
DIFFERENTIAL EVOLUTION

In Search of Solutions

Optimization and Its Applications

VOLUME 5

Managing Editor
Panos M. Pardalos (University of Florida)

Editor—Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques have
been developed, the diffusion into other disciplines has proceeded at a rapid
pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization is
the constantly increasing emphasis on the interdisciplinary nature of the field.
Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications publishes
undergraduate and graduate textbooks, monographs and state-of-the-art
expository works that focus on algorithms for solving optimization problems
and also study applications involving such problems. Some of the topics
covered include nonlinear optimization (convex and nonconvex), network
flow problems, stochastic optimization, optimal control, discrete
optimization, multi-objective programming, description of software
packages, approximation techniques and heuristic approaches.

DIFFERENTIAL EVOLUTION

In Search of Solutions

By

VITALIY FEOKTISTOV

1 3

Library of Congress Control Number: 2006929851

ISBN-10: 0-387-36895-7 e-ISBN: 0-387-36896-5

ISBN-13: 978-0-387-36895-5 e-ISBN-13: 978-0-387-36896-2

Printed on acid-free paper.

AMS Subject Classifications: 68W01, 68W40, 90C26, 90C56, 90C59, 68T05, 90C30, 65Y20,
65Y05, 65B99, 49Q10

 2006 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

to my dear teachers and disciples

Contents

1 Differential Evolution . 1
1.1 What Is Differential Evolution? . 1
1.2 Its History and Development . 2
1.3 What Purpose Does It Serve? . 7
1.4 The Famous Algorithm . 13
1.5 Secrets of a Great Success . 17
Problems . 21

2 Neoteric Differential Evolution . 25
2.1 Evolutionary Algorithms . 25
2.2 Problem Definition . 28
2.3 Neoteric Differential Evolution . 28
2.4 Distinctions and Advantages . 30
2.5 Mixed Variables . 32
2.6 Constraints . 33

2.6.1 Boundary Constraints . 33
2.6.2 Constraint Functions . 34

Problems . 37

3 Strategies of Search . 41
3.1 Antecedent Strategies . 41
3.2 Four Groups of Strategies . 42

3.2.1 RAND Group . 44
3.2.2 RAND/DIR Group . 44
3.2.3 RAND/BEST Group . 45
3.2.4 RAND/BEST/DIR Group . 46
3.2.5 On the Constant of Differentiation 46

3.3 Examples of Strategies . 47
3.3.1 RAND Strategies . 47
3.3.2 RAND/DIR Strategies . 51
3.3.3 RAND/BEST Strategies . 56

viii Contents

3.3.4 RAND/BEST/DIR Strategies . 58
3.4 Tests . 63
Problems . 66

4 Exploration and Exploitation . 69
4.1 Differentiation via Mutation . 70
4.2 Crossover . 70
4.3 Analysis of Differentiation . 71
4.4 Control Parameters . 73

4.4.1 Diversity Estimation . 73
4.4.2 Influence of Control Parameters . 75
4.4.3 Tuning of Control Parameters . 76

4.5 On Convergence Increasing . 77
Problems . 79

5 New Performance Measures . 83
5.1 Quality Measure (Q-Measure) . 83
5.2 Entropy . 85
5.3 Robustness Measure (R-Measure) . 86
5.4 Population Convergence (P-Measure) . 86
Problems . 89

6 Transversal Differential Evolution . 91
6.1 Species of Differential Evolution . 91
6.2 Two-Array Differential Evolution . 92
6.3 Sequential Differential Evolution . 93
6.4 Transversal Differential Evolution . 94
6.5 Experimental Investigations . 95
6.6 Heterogeneous Networks of Computers . 97
Problems . 100

7 On Analogy with Some Other Algorithms 101
7.1 Nonlinear Simplex . 102
7.2 Particle Swarm Optimization . 104
7.3 Free Search . 106
Problems . 109

8 Energetic Selection Principle . 111
8.1 Energetic Approach . 111
8.2 Energetic Selection Principle . 113

8.2.1 Idea . 113
8.2.2 Energetic Barriers . 113
8.2.3 Advantages . 116

8.3 Comparison of Results . 117
Problems . 119

Contents ix

9 On Hybridization of Differential Evolution 121
9.1 Support Vector Machine . 121
9.2 Hybridization . 123
9.3 Comparison of Results . 125
9.4 Some Observations . 129
Problems . 132

10 Applications . 133
10.1 Decision Making with Differential Evolution 133

10.1.1 Aggregation by the Choquet Integral 134
10.1.2 Classical Identification Problem . 135
10.1.3 Implementation and Comparison of Results 136

10.2 Engineering Design with Differential Evolution 139
10.2.1 Bump Problem . 139
10.2.2 The Best-Known Solutions . 139
10.2.3 Implementation and Comparison of Results 141

11 End Notes . 145

A Famous Differential Evolution . 149
A.1 C Source Code . 149
A.2 MATLAB Source Code . 153

B Intelligent Selection Rules . 157

C Standard Test Suite . 159
C.1 Sphere Function . 159
C.2 Rosenbrock’s Function . 159
C.3 Step Function . 160
C.4 Quartic Function . 162
C.5 Shekel’s Function . 162
C.6 Rastrigin’s Function . 163
C.7 Ackley’s Function . 163
C.8 Rotated Ellipsoid Function . 164

D Coordinate Rotation of a Test Function . 167

E Practical Guidelines to Application . 171

References . 173

Index . 187

Preface

Differential evolution is one of the most recent global optimizers. Discovered
in 1995 it rapidly proved its practical efficiency. This book gives you a chance
to learn all about differential evolution. On reading it you will be able to
profitably apply this reliable method to problems in your field.

As for me, my passion for intelligent systems and optimization began as far
back as during my studies at Moscow State Technical University of Bauman,
the best engineering school in Russia. At that time, I was gathering material
for my future thesis. Being interested in my work, the Mining School of Paris
proposed that I write a dissertation in France. I hesitated some time over a
choice, but my natural curiosity and taste for novelty finally prevailed. At
present, Docteur ès science en informatique de l’École des Mines de Paris, I
am concentrating on the development of my own enterprise. If optimization is
my vocation, my hobbies are mathematics and music. Although mathematics
disciplines the mind, music is filled with emotions. While playing my favorite
composition, I decided to write this book.

The purpose of the book is to give, in a condensed but overview form, a
description of differential evolution. In addition, this book makes accessible
to a wide audience the fruits of my long research in optimization. Namely,
I laid the foundation of the universal concept of search strategies design,
suitable not only for differential evolution but for many other algorithms.
Also, I introduced a principle of energetic selection, an efficient method of
hybridization, and advanced paralleling techniques.

In spite of the scientific character, this book is easy to read. I have reduced
the use of mathematical tools to a minimum. An understanding of college-level
mathematics (algebra and a little calculus) is quite enough. The book is de-
signed for students, teachers, engineers, researchers, and simply amateurs from
very different fields (computer science, applied mathematics, physics, engi-
neering design, mechanical engineering, electrical engineering, bioinformatics,
computational chemistry, scheduling, decision making, financial mathematics,
image processing, neuro-fuzzy systems, biosystems, and control theory).

xii Preface

This material may be used as a basis for a series of lectures. For an intro-
ductory course you need only Chapter 1 and Sections 2.1–2.2. For an advanced
course you may use Chapters 2–6. For those interested in profound study and
new ideas in optimization I suggest reading Chapters 7–9 too. Those who are
searching for practical applications may read only Section 1.2 and Chapter 10.

Perhaps you want to be an extraordinaire and begin reading this book
from the end notes (Chapter 11). Good idea! Enjoy!

Acknowledgments

In the first place I thank Kenneth Price, without whom differential evolution
would not exist, for our fruitful correspondence.

Many of my friends and colleagues have also helped by commenting on
drafts, discussing ideas, and answering questions. I thank in particular Stefan
Janaqi and Jacky Montmain.

I express profound gratitude to the Technological Incubator of EMA, es-
pecially to Michel Artigue, Laetitia Leonard, and Yannick Vimont for a keen
appreciation of my project.

I thank everyone at Springer warmly, especially Angela Burke and Robert
Saley, who have been helpful throughout.

All my sincere appreciation is directed to Olga Perveeva, my best friend.
I am grateful to you for your permanent help.

I tender thanks to my parents, Lubov and Andrey Feoktistov, for their
warm encouragement and moral support.

Special thanks to my Russian–English and English–Russian dictionaries as
well as my English grammar book; without them writing this treatise would
have been very arduous.

Nı̂mes, France, Vitaliy Feoktistov
June 2006

1

Differential Evolution

In this chapter I explain what differential evolution is. We speak about
its history and development as well as the purposes it serves. Moreover,
I immediately introduce a famous version of the differential evolution
algorithm and clarify why and how it works.

1.1 What Is Differential Evolution?

Even without thinking, steadily or almost magically, day by day we optimize
our everyday life. We explore new areas, make decisions, do something, or
maybe do nothing and are simply relaxed and having a rest. Continually,
we pass from one state to another and involuntarily feel as if something new
comes into us. We agree and believe furthermore that we are on the right track
and have just achieved something important and essential. In other words, we
have truly evolved to a new stage. So, we speak about evolution.

Many routes, many choices. How do we choose our own trip? Almost every-
body will agree with me in that there is something determinative. For someone
it will be a comfortable, rich, and stable life; for someone else it will be a life
full of adventures; for others both things are important. An individual may
be inclined to rational behavior or may completely rely on his or her sixth
sense. Many of us permanently trust to intuition. This is a magic sense that
incessantly guides us through life helping us make a right choice, of course,
if we want it. All this spontaneously suggests a criterion of choice. And we
choose.

I am not the one and only in this world. I am generously circled by inter-
esting people, spectacular events, and relations. All together we form a society
or, biologically speaking, a population. From this point onwards, in addition
to individual peculiarities, social behavior is automatically included. Perhaps
you have already heard that one of most influential features of social activity
is a collective intelligence. The main principle here is an integration, the

2 1 Differential Evolution

integration of different lives, different minds, and different states in a single
whole in order to be more powerful, more efficient, and more intelligent, and
the more the better. Lots of scientists from different fields of science repeatedly
described and will describe such a phenomenon.

Differential evolution is a small and simple mathematical
model of a big and naturally complex process of evolution.
So, it is easy and efficient!

First and foremost Differential Evolution (DE) is an optimization algo-
rithm. And without regard to its simplicity DE was and is one of the most
powerful tools for global optimization.

Perhaps you have heard about genetic algorithms, evolution strategies,
or evolutionary programming. These are three basic trends of evolutionary
optimization, also well known under the common term of evolutionary al-
gorithms. Lately, with the advent of new ideas and new methods in optimiza-
tion, including DE too, they have got a second fashionable name of artificial
evolution. DE belongs to this suite.

As you are already guessing, DE incarnates all the elements described
above; namely it realizes the evolution of a population of individuals in some
intelligent manner. “How does DE do it?” and “What ideas are behind it?”
is the theme of the book and I omit them now. However, it is very likely that
you want to know right now what the difference is between DE and the other
algorithms. Without going into detail, I outline it.

Intelligent use of differences between individuals realized
in a simple and fast linear operator, so-called differentia-
tion, makes differential evolution unique.

Now you may presume why DE was called differential evolution. Yes, of
course, you are right! And that skillful manipulation of individual differences
plays a paramount role. Also, I always bear in mind the origins of DE. For
example, as you can sense from the names, well-known genetic algorithms
spring up from the genetic evolution of chromosomes, ant colony optimization
is guided by the study of ants’ behavior, particle swarm optimization is based
on the study of social phenomena, and so on. In contrast to all, DE was
derived from naturally mathematical (geometrical) arguments. And just this
strict mathematics permits a pure and pragmatic exploitation of available
information without any notional restrictions. It is easy and efficient!

1.2 Its History and Development

And now, a little bit of history. Also, I am going to speak you about different
axes of development. For somebody who is not familiar enough yet with evo-
lutionary optimization, it is possible that not all the terms of this section will

1.2 Its History and Development 3

be absolutely clear. Don’t worry, skip the obscure term and go on reading. In
the following chapters we refer to it in detail. This story is destined for the
curious, those who want to know all about differential evolution right now
from the first lines. So, . . .

Genetic annealing developed by K. Price [Pri94] was the beginning of the
DE algorithm. The first paper about genetic annealing was published in the
October 1994 issue of Dr. Dobb’s Journal. It was a population-based combi-
natorial algorithm that realized an annealing criterion via thresholds driven
by the average performance of the population. Soon after this development,
Price was contacted by R. Storn, who was interested in solving the Tcheby-
chev polynomial fitting problem by genetic annealing. After some experiments
Price modified the algorithm using floating-point instead of bit-string encod-
ing and arithmetic vector operations instead of logical ones. These recasts
have changed genetic annealing from a combinatorial into a continuous op-
timizer.

In this way, Price discovered the procedure of differential mutation.
Price and Storn detected that differential mutation combined with discrete
recombination and pairwise selection does not need an annealing factor. So,
the annealing mechanism had been finally removed and thus the obtained
algorithm started the era of differential evolution.

For the first time differential evolution was described by Price and Storn
in the ICSI technical report (“Differential evolution — A simple and efficient
adaptive scheme for global optimization over continuous spaces”, 1995) [SP95].
One year later, the success of DE was demonstrated in May of 1996 at the
First International Contest on Evolutionary Optimization, which was held
in conjunction with the 1996 IEEE International Conference on Evolutionary
Computation [SP96]. The algorithm won third place for proposed benchmarks.

Inspired by the results, Price and Storn wrote an article for Dr. Dobb’s
Journal (“Differential Evolution: A simple evolution strategy for fast opti-
mization”) which was published in April 1997 [PS97]. Also, their article for
the Journal of Global Optimization (“Differential evolution — A simple and
efficient heuristic for global optimization over continuous spaces”) was soon
published, in December 1997 [SP97]. These papers introduced DE to a large
international public and demonstrated the advantages of DE over the other
heuristics. Very good results had been shown on a wide variety of benchmarks.

Furthermore, Price presented DE at the Second International Contest on
Evolutionary Optimization in 1997 (“Differential evolution vs. the functions
of the second ICEO”) [Pri97]. There, DE was one of the best among emulous
algorithms. And finally, two years later, in 1999, he summarized the algorithm
in the compendium “New Ideas in Optimization” [Pri99].

Also, other papers of Rainer Storn can be enumerated here [Sto95, Sto96b,
Sto96a, Sto99]. He had been concentrating on various DE applications and had
published his Web site (http://www.icsi.berkeley.edu/∼storn/code/)
containing source codes and many useful links.

4 1 Differential Evolution

In 1998 J. Lampinen set up the official bibliography site [Lam02a] (http://
www.lut.fi/∼jlampine/debiblio.html), which furnishes all materials and
also some links on DE dated from 1995 up to 2002.

Right here the history is coming to the end, and we immediately proceed
to the development.

As stated in [SP95], the key element distinguishing DE from other popula-
tion-based techniques is differential mutation. The initial set of strategies re-
alizing differential mutation was proposed by Storn and Price in [Sto96a, SP95]
and http://www.icsi.berkeley.edu/∼storn/de36.c. The first attempt to
guide differential mutation was presented by Price in [Pri97], where “semi-
directed” mutation was realized by a special preselection operation. Later, in
[Pri99], Price analyzed the strategies and noted that the strategy may con-
sist of differential mutation and arithmetic crossover. This, in turn, gives the
different dynamic effects of search.

The ideas of “directions” were spontaneously grasped by H.-Y. Fan and
J. Lampinen. In 2001, they proposed alternations of the classical strategy (the
first strategy suggested by Price) with a triangle mutation scheme [FL01] and,
in 2003, alternations with a weighted directed strategy, where they used two
difference vectors [FL03]. These methods give some improvements, but it is
also necessary to note that the percentage of using novel strategies is quite
moderate.

In my research I continued the development of strategies and proposed
the unique conception of a strategy construction. In 2004, this conception
was demonstrated by the example of a group of directed strategies [FJ04g].
From this point on, there is a unique formula that describes all the strate-
gies and clearly reflects the fundamental principle of DE. The strategies were
divided into four groups [FJ04d]. Each of the groups was associated with a cer-
tain type/behavior of search: random, directed, local, and hybrid. Thorough
investigations and test results of some strategies were published in [FJ04b].
In addition, I suggested in [FJ04c] a combinatorial approach to estimate the
potential diversity of a strategy. This approach contributed to the correct
strategy’s choice. The operation realizing a strategy in the DE algorithm was
called differentiation.

Let’s now consider a crossover operation. For DE two types of combina-
torial crossovers were implemented: binary and exponential ones [Pri99]. The
superiority of each crossover over the other cannot be uniquely defined. As for
a selection operation, the pairwise selection, also so-called “greedy” selection
or elitist selection, is steadily used in the algorithm.

The next stage was the introduction of mixed variables. In 1999,
I. Zelinka and J. Lampinen described a simple and, at the same time, effi-
cient way of handling simultaneously continuous, integer, and discrete vari-
ables [LZ99b]. They applied this method to design engineering problems
[LZ99a, Lam99]. The obtained results outperformed all the other mixed-
variables methods used in engineering design [LZ99c]. As a particular case of

1.2 Its History and Development 5

mixed-variable problems, in 2003, I implemented DE in the binary-continuous
large-scale application in the frame of the ROADEF2003 challenge [FJ03].

Let me now pass to constraints. In order to handle boundary con-
straints two solutions can be implemented: (1) reinitialization [SP95] and
(2) periodic mode (or shifting mechanism) [ZX03, MCTM04]. For other con-
straints (mostly nonlinear functions) penalty methods are used [LZ99b, Mic97]
as well as the modification of selection rules [FF97, Deb00], first reported
for DE, in 2001, by Lampinen [Lam01, Lam02b] and later, in 2004, by
Coello Coello et al. [MCTM04]. The comprehensive bibliography of constraint
methods for evolutionary optimization can be found on the following site:
http://www.cs.cinvestav.mx/∼constraint/.

The question of an algorithm architecture had been untouched for many
years. Since the birth of DE, two-array species were generally accepted [SP95],
justified by their easy parallelization. However, personally I [FJ04b] and the
other DE researchers naturally prefer sequential species intuitively believing
in their superiority. In 2004, I revealed this question in the comparative study
of DE species. It led me to discover an intermediate species: transversal DE
[FJ04h]. From here, some population-based optimizers (e.g., particle swarm
optimization (PSO) [Ang98] and free search (FS) [Pen04]) can be easily inter-
preted by analogy with transversal DE. Moreover, this species is well adapted
for parallelization on heterogeneous networks of computers [Las03]. Thus, DE
has been attaining perfection.

The next important point is control parameters. DE disposes three con-
trol parameters: population size, differentiation constant, and crossover con-
stant. In spite of the fact that DE is more robust regarding control parameters
in comparison with, for example, particle swarm optimization or evolution-
ary algorithms [VT04], nevertheless a well-chosen set of control parameters
improves the algorithm’s convergence considerably.

At first, there were some recommendations on how to choose an appro-
priate control parameter set: [SP95, Sto96a, SP96, PS97, Pri97, SP97, Pri99,
LZ00]. Then, being influenced by Beyer’s [Bey98] postulate,

the ability of an EA to find the global optimal solution depends on its
ability to find a right relation between exploitation of elements found
so far and exploration of the search space,

many scientists tried to estimate the diversity of population. Here were
proposed: expected population variance [Zah01], average population diver-
sity [Š02], mean square diversity [LL02a], and P-measure [FJ04b, FJ04c]. At
once, there were realized adaptation schemes to control the desired diversity
level: decreasing of population size [FJ04f], refreshing of population [Š02],
use of precalculated differentials [AT02], adaptation of differentiation con-
stant [Zah02], its fuzzy control [LL02a], and relaxation [RL03, AT02, MM05]
as well as self-adaptation of the differentiation and crossover constants [Abb02]

6 1 Differential Evolution

and strategies [QS05]. Also, the analysis of a stagnation effect was made
[LZ00].

Another way to increase convergence is hybridization. Hybridization can
be settled at four levels of interaction:

1. Individual level or search space exploration level, describes the behavior
of an individual in the population.

2. Population level, represents the dynamics of a population or subpopula-
tions.

3. External level, provides the interaction with other methods.
4. Meta level, at this level a superior metaheuristics includes the algorithm

as one of its strategies.

On the individual level: There were attempts, made in 2003 by Zhang and
Xie, to combine PSO with classical DE [ZX03]. Also, T. Hendtlass tried to
alternate PSO and DE [Hen]. On the population level: I proposed to add an
energetic filter for the first generations in order to eliminate “bad” individuals
from the population [FJ04f]. On the external level: I suggested an extra, SVM-
based, function to approximate the optimal or “good” individuals using the
current population state [FJ04e]. Also, there are a series of works on large-
scale optimization [AT00, AT02], where DE is hybridized with the L-BFGS
algorithm of Lui and Nocedal [LN89]. Here, a topographical principle is used
to define the “stars” for local optimization. At last, on the meta level: the
integration of DE into a set of competing heuristics was shown by J. Tvirdik
in [Tvi04]. There, heuristics are used at random with a certain probability
that depends on the success of heuristics in the preceding steps. Furthermore,
Xie and Zhang tend to develop agent-based modeling for solving optimization
problems by swarm algorithms. In their case, DE is presented as one of the
“generate-and-test” rules [XZ04].

In addition to the above, DE was enlarged on both multimodal and
multiobjective optimization. There are many domains where searching
multiple global optima is an important task (e.g., power system stability, dig-
ital filter design, electromagnetics, DNA sequence analysis, etc.). In the work
of J. Rumpler and F. Moore [RM01] DE was modified so that it is capable
of automatically determining the needed number of subpopulations as well
as the minimal spanning distance between individuals of each subpopulation.
Later, in 2004, R. Thomsen introduced crowding-based DE [Tho04]. Such a
variation outperforms the well-known sharing scheme that penalizes similar
candidate solutions. Also in 2004, D. Zaharie illustrated a parallel implemen-
tation of DE for multipopulation optimization. The main purposes were to
find all possible, global and/or local, optima and to speed up the algorithm
[Zah04]. Furthermore, she studies the migration concept between subpopula-
tions: neither niche radius nor global clustering are needed in this case.

In the papers of H. Abbass, R. Sarker, and C. Newton [ASN01a, ASN01b,
AS02, SA04] and independently in the paper of N. Madavan [Mad02] the ideas

1.3 What Purpose Does It Serve? 7

of the DE pareto-approach for multiobjective optimization were developed.
The solutions provided by the proposed algorithm outperform the Strength
Pareto Evolutionary Algorithm, one of the best evolutionary algorithms for
multi-criterion optimization. Then, H. Abbass introduced a self-adaptation
for both the crossover and differentiation constants [Abb02]. It made the al-
gorithm still more competitive. The next interesting point is that H. Abbass
together with K. Deb analyzed a multiobjective approach applied to a single
objective function [AD03]. The experiments showed that such a technique in-
creases both the convergence rate and precision of a solution. Simultaneously,
S. Kukkonen and J. Lampinen examined the constrained multiobjective DE
algorithm applied to engineering problems [KL04, KSL04, KL05]. And D. Za-
harie spread the migration concept on pareto-optimization [ZP03, Zah03].
There also exists a promising multiobjective DE modification, developed
by a group of Greek researchers, based on the multipopulation concept
[PTP+04]. Finally, continuous and discrete multiobjective DE (C-MODE and
D-MODE, respectively) are perfectly summarized by American researchers in
[XSG03b, Xue04, XSG05b, XSG05a].

Now, in conclusion of this section, we can truly evaluate the great power
and importance of differential evolution. Below, in Fig. 1.1, I have represented
a summarizing scheme. This scheme synthesizes the state of the art of the
algorithm in a graphical form and, if you don’t mind, I would venture to
emphasize in it my personal contribution to some of its aspects.

1.3 What Purpose Does It Serve?

What purpose does it serve, differential evolution? Of course, as you already
know, for optimization. But what kind of optimization? Or again, for what
type of real problems is differential evolution better suited? In order to be ob-
vious, I propose that you examine the following short scheme of optimization
methods (see Fig. 1.2).

As we can see from this scheme, it is customary to divide all optimization
methods into two large classes: (1) continuous optimization, where the search
area and solutions are presumed to be situated in a certain continuous space
with its metrics; and (2) combinatorial optimization, where the search area is
limited by a finite number of feasible solutions. Depending on what type of
function a real problem is formulated into, continuous optimization methods
are subdivided, broadly speaking, into linear programming (linear objective
function and linear constraints), quadratic programming (quadratic objective
function and linear constraints), and nonlinear programming (nonlinear ob-
jective function and nonlinear constraints). In nonlinear programming local
search methods are the most used. Often, in classical methods, global search is
successfully realized by solving a sequence of local optimization problems. As
for combinatorial methods, they are mainly subdivided into two categories.

8 1 Differential Evolution

Fig. 1.1. The state of the art of differential evolution. Second solid line: my total
contribution to DE; Second dotted line: my partial contribution to DE.

The first category is exact methods, where the global optimum is attained
by enumerating all sets of solutions. This approach is time consuming and
is good only for small-scale problems. The second category is approximate
methods, where a partial enumeration is applied to attain a near-to-optimum
solution, which represents a time/quality compromise. The most commonly
used here are heuristic methods, that are usually designed specially for a cer-
tain problem. More often than not they are not flexible enough to be applied
to another problem.

However, in some real situations it is more natural to model a problem
by mixed variables; that is, one part of such a model contains variables that
are allowed to vary continuously and in the other part variables can attain
only discrete values. The well-known special case is mixed-integer (linear,
quadratic, nonlinear) programming, where the discrete sets consist only of
integer values.

There is a class of problems that can be modeled by continuous, combi-
natorial, or even mixed variables, where we are not able to find the global
solution by applying traditional methods. I mean here by traditional methods
the classical, or determinist, methods in continuous optimization [NW99] and
the heuristics in combinatorial optimization [NW88, PS82]. So, in the con-

1.3 What Purpose Does It Serve? 9

Fig. 1.2. A simple classification scheme of optimization methods: position of dif-
ferential evolution.

tinuous case, one does not know the algorithm allowing us to find the global
optimum. And in the combinatorial case, one presumes the nonexistence of
the polynomial optimizer [PS82]. This class of problems was called problems
of difficult optimization [DPST03]. At the present time, these problems are
the most attractive and most urgent in the optimization domain.

During the last few years metaheuristic methods have become more and
more available for difficult optimization [PR02]. They are more universal and
less exacting with respect to an optimization problem. It is for this reason
that metaheuristics are getting the last word in fashion. As their advantages
we can accentuate the following facts.

• They do not require special conditions for the proprieties of the objective
function and constraints.

• They can be applied for both continuous problems and combinatorial ones.
• They are extensible on multimodal and multiobjective optimization.

In contrast, of course, there are some disadvantages:

• Lack of strong convergence proof

10 1 Differential Evolution

• Sensitivity of the control parameters
• Computing time can be high enough

It is customary to classify all the metaheuristics into two groups:

1. Population-based metaheuristics, where a set of solutions simultaneously
progresses towards the optimum. As examples of this case genetic algo-
rithms [Gol89], particle swarm optimization [KE95], and also differential
evolution can be cited; and

2. Neighborhood metaheuristics; here only one solution is advanced time
and again. In this case simulated annealing [KGV83, vA92] and tabu
search [Glo90] are universally known examples.

The group of population-based metaheuristics intrinsically possesses some
important advantages, namely:

• They provide information concerning the “surface” of an objective func-
tion.

• They are less sensitive to “improper” pathways of certain individual solu-
tions.

• They increase the probability of attaining the global optimum.

Differential evolution, being a population-based
optimizer, has made a high-grade break-through.

As we can see from Fig. 1.2, differential evolution, deriving from population-
based metaheuristics, inherits all the best properties of its ancestors: global
methods of nonlinear continuous optimization, approximate methods of com-
binatorial optimization, mixed-variables handling, and so on. In addition, it
provides stochastic optimization principles, distributed searchers, and uni-
versal heuristics. All this makes the algorithm a general-purpose optimizer,
remaining, with all this going on, simple, reliable, and fast.

So to back up my statements I would like to present a simple example that
demonstrates some characteristics of the population-based approach. I’ll take
the well-known two-dimensional Rosenbrock’s (or banana) function:

f(x, y) = 100 · (x2 − y)2 + (1 − x)2 . (1.1)

It is called the “banana” function because of the way the curvature bends
around the origin. It is notorious in optimization examples because of the slow
convergence that most methods exhibit when trying to solve this problem.
This function has a unique minimum at the point [1, 1], where f(x, y) = 0.

Firstly, we apply steepest descent as proposed in MATLAB. Starting at
the point [−1.9, 2] and after 301 function evaluations it finally stagnates far
from the global optimum (see Fig. 1.3, left).

Then, we use differential evolution to solve the same problem. Initializing
the population within boundary constraints [−2.048, 2.048] and using a stan-
dard control parameter set, after 10 iterations we can see how the population

1.3 What Purpose Does It Serve? 11

Fig. 1.3. Steepest descent (left) and differential evolution (right) applied to the
banana function.

approaches to the optimal zone (see the big ellipse in Fig. 1.3, right) and after
only 20 iterations (400 function evaluations) the population occupies the zone
just around the optimum (see the small ellipse in Fig. 1.3, right). The best in-
dividual of the population already takes precise values x = 1.00000000515790
and y = 1.00000001159138, which gives f(x, y) =1.893137459e–16 ≈ 0.

Thus, for population-based algorithms, and in particular for differential
evolution, we can observe the following.

1. Global optimum is attained.
2. Excellent precision.
3. Fast convergence.
4. Self-adaptation.
5. 0-order information about the objective function.

Next, I’ll change the steepest descent method to a Broyden–Fletcher–
Goldfarb–Shanno (BFGS) one. In this case the optimum on the banana func-
tion can be found after 85 function evaluations (faster than DE). But, if we
want to use the BFGS algorithm for multimodal optimization, for instance,
if I take Rastrigin’s function (see Fig. 1.4), it will stagnate at the first lo-
cal minimum, whereas DE successfully finds the optimum f(0, 0) = 0 after
1000 function evaluations with precision less than 1.0e–6. Below I have pre-
sented a 2-D exemple. Also it should be noted that the characteristics of the
population-based approach remain steadily true and for higher dimensions.

As you already understood, differential evolution is so universal that it
can be applied to practically any optimization problem, whether it is lin-
ear/nonlinear, continuous or combinatorial, or else a mixed-variable one. Al-
though,

Differential evolution was originally mean for difficult
optimization on continuous space and is best in those
cases where traditional methods come off second best.

12 1 Differential Evolution

Fig. 1.4. BFGS and differential evolution applied to Rastrigin’s function. Left:
contour lines of the function, both methods BFGS and DE are shown; right: 3-D
view of the function.

The best way to show the importance of the method is to outline the
circle of applications in which this method can be successfully implemented.
Thus, in conclusion of this section I shall enumerate families (see Fig. 1.5)
and give some references to the most significant applications of Differential
Evolution.

Fig. 1.5. The families of the most significant applications of differential evolution.

Engineering design: Parameter filter design [Sto95, Sto96b], mechanical en-
gineering design [LZ99c, LZ99a], aerodynamic design [Rog98, RDK99a,

1.4 The Famous Algorithm 13

RDK99b, RDK99c, RKD00, RD00], radio-frequency integrated circuit de-
sign [VRSG00].

Control: Optimal control and optimal time location problems [WC97b,
WC97a], fuzzy controller design [CL99] and fuzzy controller tun-
ing [CXQ99, CX00], multimodal optimal control problems [CWS01], pa-
rameter identification [UV03], path planning optimization [SMdMOC03].

Scheduling: Scheduling in parallel machine shop [Rüt97a, Rüt97b], plant
scheduling and planning [LHW00], management of the mission of Earth
observation satellites [FJ03], enterprise planning [XSG03a], heterogeneous
multiprocessor scheduling [RS05].

Chemical engineering and biosystems: Fermentation processes [CW99], opti-
mal control of bioprocess systems [CW98].

Bioinformatics, computational chemistry, and molecular biology: Flexible
ligand docking problem [Tho03], potential energy minimization
[AT00, MA03].

Neural networks and fuzzy systems: Training for feedforward net-
works [IKL03], training and encoding into feedforward net-
works [wCzCzC02], online training [MPV01], tuning fuzzy membership
functions [MBST99].

Decision making: Fuzzy approach using mixed-integer hybrid DE [HW02],
identification by Choquet Integral [FJ04a].

Image processing: Image registration [TV97, Sal00, SPH00], unsupervised im-
age classification [OES05].

1.4 The Famous Algorithm

Now I shall demonstrate the famous DE algorithm, the algorithm that was
first proposed by Kenneth Price and Rainer Storn. Namely, this algorithm
began the era of differential evolution and certainly thanks to this algorithm
differential evolution has been gaining world wide prestige.

The purpose of this section is to state on paper a simple version of DE
so that after reading this you would be able to create your own differential
evolution using the programming language you prefer.

Let us assume that we are searching the optimum solution X∗, which is
presented by a vector of parameters x∗

i , i = 1, . . . , D, subject to boundary
constraints L ≤ X ≤ H. The criterion of optimization is reflected by some
scalar function f(X) that we want, for example, to minimize. In other words
we state the following optimization problem

min
X

f(X) , L ≤ X ≤ H , X ∈ IRD .

Before optimizing we should prepare a random number generator to gen-
erate the uniform sequence of floating-point numbers in the [0, 1) range. I like

14 1 Differential Evolution

MT19937f due to the fact that this generator has excellent statistical quali-
ties, a very long period, and an impressive speed. Set randi[0, 1) as the ith
random number produced by the generator.

Then, we need a test function. I have used the same functions (1.1) shown
in Fig.1.3, Rosenbrock’s function, but generalized for higher dimensions:

f(X) =
D−1∑
i=1

100 · (x2
i − xi+1)2 + (1 − xi)2 , −2.048 ≤ xi ≤ 2.048 .

You may use your favorite test suite instead of this function for better appre-
ciation of the algorithm.

Of course, we must also tune several optimization parameters. For conve-
nience I have joined together all needed parameters under the common name
control parameters, although, as a matter of fact, there are only three real
control parameters in the algorithm. These are: (1) differentiation (or muta-
tion) constant F , (2) crossover constant Cr, and (3) size of population NP .
The rest of the parameters are (a) dimension of problem D that scales the
difficulty of the optimization task; (b) maximal number of generations (or it-
erations) GEN , which serves as a stopping condition in our case; and (c) low
and high boundary constraints, L and H, respectively, that limit the feasible
area. You can vary all these parameters at will. I set their values to some mid-
dle position to demonstrate the average behavior of the algorithm: D = 10,
NP = 60, F = 0.9, Cr = 0.5, GEN = 10000, L = −2.048, and H = 2.048.

Let me now declare operating variables: X ∈ IRD, trial individual (or
solution); Pop ∈ IR[D×NP], population, which represents a set of potential
solutions; Fit ∈ IRNP , fitness of the population; f ∈ IR, fitness of the trial
individual; iBest ∈ N , index of the current best individual in the population;
i, j, g ∈ N , loop variables; Rnd ∈ N , mutation parameter; and r ∈ N 3, indices
of randomly selected individuals.

Before launching the optimization we have to initialize the population and
evaluate its fitness (criterion of optimization). Always supposing that we don’t
know the information about the optimum, the population is initialized within
the boundary constraints Popij = L+(H−L)·randij [0, 1) , i = 1, . . . , D , j =
1, . . . , NP . So, the fitness of population is Fitj = f(Popj).

From here on I shall supplement some selective parts of the algorithm with
its source code. For that I utilize the C language as the most extensively used
in practice. The complete code of this algorithm, written in C and MATLAB,
can be found in Appendix A. Thus, the initialization is implemented in the
following way.

for (j=0; j<NP; j++)
{

for (i=0; i<D; i++)
Pop[i][j] = X[i] = L + (H-L) * rand() ;

1.4 The Famous Algorithm 15

Fit[j] = fnc(D,X) ;
}

Now we are ready for optimization. The algorithm is iterative. It makes
GEN iterations, where GEN is used as a stopping condition. At each itera-
tion, for each individual the next four steps are realized:

1. Random choice of three individuals from the population, mutually differ-
ent and also different from the current individual j
r1,2,3 ∈ [1, . . . , NP] , r1 �= r2 �= r3 �= j

r[0] = (int) (rand()*NP) ;
while (r[0]==j)

r[0] = (int) (rand()*NP) ;
r[1] = (int) rand()*NP ;
while ((r[1]==r[0])||(r[1]==j))

r[1] = (int) (rand()*NP) ;
r[2] = (int) (rand()*NP) ;
while ((r[2]==r[1])||(r[2]==r[0])||(r[2]==j))

r[2] = (int) (rand()*NP) ;

2. Creation of the trial individual X. For the first, the mutation parameter
Rnd is randomly selected from the [1, . . . , D] range. It guarantees that
at least one of parameters will be changed. Then, the trial individual is
constructed according to the next probabilistic rule

xi =
{

xi,r3 + F · (xi,r1 − xi,r2) if (randij [0, 1) < Cr) ∨ (Rnd = i)
xij otherwise

i = 1, . . . , D
(1.2)

Rnd = (int)(rand()*D) ;
for (i=0; i<D; i++)
{

if ((rand()<CR) || (Rnd == i))
X[i] = Pop[i][r[2]] +
F * (Pop[i][r[0]] - Pop[i][r[1]]) ;

else
X[i] = Pop[i][j] ;

}

3. Verifying the boundary constraints. If some of parameters of the trial
individual violate the constraints, it is naturally returned into the feasible
area.

if (xi /∈ [L, H]) xi = L + (H − L) · randi[0, 1)

16 1 Differential Evolution

for (i=0; i<D; i++)
if ((X[i]<L)||(X[i]>H))

X[i] = L + (H-L) * rand() ;

4. Selection of the best individual. First the fitness functions of the trial and
current individuals are compared. If the trial’s function is less than or
equal to the current one, the trial individual replaces the current individ-
ual in the population. Besides, it is necessary to check whether the new
member of the population is better than the instant best individual. If
this is the case, the best individual’s index is updated as well.

if (f(X) ≤ Fitj)
Popj ← X , Fitj ← f(X) and if (f(X) ≤ FitiBest) iBest ← j

f = fnc(D,X) ;
if (f <= Fit[j])
{

for (i=0; i<D; i++)
Pop[i][j] = X[i] ;

Fit[j] = f ;

if (f <= Fit[iBest])
iBest = j ;

}

When the algorithm is finally completed, the optimal solution is PopiBest

with its fitness value FitiBest. I want you to bear this algorithm in mind, so
I shall summarize it in a few lines.

Algorithm 1 Famous Differential Evolution
Require: D – problem dimension (optional)

NP, F, Cr – control parameters
GEN – stopping condition
L , H – boundary constraints

Initialize population Popij ← randij [L, H] and Evaluate fitness Fitj ← f(Popj)
for g = 1 to GEN do

for j = 1 to NP do
Choose randomly r1,2,3 ∈ [1, . . . , NP] , r1 �= r2 �= r3 �= j
Create trial individual X ← S(r, F, Cr, Pop)
Verify boundary constraints if (xi /∈ [L, H]) xi ← randi[L, H]
Select better solution (X or Popj), and update iBest if required

end for
end for

1.5 Secrets of a Great Success 17

1.5 Secrets of a Great Success

Now that you know the basic algorithm of differential evolution very well I
would like to ask you a little question: How do we create the trial individual?
You will certainly give me the right answer.1 And profound comprehension of
the answer to this question uncovers the secrets of differential evolution.

The success of differential evolution resides in
the manner of the trial individual creation.

Moreover, I boldly assure you that neither boundary constraint verifica-
tion nor selection of better individuals are determining factors for DE. They,
their varieties, and their properties are exceptionally good studied in other
evolutionary methods such as genetic algorithms and evolution strategies. We
can only adopt some elements according to our needs.

Here, in this section, I want to reveal a secret. And I shall do it with the
aid of a graphical interpretation of the algorithm. First, I propose that you
investigate the following figure (Fig. 1.6).

Fig. 1.6. Creation of the differential mutation vector U : three individuals are ran-
domly chosen from the population; the scaled difference between two individuals is
added to the third individual.

Suppose that there is some function of two variables outlined by its level
lines. The population is initialized by a set of randomly generated individ-
uals (circles on the figure). The algorithm is iterating and we are at some

1 Prompting; see (1.2).

18 1 Differential Evolution

generation, where a certain jth individual Xj is under consideration. Three
mutually different individuals, Xr1 , Xr2 , and Xr3 , have already been randomly
chosen from the population. And we are naturally creating the intermediate
differential mutation vector U :

U = Xr3 + F · (Xr1 − Xr2) . (1.3)

Let us examine carefully the formula (1.3). The scaled difference between
two randomly chosen individuals, F ·(Xr1 −Xr2), defines direction and length
of the search step. The constant F is a control parameter, which manages
the trade-off between exploitation and exploration of the space. Then, this
difference is added to the third randomly chosen individual, that serves as a
base point of application (current reference point).

The fundamental idea of this formula and of differential evolution on the
whole is to adapt the step length intrinsically along the evolutionary process.2

At the beginning of generations the step length is large, because individuals are
far away each from other. As the evolution goes on, the population converges
and the step length becomes smaller and smaller. The randomness of both
search directions and base points provides in many cases the global optimum,
slightly retarding convergence.

The concept of differential evolution is a spon-
taneous self-adaptability to the function.

Second, let me pass to Fig. 1.7. The creation of the trial individual X
is outlined there. The individual under consideration (current individual) Xj

underlies the trial one. Each parameter of the differential mutation vector
U is accepted by the trial individual with some probability Cr. In order to
insure that at least one parameter will be changed the random number Rnd
generated in the range from 1 to D is used. Thus, the Rndth parameter of
the differential mutation U is smoothly inherited by trial X. In Fig. 1.7 we
arranged that Rnd = 1; it means that u1 is unambiguously imitated by X:
x1 ← u1, and the second and the last parameter, as we have a two-variable
function, will be accepted with the probability Cr. Let us assume that in this
case, x2 ← u2, and hence X = U .

Certainly we could use U directly for the next stage. But often the real-
ization of this operation, creation of X, has a favorable effect: increasing of
exploration/exploitation capabilities (diversity control) and handling of some
functions’ properties, that, in turn, results in better convergence of the algo-
rithm.
2 Such self-adaptability to the function’s surface is clearly reflected in Covariance

Matrix Adaptation Evolutionary Strategies (CMA-ES is one of the best state-of-
the-art algorithms). And what is more, the DE method easily “learns” the surface
of a function without any computational effort, whereas covariance matrix calcu-
lations, in CMA-ES, require perceptible exertion, in particular with increasing of
the problem dimension.

1.5 Secrets of a Great Success 19

Fig. 1.7. Creation of the trial individual X: the current individual Xj is the basis
of the trial one; each parameter of the differential mutation vector U is accepted
with some probability Cr; at least one randomly chosen parameter Rnd is changed.

Third, it remains only to select the best individual. This operation is il-
lustrated in Fig. 1.8. The trial individual is compared with the current one. If
the trial has an equal or better fitness value, then it replaces the current one
in the population. Thus, the population fitness is either always improving or
at least keeping the same values. The described selection is called an elitist
selection and is used successfully in many evolutionary algorithms.

Fig. 1.8. Elitist selection: if the trial X is better than the current individual Xj ,
then it replaces the current one; the fitness of the population is always improving.

20 1 Differential Evolution

Summing up all the aforesaid, I emphasize the next three keys to DE
success:

1. Spontaneous self-adaptability
2. Diversity control
3. Continuous improvement

Problems

1.1. Explain evolution in the full sense of the word? What do we mean when
we speak about evolution from the algorithmic point of view?

1.2. What is an individual in the wide and narrow sense? How do we construct
the individual in differential evolution?

1.3. How do we decide that one individual is “better” than another?

1.4. An engineering plant produces coil compression springs. Because of im-
ported competing products the management of the plant decided to reduce
the production cost by minimizing volume (weight) of the steel wires neces-
sary for manufacturing a spring. A coil spring is described by three designing
variables: (1) N – number of spring coils (takes only integer values), (2) D
– outside diameter (any values), (3) d – wire diameter (strictly standard-
ized, accepts values from a finite set). The spring must satisfy the following
constraints: (a) the wire diameter is no smaller than dmin, (b) the outside
diameter of the spring should be, at least, three times bigger than the wire
diameter, to avoid the wound coils, (c) the outside diameter of the spring is
no greater than Dmax, (d) the free length lf is no greater than lmax, (e) the
allowable shear stress, 8Cf FmaxD

πd3 , is no greater than S, (f) the allowable deflec-
tion under preload σp = Fp/K is no greater than σmax; where K = G·d4

8·N ·D3 ,
lf = Fmax/K + 1.1d(N + 2) and Cf = 4(D/d)−1

4(D/d)−4 + 0.6d
D . Fmax – maximum

working load, S – allowable maximum shear stress, G – shear material mod-
ule, Fp – preliminary compression force, lmax – maximum free length, dmin –
minimum wire diameter, Dmax – maximum outside diameter, σmax – allow-
able maximum deflection under preload are engineering constants specifying
the spring.

What is a criterion for optimization in this problem? Upon which para-
meters (variables) does it depend? Derive a formula for the chosen criterion
for optimization. Create a prototype of the individual X for this problem.
Outline the feasible region Ω of individuals, that is, the region where the vari-
ables do not violate the constraints. Take two feasible individuals X1, X2 ∈ Ω
and compare them according to the derived criterion of optimization. You can
assign any reasonable values for the engineering constants.

1.5. What is “population”? Roughly speaking, how big a population do you
need to solve problem (1.4).

1.6. What is a mathematical model of a phenomenon? Propose two different
mathematical models for problem (1.4). Which of the two models is better?
Why?

1.7. What is optimization in the strict (engineering) sense of the word? Why
do we need to optimize a model/problem? (From this point onwards I shall

22 1 Differential Evolution

not differentiate when I speak about a model or a problem. It is implied
that each problem has its model.) Formulate an optimization task for the
preferred model found in (1.6). How many solutions do you think problem (1.4)
has? How many if the outside diameter would be standardized? What is the
global solution (optimum)? In what cases is the global optimum preferable?
Is problem (1.4) the case?

1.8. What evolutionary algorithms do you know? What is artificial evolution?

1.9. Give a definition of the term “linear operator”.

1.10. In what year did differential evolution appear for the first time?

1.11. What key element (procedure) distinguishes differential evolution from
other population-based techniques?

1.12. What is a search strategy? Why do we need several different search
strategies? What kinds of search strategies do you know?

1.13. Except differential mutation (or more general, differentiation) what evo-
lutionary operations do you know?

1.14. As you can see, problem (1.4) may be formulated more naturally using
simultaneously continuous, integer and discrete variables. We call it a mixed
variable model. Is it possible to adapt the differential evolution algorithm to
solve the problem with mixed variables?

1.15. How many constraints are in problem (1.4)? How many nonlinear con-
straints? Can you represent some of those constraints as boundary con-
straints? How many boundary constraints did you find?

1.16. Enumerate the species of differential evolution. In what situations does
one prefer to use the transversal species?

1.17. Why does differential evolution require control parameters? How many
control parameters has DE? List them.

1.18. What is hybridization and what are its uses? Describe each of four levels
of hybridization. Give an example for each level.

1.19. How many global optima has a miltimodal function? Give an exam-
ple of such a function. In what domains could multimodal optimization be
necessary?

1.20. What is multiobjective optimization? Give an example of a problem
where the multiobjective optimization is required.

1.21. Problem (1.4) is a problem of difficult optimization. Give a definition
of the class of problems of difficult optimization. Which class of optimization
methods is most suitable for solving these problems?

1.5 Secrets of a Great Success 23

1.22. How do we define metaheuristics? List at least three advantages of meta-
heuristic methods.

1.23. Are there some disadvantages of metaheuristics? If yes, enumerate them
and show in which situations such a disadvantage causes essential difficulties
of applying the method.

1.24. What is the difference between Simulated Annealing and Genetic Algo-
rithms?

1.25. What population-based metaheuristics do you know? Point out, at least,
three of their advantages as compared with neighbourhood metaheuristics.

1.26. Summarize for what optimization problems and under what conditions
differential evolution is the best method of choice.

1.27. Recall and describe a real optimization problem you confronted in your
life where you could efficiently apply differential evolution.

1.28. Enumerate at least eight application domains where differential evolu-
tion can be successfully implemented.

1.29. Program your own (quasi) random number generator. The simplest is a
linear random number generator xk = a ·xk−1+b, where a and b are constants
influencing the quality of a random sequence xk. Take them as a = 1664525
and b = 1013904223 according to Knuth (1981). If you want to have the values
lying in (0, 1], you should divide xk on 232 for “unsigned long”.

1.30. Estimate the quality of your random number generator (1.29). For this
create a program where you generate 4000 random numbers between 0 and 1.
Keep track of how many numbers are generated in each of the four quartiles,
0.0–0.25, 0.25–0.5, 0.5–0.75, 0.75–1.0. Compare the actual counts with the
expected number. Is the difference within reasonable limits? How can you
quantify whether the difference is reasonable?

1.31. Implement the famous differential evolution algorithm, if you have not
yet done so. Use Rosenbrock’s function for testing. Assign values to the con-
trol parameters NP , F and Cr. Run the optimization and obtain the optimal
solution. Repeat this 10 times for different values of control parameters. De-
termine the best values for control parameters.

1.32. Write a short paragraph with sketches explaining the effect of self-
adaptability to a function. Discuss how a chaotic behaviour becomes an intel-
ligent one.

1.33. Test your differential evolution using Rastrigin’s function (see Appen-
dix C), the first time without crossover operation Cr = 1 and the second
time with small values of crossover constant. Compare the results and discuss
utility of the crossover operation.

24 1 Differential Evolution

1.34. Differential evolution uses a hard selection scheme (elitist selection).
Implement the soft selection, where the new individual passes into the next
generation with some probability (similarly to simulated annealing). In which
cases would a soft selection be preferable? Give a real example.

2

Neoteric Differential Evolution

In this chapter you will make the acquaintance of the newest state-
ment of differential evolution. But first, I propose that you dip into the
background of population-based methods, so-called evolutionary algo-
rithms. Also, I shall show the basic evolutionary algorithm scheme and
apply it to differential evolution. After a rigorous mathematical defin-
ition of the optimization problem, I shall show you the fresh wording
of the differential evolution algorithm, then together we shall compare
it with the classical one, described in Chapter 1, and emphasize its
advantages. In conclusion I shall point out the efficient techniques to
handle mixed variables as well as constraints.

2.1 Evolutionary Algorithms

Let us talk a little more about Evolutionary Algorithms (EA). As you have
already heard, these are population-based metaheuristics that can be applied
with success in cases where traditional methods do not give satisfactory re-
sults. Originally inspired by the theory of evolution proposed by Darwin,
these methods gave birth to the whole discipline, Evolutionary computa-
tion [SDB+93], that involves the simulation of natural evolution processes
on a computer.

Evolutionary algorithms emerged in the sixties. Initially, EA were pre-
sented by three general trends. These are the genetic algorithms, evolution
strategy, and evolutionary programming. Later, in the early nineties, the
fourth trend, genetic programming, has come to light.

Genetic Algorithms. This is one of the most popular ideas in evolutionary
computation. The concept of genetic algorithms was introduced and devel-
oped by J. Holland [Hol75]. In order to achieve a better understanding of the
biological adaptation mechanisms he tried to simulate these processes numer-
ically. That, in turn, resulted in the first genetic algorithm. Soon afterwards,

26 2 Neoteric Differential Evolution

K. DeJong [DeJ75] formalized genetic algorithms for the binary search space.
And some years later, thanks to D. Goldberg [Gol89], genetic algorithms be-
came widely available.

Evolution Strategies were proposed by I. Rechenberg [Rec73] and H. Schwe-
fel [Sch81]. Solving aviation engineering problems, for which classical opti-
mization suffers a defeat, they revealed the most important key positions in
evolutionary algorithms, namely, the ideas of adaptation and self-adaptation
for control parameters of an algorithm.

Evolutionary Programming was elaborated by L.J. Fogel [FOW66]. Work-
ing on the evolution of finite state machines to predict time series, he gave
birth to a new evolutionary branch. Being the result of, or to be more exact,
the desire to procreate machine intelligence, evolutionary programming finally
became an efficient optimizer. Later, this trend was appreciably enlarged by
D.B. Fogel [Fog92].

Genetic Programming, successfully introduced by J. Koza [Koz92], arose
from the evolution of more complex structures such as a set of expressions of a
programming language and neural networks. J. Koza presented the structure
(individual) in the form of trees, orientable graphs without cycles, in which
each of the nodes is associated with a unit operation related to the problem
domain.

For a deeper examination of this topic I definitely suggest a quite recent
reference book of A.E. Eiben and J.E. Smith [ES03]. And now we shall consider
the basic scheme that generalizes all evolutionary algorithms (see Fig. 2.1).

Evolutionary Algorithms. The vocabulary of evolutionary algorithms is, to
a great extent, borrowed from both the biology and the theory of evolution.
A set of problem parameters, genes, is described by an individual. An ensem-
ble of individuals composes a population. Before optimizing, EA is initialized,
often randomly because usually we do not have ideas about optimum local-
ization, by a population of individuals. We name this initialization. Next, the
optimization criterion, in the EA case so-called fitness, is calculated for each
individual of the population. This is evaluation. Sometimes evaluation of fit-
ness can be a computationally intensive operation. Thus, the initial population
of Parents is ready and the algorithm begins its evolutionary cycle. Iterations,
in EA terms, generations, last until a stopping condition is attained. In each
evolutionary cycle the population passes through the following three steps.

1. Selection of the individuals that are more apt to reproduce themselves,
from the population.

2. Variations of the selected individuals in a random manner. Mainly two
operations are distinguished here: crossover and mutation. The variations
of Parents germinate Children.

3. Replacement refreshes the population of the next generation usually by
the best individuals chosen among Parents and Children.

2.1 Evolutionary Algorithms 27

Fig. 2.1. A basic scheme of evolutionary algorithms.

Evolutionary Algorithm typically can be outlined by the following way
(see Alg. 2).

Algorithm 2 Typical Evolutionary Algorithm
generation g ← 0
population IPg ← Initialize
fitness f(IPg) ← Evaluate
while (not stopping condition) do

// proceed to the next evolutionary cycle //
g ← g + 1
Parents ← Select from IPg

Children ← Vary Parents (Crossover, Mutation, . . .)
fitness ← Evaluate Children

Replacement IPg ← Survive Parents and Children
end while

28 2 Neoteric Differential Evolution

2.2 Problem Definition

The overall goal of an optimization problem f : M ⊆ IRD → IR,M �= ∅, where
f is called the objective function (also fitness or cost function), is to find a
vector X∗ ∈ M such that:

∀X ∈ M : f(X) ≥ f(X∗) = f∗ , (2.1)

where f∗ is called a global minimum; X∗ is the minimum location (point or
set).

M = {X ∈ IRD | gk(X) ≤ 0,∀k ∈ {1, . . . , m}} (2.2)

is the set of feasible points for a problem with inequality constraints gk :
IRD → IR.

A particular case of inequality constraints is boundary constraints

L ≤ X ≤ H : L, H ∈ IRD . (2.3)

For an unconstrained problem M = IRD.
Because max{f(X)} = −min{−f(X)}, the restriction to minimization is

without loss of generality. In general the optimization task is complicated by
the existence of nonlinear objective functions with multiple local optima. A
local minimum f̂ = f(X̂) is defined by the condition (2.4).

∃ε : ∀X ∈ M | ‖X − X̂‖ < ε ⇒ f̂ ≤ f(X) . (2.4)

2.3 Neoteric Differential Evolution

As with all evolutionary algorithms, differential evolution deals with a popula-
tion of solutions. The population IP of a generation g has NP vectors, so-called
individuals of population. Each such individual represents a potential optimal
solution.1

IPg = {Xg
i }, i = 1, . . . , NP . (2.5)

In turn, the individual contains D variables, so-called genes.

Xg
i = {xg

i,j}, j = 1, . . . , D . (2.6)

Usually, the population is initialized by randomly generating individuals
within the boundary constraints (2.3),

IP0 = {x0
i,j} = {randi,j · (hj − lj) + lj} , (2.7)

where the rand function uniformly generates values in the interval [0, 1].

1 In order to show the flexibility of implementation, here I represent a population
and an individual as a set of elements instead of a vector presentation.

2.3 Neoteric Differential Evolution 29

Then, for each generation all the individuals of the population are updated
by means of a reproduction scheme. Thereto for each individual ind a set π
of other individuals is randomly extracted from the population. To produce a
new one the operations of differentiation and crossover are applied one after
another. Next, selection is used to choose the best. Let us consider these
operations in detail.

First, a set of randomly extracted individuals π = {ξ1, ξ2, . . . , ξn} is nec-
essary for differentiation. The strategies (i.e., a difference vector δ and a base
vector β) are designed on the basis of these individuals. Thus, the result of
differentiation, the so-called trial individual, is

ω = β + F · δ , (2.8)

where F is the constant of differentiation. I shall show an example of a typical
strategy [SP95]. Three different individuals are randomly extracted from the
population. The trial individual is equal to ω = ξ3 + F · (ξ2 − ξ1) with the
difference vector δ = ξ2 − ξ1 and the base vector β = ξ3.

Afterwards, the trial individual ω is recombined with the target one ind.
Crossover represents a typical case of a gene’s exchange. A new trial individual
inherits genes of the target one with some probability. Thus,

ωj =

{
ωj if randj ≥ Cr

indj otherwise
(2.9)

where j = 1, . . . , D, randj ∈ [0, 1) and Cr ∈ [0, 1] is the constant of crossover.
This was a combinatorial crossover. Also, other types of crossover can be used:
binary approach [SP95], mean-centric (UNDX, SPX, BLX), and parent-centric
(SBX, PCX) approaches [DJA01].

Selection is realized by simply comparing the objective function values
of target and trial individuals. If the trial individual better minimizes the
objective function, then it replaces the target one. This is the case of elitist
or so-called “greedy” selection.

ind =

{
ω if f(ω) ≤ f(ind)
ind otherwise .

(2.10)

Notice that there are only three control parameters in this algorithm.
These are:

• NP – population size
• F – constant of differentiation
• Cr – constant of crossover

As for stopping conditions, one can either fix the number of generations gmax

or a desirable precision of the solution V TR (value-to-reach).
The pattern of the DE algorithm is presented hereafter (see Alg. 3).

30 2 Neoteric Differential Evolution

Algorithm 3 Neoteric Differential Evolution
Require: F, Cr, NP – control parameters

initialize IP0 ← {ind1, . . . , indNP }
evaluate f(IP0) ← {f(ind1), . . . , f(indNP)}
while (not stopping condition) do

for all ind ∈ IPg do
IPg → π = {ξ1, ξ2, . . . , ξn}

ω ← Differentiation(π, F, Strategy)
ω ← Crossover(ω, Cr)

ind ← Selection(ω, ind)
end for
g ← g + 1

end while

2.4 Distinctions and Advantages

Above all, I would like to compare differential evolution to the basic EA
scheme. As you have already observed, initialization and evaluation are kept
without changes. A general EA provides for Darwin’s mechanism of parent
selection, however, where more apt it stands a better chance to reproduce
itself; differential evolution applies variations (differentiation and crossover)
sequentially to each individual. For that, an ensemble of individuals is ran-
domly chosen from the population each time. The result of variations is child,
called a trial individual. Moreover, in DE the trial immediately replaces its
ancestor in the population if its fitness is better than or equal to its ancestor’s.
Also, a stopping condition is verified right here after replacement. Finally, for
more clarification I propose that you familiarize yourself with the individual’s
cycle in differential evolution, which I presented in Fig.2.2.

Furthermore, let us touch nicety and compare neoteric differential evolu-
tion with the classical one, described in Chapter 1.

The first point that is significant is the dissociation of differentiation and
crossover in the new DE statement. Of course, we can always associate back
these two operations as soon as we need them. However, such a dissociation
offers us self-evident advantages. This is, at the minimum, the independent
study and use of the operations that enables us to exclude one operation from
another and thoroughly analyze their behavior and influence on the search
process. Next, differential mutation of classic DE is generalized to differentia-
tion of a neoteric one. From a theoretical point of view, it gives the unlimited
spectrum of strategies that obey the unique and universal principle of opti-
mization ω = β + F · δ. In practice, we can now manipulate with great ease
the search strategies according to the needs of an optimization task.

The second significant point is the crossover operation in itself. Now the
basic element of crossover is a trial individual created in the issue of differen-
tiation, rather than a current one. This improvement changes the philosophy

2.4 Distinctions and Advantages 31

Fig. 2.2. The evolutionary cycle of an individual in differential evolution.

of the solution search. If before the variation operations are considered as the
mutation of a current individual resembling evolutionary strategies, then now
the main attention is completely focused on the creation of a new, more per-
fect individual. Such an individual is produced primarily on the basis of the
actual state of the population and certainly may inherit some properties of a
current individual.

Also, I moved away the mutation parameter Rnd ∈ [1, . . . , D] (see (1.2)).
I do not consider it very important for optimization. Besides, we can almost
always imitate it by the appropriate choice of the crossover value Cr. For ex-
ample, following (2.9), Cr = 0 (absence of crossover) ⇒ the new-created indi-
vidual is completely inherited; Cr = 1 ⇒ the current individual is completely
inherited; and Cr ≈ 1 − 1/D permits us to inherit the minimal number of
the new-created individual’s genes. Although it does not guarantee absolutely
that at least one new gene passes into the next generation (the case of classical
DE), it certainly guarantees that there is a great chance it does happen.

Here I emphasized three principal advantages of the new algorithm’s
statement. Perhaps, in future, continuously working with differential evolution
you will find many more advantages then I did. So, these are as follows.

1. Efficiency. A special stress is laid on the efficient creation of a new member
of a population, instead of the mutation of current individuals.

32 2 Neoteric Differential Evolution

2. Flexibility. The new algorithm is more flexible to use and adapts to mod-
ification; it is preferred for research purposes. In particular, the isolation
in the reproduction cycle of differentiation, crossover, and selection from
one another in action allows natural and easy driving by the evolution
process.

3. Fundamentality. The well-known algorithm stated in Chapter 1 is just
a particular case of neoteric differential evolution. In fixing the differen-
tiation strategy and appropriate crossover, variation operations can be
convoluted to a single equation similar to (1.2). Moreover, differentiation
synthesizes in itself the fundamental ideas in optimization.2 The opera-
tion of Differentiation intrinsically generalizes the universal concepts of
the solution search, as in the case of traditional versus modern methods
of optimization.

2.5 Mixed Variables

Differential evolution in its initial form is a method for continuous variable
optimization [SP95]. However, in [LZ99b, LZ99c] the DE modification for
integer and discrete variables is proposed. We first show integer variable
handling.

Despite the fact that DE works with continuous values on the bottom level,
for the evaluation of the objective function integer values are used. Thus,

f = f(Y) : Y = {yi}

where yi =

{
xi for continuous variables
�xi� for integer variables

and X = {xi}, i = 1, . . . , D .

, (2.11)

The �x� function gives the nearest integer less than or equal to x. Such an
approach provides a great variety of individuals and ensures algorithm robust-
ness. In other words, there is no influence from discrete variables on algorithm
functioning. In the integer case, the population initialization occurs as follows.

IP0 = {x0
i,j} = {randi,j · (hj − lj + 1) + lj}, randi,j ∈ [0, 1) . (2.12)

Next, discrete variables can be designed in the same easy way. It is
supposed that a discrete variable Z(d) takes its values from the discrete set
{z(d)

i } containing l ordered elements.

Z(d) = {z(d)
i }, i = 1, . . . , l

so that z
(d)
i < z

(d)
i+1 .

(2.13)

2 I mean here an iterative procedure of choosing a new base point, direction, and
optimization step. I shall illustrate it in detail in the next chapter (Chapter 3).

2.6 Constraints 33

Instead of the discrete values z
(d)
i their indexes i are used. Now, the discrete

variable Z(d) can be handled as an integer one with boundary constraints
(1 ≤ i ≤ l). For the evaluation of the objective function the discrete value itself
is used in place of its index. Thus, discrete variable optimization is reduced
to the integer variable one and discrete values are used only for objective
function evaluation.

This approach showed the best results among evolutionary algorithms for
mixed variable problems in mechanical engineering design [Lam99].

2.6 Constraints

Let the optimization problem be presented in the generally used form (2.14).

find X∗ : f(X∗) = min
X

f(X)

subject to
boundary constraints L ≤ X ≤ H

constraint functions gk(X) ≤ 0, k = 1, . . . , m

(2.14)

2.6.1 Boundary Constraints

Boundary constraints represent low and high limits put on each individual:

L ≤ ω ≤ H . (2.15)

It is necessary that new values of variables satisfy the constraints after dif-
ferentiation (or reproduction). For that, the values that have broken range
conditions are randomly put back inside their limits.

ωj =

{
randj · (hj − lj) + lj if ωj /∈ [lj , hj]
ωj otherwise

j = 1, . . . , D .

(2.16)

For integer variables one uses the next modification of this equation:

ωj =

{
randj · (hj − lj + 1) + lj if �ωj� /∈ [lj , hj]
ωj otherwise

. (2.17)

In addition to the reinitialization (2.16) there are also other ways of bound-
ary constraint handling. For example:

• Repeating of differentiation (2.8) until the trial individual satisfies the
boundary constraints,

34 2 Neoteric Differential Evolution

• Or, use of the periodic mode or the shifting mechanism proposed in [ZX03,
MCTM04, PSL05],

• Or else, taking into consideration that boundary constraints are inequality
constraints (L−X ≤ 0 and X −H ≤ 0), constraint handling methods and
their modifications developed for constraint functions are also suitable for
handling boundary constraints.

2.6.2 Constraint Functions

Penalty Function Method

I shall represent here a penalty function method for constraint handling used
by Lampinen and Zelinka [LZ99b, LZ99c]. Compared with hard constraint
handling methods, where infeasible solutions are rejected, the penalty function
method uses penalties for moving into the feasible area M (2.2). Such penalties
are directly added into the objective function. We give it in a logarithmic form:

log f̃(ω) = log (f(ω) + a) +
m∑

k=1

bk · log ck(ω)

ck(ω) =

{
1.0 + sk · gk(ω) if gk(ω) > 0
1.0 otherwise

sk ≥ 1.0
bk ≥ 1.0
min f(ω) + a > 0 .

(2.18)

It is necessary that the objective function take only nonnegative values. For
this reason the constant a is added. Even if the constant a takes too high values
it does not affect the search process. The constant s scales constraint function
values. The constant b modifies the shape of the optimizing surface. When the
function value for a variable that lies outside a feasible area is insignificant,
it is necessary to increase the values s and b. Usually, satisfactory results are
achieved with s = 1 and b = 1.

It is clear that this method demands the introduction of extra control
parameters, and therefore, in order to choose their effective values additional
efforts are necessary. Generally, it is realized by trial and error, when the algo-
rithm is started repeatedly for many times under various parameter values (s,
b). It is obvious that this is not effective enough, so researchers are continuing
investigations in this domain.

Modification of the Selection Operation

An original approach for constraint problem solution has been proposed in
[Lam01, MCTM04]. The selection rule modification (2.10), where there is no
need of using the penalty functions, has been shown there.

2.6 Constraints 35

The basic idea is applying multiobjective optimization for handling con-
straints. This idea, it seems, was first communicated by David Goldberg
as early as 1992 [Deb01] (pp.131–132). Later, three of its instances se-
quentially were reported to wider audience: (1) Coello Coello [Coe99b], (2)
Deb [Deb00], and (3) Lampinen [Lam01]. Below, I shall describe Lampinen’s
instance [Lam01], which is based on pure pareto-dominance defined in con-
straint function space.3

The choice of individual results from the next three rules.

• If both solutions ω and ind are feasible, preference is given to the lower
objective function solution.

• The feasible solution is better than the infeasible.
• If the both solutions are infeasible, preference is given to the less infeasible

solution.

Mathematically these rules are written as:

ind =

{
ω if Φ ∨ Ψ

ind otherwise
,

where

Φ = [∀k ∈ {1, . . . , m} : gk(ω) ≤ 0 ∧ gk(ind) ≤ 0] ∧
∧ [f(ω) ≤ f(ind)]

Ψ = [∃k ∈ {1, . . . , m} : gk(ω) > 0] ∧
∧ [∀k ∈ {1, . . . , m} : max (gk(ω), 0) ≤ max (gk(ind), 0)] .

(2.19)

Thus, the trial vector ω will be chosen if:

• It satisfies all the constraints and provides lower objective function value
or

• It provides lower than or equal to ind value for all constraint functions.

Notice that in the case of an infeasible solution, the objective function is
not evaluated.

To prevent stagnation [LZ00], when the objective function values of both
trial and target vectors are identical, preference is given to the trial one. In
Appendix B you can find (proposed by me) the C source code of the above-
described selection rules.

Other Constraint-Handling Methods

Finally I shall present a general classification of the constraint-handling meth-
ods for evolutionary algorithms. More detailed information can be found in
[MS96, Coe99a, Coe02].

3 Discussed in personal communication with J. Lampinen.

36 2 Neoteric Differential Evolution

1. Methods based on preserving feasibility of solutions
• Use of specialized operators (Michalewicz and Janikow, 1991)
• Searching the boundary of feasible region (Glover, 1977)

2. Methods based on penalty functions
• Method of static penalties (Homaifar, Lai and Qi, 1994)
• Method of dynamic penalties (Joines and Houck, 1994)
• Method of annealing penalties (Michalewicz and Attia, 1994)
• Method of adaptive penalties (Bean and Hadj-Alouane, 1992)
• Death penalty method (Bäck, 1991)
• Segregated genetic algorithm (Le Riche, 1995)

3. Methods based on a search for feasible solutions
• Behavioral memory method (Schoenauer and Xanthakis, 1993)
• Method of superiority of feasible points (Powell and Skolnick, 1993)
• Repairing infeasible individuals (Michalewicz and Nazhiyath, 1995)

Problems

2.1. What does evolutionary computation study?

2.2. What three general trends of development of evolutionary algorithms do
you know?

2.3. Review once again problem (1.4). Indicate the “genes” of the individual.

2.4. Usually, in differential evolution, the population is initialized by random
values within boundary constraints. Propose your technique of initialization
for the following cases: (a) there are no boundary constraints; (b) you have one
or two solutions, but you do not know if these solutions are optimal; (c) your
constraint handling method requires only feasible individuals and you need
to preserve the uniformity of initialization. Implement and test the proposed
techniques.

2.5. Evaluate the fitness of the function f(X) = ex1x2x3x4x5 − 1
2 (x3

1 +x3
2 +1)2

for the individual X0 = (−1.8, 1.7, 1.9,−0.8,−0.8).

2.6. Which of the Evolutionary Algorithm’s operations is/are, most probably,
time-consuming? (a) selection, (b) crossover, (c) mutation, (d) differentiation,
(e) variation, (f) evaluation, (g) replacement, (h) recombination, (i) initializa-
tion. Explain your answer.

2.7. What elements are common for all evolutionary algorithms?

2.8. What is the difference between iteration, generation and evolutionary
cycle?

2.9. What is the stopping condition? Propose three different ways to end the
optimization. Add it in your differential evolution and test.

2.10. You are given the following maximization problem.

max
ax4

1x
2
3

π2x3
2x4

− cos2(2πd
x5

x3
) + eb sin(2x1)/x3

2 − 3 ln(c
π

4
x2

2) + x1x5

x1 + x2 + x3 + x4 ≤ x5

x1, x2, x3, x4, x5 ≥ 0
a ≥ 0, b < 0, c > 0, d ≤ 0

Transform this problem into a minimization problem.

2.11. How many optima has the function |sin(x)| in the range from 0 to 10?

2.12. Give a definition of local optimum.

2.13. Does the function given in problem (2.11) have a global optimum?

38 2 Neoteric Differential Evolution

2.14. How does one calculate the trial individual? Show the concrete formula
and give an explanatory sketch.

2.15. Determine and explain what is a “parent” and what is a “child” in
differential evolution?

2.16. The crossover operation executes the inheritance of genes from the old
to the new individual. Develop and implement your own crossover instead of
the formula (2.9) proposed in Chapter 2.

2.17. What is the minimal size of the population you can use according to
the formula you demonstrated in problem (2.14)?

2.18. Does differential evolution obey the natural selection theory of Darwin?
What are the common and distinguishing features?

2.19. Is it possible, in differential evolution, that the “child” becomes “parent”
in one and the same generation?

2.20. Find four distinctions between the classical DE (famous algorithm) and
the neoteric one.

2.21. Recall and explain three principal advantages of neoteric DE.

2.22. Explain how DE handles integer variables? What is the advantage as
against gradient methods?

2.23. Solve by hand the Traveling Salesman Problem with Time Windows. A
truck driver must deliver to 9 customers on a given day, starting and finishing
in the depot. Each customer i = 1, . . . , 9 has a time window [bi, ei] and an
unloading time ui. The driver must start unloading at client i during the
specified time interval. If he is early, he has to wait till time bi before starting
to unload. Node 0 denotes the depot, and cij the time to travel between
nodes i and j for i, j ∈ {0, 1, . . . , 9}. The data are u = (0, 1, 5, 9, 2, 7, 5, 1, 5, 3),
b = (0, 2, 9, 4, 12, 0, 23, 9, 15, 10), e = (150, 45, 42, 40, 150, 48, 96, 100, 127, 66),
and

(cij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 5 4 4 4 6 3 2 1 8
7 − 2 5 3 5 4 4 4 9
3 4 − 1 1 12 4 3 11 6
2 2 3 − 2 23 2 9 11 4
6 4 7 2 − 9 8 3 2 1
1 4 6 7 3 − 8 5 7 4
12 32 5 12 18 5 − 7 9 6
9 11 4 12 32 5 12 − 5 22
6 4 7 3 5 8 6 9 − 5
4 6 4 7 3 5 8 6 9 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.6 Constraints 39

2.24. Find an efficient model of problem (2.23) for solving by differential
evolution. Focus attention on data representation, especially on realization of
the permutation of clients and the fitness function. Solve the problem by DE
and compare the results.

2.25. Solve problem (1.4) supposing that d and D take only integer values.

2.26. Write a code to handle discrete variables. Apply it to solving the prob-
lem (1.4) as is.

2.27. Formulate the problem of placing N queens on an N by N chessboard
such that no two queens share any row, column, or diagonal. Use binary
variables.

2.28. Could DE optimize binary variables? If yes, write the proper code and
solve the N-queens problem (2.27) for N = 4, 8, 16, Otherwise, use a per-
mutation to model the problem and solve it in integer variables. Think about
an efficient method of constraints handling. Compare the results and deter-
mine which of two methods is more clever. Explain why.

2.29. What are the boundary constraints? What methods to handle boundary
constraints do you know? Point out at least four methods and explain by giving
an example.

2.30. Elaborate your own method of boundary constraints handling. Estimate
its influence on the convergence of algorithms using the test functions from
Appendix C.

2.31. The solution to a system of nonlinear equations specified by a mapping
f : IRn → IRn is a vector X ∈ IRn such that f(X) = 0. Algorithms for
systems of nonlinear equations usually approach this problem by seeking a
local minimizer to the problem

min {‖f(X)‖ : L ≤ X ≤ H} ,

where ‖ · ‖ is some norm on IRn, most often the l2 norm. Solve any reasonable
system of nonlinear equations using your own method of handling boundary
constraints.

2.32. What is the penalty function? Create the penalty function for problem
(1.4).

2.33. Solve problem (2.32). Experiment on the parameters sk and bk of the
penalty function. Try to find their optimal values. Estimate its influence on
the algorithm performance.

2.34. What drawbacks do you see in using penalty methods?

40 2 Neoteric Differential Evolution

2.35. Try to implement independently a modification of the selection oper-
ation. Solve problem (1.4) with this method. Compare the results with ones
obtained in problem (2.33).

2.36. Given D electrons, find the equilibrium state distribution of the elec-
trons positioned on a conducting sphere. This problem, known as the Thomson
problem of finding the lowest energy configuration of D point charges on a
conducting sphere, originated with Thompson’s plum pudding model of the
atomic nucleus. The potential energy for D points (xi, yi, zi) is defined by

f(x, y, z) =
D−1∑
i=1

D∑
j=i+1

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)−
1
2 ,

and the constraints on the D points are

x2
i + y2

i + z2
i = 1 , i = 1, . . . , D .

The number of local minima increases exponentially with D. Theoretical re-
sults show that

min{f(p1, . . . , pD) : ‖pi‖ = 1 , 1 ≤ i ≤ D} ≥ 1
2
D2(1−ε) , 0 ≤ ε ≤

(
1
D

)1/2

.

Solve this problem for D = 3, 10, 50. How do you handle the nonlinear equality
constraints? Are you far from the theoretical results?

2.37. Choose from the list of constraint-handling methods at the end of Sub-
section 2.6.2 any method you please and implement it.

3

Strategies of Search

In this chapter1 we shall discuss the most important operation of
differential evolution — differentiation. The differentiation operation
can be realized by many search strategies. At the beginning I shall
illustrate the strategies (schemes) that were proposed before my re-
search work. Then, starting from common principles for all methods
of continuous optimization, I introduce the unique and universal for-
mula of differentiation. The given formula classifies all the strategies
of DE into the four groups according to their search behavior: ran-
dom, directed, local, and hybrid. Here, in this chapter, you will find
the strict description of all groups of strategies. And for each group
I shall demonstrate a set of practical examples. All these examples
cover, from a practical point of view, almost all possible variants of
strategies. Finally, I shall speak about new functions of differentiation
constant F and test results.

3.1 Antecedent Strategies

There are five DE strategies (or schemes) that were proposed by K. Price and
R. Storn [Sto96a]:

• Scheme DE/rand/1 ω = x1 + F · (x2 − x3)
• Scheme DE/rand/2 ω = x5 + F · (x1 + x2 − x3 − x4)
• Scheme DE/best/1 ω = xbest + F · (x1 − x2)
• Scheme DE/best/2 ω = xbest + F · (x1 + x2 − x3 − x4)
• Scheme DE/rand-to best/1 ω = xind +λ · (xbest−x1)+F · (x2−x3)

Later, two more strategies were introduced by Fan and Lampinen:

1 Parts of this chapter are based on material that originally appeared in [FJ04g,
FJ04d].

42 3 Strategies of Search

• Trigonometric scheme [FL01]
ω = (x1 + x2 + x3)/3 + (p2 − p1) · (x1 − x2) + (p3 − p2) · (x2 − x3) + (p1 −
p3) · (x3 − x1)
pi = |f(xi)/ (f(x1) + f(x2) + f(x3)) | , i = 1, 2, 3 ;

• Directed scheme [FL03]
ω = x3 + (1 − f(x3))/f(x1) · (x3 − x1) + (1 − f(x3))/f(x2) · (x3 − x2),
where f(x3) ≤ f(x1), f(x3) ≤ f(x2) .

3.2 Four Groups of Strategies

What is the common point for all the methods of continuous optimization?
Perhaps that we take some initial point, base point, and from this point we
search some direction in which we suppose attaining the optimum as soon as
possible. Personally, I began from this assumption. And I desired to simulate
this principle with differential evolution. For that I searched a certain oper-
ation in the form of ω = β + F · δ, where β, base vector, and δ, difference
vector, are calculated with consideration of the actual population state (see
Fig. 3.1). Afterward, I baptized this operation differentiation.

Fig. 3.1. Fundamental principle inherent to all methods of continuous optimization
applied to differential evolution: β – base point, δ – optimal direction.

But how we can create this β and δ? The most practical solution is to
use the barycenters of the individuals randomly chosen from the population.
I accepted two variants to create β: random and local. In the latter case I
gave preference to the best individual of the population. As for δ, either one
constructs two barycenters in a random manner, or constructs them taking
into consideration the values of an objective function, so the difference vector
is oriented or directed. I would like to note that the directed case interprets
well the simulation of the gradient. All these combinations of β and δ choice

3.2 Four Groups of Strategies 43

lead us to the four groups of strategies: random, directed, local, and hybrid
(see Fig. 3.2).

Fig. 3.2. Four groups of strategies.

So, by using the knowledge about values of the objective function I have
divided all the possible strategies into four groups:

1. RAND group contains the strategies in which the trial individual is gen-
erated without any information about values of the objective function.

2. RAND/DIR group consists of the strategies that use values of the objec-
tive function to determine a “good” direction. This group represents an
imitation of the gradient function.

3. RAND/BEST group uses the best individual to form the trial one. It looks
like a chaotical local search around the current best solution.

4. RAND/BEST/DIR group combines the last two groups into one including
all their advantages.

Notice that the introduction of information such as the “good” direction
and the best individual considerably reduces the search space exploration
capabilities (see Chapter 4). Thus, it makes the algorithm more stable, but
on the other hand, sometimes the algorithm becomes less efficient for complex
problems, for example, with many local optima. So, the practical question of
what strategy to choose is always defined by the concrete problem and the
concrete objective function. This fact is theoretically proven in the No Free
Lunch theorem [WM95, WM97]:

All algorithms that search for an extremum of an objective function
perform exactly the same, according to any performance measure,
when averaged over all possible objective functions. In particular, if
algorithm A outperforms algorithm B on some objective functions,
then loosely speaking there must exist exactly as many other functions
where B outperforms A.

Let us now examine these groups of strategies.

44 3 Strategies of Search

3.2.1 RAND Group

Randomly extracted individuals Xi are arbitrarily separated into two classes
C ′ and C ′′ containing n′ and n′′ elements accordingly. Then the barycenters
of these classes VC′ and VC′′ are found by the formula

VC =
1
n

n∑
i=1

Xi n = n′, n′′. (3.1)

There are two possibilities for choosing the base vector β = Vg:

1. Using some individual from these classes Vg ∈ C ′ ∪ C ′′ ;
2. Using another individual from the population Vg /∈ C ′ ∪ C ′′ .

Thus, the differentiation formula for this group of strategies is (Fig. 3.3)

ω = Vg + F · (VC′′ − VC′) (3.2)

Fig. 3.3. RAND group of strategies.

3.2.2 RAND/DIR Group

Let randomly extracted individuals Xi be divided into two classes C+ and
C− with n+ and n− elements so, that for each element from the class C+ its
objective function value would be less than the objective function value of any
element from class C−. That is,

3.2 Four Groups of Strategies 45

f(Xi) ≤ f(Xj) : (∀Xi ∈ C+) ∧ (∀Xj ∈ C−)
i = 1, . . . , n+, j = 1, . . . , n− .

(3.3)

We find then the maximal and minimal elements of each of the classes

f(Xmin
C+

) ≤ f(Xi) ≤ f(Xmax
C+

), ∀Xi ∈ C+

f(Xmin
C−) ≤ f(Xi) ≤ f(Xmax

C−), ∀Xi ∈ C− .
(3.4)

Then we calculate the positive and negative shifts inside the classes.

V ±
s = λ ·

(
Xmin

C± − Xmax
C±

)
λ = 1/2 – influence constant .

(3.5)

So the average shift is equal to

VS = (V +
s + V −

s)/2 . (3.6)

Hence, the differentiation formula is

ω = VC+ + F · (VC+ − VC− + VS) , (3.7)

where VC+ and VC− are barycenters of C+ and C− accordingly (see Fig. 3.4).

Fig. 3.4. RAND/DIR group of strategies.

3.2.3 RAND/BEST Group

Randomly extracted individuals Xi such as in the RAND group are divided
into two classes C ′ and C ′′ with n′ and n′′ elements correspondingly. But as the

46 3 Strategies of Search

base vector β the current best individual Vb is used here. So, the differentiation
formula is (see Fig. 3.5)

ω = Vb + F · (VC′′ − VC′) . (3.8)

Fig. 3.5. RAND/BEST group of strategies.

3.2.4 RAND/BEST/DIR Group

In addition to the direction information the best individual is taken into ac-
count. The division of extracted individuals into two groups and the finding
of their barycenters and the average shift are the same as in the RAND/DIR
case. Thus, the differentiation formula is (see Fig. 3.6)

ω = Vb + F · (VC+ − VC− + VS) . (3.9)

3.2.5 On the Constant of Differentiation

The constant of differentiation F is one of the control parameters that consid-
erably affects the convergence rate. In the first works on DE [Sto96a, LZ99b] it
was recommended to vary F in the (0, 2+] range. Because of the generalization
of strategies proposed here I changed this range to the new limits:

F ∈ (−1, 0) ∪ (0, 1+] . (3.10)

In this way differentiation can point in both directions. The negative interval,
F ∈ (−1, 0), restricts us to local search between the barycenters. The positive
interval, F ∈ (0, 1+], extends the exploration of the search space.

3.3 Examples of Strategies 47

Fig. 3.6. RAND/BEST/DIR group of strategies.

3.3 Examples of Strategies

In this section we shall consider detailed examples of strategies that form each
of the groups. We shall set in the particular Differentiation formulae for these
strategies and deduce the interrelation between the general differentiation
constant F and its particular representation ϕ according to the strategy.

At first, I shall fix the notation:

• ind — target (current) individual.
• {xi} — set of extracted individuals.
• V ∗ ∈ {xi} is an individual that has the minimal value of the objective

function among extracted individuals and the target one.
• V ′ and V ′′ are other individuals; if there are more than three extracted

individuals we denote them V1, V2, V3,
• Vb — the best individual.
• δ — difference vector.
• ϕ — particular constant of differentiation.
• β — base vector, the point of the difference vector application.

So, the formula of differentiation always has the following form;

ω = β + ϕ · δ (3.11)

3.3.1 RAND Strategies

Rand1 Strategy

In this strategy only one random individual x1 is extracted from the pop-
ulation. At the same time this individual presents the base vector β of the

48 3 Strategies of Search

strategy. The difference vector δ is formed by the current and extracted indi-
viduals (x1 − ind). The step length is equal to ‖ ϕ · (x1 − ind) ‖. The formula
of differentiation for this strategy is

ω = x1 + ϕ · (x1 − ind) . (3.12)

Comparing with the main group’s formula (3.2) we can see that Vg = VC′′ = x1

and VC′ = ind. Therefore, the constant of differentiation F = ϕ. Such an
approach gives (NP −1) possibilities for the trial individual, where NP is the
size of population. This strategy is shown in Fig. 3.7.

Fig. 3.7. Rand1 strategy.

Rand2 Strategy

The target individual ind interchanges with a second randomly extracted one
x2. Thus, the number of possible trial individuals increases to (NP −1)(NP −
2). As we can see, by extracting an additional individual the exploration
capabilities augment considerably. The difference is δ = x1 −x2, and the base
is β = x1, where x1 and x2 represent the barycenters VC′ and VC′′ accordingly.
Vg = x1 and F = ϕ. The differentiation formula of this strategy is

ω = x1 + ϕ · (x1 − x2) . (3.13)

The strategy is shown in Fig. 3.8.

Rand3 Strategy

Here, three individuals are randomly extracted to form this strategy. So, all
possible combinations are augmented to (NP −1)(NP −2)(NP −3). The first

3.3 Examples of Strategies 49

Fig. 3.8. Rand2 strategy.

two extracted vectors generate the difference δ = x1 −x2, but in this case the
base vector is the third extracted vector x3. The formula of differentiation is

ω = x3 + ϕ · (x1 − x2) . (3.14)

By assumption that Vg = x3, VC′ = x2, and VC′′ = x1 the strategy can
be generalized to the common group representation (3.2). Also, F = ϕ. The
strategy is shown in Fig. 3.9.

Fig. 3.9. Rand3 strategy.

50 3 Strategies of Search

Rand4 Strategy

By extracting four random individuals the next strategy can be written as

ω = x2 + ϕ · (x2 − x1 + x4 − x3) , (3.15)

where the difference δ = x2 − x1 + x4 − x3 and the base β = x2. In this case,
the difference is generated by superposition of two random directions (x2−x1)
and (x4 − x3). Any of these individuals can be chosen as the base vector: for
example, β = x2 as in (3.15). The vectors x1 and x3 create the barycenter
VC′ = (x1+x3)/2 and the same with the vectors x2 and x4: VC′′ = (x2+x4)/2.
Vg = x2 . So, (3.15) may be rewritten as ω = x2 + ϕ · (x2 − x1 + x4 − x3) =
x2+2ϕ ·((x2+x4)/2−(x1+x3)/2) = Vg +2ϕ ·(VC′′ −VC′). It is clear that F =
2ϕ ⇒ ϕ = F/2. We can see that in order to harmonize the strategy with its
template it is necessary to divide F by 2. The number of possible combinations
of four random individuals is (NP − 1)(NP − 2)(NP − 3)(NP − 4). This
strategy is shown in Fig. 3.10.

Fig. 3.10. Rand4 strategy.

Rand5 Strategy

In this strategy five random individuals are extracted. The first four individ-
uals work as in the Rand4 strategy, and the fifth individual realizes the base
point β = Vg = x5. Notice that F = ϕ/2 too. The search space exploration be-
comes appreciable; there are (NP −1)(NP −2)(NP −3)(NP −4)(NP −5) =∏5

i=1(NP − i) potential combinations of extracted vectors. The strategy is
shown in Fig. 3.11.

3.3 Examples of Strategies 51

Fig. 3.11. Rand5 strategy.

3.3.2 RAND/DIR Strategies

The main principle remains the same as in the RAND group of strategies.
Moreover, the information about the objective function is used to calculate
the direction of differentiation. In this way, the probability of the optimal
choice increases twice. Such an approach is analogous to descent in a direction
opposite to the gradient vector.

Rand1/Dir1 Strategy

This strategy uses one extracted individual x1 and target individual ind for
the differentiation formula. With introduced notations it looks like

ω = V ∗ + ϕ · (V ∗ − V ′) , (3.16)

or, equivalently

ω =

{
x1 + ϕ · (x1 − ind) if f(x1) < f(ind)
ind + ϕ · (ind − x1) otherwise .

This formula is similar to its generalization with VC+ = V ∗ and VC− = V ′.
Hence F = ϕ and VS = 0. The strategy is shown in Fig. 3.12.

Rand2/Dir1 Strategy

Following such a tendency I shall illustrate the strategy in which two random
individuals x1 and x2 are extracted. The formula of this strategy is the same

52 3 Strategies of Search

Fig. 3.12. Rand1/Dir1 strategy.

as (3.16), but the current individual ind is not used. It may be represented
also as

ω =

{
x1 + ϕ · (x1 − x2) if f(x1) < f(x2)
x2 + ϕ · (x2 − x1) otherwise

. (3.17)

Also, F = ϕ and VS = 0. The strategy is shown in Fig. 3.13.

Fig. 3.13. Rand2/Dir1 strategy.

3.3 Examples of Strategies 53

Rand3/Dir2 Strategy

The next strategy uses three random elements x1, x2, and x3. These elements
are sorted according to their values of the objective function so that f(V ∗) ≤
f(V ′) and f(V ∗) ≤ f(V ′′), where V ∗, V ′, V ′′ ⊆ {x1, x2, x3}. The formula of
this strategy is:

ω = V ∗ + ϕ · (2V ∗ − V ′ − V ′′) . (3.18)

Note that the superposition of two random directions (V ∗−V ′) and (V ∗−V ′′)
(difference vector) is used here. The base point β is the individual with the
minimal value of the objective function V ∗. To adjust this differentiation’s for-
mula with its template (3.7) imagine that the individuals form two barycenters
VC− = (V ′ +V ′′)/2 and VC+ = V ∗. Thus, ω = V ∗ +2ϕ · (V ∗− (V ′ +V ′′)/2) =
VC+ +2ϕ · (VC+ −VC−). There is no average shift vector in this case (VS = 0).
So, ϕ = F/2. The strategy is shown in Fig. 3.14.

Fig. 3.14. Rand3/Dir2 strategy.

Rand3/Dir3 Strategy

This strategy completely repeats the previous one. In addition to it, the av-
erage shift vector VS is formed by comparing the objective function values of
two other individuals V ′ and V ′′. Assume that f(V ∗) ≤ f(V ′) ≤ f(V ′′); then
the differentiation formula is

ω = V ∗ + ϕ · (2V ∗ − 1
2
V ′ − 3

2
V ′′) . (3.19)

Supposing VC− = (V ′ +V ′′)/2 and VC+ = V ∗; the shift vectors for each of the
barycenters are equal to V +

s = 0 and V −
s = (V ′ − V ′′)/2. Then the average

54 3 Strategies of Search

shift is VS = (V +
s + V −

s)/2 = (V ′ − V ′′)/4. By substituting it in the template
(3.7) we obtain ω = VC+ +F ·(VC+ −VC− +VS) = V ∗+F ·(V ∗−(V ′+V ′′)/2+
(V ′ − V ′′)/4) = V ∗ + F/2 · (2V ∗ − (1/2)V ′ − (3/2)V ′′). Thus, ϕ = F/2. This
strategy is shown in Fig. 3.15.

Fig. 3.15. Rand3/Dir3 strategy.

Rand4/Dir2 Strategy

This strategy is based on the choice of four random individuals x1, x2, x3, and
x4. Let us denote these individuals as V1, V2, V3, and V4 so that f(V1) ≤ f(V2)
and f(V3) ≤ f(V4). Hence the differentiation formula is

ω = V1 + ϕ · (V1 − V2 + V3 − V4) . (3.20)

It is obvious that VC+ = (V1 + V3)/2 and VC− = (V2 + V4)/2. The only
distinction is that the base vector β = V1, but not VC+ as in the template
(3.7). Such a small difference allows us to simplify the strategy without losing
quality. Moreover it is easy to verify that ϕ = F/2 and VS = 0. This strategy
is shown in Fig. 3.16.

Rand4/Dir3 Strategy

This strategy continues to evolve the ideas of the Rand3/Dir2 one. Here, it is
applied in three directions constructed on four randomly extracted individuals.
V ∗, the individual with the minimal value of the objective function, presents
the positive barycenter VC+ . The other three individuals form the negative
one VC− = (V1 + V2 + V3)/3. Thus, the formula is:

3.3 Examples of Strategies 55

Fig. 3.16. Rand4/Dir2 strategy.

ω = V ∗ + ϕ · (3V ∗ − V1 − V2 − V3) . (3.21)

It is obvious that ϕ = F/3 and VS = 0. This strategy is shown in Fig. 3.17.

Fig. 3.17. Rand4/Dir3 strategy.

Rand5/Dir4 Strategy

Continuing to follow the tendency, we illustrate the strategy built on five
random individuals, which form four random directions. The purpose of in-
creasing the number of extracted individuals is to determine more precisely

56 3 Strategies of Search

the descent direction by better exploiting the information about the objective
function and, at the same time, to explore the search space more and more
entirely. The differentiation formula, that represents this case is

ω = V ∗ + ϕ · (3V ∗ − V1 − V2 − V3 − V4) . (3.22)

Here, ϕ = F/4, VS = 0. The strategy is shown in Fig. 3.18.

Fig. 3.18. Rand5/Dir4 strategy.

3.3.3 RAND/BEST Strategies

This group of strategies is characterized by a random local search around the
best individual of the population. The main principle is similar to the RAND
group, but the base vector β, in this case, is always the best individual Vb.
Such an approach appropriately provides a local search, especially when the
gradient of the objective function tends to zero, and the gradient methods
suffer a defeat.

Rand1/Best Strategy

In this strategy one random individual x1 is extracted. The difference vector δ
is formed by the current ind and extracted x1 individuals. Then this difference
is added to the best individual Vb. The formula of differentiation is

ω = Vb + ϕ · (x1 − ind) ; (3.23)

ϕ = F . The strategy is shown in Fig. 3.19.

3.3 Examples of Strategies 57

Fig. 3.19. Rand1/Best strategy.

Rand2/Best Strategy

Two randomly extracted individuals are used here. The current one does not
participate in forming the difference vector. The differentiation formula is:

ω = Vb + ϕ · (x2 − x1) . (3.24)

Hence, ϕ = F . The strategy is shown in Fig. 3.20.

Fig. 3.20. Rand2/Best strategy.

58 3 Strategies of Search

Rand3/Best Strategy

Three random individuals with the current one create two random directions.
Each pair makes barycenters VC′ = (ind + x2)/2 and VC′′ = (x1 + x3)/2
accordingly. The differentiation formula for this strategy is

ω = Vb + ϕ · (x1 − ind + x3 − x2) . (3.25)

By comparing with template (3.8) it is clear that ϕ = F/2. The strategy is
shown in Fig. 3.21.

Fig. 3.21. Rand3/Best strategy.

Rand4/Best Strategy

The next strategy also creates two random directions but without the current
individual. Four random elements are extracted from the population for this
purpose. The rest completely coincide with the previous strategy Rand3/Best.
The formula of differentiation is:

ω = Vb + ϕ · (x1 − x2 + x3 − x4) . (3.26)

Also, ϕ = F/2. The strategy is shown in Fig. 3.22.

3.3.4 RAND/BEST/DIR Strategies

The combination of two previous groups RAND/DIR and RAND/BEST gen-
erates this group of strategies. The differentiation in the descent direction
and the simultaneous local search around the best solution are incorporated
together.

3.3 Examples of Strategies 59

Fig. 3.22. Rand4/Best strategy.

Rand0/Best/Dir1 Strategy

In this strategy there are no random individuals. The trial individual is created
by the both target and best individuals. Such maximal simplification reduces
computing time. The differentiation formula is:

ω = Vb + ϕ · (Vb − ind) . (3.27)

ϕ = F . The strategy is shown in Fig. 3.23.

Fig. 3.23. Rand0/Best/Dir1 strategy.

60 3 Strategies of Search

Rand1/Best/Dir1 Strategy

In this strategy the best individual Vb with the extracted one x1 form the
positive barycenter VC+ . The negative barycenter is presented by the current
individual ind. In other words, the descent direction from the current ind to
the best Vb individual is perturbed by randomly extracted x1. The differenti-
ation formula is:

ω = Vb + ϕ · (Vb + x1 − 2ind) . (3.28)

So, ω = Vb + ϕ · (Vb + x1 − 2ind) = Vb + 2ϕ · ((Vb + x1)/2 − ind) = Vb + 2ϕ ·
(VC+ − VC−). Thereby, ϕ = F/2. The strategy is shown in Fig. 3.24.

Fig. 3.24. Rand1/Best/Dir1 strategy.

Rand1/Best/Dir2 Strategy

Here, the randomly extracted individual participates in the creation of the
negative barycenter VC− as well as the current one ind. The positive barycen-
ter VC+ is presented by the best individual Vb. The formula of differentiation
is

ω = Vb + ϕ · (2Vb − x1 − ind) . (3.29)

Likewise in the previous case, ω = Vb + ϕ · (2Vb − x1 − ind) = Vb + 2ϕ · (Vb −
(ind + x1)/2) = Vb + 2ϕ · (VC+ − VC−). So, ϕ = F/2. The strategy is shown
in Fig. 3.25.

3.3 Examples of Strategies 61

Fig. 3.25. Rand1/Best/Dir2 strategy.

Rand2/Best/Dir1 Strategy

Two random individuals x1 and x2 are extracted in this strategy. The direction
constructed on these vectors (x1 − x2) randomly perturbs the main descent
from the current individual ind to the best one Vb. The differentiation formula
is

ω = Vb + ϕ · (Vb − ind + x1 − x2) . (3.30)

It is supposed that VC− = (ind + x2)/2 and VC+ = (Vb + x1)/2. Hence,
ω = Vb + ϕ · (Vb − ind + x1 − x2) = Vb + 2ϕ · ((Vb + x1)/2 − (ind + x2)/2) =
Vb + 2ϕ · (VC+ − VC−). In this way, ϕ = F/2 too. The strategy is shown in
Fig. 3.26.

Rand2/Best/Dir3 Strategy

Another way to use two random individuals is to create the negative barycen-
ter VC− with the current one by randomly making three directions to the best
individual Vb. The differentiation formula for this case is

ω = Vb + ϕ · (3Vb − ind − x1 − x2) . (3.31)

It is easy to verify that ϕ = F/3. The strategy is shown in Fig. 3.27.

Rand3/Best/Dir4 Strategy

This strategy follows the same tendency, but here, three elements x1, x2, and
x3 are extracted to create the negative barycenter VC− . The current individual

62 3 Strategies of Search

Fig. 3.26. Rand2/Best/Dir1 strategy.

Fig. 3.27. Rand2/Best/Dir3 strategy.

ind also participates in this strategy. So, there are four random directions that
form the difference vector δ. The differentiation formula is

ω = Vb + ϕ · (4Vb − ind − x1 − x2 − x3) . (3.32)

Let VC− = (ind+x1 +x2 +x3)/4 and VC+ = Vb, so ω = Vb +4ϕ · (VC+ −VC−).
Hence, ϕ = F/4. The strategy is shown in Fig. 3.28.

3.4 Tests 63

Fig. 3.28. Rand3/Best/Dir4 strategy.

Rand4/Best/Dir4 Strategy

In this strategy there is no influence from the current individual ind. But the
four directions are also used. For this purpose four random elements x1, x2,
x3, and x4 are extracted. These vectors form the negative barycenter VC− .
The differentiation formula is

ω = Vb + ϕ · (4Vb − x1 − x2 − x3 − x4) . (3.33)

It is obvious that ϕ = F/4. The strategy is shown in Fig. 3.29.

Rand4/Best/Dir5 Strategy

To increase the search space exploration the current individual ind is added to
the previous strategy Rand4/Best/Dir4. This strategy follows the tendency of
the Rand3/Best/Dir4 one, but the superposition of five directions is applied
here in order to create the difference vector δ. The differentiation formula is

ω = Vb + ϕ · (5Vb − ind − x1 − x2 − x3 − x4) . (3.34)

ϕ = F/5. The strategy is shown in Fig. 3.30.

3.4 Tests

All strategies presented here have been thoroughly tested on standard bench-
marks (see Appendix C) with problem dimensions from 2 to 100 and a sys-
tematic range of control parameters. The obtained results are summarized.

64 3 Strategies of Search

Fig. 3.29. Rand4/Best/Dir4 strategy.

Fig. 3.30. Rand4/Best/Dir5 strategy.

The full versions are kept in Excel and Text files (51.3 Mb), separately for
each test function and for each dimension. Also, there is a short version. The
short version contains the extraction of the best results and has been realized
as a PDF document. All this information can be naturally obtained by simply
contacting me. Taking into consideration the huge volumes of data, I did not
dare place it in the book.

From these tests we can observe the following unquestionable facts:

1. There are strategies less sensitive to the control parameters. Generally,
these are the strategies that are similar to arithmetic crossover. And there

3.4 Tests 65

are strategies more sensitive to the control parameters. These are basically
the strategies that realize the local search around the best found solution.
The practice shows that the more sensitive strategy is, the better the
solution that can be achieved.

2. With increasing the dimensionality of a problem, increasing of number of
randomly extracted individuals is needed. It could be explained by the
need to increase of the dimensionality of subspaces, where the search is
performed.

3. The more complex the function is, the more random strategy is needed.

Problems

3.1. Which operation is most important in differential evolution?

3.2. Explain search strategy? Why do we need to have so many strategies?

3.3. What is the trigonometric scheme? Write its formula and give a geomet-
rical interpretation of how it works. Indicate advantages and disadvantages of
this strategy. Implement it in your DE algorithm and compare with classical
strategy ω = ξ3+F ·(ξ2−ξ1) using the standard benchmarks (see Appendix C).

3.4. What is the common point for all methods of continuous optimization?

3.5. Give an explanation for β and δ. How can we create them taking into
consideration the current state of the population? Propose your own method
and implement it.

3.6. Which of the two, β or δ, could interpret the gradient’s behaviour?

3.7. Classify all possible variants of behaviour of β and δ into four groups.
Make a supposition as to which of the groups of strategies better corresponds
to one or another test function.

3.8. How can one make the algorithm be more stable?

3.9. What is the meaning of the No Free Lunch theorem? And what do you
think about the strategies now?

3.10. Given a D × D Hilbert matrix H : hij = 1/(i + j + 1) , i, j =
0, 1, . . . , D−1. Find the inverse Hilbert matrix H−1. Because H is ill defined,
it is very difficult to accurately compute H−1 as D increases. But the task
can be formulated as the minimization problem

min
D−1∑
i,j=0

|eij | , E = (eij) = I − HA ,

where I is the identity matrix and A is an approximation of the inverse Hilbert
matrix. You need to choose one strategy from each group of strategies that is
most suitable, in your opinion, for solving this problem.

3.11. Code the minimization problem (3.10) and four chosen strategies. Solve
the problem for D = 3, 5, 10, compare the results and discuss the strategies’
behaviour.

answer for D = 3 , H−1 ≈ A∗ =

⎛
⎝ 9 −36 30

−36 192 −180
30 −180 180

⎞
⎠

3.4 Tests 67

3.12. What value did you give to the constant of differentiation F in problem
(3.11)? Try different values of F and observe the changes in results (optimum
and convergence). How do the results change with increasing of F? For each
strategy plot graphs of the algorithm’s convergence for different F .

3.13. When should we take F in the interval (−1, 0)?

3.14. Which of your strategies, used in problem (3.12), is less sensible to the
changes of F? And which is more sensible? Explain why?

3.15. How does the sensibility of a strategy influence the quality of solution
in terms of convergence and precision?

4

Exploration and Exploitation

A successful application of an optimizer resides in the well-found
trade-off between exploration and exploitation. So, we are continu-
ously searching for the best equilibrium between them. In this chapter
we pass to the analysis of the differentiation operation and equally to
the study of the control parameter influence. In order to make a better
choice of strategy I propose calculating an indicator of the strategy
diversity,1 its exploration capacity. Also, I shall show that differentia-
tion is the first step to the general operator integrating mutation and
crossover, where mutation provides the needed diversity of the pop-
ulation and crossover assures the capacities to survive. Moreover, in
this chapter I expose my studies consecrated to the control parameters
and their tuning. This results in practical recommendations for using
differential evolution.

When we speak about evolutionary algorithms — GA, ES, DE, or others —
we always expect to find the global optimum, but. . .

. . . the ability of an EA to find a global optimal solution depends on
its ability to find a right relation between exploitation of the elements
found so far and exploration of the search space. . . . [Bey98]

Thus, the successful application of the method consists in the choice of the
optimal exploration/exploitation union. As is well known, the excessiveness of
exploration leads to the global optimum with a high probability, but critically
slows down the convergence rate. On the other hand, the excessive exploitation
quickly results in local optima.

The capability of genetic operators to control exploration/exploitation bal-
ance as well as their relative importance has been discussed for many decades.
Some groups of scientists believe in mutation-selection superiority, others con-
centrate themselves on crossover power. But I make an effort to be impartial
to these opinions and elicit the advantages from both points of view.
1 The diversity measures the proportion of the surveyed space of solutions.

70 4 Exploration and Exploitation

4.1 Differentiation via Mutation

The strategies, which use objective function values to create the trial individ-
ual, accomplish an exploitation function. These are dir and dir-best groups.
The diversity in this case decreases twice, so in order to maintain it at a re-
quired level it is necessary to increase the population size and/or the number
of extracted individuals.

The fact of random choice of parents for a trial individual itself answers for
exploration capabilities. Besides the population size and the type of strategy,
exploration efficiency can be controlled by the differentiation constant F as
well [Zah01, LL02b, Š02].

To the present day, it was considered (disruption and construction the-
ories) that mutation cannot completely fulfill the functions of crossover and
vice versa [Spe93]. Mutation perfectly creates a random diversity, but it can-
not execute the construction function well. Crossover can show preservation,
survival, and construction, but often it cannot achieve a desirable diversity.
Thus, the EC community was looking forward to the one general operator that
could integrate mutation and crossover functions as well as any variations be-
tween them. Differentiation in the DE algorithm is the first step on the road
to such an operator. It does not fall under the influence of accepted disrup-
tion theory providing needed diversity and, at the same time, it luxuriously
preserves survival capabilities. Let discuss it in more detail.

Differentiation is the first step to the general operator.

There is no disruption effect for differentiation! Disruption rate theory esti-
mates the probability that an evolutionary operator will disrupt a hyperplane
sample, in other words, the probability that individuals within a hyperplane
will leave that hyperplane [Spe93]. Let all individuals of a population Xi be-
long to hyperplane H. Hence, β and δ are always on H. Therefore, ω = β+F ·δ
will belong H too. That is, there is no combination of individuals on the hy-
perplane that makes the trial individual leave this hyperplane. This means a
good survival capability of differentiation usually inherent to crossover.

4.2 Crossover

The principal role of crossover is as a construction. There is no such mu-
tation that can achieve higher levels of construction than crossover [Spe98].
Just as selection exploits objective function values, crossover exploits genetic
information. Moreover, crossover furnishes the high diversity of a population.

Convinced of the power of crossover I would like to make a point about
applying it to DE.

Videlicet, in the cases when we use the strategies with a direction analysis
(dir and dir-best groups) crossover operation becomes unnecessary, because

4.3 Analysis of Differentiation 71

it spoils a trial individual inducing the noise. In other words, when we choose
the directed strategies, it is supposed that we want to imitate the gradient
function, that is, to make the steps close to the gradient direction. If we use
crossover, the gene’s exchange between the trial and target individuals would
perturb the desired direction in most cases.

Furthermore, note that differentiation by itself is capable of executing the
both functions (exploration/exploitation) simultaneously. So, if we guaranteed
sufficient exploration (diversity of population), then the crossover operation
would be superfluous. Thus we could eliminate it and thereby reduce comput-
ing time as well.

4.3 Analysis of Differentiation

The structure of the DE algorithm is similar to that of genetic algorithms:
concepts of mutation and crossover are repeated here. In addition, DE in-
tegrates the ideas of self-adaptive mutation specific to evolution strategies.
Namely, the manner of realization of such a self-adaptation has made DE one
of the most popular methods in evolutionary computation. We examine it in
detail.

Originally, two operations were distinguished: differential mutation and
continuous recombination [Pri99]. Differential mutation was based on the
strategy ω = ξ3 + F · (ξ2 − ξ1) and required at least three randomly extracted
individuals. A continuous recombination was in need of only two individuals,
ω = ξ1 + K · (ξ2 − ξ1). Price emphasized the different dynamic effects of these
operations. In the case of a continuous recombination the trial individual ω
places only on the line created by its parents ξ1, ξ2. This compresses a pop-
ulation. In the case of a differential mutation the difference vector (ξ2 − ξ1)
is applied to an independent individual. And it is similar to the Gaussian
or Cauchy distribution used in ES, that makes no reference to the vector to
which it is applied. It does not compress a population. Founded on such an
inference several strategies were proposed [Sto96a].

Recently, in 2004, a new vision of these operations was discovered (see
[FJ04d] or Chapter 3). A new principle of strategy design (see [FJ04g] or Sec-
tion 3.2) was introduced, which synthesizes the previous two operations by one
unique formula and accentuates population diversity. Now, all strategies are
described by two vector terms: difference vector δ and base vector β (2.8). The
difference vector provides a mutation rate term (i.e., a self-adaptive noise),
which is added to a randomly selected base vector in order to produce a trial
individual. The self-adaptation results from the individuals’ positions. During
the generations the individuals of a population occupy more and more prof-
itable positions and regroup themselves. So, the difference vector decreases
(automatically updates) each time the individuals fit local or global optima.

72 4 Exploration and Exploitation

The strategies have been classified into four groups by information that
they use to “differentiate” the actual individual (rand/dir/best/dir-best).
Each group represents a proper method of search (random/directed/local/
hybrid). Hence, the key to ensure a required diversity of a population is not
only the dynamic effect of the operations, but, to a greater extent, the number
of randomly extracted individuals k needed to create a strategy.

We look at differentiation now from a combinatorial point of view. Usually,
population size NP and the constant of differentiation F are fixed. Thus NP
individuals are capable of producing potentially Θ(k) different solutions. We
refer to Θ(k) as a diversity characteristic of a strategy, whereas the method of
using of these individuals reflects strategy dynamics (see Sections 3.2 and 3.4
or [FJ04b]). We shall give an estimation of diversity. Let the individuals be
extracted from the population one after another, so the upper diversity bound
can be evaluated in the following way (see Fig. 4.1),

Θ(k) =
k∏

i=1

(NP − i) . (4.1)

Fig. 4.1. The upper diversity bound.

The strategy (difference vector) is created by calculating the barycenters
of two sets of individuals. The general differentiation formula can be rewritten
as

ω = β + F · (Bar(set2) − Bar(set1)) . (4.2)

4.4 Control Parameters 73

These sets, besides randomly extracted individuals (n1 in the first set and n2

in the second set), may also include the target and the current best individuals.
Because of such a generalization, the extraction order of individuals forming
a barycenter is not important, thus the diversity of population decreases in
n1!·n2! times, where n1+n2 = k. Moreover, if the directed or hybrid strategies
are used, then the diversity still drops down twice. Therefore we introduce a
direction factor

dir =
{

2 if RAND/DIR or RAND/BEST/DIR
1 if RAND or RAND/BEST (4.3)

Consequently, the exact diversity estimation is equal to:

Θ(k) =
∏k

i=1(NP − i)
dir · n1! · n2!

. (4.4)

It is obvious that a high diversity slows down the convergence rate, whereas
a low one results either in stagnation or premature convergence. Thus some
balance is needed. By controlling the number of randomly extracted individ-
uals (or more precisely a strategy type) we can easily provide the required
diversity of population (see Section 3.4).

Practical remark: As you already know, the diversity function depends on
the number of individuals used in a strategy and the size of a population. If the
number of individuals in a strategy surpasses 7 then the diversity of a strategy
becomes enormous and consequently the exploration would be excessive. So,
in practice, it is reasonable to use not more than 3, 4, or 5 individuals to give
sufficient exploration. This is a practical compromise between computing time
and quality of the search space exploration.

4.4 Control Parameters

The goal of control parameters is to keep up the optimal exploration/exploita-
tion balance so that the algorithm will be able to find the global optimum in
the minimal time. Practical tests show that within the search process the
diversity of a population (its exploration capabilities) usually goes down more
rapidly than we would like. Thus, one of the ways to provide good control is
to retain the desired diversity level.

4.4.1 Diversity Estimation

During the last years different manners of the diversity estimation were pro-
posed in the literature. I shall represent some of them here.

74 4 Exploration and Exploitation

Expected Population Variance

One of the exploration power measures is the population variance [BD99]

Var(IP) = X2 − X
2

, (4.5)

where X is a population mean and X2 is a quadratic population mean. So, if
Var(IP0) is an initial population variance, then after several generations the
expected population variance can be estimated as a function of the control
parameters Ω = Ω(F, Cr, NP, k) [Zah01].

E(Var(IPg)) = Ωg · Var(IP0) . (4.6)

The comparisons of the real and theoretical results confirm the likelihood
of such an estimation. To retain the given diversity it is necessary for the
transfer function Ω to be a little more than or at least equal to 1: Ω ≥ 1.

Average Population Diversity

In the work [Š02] a direct measure of average population diversity was intro-
duced.

div(g) =

∑NP
i=1

∑NP
j=i+1

|Xi(g)−Xj(g)|
H−L

2 · D · (NP − 1) · NP
. (4.7)

It represents for each generation an average normalized distance between the
individuals of the population.

Mean Square Diversity

Another direct way to estimate diversity is to use the mean square root eval-
uation for the population as for its objective function [LL02a].

P g
div =

1
kp

√√√√ 1
NP

NP∑
i=1

D∑
j=1

(xg
i,j − xg−1

i,j)2

F g
div =

1
kf

√√√√ 1
NP

NP∑
i=1

(fg
i − fg−1

i)2 ,

(4.8)

where kp, kf compress P g
div, F g

div into the interval [0, 1]. This method requires
an additional memory source both for the population and the vector of ob-
jective functions of the previous generation.

4.4 Control Parameters 75

P -Measure

There is a simpler and, perhaps, more practical way to estimate population
diversity (see Chapter 5). P (population)-measure is a radius of population,
that is, an Euclidean distance between the center of population Op and the
farthest individual from it.

Pm = max ‖Xi − Op‖E , i = 1, . . . , NP . (4.9)

4.4.2 Influence of Control Parameters

Constant of Differentiation

The constant of differentiation F is a scaling factor of the difference vector δ.
F has considerable influence on exploration: small values of F lead to prema-
ture convergence, and high values slow down the search. I have been enlarging
the range of F to the new limits F ∈ (−1, 0) ∪ (0, 1+] (see Subsection 3.2.5).
Usually, F is fixed during the search process. However, there are some at-
tempts to relax this parameter. Relaxation significantly raises the covering
of the search space and also partially delivers us from the exact choice of
F . Among the relaxations we can outline F = N(0, F), N(F, σ)|σ�F , and
N(F, F) with a normally distributed step length and the same variants with
uniform distribution.

Constant of Crossover

The constant of crossover reflects the probability with which the trial individ-
ual inherits the actual individual’s genes. Although using Crossover makes the
algorithm rotationally dependent (Appendix D and [Sal96, Pri99]), crossover
becomes desired when we know the properties of an objective function. For ex-
ample, for symmetric and separable functions Cr ≈ 1−1/D is the best choice;
for the unimodal (or quasi-convex) functions a good choice is crossover with
the best individual. Moreover, small values of Cr increase the diversity of
population. To put it differently, the number of potential solutions will be
multiplied by the number of vertices of a D-dimensional hypercube built on
the trial and target individuals.

Size of Population

The size of population NP is a very important factor. It should not be too
small in order to avoid stagnation and to provide sufficient exploration. The
increase of NP induces the increase of a number of function evaluations; that
is, it retards convergence. Furthermore, the correlation between NP and F
may be observed. It is intuitively clear that a large NP requires a small F ;
that is, the larger the size of a population is, the more densely the individuals
fill the search space, so less amplitude of their movements is needed.

76 4 Exploration and Exploitation

Type of Strategy

The strategy can be characterized by the number of randomly extracted in-
dividuals k and the dynamic effect resulting from the manner of their use.
k controls the diversity, whereas the way to calculate the trial individual di-
rectly reflects the dynamics of exploration. A small k makes the strategy a
slack one. A big k slows down the convergence rate because of both the ex-
cessive diversity and towering complexity of differentiation.

4.4.3 Tuning of Control Parameters

The effective use of an algorithm requires the tuning of control parameters.
And this is a time-consuming task. However, the parameter tuning may be
replaced by the parameter control [EHM99].

Three types of parameter control are distinguished.

1. Deterministic control: parameters are followed by a predefined determin-
istic law; there is no feedback information from the search process.

2. Adaptive control: parameters depend on feedback information.
3. Self-adaptive control: parameters depend on the algorithm itself; they are

encoded into it.

Deterministic Control

For the first time the deterministic control of the population size has been in-
troduced using the energetic selection principle (Chapter 8). The population
is initialized by a huge number of individuals; then an energetic barrier (deter-
ministic function that depends on the generation number) is applied to reduce
the population to a normal size. This method leads to global convergence and
increases its rate.

Next, the law switching from one type of strategy to another can be im-
plemented. In such a way both the number and type of used individuals are
controlled. Switching results from a predefined switch-criterion that depends,
for instance, on the relative difference (fmax − fmin).

Adaptive Control

Two methods of adaptive control are distinguished.

1. Refresh of population
2. Parameter adaptation

The refresh of population [Š02] is realized either by replacement of “bad”
individuals or by injecting individuals into the population. Both methods
increase the diversity. The refresh can be aimed at exploration of new regions

4.5 On Convergence Increasing 77

of the search space as well as for convergence rate improvement. It repeats
periodically or each time when the population diversity reaches a critical level.

The parameter adaptation entirely obeys the state of population. The
feedback information calculated on the basis of this state modifies the control
parameter according to a control law.

By now, two variants of adaptation have been proposed.

• The first one is a fuzzy control that adjusts the constant of differentia-
tion F . The input signal for the fuzzy system is computed from (4.8).
Membership functions and fuzzy rules are established based on expert
knowledge and previous tests. Notice that diversity evaluation, fuzzifi-
cation/defuzzification, and execution of fuzzy rules are time-consuming
operations and their complexity might be comparable with one DE gen-
eration. Thus, it is always necessary to estimate the relative efficiency of
this method.

• The second one is an adaptation based on the theoretical formula of the
expected population variance (4.6) [Zah02]. Also, the parameter F is ad-
justed. But this parameter becomes unique for each gene of the individual;
that is, each gene has its own parameter value. The adaptation happens
each generation. It is less complex than the previous one (O(NP · D))
and does not modify the complexity order of one generation. Such an
adaptation prevents premature convergence, but does not ensure the best
convergence rate. Moreover, it does not depend on the objective function,
so the introduction of supplementary information would be desirable.

Self-Adaptive Control

The work [Abb02] first proposed self-adaptive crossover and differential mu-
tation. Also, separate parameters were proposed for each individual as well as
for differential mutation as for crossover. The self-adaptation scheme repeats
the principle of differential mutation: r = rξ3 +N(0, 1)·(rξ2−rξ1), r ∈ {F,Cr}.
The given adaptation was used for multiobjective Pareto optimization and the
obtained results outperform a range of state-of-the-art approaches.

4.5 On Convergence Increasing

Actually, we emphasize three trends of convergence improvement.

1. Localization of global optimum
2. Use of approximation techniques
3. Hybridization with local methods

All these trends represent a pure exploitation of available information.
They elevate the intelligence of the algorithm in order to improve its conver-
gence. The main purpose of the prescribed improvement is an ability to solve
large-scale nonlinear optimization problems.

78 4 Exploration and Exploitation

Localization

The energetic selection principle (Chapter 8) is a particular case that illus-
trates a fast localization of the global optimum. An initialization by a large
population helps to reveal promising zones; then a progressive reduction of
the population locates the global optimum. At the end, local techniques can
be used.

Approximation

The deterministic replacement of “bad” individuals by “good” ones is one
of the ideas to ameliorate the convergence. Let the good individuals be cre-
ated by approximation methods. For example, we construct a convex function
regression on the basis of the best individuals of the population. Then, the
optimum of this regression will replace the worst individual. Here, there are
lots of regression techniques that could be applied. For instance, a more recent
and promising one is support vector machines (Chapter 9). The main empha-
sis is made on choosing an appropriate kernel function, which considerably
influences the quality of approximation.

Local Methods

The most traditional idea is to use the population-based heuristics as “multi-
starts” for deterministic optimizers. The positive results were demonstrated by
hybridizing DE with the L-BFGS method [AT02]. This hybridization proves
to be more efficacious for large-scale problems than for small ones.

Problems

4.1. What do we mean by exploitation and exploration when speaking about
evolutionary algorithms?

4.2. What advantages and disadvantages has an excessive exploration? And
an excessive exploitation?

4.3. It is well known that the role of genetic operators is to control the balance
between exploration and exploitation. If you had a choice between mutation
and crossover, what would you prefer? And why?

4.4. Choose from Chapter 3 four different strategies (one strategy from each
group) and explain how the strategies realize the functions of exploitation
and/or exploration.

4.5. What do we mean by the diversity of population? Analyse how the di-
versity of population changes as exploitation increases?

4.6. Analyse the efficiency of exploration when the constant of differentiation
F increases.

4.7. What is the general operator? Could you consider the operation of dif-
ferentiation as the general operator? Explain your point of view.

4.8. Explain the disruption effect. Does the differentiation operator possess
this effect?

4.9. Suppose n individuals in n-dimensional space En are linearly dependent
vectors. Then, among them, there exists r linearly independent vectors form-
ing the basis in the subspace Er ⊂ En. Let the optimum Opt ∈ En be outside
of subspace Er, that is, there are no decompositions on basis vectors. The DE
algorithm implements only differentiation and selection (without crossover).
Is the found solution X∗ the optimum Opt? Write your arguments and give
an explaining sketch.

4.10. What properties should crossover have? Enumerate at least three prop-
erties and give an example for each of them.

4.11. How does the exploitation property appear in crossover?

4.12. In which cases does crossover become useless and may be even harmful?

4.13. Due to what does the self-adaptation of difference vector δ occur?

4.14. How, in theory, does one estimate the diversity of population from a
combinatorial standpoint? Take, from Chapter 3, any three strategies and
calculate the diversity according to the formula (4.4) of Chapter 4.

80 4 Exploration and Exploitation

4.15. Test the strategies selected for problem (4.14) using any test function
you have. Analyse the influence Θ(k) on the precision of the found solutions
and the computing time spent to obtain them. Make a written deduction.

4.16. Why are the control parameters necessary?

4.17. What empiric methods for diversity estimation do you know? Enumer-
ate at least four methods and implement one of them for choice.

4.18. Plot experimental curves (diversity from generation) for the strategies
chosen in problem (4.14) and the function used in problem (4.15). Explain
the obtained results.

4.19. What is the relaxation of F? Are there any advantages of relaxation?
Give some examples of relaxation. Does relaxation have some drawbacks?

4.20. Given a test function, the so-called Salomon function,

f(X) = − cos(2π‖X‖) + 0.1 · ‖X‖ + 1 ,

‖X‖ =

√√√√ D∑
i=1

x2
i , −100 ≤ xi ≤ 100 ,

f(X∗) = 0 , x∗
i = 0 , V TR = 1.0 × 10−6 .

Plot this function for D = 2. Make two experiments: the first for the fixed F
and the second for the relaxed F . Compare the results and show at least one
advantage and one disadvantage of the relaxation.

4.21. In which cases is crossover definitely necessary? Give concrete examples.

4.22. For any problem you choose, initialize the population as described in
problem (4.9). Find the optimal solution without using the crossover oper-
ation. Then, add the crossover operation and watch whether the new-found
optimal solution is changed? Make tests with different values of crossover.
Which value of crossover is the best for your case?

4.23. What chances do you take when the population size is too small?
Demonstrate on an example the stagnation effect of the algorithm. For the
demonstrated example, plot a graph of the time (generations), needed to find
the optimal solution (V TR) from the size of the population NP .

4.24. Choose arbitrarily one of four groups of strategies. Test several strate-
gies of this group on either your favorite problem or any known test function.
Plot curves of convergence for these strategies. Analyse how the convergence
of the algorithm depends on the number of randomly extracted individuals
needed for one or another strategy? Did you use, for validity of results, one
and the same initial population for all your tests?

4.5 On Convergence Increasing 81

4.25. Why do we need to adjust the control parameters?

4.26. What is the difference between tuning of control parameters and the
parameter control? What three types of parameter control do you know?

4.27. Think out your own method of deterministic control, implement it and
test. Estimate its efficiency.

4.28. What kinds of adaptive control do you know?

4.29. Elaborate your own method of adaptive control for one of four parame-
ters (F, Cr, NP, k). Implement it and test. Estimate its efficiency.

4.30. Explain in short what is the self-adaptive control.

4.31. Think out your own version of self-adaptive control. Test it and estimate
how efficient your version is.

4.32. For optimization of a test function, the so-called Schwefel’s function,

f(X) = − 1
D

D∑
i=1

xi · sin(
√
|xi|) , −500 ≤ xi ≤ 500 ,

f(X∗) = −418.983 , x∗
i = 420.968746 , V TR = 0.01 ,

use the DE algorithm with three control parameters (F,Cr,NP). Your task
is to optimize these parameters in order to ameliorate the convergence of the
algorithm. For this, use an algorithm of global optimization (either DE or
another). Plot the Schwefel’s function for D = 2. Write the program and find
the optimal control parameters.

4.33. What three trends of convergence improvement do you know? To what
are these improvements usually attributed? Write a short explanatory para-
graph.

5

New Performance Measures

In this chapter three new measures of the algorithm’s performance
are introduced. These measures provide a more objective vision of
the behavior of an algorithm and supplement the ensemble of stan-
dard measures for evolutionary algorithms. These are the following
measures.
1. Q-measure: an integral measure that combines the convergence of

an algorithm with its probability to converge.
2. P-measure: a measure of the population dynamics. It analyzes the

convergence from the point of view of a population.
3. R-measure: a measure that permits estimating the robustness of

a strategy.

5.1 Quality Measure (Q-Measure)

Quality measure or simply Q-measure is an empirical measure of the algo-
rithm’s convergence. It serves to compare the objective function convergence
of different evolutionary methods. In the case under consideration it is used
to study the strategy behavior of the DE algorithm.

Firstly, we introduce some necessary notation:

• gmax — maximal number of generations
• Emax — maximal number of function evaluations: Emax = gmax · NP
• nt — number of trials, launchings of algorithm1

• Ei — number of function evaluations in ith trial, i = 1, . . . , nt

• ε — precision of the solution

1 The core of the algorithm is a random process; thus to obtain an average statistics
it is run several times.

84 5 New Performance Measures

Convergence Measure

Suppose, if in the ith trial the given precision ε is not achieved after Emax

function evaluations; it is then considered that this trial is not successful.
Let there be nc successful of nt total trials, where the strategy arrives at the
optimal solution with a sufficient precision ‖ x − x∗ ‖≤ ε, so the convergence
measure is calculated as

C =

∑nc

j=1 Ej

nc
, (5.1)

where j = 1, . . . , nc are successful trials. In other words, the convergence
measure is an average number of function evaluations for successful trials.

Probability of Convergence

It measures the probability of convergence and can be calculated as the per-
centage of successful to total trials.

PC =
nc

nt
% . (5.2)

Q-measure as an Integrating Criterion

Q-measure2 incorporates the two criteria mentioned above. By combining
the convergence rate and its probability in one, the Q-measure undoubtedly
destroys some data about algorithm performance. Nevertheless we can still
refer to C and PC if we need them. Now Q-measure is a single criterion
to be minimized. Without Q-measure the algorithm performance would be
ambiguous (as in multiobjective optimization). The formula of Q-measure is

Qm =
C

PC
. (5.3)

Enes and Q-Measure (Advantage of Q-Measure)

The average number of function evaluations’ overall trials can also be calcu-
lated.

Mean =
∑nt

i=1 Ei

nt
(5.4)

and Enes-measure, introduced by Price in [Pri97]

Enes =
Mean

PC
=

∑nt

i=1 Ei

nc
. (5.5)

When all the trials are successful Qm = C = Mean = Enes, but as PC

decreases, Qm increases. This way, a lower convergence probability and a
higher number of function evaluations both increase Qm. Enes gives very
similar results when Emax is the same order of magnitude as C, but the main
advantage of Qm is that it does not depend on an arbitrary Emax. The Q-
measure function is shown in Fig. 5.1.
2 Q-measure was introduced during personal communications with Kenneth Price.

5.2 Entropy 85

Fig. 5.1. Q-measure criterion function.

5.2 Entropy

Based on the concept of entropy Price introduced a new measure to estimate
the complexity of an algorithm tuning. This is crafting effort [Pri97], that is,
the effort needed to find a good set of control parameters. We use this criterion
to compare an effort of a strategy tested on benchmarks. So, it is possible to
tell if that strategy is easier to tune in comparison with this one.

Let there be nf test functions and three control parameters cpi : ∀i ∈
{1, 2, 3}, where the size of the population is NP = cp1, the constant of dif-
ferentiation is F = cp2, and the constant of crossover is Cr = cp3. For each
test function the optimal control parameters’ values are found from a fixed
value grid {vk

cpi
}ncpi

k=1 . So, we have three vectors of nf optimal values for each
control parameter separately, V ∗

cpi
. Each value in these vectors takes place

nj : 0 ≤ nj ≤ nf times, so that
∑

j nj = nf . Thus, crafting effort of the
control parameter is

ϑcpi
= −

∑
j

nj

nf
· log

nj

nf
, (5.6)

and total crafting effort of the strategy is

Θ =
3∑

i=1

ϑcpi
. (5.7)

86 5 New Performance Measures

On the other hand, the total crafting effort calculated for a strategy is in-
versely proportional to its robustness: the less crafting effort, the more robust
the strategy is; that is, the same set of control parameters gives a good per-
formance for most objective functions,

robustness ∼ 1
Θ

. (5.8)

5.3 Robustness Measure (R-Measure)

I propose another approach to calculate the robustness. This approach is based
on statistics.

Suppose that for each strategy and for each nf test function the best
combinations of the control parameters {F ∗, Cr∗, η∗} are chosen from a given
grid of value. η∗ = NP ∗/D, where D is a dimension of the variables’ space.
Then, the standard deviation of these parameters is calculated separately:

σX = std{X∗
j }nf

j=1, X ∈ {F,Cr, η} . (5.9)

It is assumed that the inverse of dispersion of these deviations represents the
robustness of a strategy with respect to each of the control parameters.

In order to have a single criterion we normalize the deviations as σX/�X ,
where �X is a range of parameter changing. So, these three values can be
drawn as edges of the orthogonal parallelepiped in 3-D space. The volume
of such a parallelepiped integrates these three deviations in one. The inverse
of this volume characterizes the robustness of the strategy. I call it the R-
measure. Thus, the formula of the R-measure is:

Rm =
�F

σF
· �Cr

σCr
· �η

ση
. (5.10)

5.4 Population Convergence (P-Measure)

Let us imagine a is a known optimum that minimizes an objective function
min f(x) = f(a) = L. So, from an optimization point of view it is necessary to
find a solution xo that minimizes f(x) with a given precision ε : |f(xo)−L| < ε.
Consequently, there exists some δ : 0 < ‖xo − a‖ < δ that represents the
distance between the optimum a and the found solution xo.

Convergence of an Objective Function

When we speak about algorithm convergence, usually we mean the conver-
gence of the objective function that we minimize. The rate of convergence
is generally described by a functional dependence, f(gen), where gen is the
current generation. It looks like Fig. 5.2, for example.

5.4 Population Convergence (P-Measure) 87

Fig. 5.2. Convergence of an objective function.

Convergence of a Population

By analogy with limits, we introduce a measure of the convergence of a popu-
lation. The convergence of a population is a measure that allows us to observe
the convergence rate from the point of view of variables. It represents the dy-
namics of grouping individuals around the optimum. In general, it is supposed
that the more densely individuals are located, the better algorithm conver-
gence is intended. To measure this characteristic I have introduced the radius
of population gauging. I called it population measure or simply P-measure.
P-measure is a radius of a population, that is, the Euclidean distance between
the center of a population and the individual farthest from it. The center of a
population is calculated as the average vector of all individuals (barycenter)
Op =

∑NP
i=1 indi/NP . Thus, the P-measure is defined as

Pm = max ‖indi − Op‖E , i = 1, . . . , NP . (5.11)

The population radius measure (P-measure) expands the convergence measure
of an objective function. And so, in the aggregate, both measures give a better
convergence image. I shall show them in the same figure, Fig. 5.3.

88 5 New Performance Measures

Fig. 5.3. Convergence of a population.

Problems

5.1. What standard performance measures do you know? Which of them have
you already used to estimate the efficiency of an algorithm? How objective an
estimation did they provide?

5.2. Why do we compare algorithms using average statistical results, starting
each algorithm being compared several times?

5.3. How does one estimate the convergence of an algorithm? What is the
probability of convergence?

5.4. What is the Q-measure? What are its advantages and disadvantages
in comparison with the measures cited in problem (5.3)? Explain how Q-
measures differ from Enes-measures?

5.5. Given a test function, the so-called Griewank’s function,

f(X) =
1

4000
·

D∑
i=1

x2
i −

D∏
i=1

cos
(

xi√
i

)
+ 1

−600 ≤ xi ≤ 600
f(X∗) = 0 , x∗

i = 0 , V TR = 1.0 × 10−6 .

Plot this function and its level lines for D = 2. Write the code to calculate
the Q-measure. Using two different sets of control parameters, run the DE
algorithm 50 times for each of the cases. Calculate the Q-measure for each set
of parameters. Which of the two control parameters sets is more appropriate
for solving this function?

5.6. What does “crafting effort” mean? Explain the formula of crafting effort
for one control parameter, F or Cr for choice.

5.7. Give a definition of “robustness”. How, in a qualitative sense, is crafting
effort related to the robustness of a strategy? Write a short explanation with
an example.

5.8. Calculate R-measure for two different strategies taken from Chapter 3.
For this, use any five test functions or optimization problems. Define which
of two strategies is more robust.

5.9. Why do we need to trace the convergence of population? Give an example
when it is definitely necessary.

5.10. Given a test function, the so-called Bohachevsky’s function

f(X) = x2
1 + 2x2

2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7
−50 ≤ x1, x2 ≤ 50

f(X∗) = 0 , X∗ = 0 , V TR = 1.0 × 10−6 .

90 5 New Performance Measures

How does one estimate empirically the convergence of population? Propose
your own method. Implement both methods and plot graphs both of the
objective function’s convergence and the convergence of population for each
method. What kind of information can you extract from these curves?

5.11. Think out your measures to estimate the algorithm’s performance.

6

Transversal Differential Evolution

In this chapter I introduce the new concept of evolution: each indi-
vidual, before returning into the population, makes several steps (a
trajectory) in a space, and only then it comes back to the population.
The research in this direction allowed me to allot three evolution-
ary species of an algorithm. These are: two-array species, sequential
species, and, the new (proposed by me) transversal one. The two-array
species is the oldest species adopted by the evolutionary computation
community. It is designed mainly for synchronous parallel implemen-
tation. Next, sequential species is intuitively used by many people
and has the following advantages: reasonable memory requirements,
instantaneous renovation of a population, and better convergence. The
transversal species constitutes the generalization of the sequential one.
This technique permits the interpretation of some other recent meta-
heuristics, for example, free search. On the other hand, the transversal
species is very well adapted to an asynchronous parallel implementa-
tion of the algorithm. And moreover, the number of transversal steps
permits controlling the diversity of a population in a delicate manner.

6.1 Species of Differential Evolution

In my previous works I usually used the algorithm of differential evolution
stated in Chapter 2 (Section 2.3). However, the first species of DE proposed by
R. Storn and K. Price [SP95] was realized, with the parallelization purposes,
as two population arrays. Now, I shall introduce a new kind of DE, which I
called transversal differential evolution. The next facts served me as the main
motivation for the introduction of such an algorithm:

1. Many papers devoted to studying the influence of population diversity
and of the exploitation/exploration trade-off on the convergence rate (see
Chapter 4).

92 6 Transversal Differential Evolution

2. Aspirations to continue the universalization of DE; that is, indirectly
speaking, I wished that DE would completely generalize and involve a
recently proposed Free Search method [Pen04].

3. Also new parallelization technologies for heterogeneous networks (mpC)
brought me to a transversal architecture of the algorithm [Las03].

Let me briefly present the existing, two-array and sequential, DE species
and then we shall examine together the new transversal one.

6.2 Two-Array Differential Evolution

This species of DE uses two populations: the old and the new one. During
each iteration cycle (evolutionary step) individuals of the old population are
transferred into the new population by reproduction and selection operations.
In order to generate trial individuals the old population is always used, that is,
all individuals necessary for differentiation are randomly extracted from the
old population. After crossover and selection the obtained individual passes
into the new population. At the end of the iteration the new population be-
comes the old one and then the next evolutionary step begins (see Fig. 6.1).

Fig. 6.1. Two-array differential evolution.

Such an organization allows us to treat each individual independently and
leads to synchronous parallelization. We shall call this algorithm two-array
DE, because two arrays are used to operate with a population. We show the
changes in the classical algorithm (see Alg. 4).

6.3 Sequential Differential Evolution 93

Algorithm 4 Two-array Differential Evolution
Require: · · · , IP0

old, IP0
new – 2 arrays

initialize IP0
old ← {ind1, . . . , indNP }

evaluate f(IP0
old)

while (not terminal condition) do
for all ind ∈ IPg

old do
IPg

old → π = {ξ1, ξ2, . . . , ξn}
· · · · · · · · · · · · · · ·

ind → IPg
new

end for
IPg+1

old ← IPg
new

· · · · · ·
end while

Remark

Using two populations is a memory-consuming approach, especially for large-
scale problems. The fact that during the whole iteration we operate only with
the old population brings the diversity to a constant level within this iteration.

6.3 Sequential Differential Evolution

The algorithm of sequential DE is described in Chapter 2 (see Alg. 3). In
this algorithm one population array is implemented. Individuals evolve one
after another (from 1 to NP) and immediately return in the population. The
order of evolving is not fixed, but each individual evolves once per iteration.
Figure 6.2 shows this principle.

Fig. 6.2. Sequential differential evolution.

Remark

By using one array to keep up the population we considerably reduce mem-
ory needs. Also, previously improved individuals at this evolutionary step

94 6 Transversal Differential Evolution

immediately participate in creation of trials (differentiation). In such a way
each successive individual will be created on the basis of better individuals.
Thus, in this case, the diversity of a population decreases proportionally to
approaching the optimum.

6.4 Transversal Differential Evolution

Now we allow an individual to evolve several (say n) times before it replaces
the target one in the population. Graphically, such an individual passes a
nonlinear trajectory framed by reproduction operators (n jumps on the search
space) and it chooses the best location. Then, we proceed with the next indi-
vidual.

This behavior describes an intermediate stage between two previous DE
species. The population keeps up the constant diversity level during these
n steps. The trajectory represents a new subpopulation constructed on the
basis of individuals of the population. On the other hand, by selection, the
best individual of this new subpopulation immediately replaces the target one
in the initial population. And furthermore, the obtained individual is used to
form posterior individuals of the population.

In order to draw an analogy we could imagine two-array DE where the
“new” population consists of n individuals and is rotated transversely to the
“old” one. This “new” population is sequentially created for each individual
of the “old” population. The individuals evolve into the “new” population
without the selection operation. And at the end, the best individual of the
“new” population replaces the target individual in the “old” population. If
n = 1 (one step) then transversal DE turns into a sequential one. But there
is no such transformation into two-array DE.

We shall baptize the presented algorithm transversal differential evolution.
This term explains the algorithmic architecture well: in addition to the con-
secutive (“longitudinal”) transformation of a population (sequential DE, see
Fig. 6.2), at first, n “transversal” steps are applied to each individual (see
Fig. 6.3). The algorithm modification is the following (see Alg. 5).

Algorithm 5 Transversal Differential Evolution
· · · · · ·
while (not terminal condition) do

for all ind ∈ IPg do
for transversal step = 1 to n do

· · · ind ← {Diff, Cross, Select}
end for

end for
· · ·

end while

6.5 Experimental Investigations 95

Fig. 6.3. Transversal differential evolution.

Transversal DE may be associated with a free search algorithm [Pen04].
Free search (FS) has been recently created on ideas inspired by animal behav-
ior as well as particle swarm optimization and differential evolution. Its main
principle is to give excessive freedom for the search space exploration.

A new FS individual is formed by the relaxed strategy ω = ξ+Frel ·(H−L),
Frel = F · rand[0, 1]. However, as shown for DE [RL03], this F relaxation
does not do the essential convergence improvement. Moreover, the relaxation
within boundary constraints does not permit us to control a needed level of
the population diversity. So, a wide range of the strategies proposed for DE
(2.8) will provide undoubtedly more interesting results, Although there were
no comparative results until now. Nevertheless, we can clearly observe that
transversal DE is ideally close to FS and can involve FS as one of its strategies.

6.5 Experimental Investigations

In this section we shall compare the efficiency of three outlined DE species.
In order to do this we chose some well-known benchmarks (see Table 6.1 and
Appendix C). In this table VTR (value to reach) defines the desired proximity
to the optimum and serves as a terminal condition. IPR sets the boundary
constraints: X ∈ [−IPR,+IPR]. D and NP are the dimension and popu-
lation size of a tested problem, accordingly. The constants of differentiation
and of crossover are fixed as well as the strategy type (F = 0.5, Cr = 0,
ω = ξ3 + F · (ξ2 − ξ1)). For statistical purposes I ran each test 20 times and
then found the average values. Moreover, the same initial populations are used
to test different DE species.

First, we shall study the behavior of transversal DE relative to the se-
quential one. We begin to increase the number of transversal steps from 1 to

96 6 Transversal Differential Evolution

Table 6.1. Benchmarks for Evolutionary Algorithms

Function Name VTR IPR D NP

f1 – Ackley’s function 1e–3 32.768 30 300
f2 – Rotated ellipsoid 1e–6 65.536 20 200
f3 – Rosenbrock’s function (Banana) 1e–6 2.048 10 200
f4 – Step function 1e–6 5.12 5 100
f5 – Shekel’s function (Foxholes) 0.998005 65.536 2 40

30 and observe the changes in convergence rate (number of function evalua-
tions). Note that transversal DE with one transversal step will be equivalent
to the sequential one. The obtained results are summarized in Table 6.2. It
is obvious that sequential DE and/or a very few number of transversal steps
give, in most cases, good results. It can be explained by optimal population
diversity decreasing. In the cases with specific functions, where extra diversity
is needed, slight increasing of the number of transversal steps (up to 5–10% of
NP) leads to better results. Thus, the transversality of DE may be presented
also as one of the ways of controlling diversity.

Table 6.2. Transversal Differential Evolution

Number of Number of Function Evaluations
Transversal f1 f2 f3 f4 f5

Steps Ackley Ellipsoid Banana Step Foxholes

1 266362,60 105414,60 66695,60 15714,30 1936,80
2 280021,40 107914,10 67669,00 15921,70 1936,30
3 273918,10 105874,00 65945,10 16368,80 1970,30
4 277127,80 109447,70 69489,20 17523,60 1956,00
5 277109,90 110563,90 71597,50 16925,30 2059,30
10 305529,30 119798,20 81687,30 14727,90 2133,60
20 342003,30 145450,00 98967,80 15916,60 2426,20
30 381638,00 172979,10 116217,90 20228,80 —

Second, we shall compare two-array DE implementation with sequential
DE and 10-transversal DE (10 transversal steps). The results are shown in
Table 6.3. This comparison illustrates the relative positions of each species.
In general, we can see that the most efficient is sequential DE; then, in several
cases, transversal DE is comparable with the sequential one, and at the end
there is two-array DE.

The experimental study confirms the theoretical premises stated in Sec-
tion 6.3.

Diversity of a population should decrease
proportionally to approaching the optimum.

6.6 Heterogeneous Networks of Computers 97

Table 6.3. Comparison of Differential Evolution Species

Number of Function Evaluations
DE Species f1 f2 f3 f4 f5

Ackley Ellipsoid Banana Step Foxholes

Sequential DE 266362,60 105414,60 66695,60 15714,30 1936,80
10-transv. DE 305529,30 119798,20 81687,30 14727,90 2133,60
Two-array DE 301104,25 123007,05 88095,05 17120,80 2365,93

Transversal DE plays an intermediate role between sequential and two-array
ones.

After this study the positive effect of precalculated differentials in topo-
graphical DE [AT02] can be well explained by the needs of population diversity
keeping, whereas the gradient methods reduce it considerably. In other cases,
an excessive diversity or diversity keeping could not be recommended.

6.6 Heterogeneous Networks of Computers

Recently heterogeneous networks of computers become the most used for
parallel computation. It is explained by their high productivity at very low
cost. The main principle is to use many personal computers with different
capacities integrated in a common network to solve a complex task. The
portions of the task are divided among computers proportionally to their
capacities (performances of processors and links). There are many parallel
languages for programming on heterogeneous networks. One of them, the
most recent and advanced, is mpC (multiparallel C). It is an extension
of the ANSI C language, designed specially to develop portable adaptable
applications, possessing intelligent parallel-debugging tools (see [Las03] and
http://www.ispras.ru/∼mpc).

mpC 1 allows programmers to implement their heterogeneous parallel algo-
rithms by using high-level language abstractions rather than going into details
of the message-passing programming model of the MPI level. Moreover, it han-
dles the optimal mapping of the algorithm to the computers of the executing
heterogeneous network. This mapping is performed at runtime by the mpC
programming system and is based on two performance models:

1. Performance model of the executing heterogeneous network
2. Performance model of the implemented algorithm

The performance model of the heterogeneous network of computers is sum-
marized as follows.

1 Specifications of mpC were generously given by A. Lastovetsky, the author of the
programming language.

98 6 Transversal Differential Evolution

• The performance of each processor is characterized by the execution time
of the same serial code.

• The communication model is seen as hierarchy of homogeneous commu-
nication layers. Each is characterized by the latency, overhead, and band-
width. Unlike the performance model of processors, the communication
model is static: its parameters are obtained once at the initialization of
the environment.

The performance model of the implemented algorithm is provided by the
application programmer and is a part of the mpC application. The model is
specified in a generic form and includes:

• The number of processes executing the algorithm
• The total volume of computation to be performed by each process during

the execution of the algorithm
• The total volume of data transferred between each pair of the processes

during the execution of the algorithm
• How exactly the processes interact during the execution of the algorithm;

that is, how the processes perform the computations and communications
(which computations are performed in parallel, which are serialized, which
computations and communication overlap, etc.)

The mpC compiler will translate this model specification into the code
calculating the total execution time of the algorithm for every mapping of the
processes of the application to the computers of the heterogeneous network.
In the mpC program, the programmer can specify all parameters of the algo-
rithm. In this case, the mpC programming system will try to find the mapping
of the fully specified algorithm that minimizes its estimated execution. At the
same time, the programmer can leave some parameters of the algorithm un-
specified (e.g., the total number of processes executing the algorithm can be
unspecified). In that case, the mpC programming system tries to find both
the optimal value of unspecified parameters and the optimal mapping of the
fully specified algorithm.

Suppose that we want to parallelize two-array DE. So at each iteration
we are obliged to synchronize the processes to refresh the old population by
the new one. Besides, executing one individual at the processor would be
reasonable only with a very complex (time-consuming) objective function.
Thus it leads to loss of time and applying heterogeneous networks would be
irrelevant.

Let us look at transversal DE. This algorithm permits increasing the
amount of computations at the processor. Now a processor deals with en-
tire transversal computations. So, all individuals are treated in parallel. And
as the transversal line is finished, the new (best) individual returns to a pop-
ulation. In this case, we don’t worry that new individuals would refresh the
population simultaneously. Once the target individual is replaced by a better
one, it immediately participates in the creation of new trials.

6.6 Heterogeneous Networks of Computers 99

Such an organization leads to asynchronous realization and saves comput-
ing time. Furthermore, as theoretical inferences and experimental calculations
show, the given species increase the convergence rate. So, transversal DE may
be highly recommended for execution on heterogeneous networks of comput-
ers instead of the usually used two-array DE because it provides both the
flexibility and quality of parallelization.

Problems

6.1. What three species of differential evolution do you know?

6.2. Explain the architecture of two-array differential evolution. What is it
used for? Do you see any drawbacks of two-array species?

6.3. Program the two-array species modifying the algorithm described in
Chapter 1. Compare the results obtained before and after the modification
using, for example, the following test function, the so-called Aluffi-Pentini’s
problem,

f(X) = 0.25x4
1 − 0.5x2

1 + 0.1x1 + 0.5x2
2

−10 ≤ x1, x2 ≤ 10
f(X∗) ≈ −0.3523 , X∗ = (−1.0465, 0) .

6.4. In which cases should you give preference to a synchronous paralleliza-
tion? Give a real example.

6.5. What is the difference between sequential and two-array differential evo-
lution? List the advantages of sequential species.

6.6. When does one shows preference to an asynchronous parallelization? Give
a real example.

6.7. Describe the framework of transversal differential evolution. What are
transversal steps?

6.8. Show that the sequential DE is a special case of the transversal one.

6.9. Write the algorithm for transversal differential evolution and then test
all three species (two-array, sequential and transversal) of DE on problems
(2.24) and (2.26) of Chapter 2. Justify the obtained results.

6.10. Experiment with the choice of the number of transversal steps. How
does it influence the convergence of the algorithm.

6.11. How does the number of transversal steps influence the population di-
versity?

6.12. What is the benefit of heterogeneous networks of computers?

6.13. What languages for programming on heterogeneous networks of com-
puters do you know?

6.14. Propose your own way of parallelization of transversal differential evo-
lution on heterogeneous networks of computers. Build the action diagram of
your method.

7

On Analogy with Some Other Algorithms

Nothing tempts a person as much as a cure for all problems. Nothing
delights the scientist as much as a universal algorithm capable of ef-
ficiently solving any problem. We all well know that there is no such
“remedy”, but we are in continuous expectation of its appearance.
Differential evolution seems to be a gleam of hope. In this chapter
we shall establish an analogy between differential evolution and some
other popular algorithms. It is obvious that DE can be easily com-
pared with genetic algorithms and evolution strategies; I leave this
task to the mercy of the reader. But here, we shall compare DE with
nonlinear simplex, a very old and famous algorithm, and with two
recent and efficient metaheuristics, particle swarm optimization and
free search. From the outside, drawing an analogy will help us to dis-
close advantages and disadvantages of differential evolution. Ex altera
parte, on the inside, I shall make an attempt to interpret the other
algorithms through Differential Evolution.

Direct search methods, the methods we are speaking about in this book, firstly
were proposed in the 1950s. The state of the art at that time was presented
by Swann in 1972 [Swa72]. These methods, as you know, are used in one or
more of the following cases.

1. Calculation of the objective function is time-consuming.
2. The gradient of the objective function does not exist or it cannot be

calculated exactly.
3. Numerical approximation of the gradient is slow.
4. Values of the objective function are “noisy”.

In order to disengage oneself from constraint-handling techniques and to
devote one’s attention to the algorithms themselves we shall consider only
boundary constraints (2.15).

102 7 On Analogy with Some Other Algorithms

7.1 Nonlinear Simplex

The class of simplex direct search methods was introduced in 1962 [SHH62].
The most famous direct search method was suggested by Nelder and Mead in
1965 [NM65]. I shall briefly describe this method [Wri95].

Four operations, characterized by scalar parameters, are defined: reflection
(ρ), expansion (χ), contraction (γ), and shrinkage (σ). In the original version
of the algorithm these parameters should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1 . (7.1)

The standard version of the algorithm assumes that

ρ = 1, χ = 2, γ = 1/2 and σ = 1/2 . (7.2)

The Nelder–Mead algorithm is:

1. Order. Order the D + 1 vertices in IRD space to satisfy

f(x1) ≤ f(x2) ≤ · · · ≤ f(xD+1) . (7.3)

2. Reflect. Find the reflection point xr from

xr = x̄ + ρ · (x̄ − xD+1) , (7.4)

where x̄ =
∑D

i=1 xi/D. Evaluate fr = f(xr).
If f1 ≤ fr < fD then accept the reflected point xr and terminate the
iteration.

3. Expand. If fr < f1 then calculate the expansion point xe,

xe = x̄ + χ · (xr − x̄) , (7.5)

and evaluate fe = f(xe). If fe < fr then accept xe and terminate the
iteration, otherwise accept xr and terminate the iteration.

4. Contract. If fr ≥ fD then perform a contraction between the better of
xD+1 and xr.
(a) Outside. If fD ≤ fr < fD+1 then outside contraction

xc = x̄ + γ · (xr − x̄) , (7.6)

and evaluate fc = f(xc). If fc ≤ fr then accept xc and terminate the
iteration, otherwise perform a shrink.

(b) Inside. If fr ≥ fD+1 then perform an inside contraction

xcc = x̄ − γ · (x̄ − xD+1) , (7.7)

and evaluate fcc = f(xcc). If fcc < fD+1 then accept xcc and terminate
the iteration, otherwise perform a shrink.

7.1 Nonlinear Simplex 103

5. Shrink. Evaluate f at the D points for the next iteration from

vi = x1 + σ · (xi − x1), i = 2, . . . , D + 1 . (7.8)

In spite of world-wide popularity this algorithm suffers from the following
drawbacks [Tor89, Wri96].

• It fails when the simplex collapses into a subspace, or becomes extremely
elongated and distorted in shape. In most of these cases, the objective
function has highly elongated contours and a badly conditioned Hessian.

• It fails when its search direction becomes nearly orthogonal to the gradient.
• It is very sensitive to an increase of the problem dimension.

Now, let us examine a DE strategy from the RAND/DIR group (see Chap-
ter 3). For the dimension D, at each iteration (generation g) we shall ran-
domly extract D + 1 individuals from the population IPg. The worst individ-
ual of this subpopulation (xD+1) belongs to the negative class C−; the others
(xi, i = 1, . . . , D) form the positive class C+. There is no average shift in this
strategy. So, the strategy can be rewritten as

ω = x̄ + F · (x̄ − xD+1) , (7.9)

where x̄ =
∑D

i=1 xi/D.
It is obvious that such a strategy is identical to the reflection in the Nelder–

Mead algorithm (7.4) taking into account that F ≡ ρ. Moreover, a wide range
of differentiation constant values, F ∈ (−1, 2+), can be easily interpreted as
an expansion, F ≥ 2, and an inside, F ∈ (−1,−0), or outside, F ∈ (+0, 1),
contraction.

Unlike the logic of passing from one step to another in the Nelder–Mead
algorithm, differential evolution immediately (or after crossover) selects the
best individual among the target and the trial ones. The value of the differ-
entiation constant is either controlled by an adaptation scheme or could be
perturbed randomly. Also, the “simplex” is created randomly on the basis of
the population for each individual per generation. Furthermore, there is no
restriction on the number of used individuals.

I shall emphasize the following advantages/features of the DE approach in
comparison with the Nelder–Mead simplex:

• Search is performed in random subspaces.
1. The fact that in strategy (7.9) or, more generally (3.7), any number of

individuals (usually n < D) can be used illustrates the creation of a
simplex in subspaces of the search space.
This makes the algorithm less sensitive to the problem dimension. On
the other hand, such a strategy is more flexible in assigning a descent
direction.

104 7 On Analogy with Some Other Algorithms

2. The subspace, generated from a population, better fits the optimal
zones within each new generation.
Thus, even if an inefficient simplex has appeared at the next step there
is a great probability of constructing an efficient one. Often, a “bad”
simplex executes the role of an explorer by testing unknown regions.

3. Introduced in (3.7), average shift allows us to correct a rough direction.
In addition, hybridization with the best individual (RAND/BEST/DIR
group) localizes, in some cases, the optimum more briskly.

• Existence of many simultaneous optimizers.
DE could be perceived as a set of autocorrelated simplex optimizers.

Such a distributed organization provides more thorough exploration,
and improves convergence and precision of solution.

So, as you can see, DE overcomes all the drawbacks stated for the Nelder–
Mead simplex. The DE strategy (7.9) of the RAND/DIR group inherits and
develops the ideas underlying the simplex algorithm.

7.2 Particle Swarm Optimization

The first particle swarm optimization (PSO) method was proposed by J. Ken-
nedy and R.C. Eberhart in 1995 [KE95]. It progressed simultaneously with DE
and, at present, possesses one of the best performances among evolutionary
algorithms, or even more widely, among metaheuristics. PSO issued from the
metaphor of human sociality. It was born of attempts to simulate human
cognition and to apply this model to a real optimization problem.

The idea is to use a set of individuals (a swarm of particles) for search space
exploration. A particle represents a vector solution xi ∈ IRD, i = 1, . . . , NP
of an optimization task (the same notation as for DE is used here). At each
iteration t the particle changes the position influenced by its velocity vi(t).

xi(t) = xi(t − 1) + vi(t) . (7.10)

In order to update the velocity two rules are combined.

1. Simple Nostalgia
In the view of psychology it realizes the tendency of an organism to repeat
successful behaviors from the past or, in case of failure, to return to the
last success. Let pi be the best solution attained of the ith particle up to
the present iteration, thus the velocity is updated in the following way.

vi(t) = vi(t − 1) + ρ1 · (pi − xi(t − 1)) . (7.11)

2. Social Influence
In spite of an infinite number of possibilities to represent a social behavior
two methods were distinguished for defining a neighborhood:

7.2 Particle Swarm Optimization 105

• gbest — considers the entire population as a neighborhood;
• lbest — defines the subpopulation surrounding the particle.
The gbest case is more practical and generally gives better results. Let pg

be the best solution of the population, so the mathematical expression of
the social influence is ρ2 · (pg − xi(t − 1)).
In the view of sociology this term represents the tendency of an organism
to emulate the success of others.

To sum up, each of the particles is updated per iteration in the following
way.

vi(t) = vi(t − 1) + ρ1 · (pi − xi(t − 1)) + ρ2 · (pg − xi(t − 1))
xi(t) = xi(t − 1) + vi(t) .

(7.12)

The constants ρ1 and ρ2 are control parameters. They define which of two
behaviors is dominant.

However, this algorithm in such a form has several drawbacks, leading
mainly to premature convergence. In order to improve its performance some
modifications were proposed:

• Limitation of ρ1,2 up to 2 and its relaxation ρ1,2 · rand(0, 1]
• Limitation of the velocity vi ∈ [−Vmax, +Vmax], Vmax = H − L
• Introduction of the inertia weight w applied to the previous velocity

vi(t − 1), which understates the influence of the preceding behaviors on
the current one

All this results in the next update formula:

vi(t) = w(vi(t − 1)) + ρ1 · rand(0, 1] · (pi − xi(t − 1))
+ ρ2 · rand(0, 1] · (pg − xi(t − 1))

vi ∈ [−Vmax, +Vmax] ; ρ1, ρ1 ∈ (0, 2] .
(7.13)

Let us compare PSO with DE now. The PSO strategy (7.13) consists of
three components:

1. Damped history of previous velocities w(vi(t − 1))
2. Personal behavior ρ1 · rand(0, 1] · (pi − xi(t − 1))
3. Social behavior ρ2 · rand(0, 1] · (pg − xi(t − 1))

The history of previous velocities in terms of psychology characterizes the
memory of an organism, and the damping mechanism realizes its property
— forgetting. Memory always appears together with personal qualities. If the
strategy is built only on personal behavior (second component), the algorithm
will not work at all. Thus, memory induces positive effects for an individual
movement of the particle, and, on the other hand, it retards its social reaction.

DE does not contain the first two aspects of PSO in pure form. Most likely
the transversal technique (see Chapter 6) could illustrate personal behavior.

106 7 On Analogy with Some Other Algorithms

The individual makes a random walk in the search space and then chooses
its optimal (best) position. Here, in DE, the walk is defined by the state of
the population, whereas in PSO the next position (of the walk) is defined
by the personal optimal position pi and by the particle’s velocity vi. In PSO
terms, DE (differentiation) is more social strategy. Nevertheless, I have made
an attempt to introduce into DE the memory aspect in the form of damped
preceding velocities (difference vectors). Various damping mechanisms, linear
and nonlinear, were tested. As a result, such a modification induced only an
inertia of search and showed decrease of convergence.

The third aspect of PSO (social behavior) can be interpreted in DE by the
following strategy.

ω = Vb + F ∗ · (Vb − ind) , F ∗ = F · rand(0, 1] . (7.14)

This strategy is an example of the RAND/BEST group (see Chapter 3, Equa-
tion (3.8)). We easily catch an identity between this strategy and the social
aspect of PSO (ω = xi(t), Vb = pg, F = ρ2 − 1, ind = xi(t − 1)).

Finally, two complementarity features might be observed:

1. DE enlarges the social behavior by its groups of strategies.
2. PSO propagates the ideas of leadership on developing a local neighbor-

hood.

It should be noticed that PSO uses the selection operation in an implicit form,
whereas DE regards selection as a separate operation.

The success of DE may be explained by its collective intelligence behav-
ior. If PSO exploits only two optimal positions (the particle’s optimal position
and leader’s position), DE involves in evolution the positions and fitness of all
the individuals of a population (population state). From a sociopsychological
point of view, PSO represents the conscious, and DE the unconscious way
of reasoning. It is well known that a human brain treats about only 10% of
information consciously and 90% of information unconsciously (or modified
states of consciousness). Perhaps, by imitating the human, the best of univer-
sal optimizers would be an alternation of PSO and DE with near to natural
proportions.

7.3 Free Search

Free search (FS) is a very recent population-based optimizer. It was invented
by K. Penev and G. Littlefair in 2003 [PL03]. Just as PSO emulates social
cognition, FS is associated with an animal’s behavior. FS partially imitates
Ant Colony Optimization (ACO) adapted for continuous search [BP95]. Also,
it includes: a PSO mechanism to refresh an animal’s position, a DE strategy
principle to create the animal’s action and, also, the general structure of GA.

7.3 Free Search 107

An animal in free search makes a journey, several exploration steps in the
search space. Then, it moves at the best found position and marks it by a
pheromone. The behavior of any animal is described by two aspects.

1. Sense
Each of the animals has a sense to locate a pheromone. The more sensitive
animal is able to find a better (promising) place for the search. The less
sensitive one is forced to search around any marked position.

2. Action
Each of the animals makes a decision of how to search; that is, it chooses
its own neighborhood of search. So, the search journey of an animal may
vary from local to global movements.

Both sense and action of an animal are random factors.
Let xi be an animal of a population IP. The population consists of NP

animals. The animals mark their positions by a pheromone Pi ≤ 1:

Pi = f(xi)/fmax , (7.15)

where fmax = maxi{f(xi)} , i = 1, . . . , NP . Then, one endows each of the
animals with the sense Si:

Si = Pmin + randi(0, 1] · (Pmax − Pmin) , (7.16)

where Pmax, Pmin are the maximum and the minimum pheromone values of a
population.

At each generation the animal xi begins its journey from any position xk

(from any animal of the population) satisfying its sense; that is,

xk : Si ≤ Pk, ∀k ∈ [1, . . . , NP] . (7.17)

During the journey each animal performs T steps in the following way.

xt
i = xk + R · (H − L) · randt(0, 1), t = 1, . . . , T . (7.18)

R ∈ [Rmin, Rmax] ⊂ IRD is a randomly generated vector that defines a neigh-
boring space. H,L are boundary constraints. The favors of step are considered
as values of the objective function f(xt

i). The animal moves itself to the best
found position

xi : f(xi) = max
t

{f(xt
i)} .

When all animals perform their journeys, a new pheromone is distributed
(7.15) and new senses are generated (7.16). Then, the population passes to
the next generation.

108 7 On Analogy with Some Other Algorithms

This method has many random factors:

• Start position xk

• Neighboring space R
• Steps of a journey xt

i

• Generation of a sense Si

In spite of the fact that the authors present such a randomness as a self-
adaptation mechanism [Pen04, PL03], I suppose that it is exclusively a ran-
domness. From my point of view self-adaptation is developed only in the
restrictions on choosing a start position for a journey (7.17).

Free search can be confronted with transversal DE (Chapter 6). The intro-
duction of a pheromone, in FS, has purely an ideological meaning. Without
loss of generality the sense generation could be calculated directly from the
minimal and the maximal values of an objective function. The next DE strat-
egy will better coincide with the ideas underlying FS:

ω = x + F ∗ · (H − L), F ∗ = F · rand(0, 1) . (7.19)

F ∗ ⊂ IRD is a relaxed vector of differentiation. x is a randomly extracted
individual. This case presents a constant difference vector δ = H − L. And,
contrary to the usual DE, where extracted individuals form an exploration
walk, here, only F ∗ moves the individual through the search space.

It is clear that there are two main disadvantages.

1. The information about the state of the population is not used; that is, the
algorithm loses the perfect property of self-adaptation. In the common DE
case, the difference vector is created on the basis of randomly extracted
individuals that partially present the population state.

2. A random choice of the vector of differentiation produces many useless
steps in the global neighborhood, and a local search is needed at the end
of optimization.

However, free search introduces a new individual’s feature (sense) that
permits controlling the sensibility of an individual to the search space. Sense
suppresses exploration of the search space, but at the same time, increases
convergence by exploiting promising zones. It would be very attractive to join
together the intelligence of a DE strategy and the sensitivity of a FS animal.

Problems

7.1. Formulate a definition of direct search methods. Enumerate the cases
where these methods should be applied. Mention at least five direct search
methods that you have already met.

7.2. What four operations of nonlinear simplex do you know? Explain and
sketch in each of these operations.

7.3. Enumerate the drawbacks of the nonlinear simplex method.

7.4. Which of the strategies of differential evolution nearly completely inter-
prets nonlinear simplex? Draw an analogy between these two algorithms.

7.5. Enumerate the advantages of differential evolution as against nonlinear
simplex.

7.6. What the main idea does underlie particle swarm optimization?

7.7. Which of two appearances from psychology and sociology does particle
swarm optimization reflect?

7.8. What role does the inertia weight w play in the PSO algorithm?

7.9. How is the effect of memory implemented in PSO and how is its property
of forgetting implemented?

7.10. Is the memory is a positive or negative aspect of the algorithm?

7.11. Does differential evolution contain the elements of memory and personal
behavior, likewise PSO? If yes, explain the difference of their implementation.

7.12. Which of the DE strategies in the best way interprets the social behav-
iour of PSO? Implement this strategy in your DE algorithm.

7.13. Add to problem (7.12) the implementation of the memory mechanism
and the effect of personal behavior peculiar to PSO. Test the new algorithm
and analyze the obtained results.

7.14. Write the algorithm that will alternate the strategy of PSO (7.13) from
Chapter 7 with one of the DE strategies from Chapter 3. Experiment with
alternation of one strategy with another. For the following test function,

f(X) =
1
2

+

(
sin

√
x2

1 + x2
2

)2

− 1/2

(1 + 0.001(x2
1 + x2

2))2
, −100 ≤ x1, x2 ≤ 100

f(X∗) = 0 , X∗ = 0 ,

plot the graphs of convergence depending on the percentage of one or another
strategy in the algorithm. Justify the results. Compare this algorithm with
the classic one from Chapter 1.

110 7 On Analogy with Some Other Algorithms

7.15. Show with an explaining sketch two main aspects of the free search
algorithm.

7.16. How does one calculate the pheromone of an individual?

7.17. How does one calculate the sense of an individual?

7.18. Give a flow-graph of the free search algorithm.

7.19. What random factors does Free Search have? In your opinion are these
factors advantages or drawbacks?

7.20. Which of the DE strategies coincides in the best way with the idea
underlying free search? What drawbacks of this strategy do you see?

7.21. Add to your algorithm the aspect of “sense” inherent in free search.
Estimate the new algorithm using, at least, the following test function

f(X) = (x2
1 + x2

2)
0.25

(
sin2

(
50(x2

1 + x2
2)

0.1
)

+ 1
)

−100 ≤ x1, x2 ≤ 100 , f(X∗) = 0 , X∗ = 0 .

7.22. Find (approximate) the probability density function for the difference
vector of DE. Compare this function with other familiar probability density
functions. Use the obtained function to automatically generate the difference
vector independently of other individuals of the population. Compare the new
algorithm with the classical one.

8

Energetic Selection Principle

In this chapter1 I shall introduce a new energetic approach and, based
on it, the principle of energetic selection, which can be applied to any
population-based optimization algorithm including differential evolu-
tion. It consists in both decreasing the population size and the compu-
tation efforts according to an energetic barrier function that depends
on the number of generations. The value of this function acts as an
energetic filter, through which can pass only individuals with lower
fitness. Furthermore, this approach allows us to initialize the popula-
tion of a sufficient (large) size. This method leads to an improvement
of algorithm convergence.

8.1 Energetic Approach

Perhaps this new energetic approach may be associated with the processes
taking place in physics. As a matter of fact, it was inspired by sociology from a
certain sociobiological phenomenon, the so-called phenomenon of dispergated
genes, that was observed during World War II. As only a few people know
this phenomenon, I prefer to make reference to physics because it is in some
sense similar and, in addition, many of the researchers working in evolutionary
computation possibly know well a simulated annealing algorithm.

Let there be a population IP consisting of NP individuals. Let us define
the potential of an individual as its cost function value ϕ = f(ind). Such a
potential shows the remoteness from the optimal solution ϕ∗ = f(ind∗), that
is, some energetic distance (potential) that should be overcome to reach the
optimum. Then, the population can be characterized by superior and inferior
potentials ϕmax = max f(indi) and ϕmin = min f(indi). As the population
1 Some material in this chapter originally appeared in [FJ04f]; this work was se-

lected as the best paper of ICEIS 2004 to be republished in the book Enterprise
Information Systems VI [FJ06].

112 8 Energetic Selection Principle

evolves the individuals take more optimal energetic positions, the closest pos-
sible to the optimum level. So if t → ∞ then ϕmax(t) → ϕmin(t) → ϕ∗, where
t is an elementary evolution step. Approaching the optimum, apart from stag-
nation cases, can also be expressed by ϕmax → ϕmin or (ϕmax−ϕmin) → 0. By
introducing the potential difference of population �ϕ(t) = ϕmax(t) − ϕmin(t)
the theoretical condition of optimality is represented as

�ϕ(t) → 0 . (8.1)

In other words, the optimum is achieved2 when the potential difference is close
to 0 or to some desired precision ε. The value �ϕ(t) is proportional to the
algorithmic efforts, which are needed in order to find the optimal solution.

Thus, the action A done by the algorithm for passing from one state t1 to
another t2 is

A(t1, t2) =
∫ t2

t1

�ϕ(t)dt . (8.2)

We introduce then the potential energy of population Ep that describes
total computational expenses.

Ep =
∫ ∞

0

�ϕ(t)dt . (8.3)

Notice that (8.3) graphically represents the area Sp between two functions
ϕmax(t) and ϕmin(t).

Fig. 8.1. Energetic approach.

2 Recall that a population based algorithm is usually aimed at the global solution,
so the cases where a local optimum is achieved are theoretically excluded from
the context.

8.2 Energetic Selection Principle 113

Let us recall that our purpose is to increase the speed of algorithm con-
vergence. Logically, convergence is proportional to computational efforts. It
is obvious that the smaller the potential energy Ep is, the fewer computa-
tional efforts are needed. Thus, by decreasing the potential energy Ep ≡ Sp

we augment the convergence rate of the algorithm. Hence, the convergence
increase is transformed into a problem of potential energy minimization (or
Sp minimization).

E∗
p = min

�ϕ(t)
Ep(�ϕ(t)) . (8.4)

8.2 Energetic Selection Principle

8.2.1 Idea

Now we apply the above-introduced energetic approach to the DE algorithm.
As an elementary evolution step t we choose a generation g.

In order to increase the convergence rate we minimize the potential energy
of population Ep (Fig. 8.1). For that a supplementary procedure is introduced
at the end of each generation g. The main idea is to replace the superior poten-
tial ϕmax(g) by the so-called energetic barrier function β(g). Such a function
artificially underestimates the potential difference of generation �ϕ(g).

β(g) − ϕmin(g) ≤ ϕmax(g) − ϕmin(g)
⇔ β(g) ≤ ϕmax(g), ∀g ∈ [1, gmax] .

(8.5)

From an algorithmic point of view this function β(g) serves as an energetic
filter for the individuals passing into the next generation. Thus, only the
individuals with potentials less than the current energetic barrier value can
participate in the next evolutionary cycle (Fig. 8.2).

In practice, it leads to the decrease of the population size NP by rejecting
individuals such that:

f(ind) > β(g) . (8.6)

8.2.2 Energetic Barriers

Here, I shall show you some examples of the energetic barrier function. At the
beginning we outline the variables upon which this function should depend.
First, this is the generation variable g, which provides a passage from one
evolutionary cycle to the next. Second, it should be the superior potential
ϕmax(g) that presents the upper bound of the barrier function. And third, it
should be the inferior potential ϕmin(g) giving the lower bound of the barrier
function (Fig. 8.3).

114 8 Energetic Selection Principle

Fig. 8.2. Energetic filter.

Fig. 8.3. Energetic barrier function.

Linear Energetic Barriers

The simplest example is the use of a proportional function. It is easy to obtain
by multiplying either ϕmin(g) or ϕmax(g) with a constant K.

In the first case, the value ϕmin(g) is always stored in the program as the
current best value of the cost function. So, the energetic barrier looks like

β1(g) = K · ϕmin(g), K > 1 . (8.7)

The constant K is selected to satisfy the energetic barrier condition (8.5).
In the second case, a small procedure is necessary to find the superior

potential (maximal cost function value of the population) ϕmax(g). Here, the
energetic barrier is

8.2 Energetic Selection Principle 115

β2(g) = K · ϕmax(g), K < 1 . (8.8)

K should not be too small in order to provide a smooth decrease of the
population size NP .

An advanced example would be a superposition of the potentials.

β3(g) = K · ϕmin(g) + (1 − K) · ϕmax(g) (8.9)

So, with 0 < K < 1 the energetic barrier function is always found between
the potential functions. Now, by adjusting K it is easier to get the smoothed
reduction of the population without condition violation (8.5). Examples of the
energetic barrier functions are shown in Fig. 8.4.

Fig. 8.4. Linear energetic barriers.

Nonlinear Energetic Barriers

As we can see, the main difficulty of using the linear barriers appears when
we try to define the barrier function correctly in order to provide a desired
dynamics of the population reduction. Taking into consideration that ϕmax →
ϕmin when the algorithm converges locally, the ideal choice for the barrier
function is a function that begins at a certain value between ϕmin(0) and
ϕmax(0) and converges to ϕmax(gmax).

Thereto, I propose an exponential function K(g)

K(g) = Kl + (Kh − Kl) · e(−Tg/gmax) . (8.10)

This function, inspired by the color-temperature dependence from Bernoulli’s
law, smoothly converges from Kh to Kl. The constant T , so-called tempera-
ture, controls the convergence rate. The functional dependence on the tem-
perature constant K(T) is represented in Fig. 8.5.

116 8 Energetic Selection Principle

Fig. 8.5. Exponential function K(g, T).

By substituting the constant K in (8.7)–(8.9) for the exponential function
(8.10) we can supply the energetic barrier function with improved tuning
(Fig. 8.6).

Fig. 8.6. Nonlinear energetic barrier.

8.2.3 Advantages

1. The principle of energetic selection permits us to initialize the population
of a sufficiently large size. This fact leads to better (careful) exploration

8.3 Comparison of Results 117

of a search space during the initial generations as well as increasing the
probability of finding the global optimum.

2. The energetic barrier function decreases the potential energy of the pop-
ulation and thereby increases the convergence.

3. The double selection principle is applied. The first one is a usual DE se-
lection for each individual of a population. Here, there is no reduction of
the population size. And the second one is a selection of the best individ-
uals that pass in the next generation, according to the energetic barrier
function. It leads to the reduction of the population size and consequently
the number of function evaluations.

Practical Remarks

Notice that a considerable reduction of the population size occurs at the be-
ginning of the evolutionary process. For more efficient exploitation of this fact
a population should be initialized with a much larger size NP0 than usual.
Then, when the population shrinks to a certain size NPf , it is necessary to
stop the energetic selection procedure. This forced stopping is explained by
possible stagnation and not so efficient search by a small size population. In
fact, the first group of generations locates a set of promising zones. The se-
lected individuals are conserved in order to make a thorough local search in
these zones.

8.3 Comparison of Results

In order to test this approach I took three test functions (8.11) from a standard
test suite (see Appendix C). The first two functions, Sphere f1 and Rosen-
brock’s function f2, are classical DeJong testbeds [DeJ75]. The third function,
rotated ellipsoid f3, is a quadratic nonseparable function.

f1(X) =
3∑

i=1

x2
i

f2(X) = 100(x2
1 − x2)2 + (1 − x1)2

f3(X) =
20∑

i=1

⎛
⎝ i∑

j=1

xj

⎞
⎠

2

.

(8.11)

I fixed the differentiation F and crossover Cr constants to be the same for
all functions. F = 0.5. Cr = 0 (there is no crossover in order to make the DE
algorithm rotationally invariant; Appendix D). The stopping condition of the
algorithm is a desirable precision of optimal solution V TR (value to reach).
It is fixed for all tests as V TR = 10−6. As usual, we count the number of

118 8 Energetic Selection Principle

Table 8.1. Initial test data.

fi D NP NP0 NPf K

1 3 30 90 25 0.50
2 2 40 120 28 0.75
3 20 200 600 176 0.15

function evaluations NFE needed to reach V TR. The initial data are shown
in Table 8.1.

For DE with the energetic selection principle the initial population size was
chosen three times larger than in the classical DE scheme: NP0 = 3 ·NP . The
forced stopping was applied if the current population became smaller than
NP . Hence NPf ≤ NP . As an energetic barrier function the linear barrier
β3(g) was selected (8.9). So, K is an adjusting parameter for barrier tuning,
which was found empirically. D is the dimension of the test functions.

The average results of 10 runs for both the classical DE scheme and DE
with the energetic selection principle are summarized in Table 8.2.

Table 8.2. Comparison of classical differential evolution (cl) and differential evolu-
tion with energetic selection principle (es).

fi NFEcl NFEes δ, %

1 1088.7 912.4 16,19
2 1072.9 915.3 14,69
3 106459.8 94955.6 10,81

The numbers of function evaluations (NFEs) were compared. It is consid-
ered that the NFEcl value is equal to 100%, therefore the relative convergence
amelioration percentagewise can be defined as

δ = 1 − NFEes

NFEcl
. (8.12)

Thus, δ may be interpreted as the improvement of the algorithm’s convergence.

Remark

I tested DE with a great range of other functions. The stability of results was
observed. So, in order to demonstrate my contribution, here I have generated
only 10 populations for each test function relying on statistical correctness.

Problems

8.1. What is the potential of an individual? potential difference? Give an
explaining sketch.

8.2. Given a test function, the so-called Schubert’s problem,

f(X) =
D∏

i=1

⎛
⎝ 5∑

j=1

j cos((j + 1)xi + j)

⎞
⎠ , −10 ≤ xi ≤ 10 .

Plot empirical curves for both superior and inferior potentials, consider one
generation (iteration) as an elementary step of evolution. Calculate the action
A done by the algorithm for the first 10 and last 10 generations. Estimate
the operation efficiency of the algorithm at the beginning and the ending
iterations. At which moment is the algorithm most efficient? Explain why.

8.3. Calculate the potential energy of the population. As a basis for this take
the curves plotted in problem (8.2).

8.4. How are the potential energy and the algorithm’s convergence related?

8.5. What is the energetic barrier? Explain, how does the energetic barrier
influence the population?

8.6. On what parameters does the function defining the energetic barrier de-
pend?

8.7. Which of the linear energetic barriers do you think is most efficient from
a practical point of view?

8.8. What does the constant K influence?

8.9. In which cases should you use a nonlinear energetic barrier?

8.10. What is the constant T in (8.10) of Chapter 8 and what does it in-
fluence? Using the potential’s curves from problem (8.2), plot functions of
nonlinear energetic barriers for the constant T = 0, 1, 3, 5.

8.11. Solve, for example, the following test function, the so-called McCormick’s
problem,

f(X) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1
−1.5 ≤ x1 ≤ 4 , −3 ≤ x2 ≤ 3 ,

using linear and nonlinear energetic barriers. Compare the obtained results.

8.12. Implement “forced stopping” of the energetic selection procedure for
problem (8.11).

120 8 Energetic Selection Principle

8.13. What are the advantages of using the method of energetic selection?
For what kind of problems (test functions) is this method more appropriate?
Argue your suppositions.

8.14. for determining the promising zones using the population state. Imple-
ment it in your DE algorithm.

8.15. For the algorithm realized in problem (8.14) develop a technique which
permits individuals to rapidly migrate from less promising to more promis-
ing zones. Estimate the efficiency of your algorithm on 2–3 multimodal test
functions at your discretion.

9

On Hybridization of Differential Evolution

Differential evolution is highly random in its initial form. Randomness
of evolution is one of the reasons why the method is not so clever when
searching for the minimum of some function f(X). In this chapter I
discuss how to “orient” the evolution in order to obtain a high-quality
population rapidly. In particular, I propose at each generation to op-
timize some auxiliary function y(X) that approximates the original
one. This auxiliary function is constructed on the basis of the sub-
set of “good” individuals. Many regression methods could be used
to obtain y(X). I have chosen least squares support vector machines
(LS-SVM) because of its robustness and rapidity. The next step is to
make a trade-off between classical and oriented evolution. It is clear
that calculating y(X) and its minimum need much more time than
choosing three individuals randomly from the population. However,
roughly speaking, if a random evolution needs 107 iterations to con-
verge, only 103 iterations suffice to find nearly as good individuals with
an “oriented” one. So there is hope to find a better solution within a
shorter time. Besides, there is another reason that obliges us to stop
the oriented evolution early. In fact, when the individuals for the con-
struction of y(X) have nearly the same values f(X), the Hessian of
y(X) is badly conditioned. This shows that we are done with the “big”
improvements and may continue with the classical evolution.

9.1 Support Vector Machine

The support vector machine (SVM) was proposed as a method of classifi-
cation and nonlinear function estimation [Vap95]. The idea is to map data
into higher-dimensional space, where an optimal separating hyperplane can
be easily constructed. The mapping is fulfilled by means of kernel functions,
which are constructed by applying Mercer’s condition. In comparison with
neural network methods SVMs give a global solution obtained from resolving

122 9 On Hybridization of Differential Evolution

a quadratic programming problem, whereas those techniques suffer from the
existence of many local minima.

The least squares version of SVMs (LS-SVM) has been recently intro-
duced [SGB+02, SV99]. There, the solution is found by solving a linear system
of equations instead of quadratic programming. It results from using equal-
ity constraints in place of inequality ones. Such linear systems were named
Karush–Kuhn–Tucker (KKT) or augmented systems.

Nevertheless, there remains the problem of matrix storage for large-scale
tasks. In order to avoid it an iterative solution based on the conjugate gradient
method has been proposed. Its computational complexity is O(r2), where r
is the matrix rank. I shall mention briefly LS-SVM applied to a function
approximation problem.

The LS-SVM model is represented in the feature space as

y(X) = 〈υ, φ(X)〉 + b , (9.1)

with X ∈ IRD, y ∈ IR, and φ(·) : IRD → IRnh is a nonlinear mapping to
higher-dimensional feature space.

For given training set {Xk, yk}n
k=1 the optimization problem is formulated

as

min
υ,ε

Υ (υ, ε) =
1
2
〈υ, υ〉 + γ

1
2

n∑
k=1

ε2k (9.2)

subject to the equality constraints

yk = 〈υ, φ(Xk)〉 + b + εk , (9.3)

where k = 1, . . . , n.
So, the Lagrangian is

L = Υ −
n∑

k=1

αk{〈υ, φ(Xk)〉 + b + εk − yk} , (9.4)

where αk are Lagrange multipliers.
By applying the Karush–Kuhn–Tucker conditions of optimality [Fle80,

Fle81]
∂L

∂υ
=

∂L

∂b
=

∂L

∂εk
=

∂L

∂αk
= 0 , (9.5)

the result can be transformed in matrix form[
0 1T

1 Ω + γ−1I

] [
b
α

]
=

[
0
y

]
, (9.6)

where y = [y1 . . . yn], 1 = [1 . . . 1], α = [α1 . . . αn], and Mercer’s condition

Ωij = 〈φ(Xi), φ(Xj)〉 = K(Xi, Xj) (9.7)

9.2 Hybridization 123

with i, j = 1, . . . , n.
Then by solving the linear system (9.6), the approximating function (9.1)

is obtained:

y(X) =
n∑

k=1

αkK(Xk, X) + b . (9.8)

9.2 Hybridization

Let the objective function f(X) be a nonlinear, nondifferentiable, perhaps
epistatic and multimodal function. Generally, there is no winning approach
to calculate the global optimum of this function by deterministic methods.
Nevertheless these methods remain valid for searching local optima and pro-
vide the proof of optimality. On the other hand, metaheuristics usually give
good results for the global optimum search. So, we hope to benefit from the
advantages of both deterministic and metaheuristic methods.

Notice that DE is a highly random optimization method and an excessive
randomness sometimes stagnates the search process. So, we would like to
“orient” the evolution in order to quickly obtain a high-quality population.
For this purpose it seems better to use hybridization technique. As proposed
by me, hybridization incorporates one extra function without altering the
structure of the DE algorithm.

The idea of hybridization consists in the deterministic creation of an in-
dividual at the end of each generation. It is intended that this individual will
be near the optimum, so it replaces the worst one.

To realize such a hybridization, first a complete iteration of DE is ac-
complished. The obtained population better fits the surface of the objective
function in the neighborhood of the optima. Then, n best individuals (circles
in Fig. 9.1) are selected. They and their objective function values represent
the training set {Xk, yk}n

k=1, where yk = f(Xk), for the function approxi-
mation. There exist lots of regression methods to calculate an approximation
of f(X). As I have already mentioned in passing, I chose the support vec-
tor machine (SVM) method [Vap95] because of its robustness inherited from
regulation techniques. For recent results and implementation of SVM please
see [SV99, SGB+02].

The SVM regression approximation is described by (9.8), where K(Xk, X)
is a kernel function verifying Mercer’s conditions (9.7). In order to compute
αk and b a quadratic optimization problem is resolved. The optimality (or
Karush–Kuhn–Tucker) conditions of this problem are (9.6).

For a good approximation it is necessary to choose n between the dimen-
sion of individuals (D + 2) and the population size NP . With a little n few
computations are needed to find the support values αk, whereas a bigger n
gives better approximation quality.

124 9 On Hybridization of Differential Evolution

Fig. 9.1. The idea of hybridization.

The principal examples of kernels K(Xk, X) are polynomials, radial ba-
sis functions, multilayer perceptrons, and others. We choose a second-order
polynomial kernel function:

K(Xk, X) = (〈Xk, X〉 + 1)2 . (9.9)

This gives a quadratic function y(X) (9.8). The optimum of the approximation
(the triangle in Fig. 9.1) is thus calculated by solving a linear system. In fact,
the optimality conditions are:

dy(X)
dX

=
∂y(X)
∂X(p)

= 0 , (9.10)

where X(p), p = 1, . . . , D are components of a vector X.
These conditions (9.10) give a system of D linear equations:

∂y(X)
∂X(p)

=
n∑

k=1

αk · ∂K(Xk, X)
∂X(p)

= 2
n∑

k=1

αk (〈Xk, X〉 + 1)Xk(p) ≡ 0 ⇔

n∑
k=1

αkXk(p)
D∑

q=1

Xk(q)X(q)

=
D∑

q=1

X(q) ·
n∑

k=1

αkXk(p)Xk(q) = −
n∑

k=1

αkXk(p) .

(9.11)

Or alternatively, in matrix form

9.3 Comparison of Results 125

A · X = B , (9.12)

where

A = a(p, q) =
n∑

k=1

αkXk(p)Xk(q)

B = b(p) = −
n∑

k=1

αkXk(p) .

(9.13)

The optimum of (9.8) is found by solving this linear system.
Notice that when individuals of the training set come too close to each

other or when the gradient of y(X) is nearly zero, the matrix A is badly
conditioned. In this case, the results are not reliable. The obtained optimum
is far from the real one. From this moment on, the matrix A is usually badly
conditioned. This was numerically confirmed at the first stage of my tests (see
Section 9.3). So, further application of the hybridization becomes useless and
time consuming. This phenomenon serves us as a criterion for switching from
the hybrid to the classical scheme (Alg. 6).

Finally, we compare the “optimum” calculated from (9.12) (the square in
Fig. 9.1) with the worst individual in the population (the highest black point
in Fig. 9.1). The best one enters the next generation.

This extra function, SVM-phase, is summarized in the following four steps.
SVM-phase:

1. The choice of n best individuals of the population, O(n log n) — sorting
procedure

2. Quadratic approximation of the objective function, O((n + 1)3) — linear
system of n + 1 equations

3. Finding the optimum of this approximation, O(D3) — linear system of D
equations

4. Refreshing the population by replacing the worst individual with the ob-
tained in Step 3 optimum, O(NP) — finding the maximal element

Its overall complexity is O(n log n + (n + 1)3 + D3 + NP).
The hybrid algorithm consists of two phases: (1) the DE-phase and (2) the

SVM-phase. The DE-phase remains as is and is performed for all iterations,
whereas the SVM-phase is executed until the matrix A is badly conditioned.
The pattern of the hybrid algorithm is presented below (Alg. 6).

9.3 Comparison of Results

In order to test the given approach I chose three functions from a standard test
suite for evolutionary algorithms (Appendix C). The first function, rotated

126 9 On Hybridization of Differential Evolution

Algorithm 6 Hybridization of Differential Evolution
Initialization IP0

flag = true
while (not terminal condition) do

DE-phase on IPg

if (A is well conditioned) and (flag) then
SVM-phase on IPg

else
flag = false

end if
g ← g + 1

end while

ellipsoid f1, is a quadratic unimodal function. The next two functions, Ras-
trigin’s f2 and Ackley’s f3, are highly multimodal functions. The simulation
of the algorithms is done in the MATLAB environment with the LS-SVMlab
Toolbox [PSG+03].

I fixed the same DE control parameters for all functions: NP = 100, F =
0.5, and Cr = 0. For the approximation y(X) I used the whole population;
that is, n = NP . Thus the sorting procedure to choose the best individuals is
not necessary in this case.

The first time I ran the hybrid algorithm with the SVM-phase applied for
each generation (Alg. 7). I used this algorithm in order to determine the criti-
cal generation η after which the matrix A generally is badly conditioned. The
tests show that, for the generations g > η, the optimum of the approximation
y(X) rarely replaces the worst individual of the population.

Algorithm 7 Hybridization* of Differential Evolution
Initialization IP0

while (not terminal condition) do
DE-phase on IPg

SVM-phase on IPg

g ← g + 1
end while

The maximal number of generations gmax is selected here for each function
separately in order to provide a good illustration of the convergence. The
average results of 10 runs are summarized in Table 9.1. The convergence
dynamics of these test functions is shown in Figs. 9.2–9.4 (classical algorithm
— dotted line, hybrid algorithm — solid line, critical generation η — vertical
line).

9.3 Comparison of Results 127

Fig. 9.2. Convergence dynamics of the rotated ellipsoid function (dotted line —
classical algorithm, solid line — hybrid algorithm, vertical line — critical genera-
tion).

Fig. 9.3. Convergence dynamics of Rastrigin’s function (dotted line — classical
algorithm, solid line — hybrid algorithm, vertical line — critical generation).

128 9 On Hybridization of Differential Evolution

Table 9.1. Comparison of both classical and hybrid approaches. D: dimension of
test function; η: critical generation; DEg

c and DEg
h: the optimal values of the test

function for classical and hybrid algorithms accordingly.

fi D gmax η DEg
c DEg

h

1 20 100 22.1 1.070e+2 4.246e–4
2 20 300 34.8 1.170e+2 2.618e+1
3 30 100 18.8 7.713e+0 1.019e–1

Fig. 9.4. Convergence dynamics of Ackley’s function (dotted line — classical algo-
rithm, solid line — hybrid algorithm, vertical line — critical generation).

We can see from Table 9.1 that the hybrid algorithm converges much better
than the classical one. But it also seems that DEh consumes much more time.
The following tests were done with the same execution time, tc = th, for the
hybrid algorithm (Alg. 6) and the classical one. We compare the objective
functions values DEt

c and DEt
h (Table 9.2).

As you can see from Table 9.2, the hybrid algorithm converged better.
Moreover, the DEc never reached the values of DEt

h for the given control
parameters. Thus, after these comparisons we can consider that such a hy-
bridization is a quite promising one. Nevertheless, more tests are necessary
with other functions and control parameters.

9.4 Some Observations 129

Table 9.2. The execution time is fixed; tc = th. Comparison of the objective func-
tions values DEt

c and DEt
h and of the generations gc and gh, accordingly.

fi time DEt
c DEt

h gc gh

1 10 3.151e+1 1.610e–4 366 151
2 30 8.697e+1 1.158e+1 965 602
3 20 6.776e+0 7.118e–2 565 279

9.4 Some Observations

In spite of the demonstrated potency of this approach its efficiency of ap-
proximation is not ideal. To estimate it an efficiency measure ζ has been
introduced. ζ evaluates the percentage of successful approximation, that is,
when the approximated optimum replaces the worst individual.

For the LS-SVM approach the average efficiency values are roughly 20%
(see Table 9.1). In others words only 1/5 of the iterations with the SVM-
phase are effective. Moreover, these are the first iterations. So, the rest of the
iterations do not need such a hybridization.

As the analysis shows, this problem is caused by numerical inaccuracies
while solving system (9.12). When the cost function approaches its optimum
(zero in our case) this numerical effect appears. So, we are looking for other
methods in order to improve the optimum approximation as well as the nu-
merical solution of our systems.

As an example a very simple approximation could be proposed. Let us
calculate, for instance, a barycenter of n best individuals.

X∗ =
1
n

n∑
i=1

X̂i . (9.14)

In comparison with the LS-SVM method there are several advantages:

• No numerical peculiarities
• No inferior limits on n: 2 ≤ n ≤ NP
• Very fast
• ζ � 70%

Although its convergence is not as rapid as in the case of LS-SVM, for the
first generations it remains faster than classical DE.

To confirm it numerically 10 runs have also been made. For each generation
n = 10 best individuals have been chosen. The results are summarized in
Table 9.3. The convergence dynamics is illustrated in Figs. 9.5–9.7 (classical
algorithm — dotted line, hybrid algorithm — solid line).

130 9 On Hybridization of Differential Evolution

Fig. 9.5. Example of barycenter approximation: convergence dynamics of rotated
ellipsoid function (dotted line — classical algorithm, solid line — hybrid algorithm).

Fig. 9.6. Example of barycenter approximation: convergence dynamics of Rastri-
gin’s function (dotted line — classical algorithm, solid line — hybrid algorithm).

9.4 Some Observations 131

Table 9.3. Comparison of the classical DE and the barycenter approximation DEb

approaches.

fi D gmax ζ, % DE DEb

1 20 100 100. 9,003e+1 2,089e+2
2 20 300 47.0 1,118e+2 6,588e+1
3 30 100 83.1 7,030e+0 8,589e+0

Fig. 9.7. Example of barycenter approximation: convergence dynamics of Ackley’s
function (dotted line — classical algorithm, solid line — hybrid algorithm).

Problems

9.1. What is the difference between interpolation and approximation? Give
an example.

9.2. What methods of approximation do you know? What is the advantage
of Support Vector Machines as against other methods of approximation?

9.3. For the optimization problem (9.2) and (9.3) from Chapter 9, formulate
the Karush–Kuhn–Tucker conditions of optimality in matrix form. Give an
explanatory sketch for this problem.

9.4. What advantages do deterministic methods of optimization have in com-
parison with metaheuristics?

9.5. Enumerate the main purposes of the hybridization. What means could
one use to achieve these purposes. How was the hybridization described in
this chapter realized?

9.6. What is the training set? What does it used for? How large should it be?

9.7. What kinds of kernel functions do you know?

9.8. Why was the second-order polynomial kernel function chosen in this chap-
ter?

9.9. Show that the approximation obtained from (9.8) and (9.9) of Chapter 9
is the best from a practical point of view.

9.10. Propose your preferred way of approximation and find its optimal solu-
tion(s). Prove that your model is consistent.

9.11. Calculate the overall complexity of the approximation phase. Estimate
whether its realization is efficient (in theory, in action)? Test on benchmarks
and compare the execution time and the precision of obtained solutions.

9.12. What numerical problems can appear during execution of the algo-
rithm? How does one overcome them?

9.13. What is the advantage of a barycenter approximation? Does it always
give the best results? Explain why.

9.14. Think out your own way of a “simple” approximation. Estimate its
efficiency. In which cases is it more or less preferable?

10

Applications

In order to illustrate for you the practical efficiency of differential evo-
lution, in this chapter I present two famous problems from different
fields of application. The first one is a classical identification prob-
lem in which DE is used to evaluate the parameters of a Choquet
integral. This problem is a striking example from the decision-making
domain. The second one belongs to the engineering design domain,
the so-called bump problem. DE is applied here to find the global op-
timum, which is placed exactly on a constraint function. It presents
the real challenge of this field. As you will see, differential evolution
demonstrates prominent results on both cases in comparison with the
methods that were used previously.

10.1 Decision Making with Differential Evolution

In our modern world, socioeconomical and technical, we frequently face prob-
lems having a multidimensional character. More and more we need to calculate
different performances in different spaces, which can also be correlated with
each other. Furthermore, we want to have a global, integral, image of our
system or process often represented by an unique aggregation formula. Such
a wish leads to a fuzzy representation of data that express the performances.
The Choquet integral introduced in this section is a nice illustration of the
aggregation of performances connected by dependence of subordination and
of coordination. Particularly, the Choquet integral permits us to simulate the
objective importance of a criterion and its interaction with the other criteria
in the multicriteria space.

Here, we adapt the differential evolution algorithm to solve a classical
identification problem. The task is to learn the behavior of a decision makers’
group. The aggregation operator is based on the family of Choquet integrals
and represents a two-additive measure. The goal is to use differential evolution

134 10 Applications

as a universal algorithm that provides proximity to the optimum solution. The
comparison of differential evolution with the SQP solver of MATLAB has been
made. The obtained results show the following advantages.

1. The found solution is feasible.
2. It is closer to the optimum than the SQP one.

10.1.1 Aggregation by the Choquet Integral

The aggregation problem can be presented as

Ag : En → E ⇔ (P1, . . . , Pn) → PAg = Ag(P1, . . . , Pn) , (10.1)

where Ag is an aggregation operator, and En and E are the spaces of the
particular performances (P1, . . . , Pn) and their aggregation PAg, accordingly.

Before introducing some mathematical formulae I would like to emphasize
the desired properties of the aggregation. I outline specially the interaction
importance during aggregation. So, the next question arises: what type of
interactions occur between the particular performances? It is necessary to
consider that the performance indicators consist of three elements: (1) objec-
tives, (2) measures, and (3) variables of action. The interactions could have
a place on all these levels. But we shall consider only the level of objectives
through which the other interactions can be induced too; that is,

interaction (particular performances) = interaction (objectives) . (10.2)

Thus, we distinguish several situations:

• The objectives are noninteractive or independent.
• The objectives are interactive.

1. One type of interaction is a complementarity; that is, the simultaneous
satisfaction of the objectives influences the aggregation performance
more considerably than the separately taken satisfactions. In the other
words there is a synergy.

2. Another type of interaction is a redundancy; that is, the objectives are
to some extent interchangeable. The performances of these objectives
evolve to a certain degree in the same direction.

Actually, the analytical hierarchy process method (AHP) [Saa80] is widely
used in practice. But unfortunately this method has some disadvantages: there
is no redundancy aspect. However, the Choquet integral [Gra97] is able to
simulate the described interactions.

The aggregation operators based on the family of the Choquet integral
combine several operators: weighted average, min, max, medians, and ordered
weighted average. This allows us to express different behaviors of the decision
maker (severe, compromise, tolerant), and an importance and different inter-
action effects among the objectives. We consider here the particular case of

10.1 Decision Making with Differential Evolution 135

the Choquet integral, the so-called two-additive measure. It represents only
the pair interactions thereby simplifying the mathematical expression. Thus,
the Choquet integral has the interpretable form:

CI(P1, . . . , Pn) =
∑

Iij>0|i>j

min(Pi, Pj) · Iij

+
∑

Iij<0|i>j

max(Pi, Pj) · �Iij�

+
n∑

i=1

Pi · (νi − 1
2

∑
i�=j

|Iij |) ,

(10.3)

• With νi − 1
2

∑
i�=j |Iij | ≥ 0, where νi, i = 1, . . . , n are the Shapley indices

that represent the global importance of each objective relative to the other
ones; that is,

∑n
i=1 νi = 1.

• The indices Iij express the interactions between the pairs of objectives
(Oi, Oj); they belong to the range [−1, 1]. The value 1 means that there is
a positive synergistic effect between the objectives, and the value –1 means
negative synergy. The value 0 signifies the independent objectives.

So, we distinguish three parts of the Choquet integral: (1) conjunctive, (2)
disjunctive, and (3) additive.

1. The positive index Iij results in the simultaneous satisfaction of the ob-
jectives Oi and Oj having the considerable effect on the aggregation per-
formance and the unilateral satisfaction having no effect.

2. The negative index Iij results in the satisfaction of the objectives Oi and
Oj being sufficient in order to have a considerable negative effect on the
aggregation performance.

3. The index Iij equal to zero results in the absence of any interaction be-
tween the given objectives Oi and Oj . Also, the Shapley indices νi play
the part of weights of the classical weighted average.

The Choquet integral has several remarkable properties. In this work we
use one of them: by substituting max(x, y) = (x + y)/2 + |x − y|/2 and
min(x, y) = (x + y)/2 − |x − y|/2 in (10.3) we deduce the next form of the
Choquet integral

CI(P1, . . . , Pn) =
n∑

i=1

Pi · νi − 1
2

∑
i>j

Iij · |Pi − Pj | . (10.4)

10.1.2 Classical Identification Problem

There are many problems that can be formulated in the context of two-
additive measure aggregation. We concentrate our attention on one of them:
the classical identification problem.

136 10 Applications

A database of couples (ue ∈ [0, 1]n, Re ∈ [0, 1]) is available and the aim is
to extract from this learning database the set of parameters νi, i = 1, . . . , n
and Iij , i �= j, i, j = 1, . . . , n so that

min
νi, Iij

Nl∑
e=1

(CI(ue) − Re)2 (10.5)

(Nl is the cardinal of the learning set) subject to the next constraints:

〈1〉
n∑

i=1

νi = 1

〈2〉 νi − 1
2

∑
i�=j

|Iij | ≥ 0, i = 1, . . . , n

〈3〉 νi ≥ 0, i = 1, . . . , n
〈4〉 |Iij | ≤ 1, i, j = 1, . . . , n
〈5〉 0 ≤ CI(ue) ≤ 1, e = 1, . . . , Nl .

(10.6)

To these mathematical constraints some semantic constraints may be
added. They are necessarily linear inequalities such as

• Iij ≤ 0 or Iij ≥ 0 — in order to express the type of interaction between
the objectives Oi and Oj .

• Iij ≤,= or ≥ q · Ikl and νi ≤,= or ≥ q · νj ; q ∈ IN — to express order of
magnitude relations between the Shapley and interaction indices.

Notice the symmetry of matrix Iij so that this problem has D = n(n+1)/2
unknowns. However, in spite of using the Choquet integral property (10.4),
there is no a quadratic representation 1

2xT Hx+cT x, Ax ≤ b of the polynomial
functional (10.5) and the constraints (10.6). Therefore, I proposed to solve this
problem as a nonlinear optimization one.

10.1.3 Implementation and Comparison of Results

Now I shall explain how to solve the described identification problem by the
differential evolution algorithm and then together we shall compare the ob-
tained solutions with those given by the SQP algorithm of MATLAB.

Let us examine the constraints (10.6). We have one equality linear con-
straint (10.6 〈1〉), ∑n

i=1 νi − 1 = 0; n nonlinear constraints (10.6 〈2〉),
1
2

∑
i�=j |Iij | − νi ≤ 0; and n linear constraints (10.6 〈3〉), −νi ≤ 0 and the

constraints (10.6 〈4〉) which can be represented as n(n− 1) linear constraints
such as xk ≤ 0. And at the end, 2 ·Nl nonlinear constraints (10.6 〈5〉) resulted
from the Choquet integral property 0 ≤ CI(ue) ≤ 1. We don’t handle the last
constraints (10.6 〈5〉) because the problem definition (10.5), in general, gives

10.1 Decision Making with Differential Evolution 137

the solutions that do not violate these constraints. Furthermore, the semantic
constraints are of no interest. They are linear and can be easily integrated
to the both differential evolution and SQP methods without considerable in-
fluence on the solution. Thus, we shall handle n(n + 1) + 1 constraints. For
differential evolution the part of them (10.6 〈3〉 and 〈4〉) can be represented
as boundary constraints. Taking into consideration (10.6 〈1〉), νi belong to
[0, 1]. And the interaction indices Iij lie in the range [−1, 1]. The equality
constraint we handle each time before the function evaluation in the following
way: νi = νi/νsum, νsum =

∑n
i νi. So, it remains to handle explicitly only n

nonlinear constraints (10.6 〈2〉).
In order to test our problem we randomly generate the Nl couples (an

instance) (ue, Re), ue ∈ [0, 1]n and Re ∈ [0, 1]. In this case, there are two
disadvantages: (1) we don’t know the global minimum of the instance and (2)
we don’t know about the existence of a feasible solution. However, we can
accomplish the relative comparison of the both methods.

First, let us examine the exploration capabilities of differential evolution.
For this, we fix the strategy ω = ξ3 +F · (ξ2 − ξ1), the reproduction constants
F = 0.9 and Cr = 0.5, and change the size of population NP = k · D, k =
1.3(3), 2, 4, 6, 8, 10, 20, 40, 80, 160, 320, 640. We run the DE algorithm 10 times
in order to have the average results; each time we execute 10,000 iterations.
Then, we observe the objective function values Fobj , the population radius
Rpop, the execution time t, and the number of function evaluations nfe. The
tests were made for n = 5 and Nl = 10. The obtained results are shown in
Table 10.1.

Table 10.1. Exploration capabilities of differential evolution.

NP Fobj Rpop t, msec nfe

20 5,622e–1 9,69e–1 861 14950
30 5,619e–1 9,35e–1 1311 26822
60 5,615e–1 9,66e–1 2613 49399
90 5,611e–1 9,75e–1 3955 79030

120 5,605e–1 9,88e–1 5267 107187
150 5,610e–1 9,73e–1 6479 122475
300 5,568e–1 9,85e–1 12858 241449
600 5,611e–1 9,94e–1 25737 496313

1200 5,270e–1 1,14e+0 51594 995492
2400 4,345e–1 1,28e+0 106830 1989647
4800 3,290e–1 1,42e+0 246610 3997871
9600 4,543e–1 1,35e+0 659250 7970104

138 10 Applications

From Table 10.1 we can see how by increasing the exploration (increasing of
NP) the found solution verges towards the global minimum, but the execution
time becomes critical. For our further experiments we choose a compromise
between the optimality of the solution and the computing time. Notice that
k = 8 ⇒ NP = 120 gives a satisfactory solution for reasonable time with a
good exploration potential.

Second, we vary the size of problem n = 3, 4, 5, 6 and compare differential
evolution with the SQP method. SQP is speedier, but, as we can see below,
it does not provide a feasible solution. The results are summarized in Table
10.2. Let us recall that NP = 8 · D = 4n(n + 1).

Table 10.2. Comparison of differential evolution with SQP (MATLAB).

n DE Fobj SQP Fobj Violated Constraints

3 4,0489e–1 3,2948e–1 1–1; 2–2
4 4,9375e–1 3,3913e–1 2–4
5 1,4338e–1 8,9165e–2 2–4
6 7,5725e–1 2,0782e–1 1–1; 2–6

All DE solutions were feasible, however, all SQP solutions were infeasible.
In order to show which constraints were violated we introduce the next no-
tation x − y, where x is a type of constraint (10.6 〈x〉) and y is a quantity
(number) of the violated constraints. It is obvious that the main difficulty
for the SQP algorithm is nonlinear constraints (10.6 〈2〉), whereas differential
evolution perfectly handles these constraints and always leads to a feasible
solution.

Moreover, we tried to initialize the population by individuals uniformly
scattered around the solution obtained by the SQP solver. We varied the
scattering deviation from ±0.2 to ±1, but still did not find any feasible solution
better than in the case of the initialization within boundary constraints. It
means that the SQP solution is located far from the global optimum. Also,
this fact outlines the proximity of the DE solution to the real optimum.

Summing Up

As the simulation shows, differential evolution is capable of finding a feasible
solution. With increasing the search space exploration (by increasing the size
of the population) the possibility of finding the global optimum rises too.
The only restriction here is computing time. Moreover, as it was shown, the
SQP solver finds the solution that is far from the real optimum. At the end,
the method of differential evolution does not need the gradient function and
uses only values of the objective function, so it is indifferent to the Choquet
integral representation.

10.2 Engineering Design with Differential Evolution 139

10.2 Engineering Design with Differential Evolution

10.2.1 Bump Problem

The bump problem is a well-known benchmark. It was first introduced by
A. Keane in 1995 [Kea95]. Many research efforts have been directed towards its
solving [BP96, EBK98, GHB98, Kea95, Kea96, MS96, MF02, SM96, Pen04].
The problem belongs to a class of multipeak problems that is typical for
engineering design. They are hard problems. Its author’s description can be
found on http://www.soton.ac.uk/∼ajk/bump.html.

The optimization task is written as

maximize

∣∣∣∑D
i=1 cos4(xi) − 2 · ∏D

i=1 cos2(xi)
∣∣∣√∑D

i=1 i · x2
i

for
xi ∈ [0, 10] , i = 1, . . . , D

subject to
D∏

i=1

xi > 0.75 and
D∑

i=1

xi < 15D/2 ,

(10.7)

where xi are the variables expressed in radians and D is the problem dimen-
sion. This function gives a highly bumpy surface (see Fig. 10.1 and Fig. 10.2
for D = 2), where the global optimum is defined by the product constraint.

10.2.2 The Best-Known Solutions

In order to compare found solutions the next limitation was accepted in
[Kea95, Kea96, Pen04]:

the number of iterations is limited to 1000 · D.

The first attempts to find the solution were made by Keane [Kea95, Kea96]
using a parallel genetic algorithm with 12-bit binary encoding, crossover,
inversion, mutation, niche forming, and a modified Fiacco–McCormick con-
straint penalty function. This algorithm demonstrated the following results.

• D = 20 ⇒ fmax � 0.76 after 20000 iterations.
• D = 50 ⇒ fmax � 0.76 after 50000 iterations.
• More than 150,000 iterations gave fmax � 0.835 for D = 50.

The last best-known solution was announced by K. Penev in 2004 [Pen04].
He invented a new method called free search (FS), which was inspired by

140 10 Applications

Fig. 10.1. Contour map of the two-dimensional bump problem.

Fig. 10.2. 3-D view of the two-dimensional bump function.

Table 10.3. Free search applied to the bump problem: D = 20.

Initialization Prod Constraint Best Solution

xj = 5 0.750022060021 0.80015448156
xj = 4 + randi(0, 2) 0.750000636097 0.803558343297
xj = 3.3 − i · 0.165 0.750015669223 0.8035972606
xj = xmax 0.7500013889841 0.80361832569

10.2 Engineering Design with Differential Evolution 141

Table 10.4. Free search applied to the bump problem: D = 50.

Initialization Prod Constraint Best Solution

xj = 5 0.750064071725 0.830462857742
xj = xb 0.750000512903 0.835238805797361
xj = xmax 0.750000001829 0.83526232992710514

several successful population-based metaheuristics (see Section 7.3 and [PL03,
Pen04]). The achievements of this algorithm are shown in Tables 10.3 and 10.4.
There, different types of initialization were used:

1. xj = 5 ; all the individuals of a population are in the center point of the
function.

2. xj = 4 + randi(0, 2) ; individuals are scattered in the center of the search
space.

3. xj = 3.3 − i · 0.165 ; individuals are near the edge of the feasible region.
4. xj = xb ; individuals are near the border.
5. xj = xmax ; all individuals start from the best-found solution location.

The first two types of initialization are considered as a global search, and the
last three are a local search.

10.2.3 Implementation and Comparison of Results

I have applied differential evolution to solve this problem. The random initial-
ization within the boundary constraints xi ∈ [0, 10] has been used throughout.
It could be considered as an equivalent of the initialization by the center point
in FS, because at each FS iteration the individuals execute a random walk
within the boundary constraints.

As for the constraints, I used the multiobjective approach stated in Sub-
section 2.6.2. The product constraint

∏D
i=1 xi > 0.75 is the principal one that

we need to handle. The sum constraint
∑D

i=1 xi < 15D/2 usually is always
satisfied.

First, I tried the classical strategy with a typical set of control parameters.
For D = 20 it resulted in

the objective function fmax = 0.80361910412556048,
the product constraint pc = 0.75000000000004041.

That is already better than the last declared solution (Table 10.3).
Further research led me to the following improvements.

• Relaxation on the differentiation constant, F ∗ = F · rand(0, 1]
• Appropriate choice of the strategies

RAND group for a global search and
RAND/BEST group for a local search

142 10 Applications

• Alternation of the strategies during the search
• Several restarts with different values of control parameters

All this allowed us to find the next optimal points.

Table 10.5. The best solutions found by DE.

Dim Solution Prod Constraint Sum Constraint

20 0.80361910412558857 0.75000000000000022 29.932583972573589
50 0.83526234835804869 0.75000000000000500 78.000115253998743

Table 10.6. The vector of optimal parameters for D = 20.

x00 = 3.16246065811604190 x01 = 3.12833145017448370
x02 = 3.09479214084494900 x03 = 3.06145059811428410
x04 = 3.02792919854217060 x05 = 2.99382609801282040
x06 = 2.95866872595774040 x07 = 2.92184226455266010
x08 = 0.49482513593227867 x09 = 0.48835709655412185
x10 = 0.48231641293878313 x11 = 0.47664472480676473
x12 = 0.47129549301840445 x13 = 0.46623099767787296
x14 = 0.46142006012626491 x15 = 0.45683663647966960
x16 = 0.45245879070189926 x17 = 0.44826762029086792
x18 = 0.44424701500322117 x19 = 0.44038285472829569

I verified these solutions by a gradient method (MATLAB). Starting from
these points the local searcher could not find a better solution. In fact, 64-
bit encoding provides numerical validity for tolerance more than or equal to
1.0e–16. So, my solutions can be considered as the global optima.

At the end, it is reasonable to compare the obtained solutions with the
best-known ones (Tables 10.3 and 10.4). Logically, they should be compared
with the solutions obtained from the center point initialization (type 1); it
ensures nearly the same start conditions and demonstrates the capabilities of a
global exploration of the algorithms. The comparative results are summarized
in Table 10.8. Obviously the one proposed by my DE algorithm outperforms
the last winner. Moreover, it attains better performance than FS initialized1

by the previously obtained best solution.

1 Initialization:
Center — individuals start from a center point of the function, xj = 5 .
Best — individuals start from the previously found best solution, xj = xmax .
Global — initialization within boundary constraints, xj = L + randj [L, H] .

10.2 Engineering Design with Differential Evolution 143

Table 10.7. The vector of optimal parameters for D = 50.

x00 = 6.28357974793778330 x01 = 3.16993733816407190
x02 = 3.15607465250342400 x03 = 3.14236079172872750
x04 = 3.12876948312050820 x05 = 3.11527494621216540
x06 = 3.10185302117381670 x07 = 3.08848016178066940
x08 = 3.07513491216427640 x09 = 3.06179467252986190
x10 = 3.04843675871158260 x11 = 3.03503848140045960
x12 = 3.02157775558343110 x13 = 3.00802924772837340
x14 = 2.99436736737406540 x15 = 2.98056473717553460
x16 = 2.96659073290957930 x17 = 2.95241155210926020
x18 = 2.93799064523733120 x19 = 2.92328402602021910
x20 = 0.48823764243053802 x21 = 0.48593348169600903
x22 = 0.48368276001618171 x23 = 0.48148238865686760
x24 = 0.47932961305325728 x25 = 0.47722233714893758
x26 = 0.47515884532321256 x27 = 0.47313717927816629
x28 = 0.47115523634530548 x29 = 0.46921225802399896
x30 = 0.46730549186047610 x31 = 0.46543422118642180
x32 = 0.46359702444691414 x33 = 0.46179207306529080
x34 = 0.46001901985326699 x35 = 0.45827617833553030
x36 = 0.45656228870835214 x37 = 0.45487673783362242
x38 = 0.45321838205667508 x39 = 0.45158652641468644
x40 = 0.44997988261943855 x41 = 0.44839838037402802
x42 = 0.44684083652996631 x43 = 0.44530577084165557
x44 = 0.44379357586475304 x45 = 0.44230327040711964
x46 = 0.44083416284896781 x47 = 0.43938573760010979
x48 = 0.43795618165024869 x49 = 0.43654673796357019

Table 10.8. Comparison of DE with FS.

Dim Algorithm Initialization Solution

20 FS Center 0.80015448156000000
Best 0.80361832569000000

DE Global 0.80361910412558857

50 FS Center 0.83046285774200000
Best 0.83526232992710514

DE Global 0.83526234835804869

11

End Notes

For the last ten years, the methods of metaheuristic optimization have been
enjoyed wide popularity and recognition in the worlds of science, business, and
industry. In particular, evolutionary algorithms seem to impose themselves as
the better choice method for optimization problems that are too intricate to
be solved by traditional techniques. They are universal, robust, easy to use,
and intrinsically parallel. Nobody can ignore the great number of applications
and the permanent interest devoted to them. In practice, a very large number
of these methods are inspired by nature, physics, or psychology. The problem
of the choice of method and of evaluation of its performance is becoming
a problem in and of itself. Who knows, a priori, if this method is better
than another for a particular problem? Outwardly, algorithms are often very
similar and although, at the same time, so different when the analysis becomes
finer. Can we reveal the principal patterns that unify them? Can we indicate
the tendencies of their evolution? Can we see prospectively and predict the
horizons of their future development?

This book seems to partially answer these questions. After a profound
analysis of the optimization domain, my attention was attracted by an al-
gorithm, universally recognized at that time and quite famous now, named
differential evolution. This is a method of population-based optimization. It
synthesizes today the state of the art of evolutionary computation. I analyzed
this algorithm deeply and improved its performance (convergence and preci-
sion). The present studies introduce a certain number of elements helping to
comprehend and answer some previously posed questions.

• Discovery of the origins of the success of the algorithm (operation differ-
entiation) that led to:

1. Elaboration of new strategies, their classification, and generalization by
a unique formula (Chapter 3). Now, differential evolution is no longer
reduced to a certain set of strategies. Strategies can be created de-
pending on the properties of an optimization task. The introduced

146 11 End Notes

classes will direct the user to a better choice of the type of strategy
(random/directed/local/hybrid). In fact, there is no longer a need to
hesitate between differential evolution and other population-based op-
timizers. DE strategies, namely the flexibility in their creation, could,
ideally, imitate other well-known methods of optimization (Chapter 7).
Moreover, most comparative tests have shown the numerical superior-
ity of differential evolution.

2. Analysis of the trade-off between exploration and exploitation capaci-
ties of the algorithm and, in particular, of differentiation. I have intro-
duced a probabilistic measure of the strategy’s diversity (Chapter 4)
and proved numerically that the diversity of a population should de-
crease proportionally to approaching the optimum (Chapter 6). Also, I
propose that differentiation is the first step towards the general opera-
tor integrating the features of both mutation and crossover, for which
the evolutionary computation community has been looking for a long
time (Section 4.1). Principal methods of diversity evaluation, adapta-
tion of control parameters, and convergence improvement have been
considered as well.

3. Introduction of new measures to evaluate more objectively the behav-
ior of the algorithm (or a strategy) (Chapter 5). Three new measures
have been proposed. (1) Q-measure: an integral criterion to measure
the convergence of an objective function. (2) R-measure: a statistical
criterion to measure the robustness of a strategy with respect to control
parameters. (3) P-measure: a dynamic criterion to measure the radius
of a population, which then characterizes the population convergence.

• Discovery of three levels of performance improvement of the algorithm,
namely:

1. Individual Level

On this level, I have proposed a new vision of differentiation (see above)
and introduced a new DE species, named transversal differential evo-
lution (Chapter 6). There are three reasons to introduce the transverse
species:

11 End Notes 147

(a) Diversity control: varying the number of transversal steps.
(b) Universalization: a transversal architecture can correctly imitate

some other algorithms, for example, recently invented free search;
on the other hand, three denoted species (two-array, sequential,
and transversal) enlarge the concept of differential evolution; for
instance, the sequential species is now a particular case of the
transversal one.

(c) Efficient parallelization: a transversal architecture procures much
more flexibility and quality in comparison with others for imple-
mentation on heterogeneous networks of computers.

2. Population Level1

On this level, the principle of energetic vitality of individuals is de-
veloped (Chapter 8). At each generation, the population passes an
energetic obstacle that rejects feeble individuals. The proposed ener-
getic approach explains the theoretical aspect of such a population size
reduction. The present innovation provides more thorough exploration
of a search space and accelerates convergence, which, in its turn, aug-
ments the probability of finding the global solution.

3. External Level

This level embodies an interaction of differential evolution with other
external techniques. Undoubtedly, hybridization of differential evolu-

1 Note: The innovations on population and external levels can be applied to any
population-based algorithm.

148 11 End Notes

tion with regression methods is a rather promising tendency. The prin-
cipal idea consists in finding a better solution on the basis of potentially
good individuals. The obtained solution will replace the worst. Such an
iterative refreshment of a population leads to increasing the algorithm’s
convergence. I have tested a combination of differential evolution with
support vector machines (Chapter 9). The introduction of a polynomial
second-order kernel permitted the calculation of the global optimum
of an approximation function by solving a linear system of equations.
Also, for the sole purpose of comparison, I have used a simple barycen-
tric approximation. In both cases, increase of the convergence has been
discovered. The key elements that influence convergence are (1) an ap-
propriate choice of a kernel function and (2) a choice of an equation
solver for the linear system.

• Comparison with some other well-known algorithms. Such a comparison
permitted clearly underlining advantages and disadvantages of differential
evolution and revealing common and distinguishing points with other al-
gorithms. In the book, as a case in point, I have interpreted three of the
best known algorithms (nonlinear simplex, particle swarm optimization,
and free search) through differential evolution (Chapter 7).

Below you will find my principal contribution to differential evolution in brief.

1. Introduction of the universal formula of differentiation
2. Classification of the strategies (random/directed/local/hybrid)
3. Uncovering of the transversal DE species
4. Universalization of the algorithm
5. Development of the energetic approach (energetic selection)
6. Hybridization differential evolution with regression methods (SVM)
7. Suggestion of new algorithm performance measures (Q-, R-, P-measures)
8. Analysis and generalization of some other methods through DE
9. Applications (decision making, engineering design)

In this book I expounded the material as completely as possible. However,
if after reading it you have some questions, please do not hesitate to contact
me by e-mail, Vitaliy.Feoktistov@gmail.com. I will soon be creating a Web
site and shall put my algorithms there for free use. I hope sincerely that this
book will help you in your work. Read and achieve success!

A

Famous Differential Evolution

A.1 C Source Code

The code is partitioned for convenience on three files. The first file “main.c” is
a main program, and the other two files “rand.h” and “function.h” are header
files. In “rand.h” you can place your favorite random number generator. And
in “function.h” you can put any function for testing. Of course, this code is
rather simplified for study purposes and is rich in comments. It clearly reflects
the basic principles of differential evolution.

main.c

#include <stdio.h>
#include "rand.h" // random number generator
#include "function.h" // objective function (fitness)

// ** CONTROL PARAMETERS ** //
#define D 10 // dimension of problem
#define NP 60 // size of population
#define F 0.9 // differentiation constant
#define CR 0.5 // crossover constant
#define GEN 10000 // number of generations
#define L -2.048 // low boundary constraint
#define H 2.048 // high boundary constraint

int main() {

//***************************//
//** ALGORITHM’S VARIABLES **//
//***************************//

150 A Famous Differential Evolution

double X[D] ; // trial vector
double Pop[D][NP] ; // population
double Fit[NP] ; // fitness of the population
double f ; // fitness of the trial individual
int iBest = 0 ; // index of the best solution
int i,j,g ; // loop variables
int Rnd ; // mutation parameter
int r[3] ; // randomly selected indices

//****************************//
//** CREATION OF POPULATION **//
//****************************//

ini_rand(654987654UL) ; // initialize rand
for (j=0; j<NP; j++) // initialize each individual
{

for (i=0; i<D; i++) // within boundary constraints
Pop[i][j] = X [i] = L + (H-L)*rand() ;

Fit[j] = fnc(D,X) ; // and evaluate fitness function
}

//******************//
//** OPTIMIZATION **//
//******************//

for (g=0; g<GEN; g++) // for each generation
{

for (j=0; j<NP; j++) // for each individual
{

// choose three random individuals from population,
// mutually different and also different from j

r[0] = (int) (rand()*NP) ;
while (r[0]==j)

r[0] = (int) (rand()*NP) ;
r[1] = (int) rand()*NP ;
while ((r[1]==r[0])||(r[1]==j))

r[1] = (int) (rand()*NP) ;
r[2] = (int) (rand()*NP) ;
while ((r[2]==r[1])||(r[2]==r[0])||(r[2]==j))

r[2] = (int) (rand()*NP) ;

// create trial individual
// in which at least one parameter is changed
Rnd = (int)(rand()*D) ;

A.1 C Source Code 151

for (i=0; i<D; i++)
{

if ((rand()<CR) || (Rnd == i))
X[i] = Pop[i][r[2]] +

F * (Pop[i][r[0]] - Pop[i][r[1]]) ;
else

X[i] = Pop[i][j] ;
}

// verify boundary constraints
for (i=0; i<D; i++)

if ((X[i]<L)||(X[i]>H))
X[i] = L + (H-L)*rand() ;

// select the best individual
// between trial and current ones

// evaluate fitness of trial individual
f = fnc(D,X) ;

// if trial is better or equal than current
if (f <= Fit[j])
{

// replace current by trial
for (i=0; i<D; i++)

Pop[i][j] = X[i] ;
Fit[j] = f ;

// if trial is better than the best
if (f <= Fit[iBest])

iBest = j ; // update the best’s index
}

}
}

//*************//
//** RESULTS **//
//*************//

printf("OPTIMUM : \n");
for (i=0; i<D; i++)

printf("%g\n",Pop[i][iBest]);
printf("Fobj = %g\n",Fit[iBest]);

scanf("%hd",&i);
return 0;

152 A Famous Differential Evolution

rand.h

// Period parameters //
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL // constant vector a //
#define UMASK 0x80000000UL // most significant w-r bits //
#define LMASK 0x7fffffffUL // least significant r bits //
#define MIXBITS(u,v) (((u) & UMASK) | ((v) & LMASK))
#define TWIST(u,v)

((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))

static unsigned long state[N]; // state vector //
static int left = 1;
static int initf = 0;
static unsigned long *next;

/* initializes state[N] with a seed */
void ini_rand(unsigned long s)
{

int j;
state[0]= s & 0xffffffffUL;
for (j=1; j<N; j++) {

state[j] = (1812433253UL *
(state[j-1] ^ (state[j-1] >> 30)) + j);

/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array state[]. */
/* 2002/01/09 modified by Makoto Matsumoto */

state[j] &= 0xffffffffUL; /* for >32 bit machines */
}
left = 1; initf = 1;

}

static void next_state(void)
{

unsigned long *p=state;
int j;

// if ini_rand() has not been called, //
// a default initial seed is used //
if (initf==0) ini_rand(5489UL);

left = N;
next = state;

A.2 MATLAB Source Code 153

for (j=N-M+1; --j; p++)
*p = p[M] ^ TWIST(p[0], p[1]);

for (j=M; --j; p++)
*p = p[M-N] ^ TWIST(p[0], p[1]);

*p = p[M-N] ^ TWIST(p[0], state[0]);
}

/* generates a random number on [0,1)-real-interval */
double rand(void)
{

unsigned long y;

if (--left == 0) next_state();
y = *next++;

/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);

return (double)y * (1.0/4294967296.0);
/* divided by 2^32 */

}

function.h

double fnc(int D, double* X)
{

double f = 0;
int i;
for (i=0; i<D-1; i++)

f += 100*(X[i]*X[i]-X[i+1])*(X[i]*X[i]-X[i+1])
+ (1-X[i])*(1-X[i]);

return f;
}

A.2 MATLAB Source Code

Recently MATLAB has become more and more popular among researchers,
engineers, and students; I decided to include MATLAB code also.

154 A Famous Differential Evolution

function [f,X] = DE
% f - optimal fitness
% X - optimal solution

% CONTROL PARAMETERS %
D = 10; % dimension of problem
NP = 60; % size of population
F = 0.9; % differentiation constant
CR = 0.5; % crossover constant
GEN = 10000; % number of generations
L = -2.048; % low boundary constraint
H = 2.048; % high boundary constraint

% *************************** %
% ** ALGORITHM’S VARIABLES ** %
% *************************** %

X = zeros(D,1); % trial vector
Pop = zeros(D,NP); % population
Fit = zeros(1,NP); % fitness of the population
iBest = 1; % index of the best solution
r = zeros(3,1); % randomly selected indices

% *********************** %
% ** CREATE POPULATION ** %
% *********************** %

% initialize random number generator
rand(’state’,sum(100*clock));
for j = 1:NP % initialize each individual

Pop(:,j) = L + (H-L)*rand(D,1); % within b.constraints
Fit(1,j) = fnc(Pop(:,j)); % and evaluate fitness

end

% ****************** %
% ** OPTIMIZATION ** %
% ****************** %

for g = 1:GEN % for each generation

for j = 1:NP % for each individual

% choose three random individuals from population,
% mutually different and different from j

A.2 MATLAB Source Code 155

r(1) = floor(rand()* NP) + 1;
while r(1)==j

r(1) = floor(rand()* NP) + 1;
end
r(2) = floor(rand()* NP) + 1;
while (r(2)==r(1))||(r(2)==j)

r(2) = floor(rand()* NP) + 1;
end
r(3) = floor(rand()* NP) + 1;
while (r(3)==r(2))||(r(3)==r(1))||(r(3)==j)

r(3) = floor(rand()* NP) + 1;
end

% create trial individual
% in which at least one parameter is changed

Rnd = floor(rand()*D) + 1;
for i = 1:D

if (rand()<CR) || (Rnd==i)
X(i) = Pop(i,r(3)) +

F * (Pop(i,r(1)) - Pop(i,r(2)));
else

X(i) = Pop(i,j);
end

end

% verify boundary constraints
for i = 1:D

if (X(i)<L)||(X(i)>H)
X(i) = L + (H-L)*rand();

end
end

% select the best individual
% between trial and current ones

% calculate fitness of trial individual
f = fnc(X);

% if trial is better or equal than current
if f <= Fit(j)

Pop(:,j) = X; % replace current by trial
Fit(j) = f ;

% if trial is better than the best
if f <= Fit(iBest)

iBest = j ; % update the best’s index
end

end

156 A Famous Differential Evolution

end
end

% ************* %
% ** RESULTS ** %
% ************* %

f = Fit(iBest);
X = Pop(:,iBest);

% == %
function f = fnc(X)

% fitness function
n = length(X);
f = 0;
for i = 1:n-1

f = f + 100 * (X(i,1)*X(i,1) - X(i+1,1))^2
+ (X(i,1) - 1)^2;

end

B

Intelligent Selection Rules

This is a source code written in C language of the modified selection operation,
selection rules, explained in Section 2.6. The function “selection” returns true
if the trial individual is chosen, otherwise it returns false. The entry function
argument is a population index j (see Alg. 1) of the current individual.

bool selection(int currentInd)
{

bool trialFeasible = true;
bool currentFeasible = true;
bool choiceTrial = true;

// constraints verification
for (int i=0; i!=NCONSTR; i++)
{

// evaluate i-th constraint
constr[i] = fconstraints(i);

// if the i-th constraint is dominant?
if ((constr[i]>=0.0) &&

(constr[i]>cpop[i][currentInd]))
return choiceTrial = false;

// feasibility of trial and current solutions
if (constr[i] >= 0.0)

trialFeasible = false;
if (cpop[i][currentInd] >= 0.0)

currentFeasible = false;
}

158 B Intelligent Selection Rules

// evaluate the objective function
fi = fobj(ind);

// if both solutions are infeasible => trial choice
if ((!trialFeasible)&&(!currentFeasible))

return choiceTrial;

// if the both solutions are feasible =>
// comparison of the fobj values

if ((currentFeasible)&&(fi<fpop[currentInd]))
return choiceTrial = false;

return choiceTrial;
}

C

Standard Test Suite

Here, in this appendix, a standard test suite is presented1. The illustrated
test functions were used to compare proposed strategies and to validate the
other ideas discussed in this monograph. The first five test functions f1 − f5

(Figs. C.1–C.5) were introduced more than 20 years ago by DeJong [DeJ75].
These are classical examples representing different kinds of difficulties for an
evolutionary solver. The next two functions f6, f7 (Figs. C.6 and C.7) are
examples of a highly multimodal search space. They contain millions of local
optima in the interval of consideration. The final f8 function (Fig. C.8) is a
difficult quadratic optimization problem.

C.1 Sphere Function

The function sphere, f1, (Fig. C.1) is the “dream” of every optimization al-
gorithm. It is a smooth, unimodal, and symmetric function and it does not
present any of the difficulties that we have discussed so far. The performance
on the sphere function is a measure of the general efficiency of an algorithm.

f1(X) =
n∑

i=1

x2
i , −5.12 ≤ xi ≤ 5.12 . (C.1)

C.2 Rosenbrock’s Function

The second one, Rosenbrock’s function (Fig. C.2) is very bad. It has a very
narrow ridge. The tip of the ridge is very sharp, and it runs around a parabola.
The algorithms that are not able to discover good directions underperform in
this problem.

1 You can find more test problems in [FPA+99].

160 C Standard Test Suite

Fig. C.1. Sphere function, first De Jong function.

f2(X) =
n−1∑
i=1

100 · (x2
i − xi+1)2 + (1 − xi)2 , −2.048 ≤ xi ≤ 2.048 . (C.2)

C.3 Step Function

The third, the step function (Fig. C.3), is representative of the problem of flat
surfaces. Flat surfaces are obstacles for optimization algorithms because they
do not give any information as to which direction is favorable. The derivations
are zero. Unless an algorithm has variable step sizes, it can get stuck on one
of the flat plateaus.

f3(X) =
n∑

i=1

�xi� , −5.12 ≤ xi ≤ 5.12 . (C.3)

C.3 Step Function 161

Fig. C.2. Rosenbrock’s function, second De Jong function.

Fig. C.3. Step function, third De Jong function.

162 C Standard Test Suite

C.4 Quartic Function

The fourth is the quartic function (Fig. C.4). This is a simple unimodal func-
tion padded with noise. The Gaussian noise makes sure that the algorithm
never gets the same value on the same point. The algorithms that do not
perform well on this test will work poorly on noisy data.

f4(X) =
n∑

i=1

(
i · x4

i + Gauss(0, 1)
)

, −1.28 ≤ xi ≤ 1.28 . (C.4)

Fig. C.4. Quartic function, fourth De Jong function.

C.5 Shekel’s Function

The fifth function (Fig. C.5), is named Shekel’s function or foxholes. It is an
example of many (in this case 25) local optima. Many optimization algorithms
get stuck in the first peak they find.

f5(X) =
1

0.002 +
∑25

j=1
1

cj+
2
i=1(xi−aij)6

, −65.536 ≤ xi ≤ 65.536 . (C.5)

C.7 Ackley’s Function 163

Fig. C.5. Shekel’s function (foxholes), fifth De Jong function.

C.6 Rastrigin’s Function

This function, the so-called Rastrigin’s function (Fig. C.6), is an example of
a highly multimodal search space. It has several hundred local optima in the
interval of consideration.

f6(X) =
n∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

, −5.12 ≤ xi ≤ 5.12 . (C.6)

C.7 Ackley’s Function

This is the next highly multimodal function, Ackley’s function (Fig. C.7).

164 C Standard Test Suite

Fig. C.6. Rastrigin’s function.

f7(X) = − 20 exp

⎛
⎝−0.2

√√√√ 1
n

n∑
i=1

x2
i

⎞
⎠−

− exp

(
1
n

n∑
i=1

cos(2πxi)

)
+ 20 + exp ,

− 32.768 ≤ xi ≤ 32.768

(C.7)

C.8 Rotated Ellipsoid Function

f8(X) =
n∑

i=1

⎛
⎝ i∑

j=1

xi

⎞
⎠

2

, −65.536 ≤ xi ≤ 65.536 . (C.8)

C.8 Rotated Ellipsoid Function 165

Fig. C.7. Ackley’s function.

166 C Standard Test Suite

Fig. C.8. Rotated ellipsoid function.

D

Coordinate Rotation of a Test Function

An efficient technique to struggle against the disadvantages of test
functions is presented here. The matter concerns a rotation of the
function’s coordinates proposed by Salomon [Sal96]. In particular, it
permits us to transform a separable function into a highly epistatic
one.

Most of the test functions (Appendix C) are separable in the following
sense,

f(X) =
D∑

i=1

fi(xi) . (D.1)

If a function is separable, then its variables are independent. Such a function
has the following property

∀i, j i �= j : f(. . . , xo
i , . . .) = opt ∧ f(. . . , xo

j , . . .) = opt
⇒ f(. . . , xo

i , . . . , x
o
j , . . .) = opt .

(D.2)

This property makes it easy to optimize a separable function. The optimiza-
tion could be done in a sequence of D independent processes resulting in D
independent optimal values. Then the solution is the combination of these
values. That gives the complexity equal to O(D).

The functions, such as f(X) = (x2
1 + x2

2)
2, are not separable. However,

these functions are also easy to optimize because their first derivative is a
product, such as ∂f(X)/∂x1 = 4x1(x2

1 + x2
2). Such a product gives a solution

x1 = 0 that is independent of the other variable. In general, all functions that
fulfill the following condition,

∂f(X)
∂xi

= g(xi) · h(X) , (D.3)

are as easy to optimize as separable functions, because they permit us to
obtain solutions for each xi independently of all other variables. The property
(D.1) is a special case of (D.3).

168 D Coordinate Rotation of a Test Function

All functions satisfying condition (D.3) can be solved with an O(n) com-
plexity. Salomon showed that many GAs that use a small mutation probability
pm ≤ 1/D have the complexity O(n lnn) [Sal96]. That is greater than O(n),
but seems to be optimal for a randomized search.

This fact can be explained in the following way. Independent variables per-
mit us to decompose a D-dimensional task into a sequence of D independent
one-dimensional ones. This set of one-dimensional tasks can be scheduled in
any arbitrary sequence. A GA with a small mutation probability does this
scheduling by modifying only one variable at a time. Such a mechanism works
with an O(n lnn) complexity as long as the variables are independent, but
suffers a drastic performance loss as soon as the variables become dependent
on each other.

Figure D.1 explains the performance loss. The left part shows a quadratic
function of the form f(X) = x2

1 + α1x
2
2 that is aligned with the coordinate

system. The right part shows the same function but rotated, which leads to
f(X) = x2

1 + α0x1x2 + α1x
2
2. It can be clearly seen that the improvement

intervals are rapidly shrinking, which results in an increase of the algorithm’s
complexity. This is a simple two-dimensional example with a very small eccen-
tricity. The observable performance loss is much higher in high-dimensional
search space and with large eccentricities. In summary, the efficiency of the
algorithm is sensitive to the axis rotation angle.

Fig. D.1. Left: a quadratic function that is aligned with the coordinate system
has a relatively large improvement interval. Right: a rotation of the same function,
which leads to much smaller improvement intervals. The difference increases as the
eccentricity increases.

Thus, in order to estimate the maximal complexity of the DE algorithm, we
should make it invariant to the axes’ rotation. This gives us the real algorithm
performance which does not depend on function characteristics (separable or
epistatic ones).

D Coordinate Rotation of a Test Function 169

Differentiation is rotationally invariant, because it is based on linear op-
erators (2.8) that are invariant to the rotation of coordinate axes. In return,
crossover is rotationally dependent. The outcome of (combinatorial) crossover
is a vertex of a hypercube built on the trial and target individuals. Although
the trial and target positions are invariant to the axes’ rotation, the hypercube
completely depends on it (see Fig. D.2). So, in order to make DE rotationally
invariant we should exclude the crossover operation.

Fig. D.2. Left: coordinate and principal axes are aligned. Right: coordinate and
principal axes are unaligned (rotated). Coordinate rotation shifts the location of
potential child vectors generated by crossover.

Many experiments showed that a big value of crossover Cr ≈ 1 − 1/D,
that is, the trial individual inherits about one gene of the target individual at
a time, ameliorates the convergence rate of separable functions significantly.
In this case, such a crossover can be associated with a small rate mutation
effect as mentioned above. In other words, crossover executes the function
of D linear searchers independently for each variable. However, the real-life
functions are usually epistatic ones, so such a speed-up feature of crossover is
often idle.

E

Practical Guidelines to Application

In this appendix I briefly summarized all the practical information concerning
the tuning of differential evolution for solving a problem. The tuning process
is divided in five step-by-step phases.

1. Type of strategy
If possible, you should use the knowledge of some characteristics of an objec-
tive function. For example, the group of directed strategies gives the best fit
to “quasi” convex functions, and random strategies are preferable for difficult
functions, where either we do not know or simply disregard their properties.
Recommended values: Rand3 and Rand2/Best.

2. Size of population
It should be not too small in order to avoid stagnation or local optima. On the
other hand, the larger the size is, the more computations are needed.
Recommended values: NP = 10 · D.

3. Constant of differentiation
F ∈ (−1, 0) ∪ (0, 1]+ is proportional to the diversity of a population. Negative
values localize the search between two barycenters of the difference vector. Pos-
itive values globalize the search.
Recommended values: F = 0.85.

4. Constant of crossover
Cr ∈ [0, 1) adds a constructive diversity to the search process. It allows us to
exploit some properties of a function such as the symmetry and separability.
Recommended values: Cr = 0.5.

5. Number of traversal steps
It is suggested to use the transversal DE in two cases: either to organize refined
control of the diversity or for flexible parallel implementation of the algorithm.
Recommended values: n = 1.

References

[Abb02] Hussein A. Abbass. The self-adaptive Pareto differential evolution al-
gorithm. In Proceedings of the IEEE Congress on Evolutionary Com-
putation, CEC2002, pages 831–836, 2002.

[AD03] Hussein A. Abbass and Kalyanmoy Deb. Searching under multi-
evolutionary pressures. In Proceedings of the 2003 Evolutionary
Multiobjective Optimization Conference – EMO03, pages 391–404.
LNCS2632, Berlin, Springer-Verlag, 2003.

[Ang98] Peter J. Angeline. Evolutionary optimization versus particle swarm
optimization: Philosophy and performance differences. In V. W.
Porto, N. Saravanan, D. Waagen, and A. E. Eiben, editors, Evolution-
ary Programming VII, pages 601–610, LNCS 1447, Berlin, Springer,
1998.

[AS02] Hussein A. Abbass and Ruhul Sarker. A pareto differential evolu-
tion algorithm. International Journal on Artificial Intelligence Tools,
11(4):531–552, World Scientific, Singapore, 2002.

[ASN01a] Hussein A. Abbass, Ruhul Sarker, and Charles Newton. A pareto
differential evolution approach to vector optimisation problems. In
Proceedings of the IEEE Congress on Evolutionary Computation,
CEC2001, Seoul, Korea, IEEE Press, 2001.

[ASN01b] Hussein A. Abbass, Ruhul Sarker, and Charles Newton. PDE: A
pareto-frontier differential evolution approach for multi-objective op-
timization problems. In Proceedings of the IEEE Congress on Evolu-
tionary Computation, CEC2001, pages 971–978, Seoul, Korea, IEEE
Press, 2001.

[AT00] M. Ali and A. Törn. Optimization of carbon and silicon cluster by
differential evolution. In C.A. Floudas and P. Pardalos, editors, Op-
timization in Computational Chemistry and Molecular Biology, pages
287–300. Kluwer Academic, 2000.

[AT02] M.M. Ali and A. Törn. Topographical differential evolution using
pre-calciulated differentials. In G. Dzemyda et al., editor, Stochastic
Methods in Global Optimization, pages 1–17. Kluwer Academic, 2002.

[BD99] H.G. Bayer and K. Deb. On the analysis of self adaptive evolution-
ary algorithms. Technical Report CI-69/99, University of Dortmund,
1999.

174 References

[Bey98] Hans-Georg Beyer. On the explorative power of ES/EP-like algo-
rithms. In V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben,
editors, Evolutionary Programming VII, pages 323–334, LNCS 1447,
Berlin, Springer, 1998.

[BP95] G. Bilchev and I. Parmee. The ant colony methaphor for searching
continuous design space. In Proceedings of AISB Workshop on Evo-
lutionary Computation, University of Sheffield, UK, 3–4 April 1995.

[BP96] G. Bilchev and I. Parmee. Constrainted optimisation with an ant
colony search model. In Proceedings of ACED’96, PEDC, University
of Plymouth, UK, 1996.

[CL99] F. Cheong and R. Lai. Designing a hierarchical fuzzy logic controller
using differential evolution. In Proceedings of 1999 IEEE International
Fuzzy Systems Conference, FUZZ-IEEE’99, volume 1, pages 277–282,
Seoul, Korea, IEEE, Piscataway, NJ, 1999.

[Coe99a] Carlos A. Coello Coello. A survey of constraint handling techniques
used with evolutionary algorithms. Technical report, Laboratorio
Nacional de Informática Avanzada, Xalapa, Veracruz, México, 1999.
Lania-RI-99-04.

[Coe99b] Carlos A. Coello Coello. The use of a multiobjective optimization
technique to handle constraints. In Alberto A. Ochoa Rodŕıguez,
Marta R. Soto Ortiz, and Roberto Santana Hermida, editors, Pro-
ceedings of the Second International Symposium on Artificial Intel-
ligence (Adaptive Systems), pages 251–256, Institute of Cybernetics,
Mathematics and Physics, Ministry of Science, Technology and Envi-
ronment, La Habana, Cuba, 1999.

[Coe02] Carlos A. Coello Coello. Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: A survey of
the state of the art. In Computer Methods in Applied Mechanics and
Engineering, volume 191, pages 1245–1287, January 2002.

[CW98] Ji-Pyng Chiou and Feng-Sheng Wang. A hybrid method of differen-
tial evolution with application to optimal control problems of a bio-
process system. In Proceedings of IEEE International Conference on
Evolutionary Computation. IEEE World Congress on Computational
Intelligence, pages 627–632, New York, 1998.

[CW99] Ji-Pyng Chiou and Feng-Sheng Wang. Hybrid method of evolutionary
algorithms for static and dynamic optimization problems with appli-
cation to a fed-batch fermentation process. Computers and Chemical
Engineering, 23(9):1277–1291, November 1999.

[CWS01] I.L. Lopez Cruz, L.G. Van Willigenburg, and G. Van Straten. Para-
meter control strategy in differential evolution algorithm for optimal
control. In M.H. Hamza, editor, Proceedings of the IASTED Inter-
national Conference Artificial Intelligence and Soft Computing (ASC
2001), pages 211–216, Cancun, Mexico, ACTA, Calgary, 2001.

[CX00] C.S. Chang and D.Y. Xu. Differential evolution based tuning of fuzzy
automatic train operation for mass rapid transit system. In IEE Pro-
ceedings on Electric Power Applications, volume 147, pages 206–212,
May 2000.

[CXQ99] C.S. Chang, D.Y. Xu, and H.B. Quek. Pareto-optimal set based mul-
tiobjective tuning of fuzzy automatic train operation for mass transit

References 175

system. In IEE Proceedings on Electric Power Applications, volume
146, pages 577–583, September 1999.

[Deb00] Kalyanmoy Deb. An efficient constraint handling method for genetic
algorithms. Computer Methods in Applied Mechanics and Engineer-
ing, 186(2–4):311–338, 2000.

[Deb01] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary
Algorithms. Wiley, Chichester, UK, 2001.

[DeJ75] Kenneth.A. DeJong. The Analysis of the Behavior of a Class of Ge-
netic Adaptive Systems. PhD thesis, University of Michigan, Ann
Harbor, University Microfilms No 76-9381, 1975.

[DJA01] Kalyanmoy Deb, Dhiraj Joshi, and Ashish Anand. Real-coded evo-
lutionary algorithms with parent-centric recombination. Technical
Report 2001003, Kanpur Genetic Algorithms Laboratory (KanGAL),
Department of Mechanical Engineering, Indian Institute of Technol-
ogy, Kanpur, PIN 208 016, India, 2001.

[DPST03] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard. Métaheuristiques
pour l’optimisation difficile. Eyrolles, 2003.

[EBK98] M.A. EI-Beltagy and A.J. Keane. Optimisation for multilevel prob-
lems: A comparison of various algorithms. In I.C. Parmee, edi-
tor, Adaptive Computing in Design and Manifacture, pages 111–120.
Springer-Verlag London Limited, 1998.

[EHM99] Ágoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz.
Parameter control in evolutionary algorithms. IEEE Trans. on Evo-
lutionary Computation, 3(2):124–141, 1999.

[ES03] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing.
Springer, 2003.

[FF97] C. M. Fonseca and Peter J. Fleming. Multiobjective optimization.
In Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors,
Handbook of Evolutionary Computation, pages C4.5:1–9. Institute of
Physics Publishing and Oxford University Press, Bristol, New York,
1997.

[FJ03] Vitaliy Feoktistov and Stefan Janaqi. Gestion de mission des satellites
d’observation avec l’évolution différentielle. In 5-ème Congrès de la
Société Française de Recherche Opérationnelle et d’Aide à la Décision
- ROADEF 2003, pages 228–230, Unitersité d’Avignon et des Pays de
Vaucluse, 26–28 Février 2003.

[FJ04a] Vitaliy Feoktistov and Stefan Janaqi. Classical identification problem
solved by differential evolution: Choquet integral. In R. Matousek and
P. Osmera, editors, 10th International Conference on Soft Computing
– MENDEL 2004, pages 62–67, Brno, Czech Republic, 16–18 June
2004.

[FJ04b] Vitaliy Feoktistov and Stefan Janaqi. Differential evolution. Technical
report, LGI2P - l’École des Mines d’Alès, Parc Scientifique G. Besse,
30035 Nı̂mes, France, January 2004.

[FJ04c] Vitaliy Feoktistov and Stefan Janaqi. Evolution différentielle – une
vue d’ensemble. In A. Dolgui and S. Dauzère-Pérès, editors, Actes
de la 5-ème Conférence Francophone de MOdélisation et SIMula-
tion. Modélisation et simulation pour l’analyse et l’optimisation des
systèmes industriels et logistiques – MOSIM 2004, volume 1, pages
223–230, Nantes, France, 1–3 September 2004.

176 References

[FJ04d] Vitaliy Feoktistov and Stefan Janaqi. Generalization of the strategies
in differential evolution. In 18-th Annual IEEE International Par-
allel and Distributed Processing Symposium. IPDPS – NIDISC 2004
workshop, page 165 and CD version, Santa Fe, NM, IEEE Computer
Society, New York, 2004.

[FJ04e] Vitaliy Feoktistov and Stefan Janaqi. Hybridization of differential
evolution with least-square support vector machines. In Proceedings of
the Annual Machine Learning Conference of Belgium and The Nether-
lands – BENELEARN 2004, pages 53–57, Vrije Universiteit Brussels,
Belgium, 8–9 January 2004.

[FJ04f] Vitaliy Feoktistov and Stefan Janaqi. New energetic selection princi-
ple in differential evolution. In 6th International Conference on En-
terprise Information Systems – ICEIS 2004, volume 2, pages 29–35,
Universidade Portucalense, Porto – Portugal, 14–17 April 2004.

[FJ04g] Vitaliy Feoktistov and Stefan Janaqi. New strategies in differen-
tial evolution. In Ian Parmee, editor, 6th International Conference
on Adaptive Computing in Design and Manufacture – ACDM 2004,
pages 335–346, Bristol, UK, 20–22 April, Engineers House, Clifton,
Springer-Verlag Ltd.(London) 2004.

[FJ04h] Vitaliy Feoktistov and Stefan Janaqi. Transversal differential evolu-
tion : Comparative study. In Dana Petcu, Daniela Zaharie, Viorel Ne-
gru, and Tudor Jebelean, editors, The 6th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computation –
SYNASC 2004, pages 490–501, Timisoara, Romania, 26–30 Septem-
ber 2004.

[FJ06] Vitaliy Feoktistov and Stefan Janaqi. Enterprise Information Sys-
tems VI, chapter Artificial Intelligence and Decision Support Systems,
pages 151–157. Springer, 2006.

[FL01] Hui-Yuan Fan and Jouni Lampinen. A trigonometric mutation ap-
proach to differential evolution. In K. C. Giannakoglou, D. T. Tsa-
halis, J. Périaux, K. D. Papailiou, and T. Fogarty, editors, Evolution-
ary Methods for Design Optimization and Control with Applications
to Industrial Problems, pages 65–70, Athens, Greece. International
Center for Numerical Methods in Engineering (Cmine), 2001.

[FL03] Hui-Yuan Fan and Jouni Lampinen. A directed mutation operation
for the differential evolution algorithm. International Journal of In-
dustrial Engineering: Theory, Applications and Practice, 1(10):6–15,
2003.

[Fle80] Roger Fletcher. Practical Methods of Optimisation, volume 1: Uncon-
strained Optimization. John Wiley and Sons, Chichester, 1980.

[Fle81] Roger Fletcher. Practical Methods of Optimisation, volume 2: Con-
strained Optimization. John Wiley and Sons, Chichester, 1981.

[Fog92] D.B. Fogel. Evolving Artificial Intelligence. PhD thesis, University of
California, San Diego, 1992.

[FOW66] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence
Through Simulated Evolution. John Wiley, New York, 1966.

[FPA+99] C.A. Floudas, P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z. Gu-
mus, S.T. Harding, J.L. Klepeis, C.A. Meyer, and C.A. Schweiger.
Handbook of Test Problems for Local and Global Optimization. Kluwer
Academic, 1999.

References 177

[GHB98] M.R. Ghasemi, E. Hinton, and S. Bulman. Performance of genetic
algorithms for optimisation of frame stractures. In I.C. Parmee, edi-
tor, Adaptive Computing in Design and Manufacture, pages 287–299.
Springer-Verlag London Limited, 1998.

[Glo90] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.
[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Reading, MA, Addison Wesley, 1989.
[Gra97] Michel Grabisch. k-ordered discrete fuzzy measures and their repre-

sentation. Fuzzy Sets and Systems, (92):167–189, 1997.
[Hen] Tim Hendtlass. A combined swarm differential evolution algorithm

for optimization problems.
[Hol75] J.H. Holland. Adaptation in Natural and Artificial Systems. Univer-

sity of Michigan Press, Ann Arbor, 1975.
[HW02] Hsuan-Jui Huang and Feng-Sheng Wang. Fuzzy decision-making de-

sign of chemical plant using mixed-integer hybrid differential evolu-
tion. Computers and Chemical Engineering, 26(12):1649–1660, 2002.

[IKL03] Jarmo Ilonen, Joni-Kristian Kamarainen, and Jouni Lampinen. Dif-
ferential evolution training algorithm for feed-forward neural net-
works. Neural Processing Letters, 17(1):93–105, 2003.

[KE95] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In
Proc. of the IEEE Int. Conf. on Neural Networks, pages 1942–1948,
Piscataway, NJ, IEEE Service Center, 1995.

[Kea95] Andy J. Keane. Genetic algorithm optimization of multi-peak prob-
lems: studies in convergence and rubustness. Artificial Intelligence in
Engineering, 9(2):75–83, 1995.

[Kea96] Andy J. Keane. A brief comparison of some evolutionary optimization
methods. In V. Rayward-Smith, I. Osman, C. Reeves, G.D. Smith,
and J. Wiley, editors, Modern Heuristic Search Methods, pages 255–
272, 1996.

[KGV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[KL04] Saku Kukkonen and Jouni Lampinen. Mechanical component design
for multiple objectives using generalized differential evolution. In Ian
Parmee, editor, 6th International Conference on Adaptive Computing
in Design and Manufacture – ACDM 2004, pages 261–272, Bristol,
UK, Engineers House, Clifton, Springer-Verlag Ltd.(London), 20–22
April 2004.

[KL05] Saku Kukkonen and Jouni Lampinen. GDE3: The third evolution
step of generalized differential evolution. In The 2005 IEEE Congress
on Evolutionary Computation, 2005.

[Koz92] John R. Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA,
1992.

[KSL04] Saku Kukkonen, Jouni Sampo, and Jouni Lampinen. Applying gen-
eralized differential evolution for scaling filter design. In R. Matousek
and P. Osmera, editors, 10th International Conference on Soft Com-
puting – MENDEL 2004, pages 28–32, Brno, Czech Republic, 16–18
June 2004.

178 References

[Lam99] Jouni Lampinen. Differential evolution - new naturally parallel ap-
proach for engineering design optimization. In Barry H.V. Topping,
editor, Developments in Computational Mechanics with High Per-
formance Computing, pages 217–228, Edinburgh, Civil-Comp Press,
1999.

[Lam01] Jouni Lampinen. Solving problems subject to multiple nonlinear con-
straints by the differential evolution. In Radek Matousek and Pavel
Osmera, editors, Proceedings of MENDEL’01 – 7th International Con-
ference on Soft Computing, pages 50–57, Brno, Czech Republic, 6–8
June 2001.

[Lam02a] Jouni Lampinen. A bibliography of differential evolution algorithm.
Technical report, Department of Information Technology, Laboratory
of Information Processing. Lappeenranta University of Technology,
2002.

[Lam02b] Jouni Lampinen. A constraint handling approach for the differential
evolution algorithm. In David B. Fogel, Mohamed A. El-Sharkawi,
Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow, and Mark
Shackleton, editors, Proceedings of the 2002 Congress on Evolutionary
Computation – CEC2002, pages 1468–1473. Piscataway, NJ, IEEE
Press, 2002.

[Las03] Alexey Lastovetsky. Parallel Computing on Heterogeneous Networks.
John Wiley and Sons, 2003. 423 pages.

[LHW00] Yung-Chien Lin, Kao-Shing Hwang, and Feng-Sheng Wang. Plant
scheduling and planning using mixed-integer hybrid differential evo-
lution with multiplier updating. In Proceedings of the CEC00, 2000
Congress on Evolutionary Computation, volume 1, pages 593–600,
Piscataway, NJ, IEEE, 2000.

[LL02a] Junhong Liu and Jouni Lampinen. Adaptive parameter control of dif-
ferential evolution. In P. Osmera, editor, Proceedings of MENDEL’02
– 8th International Mendel Conference on Soft Computing, pages 19–
26, Brno, Czech Republic, 5–7 June 2002.

[LL02b] Junhong Liu and Jouni Lampinen. On setting the control parameter
of the differential evolution method. In P. Osmera, editor, Proceed-
ings of MENDEL’02 – 8th International Mendel Conference on Soft
Computing, pages 11–18, Brno, Czech Republic, 5–7 June 2002.

[LN89] D.C. Lui and J. Nocedal. On the limited memory BFGS method
for large scale optimization. Mathematical Programming, 45:503–528,
1989.

[LZ99a] Jouni Lampinen and Ivan Zelinka. Mechanical engineering design
optimization by differential evolution. In David Corne, Marco Dorigo,
and Fred Glover, editors, New Ideas in Optimization, pages 127–146.
London, McGraw-Hill, 1999.

[LZ99b] Jouni Lampinen and Ivan Zelinka. Mixed integer-discrete-continuous
optimization by differential evolution, Part 1: the optimization
method. In P. Osmera, editor, Proceedings of MENDEL’99 – 5th
International Mendel Conference on Soft Computing, pages 71–76,
Brno, Czech Republic, 9–12 June 1999.

[LZ99c] Jouni Lampinen and Ivan Zelinka. Mixed integer-discrete-continuous
optimization by differential evolution, Part 2: A practical example.

References 179

In P. Osmera, editor, Proceedings of MENDEL’99 – 5th International
Mendel Conference on Soft Computing, pages 77–81, Brno, Czech Re-
public, 9–12 June 1999.

[LZ00] Jouni Lampinen and Ivan Zelinka. On stagnation of the differ-
ential evolution algorithm. In P. Osmera, editor, Proceedings of
MENDEL’00 – 6th International Mendel Conference on Soft Com-
puting, pages 76–83, Brno, Czech Republic, 7–9 June 2000.

[MA03] N.P. Moloi and M.M. Ali. An iterative global optimization algorithm
for potential energy minimization. Technical report, University of
Minnesota, 22 March 2003.

[Mad02] N.K. Madavan. Multiobjective optimization using a pareto differ-
ential evolution approach. In The IEEE Congress on Evolutionary
Computation, pages 1145–1150, 2002.

[MBST99] Javier G. Marin-Blàzquez, Qiang Shen, and Andrew Tuson. Tuning
fuzzy membership functions with neighbourhood search techniques: A
comparative study. In Proceedings of the 3rd IEEE International Con-
ference on Intelligent Engineering Systems, pages 337–342, November
1999.

[MCTM04] Efrén Mezura Montes, Carlos A. Coello Coello, and Edy I. Tun-
Morales. Simple feasibility rules and differential evolution for con-
strained optimization. In Raúl Monroy, Gustavo Arroyo-Figueroa,
Luis Enrique Sucar, and Humberto Sossa, editors, Proceedings of
the Third Mexican International Conference on Artificial Intelligence
(MICAI’2004), volume 2972, pages 707–716. New York, Springer Ver-
lag, LNAI, April 2004.

[MF02] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern
Heuristics. Springer-Verlag, New York, 2002.

[Mic97] Zbigniew Michalewicz. Other constraint-handling methods. In
Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors,
Handbook of Evolutionary Computation, pages C5.6:1–4. Institute of
Physics Publishing and Oxford University Press, Bristol, 1997.

[MM05] Rui Mendes and Arvind Mohais. DynDE: A Differential Evolution
for dynamic optimization problems. In The 2005 IEEE Congress on
Evolutionary Computation, 2005.

[MPV01] G.D. Magoulas, V.P. Plagianakos, and M.N. Vrahatis. Hybrid meth-
ods using evolutionary algorithms for on-line training. In Proceedings
of IJCNN’01, International Joint Conference on Neural Networks,
volume 3, pages 2218–2223, Washington, DC, 15–19 July 2001.

[MS96] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary algorithms
for constrained parameter optimization problems. Evolutionary Com-
putation, 4(1):1–32, 1996.

[NM65] J.A. Nelder and R. Mead. A simplex method for function minimiza-
tion. Computer Journal, 7:308–313, 1965.

[NW88] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Opti-
mization. New York, John Wiley and Sons, 1988.

[NW99] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer series in operations research. New York, Springer-Verlag,
1999.

180 References

[OES05] Mahamed G.H. Omran, Andries P. Engelbrecht, and Ayed Salman.
Differential Evolution methods for unsupervised image classification.
In The 2005 IEEE Congress on Evolutionary Computation, 2005.

[Pen04] Kalin Penev. Adaptive computing in support of traffic management.
In Ian Parmee, editor, 6th International Conference on Adaptive Com-
puting in Design and Manufacture – ACDM 2004, pages 295–306,
Bristol, UK, Engineers House, Clifton, Springer-Verlag Ltd.(London),
20–22 April 2004.

[PL03] K. Penev and G. Littlefair. Free Search – a novel heuristic method.
In Proceedings of the PREP 2003, pages 133–134, Exeter, UK, 14–16
April 2003.

[PR02] P.M. Pardalos and E. Romeijn. Handbook of Global Optimization –
Volume 2: Heuristic Approaches. Kluwer Academic Publishers, 2002.

[Pri94] Kenneth V. Price. Genetic annealing. Dr. Dobb’s Journal, pages
127–132, October 1994.

[Pri97] Kenneth V. Price. Differential evolution vs. the functions of the 2nd
ICEO. In Proceedings of 1997 IEEE International Conference on Evo-
lutionary Computation (ICEC ’97), Cat. No.97TH8283, pages 153–
157, Indianapolis, IN. IEEE; IEEE Neural Network Council (NNC);
Evolutionary Computation (ICEC ’97), 13-16 April 1997.

[Pri99] Kenneth V. Price. New Ideas in Optimization, chapter Differential
Evolution. London, McGraw-Hill, 1999.

[PS82] C.H. Papadimitrou and K. Steiglitz. Combinatorial Optimization: Al-
gorithms and Complexity. Englewood Cliffs, NJ, Prentice Hall, 1982.

[PS97] Kenneth Price and Rainer Storn. Differential evolution: A simple evo-
lution strategy for fast optimization. Dr. Dobb’s Journal of Software
Tools, 22(4):18–24, April 1997.

[PSG+03] K. Pelckmans, J.A.K. Suykens, T.Van Gestel, J.De Brabanter,
L. Lukas, B. Hamers, B.De Moor, and J. Vandewalle. LS-SVMlab
Toolbox User’s Guide. Technical Report 02-145, Katholieke Univer-
siteit Leuven, Belgium, February 2003.

[PSL05] Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differen-
tial Evolution: A Practical Approach to Global Optimization. Natural
Computing Series. New York, Springer, 2005.

[PTP+04] K.E. Parsopoulos, D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos,
and M.N. Vrahatis. Vector evaluated differential evolution for multi-
objective optimization. In Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, pages 204–211, Portland, OR, Piscataway,
NJ, IEEE Press, 2004.

[QS05] A.K. Qin and P.N. Suganthan. Self-adaptive Differential Evolution
algorithm for numerical optimization. In The 2005 IEEE Congress
on Evolutionary Computation, 2005.

[RD00] T. Rogalsky and R.W. Derksen. Hybridization of differential evolution
for aerodynamic design. In Proceedings of the 8th Annual Conference
of the Computational Fluid Dynamics Society of Canada, pages 729–
736, June 11–13 2000.

[RDK99a] T. Rogalsky, R.W. Derksen, and S. Kocabiyik. An aerodynamic design
technique for optimizing fan blade spacing. In Proceedings of the 7th
Annual Conference of the Computational Fluid Dynamics Society of
Canada, pages 2–29 – 2 –34, 30 May – 1 June 1999.

References 181

[RDK99b] T. Rogalsky, R.W. Derksen, and S. Kocabiyik. Differential evolution
in aerodynamic optimization. In Proceedings of the 46th Annual Con-
ference of the Canadian Aeronautics and Space Institute, pages 29–36,
2–5 May 1999.

[RDK99c] T. Rogalsky, R.W. Derksen, and S. Kocabiyik. Optimal optimization
in aerodynamic design. In Proceedings of the 17th Canadian Congress
of Applied Mechanics, 30 May – 3 June 1999.

[Rec73] I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme
nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Ver-
lag, Stuttgart, 1973.

[RKD00] T. Rogalsky, S. Kocabiyik, and R.W. Derksen. Differential evolu-
tion in aerodynamic optimization. Canadian Aeronautics and Space
Journal, 46(4):183–190, December 2000.

[RL03] Jani Rönkkönen and Jouni Lampinen. On using normally distrib-
uted mutation step length for the differential evolution algorithm. In
R. Matoušek and P. Ošmera, editors, Proc. of MENDEL’03 – 9th In-
ternational Conference on Soft Computing, pages 11–18, Brno, Czech
Republic, 4–6 June 2003.

[RM01] James A. Rumpler and Frank W. Moore. Automatic selection of sub-
population and minimal spanning distances for improved numerical
optimization. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC2001, 2001.

[Rog98] T. Rogalsky. Aerodynamic shape optimization of fan blades. Master’s
thesis, University of Manitoba. Department of Applied Mathematics,
1998.

[RS05] Krzysztof Rzadca and Franciszek Seredynski. Heterogeneous multi-
processor scheduling with Differential Evolution. In The 2005 IEEE
Congress on Evolutionary Computation, 2005.

[Rüt97a] Martin Rüttgers. Design of a new algorithm for scheduling in parallel
machine shops. In Proceedings of the 5th European Congress on In-
telligent Techniques and Soft Computing, volume 3, pages 2182–2187,
1997.

[Rüt97b] Martin Rüttgers. Differential evolution: A method for optimization of
real scheduling problems. Technical report, TR-97-013, International
Computer Science Institute, 1997.

[SA04] Ruhul Sarker and Hussein A. Abbass. Differential evolution for solv-
ing multiobjective optimization problems. Asia-Pacific Journal of
Operational Research, 21(2):225–240, 2004.

[Saa80] Thomas L. Saaty. The Analytic Hierarchy Process. New York,
McGraw-Hill, 1980.

[Sal96] Ralf Salomon. Re-evaluating genetic algorithm performance under
coordinate rotation of benchmark functions: A survey of some the-
oretical and practical aspects of genetic algorithms. BioSystems,
39(3):263–278, 1996.

[Sal00] Michel Salomon. Parallélisation de l’évolution différentielle pour le re-
calage rigide d’images médicales volumiques. In RenPar’2000, 12ème
Rencontres Francophones du Parallélisme, Besançon (France), 19–22
Juin 2000.

[Sch81] H.P. Schwefel. Numerical Optimization of Computer Models. New
York, John Wiley and Sons, 1981. 1995, second edition.

182 References

[SDB+93] William M. Spears, Kenneth A. De Jong, Thomas Bäck, David B.
Fogel, and Hugo de Garis. An overview of evolutionary computation.
In Pavel B. Brazdil, editor, Proc. of the European Conf. on Machine
Learning, pages 442–459, Berlin, Springer, 1993.

[SGB+02] J.A.K. Suykens, T.Van Gestel, J.De Brabanter, B.De Moor, and
J. Vandewalle. Least Squares Support Vector Machines. Singapore,
World Scientific, 2002.

[SHH62] W. Spendley, G.R. Hext, and F.R. Himsworth. Sequential applica-
tion of simplex designs in optimisation and evolutionary operation.
Technometrics, 4:441–461, 1962.

[SM96] Marc Schoenauer and Zbigniew Michalewicz. Evolutionary computa-
tion at the edge of feasibility. In Hans-Michael Voigt, Werner Ebeling,
Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem
Solving from Nature – PPSN IV, pages 245–254, Berlin, Springer,
1996.

[SMdMOC03] Hélder Santos, José Mendes, P.B. de Moura Oliveira, and J. Boaven-
tura Cunha. Path planning optimization using the differential evolu-
tion algorithm. In Actas do Encontro Cientifico – 3◦ Festival Nacional
de Robotica – ROBOTICA2003, Lisboa, 9 de Maio de 2003.

[SP95] Rainer Storn and Kenneth Price. Differential evolution – A simple
and efficient adaptive scheme for global optimization over continuous
spaces. Technical Report TR-95-012, International Computer Science
Institute, Berkeley, CA, 1995.

[SP96] Rainer Storn and Kenneth Price. Minimizing the real functions of
the ICEC’96 contest by differential evolution. In IEEE International
Conference on Evolutionary Computation, pages 842–844, Nagoya,
IEEE, New York, May 1996.

[SP97] Rainer Storn and Kenneth Price. Differential evolution – A simple
and efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, (11):341–359, December 1997.

[Spe93] William M. Spears. Crossover or mutation? In L. Darrell Whitley, ed-
itor, Foundations of Genetic Algorithms 2, pages 221–237. San Mateo,
CA, Morgan Kaufmann, 1993.

[Spe98] William M. Spears. The Role of Mutation and Recombination in Evo-
lutionary Algorithms. PhD thesis, George Mason University, Fairfax,
VA, 1998.

[SPH00] M. Salomon, G.-R. Perrin, and F. Heitz. Parallelizing differential
evolution for 3d medical image registration. Technical report, ICPS,
Univ.-Strasbourg, September 2000.

[Sto95] Rainer Storn. Differential evolution design of an IIR-filter with re-
quirements for magnitude and group delay. Technical Report TR-95-
026, International Computer Science Institute, Berkeley, CA, June
1995.

[Sto96a] Rainer Storn. On the usage of differential evolution for function opti-
mization. In Biennial Conference of the North American Fuzzy Infor-
mation Processing Society (NAFIPS 1996), pages 519–523, Berkeley,
CA, New York, IEEE, 1996.

[Sto96b] Rainer M. Storn. System design by constraint adaptation and differen-
tial evolution. Technical Report TR-96-039, International Computer
Science Institute, Berkeley, CA, November 1996.

References 183

[Sto99] Rainer Storn. Designing digital filters with differential evolution. In
David Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in
Optimization, pages 109–125. London, McGraw-Hill, 1999.

[SV99] J.A.K. Suykens and J. Vandewalle. Least squares support vector ma-
chines classifiers. Neural Processing Letters, 9(3):293–300, 1999.

[Swa72] W. Swann. Direct search methods. In W. Murray, editor, Numeri-
cal Methods for Unconstrained Optimization, pages 13–28, New York,
Academic, 1972.

[Tho03] René Thomsen. Flexible ligand docking using differential evolution.
In Proceedings of the 2003 Congress on Evolutionary Computation,
volume 4, pages 2354–2361, 2003.

[Tho04] René Thomsen. Multimodal optimization using crowding-based differ-
ential evolution. In Proceedings of the 2004 Congress on Evolutionary
Computation, volume 2, pages 1382–1389, 2004.

[Tor89] V. Torczon. Multi-directional Search: A Direct Search Algorithm for
Parallel Machines. PhD thesis, Rice University, Huston, TX, 1989.

[TV97] P. Thomas and D. Vernon. Image registration by differential evo-
lution. In Proceedings of the First Irish Machine Vision and Image
Processing Conference IMVIP-97, pages 221–225, Magee College, Uni-
versity of Ulster, 1997.

[Tvi04] Josef Tvirdik. Generalized controlled random search and competing
heuristics. In R. Matousek and P. Osmera, editors, Mendel’04 – 10th
International Conference on Soft Computing, pages 228–233, Brno,
Czech Republic, 16–18 June 2004.

[UV03] Rasmus K. Ursem and Pierré Vadstrup. Parameter identification of
induction motors using differential evolution. In Proceedings of the 5th
Congress on Evolutionary Computation, CEC2003, volume 2, pages
790–796, 8–12 December 2003.

[vA92] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated annealing:
Theory and applications. Dordrecht, Kluwer, 1992.

[Vap95] Vladimir Vapnik. The Nature of Statistical Learning Theory. New-
York, Springer-Verlag, 1995.

[VRSG00] P. Vancorenland, C. De Ranter, M. Steyaert, and G. Gielen. Optimal
rf design using smart evolutionary algorithms. In Proceedings of 37th
Design Automation Conference, Los Angeles, 5–9 June 2000.

[Š02] Tomislav Šmuc. Improving convergence properties of the differ-
ential evolution algorithm. In P. Osmera, editor, Proceedings of
MENDEL’02 – 8th International Mendel Conference on Soft Com-
puting, pages 80–86, Brno, Czech Republic, 5–7 June 2002.

[VT04] J. Vesterstrøm and R. Thomsen. A comparative study of differen-
tial evolution, particle swarm optimization, and evolutionary algo-
rithms on numerical benchmark problems. In Proceedings of the 2004
Congress on Evolutionary Computation, volume 2, pages 1980–1987,
2004.

[WC97a] Feng-Sheng Wang and Ji-Pyng Chiou. Differential evolution for dy-
namic optimization of differential-algebraic systems. In Proceedings
of the IEEE International Conference on Evolutionary Computation
– ICEC’97, pages 531–536, Indianapolis, IN. Piscataway, NJ, IEEE
Press, 1997.

184 References

[WC97b] Feng-Sheng Wang and Ji-Pyng Chiou. Optimal control and optimal
time location problems of differential-algebraic systems by differential
evolution. Ind. Eng. Chem. Res, 36:5348–5357, 1997.

[wCzCzC02] Chong wei Chen, De zhao Chen, and Guang zhi Cao. An improved dif-
ferential evolution algorithm in training and encoding prior knowledge
into feedforward networks with application in chemistry. Chemomet-
rics and Intelligent laboratory systems, (64):27–43, 2002.

[WM95] David H. Wolpert and William G. Macready. No free lunch theorems
for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute,
Santa Fe, NM, July 1995.

[WM97] David H. Wolpert and William G. Macready. No free lunch theo-
rems for optimization. IEEE Trans. on Evolutionary Computation,
1(1):67–82, 1997.

[Wri95] Margaret H. Wright. Direct search methods: once scorned, now re-
spectable. In D.F. Griffiths and G.A. Watson, editors, Proceedings of
the 1995 Dundee Biennial Conference in Numerical Analysis, pages
191–208, Harlow, Addison Wesley Longman, 1995.

[Wri96] M.H. Wright. The Nelder–Mead method: Numerical experimentation
and algorithmic improvements. Technical report, AT&T Bell Labo-
ratories, Murray Hill, NJ, 1996.

[XSG03a] Feng Xue, Arthur C. Sanderson, and Robert J. Graves. Multi-
objective differential evolution and its application to enterprise plan-
ning. In The IEEE International Conference on Robotics and Au-
tomation, 2003.

[XSG03b] Feng Xue, Arthur C. Sanderson, and Robert J. Graves. Pareto-based
multi-objective differential evolution. In The IEEE Congress on Evo-
lutionary Computation, 2003.

[XSG05a] Feng Xue, Arthur C. Sanderson, and Robert J. Graves. Modeling
and convergence analysis of a continuous multi-objective differential
evolution algorithm. In The 2005 IEEE Congress on Evolutionary
Computation, 2005.

[XSG05b] Feng Xue, Arthur C. Sanderson, and Robert J. Graves. Multi-
objective differential evolution – Algorithm, convergence, analysis and
applications. In The 2005 IEEE Congress on Evolutionary Computa-
tion, 2005.

[Xue04] Feng Xue. Multi-Objective Differential Evolution: Theory and Appli-
cations. PhD thesis, Rensselaer Polytechnic Institute, 2004.

[XZ04] Xiao-Feng Xie and Wen-Jun Zhang. SWAF: Swarm algorithm frame-
work for numerical optimization. In K. et al. Deb, editor, Genetic
and Evolutionary Computation Conference (GECCO) – Proceedings,
Part I. LNCS 3102, pages 238–250, Seattle, WA, New York, Springer-
Verlag, 2004.

[Zah01] Daniela Zaharie. On the explorative power of differential evolution
algorithms. In Proc. of SYNASC’2001 – Analele Univ. Timisoara,
volume XXXIX, pages 249–260, Timisoara, Roumania, 2001.

[Zah02] Daniela Zaharie. Parameter adaptation in differential evolution by
controlling the population diversity. In Proc. of SYNASC’2002 –
Analele Univ. Timisoara, seria Matematica-Informatica, volume XL,
special issue, pages 281–295, Timisoara, Roumania, 2002.

References 185

[Zah03] Daniela Zaharie. Multi-objective optimization with adaptive pareto
differential evolution. In Memoriile Sectiilor Stiintifice, Seria IV, To-
mul XXVI, pages 223–239, 2003.

[Zah04] Daniela Zaharie. A multi-population differential evolution algorithm
for multi-modal optimization. In R. Matousek and P. Osmera, editors,
Mendel’04 – 10th International Conference on Soft Computing, pages
17–22, Brno, Czech Republic, 16–18 June 2004.

[ZP03] Daniela Zaharie and Dana Petcu. Adaptive pareto differential evo-
lution and its parallelization. In Fifth International Conference on
Parallel Processing and Applied Mathematics, pages 261–268, Czesto-
chowa, Poland, September, LNCS 3019, 2003.

[ZX03] Wen-Jun Zhang and Xiao-Feng Xie. DEPSO: Hybrid particle swarm
with differential evolution operator. In IEEE Int. Conf. on Systems,
Man and Cybernetics, pages 3816–3821, Washington DC, 2003.

Index

Abbass, 6

Ackley’s function, 126, 163

ACO, see ant colony optimization

action of algorithm, 112

adaptation

schemes, 5

size of population, 113

adaptive control, 76

aggregation formula, 133

aggregation problem, 134

AHP, see analytical hierarchy process

analogy, 5, 101–108

free search, 108

nonlinear simplex, 103

particle swarm optimization, 105

analytical hierarchy process, 134

animal’s behavior

action, 107

sence, 107

ant colony optimization, 2, 106

antecedent strategies, 41

applications, 12, 133–142

decision-making, 133

engineering design, 139
approximate methods, 8

approximating function, 123

approximation, 6, 78, 123

barycenter, 129

optimum of, 124

linear system, 125

quality, 123

architecture of algorithm, 5

sequential, 93

transversal, 94
two-array, 92

artificial evolution, 2
augmented system, 122
average population diversity, 5, 74

badly conditioned matrix, 125, 126
banana function, 10
barycenter, 44, 72
base point, see base vector, 42
base vector, 29, 42, 71

local, 42
random, 42

benchmarks, 63, 95, see test function
Beyer’s postulate, 5, 69
BFGS algorithm, 11
binary-continuous DE, 5
bioinformatics, 13
biosystems, 13
boundary constraints, 28, 33

other techniques, 33
periodic mode, 5
shifting mechanism, 5

bump problem, 139
best-known solutions, 139
implementation of DE, 141

C language, 14, 149, 157
chemical engineering, 13
child, 30
children, 26
Choquet Integral, 133, 135
classical identification problem, 135
classical methods, 7

188 Index

classification, 121
CMA-ES, 18
Coello Coello, 5
collective intelligence, 1, 106
combinatorial optimization, 7
complexity of extra function, 125
computation chemistry, 13
conjugate gradient method, 122
conscious thinking imitation, 106
constraints, 5, 33

boundary, 28, 33
other techniques, 33
periodic mode, 5
reinitialization, 5

inequality, 28
modification of selection rules, 5, 34
other techniques, 35
penalty method, 5, 34
Web site, 5

construction function, 70
construction theory, 70
continuous optimization, 7, 41

fundamental principle, 42
contraction, 102
contribution (personal), 7, 148
control, 13
control parameters, 5, 14, 29, 73–77

goal, 73
influence, 75–76
recommendations, 5, 171
robustness, 5, 86
self-adaptation, 77
tuning, 76–77

complexity of, 85
convergence

improvement, 5, 7, 77–78, 96, 111
energetic selection, 117, 118
hybridization, 128

integrating criteria, 84
measure, 84
objective function, 86
population, 87
probability of, 84
speed-up, 6

convex function, 78
coordinate rotation, 167
cost function, 28, see criterion of

optimization
crafting effort, 85

criterion of optimization, 1, see
objective function

critical generation, 126
crossover, 4, 26, 29, 70–71

applying to DE, 70
arithmetic, 4
binary, 4
exponential, 4
favourable effect, 18
other approaches, 29
principal role, 70
rotationally dependent, 169
small rate mutation effect, 169

crossover constant, 29
influence, 75
self-adaptation, 5

crowding-based DE, 6

damping mechanisms, 105
DE, see differential evolution
Deb, 7
decision maker, 134
decision-making, 13
decreasing of population size, 5
DeJong, 25, 159
deterministic control, 76
development, 4–7
difference vector, 4, 29, 42, 71

barycenter, 72
decreasing, 71
directed, 42
random, 42

differences, 2
differential evolution, 145

assumption, 42
concept, 18
development, 4–7
famous algorithm, 13–16
fundamental idea, 18
history, 2–4
keys of success, 20
newest statement, 28
performance (estimation), 168
secrets of success, 17–20
serves for, 7–13

differential mutation, 3, 71
alternation with

triangle scheme, 4, 42
weighted directed scheme, 4, 42

Index 189

directions, 4

semi-directed, 4

similarity, 71

differentiation, 4, 29, 41, 42, 47, 70,
106, 145

analysis, 71

barycenter, 42

general operator, 70

rotationally invariant, 169

self-adaptation, 71

type, 43

differentiation constant, 29

adaptation, 5

fuzzy control, 5

influence, 75

negative, 46

positive, 46

range, 46

relaxation, 5, 75

self-adaptation, 5

difficult optimization, 9

direct search methods, 101

directed scheme, 42

direction, 18, 42

factor, 73

good, 43

discrete variables, 32

disruption theory, 70

diversity, 5, 70, 72

control, 147

decreasing of population size, 5

differentiation constant, 5, 70

precalculated differentials, 5

refresh of population, 5

strategy, 6

transversality, 96

decreasing, 96

direct measures, 74

estimation, 73

average population, 5, 74

combinatorial approach, 4, 72

expected population variance, 5, 74

mean square, 5, 74

P-measure, 5, 75

extra, 96

practical remark, 73

transfer function, 74

double selection principle, 117

EA, see evolutionary algorithms
Eberhart, 104
EC, see evolutionary computation
Eiben, 26
elementary evolution step, 113
elitist selection, 19, 29
energetic approach, 111–113

action, 112
potential energy, 112

energetic barriers, 113
linear, 114
nonlinear, 115

energetic filter, 6, 113
energetic selection, 111–118

advantage of, 116
numerical results, 117–118
practical remarks, 117
principle, 113–116

idea, 113
Enes-measure, 84
engineering design, 4, 12
engineering problems, 7
entropy, 85
ES, see evolution strategy
evolution, 1, 25
evolution strategy, 26, 71, 101
evolutionary algorithms, 2, 26, 25–27,

145
basic scheme, 26
general trends

evolution strategies, 26
evolutionary programming, 26
genetic algorithms, 25
genetic programming, 26

typical EA, 27
evolutionary computation, 25, 145
evolutionary cycle, 26

of individual, 30
three steps, 26

evolutionary programming, 26
exact methods, 8
examples of strategies, see strategies,

47–63
notation, 47

excessive
exploitation, 69
exploration, 69

example, 95
expansion, 102

190 Index

expected population variance, 5
exploitation, 77
exploitation function of strategy, 70
exploration, 43, 104

careful, 116
exploration function of strategy, 70
exploration/exploitation, 69

combinatoiral estimation, 73
extra function, 6, 123

four steps (summarized), 125

famous algorithm, 13–16
four steps, 15
graphical interpretation, 17
source codes, 149–156
summirized, 16

Fan, 4, 41
feasible points, 28
feature space, 122
Feoktistov, 148
fitness, 14, 28

evaluation, 26
Fogel D., 26
Fogel L., 26
forced stopping, 117
four groups of strategies, 4, 42–46
foxholes, see Shekel’s function
free search, 5, 106–108, 139

drawbacks, 108
random factors, 108

FS, see free search
fuzzy systems, 13

GA, see genetic algorithms
general operator, 70
generate-and-test rules, 6
generation, 26, 29, 113
genes, 26, 28
genetic algorithms, 2, 25, 71, 101, 139,

168
genetic annealing, 3
genetic programming, 26
global methods, 7
global minimum, 28
global optimization, 2
Goldberg, 26
gradient simulation, 42
greedy selection, see elitist selection
group

RAND, 44
RAND/BEST, 45
RAND/BEST/DIR, 46
RAND/DIR, 44

Hendtlass, 6
heterogeneous networks of computers,

5, 97–99
heuristic methods, 8
history, 2–4
Holland, 25
human cognition simulation, 104
hybridization, 121–129

algorithm of, 125
barycenter approximation, 129
critical generation, 126
efficiency measure, 129
extra function, 125
four levels

external level, 6
individual level, 6
meta level, 6
population level, 6

idea, 123
L-BFGS, 78
numerical results, 125–128
observations, 129
two phases of, 125

idea of energetic selection, 113
identification (classical problem), 135
image processing, 13
imitation of a gradient, 43, see

RAND/DIR
individual, 1, 26, 28

average normalized distance between,
74

best, 43
cycle in DE, 30
deterministic creation, 123
injecting, 76
number, 72, 76
potential, 111
replacement, 78
trial, 29, 71

inertia weight, 105
influence constant, 45
initialization, 14, 26, 28, 32

large size, 116

Index 191

integer variables, 32
intelligence of algorithm, 77
intelligent selection rules, 157–158
interpretation via DE, 101

free search, 108
nonlinear simplex, 103
particle swarm optimization, 105

complementarity, 106
iteration, 15, 26

Karush–Kuhn–Tucker conditions, 122
Keane, 139
Kennedy, 104
kernel function, 78, 121, 123

examples, 124
Koza, 26
Kukkonen, 7

L-BFGS, 6, 78, see BFGS algorithm
Lagrangian, 122
Lampinen, 4, 7, 32, 34, 41

Web site, 4
large-scale optimization, 6
Lastovetsky, 97
learning database (set), 136
least squares SVM, 122
levels of performances improvement

external, 147
individual, 146
population, 147

limits, 87
linear energetic barriers, 114
linear programming, 7
linear system, 122
Littlefair, 106
local methods, 7, 78
local minimum, 28
localization of promising zones, 78, 117
LS-SVM, see least squares SVM
LS-SVMlab Toolbox, 126
Lui, 6

Madavan, 6
MATLAB, 10, 14, 126, 134, 142, 153
Mead, 102
mean square diversity, 5
measure, 83–87, 146

Enes, 84
P-measure, 86

Q-measure, 83
R-measure, 86

mechanical engineering, 33
memory aspect, 105
Mercer’s condition, 121, 122
metaheuristic methods

advantage of, 9
metaheuristics

classification
neighborhood, 10
population-based, 10

method, 145
classical, 7
direct search, 101
global, 7
local, 7
mixed variables, 4
regression, 123, 148

migration concept, 6
minimal spanning distance, 6
minimization, 28

of potential energy, 113
minimum location, 28
mixed variables, 4, 8, 32

boundary constraints, 33
discrete, 32
integer, 32

mixed-integer programming, 8
modification of selection rules, 34, 157
molecular biology, 13
Moore, 6
mpC, see multiparallel C
multimodal optimization, 6
multiobjective optimization, 6

single objective function via, 7
multiparallel C, 97
multipeak problems, 139
multipopulation optimization, 6
multistarts, 78
mutation, 26, 70

small probability of, 168
mutation parameter, 31

Nelder, 102
Nelder–Mead algorithm, 102

advantage of DE, 103
drawbacks, 103

neoteric differential evolution, 25–36
advantage of, 31

192 Index

algorithm, 29
distinction of, 30

neural networks, 13
Newton, 6
No Free Lunch theorem, 43
Nocedal, 6
nonlinear energetic barriers, 115
nonlinear function estimation, 121
nonlinear mapping, 122
nonlinear programming, 7
nonlinear simplex, 102–104

advantage of DE, 103
drawbacks, 103

objective function, 28, 43, 123
convergence of, 86

operating variables, 14
operation, see operator

dynamic effect, 71
operator

capability of, 69
crossover, 4, 18, 26, 29, 70–71
differentiation, 4, 29, 70
general, 70
linear, 2
mutation, 26, 70
relative importance, 69
selection, 4, 19, 29

optimality conditions, 122, 123, see
Karush–Kuhn–Tucker conditions

optimization, 28
combinatorial, 7

approximate methods, 8
exact methods, 8

continuous, 7
linear programming, 7
nonlinear programming, 7
quadratic programming, 7

difficult, 9
general scheme, 7
metaheuristic, 9
mixed variables, 8
multimodal, 6
multiobjective, 6

C-MODE and D-MODE, 7
single objective function via, 7

multipopulation, 6
pareto, 7, 77
population-based, 10

problem definition, 28
traditional, 8

optimizer, 3
optimum

approximation, 6, 78
global, 28
local, 28
localization, 78

P-measure, 5, 75, see population
measure

parallel computation, 97
parallelization, 97, 147

flexibility of transversal DE, 98
parameters control

adaptive, 76
deterministic, 76
self-adaptive, 77

parents, 26
pareto-approach, 7

selection rules, 34
source code, 157

particle swarm optimization, 2, 5,
104–106

alternation with DE, 6
combination with DE, 6
premature convergence, 105

penalty function, 34
Penev, 106, 139
performance loss, 168
performance measures, see measure
periodic mode, 5
pheromone, 107
population, 1, 26, 28

control, 76
convergence, 87
potential energy, 112

minimization of, 113
radius, 75
reduction, 78

considerable, 117
dynamics of, 115

refresh, 76
size (influence), 75

population measure, 86
population-based optimization

advantage of, 10
examples, 10–11

features, 11

Index 193

potential difference, 112
potential energy, 112

minimization, 113
potential of individual, 111
potential optimal solution, 28
practical guidelines, 171
precalculated differentials, 5, 97
precision, 86

improvement, 7
preselection, 4
Price, 3, 13, 41, 85
probability of convergence, 84
problem definition, 28
problem parameters, 26
promising zones, 78, 117
PSO, see particle swarm optimization

Q-measure, see quality measure
quadratic programming, 7, 122
quality measure, 83

advantage of, 84
Quartic function, 162

R-measure, see robustness measure
radius of population, see P-measure
Rand0/Best/Dir1, 59
Rand1, 47
Rand1/Best, 56
Rand1/Best/Dir1, 60
Rand1/Best/Dir2, 60
Rand1/Dir1, 51
Rand2, 48
Rand2/Best, 57
Rand2/Best/Dir1, 61
Rand2/Best/Dir3, 61
Rand2/Dir1, 51
Rand3, 48
Rand3/Best, 58
Rand3/Best/Dir4, 61
Rand3/Dir2, 53
Rand3/Dir3, 53
Rand4, 50
Rand4/Best, 58
Rand4/Best/Dir4, 63
Rand4/Best/Dir5, 63
Rand4/Dir2, 54
Rand4/Dir3, 54
Rand5, 50
Rand5/Dir4, 55

random number generator, 13, 149
random subspaces, 103
Rastrigin’s function, 11, 126, 163
Rechenberg, 26
recombination, see crossover

continuous, 71
reflection, 102
refresh of population, 5
regression methods, 78, 123, 148
reinitialization, 5, 33
relaxation of differentiation, 75
replacement, 26, 126
reproduction, 29
robustness measure, 86
Rosenbrock’s function, 10, 14, 117, 159
rotated ellipsoid function, 117, 126, 164
Rumpler, 6

Salomon, 168
Sarker, 6
scheduling, 13
scheme, see strategy

DE/best/1, 41
DE/best/2, 41
DE/rand-to-best/1, 41
DE/rand/1, 41
DE/rand/2, 41
directed, 42
trigonometric, 42

Schwefel, 26
search

behavior, 4, 43
animal, 106
social, 106

direct methods, 101
global, 7
inertia, 106
local, 7
random subspaces, 103
step, 18

secrets of success, 17–20
selection, 4, 19, 26, 29

double, 117
intelligent rules, 157

self-adaptation, 71
control parameters, 77

self-adaptive control, 77
semi-directed mutation, 4
separable function, 167

194 Index

sequential DE, 93
sharing scheme, 6
Shekel’s function, 162
shift, 45
shifting mechanism, 5
shrinkage, 102
simple nostalgia rule, 104
single objective function, 7
size of population, 75

control of, 76
Smith, 26
social influence rule, 104
social strategy, 106
source code, 14

C language, 149
MATLAB, 153

species, 5, 91
comparison of, 95–97
sequential, 93
transversal, 94, 146
two-array, 92

Sphere function, 117, 159
SQP method, 138
stability of algorithm, 43
stagnation effect, 6, 35

possible, 117
standard test suite, 159–164
state of the art of DE, 7
steepest descent, 10
step function, 160
step length, 18
stopping condition, 15, 26, 29
Storn, 3, 13, 41

Web site, 3
strategies, see strategy

notation, 47
RAND strategies, 47

Rand1, 47
Rand2, 48
Rand3, 48
Rand4, 50
Rand5, 50

RAND/BEST strategies, 56
Rand1/Best, 56
Rand2/Best, 57
Rand3/Best, 58
Rand4/Best, 58

RAND/BEST/DIR strategies, 58
Rand0/Best/Dir1, 59

Rand1/Best/Dir1, 60
Rand1/Best/Dir2, 60
Rand2/Best/Dir1, 61
Rand2/Best/Dir3, 61
Rand3/Best/Dir4, 61
Rand4/Best/Dir4, 63
Rand4/Best/Dir5, 63

RAND/DIR strategies, 51
Rand1/Dir1, 51
Rand2/Dir1, 51
Rand3/Dir2, 53
Rand3/Dir3, 53
Rand4/Dir2, 54
Rand4/Dir3, 54
Rand5/Dir4, 55

strategy, 4, 29, 41, 145
analysis, 71, 146
antecedent, 41–42
behavior, 43, 64

animal, 106
social, 106
objective vision, 83

classical, 4
control, 76
correct choice, 4
dynamics, 72
examples, 47–63
exploitation function, 70
exploration function, 70
four groups, 4, 42–46, see group
number of individuals, 73
self-adaptation, 6, 71
semi-directed, 4
social, 106
tests, 63
type, 4, 43

influence, 76
typical, 29
unique conception, 4, 44–46
unique formula, 4, 29, 42, 71

strength pareto EA, 7
subpopulation, 6
summarizing scheme of DE, 7
support vector machines, 78, 121–123,

148
robustness, 123

SVM, see support vector machines
Swann, 101
swarm of particles, 104

Index 195

temperature, 115

terminal condition, see stopping
condition

test function, 14, 167, see standard test
suite

Ackley’s function, 163

quartic function, 162

Rastrigin’s function, 163

Rosenbrock’s function, 159

rotated ellipsoid function, 164

Shekel’s function, 162

sphere function, 159

step function, 160

testbeds, see test function

testing, 63

Thomsen, 6

topographical principle, 6

traditional methods of optimization, 8

training set, 122, 123

transversal DE, 94–97

asynchronous parallelization, 98

transversal step, 94

trial individual, 17, 18, 29, 71

trigonometric scheme, 42
Tvirdik, 6
two-additive measure, 135
two-array DE, 92

synchronous parallelization, 98
typical evolutionary algorithm, 27

unconscious thinking imitation, 106
unconstrained problem, 28
unique conception, 4, 44–46
unique formula, 4, 29, 42, 71, 145, see

differentiation
universal algorithm, 101
universalization, 92, 147

example (FS), 95

value-to-reach, 29
variation, 26, 30

Xie, 6

Zaharie, 6
Zelinka, 4, 32
Zhang, 6

Printed in the USA

