problems, which on conventional computers take a time exploding
as exponent of some parameter (e.g. the factorization into primes of a number of length
N), in a time which is only a polynomial in N. The technical problems to be over-
come in constructing a quantum computer are not easy to solve, but this result has a
high conceptual status, telling us how deeply quantum mechanics differs from classical
mechanics. Another quantum-information puzzling phenomenon, i.e. teleportation, has
been recently proved experimentally to exist and it is a very active area of experimental
research.

The arguments above explain why this new situation imposes the necessity to treat this
field in a new way. The idea of writing this book came to one of us in 2000; it has taken
more than eight years to accomplish this challenge.

Outline
1

The book is divided into four parts:

I Basic features of quantum mechanics
Part I deals with the basic framework of the theory and the reasons for its birth. Fur-
thermore, starting from the fundamental principles, it explains the nature of quantum
observables and states, and presents the dynamics of quantum systems and its main
examples.
IT More advanced topics
In Part IT we introduce angular momentum, spin, identical particles, and symmetries.
Moreover, we give a special emphasis to the quantum theory of measurement.
III Matter and light
We devote Part III to some of the most important applications of quantum theory:
approximation methods and perturbation theory, the hydrogen atom, simple molecules,
and quantum optics.
IV Quantuminformation: state and correlations
Finally, we deal with the most recent topics: the quantum theory of open systems, state
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measurement, quantum correlations and non-locality, and quantum information and
computation.

In this book there is material for four one-semester courses. It may also serve as a guide
for short courses or tutorials on specific and more advanced topics.

Methodology

ey

)
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In our exposition we have tried to follow a “logical” order, starting from the

principles of classical mechanics, the need of quantum mechanics with its fun-

damental assumptions (superposition, complementarity, and uncertainty principles).

Then, we present the main features of observables and states, before going for-

ward to the dynamics and to more sophisticated stuff, applications, and special

areas.

We have made an effort to use a pedagogical style. In particular:

(i) We prove or let the reader prove (through problems that are solved on the book’s
website) practically all our results: we try to lead the reader to reach them step by
step from previous ones.

(i) We have made the choice to present Dirac algebra and operatorial formalism from
the very beginning, instead of starting with the wave-function formalism. The lat-
ter is obtained naturally as a particular representation of the former. This approach
has the advantage that we are not obliged to repeat the fundamental mathematical
tools of the theory

(iii) We present our main principles and results in a pragmatic way, trying to intro-
duce new concepts on the basis of experimental evidence, rather than in an
axiomatic way, which may result cumbersome for readers who are learning
quantum mechanics.

(iv) We have made an effort to pay particular attention to cross-references in order to
help the (inexpert) reader to quickly find the necessary background and related
problems.

We have taken into account some of the most recent developments at theoretical and

experimental level, as well as with respect to technological applications: quantum

optics, quantum information, quantum non-locality, state measurement, etc.

We believe that measurement theory constitutes a fundamental part of quan-

tum mechanics. As a consequence we have devoted an entire chapter to this

issue.

When necessary, we have emphasized interpretational as well as historical issues, such

as complementarity, measurement, nature of quantum states, and so on.

We propose to the reader a large number of problems (more than 300), and the less

trivial ones (about half of them) are solved in a pedagogical way.

From time to time, we have chosen to treat special topics in “boxes.”
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Besides a large number of cross-references, we also list the following tools:

(1) The book contains 200 figures among drawings, photographs, and graphs, dis-
tributed in all chapters. We consider this graphic support a very important aspect
of our exposition. In this context, figure captions are particularly accurate and often
self-contained.

(2) The book contains an extensive bibliography (almost 600 entries, most of which are
quoted in the text) and a “Further reading” section at the end of each chapter. Name
of authors in italics in citations refer to books, those in roman text refer to journals,
papers, and other publications.

(3) The book contains full, accurate, and comprehensive indices (table of contents, subject
index, author index, list of figures, list of tables, list of abbreviations, list of symbols,
list of boxes, list of theorems, definitions, and so on) together with a summary of the
main concepts at the end of each chapter.

Readers
|

This book is addressed to people who want to learn quantum mechanics or deepen their
knowledge of the subject. The requirement for understanding the book is a knowledge of
calculus, vectorial analysis, operator algebra, and classical mechanics.

The book is primarily intended for third- and fourth-year undergraduate students in
physics. However, it may also be used for other curricula (such as mathematics, engineer-
ing, chemistry, computer sciences, etc.). Furthermore, it may well be used as a reference
book for graduate students, researchers, and practitioners, who want a rapid access to spe-
cific topics. To this purpose the extensive indices and lists are of great help. It may even
serve as an introduction to specific areas (quantum optics, entanglement, quantum informa-
tion, measurement theory) for experienced professionals from different fields of physics.
Finally, the book may prove useful for scientists of other disciplines who want to learn
something about quantum mechanics.
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From classical mechanics to quantum

mechanics

In this chapter we shall first summarize some conceptual and formal features of classical
mechanics (Sec. 1.1). Modern physics started with the works of Galileo Galilei and Isaac
Newton from which classical mechanics, one of the most beautiful and solid intellectual
buildings of the human history, came out. The architecture of classical mechanics was
developed between the end of the eighteenth century and the second half of the nineteenth
century, and its present form is largely due to Lagrange, Jacobi, and Hamilton. As we shall
see in this chapter, classical mechanics is built upon the requirement of determinism, a
rather complex assumption which is far from being obvious. In (Sec. 1.2) we shall present
the two main conceptual features of quantum mechanics on the basis of an ideal inter-
ferometry experiment: the superposition principle and the principle of complementarity.
In Sec. 1.3 a first formal treatment of quantum-mechanical states is developed: quantum
states are represented by vectors in a space that turns out to be a Hilbert space. In Sec. 1.4
the significance of probability for quantum mechanics is explained briefly: we will show
that probability is not just an ingredient of quantum mechanics, but is rather an intrin-
sic feature of the theory. Furthermore, we shall see that quantum probability is not ruled
by Kolmogorov axioms of classical probability. Finally, we discuss the main evidences
which have historically revealed the necessity of a departure from classical mechanics.
Our task then is to briefly present the principles upon which quantum mechanics is built
(in Secs. 1.2—1.4) and to summarize in Sec. 1.5 the main evidences for this new mechanics.

1.1 Review of the foundations of classical mechanics
. |

Classical mechanics is founded upon several principles and postulates, sometimes
only implicitly assumed. In the following we summarize and critically review such
assumptions. !

First of all, in classical mechanics a principle of perfect determination is assumed: all
properties of a physical system & are perfectly determined at any time. Here, we define a
physical system as an object or a collection of objects (somehow interrelated) that can be
(directly or indirectly) experienced through human senses, and a property as the value that
can be assigned to a physical variable or observable describing S. Perfectly determined
means then that each (observable) variable describing S has at all times a definite value.

1 See [Auletta 2004].
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Some of these properties will have a value that is a real number, e.g. the position of a
particle, others an integer value, e.g. the number of particles that constitute a compound
system.

It is also assumed that all properties can be in principle perfectly known, e.g. they can be
perfectly measured. In other terms, the measurement errors can be — at least in principle —
always reduced below an arbitrarily small quantity. This is not in contrast with the everyday
experimental evidence that any measurement is affected by a finite resolution. Hence, this
assumption can be called the postulate of reduction to zero of the measurement error. We
should emphasize that this postulate is not a direct consequence of the principle of perfect
determination because we could imagine the case of a system that is objectively determined
but cannot be perfectly known.

Moreover, the variables associated to a system S are in general supposed to be contin-
uous, e.g. given two arbitrary values of a physical variable, all intermediate possible real
values are also allowed. This assumption is known as the principle of continuity.

At this point we can state the first consequence of the three assumptions above: If the
state of a system &S is perfectly determined at a certain time fy and its dynamical variables
are continuous and known, then, knowing also the conditions (i.e. the forces that act on the
system), it should be possible (at least in principle) to predict with certainty (i.e. with prob-
ability equal to one) the future evolution of S for all times ¢ > fy. This in turn means that
the future of a classical system is unique. Similarly, since the classical equations of motion
(as we shall see below) are invariant under time reversal (the operation which transforms ¢
into —1) also the past behavior of the system for all times ¢ < #y is perfectly determined and
knowable once its present state is known. Such a consequence is usually called determin-
ism. Determinism is implemented by assuming that the system satisfies a set of first-order
differential equations of the form

d
5= FIS0L (1.1

where Sis a vector describing the state of the system. It is also assumed that these equations
(called equations of motion) have one and only one solution, and this situation is usual if
the functional transformation F is not too nasty.

Another very important principle, implicitly assumed since the early days of classical
mechanics but brought into the scientific debate only in the 1930s, is the principle of sepa-
rability: given two non-interacting physical systems S; and Sy, all their physical properties
are separately determined. Stated in other terms, the outcome of a measurement on S
cannot depend on a measurement performed on Ss.

We are now in the position to define what a szate in classical mechanics is. Let us first
consider for the sake of simplicity a particle moving in one dimension. Its initial state is
well defined by the position xp and momentum pg of the particle at time #y. The knowledge
of the equations of motion of the particle would then allow us to infer the position x(¢) and
the momentum p(¢) of the particle at all times ¢.

It is straightforward to generalize this definition to systems with n degrees of freedom.
For such a system we distinguish a coordinate configuration space {gi,¢2, ..., gn} € R"
and a momentum configuration space {py, p2,- .., pn} € R", where the qgi’s(j=1,...,n)
are the generalized coordinates and the p;’s (j = 1,...,n) the generalized momenta. On
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the other hand, the phase space I" is the set {g1,92,...,qn; P1,P2,---,Pn} € R?", The
state of a system with n degrees of freedom is then represented by a point in the 2n-
dimensional phase space I'.

Let us consider what happens by making use of the Lagrangian approach. Here, the
equations of motion can be derived from the knowledge of a Lagrangian function. Given
a generalized coordinate g;, we define its canonically conjugate variable or generalized
momentum p; as the quantity

0 . .
pj=7—"Lq,....qn:q1,- ... qn), (1.2)
g,
where the g are the generalized velocities. In the simplest case (position-independent
kinetic energy and velocity-independent potential) we have

LGty sqnsq1s---:qn) =T@G15.--.qn) — V(q1,---»qn), (1.3)

where L is the Lagrangian function and T and V are the kinetic and potential energy,
respectively. The kinetic energy is a function of the generalized velocities g; (j =
1,...,n) and may also be written as

p3
T=Y) —, 1.4
Z Zm/ ( )
F .
i.e. as a function of the generalized momenta p; (j = 1,...,n), where m; is the mass

associated with the j-th degree of freedom.
In an alternative approach, a classical system is defined by the function

H=T(p17 p25~~7pn)+v(q17q27~,Qn)a (1'5)

which is known as the Hamiltonian or the energy function, simply given by the sum
of kinetic and potential energy. Differently from the Lagrangian function, H is directly
observable because it represents the energy of the system. The relationship between
Lagrangian and Hamiltonian functions is given by

H=Y4;pj —Lq1,- - qn-q1.- : 4n) (1.6)
J

in conjunction with the (1.2).

For the sake of simplicity we have assumed that the Lagrangian and the Hamiltonian
functions are not explicitly time-dependent. The coordinate g; and momentum py, together
with their time derivatives g, py, are linked — through the Hamiltonian — by the Hamilton
canonical equations of motion

oH . oH

= (1.7)

q'k = _9 pk __7
opk g

which can also be written in terms of the Poisson brackets as

g = {ar. H},  pr = {px. H}. (1.8)
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The Poisson brackets for two arbitrary functions f and g are defined as

_\~ (3 38 _ Of dg
{f.g}= 2,: <aqj ;" 50, aq,-)’ (1.9

and have the following properties:

{f.gt=—{g. [}, (1.10a)
{f.C}=0, (1.10b)
(Cf+C'g,h}=C{f,h}+ C'{g, h}, (1.10c)
0={r.{g.h}} +{g.{h, FH} +{n.{f.8}} (1.10d)

9 af g
g{f,g}={§,g}+{f,5}, (1.10e)

where C, C’ are constants and / is a third function. Equation (1.10d) is known as the Jacobi
identity. The advantage of this notation is that, for any function f of g and p, we can write

d
T f=f.H). (L11)

It is easy to see that Newton’s second law can be derived from Hamilton’s equations. In
fact, from Eq. (1.8) we have

. k
g ={qr, HY = 2, (1.12a)
mg
. A%
pr=1{pi, H} = ——. (1.12b)
gk

From Eq. (1.12a) one obtains py = myqy (the definition of generalized momentum),
which, substituted into Eq. (1.12b), gives

.. av
mpgy = ——. (1.13)
Gk
Since Fy = —0V/dq is the generalized force relative to the k-th degree of freedom,

Eq. (1.13) can be regarded as Newton’s second law. As a consequence, Newton’s second
law can be written in terms of a first-order differential equation (as anticipated above).
However, in this case we need both the knowledge of position and of momentum for
describing a system.
In classical mechanics the equations of motion may also be determined by imposing that
the action
1)

S=/dtL(qu-..,qn,él,.--,éln) (1.14)
n
has an extreme value. This is known as the Principle of least action or Maupertuis—

Hamilton principle.
The application of this principle yields the Lagrange equations

d [ JL oL
——)—-— =0, (1.15)
dr \ 0qk 0qik



11

1.1 Review of the foundations of classical mechanics

which, as Hamilton equations, are equivalent to Newton’s second law. In fact, we have

oL oL oV
— =mpqy and —— =——, (1.16)
gk 9q; 9qk
from which it again follows that
d (mkq) v (1.17)
—(m =——. .
dt kK gk

Fort this reason, the Lagrange and Hamilton equations are equivalent. Their main dif-
ference is that the former are a system of n second-order equations in the generalized
coordinates, whereas Hamilton equations constitute a system of 2n first-order equations in
the generalized coordinates g; and momenta py.

From the discussion above it turns out that any state in classical mechanics can be repre-
sented by a point in the phase space, i.e. it is fully determined given the values of position
and momentum (see also Subsec. 2.3.3) — when these values cannot be determined with
arbitrary precision we have to have turn to probabilities. As a consequence, in a probabilis-
tic approach the system is described by a distribution of points in the phase space, whose
density p at a certain point (g1, - . ., qn; P1,- - - » Pn) Measures the probability of finding the
system in the state defined by that point. It follows that p is a real and positive quantity for
which

/d”q/d"Pp(ql,..-,qn;m,...,pn): 1, (1.18)

i.e. the probability of finding the system in the entire phase space I" is equal to one. The
density p allows to calculate, at any given time, the mean value of any given physical
quantity F,i.e. of a function F(qi,...,qn; p1,- .., pn) of the canonical variables thanks to
the relation

F(la) {p) = / dq / d" pola). (PDYF((a). (p)). (1.19)

where {q} and {p}) stand for (¢1,...,qg,) and (p1,..., pn), respectively.

The dynamics of a statistical ensemble of classical systems is subjected to the Liouville
equation (or continuity equation). Let us denote with p(g, p; t) the density of representative
points that at time ¢ are contained in the infinitesimal volume element d”" p d"¢q in I" around
q and p. Then it is possible to show that we have

dp ap
L m+ 2 -0 1.20
T {p }+at (1.20)
or
ap
L —(H,p). (1.21)
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A

20)

p (1)

y
>

q

Graphical representation of the Liouville theorem. The area that defines the density of
representative points must remain the same even if its shape may change with time.

Then, the Liouville theorem states that the density of representative points in the phase
space I is constant (see Fig. 1.1).

From what we have seen above, we can finally define the basic feature of a state that we
would have in any mechanics: it is the collection of all the properties of a system that can be
simultaneously known — an issue that will discussed extensively later (see also Sec. 15.5).
In classical mechanics, for the principle of perfect determination, such a collection is also
complete. This means that, according to this principle, a definite value is assigned to every
physically sensible variable. In quantum mechanics, as we shall see in the following, this
is not the case.

1.2 An interferometry experiment
and its consequences
-]

In this section we aim to draw with the help of an ideal experimental setup a series of
consequences that will allow us to introduce some basic features of quantum mechanics.
To some extent, this setup will become the guiding tool for many of the discussions that will
follow in the present and next chapters. This experimental setup is essentially an optical
interferometer. We therefore wish to preliminarily discuss the basic features of the photon —
the quantum of light.

1.2.1 The quantum of light and the photoelectric effect

The hypothesis of the existence of the quantum of light was introduced by Albert Einstein
in 1905 starting from Planck’s solution to the black-body problem. In this way, he was
able to explain the photoelectric effect, i.e. the emission of electrons by a metal surface
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(a) Schematic representation of the experimental setup for detecting the photoelectric effect. The
two layers L, whose potential difference with respect to the metal surface M may be changed
through the potentiometer P, collect the electrons emitted by M, which in turn is illuminated by
the incident light. The resulting electric current is measured by the amperometer A. The
maximum kinetic energy of the emitted electrons is measured by the (inverted) potential V;
necessary to make the current vanish. This quantity turns out to be independent of the intensity
of the incident light. (b) The experimental results are shown in terms of the behavior of V; as a
function of the frequency v of the incident light.

when it is illuminated by light.> In fact, in classical physics light is treated as a wave
and as such it is delocalized. It turns out that this classical picture is unable to account
for the photoelectric effect: for a wave, a very long period of time would be needed in
order to deliver the energy required for an atom to emit an electron. However, it is experi-
mentally known that the effect is almost instantaneous. This is understandable only if one
admits that light is made up of localized energy packets. If we denote by 7, the kinetic
energy of the emitted electron and by U its binding energy (i.e. the minimum energy
which is required to extract the electron from the metal), then they are related to the energy
of the photon responsible for the photoelectric effect by the following expression (see
Fig. 1.2):

E=T,+U. (1.22)

According to Einstein’s proposal, there is a relation between the energy of the photon and
the frequency v of the electromagnetic radiation that is given by

E = hv, (1.23)

where

h = 6.626069 x 1074 s (1.24)

is the Planck constant. First, it is important to note that this phenomenon has a thresh-
old: for photons with frequencies smaller than vy = U/ h, the photoelectric effect is not

2 See [Einstein 1905]. For a historical reconstruction see [Mehra/Rechenberg 1982-2001, I, 72-83]. Actually the
term “photon” is due to G. N. Lewis [Lewis 1926].
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observed to be independent of the intensity of the light beam. However, above threshold
the number of emitted electrons is proportional to the intensity of radiation. Second, the
kinetic energy of the outgoing electrons is proportional to the frequency of the electromag-
netic radiation. This relationship is surprising because classically the energy of a wave is
proportional to the intensity, i.e. to the square of its amplitude and does not depend on the
frequency.

It results then that the energy of photons occurs in quantized amounts. The quantization
of energy (of the matter) was proposed for the first time by Planck in 1900 as a solution
to the black-body radiation problem (as we shall see in Subsec. 1.5.1). This assumption
is traditionally known as the quantum postulate and, after Einstein’s contribution, can be
reformulated as: the energy of an electromagnetic radiation with frequency v can only
assume discrete values, i.e.

E =nhv, (1.25)

where n = 1, 2, .... As we shall see in Subsec. 1.5.4 and in Ch. 11, this assumption was
also applied by Niels Bohr to the atomic model.

Being the (energy) quantum of light, the photon can be absorbed and emitted by single
atoms. As a consequence, photons can be detected by certain apparata (called photodetec-
tors) in well defined positions exactly as it happens for particles. It is worth mentioning
that in optimal conditions a single photoreceptor (rod) of a human eye is able to detect
a single photon® and therefore to function as a photodetector (even though with a small
efficiency).*

1.2.2 The Mach-Zender interferometer

Let us now describe an experiment from which some basic aspects of quantum mechanics
can be inferred. The set up is shown in Fig. 1.3 and is known as a Mach—Zender interfer-
ometer. Let us first describe it using classical optics. It essentially consists of two beam
splitters, i.e. two half-silvered mirrors which partly reflect and partly transmit an input
light beam, two mirrors, and two photodetectors. A light beam coming from the source is
split by the first beam splitter into the upper and lower paths. These are reflected at the
mirrors and recombined at the second beam splitter before the photodetectors D1 and D2,
which we assume to be ideal, i.e. with 100% efficiency. In the upper path a phase shifter is
inserted in order to create a relative phase difference ¢ between the two component light
beams. A phase shift which is a multiple of 27 brings the situation back to the original
one, while a phase shift ¢ = & corresponds to the complete out-of-phase situation. At BS2
the two beams interfere and such interference may be destructive (¢ = ) or constructive

3 See [Hubel 1988].

4 Since photons travel at a relativistic speed, one may be surprised that they are introduced in a textbook about
non-relativistic quantum mechanics. However, for our purposes, photons are very useful tools and we do not
need to consider their relativistic nature.
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D1
IR
ﬂ BS2 D
@ D2
LASER
‘ BS1 M2

Schematic setup of the Mach-Zender interferometer (lateral-downward view). The source beam
coming from the laser is split at the first beam splitter BS1. After reflections at the two mirrors M1
and M2, the upper and lower paths are recombined at the second beam splitter B52 and then
detected at the photodetectors D1 and D2. PS denotes a phase shifter which causes a relative
shift ¢ of the upper beam.

(¢ = 0). For example, destructive interference at D2 means that the observed intensity at
such photodetector is equal to zero (dark output). This in turn means that D1 will certainly
click (constructive interference). The transmission and reflection coefficients T and R of
the beam splitters can vary between 0 and 1, with RZ4+T?2=1.WhenT=R=1 / V2, we
have a symmetric (or a 50%—-50%) beam splitter. All the devices present in this setup are
linear, i.e. such that the output is proportional to the input.

Up to now the description is purely classical, and the light has wave-like properties —
for instance, a phase. Therefore, having already considered the photoelectric effect, we see
that light may display both wave-like and corpuscular features. We face here a new and
surprising situation that appears even paradoxical from a classical viewpoint. In the next
subsections we shall try to shed some “light” on this state of affairs and draw the necessary
consequences.

Interferometry

Interferometry is a widely used technique for detecting “waves” of different nature. There
are many different forms of interferometry depending on the nature of the “objects” to be
detected and on the configurations of the mirrors. One of the first interferometers was that
of Michelson and Morley who used it to demonstrate the invariance of the speed of light
(see Fig. 1.4). The Michelson-Morley experiment was performed in 1887 at what is now Case
Western Reserve University, and is considered to be the first strong evidence against the
theory of a luminiferous aether. Figure 1.5 shows an interferometer for photons that is useful
for indirectly detecting gravitational waves.
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The Michelson-Morley interferometer. A single source of monochromatic light is sent through a
half-silvered mirror that is used to split it into two beams travelling at right angles to one another
(top view). After leaving the splitter, the beams travel out to the ends of long arms where they
are reflected back into the middle on small mirrors. They then recombined on the far side of the
splitter in an eyepiece, producing a pattern of constructive and destructive interference based on
the length of the arms. Any slight change in the amount of time the beams spent in transit would
then be observed as a shift in the positions of the interference fringes. If the aether were
stationary relative to the sun, then the Earth’s motion would produce a shift of about 0.04 fringes.

1.2.3 First consequence: superposition principle

Let us now imagine what happens when a single photon at a time (i.e. the time interval
between the arrival between two successive photons is much larger than the time resolution
of the detector) is sent through the Mach—Zender interferometer. The number of photons
per second can easily be calculated by knowing the intensity of light and the energy of
photons. It is an experimental fact that at each time a single photon is detected either at D1
or at D2, and never at both detectors. However, after N >> 1 runs, which are required in
order to obtain a good statistics, we experimentally observe that the detector D1 will click
N(1 — cos ¢)/2 times and detector D2 N(1 4 cos ¢)/2 times.” Again, if ¢ = 7, D2 does
not click. Repeating the same experiment for a large number of times with different values
of ¢, we would obtain the plots shown in Fig. 1.6. This behavior is typical of an interference
phenomenon. Since at most one photon at a time is present within the apparatus, then one
can speak of self-interference of the photon.®

Self-interference has been experimentally verified for the first time by Pfleegor and
Mandel.” Successively, further confirmations have come, among many others, from the
experiments performed by Grangier, Roger, and Aspect® and by Franson and Potocki.’

5 For a formal derivation of these formulas in term of probabilities see Subsec. 2.3.4.
6 This concept was introduced for the first time by Dirac [Dirac 1930, 9].

7 See [Pfleegor/Mandel 1967].

8 See [Grangier et al. 1986a, Grangier et al. 1986b].

9 See [Franson/Potocki 1988].



17

1.2 An interferometry experiment

I end mass
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4—)I

L, end mass

detector

A Michelson-Morley-type interferometer for detecting gravitational waves (top view). Three
masses hang by wires from the overhead supports at the corner and ends of the interferometer.
When the first crest of a gravitational wave enters the laboratory, its tidal forces (gravitational
forces producing stretching along the direction of a falling body and squeezing along the
orthogonal direction) should stretch the masses apart along the Ly arm while squeezing them
together along L. When the wave’'s first crest has passed and its first through arrives, the
directions of stretch and squeeze will be changed. By monitoring the difference L1 — L;, one may
look for gravitational waves. This is provided by a laser beam which shines onto a symmetric BS
on the corner mass. The two outgoing beams go down the two arms and bounce off mirrors at the
end of the arms and then return to the BS. The beams will be combined and split so that one part
of each beam goes back to the laser and another part goes toward the photodetector. When no
gravitational wave is present, the contributions from the two beams interfere in such a way that
all the light goes back to the laser. See also [Thorne 1994, 383-85].

N N,
NI2
Ny
0
0 72 s 372 2
0]

The two curves show the statistical results of photon counting at detectors D1 and D2. N; and N,
denote the number of photons counted at detectors D1 and D2, respectively. It should be noted
that, for each value of ¢, N1(¢) + N2(¢) = N.

In Fig. 1.7 we report the experimental results obtained by Grangier, Roger and Aspect
which confirm the expectations of Fig. 1.6.

Self-interference forces us to admit that the photon is not localized in either of the two
arms. Now, let us suppose that we remove BS1. Then, the photon will certainly travel along
the lower path (it is fully transmitted). We can label the “state” of the photon in such a case
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N,

200 :‘.';:_-l

Results of the experiment performed by Grangier, Roger, and Aspect. As before, N1 and N, denote
the number of photons counted at detectors D1 and D2, respectively, as functions of the phase
shift ¢. Adapted from [Grangier et al. 1986b].

by the symbol | ;) , where the subscript [ denotes the lower path. On the other hand, if
BS1 is replaced by a 100% reflecting mirror, the photon will take with certainty the upper
path and its state may then be denoted in this case by the symbol | ¢, ) , where the subscript
u refers to the upper path. As a consequence, when the partial reflecting mirror BS1 is put
in its place, we are led to the conclusion that the state of the photon should be a combina-
tion (a superposition) of both the states | ;) and |,) associated with the two arms of the
interferometer. Therefore, we state in general terms the first theoretical suggestion of our
ideal experiment:

Principle 1.1 (Superposition principle) If a quantum system S can be in either of two
states, then it can also be in any linear combination (superposition) of them.

In the example above, the state |i) of the photon after BS1 can be expressed as the
superposition

V) = culvu) +clvn), (1.26)

where ¢, and ¢; are some coefficients whose meaning will be explained below. Equa-
tion (1.26) represents the fact that it is not possible to assign a well-defined path to the
photon: the state is a combination of the contribution of the two paths, i.e. it is delocalized.
We should emphasize that this state of affairs is a clear violation of the classical principle
of perfect determination (see Sec. 1.1) according to which the photon should be either in
the upper path or in the lower path. In other words, Eq. (1.26) — describing a superposi-
tion of states — cannot be interpreted as a classical superposition of waves. In fact, in the
latter case the components of the superposition would be two spatial waves, whereas in
the case of Eq. (1.26) the components | ;) and |,) represent possible states of the same
system. Therefore, the wave-like properties of the photon discussed in Subsec. 1.2.2 cannot
be taken in a classical sense.

We finally stress that the superposition principle is not just a consequence of our
ignorance of the path actually taken by the photon, as we shall see in the following
subsection.
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1.2.4 Second consequence: complementarity principle

It is clear from the preceding analysis that, for ¢ = 0 (;r), detector D1 (D2) will never
click. This dark output may even be used in order to detect the presence of an obstacle in
one of the two paths without directly interacting with it. Let us place an object in the lower
arm of the interferometer and set ¢ = 0. Then the presence of this object will prevent the
interference and allow, at least with some probability different from zero, that the photon
will actually be detected at D1. This phenomenon is known as interaction-free measure-
ment and shall be analyzed in greater details in Sec. 9.6. Turning the argument around, we
can state that a detection event in D1 tells us with certainty that an object is in the lower
arm and that the photon has taken the upper arm to the detector, i.e. it was localized in
one of the two arms. It should be noted that in some cases the photon is not detected at
all because it is absorbed by the object. Still in those cases when detector D1 clicks, we
have learned about the position of the object without directly interacting with it, something
which classically would be evidently not possible.!” As we wrote above, it is evident that
interference cannot be a manifestation of subjective ignorance. If this were the case, its
presence or absence would not allow us to acquire objective information.

A second consequence of the experiments discussed above is that every time that the
photon is localized (i.e. we know with certainty that it has taken either the upper or the
lower arm), interference is actually destroyed since it is a direct consequence of the super-
position of |v,) and | ;). In other words, we cannot acquire information about the path
actually taken by the photon without disturbing the detected interference and consequently
change the state of the photon itself. This consequence can be generalized by the following
principle:

Principle 1.2 (Complementarity principle) Complete knowledge of the path is not
compatible with the presence of interference.

Principle 1.2 states that the knowledge of the path is complementary to the interference.
It should be stressed, however, that the term “path” does not necessarily refer to the spa-
tial path, and in the following chapters we shall consider several and different instances
of this concept. Moreover, complementarity is here expressed in such a way that it does
not necessarily imply a sharp yes/no alternative. As we shall see (in Subsec. 2.3.4), it
rather consists of a trade-off between the partial gain of information and partial interfer-
ence. In other words, an increase in the knowledge of the path occurs at the “expense”
of the interference and vice versa, so that full localization (particle-like behavior) and full
interference (“superposition-affected” or wave-like behavior) are only limiting cases of a
continuous range of behaviors. Therefore, quantum systems can neither be considered as
classical particles, nor as classical waves.

10 This has far-reaching consequences, if one thinks that the 1971 Nobel-prize winner in physics Dennis Gabor
supported the wrong idea that one cannot acquire information about an object system if at least one photon
does not interact with it [Kwiat et al. 1996].
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The complementarity principle was first formulated by Niels Bohr at the Como Confer-
ence in 1927 and communicated to a large audience in an article in Nature [Bohr 1928].11
Bohr intended it as a generalization of what was at that time known as the uncertainty prin-
ciple. As we shall see (in Sec. 2.3), the uncertainty relation is another main point of depar-
ture from classical mechanics to the extent in which it states that it is impossible to jointly
know with arbitrary precision a pair of conjugate variables, as for example x and p, are.

1.3 State as vector
|

In the previous section we have seen that the state in quantum mechanics has “strange”
characteristics, namely it violates at least the classical principle of perfect determination.
We shall now consider an important property of light — polarization — as a tool for analyzing
some further features of the quantum state.

1.3.1 Polarization states

Just as classical light can be, photons can be (linearly, circularly, or elliptically) polarized.'?
Classically, light polarization refers to the direction of oscillation of the electric (or mag-
netic) field associated to the electromagnetic wave (see Fig. 1.8). Normal light (e.g. that
from a light bulb) is unpolarized, i.e. the electric field oscillates in all possible directions
orthogonal to the propagation direction (see Fig. 1.9). However, if we insert a polarizing
filter P1 on the light path, i.e. a filter which allows the transmission only of light polarized
along a certain direction &, say vertical, we may produce a beam of polarized light but with

propagation
direction

Oscillation of electric (E, in grey) and magnetic (B, in black) fields associated with
electromagnetic waves.

11 For a historical reconstruction see [Mehra/Rechenberg 1982-2001, VI, 163-99].
12 See [Jackson 1962, 273-78].
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P1 P2

light bulb unpolarized light  vertical polarizing filter polarizing
filter at direction b

The light from a bulb is unpolarized - the electric field oscillates in all possible directions. After it
passes through the vertical polarizing filter P1, only the vertically polarized component survives.
A second filter (P2), with an orientation b which makes an angle ¢ with the orientation a of P1
(here vertical) may be inserted.

a lower intensity than that before the filter. In fact, some photons will pass and some will
not. We may then assign a state of vertical polarization | v) to each photon that has passed.
Similarly, if P1 were rotated of 90° about its axis, as output we would have photons in the
state of horizontal polarization | 4). The superposition principle suggests us to interpret
|v) and | h) as vectors in a linear vector space V.13 n fact, if | v) and |h) are represented
by two vectors in V, then also ¢, |v) + cp, | h) (where ¢y, ¢, are some coefficients) will be
in V. Since the polarization directions lie in a plane, the vector space V has dimension 2.
Therefore |v) and | ) can be thought of as an orthogonal basis in V), and, as we shall see
later, any photon polarization state can be written as a linear combination of them, as in Eq.
(1.26). State vectors, i.e. vectors as representative of quantum states, were first introduced
by Dirac [Dirac 1926a].!*

1.3.2 Projectors and Hilbert space

Suppose now that we insert a second polarizing filter P2 with a different polarization axis
b which makes an angle 6 with the orientation a of P1 (see again Fig. 1.9). We know from
classical physics that the transmitted beam will be polarized along the b direction and its
intensity will be I, = I; cos? 6, where I is the intensity of the beam after P1. If aand b
are orthogonal directions, i.e. 6 = 7 /2, obviously I, = 0.

Let us now observe what happens when we send single photons one at a time through
the apparatus. As we said above, after P1 we only have photons polarized along a. Since
the photon cannot be divided, the observer will see that — even though all the photons are
in the same state — some photons will pass through P2 and some will not. We see here
that we can only speak of a certain probability that a particular photon will pass through

13 A complete list of properties of linear vector space can be found in a good handbook about linear spaces, for
instance in [Byron/Fuller 1969-70, Ch. 3]. For a rigorous treatment of the problem see also Subsec. 8.4.3.
14 See also [Mehra/Rechenberg 1982-2001, 1V, 141-47].
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Decomposition of an arbitrary vector | a) . The pair | b) and | b.) form an orthonormal basis in
the polarization vector space V.

the apparatus. In fact, if we repeat the experiment many times and for different values of
the angle 6, we shall be able to reconstruct the probability that a photon polarized along a
passes through P2, which is given by £(#) = cos? #. Quantum mechanics has to account
for such an experimental result. In general terms, let us denote by |a) the state vector
corresponding to a photon polarized along direction a and similarly | b) for b. As it is clear
from Fig. 1.10, |a) can be decomposed as

la) = cos@|b) +sind|by), (1.27)

where | b ) is the vector orthogonal to | b) (representing a photon in a state with a polariza-
tion orthogonal to the b direction). The space of states is here just a two-dimensional vector
space, as previously suggested. Then, after P2 the state of the photon will be | b) with prob-
ability p(0), whereas with probability sin># = 1 — g(8) the photon will be absorbed by
P2. In other words, the state of the photon which has passed P2 is projected onto | b) . Math-
ematically, the operator which performs such projection is called a projector and describes
the selection performed by the filter P2.!> The projector can be written as'®

Py = |b) (b]. (1.28)

This way of writing projectors is justified by the fact that it is possible to associate to any
vector |b) € V a vector (b| which, if complex numbers are introduced, belongs to the
isomorphic space V*. Following Dirac!” we call the | b) vector ket and the (b | vector bra:
if |b) is a column vector, (b| is the corresponding complex conjugate row vector. This
terminology expresses the fact that the scalar product of two arbitrary vectors |c) and |d),
which is often written as (d, ¢), can be written as (d | ¢) (bra—ket or bracket), where the
two adjacent vertical lines have been contracted for brevity.
Then, by inspecting Fig. 1.10, we may rewrite Eq. (1.27) as

la) =cos9< (1) >+sin9( (1) > - ( Z?;g ) (1.29)

15 Projectors were first introduced in quantum mechanics by von Neumann [von Neumann 1932, von Neumann
1955].

16 We shall always write operators with a hat to distinguish them from usual numbers, also called classical
numbers or c-numbers.

17 See [Dirac 1930, 18].
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Let us now generalize the previous example and consider the ket | b) as a vector pertaining
to the n-dimensional vector space V", as

cl
by =| “ |. (1.30)
Cn
where ¢y, c3,...,c, are numbers: they turn out to be the coefficients of the expansion of

|b) on the orthonormal set {| j)} in the n-dimensional vector space V". This expansion
(which is a superposition) can be written as

n

1b) = ¢l (1.31)

j=1
We recall that a set of vectors is called orthonormal if and only if (iff):

e the scalar product between two different vectors in the set is equal to zero;
e the norm of each vector in the set is equal to one.

Moreover, any complet set of n vectors in a n-dimensional vector space is called a basis.
The bra corresponding to | b) is (b|:

(bl:(cT o ... ), (1.32)

where ¢}, c3, ..., cy are the complex conjugates of the coefficients above.!8

As we have said, the projector (1.28) is an operator, which in the finite n-dimensional
case of our example, is mathematically expressed by the n x n matrix given by the row—
times—column product

1
P, = © (cik ;o c:)
Cn
et )? cic; ... cicpy
_ cocy lea? ... ccy - (133)
| ol cney lenl?

Let us now consider some properties of kets and bras. The multiplication of kets and
bras by a scalar, i.e. the multiplication of all components by the same number, is a linear
operation, i.e.

a(|b) +lc))=alb) +alc), (1.34a)
a((bl+ (ch=a (bl +acl, (1.34b)
18 There are several reasons why it is necessary to introduce complex numbers (pertaining to €) in quantum

mechanics. Let us mention here that, in order to account for interference, the coefficients in the superposition
(1.26) need to be complex numbers.
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where « is any (in general complex) number. Given the one-to-one correspondence
between bra and ket vectors, one also has that the bra corresponding to the ket |b) + | v )
is (b| + (b’ }, while the bra corresponding to « |b) is o* (b|, where a* is the complex
conjugate of «. It should be stressed that the ket |a) and the bra (b | are of different nature
(they belong to different spaces) and therefore cannot be added to each other.

Let us consider two (ket) vectors |a) and |b) and again the orthonormal basis {| j) } in
an n-dimensional space V". The kets |a) and |b) can both be expanded in the same basis
(see also Eq. (1.31))

n n
la) =) ci1j) and b)Y =) cjlj), (135)
j=1 j=1
where the c}’s and c;’s € €. Then, the scalar product (b | a) can be defined as
€1
c/
(b|a)=(c“f 5o c;lk) 2
Cn
=cfc) + b+ ...+ i),
n
= Z c;c}. (1.36)
j=1
The following properties of the scalar product follow from the above definition:
(Ol+ (chla) = (bla)+(cla), (1.37a)
(al(b) +1c)) = Aalb)+{alc), (1.37b)
bl(ala)) = alb]|a), (1.37¢)
(@(bla) = a(b]a), (1.37d)
(bla) = (a|b)*, (1.37e)
(ala) =0 iff |a) =0. (1.37f)

The definition and properties of the scalar product also allows us to introduce in a natural
way the norm of a vector through the relation

1

lal={ala)):z. (1.38)

Summarizing, the following operations are allowed:

|-y +|-) (sum of kets), (1.39a)
(-]+ (-] (sum of bras), (1.39b)
(-1-) (scalar product), (1.39¢)
|-) (-] (external product), (1.39d)

whereas, as we have said above, the sum of a bra and a ket (-| + |-) is not. Finally, we
recall that the expression |-) (- | always denotes an operator.
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A linear vector space endowed with a scalar product and which is complete and separable
(having a countable dense subset, as it happens for the Euclidean space R") is called a
Hilbert space and is symbolized by .'® Hilbert spaces are the natural framework for state
vectors in quantum mechanics and can have a finite or infinite dimension. In the following,
bras and kets describe state vectors in a Hilbert space, whereas, as we have seen, vectors
in a configuration space are symbolized by bold letters. In a Hilbert space H it is always
possible to find a complete orthonormal set of vectors, that is, an orthonormal basis on H.

Let us now discuss the properties of projectors. Since in our example the projector (1.28)
describes the projection onto the state | b) of the photon which has passed P2, then, if we
let the projector 131, act on the state | b) , we should obtain the state | b) again, i.e.

Py|b) = |b) (b| b) =|b), (1.40)

since (b| b) = 1. It is also evident that such a projector has value 1 when a photon has
actually passed P2 (i.e. has positively passed the test represented by P2, which means a
“yes”) and value O when a photon has been absorbed (i.e. has not passed the test represented
by P2, which means a “no”). Then, projectors in a bidimensional space have a binary form
and can be understood as propositions expressing a physical state of affairs (“the photon
has passed P2”) that can be evaluated as true (1) or false (0).

Being {| j) } an orthonormal basis in an n-dimensional Hilbert space, the corresponding
projectors have the following properties:

b= Iitl=1. (1.41a)
J J
PiPe=1j) (k) (k| =8P (1.41b)

where in Eq. (1.41a) the sum is extended over all possible j’s, I is the identity operator,
and in Eq. (1.41b) 4 j; is the Kronecker symbol:

Sjk=0, Vj#k and §;; =1. (1.42)

Property (1.41a) expresses the fact that a projection over the entire space does not affect the
state (is not a selection). Property (1.41b) expresses the fact that the product of mutually
exclusive selections is zero, and ﬁjz = ﬁj (idempotency) (see Prob. 1.6).

It should be emphasized that projectors (and obviously any linear combination of pro-
jectors) are linear operators. A generic operator 19) acting on a Hilbert space is said to be
linear when

O(ala) +B1|b))=aO |a) +BO|b), (1.43)

for all vectors |a) and |b), where o and B are (complex) numbers. It can be shown (see
Prob. 1.8) that any operator O that is a linear combination of projectors maps H into H,
that is if a vector |a) € ‘H, then also 0] |a) € H. Projectors are only a first example of
operators that act on quantum mechanical states. In the next chapter we shall see other
kinds of operators.

19 See [Halmos 1951, 16-17]. For a rigorous treatment see also Subsec. 8.4.3.
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Let us now turn back again to the polarization state example (1.27). We are now in the
position to see how the projector P, defined by Eq. (1.28) acts on the state (1.27)
Pyla) = |b) (b (cosf|b) +siné |b1))
cos@ |b) (b|b)+sinf |b) (b| b_)
= cos 6 | b), (1.44)

since (b|b) =1 and (b| b)) =0. In fact, {|b), |b1)} is an orthonormal basis on the
polarization Hilbert space of dimension 2. The vector cos 8 | b) has the same direction of
vector | b) but a smaller length (its norm is equal to | cos 8| < 1) (see Fig. 1.10). However,
in quantum mechanics vectors with the same direction and different lengths are taken to
describe the same state. In other words, the same state is represented by the equivalence
class of all vectors that can be constructed from one another by multiplication times a
(complex) number. This is justified by the fact that quantum state vectors are usually taken
to be normalized (meaning, as we shall see in the next subsection, that global phase factors
have no relevance).

The reduction of the norm of the state vector after the application of Py, describes the
fact that only a fraction cos” 6 of the photons in state |a) has passed the test represented by
P2. We also emphasize that the resulting state vector Py |a) should not be regarded as the
state of the photon after interaction with the filter, while the information about the chance
that the photon is absorbed by the filter is coded in the normalization of the state vector.

From Fig. 1.10 it is evident that cos@ = (b | a) and sinf = (b, | a). In other words,
Eq. (1.27) may be rewritten as

la) =(bla)|b) + (bL|a)|bL)
=1b) (bl a)+1by1) (b1 ]|a)
= (Bo+ By ) la), (1.45)
which is in agreement with Eq. (1.41a). We have made use of the fact that
(bl a)|b) =1|b)(bla) and (by|a)|bL) =|byi)(bL]|a), (1.46)

since the scalar products (b | a) and (b, | a) are c-numbers. We are able now to show in
a pictorial way the superposition principle. Take again Eq. (1.27). It is evident that, by
varying 6, |a) will span all the range from |b) (when 6 = 0°) to |b,) (when 6 = 90°)
(see Fig. 1.10). In other words, if a system can be in a state |b) and in a state |b), it
can be in any linear combination of |b) and | b ), where any possible superposition |a) is
determined by the coefficients ¢, = cos@ = (b| a) and ¢;, =sinf = (b, | a).

1.3.3 Poincaré sphere representation of quantum states

It is very interesting to note that there exists a useful graphic representation, known as the
Poincaré sphere, of a generic quantum state of a two-level system. A two-level system is a
system that possesses two orthogonal states, generally denoted by | 1) and | ).

In general terms, the quantum state of a two-level system may be written as

[Y) =alt) +DI). (1.47)
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Given | 1) and | ), therefore, the state | ) is completely defined by a set of two complex
coefficients a = |ale'® and b = |b|e'P, i.e. by four real parameters. However, for normal-
ization reasons (see Sec. 1.4) we must have |a|?> + |b|?> = 1, which reduces the number of
linearly independent real parameters to three. Moreover, the immaterial global phase fac-
tor of any quantum state allows us to reduce this number to two. We shall return on this
point,?? but, intuitively speaking, only relative phase factors between different components
of a superposition are relevant since they determine the interference behavior of the system
(see Subsec. 1.2.3). Then, we may write | ¥) as

9 = e (Ial 1) +1ble' P~ 11)), (1.48)
which, up to the global phase «, reduces to
|¥) = lal 1) +|ble' P~ | |). (1.49)

Now, without any loss of generality, we may define
0 0
|a| = cos > |b| = sin > B—a=¢, (1.50)

so that Eq. (1.47) can be finally rewritten as

0 .6
| ) ZCOSE | 1) +e’¢ smz [1), (1.51)

which may be considered as a generalization of Eq. (1.27). It is now clear that, in order to
completely define | 1), it is sufficient to know the values of the two angles 6 and ¢, with
0<60 <mand0 < ¢ < 2m. These, in turn, may be interpreted as the polar and azimuthal
angles, respectively, of the spherical coordinates {r, 0, ¢}. We may therefore make a one-
to-one correspondence between points on a spherical surface and quantum states of a two-
level system. In particular, given the normalization condition, we have that » = 1. The
correspondence between quantum states and points on the spherical surface of unit radius
is schematically illustrated in Fig. 1.11. In the polarization framework?! (where | 1) and
| |) are replaced by | v) and | k), respectively), states of the type (1.51) may be considered
as states of elliptical polarization.

For example, the vector pointing to the north pole (6 = 0) will represent the state | 1)
while the vector pointing to the south pole (8 = ) the state | ). On the other hand, all
vectors lying on the equatorial plane (where 6 = 7/2) represent all states of symmetric
superposition of the basis states (states of circular or linear polarization) of the type

1
| ¥oym) = 5 (I1) +e?11)), (1.52)

for any ¢ € [0,27].

20 See the discussion at the end of Subsec. 2.1.3.
21 Originally, Poincaré introduced the homonimous sphere for representing polarization [Poincaré 1892].



28

From classical mechanics to quantum mechanics
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Poincaré sphere representation of states of a two-level quantum system. The state | ¥) is
represented by a vector having an angle ¢ with the polar axis (here z) and a projection onto the
x-y plane which forms an angle ¢ with the x-axis. The orthogonal state | ¢, ) is represented as
the point of the surface of the sphere that is diametrically opposed to | ¥) and is defined by the
angles ¢’ =& — 0 and ¢’ = ¢ + n. The states | ¥) and | ¢, ) are on two parallels at the same
angular distance to their respective poles.

1.4 Quantum probability
|

In the polarization example of the previous section we have introduced the probability of
some events. After the polarizing filter P1 (see Fig. 1.9) all photons have been prepared in
the same state, namely |a) . It can then appear quite strange, from a classical point of view,
to find that they behave in different ways (some will pass P2 and some will be absorbed).
This is a common state of affairs in quantum mechanics. A further evidence of this situation
can be found, for instance, in the phenomenon of radioactive decay. Let us consider a piece
of radioactive material. If at time ¢ty we have Ny non-decayed atoms, then at a successive
time ¢ the number of undecayed atoms will be N; = Nge™ ", where ¢ is a constant that is
characteristic of the particular material. However, it is not possible to predict which atom
will decay at which time, even though all the atoms can be thought of as being in the same
state. To the best of our knowledge, there is no experiment that can be performed in order
to predict which atom will decay next and at what time. We can only speak of a certain
probability that a particular atom will decay in a given time interval. As we shall see,
the use of probability in quantum mechanics is not a consequence of subjective ignorance
that could be reduced by some improvement of knowledge. Instead, it should be taken
as an irreducible property of quantum systems. Thus, in contrast to classical mechanics,
quantum mechanics has an intrinsically probabilistic character.

At this point, one might also think that quantum mechanics faces the same situation as
thermodynamics does. However, the statistical character of thermodynamics is due to the
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large number of particles (atoms or molecules) present in a macroscopic piece of (fluid or
solid) matter: it is due to the fact that it is practically (for our human means, technically)
impossible to measure the position and the momentum of an ensemble of particles whose
number is of the same order of Avogadro number N4 = 6.02 x 10%3. Instead, in quantum
mechanics, the probabilistic character is intrinsic to the behavior of each single particle.

We have seen that the coefficients of the two “alternatives” (photon passing through P2 in
state | b) and absorbed photon in state |b] )) in Eq. (1.27) are cos 6 and sin 0, respectively.
On the other hand, from the previous section we also know that the probabilities of the
corresponding events are cos2 6 and sin® 8. Then, we see that there is a clear relationship
between those coefficients and these probabilities:>* these are the square of the coefficients.
We may conclude that the coefficients cos@ and sin 6 in Eq. (1.27) can be interpreted as
probability amplitudes of the alternatives associated to the corresponding state vectors. By
probability amplitude we mean prima facie a quantity whose square gives the probability
of the associated events.

In general, however, the coefficients preceding kets and bras are complex numbers
whereas probabilities must be real and non-negative numbers in the interval [0, 1]. In the
general case, therefore, in order to obtain the probability of a certain event, one has to
compute the square modulus of the amplitude associated to the corresponding measure-
ment outcome. For instance, if the probability amplitudes for the photon in the state |a)
to pass P2 or to be absorbed are (b | a) and (b, | a) [see Eq. (1.45)], respectively, then the
corresponding probabilities are | (b | a) |2 and | (b | a) |2. It is also evident that

[(bla) >+ (b1 |a)l*=1. (1.53)

This amounts to the requirement that the sum of the probabilities of all disjoint events
of a given set is equal to one (this is the well-known Kolmogorov’s probability axiom).
This is connected to the problem of normalization of the states in quantum mechanics
(Subsec. 2.2.1). States that satisfy a condition of the type (1.53) are said to be normalized
(see Prob. 1.10).

It is also important to note a further difference between probabilities in classical and
quantum mechanics. To display these differences in a most effective way, let us go back to
the Mach—Zender experiment that we have treated in Subsec. 1.2.2. From the discussion
in Subsec. 1.2.3 we can deduce that the probabilities for a single photon to be detected at
detectors D1 and D2 are

(1 —cos¢) (1 4+ cos¢)

Pupt(DI) = ———= and (D) = ———— (1.54)

respectively. As we have seen, this result is due to interference between two “alternatives’:
photon taking the upper path and photon taking the lower path. This justifies the notation
above where the subscript u + [ means that the photon can take both paths. If we block
the lower path by inserting a screen S between BS1 and M2 (see Fig. 1.12), then it is clear
that the photon will be absorbed by the screen with probability 1/2. With probability 1/2,

22 As pointed out by Born in [Born 1926, Born 1927a, Born 1927b]. For a history see [Mehra/Rechenberg 1982—
2001, VI, 36-55].
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Mach-Zender interferometer with the lower path blocked by the screen S.

instead, the photon will take the upper path and will be reflected by M1. At the sym-
metric beam splitter BS2 it will have a 50% chance of going to detector D1 and a 50%
chance of going to detector D2. The overall probabilities for a photon impinging on BS1
to be detected at D1 or D2 will be therefore g,(D1) = 1/4 and p,(D2) = 1/4, respec-
tively. A similar analysis can be performed in the case where we insert the screen S in the
upper path between BS1 and M1: again the probabilities for detection at D1 or D2 will
be p;(D1) = g;(D2) = 1/4. We immediately see that the probability for detection at, say,
detector D1 when both paths are open is in general not equal to the sum of the probabilities
of being detected at D1 after taking the two paths separately, i.e.

#u+1(D1) # 9, (D1) + 1(D1), (1.55)

except in the cases ¢ = 7 /2 and ¢ = 37/2. This is due to the fact that, when both paths
are open, the state of the photon after BS1 is not a mere addition of the two alternatives
but rather a quantum superposition of them. This contradicts the basic structure of classical
probability. In classical probability theory,?® given two events A and B, we have that

(A + B) < p(A) + p(B). (1.56)

In the example of Fig. 1.12 this inequality is violated for all values of ¢ # {7 /2,37 /2}
either for D1 or for D2.

Let us compare this result with that obtained in the case where the experimental setup
shown in Fig. 1.12 is replaced by its classical analogue. In this classical device, pho-
tons are replaced by bullets and the beam splitters by random mechanisms that send
each bullet in one of the two paths, with equal probability over many runs. Then, if
both paths are open, the probability of detection at both D1 and D2 is equal to 0.5, i.e.
©u+1(D1) = g, 41(D2) = 1/2. On the other hand, if one of the two paths is blocked,
we have g, (D1) = ,(D2) = p1(D1) = p;(D2) = 1/4. It clearly results that, in this

23 See [Gnedenko 1969, 48—49].
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classical example, Eq. (1.55) becomes an equality and therefore the requirement (1.56)
is obviously satisfied.

The result (1.55) is strictly related to the fact that quantum probabilities are calculated as
square moduli of the corresponding amplitudes and that, therefore, in quantum mechanics
amplitudes and not the corresponding probabilities sum linearly. In particular, when more
than one “alternative” (or “path”) lead to the same measurement outcome, one has first to
sum the amplitudes corresponding to the different “alternatives” and then to calculate its
square modulus in order to obtain the probability of that measurement outcome.

1.5 The historical need of a new mechanics
1

In this section we wish to enumerate and briefly discuss the major problems that physicists
had to face at the end of the nineteenth and the beginning of the twentieth centuries. As
we shall see, there was at that time a number of experimental facts which simply could
not be explained in the framework of classical physics. These experimental facts are the
playground in which quantum mechanics was built.

1.5.1 The black-body radiation problem

We have seen in Subsec. 1.2.1 that Einstein’s interpretation of the photoelectric effect
forces us to assume that electromagnetic radiation is made out of quanta of energy hv
called photons.

Einstein took his starting point from Max Planck’s work of 1900. The problem faced
by Planck was the emission of a black body. Let us consider a hollow body with internal
surface at constant and uniform temperature 7. Electromagnetic waves are produced from
the different elements dS of the internal surface S. These waves are also absorbed by the
different surface elements dS. One might expect that this mutual energy exchange between
all dSreach an equilibrium. Experimentally, this is exactly what happens. However, clas-
sical physics is not able to correctly predict the spectral properties of the black body. The
spectrum of the black-body radiation is given by the function f(v) such that f(v)dv rep-
resents the energy of the electromagnetic field contained in the unit volume at a frequency
between v and v + dv. Then,

= —, (1.57)

where u(v, T) is the energy density at temperature 7 and frequency v. Computing the
energy density by using the classical energy equipartition law, yields the well-known
Rayleigh—Jeans formula
8
f0) = ZkpT0?, (1.58)
c
where kg = 1.3807 x 10~2J/K is the so-called Boltzmann constant, ¢ is the speed of
light, and kg T is the equipartition energy associated to each oscillator of frequency v. This
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Black-body radiation intensity corresponding to the formula of Rayleigh-Jeans (1), Planck (2),
and Wien (3). Adapted from [Bialynicki-B. et al. 1992, 7].

formula does not agree well with experimental data, and, above all, paradoxically predicts
an infinite total intensity /. of the emitted radiation

T

00 ’ 00
I = E/dvf(v) - —kBT/dvv2 = o0. (1.59)
4 c?

0 0

This situation is called ultraviolet catastrophe and is illustrated in Fig. 1.13. This is what
goes under the name of the black-body radiation problem.

Planck proposed to consider the black-body internal surface as a collection of N linear
harmonic resonators.?* If

Sy =kglnwg (1.60)
represents the Boltzmann entropy of the total system, and Ey its total energy, then the
quantity wg comes to represent here the number of different ways in which Ey may be
distributed among the resonators. On the contrary, Planck treated [Planck 1900a, Planck

1900b] En as consisting of a finite number n, of discrete energy elements €, each of them
having a definite value for each frequency v

En = nee(v). (1.61)

If we indicate by E the average energy of the oscillators, we have

ne _E (1.62)
N € )
and, after some calculations (see Prob. 1.11), the entropy takes the final form
N E E\ E _E
Sg =kgN | {14+ —|In{14+—)——In—]. (1.63)
€ € € €

24 A more complete historical reconstruction of what follows can be found in several books [Jammer 1966,
7-16] [Kuhn 1978, 97-110] [Mehra/Rechenberg 1982-2001, 1, 24-59].
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Planck’s radiation curves in logarithmic scale for the increasing temperatures of liquid nitrogen,
melting ice, boiling water, melting aluminium, and the solar surface. Adapted from [Bialynicki-B.
et al. 1992, 8].

Since
asy 1
—_— ==, (1.64)
oU T
where the internal energy U = N E, then (see Fig. 1.14 and Prob. 1.12)
E=— 1.65
- eE/kBT _ 1’ ( . )

where € = hv (see Subsec. 1.2.1). This formula agrees very well with experimental data.
By making use of the classical equations of motion it can be proved that the average of the
black body can be obtained. By substituting the rhs of Eq. (1.65) in place of kgT in the
Rayleigh—Jeans formula (1.58) and by making use of the notation 8 = (kgT)~!, we finally
obtain the correct expression for the spectrum

87vd  h
f0) = =5 (1.66)

As we see in Fig. 1.13, the Rayleigh—Jeans formula is correct at small frequencies but
diverges at larger frequencies, whereas the Planck formula (1.66) reaches a maximum and
then decreases as v goes to infinity.

Before ending this subsection, a historical remark is in order. It is worth emphasizing
that in Planck’s view matter can be modelled as a collection of resonators, and in this sense
its energy is quantized, although Planck never assumed that the energy of the oscillators is
actually a multiple of €. He only pointed out that, as far as the computation of entropy
is concerned, the quantization hypothesis gives the correct results. Moreover, according to
Planck, the formula € = hv only applies to matter quantization and is not at all a mani-
festation of light quantization. In later papers Planck made clear that the energy could be
emitted by resonators in a quantized form, but is still absorbed in a continuous way.

25 See [Parisi 2005b].
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1.5.2 Photoelectric and Compton effects

We have already seen (in Subsec. 1.2.1) that the photoelectric effect can be correctly inter-
preted if one admits that light is made of energy quanta. This was the first evidence of
the quantization of the electromagnetic field. A further confirmation of the quantization of
electromagnetic radiation was found by Arthur Compton, who investigated the scattering
of x-rays after their collision with electrons [Compton 1923].2° The wavelength of scat-
tered x-rays Ay was slightly longer than that of incident x-rays A; — this is the essence of
Compton effect. The change of wavelength is a function of the angle 6 (see Fig. 1.15) at
which the scattered radiation is observed according to the formula

0
AL = 2. sin? > (1.67)
where AL = Ay — A; and
h —-12
Ae=—=242x10""“m (1.68)
mc

is the so-called Compton wavelength of the electron. This discontinuous change cannot
be explained in terms of the classical electromagnetic theory of light. On the contrary,
it may be accounted for by assuming that photons of incident energy E; = hv; and
incident momentum p; = h/A; collide with the electrons of the target (which may be
supposed to be at rest) and are successively deflected with reduced energy E; = hvg
and reduced momentum p; = h/XAs. This collision may be thought of as a two-step

Schematic representation of the Compton effect. Here y; is the incident photon, impinging with
momentum hv;/c on the electron located at the origin and initially at rest. The photon scattered
at an angle 6 and with momentum hvs/c is represented by ys, while the final electron with
momentum mv at an angle ¢ is indicated as e.

26 For a historical reconstruction see [Mehra/Rechenberg 1982-2001, 1, 520-32].
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process: an absorption of the photon by the electron followed by the successive emis-
sion of a photon of different energy. As a consequence, there is a transfer of energy
AE = E; — E; and of momentum Ap = p; — P to the electron so that the energy and
momentum conservation laws are satisfied for the total system (photon + electron) in each
collision.

Following Fig. 1.15 we have that

hv;  hyg
— = cos @ + mv cos ¢, (1.69a)
c c
hvy
2% §ing =mvsin g (1.69b)
c

express momentum conservation along the x- and y-axes, respectively, while
LI
hvs+§mv = hy; (1.70)

expresses energy conservation during the scattering process. From Egs. (1.69)—(1.70) one
obtains Eq. (1.67) (see Prob. 1.13).

It is worth mentioning that measuring the Compton wavelength of the electron yields
the value of Planck constant . when the speed of light and the mass of electron are
known.

We would like to end this subsection with a historical remark. Einstein’s interpretation
of the photoelectric effect involving the corpuscular nature of light had not completely
convinced the scientific community about the quantization of the electromagnetic field. In
this respect, the Compton effect, where energy and momentum are conserved in each single
collision, played the role of a definitive experimental evidence of radiation quantization and
convinced even the most skeptical physicists.

1.5.3 Specific heat

At the beginning of the nineteenth century it was already known that the specific heat
per mole of monatomic, diatomic, and multiatomic ideal gases is given by %R, %R, 3R,
respectively, where R = Nakp and Ny is the Avogadro number. There is no explanation
of this fact in the framework of classical physics, because the number of degrees of freedom
of a molecule with N atoms is equal to 3N. According to the classical equipartition law,
each degree of freedom should contribute kg T to the internal energy (and R to the specific
heat per mole). Then, from the values given above, it looks like some degrees of freedom
did not enter in the partition of energy.

In the case of solids, assuming small vibrations of the N atoms around their equilibrium
positions, the classical energy equipartition law ensures that the internal energy U is equal
to 3NkgT, or 3RT per mole. Therefore, the specific heat per mole for all solids should be
given by

Cy = (a—U> =3R, (1.71)
T )y
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(a) Dulong-Petit’s (full horizontal line ¢, = 3R), Einstein’s (dashed line), and Debye’s (dot-dashed
line) predictions for the specific heat of solids: all converge to the same limit ¢, = 3R for large
temperatures. (b) Same as (a) but magnified around the origin (at low temperatures): Einstein’s
curve decreases exponentially as T — 0, whereas Debye’s curve correctly predicts the 7
behavior.

which is known as the Dulong and Petit law. Classical physics then predicts a specific
heat which is constant at all temperatures, a fact which agrees well with experimental data
at high temperatures. For low temperatures, however, it is experimentally found that the
specific heat goes to zero as soon as T — 0 (see Fig. 1.16). Also this behavior is totally
incomprehensible in the classical context.

In 1906 Einstein®’ tried to solve this problem by assuming that the average energy of the
oscillating (non-interacting) atoms is given by Planck’s Eq. (1.65) so that the total internal
energy may be written as

3Nhv
= ST (1.72)
from which he derived the specific heat per mole as
hv
3R (hvp)? e
by = ( hvﬂ—l)z (1.73)
B —

According to this equation, ¢, decreases with T at low temperatures but is equal to 3R
at high temperature. However, Eq. (1.73) decays exponentially for T — 0, which is faster
than the observed behavior. In the 1912 Debye showed that the correct behavior of the
specific heat can be recovered both at small and at large temperatures when one takes
into account the simultaneous oscillation of interacting atoms (see Fig. 1.16), and uses
information about the sound velocity. The computation of the energy of the block radiation
and of the internal energy of the solid can be done in a parallel way.

1.5.4 Atomic spectra and stability of atoms

It has been known since the second half of the nineteenth century that the spectrum of
the electromagnetic radiation emitted by diluted gases is not a continuous function of the

27 For a historical reconstruction see [Mehra/Rechenberg 1982-2001, 1, 113—44].
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Lyman series for ionized helium. Adapted from [White 1934, 32].

wavelength. Instead, the intensity of the emitted radiation is a collection of sharp peaks
which are located at wavelengths characteristic of the different elements in the periodic
table. Moreover, no radiation is emitted at wavelengths in between peaks — an example of
such a spectrum is shown in Fig. 1.17. This fact is difficult to understand in the frame-
work of classical physics, since it would mean that electrons orbit around the nucleus with
selected frequencies, and tends to force us to admit that electrons in an atom possess dis-
crete “stationary” energy levels. We shall deal with atomic models in Ch. 11. It is worth
mentioning that a similar phenomenon (i.e. the presence of spectral lines) shows up also in
the case of absorption spectra.

Furthermore, it was known from the very beginning that Rutherford’s planetary atom-
model (1911) was affected by the great problem of instability. In fact, due to the centripetal
acceleration, a negatively charged particle (the electron) revolving around a positively
charged nucleus should continuously radiate energy and rapidly fall, following a spiral tra-
jectory, onto the nucleus. Bohr searched for a solution to the stability problem in extending
Planck’s postulate. He then postulated that, for an atomic system, there exists a discrete
set of permissible (stationary) stable orbits characterized by energy values E1, E3, .. ., and
that these are governed by the ordinary laws of classical mechanics [Bohr 1913, 874].28
As long as the electron remains in one of these orbits, no energy is radiated. The energy
of stationary states can be obtained from the quantization rule and the mechanical equilib-
rium condition (that the electromagnetic force is equal to the centripetal force), and, for the
hydrogen atom, is given by the formula

272me*

En= =T

(1.74)

The energy is emitted (or absorbed) during the transition from one stationary state to the
other in a discontinuous way — an electron is said to jump from one level to the other — so
that the amount of energy emitted (absorbed) is quantized in accordance with Planck’s Law
(1.25) and Sommerfeld’s hypothesis.?® For arbitrary transition from the level k to the level
j (k > j), we have that the angular frequency (the frequency v times 27) of the emitted
radiation (the so-called Bohr frequency) is given by

28 For a historical reconstruction see [Mehra/Rechenberg 1982-2001, I, 155-257].
29 See [Sommerfeld 1912].
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AEy;
oy = ——2L, (1.75)
' h
where
AEy = Ej — E (1.76)
and
h —34
h=— =1.054571 x 107" Js. (1.77)
2w

The opposite transition (from a level j to a level k£ with higher energy) is posswible only
in presence of absorbtion of the same quantized amount of energy E; — E;. It is worth
mentioning that Bohr’s solution did not really solve the problem of atomic instability: he
was not able to show why some orbits are stationary, because he still assumed that the
electron’s trajectories were classical. We shall return later on this problem (see Ch. 11).
In spite of this weakness, Bohr’s contribution opened the way to the understanding of the
periodic table of elements and of chemical bonds.

1.5.5 Electron diffraction

The phenomena of black-body radiation, of Compton, and of photoelectric effects suggest
that light — traditionally understood in wave-like terms — may have particle-like features.
Conversely, in the 1920s, matter — which traditionally was understood in particle-like
terms — was shown to have wave-like properties. Davisson and Germer [Davisson/Germer
1927] performed an experiment in which a beam of electrons was diffracted by a crystal.
They observed a regular diffraction figure only at certain incidence angles — exactly as hap-
pens for light. 3 This result was an experimental confirmation of de Broglie’s hypothesis
that matter can be treated as a wave. In fact in 1924-25 de Broglie [de Broglie 1924, de
Broglie 192513 had already stated that to a particle of momentum p can be associated a
wavelength A given by

(1.78)

SR

Since A = 2k ~!, where k is the propagation vector, it is possible to rewrite Eq. (1.78) as
p = hk. As a consequence, we are led to the conclusion that, according to the complemen-
tarity principle (see Subsec. 1.2.4), both light and matter have wave-like and particle-like
features.

30 More recently, wave-like effects of atoms have also been observed, such as a shift in phase during interaction
with a surface [Perreault/Cronin 2005].
31 Fora history of de Broglie’s contribution see [Mehra/Rechenberg 1982-2001, 1, 595-604].



39

1.5 The historical need of a new mechanics

1.5.6 Intrinsic magnetic momentum

We owe the discovery of the intrinsic magnetic momentum of microentities to a series of
experiments carried out by Stern and Gerlach and Uhlenbeck and Goudsmit.3? In these
experiments, a beam of identically prepared silver atoms is sent through a magnetic field
oriented in such a way that the gradient of the field is constant and perpendicular to the
beam axis. The emerging silver atoms are captured by a screen whose plane is perpendic-
ular to the initial beam axis (see Fig. 1.18). The result shows that the atoms accumulate in
two separate “spots.” This is another aspect of quantization, leading to the conclusion that
the atoms have an intrinsic angular momentum — the spin — that can assume only discrete
values. We shall treat the quantum mechanical theory of angular momentum in Ch. 6.

1.5.7 Final considerations

The path taken by quantum mechanics from its first appearance (1900) to a precise for-
mulation of the theory (1925-27) was very long and difficult. In the first 20 years of the
twentieth century the majority of physicists still believed that classical mechanics would
have been able — sooner or later — to explain the “quantum anomalies” as effects of some
forces acting at a microlevel. Gradually, however, it became clear that it was not possible
to eliminate these anomalies and that they were not completely compatible with the clas-
sical framework. This growing awareness of the inadequateness of classical physics did
not result in a new satisfactory formulation until in 1925-27 Heisenberg with his matrix
mechanics and Schrodinger with his wave mechanics were able to by the foundations of a
new theory that was thereafter called quantum mechanics®? [see Chs. 2-3]. Later, it was

screen

oven

magnet

The Stern-Gerlach experiment. A typical explanation states that due to the magnetic field an
initial polarization n is changed into “spin-up” (+z) or “spin-down” (-z), relative to the main
field direction By (of an inhomogeneous magnetic field) if the particle is found in the upper or
lower part of the deflected beam, respectively.

32 See [Gerlach/Stern 1922a, Gerlach/Stern 1922b, Gerlach/Stern 1922c¢] [Uhlenbeck/Goudsmit 1925, Uhlen-
beck/Goudsmit 1926]. For a historical reconstruction of the Stern—Gerlach experiment see [Mehra/Rechenberg
1982-2001, I, 422-45] and for a history of the theory of the spin see [Mehra/Rechenberg 1982-2001, 1,
684-709].

33 See [Heisenberg 1925, Heisenberg 1927] and [Schrodinger 1926].
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proved* that Heisenberg’s and Schrédinger’s formulations are just two different represen-
tation of the same theory. As we shall see, this new mechanics has some homologies with
classical mechanics. Notwithstanding, there are also many important differences both at
technical and conceptual levels.

One of the most difficult tasks was the interpretation of this new formalism. As we shall
see some questions remained open for many years (for instance, the measurement problem
(see Ch. 9)). However, already in 1927-28 Bohr was able to provide a general framework,
founded on the complementarity principle, which, although needing integrations and cor-
rections, still provides a good structure for an understanding of the theory. This framework
is known as the Copenhagen interpretation.

In the remaining chapters of parts I and II, we shall study Heisenberg’s and Schrodin-
ger ’s contributions and see how they can be understood as two different representations
of quantum theory. We shall also show the necessary corrections to be introduced into the
Copenhagen interpretation.

Summary
-______________________________________________________________________________|

In this chapter we have briefly reviewed classical mechanics and compared it with quantum
mechanics. We may summarize the main results as follows:

Quantum mechanical states are represented by vectors in a (complex) Hilbert space.

e If two states are allowed, every linear combination of them is also allowed (superpo-
sition principle), with the consequence that quantum mechanics violates the principle
of perfect determination (and therefore determinism of properties, which characterizes
classical mechanics).

e There is a fundamental (and smooth) complementarity between particle-like behavior
and wave-like behavior (the complementarity principle).

e As a consequence of these two principles, the use of probability in quantum mechanics
is not due to subjective ignorance but is an intrinsic feature of the theory concerning indi-
vidual systems (and this is a further evidence of the violation of determinism, because
in the general case only probabilistic predictions about properties are possible).

e The structure of quantum probability is deeply different from that of classical probability
theory, in the sense that it is not ruled by Kolmogorov axioms and is rooted in the concept
of the probability amplitude.

e Finally, we have collected the most important historical experimental evidence for the

departure from classical mechanics: black-body radiation, Compton and photoelectric

effects, atomic spectra, specific heat, quantization of atomic levels, electron diffraction,
and spin.

34 The proof was first sketched by Pauli and then built into a new mathematical framework by von Neumann

in [von Neumann 1927a, von Neumann 1927b, von Neumann 1927¢, von Neumann 1929].
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Problems

1.1 Assume that the principle of perfect determination fails. Does then determinism fail
as well?

1.2 Assume that the principle of continuity fails. Does then determinism fail as well?

1.3 Making use of one of the properties (1.10), show that we have { f, f} = 0.

1.4 Show that, if f and g are two constants of motion (i.e. {f,H} = {g,H} =0)
then also their Poisson bracket { f, g} is a constant of motion — for the quantum-
mechanical counterpart of this problem see also Prob. 3.17.

1.5 Consider the polarization of a photon in the state

1

V2
What is the probability ¢(45°) that the photon will pass a filter oriented at 45° relative
to the horizontal axis? And the probability (135°)?

1.6 Prove Eq. (1.41b).

1.7 Take an orthonormal basis {|j)}, 1 < j <n on a Hilbert space of dimension n.
Compute the result of the action of the projector ﬁk = |k) (k| on a state |¢) =
> i—1¢j1J), where the c;’s are arbitrary complex numbers with 3 "_, lej|"=1.

| ) = (lv) +1h)). (1.79)

1.8 Taking advantage of Prob. 1.7, prove that, for any H, if |a) € H, also 0 ¢ ‘H, where
O is a linear combination of projectors acting on H.
1.9 Compute the norm of the result of Prob. 1.7. Is this norm larger or smaller than one?
Why? Explain the physical meaning of this result.
1.10 Prove that for any vector |§) # 0, itis true that (£ | §&) = 1.
1.11 Derive Eq. (1.63).
1.12 Starting from the expression (1.63) of the entropy of the black body and taking into
account Eq. (1.64), derive Eq. (1.65).
1.13 Derive Eq. (1.67) from energy and momentum conservation in the Compton effect
(Egs. (1.69)—(1.70)).
(Hint: Take advantage of the scheme in Fig. 1.19 to rewrite momentum conservation
in a single equation, not involving the angle ¢. Take also into account the fact that
Vi )
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¢ ~
=~ ~
~ o mv
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Momentum conservation in the Compton effect.
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Quantum observables and states

In this chapter we shall mainly present the basic formalism that was initially developed by
Heisenberg,1 also known as matrix mechanics (see Subsec. 1.5.7). We will first introduce
in Sec. 2.1 the concept of quantum observables. Then, the problem of discrete and contin-
uous spectra will be discussed and the basic non-commutability of quantum-mechanical
observables will be deduced. While in Sec. 2.1 we discuss observables on a general formal
level, in Sec. 2.2 some basic quantum-mechanical observables will be defined, and then
different representations discussed and commutation relations derived. In Sec. 2.3 a basic
uncertainty relation is derived. In the same section the relationship between uncertainty,
superposition, and complementarity will be discussed. Finally, in Sec. 2.4 complete sub-
sets of commuting observables will be shown to be Boolean subalgebras pertaining to a
quantum algebra which is not Boolean.

2.1 Basic features of quantum observables
 ——————————

This section is devoted to a general and formal exposition of quantum observables. In
Subsec. 2.1.1 we shall learn how one can mathematically represent quantum observables
as Hermitian operators. In Subsec. 2.1.2 we shall see how to change a basis, while in
Subsec. 2.1.3 we shall find the relationship between eigenvalues of the observables and
probabilities and learn how to calculate mean values. In Subsec. 2.1.4 we shall deal with
an operator diagonalization. Finally, in Subsec. 2.1.5, the basic non-commutability of
quantum observables will be presented by means of an example.

2.1.1 Variables and operators

The lesson we have learnt from the experimental evidences reported in Sec. 1.5 is that — in
both the cases of light and matter — energy may have a discrete spectrum. This has impor-
tant consequences in the definition of physical quantities in quantum mechanics. In fact,
in classical mechanics physical quantities are represented by real variables and functions
of real variables. For example, the coordinates gx’s and momenta py’s in Sec. 1.1 are real
variables, whereas the Hamiltonian H, which represents the energy, is a real function of

I See [Heisenberg 1925, Heisenberg 1927].
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the gi’s and of the py’s. In all these cases, classical variables are continuous. On the other
hand, quantum mechanics has to face a situation where physical quantities may have a
continuous spectrum, a discrete spectrum, or a combination of both. Mathematically, real
variables are not a natural tool for a mechanics facing such a situation. On the other hand,
as we shall see later, the spectrum of operators on an infinite-dimensional Hilbert space
may have both a continous and a discreate component. Inspired by this consideration, we
propose the following principle:

Principle 2.1 (Quantization principle) Observables in quantum mechanics are repre-
sented by operators on a Hilbert space.

In order to find an adequate representation of quantum observables in terms of opera-
tors, let us first consider the discrete case and turn back to the example of polarization
already discussed in Secs. 1.3 and 1.4. Suppose that we want to measure the polariza-
tion of a system. This can be effected, for instance, with the help of a polarization beam
splitter (PBS), which is a particular type of beam splitter that separates photons with ver-
tical and horizontal polarization (see Fig. 2.1). This device is particularly interesting as
it somehow “combines” the two experimental setups proposed in the previous chapter:
the Mach—Zender interferometer (see Fig. 1.3) and the polarization-filter experiment (see
Fig. 1.9). Since we can only obtain either vertical or horizontal polarization as outcome,
we may make use of the two projectors associated to the two polarization vectors |v)
and |h), i.e. 13U and ﬁh, respectively. In other words, independently of what the state
before the measurement was (in general a superposition of |v) and | &) ), the projectors
13U and 13;, describe the two situations where the measured photon can be found as result
of the measurement. A similar situation would have been obtained if, instead of ﬁv and
Py, we had considered the polarization along the 45° and 135° orientations. In this case,
we would have used an alternative set of projectors, e.g. Pss, Pi3s, describing again the
two possible states in which the system can be found after measurement. As in any kind

[u>

[1p> |h>
—_—

Y

Schematic representation of a polarization beam splitter (PBS). An incoming photon from the left
in an arbitrary polarization state | ) is split by the PBS in such a way that either the photon is
found in the lower path with horizontal polarization or in the upper path with vertical
polarization. Of course, the state of the photon after the PBS is a quantum superposition of the
two alternatives.
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of measurement, the possible outcomes may be represented as ticks on a reading scale and
may be represented by real numbers. Therefore, we may associate to each projector a real
number which is the observed outcome itself. In other words, in the discrete case, we can
understand the reading scale as a partition of the space of the possible outcome values.
Suppose, for the sake of simplicity, that, for the example chosen here, the two mutually
exclusive results have values +1, —1, so that, when measuring, if the photon is detected
in the upper path (vertical polarization) the outcome is +1, whereas if the photon is found
in the lower path (horizontal polarization) the outcome is —1. The “polarization observ-
able”? can be intuitively conceived as a combination of these two possible outcomes, i.e.
something like (+1 )I3U + (—1 )ﬁh. In other words, the polarization observable is defined as
a combination of its possible values and of the associated projectors. Since a linear com-
bination of operators is itself an operator, we see that a quantum mechanical observable is,
in the general case,’ an operator. In our example we can write the polarization observable
as ép = (+1)ﬁv + (—1)13h. Therefore, quantum mechanical observables can be repre-
sented by operators which act on the state vectors belonging to the Hilbert space H of
a given system. We may generalize the previous result to any discrete spectrum (either
finite- or infinite-dimensional) by stating that a generic quantum observable O can be
written as

0=> 0P, @2.1)

J

where the o;’s are the eigenvalues* of 0, the |oj)’s its eigenvectors, and the 13j =
|0 j) (0 i ]’s the corresponding projectors. The sum is extended over all the possible mea-
surement outcomes. The set of all eigenvalues is called spectrum of the observable and
Eq. (2.1) is called the spectral representation of the operator 0. Since O is a sum of linear
operators (see Eq. (1.43)), therefore it is itself a linear operator.

From Eq. (2.1) it immediately follows that

Olor) =Y 0jPjlox)

J
= ZOJ‘ |0j) (Oj | Ok)z ZOJ‘ |0j) 5jk
J J
= o | ox). (2.2)

The relation O |ox) = ok |ox) can be regarded as the eigenvalue equation of the observ-
able 0.5 The eigenvectors | ox)’s associated to the eigenvalues oy ’s in Eq. (2.2) are also

2 We shall call any physical quantity in quantum mechanics an observable.

3 We shall consider some problems of this generalization in Sec. 3.9.

4 See [Byron/Fuller 1969-70, 120-21].

5 Strictly speaking, one should distinguish between the observable, which is a physical quantity, and the
associated operator, which is a mathematical entity. But, for brevity, we will often write “the observable 0



46

Quantum observables and states

called the eigenkets (i.e. the eigenstates) of the observable 0. Asan example, consider the
action of the polarization observable Op on the horizontal-polarization state | h), i.e.

Oplh) = (+1|v) (v|— 1) (h])|h)
=+41|v) (v|h) —|h) (k| h)
= —|h). (2.3)

Since quantum-mechanical observables are represented by operators, the possible values
of an observable are the eigenvalues of the corresponding operator. However, not all math-
ematical operators are suitable for representing observables. In fact, since the values of
an observable have to represent physical quantities and therefore must be real, the oper-
ator associated to a quantum observable must be a Hermitian operator.® An operator 0]
is said to be Hermitian or self-adjoint when 0= OAT, where 0T = (OA*)T
posed conjugate or adjoint of O (see Box 2.1), and the transposed matrix OT is obtained
by interchanging rows and columns of the matrix O. In other words, for any vectors

lo) 19,

is the trans-

(elo]v)=({v|o']¢))". @4

where <<p ‘OA‘ ¢> must be interpreted as the scalar product between the bra (¢ | and the ket

0| ), resulting from the action of the operator O onto the ket |).7 This result can be
summarized by the following theorem:

Theorem 2.1 (Hermitian operators) Any quantum mechanical observable can be rep-
resented by a Hermitian operator.

We also note that projectors are observables, since an arbitrary vector |i) can be put in
the form of a sum of eigenvectors of an arbitrary projector P, i.e.

ly) = Ply) + — P)| ). 2.5)

In fact, P| Y¥) is the eigenket of P corresponding to the eigenvalue +1, since one has (see
also Eq. (1.41b)) P(P|¥)) = P|y). Instead, the vector (I — P)| ) is the eigenvector of
P with the eigenvalue 0, i.e.

P(I — P)y) =(P — PH|y) =0. (2.6)

6 This is a consequence of a theorem which states that the eigenvalues of an operator are real if and only if (iff)
it is Hermitian [Byron/Fuller 1969-70, 154].
7 In the real and finite case self-adjoint operators are represented by symmetric matrices.
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Hermitian and bounded operators

Strictly speaking, our definition of Hermitian operator is valid only in the case of a finite-
dimensional Hilbert space. If the dimension is infinite, there may be problems with the
definition above if the operator is not bounded. An operator 0 on a Hilbert space H is
said to be bounded if there exists a real constant C such that, for any non-zero vector
|¥) € H, we have

AT A
(v |o"0] #)
W)
The lowest possible value of C is the norm of the operator O.

If the operator is not bounded there are some vectors |v) in H such that 0[v) is not
defined (it is formally infinite). In this case the operator is defined only in a dense subspace of
the Hilbert space . Then, the definition of the adjoint or Hermitian conjugate of 0 becomes
more subtle. Indeed, in some cases the operator is symmetric, i.e.

(e10v)=(001v), (28)

<. (2.7)

where | @), |vy) are vectors in the Hilbert space such that ’éw) and ‘OA(p> are finite. If we

define the operator @ by the relation
(o10w) = (0701 v), 29)

symmetry implies that 0 and 6" do coincide if both vectors belong to the domain of the
operator O. However, the operator o' may have a larger domain. Often, a symmetric non-
bounded operator that is naturally defined in a given subspace of H may be extended in a
non-unique way to a larger subspace so that it becomes Hermitian; in other words, there may
be many self-adjoint extensions of the symmetric operator O.

Generally speaking, the study of self-adjoint extensions of operators is a rather complex
subject in functional analysis - the interested reader may refer to [Fano 1971, 279-86,
330-54]. However, there is a simple theorem that states that, if the symmetric observable
0 is bounded from below, there is a natural self-adjoint extension and one can forget all
problems concerning the uniqueness of self-adjoint extensions.

Therefore, Eq. (2.5) reduces to
Ply) = (+D)]y). (2.10)

Stated in simple terms, any projector is Hermitian. In the finite-dimensional case we can
state the following fundamental spectral theorem:

Theorem 2.2 (Finite-dimensional spectrum) The eigenvectors {|0;)} of any Hermi-

tian operator Oon™H span the Hilbert space and can be chosen to be an orthonormal
basis for H.
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Example of a Hermitian operator

Going back to the example of the photon polarization observable Op (see p. 45), we may
write the state vectors |v) and |h) corresponding to vertical and horizontal polarization,
respectively, as (see also Eq. (1.29))

|v)=<(1)>, |h)=(?> (2.11)

in the two-dimensional polarization Hilbert space Hp. It follows that

(vIhy=(hlv)=0, (lv)=(hlh)=1, (2.12)

i.e. the vectors | v) and | h) form an orthonormal basis on . Then, the projectors associated
to |v) and |h) can be written as

ﬁu=|v)<v|=<;>(1 o)={; 8} (2.133)
ﬁh=|h)(h|=<?>(0 1):[3 (1’] (2.13b)

from which it easily follows that £, + 13,, = I. As a consequence, the polarization observable
can be constructed as

0p=(+1)ﬁv+(—1)ﬁh
|1t o] oo
10 o0 0 1
1 0
=[O - } (2.14)

From Eq. (2.14) it easily follows that Op = Op, i.e. that Op is a Hermitian operator. Need-
less to say, the number of linearly independent projectors in a spectral representation of an
observable (see Eq. (2.1)) must be equal to the dimension of the Hilbert space of the system.

In fact, if the eigenvalues of O are all distinct, then its eigenvectors are orthonormal and
indeed form an orthonormal basis on H, as is well known from linear algebra. But it can
also be that different eigenvectors correspond to the same eigenvalue. In this case such
eigenvalue is said to be degenerate. When one (or more) eigenvalue is degenerate with
multiplicity k, it is always possible to find, in the k-dimensional subspace of H spanned by
the eigenvectors corresponding to the degenerate eigenvalue, k linearly independent (but
not necessarily orthogonal) eigenvectors® (see also Subsec. 3.1.4).

8 Then, one can apply the Gram—Schmidt orthonormalization procedure to find a complete orthonormal set —
see [Byron/Fuller 1969-70, 159-60].
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Let us consider a generic state 1) of a system S. Following Th. 2.2, |v) can be
expanded in the basis {|0;)} (see also Egs. (1.35)), i.e.

1) =Y ciloj). (2.15)
J
where ¢, = (ox | ¥) are complex numbers which represent probability amplitudes (see
Sec. 1.4). In fact, multiplying both sides of Eq. (2.15) by (o | from the left, we have

(0k|1/f)=ZCj(0k|0j)=ch8jk=ck. (2.16)
J J

Note that an arbitrary observable O can always be expanded as
O=2"1bj){b;|0=2"1b;) (bj| O1ba) (bal, 2.17)
J Jjon

where (see Eq. (1.41a))
> b)) (i | =1. (2.18)
J

and {| by) } is an orthonormal basis on the Hilbert space H of the system. From Eq. (2.17)
it is clear that, if one knows all the matrix elements

Ojn = (bj| O|by) (2.19)

of O ona given basis, then O is fully determined.

Needless to say, given an arbitrary state vector | ), it is always possible to construct
a Hermitian operator O which has | ) among its eigenvectors (actually, there are several
Hermitian operators having | 1) among their eigenvectors). In fact, we can take, e.g., 0=
| ) (¢ |, which is a projector and also a Hermitian operator. In this case | ) would be an
eigenvector of O with eigenvalue 1.

We have said that the spectrum of an observable can be continuous, discrete, or a com-
bination of both. We have already examined in the previous subsection the discrete case.
Now, what happens if we have a continuous observable such as the position? In this case
we have an infinite-dimensional Hilbert space.” In an infinite-dimensional Hilbert space
we can use an equation of the type of Eq. (2.1) only for compact operators. In a more
general case we should use the continuous counterpart of Eq. (2.1). This is the content of
the spectral theorem, which may summarized as follows:!? for any Hermitian operator 0
there always exists a spectral representation given by

0= / do o P(o), (2.20)

where P (0) = |0) (0]. In this representation an arbitrary ket |{/) € H may be expanded as
(see also Eq. (2.15))

9 Also for discrete spectra one can have infinite-dimensional Hilbert spaces. For example — as we shall see in
Sec. 4.4 — the energy of a simple harmonic oscillator has a discrete (though infinite) number of eigenvalues.
10 A formal proof can be found in specialized textbooks [Prugovecki 1971, 250-51] [Holevo 1982, 52-64].
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) = / do ¢(0) |0}, 221

where c(0) = (0| ¥) is a (complex) function of the eigenvalues o of the observable 0.
Similarly to the the discrete case (see Eqs. (1.41)), the continuous projectors have the

properties
/ doP(0)= / dolo) (o] =1, (2.22a)
P)P(0)=8(0 — o) P(0), (2.22b)
where §(x) is the Dirac delta function, which has the following properties:
8(x)=0, Vx #0, (2.23a)
+00
/ dxs(x)=1, (2.23b)
—00
+00
/ dx8(x)f(x)= f(0), [The integral is defined iff f(x)
—00
is a continuous function in x = 0], (2.23c¢)
1
S(ax)= HS(x), (2.23d)
a
N

1
S[f]= Z el 8(x —xj), [x; are the zeroes of f(x)].  (2.23¢)

Jj=1

Actually, the Dirac §-function is not a proper function. Rather, it is a more complex object,
namely a distribution. For our practical purposes, however, it may be considered as a
function.

In the following subsections we shall discuss some properties of observables, limit-
ing ourselves to the discrete case. We shall return to the discussion of the properties of
continuous observables before introducing momentum and position operators (in Sec. 2.2).

2.1.2 Change of basis

It is interesting to note that a generic state vector can be expanded in different bases. It is
then natural to ask what is the relation between the representations of the state vector in the
two different bases. To answer this question, let us go back once again to our polarization
example (see Sec. 1.3). In this case, a generic state vector | /) can be expanded in the basis

{Ih),lv)} as
|¥) = cnlh) +culv), (2.24)

where

cp=(h[¥) and c,=(v|¥). (2.25)
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However, the vector |¢) can be also expanded in a different polarization basis
{1b),1b1)} as

[¥) =cp|b) +cp, |b1), (2.26)
where
cp ={(blv¥) and cp =(bL|V). (2.27)

Moreover, |b) and |b;) may be in turn expanded in the basis {|A),|v)} (see Th. 2.2:
p- 47) as

[b) =(h|Db)|h) + (v]b)]|v), (2.28a)
[b1) =(h[b1)|h) + (v]bL)|v), (2.28b)
where we have taken advantage of the usual relation
|h) (B |+ |v) (v] = 1. (2.29)
Using Eqgs. (2.28), Eq. (2.26) may be rewritten as
) =cp ((h1b)Ih) + (v b)[v))+cp ((RIDL)R) +(v]bL)[v))
= (co (h1 DY +cp, (RIbL))IR) 4+ (cbp (V] b) +cp, (v]bL)) V). (2.30)
The last expression has to be equal to the rhs of Eq. (2.24), i.e.
ch="(h|b)cp +(h|bL)cp,, (2.31a)
cv=(v|b)ep+ (v bi)cp,, (2.31b)

which is the desired relation between the sets of coefficients {cy, ¢, } and {cp, cp, }.
In matrix notation, Egs. (2.31) may be cast in the more compact form

( Ch ) - 0( b ) (2.32)
Cy Ch|

where (see Prob. 2.2)

A (h| D) <h|bJ_)i|
U= . 2.33
[<v|b> wlby) 233
The matrix U is unitary (see Box 2.3), i.e. (see also Prob. 2.3)
00T =00=1 (2.34)

or U1 =U".

Unitary operators

Unitary operators are a special class of the normal operators, i.e. of the operators O which
commute with their adjoint: 00" =06'0. 1t is |nterest|ng to note that any linear operator

N

0 may be decomposed as 0 = 0 +10 , where 0 and 0 are Hermitian operators (see
Prob. 2.4). In this respect, we may establish an analogy between linear operators and
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complex numbers, where the two Hermitian operators 0 and O play the “role” of the real
and imaginary parts of a complex number. Now, the necessary and sufficient condition for O

to be normal is that 0 0 = 0 0 [Halmos 1951, 42-43]. Unitary operators have to fulfill the

further condition (see Prob. 2.5)
A/ 2 A// 2 a
(o) + <o ) _i (2.35)

which corresponds to the condition for a complex number z = x +1y to have modulus 1, i.e.
+ y2 = 1. This analogy justifies the use of the term “unitary.”
Notice also that unitary operators are not necessarily Herm|t|an In fact, for a normal oper-

ator 0 = 0 +zO to be Hermitian, the addltlonal condition 0 = 0 is required. Furthermore,
if O is also unitary, it must satisfy 0 = 0 with (see Prob. 2.6)

A/ A/ T /\/ 2 ~
0 = (o) i (0) ) (2.36)

As we shall see, the unitary character is a distinctive feature of several basic quantum
transformations and, depending on the context, it may express in operatorial terms time
reversibility or spatial invariance. In general, it is a signature of the existence of a symmetry
(see Ch. 8).

We can choose, as a particular instance of | b) and | b ), the polarization vectors at 45°
and 135°, respectively, which means that the angle ¢ between |b) and |h) and between
|b1) and |v) is 45° (see Fig. 2.2). Then, the matrix Uis given by

o= |11 (2.37)
VA | ‘
which is a particular instance of the rotation matrix for a two-dimensional system
A cos¢p —sing
Up) = . 2.38
@) |: sing ~ cos¢ i| (2.38)
v>
A >
1b,> |b>

»
T

lh>

Change of basis. The basis {| b}, |b.)} is obtained from the original basis {| h), | v) } by a
counterclockwise rotation of 45°.
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for ¢ = m /4. In other words, in the finite-dimensional case a change of basis can be repre-
sented by a rotation of the axes in the Hilbert space. As we shall see in Ch. 8, any unitary
operator describes a kind of rotation.

It is possible to generalize the derivation above to any state vector | ¢). Let us expand it
in terms of an orthonormal basis {| by) } as

1) =D e, |bj) (2.39)

J

with some complex coefficients c;, = (b | ¥). We may always choose to expand the state
vector | Y) in a different orthonormal basis {| ax) }. In this case, we have

V) =Y ca, lan), (2.40)
n
where ¢4 = (ax | ¥). It is therefore interesting to look for the relationship between

the sets of coefficients {cp,} and {c, }. For this purpose, we may insert the expression
> lan) {an| = I (see Eq. (1.41a)) into Eq. (2.39), so as to obtain

1) =, lan) {an | by)
n,j

= Un.jcb, lan), (2.41)
i

with the matrix elements Uy, ; = (ay | b;). Since the rhs of Egs. (2.40) and (2.41) have to
be identical due to the uniqueness of the expansion in terms of an orthonormal basis, we
must conclude that

Cq =Y Uk, jcb;, (2.42)
j

which is the desired relation. If we interpret the sets of coefficients {c5;} and {c,,} as
column vectors C, and C,, respectively, we can write Eq. (2.42) in matrix form as

c. = Ucy, (2.43)
or
Cay (a1 | b1) (a1l b2) ... (a1l by) Ch,
Cay | _ | fta2lb1) Aazlb2) ... (az|bn) b | (2.44)
Ca, (an | b1y Aanlb2) ... {anlbp) Ch,

It should now appear evident at this point that superposition (see p. 18) is basis-dependent:
a state vector which appears to be a superposition in a certain basis (relatively to an observ-
able) may well not be such in a different basis (relatively to a different observable). For
instance the vectors |v) and | ) in Eq. (2.11) are an eigenbasis of the observable (2.14).



54

Quantum observables and states

It is not very difficult to translate change of basis in a continuous “language.” Let us
consider a generic state vector | 1) that can be expanded as

V) = /dSC(é)Ié)- (2.45)
The vector | ) could also have been expanded in another basis, say {| ) } as follows:
1Y) = /dnc/(n)lm
Z/dﬂc/(n)/dHé) (&1m)

= //dndéc/(n) (1 n) &), (2.46)

from which we find the desired relation
«© = [ antermem. @47)
We prove in the following three important properties of the change of basis (for the

discrete case).

e First, it is easy to show that the matrix U in Eq. (2.42) is unitary.

Proof

We have that
(Un ;)" = (b1 a,) and (U*)M = (bu a}). (2.48)

Then we have that

(vur). =2 U (v"), =D b (el aj) = (el aj) = by, (249)
’ k ’ k

which means that UUT = 1.
Similarly, we have

(UTU)M = (U*)n’k Uij=3 (bala)lacl bj) =8y, (2.50)

k k
Q.E.D

e Second, the unitary transformation that instantiates a change of basis preserves the
scalar product between two arbitrary kets |v) and |w’>. This result may appear
evident since the scalar product should be independent from the basis chosen to com-
pute it. Nevertheless, as we shall see later (in Subsec. 3.5.1 and Ch. 8; see also
Egs. (1.35)—(1.36)), scalar-product conservation is an important property of unitary
transformations.
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Proof

Let us decompose the two kets | ) and | ') into the two basis {| b¢) } and {|ax) }:
=Y o lbj)s )= c b)) (2.51a)
J j
=Y calaj), )= cl laj). (2.51b)
J j
The scalar product of the two vectors in the basis {| bx) } is easily calculated:

(W1 v) =D (bel bj)escn, =D cpcn,s (2.52)

k,j J

since (bk | b j> = ;. Next, we calculate the same scalar product in the {|a) } basis and
finally show that it is the same of Eq. (2.52):

w | 1/f ankca] ag | a, Zc/a";caj. (2.53)
J

/%

But caj =>,U jnch; (see Eq. (2.42)) and, analogously, c; >, U cb”
>oac * U, t Substltutlng these expressions into Eq. (2.53), we obtain

(Vv = chb J,‘/ZUj,kak
k

=D cm [ DU Uik | en =D cien (2.54)
n,k j k

since

YUl U= (UTU)H = h =8k (2.55)

Q.E.D

Finally, it can be shown that the trace of an operator does not change under change of
basis. With trace of an operator we intend here the sum of the diagonal elements of the
corresponding matrix, i.e.

Tr(é):Z(bjm b)), (2.56)
J
where, as usual, {| b) } is an orthonormal basis on the Hilbert space of the system.

Proof

Let us first write the trace of O in the basis {|ax) }, i.e. Tr(O) = > a; | 19) |aj). Now

the trace of O in the basis {| br) } can be written as
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Te(0) = Y _ (bj| an) (an| O lay) {ax | by)

j.nk
=Y ac| bj){bj | an) {an] O |ax)
Jjon.k
= lalan) lan] Olar) = {a| O ), 2.57)
nk k
where 3" (bj | bj) =3, (an | an) = I.

Q.E.D

2.1.3 Values of observables

So far we have discussed a few basic properties of quantum observables. It is now natural
to ask what is the “effect” of the action of an observable onto a state vector. One might
think that the action on a given system’s state of the operator 0] corresponding to a generic
observable describes the “effect” of a measurement of that observable on the system. This
is not the case. In fact, if we have an arbitrary polarization state |b) (see Subsec. 2.1.1),
the action of the polarization observable

Op = (+D)|v) [+ (=D h) (]| (2.58)
does not produce a state corresponding to any measured outcome. In other words
Op|b) # (+1)|v) and Op|b) # (=D)h), (2.59)
in general, since | b) may well be a superposition state of the form
[b) =cylv) +cplh). (2.60)
In this case, we clearly have

ép|b> = éP (colv) +cnlh))
=(v)l=1h) | (cvlv) +cnlh))
=cylv)(wlv) —cplh) k]| h) =cylv) —cnlh), (2.61)

which shows that an observable induces a “transformation” on a given state that in general
does not yield one of its eigenvectors as output. The only exception is when the initial state
is already an eigenvector of the observable (see Eq. (2.3)).

Quantum measurement theory is a complex aspect of quantum mechanics and will be the
object of later examination (in Ch. 9). For the time being, let us say that the measurement
process requires that the object system interact at least with an apparatus and should lead
to a “change” in the state of the object system from the initial state (which may be a super-
position relatively to the measured observable) to a final state described by the eigenvector
corresponding to the measured eigenvalue — this “‘change” is the heart of the measurement
problem in quantum mechanics. Then, when actually performing a measurement of a given
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observable O, we must obtain as outcome one of the possible values (eigenvalues) of oM
In particular, it is not possible to find intermediate values between eigenvalues. Since the
measured outcome is certainly one of the possible eigenvalues of O and since we have
seen (in Sec. 1.4) that quantum probabilities must be expressed as square moduli of some
amplitudes, we can then postulate what follows.!?

Principle 2.2 (Statistical algorithm) Given that a quantum system is completely defined
by avector | ) (Eq. (2.15)), the probability of having a determinate measurement result —
an eigenvalue oy of the measured observable O — is given by

o0k, ¥) = |exl?, (2.62)

where the complex coefficient cy, is the amplitude cy = (ox | V), and the eigenvector | o)
of O corresponds to the eigenvalue oy.

This algorithm is of particular relevance because it provides the general mathematical con-
nection between the coefficients of the expansion of the system state onto a given basis
and the probabilities of the corresponding outcomes of a measurement process. It is also
evident that we must have

> lejlP=1 (2.63)
j

in Egs. (2.15) and (2.62). It is then evident that c; € 1@ where [ is the space of succes-
sions for which the sum of square moduli is finite. This condition reflects, on one hand,
the normalization of the state vectors (see also Eq. (2.108)), and, on the other hand, the
requirement that the sum of the probabilities of all disjoint events of a given set is equal to
one, i.e. Kolmogorov’s probability axiom (see p. 29).

It is straightforward to extend the statistical algorithm to the continuous spectrum case,
where we recall that Eq. (2.15) may be rewritten as (see Eq. (2.21))

) = / do c(0) o), (2.64)

where the coefficient c(0) = (0| i) is a continuous function of the eigenvalue o and the
|o) are the eigenkets of the observable O, i.e.

O o) =o|o). (2.65)

1 This provides a first evidence that the state vector cannot be measured with a single measurement. This subject
will be discussed extensively in Ch. 15.
12 gee [Born 1926].
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As a consequence, Eq. (2.62) translates into

90, %) = |c(o)]? (2.66)

where (0, ¥)do has here to be interpreted as the probability that the eigenvalue be in the
interval (o0, 0 4+ do). In the continuous case, the normalization condition (2.63) translates
into

/ do |c(o))? = 1. (2.67)
It may well happen that an observable 0 presents simultaneously a continuous and a dis-

crete spectrum. For instance, let us assume that the discrete spectrum ranges between —oo
and o, above which value the spectrum becomes continuous up to +oo. Then, if

+00
Pp =7 loj){o;j| and 13c=fdolo><o|, (2.68)
J 0

where the sum is extended over the discrete eigenvalues, we must also have
Pc+Pp=1. (2.69)

Principle 2.2 provides the connection quantum theory and experimental measurement
statistics. In other words, if we perform a large number of observations, we expect that
the statistics of different possible outcomes will tend to their corresponding probabilities
as the number of measurement runs grows. Principle 2.2 also allows us to define the useful

concept of the mean or expectation value <(§> of an observable O on a certain state [¥).

We start from the usual definition of mean value for a probability distribution.
Classically, the expectation value of a random variable & is defined as'?

E= /a’x x p(x), (2.70)

where g(x) is called the probability density function and is such that g(x)dx is the proba-
bility that the random variable & takes on a value in the interval (x, x + d&). Equation (2.70)
is valid when the probability distribution is continuous and the integral

/dx|x|5o(x) (2.71)

exists. In the most general case, the expectation value of the random variable £ may be
expressed in terms of the distribution function

Fx)=pE < x), (2.72)

13 See [Gnedenko 1969, 125-32, 165-86, 219, 227] [Gudder 1988, 30].
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which gives the probability that £ will take on a value less than x, i.e.

€= / xdF(x). (2.73)
For the continuous case we then have
X
F(x) = / dzg(2). (2.74)
—0Q

Another useful concept is that of characteristic function. The characteristic function of a
classical random variable £ is defined as the expectation of the random variable ¢! , where
n stands for a real parameter. If F(x) is the distribution function of £ (see Eq. (2.72)), the
characteristic function is given by

Xe(n) = f dF(x)e™, 275)

A distribution function is uniquely determined by its characteristic function. If x is a point
of continuity of F(x), then

1
Fx)=— lim lim dn——— xe(n), (2.76)
27 n

y—>—00Cc—>00
—C
where the limit in y is evaluated with respect to any set of points y that are points of
continuity for the function F(x). The n-th derivative of the characteristic function, calcu-
lated at n = 0 gives — apart from a multiplicative factor — the n-th moment of the random
variable

x(0) = 1"E", @.77)
so that the first derivative is the expectation value of £ times the imaginary unity, the second
derivative gives the opposite of the second moment of &, and so on.

Let us now come back to our original problem of defining the expectation values of a
quantum observable. In order to calculate the mean value of an observable O, we write the

analogous of Eq. (2.70) making use of the quantum probability density g(o;, ). For the
discrete case, we expand the definition is several steps as

(0), = 20U wr0; = YlejPoj = 3 cejo;
j j J
=Y los 1) Wloj)o; =Y 0j{0; | Py o;)
j J

= {oj 1Y) (w10 o)
J

Py

=2 w1010} (o1 ¥)

(s ols)
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where 131/, = |¢) (¥ |, and we have made use of the eigenvalue equation 0 lox) = ox |ok)
(Eq. (2.2)) and of the property 3 ; loj) (oj] = I (Eq. (1.41a)). Since the eigenvalues of a
Hermitian operator are real, the expectation value of an observable in any state | ) must
also be real.

Example of mean value

Let us again consider the example of the polarization observable Op and its eigenbasis given
in Box 2.2 (p. 48). Then, the mean value of 0p on the state |b) = ¢, |v) + ¢, | h) is

<b‘0p’b>= ((v|cT,+ (h]cz)é(cvw) + | )

s o)wato [ & J[o(s ) a(7)]

(s 4)(5,)

=lcl? — Iyl (2.79)

It should be stressed that all the relevant physical quantities are related to expressions of
the type of Eq. (2.78), i.e. to the mean value of some operator. In fact, we have:'*

Theorem 2.3 (Observables’ equality) Two observables O and O' are equal if and
only if

A

(W10ly) = (W|0'ly), YIy). (2.80)

The proof is immediate. One can also see that any global phase factor ' which might per-
tain to a state vector | {) cancels out when calculating the mean value of an observable onto
| ). This means that the relevant physical quantities do not depend on the global phase
factor of the state vector, which is therefore irrelevant (see p. 26). On the contrary, relative
phase factors between different components of a superposition state are physical relevant
since they determine the interference behavior of the corresponding quantum system (see
Subsec. 1.2.3).

2.1.4 Diagonalization of operators

Finding the eigenvalues of a observable O on a finite Hilbert space is equivalent to diag-
onalizing the matrix corresponding to the operator O. In quantum mechanics it is often
useful to put an operator in a diagonal form since then its diagonal elements are its

14 See [Messiah 1958, 633-36].
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eigenvalues and therefore the possible outcomes of a measurement process. The procedure
with which one may diagonalize a matrix corresponds to the solution of the characteristic
polyn0m1a1 pertaining to the matrix. It is well known!? that, if the o ;s are the eigenvalues
of O corresponding to the eigenvectors | 0 j) s, the matrix whose columns are given by the
eigenvectors is a diagonalizing matrix for O. Then, in the non- degenerate case, the n x n
matrix U formed by the eigenvectors will be the diagonalizing matrix for O. This means
that, if 0]]‘. = (bk | o j) is the k-th component of the eigenvector ‘ 1) j> in a certain basis {| b ) }
such that

o)) =Zo’;|bk), (2.81)
k
the diagonalizing matrix U will be written as
0} 0% o)
2 2 2
N oy 05 -+ o0
og=| ' 72 "o, (2.82)
o}i, 0’2,’ e OZ

ie. Ujr = olj‘. . It is easy to see that the matrix U is unitary. In fact, since the |0 j> are
(orthonormal) eigenvectors, then

Z(() (o | 0}) = 84j. (2.83)

On the other hand,

WU =) U Nalnj = Y UnUnj = ) (0" =8y (284)
k n

n

where use has been made of Egs. (2.82)—(2.83) and which proves that Uis unitary.

2.1.5 Non-commutability

Let us now come back to our polarization example (see Sec. 1.3). We have supposed to
have a polarization filer P1 with direction a and have inserted another polarizing filter P2
with a polarization axis b which makes an angle 6 with the orientation a of P1. Suppose
now that directions a and b are orthogonal. We have already seen that in this case there
is no output light after P2. The question is: what happens if, between the two orthogonal
polarizing filters, we now insert a third filter P3 (see Fig. 2.3) with a polarization axis C
at an angle ¢ # 0, /2 relative to the first polarization axis? The final observed intensity
(after P2) is I, = I; cos> ¢>cosz(9 —9)=1 cos? ¢ sin? ¢, which, for ¢ # 0, /2, is not
zero. On the other hand, after the beam has passed the first filter, the component parallel
to b must be zero. This is difficult to understand intuitively, because it appears that the
addition of the intermediate filter P3 should not increase the output intensity. The only way

15 See [Byron/Fuller 1969-70, 123].
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a

P1 P2

(@)

P2

—
b |, co?psin?e

(b)

(a) An initial (unpolarized) light beam passes the filter P1 with polarization direction a (here
supposed to be vertical). After P1, the light is polarized (with a reduced intensity /;) along a.
Then, no photon can pass the filter P2 whose polarization direction b is orthogonal to a. (b) If we
insert a third polarization filter P3 between P1 and P2 with a polarization direction ¢ at an angle
¢ # 0, /2 relative to a, then the final output intensity will be I, = I; cos? ¢ sin? ¢.

to overcome this difficulty is to admit that after P3 the state of the photon is described by a
superposition (see Subsec. 1.2.3) of the two states corresponding to a polarization parallel
to a and parallel to b, respectively.

If we invert the order of P2 and P3 the output intensity must be clearly zero since, as we
know, in this case it must already be zero after P2. Here we see that the order of such filters
is crucial for determining what the output is. We know from the previous chapter that the
action of a filter can be interpreted as an operation on the state of the photon during its
travel along the apparatus. Generalizing this simple result, we may state that in quantum
mechanics different operations may not commute — i.e. the order of the operations deter-
mines the possible outcome. In other words, the fundamental difference between classical
and quantum-mechanical physical quantities (see also Subsec. 2.1.1) is that the former
are mathematically represented by classical numbers (c-numbers), and therefore commute,
whereas the latter are represented by quantum numbers (q-numbers), i.e. operators, and do
not necessarily commute.
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If we indicate with P, the projection performed by the filter P2, and with P3 the
operation performed by the filter P3, then we can formulate the above statement as

PPy — P3Py = [f’2, 133] # 0, (2.85)
where the expression
[é, 0”] —00 -0'0 (2.86)

is called the commutator of the operators é, O’. In the rest of the book we shall omit the
minus sign in [+, -]_ for the sake of simplifying notation. Let us briefly prove Eq. (2.85).

Proof

Suppose that filter P1 selects states of vertical polarization and P2 states of horizontal
polarization described by the vectors (2.11). The prOJectors associated to P1 and P2 can be
described as Pl = P and P2 = Ph where P and Ph are given by Eqgs. (2.13a). It is then
evident that the successive operations performed by P1 and P2 give a zero output

. 1 0770 0O 0 0
PIPZ_[O 0][0 1}_[0 0]
. 0 071 0 0 0

PzPl_[O 1][0 0} [0 o] 0, (2.87b)

from which it follows that f’l and ﬁz trivially commute, i.e. [f’l, 132] = 0. On the other
hand, the state selected by P3 can be described by the superposition

0; (2.87a)

|c) =cos¢|v) +sing|h). (2.88)
Then, P; = | ¢) (c]|is

(cos 6 v) v|+cos¢sin¢|v)(h|+sin¢cos¢|h><u|+sin2¢|h><h|)
|: cos2¢  cos¢sing ]

sin ¢ cos ¢ sin? ¢

(2.89)

Therefore, we can now prove the result (2.85) as follows:

[ﬁ ﬁ]__O 0 c0s2¢ sin ¢ cos ¢ _ c0s2¢ sin ¢ cos ¢ 0 0
253 L 0 1 sin ¢ cos ¢ sin2¢ sin ¢ cos ¢ sin2q> 0 1

__ 0 0 _ 0 singcos¢g
N L sin ¢ cos ¢ sin2¢ 0 sin2¢>

i 0 sin ¢ cos ¢ :|7g()

. (2.90)
| —sin ¢ cos ¢ 0

Q.E.D
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Commutation and product of Hermitian operators

Note that, although projectors are Hermitian operators, their product is not necessarily a
Hermitian operator [Halmos 1951, 41-42]. The necessary and sufficient condition for this is
precisely that the two projectors (or, in more general terms, the two Hermitian operators)
commute. In fact, if

6, =0 and 06, =0}, (2.91)
we have

(0102)" = 0305 = 0,04, (2.92)
but this does not necessarily imply that we also have

62(51 = 61 02. (2.93)

It should be noted that non-commuting operations are not specific to quantum mechanics.
In fact, it is well known that rotations in the three-dimensional space in general do not
commute. For instance, a /2 rotation about the z-axis followed by a /2 rotation about
the y-axis is not equivalent to a /2 rotation about the y-axis followed by a 7 /2 rotation
about the z-axis (see Fig. 2.4).

What we have seen teaches us that the operators representing quantum-mechanical
observables in general do not commute. The concept of non-commutability was first intro-
duced in quantum theory by Heisenberg and formally refined by Born and Jordan and
Heisenberg himself, and it is often taken to represent the very birth of quantum mechan-
ics.!® Later (see Subsec. 2.2.7), we shall discuss the commutation relations between
concrete quantum mechanical observables. Here we only want to establish some gen-
eral properties of commutators. The most fundamental among these properties are the
following!” (notice the analogy with the properties of Poisson brackets (1.10); see also
Sec. 3.7):

e Commutators are antisymmetric, i.e.
[0.0]=-]0".0] (2.94)
e Commutators are bilinear, that is, given two (complex) scalars « and 8, we have
[aé + 80, 0”/] =« [é, é”] +B [é/, 0”’]. (2.95)

o Commutators (as well as classical Poisson brackets) satisfy the Jacobi identity, i.e. (see
Prob. 2.11)

[é, [0”, 0”]] + [é’, [é”, é]] + [é”, [é, 0”]] —o. (2.96)

16 gee [Heisenberg 1925] [Born/Jordan 1925] [Born ef al. 1926]. For a history of Heisenberg’s contribution
see [Mehra/Rechenberg 1982-2001, 11, 261-312]. For a historical reconstruction of the matrix — mechanics
formulation see the third volume of [Mehra/Rechenberg 1982-2001].

17 See [Weyl 1936, 260].
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Two sequences of two rotations of a book (A is on the first cover while € is on the last cover) are
shown. In the first sequence, i.e. (a)-(b)-(c), a rotation about the z-axis has been first applied,
followed by a rotation about the y-axis. In the second sequence, i.e. (a)-(b")-(c’), the rotation
about the y-axis follows the rotation about the z-axis. All rotations are of 90° and anticlockwise.
Since the two final configurations (c) and (c’) are different, rotations in the three-dimensional
space in general do not commute.

In addition, it is possible to verify that commutators also satisfy the following properties:

e Any operator O commutes with itself, that is
[0.0]=0. 2.97)

e Any operator O commutes with any other operator that is only a function of O (see
Prob. 2.12)

[é,f (0)] —0. (2.98)
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o Given three operators 0. O’ and 0", we have (see Prob. 2.13)
[é 0, 0”’] - [é, é”] O +0 [0”, é”] : (2.99)

We finally note that, given three observables 0. O’ and 0", for which [0, 0’ ] =0 and

[0, é’/] = 0, it is not necessarily true that [é’, é/’] = 0 (see Prob. 2.14).

We have seen (Th. 2.2: p. 47) that the eigenvectors of a Hermitian operator constitute
a basis on the underlying Hilbert space. What is then the relationship between this funda-
mental property and commutability? This question is answered by the following important
theorem:

Theorem 2.4 (Commuting observables) Two observables O and O' commute if and
only if they admit a common basis of eigenvectors.

Proof

First we prove that, if the observables O and O’ admit a common basis of eigenvectors,
then they commute. The hypothesis can be stated as follows:

Olb) =ox|bx), O'1by) = o} |b), (2.100)
where {| by) } is the common basis. Then, we have

00 |by) = 00 |bx) = 0,0 |br) = oo | bi); (2.101a)
0’0 |by) = O'ox |br) = 0x O |b) =ox0} | by). (2.101b)

Since 0,’{ and o are c-numbers, and Eqs. (2.101) hold for any k, it is evident that O and O’
commute.

Now we prove that, if the observables O and O’ commute, then they admit a common
basis of eigenvectors. In fact, if {|ax) } is a certain basis on the Hilbert space, we have

(00, = (aj] 00" la) = (aj| Olan) (an| O lax) =) 01 0};.  (2.102)
n

n

Assuming now that {| ax) } is a basis of eigenkets of 0, or O |ar) = or | ar), we can rewrite
Eq. (2.102) as follows:

(00);, =Z(aj|é|an> (an| O' | ar) =Zon3jn0,;k =0,;0'. (2.103a)
n

n

Inverting the order of the operators, we have instead
(0'0);, =2 laj| 0'lan) (an| Olax) =) 0%, 0k8uk = 0Oy (2.103b)
n n
Now, since [(5, (5’] = 0, then we must have (0; — ok)O;. « = 0. This condition is trivially
satisfied for j = k. If, for j # k, we had 0; # oy (the non-degenerate case), we would have
already proved the result. In fact, in such a case we would have 0} ¢ =0 for j £k, i.e.
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0} = 0} j 8 jk. Then, the operator O’ would be diagonal in the basis of the eigenvectors of

0.In general, however, there can be several eigenvectors for the same eigenvalue (degen-
eracy of the eigenvalues) (see Th. 2.2, p. 47, and comments). In this case we could have
0j = o evenif j # k. In this circumstance, if we take a certain degenerate eigenvalue, we
may consider the subspace spanned by the eigenvectors which pertain to that eigenvalue. In
this subspace O’ can be diagonalized because it is Hermitian and also O = oxI (where I is
the identity in this subspace). Then, even in this case O and O’ can be jointly diagonalized
and therefore share a common basis of eigenvectors.

Q.E.D

As a consequence of Th. 2.4, the following corollary can be proved:

Corollary 2.1 (Simultaneous measurability) The necessary and sufficient condition for
two observables O and O’ to be simultaneously measurable with arbitrary precision is
that they commute.

Proof

In fact, if O and O’ commute, then we have a common eigenbasis {| o) } such that

O |ox) = ok | ox), (2.104a)
0’ |ox) =0}, | ox). (2.104b)

This means that there is a common basis in which both observables are perfectly deter-
mined. In other words, for each state |o;) of the basis, the observable é if measured,
gives with certainty the eigenvalue o as outcome and the observable 0, if measured,
gives with certainty the eigenvalue o) as outcome.

Q.E.D

As an immediate consequence of Cor. 2.1 we may state that non-commuting observ-
ables cannot be simultaneously measurable with arbitrary precision. In general, therefore,
given the set of observables of a physical system &, it will be possible to divide them
into separate subsets of reciprocally commuting observables. These are called complete
sets and represent the maximum number of properties of S that can be jointly known (see
also Subsec. 2.2.7). We see here that, while in classical mechanics it is possible to know
jointly all the properties of a system, in quantum mechanics by a complete description
we mean the knowledge of all the observables in certain complete (but not necessarily
disjoint) sets.

As we shall see in the following, the non-commutability between quantum mechanical
observables has extraordinary implications in the very foundations of the theory and in the
corresponding interpretation of its physical reality (see e.g. Subsec. 2.3.3).
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2.2 Wave function and basic observables
|

In this section we shall apply (and develop) the formalism of the previous section to
concrete quantum observables. After having introduced the the concept of wave function
(Subsec. 2.2.1), we will discuss the difficult problem of normalization (Subsec. 2.2.2). In
Subsec. 2.2.3 we introduce the position operator whereas in Subsec. 2.2.4 we introduce
the momentum observable. In Subsec. 2.2.5 we analyze the relationship between position
and momentum representations. In Subsec. 2.2.6 the energy observable is shortly intro-
duced — further developments can be found in Ch. 3. Finally, in Subsec. 2.2.7, the basic
commutation relation between position and momentum is deduced.

2.2.1 Wave function

So far we have discussed examples of quantum systems in terms of photons and their
polarization. However, quantum mechanics has to apply to a generic microscopic system
as well. In particular, it should enable us to deal with a particle (or an ensemble of par-
ticles) moving in a configuration space. In order to investigate the quantum mechanical
behavior of such a system we need to introduce the position observable f = (%, 3, ). For
the sake of simplicity let us first treat the one-dimensional case. Let us denote the eigenvec-
tors of the position operator x by | x). Since X is a continuous operator, we have to use the
generalization given at the end of Subsec. 2.1.1. Given a generic state vector | ), we may
try to expand this vector in terms of the position eigenvectors, and make use of the identity
(see Eq. (2.22a))

/dx Ix) (x| =1 (2.105)
in order to obtain (see Eq. (2.21))
) =[x )
= /dxlﬂ(x) | x), (2.106)

so that we may interpret the scalar product (see also Eq. (2.16))
() =9y (2.107)

as the continuous probability amplitude of finding the particle in the interval (x,x + dx),
will be the probability of finding the particle between x and x + dx, and p(x) = | (x)[?
will be the corresponding probability density (see Pr. 2.2: p. 57, and also Sec. 1.4). We
then expect that the probability of finding the particle anywhere in the whole configuration
space be equal to one; that is (see Eq. (2.67))
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“+o00 “+0o0

/ dx|y(x0)* = f dxy* ()P (x) = 1. (2.108)
—0o0 —0oQ
This is also called the normalization condition and the function v (x) is called the wave
function of the particle.

Notice that, since a normalized state vector is defined up to a phase factor (see p. 60),
for the wave function a global phase factor is irrelevant.

From what we have seen above, it turns out that there is an obvious relation between
the bracket Dirac notation and integrals of products of wave functions in the configura-
tion space: they both represent scalar products. Since the integral (2.108) may be written
as fdxtﬂ*(x)l//(x), it can be also expanded as the scalar product (¥ (x), ¥ (x)). More

specifically, let us consider two state vectors |v) and ‘¢,>. These may be also repre-

sented by the corresponding wave functions (x) = (x| ¥) and I/f/(x) = <x | w/>. It is
then straightforward to write

+00
(r19)= [axwinfiv)
—00
+00
- / dxy*(oOv (x). (2.109)
—0o0
It may happen that a wave function is not normalized, so that we have
+00
/ dx|y(x)> =N, (2.110)
—0Q0

where N is finite and different from 1. Then, in order to normalize the wave function ¥ (x)
it is sufficient to consider a wave function Yyorm(x) such that

VYnorm(x) = JLNW(X) (2.111)

Note that the eigenfuctions of the continuous spectrum are not normalizable. In the next
subsection we shall investigate this problem.

2.2.2 Normalization

Let us consider a one-dimensional observable § with a continuous spectrum. The state
vector of the particle can be expanded as (see Egs. (1.35) and (2.21))

) = / dEc(E) |5), 2.112)

where the vectors |£) are the eigenkets of the observable é and |c(§ )|2 d& represent the
probability that the value of é can be found in the interval (&, & + d&). We can then write
the following identity:
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/ dt c(®)P = / dx |y (P2 2.113)

Substituting ¥*(x) = (¥ | x) as expanded in Eq. (2.112) into the rhs of Eq. (2.113), we
obtain

/ dECH(E)c(E) = / dEcH () [ f dxw(x)gog‘m}, (2.114)

where ¢z (x) = (x | &), which yields

c&)=(E1y)= /dxw(X)wg‘(X)- (2.115)

Back-substituting 1 (x) = (x | ¥) as expanded in Eq. (2.112) into Eq. (2.115), we obtain

c(§) = /dé;"c (S) [/ dxgag/(x)wg‘(x)}, (2.116)

from which we must conclude that (see Egs. (2.23))

fdws/(X)wg(X) =86 —£). (2.117)

In other words, the eigenfunctions of an observable with a continuous spectrum are not
normalizable.
Summing up, concerning normalization we have three possible cases:

e The wave function is normalized:
/dx [y (x0))? = 1. (2.118)
e The wave function is not normalized but is normalizable:
/dx lWx)P=N#1, |N|<oo. (2.119)
e The wave function is not normalizable:

/dx [ (x))? = oo. (2.120)

In the latter case, |1/ (x)|? dx cannot represent the probability of finding the particle in the
interval (x, x + dx). However, the ratio

PG _ e[
PO ()

still determines the relative probabilities pertaining to two different values x” and x” of the
position.

2.121)

2.2.3 Position operator

The wave function v(x), viewed as a function of the position X, is a particular representa-
tion of the state vector | ) . In this representation the operator X takes a very simple form.
The eigenvectors | x)’s of X represent state vectors for which the position has a determined
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Table 2.1 Different cases and ways of expressing the basic quantum formalism

Discrete case Continuous case
Dirac algebra Wave-function Dirac algebra Wave-function
) =X cilej)) v =X;cjpj®)  |¥) = Yix) =
Jag1g) &1 y) S dgc®)ee(x)
cj=lej1¥) cj = [dxgt W) c®) =& Y) o(€) =
; ; ) [ dxgf v ()
0=Zj0ij &= [dEP()

value, i.e. the eigenvalue x associated to | x). In other words, the eigenvalue equation (see
also Eq. (2.2)) of the observable X may be written as

X|x) =x|x). (2.122)
Writing the Hermitian conjugate of Eq. (2.122)
(x| x = (xlx, (2.123)

where the eigenvalues x are obviously real (see Th. 2.1), and taking the scalar product with
a generic state vector | ), we obtain

TP (x) = x(x), (2.124)

which means that the one-dimensional position operator X in the position representation
acts both on its eigenvector | x) and on the wave function ¥ (x) simply as a multiplication
by the scalar x. This may be seen equally well by using the concept of mean value (see
Eq. (2.78)). Let us write

+00
(%), = (v [2|v) = / dx (¥ | x) {x 2] v), (2.125)

since integration over the set of projectors | x) (x | yields the identity (see Eq. (2.22a)). On
the other hand, given the meaning of [ (x)|?, we may also write (see Eq. (2.78))

+00 +00 +00
(xX)y = / dxx|y ()] = / dxyr* ()Y (o)x = / dx (Y| x) (x| ¥)x.  (2.126)
Comparing the rhs of Egs. (2.125) and (2.126), we find
(v |3 ¥)=x (w1, (2.127)

which is equivalent to Eq. (2.124).

Finally, it is convenient to determine the eigenfunction ¢, (x) = {(x | xo), where the posi-
tion operator takes on the determined value xg. To this end, we first note that, for any x, we
have (see Egs. (2.122) and (2.124))

Xxy(X) = Xy (X) = Xy (X). (2.128)
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The second equality of Eq. (2.128) is automatically satisfied for x = xg. For x # xq the
equality is satisfied only if ¢y, (x) = 0. Therefore, it follows that

Pxo(x) = 8(x — x0). (2.129)

2.2.4 Momentum operator

The aim of the present and of the next two subsections is to introduce in quantum mechan-
ics two additional physical quantities: momentum and energy. In order to accomplish
this task, we need a link with classical mechanics where energy and momentum were
first defined in a natural way. This link is provided by the correspondence principle, first
formulated in [Bohr 1920], which may be stated as follows: 18

Principle 2.3 (orrespondence principle) The quantum-mechanical physical quantities
should tend to the classical-mechanical counterparts in the macroscopic limit.

With macroscopic limit we mean a physical scale where the action (1.14) is much larger
than Planck’s constant. In this situation & (see Subsec. 1.2.1 and Sec. 1.5), is negligible and
quantum effects (such as superposition, interference, etc.) are very small. For this reason,
sometimes — though in a improper way — the classical limit is referred to as the physical
situation in which 4~ — 0. This limit should not frighten the reader. Although 4 is a constant
and as such cannot change, the limit should be understood as expressing the relative weight
of this quantity with respect to the system’s action.

In classical mechanics, momentum is defined as the quantity which is conserved under
global spatial translations or, alternatively, as the generator of spatial translations. Let
us then consider a system of N one-dimensional particles described by the wave func-
tion ¥ (xq,x2,...,xy). A rigid translation by a quantity a of this system will change
Y(x1,x2,...,Xxy) into

Y(x+a,x2+a,...,xy+a)=vY(x,x2,...,XN)

N N a2 52 Nor/oa
j=0 =0 J j=0
N N 2 N n
1 9 1 9
= 1 _— — —_— J— _
+Z“a,+22(“axj) +Zn' (“ax,) +
Jj=0 j= j=0
X Y (x1,X2, ..., XN)
= Ua¥(x1,%2, ..., XN). (2.130)

18 For a historical reconstruction see [Mehra/Rechenberg 1982-2001, 1, 246-57].
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The unitary operator U, [see Eq. (2.34], translating the wave function of the system of an
amount a, can be generalized to U, for any displacement x, which is called translation
operator, and can then be written as

A

U, = ¢'90r, (2.131)

As a consequence, the generator Gr of the spatial displacements can be identified as

Gr=—1Yy —, (2.132)

and thus — ) ;0/0x; must represent, up to a constant factor, the total quantum-
mechanical momentum operator of the N-particle system (see also Subsec. 3.5.4). For
a single particle in one dimension we have

. 0
Px=—1— (2.133)

ax
up to a constant factor. For dimensional reasons, and following the correspondence princi-
ple, we take this constant to be i = h/2m. In the three-dimensional case, the momentum

operator is then given by
p=—1haV. (2.134)

Once we have determined the form of the momentum operator, it is necessary to find its
eigenfunctions. In other words, we have to solve the eigenvalue equation

ﬁx‘Pp(x) = px@p(x) (2.135)
for the unknown functions ¢,(x) = (x| py) in the position representation, where the
| px)’s are the one-dimensional eigenkets of the momentum. This amounts to solving the
differential equation

d 1

a_xﬁop(x) = pr‘Pp(x)v (2.136)
which has been obtained upon substitution of

9
by=—ih o (2.137)
X

into Eq. (2.135). The solutions of Eq. (2.136) can be immediately written as
@p(x) = CefiPs™, (2.138)

where C is some integration constant.
It is convenient to express the momentum p, in terms of the wave or propagation vector

_271

ky i (2.139)
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The link between these two quantities comes from the de Broglie relationship (1.78), from
which it can easily be derived that

Px = 5= fiky. (2.140)

In terms of the wave vector the momentum eigenfunctions (2.138) may be written as
or(x) = Ce'ker, (2.141)

These eigenfunctions are often called plane waves.
It can easily be seen that these functions, being the eigenfunctions of an observable with
a continuous spectrum, are not normalizable (see Subsec. 2.2.2). In fact,

too 0 for k, #0
2_ | 2.142
/ dxkpk(-x” - / |C|2d.x = 00 fOI‘ kx — 0 . ( M )
—0o0
—0Q

As we have seen, the only function which satisfies the normalization requirements of
Eq. (2.142) is the Dirac delta function. The orthonormality condition for the momentum
eigenfunctions will then be given by

+o0 +00
/ dxgf (g (x) = |C? f dxe' k¥ = o O Sk, — ky), (2.143)
—o0 —0oQ
where we have made use of the formula!®
400
L dxe'* = §(). (2.144)
2w
—00
Therefore the constant C of Eq. (2.138) or Eq. (2.141) may be taken as equal to (Zn)_%
and the momentum eigenfunctions can be finally written as

1
ore(x) = \/z_e’kxx (2.145)
14
or
I
Ppx) = \/_eh””. (2.146)
2
In the three-dimensional case it is straightforward to generalize the result (2.145) into
1 :
k() = me’kr, (2.147)
T

where K = (kx, ky, k;), and which, in contrast to Eq. (2.141), are called spherical waves.

19 See [Byron/Fuller 1969-70, 246-53].
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2.2.5 Momentum representation

So far we have worked in the position representation. As we have said, this means that the
wave function v is considered as a function of the position x (or r in the three-dimensional
case). As we have seen in the previous subsection, in this representation the momentum acts
on ¥ (x) as a differential operator, whereas the position observable is simply a multiplica-
tion operator. However, we may as well consider a different representation according to
which the state vector | ) is projected onto the eigenbra (p, | of the momentum operator,
i.e. 1/~/( Px) = (px | ¥) can be viewed as the wave function in the momentum representation.
We have used the superscript tilde in order to emphasize that the functional dependence of
¥ on p, is in general obviously different from the functional dependence of ¥ on x.20 In
the momentum representation it is obviously the momentum that acts as a multiplication
operator, that is

PV (px) = pxV(px). (2.148)

What is the connection between the momentum and the position representations of the
wave function? In order to answer this question, we note that any wave function ¥ (x) =
(x | ¥) may be rewritten as

Yo = / dpx (x| p2) (px | V), (2.149)

where we have taken advantage of the fact that integration over the set of projectors
| px) (px| gives the identity operator (see Eq. (2.22a)). Now we recall that (x| p,) =
@p(x) is the momentum eigenfunction in the position representation and (py | V) =
lﬁ(px), so that, making use of Eq. (2.146), Eq. (2.149) becomes

Y(x) = /dpxﬁap(x)lp(]’x) = dpxeép'rx&(l?x)- (2.150a)

v : /
2

Equation (2.150a) shows that the inverse Fourier transform?! of the wave function in the
momentum representation gives the wave function in the position representation. There-

fore, by inverting Eq. (2.150a), one obtains that the wave function in the momentum
representation

V(py) = dxe” FP 4 (x) (2.150b)

7|

20 1t is a historical contingency depending on the development of quantum mechanics that, when the first wave
function was introduced, it was written ¥(x). If it had been written ¥y (x), one would have written ¥ (px)
for indicating the wave function of the momentum in the momentum representation. Since it did not happen,
we are obliged to choose forms like ¥ (py) in order to indicate both the different dependence and the different
representation.

21 See [Byron/Fuller 1969-70, 246-53].
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is simply given by the Fourier transform of the corresponding wave function in the posi-
tion representation. Using Dirac formalism (as in Eq. (2.149)), Eq. (2.150b) may be also
written as

F(p) = (px | ) = /dx (el ) (x| ) = /dx (s | 5) W (0). 2.151)

Then, changing the representation corresponds to projecting the state vector |) onto dif-
ferent basis eigenvectors: position eigenvectors in the case of position representation and
momentum eigenvectors for momentum representation.

It can be shown (see Prob. 2.17) that, if ¥/(x) is normalized, i.e.

+o0 +o0
if /dx|1p(x)|2= 1, then also /dpx|@(px)|2= 1. (2.152)
—00 —00

This is called the Bessel-Parseval relationship.

We have seen that the momentum acts as a differential operator in the position rep-
resentation. Conversely, one may ask what is the form of the position observable in the
momentum representation. It can be proved that (see Prob. 2.18)

0

5 Y (p). (2.153)
Px

2V (py) =1h

We should emphasize that writing a wave function in different representations is a special
instance of the change of basis (see Subsec. 2.1.2), and in particular it corresponds to a
change from the |x) to the | p,) basis and vice versa. In Subsec. 2.1.2 we have mainly
considered the problem of a change of basis in the discrete case. Let us now address this
problem under general terms in the continuous case. Any state vector | {) can be expanded
in an arbitrary orthonormal basis {|£)} — given by the eigenvectors of a continuous one-
dimensional observable é —as (see Eq. (2.112))

1Y) =/d$|$) &1y =/délﬁs(5)|$). (2.154a)

Similarly, the state vector | ) can be expanded in a different basis {| )} — given by the
eigenvectors of another one-dimensional observable 7, not necessarily conjugate to & — as
(see also Eq. (2.46))

) = / dnln) (n] y) = / dny () | ), (2.154b)

where the functions /(1) and /¢ (§) take the role of continuous coefficients in two different
expansions of | ) (see Subsec. 2.2.2).
The relation between () and ¢ (§) is easily derived as

lﬂs(E):(El1//)=/dn<§|n><nllﬁ)

= /dnson(é)w(n)
= U, &)¥ (1), (2.155)



77

2.2 Wave function and basic observables

where ¢,(§) = (§ | ) are the eigenfunctions of the observable 7 in the &-representation.
In the following we show that the transformation

() — YeE) = UM, E)Y () (2.156)

conserves the scalar product and is therefore unitary (see p. 54 and also Ch. 8).2% In fact,
let us take two generic wave functions () and ¥'(n) in the n—representation, with the
scalar product

(v.v') = / dnyr*(my’ (). (2.157)

The application of the U-transformation on /(1)) and v’ (1) gives straightforwardly
U, &)y (n) = / A€y (), (2.158a)
U, 69 ()= / dny &Y' (), (2.158b)

whose scalar product yields

(0.0v') = [ az | [ anszowen] | [ aneseran]
= [amtwawan [ aseernse. (2.159)

Now, we know that ¢,/ (§) = <E | 1’ > and ¢,(§) = (§ | ), and therefore

/déwi;(é)w(é)=/d§ &)
=(nln') =80 —n). (2.160)
Substituting this result into Eq. (2.159), we obtain
(00.09") = [ amtv v 'airsm )
= /dW*(n)W’(n)
= (v, ). (2.161)

It is worth noticing that in the special case of position X and momentum p, — i.e. in gen-
eral, of conjugate observables — the unitary transformation U is represented by the Fourier
transform Up, so that we have

V(py) =Upy(x), ¥&x) = ULd(po), (2.162)

where

~ 1 . ~ 1 :
0r ) = <= / dre HP f) . Ofs(po = = / dpxet P g(py). (2.163)

22 See also [Fano 1971, 75].
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The main difference with respect to the discrete case treated in Subsec. 2.1.2 is that here,
in the continuous and therefore infinite-dimensional case, we cannot express this unitary
operation by means of a matrix.

2.2.6 Energy

As we have already seen in Sec. 1.1, a classical system is well defined by its energy, in the
sense that the knowledge of the Hamiltonian function H allows us to derive the equations
of motion. The Hamiltonian is given by the sum of the kinetic energy 7" and the potential
energy V. In quantum mechanics this should hold true as well (see Pr. 2.3: p. 72). How-
ever, following Th. 2.1 (p. 46) we know that the energy must also be represented by a
Hermitian operator. Classical mechanics helps us in determining such an operator. In fact
in order to “quantize” the Hamiltonian it is sufficient first to replace in the classical for-
mula H = T + V the corresponding expressions in terms of momentum and position and
finally to consider these physical quantities as operators. Thus, one immediately obtains an
expression of the Hermitian operator H, called the Hamiltonian operator in terms of the
operators X and p, which we have discussed in the previous subsections.
For instance, in the case of a one-dimensional particle subject to the potential energy
V(x) one has
C Ao P
H=T+V=="24+V(®), (2.164)
2m
where m is the mass of the particle. As we know from Subsecs. 2.2.1-2.2.4, in the position
representation — in which we shall usually work if not otherwise stated — the position oper-
ator acts as a simple multiplication, whereas the momentum acts as a differential operator.

In such a representation, therefore, we shall write

H= ——87 + V(x). (2.165)

We have already seen that, as particular instances of the general formula (2.2), there are a
position eigenvalue equation (2.122) and a momentum eigenvalue equation (2.135). Also
for the energy it is possible to write an eigenvalue equation

AE|y,) = E|y,), (2.166)

where | 1//E) are the eigenkets of the energy and the E’s the corresponding eigenvalues.
For reasons which shall become clear in Ch. 3, the states | ¢E> in Eq. (2.166) are called
stationary states. In the same chapter we shall see that the energy plays a fundamental role
in the dynamics of a quantum system.

It is clear from Egs. (2.165) and (2.166) that the eigenfunctions and eigenvalues of the
energy will depend on the potential V and therefore on the particular kind of system we
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are facing. In the simplest case of a unidimensional free particle, the eigenvalue equation
of the energy in the position representation becomes
. 2 82
Hy,(x) = —%@WE(X) = Epv,(x), (2.167)

where E, is the eigenvalue of the energy corresponding to the momentum p. Eq. (2.167)
may be rewritten as
2m

h

where wg (x) is the second derivative of ¥, (x) with respect to x. Its general solution is
given by

/" Ep
V() = ———v,(x), (2.168)

Yp(x) = Cre™ + Cre™0, (2.169)

where C1 and C; are integration constants and k = ,/2mE, /h. Therefore, in the case of
a free particle, the energy eigenfunctions have a form similar to that of the momentum
eigenfunctions (2.141).23 This fact is not surprising. Indeed, in this case, we have H=
ﬁ% /2m and, as a consequence, py commutes with bék (see Eq. (2.98)), or [ﬁ , Px] = 0. One
can easily deduce from the classical expression of the energy of a free particle,

_n

Ep=2~. (2.170)

that k = \/1? /h. The only difference between momentum and energy eigenfunctions, in
the case of a one-dimensional free particle, is that we may distinguish the case of a particle
moving from the left to the right (¢'** with momentum p, = fk) from the case of a particle
moving from the right to the left (¢~*** with momentum —p, = —/k). In both cases,
however, the particle has the same energy £ = pf /2m.

2.2.7 Commutation relations for position
and momentum

So far we have seen that in general quantum mechanical observables may not commute.
It is interesting to consider the case of momentum and position operators which we have
discussed in the previous subsections. Our aim then is to compute the commutator

[32’ ﬁx] = fﬁx - laxfe (2.171)
To this end we apply such a commutator to an arbitrary wave function y(x):
A A el ad
X, pxl¥(x) = x | —th— ) ¥ (x) +1h— [xy(x)]
ox ox

= —1hxy' (x) + thyr(x) + thxy' (x)
= 1Ay (x), (2.172)

23 Being the energy of a free particle a continuous observable, its eigenfunctions are not normalizable (see
Subsec. 2.2.2).
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where use has been made of Egs. (2.124) and (2.133). Since the wave function r(x) in
Eq. (2.172) must hold for arbitrary wavefunctions ¥ (x), we may write

[%, pu] = 1h. (2.173a)

Similar expressions can be derived (see Prob. 2.21) in the same way for the other
components of momentum and position

[5. py] = [2& p.] =nl. (2.173b)

On the other hand, we have

) (2.173¢)

as one can immediately verify by applying a similar procedure as in Eq. (2.172) to the
corresponding commutators.
Equations (2.173) can be unified through the relation

(7}, Px] = 1hd i, (2.174)

where j,k = (x,y,z) and 7, = X,7y = J,v, = Z.

It is then clear that X and p, (as well as y and p, or Z and p;) cannot have a common
basis of eigenvectors (see Th. 2.4). As a consequence they are not simultaneously measur-
able with arbitrary precision (see Cor. 2.1). In this case we shall say that X and p, (as well
as y and py or Z and p.) are incompatible observables. This feature characterizes the state
in quantum mechanics and distinguishes it radically from the classical state. On the other
hand, a component of the position along a certain axis can be determined with arbitrary
precision simultaneously with the component of the momentum along any of the two other
axes.

We can now go back to the definition of complete sets (see p. 67). For a one-dimensional
particle (a single degree of freedom), for instance, we only have two independent
observables, the position X and the momentum p,, since any

Wave packet

In the classical limit, matter waves (see Subsec. 1.5.5) become classical particles, that is we
suppose that the wave be confined in a sufficiently small region to be approximated as a
point-like entity.

In the one-dimensional case, the simplest type of wave is a plane and monochromatic
wave

Y (x t) = e'kx-oh) (2.175)
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In the classical approximation, we should relate k to p,. To this end, as we have said, we
should associate to the particle a wave confined in a small region. Although Eq. (2.175)
does not have this character, we may write a superposition of waves with neighboring wave
vectors, namely a wave packet, such that

W(x 1) = / dkA(k)et =t (2.176)

where A(k) is a function that has support in a small region of extension Ak around a given
value kg of k. For the sake of simplicity we take A(k) to be real. If the factor e!(kx—)
oscillates many times in this region, the integral will be negligible. On the contrary, values of
W(x, t) that are significantly different from zero are obtained when the phase kx — wt stays
approximately constant in that region, i.e. when

’%{(kx—wt)‘-Ak<1. (2.177)

This means that the wave packet W (x,t) is mainly confined in a spatial region of width (Ak)~!
around the center

Xg=t- ((11_2)‘ (2.178)
From Eq. (2.178) it is clear that the center of the wave packet moves with constant velocity
vg = Z—‘;, (2.179)
which is called group velocity. This has to be contrasted to the phase velocity
v = % (2.180)

which corresponds to the velocity of propagation of the plane wave (Eq. (2.175)). When
taking the classical limit, it is the group velocity and not the phase velocity that should be
considered as the the particle velocity

de p

other observable (e.g. the Hamiltonian H ) can be understood as a function of X and p,. It
is then evident that complete sets are given by {X} and {p,}. For the three-dimensional case
the problem is a little more complicate. We have here three components for the momentum
and three for the position. In order to build a complete set we have to write a triple of
observables with the prescription that any of its elements must commute with the other
two and there is no additional element that commutes with all elements of the triple. Any
element of the triple must be taken from one of the following pairs (each one composed
of mutually exclusive elements) {X, p.}, {J, py}, and {Z, p;}. We have then eight possible
complete sets

{)295}’2}’ {ivﬁy’ﬁz}’ {'xAsﬁy’z}’ {23)}}7132}’ (2 182)
{ﬁx’ﬁ)‘aﬁz}7 {ﬁx»),}:z}» {ﬁX’j}’ﬁZ}’ {13)6713_\)’2}'
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It is also evident that every quantum observable commutes with the identity operator I
(whose mention is therefore omitted in the above sets).

2.3 Uncertainty relation
|

In Subsec. 2.1.1 we have formulated a basic principle of quantum theory: the quantization
principle. Now, we derive the uncertainty relation between position and momentum, which
is a direct consequence of the operatorial character of the quantum observables. In fact,
we have already seen (in Subsec. 2.2.7) that two quantum-mechanical observables may
not commute and that in such case they are not simultaneously measurable with arbitrary
precision. As a consequence, the observables of the system can be divided into complete
subsets of commuting observables (see Subsec. 2.2.7). The uncertainty relation is then the
quantitative formulation of the impossibility of simultaneously measuring a pair of non-
commuting observables. In Subsec. 2.3.1 we derive the uncertainty relation for the pair
(X, px), while in Subsec. 2.3.2 we generalize the uncertainty relation to any pair of observ-
ables. In Subsec. 2.3.3 we analyze the consequences of the uncertainty relation on the
phase space representation for quantum mechanical systems. Finally, in Subsec. 2.3.4 we
briefly discuss the relationship between the uncertainty relation and the complementarity
and superposition principles.

2.3.1 Derivation of the uncertainty relation

The uncertainty relation, derived for the first time by Heisenberg,2* formally defines the
minimum value of the product of the uncertainties of two canonically conjugate variables
(see Sec. 1.1). In the following we shall derive the uncertainty relation in the case of
position and momentum for the one-dimensional case.>

Let us take a normalized wave function 1 (x) for which both the position and momentum

mean values (see Eq. (2.78)) are zero, i.e.

(), = (WI1xl¥) =0 and (B}, = (V| pxl¥) =0. (2.183)

The normalization condition excludes the case of eigenfunctions of position and momen-
tum (see Subsec. 2.2.2). However, this does not represent a loss of generality, as we shall
see below.

24 See [Heisenberg 1927]. For a history see [Mehra/Rechenberg 1982-2001, VI, 130-63].

25 On this point we follow the formulation of Landau [Landau/Lifshitz 1976b] who in turn follows the derivations
by Pauli [Pauli 1980, 21] and Weyl [Weyl 1950, 77, 393-94]. We proceed in this way for pedagogical reasons
even though — from a formal standpoint — we could have started from the commutation relations, derived the
result of the next subsection, and finally introduced the uncertainty relation between position and momentum
as a special application of this general result. For the same reasons in the present subsection we make use of
the wave-function formalism introduced previously.
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We define now the uncertainties
1

By = <<x N (£>w>2>; = [(‘” (= (v |£]v)’ w>]% : (2.184a)

Aypx = <(p - (ﬁx)w)2>i (W1t alw) 0] @asa)

as the standard deviations, i.e. the square roots of the variances (or dispersions) of the
position and momentum operators X, py, calculated on the state |v), which we assume
here to be finite.2 For any wave function ¥ (x), we must have

+00

[ ax

—00

> 0, (2.185)

axw(x>+—
dx

where a is an arbitrary real constant. The square modulus inside the integral in Eq. (2.185)
is explicitly equal to

P +ar (W0 )d‘”(x)> L WD ) 156)
dx dx
Now the integration of the first term in Eq. (2.186) gives
+00
2 / dxx? [y (x)]? = a® (Ayx)”. (2.187a)

Integrating by parts the second term in Eq. (2.186) yields

+o00 +00 2
/ <W( )dlﬁ () Ut )dW(X)) c—u / dxdhg(;)' .
_ _ N
2| 2
= axtweoP| " —a [ axiy)
+00 )
—a f dx|1,b(x)|2 = —aq, (2.187b)
where we have made use of the fact that
xgrfooxw(x)ﬁ =0, (2.187¢)

due to the normalization of y(x).?’ Finally, integrating by parts the last term in Eq. (2.186),
we have

26 This definition is not completely free of problems [Hilgevoord/Uffink 1983, Hilgevoord/Uffink 1988].
However, for our needs, it works.

27 The condition fj;f dx Iw(x)l2 = 1 implies that, for sufficiently well-behaved functions, |1//(x)\2 tends to zero
for x — 00 more rapidly than 1/x, from which the consequence (2.187c) follows.
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T Ay dyte) e 2y (x)
x x x x
d = — [ dxvy*
/ o ax Ve | / W
—0o0 —0o0
+00
=h? / dxy ()i (x)
—00
2 2
=12 (Aype)’, (2.187d)
where we have taken advantage of the fact that
d
lim g0 o, (2.187¢)
x—+o00 dx
because <13x)1// =0, and
d _1, (2.187f)
dx nt '
Therefore, Eq. (2.185) may be rewritten as
a® (Ayx)’ —a+h72(Ayp:)’ = 0. (2.188)

In order to satisfy this condition, the discriminant of the quadratic expression in the lhs of
Eq. (2.188) should be negative, i.e.

1—4r72 (Ayx)’ (Ayps)’ <0, (2.189)

or
h
AxApy = 7., (2.190)

where we have dropped any reference to the state |i) because this relation holds for
any quantum state. Equation (2.190) represents the uncertainty relation for position and
momentum.?8 Needless to say, similar expressions hold for the y and z components. More-
over, as we shall see (in Secs. 3.8, 6.5, 13.3, and Subsec. 13.4.2), analogous uncertainty
relations can be written also for other pairs of conjugate observables. The value 7 /2 repre-
sents then the maximum attainable certainty, i.e. the minimum uncertainty product allowed
by the uncertainty relations, a value that can be attained under special physical circum-
stances, a fact that has a particular relevance in the case of the harmonic oscillator (see
Sec. 4.4 and Prob. 4.20). The relation (2.190) states that when one tries to reduce the
uncertainty of one of the two conjugate observables, then necessarily the uncertainty of the
other increases. The argument we have used to derive Eq. (2.190) started from the assump-
tion that v(x) is a normalized wave function. As we have said, this excludes explicitly

28 This relation is also called the “Heisenberg inequality.” From a historical point of view, this relation has been
considered as a founding principle of quantum mechanics, known as the “uncertainty principle.” In some
textbooks this principle is introduced as such, whereas we have chosen to derive the uncertainty relation from
basic principles.
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the eigenfunctions of momentum and position. However, it is possible to have an infinitely
precise determination of one of the two observables, say the momentum (Ay p, = 0). In
this case, the wave function of the system would be given by Eq. (2.146), i.e.

| R
Y(x) = @p(x) = mehpxx. (2.191)
The Fourier transform of Eq. (2.191) is
| +00
W =5 [ ebreion
—00
1 i
= e~ i Px=P0) (2.192)
V4
—0oQ

so that the probability distribution of momentum is (see Prob. 2.22)

2 2 /
= 87(px — Py)- (2.193)

©(px) = ‘Jf(px)

The square modulus of the wave function (2.191) is Itﬂ(x)l2 = (27)"L: the probability dis-
tribution of the position is uniform, which means that all position values are equiprobable,
ie. Ayx = oo (see Fig. 2.5).

Similarly, if one takes an eigenfunction of the position observable (with eigenvalue xg),
i.e. ¥(x) = 8(x — xq), one has (see Prob. 2.16)

L
— § PxXCo
e RPXTEU)

y 1
x) = Pxo(px) = 2.194
Y(px) = Pxo(Px) Ner ( )

and all values of momentum are equally probable (see Fig. 2.6).

0 (x) = lp(x)1? @(po) = 10(p)I?

o(py—py)

@m!

’
X Px X

(@) (b)

Probability distributions of (a) position and (b) momentum for a momentum eigenfunction.
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A . A
() = [P PP =P
O(x—xq)
@m!
Xo x Dy x
(a) (b)

Probability distributions of (a) position and (b) momentum for a position eigenfunction.

2.3.2 Generalized uncertainty relation

The result of Subsec. 2.3.1 is valid for any pair of canonically conjugate observables, and
can be generalized to two arbitrary observables (not necessarily conjugate) O and 0'® In
other words, as we shall see below, it is possible to write an uncertainty relation for any pair
of non-commuting observables. Given an arbitrary state vector | 1) on which, without loss
of generality,’ O and O have zero expectation values (i.e. (V| é| ) = (Y| é’| V) =
0), let us consider the vectors

lp) = Oly) and |¢') = O'1y). (2.195)

The Cauchy—Schwarz inequality®! ensures that
1 1
lfol ) < Uelenz((¢']¢))>. (2.196)
Substituting the definitions of | ¢) and | ¢’ > into Eq. (2.196), we obtain
A A 3 A 3
w1001 < (w10%w))" (w10%w), (2.197a)

since operators O and O’ are Hermitian. Interchanging the role of |¢) and |<p/ ) we also
have

1
2

w1001 = ((w10%w))" (w10%1w)". (2.197b)

29 The derivation of the following result is in [Robertson 1929]. Robertson follows Weyl’s derivation of uncer-
tainty relations [Weyl 1950, 77, 393-94] and therefore applies a general and abstract mathematical formalism.
Our own derivation, however, is based on state vectors rather than on wavefunctions and is slightly different.

30 If(é)‘/f = a # 0, then one may always redefine O as 0" = O — a, so that <0A”>w =0.
31 See [Byron/Fuller 1969-70, 148].
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It is well known that, for any complex numbers a and b and a real positive number c, we
have that |a| < ¢ and |b| < ¢ imply |a — b| < 2¢.32 Since the rhs of Eqgs. (2.197) is real
and positive (see comments following Eq. (2.78)), we also have

1 R 1
[ W100y) — w1001w <2(w10%w) (w10%w)" . @198)
From Eq. (2.198) it easily follows that

| (¥ [0,0’] 1Y) <2440 - A, 0, (2.199)

where by Ay O we mean, as usual, the standard deviation of the values of the observable
O in the state | v) . This finally gives

)’ . (2.200)

(8y0)- (840 = 3 [(v[[6.0]

This result is particularly interesting because it shows that the uncertainty relation is a
direct consequence of the non-commutability between quantum observables. Moreover, it
is a general result which deals with any pair of arbitrary observables (not necessarily con-
jugate). We know that conjugate observables do not commute. In this case an uncertainty
relation of the type of Eq. (2.190) can be derived from Eq. (2.200). On the other hand, for
commuting observables there is no limit (at least in principle) on the precision of simul-
taneous measurements. However, there are observables which do not commute but neither
are conjugate. In this case, Eq. (2.200) generates an uncertainty relation which is “less
strict” than that for conjugate observables since the quantity in the rhs of Eq. (2.200) is the
absolute value of the mean of the commutator of the two observables.>® This expectation
value can therefore assume different values depending on the “degree of commutativ-
ity.” Such a situation is related to the concept of smooth complementarity which we have
already introduced in Subsec. 1.2.4 and which we will discuss in greater detail in the next
subsections.

As an example of application of the central result of Eq. (2.200), we may derive the
already known result (2.190). In this case we have [X, py] = i1 and (V| [)E, ﬁx] |¥) =1k
for any state | ). Substituting this result in Eq. (2.200) immediately provides the desired
uncertainty relation (2.190).

2.3.3 Quantum state and quantum phase space

We have seen (in Sec. 1.3 and Subsec. 2.2.1) that the state vector |) (or the correspond-
ing wave function 1(x)) describes the state of a quantum-mechanical system. We want to

32 The triangular inequality ensures indeed that |a =+ b| < |a| + |b| < 2c.

33 It is worth emphasizing that, even for two non-commuting observables, the rhs of Eq. (2.200) may be zero
when the commutator between these two observables is not a number but an operator whose mean value on
the state under consideration is zero.
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stress here that the vector | 1) (as well as the wave function in any possible representation)
contains the whole information that we may in principle acquire about the system, i.e. it
represents a complete description of the state of the system. As we know, however, the
knowledge of | ) does not allow us to predict with certainty the result of the measure-
ment of any observable. The best we can do is to calculate the probability distribution
of the outcomes of a given measurement or experiment (see Pr. 2.2: p. 57). While classi-
cal mechanics is ruled by the principle of perfect determination and therefore a classical
state is characterized by the collection of all its physical properties (see Subsec. 1.1), the
quantum-mechanical state is intrinsically probabilistic (see Sec. 1.4) and affected by uncer-
tainty, i.e. not all observables can be completely determined at the same time. This finds
expression in the fact that quantum observables can be cast into separate complete sets
(see Subsec. 2.1.5 and 2.2.7). In other terms, there are probabilistic features in quantum
mechanics that are not expression of subjective ignorance, but rather of the intrinsic nature
of microscopic systems.

The concept of quantum state has profound implications in the phase-space representa-
tion of a system. A classical-state representation in phase space is necessarily pointlike. In
fact, due to the principle of perfect determination, momentum and position may both have
a perfectly determined value, and, as a consequence, the state of a classical system can be
represented by a point in the phase space. If one considers the time evolution of the system,
then this point will trace a well-defined trajectory in the phase space in the form of a curve
(see Fig. 2.7(a)).

On the contrary, due to the uncertainty relation (which is a consequence of the
non-commutability between observables that are at least conjugate), a phase-space repre-
sentation for a quantum system at a given instant cannot be pointlike: Such a representation
must reflect the fact that the uncertainties in position and momentum are both finite and that
their product cannot be smaller than 7 /2. Therefore, we may depict this circumstance by an

Px Dx

(x(®), p(D))

Ap,

(x(0), p,(0))

Y

by Ax X

(@ (b)

(a) Time evolution of a classical degree of freedom in phase space: at any time t, the state of
the system is described by a point. (b) Graphical representation of a state in the
quantum-mechanical phase space. According to the uncertainty relation, a single degree of
freedom should be represented by an elliptical spot whose minimal area = (Ax/2) - (Ap,/2) is
h/16.
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[’,\’k pX

(a) (b)

Inverse proportionality between momentum and position uncertainties. When the position is
accurately determined, the momentum becomes highly uncertain (a), and vice versa (b), since
the product AxAp, has to remain equal to or larger than h/2.

elliptical spot in the phase space whose horizontal and vertical dimensions are equal to the
position and momentum uncertainties, respectively, and whose minimal area is #/16 (see
Fig. 2.7(b)). Moreover, any improvement in the determination of momentum will be paid
in terms of a proportional increase in uncertainty for position and vice versa (see Fig. 2.8).

This has important methodological and philosophical consequences. In fact, since we
cannot have simultaneously perfect determination of two conjugate observables, if we wish
to know with great accuracy one of the two, then we are obliged to choose between posi-
tion and momentum. In any case, it is clear that quantum mechanics forces us to consider
knowledge as a matter of choice rather than of a mirror image of a datum.** This also has
a relevance for the measurement problem (see Ch. 9). In this sense the uncertainty relation
is not only the quantum-mechanical counterpart of the principle of perfect determination
but also of the principle of perfect knowledge (see Sec. 1.1).

Another consequence of this situation is that trajectories do not exist in quantum
mechanics (see also Subsec. 1.2.3). This is true both in the phase space (for what we have
said above) and in the configuration space. In fact, if one could define a trajectory, say, of a
one-dimensional particle, i.e. a curve x(¢), then it would also be possible to determine the
velocity and therefore the momentum of the particle, violating the uncertainty relations. At
first sight, this might apparently contradict what is observed in experiments with Wilson
chambers (and similar particle detectors) where particle’s tracks are recorded as a series of
bubbles.3> However, this is not the case, since what is observed in these devices is not a
true trajectory: the size of the bubbles and the momentum uncertainty taken simultaneously
do not violate the uncertainty relation (Eq. (2.190)).

2.3.4 Superposition, uncertainty, and complementarity

What is the relationship between the uncertainty relation and the basic principles of
quantum mechanics? As we have seen, the uncertainty relation is a consequence of the

34 On this point see [Weyl 1950, 76].
35 See [Segre 1964, Ch. 2].
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quantization principle (p. 44). Notice that the superposition principle is a positive state-
ment — it enriches the space of states of a physical system — whereas the uncertainty relation
is rather limiting: it imposes constraints on the maximal amount of knowledge that one can
in principle extract from a system, and therefore on its measurability. For this reason, the
relationship between measurement and uncertainty relation should not be understood in
the sense that these constraints on the knowledge are caused by some form of perturba-
tion. On the contrary, it is the uncertainty relation itself that poses constraints on what a
measurement can perform, independently from the type of measurement one performs and
therefore also from the perturbation it causes.>®

The complementarity principle (Subsec. 1.2.4) deserves a deeper discussion. As a matter
of fact, not only the uncertainty principle but also the complementarity principle concerns
the interpretation of the quantum-mechanical entities, i.e. the ontological nature of the
entities the theory refers to, and provides a bridge between dynamics and measurements,
as we shall see in Ch. 9. The concepts of particle and wave are of classical origin and
represent the two extreme cases of a spectrum of behaviors of quantum systems. In classical
mechanics, the sharp distinction between these two concepts is justified by the fact that
matter and waves are considered and treated in completely different ways. On the contrary,
according to quantum mechanics, matter and waves are two sides of the same coin. To
address this point in finer detail, let us discuss again the ideal experiment of Subsec. 1.2.2.
Let us write the initial state as |i), which represents a photon impinging on BS1 from
the left (see Fig. 2.9). We assume that BS1 has real transmission (T) and reflection (R)
coefficients that may be changed, still satisfying the relation R? 4+ T2 = 1. After BS1 the
state will be

li) > T|1) +R|2), (2.201)
D4
M1 PS |4>
BS2 13> @
0} D3
[2>
LASER
G
‘ 11>
BSI (T, R) M2

Smooth complementarity between wave and particle shown by an interferometry experiment.

36 This statement will show all its richness and importance in the light of the discussions about the interaction-free
measurement (see Subsec. 1.2.4 and Sec. 9.6) and the quantum non-demolition measurement (see Sec. 9.11).
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where the imaginary factor 1 in front of the second term is due to reflection. After the
mirrors M1 and M2 the state becomes

1T|1) —R|[2). (2.202)
After the phase shifter PS the second term acquires a phase factor ¢'¢:
(T|1) —Re'?|2). (2.203)

When the system passes the symmetric beam splitter BS2, we have the transformations

|l)|—>%(z|3)+|4)) and |2)r—>%(|3)+l|4)), (2.204)

so that the final state | f) may be described by the superposition

1 1

| f) = ——— (T +Re'?) |3) + — (T —Re'?) |4). (2.205)
V2 ( ) V2 ( )

The final probabilities to detect the photon at detectors D3 and D4 are given by the square

moduli of the amplitudes of the states | 3) and |4), respectively:

1 1
O3 = 3 + TRcos ¢, 4= 3~ TR cos ¢. (2.206)

As it should be, we have that g3 + g4 = 1. We now see that if the transmission coefficient
is T=0,1 (and correspondingly R = 1, 0), then we have a perfectly determined path (if
T = 0 the photon will always take the path 2, whereas if T = 1 the photon will always
take the path 1) and the interference term in g3 and g4 vanishes: in this case we have
©3 = g4 = 1/2. On the contrary, if R> = T? = 1/2, then we have maximal interference
and also maximal indetermination of the path, since in this case the photon has equal
probability to take path 1 and path 2. However, when 1/2 < T> < 1 or 0 < T? < 1/2, we
have a range of possibilities where partial path information and partial interference are
simultaneously present.

This state of affairs can be quantitatively formulated as a relationship between the vis-
ibility V of interference and the predictability P of the path.3” In fact if one repeats the
same experiment a large number of times and for different values of ¢, one will obtain pic-
tures similar to Fig. 1.6, where the profile may be viewed as the light intensity / detected
at detectors D3 and D4. Such intensities will then be proportional to the probabilities of
detecting the photons at D3 and D4, respectively. The interference visibility ) may then be
defined by

Imax — Imi
V _ ‘max min

— — 2TR. (2.207)
Imax + Imin

Similarly, the path predictability 7P may be seen as the probability of correctly predicting
the path taken by the photon. It is clear that P will be equal to zero for a symmetric beam

37 This analysis was performed by Greenberger and Yasin [Greenberger/Yasin 1988] on the basis of a paper by
Wootters and Zurek [Wootters/Zurek 1979]. A first experimental evidence of smooth complementarity can be
found in [Badurek et al. 1983]. See also [Mittelstaedt et al. 1987] [Englert 1996].
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splitter BS1 while it will be equal to one for T = 0, 1. If we limit ourselves to the range
1/2 < T < 1, then we may define P as

2 2
_ToR e g (2.208)
T? +R?
It is easy to see that we have
V24P, (2.209)

which is known as Greenberger—Yasin equality. This means that, besides the two lim-
iting cases P = 1,V =0 (i.e. particle-like behavior), and P =0,V =1 (i.e. wave-like
behavior), all possible intermediate values are also allowed. If we take the Poincaré-sphere
representation of (two-level) quantum states, the two possible paths (1 and 2, given by
T =1and T = 0, respectively), can be represented as north and south poles of the sphere
(see Fig. 1.11: p. 28), respectively, whereas the equator represents all states of maximal
interference and therefore of highest visibility, which are distinguished from one another
by the phase difference ¢. Given a certain angle ¢, all points but the extremes (i.e. for
all 1/2 < T? < 1) of the arc joining the north pole (where # = 0) with the point on
the equator (where 8 = 7r/2) characterized by ¢ represent states which are intermediate
between a wave-like and a corpuscular behavior. All points but the extremes (i.e. for all
0 < T2 < 1/2) on the arc joining the same point on the equator and the south pole (where
6 = m), again represent intermediate states between a wave-like and a corpuscular behavior
with the same phase ¢. Summing up, for6 = Owehave P = landV = 0, for6 = /2, we
have P = 0 and V = 1, and finally for 6 = 7 we have P = —1 and V = 0. This suggests
that we may take

P =cosfh, V =sinb. (2.210)

The result (2.209) is the essence of what we have called smooth wave—particle complemen-
tarity (see also the conclusions of Subsec. 2.3.2). In other words, the complementarity prin-
ciple states that quantum—mechanical entities display any possible intermediate behavior
between these two extreme forms (particle-like and wave-like).

It is worth emphasizing that one might be tempted to consider the complementarity
principle as a consequence of the uncertainty relation. As a matter of fact, a lively debate on
this issue developed during the 1990s within the scientific community (see Subsec. 9.5.2.)
The output of such a debate would seem to establish the foundational character of the
complementarity principle.

2.4 Quantum algebra and quantum logic
|

The quantum-mechanical formalism we have introduced so far poses serious questions
concerning the algebraic structure of the theory. In classical mechanics we can build propo-
sitions about the world that are true or false. These propositions are statements about the
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properties of the physical system under consideration, that is, about the values of observ-
ables (see Sec. 1.1). It is possible to perform several operations on these propositions, that
is, we can establish different relations among them. For instance, we can add these propo-
sitions, and this corresponds to the logical addition, that is to the inclusive disjunction OR,
or we can multiply propositions, which corresponds to the conjuction AND. Once defined
such operations, they constitute, together with the atomic propositions, a propositional
algebra.3®

This algebra is called a Boolean algebra, and it is an algebra for which distributivity
yields, which is, as we shall see, strictly related with commutativity. Distributivity consists
in the relationships>®

anbVvcec)y=(@Ab)V(aAec), (2.211a)

avVbArc)y=(@Vb)yA(aV o), (2.211b)

which are valid for any elements a, b, ¢ of the algebra and where A and V are the symbols
for conjunction (AND) and inclusive disjunction (OR), respectively. The conjunction of
two propositions is defined as true if and only if both propositions are true, while the
inclusive disjunction is defined as true if and only if at least one of the two propositions is
true. An example of Eq. (2.211a) is given by Fig. 2.10. The elements of a Boolean alegbra,
i.e. propositions, have a formal analogy with projectors, as far as they are idem-potent.
That quantum mechanics violates distributivity can be seen by the following example.
Consider the usual Mach—Zender setup shown in Fig. 2.9. Suppose that the state of the
photon is in a superposition of path | 1) and path |2) before BS2. Then, the proposition a,
“The photon is in a superposition state of | 1) and |2),” may be represented by the dis-
junction of two propositions, say a’ (“The photon takes path 1) and a” (“The photon
takes the path 2”). Now, the proposition a can be true even if the system is neither in path
1 nor in path 2. Furthermore, suppose that the relative phase ¢ is tuned in such a way

Illustration of the distributive law a A (b v ¢) = (a Ab) v (a A ¢). The three sets g, b, and ¢
represent propositions.

38 On the abstract concept of algebra see also Subsecs. 8.4.3 and 8.4.4.
39 See [Bocheriski 1970], especially part II, about Boolean algebras.
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that |4) is a dark output of the interferometer — detector D4 never clicks. In this case the
proposition b

b=aAc=(advd)rc (2.212)

amounts to assert that ¢ = “The detector D3 clicks” is true. In fact, there are only three pos-
sibilities: the photon takes path 1, the photon takes path 2, or the photon takes both paths 1
and 2. In each of these three cases, the proposition a = a’ v a” is true. On the other hand,
the proposition d,

d=(a'"nc)Vv(a" Ne), (2.213)

means something different, namely that we have two possibilities, that the photon passes
through path 1 and detector D3 clicks or that the photon passes through path 2 and detector
D3 clicks. These propositions are in general both false, so that d is also false: if the photon
had already a determined path before BS2, it would be split at BS2 and would have a non-
zero probability to be detected by D4 — so that D4 could not be considered a dark output.
This means that in quantum mechanics we are forced to write

(@’va"ync#(a'ne) v (d' Ac), (2.214)

and to reject classical distributivity. Now, there is a close relationship between commutabil-
ity and distributivity.*

In other words, a quantum algebra is not Boolean in itself but can be decomposed in
Boolean subalgebras, and any subalgebra is the counterpart — on an algebraic level — of
a complete set of observables (see p. 67). Let us analyze this point in greater detail by
means of an example.*! Take the arrangement shown in Fig. 2.11, which represents a
Mach-Zender interferometer (see Subsec. 1.2.2), where only one photon at the time is

D1

TR

M1

LASER

| 1> M2
BSI

Experimental arrangement in order to show that one can generate the two Boolean sub-algebras
{1, 0,D,,Dg} and {1, 0, D'A, Dg} by considering the two mutual exclusive arrangements given by

Da and Dg and by D) and Dy, respectively. {1, 0, D4, D, Dg, D} is instead a non-Boolean algebra.

40 See [Beltrametti/Cassinelli 1981, 126-27].
41’ See [Quadt 1989, 1030].
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sent through the apparatus. We have two possible alternative (mutually exclusive) settings:
either we choose to measure the path of the photon by placing the detectors at positions
Da and Dp or we choose to detect the interference by placing the detectors at positions
D:A and Dig (after the second beam splitter). It is clear that in both settings one and only
one of the two detectors will click in absence of losses — which we do not consider here.
Then the two settings are incompatible and generate two Boolean subalgebras given by
the elements {1,0,Da,Dg} and {1, 0, D/A, D;3}, respectively, where 1, O are the identity (the
sum or disjunction of all elements) and the null element (the intersection or conjunction
of all elements) of the set, respectively. The element D; (j = A, B) corresponds to the

1 1
D, D, D, D,
0 0
(a) (b)
1
DA DB
0

(© (@

Hasse diagrams of several Boolean and non-Boolean algebras. A Boolean algebra is a collection of
sets that includes the sets 1, 0, the complement of any set, the intersections of all pairs of sets
and the sums of all pairs of sets. (a) Hasse diagram of the Boolean subalgebra {1, 0, Da, Dg}.

(b) Hasse diagram of the Boolean subalgebra {1, 0, D'A, D'B}. (c) Non-Boolean algebra

{1,0,Dy, Dg}, D),, D). It is easy to see that the subalgebras {1, 0, Da, Dg} and {1, 0, D), D} are
Boolean but the algebra {1, 0, D,, Dg}, D;\, D'B} is not. In (d) the Hasse diagram of a Boolean
algebra with four elements is shown.
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proposition “Detector D; has clicked.” However, the total algebra is not Boolean.*?> The
two subalgebras and the total algebra may be graphically depicted as Hasse diagrams (see
Fig. 2.12). A Hasse diagram is a graphical representation of a partially ordered set (or
POSet), which is ordered by a relation <, with an implied upward orientation. A point
is drawn for each element of the set and line segments are drawn between these points
according to the following two rules:

e Ifa < b in the Poset then the point corresponding to a appears lower in the drawing then
the point corresponding to b.

e The line segment between the points corresponding to any two elements a and b of the
poset is included in the drawing if and only if a covers b or b covers a.

Summary
-

In this chapter we have developed the basic formalism of quantum observables and
different representations of quantum states. We may summarize the main results as follows:

e Quantum-mechanical observables can have a continuous spectrum, a discrete one or
a combination of both, and therefore cannot be represented by variables, as in classical
mechanics, but must be represented by operators, as stated by the quantization principle.

e These operators must be Hermitian, since possible measurement results are represented
by the eigenvalues of the operator and a physical quantity must always take on real
values.

e Quantum mechanical observables do not necessarily commute. In this case they do not
share a common eigenbasis, with the consequence that it is possible to introduce dif-
ferent representations (e.g. position and momentum representations) associated to the
relative observable.

e Due to non-commutability there are intrinsic limitations on the maximal amount of infor-
mation one can extract from a system. This is the content of the uncertainty relation and
has the consequence of limiting the quantum mechanical states which are allowed.

e We have examined the relationships between superposition, uncertainty, and com-
plementarity. While the superposition and complementarity principles increase the
spectrum of the possible states relative to classical mechanics and are fundamental
principles of quantum mechanics, uncertainty relations pose constraints on the possible
measurements and are consequence of the quantization principle.

e The elements (states) of the quantum phase space cannot be pointlike as the classical
one is, but must be rather represented by spots whose minimal area is given by the
uncertainty relation between position and momentum.

e Another consequence of non-commutability is that one can partition the set of observ-
ables of a physical system into subsets of commuting observables. These subsets
represent Boolean sub-algebras, while distributivity is not valid on the whole quantum
algebra.

42 See also the discussion of quantum probability in Sec. 1.4.
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2.1 Given an arbitrary state vector |), it is always possible to construct a Hermi-
tian operator O which has |v¥) among its eigenvectors (see p. 49). Show that
0 =| ¥) (¥ | is not the only Hermitian operator whose eigenvectors contain | ) .

2.2 Prove that Eq. (2.32) reduces to an identity when replacing the coefficients by the
explicit forms given by Egs. (2.25) and (2.27).

2.3 Prove that the matrix U of Eq. (2.33) is unitary.

2.4 Show that any linear operator O can be decomposed as O=0 410", where O’
and O" are Hermitian operators.

2.5 Show that the necessary and sufficient conditions for an operator to be unitary is that
it is normal and satisfies condition (2.35).

2.6 Consider a generic two-dimensional matrix

R a b
0= .

Prove that in order for it to be unitary and Hermitian, it has to be of the form

N a b
0= ,
where a is real.

2.7 Calculate the expectation value in Box 2.4 by making use of the properties of Op
and of the scalar product without employing the explicit matricial form.

2.8 Eq. (2.1) has been introduced in a heuristic way, as a generalization of an intuitive
result. Prove it in a rigorous way.

2.9 Take the 2 x 2 matrix

(a) Find its eigenvalues and eigenvectors.
(b) Derive the diagonalizing matrix of O and its diagonal form.

2.10 Consider a system of three polarization filters as in Subsec. 2.1.5 (see Fig. 2.3) with
¢ =n/6 and 6 = 7 /3. If N is the number of photons passing filter P1, how many
photons will pass on average through the entire apparatus?

2.11 Verify Eq. (2.96).

2.12 Prove Eq. (2.98).

(Hint: Take the Taylor expansion of f (0) in powers of 0.

2.13 Prove Eq. (2.99).

2.14 Prove that, given three observables 0, O, and 0", for which [é, 0’] =0 and
[O, é//] = 0, then it is not necessarily true that [0/ (5”] =0.
(Hint: Take O as the identity operator 1)
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2.15 Derive the momentum eigenfunctions in the momentum representation.
(Hint: There are two independent ways to derive this result. Either one closely fol-
lows the derivation of the position eigenfunction in the position representation (see
Subsec. 2.2.1), or one applies Eq. (2.150b) with ¥(x) = ¢, (x) (see Eq. (2.146)). It is
instructive to verify that these two methods lead to the same result.)

2.16 Derive the position eigenfunctions in the momentum representation.
(Hint: See Prob. 2.15.)

2.17 Prove that, if v(x) is normalized, i.e. if fj;o dx|y(x)|*> =1, then also
S dx [ (pa)l® = 1.

2.18 Prove Eq. (2.153).
(Hint: Calculate the expectation value of the position operator in the momentum
representation and take advantage of the Fourier transform.)

2.19 Prove that

A Lo,
P(x)| px) = enP | x), (2.215)
T

where P(x) projects onto the position eigenvector | x) .

2.20 Prove the result (2.173a) in the momentum representation.

2.21 Derive Egs. (2.173b) and (2.173c¢).

2.22 Prove that fj;o dx8%(x) = +o0.

2.23 Prove that [, p2] = 21/ p.

2.24 Consider a one-dimensional free particle in an eigenstate of the momentum operator
with eigenvalue pg. Derive the uncertainty relation between its energy and its position
following Eq. (2.200).

(Hint: Take advantage of the result of Prob. 2.23.)

2.25 Generalize the result of Prob. 2.23 to [, p'] = mhip"~1.

2.26 Prove that to [p,, f(X)] = —1h f/(X).

2.27 Derive the commutation relation [X, f(py)] = th f'(py), where f(p,) is an arbi-
trary function of the momentum operator and f/(p,) is its first derivative made with
respect to py.

(Hint: Write the Taylor expansion of f(p,) and use the result of Prob. 2.25.)

2.28 Calculate the probabilities g3 and g4 of Subsec. 2.3.4 for a symmetric beam splitter
and verify that they are equal to the corresponding probabilities of Subsec. 1.2.3.

2.29 Verify Eq. (1.55) by explicitly calculating the involved amplitudes and probabilities.
(Hint: See the formalism used in Subsec. 2.3.4.)

2.30 Compute the state (2.205) in the case R = 0, T = 1 and denote it by | fp). Repeat
the same procedure with R =1, T =0, and denote the resulting state by | f1).
Show that, for R = T = 1/+/2 the resulting state | fi /2) may be expressed as a lin-
ear superposition of | fo) and | f1). Make a comparison with the Poincaré sphere
formalism.

2.31 Starting from the example of Sec. 2.4, in which it is shown that we may have
(@’ va") Actruebut (a’ Ac) Vv (a” Ac) false, show that we may have —(a’ A a”)
true even if neither a’ nor a” is false.
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Quantum dynamics

In the first two chapters we have examined the basic principles — superposition (p. 18),
complementarity (p. 19), quantization (p. 44), statistical algorithm (p. 57), and correspon-
dence (p. 72) (see also Subsec. 2.3.4) — and the basic entities, observables and states, of
quantum mechanics, as well as the main differences with respect to classical mechan-
ics. While what we have discussed so far is rather a static picture of observables and
states, in this chapter we shall deal with quantum dynamics, i.e. with the time evolution of
quantum-mechanical systems.

Historically, after Bohr had provided a quantized description of the atom (see Sub-
sec. 1.5.4), Einstein showed the quantized nature of photons (see Subsec. 1.2.1), and
de Broglie has hypothized the wave-like nature of matter (see Subsec. 1.5.5), the first
building block of quantum mechanics was provided by the commutation relations, pro-
posed by Heisenberg in 1925, whose consequence is represented by the uncertainty
relation (see Subsec. 2.2.7 and Sec. 2.3). This was the subject of the previous chap-
ters. The dynamical part of the theory was proposed by Schrédinger in 1926,2 and
is known as the Schrodinger equation. It is also known as wave mechanics (see Sub-
sec. 1.5.7). In this chapter we shall show that Heisenberg’s and Schrédinger’s formulations
are only two different aspects of the same theory. We shall also come back to this point
in Sec. 8.1.1. Here, first we shall derive the fundamental equation which rules quan-
tum dynamics (Sec. 3.1), and, in Sec. 3.2, we shall summarize the main properties of
the Schrodinger equation. Moreover, in Sec. 3.3, we shall show that the Schrodinger
equation is invariant under Galilei transformations. In Sec. 3.4 we shall discuss a first
example of the Schrodinger equation (a one-dimensional particle in a box). Then in
Sec. 3.5, we shall introduce the unitary transformations in a general form, and in Sec. 3.6
the Heisenberg and the Dirac pictures, which are representations of the quantum evo-
lution equivalent to the Schrodinger picture. In Sec. 3.7 the fundamental Ehrenfest
theorem will be presented, while in Sec. 3.8 we shall derive the uncertainty relation
between energy and time. Finally, in Sec. 3.9 we shall discuss the difficult problem
of finding a self-adjoint operatorial representation of time and present some possible
solutions.

! See [Heisenberg 1925].
2 See [Schrodinger 1926].
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3.1 The Schréodinger equation

In this section we derive the Schrodinger equation (Subsec 3.1.1). Then, we briefly return
on the difference between classical and quantum mechanics concerning determinism
(Subsec. 3.1.2). In Subsec. 3.1.3 we shall learn how to represent the time evolution of
an arbitrary initial state in the basis of energy eigenvectors (the stationary states). Finally,
in Subsec. 3.1.4 we shall briefly discuss the problem of degenerate eigenvalues.

3.1.1 Derivation of the Schrédinger equation

We have already seen (in Subsec. 2.3.3) that the state vector (or the wave function) con-
tains complete information about the state of a quantum system at a given time. We now
need to determine how the system (and therefore its state) evolves with time. In classical
mechanics, the knowledge of position and momentum of a particle (i.e. the knowledge of
its state) allows, together with the knowledge of the forces which act on the particle, the
univocal determination of position and momentum of the particle at any future (and past)
time through Newton’s second law (see Sec. 1.1).

In order to build the equation which gives the time evolution of a quantum state, it is
useful to take into account the requirements imposed by the mathematical formalism and
the conceptual aspects developed in the previous chapters. Let us assume that the equation
is deterministic. First, the evolution equation must only contain the first time derivative of
the state vector (see Eq. (1.1)). If it were not so, then the knowledge of the state at the
initial time 7o would not be sufficient for determining its evolution at future times, since
the solution of a n-th order differential equation requires the knowledge of the first n — 1
derivatives at time #y. This would contradict the assumption that the state vector contains
complete information about the state of a quantum system. On the most general grounds,
we can therefore write the evolution equation as

d N
51V =01¥), (3.1

where O must be a linear operator to be determined.> This requirement directly fol-
lows from the superposition principle (see p. 18) and the consequent linearity of quantum
mechanics. In other words, the evolution equation has to be linear and homogeneous.

Moreover, the operator O in Eq. (3.1) must evidently represent the generator of
time translations or, equivalently, the quantity which is conserved under time translations.
We know from classical mechanics that such a quantity is represented by the energy, or
the Hamiltonian function of the system. Therefore, following the correspondence pnnmple
(see Subsec. 2.2.4) we take the operator O to be a function of the Hamiltonian operator )it
only and rewrite Eq. (3.1) as

3 For the time being we limit ourselves to the case in which the operators O does not explicitly depend on time.
We shall consider time dependency in Secs. 10.3 and 14.2.
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iy =r(A) 1w (32

Moreover, in the case of a composite system made of two subsystems with Hamiltonians
Hy and H,, respectively, the generator of time translations must satisfy

()= f () + f (), (3.3)
in order to respect the linearity requirement. Since we must have H = H + H, the only
possibility is that

0=t (H) —aH, (3.4)
where a is a (complex) constant to be determined. In order to determine a, we take advan-

tage of the fact that (i | ¥) = 1 for any state | /) and therefore also at any time (see p. 26).
As a consequence, the norm of the state must be conserved and

3 (Yl d[y)

d
8t<l//|¢) » [¥) + (] or (3.5)
Substituting Eq. (3.2) and its Hermitian conjugate
] A
3 (Y| = (yla*H, (3.6)
t
into Eq. (3.5) and using Eq. (3.4), we obtain
Wi (a A +afl)1¥) =0, 3.7)

since H = H T being the Hamiltonian a Hermitian operator. In order for Eq. (3.7) to be
valid for any state | /) , we must have a* = —a, or, in other words, a must be a pure imag-
inary number. Such a quantity (see Eq. (3.2)) has the dimension of the inverse action and,
therefore, its inverse, for convenience and in agreement with the correspondence principle,
can be expressed as 1/a = 1. The quantum-mechanical evolution equation then takes the
final form

xh% ) = A1), (3.8)

which is known as the Schridinger equation.*

If the equations of motion of the system explicitly depend on time, then the Hamiltonian
operator H in Eq. (3.8) will also depend on time. In general, as we have seen in Sub-
sec. 2.2.6, the Hamiltonian A will be given by the sum of the kinetic and potential energy
operators, H=T + V.

For a one-dimensional particle and in the position representation, one may rewrite
Eq. (3.8) as a partial differential equation for the wave function (see Subsec. 2.2.1,
Eq. (2.165), and Prob. 3.1)

4 See [Schrodinger 1926]. For a historical reconstruction of Schrodinger’s great contribution see
[Mehra/Rechenberg 1982-2001, V, 404-576].
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[32
[—x + V(x,t)} Y(x, 1), (3.9)
2m

oY (x,1)
ar

1h

where V(x,?) is the (in general time-dependent) potential energy. Using the definition
px = —th(3/9x) of the momentum operator in the position representation (see Sub-
sec. 2.2.4), we obtain

oY (x,1)
ar

1h

~ 2m 8x2

2 2
[ h” 9 +V(x,t):|1//(x,t). (3.10)

In particular, the Schrédinger equation for a free particle (when V (x, t) = 0) in the position
representation can be written as’

0y, 1) _ 1h PY(x,1)

ar  2m  9x2 G-11)

For an initial wave function represented by a plane wave v/ (fp) o e***, which is also an
energy eigenfunction (see Subsec. 2.2.6), the time-dependent wave function may then be
written as

Y (1) oc e!kxmoxD), (3.12)
where
E k>

It is also useful to write the Schrodinger equation in the position representation for the
three-dimensional case

AV(r,t h?
lh 1//( ) — |:——A+ V(r,l):| I/f(r,l), (314)
ot 2m
where
2 92 9?
A=V2= (3.15)

Stttz

is the Laplacian in Cartesian coordinates.

3.1.2 Determinism and probabilism

From Eq. (3.8) it is clear that, consistently with our assumptions, given a certain Hamil-
tonian operator, any initial state vector |y (#p)) will evolve in a deterministic way. This
means that the knowledge of the state vector at an initial time 79 and of the Hamiltonian
allows the univocal determination of the state at any future (and past) times. However, this
is deeply different from what happens in classical mechanics (see Sec. 1.1, and in particu-
lar Eq. (1.1)). There, the deterministic evolution concerns all the properties of the system,

5 Note that Eq. (3.11) is formally identical to a classical diffusion equation.
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i.e. at any time ¢ the value of every observable (and therefore the state itself) is perfectly
determined.

In quantum mechanics, on the contrary, the state has an intrinsically probabilistic nature
(see Subsec. 2.3.3). This does not mean, however, that it is ontologically defective: it is
exactly as determined as it should be, given the superposition principle and uncertainty
relations (see Sec. 2.3). On the other hand, as we have said, the wave function (or the
corresponding state vector) expresses it completely, so that any attempt at improving the
knowledge of the state beyond the quantum formalism has failed (see Sec. 16.3).

The Schrodinger equation concerns the deterministic evolution of a probability ampli-
tude and this circumstance affects the probability distributions of observables, too. In fact,
after a certain time evolution there will still be a certain probability for an observable to
assume a given value (see Pr. 2.2: p. 57). In conclusion, even though the fundamental evolu-
tion equation is deterministic, the structure of the theory remains intrinsically probabilistic
(see also Sec. 1.4).

3.1.3 Stationary states

In the case the potential does not explictly depend on time,® the formal solution of the
Schrodinger equation is easily obtained by integration of Eq. (3.8), and is given by

(@) = e 7y o)), (3.16)

where | ¥(0)) is the state vector at time 79 = 0. In general, however, it is not trivial to deter-

mine the action of the (unitary) operator e 17 onto the state vector | ¥(0)) . It appears now
clear that the eigenvectors and eigenvalues of H play a central role in the determination of
the time evolution of a quantum system. In fact, let us assume that the initial state vector
of the system be an eigenstate of the Hamiltonian operator, i.e.

H |y (0)) = E [y(0)), (3.17)

where E is the corresponding eigenvalue of H (see Eq. (2.166)). Then, the action of the

operator e~ 711 onto the state vector | ¥ (0)) becomes trivial (a multiplication by the phase
factor e A E? ) and the state vector at time ¢ can be simply written as

[Y(@0) = e HE |y (0)). (3.18)

As a consequence, an energy eigenstate does not evolve with time since a phase factor is
irrelevant for the determination of a state (see end of Subsec. 2.1.3).

In the general case, when the initial state | ¥/ (0)) is not an energy eigenstate, things get a
bit harder. There is, however, a general procedure which may be employed in order to find

% In general, the solution of the Schrddinger equation with a time-dependent Hamiltonian is a complex problem.
In certain cases the problem can be addressed by making use of some approximation methods, for instance
assuming that the potential changes very slowly in time (see Sec. 10.3).
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the time-evolved state vector | ¥ (¢)) . First, one has to solve the eigenvalue equation for the
Hamiltonian (see Subsec. 2.2.6). For a discrete spectrum, one has

H 1Y) = En | ¥n), (3.19)

where the eigenvectors | {,,) are called the stationary states and the E,, are the correspond-
ing eigenvalues, namely the energy levels of the system. Second, one has to expand the
initial state vector |y (0)) onto the basis {|¥,) }, i.e. to determine the complex coefficients
c,(f’) such that (see Subsec. 2.1.2)

19 0) =) y). (3.20)

Finally, one is able to explicitly evaluate the rhs of Eq. (3.16) as

@) =Y e m 5Oy, (3.21)

which represents the time evolution of any initial state given its expansion in the basis of
energy eigenvectors.

In the case of a continuous spectrum, the sums in Egs. (3.19)—(3.21) have to be replaced
by the corresponding integration signs. Therefore, Eq. (3.19) becomes

I:I|w1:) = E|w1:>’ (3.22)

while the expansion (3.20) can be written as

|(0)) = / dE cO(E) |y,). (3.23)

As a consequence, the time evolution of any initial state |(0)) for the continuous case
can be formulated as

|y (1)) = / dE cCOE)e 15 |y,). (3.24)

It is evident from the procedure above that the solution of the energy eigenvalue equation
is a necessary step for the determination of the time evolution of any system. Therefore,
Eq. (3.19) or Eq. (3.22) is often called the stationary Schrodinger equation, while Eq. (3.8)
is called the time-dependent Schrodinger equation.

We also note that the time-dependent Schrodinger equation for the wave function ¥ (x, ¢)
is the wave function at time ¢ (see Eq. (3.9)) can be formally solved in analogy with
Eq. (3.16) as

V(1) = ey, 0). (3.25)

As for Eq. (3.21), also in this case the actual solution requires an expansion of ¥(x,0) in
terms of the eigenfunctions ¥, (x) = (x | ¥,) of H , and reads
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Yo=Y e i Oy, (x). (3.26)

Note that, since the integral f j;o dx|¥(x,1)|* does not depend on time, a normalized wave
function will remain normalized (see Prob. 3.5).

We have already seen that the energy spectrum of a system is given by the set of all
possible energy eigenvalues and that stationary states correspond to these eigenvalues. In
particular, if the Hamiltonian is bounded from below (as in physically interesting cases)
(see Box 2.1), there is a state corresponding to the minimum eigenvalue that is called
ground state, as, for example, the lowest energy level of one electron in an atom (see
Ch. 11). As we know, such a spectrum can be continuous, discrete, or a combination
of both these possibilities (see Subsecs. 1.5.4 and 2.1.1). This is in close relationship
with the normalization of the wave function describing the system. In fact, eigenfunc-
tions corresponding to discrete eigenvalues are normalizable, whereas eigenfunctions
corresponding to continuous eigenvalues are not (see Subsec. 2.2.2). In the former case
f dx |1//n(x)|2 < 00 (see Eq. (2.108)), which means that v, (x) tends to zero sufficiently
fast for x — 400 so that the integral converges. As a consequence, the probability of find-
ing the particle at large distances goes rapidly to zero. This kind of states are called bound
states. Instead, if we consider a non-normalized wave function, i.e. corresponding to an
eigenvalue belonging to the continuous spectrum, we have that [ dx |, (x)|> = oo, which
means that the system extends to infinity and the stationary states are called unbound. In
this case, the eigenfunctions may not vanish at infinity. For instance, when x — oo, their
absolute value may oscillate indefinitely. Wave functions of this type are useful for col-
lision problems. It may also happen, of course, that the eigenfunctions tend to zero not
sufficiently fast as x goes to infinity.

3.1.4 Degenerate eigenvalues

It is interesting to note that energy eigenvalues can be degenerate (see Th. 2.2: p. 47 and
comments, and also the proof of Th. 2.4: p. 66), i.e. it can be the case that two or more
eigenvectors (or eigenfunctions) share the same eigenvalue. This has a relevant physical
meaning.

We may establish a necessary and sufficient condition in order to have energy degener-
acy. Suppose that the observable O commutes with the Hamiltonian and is not the identity
operator, i.e. [I:I s 0] = 0, and that O is not a function of H only. Then,

HO|y;) = OH|y;) = E;O|y;), (3.27)
which shows that the ket O | ;) is an eigenket of H with eigenvalue E; just as | ;)
is. Moreover, the ket O | v j) cannot be proportional to | ¥ ]> i.e. it cannot be written in
the form O | ¥ ]> f(E)) | ¥ ]> where f(E ) is a function of the j-th energy eigenvalue.

In fact, if this were the case O would be equal to f (H ) that would contradict one of the
assumptions.
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Let us now prove the equivalence in the other sense, that is, that degeneracy implies
commutativity. If we have degeneracy, we may always partition the whole Hilbert space H
into subspaces H1, Ha, . . ., in each of which the energy eigenvalue is constant, i.e.

H=Hi®HD"-, (3.28)

where the symbol @ denotes the direct sum. This is technically true only if the spectrum
is discrete. In the case of a continuous spectrum, a similar formula holds, but it is more
complex. Then,

Alg) = Ex ), (3.29)

where | @) € Hy. This means that the Hamiltonian I:Ik in each subspace Hy is a multiple
of the identity. Here, Hy is the block of H pertaining to Hy, i.e.

E. O 0

. 0O Ex 0 .-

H, = ) , (3.30)
0 i - Eg

where the dimension of Hj, is equal to the degree of degeneracy of the eigenvalue Ey. We
can then build an Hermitian operator

0=0180,®--, (3.31)

where ® denotes the direct product between operators belonging to different subspaces of
the total Hilbert space, and Oy is an arbitrary operator that takes a vector on Hy into a
vector of Hy, and obviously commutes with Hy. This implies that [O, H] = 0.

3.2 Properties of the Schrodinger equation
- _______________________________________________________________________________|

Before going into the details of the solution of the (stationary and time-dependent)

Schrodinger equation, it is very useful to look for fundamental properties of the solutions
to these equations which can be derived a priori at an abstract mathematical level.”

3.2.1 Regularity

For what concerns continuity it is possible to state the following properties of the wave
function yr(r) (we refer here to the Schrodinger equation in the form (3.14)):

(i) ¥ (r) has to be single-valued and continuous. It is single-valued because there can-
not be two different probability amplitudes for the same position, and it must be
continuous because the Schrodinger equation (3.14) requires it to be differentiable.

7 In this section we somewhat follow the arguments by Landau and Lifshitz [Landau/Lifshitz 1976b, §§ 18 and
21]. See also [Messiah 1958, 98—114].
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(i)

(iii)

(iv)

For the same reasons the continuity of (r) and of its first derivatives must hold
true even when V(r) is discontinuous but finite. On the contrary, if in some regions
V(r) = oo, then, while ¥ (r) must still be continuous, its first derivatives need not
necessarily be so (see Sec. 3.4 and Subsec. 4.2.2).

Since a particle cannot penetrate an infinite potential wall, it is clear that, in the open
regions where V(r) = oo, ¥ (r) has to be equal to zero. Therefore, for continuity, we
must have ¥ (r) = 0 at the border of such regions. However, in this case, the deriva-
tives will be discontinuous. When the potentially is infinite only in one point (i.e.
a é-function), the wave function need not vanish at this point but it still has to be
continuous. Again, the first derivative of the wave function at this point need not be
continuous. On the contrary, in the regions where V(r) < oo then (r) cannot be
identically zero. As we shall see (in Sec. 4.3), this means that a quantum particle
may have a non-vanishing probability amplitude to be found in a classically forbid-
den region. In other words, we may have ¥ (r) # O in regions where the energy E
of the particle is smaller than the potential energy V. Unlike classical mechanics, in
quantum mechanics this is not a contradiction.

For any dimension, the wave function of the ground state never vanishes (where we
have assumed the absence of a magnetic field, i.e. that the Schrédinger equation is
real (see Subsec. 11.3.3 and Sec. 11.4)).

3.2.2 Energy eigenvalues

Concerning the energy eigenvalues we have the following three properties of the Schrodin-

ger

®

(i)

equation :

Since the Hamiltonian is given by the sum of the kinetic and potential energies, we
have, also for the mean values, (E) = <I:I> = <f> + <‘7> Now, the kinetic energy is

always positive and therefore (YA”) > 0. When the potential energy has a minimum
value Viin, it is clear that <\7> > Viin and <I:I > > Vpmin. Since this has to hold true for
any state, also any energy eigenvalue has to be larger than Viyy, i.e.

(En) > Vmin. (3.32)

If V — 0 for r — 00,% then the negative eigenvalues of the energy are discrete and
therefore the corresponding eigenstates are bound states (see Subsec. 3.1.3), while
the positive eigenvalues correspond to the continuous spectrum (infinite motion).
This is so because at large distances the potential energy is negligible and therefore
the motion is almost free: a free motion, however, can only correspond to positive
eigenvalues. In particular, if the potential energy is positive everywhere and tends
to zero at the infinity (as in Fig. 3.1), then the discrete spectrum is absent and the
only possible motion of the particle is infinite. In fact, in this case, we must have

8 Itis always possible to define V — 0 for r — oo when the force vanishes sufficiently fast at infinity.
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A

V(r)

Y

r

Positive potential vanishing at infinity.

E, > 0 (see Eq. (3.32)), and we have already established that for positive energies
the spectrum has to be continuous.

(iii) If V(o0) = oo, then the whole spectrum is discrete.
(iv) The Schrodinger equation for the wave functions of the stationary states (i.e. the

energy eigenfunctions), in the absence of a magnetic field (which is not an external
potential), does not contain complex terms, and therefore its solutions may be chosen
to be real. For non-degenerate eigenvalues of the spectrum, this is straightforward,
since any eigenfunction and its complex conjugate must both satisfy the same equa-
tion, and may differ at most by an irrelevant phase factor. In the case of degenerate
energy eigenvalues, the corresponding eigenfunctions may be complex. However, by
suitably choosing appropriate linear combinations of them, it is always possible to
establish a set of real eigenfunctions.

3.2.3 One-dimensional case

For the one-dimensional case we can establish the following additional properties (we refer
here to the Schrédinger equation in the form (3.10)):

(1) In a discrete spectrum there are no degenerate eigenvalues (let us for semplicity con-

sider the case where V (x) < 00). In fact, let us assume that 1| and v, be two different

eigenfunctions corresponding to the same energy eigenvalue E. They both have to

satisfy the Schrodinger equation (see Subsec. 3.1.4)

2m(V — E)
h2

where 1"/ (x) denotes the second derivative of v (x) with respect to x. Therefore we

have

v'(x) = ¥ (x), (3.33)

v 2m(V—E) ¥
12 2 23
from which it follows that ¥{'y» — 3¢ = 0. Integrating this relation we obtain

wi Yo — 1//51//1 = C, where C is a constant. Since 11 and ¥, tend to zero for x — o0,
the constant C must be zero and therefore ¥{ /1 = /1. Integrating this relation

(3.34)
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(i)

(iii)

(iv)

)

once more, we conclude that ¥, = C’v,, where C’ is again a constant. Therefore
Y1 and v, are not linearly independent. We should emphasize that this is not true
in larger dimensions. In fact, in this case there exist non-trivial observables which
commute with the Hamiltonian, and therefore there is degeneracy (see Subsec. 3.1.4).
For the wave functions of the discrete spectrum it is possible to state the following
theorem, which we shall not prove: the eigenfunction ,(x) corresponding to the
(n + 1)-th energy eigenvalue E, vanishes n times for finite values of x (see the
examples in Secs. 3.4, 4.1, and 4.4).

Let us assume that, for x — =00, the potential energy V(x) tends to finite values
(as in Fig. 3.2(a) and (b)). We take V(+o00) = 0, V(—00) = Vj, and assume Vj > 0.
The presence of the discrete spectrum is possible only for values of the energy that
do not allow the particle to escape to infinity, which is the energy has to be negative.
Moreover, the energy has also to be larger than the minimum value of V(x), i.e. the
potential energy must have at least one minimum with Vi, < 0 (as in Fig. 3.2(b)).
In the range V) > E > 0 the spectrum is continuous and the motion of the particle is
infinite, since it can escape to arbitrary large positive x values. This is why the spec-
trum in the case of Fig. 3.2(a) is only continuous. For V) > E > 0 all eigenvalues are
also not degenerate — in order to prove this, it is possible to apply the same proof as
that discussed in the context of discrete spectrum of property (i), since here both func-
tions 1 and ¥, vanish for x — Zoo. Finally, for E > Vj, the spectrum is continuous
and the motion of the particle is infinite in both directions (x — £00).

If V(x) is even, then the wave functions 1r(x) of the stationary states are either even
or odd. In fact, if we have V(x) = V(—x), the Schrédinger equation does not change
under the transformation x — —x, and if ¥ (x) is a solution of the Schrédinger equa-
tion, also 1r(—x) is a solution which has to coincide with ¥ (x) up to a constant factor,
that is ¥ (x) = Cy¢(—x). Changing sign once more we obtain ¥ (x) = C2y(x), hence
C = +1, which proves the result (see also Prob. 3.6). This property may be extended
to the three-dimensional case.

For a potential well of the type shown in Fig. 3.3 (when we have V(x) < V(00),Vx
and V(x) < V(oco) for some x), there exists a bound state independently of the height
of the well.

Y

Y

v =2

min

(@ (b)

Potential function tending to finite values as x — oc.
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V(x)

Potential well.

3.3 Schrodinger equation and Galilei

transformations
I

A further property of the Schrodinger equation concerns its behavior under relativistic
transformations. In general terms, a relativity theory tells us how physical quantities are
transformed under change of the inertial reference frame.? Necessarily, the overall physical
picture must not depend on the reference frame. As a consequence, any mechanics must be
invariant with respect to the underlying relativity theory. For instance, Galilean relativity is
the relativity attached to classical mechanics, whereas special relativity underlies quantum
field theory.!? Here we are dealing with microscopic phenomena, however, which occur
at a speed much smaller than the speed of light. Therefore, our non-relativistic quantum
mechanics has to be invariant under Galilei transformations. In the following we shall test
whether the Schrodinger equation is invariant and how the wave function changes under
these transformations. For the sake of simplicity we shall restrict ourselves to the free
motion of a particle in the three-dimensional case.

Let us take two reference frames R and R’ such that R’ moves with respect to R with
constant velocity V. We assume that at time ¢t = 0 the origins of the two frames coincide,
i.e. O = O’. The relation between the space—time coordinates in R and R’ may then be
written as

r=r'+Vt, (3.35a)
t=t, (3.35b)

where the vectors r and r’ represent the position of a point particle P in R and R/, respec-
tively (see Fig. 3.4). Egs. (3.35) are known as Galilei transformations. As a consequence

9 Einstein’s general relativity theory — which is not a subject of this book — also includes gravitation and therefore
accelerated frames. See [Hartle 2003].
10 Again, quantum field theory goes beyond the scope of this book. The interested reader is referred to specialized
handbooks, for instance to [Mandl/Shaw 1984].
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Relationship between two different inertial reference frames R and R’ under Galilei
transformations. R’ is in motion with respect to R with constant velocity V.

of Eqgs. (3.35), the quantities which characterize the free motion of the particle (i.e.
momentum and energy) transform according to the relations

p=p +mV, (3.36a)
V2
E=E +V.p + mT (3.36b)

where m is the mass of the particle. In order to find the relation between the wave functions
written in the two inertial reference frames R and R’, we need to derive the transformation
rule for the plane-wave form of the wave function. In other words, the wave function in the
frames R and R’ can be written as (see Subsecs. 2.2.4 and 3.1.3, and Prob. 3.3)
U(r,t)=ei®PT—ED, (3.37a)
Y 1)y =ef P ED), (3.37b)
up to a normalization factor. Substituting the relations (3.35) and (3.36) into Eq. (3.37b)
yields

’ V2
¥ (' ) =exp {;— [(p—mV) (r —Vi) — (E —-V.p - mT> t:|}
:e}%(p.l’—El)e%(%mvzl—mV‘r)' (3.383)
Using Eq. (3.37a) we finally have
Y1) = ¥ (r — Vi, 1)eh VT —amVinx, (3.39)

which is the transformation rule we were looking for. Since the exponential in the rhs of
Eq. (3.39) is just a phase factor which does not contain the relevant quantities of the free
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motion of the particle, we can state that the Schrodinger equation is invariant under Galilei
transformations.

It should be noted that we have performed this calculation for the case of a plane
wave. A generic wave function, however, can always be expanded into a series or inte-
gral of plane waves and, therefore, the general result may easily be derived from Eq. (3.39)
(see Prob. 3.7). Moreover, in the case of a system of particles, the exponent in the rhs of
Eq. (3.39) should evidently contain a sum over all the particles.

3.4 One-dimensional free particle in a box
 ——————————

As a first example of a quantum-mechanical system, let us consider a simple model: a one-
dimensional free particle constrained between infinite potential walls located at x = 0 and
x = a (see Fig. 3.5) so that we have

400 if x>a orx<O

Vix)= [ 0 if O<x<a (3.40)

Therefore, for 0 < x < a, the particle is free and the Schrodinger equation in the position
representation can be written as
h2 2

— =Y () = EY (). (3.41)

2m 9x2

Since the particle cannot penetrate into infinite walls, it is clear that ¥(x) = 0 for x > a
or x < 0 and, for continuity, we must have ¥ (0) = ¥(a) = 0.11 Equation (3.41) may be
rewritten as

V(xX) &

a X

m Schematic representation of the potential V(x) for a particle in a box. The particle is confined
in the segment (0, a) by the presence of the two infinitely high potential walls at x = 0 and
X = @, as described in Eq. (3.40). The left and right walls extend to x - —oo and to
X = +oo, respectively.

11 gee Property iii) in Subsec. 3.2.1. Moreover, it will be evident in the following that in this case (i.e. when the
potential walls are infinitely high) the first derivative of the wave function is not continuous. For the reason of
this behavior see the discussion at the end of Sec. 4.1 (p. 144).
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¥ (x) = —K* Y (x), (3.42)
where
2mE
k= & (3.43)

The general solution of Eq. (3.42) may be written in the form
V¥ (x) = N sin(kx + ¢), (3.44)

where A is a (in general complex) normalization constant and ¢ a phase which has to be
determined. Since

¥(0) = Nsing = 0, (3.45a)
we have ¢ = 0. Moreover,
Y(a) = N sinka) = 0 (3.45b)
implies that'? ka = nr n=1,2,..),1e.
k=k, = . (3.46)
a

This means that the possible values of k are discrete, or quantized. This in turn has the
consequence that also the energy levels have to be discrete. Given Eq. (3.43), the energy
levels turn out to be

w2h?
2ma?"
A schematic drawing of the energy levels (3.47) is given in Fig. 3.6. The corresponding
eigenfunctions may then be written as

E=E, = 2 (3.47)

Yn(x) = N sin (%x) (3.48)

In order to determine the coefficient A/, we may take advantage of the fact that, being the
spectrum discrete, the v, (x) must be normalized, i.e.

/ Y (0)* = 1. (3.49)
0

From this it follows that |A'|?a/2 = 1. Since an overall phase factor is irrelevant from the
point of view of the wave function (see Subsec. 2.2.1), we are allowed to take a real value

of NV, i.e. (see Prob. 3.9)
N = 2 (3.50)
a

and can finally write the energy eigenfunctions as

Y (x) = \E sin (Z-x)). 3.51)
a a

12 Note that we cannot have n = 0 because in this case v would identically be zero.
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n
Eﬂ
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14
+3
12
h
Ei=— 51 11

Schematic diagram of the first five energy levels for a one-dimensional particle of mass m
confined in a box of dimension a.

A
Pn(x)

WA T mace L,

L
Y

First three energy eigenfunctions for a one-dimensional particle confined in a box of
dimension a: ¥ (x) is shown in solid line, ¥,(x) in dashed line, and ¥3(x) in dot-dashed
line. It is interesting to note that the n-th eigenfunction has n — 1 nodes inside the interval
(0, @) (see property (ii) in Subsec. 3.2.3). Moreover, in each of the n intervals between two
successive eigenvalues there is a node of the (n + 1)-th eigenfunction (and of all the
following ones). This is rather a general property of the one-dimensional Schrodinger
equation.

The first three of such eigenfunctions are displayed in Fig. 3.7.

It is interesting to note that the state with £ = 0 is not allowed. In fact, if this were
not the case, we would also have p, = 0, which in turn would mean that the particle is at
rest. This is not possible, however, in quantum mechanics, since it would imply an obvious
violation of the uncertainty relation (Ax = Ap, = 0). On the other hand, if £ > 0, then
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there is an ambiguity in the sign of p,, which may point rightward or leftward (see the
discussion at the end of Subsec. 2.2.6: p. 79). This implies that

Apy ~2py =20k = 2027, (3.52)
a
and, since Ax =~ a (the particle is spread over the allowed region (0, a)), we have
AxApy >~ 2mhn = nh. (3.53)

Even for the state of minimal uncertainty — the ground state (n = 1) — we would then
have

AxApy ~h > g (3.54)
Furthermore, it should be noted that the density of the energy levels (3.47) increases with
m and a. This means that, when m and a are large (which is the case for macroscopic
objects), the quantum levels become approximately continuous.

At this point we are in the position to apply the general procedure of Subsec. 3.1.3
and find the time evolution of any initial wave function v (x,0) of a particle in a box. In
fact, we only have to expand ¥ (x, 0) into a series of the energy eigenfunctions v, (x) (see
Eq. (3.51)), i.e.

V(x,0) = ch(O)lﬂn(X), (3.55)

n

where

> e =1 (3.56)

n

for normalization reasons. Then, according to Eqgs. (3.25) and (3.26), we finally
have

Y. = e Ty (x,0)
= > cu(0e FE y (x)

=Y ealt)¥n(x)
_ */75 3 (O ™ sin (%x) (3.57)

where

—1 ﬁnzt
cn(t) = ¢ (0)e 2ma®™ (3.58)
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Cyclic property of the trace

This is a crucial property that we shall use on several occasions throughout the book. It states
that, in the case of the product of n operators (or square matrices), we have

Tr [01 ~02 0n] =1Tr [éné1 ~02 -~-0n_1:| o (3.59)

For square matrices of finite dimensions it is straightforward to prove Eq. (3.59). In particular,
we prove that it is true for n = 2, i.e.

Tr [éo ] —Tr [0 o] . (3.60)

In fact, we have

Tr [éé’] =" 040}, (3.61)
mj
since (00') = 3 o,-jo}’.k, and
Tr [é’é] =>"3"0,0n
nj
= Z Z Oj/'nonj
W

—Tr [aé’] , (3.62)

where we have interchanged the role of the indices n and . This result means that the trace of
any commutator is zero in the finite case. However, this does not hold true in the case of infi-
nite dimensions, where restrictive conditions on the trace must be considered. By induction,
it is trivial to generalize to the case of the product of n operators and obtain Eq. (3.59).

3.5 Unitary transformations
I

3.5.1 General properties of unitary operators

We have seen in Subsec. 3.1.1 how the state of a quantum-mechanical system at times
t > 1y is related to the initial state at ¢ = fy. In particular, following Eq. (3.16), we may
write

1Y) = e 70 (o)) = Oy |9 (10)) (3.63)

Therefore, the states at times ¢ and #y are connected by a class of transformations induced
by the Hamiltonian operator H,

19) > e 70|y, (3.64)

and these transformations are of the form U = €%, where a is a real constant and O a

Hermitian operator. They are unitary transformations. We have already met them in the
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last chapter, and, as we know (see Eq (2.34)), a unitary transformation is characterized by
the property that OUt=00 =1.

Now, we wish to show that unitary transformations possess some important properties,
which can be summarized as follows:

e First, unitary transformations preserve the scalar product between state vectors (see Sub-
secs. 2.1.2 and 2.2.5). This can be easily shown as follows. Let us take two state vectors
|¥) and | ¢) and a unitary transformation U such that

W) =Uly) and |¢)=Ulg). (3.65)
The, we have
W) =(v[070]¢) = wig). (3.66)

e Second, unitary transformations preserve the trace of an operator. We recall that any
normal operator can be written as (see Eq. (2.1) and Box 2.3: p. 51)

0= 0jloj)o;]. (3.67)
j

for some basis {| 0 j)} and where the numbers o; are not necessarily real. From this it
immediately follows that any transformation U on an operator O (see also Subsec. 8.1.1)
will act as

O Oy=>) oillo)lol;U" =UOU". (3.68)

As a consequence, we have
Tr (OU) = Tr (000*) = Tr (UTUO) = Tr (é), (3.69)

where we have made use of the cyclic property of the trace (see Box 3.1).

e Finally, unitary transformations may play the same role of canonical transformations
in classical mechanics, since they leave the canonical commutation relations (we call
the commutation relations between observables corresponding to canonically conju-
gate variables canonical commutation relations) invariant as — in classical mechanics —
canonical transformations leave Poisson brackets invariant (see Sec. 1.1, as well as also
Sec. 3.7 and Ch. 8). In fact, let

§'=0407 and p'=UpU°T (3.70)

be unitary transformations of the canonical observables g and p. Then,

(3.71)
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3.5.2 Beam splitters as unitary transformations

In this book we have largely made use of beam-splitting as a tool for introducing new
concepts. We wish now to show that the transformations induced by beam splitters are
unitary transformations. Let us consider the example represented in Fig. 3.8. In Fig. 3.8(a)
we consider a photon in the initial state

1
1) = ( 0 ) (3.72)

It is clear that, after the point P, the state will still be | 1). The same is if the incoming

photon is |2), given by
[2) = ( (1) ) (3.73)

Also in this case, the state will be the same after the geometrical point P. Consider now a
symmetric beam splitter, as in Fig. 3.8(b). It is clear that in this case we should have the
transformations

|1>H%<u>+z|2>), |2>H%(1|1>+|2>>. (3.74)

For this reason, we may write the action of a fifty—fifty beam splitter as

A 1 1 1
Ups = — . 3.75
B =5 [ L1 ] (3.75)
It is not difficult to see that this is an unitary transformation. Its transposed conjugate is
given by
\ 1 1 —
il
Uge = — . 3.76
BS ﬁ |: — 1 :| ( )
[2> 2>
[1> 1> [1> [1>
P
BS
[2> [2>

(@) (b)

(a) Scheme of input-output formalism. (b) Beam Splitters as unitary operators.
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We then have
. 1f2 o0 1 0
T
UBSUBS:E[O 2]:[0 1}, (3.77a)
e A 12 0 1 0
Ugsugszz[o 2]:[0 1]. (3.77b)

Transformation (3.75) may be generalized to an asymmetric beam splitter (see Prob. 3.12).
A slightly more complex example is represented by the polarization beam splitter (PBS)
(see Fig. 2.1). In this case, we have another degree of freedom, namely polarization. The
distinctive feature of a PBS is, e.g., that it reflects incoming photons of vertical polarization
and transmits those of horizontal polarization, independently from the incoming path. As
a consequence, there are four possibilities for the incoming and outgoing vectors, that is,
the four-dimensional system’s Hilbert space is spanned by the four kets

0
, (3.78a)

11, <) =

. 1LY =

. 12,8) = (3.78b)

12, ) =

— o O O o o -

- o oo O o =

0

The effect of the PBS can be represented by the following transformations on the basis
vectors

[1,<) = |l,«<), |L$)—1]2,3), (3.7%9a)
[12,<>) = [2,<), [2,3) — |1,¢). (3.79b)

These transformations can be expressed by the 4 x 4 matrix

1 0 00
Opps = 8 g ? .t (3.80)
0+ 00
whose transposed conjugate is
1 0 0 O
Ups = 8 g (1) N (3.81)
0 — 0 0
It is straightforward to verify that
Upps U = UppsUpps = 1, (3.82)

and that therefore 0sz is unitary.
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3.5.3 Time translations

As we have seen, the time translation operator (see Eq. (3.16))
O, = e~ i Ht=10) (3.83)

is the operator which describes the transformation from the state vector (or the wave func-
tion) at time 7o to the state vector (or the wave function) at time ¢. The inverse of the unitary
transformation U; describes a backward time translation. So, for example (for 7y = 0),

() = U y@) = U, 1y (0). (3.84)

Since lAlfl = lA]tT, we also have
U =0, (3.85)

which shows the forward-backward time symmetry in quantum mechanics. This implies
that the Schrodinger equation is invariant under time-reversal transformations if, together
with the substitution ¢ = —f, one also applies the replacement | ) +— (i |. In fact, taking
the Hermitian conjugate of Eq. (3.8) one has

ih

T (U= (y|H. (3.86)

We have shown (see Subsec. 2.1.1, in particular Eq. (2.16)) that scalar products between
state vectors represent probability amplitudes. For example, the expression (v | U, |@) is
the probability amplitude that, given an initial state | ¢), measures how close it evolves
unitarily to a final state | i) at time 7. If we take the complex conjugate of this expression
we obtain

(w10i19)) = (w019, (3.87)

The rhs of Eq. (3.87) represents the probability amplitude that a final state | y) (at time ¢)
evolves unitarily backwards to an initial state | ¢) (at time #yp = 0). In this context, we see
that kets may be thought of as input states, whereas bras as output states of a certain physi-
cal evolution or process. In particular, the expression (v | 0, | ¥) may be understood as the
probability amplitude that an initial state | ) remains unaltered after the unitary evolution
for a time ¢ and its square modulus is sometimes called the autocorrelation function.
From what we have seen above, given the Hamiltonian H of a quantum-mechanical
system and its initial state vector | (0)), the unitary operator 0, allows us to determine the
state vector at subsequent times ¢. However, in Subsecs. 2.1.1 and 2.1.3 we stated that
the measurement of any observable always gives as an outcome one (and only one) of
the eigenvalues of the associated operator with a certain probability. This seems to be in
contradiction with the unitary evolution of Eq. (3.63). Once again, this is the so-called
measurement problem in quantum mechanics, as no unitary evolution will ever be able to
account for an abrupt change of the state vector from an arbitrary superposition to one of
its components (see Probs. 3.13 and 3.14). Of course, given a certain superposition state, it
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is always possible to build an unitary operator that brings it to one of its components — an
example for this has been given in the previous subsection with the (polarization) beam-
splitter unitary transformations. However, this assumes that one already knows a priori
which superposition the system is in, i.e. that one already knows the initial state. In other
words, there is no way to find a unitary transformation which provides the observer with
the information that represents the final outcome of the measurement process (as it will be
shown in Subsecs. 15.2.2 and 15.3.2).

We can also approach this problem from a slightly different point of view. As we have
shown in Subsec. 2.1.2, finite-dimensional unitary transformations can be represented by
rotations of a given state vector (in the Hilbert space of the system) by a certain angle (e.g.
the BS unitary transformations considered in the previous subsection are by an angle of
90°). Now, given a certain superposition state, it is always possible to bring it to coincide
with one of its components with a suitable rotation by a given angle, but it is impossible
to bring any state vector to coincide with a certain component with a rotation by the same
angle (that is with the same unitary transformation).

As we shall see in Ch. 9, the above apparent contradiction can be approached by con-
sidering the non-unitary evolution represented by a measurement as a process occurring in
a subsystem which is part of a larger system whose evolution is nevertheless unitary.

3.5.4 Stone theorem

The fact that a unitary transformation can be cast into the form U =90

Let us consider following theorem:

is rather general.

Theorem 3.1 (Stone) Given a family U(a) of unitary operators, where a > 0 is a real
parameter; satisfying the semigroup property (see Subsec. 8.4.2)

U@U@)=Ua+a), (3.88)
then it is possible to write
U =e“9, (3.89)

where O is a Hermitian operator.

The Stone theorem ensures the existence of a Hermitian infinitesimal generator for an
Abelian group of unitary transformations. We have explicitly derived the unitary operator
Ux for spatial translations (see Eq. (2.130)), which can be considered a specific instance
of Eq. (3.89), where the momentum operator is identified as the generator of spatial
translations, a point, which will be the subject of Ch. 8.

We have already seen some further examples of unitary transformations when we have
dealt with the matrix U occurring in the change of basis (see Subsec. 2.1.2; see also Sub-
sec. 2.2.5) and with the diagonalization of an operator (in Subsec. 2.1.4). Other three
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examples of unitary transformations have been given by the beam splitter and polarization
beam splitter transformations, and the time translations, as we have seen in the previous
subsections.

It is also interesting to observe that any unitary operation on a two-level system
corresponds to a rotation of the Poincaré sphere (see Subsec. 1.3.3).

3.5.5 Green’s function

The elements of the time-translation unitary matrix can be written as

(k ‘ef}%l‘}(tfto)

j) =160, 13,0, (3.90)

where | j) and | k) are some state vectors. The functions G are called Green’s functions. In
order to appreciate their importance, let us start from Eq. (3.63), that is

| @) = e FAC 1y ey, (3.91)

which relates the state vector at time ' to the state vector at time ¢. If we multiply both

sides of Eq. (3.91) times <r’ ’ from the left and make use of the resolution of the identity in
the form 7 = Jdr|r)(r|, we obtain

W' ) =1 /er(r’,t’; r,)y(r,t), (3.92)

where we have made use of the tridimensional version of expression (2.107). Equa-
tion (3.92) represents an instance of Huygens’ principle: if the wave function ¥ (r, ) is
known at a time 7, it may be found at any later time ¢’ by assuming that each point r at time
t is a source of waves which propagate outward from r. The strength of the wave ampli-
tude arriving at point r’ at time ¢’ from the point r will be proportional to the original wave
amplitude v (r, ) and the constant of proportionality is given by :G(r’,¢’;r, ). Morevoer,
Eq. (3.92) is a consequence of the first-order character of the Schrodinger equation and of
its linearity: the knowledge of ¥ (r, ¢) for all values of r and one particular ¢ is enough to
determine v (r’,¢") for all values of r’ and any (subsequent or previous) time ¢/, and the
relation between the two wave functions is linear.

Green’s functions are related to the resolvent of the Hamiltonian through the fact that
the latter is the Fourier transform of the relative unitary operator, i.e.

+oo
Rym =1 / dre e #HT (3.93)
0
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where 7 = ¢/ — ¢. If O is a linear operator in the Hilbert space H, the resolvent R o) is
the operator-valued function'3

Ro(m =0 -m~". (3.94)

The function is defined for all complex values of 1 for which (0 — n)~! exists. Coming
back to the case of the Hamiltonian, and making use of the projectors P; on the j-th’s
eigenvalues of H, we have

>
>

= . (3.95)
Ej—n

This allows to interpret the projectors P; as the residues of the closed contour f; in the

complex plane eta enclosing the point E; located on the real axis of the complex plane

(see Fig. 3.9), that is,

~ 1 ~
= —— & dyR, ). 3.96
i =5 i nRy; () (3.96)

or, for the continuous part of the spectrum,
L 1 .
P(A)) = —f dnR 5 (), (3.97)
2m Jyag)

where the projectors P(A)) project on a small interval arounf the continuous eigenvalue
E ;. In the case of a free particle (Hy = p2/2m = h>k?/2m), the Hamiltonian has a pure
continuous spectrum in the interval [0, +00) and for this reason its resolvent

“ 1
Rp,(n) = — (3.98)
Hy—n

complex plane 7

Ji
JLEN ,
v real axis

The projector P; as the residue of the closed contour £; in the complex plane eta enclosing the
point E;.

13 For the problem of the spectrum of O and of the values of n, see [Prugovecki 1971, 475, 520-21] [Taylor/Lay
1958, 264-65].
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is defined for all values of 7 that are not in the spectrum, and is a bounded operator (see
Eq. (2.7)) defined on the entire Hilbert space whenever 3%i(n) < 0 or J(n) # 0, i.e. when
the argument of 1 is within the open interval (0, 27). Using Green’s functions, we can then
write the evolution of a free particle in space and time in the form'*

Y’ 1) =1 /ero(r’,t’; rOv(r,e), (3.99)

for ' > t and for all values of 0 < n < 27. Gy is called the free Green function and its
explicit expression is

Y m 2 tmlr’/fl'\2
G()(I’ , 1 ;r,l) = —1 [m] e 2h'=n) (3100)

3.6 Different pictures
|

So far we have treated the operators associated to quantum-mechanical observables as
time—independent quantities. Only the state vectors evolve according to the Schrodinger
equation. For instance, the expectation value (see Eq. (2.78)) (¢ | 0 |¥) depends on time
only because | ) is a function of time. This way of looking at the time evolution is called
the Schrodinger picture. However, it is not the only way of dealing with time evolution. In
the present section we shall look at two additional pictures, the Heisenberg and the Dirac
pictures. Needless to say, the physical quantities (probabilities, expectation values, etc.)
will not depend on the picture chosen to represent time evolution of physical systems.

3.6.1 Heisenberg picture

In the Heisenberg picture the time dependence is completely transferred from the state
vector to the observable. Let us consider the expectation value of an arbitrary observable
O in the Schrodinger picture, which can be written as

W05 1y@)s, (3.101)

where the subscript S for the states and the superscript S for the observables denote the
Schrédinger picture, and OS does not explicitly depend on time. Using Eq. (3.63), this
expectation value may be written as

sWD108 1Y) s = WO U 05T, |y(0) s = 5 (W1 0N [ ¥) . (3.102)

where

14 Further details regarding the subject of this subsection can be found in [Bjorken/Drell 1964, 78-89]
[Prugovecki 1971, 520-42].
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[Y)u=1¥(0)s (3.103a)

is the state vector in the Heisenberg picture and
oM = U 050, (3.103b)

is the time-dependent observable in the Heisenberg picture. It should also be empha-
sized that, according to Eqgs. (3.103), the transformation from the Schrodinger picture to
the Heisenberg picture is unitary and therefore leaves matrix elements and commutation
relations invariant. From Eq. (3.103b) it follows that (see Prob. 3.15)

HY=AS=A. (3.104)

To find the equation of motion for the observable, let us consider the time derivative of
Eq. (3.102). We have

d NP
= (s w10, 050, 1y Ops)

8050 0
o Ut [ (0)) s

1
h

=5 (¥ (0] (%ﬁﬁ}ésa —0/650,H+ 0]
1 A A 0 A

=q Wi =I#, 0"+ =0"®") ) 1v)q, (3.105)
h ot

where use has been made of Eqs. (3.103) and of the definition (2.86). The term 905 /ot
will be different from zero only when oS explicitly depends on time. Since the expectation
value of an observable cannot depend on the chosen picture, the rhs of Eq. (3.105) must be
equal to

d n
A oMn vy (3.106)

for any state vector | 1) . Therefore,
d ~p 3 Ap AH s 1
th=-0%(t) = 1h=-0 (r)+[0 (t)H]. (3.107)

Equation (3.107) could also have been derived by direct differentiation of Eq. (3.103b) (see
Prob. 3.16).

If the operator O does not depend explicitly on time in the Schrédinger picture,'> then
the first term of the rhs of Eq. (3.107) will be dropped, yielding

d AH _ AH 2
th=-0M(r) = [0 ), H]. (3.108)

15 An explicitly time-dependent operator corresponds to a quantity which is classically time-dependent.
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Equation (3.108) is known as the Heisenberg equation and is the counterpart of the
Schrodinger equation in the Heisenberg picture. From Eq. (3.108) we also learn the impor-
tant fact that an observable which does not explicitly depend on time and which commutes
with the Hamiltonian is a conserved quantity or a constant of motion, as happens in the
classical case (see Prob. 1.4).

Most importantly, Eq. (3.108) resembles very closely the classical canonical equations
of motion (1.8). In fact, Eq. (3.108) can be obtained from Eqgs. (1.8) with the substitution

1
{}— =[] (3.109)
ih

This may be considered as a formal rule when passing from classical mechanics to quan-
tum mechanics. For instance, if the Poisson bracket between a classical variable and the
Hamiltonian is zero, this variable is a conserved quantity. For this reason, the Heisenberg
evolution is formally similar to the classical time evolution. In fact, in classical mechanics
there is no analogue of the Schrodinger evolution, or more precisely, this coincides with the
“Heisenberg” evolution, since the state itself is just a collection of properties and therefore
is itself an observable (see Sec. 1.1 and Subsec. 2.3.3).

Equations (3.107)—(3.108) may be also rewritten in terms of the expectation values as
follows:

th i

dt
where the analogue of Eq. (3.108) is obtained when the first term of the rhs of Eq. (3.110)
is zero.

<éWﬂ>=zh&%éH0»+%[éH0Lﬁ}» (3.110)

3.6.2 Dirac picture

The Dirac or interaction picture is very useful when the Hamiltonian can be split into a free
part Hy and an interaction part Hj, i.e.

H = Hy+ H, (3.111)

where, in general, both [I:I s I:IO] and [I:I R I:II] are different from zero and I:IO does not
explicitly depend on time.

In the interaction picture the time evolution is partly shared by both the state vector and
the observable. In fact, we define

W@y = Uy, 19 @)s, (3.112)

where 01101 =m0 In order to establish the corresponding transformation for the
observables, we need to write the expectation value of an arbitrary observable 0, as we
have done in the case of the Heisenberg picture. This time we have

sWO1051y®) s = (WO1U0];, ,050n,, | ¥ @)y = (W®)| O'®) |y (®)y, (3.113)
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so that the observable in the interaction picture is related to the corresponding observable
in the Schrodinger picture by the unitary transformation

0't) =0}y ,05Un,.. (3.114)

The first consequence of Eq. (3.114) is that the free part of the Hamiltonian is invariant
under the transformation to the interaction picture, i.e.

A} = A5 = Ay, (3.115)
while
Al = 0] A0, (3.116)

is in general different from I-Alg By differentiating Eq. (3.112) one obtains the evolution
equation for the state in the Dirac picture (see Prob. 3.19)

d .
th V() = A ) 1Y), (3.117)
where
Al(t) = en 0! fre= i ot (3.118)

Similarly, differentiating Eq. (3.114), one obtains the equation of motion for the observable
in the Dirac picture (see Prob. 3.20)

d » 3 . .
1h—O0\t) = 1th— O'(t) + [0' (1), Ho), (3.119)
dt Jt
where
d A N I
5,010 =Up, (5,0%) Unis- (3.120)

We should finally emphasize that the transformations to the Heisenberg or the Dirac pic-
tures teach us that neither state vectors nor observables have a predominant role in the
structure of the theory: it is possible to shift the time dependence from one to the other
simply by applying a unitary transformation. As we have seen, the quantities which must
remain invariant under these transformations are the matrix elements which represent
probability amplitudes and therefore are the essential physical content of the theory.
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3.7 Time derivatives and the Ehrenfest theorem
|

We have seen (Subsecs. 1.2.3 and 2.3.3) that true trajectories cannot be defined in quan-
tum mechanics. This is so because a physical quantity which has a well-defined value at
a certain time will not necessarily be determined at a subsequent time. As a consequence,
we cannot define the time derivative of an observable in the way we are used to in classical

mechanics. The most natural way to define the time derivative O of a quantum-mechanical

observable O in the Schrodinger picture is to assume that its expectation value <0) is equal

to the time derivative of the expectation value of é, 1.€.

2 d ~
sW10%19)s = - (s W10%1y)s). (3.121)

Obviosuly, since we are dealing with this problem in the Schrodinger picture, the observ-

able O does not evolve. The rhs of Eq. (3.121) may be easily computed by using
Eq. (3.8) and its Hermitian conjugate, and gives

~ 1

d . .

= (s (WIOSMNs)—s(lﬂI( A0S -
A A 0 A

=g(¥| <%[H, 051 + —05> [¥) . (3.122)

Since we have assumed that the lhs of Eq. (3.122) has to be equal to ¢ (| (55 | ) g for
any state vector | ) 5, we finally obtain

~S 0 Ag Ag A
th O :zhEO +[0>, H]. (3.123)

Eq. (3.123) is very similar to Eq. (3.107) but has a rather different meaning: apart from
the 1/ factor, the lhs of Eq. (3.107) represents the time derivative of the operator O in the
Heisenberg picture, whereas the lhs of Eq. (3.123) is the operator corresponding to the time
derivative of the observable O in the Schrodinger picture.

Let us now consider the case 05 = Dx in Eq. (3.123). Then we have

~

px = llh [px,ﬁ], (3.124)

since p, does not explicitly depend on time. Apart from the factor ¢4, Eq. (3.124) is for-
mally similar to the corresponding classical equation (1.8) if one replaces the classical
Poisson brackets (1.9) with the quantum commutator (see Subsec. 2.1.5 and Eq. (3.109)).
Moreover, if we apply the commutator [ﬁx,PAI ] to a generic wave function ¥ (x), we
obtain

N B OH
[Px, H] Y(x) = —1h ( Hyr(x) - H—l//(X)) = —th—y(x), (3.125)
0x 0x
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where we have made use of Eq. (2.134) for the one-dimensional case. It follows that

5 dH
Dx=——. (3.126)
ax
In a similar way, starting from
~ 1 N
= [x H], (3.127)
th
we arrive at (see Prob. 3.21)
. 0H
X = . (3.128)
Opx

Both Egs. (3.126) and (3.128) resemble the second Hamilton equation of motion (1.7), with
the crucial difference that momentum and position are operators in quantum mechanics
and numbers in classical mechanics. Egs. (3.126) and (3.128) are the content of what is
called the Ehrenfest theorem. The difference between quantum and classical mechanics
is manifest by the following considerations. The analogy with classical mechanics should
not be taken so extensively as to believe that the quantum—mechanical expectation values
follow classical equations of motions. In fact, if this were the case, we should have

2 0 A A
(Px)=—g ((%). (Ax)) - (3.129)
On the other hand, from Eq. (3.126) we have
2 0 A~ n a
<Px> =— <5H (x,px)>, (3.130)

which has not the same meaning of Eq. (3.129). Egs. (3.129) and (3.130) would coincide
only in the case when 9 H /dx is linear in £ and p,, i.. it is of the form aX + bpy + c,
where a, b and ¢ are constants and for which the function of the expectation values is equal
to the expectation value of the function. This condition is fulfilled by potential energies
which are polynomials of at most second degree in the position X, as it is the case for the
free particle and the harmonic oscillator [see Secs. 3.4 and Sec. 4.4].

3.8 Energy-time uncertainty relation
|

Time in ordinary non-relativistic quantum mechanics — as in classical mechanics [see also
Box 4.1: p. 152] - is essentially an external parameter, measured by classical clocks, by
means of which we “label” the dynamics of a system. The Schrodinger equation in its
current form only makes sense if we assume that space—time is “non-dynamical,” i.e. it is
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not affected by the quantum—mechanical evolution of the system under study.'® In other
words, together with the three-dimensional ordinary space, time constitutes the “fixed”
background which quantum mechanics is built on.

When considering the relationship between time and energy, we find a certain analogy
with the position—-momentum relationship. In fact, as momentum is the physical quantity
that is conserved under space translation (momentum is the generator of the group of spatial
translations) (see Subsec. 2.2.4), energy is the physical quantity that is conserved under
time translations (and for this reason it is the generator of the group of time translations)
(see Subsec. 3.5.3). It is then natural to expect that the position—-momentum uncertainty
relation has a counterpart in a time—energy uncertainty relation. As we shall see, it is indeed
possible to write a sort of time—energy uncertainty relation, but its physical meaning has to
be taken with extreme care.

Let us start with the simple example of the one-dimensional plane wave. The momentum
of a plane wave is essentially a wave number (see Eq. (2.140)) and the position—-momentum
uncertainty relation basically describes the fact that one cannot localize a plane wave that
intrinsically extends over the whole space. Analogously, energy is basically a frequency
(see Eq. (1.25)) and therefore cannot be localized in time. As a consequence, the classical-
wave Fourier relation AtAv > (27)~! would directly translate into

AEAt > h. (3.131)

Superposing a large number of one-dimensional plane waves one obtains a wave packet
of, say, width Ax and group velocity v, (see Box 2.6: p. 80). As a consequence, the exact
time at which the wave packet crosses a certain point is defined with an uncertainty

NAx

At ~ (3.132)

v
g
On the other hand, the wave packet has an energy uncertainty AE due to its spread in
momentum space

0E
AE ~ Apy = vgAp,. (3.133)
dpx
The two previous equations yield
AtAE >~ AxApy. (3.134)

By using the momentum-—position uncertainty relation, we derive

AEAt > —, (3.135)

| =

which limits the product of the spread AE of the energy spectrum of the wave packet and
the accuracy At of the prediction of the time of passage at a given point.

16 This is different from what happens in general relativity theory, which assumes that the evolution of the
system and the structure of the space—time are self-consistently correlated and where the dynamical equations
determine both the structure of space—time and how the system evolves.
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However, There are several features which make Eq. (3.135) profoundly different from

Eq. (2.190):

Einstein’s box

At the sixth Solvay Conference in 1930, Einstein proposed a device consisting of a box with
a hole in one of its sides and a shutter moved by means of a clock inside the box [Bohr
1949, 224-28]. If in its initial state the box contains a certain amount of radiation and the
clock is set to open the shutter after a chosen short interval of time, it could be achieved
that a single photon is released through the hole at a moment which is known as exactly
as desired. Moreover, if we weigh the box before and after this event, we could mea-
sure the energy of the photon as exactly as we want, against the time-energy uncertainty
relation.

Bohr’s reply (see Fig. 3.10) was that any determination of the position of the balance’s
pointer is given with an accuracy Ax, which will involve an uncertainty Ap, in the control
of box” momentum according to Eq. (2.190). This uncertainty must be smaller than the total
momentum which, during the whole interval §t of the balancing procedure, can be imparted
by the gravitational field to a body with mass Am, i.e.

Apy < 8t-g-Am, (3.136)

where g is the gravity constant. The greater the accuracy of the reading x of the pointer,
the longer must the balancing interval §t be if a given accuracy Am of the weight is to be
obtained. But according to the general relativity theory, when a clock is displaced in the
direction of the gravitational force by an amount Ax, its rate will change in such a way that
its reading in 8t will differ by an amount At given by

At 1
By substituting the value of 5t given by Eq. (3.137) into Eq. (3.136) we obtain
2
c-AtAm
A _— 3.138
Px < AX ( )
Finally, by applying Eq. (2.190) again with the equality sign, we obtain
At . 3.139
" 2am ( )
This, together with Einstein’s formula
E=mc, (3.140)

gives Eq. (3.131). We note that Bohr’s argument - different to some of Bohr’s formulations
of complementarity [Bohr 1948] - is based upon a quantum-mechanical interpretation of the
pointer, which is suitable because a device measuring a single photon must obey quantum
laws (see Ch. 9).



133

3.8 Energy-time uncertainty relation

|

A graphical representation of the apparatus proposed in the Einstein-Bohr debate to test
Eq. (3.135). Adapted from [Bohr 1949, 227]. See Box 3.2.

o First, time is not an observable of the system in ordinary quantum mechanics. Therefore,
we cannot introduce in a naif way a time operator (see Sec. 3.9), and Eqgs. (2.184) cannot
be directly translated into a definition of Ar.

e Second, the position—-momentum uncertainty relation expresses the fact that a valid state
in quantum mechanics cannot display simultaneously certain values of Ax and Ap, that
violate Eq. (2.190). On the contrary, the energy of a system can be determined with
arbitrary precision at any time.

e Finally, in Eq. (2.190) we consider two simultaneous measurements of position and
momentum, whereas in Eq. (3.135) we consider the energy and the time of passage at a
given point. In other words, the two uncertainty relations express two different and, in a
certain sense, incompatible viewpoints.

Another way of looking at the problem of energy and time uncertainties is to derive
the uncertainty relations by considering a generic observable O of the quantum system.
According to Eq. (2.200), the uncertainty relation between the observable O and the
energy is
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(AyE) - (Ay0) = % va ‘[HO] w}\ (3.141)

On the other hand, making use of Eq. (3.108) and the reduced form of Eq. (3.110), the
mean value of the commutator [é(t), H ] is related to the rate of change of the mean value

of O by

<1p ’[é(r), H]( w) - zh% <w )é(x)’ w), (3.142)

where the evolution is in the Heisenberg picture but we have dropped the superscript H for
the sake of notation. We may then combine Egs. (3.141) and (3.142), obtaining

(AyE) - (Ay0) = ; z%w ‘é(r)‘ w)‘ (3.143)

Dividing both sides of Eq. (3.143) by the absolute value of the rate of change of
<1p (é(t)’ w), we obtain

(44 0)

S T lowly]

h
> . 3.144
z 5 ( )

However, the time Ayt required for <1ﬂ ‘é‘ I/f> to change from its initial value (at a given
time ¢ = 7o) by a small positive amount Ay, O, neglecting higher-order terms in the Taylor
expansion of O(t), is given by

~ (ay0) .
Ayt = Ty lowlv] <w ‘é(z)‘ w) t:to, (3.145)
where
%(zﬁ ‘O(r)‘ w) -0, (3.146)

which leads to Eq. (3.135). In this case, the uncertainty relation between time and energy
connects the energy uncertainty to a time interval that is characteristic of the system’s rate
of change.

An important application of Eq. (3.135) is the lifetime-width relation for unstable sys-
tems (radioactive nuclei, excited states of atoms, unstable elementary particles, etc.), i.e.
systems which are not stationary and do not correspond to a well-defined value of the
energy but rather to an energy spectrum with a certain spread AE, called the level width.
The mean lifetime 7 of the stable (or metastable) state here plays the role of the character-
istic time considered above: One must wait (on average) for a time of order t to observe
an appreciable change in the properties of the system. As a consequence,

TAE >~ h. (3.147)

Sometimes, Eq. (3.135) is interpreted in the context of energy measurements in general.
In this case, the accuracy AE of the energy measurement is connected with the time A¢
required for the measurement itself.
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Finally, an alternative approach to the problem is to consider the time as a proper dynam-
ical observable of the system. In this case, we should provide an operatorial expression for
time. Even though it is not straightforward to give a general formulation for a time oper-
ator, specific derivations are viable. In the next section we shall consider the so-called
time-of-arrival operator.

3.9 Towards a time operator

- _______________________________________________________________________________|
Von Neumann'” assumed that every observable can be represented by a self-adjoint oper-
ator (see Th. 2.1: p. 46). Though this must be correct in principle, the enterprise to build
a valid operational representation of a given physical quantity may result very difficult
in practice, as we shall see in this section. For instance, Wigner'® showed that it is very
difficult to find univocal quantum-mechanical counterparts to some simple classical expres-
sions such as xp, or x> p)%. This is obviously due to the non-commutability of position
and momentum in quantum mechanics, which makes these expressions not self-adjoint
operators.

As we have already mentioned, in quantum mechanics time can be considered from two
points of view: as an external ordering parameter, for example representing the measur-
ing time as indicated by an apparatus that is external to the measured system; and as an
observable of the system itself, in particular as a variable which depends on the initial state
of the system and on its dynamical evolution. In this section we are interested in the second
interpretation.

A condition that one may reasonably impose on a time operator  is

(W) i v @) — (@) T ¥ () = 11 — 1o, (3.148)

for any | ¥ (#1)), | ¥ (#2)) . However, Pauli!® showed that it is impossible to find a time oper-
ator ¢ such as to satisfy a commutation relation of the form [7, H ] = —1h, where time and
energy are conjugate observables. In fact, this would conflict with the requirement that
energy is bounded from below, i.e. the Hamiltonian operator does not possess a continuous
spectrum from —oo to 400 (see Box 2.1: p. 47) — it must be so if we want a ground state
of energy. Pauli’s argument can be formulated as follows. Let | WE> be an eigenstate of the
Hamiltonian H , such that

H|y,) =E|y,). (3.149)
Then, we also have (see Prob. 3.22)

He " |y,) = (E —ah) e |y,), (3.150)

17 See [von Newmann 1932, 163-71] [von Neumann 1955, 324-25].

18 See [Wigner 1952].

19 See [Pauli 1980, 63]. See also [Paul 1962] [Engelmann/Fick 1959, Fick/Engelmann 1963a, Fick/Engelmann
1963b].
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where « is an arbitrary constant. As a consequence, also eol | ‘ﬁ5> is an eigenstate of the
energy with eigenvalue E — a/i, and the spectrum of H cannot be bounded if [/, H] = —ih
must hold.

A possible solution of this problem is to consider specific formulations of a time oper-
ator. One of these is known as time-of-arrival operator®® In this case we consider the
time-of-arrival of a particle at a detector in a fixed position X, a trade-off between an
observable property of the system and an operational procedure on the system.

If we try to find a spectral decomposition of  according to Eq. (2.20), we encounter an
immediate difficulty: for an arbitrary self-adjoint operator O we have

+00

/doﬁ(o) =1, (3.151)
—00
while we have no reason for thinking that the same is valid for a “time” operator. In fact, it is
not true that any state of a given system is certainly detected at some time, that is, we cannot
impose as a property of the system that it will be detected at some time. Then, the spectral
family P(t)is incomplete and we should say that 13; only projects into the subspace Hp —
of the original Hilbert space H of the system — formed by the states detected at some time
at position X of a given detector. If we try to define P(t) on the entire state space, we
cannot distinguish between the initial state of the system (when it cannot be detected), i.e.
when P (t = 0), and the states in the space Hp that are never detected (indeed these are all
annihilated by 7).
Let us now consider a classical non-relativistic free particle in one dimension. The time-
of-arrival of a particle with initial position x° and initial momentum pg, detected at position
X can be written

m(X — xO)
(X)=——H— (3.152)
Dx
as a time—space inversion of the classical equation of motion
pO
x(1;x°, pY)y = 221 4 X0, (3.153)
m

Note that, except for the problem at pg = 0, the particle is always detected. In the
Heisenberg picture for a quantum system we may write Eq. (3.152) as

m(X — %)

~0 s
X

1(X)= (3.154)
which is of course problematic because £° and 5 do not commute. In order to cure the
problem, we try to construct a symmetric ordering for the operator in Eq. (3.154) in the
following manner:

N mX I, 1

VNG

20 See [Grot et al. 1996]. The idea of a time-of-arrival operator was originally developed by Allcock [Allcock
1969].
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or
= L4 L mX (3.156)
= Uk dky f ‘
where /k; = 1./]k;]| for k < 0. Note that the 1-parameter family of operators #(X) can be
generated unitarily via translations of the form

1(X) = X7 (0)e X, (3.157)

where e~*%+X is the space counterpart of Uy (see Subsecs. 3.5.3 and 3.5.4).

Therefore, without loss of generality, it suffices to study the operator 7(0) with the detec-
tor placed at the origin (X = 0). Hence from now on we drop the explicit X-dependence

of f and write

jom L d 1 (3.158)
=T UK, dke VR '

where the time-of-arrival operator should satisfy the condition
f)ty = t|t), (3.159)

and the | ) ’s are the eigenkets of £, so that, in the momentum representation, the eigenvalue
equation for  becomes

A m 1 d 1
t(kx|t)=|:— E\/__%\/_] (ky |ty =t (ki | 1). (3.160)
The biggest difficulty with such a time operator is that we have a singularity at the point
ky = 0. We may circumvent this singularity by means of a family of real bounded con-
tinuous odd functions f(k) which approach 1/k, pointwise, where € is a small positive
number. In this way we can overcome the problem of the singularity and construct a self-
adjoint time-operator as a sequence of operators which are not themselves self-adjoint. We
may choose

Se(kx )— forlk | > e, (3.161a)

)C

fulky) = € 2k, for [ky| < €. (3.161b)

The “regulated” time-of-arrival operator becomes

= 1=Vl s erac ) (3.162)

It is possible to show?! that the following commutation relation between time and energy
holds:

[r;, H] — —ih(f — ge(ky)), (3.163)

21 See the original article for details.
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where
gelky) = 1 — ky fe (k). (3.164)

The function g (k) vanishes for |k,| > €, and in the small interval where it has support, it
is bounded by 1, if we choose fc(k,) as in Egs. (3.161). For a particle in the state | 1) the
resulting energy—time uncertainty relation is

2
h 2
2

(A1e)* (AE)? > 7 (= (W lgeka)l ¥)) (3.165)

which implies that, for sufficiently small € and for all states with support away from the
origin, we have At AE > h/2, in accordance with Eq. (3.135).

Summary
- ____________________________________________________________________________|

In this chapter we have developed the basic features of quantum dynamics. We may
summarize the main results as follows:

e The quantum dynamical evolution equation is the Schrddinger equation, which is a first-
order differential equation whose solution provides the state vector at any time r when
the Hamiltonian A and the state vector at 7 = 0 are known.

e In order to solve the Schrodinger equation it is first necessary to find the stationary
states, i.e. the eigenstates of the Hamiltonian operator, and then expand the initial state
in terms of the stationary states.

e The Schrodinger equation is invariant under Galilei transformations.

e As a first example we have solved the quantum dynamics of a one-dimensional particle
in a box, i.e. we have found the energy eigenstates and the corresponding eigenvalues.

e The evolution determined by the Schrodinger equation is unitary. This guarantees the
reversibility of elementary quantum dynamics.

e Time evolution in quantum mechanics can be represented in different pictures. However,
physical quantities, such as probabilities, expectation values, etc., will not depend on the
chosen picture. If we keep the observables fixed and let the states evolve, we have the
Schrodinger picture; if we keep the states fixed and let the observables evolve, we have
the Heisenberg picture; and, finally, if we split the Hamiltonian into a free part and an
interaction part, and therefore let both observables and states evolve, we obtain the Dirac
picture. Transformations from one picture to the other are unitary.

e The Ehrenfest theorem shows that there is a formal analogy between the classical and
quantum-mechanical equations of motion.

e The uncertainty relation between energy and time has been derived.

e A self-adjoint representation of time — as a dynamical variable that is intrinsic to the
system — has been presented.
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Problems
|

3.1 Derive Eq. (3.9) from Eq. (3.8).
(Hint: Multiply both sides of Eq. (3.8) by (x| from the left and show that

A~ A~ A~ 2
(x| H|v¥) = H (x| ¥). For the last step write H = ;—”"1 + V(x) and expand |v)
into the eigenvectors | px) of p, (see Subsecs. 2.2.4-2.2.5).)
3.2 Prove that if |y) and

1,0/> are solutions of the same Schrodinger equation, also
cly) + ¢ ) 1///> is a solution, where ¢ and ¢ are arbitrary complex coefficients with
le]? 4+ |c’|2 =1.

3.3 Find the stationary states for a free one-dimensional particle.

3.4 Write Egs. (3.20) and (3.21) in terms of the wave function in the momentum
representation.

3.5 Show that an initial normalized wave function will stay normalized under time
evolution.

(Hint: Take advantage of Eq. (3.26).)

3.6 Prove that the wave function describing the ground state for a one-dimensional
particle is even when the potential V (x) is even.

(Hint: Take advantage of the continuity of the wave function and of properties (ii)
and (iv) of the one-dimensional motion in Subsec. 3.2.3.)

3.7 Solve the time-dependent Schrodinger equation for a one-dimensional free particle
whose state at time ¢t = 0 is described by the wave function (x,0) = f dk c(k)e’k",
where 27 [ dk|c(k)|* = 1.

3.8 Consider a traveling-wave solution ¥ (x,#) = C i (Px of the free-particle one-
dimensional Schrodinger equation (3.11) and its transformed ¥'(x’, t") under Galilei
transformations x = x” 4+ V¢ and r = ¢’. Show that ¥’ (x’, ') satisfies the correspond-
ing Schrodinger equation for the primed variables. This result ensures the invariance
of the Schrodinger equation under Galilei transformations.

3.9 Compute the normalization constant A = 1/2/a for the energy eige