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PREFACE 

MATRICES and determinants are well-known mathematical 
tools for handling simultaneous equations.*(1,2) The impres
sive potentialities of matrix theory have been quite early 
appreciated for network analysis and synthesis/3, 4*5) The 
rapid evolution of this branch of applied mathematics has 
produced a number of outstanding texts which deal with 
a broad range of engineering problems in terms of matri
ces*6' 7«8'9). This book has the somewhat modest aim of a 
basic, yet rigorous review of a narrower field. It is concerned 
with the application of matrix methods to practical electro
nics problems. The organization of the text is slanted to the 
needs of practising electronics engineers as well as students 
with some grounding in mathematics and network theory. 

Transistors and other solid-state devices have slowly but 
surely displaced electronic tubes from many areas in commu
nication and control engineering. Therefore, throughout this 
book the author has put the main emphasis on transistor 
applications, though semiconductor physics is not touched 
upon. In all cases the transistors are reduced to a simplified 
but adequate twoport linear model. The subsequent analysis 
and synthesis of more elaborate electronic systems, such as 
feedback amplifiers and oscillators, are studied in terms of 
these mathematical models. The author hopes to show that 
numerous and sometimes complex network problems yield 
to the basic matrix methods. Much care has been devoted 
to the selection of rewarding "live" topics, right out of the 
design engineers' notebook. These are all treated in con-

* Superscript figures are to References on p.65. 
xiii 



xiv PREFACE 

siderable depth. Because of the fundamental character of the 
subject matter and the generalized form of presentation, it 
is believed tha t the book is reasonably free of obsolesence. 
Readers who are familiar with the author's previous book 
Basic Matrix Algebra and Transistor Circuits^10** will find 
this present volume as a logical extension and complement 
to the first one. 

The material has been divided into three parts and each 
can be treated as a set of self-contained monographs. Pa r t 
I covers the basic matrix theory of twoports and will be 
quite frequently referred to in the later parts. The mechanism 
of matrix and determinant operations is shown and explained 
in detail with applications to the study of twoport networks, 
both passive and active. The transfer characteristics and 
terminal impedances of these are derived in terms of the 
various matrix domains. Next, the elements of matrix syn
thesis are introduced and it is shown how some elaborate 
systems can be synthesized from the simple mathematical 
models. In conclusion, conversion of matrices is reviewed 
and it is demonstrated how these techniques may most effi
ciently be exploited. 

Par t I I is devoted to the concept of impedance transfor
mation and image matching in the different matrix domains. 
The practical application of this part is underscored by the 
generalized solution of a typical R F amplifier to antenna 
matching problem. 

Pa r t I I I is concerned with the analysis and synthesis of 
active networks. The mathematical model concepts of tran
sistors and vacuum tubes are freely applied to a broad range 
of problems with an emphasis on practical applications such 
as conventional amplifiers, single- and multi-stage transistor 
feedback amplifiers and oscillators. In order to gain a broader 
appreciation of the analytical process involved, a sort of 
"mathematical slow-motion camera" has been focused on 
essential algebraic manipulations. Some attention has also 
been devoted to the techniques of engineering approxima
tions. A whole set of approximate formulas have been derived 
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in this process and shown to be applicable to a large group 
of routine design problems. The important mathematical 
processing of matrix conversions have been carefully woven 
into the texture of this par t of the book. 

The student will find tha t , as a general rule, a step by step 
mathematical reasoning leads to the final definitions or equa
tions. Furthermore, the essential summaries are collated in 
a number of tables and these will be found also in the body 
of the text. 

In conclusion, there is a liberal selection of keyed problem 
sets in the Appendix. 

Historically, this book has evolved from direct research 
and development work involving the author. A substantial 
portion of the text has been written during his tenure as a 
group leader with the Canadian Marconi Company in Mont
real. Therefore the author is particularly indebted to K. C. 
M. Glegg, Chief Engineer, Commercial Products Division, 
for permission to publish material of latest vintage on tran
sistor feedback amplifiers, originally prepared as a Cana
dian Marconi Technical Report. I t is a t r ibute to the gene
rosity of the De Havilland Aircraft of Canada Limited tha t 
the manuscript of this book could be completed. The writer 
is most grateful to Dr. P . A. Lapp, Chief Engineer, and A. C. 
Stonell, Chief System Analyst, Special Products and Applied 
Research Division. Finally, a word of appreciation is due 
to the publishers of Electronic Engineering and J. Brit. IRE 
(now IERE) for granting permission to use material from 
the author 's recent papers in these publications. 

Toronto G. ZELINGER 



1. REVIEW OF THE BASIC 
MATHEMATICAL OPERATIONS 

WITH MATRICES AND 
DETERMINANTS 

(a) MATRICES AND DETERMINANTS; 
FUNDAMENTAL S I M I L A R I T I E S AND 

DIFFERENCES 

Determinants and matrices may be classified as types of 
mathematical shorthand. One may also broadly state tha t 
matrices have been created for the purpose of manipulating 
a system of simultaneous equations, while determinants are 
used to solve for any particular unknown. Both determinant 
and matrix methods make use of detached coefficients. The 
determinant is a function with a definite algebraic or nume
rical value which is not the case with the matrix. In the later 
parts of this section the particular and distinct characteristics 
of matrices will be studied in greater detail. However, some 
familiarity with elementary algebra of determinants is as
sumed. For those who wish a review, a selected list of refer
ences is included.* 

The fundamental similarities and differences of determi
nants and matrices may be conveniently demonstrated by 
considering a set of simultaneous equations: 

y1 = a11x1 + a12x2, (1.1) 

y<i = a2Xxx + a22x2, (1-2) 

where the x and y terms represent variables and the a terms 
represent constants. I t will be recalled tha t in the algebra of 
determinants the detached coefficients are written within 

* See page 65. 
3 
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two parallel bars : 

^ 2 1 ^22 
= An = determinant. (1.8) 

By definition, the determinant has a definite value which 
is obtained by cross-multiplication and subtraction of the 
diagonal terms: 

a±1 a12 

^21 ^22 

= (0ii#22 ~~ a i2 t t 2 l ) = Aa . (1.4) 

\/ \l 
When applying the elementary rules of the algebra of deter

minants, a numerical or algebraic solution of the simulta
neous eqns. (1.1) and (1.2) is possible. 

Solving for xlt 

Vl ^12 

x, = / \ (^1^22 - ^ 2 ^ 1 2 ) (1.5) 

Similarly, solving for x2, 

«n Vi 

Xn 

an y2 
/ \ (y^u-yi^i) (1.6) 

I t is apparent from eqns. (1.5) and (1.6) t h a t provided 
Aa ^ 0, the determinant has a definite value which is a 
function of its constituent elements. 

Reverting to the system of eqns. (1.1) and (1.2), if the 
detached a coefficients are enclosed within square brackets, 
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they will signify the matrix A: 

A = matrix. (1.7) 
#21 a22 J 

Similarly, the detached variables x and y are also writ ten 
in matrix notat ion: 

El- (1.8a) 
L#2j 

and 

(1.8b) L^J 
By the use of the notations of eqns. (1.7) to (1.8b) inclusive, 

eqns. (1.1) and (1.2) may be rewritten in matrix from: 

L^J L«2i a2J L̂ aJ (1.9) 
Y A X 

Equation (1.9) may be put in still more compact form: 

[Y] = [A][X]. (1.10) 

The matrices in eqns. (1.9) and (1.10) describe a system 
where the variables x and y are related by the a terms. 
Note, however, the distinct characteristic of matrices t ha t 
they describe a system completely and no " value' ' need be 
attached to them. 

Matrices in general obey the ordinary rules of algebra, 
but an important exception is the operation of multiplication. 
In this section those basic matrix operations will be intro
duced which are of importance in network problems within 
the scope of this text . 

(b) ADDITION AND SUBTRACTION 

Except for algebraic sign the addition and subtraction of 
matrices are essentially similar forms of operation. The sum 
of two matrices is found by adding their corresponding 
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elements. As an illustration, consider the matrices [A] and [B]: 

[A] 

[B] 

|_a21 a22j 

L&21 hi]' 
Now, by definition the sum of [A] + [B]: 

|"(<»u + l [̂ ]+[̂  = i-:'M i^tMl- (111) 
■&2l) (^22+&22)J 

Next consider the subtraction of the matrices [G] and [D], 
where 

[C] [ Cn C12 

C2l C22 J 

["^11-̂ 12"] 
|_a21 — a22 J 

Here, by definition the corresponding elements of [Z>] will be 
subtracted from [C]: 

r c i - r D i = P n C i a i_r r f i i " d i a i = n c u "" d i ^ (̂ 12+̂ 12)1 
LC21 C22j L^21~~^22J L(C21 — ^2 l ) (̂ 22"+" #22) J 

(1.12) 

The above results are completely general and the matrix 
elements may represent real or complex quantities. 

(c) MULTIPLICATION 

The technique of matrix multiplication is perhaps the most 
important tool for systematic study and solution of circuit 
problems. This will be extensively demonstrated in the later 
section of this book. 

I t is fortunate tha t both passive and active network prob
lems may be efficiently handled with the aid of the twoport 
network theory. In this domain, circuit characteristics may 
be completely described with a 2 X 2 parameter matrix. That 
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is a matrix with only two rows and two columns. I t will 
be shown tha t relatively simple operations will be required 
to solve the majority of practical network problems. Matrix 
multiplication will be frequently used. At first reading it may 
appear confusing, but matrix multiplication is not commu
tative. I t will be shown tha t [^4] [B] ^ [B] [A], In general, 
the multiplication of two matrices requires multiplying the 
row elements of the first matrix with the corresponding co
lumn elements of the second matrix and summing up the 
products. The sum of such products forms an element in the 
resulting product matrix. I t is then situated at the intersec
tion of the corresponding row and column. As an illustration 
let us take the matrix product of [^4][2?] = [G], Dealing with 
2 X 2 matrices, by definition 

[^][BJ-hl H x P " H = [Cl1 C»l. (1.18) 
La21 a 2 2 j L°21 °22J LC21 C22j 

Note tha t in this example the matrix [A] has as many 
columns as the number of rows in the matrix [B]. In fact 
this condition is prerequisite for matr ix multiplication. 

Let us start by multiplying the first row of the A matr ix 
with the first column of the B matrix. The sum of the pro
ducts must be equal to Cn as in eqn. (1.13). 

Now perform the actual multiplications and we find tha t 
the complete G matrix is made up from the elements as 
follows: 

0 i i = K A i + M>2i)> (1.14) 
c12 = (an612-fa12622), (1.15) 

c 2 i = ( ^ i & i i + 02 2&2i), ( 1 . 16 ) 
C22 = (a2l&12 + a22&22)- (1 -17) 

Thus, from eqns. (1.13) to (1.17) inclusive, 
C21 C22 

Van a12"| p n 612"1 ^ r K A i + ai2&2i) K A 2 + ^i2&22)"| 
La21 2̂2 J L621 &22j L(a21&ll + a2262l) («21&12 + ^hl) J 

°21 c 22 
(1.18) 
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Consider now the situation which is often encountered when, 
in the product matrix [^4][i?], the terms b12 and b22 are absent; 
then from eqn. (1.13) 

[A][B]Ja" H x P 1 1 ] . (1.19) 
La21 «22j L62lJ 

The product matrix in respect of the right-hand par t may be 
written down by inspection of eqn. (1.18). Note, however, 
tha t all terms which contain the b12 or b22 terms are now zero. 
Thus, from eqns. (1.18) and (1.19), 

^i i 

Yalx a12"l r&ii"j = RaiAi + aizMl 
La21 a2l\ L62lJ L(a2Al + «22&2l)J 

(1.20) 

At the outset of this paragraph it has been stated tha t in 
general [i?][^4] T* [ .̂][J3]> tha t is matrix multiplication is not 
a commutative process. This will be easily proved by revers
ing the left-hand terms in eqn. (1.18): 

f" hi hl\ T%1 «12~| = |"(6ll«ll + hl^ll) (&11«12 + 612«22)1 

L&21 622j La21 a 2 2 j L(621ttll + 622^2l) (&21«12 + hl^) A 
(1.21) 

By definition, two matrices are equal if each of their corres
ponding elements are equal. When comparing the corres
ponding elements on the right-hand side in eqns. (1.18) and 
(1.21), it will be apparent tha t they are not equal. 

Though matrix multiplication is not commutative, the as
sociative law holds. I t is permitted to split a multiple pro
duct in any desired manner. Consider the triple matrix pro
ducts 

ABC = [AB]C (1.22) 
or 

ABC = A[BC]. (1.23) 
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Note tha t in eqn. (1.22) the product AB is "postmultiplied" 
by G and in eqn. (1.23) the product BG is "premultiplied" 
by A. 

Multiplication by a constant. The multiplication of a matrix 
[A] by a scalar or constant quanti ty K is defined as follows : 

a21 tt22j L ^ a 2 1 ^ ^ 2 2 J 

Accordingly, a matrix is multiplied by a constant if each 
element of the matrix is multiplied by tha t constant. Note 
here the important difference between matrices and deter
minants. The determinant is multiplied by a constant if the 
elements of one row or one column are multiplied by tha t 
constant. 

(d) INVERSION 

Consider a set of equations: 

[A][B] = [C]. (1.25) 

When eqn. (1.25) is written out in expanded form, the mat
rices are identified as follows: 

[At=r°" 
La21 

" - G : 
|_C21 

» 2 2 j 

&12l 

&22_r 

?]■ 
622J 

(1.26) 

(1.27). 

(1.28) 

If it is required to solve eqn. (1.25) for [B], then one would 
be inclined to divide it through by [JT], tha t is [ 5 ] = [G]/[A], 
which is entirely wrong. 

Note tha t the operation of division in matrix algebra just 
does not exist. Equation (1.25) may be solved for [B] by 
"premultiplication" of both sides by the " inverse" of the 
matrix [^4]: 

[A)-i[A][B] = [A]-i[C]. (1.29) 
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By definition 
[A]-1[A]=l. 

Thus, from eqn. (1.29), 

[B] = [A]-i[C]. 

(1.30) 

(1.31) 

For further processing, eqn. (1.31) is written out in its expan
ded form: 

P" 6 "~LK ^"TxP11 H . (1.32) 
L^21 &22j La21 a 2 l J LC21 C22J 

At this stage for a complete solution of eqn. (1.32) an 
interpretation of the inverse matrix [ A]_1 would be required. 
However, for the time being the reader is asked to accept in 
good faith a definition of the inverse matrix. Later, in Chap
ter 3, the matrix inversion techniques of twoport mathema
tical models will be studied in greater depth. 

The inverse matrix of [A]'1 is defined by the following 
identities: 

A 
[A]' 

where 

and 

|~an a ^ l " 1
 = \ A A I lT a22 -a1 2~ | 

|_a12 #22 J I ̂ 12 ^22 ^L"~a2i a n J i i 2 

A A 

u u 

A = {a^a^-a^a^), 
A = determinant of matrix, 

12, A21 and ^422
 a r e "cofactors". 

(1.33) 

(1.34) 

By definition, the cofactor, or signed ''minor" of the deter
minant is the element, or group of elements which remain 
after the indicated row and column are deleted. Therefore 
the cofactors of eqn. (1.33) may be identified as follows: 

^ 1 1 — a 2 2 

*21 

^ 2 1 — 

A22 ~ #11 
*12 
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Now the procedure of the inversion of the matrix may be 
summarized: 

First: Replace each element by its cofactor. 
Second: Interchange rows and columns formed from co-

factors. 
Third: Divide each element by the determinant of the 

matrix. 



2. THE TERMINATED TWOPORT 
AND MATHEMATICAL MODELS 

T H E importance of correct mathematical formulation of elec
tronic circuit problems is well appreciated. I t is recognized as 
the cornerstone of every successful design effort. If one con
siders a moderately complex electronic system such as an 
impedance matching network, a filter, a feedback ampUfier 
or a transistor oscillator, one may end up with a formidable 
array of simultaneous equations if applying the classical 
methods of mathematical analysis. A familiarity with matrix 
algebra will reduce the mathematical drudgery substantially. 
This is because we are generally interested in finding the 
voltage or current transfer ratios between some designated 
pair of input and output ports. 

As our insight into the intricacies of matrix manipulations 
broadens, we will learn the techniques whereby complex elec
tronic systems or circuitry can be broken down quite easily 
into elementary twoport structures. Because of this funda
mental concept, the compact and rigorous matrix algebra is 
admirably suited for handling the mathematical work. There
fore the reader will find the study of this chapter highly 
rewarding. The most important feature of the twoport ap
proach is, tha t the complete formulation of network problems 
can be reduced to the mathematical model of a 2 X 2 matrix. 
I t will be shown tha t there are only a few systematic ways 
of interconnecting the elementary twoports. From the pos
sible six, only five are of particular interest and these will 
be studied in depth. 

If our main concern is restricted to the input and output 
terminal pairs, we can legitimately represent an arbitrary 
twoport network, passive or active, as a "black box". We may 

12 
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also assign to such a simple linear model a set of general
ized internal matrix parameters. Finally, the system con
cept is satisfied by adding generator and load terminations. 
If we apply basic principles of matrix algebra to this simple 
linear model, we can easily derive the transfer characteristics, 
input and output impedances in terms of the chosen para
meters matrices. By means of a rigorous step by step alge
braic process it will be shown how to obtain the desired trans
fer characteristics in each of the Z, Y, h, g and A BCD para
meters. The results will be tabulated in a handy form which 
lends itself to convenient reference. 

(a) THE TERMINATED TWOPORT NETWORK 
AND THE Z MATRIX 

We may look upon the most general form of a twoport 
network as a "black box" and define this simple linear model 
mathematically in terms of the Z parameter matrix. I t can 
be stipulated further t ha t this twoport model may contain 
active or passive elements. Figure 2.1 shows such a general-

'■ * 

+ 
Vi 

Z|| Z|2 

Z21 Z22 

«12 

+ 
I2 

FIG. 2.1. Generalized twoport—unterminated. 

ized linear model with the appropriate sign convention. The 
equilibrium equations for this twoport may be written in 
matrix form thus : 

L^J = U2i 22JUJ' (21) 

If now generator and load are added, then our twoport 
model can be designated either as an amplifier, or a filter or 
an impedance transformer, depending on the nature of inter-
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nal elements. A corresponding linear model will be of the 
form shown in the block diagram Fig. 2.2. 

This block diagram will be utilized for the purpose of 
deriving generalized and meaningful operating characteris
tics of our system. 

Generator 
Passive or active 

twoport zout 

F I G . 2.2. The terminated twoport. 

(i) Current transfer ratio 
On expanding the matrix (2.1) we have a pair of simul

taneous equations : 
V1 = Z11I1 + Z12I2, 
V2 = Z21I1-\-Z22I2i 

(2.2) 
(2.3) 

where the open-circuit Z parameters are defined as follows. 
From eqn. (2.2) 

z - Vl 
2i 

7 - F l 

/2=o]' 

h-o' 

Similarly, from eqn. 

Ll\ ~ -J-
£1 

z - v> 
^22 — ~T~ I2 

h=o 

/,=(> 

Input impedance. 

Reverse transfer impedance. 

(2.3) 

Forward transfer impedance. 

Output impedance. 
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We are interested in obtaining an expression for the cur
rent 12 through the load ZL in relation to the input current 
Ix. From the block diagram in Fig. 2.2, we have the equality: 

V2 = -I2ZL. (2.4) 

If we substitute for V2 into eqn. (2.3), rearrange terms, then 
we obtain from eqns. (2.2) and (2.4) a new system matrix: 

(Z22 + ZL 

Solving eqn. (2.5) for I1 with determinants: 
v1 z12 

Vx{Z22 + Zh) 

H = P" *■ 1R. (2.5) 

h = -
0 (Z22 + ZL) 

z 12 

^21 

ZnZ22 — Z12Z21 + ZnZL 
(2.6) 

(Z22 + ZL)| 
Note that Az is the determinant of the matrix of our ori

ginal twoport in Fig. 2.1. Consequently, eqn. (2.6) may be 
put into the compact form 

^(Za + Z J 
h AZ + Z1XZL 

Similarly, solving eqn. (2.5) for I2 

(2.7) 

h = 

Z n Vx 

Z21 0 

zn z12 
z21 (Z22 + i h) 

-vxz21 
ZnZ22 — Z12Z21 + ZnZL ' 

„ ' 

h = vxz2 

(2.8) 

(2.9) 
Jz + ZuZi. ' 

The current transfer ratio /2/^i *s obtained by dividing 
eqn. (2.9) by eqn. (2.7): 

r/v: ^\ ( A \ r/ r/_ \ 
(2.10) 

(2.11) 

h_\ -VXZ21 ] ( Az + 
h \Az + ZxxZh\\Vx{Z22 

i2 z21 
I\ Z22 + ZL 

Z1XZL 

+ ZL) 
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(ii) Voltage transfer ratio 

Reverting to eqn. (2.4), and by transposition, we find tha t 

/ . = 
ZT 

(2.12) 

Substituting the right-hand par t of Z12 for I2 in eqn. (2.9), 

zT 

V1Z; 21 
AZ + Z1±ZL ' 

^21^L 
V, Az + ZnZL 

(2.13) 

(2.14) 

(iii) Input impedance 

From eqn. (2.7), by transposition, we obtain 

(2.15) 

(iv) Output impedance 

Revert to the block diagram in Fig. 2.2 and note tha t 

F1 == -hZG. (2.16) 

Now substitute for Vx in eqn. (2.2) and obtain the system 
matrix which will contain the generator impedance ZG in 
series with Z n : 

-(Zn + ZG) Zv 

Z21 Z<> 

Solving eqn. (2.17) for I2 with determinants, 

(Zn + ZG) 0 I 

m-Tiy ara- <-
v21 2 | 

(ZH + ZQ) Z12 

Z2I Z22 

(2.18) 
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V2(Zn + Z0) 
Z\ 1#22 — Zl 2^21 + Z22ZG 

h = 

JUZJ22 — ^12^21" 
V 

V2(Zn + ZG) 
Az + Z22ZG 

By transposition 

V 
-y- — ^OUT 

2 y ^ Z + ^22^G 
Zn + Zc 

(2.19) 

(2.20) 

(2.21) 

Note tha t the results are completely general and applicable 
to either passive or active linear twoports with arbitrary 
load and generator terminations. 

(b )THE TERMINATED TWOPORT AND THE 
Y MATRIX 

In the most general form we can represent the terminated 
twoport in terms of admittance parameters as shown in Fig. 
2.3. We can define the unterminated centre portion of this 
model by the matrix equation as follows: 

Generator 
Active or passive 

twoport 

FIG. 2.3. The terminated twoport with Y parameters. 
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We can also easily find the physical interpretation of the 
short-circuit admittance parameters from eqn. (2.22): 

Y11 

Y12 

Y2i 

Y22 

= 

= 

= 

= 

h 
Pi 

v2 
h 
Fi 

h\ 
v2\ 

V2=0 

Fi=0 

V2=0 

Vi-0 

Input admittance. 

Reverse transfer admittance. 

Forward transfer admittance. 

Output admittance. 

(ii) Current transfer ratio 

With reference to Fig. 2.3, the current transfer ratio A1 is 
the ratio of the load and input currents. That is 

II AT = 
h 

If the generator is the only current source feeding I1 to the 
twoport network and associated load admittance, then the 
equilibrium equations of the system can be written down as 

h=YnV1+Y12V2, (2.23) 
0=Y21V1+(Y22+YL)V2. (2.24) 

Solve these equations simultaneously for V2 by determinants: 

V, 

11 

21 0 -Y21h 
- * l l ( ^ 2 2 + * L ) — -M2-F2I ^11-* 22 ~ -*12-*21 + -*11-*I 

(2.25) 

I t will be recognized tha t the terms {YXIY22- Y12Y21) repre
sent the determinant of the matrix. Thus 

\Y 11^22" ^12^21) ~ ^ 1 
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Therefore, by substituting into eqn. (2.25), 

Again, with reference to the block diagram in Fig. 2.3, 

v - A . 

(2.26) 

(2.27) 

where IL is the current through the load admittance YL. 
Thus, from eqns. (2.26) and 2(.27), we obtain the current 
transfer ratio: 

A - I I Y21YL 

Ar + TUTL 
(2.28) 

Note, that the negative sign arises from the adopted sign 
convention. 

(ii) Voltage transfer ratio 
Reverting to the equilibrium equations (2.23) and (2.24), 

and solving them for V1, 

I/, F , 
22 ■ v1 = 

1 x 1 2 

0 (Y22+YL) h(Y22+YL) 
Y11(Y22+YL)-712Y21 AT+Y117L 

By definition of the voltage transfer ratio, 

Av = 
Vi 

(2.29) 

(2.30) 

Hence, the ratio of eqns. (2.26) and (2.29) is 

A y = - 21 
Y2i+Y, 

(2.31) 
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(iii) Input impedance 

Here again the operating condition corresponds to I2 = 0, 
consequently the pair of equiUbrium equations (2.23) and 
(2.24) still hold. Reverting to eqn. (2.29) and noting tha t 
Z I N = V1/I1, by transposition 

(2.32) 

(iv) Output impedance 

With reference to the block diagram in Fig. 2.3 the condi
tion applies when I1 = 0. However, the source admit tance 
YG remains operative. If YL is disconnected across the output 
terminals, then the equilibrium equations of the system may 
be written, by inspection, 

0 = ( F 1 1 + F G ) 7 1 + F 1 1 F 2 , (2.33) 
I2=Y21V1+Y 

Solving simultaneously for V2, 

( F u + F c ) 0 

2 2 ^ 2 - (2.34) 

V,= 21 (Yn+YG)I2 

(Y n + Y G) Y22 — Y12 Y21 * H Y22 — Y12Y21 + YGY22 

(2.35) 
By definition ZQVT = V2/I2 thus, from eqn. (2.35), 

^OUT — 
Yu + Yr, 

AY-\- YGY22 
(2.36) 

(c) THE TERMINATED TWOPORT IN TERMS OF 
THE h PARAMETER MATRIX 

A particularly useful mathematical model for analytical 
work with transistors and feedback amplifiers is the h para
meter matrix. A terminated twoport with h matrix notation 
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Voltage 
generator Passive or active 

twoport 

2.4. F I G . The terminated twoport with h parameters. 

can be represented as shown in Fig. 2.4. If we take the unter-
minated "black box", the equilibrium equations are defined 
as follows: 

V1 = h11I1 + h12V29 (2.37) 
I2 = h21Ix + h22V2. (2.38) 

The physical interpretation of the parameters are, from eqn. 
(2.37), 

Vi hi - T" 

h - Z i 

; The dimensions of impedance. 
v2=o 

; The dimensionless constant of propor-
/ i = 0 tionality or the reverse- voltage trans

fer ratio. 

Similarly, from eqn. (2.38), 

h - A '21 
V2=0 

h - A ! 

" 2 
'22 

The dimensionless constant of propor
tionality or the forward- current trans
fer ratio. 

The dimensions of admittance. 
h = 0 

By separating the coefficients, we can rearrange eqns. (2.37) 
and (2.38) into matrix form: 

L^J = Ui vltaJ' (2'39) 
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(i) Voltage transfer ratio 

Reverting again to Fig. 2.4, but now connecting a load 
admittance YL as shown across the output terminals 3-4, 
we can easily verify that , 

h= ~V2YL. (2.40) 

Next, by rewriting the equilibrium equations (2.37) and (2.38), 
substituting eqn. (2.40) for I2 and transposing, we get 

V1 = h11I1 + h12V2, (2.41) 
0 = h21I1+(h22+YL)V2. (2.42) 

Solving these equations simultaneously for V2 by using deter
minants, 

h, 21 0 

v2 = 

\Ki 
A21 

A12 

(h22+YL) 
' 

-KiV1 

(2.43) 

(2.43a) 

Note tha t Ah — (hnh22 — h12h21), where Ah is the determinant 
of the unterminated twoport h matrix. 

Hence, we can put eqn. (2.43) into a more compact form, 

^21 V2= -V, 
Ah + hnYL 

(2.44) 

By definition of the voltage transfer ratio Av, then from eqn. 
(2.44) 

A -V* 
h 21 

A±hiYL 
(2.45) 

(ii) Current transfer ratio 

Reverting again to the terminated twoport in Fig. 2.4 and 
eqn. (2.40), we may replace YL by l/ZL and obtain 

V2= -I>Z 2"L- (2.46) 
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Substituting eqn. (2.46) for V2 in eqn. (2.38), 

I2 = h21I1-h22ZLI2. (2.47) 

By transposition: 

/ 2 ( 1 + A22^L) = * 2 I A - (2-48) 

The current transfer ratio Al is defined as /2 /A» 
thus from eqn. (2.48), 

A — _A — 21 

**- h i + h22zL 
(2.49) 

(iii) Input impedance 

Again reverting to the equilibrium equations (2.41) and 
(2.42), as before, with load impedance YL connected and 
solving these equations simultaneously for I± by applying 
determinants, 

h 

h = 

\V1 

0 

A21 

A 12 

(h22+YL)\ 

(hn+YL)\ 

(2.50) 

V1(h22+YL) 
"I1A22 ~ "12^21 + ^11Y L 

Rewriting eqn. (2.50a) by putt ing Ah = (h^h^ — h^h^) 

h22+YL 

(2.50a) 

h=v, A + hllLYL ' 
(2.51) 

We define the input impedance as Z[n = V1/I1. Therefore, 
from eqn. (2.51) by transposition and inversion, 

Z in 
Vi _ A + KYL 
h h2+YL 

(2.52) 
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(iv) Output impedance 

We now connect the generator across the input terminals 
1-2 and disconnect the load TL. We can rewrite the equili
brium equations (2.37) and (2.38) by substituting 

hence 
-IX2JG = h11I1-\-h11V2 

and 
12 = A21/1 + A22F2. 

By transposition of (2.54) the new set of equilibrium equa
tions become 

0=(h11 + ZG)I1 + h12V29 (2.56) 
72 = A21/1 + A22F2. (2.57) 

Next we solve eqns. (2.56) and (2.57) simultaneously for F 2 : 

(All + ^G 

(2.53) 

(2.54) 

(2.55) 

F 2 = 

0 

"21 
(hn + ZG) hr 

(2.58) 

*21 /c,22 

By cross-multiplication and subtraction, 

__ /2(AU + ZG) (2.58a) 
4 i + ^22^G 

Note tha t by definition, the output impedance Zont = F 2 / / 2 . 
Hence from eqn. (3.58a) by transposition; 

^out — ~^r- = 
F 2 _ (AU + ZG) 

^h + ^22^G 
(2.59) 

(d) THE TERMINATED TWOPORT IN TERMS 
OF THE g PARAMETER MATRIX 

Although it will be shown later tha t the g matrix is the 
inverse of the h matrix, it is a profitable exercise to analyse 
the terminated twoport in terms of the g parameters. Figure 
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Current 
generator Tin twoport ^out 

F I G . 2.5. Terminated twoport with g parameter matrices. 

2.5 shows the corresponding linear model with appropriate 
sign convention. 

We define the equilibrium equations for the unterminated 
"black box" as follows: 

Ii = 9iiV1 + g12l2, (2.60) 
^ 2 = 021^1 + 022*2. ( 2 . 6 1 ) 

We can obtain the mathematical interpretation of the g 
parameters by simple algebraic process: 

From eqn. (2.60) 

1 ; The dimensions of admittance. 
I ^2 = 0 

The dimensionless constant of 
proportionality, reverse- current 

0n = 

h 
012 = T" . 

^i=o transfer ratio. 

Similarly, from eqn. (2.61) 

The dimensionless constant of 
proportionality, the forward-
voltage transfer ratio. 

022 = ~y^ | » The dimensions of impedance. 

_ V2 
021 - p T " 

/ 2=o 

v 1 = o 

(i) Current transfer ratio 

With reference to Fig. 2.5, if load impedance ZL is connec
ted to the terminals 3-4 of our "black box" , we have across 
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the output port 
V2= -I2ZL. (2.62) 

Hence by substituting eqn. (2.62) into eqn. (2.61) for V2 and 
transposing, we obtain a new set of equilibrium equations: 

h = 9nYi + 012^2 • 

0 = 0 2 1 ^ 1 + (022 + ^ ) ^ 2 -

(2.63) 

(2.64) 

Solving eqns. (2.63) and (2.64) simultaneously for 72 by de
terminants, 

h = 
0n h 
021 0 

011 012 

021 (022 + £ L ) 

-A021 
(011022-012021 ) + 0 1 1 ^ L " 

An 

(2.65) 

Rewriting and transposing eqn. (2.65) yields the desired ex
pansion for current transfer rat io: 

^ _ ±2_ 021 
1 h Ag + gnZL 

(2.66) 

(ii) Voltage transfer ratio 

Reverting to eqn. (2.61) and noting tha t for the terminated 
condition 

F 9 
h ~ ZL> 

after substituting for 72 

By transposition 

^ 2 = 0 2 1 ^ 1 - 0 2 2 ^ - -

\1+9i} 92iV1 

(2.67) 

(2.68) 
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and finally 

A = — = ^21 
V Vx l + (g22IZL) 

Since YL = 1/ZL from eqn. (2.69) 

V2 Av=^ 021 
^ 1 1 + 0 2 2 ^ 

(2.69) 

(2.70) 

(iii) Input impedance 

Consider again tha t the load impedance ZL is connected 
across the output terminals 3-4. We again solve eqns. (2.63) 
and (2.64) simultaneously, but this t ime for V1: 

I h 012 
0 (<722 + 2 L ) | 

Vi-
011 012 

021 (022 + ^ L ) 

By cross-multiplication and subtraction, 

A(022 + 2 L ) 
^ 1 = 

Ag + gil%L 
Dividing by Ix gives 

^ i n = - T F— = ^in 
Fx __ 022 + ZL 

h dg + gnZL 

(2.71) 

(2.71a) 

(2.72) 

(iv) Output impedance 

If in Fig. 2.5 we connect our generator across the input 
terminals 1-2 and remove the load from terminals 3-4, we 
have for the input current Iv 

h = V1Yl (2.73) 
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Substitute now for I±, into eqn. (2.60): 
-V1YG = g11V1 + g12I2. (2.74) 

From eqns. (2.74) and (2.61) we obtain a new set of equilib
rium equations: 

0 = ( ^ u + l r
G ) F 1 + Sr1272, 

^ 2 = ^ 2 1 ^ 1 + ^22^2-
Solve eqns. (2.75) and (2.76) simultaneously for 72: 

toll+^G) 0 
021 V* 

* 2 = \(gn+YG) g12\ 
ffn 0221 

By transposition and inversion of eqn. (2.77), 

VZ(9U+YG) 

Zt out 
V2 = Ag + g22YG 

h gn+Yo 

(2.75) 
(2.76) 

(2.77) 

(2.78) 

(e) THE TERMINATED TWOPOBT AND THE 
TRANSMISSION MATRIX 

When manipulating our linear, terminated twoports in 
the preceeding chapters, we have, in fact practised impli
citly some of the basic techniques of matrix synthesis. Our 
study of the transmission, or ABCD matrix, will offer even 
a better opportunity to gain skill in synthesizing mathema
tical models. Therefore, it will be convenient to study the 
terminal properties of a twoport system in different sequence. 

(i) Input impedance 

Let us consider separately our "black box" in terms of 
the ABCD matrix (as shown in Fig. 2.6). 

The pertinent equilibrium equations are defined as follows: 
V1= AV2+BI2, (2.79) 
/ 1 = C F 2 + i ) / 2 . (2.80) 
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I, ^ , I2 , 
—*~ 

v, 
A 

C 

B 

D 

+ 
v2 

FIG. 2.6. Open-circuited twoport with ABOD parameter matrices. 

The physical interpretation of the parameters are ob
tained from eqn. (2.79): 

The dimensionless constant of 
A 

B = 

V1 

Vi 

; proportionality, reverse- voltage 
/2==0 transfer ratio. 

v2=o 
; The dimensions of impedance. 

Similarly, from eqn. (2.80): 

c = 
/2=o 

v2=o 

The dimensions of admittance. 

The dimensionless constant of 
proportionality, the reverse-
current transfer ratio. 

•Vout 

II 
0 I 

v, 
u 2 ■■ 

—► 

1 
o 

> 

O
 

CD
 

1 
1 

Twoport 
network 

1 
I 

3A 

A 

\ 

i v ! 
— ..._ n' 2 . A , L±L-J ° 

v2 

. —O 
A' 

/ 
Load 

impedance 

F I G . 2.7. The load-terminated twoport with A BCD parameter 
matrices. 

Adding a load impedance ZL by cascading as shown in Fig. 
2.7, but leaving terminals 3'-4' open-circuited, we can now 
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relate the input and output variables by the matrix product: 

Input Twoport Load Output Twoport Load 
'black box" 

By multiplying out the ABCD twoport and load impedance 
matrices, we obtain from eqn. (2.81) 

|_/J {c {OZL + D)\\_h\ 
Next, by performing the remaining multiplication on the 
right-hand side, we obtain a set of equilibrium equations 
with terminals 3 ' -4 ' still open-circuited: 

/ 1 = ( F 2 + (CZL + Z>)/2. 

(2.83) 

(2.84) 

If we now short- circuit terminals 3 ' -4 ' ; and put V2 = 0, 
the ratio of eqns. (2.83) and (2.84) will yield an expression 
for the input impedance. 

Hence 

7 - F l 

An — -j- v2=o 

AZL+B 
CZL + D 

(2.85) 

(ii) Output impedance 

We can synthesize a mathematical model by cascading the 
generator and the original ABCD twoport as shown in Fig. 
(2.8). Since we are now concerned with the output charac
teristics of our system, the assumed direction of current 
flow has been reversed. Consequently, the input and output 
quantit ies are now related by the inverse of the transmission 
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. 1 7r I 

9v, 

Generator 

1 

2 

A B 

C D 

\ . v / 
Twoport network 7 

3 + 

4 -

F I G . 2.8. Generator side- terminated twoport with reversed 
current flow. 

m a t r i x . 
rD 
\A 

\c 

B-\ 
A 
A\ 
A\ 

mtxwti •»•> 
Output Inverse Generator Input 

of A BOD impedance 
matrix 

where, by definition, we have 
A = (AD— BG); The determinant of the unterminated 

twoport matrix. 
Performing the triple matrix multiplication on the right-

hand side of eqn. (2.86), we obtain a new pair of equilibrium 
equations namely 

DZG+B P . = ? F 1 + h 
and 

0 CZG+A 

(2.87) 

(2.88) 

As a next step, we take the ratio of eqns. (2.87) and (2.88) 
and by putting V1 = 0, the desired expression for the output 
impedance will be obtained: 

(2.89) ^out — -J-
2 

DZG + B 1 
v,-o CZG+A\ 
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(iii) Current transfer ratio 

Reverting now to the linear model shown in Fig. 2.7 and 
short- circuiting the primed terminals 3'-4', then V2 = 0. 
Consequently, eqn. (2.84) yields directly the current transfer 
ratio: 

(2.90) 

(iv) Voltage transfer ratio 

In deriving an expression for the voltage transfer ratio, it 
is convenient to represent the linear twoport with an admit
tance YL as the load as shown in Fig. 2.9. We obtain the 

D l 
+ 

v." 

2 

A B 

C D 

\ / 

3 0 

4° 
s 

H. h 

T 7 
U 

_ y ' 

FIG. 
Twoport network Load admittance 

2.9. The load admittance terminated twoport with A BCD 
parameter matrices. 

(2.91) 

overall transmission matrix of the cascaded structures by 
multiplication of the parameter matrices: 

YA BIT I Q-\MA + BYL) + B1 
\C DJlYL lj UC+DYL) + D[ 

With reference to Fig. 2.9 and the above matrix product, the 
system equilibrium equation may be written down as 

-(A+BYL) 
_(C +DYL) 

"Expanding the matrix product on the right- hand side, we 
obtain a new set of equilibrium equations: 

Vl={A+BYL)Vi+BI2, (2.93) 
/ ^ ( C + D F J F j + />/,. (2.94) 

fF'l = [( i + ̂  B1\\V>\ (2.92) 
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If we now put I2 — 0, then eqn. (2.93) will yield the desired 
expansion for voltage transfer ratio. 

Thus from eqn. (2.93) by transposition, 

(2.95) 

written 

4, _ F * 
V ~ ?i 

1 

/f.0" A + B Y L 1 

Ay 
ZL 

AZL+B 
(2.96) 

T A B L E I . T H E T E R M I N A L P R O P E R T I E S I N T E R M S O F T H E P A R A M E T E R S 
M A T R I X 

Definitions: 

z0 = z,= I V 
D e t e r m i n a n t s of matr ices : 

^z ~ Z\\Z22~ Z\2Z2\i 

dy = yuy22-yi2y2i, 
Ah = hnh22-h12h2l, 
Ag = 9ii922-9i293i' 

y 

h 

9 

AB 
CD 

Av 

Z2lZ>L 

A. + tnZz 

- 1 / 2 1 

y 22 +YL 

-hi 
hnYL + Ah 

921 

1+022*^ 

ZL 
AZL+B 

A< 

« » l 

2̂2 + %L 

-y2iYL 

Ay+ynYL 

-h2lYL 

h22 + YL 

021 
At + 9n%L 

1 
CZL + D 

Zo 

Az + z22Zg 

*n + Z, 

yu+Yg 

Ay+y22Yg 

hn + Z, 
Ah + h22Zg 

Ag + 922Yg 

9n + Yg 

DZ0+B 
CZG+A 

Zi 

A, + zuZL 

*22 + ZL 

y22+YL 

Ay+ynYL 

dh + hnYL 

h22 + YL 

922+Z L 

^g+9nZL 

AZL + B 
CZL+D 

By definition Y L == l/ZL' therefore eqn. (2.95) can be re



3. INTERRELATIONS AND 
CONVERSION OF MATRICES 

W E HAVE seen in the preceding chapter t ha t a twoport 
network can be described by at least five different systems 
of matrix parameters. These systems are generated essen
tially by permutating the relative positions of dependent 
and independent variables in the equilibrium equations. In
tuitively, one would be inclined to believe tha t these diffe
rent modes of network representations should be quite iden
tical. If so, then one may ask the legitimate question as, to 
what practical use can thus be of such a multiplicity of sys
tems. I t will be shown that , indeed, we can express an arbi
t rary system of matrices in terms of any of the other four 
parameter matrices. As to the practical utility of the con
version, inversion or transformation of matrices gives the 
following results: 

(a) The solution for the unknown quantity is obtained by 
algebraic inversion. 

(b) Simplified mathematical models of complex electronic 
systems. 

(c) Synthesis of complex electronic systems from elemen
tary linear twoports. 

All the above aspects of matrix interrelations will be stu
died here and in the chapters to follow. The inversion of the 
Z into Y matrix and the g into h matrix will be treated in 
detail. In both cases it will be shown tha t the inversion yields 
the solution of a pair of simultaneous equations for the un
known quantity. With similar detailed approach, the trans
formation of the Y and h matrices into the A BCD domain 
will be derived. 

34 
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We will be able to appreciate the full practical utility of 
these transformation techniques when the results applied to 
the analysis and synthesis of feedback amplifiers and oscil
lators in Pa r t I I I are studied. A tabulated summary of 
matrix interrelations will be found in this chapter, the con
tents of which will be referred to quite frequently. 

(a) INVERSION OF THE Z MATRIX INTO Y MATRIX 

In Chapter 2 we have already defined the Z matrix of a 
twoport, which, for easy reference, is repeated here: 

ra-E ata- -
When expanding the matrix (3.1), we obtain a pair of equi
librium equations with Ix and I2 as the unknown quantities: 

V1 = ^11^1 + ^12^2^ 

V2 = Z2il± + ^22^2 • 

(3.2) 

(3.3) 

We may wish to describe the same terminal conditions of a 
particular twoport, but in terms of Ix and I2 as the known 
variables. This can be easily accomplished by solving eqns. 
(3.2) and (3.3) simultaneously for I± and I2. 

Applying determinants and solving for Ix, 

h = 
Vi -'12 

v22 (3.4) 

Similarly, solving eqns. (3.2) and (3.3) for I2, 

Z21 

v1 
v2 A, 

— n V 2 1 V (3.5) 

Note, t h a t eqns. (3.4) and (3.5) are essentially containing 
all the coefficients with the dimensions of admittance. 
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Rearranging terms and putting these new equations into 
matrix form, we obtain 

ii 

I A 

z, 

z, 
JZ -I 

\ v i 

i T 2 J 

(3.6) 

We can now identify each term in this matrix as an admit
tance parameter in terms of impedances, as follows; 

Fn = 

Ya = 

Yti = 

^ 22 — 

^22 

z12 

Z%\. 
Az 

Az' 

Thus, eqn. (3.6) indeed represents a Y matrix in terms of 
the original Z parameters. 

(b) INVERSION OF THE g MATRIX INTO 
h MATRIX 

Consider the mathematical model of a twoport in terms 
of the g matrix parameters; 

[Mr* fair".]. ,„, 
LF2j L^i 0taJL7«J 

In expanding this matrix, we obtain a pair of equilibrium 
equations with Ix and V2 as the dependent variables; 

v2 = 9tivi + 9nh-

(3.8) 

(3.9) 
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The solution of these equations for Vx and I2 corresponds 
to the algebraic inversion of the g matrix in eqn. (3.7). By 
applying determinants, we proceed now to solve, simulta
neously, eqns. (3.8) and (3.9): 

h 
P i = 

F , 
012 

022 
Jg 

_ 022 T 012 T 7 

^g ^g 
(3.10) 

Similarly, the solution for 72 is 

10ii Ii 

h = 1021 
A 2 

^9 

021 (3.11) 

Rearranging eqns. (3.10) and (3.11) into matrix form: 

Vi 
£22 

(kl 

012 

'4, 
9u_ 
Ag\ 

Ii 
(3.12) 

Here we recognize from positions of the variables t ha t the 
coefficients must have the dimensions of the h parameters 
expressed in terms of the original g matrix. Accordingly, the 
elements in the matrix (3.12) may be now identified as fol
lows: 

h = ^ 11 - A ' 

Ki 

A2I 

"22 

= 

= 

= 

012 

4 
021 

4r 
0 i i 

From a closer look at the last two exercises of matrix in
version, it will be now quite apparent tha t the process of 
matrix inversion has been essentially a solution of a set of 
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equilibrium equations. Therefore, for the mathematical 
model of a twoport, the algebraic manipulation of matrix 
inversion can be essentially simplified into the following 
three steps; 

1. Interchange the Zn and Z22 terms (gn and g22 terms). 
2. Change the algebraic signs of the remaining terms. 
3. Divide each element with the determinant of the ori

ginal matrix. 

(c) CONVERSION OF THE Y MATRIX INTO 
ABOD MATRIX 

The usefulness of this type of conversion is often apparent 
when one desires to cascade twoport networks which were 
originally defined by admittance parameters. In the usual 
twoport matrix notation and in terms of the Y parameters, 
we have then 

Multiplying out the right-hand matrices, we obtain a pair of 
equilibrium equations: 

h =YnV1+ Y12V2f (3.14) 

7 2 = Y21V±+Y22V2. (3.15) 

In accordance with the constraints of the A BCD matrix, 
we wish to manipulate eqns. (3.14) and (3.15) in such a 
manner tha t the dependent variables V± and Ix will appear 
on the left side only. This can be accomplished in a few 
algebraic steps as follows. 

Solve eqns. (3.14) and (3.15) simultaneously, first for Vx: 

*2 Y22 F i = ^ _ ^ = F ^ 7 i _ ^ / 2 _ ( 3 . 1 6 ) 
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Similarly, solve eqns. (3.14) and (3.15) for V2: 

F 2 = 

Y11 h 
-*21 *2 _ n T 2* T 

Ay dy 2 Ay 

Next, substitute eqn. (3.16) for V1 into eqn. (3.14): 

Expand: 
AY 

^ l l * 22 T -*11-*12 T \V T/ 11 A 12~T * VL* 

/i^nl^/r^M + V, 

h Ay X Ay 

Transpose the Ix terms to the left side: 

^ 1 1 * 1 2 

12 ' 2 -

h 1 - * l l - * 2 2 ( / 2+r1 2F 1 2 ' 2* 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Divide both sides by { l - ( 7 n r 2 2 ) / l y } : 

h 
(3.21) 

Expand separately the denominators in the brackets: 

1 1 * 22 ~~ M 1 2 * 21 ~~ * 1 1 * 2 2 « ( 3 . 2 2 ) 

4-VJ2=-V21. (3-23) 
Hence 

^ 7 — * 1 1 * 22 — -*11 * 22 — -* 12 -* 2 

Substitute now the right-hand par t of eqn. (3.23) into the 
denominators of eqn. (3.21) and rearrange te rms: 

h ~ ~ Y„Y 1 2 * 21 

Cancel where applicable: 

Ay* 1 2 T / - * 1 1 * 1 2 r 
2 • xr V 2 * 

■* 1 9 . i 9 

(3.24) 
12 x 21 

(3.25) 
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Use now eqn. (3.25) and substitute for Ix in eqn. (3.16) 

Av TT F 1 1 T ) Y T7 _ ^ 2 2 
1 1 - ~A~ 

21 JL 21 

12 

Expand and rearrange terms: 

J- 00. -r-r 1 J- 11 •* ' 

21 
Vi = Y^v2 + \^K^-^U,, JYY21 

Y 
Ay 

(3.26) 

(3.27) 

Multiply and divide the second term in the bracket by Y21: 

Vi 
-* 22 y , \ "* 11 * 22 ~ ± 1 2 ± 21 

21 zJvF y^ 21 
/2- (3.28) 

By definition, AY = (Y^Y^-Y^Y^). 
Hence eqn. (3.28) simplifies to the final form: 

V,= ^V2 + ~ I 2 
21 x 21 

(3.29) 

Now, from eqns. (3.25) and (3.29) we can construct the ABCD 
matrix in terms of the original Y parameters: 

v1 
22 

F „ 

21 

21 

21 J 

v2 
(3.30) 

The elements in the matrix (3.30) may be identified as fol
lows: 
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(d) CONVERSION OF THE h MATRIX INTO 
A BCD MATRIX 

Revert now to eqns. (2.37) and (2.38) for a twoport in 
terms of the h parameters. If we choose to reverse the as
sumed current flow of 72, then we may rewrite the equilibrium 
equations with a change in sign of I2 only; 

V1 = h11I1 + h12V29 (3.31) 
-I2 = h21I1^rh22V2. (3.32) 

I t is now further required tha t eqns. (3.31) and (3.32) be 
transformed. The variables will be then be related as dictated 
by the structure of the transmission matrix. 

From eqn. (3.32) by algebraic transposition, 

-h21I1 = I2 + h22V2, 

7 - _ J L / ^ 2 y 
1 _ h 2 h 2* 

" 2 1 " 2 1 
Substituting now from eqn. (3.34) for I1 into eqn. 

F^*"(-^7»-feF»)+^F-
1 1 — — , ■* 2 i y 2 + "12 ' 2 • 

(3.33) 

(3.34) 

(3.31), 

(3.35) 

(3.36) 
"21 "21 

Rearranging terms, 

'.-(^-^'.-fc'.. p") 
F j = >A-*iAi F j _ * i i 7 j ( 3 3 8 ) 

/ l 2 1 ft21 

Multiplying the numerator and denominator of the first 
term on the right-hand side by — 1, 

F i = fhnh22-h12h21\ y2_hi h (3 3 9 ) 
\ ^21 / ^21 

I t will now be recognized tha t the numerator of the first 
term represents the determinant of the h matrix, tha t is 

(hnh22-h12h21) = Ah. (3.40) 
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The identity of eqn. (3.40) enables us to rewrite eqn. (3.39) 
in a more compact form: 

v^-TLv*-¥1*' (341) 
n21 n21 Note that the coefficients in eqns. (3.34) and (3.41) cor

respond to the elements A, B, C and D in the transmission 
matrix. Rewriting eqns. (3.34) and (3.41) as a pair of equi
librium equations, 

A B 
V,= -^V2-^I2, (3.42) 

/ 1 = = * » F *_/, . (3.43) 
n21 n21 

Expressing eqns. (3.42) and (3.43) in matrix form: 

From eqns. (3.42), (3.43) and (3.44), it is now evident that 
the A BCD matrix has been defined in terms of the hybrid 
or h parameters: 

P *\Sl\A> H . (3.45) 
\_C D\ hi\hZ2 l j 

The elements in eqn. (3.45) are identified as follows: 

·(3.44)
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(e) TABLE OF MATRIX CONVERSIONS, 
INTRODUCTORY COMMENTS 

We have seen that the conversion of matrices, although 
quite straight forward, is a somewhat lengthy algebraic ope
ration. A systematic permutation of the five different systems 
so far studied will yield twenty matrix interrelations. These 
have been summarized in Table II. Most readers will be fa
miliar with the use of tables for Laplace transformations or 
tables of trigonometric interrelations. Essentially, the use of 
tables for obtaining matrix interrelations is also quite simple 
and warmly recommended once the student has acquired the 
proper comprehension of algebraic manipulations leading to 
them. By referring to Table II, each of the intersections of a 
vertical column and a horizontal row yield the desired trans
form pair. 
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4. ELEMENTS OF MATRIX 
SYNTHESIS AND NETWORK MODELS 

IN THIS chapter some of the most useful aspects of matrix 
algebra will be studied, namely, the orderly process of mat
rix synthesis of complex networks and systems, which are 
made up from elementary twoport building blocks. The stu
dent will be introduced to this new field by the way of t he 
simplest possible network configurations, such as a single 
series impedance and a single shunt admittance element. 
Next, the more elaborate two and three element models will 
be treated, such as the familiar L, T and n networks. Finally, 
with an emphasis on the system concept, some fundamental 
techniques of twoport interconnections will be demonstrated. 

The step-by-step worked-out examples will cover the 
ground of typical synthesis topics in terms of all five matrix 
domains. This sort of mathematical processing will enable 
the student to appreciate t ha t the synthesis of a particular 
type of network will be most conveniently handled by one 
particular matrix form. I t will then become quite obvious 
why the series connection of impedances is handled with the 
Z parameter matrix, the parallel connections with the Y 
matrix and the cascading of twoports with the A BCD or 
transmission matrix, etc. 

(a) THE SINGLE ELEMENT TWOPORT 

Let us consider the simplest possible building block of 
any electronic system, namely tha t of a single impedance or 
admittance element. We can represent these elementary two-
ports as shown in Figs. 4.1a and 4.1b. Bearing in mind the 
adopted sign convention, we can easily obtain meaningful 

45 
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1 

+ 
v, 

a i_ -

l v, L 1 Y| I 

_ _ i 

Mh 

-f 
v2 

F I G . 4.1a,b. Single e lement twopor t s . 

expressions for the equilibrium equations in terms of the 
Y and Z parameters. 

From Fig. 4.1a, we can write down, by inspection, the 
nodal equations: 

h=YiVi-YiV2, (4.1) 

I2= -YtVi+Y^z. (4.2) 

From the detached coefficients we can now form the Y para
meter matrix of the single element Yx: 

[Y] 
l-Yx Yi\ 

(4.3) 

where the element positions in the array are defined as fol
lows: 

-*11 = ^22 ~ -*1 

and Y12=Y21= -Y,. 

With similar reasoning for Fig. 4.1b, the equilibrium loop 
equations involving the impedance Z3 are 

V^Z^ + ZJz, (4.4) 

V2 = Z3I1 + ZSI2. (4.5) 

Here the detached coefficients will yield the Z parameter 
matr ix: 

[Z] U> z3y (4.6) 

where the elements in the array are identified as follows: 

v12 ->21 Z22 = Zz. 
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(b) THE TWO-ELEMENT L NETWORK IN TERMS 
OF Z AND Y PARAMETERS 

Combining a series and a shunt impedance element will 
yield the L network as shown in Pig. 4.2. This simple linear 
model may represent a resistive voltage- divider, an impe-

[l ^ 

+ 
v, 

1 

1 2, 1 L£LJ 

zj 

i«*2 

! + 
| v2 

FIG. 4.2. The series input L network with Z parameters. 

dance transformer or a low-pass filter. By inspection, we 
can easily write down a pair of loop equations in terms of 
the Z parameters: 

V^^ + ZJh + ZJi, (4.7) 
F a = Z 8 / 1 + Z872. (4.8) 

From the detached coefficients, the Z parameter matrix can 
now be formed: 

-(z±+z3) z; [Z] 

where 

nz1+zs) z3i (4.9) 

^11 = (^1 + ^ 3 ) ' 

z 12 ' Z21 — Z2z '■ z*. 
If we choose to synthesize an L network with shunt in
put elements, the corresponding linear model is obtained as 
shown in Fig. 4.3. I t will be easily seen tha t the appropriate 

+ 
Vi 

x—QD_ 
+ 
v2 

FIG. 4.3. The series output L network with Z parameters. 
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Z parameter matrix must be of the form 

m - E «+%>]• <4io> 
where the element positions may be identified accordingly: 

Zn — Z12 = Z21 = Zs 

and Z22 = (Z2 + Z3). 

Consider next the L networks in terms of the admittance or 
Y parameters as shown in Figs. 4.4a and 4.4b. 

F I G . 4.4a. L network with shunt admittance output -Y 
parameter notation. 

+ 

I 

-00- + 
v2 

FIG. 4.4b. L network with shunt admittance input — Y 
parameter notation. 

The nodal equilibrium equations with respect to the linear 
model in Fig. 4.4a are 

^ r . F x - F . F a , (4.11) 

/ 2 = ~YSV1 + (Y2 + YS)V2. (4.12) 

The detached coefficients in eqns. (4.11) and (4.12) will make 
up the elements of the Y parameter matrix: 

m~[-rY, ir'Jhl (413) 
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where we can identify the elements as 

Y12 = Y21 - r » 
Y22 = (Y2+Y3). 

With similar reasoning for the twoport model in Fig. 4.4b, 
we obtain the Y matrix: 

The elements here are identified as 

[Y] 
T (Y1+Y3)-Y31 
L ~~ ^ 3 ^ 3 J 

Yn = (Y1+Y3), 
-*i2 = Y2i = — Y%, 
Y 22 = Y3. 

(4.14) 

(c) THE T H R E E - E L E M E N T N E T W O R K IN TERMS 
OF Z AND Y P A R A M E T E R S 

It is well known that a large class of practical impedance 
transformers and filter networks can be generalized as a T 
or n structure. The appropriate linear models are shown in 
Figs. 4.5a and 4.5b respectively. If we now revert to Fig. 

FIG. 4.5a. Twoport T network with impedance parameters. 

+ 
Vi 

+ 
v2 

—o 

FIG. 4.5b. Twoport n network with admittance parameters. 
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4.3 and the matrix (4.10), one can easily synthesize the T 
structure by simply adding an impedance branch Zx to the 
element ZX1. Thus from eqn. (4.10) and Fig. 4.5a, the Z 
matrix of the T network is obtained: 

,„, RZ. + Z.) Z, I , , , . . 
[ Z l r =L «, ft+A)J- <4I5) 

where, by definition of the elements in the array, 

Zn = (Z1 + Z3)i 

z12 = z21 = z s , 
Z22 = (Z2 + Z3). 

If a similar t reatment is applied to the n network, we can 
obtain a mathematical model in terms of the T parameters. 
This time we revert to Fig. 4.4b and the corresponding mat
rix (4.14). By adding the admittance element Y2 to the Y22 

position, we have in fact synthesized the mathematical mo
del of our n network: 

The elements in the array are now identified as follows: 

Y11=(Y1+Y3), 

raa = (Fa+r8). 

(d) THE ABCD OR T R A N S M I S S I O N M A T R I X 
A P P L I E D TO THE S Y N T H E S I S OF SIMPLE 

NETWORK MODELS 

A closer look at the linear models of L, T or n networks 
will suggest the definition tha t these are synthesized by 
cascading of series impedances and shunt admittances. By 
way of rather complete mathematical proof, it has been 
shown tha t the transmission matrix of cascaded networks 
is obtained by the matrix product of the constituent ABCD 
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matrices/8 ' 1 0 ) Here we shall review the basic techniques of 
linear network manipulations with the A BCD matrix as 
the vehicle. 

(i) The L network with series input element 

Consider a simple low-pass filter section or a matching 
network which is made up from a series impedance Zx and 
a shunt admittance T as shown in Fig. 4.6. Note t ha t we 

+ 
v, 

Z2 

- Q O -~f^ Y V2 

T <-. 
F I G . 4.6. Twoport network of cascaded Z and Y elements. 

are dealing with generalized parameters. The physical impe
dance may consist of several series- connected resistive and 
reactive components. Similarly, the admittance may repre
sent the sum of several parallel- connected conductances and 
susceptances. 

The behaviour of the composite network is completely 
defined by the matrix product of the transmission matrices 
of the series Z and parallel Y elements: 

[i QAoJftiZjft- (41,) 
Transmission Transmission 
matrix of Zx matrix of Y 

Substituting the appropriate parameter matrices into the 
right-hand par t of eqn. (4.17) 

[c £L = C ?Mr i]' <"" 
Note tha t the elementary transmission matrices are in the 

same order as the elements in the composite network. 
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Performing now the matrix multiplication on the right-
hand side of eqn. (4.18), 

H A B 
ri z{\ ri on Ri+ZiF) zi 

Using now the matrix (4.19), the equilibrium equation with 
respect of the complete cascaded network in Fig. 4.6 may 
be written down in a compact form: 

A B 
VV{\ \~(7+Z^Y) Zl rPY| 
UJ-L i ijtil ,4•20, 

^c ID 

(ii) The L network with shunt input element 

If the network in Fig. 4.6 is turned around, the shunt ele
ment will be transferred to the input side as shown in Pig. 4.7. 

With similar reasoning as with Fig. 4.6 the transmission 
matrix of this composite network will be also synthesized 
from the elementary transmission matrices. 

■UL 
l2„ 

Jo 
+ 

F I G . 4.7. Twoport network of cascaded Y and Z elements. 

Again cascade the transmission matrices in the same order 
as the elements in the composite network shown in Fig. 4.7. 

C D 

(4.19)

(4.21)
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(iii) The T network 

The transmission matrix of a T network as shown in Pig. 
4.8 may be easily constructed from the elementary building 
blocks of series impedances Zx and Z2 and a parallel admit
tance element Y. 

+ 
v. 
T2_ 

-m—t—nn-
l 2 t 

v2 

FIG. 4.8. The T network. 

Cascading the elementary transmission matrices in the 
same order as the physical elements in the T network, the 
transmission matrix of the composite network will be obtain
ed from the product of the elementary matrices: 

[o flL„o,r[^'M£j]x[ij} (4-22) 
Series Zx Parallel Y Series Z2 

In the previous paragraph we have seen that the matrix 
product of Y and Z2 elements is of the form defined by eqn. 
(4.21). Therefore, computational effort may be saved by sub
stituting the right-hand part of eqn. (4.21) for the YZ2 pro
duct into eqn. (4.22): 

[C D_|rnetwork
 = | _ 0 l _ | X | _ r (1+FZ, )J" ( 4 ' 2 3 ) 

Performing now the remaining operation of multiplication 
on eqn. (4.23), the transmission matrix of the T network is 
obtained: 

A B 

VA BI n i + r z j (Z1+Z2+YZ1Z2)1 
IC Z»Jrnetwork |_ ? (l + YZ2) J '

 * ' * ' 

D 
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(iv) The n network 
The transmission matrix of a n network is also derived 

from the elementary shunt and series elements. It is done in 
a similar fashion as it has been shown for the T network. 
Reverting to Fig. 4.2 and eqn. (4.19). When adding a second 
Y element across terminals 1-2, a it network will be formed 

+ 
v, 

-co-
0 

l2» 

Jo 
+ 
v2 

F I G . 4.9. The n ne twork . 

as shown in Fig. 4.9. The transmission matrix of this network 
is found by successive multiplication of the component ele
mentary matrices: 

Thus from Fig. 4.9 
VA B-\ pi oi n z-i r i on 
\_C ^ n e t w o r k L ^ l U LO l J [j2 1 J ' 

Note, that, the product of the last two terms on the right-
hand side of this equation has been already defined by eqn. 
(4.19). 

Hence, by substituting eqn. (4.19) into eqn. (4.24), 
+ZY2) zr 

Performing now the remaining multiplication on the right-
hand side of eqn. (4.25) the transmission matrix of the n 
network will be obtained: 

A B 

[_C -DJjt network | _ ^ 1 l J L ^ 2 l J 

\_C D Jar network L ( ^ l 

(1 + ZY2) Z 
+ Y2 + ZY1Y2) (l + ZY J-

0 D 
(4.26) 

(4.24)

(4.25)
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(e) TWOPORT INTERCONNECTIONS AND 
SYNTHESIS OF GENERALIZED 

MATHEMATICAL MODELS 

In progressing so far, the student has already acquired a 
fair amount of working experience in analysing and synthe
sizing some simple twoport models from elementary building 
blocks. There is, however, one more area to be explored be
fore he could tackle with confidence practical electronic de
sign problems. He requires the additional tool of a broader 
interpretation of arbitrary twoport interconnection techni
ques. 

We have seen in the preceding chapter tha t the series 
connecting of two impedances, or the parallel connecting of 
two admittances is mathematically tan tamount to simple 
algebraic summation of these elements. We may now expand 
this definition so tha t it should include the valid interconnec
tion of arbitrary twoports. I t will be shown tha t indeed, by 
observing a few simple rules in effecting the interconnections, 
the basic law of algebraic summation applies. The key to 
valid interconnection of twoports is shown to require the 
adherence to consistent matrix notations. 

(i) The Z matrix interconnection 

Consider a pair of arbitrary twoports which are mathema
tically defined by the Z parameter matrix. We can represent 
the twoports as "black boxes" and interconnected as shown 
in Fig. 4.10. The matrices[Z]A and[Z]B are completely gene
ral and may stand for, passive or active twoports. By defi
nition for the series-series type of interconnection, consis
tency requires tha t the same current flows in and out of 
each terminal pair. On the other hand the sum of voltage 
drops must be equal to the applied terminal voltages. Con
sequently, the interconnected sytem matrix is obtained by 
the algebraic summation of the elements in the matrices 
[Z]A and [Z]B. That is 

[Z] = [Z]A + [Z] B , (4.27) 
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ii ! 
— ► i 
o1 ' 

4- i 

V, 1 

— | 

°2 ! 

-•— 

-•— 

r- -, 

Z 
L -•A . 

Twoport A 

Z 
B 

Twoport B 

—•"! 

— ♦ -

i r 2 
1 -4 1 3 

1 + 

j V2 

j -

1 °̂ 

Synthesized twoport [Z] 

FIG. 4.10. Interconnection of twoports with Z parameter matrices. 

where 

and 

[Z]A 

[Z]B 

[ Zlla ^12al 

^21a ^22aJ 

%2lb %22bJ 

(4.28) 

(4.29) ^ l l b ^126 

_Z21b Z22b_ 

By substituting for [Z]A and [Z]B ineqn. (4.27), we obtain the 
overall system matrix of the interconnected twoports: 

(Z>lla + %llb) (%12a + %12b) 

_ {Zila + Z21b) (Z22a + Z22b) 
[Z] ■ C (4.30) 

(ii) The Y matrix interconnection 

For parallel connected "black boxes" in terms of the Y 
parameters Fig. 4.11 applies. Here the voltages across the 
terminal pairs are identical. Therefore the overall sytem 
matrix of this type of interconnection is obtained by the 
algebraic summation of the corresponding elements in the 
admittance matrices [Y]A and [ F ] B . 

IY] = [Y]A + [Y]B, (4.31) 
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I, 
1 

+ 
Vi 

o 
2 

r 

i / 
"" / T— 

1 V / 

! / \ 
—i—< \ 

^A V J 
I \ I \ \ 

L 

< 
>-

Twoport A 

[•]. 
Twoport B 

1 

• J 

\ U 

^ \ ! 3° 
\ / ' + 

/ V—1 o 
y f i A 

j 
j 

Synthesized twoport [Y] 

F I G . 4.11. Interconnection of twoports with Y parameter matrices. 

where 

and 

m, 
[Yh 

[-*lla Y12a | 

Y21a *22aJ 

[^ 1 1 6 ^ 1 2 6 ~ | 

* 2 l 6 ^22bJ 

(4.32) 

(4.33) 

Substituting into eqn. (4.31) the expanded form for the 
matrix of the parallel connected twoports is 

[Y] 0 (4.34) ( ^ l l a + ^ l l b ) ( ^ 1 2 a + ^ 1 2 b ) 

_(-*21a + -*21b) (-*22a + -*22&)_ 

So far we have assumed tha t each term of the above arrays 
has a definite physical meaning. In actual practice this may 
not be necessarily so. In fact we may choose to manipulate 
a mathematical model where some elements of the matrix 
are reduced to zero. For the sake of argument let us stipulate 
tha t our "black box" [Y~}A represents an active twoport, a 
transistor or a vacuum tube. Assume further t ha t in the 
operating range of interest, we can consider this active two-
port as a unilateral device, t ha t is, power can flow only in 
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the forward direction. Such an idealized condition is tanta
mount to the mathematical constraint tha t Y12a = 0. With 
similar reasoning we are at liberty to specify the '"black box" 
designated by [Y]B as a package say, containing isolated in
put- and output- matching networks. Therefore, in mathema
tical language Y12b = Y21b = 0. If we now at tempt to syn
thesize the mathematical model of our idealized amplifying 
system, the interconnections in Fig. 4.12 will apply. 

+ 
v, 

Y2la V22c 

Active twoport [Y] 

J2_ 
3 

+ 
V2 

Passive twoport [Y]B 

I 
Synthesized composite twoport [YJ 

FIG. 4.12. Synthesis of an amplifier model from active and 
passive twoports. 

The sytem matrix of this linear model is obtained as the 
algebraic sum of the constituent admittance matrices: 

In expanded form 
[Y] = [Y]A + [Yh. 

12 

m ■[ (Ylla+ Yllb) 
(Y2 

0 1- (4.35) 

21 22 
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Since the Y12 term is zero, we may therefore conclude tha t 
this mathematical model describes a unilateral amplifier, 
tha t is a system which will support power flow only in the 
forward direction. 

(iii) The h matrix interconnection 

Revert now to eqns. (2.37) and (2.38) for the fundamental 
definitions of the h parameters. I t will be recalled, tha t as 
far as the input terminal pairs are concerned, the parameter 
hn has the dimensions of an impedance. Similarly, with res
pect of the output port the parameter h22 has the dimensions 
of an admittance. Therefore, consistency demands the series 
connection of input ports and parallel connection of output 
ports when one wishes to interconnect twoports which are 
defined by h matrices. In this manner valid interconnection 
is obtained as shown in Fig. 4.13. Note tha t each twoport is 

-*— 
o1 1 

+ 1 

V, ] 

1 
2 i 

L _̂ 

[*] A 

Twoport [h ]A 

L B 

Twoport [ h ] B 

Synthesized twoport [h] 

FIG. 4.13. Interconnection of twoports with h parameter 
matrices. 
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defined by an array of h parameter matrix, [h]A and [h]B 

respectively, where 

[h]A= , l l a ? z a (4.36) 
\_n21a "22a J 

and 

[ * ] * = ! > H . (4.37) 

The composite system which has been synthesized by the 
process of interconnection, is again completely defined by 
the algebraic sum of the separate matrices, tha t is 

[h] = [h]A + [hh- (4.38) 

Writing in fully-expanded form, 

[_(h21a + h21b) (h22a + h22b)j 

The student may by now appreciate t ha t the rules of con
sistent twoport interconnections are quite simple and can 
be utilized with profit for mathematical processing of a large 
array of electronic problems. As an introduction to a typical 
but simplified feedback system study, let us consider the 
linear model of a feedback amplifier as represented with the 
block diagram in Fig. 4.14. For the purpose of this exercise, 
it is quite legitimate to assume tha t the active twoport is 
a unilateral device, for example a high-frequency transistor, 
which is operated as an audio-frequency amplifier. There
fore, we may state tha t the reverse parameter h12a = 0. Fur
thermore, by assuming the correct phase relations, negative 
feedback is established by the passive twoport [h]B with the 
impedance configurations as shown. 

Since we have assigned physical impedance parameters to 
the feedback network, i t will be necessary to express the 
matrix [h]B in terms of the impedances Z± and Z2. This can 
be accomplished through some simple algebraic manipula
tions. Let us consider the twoport equilibrium equations in 

(4.39)
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terms of h parameters: 

12 = h21I1 + h22V2. 

(4.40) 

(4.41) 

Apply eqns. (4.40) and (4.41) to the feedback network [h]B 

in Fig. 4.14, and ignore the active twoport[h]A. By means 
of elementary algebra and network theory we obtain; 

* U 6 = h 
h - F l 
n12b ~ ~^r-v2 

2_ 

h -1* 

h - 7 » 
n21b ~ ~^~ 

v22b 

V2=0 

h=0 

v2=o 

I,=0 

^ 1 ^ 2 

" Z± + Z2
l 

Z± + Z2' 

z1 
Z± + Z2' 

1 
Z± + Z2

m 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

Thus, using eqns. (4.42) to (4.45) inclusive, we can write 
down for the feedback network the expanded matrix 

[hh 

r ^1^2 
z±+z2 

z1 

z1 
zx+z2 

1 
Zx + Z2 Zx-\- Z2 

(4.46) 

Finally, the h matrix of the complete feedback system is 
obtained by substituting into eqn. (4.38) the expanded mat
rices for [h]A and [h]B respectively. 

«I2 

[h] 
Zi (h + z ^ \ [fllla+^z2) z1+z2 

[{Ka+'z7tz-J {h22a+z^rzJ 
(4.47) 

'21 
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(iv) The g matrix interconnection 

In Chapter 2 we have already dealt with the physical 
interpretation of the g parameters. The reader may easily 
verify tha t as far as terminal conditions are concerned, the 

Passive twoport [g]B 
i i 

Synthesized feedback amplifier [g] 

FIG. 4.16. Feedback amplifier synthesized from active and 
passive twoports in the g matrix domain. 

element gn has the dimensions of admittance and the ele
ment g22 tha t of an impedance. Therefore a valid intercon
nection of twoports which are defined in terms of the g mat
rix, will require the parallel connection of input and series 
connection of output terminals. Such a consistent intercon
nection is shown in the block diagram of Fig. 4.15. The 
mathematical model of the system formed by the intercon
nection will again be a 2 X 2 matrix, the elements of which 
are formed again by a term-by-term algebraic summation of 
the elements in [g]A and [g]B respectively. 
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fo] -[! 

Hence, by definition, 

[g] = [g]A+[gh- (4.48) 
In expanded form 

" (011a + 0116) (012a+ 0126) ~ 
_(021a + 02l6) (022a + 0226) ' 

This expression is also completely general and of funda
mental importance to network and feedback system analysis. 

As a useful exercise, let us assign the role of an active 
unilateral twoport to the "black box" [g]A and tha t of a pas
sive feedback network to the box[g]B as shown in Fig. 4.16. 
I t will be now requried to define the elements in the matrix 
[g]B in terms of the impedances Zx and Z 2 . In reverting to 
Chapter 2, we find the pair of appropriate equilibrium equa
tions of our immediate interest, namely 

A = 011^1 + 012*2. (4-50) 

^ 2 = 021^1 + 022*2- (4 .51 ) 

If we ignore the active twoport for the time being, then by 
a straightforward algebraic proces we can derive from eqns. 
(4.50) and (4.51) the elements in the feedback network ma
trix [g]B as follows: 

0116 

0126 — -f-

0216 

0226 — ~T~ 

h 
Vx 

h 
h 
v2 
vx 
v* 
h 

1 
J2=0 Zl+Zl' 

Zi 
v,=o zi + zz' 

z i 

/.=0 Zl + %2 
ZXZ2 

v,=o zi + zz' 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

Thus, from eqns. (4.52) to (4.55) inclusive, we may write 
down the g matrix of the feedback network [g]B; 

1 Z, 

[gh = z^z2 
z i 

z,+z2 
z^zz 

L Z1 + Z2 Z1-\- Z2 

(4.56) 

(4.49)
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Note that in this particular case the matrix (4.56) is the in
verse of the matrix (4.46), derived earlier for the h matrix 
version of feedback twoport. Therefore, it would appear that 
we could also obtain [g]B by the inversion of [h]B. 

We can now synthesize the simplified mathematical model 
of our feedback system. This is carried out by substituting 
into eqn. (4.49) the elements from the matrix (4.56): 

fti 012 

[g] = 
9iia + 

021a — 

Zi 
zx+zz 

zxz2 ( z i î ( _Mz\ 
[g*la~zT+z2) \gzza+'z^+z2) 

(4.57) 

021 022 

As already pointed out, the g matrix interconnection is of 
basic importance in network analysis and feedback amplifier 
design. Some practical applications will be studied in greater 
depth in later parts of this text. 
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1. IMPEDANCE TRANSFORMATION 
AND IMAGE MATCHING, GENERAL 

As AN introduction to the mathematics of impedance trans
formation, a brief definition of the concept of image matching 
seems to be desirable. Therefore let us consider a somewhat 
idealized but sufficiently descriptive case which is illustrated 
in Fig. 1.1. We have there a generator with an internal im-

+ 

V, 

Generator Medium of interconnection Load 
F I G . 1.1. Direc t in te rconnec t ion of genera to r a n d load. 

pedance ZG which is connected through some medium to a 
load ZL. If the interconnecting medium between the terminal 
pairs 1-2 and 3-4 has negligible losses, then we can state 
tha t an optimum power transfer to the load is achieved if 

ZG = Zl, (1.1) 
tha t is, generator and load have conjugate impedances/1 '2 s 3) 

From the theory of complex numbers, this equality exists 
only if 

BG = BL (1.2) 
and 

XG = XL, (1.3) 
where RG and RL are the resistive parts and XG and XL are 
the reactive par ts of the generator and load impedances res
pectively. 

69 
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We are concerned here primarily with impedance match
ing as applied to physical engineering problems. Therefore 
the above idealized situation can hardly be expected to be 
adequate. In reality the generator may be disguised as an 
electromechanical or electro-optical transducer, or the output 
terminals of a transistor, or a vacuum tube amplifier, etc. 
Similarly, for the load we may visualize a spectrum filter, or 
the input port of a transistor amplifier or a radiating anten
na. Consequently, more often than not the medium of inter
connections is by no means negligible. Therefore when we 
focus our attention on impedance matching techniques in the 
practical sense, we will endeavour to develop a generalized 
mathematical procedure of optimizing power transfer from 
a source or generator, to an arbitrary load. In doing so it 
will be convenient to represent our linear model as shown 

Generator 

Impedance 
matching 

device 

Zin = Zr, Z0UI = Z L 

F I G . 1.2. In te rconnec t ion of genera tor a n d load wi th image 
impedance ma tch ing . 

in Fig. 1.2, where, the box designated as impedance matching 
device, may also absorb the spurious reactances of t he inter
connecting medium. 

With reference to Fig. 1.2 generally, we can assume tha t 
ZG ^ Z£. However, by interposing a properly designed im
pedance matching device, we can easily accomplish tha t 
both generator and load simultaneously look into image 
matched terminations: 

(1.4) ZG %*n 
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and 
^L = ^out- (1-5) 

These relations define the image matching and consequent
ly satisfy the requirements of optimum power transfer. Since 
in this par t of the text weare concerned only with image-
matched terminal conditions, therefore, for the linear model 
in Pig. 1.2, we are at liberty to stipulate tha t 

ZG = Zin (1.6) 
and 

ZL = Zout. (1.7) 

Familiar with the basic matrix techniques in Par t I, the 
student is now well equipped with the prerequisite tools 
for successfully tackling the important and practical aspects 
of impedance transformation. We can visualize impedance 
matching devices in many forms, passive and active. But as 
far as input and output terminal pairs are concerned, we 
can always manipulate them into a twoport system. There
fore, it seems to be logical t ha t the mathematical model of 
a 2 X 2 matrix will completely define the transfer charac
teristics. In the following pages we hope to demonstrate tha t 
this is indeed so. 



2. IMAGE IMPEDANCE MATCHING 
OF PASSIVE AND ACTIVE TWOPORTS 

(a) IMAGE IMPEDANCE MATCHING IN TERMS 
OF THE ABGD MATRIX 

In Pa r t I we have already derived the precise expressions 
for the transfer characteristics and terminal impedances of 
twoports in terms of the general ABGD parameters. The 
pertinent equilibrium equations have been defined as 

(2.1) 

(2.2) 

interpretations; 

V1=AV2- ±BI2, 

Ix = CVt + Dh, 

ts A, B, G and 

A"v2 

c- 7> C-vl 

*2 

J2=o 

v 2 =o 

> 
J2=o 

v2=o 

(2.3) 

(2.4) 

(2.5) 

(2.5a) 

We have solved eqns. (2.1) and (2.2) for input and output 
impedances of the terminated twoport. The results are repro
duced here; 

AZL+B 
Zi„ — 

^out — 

CZL + D 
DZG + B 
CZG+A 

(2.6) 

(2.7) 

72 

where the coefficients A, B, C and D have the following
interpretations;
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F I G . 2.1. Linear model of image-matched twoport with ABCD 
parameter matrices. 

I t will be convenient now to redraw the terminated twoport 
as shown in Fig. 2.1 and stipulate tha t both generator and 
load terminations are image matched. Therefore, by defini
tion, 

and 

Since the above conditions hold, we can redefine the left-hand 
par t of eqns. (2.6) and (2.7): 

ZT = 

AZL+B 
CZL + D 

DZG + B 

(2.8) 

(2.9) 
CZG+A ' 

We have to solve now these equations simultaneously for ZG 

and ZL respectively. 
From eqn. (2.8) by cross-multiplication,. 

CZLZG + DZG = AZL + B. (2.10) 

Similarly, cross-multiplying eqn. (2.9), 

CZLZG+ AZL = DZG+B. (2.11) 

From eqns. (2.10) and (2.11), by transposition and rearrang
ing terms, 

CZLZG + DZG~AZL-B = 0 (2.12) 
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CZLZG - DZG + AZL -B = 0. 

By addition of eqn. (2.12) to eqn. (2.13), 

2CZLZG-2B = 0, 
0ZLZG = B, 

C ' 

Z>" 

(2.13) 

(2.14) 
(2.15) 

(2.16) 

(2.17) 
(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

These are the constraints for an image- matched generator. 
In order to obtain a corresponding form for the load termi
nation, this time we divide eqn. (2.16) by eqn. (2.19): 

Next, subtract eqn. (2.13) from eqn. (2.12): 

2DZG-2AZL = 0, 
DZG= AZL. 
ZG_ A 

Now multiply eqn. (2.16) by eqn. (2.19): 

& = 
BA 
CD 

**{*}-{» (2.23) 

(2.24) 

(2.25) 
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Zin ~ ^G Zout = ZL 

FIG. 2.2. Linear model of the image- matched twoport with Z 
parameter matrices. 

Hence, for image matched conditions of the linear model 
in Fig. 2.1, eqns. (2.22) and (2.25) must be simultaneously 
satisfied. 

(b) IMAGE IMPEDANCE MATCHING IN TERMS 
OF THE Z PARAMETER MATRIX 

Consider a terminated twoport and stipulate tha t input 
and output terminal pairs are image matched in terms of 
the Z parameter matrix. We can readily construct the cor
responding block diagram with the notations shown in Fig. 
2.2. 

By definition, we can now revert to eqns. (2.15) and (2.21) 
in Par t I : 

AZ + ZUZL 

and 

Zr = 

Zr -

^22 + %L 

^11 + ZG 

(2.26) 

(2.27) 

Equations (2.26) and (2.27) have to be solved now simul
taneously for ZG and ZL respectively. 

From eqns. (2.26) and (2.27) by cross multiplication, 

and 
^22^G + %G%L = dz + ZLZn (2.28) 

(2.29) 
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Transpose and rearrange terms: 

and 
^G^L ~ ^21^G — dZ + ZLZn = 0. 

Add eqn. (2.30) to eqn. (2.31): 

2ZGZL-2AZ=0, 

%G%L = Az. 

Next subtract eqn. (2.31) from eqn. (2.30): 

2Z21ZG — 2ZLZX1 — 0, 

ZQ Zn 

z7 z 
11 
22 

Now multiply eqn. (2.35) by eqn. (2.33): 

^ 2 2 

Finally, divide eqn. (2.33) by eqn. (2.35): 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

Hence, for image-matched conditions, eqns. (2.37) and (2.39) 
must be simultaneously satisfied. 
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(c) IMAGE IMPEDANCE MATCHING IN TERMS 
OF THE h PARAMETER MATRIX 

Expressions for the input and output impedances in te rms 
of the h parameter matrix have been derived in Pa r t I . 
Therefore we may revert to eqns. (2.52) and (2.59). By stipulat
ing image matched conditions, we can write 

^ i n =^G 

and 

Z( 'out zL 

A + hnYL 

A + h2ZG 

(2.40) 

(2.41) 

Since in consistent notations the output port has the dimen
sions of admittance, therefore, by definition for the load, we 
have 

YL = 

By inverting eqn. (2.41), we obtain 

hn + ZG 
YT = (2.42) 

Now, eqns. (2.40) and (2.42) are a consistent pair as demand
ed by the structure of the h matrix. The corresponding 
block diagram is shown in Fig. 2.3. 

Y , , J 

F I G . 2.3. L inear model of image -ma tched twopor t wi th h 
p a r a m e t e r ma t r i ces . 
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The image matched conditions of the twoport are obtained 
if we solve simultaneously eqns. (2.40) and (2.42) for ZG and 
YL. Therefore, by cross-multiplying eqns. (2.40) and (2.42), 

and 
h22ZG+YLZG = Ah + hnYL (2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 
(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

Finally, for t h e output port matching, divide eqn. (2.48) by 
eqn. (2.50): 

Yl = Ah^, (2.53) 

(2.54) 

KXL+ YL%G = Ah + h22ZG. 
By transposing and rearranging terms of eqn. (2.43), 

YLZG + h22ZG -Ah-hnYL=0. 
Similarly, from eqn. (2.44), 

YLZG-h22ZG-Ah + hnYL = 0. 

By adding eqn. (2.45) to eqn. (2.46), 

2YLZG-2Ah=0, 
YLZG = Ah) 

Next, subtracting eqn. (2.46) from eqn. (2.45), 

2h22ZG-2hnYL = 0, 
ZQ_ = hn 
YL h22 

Now multiply eqn. (2.48) by eqn. (2.50): 

72 _ A ^ n 

I loo. 

Equat ions (2.52) and 2.54) must be simultaneously satisfied 
for image matched conditions of the twoport in Fig. 2.3. 
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(d) IMAGE IMPEDANCE MATCHING IN TERMS 
OF ARBITRARY MATRIX PARAMETERS 

In the course of our s tudy of matrix transformations, Chap
ter 3 of Pa r t I, we have found tha t the Y matrix is the in
verse of the Z matrix. Similarly, the g matrix is the inverse 
of the h matrix. Therefore, by making use of the logical 
concepts of duality, from eqns. (2.37) and (2.39) we can write 
down the conditions of image matching in terms of the Y 
parameter matrix 

and for the load 

(2.55) 

(2.56) 

With similar reasoning as above, from eqns. (2.52) and (2.54), 
we obtain for image matching in terms of the g matrix 
parameters 

and 

(2.57) 

(2.58) 

A digression of this chapter will reveal tha t if consistent 
matrix notations are adhered to , then the form of defining 
equations of image impedance matching are essentially the 
same whether we chose Z, Y, h or g matrices. 

Therefore if M stands for a generalized immitance matrix, 
we have, by definition of the conditions for image match 
of the generator, 

(2.59) 
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Similarly, the conditions for image match of the load: 

where 

Am = (m11m22 — mi2m2i)> determinant of the matrix. 



3. APPLICATION OF THE Z MATRIX 
TO IMAGE MATCHING OF A 

COMPLEX LOAD AND AN RF 
AMPLIFIER 

(a) DEFINITION OF THE PROBLEM 

The matching of a complex source impedance to a complex 
load is perhaps one of the most fundamental and classical 
problems in electronic engineering/1 ' 2» 3) The special case of 
antenna impedance matching to radio-frequency (RF) ampli
fiers has been extensively treated in the published literature, 
which covers some excellent analytical and graphical tech
niques/4 , 5 '6 ) We intend to approach here the antenna match
ing problem from yet a different angle. I t will be shown tha t 
matrix methods offer significant advantages in handling the 
mathematics and obtaining exact results in this process. 

RF 
Amplifier 

ZG 

1 

2 
r-

Matching 
network 

[ 2 ] 
^ 

3 

A 

Antenna 

ZG Z j n = ZG
 Zout = Z l ZL 

FIG. 3.1. Block diagram of the antenna matching problem. 

A pictorial s tatement of the antenna matching problem 
is represented with the block diagram of Fig. 3.1. The "black 
boxes", stand for the R F amplifier and the antenna respec
tively. The physical arrangement of impedances or admit-

81 
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tances inside the boxes may be of arbitrary configuration. 
However, as far as the accessible terminal pairs 1-2 and 3-4 
are concerned, we stipulate tha t they look into conjugate 
impedances of ZG &ndZL respectively. The matching network 
which appears to be "embedded" between ZG and ZL is 
therefore called upon to present an image match across input 
and output ports. 

For the purpose of this particular problem it is convenient 
to treat both source and load as series impedances, although 
physically they may contain parallel elements. I t can be 
shown tha t parallel connected impedances may be represent
ed by an equivalent series combination and vice-versa. The 
algebraic process of series-parallel transformation is an ex
tremely useful analytical tool for dealing with impedance 
matching problems. 

Consider a parallel and a series form of complex generator 
as shown in Fig. 3.2a and b. We may wish to specify that , 

ri 
i 

—o 
+ 

Current source 

GO-

Voltage source 

! —o 

v2-*-i 

-£ 

ZinP Zins 

F I G . 3.2a,b. E q u i v a l e n t complex generators—paral le l a n d series 
representa t ion . 

when looking into the terminals 1-2, the impedances and 
phase angles are identical, tha t is 

^ i n , p — ^ i n , s • (3.1) 

Consequently, we may write down the following equilibrium 
equation: 

jXpBp B8 + jXs = Bp + jXp ' (3.2) 
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where Bs and Bp are the series and parallel resistances, jXs 
and jXp are the series and parallel reactances respectively. 

Multiplying through eqn. (3.2) with Rp+jXp and equating 
separately the real and imaginary parts, we obtain by simple 
algebraic process the following set of transformations. 

Bn = 

and 

»=Ml+(t)}-
' '-M ,+($)l-
B, Bn 

{i+(xPiBp)*y 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Having established precise mathematical relations between 
the parallel and series network configurations, we are now 

RF. Amplifier 
I LJ^J _ _ _ j 

Matching network 

F I G . 3.3. Linear model of the antenna matching problem. 

at liberty to redraw our block diagram in Fig. 3.1, to a some
what more informative configuration as shown in Fig. 3.3. 
We have assumed a capacitive series reactance —jXL asso
ciated with the load, and series reactance +jXG associated 
with the generator. Naturally, other combinations are also 
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possible. The physical matching network is a I7 structure 
which is made up from yet unspecified reactances Xx, X2, 
and X™. 

(b) S Y N T H E S I S OF MATHEMATICAL MODEL, 
CONDITIONS OF IMAGE MATCHING 

From our linear model in Fig. 3.3 we can proceed to t he 
synthesis of a suitable matrix form which may be utilized 
for deriving the optimum parameters of the T network. We 
recognize here tha t the series-series type of interconnection 
calls for the Z matrix. The reader is therefore referred to 
eqns. (2.37) and (2.39) in the preceding chapter, defining the 
condition of simultaneous image impedance matching in 
terms of the Z matrix parameters. In accordance with our 
definition of conjugate image matching, the twoport T struc
ture in Fig. 3.3 must satisfy the following terminal condi
tions : 

£ i n = KG-?XG (3.7) 

and Zont = RL + jXA. (3.8) 

I t may be further assumed tha t the T network is made up 
from purely reactive elements, since resistive losses may be 
lumped together with RG and RL. 

L- W L 
Composite matching network 

RinS RG :RL 

FIG. 3.4. Modified impedance matching problem, the T 
network absorbs generator and load reactances. 
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From the analytical point of view, it is quite legitimate 
to combine the series reactances of the generator and the 
load with the series arms of the T network. Accordingly, the 
modified linear model is shown in Fig. 3.4. I t will be apparent 
t ha t by this artifice our problem has been simplified to t ha t 
of optimum power transfer between a resistive generator RG 

and a resistive load RL. Since the reactances jXG and —jXA 

are now combined with the series arms of the T network, it 
will be possible to write down by inspection the Z matrix of 
this new mathematical model: 

^ 1 1 ^ 1 2 

L 1Xm ?(-^A + X2+Xm)_\ 

7jl\ ^ 2 2 

We may now revert to eqns. (2.37) and (2.39). The conditions 
of conjugate impedance matching is satisfied if 

*■ - AJzl) (3io) 
and 

WW <31,) 
where Zn, Z22 and Az are applicable to the terms of the mat
rix (3.9). 

By simple algebraic manipulations of eqns. (3.10), (3.11) 
and the matrix (3.9), the parameters Xx, X2 and Xm can be 
derived. 

First, multiply eqn. (3.10) by eqn. (3.11): 

RGRL=AZ. (3.13) 

(3.9)

(3.12)
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Next, expand the determinant of matrix (3.9) and substitute 
the results into the right-hand par t of eqn. (3.13): 

RGRL= - ( X G + X 1 + Z m ) ( - Z A + Z 2 + Z m ) + Z2m. (3.14) 

Recall, tha t according to the definition of conjugate impe
dance matching, the algebraic sum of reactances looking into 
the terminals 1-2 and 3-4 of the composite network in Fig. 
3.4, must add up to zero. Or, in other words, the elements 
Zxl andZ 2 2 of the matrix (3.9) should be simultaneously equal 
to zero. 

Therefore we obtain from eqns. (3.9) or (3.14) 

(XG + X1 + Xm) = 0, 
(-XA + X2 + Xm) = 0. 

(3.15) 
(3.16) 

If eqns. (3.15) and (3.16) are satisfied, then eqn. (3.14) re
duces to 

■ XI, (3.17) RQRL-

Xm = y/(RGBL) 

Reverting to eqn. (3.15), by transposition, 

X1 = — XG — X„ 

(3.17a) 

(3.18) 

L I,zl_______.i 
The physical matching network 

Z\n * ZQ Zout - Z-i 

F I G . 3.5. Practical configuration of the antenna- matching 
T network. 
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Similarly, from eqn. (3.16), 

X2 = XA — Xn (3.19) 

If we now assign the desirable low-pass structure to our 
matching network, we can redraw the linear model to its 
final and practical form as in Fig. 3.5. The parameters of 
Ll9 L2 and Cm are easily obtained from eqns. (3.17), (3.18) 
and (3.19) respectively. 

From eqn. (3.17): 

Xm = W^ = V ( ^ L ) , (3.20) 

Similarly, from eqn. (3.18) 

X1 = ja>Lx = / - ^ ?'coLG, (3.22) 
m 

Li = -zk;-La' (323) 
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INTRODUCTORY REMARKS 

Active network design, whether it involves vacuum tubes 
or transistors, may be looked upon essentially as an opti
mizing procedure. Once the active device has been chosen, 
we can reduce it to a reasonable approximation of a linear 
model, then assign the appropriate twoport matrix notations 
to the elements. Next, one generally decides on the type of 
most desirable input, output and feedback networks if any. 
As a rule, these are passive elements, therefore conveniently 
characterized also with twoport matrix parameters. Finally, 
by combining the consistent sets of matrices, we have in 
fact synthesized a new mathematical model. This new model, 
again, is a 2 X 2 array and obeying all rules of matrix algebra. 
In this manner one can reduce a complex electronic system 
to the familiar twoport linear model. By means of conven
tional algebraic process or applying the standards forms from 
the tables in Pa r t I, we can now easily derive the pertinent 
transfer characteristics and terminal conditions. 

The remaining parts of this tex t will be devoted to a rep
resentative range of active network topics. We star t off 
with the modest but very fundamental single-stage amplifiers 
and then progress gradually to more complex feedback sys
tems. The emphasis will be, of course, on transistor appli
cations, but a substantial coverage of basic techniques on 
vacuum tube amplifiers and oscillators is also included. 

The student will find tha t there is a clear division of topics. 
Each chapter has been moulded into the style of a self-con
tained monograph. By underscoring the "why and how" 
aspects of all mathematical manipulations, the author has 
slanted the discussions to the needs of the practising electro
nics engineer. Adequate attention has been given to the prob
lems of engineering approximations. Matrix forms of exact and 
approximate design equations have been consolidated in a 
number of tables which are found in the main body of the text . 
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1. VACUUM TUBES, LINEAR MODELS 
AND MATRICES 

(a) GENERAL DEFINITIONS 

In order to handle efficiently vacuum-tube problems, we 
require a reasonably accurate linear model of this device. I t 
will be demonstrated tha t the fundamental and universally 
accepted resistive model of the vacuum tube can be related 
to the floating admittance matrix. For an exhaustive discus
sion of this most elegant mathematical tool and the underlay
ing philosophy, references (1) to (4) may be consulted. Here 
we are concerned only with a basic, yet adequately rigorous 
study of fundamental vacuum- tube circuits. All three models 
of operation will be covered, tha t is grounded cathode, 
grounded grid and grounded plate or cathode follower. 

In order to consolidate the general concepts of the floating 
admittance matrix, refer to the three-terminal network as 
shown in Fig. 1.1. Where the admittance parameters Y1, 
Y2 and Yz are completely general. That is, they can be pas
sive or active, resistive or reactive. Note also, tha t there is 
no common reference node. We also know tha t Kirchoff's 
law states tha t the algebraic sum of currents entering and 
leaving a nodal point must add up to zero. Therefore, apply
ing this law to our three-terminal model in Fig. 1.1, we can 
write down the equilibrium equation: 

h + h + I^O. (LI) 

The above definition of the floating admittance matrix can 
be profitably related to the vacuum tube with the terminal 
notations in Fig. 1.2a. We have included an external grid-
to- cathode conductance ggk which is always existing in phy-
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sical circuits. A corresponding unilateral resistive model is 
shown in Fig. 1.2b, where the admittance parameters are 
defined as follows: 

ggk = — ; Grid- to- cathode conductance. 
rg 

gpk = — ; Plate- to- cathode conductance. 
rp 

gm = — ; Forward transconductance. 
rP 

fi = Amplification factor. 

We have assumed, quite legitimately, a unilateral and resis
tive model, which is sufficiently accurate for most engineer-

FIG. 1.1. The floating three-terminal admittance network. 

9gk 

FIG. 1.2a.The floating 
triode, schematic. 

P I, 

flm<V,->V 

F I G . 1.2b. Linear resistive model 
of the floating triode. 
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ing applications. At high frequencies one may wish to in
clude inter-electrode capacitances. Mathematically, this can 
be accounted for by the simple algebraic addition of admit
tances as explained in Chapter 4 of Par t I. 

The nodal eqn. (1.1) stipulates tha t the algebraic sum of 
currents entering and leaving any nodal point must be equal 
to zero. Therefore it would appear to be both logical and 
instructive to develop the admittance matrices separately for 
each of the three nodal junctions. The linear superposition 
theorem permits the synthesis of the complete mathematical 
model by the algebraic summation of these matrices. We 
also know, tha t the linear model with three floating nodal 
junctions calls for a 3 X 3 matrix. I t will be shown, tha t once 
we have synthesized the floating admittance matrix, we can 
readily derive the appropriate matrices of the vacuum tube 
for any desired mode of ground reference. The algebraic pro
cess is deceivingly simple. Zeros are substituted for all ele
ments in the selected row and column. Thus, producing a 
2 X 2 matrix, the mathematical model will describe precisely 
active twoports. 

(b) FLOATING ADMITTANCE MATRIX OF THE 
TRIODE 

To begin with the synthesis of our mathematical model 
refer to Fig. 1.2b. When considering the conductance ggk, the 
elements of Yn and F 3 3 are generated in a 3 X 3 array: 

Ylx = ^ = ggk. (1.2) 

Similarly, 

Y33 = ^ = ggk. (1.3) 

Consistency demands tha t each row or column adds up to 
zero, which can be satisfied if 

Y13 = Ysl=-iL=-ggh. (1.4) 
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Therefore, we have the matrix involving ggk only: 
Vi V2 V3 

\7\„ = h 
ffgk 

0 

-ffgk 

0 

0 

0 

~~ ffgk 

0 

ffgk 

G 

P 

K 

(1.5) 

G K 
Next let us consider the plate conductance gpk. We have 

the corresponding elements defined in a second 3X3 matrix: 

^ 2 2 = ^ 3 3 = ^ - ( ! -6) 

Similarly, for the mutual negative elements, 
Y23=Y32= -gph. (1.7) 

Entering these parameters in the array which relates to gph 
only: 

Vi 

h 
[Y]t \gPk 

1 ° 
0 

0 

0 

ffpk 

— ffpk 

0 

— ffpk 

ffpk 

G 

P 

K 

(1.8) 

G K 
Finally, for the active generator gm(V1— V3), the array in
volves the parameter of gm only: 

■*2i = Y 3 3 = gm 

and 
23 31 ■9r, 

V! 

[Ylm = h 

0 

ffm 

-ffm 

0 

0 

0 

0 

-ffm 

ffm 

G 

P 

K 

(1.9) 

(1.10) 

(1.11) 

G K 
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The complete floating admittance matrix is next obtained 
by the algebraic summation of matrices (1.5), (1.8) and (1.11) 
respectively. 

v1 
V, 

[Y] triode 

h 
h 
h 

9gk 

9m 

— Qgk — Sm 

0 

9pk 

— 9pk 

~9gk 

— 9pk — 9m 

9gk +* 9pk + 9m 

G K 

G 

P 

K 

(1.12) 

Note tha t the sum of any row or column is zero, precisely, 
as Kirchoffs eqn. (1.1) stipulates. We can now proceed and 
derive from this matrix the mathematical models for any 
of the three operating modes of the triode. 

The grounded cathode mode. The cathode is the No. 3 nodal 
junction. Therefore by collapsing the third row and column 
in the matrix (1.12), we obtain the twoport admittance mat
rix, appropriate for grounded cathode operation: 

Vi 

\.n GK 
h 
h 

Vgk 

9m 

0 

9pk 

0 
p 

(1.13) 

O 

F I G . 1.3. Twoport notation of the grounded- cathode triode. 
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The corresponding linear model and terminal notation is 
shown in Fig. 1.3. 

The grounded grid mode. Since the grid terminal is the 
No. 1 node, therefore, by collapsing the first row and column 
in the floating matrix (1.12), we obtain the twoport admit
tance matrix of the grounded grid configuration: 

[Y]GG = 
9pk 

-9pk 

9pk 9m 

9pk + 9pk + 9m 

p 

K 
(1.14) 

K 

Note here tha t the input variables are Vs and I3. I t is 
convenient to transpose them by simple operation of revers
ing the diagonals in the matrix (1.14): 

[Y]GG = 
9gh + 9pk + 9m 

— 9pk ~~ 9m 

~9pk 

9pk 

K 

P 
(1.15) 

K 

The twoport connection corresponding to this matrix is shown 
in Fig. 1.4. 

The grounded plate or cathode follower mode. Here the de
sired ground reference is the plate terminal and corresponds 

F I G . 1.4. Twoport notation of the grounded- grid triode. 
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to the nodal junction No. 2. Hence, by collapsing the second 
row and second column in the matrix (1.12), we obtain the 
admittance matrix of the cathode follower: 

[Y]GP = 
h 

Vx 

ffgk 

~Qgk~9m 

~9gk 

9m + 9gk + 9vk 

G K 

0 

K 
(1.16) 

Jv r— 
J ! + 1 

V| ! : 

_ * 
°2 1 ' 

I 

>9 g p 

- "1 „I3 

' 3o 
1 I + 

f ! * 
| _ 

FIG. 1.5a. Twoport notation of the cathode follower. 

J ^ r , ^ _ 

+ I 

v. ! 
1 1 

°2 ! 

' V V V 

la 

j I + 

.-) | v, 

I J 

FIG. 1.5b. Practical form of cathode follower twoport notation. 

The appropriate twoport connections are shown in Fig. 
1.5a. Although this terminal arrangement is formally correct, 
yet a more practical model is obtained if we rearrange the 
physical connections of the grid adittance as shown in Fig. 
1.5b. Note tha t we have put ggk = 0 and added a new admit
tance element gg between grid and plate, which, of course, 
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happens to be the ground reference. Thus ggp will occupy 
the position of Yn in a new mathematical model: 

Vi 

m GP 
h 

ffgp 

-9m 

0 1 

ffm + ffpk 

G 

K 
(1.17) 

0 K 

Having derived the twoport admittance matrices from the 
3 X 3 floating admittance matrix, we are now at liberty to 
discard the original terminal notations. Therefore we revert 
to the more convenient 2 X 2 matrix conventions, where the 
variables Vx and Ix are associated with the input terminals, 
and V2 and I2 with the output, respectively. 

(c) TRANSFORMATION OF THE ADMITTANCE 
MATRIX OF THE TRIODE TO ARBITRARY 

MATRIX DOMAINS 

A digression of Pa r t I will indicate tha t we can substan
tially broaden the usefulness of matrix analysis with the pow
erful tool of transformation techniques. Therefore we are 
tempted to extend now the mathematical definition of the 
vacuum triode to the quite useful Z, g, h and A BCD matrix 
domains. The requisite matrix transformations can be car
ried out rapidly with the aid of tables in Pa r t I. The actual 
algebraic manipulations involved in transforming the triode 
Y matrix parameters to the Z and A BCD domain will be 
worked out in detail. The relevant results are collated in 
Table I I I which contains the complete array of matrix forms 
for the triode. 

(i) Transformation to the Z matrix form 

Revert to Table I I in P a r t i for the appropriate matrix 
interrelations. At the intersection of the Y column and the 
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[Z] (1.18) 

Z row, we will find the desired transformation matr ix: 

^22 * 1 2 l 
Ay Ay 

* 21 * 1 1 
Ay AyJ 

The grounded cathode operation. We have the Y para
meters from the matrix (1.13) as follows: 

^11 = 9gk> 

Y12 = 0, 
21 Y9A — gn 

22 9pk-

[Z]GK = 
0 

(1.20) 

By inspection, the determinant of the matrix (1.13): 

AY=ggh9pk- (1.19) 
Hence a direct substitution of the above parameters into 
the matrix (1.18) will yield 

9gk 
9m J_ 

L 9gkffpk 9pk I 
By the definition of the triode admittances, we have 

J_ 
9gk 

1 
9pk 

9m = - . 
fp 

Hence the matrix (1.20) can be simplified and rewritten in 
the form 

= r„ 

vn Z 12 

[Z] GK 
'g (1.21) 
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The grounded grid operation. We have the T parameters 
from the matrix (1.15) 

^ 1 1 = (ggk + ffph + 0m)> 
^12 = ~ 9pk> 
Y2i = — (9ph + 9m)' 
* 22 = 9ph' 

The determinant corresponding to these parameters: 

^Y = (9gh + 9ph±9m)9pk-(-9pk-9m)(-9pk) 
dY = 9gk9pk- (1-22) 

By direct substitution into the matrix (1.18) 

9pk 9pk 

[Z]GG = 
9gk9pk 9gk9pk 

9pk , 9m I ) 9gh , 9pk , 9m 
L {9gh9pk 9gk9pk) l9gh9pp 9gk9pk 9gk9ph) J 

Rearranging terms and substituting \x = gm\gv\, 

9gk 9gk [Z] GG 

9gk 9gh) l9ph 9gh 9gh. 

(1.23) 

(1.24) 

Next, change the admittances to resistances and note tha t 
in this particular configuration 1 /ggk = rk: 

m GG (1.25) 

Simplifying and collecting terms will yield the final form for 
grounded- grid mode of operation: 

Ju Z 12 

m GG = r r 
L(i+ 

H)rk rp+(l + fi)rh_ 
(1.26) 

Z 21 z, 22 
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The cathode follower operation. Prom the matrix (1.17) 
we have the elements identified as 

•*ii = 9gp» 

12 

21 

22 

= 0, 
: ~9m-
9pk + 9m-

The determinant of the matrix, by inspection, 

AY = ggp(9Ph + 9m)- (l-27) 
Performing the appropriate substitutions into the transforma
tion matrix (1.18), we obtain the Z matrix of the grounded 
plate or the cathode follower connection: 

(Gfpk + ffm) 

[Z]GP = 9gp(9pk + 9m) 
9m 

0 

9gp 
l9gp(9pk + 9m) 9gp(9pk+9m) 

Cancelling terms where applicable, 

J_ 
9gp 

9m 1 

(1.28) 

[Z]GP = 
0 

(1.29) 

L9gp(9pk + 9m) {9ph + 9m)\ 
Rewriting eqn. (1.29) by changing the admittances to resis
tive parameters, 

rg 0 

I" I 1 1 
[Z]GP = 

rp\ (llrgrp) + (vlrgrp) (l/^p) + (Wrp). 

(1.30) 

Simplify by multiplying numerators and denominators by 
rg in the position Z21 and by rp in the position Z2 2 : 

^ 1 1 ^12 

m GP 'a 
Vrg 

0 

(1+p) (1+/4). 

(LSI) 

Zzi ^22 
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which is the final and practical form of the cathode follower's 
Z matrix. 

(ii) Transformation to the A BCD matrix form 

Revert again to Table I I in Pa r t I. At the intersection of the 
Y column and the ABCD row, we locate the required trans
formation interrelations: 

[o 3 -
r r. 22 

21 

21 

r, 21 

11 

21J 

(1.32) 

As before, we make the appropriate substitutions from the 
twoport admittance matrices into the transform matrix 
above. 

The grounded cathode operation. Revert to eqn. (1.13) and 
substitute the specified admittance parameters into the trans
form matrix (1.32): 

A Bl 
C D\ GK 

_9pk 
ffm 

ffgkffpk 

1 
Qm 

_<hk 

ffn 9n 

(1.33) 

By definition gm = fxgpk, therefore- substituting this identity 
into the C term in the matrix (1.33) and changing admit
tances to resistances, we obtain the transformed twoport 
matr ix: 

\A B] 
10 DJOK 

1 

1 

I i 
9m 
1 

9m?gJ 

(1.34) 

The grounded grid operation. Revert to eqn. (1.15) and 
substitute the appropriate elements into the transform mat-



104 BASIC MATRIX ANALYSIS AND SYNTHESIS 

rix (1.32): 

IC D\GG 

9pk 
9m + 9pk 
9gk9pk 

9m + 9pk 
9gk + 9pk + Mm 

9m + 9pk 9m + 9pk 

(1.35) 

Simplify this expression by changing the admittances to resis
tances and noting tha t here llggh = rk and gm = fi/rp: 

lc D]GG 

1 
(1 + A*) 

1 

(!+/*)>•* 

(1+/*) 
>-pK+(i+i") 

(1.36) 

Further simplification is possible by multiplying both nume
rator and denominator of the D term by rk: 

A Bl 
0 D\GG 

1 

1 rp+(l + l*)rk 

L(i+/*)»** ( i+ /*)»•* J 

(1.37) 

This is a convenient mathematical model of the grounded 
grid connected triode in the A BCD matrix domain. 

The grounded plate or cathode follower operation. Use again 
the transform matrix (1.32) and substitute the appropriate 
elements from the admittance matrix (1.17): 

\_c D\GP 

9m + 9pk * 
9m 9m 

9gp(9m + 9pk) 9gp 
9 m 9 m -

Simplify with the identity gm = figpk: 

lc D]GP 

" Mpk + 9pk J _ l 
Wpfc 9m 

i 9gp9ph 9gp I 

lg9P+ w,» gJ 

(1.38) 

(1.39) 
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Rearrange terms and replace admittances with resistive para
meters : 

Rearrange terms in position G 

\A *] = 

- ( 1 + 0 ) 
p 

1 1 
fg Wg 

1(7: 

(1 + ^ 
j " 

(1 + /*) 

1 
9m 

1 
9mrg 

1 " 
Qm 

1 

(1.40) 

Wo ffrnTt 

(1.41) 

which is the transmission matrix of the cathode follower con
nected triode. 

By means of similar algebraic processing as shown above, 
we obtain the mathematical models of the triode also in 
the g and h matrix domains. The results are summarized in 
Table i n . 
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T A B L E III. TWOPORT MATRICES OF THE T R I O D E 

Mode of operation m m 

-pr, 
Grounded cathode 

Grounded grid 
(l + fi)rk rp + (l + fi)rk 

rprk rp 

(1 + rt 

Wg 

Cathode follower 
(l+fl) (1 + fA) 

(! + /") 
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1 m 

rf 0 

1 

'p 

rPrk rk 

\rp+(l + f*)rk rp + (l + /i)tk 

(1 + A*)r* 1 
\rp+(l + (t)rk rp + (l + fj,)rk 

Tg 0 

n r ( 1 + ^ 
-9mrg — 

' p 

[g] 

I 

t*> 

1 

( 1 + AO 

I 

*7 

A* 
(1 + /") 

0 

r
P 

- 1 

r* 

0 

rp 

(1+0) 

La 

I 
A* 

I 

I 
(i+rt 

1 r 
(1 + A*)rfc 

(1 + A*) 
A* 

( 1 + AO 
A"V 

1 
0m 

1 

ri » 

(1 + rt 

,+ (l + p)rk 

(1+<")*•* 

1 
0m 

1 
9mrg 



2. SINGLE-STAGE VACUUM TUBE 
AMPLIFIERS, Z MATRIX 

APPLICATIONS 

(a) GROUNDED CATHODE AMPLIFIER 

In the preceding chapter we have derived a family of 
matrix relations for the vacuum tube. I t will now be in order 
to consider the practical implementation of matrix analysis 
to some typical amplifier design topics. The student may find 
it profitable to compare the rigorous and compact matrix 
analysis with the established classical methods/1 , 2 j 3) 

JGK 

Generator Active twoport L0ad 

F IG. 2.1a. Building blocks of the triode amplifier. 

F IG . 2.1b. Linear model of the triode amplifier. 
108 



SINGLE-STAGE VACUUM TUBE AMPLIFIER 109 

One may consider the simple amplifier in Fig. 2.1a as being 
synthesized from elementary building blocks, such as the 
driving generator, tube and load. The same physical ampli
fier can be represented as the linear model shown in Fig. 2.1b, 
where the familiar sign conventions apply. If we choose 
to describe the boxed active- twoport with the Z matrix para
meters, then, by reverting to eqn. (1.21) or to Table III , the 
mathematical model of the triode is evidently 

m GK \ " °1 (2.1) 

The gain and terminal impedances of the amplifier can be 
computed by applying the appropriate formulas from Table 
I in Par t I. 

We find the expression for the voltage gain Av: 

The corresponding elements from the matrix (2.1) are evi
dently 

Z. 21 ~l*rg> 

A 7 = rnr, 
9> 

9'V 
Substituting these into eqn. (2.2), 

A _ -t*rgZL 
v rgrp + rgZL ' 

Divide both numerator and denominator by rg 

(2.3) 

(2.4) 

Equation (2.4) may be put into a different form by divid
ing both numerator and denominator by /J,: 

-gmz>L 
l + (ZL/rp) 

(2.5) 

(2.2)
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If rp^>ZL which is generally true for tetrodes and pentodes, 
the eqn. (2.5) simplifies to 

Av ^ -Qm^L (2.6) 

Next, compute the input impedance Zin. Again from Table I, 

^z + ZnZL 
Zin = 

^22 + %L 
(2.7) 

Substitute for the Z parameters elements from the matrix 
(2.1): 

7 _ rgrp + rg^L 
in~ rp + ZL ■ 

Rearrange terms: 
(rP + ZL) 

(2.8) 

2 i n = rg (rp + ZL)' 

Zin = rg 

(2.8a) 

(2.9) 

which would be expected from physical reasoning. 
Finally, for the output impedance, from Table I, 

^ou t = 
^ Z + ^ 2 2 ^ G 

^11 + %G 
(2.10) 

Substitute into this expression the appropriate Z parameters 
from the matrix (2.1): 

2( out 
_ rgrp + rpZG (rg + ZG) 

rg+ZG
 P(rg + ZG)' 

Z, but ~~ rp 

(2.11) 

(2.12) 

This result is also consistent with physical reasoning. 
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(b) N E G A T I V E F E E D B A C K A M P L I F I E R 

A simple but efficient feedback configuration is shown in 
Fig. 2.2. The cathode current through impedance Zk gives 
rise to a negative feedback potential in series with the gene-

FIG. 2.2. Feedback amplifier with series negative feedback 
through Zh. 

rator VG. It will be practical to split up and redraw the boxed 
part [Z]A of the circuit diagram as shown in Fig. 2.3. We 
have now the familiar series-series type of twoport intercon
nection. The corresponding mathematical model can be syn
thesized by the algebraic summation of the constituent two-
port matrix parameters. 

By inspection, from Fig. 2.3, we can write down the mat
rix of the feedback impedance Zk: 

m = \zk zki 
K zhy (2.13) 

The second matrix, for the active twoport [Z]Gk has already 
been specified and given by eqn. (2.1). Hence, the mathe
matical model of the feedback amplifier [Z]A: 

[Z]A = [Z]Gh+[Z]k. (2.14) 
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FIG. 2.3. Feedback amplifier [Z]A synthesized from active and 
passive twoports [Z]GK and [Z]K. 

Writing this in expanded form as the algebraic sum of eqns. 
(2.1) and (2.13) for the right-hand part: 

Zv 

[Zh 
j + Zh) (rP 

r (rg+Zk) zk i 
U-Hrg + Zh) (rp + Zk)\ 

Z. 21 J2Z 

The gain and terminal impedances are next computed by 
simple algebraic manipulation. However, first we require to 
evaluate the determinant of the matrix (2.15); 

A= (rg + Zh)(rp + Zh)-(-prg + Zk)Zk, (2.16) 
A = Zh{rP + rg(l+/*)} +rgrp. (2.17) 

(2.15)
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Note tha t according to the adopted sign convention /i is a 
negative quantity. Furthermore, for practical vacuum tubes 
(.i ^> 1, and eqn. (2.17) simplifies to 

Az = Zh(rP+tJ>rg) + rprg. (2.18) 

We can now proceed to compute the voltage gain Av by 
substituting into eqn. (2.2) the appropriate elements from 
the matrix (2.15): 

A 
(-[irg + Zk)ZL 

Zk(rp + iirg) + rprg + (rg + Zk)ZL 
(2.19) 

Equation (2.19) may be simplified if rg ^> Zk. We proceed 
then by dividing both numerator and denominator by rg and 
rearranging terms: 

(2.20) 

Compare now this expression with eqn. (2.7), derived for 
the grounded cathode amplifier and note tha t by adding a 
negative feedback impedance the voltage gain has been re
duced by the factor \iZh in the denominator. 

Next, we can obtain the input impedance by substituting 
into eqn. (2.7) the appropriate elements from the matrix 
(2.15): 

7 Zk(rp + fArg) + rprg + (rg + Zk)ZL 

By rearranging terms, 

^ i n 
Zk(f*rg + rp + ZL) + rg{rp + ZL) 

rp + Zk + ZL 
(2.22) 

If Zk <$: (rp + ZL) then eqn. (2.22) reduces to 

(2.21)

(2.23)
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Compare eqns. (2.9) and (2.23) and note t ha t the negative 
series feedback resulted in an increase of input impedance 
by the amount indicated in the second term of eqn. (2.23). 

Finally, for the output conditions, revert to eqn. (2.10) 
and substitute into it the elements from the matrix (2.15): 

£ out 
%k(rp + fJ'rg) + rprg 

+ (rp + Zk)ZG 
rg + Zk + ZG Rearrange terms: 

7 Zk(itrg + rp + ZG) + rp(rg + ZG) 
VOUt Zh + rg + ZG 

(2.24) 

(2.25) 

If Zk <?c (rg + ZG) then eqn. (2.25) simplifies to 

(2.26) 

In comparing eqns. (2.12) and (2.26), we find tha t the ap
plication of the series negative feedback resulted in the in
crease of output impedance by the amount of the second term 
in eqn. (2.26). 
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3. THE SINGLE-STAGE TRANSISTOR 
AMPLIFIER DESIGN, APPLICATIONS 

OF THE h AND ABCD OR 
TRANSMISSION MATRIX 

PARAMETERS 

(a) INTRODUCTION 

This chapter deals with an amplifier design technique 
which utilizes the transistor hybrid h parameters, those which 
are frequently listed in manufacturer's da ta sheets or may 
be established by measurements. Matrix analysis will be 
used for manipulating the transistor and external circuit 
parameters as best suited to the problem at hand. The con
cept will be exploited whereby the transistor is considered 
as forming a link in the chain between generator and output 
networks. The passive four-terminal networks themselves 
are conveniently described by the general parameters of the 
transmission matrix. An analytical approach based on this 
philosophy, it is believed, yields a better "feel" of the tran
sistor's linear model and its inherent limitations. Further
more, the compact yet rigorous matrix analysis will contri
bute to a systematic and elegant mathematical procedure 
for solving the majority of amplifier design problems. 

(b) G E N E R A L CONSIDERATION OF D E S I G N 
T A R G E T 

When designing a linear AF or R F amplifier one is usually 
concerned with the establishment of quantitative data in 
respect of: 
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1. Current gain with specified generator and load termi
nations. 

2. Voltage gain with specified generator and load termi
nations. 

3. Input impedance of the transistor with specified load 
terminations. 

4. Output impedance of the transistor with specified gene
rator source impedance. 

5. Device dissipation and d.c. biasing conditions. 

Here we are concerned with items 1 to 4 only and it is 
tacitly assumed tha t the correct d.c. bias conditions exist. 

(c) INTERCONNECTING THE TRANSISTOR AND 
TERMINATING NETWORKS, DEFINITION OF 

PARAMETER MATRICES 

I t is well known tha t the transistor is a non-unilateral 
device. Therefore amplifier gain characteristics and terminal 
conditions are strongly interrelated. These will also be demon
strated later with mathematical reasoning. 

h ^ i 2 > > 

- ? — i ZG I—-n _ [ — ? — i — 9 

i. 

v, £^>) 

Passive 
- network 

(input) 

Active 
- network H 
(transistor) 

hn h|2 

h2, h22 

Passive 
- network 

(output) 

[A B 1 
LC DJ 

FIG. 3.1. The single-stage transistor amplifier, general 
configuration. 
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Consider a transistor amplifier in the most general form 
in Fig. 3.1a. A block diagram which conveys also the required 
basic information is shown in Fig. 3.1b. Of course, the t ran
sistor may operate in any of the conventional modes, t h a t 
is common-emitter, common-base or common- collector. Note, 
furthermore, tha t the transistor and terminating networks 
have been designated in Fig. 3.1b. with internal parameter 
matrices. The transistor appears to be "embedded" between 
the two "black boxes" containing the terminating networks. 
I t forms a link between these terminations. 

If taken separately with due consideration of the custom
ary sign convention, then either of the terminating twoport 
networks may be redrawn as shown in Fig. 3.2. 

1 

-h 

v, 

-

A 

C 

B 

D 

h^ 

+ 
v2 

— 

F I G . 3.2. The generalized t w o p o r t ne twork . 

The pair of equilibrium equations corresponding to this 
network model have been defined as follows: 

Vx= AV2+BI2, (3.1) 

I1 = CV2 + DI2. (3.2) 

Expressing eqns. (3.1) and (3.2) in matrix form, 

Reverting now to the remaining link in the chain, the 
middle "black box" stands for the transistor with the hybrid 
h parameters . A block diagram of this network with the 
customary sign convention is shown in Fig. 3.3. Here the 
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I. . ^ I 2 

o 
+ 

h2t 

h|2 

h22 

■ o 

+ 
v2 

FIG. 3.3. Twoport network with hybrid h parameters. 

dependent variables are the input voltage Vx and output 
current I2. 

Writing down the corresponding equilibrium equations, 

V1 = h11I1 + h12V2, (3.4) 

h21L + h22V2. (3.5) 

From these equations a two-generator linear model of the 
transistor may be synthesized as shown in Fig. 3.4. 

Ii I? 

o 

+ 
v, 

o 

h" 1 

0 0 
h|2V2 ^X 

1 i 

o [ 
h2lI, 

> 

h2 2 
1 

► 

—o 

+ 
v2 

—o 

Voltage —^ L— Current 
generator generator 

F IG . 3.4. Linear model of transistor with hybrid h parameters. 

(d) THE MATHEMATICAL MODEL OF THE 
T R A N S I S T O R AS ABOD MATRIX IN TERMS 

OF H Y B R I D h P A R A M E T E R S 

Equations (3.4) and (3.5) are not particularly attractive 
for the type of interconnection shown in Fig. 3.1. We have 
represented the transistor as an active twoport, linking the 
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input and output terminations. They may be looked upon 
as three twoports in cascade. Therefore, in order to establish 
the correct mathematical description of our system, we re
quire to specify them in terms of the A BCD matrix. In fact 
we need to be concerned only with the transformation of the 
transistor h parameters into A BCD format. By reverting to 
Chapter 3 in Par t I we find there the derivation of the appro
priate transformation: 

[i a-
An 
h 21 h0 

L h 
V22L 

21 h 21 

(3.6) 

This matrix will be now used to compute our amplifier trans
fer characteristics and terminal conditions. The linear model 
corresponding to matrix (3.6) may be drawn as shown in 
Fig. 3.5 which is essentially identical to Fig. 3.4 except for 
the reversal of the assumed direction of the output current I2. 

o ~-|jh 
+ 
v, 

o — 

© 
hi2V2 

. 4 

0 
< 

r—i 
J2i ] 

h 22 V2 

L_-
FIG. 3.5. Linear model of transistor with hybrid parameters 

after direction of output current I2 reversed. 

(e) I N P U T I M P E D A N C E 

In the simplest form the transistor and the cascaded load 
termination may be represented either as in Fig. 3.6 or as in 
Fig. 3.7. 

Consider first Fig. 3.6; the transmission matrix of this 
composite network is formed from the product of the indivi
dual transmission matrices. 
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' ' ?— 
A B 
C D I v2=o 

- Transistor - - Load -
impedance 

FIG. 3.6. Transistor amplifier with generalized load impedance. 

l-+ I2 

+ 
V, 

—'h 

"1 
X + 

v2 

-? 

Transistor Load 
admittance 

FIG . 3.7. Transistor amplifier with generalized load admittance. 

A 
C *1 X 

1 ZL 
0 1 

A (AZL+B) 
|_C (CZL + D)_\ 

(3.7) 

Transistor Load 
impedance 

Matrix product 

The equilibrium equation corresponding to the network 
configuration in Fig. 3.6, may be written down a t once: 

V l = AV2 + (AZL + B)I2, (3.8) 

(3.9) 

Note tha t these expressions are identical with eqns. (2.83) 
and (2.84) of P a r t i . 

From the ratio of eqns. (3.8) and (3.9) the input impedance 
may be readily obtained: 

z - F l 
11 v 2 =o 

AZL+B 
CZL + D' 

(3.10) 
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Substituting now from the transistor matrix (3.6) the 
applicable h parameters into eqn. (3.10): 

_ AhZL + hn 
L™- h22zL+i (3.H) 

I t is often convenient to consider the output load network 
as an admittance parameter. This will yield the type of 
block diagram shown in Fig. 3.7. 

The transmission matrix of this cascaded network is simi
larly obtained from the product of the trasnmission matrices 
of transistor and load admittance YT : 

A 
C 

I x l " 1 •l_fM + " r ' ) H ,3.12) Di, LTL IJ Uo + DYL) D\ 
Transistor 

-J L _J L 
Load 

admittance 
Matrix product 

From the matrix product (3.12) a pair of equilibrium equa
tions are readily obtained: 

F 1 = ( ^ + 5 F L ) F 2 + / 2 , 

I^iC + DY^Vz + DIz. 

(3.13) 

(3.14) 

The input impedance is defined as the ratio of eqns. (3.13) 
and (3.14): 

■Zin h 
A+BYL 

C + DYL ■ 
(3.15) 

Substituting into eqn. (3.15) the appropriate parameters 
from the transistor matrix (3.6), 

^ i n — 
A + hnYL 

h22+YL 
(3.16) 
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(f) O U T P U T I M P E D A N C E 

I t has been pointed out already tha t the transistor is a 
nonunilateral device. Consequently, the output impedance 
will also depend on the input termination. Consider the cas
caded network structure in Fig. 3.8, consisting of a gene
rator V1 with an internal source impedance of ZG and the 
transistor: 

Source -
impedance 

FIG. 3.8. Reversed current flow for the output impedance deri
vation. 

By definition, the output impedance is equal to the ratio 
of F 2 / / 2 - Therefore, when setting up the equilibrium equa
tions for this configuration, it will be necessary to choose 
V2 and J2 as dependent variables. I t will be also required 
tha t the conventional direction of current flow be reversed 
as shown in Fig 2.8. In terms of matrices; the input and out
put quantities are now related by the inverse of the trans
mission matrix of the transistor. Thus from eqn. (3.3) and 
Pig. 3.8, 

L/J"Lo D]h xLo iJxUJ 
I , 1 I , I l _ _ I 1 , I 

Output Inverse of 
transistor 

matrix 

(3.17) 

Source 
impedance 

input 
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Performing the inversion of the transistor matrix, from 
eqn. (3.17), 

where A = (AD — BC) = Determinant of the transmission 
matrix. 

When multiplying out the triple matrix product, the desired 
pair of equilibrium equations will be obtained: 

D DZG+B 
V%~ A Vl+ A h ' 

T _ C CZG + A T 

(3.19) 

(3.20) 

Note here also t ha t these expressions are identical with eqns. 
(2.87) and (2.88) in Pa r t I. Hence taking the ratios 

-'out 
DZG + B 

(3.21) 
|Vi_0 CZG+A-

I t is now an easy matter to substitute into eqn. (3.21) the 
applicable h parameters from the transistor matrix (3.6): 

Zt out h22ZG + A h 
(3.22) 

If h22ZG <z A, then for the purpose of engineering approxi
mations eqn. (3.22) may be simplified: 

(3.23) 

(g) CURRENT GAIN 

For the network model of the transistor amplifier in 
Fig. 3.6. the equilibrium equations (3.8) and (3.9) hold. 
Taking the ratio of I2/Ilf from eqn. (3.9), 

y2=o 

1 
CZL + D 

(3.24) 

(3.18)
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Substituting into this equation the applicable h parameters 
from the transistor matrix (3.6), 

h 
h 

21 
h22ZL+l (3.25) 

The negative sign in eqn. (3.25) is due to the direction 
assumed for the current flow. If h^ZL<^z \, then for the pur
pose of engineering approximations eqn. (3.25) simplifies to 

^ -h21, (3.26) 

which is, by earlier definitions, the short-circuit current gain. 

(h) VOLTAGE GAIN 

For derivation of the voltage gain formula it is convenient 
to revert to Fig 3.7 and the related equilibrium equation 
(3.13). Note tha t in this case the load is represented by the 
admittance parameter YL: 

From eqn. (3.13) by algebraic transposition, 

Vi 
(3.27) 

, , - . A + BYL-

Repeat here again the routine of substituting into eqn. 
(3.27) the appropriate h parameters from the transmission 
matrix (3.6) of the transistor: 

*21 

A+KiYL 
(3.28) 

The negative sign is at tr ibuted again to the adopted sign 
convention. 

Equation (3.28) may be put into a different form by re
membering tha t 

YL = l/ZL (3.29) 

Vl A 1. 1 ' 
(3.30) 
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Multiplying numerator and denominator by ZL, 

125 

(3.31) 

If \ZL <<c h1±, then for the purpose of engineering approxi
mations eqn. (3.31) may be simplified to 

(3.32) 

(i) POWER GAIN 

The operating power gain PG of an amplifier is defined as: 

PG = IGVG, (3.33) 

where IG = Current gain as defined in eqn. (3.25), 
VG = Voltage gain as defined by eqns. (3.28) or (3.31), 

hence the product of eqns. (3.25) and (3.28) will satisfy eqn* 
(3.33): 

PG = [~- ■ t21 , I f - >i kf v 1 . (3.34) 
[ A22ZL+1_|[ ^ + A n F L J ' v 

(3.35) 

Alternatively, the power gain is obtained from the product 
of eqns. (3.25) and (3.31): 

PG = r , *j^_ir_ ^ z \ 1 (3.36) 

(3.37) P G = (h2ZZL 

h2
21ZL 

+1) (AZL + M 
If, for a practical transistor amplifier one substitutes 

numerical constants into eqn. (3.37), then one will find tha t 
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generally hn ^> \ Z L . Therefore, for the majority of appli
cations, eqn. (3.37) may be simplified to 

(3.38) 

Further simplification will be possible if h22ZL« l . I n such 
cases eqn. (3.38) reduces to 

(3.39) 

In the above analysis, transistor and terminating networks 
have been considered in a generalized form. Therefore if they 
are complex, then in the power gain equations (3.35) to 
(3.39), inclusive, the real parts must be taken. 
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4. THE SINGLE-STAGE COMPOSITE 
FEEDBACK TRANSISTOR AMPLIFIER 

DESIGN, Y AND ABCD MATRIX 
APPLICATIONS 

(a) INTRODUCTORY REMARKS 
I t is well known tha t manufacturing tolerances of transis

tors are extremely wide. I t is not uncommon tha t the most 
significant parameter, the forward current gain /3, varies as 
much as 50-100% among transistors of the same type. This 
state of affairs prompted amplifier designers to seek relief 
by the exploitation of negative feedback stabilization tech
niques. An impressive array of literature exists already and 
deals with several aspects of gain stabilization and lineari
zation. Some of the outstanding and most readable contri
butions towards a clear mathematical formulation and design 
procedure of specific transistor feedback amplifiers will be 
found in references (1) to (8), inclusive. 

At high-frequency operation, in addition to stabilization 
problems due to the wide variation of intrinsic current gain, 
various other factors appear, which also require attention; 
notably, the external stray capacitances and lead induc
tances. These parasitic elements may become very annoying 
with printed circuitry and high-density packaging tech
niques. In fact they could completely mask the intrinsic re
verse and output admittances of the transistor. 

With the intent of predicting more confidently the perform
ance of any type of transistor feedback amplifier, we will 
a t tempt to tackle here the amplifier design problem in a 
broad, general fashion. To this end a linear model of the tran
sistor amplifier is constructed, featuring simultaneous series 
and shunt feedback paths. A rigorous mathematical expres-
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sion of this model is then derived in terms of the resistive 
transistor parameters, external feedback, load and generator 
admittance matrices. The complete transistor amplifier per
formance, including gain as well as input and output impe
dances, is derived with matrix analysis as the vehicle. Mean
ingful results are obtained in terms of realizable impedance 
ratios, thus clearly identifying the controlling mechanism 
and interplay of the individual feedback paths. By simple 
manipulation of the impedance ratios, the gain, stability, 
linearity and terminal impedances of the amplifier may be 
virtually tailored to the requirements of the designer. The 
physical transistor parameters will enter as second order 
quantities only. 

The problem of approximations has also been adequately 
dealt with. Furthermore, the limiting conditions are con
sidered in detail when either shunt or series feedback is the 
dominating factor, resulting in further significant simplifi
cation of the basic design equations; thus yielding in this 
process a whole range of approximate formulas, which are 
all applicable to practical engineering design work. 

(b) FORMULATION OF THE A M P L I F I E R DESIGN 
T A R G E T 

The assignment of a linear transistor- amplifier design 
usually carries a set of tight specifications as to gain, band
width, stability, and input and output impedance levels. 
Unfortunately, more often than not, the transistor itself is 
the least predictable link in the whole system. Established 
design procedures take advantage of negative feedback sta
bilization techniques, both a.c. and d.c. types [references (1) 
to (8) inclusive]. Figure 4.1 shows schematically the simplest 
amplifier configuration with series, or emitter feedback, pro
duced by the impedance element Ze. I t is assumed tha t the 
correct base and collector bias conditions exist. The bias 
network, of course, can be absorbed in the generalized source 
and load impedances Zs and ZL respectively. 
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The shunt feedback variety of stabilization is illustrated 
schematically in Fig. 4.2, where ZR is the generalized collec
tor to base feedback impedance. Here again the d.c. biasing 
network is absorbed in the impedances ZR, Zs and ZL res
pectively. 

V2 ZjLoad 

Series feedback 

Generator 

F I G . 4 .1 . Amplifier wi th series feedback. 

Shunt feedback . 

<m—°-

+ I I 

+ 

0 
T 

Load 

Generator 

F I G . 4.2. Amplifier wi th s h u n t feedback. 

I t is well understood tha t at sufficiently high operating 
frequencies, generally both feedback types may simultane
ously exist; firstly through the internal elements of the tran
sistor itself and next via the external collector- to- base stray 
capacitances and emitter lead reactances. Therefore, it would 
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appear to be logical to include these strays into the general 
system of simultaneously acting series and shunt feedback 
paths as shown in Fig. 4.3. 

Shunt feedback 
element 

JQ-

4-

+ 
l 6 Vs 

~r I 
Load 

-Series feedback 
element 

Generator 

F I G . 4.3. The single-stage t rans is tor amplifier wi th composite 
feedback. 

As the next step, assume tha t unique, yet simple, mathe
matical relations could be established between feedback ele
ments, terminating impedances and dominant transistor 
parameters. I t will be demonstrated by means of some ele
mentary matrix and algebraic manipulations tha t it is indeed 
so. The student will find tha t once the desired mathematical 
forms have been obtained, then feedback amplifiers can be 
confidently designed with respect to the predicted gain and 
terminal impedances. In the final results, the physical para
meters of the transistor will enter only as second order quan
tities or even be negligible. 

(c) SYNTHESIS OF THE COMPOSITE FEEDBACK 
A M P L I F I E R 

Prom the large assortment of possible linear twoport 
representation of the transistor [references (9), (10), (12) and 
(13)], the resistive T model has been selected for reasons of 
its simplicity and adequacy for mathematical processing. 
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Reverting now to Fig. 4.3 and redrawing this schemati
cally to suit our purpose, a linear model can thus be synthe
sized as shown in detail in Fig. 4.4. Inside the large boxed 
area, we have our active twoport, consisting of the intrin-

Generator 
- Transistor with feedback networks -

connected 

I Actr Active twoport 

F I G . 4.4. Linear model of transistor amplifier with composite 
feedback. 

sic transistor T network, with series feedback impedance 
ZE and shunt feedback admittance YR. Note also tha t the 
generator and load terminations are now designated as 
admittances, since 

and Y^T, 
This linear model will eventually yield the basic and compre
hensive mathematical description of our system, and which 
will be suitable for further processing. 
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(d) D E T A I L E D M A T R I X A N A L Y S I S 

Having synthesized a composite feedback amplifier by the 
interconnection of the individual building blocks, it will be 
next required to define the system in mathematical terms. 
The topology of the network model in Fig. 4.4 calls for the 
application of the admittance matrix. 

i, 
^ rb 

o W v f 
+ 

< > 

o 1 o 

FIG. 4.5. Active twoport as resistive model of the common-
emitter transistor. 

I t is well known tha t the transistors, as with any other 
linear twoport structures, can be described mathematically 
in terms of various matrix parameters. Because of the simp
lest physical interpretation, the one generator resistive T 
configuration has been selected in this study. Figure 4.5 
shows this elementary but adequate network model with 
appropriate parameter and sign notation. The transmission 
matrix of this structure has been derived elsewhere(12) and 
defined: 

\ A B~] =
 1 \(re + rb) rb(re + rd) + rerd(l + P) 

IG D]CE~ re + prdl 1 (re4 rd) 
(4.1) 

rd=(l-oc)rc^^j. 

As a first step towards sophistication of this simple transis
tor model, consider the addition of a series emitter feedback 
impedance Ze as shown in Fig. 4.6. Let ZE = (Zei-re). The 
general validity of the transmission matrix (4.1) will still 

-Wv-
l'ii<d 
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- Added series feedback 
impedance element 

FIG. 4.6. Active twoport resistive model with emitter feedback 
impedance element added. 

hold if we substitute ZE for re. Thus for our active twoport 
model with emitter degeneration, we may write down the 
transmission matrix 

_J__r(ZE + rb) 
ZK + fal 1 

rb(ZE + rd)i-ZErd(l + P) 
(ZE + rd) } 

(4.2) 
[1 3 -
CE with 
series 
feedback 
For an amplifier configuration which features shunt feed

back in addition to the series element Ze, it is convenient 
to manipulate the mathematics in terms of admittances. 
Therefore we will proceed to transform the transmission 
matrix (4.2) into a Y matrix. By applying the elementary 
rules of matrix transformation or using tables, in Par t I, 

m 
B 

1 
~~B 

B 
A 
B 

(4.3) 
transistor 
CE with 
series 
feedback 

where the admittance parameters are defined as 
Yi — input admittance, 
Yr = reverse transfer admittance, 
Yf = forward transfer admittance, 
Y0 — output admittance. 
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To evaluate the admittance parameters, substitute the 
approprite elements from the transmission matrix (4.2) into 
the right-hand part of eqn. (4.3), thus obtaining 

ZE A = -=—-j-q— : Determinant of the 
A E "i" Prd transmission matrix 

Y =D= (Z
E + rd) 

1 B rb(ZE + rd) + ZErd(l + (})' 

Y = —— — -1 r — r> — 

Yf = 

Yo = 

B 

B~ 

Z, 
rb(ZE + rd) + ZErd(l + (l) 

(ZE + Prd) 
rb(ZE + rd) + ZErd(l+p)' 

(ZE + rb) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
B rb(ZE + rd) + ZErd(l +fr

it is now a good time to stop and consider the magnitudes 
involved in the above expressions. One will find in any 
physical transistor amplifier that 

ZE <K rd and / ? » 1 
Therefore eqns. (4.5) to (4.8) will substantially simplify. Yet 
the parameters are still sufficiently accurate for all engi
neering applications. 

Hence the final forms of the twoport parameters are 
1 (4.9) Yi = 

Yr = 

rb + PZE' 
ZE 

rd(rb + pZE) 

(rb + PZE): 

(ZE + rb) 

(4.10) 

(4.11) 

(4.12) 0 rd{rb + 0ZE)-
Finally substitute eqns. (4.9) to (4.12) into the matrix (4.3): 

1 ZE 

[Y] = 
OE with 
series 
feedback 

rd(rb + pZB) 
(ZE + rb) 

l(rb + pZE) rd(rb + pZE) J 

(rb + fiZE) 
(4.13) 



FEEDBACK TRANSISTOR AMPLIFIER DESIGN 135 

We have now in matrix (4.13) a satisfactory mathematical 
model of the transistor with emitter impedance degeneration. 

Next, the admittance matrix of the shunt feedback element 
YR must be specified which is also inside the boxed area 
of our active twoport. By definition, the admittance matrix 
of YR is 

[YR] 
r YR -YRI 
I-YR YR J 

(4.14) 

I t is now evident tha t the sum of matrices (4.13) and (4.14) 
yield the admittance matrix of the linear model of our com
posite, active twoport. 

l i 

y 

[Y] = 
CE with 
composite 
feedback 

1 
(rb + pZE) 

P 
(rb + PZE) 

—\r 
+ YR -

Z* 

-Y 

\ _ 

rd{rb + pZE 

(rb + ZE) 
R rd(rb + PZE) 
/ \ 

- F x 

+ T, 
(4.15) 

21 
1 
^22 

I t remains to specify the admittance matrices of the generator 
and load terminations. Using again elementary rules of mat
rix algebra, 

Source admittance matrix. (4.16) 

Load admittance matrix. (4.17) 

Finally, a complete mathematical description of the ampli
fier is obtained by the summing up of the admittance mat
rices (4.15), (4.16) and ((4.17): 

IY] = 
CE 
feedback 
amplifier 

1 
(rb + pZE) 

P 

+ YR+YS 

(rb + pZB) 
-Yr 

rd(rb + pZE 

rb + ZE 

-Yr 

rd(rb + PZE) + YR+YL 

(4.18) 
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This appears to be a rather bulky expression. Fortunately, 
substantial simplifications are possible, for the following 
reasons. If one considers the range of magnitudes encountered 
in a practical transistor feedback amplifier, one will find 
tha t for any physical amplifier configuration, 

(rb + ZE) 
rd(rb + pZE) 

«(YR+YL) (4.19) 

Similarly, when combining reactive reverse parameters of 
the transistor with the external element Y R> 

z, 
rd(rh + pZE] 

«YT (4.20) 

Because of the validity of inequalities (4.19) and (4.20) it is 
perfectly legitimate to omit the first terms in the elements 
Y12 and Y22 of the matrix (4.18). Thus the admittance matrix 
of the complete feedback amplifier simplifies to 

[Y] = 
CE 
feedback 
amplifier 

(rb + PZE) 

P 
(rb + pZE) 

+ YR+YS 

YR YR + Y, 
(4.21) 

With similar reasoning, the parameter matrix of the active 
twoport can also be simplified. 

Thus eqn. (4.15) reduces to the very compact form 

y 

[Y] = 
CE with 
series and 
shunt 
feedback 

1 
(r„ + PZE) 

.(rb + pZE) 
\ 

\ l 
+ YR -Yj 

-YR YR 

f \ 
22 

(4.22) 

Using now matrix (4.22) to describe the active twoport in 
our feedback amplifier, a new and simplified linear model can 
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be synthesized as shown in Fig. 4.7. Compare this model 
with the block diagram Fig. 2.3 of Chapter 2 in Pa r t I. The 
symbolic parameter equivalence will be at once apparent. 
Therefore the gain, input and output impedance formulas of 
the Y parameter twoport are directly applicable to our model 
of a physical transistor feedback amplifier. 

+ 

<PB 
"T 

Generator: 
l_ 
Zs 

"~l 

1 
ZR 

I 

0 0) 
rb*PZE 

I 
I I 

Composite feedback amplifier r Active twoport 

M + 

Load=4 

FIG. 4.7. Linear model of the composite feedback amplifier with 
generator and load terminations in terms of admittance para

meters. 

By reverting to Table I in Pa r t I, with a systematic sub
stitution into the standard forms of the appropriate elements 
from the matrix (4.22), we can derive a whole range of 
meaningful design equations. 
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(e) CURRENT GAIN 
From Table I in Part I the current gain in terms of admit

tance parameters is 

A = — 
Y21YL 

where AY = Determinant of the matrix (4.22): 

(4.23) 

Ay = ;+F«)M rb + pZE 
YR)(-YR), 

AY = (1 + /J). 

(4.24) 
(4.25) 

(4.26) 

Since j 3 » l , eqn. (4.25) simplifies to 

A PY" 

Now by simple algebraic substitution into eqn. (4.23) from 
eqns. (4.22) and (4.26), 

\K+WrE-YR) 
Wt 

■+ -+Yi 
(4.27) 

rb + 0ZE ' \rb + 0ZE ' ~R 

Divide numerator and denominator by YL, then multiply 
numerator and denominator by (rb + j3ZE): 

p-(rb + pZE)YR A 
p*B- + l + (rb + pZE)YR 

(4.28) 

Express eqn. (4.28) in terms of impedance ratios and re
arrange. Remember that YR — (1/ZR) and YL — (ljZL). 

(4.29) 
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For all engineering applications eqn. (4.29) can be desig
nated as an exact expression. Generally, the ratio of rb/ZR is 
a second or third order quantity and, consequently, for the 
broadest applications, eqn. (4.29) reduces to 

(4.30) 

Under conditions where either series or shunt feedback is 
absent, eqn. (4.30) reduces to very simple form: 

With shunt feedback only, that is ZE -*- 0, 

1st approximation: At 

2nd approximation: At 

l + P(ZL/ZR) 
ZR 
ZL' 

(4.31) 

(4.32) 

With series feedback only, that is ZR — oo, 
1st approximation: A{^ —/?. (4.33) 
Note that with series feedback only, the current gain is prac
tically independent of the feedback impedance. 

(f) VOLTAGE GAIN 

From Table I in Part I, 
v 

A„ = — 
Y^+Yr 

(4.34) 

Substitute now for Y21 and Y22 the appropriate elements 
from the parameter matrix (4.22): 

Pl(rh + PZE)-YR Av~ ' YR+YL ■ 
Multiply numerator and denominator by (rb + (5ZE): 

P-(rb + pZE)YR Av — (rb + [SZE)(YR+YL) 

(4.35) 

(4.36) 
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Expand the products and rearrange terms as impedance 
ratios: 

(4.37) 

For a composite feedback amplifier the ratio of rb/ZR is 
generally a second or third order quantity, hence for practi
cal engineering design purposes eqn. (4.37) reduces to the 
simpler form 

(4.38) 

For those applications where either the series or shunt feed
back dominates, eqn. (4.37) simplifies: 

With shunt feedback only, tha t is ZE-+0, 

pzL 1st approximation: A„ = — — 
re(l + (3(ZLIZR)) 

With series feedback only, tha t is ZR -► °o, 

ZL 
1st approximation: A~ ~ZE + (rbIP)-

ZL 2nd approximation: Av % — -~-. 

(4.39) 

(4.40) 

(4.40a) 

(g) INPUT IMPEDANCE 

Reverting to Table I in Par t for the expression of input 
impedance in terms of Y parameters, we find 

Zv 
r 2 2 + 7 i 

11^ L 
(4.41) 



FEEDBACK TRANSISTOR AMPLIFIER DESIGN 141 

Substituting again eqn. (4.26) into eqn. (4.41) for AY and 
the appropriate elements from the parameter matrix (4.22), 

Zir, = 
YR+YZ (4.42) 

PYR/(rb + pZE) + [ll(rb + PZE)+YR]YL 

Multiply both denominator and numberator by (rb + pZE): 

_ _ (rb + pZE)(YR + YL) 
~i n pYR+YL + (rb + pZE)YRYL ' 

Expand the products; 

rbYR + pZE7R + rbYL + pZEYL Z\n — PTR+TL+rhYRYL + pZETR7L 

(4.43) 

(4.44) 

Divide numerator and denominator by YL, then rearrange 
terms and finally express admittances with the reciprocal 
impedances. 

(4.45) 

This is an exact expression which contains a number of second 
order terms, such as ZE\ZR in the denominator and ZLjZR 

the last term in the numerator. Therefore, for the majority 
of engineering applications eqn. (4.45) simplifies to 

(4.46) 

If either series or shunt feedback is negligible, then eqn. 
(4.46) further simplifies: 

With shunt feedback dominating. This corresponds to the 
condition when Ze —- 0, Consequently, ZE = re. 
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Z~ t ru\ 
\ + re 

1st approximation: Zh 

2nd approximation Zh 

Zh ('•♦?> 
1 + ZR 

ZL 

pzL K) 
With series feedback only, tha t is ZR 

1st approximation: Zin ^ [}ZE-\-rb. 
2nd approximation: Zin ^ fiZE. 

(4.47) 

(4.48) 

(4.49) 
(4.50) 

(h) OUTPUT IMPEDANCE 

From Table I in Pa r t I , we can write down the expression 
for output impedance in terms of our linear model in Fig. 4.5: 

^out = A ^ x r v • (4-51) 

Use again the substitutions from the parameter matrix (4.22) 
and eqn. (4.26): 

+ YR+YS 

Zout — 
(rb + PZE) 

PYf 
(4.52) 

+ YSY S-* R (rb + PZE) 
Multiply first numerator and denominator by (rb + ftZE), then 
divide by Ys: 

4~ + rb^-h pZE^ + rb + PZE 

^out 
f}I* + rbYR + pZEYR 

(4.53) 

Express the admittances in terms of reciprocal impedance 
parameters and rearrange terms: 

^ou t — 

\ZR %R) ZR 

(4.54) 
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This is again an exact expression which contains a number of 
second and third order terms, such as the terms rb/ZR in 
the denominator and ZS/ZR in the last bracket of the nume
rator. Hence for all engineering applications, eqn. (4.54) simp
lifies to 

(4.55) 

This equation again further simplifies if only one kind of 
feedback is acting. 

With shunt feedback dominating. 
Under these conditions Ze =^ 0. 
Consequently ZE = re. From eqn. (4.55) 

1st approximation: Zout 

2nd approximation: Zout 
Z* 

- + re P eZs 

(4.56) 

(4.57) 

(i) CONCLUDING REMARKS 

The above analysis has been carried out in terms of gene
ralized parameters. Therefore the results are valid for any 
type of physical network configuration. Thus the individual 
blocks or elements may be resistive, reactive or complex. 
If the dominating parameters in the operating region are 
resistive, then a single-stage amplifier can be considered as 
an absolutely stable twoport. However, if the terminating 
elements have reactive components, then certain combina
tions will yield negative input impedance, thus the system 
becomes unstable. An extensive t reatment of the stability 
problem will be found in references (10) and (13). 

The following Table IV summarizes the pertinent termi
nal characteristics and design equations of the composite 
feedback transistor amplifier. 
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5. THE TRANSISTOR VOLTAGE 
FEEDBACK PAIR, h MATRIX 

APPLICATIONS 

(a) SYNTHESIS OF THE MATHEMATICAL 
MODEL 

An amplifier configuration which is particularly useful 
when high input and low output impedances are desired is 
the series-parallel feedback type as shown in Fig. 5.1. In 

FIG. 5.1. The voltage feedback pair, simplified schematic. 

accordance with the adopted building block concept, we 
can consider tha t this amplifier circuit has been synthesized 
from a unilateral amplifier and a bilateral passive feedback 
twoport. When cut apart, these building blocks are of the 
form as shown in Fig. 5.2a and Fig. 5.2b. 

With regard to the amplifier twoport we can make the 
valid assumption tha t the reactive components of the input 
and output impedances are absorbed by the external gene-

147 
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rator and load impedances. As the next step, we can replace 
the cascaded transistor pair with an equivalent single resis
tive model as shown in Fig. 5.3, where the composite current 

II ^ 
o 
-f 
v, 
-

r i 

4 Q, 

\ > } 
°2 

[-6 lzy 

T 
L JA J 

Mk 
1 o 

+ 

v2 

-

FIG. 5.2a. The amplifier section and twoport notations. 

—VW-

v2 

WPB .J 
F I G . 5.2b. The passive feedback twoport. 

FIG. 5.2. The voltage feedback pair split up into active and 
passive twoports. 

gain /?0 is by definition the product of the short-circuit cur
rent gains of transistors Q1 and Q2 respectively. That is 

AIQ = /5i/?2 = /50. (5.1) 

If we conveniently stipulate tha t the load impedance ZLl 

of the first transistor is the input impedance of the second 
stage, then the voltage gain Avo in the absence of negative 
feedback is very nearly 

Anl ( ( An 2 
Av Vo 0102 (5.2) 
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r 
J L * 1 rbl 
o I ' V V v—i 

v, 

-
~**| r,|B, > \\J <,rd2 

M i 

L „. .H. 

mh 

+ 
-*—1 v2 

FIG. 5.3. Linear resistive model of the active twoport. 

which can be written as 

Po Z (5.3) 
m i 

where Zinlis the input impedance of the first stage and ZL is 
the load impedance of the second stage. In terms of resistive 
transistor parameters 

2im = rhl + relfilf (5.4) 
where, by definition rbl and rel are the base and emitter 
resistances of transistor Q1. 

We restore now the connections between the amplifier and 
feedback network and redraw the composite circuit as shown 
in Fig. 5.4. Observe, that this is now a series-parallel type 
of twoport interconnection. From our studies in Part I we 
remember that such an interconnection calls for a mathema
tical model in the h matrix domain. Therefore, the equilib
rium equation of the feedback amplifier in matrix form is 

L/2J=U! CJl/J' (5-5) 

or in more compact notation 

[':]-<]■ (5.6) 
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where the matrix h, of course, stands for the mathematical 
model of the feedback amplifier. Actually, this matrix is 
made up from the algebraic sum of two matrices: 

[h] = [h]A + [h]FB. (5.6a) 

The matrices [h]A and [h]FB s tand for the active and passive 
twoports in Pigs. 5.2a and 5.2b respectively. 

+ 

0 
VG 

Synthesized feedback amplifier — 

F I G . 5.4. Twoport representation of the voltage feedback pair. 

In applying the h parameter constraints to the linear 
model of the amplifier twoport in Pig. 5.3, we obtain for [h]A 

h 11a h 12a 

p i n i 0 1 
WA=\ . 1 (5.7) 

"1 la 
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With a similar algebraic process applied to the feedback 
twoport in Fig. 5.2b, 

[h]FB = 

R1R2 

R± + H>2 - " 1 ~^~ **2 

Rx 1 
lR1 + R2 Rx + R2 

(5.8) 

'216 v21b 

The complete mathematical model of the feedback pair is 
now easily synthesized by algebraic summation of matrices 
(5.7) and (5.8): 

h l i '12 

[h] = 
^inl + 

A> + 

R±Rz 
R±-\-R2 

Bt 
i?1 + i?2 

+ ■■ 
l 

Bt + B2 Zo2 Rx + R^i 

(5.9) 

"21 ^22 

This mathematical model completely defines the internal 
characteristics of the feedback amplifier as shown within the 
boxed area in Fig. 5.4. The gain and terminal impedances 
with arbitrary generator and load terminations are easily 
derived in terms of these parameters. 

(b) VOLTAGE GAIN 

In reverting to Table I we find the desired equation for 
voltage gain of the terminated twoport in terms of h matr ix 
parameters: 

Av — (5.10) 
4i +Any

where h21 and h±1 s tand now for the corresponding elements 
in the matrix (5.9). However, before we can make use of this 
expression, it will be necessary to evaluate the determinant 
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Ah of the matrix (5.9). Hence, by cross-multiplication and 
subtraction of the diagonal terms, 

^1 , f Rl } 2 , ^in l , ^1^2 
y^o- - + R1-\-R2 )R1 + R2( Z02 (R1 + R2)Z{ + 02 

+ -
Zx 

- + : 
RXR2 

R1 + R2
i (i?1 + i?2)2 ' 

After rearranging terms, 

(5.11) 

^h = Po 
R± RXR2 

R\ + Ri R\ + R"i I (-^I~f~^2)^2 %i\ 
Rx 

- + 7JT- + - -+-z i n l 

^02 xij + i? R\R2 \ 
(5.12) 

This expression looks rather formidable, but fortunately we 
can substantially simplify it, because in any physical feed
back amplifier the following inequality holds: 

fio » 1. (5.13) JQR1 + R2 

Therefore in eqn. (5.12) the first term dominates. Hence, 
for the purpose of all engineering applications, eqn. (5.12) 
may be simplified to 

(5.14) 

We can now proceed in evaluating the voltage gain of the 
feedback pair. Revert to eqn. (5.10) and substitute from the 
matrix (5.9) the appropriate elements and eqn. (5.14) for Ah: 

Po + 
Bi 

R±-\-R2 

Po l^B2
+{Z^ + 

E1B2 1 
(5.15) 

R,-\-R<> ) in R1-\-R2^ 

Multiply through both numerator and denominator by ZL: 

h>o^L-r-p 
Ay = 

R1-{-R2 

PoZ '0"L 
* 1 

R1-\-R*t 
+zinl+ 

RXR2 

Ri -f- R2 

(5.16) 
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Note tha t the second term in the numerator is negligible in 
relation to the first term. Therefore, by omitting it and re
arranging the numerator, 

Av = PoZL 
[i?1/(i?1 + i?2)](iff0ZL + ii!2) + Z i n l 

(5.17) 

This expression is substantially accurate for practical feed
back amplifiers. However, for the purpose of engineering 
approximations, it can be further simplified, since generally 

fi0ZL ^> R 2 . 
Therefore, from eqn. (5.17), 

(5.18) Ay = PoZL 

P°ZLB^B2
+ZI^ 

If the first term in the denominator is very large, eqn. (5.18) 
reduces to 

(5.19) 

Note tha t the voltage gain is essentially independent of the 
intrinsic transistor characteristics. 

(c) CURRENT GAIN 

From Table I, we obtain the expression for current gain: 

h0 AT= — '21 (5.20) l + h22ZL 

By simple algebraic substitutions from the matrix (5.9) for 
the elements h21 and h22 in eqn. (5.20), 

A, = - - JBJ + 7^2 

1 + 1 
■ + 

^02 ^ 1 + ^ 2 

(5.20a) 
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Multiply through numerator and denominator by (B1+B2): 

At 
(R1 + B2) + (B1 + B2)^ + ZL 

•^02 

(5.21) 

Note tha t the last term in the numerator is now quite neg
ligible, hence it can be omitted. We can put eqn. (5.21) into 
a more convenient form by dividing both numerator and 
denominator again by the factor (R1+E2) and we get 

A l I + ZLIZ^ + ZLKB. + B,) 

Rearrange te rms: 

AI = 
A> 1 

L\Z02 B]L + B2j 

(5.22) 

(5.23) 

For practical feedback amplifiers, 

« 1 » z, 
02 {B^B2) 

Hence eqn. (5.23) simplifies to the approximate form 

Aj^ -fa (5.24) 

Note tha t the series-parallel feedback does not stabilize the 
current gain against transistor parameter variations. 

(d) INPUT IMPEDANCE 

We find from Table I the expression for the input impe
dance : 

1 
Ah + k l i " 

^22 + 

(5.25) 
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Substituting from the matrix (5.9) for the elements hn and 
h22 and eqn. (5.14) for Ah, 

fio Si 

%m — 
R1 + R2 

+ <% R1 + R2) ZL (5.26) 

- + + -Z02 i?i + R2 % 
Multiply through both numerator and denominator by ZL: 

POZL-
R-, „ RA RO 

Zir] 

Rearrange terms: 

' R± + R2 R±-\-R2 

z, ■+ z, 
(5.27) 

ZQZ RI + R; 
+ 1 

Ri 

Zin = 
R R (PoZL + Rl) + Zln 1 

1 + & + 
Zr 

Z02 R1 + R2 

(5.28) 

This last expression is quite accurate for all design applica
tions. Note, however, tha t the term Zinl in the numerator 
is small in comparison with the first group of terms. Simi
larly, the fractional terms in the denominator are generally 
very much less than unity. Therefore, for routine engineering 
approximations, eqn. (5.28) simplifies to 

(5.29) 

Note tha t the input impedance of the h type feedback amp
lifier is very high. 

(e) OUTPUT IMPEDANCE 

Reverting again to Table I for the formula of the output 
impedance, 

vout Ah + h22ZG ' (5.30) 



156 BASIC MATRIX ANALYSIS AND SYNTHESIS 

Substitute here for the elements hlv h22 and Ah as before: 

B^.+zG 
^out — 

R1-\-R2 

PojAr+l± + --
(5.31) 

Zr iR1-\~R2 ' | Z 0 2 ' R1 + R2$ 

Multiply numerator and denominator by (R1+R2): 

^out 
^inlC^l + R2) + R}R2 + ZG(R1 + i?2) 

z, A) ̂ 1 + -y— (^1 + ^2) + ZG 
A)2 

Rearrange terms: 

{R1 + R2) (Zin i + ZG) + 1 ^ 2 
^out — 

/?„*! +Z G i l + R\ -\- R2 

^02 

(5.32) 

(5.33) 

Divide through numerator and denominator by Rx: 

iRo 
+ 

^out r*l / 4 ( îni + ZG)+*» 

*&%$+>} 
(5.34) 

In practical feedback amplifiers R2^>R1; therefore, eqn. 
(5.34) can be simplified to 

(5.35) 

For engineering approximations this expression can be fur
ther simplified. First by rearranging denominator and omit
ting the unity term 

^out — (5.36) 
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and furthermore, if Z02 » B2, then eqn. (5.36) will reduce to 
the simple form 

(5.37) 

We note in conclusion, t ha t the output impedance of the h 
type feedback amplifier is very low. 

(f) S U M M A R Y OF T E R M I N A L P R O P E R T I E S , 
(TABLEJ V) 

The important analytical results pertaining to the h type 
transistor feedback pair is summarized in Table V. Circuit 
parameter definitions are related to the functional block 
diagrams which are self-explanatory. 

R E F E R E N C E S 

1. A. J. COTE J R . and J. B. OAKES, Linear Vacuum Tube and Transistor 
Circuits, McGraw-Hill, New York, 1961. 

2. L. D E P I A N , Linear Active Network Theory, Prentice-Hall, Engle-
wood Cliffs, 1962. 

3. M. V. JOYCE and K. K. CLARKE, Transistor Circuit Analysis, Addi-
son Wesley, Reading, 1961. 
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6. THE TRANSISTOR CURRENT 
FEEDBACK PAIR, g MATRIX 

APPLICATIONS 

(a) S Y N T H E S I S OF T H E M A T H E M A T I C A L 
MODEL 

The current feedback pair features low input impedance 
and high output impedance. These will be quite evident in 
the course of our study. The basic circuit diagram is shown 
in Fig. 6.1. I t is taken for granted tha t the correct d.c. 
biasing conditions exist. We can look upon this amplifier 

FIG. 6.1. The current feedback pair, simplified schematic. 

configuration as having been synthesized from a unilateral 
two-stage transistor amplifier and a bilateral feedback two-
port of resistors Rf and Re. Furthermore, we can legitimately 
assume t h a t the reactive components of each transistor, if 
any, are lumped into the impedances ZG and ZL respec
tively. As a convenient design simplification, we also assume 
tha t the interstage load impedance ZLl includes, and is 

159 
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dominated by, the input impedance of the second transistor 
Q2. If we remove now the feedback elements Rf and Re, we 
are left with an active twoport in the form of the conven
tional amplifier as shown in Fig. 6.2a. The resistive feedback 

0 

+ 
v.p 

f "1 

H Qi 

) ; 

o2 j 

r©l 
L "& J 

*A-
+ 
Vj 

FIG. 6.2a. The amplifier section and twoport notations. 

+ 
v, 

r 

i 

Rf 
s/W t 

R.> 

WPB 

1 

1 
1 

4" 
v2 

FIG. 6.2b. The passive feedback twoport. 

F IG . 6.2. The current feedback pair split up into active and 
passive feedback twoport. 

network can be redrawn separately as a passive twoport and 
is shown in Fig. 6.2b. 

Having bisected the physical amplifier into independent 
active and passive twoports, it should now be instructive to 
re-combine them in accordance with the already familiar 
twoport notations. If we do so, the circuit block diagram is 
obtained as shown in Fig. 6.3. We note tha t this is a parallel-
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series type of interconnection. Therefore, it calls for a mathe
matical model in the g matrix domain. 

We have since stipulated that for the operating range of 
interest, our active twoport model is unilateral. Consequently, 

t) •-€) 
w. 

I J 
Active twoport 

Rf 
- A / W -

"1 

R«< 

WPB 
I I 

Passive twoport [g] 

+ 

V2 zj 

Synthesized feedback amplifier T 

FIG. 6.3. Twoport representation of the current feedback pair. 

in reverting to Fig. 6.2a, we can state that the short-circuit 
current gain of the cascaded stages can be expressed with 
good accuracy as the product of the individual current gains. 
That is 

^/o = Aft = Ar (6.1) 
Similarly, the overall voltage gain is very nearly 

(6.2) 

(6.3) 



162 BASIC MATRIX ANALYSIS AND SYNTHESIS 

where Z[n x and Zin 2 are the input impedances of the first and 
second stages respectively. In terms of transistor constants 

and 
^ i n l = rbl + reiPl (6.4) 

(6.4a) 

where rb and re are the base and emitter resistances res
pectively. 

F IG . 6.4. Linear resistive model of the^ active twoport. 

Using eqns. (6.1) and (6.4), we can construct a resistive 
model of the composite amplifier as shown in Fig. 6.4. The 
output impedance is tha t of the second transistor Q2, which 
is by definition 

T 
&02 = rd2 ~ ~a~ • 

Pi 

For the complete feedback amplifier in Fig 6.3, the equilib
rium conditions are defined by the matrix equation 

or 

(6.5) 

(6.6) 

where the matrix [g] stands for the mathematical model of 
the amplifier. In other words it is the algebraic sum of the 
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separate matrices of the active and passive twoports: 

[g] = [g]A+[ghB. (6.7) 

I t will be now required to define the elements of the matrices 
[g]A and [g]FB. By direct application of the basic rules as 
derived in Pa r t I, from Fig. 6.4 we can write down directly 
the amplifier matrix [g\A. 

[g]A = 

Qua 

1 

^ i n l 

ft Z02 

fed 

0 

^ 0 2 

(6.8) 

ffila 922a 

Similarly, from Fig. 6.2b, for the passive feedback network 
[g]FB have 

[g] FB 

011b 

1 

0126 

Re + Rf Re + Rf 
Re ReRf 

Re -f- Rf Re -\- R} 

(6.9) 

0216 0226 

By algebraic summation of these matrices, the process of 
synthesis of the mathematical model will be completed: 

0 i i 

[0] = 
j ^ i n l Re + Rf$ Re + Rf 

+ ReRf 
Re+Rf 

(6.10) 

021 022 

which completely describes the boxed par t of the feedback 
amplifier in Fig. 6.3. 
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(b) VOLTAGE GAIN 

The gain and terminal conditionsof the amplifier can be 
now computed by reverting to Table I and substituting the 
elements from the matrix (6.10) into the appropriate g para
meter equations. Accordinglv, for the voltage gain, we have, 
ifTL = l/ZL, 

A ffziZL 
922 +Zl 

(6.11) 

Substitute into eqn. (6.11) for the elements g21 and g22 from 
the matrix (6.10): 

- Z/Q2 J^e ) 

Za2+^r4r + ZL 

ZL 

(6.12) 
02"' Be + B, 

Multiply through numerator and denominator by (Re+Bf): 

(}0ZLZ02&^\ + ReZL 

A„ = (6.13) ZtfA&e + Rf) + ReRf + ZL(Be + Rf) 

Divide through by Z02 both numerator and denominator: 

fio ZL (Re + Rf) + Re^-
A.„ — — z i n l z 02 

'('-£) (R9 + Bf)[l+-& + 
ReRf 

(6.14) 

^02 / ^02 

Divide both numerator and denominator next by Re: 

(6.15) 
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We can neglect the last term in the numerator as it is negli
gible. Therefore, from eqn. (6.15), 

Av — — ^ f r{£ + 1 } 
\Re J \ ^02 j ^02 

(6.16) 

If Bf <$c Z02, then eqn. (6.16) simplifies to 

An ^ ~ 
^ i n i 

A»2 

(6.17) 

In physical transistor amplifiers generally Z L <$c Z 0 2 , there
fore eqn. (6.17) reduces to the approximate expression 

(6.18) 

We note tha t this type of feedback interconnection does not 
stabilize the voltage gain. 

(c) CURRENT GAIN 

From Table I, we have the formula for current gain Ax\ 

921 
*l A9 + guZL ' (6.19) 

Observe, t ha t before we could make effective use of this 
equation, we would require to know the determinant Ag of the 
matrix (6.10). Therefore we proceed to evaluate the deter
minant of (6.10). By cross-multiplication and subtraction of 
the cross-products, 

An= l-^—+n . n H Z Q 2 + -'\Zinl
+B9 + Bf\{Z^+Be + Bf\ 

+ 

Be + Bf + 

(6.20) 
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Expand the products and rearrange terms: 

A - — e Iff Z°2 I Rf i Rf i B* \Zo*\i 
° Re + Rf\P» Z i n l + Z i n l

 + B e + Bf
 +'BB + Bf

+ Be] + 

+ 
^02 

Since 
£ , 

+ -Be + Bf^Be + Bi 
= 1, 

(6.21) 

(6.22) 

this term is negligible in comparison with the other terms 
inside the bracket. Therefore by dropping this negligible term 
and rearranging eqn. (6.21), 

A ^e 

a = TL+R< 
o A>2 
Po +^+- R. 

Rf \ Z i n l ^ e 

Rearrange the first three terms and we obtain 

9 2 l n l { / 5 o i?e + J B /
 + 1} + i?e + i?/ j z i n l + i?e 

(6.23) 

(6.24) 

Since in practical feedback amplifiers 

R, 
PV 

eqn. (6.24) will further simplify to 

» 1 , 

PoZ°2 i R. .\ + 
R, \ 3l + -z, 02 

Zinl \Re + R, j Re + B, \Zinl ^ Re j (6.25) 

The right-hand par t of this equation now contains two terms, 
or rather groups of terms. The first one is dominating, the 
second one is negligibly small. Retaining the dominating 
term only, eqn. (6.25) reduces to 

(6.26) 
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We can now substitute this expression for Ag and the elements 
glx and g21 from the matrix in eqn. (6.19): 

a M *' 1, J1 . l \z ' 
P°Zinl \Be + Bf] + }ZI n l

+ ** +*/J L 

Multiply through by (Re+Rf) both numerator and de
nominator : 

-[&%*&, +R,) + R) 
^ / = J , P , P r 1 - - (6-28) 

^ini I ^ in i I 
The last term Re in the numerator is negligible as is the unity 
terms in the denominator. By omitting these, then multiply
ing both numerator and denominator by Z i n l , we obtain 

P0Z02Re 4- (Re + Rf)ZL 

Again dividing through both numerator and denominator, 
this time /J0Z02, 

A>= i i ran— (6-30) 

\ ft)Z02 j 
Rearrange terms: 

\ Be^0Z02 J 

A further rearranging of terms yields 

(6.29)

(6.31)

(6.32)
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In practical transistor smplifiers, generally the {RfjRe)^>\, 
hence eqn. (6.32) simplifies to 

(6.33) 

This expression may be considered as sufficiently accurate 
for the majority of engineering design work. However, if 
/?0 = 1000, then eqn. (6.33) can be simplified to 

(6.34) 

Note tha t this type of feedback interconnection stabilizes 
the current gain. If the open-loop current gain is sufficiently 
large, then the closed-loop current gain is effectively con
trolled by the ratio of the feedback resistors Rf and Re res
pectively. In other words, the amplifier current gain is prac
tically independent of the transistor intrinsic characteris
tics. 

(d) INPUT IMPEDANCE 

From Table I we have the definition for the input im
pedance : 

922 + ZL 
Z'm 49 + 9IIZL 

(6.35) 

By direct substitution from the matrix (6.10) for the para
meters gn and g22 and eqn. (6.26) for the determinant AQ, we 
obtain 

ReRf „ 
^02" 

zin = 
Re + Rf 

Po 
R, 

Zml\Be + Rf + — l I 
^inl Re + Rf J 

(6.36) 
ZT 
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Multiply both numerator and denominator by (Re+Rf) and 
then rearrange terms: 

(Re + Rf)(Zo2 + ZL) + ReRf 
■Zin (6.37) 

Note tha t the last terms in both numerator and denominator 
are negligible quantities. Hence eqn. (6.37) simplifies to 

7 (Re + Rf)(Z02 + ZL) 
L_ 

inl 

(6.38) 

Divide both numerator and denominator by (Re + Rf) 

^02 + %L 
^in = PQZQ1Re 

(6.39) 

- + ̂in l (Re + Rf)Zinl 

Divide again numerator and denominator, this time by Z02: 

1 + -
J02 

A) | Re } 
Zinl \Re + Rf) 

(6.40) 

+ ̂ o2^inl 

We note tha t the last term in the denominator is now negli
gible, hence eqn. (6.40) further simplifies to 

^in = 
^02 

R, 
^inl )Re + Rf 

(6.41) 

We can put this expression into a more meaningful form by 
multiplying through numerator and denominator by Zinl: 

(6.42) ^in 
M1+fe} 

o Re 1 
P°Re + R, 
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If (ZLIZ02) <$c 1 » (Rf/Re), then eqn. (6.42) reduces to 

(6.43) 

Thus the parallel-series type feedback will cause the input 
impedance of the amplifier to become very low. 

(e) OUTPUT IMPEDANCE 

Revert to Table I for the expression of the output impe
dance. If we replace YG by l/ZG, then we obtain, 

Z, out 
dgZG + g22 (6.44) 

We may proceed now with the appropriate substitutions 
into eqn. (6.44). For the elements gn and g22 from the matrix 
(6.10) and eqn. (6.26) for Ag: 

Po 
Z0u[ — 

RP Z02 Za + Z02 + 
ReRf 

Re -f- R{ 

1 l_ 
Z[nl Re + Bf 

(6.45) 
Za+1 

Multiply both numerator and denominator by (Re-\-Rf) and 
rearrange terms: 

^ni i t . — 

Re \ Po Tjff- Z02 + ZQ2 + Rf I + ZQ2 Rf 

^\{Re + Rf) + ZG + {ReA-Rf) 
(6.46) 

Equation (6.46) will substantially simplify, since in most 
physical transistor amplifiers /50 » 1 and @0Z02 ^> Rf. Simi-
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larly (Re + Bf)»ZG. Therefore, from eqn. (6.46), 
y 

171 

»Z. 
-'out 

i n i 

zG (R9 + Rf)\-G-+l 
(6.47) 

We can put this expression into a more meaningful form if 
divide both numerator and denominator by Re and rearrange 
te rms: 

(6.48) 

This expression is sufficiently accurate for all engineering 
applications. However, it may be further simplified if 
(Rf/Re) :$> 1; If such condition holds, then from eqn. (6.48), 

(6.49) 

Note tha t the output impedance of the <7-type feedback pair 
is generally very high. On the other hand, eqn. (6.43) would 
indicate a correspondingly low input impedance. 

(f) SUMMARY OF TERMINAL R R O P E R T I E S , 
(TABLE VI) 

The results of the foregoing analysis are summarized in 
Table VI for convenient design reference. 

R E F E R E N C E S 
1. M. S. GHAUSI, Optimum design of the shunt-series feedback pair 

with maximally flat magnitude response, IRE Transactions, Cir
cuit Theory, December 1961, pp. 448-53. 
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2. E. M. CHERRY, An engineering approach to the design of transistor 
feedback amplifiers, J . Brit. IRE, February 1963, pp. 127-44. 

3. F . D. WALDHAUER, Wideband feedback amplifiers, IRE Transac
tions, Circuit Theory, September 1957, pp. 178-90. 

4. A. J. COTE JR. and J. B. OAKES, Linear Vacuum Tube and Transistor 
Circuits, McGraw-Hill, New York, 1961. 
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7. THE FEEDBACK TRIPLET 
TRANSISTOR AMPLIFIER, 

APPLICATIONS OF THE h AND Z 
MATRICES 

(a) GENERAL CONSIDERATIONS 

In electronic design problems one is generally concerned 
with the efficient power transfer and amplification between 
some source and a specific load. The signal flow path may 
traverse several passive and active elements, such as impe
dance transformers, filters and amplifiers. With transistors 
as the active elements and at power levels of the order of 
10W, one is faced with uncomfortably low, input and output 
impedances. There are some areas of use where one would 
be happier if terminal impedances and transfer characteris
tics could be modified. I t is well known tha t the application 
of negative feedback can profoundly modify the gain, linear
i ty as well as the terminal impedances of an amplifier/1' 2j 3) 

Transistor feedback amplifier design, particularly a t low 
power levels, has been well covered in the l i tera ture / 4 ' 5 ' 6 ' 7 ) 

This chapter will be devoted to the more compact and ele
gant matrix methods of analysis and design of a three-stage 
transistor power amplifier. 

Our study will commence with the recapitulation of the defi
nitions for a single-stage non-feedback amplifier. Using this 
as a building block, a three-stage model will be then con
structed. The approximate gain and terminal conditions of 
this elementary unilateral model will be related to the h and 
Z twoport parameters. In the next step a negativ feedback 
amplifier is a synthesized by the addition of a series feed
back impedance. 

174 
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A mathematical definition of the feedback system is ob
tained by combining algabraically the twoport Z parameters 
of the unilateral amplifier and the feedback impedance. The 
system matrix so formed will contain all pertinent charac
teristics of the feedback triplet. By simple algebraic mani
pulation of the system matrix, expressions are obtained for 
voltage gain, current gain, input and output impedances. 
The results are completely general and valid for series-series 
type of feedback amplifiers of arbitrary interstage com
plexity and load configuration. 

Since transistors are subject to wide manufacturing tole
rances, the problem of approximations has also been covered. 
A whole set of first and second order approximations have 
been derived which are usable for practical design work. 
The results are tabulated to show the mechanism of inter
play between the controlling parameters. Thus the desired 
amplifier characteristics can be optimized with a minimum 
amount of computation. 

A digression may be in order to Chapter 2, Pa r t I, con
cerning twoport networks in terms of generalized Z para
meters. 

(b) DEFINITIONS OF THE NON-FEEDBACK 
SINGLE-STAGE A M P L I F I E R MODEL 

Before commencing the study of multistage feedback am
plifiers, it will be instructive to recapitulate some of the 
well-established definitions pertaining to the basic building 
block, the elementary non feedback amplifier. Consider there
fore, a single-stage transistor amplifier shown in Fig. 7.1. 

The standard sign conventions apply and the current and 
voltage transfer ratios are defined to a good degree of ac
curacy as follows. Current gain Aji 

A'=¥=~1J-- (7i) 

^out 
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•nil 

Generator Intrinsic transistor Load 
F I G . 7.1. Elementary single-stage amplifier. 

Similarly, for voltage gain Av: 

1+ 
z out 

If: ZL <K Zout, then eqns. (7.1) and (7.2) reduce to 

At* ft, 

Av*-Pp-
An 

(7.2) 

(7.3) 

(7.4) 

(c) DEFINITIONS OF THE THREE-STAGE 
NON-FEEDBACK MODEL 

If we cascade three elementary amplifier stages of the 
type shown in Fig. 7.1, we obtain our three-stage non-feed
back amplifier as in Fig. 7.2. 

For individual stages, it is assumed that eqns. (7.3) and 
(7.4) are valid. The current and voltage gain between output 
and input terminal pairs may be considered as the product 
of individual gains as shown. It is further understood that 
as far as signal currents are concerned, the load impedance 
ZL1 of the first stage also includes the effective input impe
dance, and biasing resistors, if any, of the second stage. 
Similarly, ZL2 combines the corresponding components of 
the circuitry involving transistors Q2 and Qs. 
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- A V-

Avi AV2 

I 

|ZG| 

VG 

?r 

* i?~ 

HP H® F© +1 
I k MzL2 —s 

-i • 4 A • < 

Fio. 7.2. The three-stage feedback amplifier. 

Applying now eqns. (7.3) and (7.4) to the amplifier chain, 
the overall current and voltage gains are obtained. 

From eqn. (7.3), and Fig. 7.2, the overall current gain is 

(without feedback) (7.5) 

Similarly, from eqn. (7.4) and Fig. 7.2 for overall voltage 
gain. 

y 
Av = ~ = AviX AV2X AV3, (7.6) 

Av = -PiPiP* 

P 

'Ll \ ( ZLI\ ( %LZ 
inl / \ ZL1 ) \ %Ll ZLII9 

(7.7) 

Ay= ~P %L3 

^ i n l 
(without feedback) (7.8) 

The linear model of one multistage amplifier has charac
teristics of an active unilateral twoport. The input and output 
ports are designated by the terminals 1-2 and 3-4 respec
tively. The amplifier as a system can be conveniently 
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described in mathematical terms by a 2 X 2 parameter matrix. 
We prefer howewer, the familiar h parameter matrix. 

[Ala mplifier = \hl1 K \\A IV12A 

A ^22 A J 
(7.9) 

where, by definition and with reference to Fig. 7.2, the h 
parameters yield the following identities: 

^ l l A = rbl + Plrel = ^ i n l > 

hlA = PlfilP'S = /?» 

"22A = zt 

(7.10) 

(7.11) 

(7.12) 
03 

Since our linear model in its elementary form represents a 
unilateral amplifier, the parameter h12 must therefore be zero. 
Hence in mathematical terms, 

h 12A 0. (7.13) 

With the definitions of the h parameters from eqns. (7.10) 
to (7.13) inclusive, the matrix (7.9) can be now rewritten in 
a form which represents physical conditions: 

WA = 
^ i n l 

"12 

0 1 
1 

^ 0 3 -

^22 

(7.14) 

(d) THE THREE-STAGE FEEDBACK A M P L I F I E R 
AND THE Z PARAMETER MATRIX 

I t is well known tha t feedback modifies the gain, terminal 
impedances and frequency response of an amplifier. The 
stability criterion of feedback amplifiers will not be discussed 
here since the subject is well covered in the literature/15 5 ' 9 ) 
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R F power transistors exhibit notoriously low input and 
output impedances. We have therefore chosen the series-
series feedback configuration in order to correct these un
desirably low impedances and at the same time improve 

Amplifier 

Feedback 
network 

HF 

* ! 2 L 

+ 
Z0ut 

I 

v2 
1} 

Generator Load 
F I G . 7.3a. The basic series—series type of twoport interconnec

tion. 

F I G . 7.3b. The physical interconnnection of amplifier and feed
back twoports. 

amplifier linearity. The basic method of feedback is shown 
in Fig. 7.3a and the physical arrangement in Fig. 7.3b. The 
feedback impedance Z / b can be looked upon as a passive 
twoport and the amplifier as an active unilateral twoport 
network. I t will be shown tha t the product (5Zfb has a pro
found effect on overall amplifier characteristics. 
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The physical interconnection of the unilateral amplifier 
with the passive feedback impedance will yield a new system 
matrix, formed by the algebraic summation of the Z mat
rices of the active and passive twoport parameters. Since the 
active twoport has been defined in terms of h parameters, 
it will be required to convert the matrix (7.14) into Z matrix 
form. Using algebraic process or tables, we will find tha t 

Z 

[Z]A = 

11 

^22A 

*2lA 

^22A 

Zr 

h I2A 

h 22A 

1 
h 22 A 

(7.15) 

Z, 21 z 22 

where Ah = Determinant of the amplifier's h matrix. 

From eqn. (7.14) we obtain 

AA = 
Z o o 

(7.16) 

Substituting now the appropriate parameters from the mat
rix (7.14) into (7.15), 

[Z]A 

[Z], 

[ZiDl\ 
\ z03) 

{Z< '03/ 

•P%0: ^03 J 

r zlnl o i 
\_~pz03 zQ3] 

(7.17) 

(7.18) 

Next, with reference to Fig. 7.3, we can write down by 
inspection the Z matrix of the feedback impedance Zfb: 

Zn Z12 

[Z] FB 
= rz)b %fbi 

[_zfb zfb\ 
(7.19) 

Z2i Z22 
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Now, the complete feedback amplifier can be defined mathe
matically by the sum of the matrices (7.18) and (7.19): 

^Feedback = ^HZ]FB. (7.20) 
amplifier 

Or in expanded form, 

{Zi = [" (Zl*l + Zfb) Zfb 1 n 2 l ) 
L JFeedback [_(-(}Z0S + Zfb) (Zo, + Z/ b)J ' K * ' 

amplifier - ^ ^ « ^ ^ ^ ^ 
Z21 Z22 

This matrix now contains all information characterizing the 
feedback triplet in Fig. 7.3. Consequently, gain and terminal 
conditions can be obtained through simple algebraic mani
pulation. I t is only required to apply substitution into the 
generalized twoport equations. 

Before proceeding further, it will be necessary to evaluate 
the determinant of the matrix (7.21): 

By cross-multiplication and subtraction, 

Az = (Zinl + Zfb)(Z03 + Zlb) + pZ0ZZfb-Zjb. (7.22) 

Expanding the products and cancelling equal terms with 
opposite algebraic signs: 

4z = ^inl^03 + ZinZfb + ZfbZ03 + Zfb + PZ03Zfb — Zfb • (7-23) 

Rearranging terms: 

4 = Z„Zfb(l+P) + Zlnl(Z„ + Zfb). (7.24) 

In general for a multistage amplifier, /? ^> 1, consequently 
eqn. (7.24) will simplify: 

Az = pZ0ZZfb + Zinl(Z0S + Zfb). (7.25) 

Rearranging terms: 

(7.26) 4 = Zfb(PZ03 + Z\nl) + ZinlZ03 
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(e) VOLTAGE GAIN 

Revert to Fig. 7.3. and Table I in Par t I. By substitution 
from the matrix (7.21) and eqn. (7.26), 

Av = 
Z^Z 2l"L3 

Az + ZnZLZ 

{ — PZQZ + Zfh)ZLz 
Zfb(fiZ03 + Zinl) + 2 i n lZo 3 + (Zi n l 4- Zfb)ZLZ 

Expanding the denominator: 

— (/^03 ~ Zfh )ZL% Ay = 
ZfbfiZ0Z 4- ZfbZinl + ZinlZoZ 4- ZinlZL3 + ZfbZVi 

Rearranging terms: 

Ay = - Zuk$Z^ — Zib) 
Zfb(PZ0S 4- Zinl + ZLZ) 4- Zinl(Z0S 4- ZL3) 

(7.27) 

(7.28) 

(7.29) 

Since in any physical transistor feedback amplifier /3^03^> 
Zfb, eqn. (7.23) will simplify to 

Ay = - fiZLzZ0J/ . (7.30) 
Zfb(PZ03 4- Zinl 4- ZL3) 4- Z[nl(Z0<i 4- ZL3) 

Equation (7.30) now, can be put into a more convenient 
form' by dividing both numerator and denominator by Z0 3 : 

Ay = pz L3 

rjfb 
o. Zinl ZL% 

^ 0 3 ^ 0 3 
4-^inl 14- Zc\ 

L3 

(7.31) 

As a good approximation, eqn. (7.31) simplifies if ZL3 <§c Z03: 

(7.32)
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A further simplification is permissible if Zin x <sc Zfb(i: 

Av* - pz L3 

P+ ^ i n l 

^ 0 3 

(7.33) 

Reverting now to eqn. (7.32), dividing both numerator 
and denominator by Z i n l 

^ L 3 P-
Ax 

1 + _5 
nl L Z03 J 

(7.34) 

Note tha t this expression is of the form which is familiar 
from the feedback theory/1 , 2 ' 3 ) That is 

0 Av = -—j^Q = closed- loop gain, (7.34a) 

where 0 = amplifier gain in the absence of feedback, B = 
complex feedback ratio, and GB = feedback loop gain. 

When relating these definitions to eqn. (7.34), we find tha t 
nr 

G = (5 L3 = Amplifier gain in the absence of feedback, 

GB Z 
(7.34b) 

^ _ r ^ + ^ l l = Feedback loop gain, (7.34c) 
nl L ^03 J 

B = 
^L3 |_ /^03 J 

Complex feedback ratio. (7.34d) 

(f) C U R R E N T GAIN 

Reverting to matrix (7.21) and to Table I in Par t I and 
substituting, we can obtain the current gain of our amplifier: 

Ax 
Z. 21 ftZp3 + Zfb 

^22 + %L Z/QZ + Zfb + Z JLZ 
(7.35) 
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It has been earlier established that Zfb <§c j&Z03, therefore 
eqn. (7.35) will simplify to 

Ai 
fiZ, 03 (7.36) 

•̂ 03 + ^b + %LZ 

By dividing both numerator and denominator with Z03, 

A7 = fi 
l + (ZtbIZ0,) + (ZL3IZ03) 

(7.37) 

Further simplification is permissible if Zft <K Z03: 

(7.38) 

Note that the feedback has negligible effect on current 
gain. Furthermore, if ZL3 <K ZOS, the eqn. (7.38) reduces to 

P (7.38a) 

(g) INPUT IMPEDANCE 
Revert again to Table I in Part I and substitute the appro

priate parameters from the matrix (7.21) and eqn. (7.26) 
for A • 

z22+zLZ 

ZjbiPZ^ + Zim) + ZiTilZ0Z + (Zinl + Zib)ZL$ 
Z& + Zfb + ZL3 

Expand the numerator: 

Zir, 
ZfbPZ03 + ZfbZinl + ZinlZ0Z + ZinlZLz + ZfbZLs 

Z& + Zfb + ZLz 

(7.39) 

(7.40) 
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Rearrange terms: 

185 

Z. =Z (ZM + Zf* + Zi&) j Zfb(PZos +%La) (741) 
(Z03 + Zfb + ZL3) (Z0Z + Zfb + ZLZ) ' 

7 7 J_7 (/^03 + ^Ls) (7.42) 

Simplification is possible, since generally Z L 3 <$c /?Z03. 
Hence from eqn. (7.42) 

7 - 7 - ZfbPZ03 
^03 + ^/b + ^L3 

Divide both numerator and denominator by Z03: 

(7.43) 

■Zinl + 
^ 76 

l + (ZlbIZ03) + (ZL3IZ03) 
(7.44) 

A further simplification for engineering approximation is 
permissible if 

^03 ^03 

If this inequality holds, eqn. (7.44) reduces to 

(7.45) 

Note again tha t the product ($Zfh is the dominant controll
ing parameter of the input impedance. If ZLZ <sc Z03 then 
eqn. (7.45) reduces to 

^in % ^ in i + ^ / b (7.45a) 
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(h) OUTPUT IMPEDANCE 

Reverting again to the matrix (7.21), to the determinant 
(7.26) and to Table I in Pa r t I, by substituting the appro
priate elements from matrix (7.21), we have the output im
pedance of our feedback amplifier: 

__ Az + Z21ZG _ Zfb(flZ03 + Zi n l) + ZinlZ0Z + (Z03 + Zfb)ZG 

Zn + ZG Zinl + Zfb + ZG 

(7.46) 
Expand the products in the numerator: 

zfbpz03+zfbzinl+zinlzo:i+zozzG+zfbzG 
4>ut = — ^ — r ~ v — r ^ • (1Ai) ^ I n l + ^ /6 + ^G 

Rearrange terms: 
Zfb((5Z0S + Zinl + ZG) + Z03(Zinl + ZG) / 7 i f t , 

Amt = Ty 'J~7~T7~\ * l ' -4°J 

Generally, in any physical transistor feedback, amphfier, 
Zfb <$c (Zinl + ZG). Consequently eqn. (7.48) simplifies to 

(Zinl + ZG) (/SZ03 + Zi n l -fZG) 
Znut — Av + 2, vOUt — ^ 0 3 7 y , y \ 1" "fb ' y , y (Zi n l + ZG) Z

i n l + ZG Further rearrange terms: 

7 __ 7 , PZfbZQZ , y ( ^ in l + ^G) 
(Zi n l + ZG) (Anl + ^G) 

. (7.49) 

(7.50) 

^out = ^03 + ^ /6 + (2ini + ZG) (7.51) 

This expression simplifies if Zfb <*c Z0 

^ou t ^ ^03 + ^ , 6 A 03 

(Zinl + ^G) 
(7.52) 

(i) CONCLUDING REMARKS 

The foregoing analysis of the three-stage transistor ampli
fier has been carried out in a rather general form. We have 
assumed stable amplifier operation. Table VII contains a 
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comprehensive summary of both exact and approximate 
design equations. For a review of the stability problem, 
references (1) to (6) inclusive may be consulted with profit. 
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8. OSCILLATORY CIRCUITS, 
APPLICATIONS OF THE Y AND h 

PARAMETER MATRICES 

(a) INTRODUCTORY REMARKS 

I t is well known tha t the mechanism of automatic ampli
tude regulation in vacuum tube and transistor oscillatory 
systems exploit the inherent nonlinear characteristics of the 
device. Therefore, matr ix analysis of feedback oscillators will 
require a somewhat liberal interpretation of operating con
straints. A logical extension of the linear twoport matr ix 
theory is applicable if we consider the operating range of 
interest within the linear transfer characteristics of the active 
device. This is a perfectly legitimate assumption. Thus we 
can now formulate equilibrium equations. In fact, it will be 
shown tha t an oscillatorys ystem can be represented by a 
pair of suitably interconnected active and passive twoports. 
Oscillators are generally classified according to the mode of 
these interconnections/1' 2) Some of the most useful types 
such as the Colpitts and Hartley may be reduced to a network 
model of parallel-connected active and passive twoports. In 
the linear mode of operation, matrix methods are admirably 
suited to the analysis and s tudy of such systems/1 ' 3 j 4 '5 '10 , n ) 

There are several good examples in the published literature 
which deal with the various aspects of oscillator design/6 ' 7 ' 8 ' 9 ) 

In the pages to follow we will a t tempt a comprehensive mat
rix analysis of the Y type ColpittsJ oscillator. Typical tran
sistor and tube variety of oscillator circuits will be studied. 
The basic circuits will be broken down into linear models 
which considerably simplify subsequent analytical work. 
Mathematically, these models are then described by the ad-

189 
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mittance matrix of the constituent twoports. A consistent 
step by step reasoning will be followed in deriving the fre
quency of oscillations and conditions of oscillations in terms 
of the pertinent circuit parameters. 

(b) THE OSCILLATORY C I R C U I T S , G E N E R A L 

If d.c. biasing sources are ignored, the grounded plate or 
cathode follower Colpitts' oscillator is of the configuration 
as shown in Fig. 8.1. I t is convenient to include the grid 

T< 
I 
1 nC 

FIG. 8.1. The grounded-plate Colpitts'oscillator, simplified 
diagram. 

resistance RG, which may be a physical element and par t of 
the bias circuit or represent the input conductance of the 
tube at sufficiently high frequencies. The cathode resistor 
RK is generally associated with the external load and as such 
it may also absorb the resistive losses of the inductance L. 

The transistor oscillator of the grounded emitter variety 
is shown in Pig. 8.2. There again the d.c. biasing is ignored. 

In 
_ ^ n C _ £ 

FIG. 8.2. The grounded-emitter Colpitts' oscillator, simplified 
diagram. 
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-*— y />— 
o d / £3\ 

Active 
twoport 

MA 

Passive 
twoport 

M. 

-VV ^ 
\ ^ )P O 

\ y + 
~s P ° 

FIG. 8.3. Block diagram of the Colpitts' oscillator. 

Both of these fundamental circuits may be generalized with 
the block diagram shown in Fig. 8.3. 
By definition, the equilibrium equation which describes these 
parallel connected twoports is 

where 
CM':! 
[Y] = [Y]A + [T\B-

(8.1) 

(8.2) 

The symbols [Y]A and [F ] B stand for the admittance 
parameter matrices of the active and passive twoports res
pectively. These parameter matrices will be obtained from 
the original circuit configurations in Figs. 8.1 and 8.2 by 
utilizing some basic principles of matrix algebra. 

(c) T H E G R O U N D E D - P L A T E C O L P I T T S ' 
O S C I L L A T O R 

(i) Admittance matrix of the active twoport 

As far as signal currents are concerned, we can redraw the 
oscillating triode as a twoport as shown in Fig. 8.4. The 

FIG. 8.4. Grounded-plate connection of the triode. 
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FIG. 8.5. Linear resistive model of the groundeci-plate triode. 

corresponding resistive linear model is represented in Fig. 
8.5. In reverting to Chapter 1, we find tha t the grounded 
plate matrix form can be readily obtained from the floating 
admittance matrix. For convenience we repeat here the 
basic form: 

Vi 

[Y] TRIODE 

ffgk 

ffm 

— ffgk — ffm 

0 

ffpk 

— ffpk 

~ffgk 

~ ffm ~~ ffpk 

ffm + ffpk + ffgk 

G 

P 

K 

(8.3) 

G K 

From this 3 X 3 floating admittance matrix the twoport 
parameters may be obtained for any of the three possible 
grounded electrode configurations. For the purpose of this 
study we are interested in the grounded plate operating mode. 
The appropriate twoport parameter matrix is obtained by 
collapsing the second row and second column, leaving a 
2 X 2 matr ix : 

\7h 
- ffm — ffgk ffm + ffgk + <7pfc ]• (8.4) 

From this matrix, the resistive model of the grounded plate 
oscillator configuration can be synthesized and terminal con
ditions redefined as shown in Figs. 8.4 and 8.5. 
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(ii) Admittance matrix of the external feedback twoport 

If we revert to Fig. 8.1, it is possible to redraw the passive 
circuit made up from L, C, nC and RK in the form of a n 
network as shown in Fig. 8.6. 

Go-
+ 
V, 

ne 

nC 

Po-

K RK. 

-oK 
+ 
V2 

F IG. 8.6. Network model of the feedback circuit. 

This network model can be described mathematically by 
the admittance parameter matrix. 

From Fig. 8.6. by inspection, 

[Y]B = pL 
L -pC 

+ pC -pC 

pC + pnC + GK. 
(8.5) 

(iii) Synthesis of the oscillating system 

I t is now quite feasible to synthesize the complete oscil
lating system from the constituent active and passive two-
ports. This is done simply by inserting into the block diagram 
in Fig. 8.3, the appropriate linear models from Figs. 8.5 and 
8.6. The resulting oscillatory system is shown in Figs. 8.7a 
and 8.7b. 

The new compound linear model in Fig. 8.7b, is mathema
tically completely described by the sum of the admittance 
matrices (8.4) and (8.5) as the "building blocks". Therefore 
the matrix of the oscillating system is 

[Y]0&c. = [Y]A + [Y]B. (8.6) 
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>r cir( 
anc 

FIG. 8.7a. Oscillator circuit redrawn as parallel connected active 
and passive twoports. 

FIG. 8.7b. Linear model of the oscillating system. 

l i 12 

L^ Jose. ~ * + -JL+'° -Qgk-PG 

\--gm-ggh-pC gm+ggk+gpk+Gk+pC+pnC 
—^ 

Y 21 * 2 2 .(8.7) 

By definition, in an oscillating system the excitation func
tion is zero. Therefore the equilibrium equation (8.1) for 
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I1 ='I2 = 0, simplifies to 

GHC:} 

195 

(8.8) 

The nontrivial solution of eqn. (8.8) requires tha t the deter
minant of the Y matrix is zero. Hence for the condition of 
oscillation 

[F] = 0. (8.9) 

L-̂ Josc.— 
^k + ^ + pC ggh-vC 

gm-Sgh-pC gm+(ggk+9pk+GK) + pC(n+l). 

Y 

:0. 

21 Y 22 

(8.10) 

T h e F 2 2 of eqn. (8.10) can be written in a more compact form 
by putt ing 

(9gh + gPh + GK) = Qs, (8.11) 

where Os = the sum of the passive conductance parameters. 
Hence, when using identity (8.11) the matrix (8.10) may 
be put into slightly more compact form: 

L-̂ Josc. — 9* + jL+r0 -ggk-pC 
= o. (8.12) 

l-gm-ggk-pO gm+Gs+pC(n+i). 

The difference of t he cross-products will yield the determi
nant of this matr ix: 

, F | = (cgh + ^i+pCjigm + Os + pCin+l)}-

-(9m+ggk+pC)(ggh+pC) = o. (8.13) 
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Expanding the products: 

\Y\ = 9m99k + --^9m + pCgm + Gsggk + —^Gs-{-pCGs 

c 
+ npCggk + pCggk + -£(n+l) + npZCz + p*C2 (8.14) 

- gwdgu - g$k - g9kpO - gmpC - ggkpC - p2C2 = o. 

After cancellation of identical terms with opposing algebraic 
signs, eqn. (8.14) may now be rearranged: 

\Y\ = gmj^ + Gsggk + Gs^r + GspC + 

Q 
+ npCggk + — (n +1) + npO2 - g$k - pCggk = 0. 

(8.15) 

Now substitute jco = p and separate the real and imaginary 
terms. From the theory of complex numbers, the real and 
imaginary parts will also be separately equal to zero. 
Hence, the real part of eqn. (8.15) is 

l ineal = g0k(Q8-9gk)+^(n+l)-na>'C* = 0. (8.16) 

Similarly, the imaginary part of eqn. (8.15) is 

I ^Imaginary = -J^jr (9m + G
s) + j&C {Gs + ggk(n - 1)} = 0. 

(8.17) 

Now, by definition, eqn. (8.16) will give the frequency of 
oscillations and eqn. (8.17) defines the criterion of oscillations. 

(iv) The frequency of oscillations 
Reverting to eqn. (8.16) and by transposition 

naM* = ^(n+l) + Gs9gk-g$k, (8.18) 
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CO 2 _ ft+1 , n (Gs-Qgk) 
>ygh LCn C*n 

(8.19) 

(8.20) 

Equation (8.20) is an exact expression. From eqn. (8.11) note 
the identity 

In practical oscillator circuits the second term in eqn. (8.20) 
is a negligible quantity. Therefore for the purpose of engi
neering approximations, eqn. (8.20) reduces to 

(8.21) 

(v) The conditions of oscillation 

Reverting to eqn. (8.17) and multiplying through by jcoC. 

^(gm + Gs)-a>W*{Gs + ggk(n-l)} = 0. (8.22) 

By transposition 

(gm + Os) = co*LC{Gs + ggk(n-l)} 

CD*LC = -„ g™ + ®8 

Gs + g9h(n-l) 
From eqn. (8.21) by squaring and transposition 

n + 1 co2LC = — . n 

Now expressions (8.24) and (8.25) can be equated: 

n+1 = gm + Gs 
n Gs + nggk-ggk' 

(8.23) 

(8.24) 

(8.25) 

(8.26) 
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By cross-multiplication: 

Gs + nGs + nggk + n2ggk-ggk-nggk = ngm + nGs. (8.27) 

Rearrange terms and cancel where applicable: 

n2g0h + ngm+(G8-ggh) = 0. (8.28) 

Solve this quadratic for n by the standard form: 

where a = ggk, b = -gm, c = Gs-ggk = Gk + gpk. 

_ _ _ gm±y/[gm-±ggh(Gh+gPk)] (8.30) 

For a physical oscillatory circuit this expression can be 
again considerably simplified, since in general ggk <sc Gs. If 
such conditions hold, eqn. (8.22) reduces to 

^(gm + Gs)= co*C*Gs, (8.31) 

mHJL = ffm'tGs . (8.32) 
0. s 

Substituting into eqn. (8.32) eqn. (8.25) for the term co2GL, 

• • - um * ~ s 
n ~ Gs ' 

1 9m + Gs 
n Gs 

i _ gm+Gs-Gs 

n Gs 

By inversion from eqn. (8.35), 

Gs 
n = —-. 

9m 

(8.33) 

(8.34) 

(8.35) 

(8.36) 

(8.28)



OSCILLATORY CIRCUITS 199 

Substituting, finally, eqn. (8.11) for Gs into eqn. (8.36): 

9m 
(8.37) 

I t is evident from eqn. (8.37) tha t for sustained oscillations 
the limiting value of transconductance is 

ggk+Qpk + Gk 
n 

(8.38) 

(d )THE GROUNDED EMITTER C O L P I T T S ' 
OSCILLATOR 

(i) Admittance matrix of the common-emitter transistor 
in terms of hybrid parameters 

I t is convenient to use the readily available hybrid parae 
meters of the transistor and then express the admit tanc . 
matrix of the active twoport in terms of the h parameters -
Here again the resistive and forward parameters are of inter
est. The reverse and reactive components will be combined 
with the external passive feedback network. 

F IG . 8.8a. The grounded -
emitter transistor. 

F IG . 8.8b. Linear resistive model 
of the grounded- emitter transistor 

The grounded- emitter- connected transistor and the corres
ponding resistive model are shown in Fig. 8.8a and 8.8b. 
The equilibrium equations for the unilateral resistive model 



200 BASIC MATRIX ANALYSIS AND SYNTHESIS 

shown in Fig. 8.8b are defined as 

V1 = An/i + 0, (8.39) 

h = ^2lA + ^22^2- (8.40) 
By simple algebraic manipulation, the Y parameters can be 
obtained. From eqn. (8.39), by transposition, 

Substituting eqn. (8.41) into eqn. (8.40) for I1 

(8.41) 

(8.42) 

Now from eqns. (8.41) and (8.42) the Y matrix of the tran
sistor may be formed in terms of the h parameters: 

r 1 

[Y] iTransistor — 
h o 

^- h 
*n 

(8.43) 

(ii) Admittance matrix of the external feedback twoport 

Reverting to Fig. 8.2, the physical circuit of the oscillator, 
it is easy to see tha t the elements L, C, nC and RL may be 
redrawn as a n network shown in Fig. 8.9 

With reference to this network model, it will be assumed 
tha t the capacitors nC and C absorb the input and output 
capacitances of the transistor. The admittance matrix of the 

bo-
+ 
V, 

e o -

nC 

oc 

+ 

•H _ 
FIG. 8.9. n network equivalent of the feedback network. 
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twoport mode) in Fig. 8.9 may be written down by inspection: 

1 1 

[Y]n etwork — 

npC + pL 
1 

pL 

pL 

GL + pC + 
pL 

(8.44) 

(iii) Synthesis of the oscillating system 

By a process similar to the preceding vacuum tube example, 
the oscillating system will be synthesized by the parallel 
connection of active and passive twoports. The circuit con
figuration so obtained is shown in Fig. 8.10. An appropriate 
linear model may be drawn as in Fig. 8.11. Here again, 

['i + T 
1 

yv^vv^v. -+ 
"^ >GLI 

± 
€) 

tt 
F I G . 8.10. The transistor grounded- emitter Colpitts' oscillator. 

F I G . 8.11. Linear model of the transistor Colpitts' oscillator. 
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mathematically, the oscillating system is completely described 
by the sum of the admittance matrices of the constituent 
twoports. 

Hence, adding eqn. (8.43) to eqn. (8.44), 

[* JOscillator — 
ce 

1 1 
pL hn 

1 
pL 

—ZT + IT" VC + -^T + GL + hn pL h i i pL 
(8.45) 

I t is convenient to put in the Y22 term G0 = GL + h22, 
tha t is combine the load conductance with the transistor 
output conductance. With this slight simplification, the ad
mittance matrix (8.45) may be rewritten: 

[Y\ Oscillator — 

ce 

npC-\ T- + -J— 
pL hn 

pL h i i 

± 12 

1 

21 
(8.46) 

By definition, for the condition of oscillations the determi
nant of the system matrix (8.46) must be equated to zero. 

Thus from the matrix (8.46), 

(8.47) 
Expanding the products, 

\Y\ = G0npC + G0 -L- + G0±- + npK)* + ̂  + PC-±- + 

C 1 1 
+ 71^ + - ^ + 

1 h 
L ' jW huPL tftf ' hllPL = 0. (8.48) 
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Rearranging eqn. (8.48) and cancelling identical terms with 
opposing algebraic signs: 

\Y\ = np*C* + ̂ (n+l) + ̂  + Pc(^ + nG(\ + 

(8.49) 

Put p = jco and then equate the real and imaginary parts of 
eqn. (8.49) separately to zero. 

|Real ■n(o*C2 + ~{n+l) + ̂  = 0, (8.50) 

Y\ I m a g i n a r y = ia€^- + n0.y^L(09 + ^- + ^j = 0. 

(8.51) 

(iv) Frequency of oscillations 

Using eqn. (8.50) by transposition, 

nco2C2 = ^ ( w + l ) + - ^ 
L ft,, 

+ -
Gn n+l 

LCn ^ hnnC2 ' 

(8.52) 

(8.53) 

(8.54) 

For a physical transistor oscillator the second term in eqn. 
(8.54) is generally negligible. Therefore for the purpose of 
engineering approximations, eqn. (8.54) reduces to 

(8.55)
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(v) Conditions of oscillation 

Reverting to eqn. (8.51) and multiplying through by jcoC, 

! F | I r a a g l n a r y = - m ^ ( ± i + nOoy^G0 + ±- +
 h^ = 0. 

(8.56) 
By transposition, 

+ nG0 
"11 

From eqn. (8.55) 

a>2LC = ±—— -^- . (8.57) 

7) -\- 1 
co*LC = ^ - = . (8.58) 

Substituting now eqn. (8.58) for co2LG into eqn. (8.57), 

g±i = l / - v, ,8.69) 

Multiply through the numerator and denominator of the 
right-hand par t by hn: 

Ti+1 _ Jfrufio+l+ft21 (8.60) 
n 1 + hllLnG0 

Cross-multiply: 

( r c+ l ) ( l + An7iG0) = wAuG0 + n + nft21> (8.61) 

7i + 1 + n2hnG0 + hi:LnG0 = 7iftn6r0 + TI + 7iA21. (8.62) 

Cancel similar terms and rearrange: 

7i2AnG0 - T*A21 + 1 = 0. (8.63) 

Solve eqn. (8.63) for n by the quadratic formula: 

nl9n2,- 2a 

-&+V(&2-4ac)j ( 8 6 4 ) 
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where a = hnG0, b = — h21, c = 1. 

nl9 n2, = *u± >Mli-4M?o) 
2AnG0 

205 

(8.65) 

Note tha t only positive values of n will yield meaningful 
solution. For the physical grounded- emitter oscillators, gene
rally h\± ̂  4 ^n^o • 

Consequently, for the purpose of engineering design, eqn. 
(8.65) simplifies to 

^21 ■ ^21 ^21 
n = 2hnG0 hnG0 

(8.66) 

Bv definitions, 

hii — fi— Forward current gain, 

^o = ^22 + ^ L = ^22 + ^ r - • 

Therefore when substituting these identities into eqn. (8.66) 
the limiting value of n is 

(8.67) 

I t is evident from eqn. (8.67) t ha t for sustained oscillations 
the limiting magnitude of (3 is 

(8.68) 
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APPENDIX 

Problems 

Problem sets are keyed to the main body of the text, i.e. I-2d stands 
for problem d which is related to Par t I, Chapter 2. 

PART I 
I-la. Find the algebraic sum of the matrices: 

(i) [ ab cd~\ 
kf zw\ + 

["3* 
1 
s 

2sl 
2 
s 

(a+jX) ( 6 - j F ) l 
(ii) v ' *~ ' x~ J~' I+J3 

|~2a -b~\ 
[3c -2dj' 
ations: 

Ya bl |~1 0~1 [a b~] fo l l w [c d\[o ij- (11) I d\b 4 
I- lb . Perform the indicated multiplications: 

(iii) [abed] 

K 
L 
M 
N 

(iv) 
r i o i \ l F r i oi 
\^KY1 l j L° l J L M F 2 l j " 

I-lc. Expand the matrix products and form a set of simultaneous 
equations: 

_1_ _ 2 j 

1 
sK2 

sLx --

s3L2 0 

"V 
I* 

. J 3 . 

= 
"F l l 
v2\ 

Jil 

207 
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I-Id. Put into matrix form the equations: 

(i) Y = e&i + e2x2 - e3x3. 

(ii) sll+l0sl2 = vly ) 
- 0-5sI1 + + 4sl2 = v2. J 

(iii) (a-\-b)xi+(c + d)x2 = 3, 
exx + fx2 = - 6 . 

I-le. Given the simultaneous equation, solve for the unknown 
variables Vx and F2 , using the method of determinants. 

ZsV1 + 9sV2 = Ilf 

4,sV2-2sV1 = I2. 

I-If. Put into matrix form the simultaneous equations and solve 
for xx and x2: 

F = xx sin A + x2 cos A, 

W = — Xi cos B + x2 cos B. 

I-lg. Find the inverse of the following matrices: 

(i) \l i]- (ii) K\1 "]• (ui) [i I]-
I-lh. Derive the inverse matrices of the following expressions: 

[da 4&~| [Zn Z12l [hn -fe12"| 
W \_2o Id}' (U) [Zn Z22J- (Ul) [hil Ki\ 

I-2a. Find the h matrix for the resistive network and then compute 
the input impedance and voltage transfer ratio if: 

Rx = 1000 ohm, 
R2 = 200 ohm, 
R3 = 500 ohm, • 
RL = 300 ohm. 

Ii 
R-

o—Wv • — \ W £ -

V2 

I-2b. Find the h matrix of the JT network, derive expressions for 
output impedance and open-circuit current transfer ratio if: 
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R, = 25,000 ohm, 
Rb = 10,000 ohm, 
Re = 50,000 ohm, 
R0 = 30,000 ohm. 

VG=IOOVi 

I-2c. Derive the ABGD matrix for the reactive networks as shown 

J 2 
.coL jcoL 

* -L 
jcoc 

+ + 
V, ^ J - ^ rl 

JCOC jcoc 

+ 
v, 

I-2d. Derive the transmission (ABGD) matrix for the equalizer net
work and compute the input impedance and open-circuit voltage trans
fer ratios at 100 c/s, 1 kc/s and 10 kc/s . 

^ 
0.5/JLF 

o • Wv—^ 
+ 1000ft 

}0.3H 

I-2e. Find the Y matrix, input impedance, output impedance, volt
age and current transfer ratio for the terminated LCR network. The 

Ii 

Load 
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generator is a current source with terminal admittance of YG and 
angular frequency of co = 2nf cycles. 

I-2f. Consider the capacitively coupled symmetrical coupled circuit. 
Derive an expression for voltage and current transfer ratio with resis
tive generator and load. Assume that Cx = G2, Lx = L2 and Rx = R9. 
{Hint: Try admittance parameters.) 

^ 

±C, * C * 

+ 
V2 > R L 

I-3a. If the transmission matrix of the ideal transformer is given: 

[- 3- » 4 
then by using tables or algebraic methods, obtain the h and g matrices. 

I-3b. Using tables, transform the h matrices into the g and Y domains: 

ab 

(ii) [A] = 

a+b a+b 
a 1 

a+b a + b 

jcoC ; 

■ i 
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I-3c. Using algebraic methods or tables, transform the Y matrix 
into the Z, h, g and A BCD domains: 

cn = 
Y, " K 

BY, - ^ ( r 1 + r 2 ) 

I-3d. A transistor in the common-base connection can be defined 
by the A BCD matrix: 

YA B~\ 1 V(re+rb) re(rb + rc) + rbrc(l-CL)l 
[G D\ch n + arff[ l {rb+rc) J* 

By using tables, transform this mathematical model into the Z, Yf 
h and g domains. Show the simplifications which are feasible if the 
current gain a-> 1. 

I-3e. For low-frequency applications the common-emitter mode 
operated transistor may be approximated by the h matrix: 

M„ = 

Obtain a mathematical model of this transistor in the Y, Z, g and 
A BCD matrix domains by using tables and/or algebraic process. 

I-4a. Find the h matrix of the interconnected low-pass filter and 
ideal transformer. 
(Hint: Kefer to Problem I-3a for the transmission matrix of the ideal 
transformer.) 

[>*+#•«) 

p 

0 

I 

-f 
v, 

R 
-AW- i + 

V2 

I-4b. Obtain the mathematical model in the Y matrix domain of 
the twin T filter network. Assume that G1 = C2 and R1 = B2. 
(Hint: Split the network into two parallel T structures and find the 
Y matrices.) 
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+ 

V, 

1—Vvv-

^h 

R3 
AW—J + 

v2 

?c 3 

I-4c. The linear model of a frequency equalizing network is given, 
find the corresponding g matrix. 
(Hint: Split the top and bottom parts.) 

R2 
^ — W ^ -

+ 
v, 

A R3 

■ A W -

^> C2 

+ 
v2 

I-4d. A low-pass filter is terminated by a transistor amplifier in the 
common-emitter connection. Find the A BCD matrix of the cascaded 
active and passive twoports. 
(Hint: The h matrix of the transistor already defined in Problem I-3e ) 

1 f 

+ 1 
vi ! ; 

j Filter 

5 C I | 

1 | Amplif 

- 1 12 

I ! ; 
1 v> 

'er j 

I-4e. Given the Darlington- connected emitter follower pair. Find 
the Y matrix of the interconnection if the transistor parameters are 
defined in the h matrix domain: 

r rn ^ l l o ^12a r , T ^116 ^126 
[ĥ  = \ h h [h]h = \ h h • 

yjllla ">22a_\ [_n21b ^ f t j 

Find the current gain and input impedance of the configuration if the 
resistive parameters are as follows: 
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1000 ohm, 

h2la = 50, 

hllb = 1 0 0 ohm, 

h12b = 1 0 - 3 , 

h21b = 3 0> 

Kv> = 10 "4 mho, h22a = 5 X 10-6 mho, 

Ze2 = 1000 ohm. 

(Hint: Transform the h parameters into the ABGD domain.) 

I-4f. A cascode amplifier with transistors 1 and 2, defined in terms 
of the ABGD matrix: 

re+n 
frd 
1 

Pu 

re + rb 

are 

1 
ocre 

> e 

1 
P 

i 

r,(rb + re) 
ccrc 

1 
a 

The transistors are assumed to be identical with the resistive para
meters of: 

re = 25 ohm, 

rb = 100 ohm, 

a = 0-98, 

P = 50. 

The base resistor Bh = 50,000 Q, and it is required for biasing only. 
Find generalized expressions for: 
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(i) Current gain, voltage gain and input impedance. 
(ii) If the load ZL = 2000 ohm, what external impedance must be 

used for ZeX to obtain an amplifier input impedance of 10,000 
ohm? 

+ 
V, 

X 

PART II 
II-2a. Given a transistor power amplifier. I t is required to provide 

optimum gain and power transfer between a 50 ohm source and a 600 
ohm load as shown. Assume ideal transformers for Tt and JP2. 

The transistor is operating in the common-emitter mode and the 
intrinsic parameters are related to the h matrix: 

[h]C( 

500 

75 
5000 

(i) Find the turns ratio of the transformers for image matched 
source and load. 

(ii) Compute the power gain under matched conditions. 

V2 <RL=600« 

PART III 
III- la. Find the optimum, image matched, input and output coup

ling network parameters for a grounded-grid R F amplifier stage F 2 . 
At the operating frequency of 15 Mc/s satisfy that i?0uti = -Km 2 anc* 
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^ o u t 2 = RL - Assume that the correct cathode, grid and plate bias con
ditions exist. Furthermore, tha t input and output capacitances of the 
tube V2 can be considered as summed together with G2 and G3 respec
tively. 

The parameters of V2: gm = 20,000 ^mho, 

[i = 60. 

The desired selectivity of the tuned coupling networks when fully 
loaded, call for: 

o)Lx 

and 
Qi 

Si 
20 

« . - & - » • 

RU = 2000Q 

III-3a. Given an active filter in the form of a single-stage shunt feed
back amplifier. The transistor is considered as sufficiently described 
with the resistive parameters: 

re = 30 ohm, 
r = 1 0 0 ohm, 
P = 50, 
rd = 20,000 ohm. 

OIH 500Q 

L 

2000Q 

OIJJLF 
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Find the voltage gain, current gain, input and output impedances 
with the external passive elements as shown: 

(i) At the operating frequency where the LCR feedback network 
is series resonant. 

(ii) At a frequency of one-tenth of resonance. 
(iii) At a frequency often times resonance. 
I l l-3b. Using matrix methods calculate the voltage gain, current 

gain and input impedance of the two-stage transistor audio amplifier 
a t 10 c/s, 100 c/s, 1 kc/s and 10 kc/s. The two transistors have iden
tical characteristics and in the operating range of interest consider 
them as purely resistive: 

hn = 1000 ohm, 
h21 = 50 ohm, 

K 0, 
h2» = 5x 10-5 mho. 

*—rM—Tw 

^S2jiR 
l0<000Qf20J000Q 

10,000 
^ T M-M-F f 

250Q> ^ F 

+ 

III-5a. Given a practical audio-frequency transistor voltage feed
back pair. The operating range of interest extends from 100 c/s to 
12 kc/s. The transistors are identical types, though there is a substan
tial spread of the manufacturing tolerances from transistor to tran
sistor. At 1 mA collector current the following resistive parameters 
apply: 

re = 25 ohm, 
rb = 50 ohm, 
P = 40min to 250max. 

Assume further that h12 = 0 and h22 — 5x 10 -4 mho at /? = 40. 
Compute the essential circuit parameters for 30 db voltage gain and 

10,000 ohm input impedance. Ensure that the feedback network dis
sipates less than 10 per cent of the output power. What is the output 
impedance of the amplifier if both transistors have a current gain: 

( i ) ^miii-
(h) Ana*-

(iii) If the first transistor has /?max and the second /?min. 
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Allow m a t h e m a t i c a l simplifications whenever possible, p rov ided t h a t 
t h e e r ror is less t h a n 3 pe r cen t . 

-20 V 

RL=l000fl 

Zin*IOKfl 

III-6a. I t is required to design and optimize the circuit parameters 
of a transistor video feedback amplifier. The operating frequency band 
extends from 30 c/s to 1-2 Mc/s. A stabilized current gain of 30 db is 
desired with an amplifier input impedance of 100 ohm or less. The 
manufacturing tolerances of transistors in a 2:1 range should introduce 
negligible change in the bandwidth and gain characteristics. Gain varia
tion should not exceed 5% under the worst conditions. 

Assume that stray capacitances and transistor interelectrode capa
citances can be shown by the capacitors (73 and G6 as above. The load 
is a 1000 ohm resistor. Both transistors are of the same type and in 
the operating range of interest they are defined by the resistive h 
parameters: 

hlx ss 800 ohm minimum, 
h12 = 0, 

If neglecting the intrinsic transistor base resistances: 
(i) Find the minimum magnitude of h2l which will satisfy design 

objectives. 
(ii) What is the current gain and input impedance of the amplifier 

if R2 disconnected and Rx shorted-out. 
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-20V 

RG=l000ft 
r ^WV-0 •—» 

J - r . Input J> | 

2-A >00Q 

9 1 KD| 

JL J J 0 K Q 1 

III-8a. Obtain the linear model and a corresponding mathematical 
model of the tuned-plate—tuned-grid oscillator. Derive generalized ex
pressions for the conditions of oscillation and the frequency of oscilla
tion. Assume that tube interelectrode capacitances are negligible. Com
pute the desired passive elements for operation at 1 kc/s and 1 Mc/s 
respectively if the following constraints apply: 

gm = 8000 ^mho, rp -

Qi = Q2 = 

cx = c2. 
coLx CO.LJ 

= 10,000 ohm, 

= 40, 

(Hint: Try the Y matrices.) 

I l l-8b. Given a Pierce type quartz crystal oscillator. The quartz is 
assumed to be inductive and series resonating at 1-7 Mc/s. The appli-
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cable constants of the quartz: 

rx = 50 ohm, cx < 0.1 pF, 

Q = M^L = 20,000. 

For the transistor in the h matrix domain: 

^n = rb + Pre, h12 = 0, 

" ' 2 1
 ==

 r > ^ 2 : 
r 
1 

The corresponding numerical constants are: 

re = 25 ohm, rb = 100 ohm, rc = 2 Megohm. 

The output is taken across Re = 100 ohm. Allowing for normal 
junction capacitances of the transistor, estimate the limiting value of 
f$ and optimum Gb and Ge. 

XTL< * C C 
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