


Research and Development in Expert Systems IX



THE BRITISH COMPUTER SOCIETY CONFERENCE SERIES

Editor: P. HAMMERSLEY

The BCS Conference Series aims to report developments of an advanced
technical standard undertaken by members of The British Computer Society
through the Society's conference organization. The series should be vital reading
for all whose work or interest involves computing technology. Volumes in this
Series will mirror the quality of papers published in the BCS's technical
periodical The Computer Journal and range widely across topics in computer
hardware, software, applications and management.

1: SE90, edited by P.A.V. Hall
2: Research & Development in Expert Systems VII, edited by T. Addis

& R. Muir
3: People and Computers VI, edited by D. Diaper & N. Hammond
4: Research & Development in Expert Systems VIE, edited by I.M. Graham

& R.W. Milne
5: People and Computers VII, edited by A. Monk, D. Diaper & M.D. Harrison
6: Research & Development in Expert Systems DC, edited by M.A. Bramer

& R.W. Milne



British Computer Society Conference Series 6

Research and Development in
Expert Systems IX
Proceedings of Expert Systems 92, the Twelfth Annual Technical
Conference of the British Computer Society Specialist Group
on Expert Systems, London, December 1992

Edited by

M. A. Bramer
University of Portsmouth

R. W. Milne
Intelligent Applications Limited

Published on behalf of

THE BRITISH COMPUTER SOCIETY

by

CAMBRIDGE
UNIVERSITY PRESS



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Victoria 3166, Australia

© British Informatics Society Ltd 1993

First published 1993

Printed in Great Britain at the University Press, Cambridge

Library of Congress cataloguing in publication data available

British Library cataloguing in publication data available

ISBN 0 521 44517 5



Contents

Introduction
M. A. BRAMER 1

CONSULTANT: providing advice for the machine learning toolbox
S. CRAW, D. SLEEMAN, N. GRANER, M. RISSAKIS & S. SHARMA 5

A methods model for the integration of KBS
and conventional information technology
C. HARRIS-JONES, T. BARRETT, T. WALKER,
T. MOORES & J. EDWARDS 25

KBS methodology as a framework for co-operative working
J. KINGSTON 45

Project management for the evolutionary development of expert systems
I. WATSON 61

The specification and development of rule-based expert systems
P. MAHER & O. TRAYNOR 75

Towards a method for multi-agent system design
A. OVALLE & C. GARBAY 93

Jigsaw: configuring knowledge acquisition tools
D. R. PUGH & C. J. PRICE 107

On the relationship between repertory grid
and term subsumption knowledge structures: theory practice tools
M. L. G. SHAW & B. R. GAINES 125

Strategy maze: an on-line tool for support management
of the knowledge acquisition process
N. Y. L. YUE & B. COX 145

Concurrent engineering using collaborating truth maintenance systems
C. J. HINDE & A. D. BRAY 165

Ockham's razor as a gardening tool
R. S. FORSYTH 183

A designer's consultant
J. W. BRAHAN, B. FARLEY, R. A. ORCHARD,
A. PARENT & C. S. PHAN 197



Fairness of attribute selection in probabilistic induction
A. P. WHITE & W. Z. LIU 209

An application of case-based expert system technology
to dynamic job-shop scheduling
A. BEZIRGAN 225

Neural network design via LP
J. P. IGNIZIO & W. BAEK 237

KEshell2: an intelligent learning data base system
X. WU 253

Approaches to self-explanation and system visibility
in the context of application tasks
G. A. RINGLAND, H. R. CHAPPEL, S. C. LAMBERT,
M. D. WILSON & G. J. DOE 273

An object oriented approach to distributed problem solving
A. ELIENS 285

Intelligent user interface for multiple application systems
X. ZHANG, J. L. NEALON & R. LINDSAY 301

Combining qualitative and quantitative information for temporal reasoning
H. A. TOLBA, F. CHARPILLET & J. -P. HATON 317

Documents as expert systems
B. R. GAINES & M. L. G. SHAW 331



Preface

This volume contains the refereed papers presented in the
technical stream at Expert Systems '92, the twelfth annual
conference of the British Computer Society Specialist Group on
Expert Systems, held at Churchill College, Cambridge in December
1992.

On behalf of the programme committee I should like to thank those
who took part in the refereeing this year. Their names are listed
below.

I should also like to thank all those who have contributed to the
organisation of this conference, in particular Rob Milne who again
acted as the chairman of the conference organising committee and
Ian Graham who organised the applications stream of the
conference.

Thanks are also due to this year's conference organisers, Applied
Workstations Limited, for their many efforts in making this
conference possible, not least for their help in the preparation
of this volume.

Max Bramer
Programme Chairman. Expert Systems '92

Conference Organising Committee
Rob Milne (Conference Chairman)
Max Bramer (Programme Chairman)
Alex Goodall
Ian Graham (Organiser of Applications Stream)
David Lloyd
Ann Macintosh

Programme Committee
Max Bramer (Chairman)
Tom Addis
Ian Graham
David Lloyd
Ann Macintosh
Robin Muir
Tim Rajan

Referees fin addition to Programme Committee members)
Alan Black Jonathan Killin
Paul Brna John Kingston
Flavio S Correa da Silva Ian Lewin
Brian Drabble Rob Milne
Ian Filby Dave Robertson
Terry Fogarty Nigel Shadbolt
Richard Forsyth Peter Sharpe
Ian Harrison Gail Swaffield
Sheila Hughes Mike Uschold
Richard Kamm Mike Yearworth





Introduction and Overview

M.A.BRAMER

Department of Information Science
University of Portsmouth
Locksway Road
Milton, Southsea P04 8JF
England

In 1980, when the British Computer Society's Specialist Group on
Expert Systems was established, it was remarked that the number of
operational expert systems in the world could be counted on the
fingers of one mutilated hand.

Expert Systems and its parent field Artificial Intelligence, which
were then barely known outside a few specialist academic
institutions, are now accepted parts of most degree courses in
Computer Science.

Moreover, the history of expert systems in the last ten years is a
highly successful example of technology transfer from the research
laboratory to industry.

Today there are thousands, possibly tens of thousands of expert
systems in use world-wide. They cover a very wide range of
application areas, from archaeology, through munitions disposal to
welfare benefits advice (see, for example, Bramer 1987, 1988,
1990).

Many of these systems are small-scale, developed in a few months
(or even weeks) and often comprising just a few hundred rules.
However, even relatively straightforward expert systems can still
frequently be of great practical and commercial value.

The Department of Trade and Industry recently produced a series of
12 case studies of commercially successful expert system
applications in the UK which included systems for tasks as diverse
as product design at Lucas Engineering, corporate meetings
planning at Rolls-Royce and personnel selection at Marks and
Spencer (DTI, 1990). However, despite explosive growth in the last
ten years, it seems clear that we are still only scratching the
surface of possible applications.

Although much of the early work was concerned with standalone
systems - particularly consultation systems - which were
principally rule-based, both the computational techniques employed
and the nature of the systems themselves have broadened
considerably in recent years.



2 BRAMER: Introduction

Attention is increasingly becoming focused on forming links
between expert systems and the conventional problems of data
processing and commercial computing, including the interface
between expert systems and database management systems, the
development of intelligent front ends to complex software packages
and information retrieval systems, and applications in real-time
process control.

There is also an increasing interest in high-value applications
(particularly financial ones, such as insurance underwriting),
where substantial sums of money are involved and considerable
increases in a company's profits can be made by improvements in
performance which are only marginal, without any need for an
expert system to achieve anything remotely approaching perfect
performance.

As well as the conventional mode of use, it is likely that in the
future we shall see more 'mobile' expert systems in use for
outdoor applications. These might for example be mounted in a
maintenance engineer's van and connected via a radio link with a
mainframe back at his or her base (for example, for database
access) or incorporated in a small hand-held portable computer.

It is not long ago that expert systems were considered by many to
be insufficiently safe for 'safety-critical' applications. Now
these too are seen as a legitimate area of use.

It has been reported (AAAI, 1991) that a number of expert systems
were used in support of 'Operation Desert Storm' in the Gulf War,
including PRIDE (Pulse Radar Intelligent Diagnostic Environment),
SABRE (Single Army Battlefield Requirements Evaluator), TOPSS
(Tactical Operation Planning Support System), TACOS (The Automated
Container Offering System) and AALPS (Automated Air Load Planning
System).

The programming techniques used by expert system developers have
also changed considerably, from the 'first generation' systems
which relied purely on heuristic knowledge in the form of rules,
through 'second generation' systems combining heuristic reasoning
based on rules with deep reasoning based on a causal model of the
problem domain, to systems employing other representations - many
of them first developed in the Artificial Intelligence community -
such as frames, blackboards, conceptual graphs and objects.

The very short development times recorded for many expert systems
and for 'conventional' systems developed using similar
representational techniques are reminiscent of the introduction of
high-level languages such as FORTRAN and COBOL thirty years ago
and the drastic improvement in development times, compared with
the earlier use of assemblers and autocodes, obtained by the use
of more problem-oriented representations.



BRAMER: Introduction 3

There have also been substantial advances in the area of
development methodologies which have made the development of
expert systems considerably more systematic than the early
pioneering efforts (see for example Harris-Jones et al., 1992).

In my view, we are seeing a paradigm shift occurring in our
perception of computing. It is not surprising that the initial use
to which computers were put was to solve problems with well-
defined, analytical solutions. Increasingly we are seeing that
they can also be used to tackle ill-defined, 'inexact' problems,
even those with no clear-cut solutions. It is in this latter area
that the largest rewards may ultimately lie.

Expert system techniques provide facilities for modelling a
problem domain in a way that is appreciably more meaningful to
both the system designer and the user, and this promises benefits
for conventional as well as Artificial Intelligence applications.

As well as the obvious immediate commercial benefits a major
potential benefit of expert systems technology is the development
over a period of time of improved codifications of expert
knowledge.

This would be by no means a new phenomenon. Historically, it is
the ability to record its knowledge (in the form of books, or in
earlier times in stories, songs, etc.) that has enabled each
generation to develop by building on the skills of those that have
gone before. There are two aspects to this. Not only does the
expertise of the most skilled person in a field in one generation
progressively 'filter down' to the ordinary participants in that
field in future generations, but the capability of starting at a
much higher level enables the most skilled in succeeding
generations to progress even further.

The development of expert systems may enable a major acceleration
of this process to occur. Computer programs have important
advantages over books etc. as media for the recording of knowledge
in that not only can they be updated rapidly but they are
necessarily precise and unambiguous. Any dispute over the meaning
of a program can ultimately be solved by running it.

The availability of the expertise of a leading practitioner in a
field in a fully precise and directly testable form may well
enable others to find improved ways of codifying that knowledge,
to look for simplifications, to identify errors or omissions, or
to find improved ways of teaching the underlying skills. A refined
form of the knowledge might again be stored in the form of an
expert system, but might instead be communicated in the more
conventional form of textbooks, etc.



4 BRAMER: Introduction

Expert Systems have come a long way in the last ten years. The
field has advanced beyond its early successes with small
declarative rule-based systems by drawing on techniques such as
rule induction (White and Liu, 1992), case-based reasoning
(Bezirgan, 1992), truth maintenance (Hinde and Bray, 1992) and
temporal reasoning (Tolba et al., 1992) from the wider field of
Artificial Intelligence and established techniques from psychology
such as repertory grids (Shaw and Gaines, 1992).

There are many more techniques in the research laboratory waiting
to be brought into action to tackle the challenging applications
likely to be required in the future. Despite a decade of success
the era of expert systems is only just beginning.

REFERENCES

AAAI (1991). AI Magazine, Vol.12, No.2, Summer 1991, p.16.

Bezirgan, A. (1992). An Application of Case-Based Expert System
Technology to Dynamic Job-Shop Scheduling. [This Volume.]

Bramer, M.A. (1987). Expert Systems in Business; a British
Perspective. Proceedings of the First International Symposium
on Artificial Intelligence and Expert Systems, Berlin, May,
1987. Reprinted in Expert Systems, Vol.5, No.2, pp.104-117,
May 1988.

Bramer, M.A. (1988). Applying Expert Systems in Business: A
Critical Overview. Proceedings of the Second International
Symposium on Artificial Intelligence and Expert Systems,
Berlin, June 1988, Part C, pp.17-39.

Bramer, M.A. (1990). Practical Experience of Building Expert
Systems. John Wiley and Co.

DTI (1990). Expert Systems Opportunities. [A pack of 12 case
studies plus guidelines and video.] HMSO.

Harris-Jones, C , Barrett, T., Walker, T., Moores, T. and Edwards,
J. (1992). A Methods Model for the Integration of KBS and
Conventional Information Technology. [This Volume.]

Hinde, C.J. and Bray, A.D. (1992). Concurrent Engineering using
Collaborating Truth Maintenance Systems. [This Volume.]

Shaw, M.L.G. and Gaines, B.R. (1992). On the Relationship between
Repertory Grid and Term Subsumption Knowledge Structures:
Theory. Practice and Tools. [This Volume.]

Tolba, H.A., Charpillet, F. and Haton, J.-P. (1992). Combining
Qualitative and Quantitative Information for Temporal
Reasoning. [This Volume.]

White, A.P. and Liu, W.Z. (1992). Fairness of Attribute Selection
in Probabilistic Induction. [This Volume.]



CONSULTANT: Providing Advice for

the Machine Learning Toolbox*

Susan Craw* D. Sleeman
Nicolas Graner Michael Rissakis Sunil Sharma

Department of Computing Science
University of Aberdeen

Aberdeen AB9 2UE

Abstract

The Machine Learning Toolbox (MLT), an Esprit project (P2154), provides
an integrated toolbox of ten Machine Learning (ML) algorithms. One distinct
component of the toolbox is Consultant, an advice-giving expert system, which
assists a domain expert to choose and use a suitable algorithm for his learning
problem. The University of Aberdeen has been responsible for the design and
implementation of Consultant.

Consultant's knowledge and domain is unusual in several respects. Its knowl-
edge represents the integrated expertise of ten algorithm developers, whose
algorithms offer a range of ML techniques; but also some algorithms use fairly
similar approaches. The lack of an agreed ML terminology was the initial im-
petus for an extensive, associated help system. From an MLT user's point of
view, an ML beginner requires significant assistance with terminology and tech-
niques, and can benefit from having access to previous, successful applications
of ML to similar problems; but in contrast a more experienced user of ML does
not wish constant supervision. This paper describes Consultant, discusses the
methods used to achieve the required flexibility of use, and compares Consult-
ant's similarities and distinguishing features with more standard expert system
applications.

'Suggested short form "5. Craw, D. Sleeman ci al: CONSULTANT - MLT's Adviser"
tSeconded from The Robert Gordon University, Aberdeen, September 1991 - August 1992.



CONSULTANT: Providing Advice for the Machine Learning-
Toolbox

SUSAN CRAW*, D. SLEEMAN, NICOLAS GRANER, MICHAEL
RISSAKIS, SUNIL SHARMA

Department of Computing Science
University of Aberdeen
Aberdeen AB9 2UE

1 INTRODUCTION
The Machine Learning Toolbox (MLT), an Esprit project (P2154), provides an inte-
grated toolbox of ten Machine Learning (ML) algorithms. One distinct component
of the toolbox is Consultant, an advice-giving expert system. It provides domain ex-
perts with assistance and guidance on the selection and use of tools from the toolbox,
but it is specifically aimed at experts who are not familiar with ML and its design
has focused on their needs.

Consultant combines the normal functions of an expert system: asking questions,
integrating evidence and summarising advice, with an extensive, easily used help
system, providing assistance with ML terminology and approaches. The MLT project
has experience gained from successful application-algorithm "marriages" and this
information is available within Consultant's help system as additional assistance to
the domain expert.

Consultant's knowledge and domain is unusual in several respects. Its knowledge
represents the integrated expertise of ten algorithm developers, whose algorithms offer
a range of ML techniques; but also some algorithms use fairly similar approaches. The
lack of an agreed ML terminology was the initial impetus for an extensive, associated
help system. From an MLT user's point of view, an ML beginner requires significant
assistance with terminology and techniques, and can benefit from having access to
previous, successful applications of ML to similar problems; but in contrast, a more
experienced user of ML does not wish constant supervision.

MLT is an integrated toolkit containing Consultant [Graner (1992)], ten ML algor-
ithms and a Common Knowledge Representation Language [Morik et al (1991)]. This
paper focuses on Consultant, but we briefly introduce the algorithms here, since

tSeconded from The Robert Gordon University, Aberdeen, September 1991 - August 1992.



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox 7

Consultant represents their features in its knowledge base so that it can advise on
their use. The algorithms cover a wide range of ML approaches ! :

• APT [Nedellec (1991)]: a learning apprentice system for problems solved by
decomposition;

• CIGOL: induces FOL2 rules from positive and negative examples;

• NewID, CN2 [Clark (1991)], LASH [Hutber (1987)]: induce discrimination
trees or rules from examples expressed as attribute-value pairs;

• MAKEY: induces discrimination rules from concept descriptions;

• KBG [Bisson (1992)]: a FOL clustering and generalisation tool;

• MOBAL [Morik (1991)]: a FOL modelling and knowledge acquisition tool;

• DMP [Parsons (1989)]: a symbolic clustering algorithm; and

• SICLA: a set of statistical, symbolic and numerical data analysis tools.

This paper describes Consultant, discusses the methods used to achieve the required
flexibility of use, and compares Consultant's similarities and distinguishing features
with more standard expert system applications. Section 2 gives an overview of Con-
sultant and its evolution during the MLT project. A typical run of Consultant appears
in Section 3. Sections 4 and 5 describe the components of Consultant in greater detail.
The testing of Consultant is outlined in Section 6, and finally Section 7 summarises
the main decisions in the development of Consultant.

2 OVERVIEW OF CONSULTANT
Consultant interviews the user about his learning task and represents features of the
task and the data set which are important for selecting an algorithm from the toolbox.
Therefore, Consultant is a classification expert system where the user is interrogated
about features of the learning task, and Consultant classifies this task as requiring
one of the ten MLT algorithms.

2.1 Approach
Consultant comprises two main components: an advising module and a help system.
(These components are described more fully in Sections 4 and 5.) They can be
accessed by the user in parallel. He can thus be using the advising module, but
consult the help system to allow him to understand his interaction with the advising

xIn addition to the references given, Specification Documents and User Guides for each of these
algorithms exist as deliverables within the MLT project.

2First. Order Logic (Predicate Calculus).



8 CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

module; e.g. he does not know some terminology, he wants to find out about the
currently recommended algorithm, he wants to know if his data is suitable for this
algorithm, etc. Consultant's users range from ML experts experimenting with various
ML algorithms, to domain experts who are beginning to use ML. These users have
very different knowledge about, and expertise in, ML. Hence their requirements with
respect to Consultant are very different. In this paper, we shall refer to the ML
expert as Consultant's expert user; the domain expert will be called the beginner.

The advising module asks the user questions about his learning task. From the user's
answers, Consultant builds a Description Set representing the Task, TDS, and a
knowledge base links features of the TDS with pieces of advice. The evidence in the
knowledge base for and against algorithms is triggered by the TDS, and "knowledge
functions" integrate these pieces of evidence before presenting them to the user in
a range of displays. The help system consists of a glossary and a set of help files
together with a smooth means of accessing relevant topics from them.

Data Collection Help
Can you proTldtt r samples from which an ML algorith

JK number of morhi
on the availalnlity of examples as data to learn from.
Systems that do not need exatnptes. would depend on
kiunvledge provided by you. Please specify whether you

mples from which the. system can le

Analysis

Figure 1: Consultant's User Interface

Consultant, in common with the other toolbox components, uses the HyperNeWS
1.4 HCI [van Hoff (1990)] (available from the Turing Institute), running on top of
OpenWindows 2.0, to provide a user-friendly interface. Figure 1 shows Consultant's



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox 9

user interface with the control panel at the extreme left, the advising module to the
left and the help system to the right. The figure indicates that the HyperNeWS
environment allows a very straightforward user interaction, a mouse-based interface
and default settings are provided where appropriate; e.g. the default mode is fixed
path - appropriate for a beginner.

2.2 Evolution
Consultant has evolved over the lifetime of the MLT project to incorporate the fea-
tures specified in the project plan, the improvements suggested by evaluations and
new developments in algorithm functionalities. The various versions of Consultant
correspond to the releases of the MLT.

C-0

Figure 2: Consultant-O's Functionality

The initial version, Consultant-0 [WP5 (1990)], was a rule-based expert system im-
plemented using Nexpert™. Compared to later versions of Consultant, Consultant-0
behaved very much like a black box: the user answered questions and at the end
of questioning the recommendation appeared, Figure 2. This behaviour was found
to be inappropriate. Evaluations showed that the ML expertise of domain experts
was wide ranging. This had implications for suitable questioning approaches and ap-
propriate help facilities. An ML expert can more easily understand questions about
his learning task whereas a beginner needs substantial support in the form of easily
accessible help. The shortcomings of Consultant-0 highlighted where improvements
were required.

Consultant-1 [Sleeman (1991)] specified the same functionality as Consultant-0. How-
ever, this involved a major redesign of the system. Firstly, to overcome the restrictions
of expert system shells, Consultant-1 was implemented in Sun Common LISP. In this
way a tailored system was provided. Consultant-1 offers a flexible control of ques-
tioning and an extensive help system, Figure 3. The number of questions was also
drastically reduced because a recommendation is based on knowledge which differ-
entiates between the algorithms, rather than knowledge about the features of each
algorithm. This paper focuses on Consultant-1, the currently implemented system,
and Sections 4 and 5 describe it in detail.



10 CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

Figure 3: Consultant-l's Functionality

The next version of Consultant, Consultant-2, has been specified [Craw (1992)] and
is currently being implemented. It extends the functionality of Consultant-1 by
giving advice on improving the performance of the recommended algorithm for the
application. The pre-run advice of Consultant-1 has been supplemented by post-run
advice, suggesting refinements to the use of an algorithm in response to the output
produced by running the algorithm. Figure 4 indicates this 2-phase functionality.

Consultant-2's pre-run module is a refined version of Consultant-!. In addition, it
will be more closely integrated with the MLT algorithms by providing algorithms
with initial parameter settings which are more finely tuned to suit the description of
the task as represented in the TDS, than the default settings, within each algorithm,
where the task description is not available. Consultant-2's post-run module develops
the approach used for pre-run, but in addition to the TDS it acquires a description of
the run of an algorithm and, from these, recommends refinements to the parameter
settings. In addition, it will also advise on representation and data changes, and
suggest the use of new post-processing tools available within MLT.

During the final phase of MLT, Consultant-3 will be specified. When using Consult-
ant-2, the user still instigates the advising/testing phases in the use of MLT, but
Consultant-3 will be a further development: an experimentation tool which designs
its own trial runs for algorithms, runs them and analyses the results of learning.

3 A TYPICAL RUN WITH CONSULTANT-1
This section contains an edited log of a session with Consultant-1. Here are some of
the questions and their answers.

Q: Which of the following best describes what you want to do?

1. Select the most appropriate from two or more options



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox 11

Pre-Run
Advice

Run
Algorithm

Figure 4: Consultant-2's Functionality

2. Optimise the performance of a particular system

3. Predict recurring events from past behaviour

4. Group entities with similar properties

5. Find an ordered sequence of actions to solve a problem

6. Detect instances of a pattern in data

7. Build or refine a model of a domain

A: Select the most appropriate from two or more options

Q: How many options (classes) are there? A: 10

Q: Are the classes mutually exclusive? A: NO

Q: Can you provide examples from which an ML algorithm can learn? A: YES

Q: How many examples could you provide? A: 100

Q: Can your data be noisy or inaccurate? A: YES



12 CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

Q: Could you classify examples artificially generated by the system? A: YES

Q: Would you prefer the output to be in the form of:

1. A decision tree

2. A set of IF-THEN rules

3. A recognition function

A: A decision tree

Q: Do you need the resulting rules (or tree or function) to completely cover the
example space? A: YES

Below, a table corresponding to the barchart after all the questions were answered, is
presented. The recommendations have been ordered and presented in three columns,
containing the algorithm name and its overall certainty, expressed as a percentage.

Most
Recommended

Name %

APT 55
NewID 35

Not
Recommended

Name

MOBAL
KBG
CN2
DMP

%

-26
-33
-38
-44

Very
Unfavoured

Name

LASH
SICLA-D
CIGOL

%

-68
-72
-99

Definitely
Not Suitable

Name %

MAKEY -100
SICLA-C -100

APT is the most highly recommended and we may ask for an explanation:

There is significant evidence for APT, because you can classify artificial exam-
ples generated by the system; and

there is small evidence for APT, because you need complete coverage of the
example space; and

there is slight evidence for APT, because an expert is available for an interactive
session; and

there is slight evidence for APT, because there are facts in the background
knowledge.

Instead of asking for the similar explanation for NewID, we can compare its evidence
with that for APT:



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox 13

There is significant evidence for APT but no evidence for or against NewID
since you can classify artificial examples generated by the system; and

there is slight evidence for APT but no evidence for or against NewID since an
expert is available for an interactive session; and

there is slight evidence for APT but no evidence for or against NewID since
there are facts in the background knowledge; and

there is no evidence for or against APT but large evidence for NewID since you
can provide one hundred examples; and

there is no evidence for or against APT but slight evidence for NewID since
there is noise in your data; and

there is no evidence for or against APT but large evidence against NewID since
the different classes may overlap.

We may feel that the evidence for APT is not very definite, and when we consider the
comparison, we notice that the last item counts heavily against NewID. On reflection
we may decide that, in fact, classes do not overlap and so we re-answer the appropriate
question as follows:

Q: Are the classes mutually exclusive? A: YES

This updates the barchart:

Most
Recommended

Name

NewID
CN2
APT
SICLA-D

%

87
68
55
28

Not
Recommended

Name

MOBAL
DMP
KBG

%

-26
-44
-46

Very
Unfavoured

Name %

LASH -68
CIGOL -93

Definitely
Not Suitable

Name %

MAKEY -100
SICLA-C -100

The explanation for APT has not changed, so we now investigate the new top two
recommendations:



14 CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

There is significant evidence for NewID, because you want to choose among a
set of decisions; and

there is large evidence for NewID, because you can provide one hundred exam-
ples; and

there is slight evidence for NewID, because there is noise in your data; and

there is small evidence for NewID, because you need complete coverage of the
example space.

The explanations for NewID and CN2 are very close, as can be seen from the following
comparison:

There is small evidence for NewID but large evidence against CN2 since you
would like the output to be a decision tree.

We may proceed by considering if we really do wish decision trees, etc.

4 ADVISING MODULE
The architecture diagram in Figure 5 represents the advising module as composed of
the data collection and analysis tasks. This section gives detailed descriptions of the
components of the advising module; the help system appears in Section 5.

4.1 Data Collection
Acquisition of the TDS is achieved by questioning the user about his learning task.
The ACKnowledge project's (ESPRIT P2576) Knowledge Engineering Workbench
is a sort of "knowledge acquisition toolbox". It assists the user with knowledge
acquisition by allowing him to progressively refine a model of the target system
[van Heijst (1992)]. In contrast, Consultant assumes its user has a clear idea of his
learning task and the type of knowledge to be acquired, and provides much more help
to allow the user to articulate the requirements of his task, as an ML application.

Consultant's user is presented with questions; an example appears at the top of the
data collection area in Figure 1. The expert user will easily understand what this
question is asking. However, the beginner can make use of the elaboration which
appears underneath each question, again see Figure 1. At any point the user may
choose to use the help facilities to assist in choosing his answer.



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

Interaction Modes

15

Fixed Path User Browsing

Glossary

Information Browser

ML Database

Bar Chart

Knowledge Functions

Figure 5: Consultant's Architecture

The expert user and the beginner may differ in the order they wish the questions to
be presented to them. Consultant allows three modes of operation to suit different
styles of interaction:

• Fixed Path Mode is suitable for the beginner. Questions are presented in
a focused, logical manner where all related questions are grouped together.
Although its name implies that the same sequence of questions is asked, the
answers to early questions restrict the questions which are asked later, because
the questions are structured using dependency links.

• User Browsing is suitable for the expert user. He is able to select which
questions he wishes to answer. However, to use this mode successfully, the user
must know which questions are relevant for his application. Therefore, it is not
suitable for a beginner to build a representation of his task this way.



16 CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

• Intelligent Mode provides the most efficient questioning - by asking the fewest
questions. Consultant chooses the next question so that it has the most impact
on the advice; i.e. the one that discriminates most between the recommended
algorithms. However, the questions are not asked in a "logical" order, and
therefore might confuse a beginner.

The user is able to return to previous questions. This may be appropriate for several
reasons:

• he may have skipped a question and now feels that he can answer it;

• he may have altered his view of his learning task because later questions caused
him to rethink his learning task; or

• he may wish to rethink a question because he had been unsure when he chose
the answer.

The user may step back through the questions one at a time and reanswer them.
Alternatively, he can enter the Whatif facility which allows him to save the current
state of advising and start user-browsing mode to select questions whose answers he
wishes to change. Typically the Whatif mode is used after all the questions have
been asked.

The flexibility of this questioning regime, together with its varied support facilities,
is not available in widely applicable, commercial shells, and therefore precludes the
use of an "off the shelf" shell.

4.2 Knowledge Base
The knowledge base is a network of properties which link features of the learning
task with the suitability of the various algorithms. Those properties which contain
algorithm recommendations indicate the level of suitability using a certainty factor,
a number between -1 and 1. A positive certainty indicates the property supports the
algorithm, negative certainties act against the recommendation, a certainty of 1 rep-
resents conclusive evidence for the algorithm, -1 excludes the algorithm from the rec-
ommendation, and zero certainty neither supports nor detracts from this algorithm's
recommendation. The overall algorithm suitability is calculated using MYCIN's in-
tegration function for certainty factors [Davis (1984)], this being a standard method
for handling uncertain evidence in classification systems. Individual pieces of pos-
itive evidence are able to accumulate and provide more certain evidence, positive
and negative evidence balance each other, and negative evidence increasingly weighs
against a recommendation. In addition, evidence which totally precludes the use of
algorithm can never be balanced or reduced. However, the certainties attached to



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox 17

Consultant's properties need not be very accurate, because Consultant wishes only
to rank the various algorithms and describe the evidence using an eleven point scale,
see Section 4.3.

The process of acquiring Consultant's knowledge was unusual in two respects. Firstly,
no one expert was available from whom to elicit the knowledge. Knowledge acquisi-
tion from multiple experts normally implies that more than one expert for the domain
exists and the consensus of their knowledge must be represented. For Consultant,
the acquisition was further complicated by the experts having expertise in related,
but disjoint areas, namely the individual algorithms. One outcome of this was that
a common terminology had to be defined which was suitable for all the algorithm de-
velopers. This lack of an established, unambiguous ML terminology further supports
the need for elaborated questions and ML help facilities, even for ML experts.

Secondly, Consultant's knowledge base does not represent general ML expertise for
choosing suitable ML approaches. Instead, distinguishing features of MLT's algo-
rithms must be represented, and detailed knowledge is only required when several
algorithms with similar approaches must be compared for suitability. Advising on
the use of such diverse tools as are contained in MLT makes Consultant distinct from
multistrategy learning systems [Michalski (1991)] where the selection of one, or sev-
eral collaborating approaches, is made from a set of similar algorithms. The basic
nature of Consultant's knowledge enables fairly simple, basic questions to be asked
and this ensures that the beginner does not need to answer questions involving the
subtleties of ML methods, which would be beyond his understanding at this stage.

The application types covered by Consultant are: select the most appropriate from
two or more options (classification), optimise the performance of a particular system
(optimisation), predict recurring events from past behaviour (prediction), group
entities with similar properties (clustering), find an ordered sequence of actions to
solve a problem (planning), detect instances of a pattern in data (pattern detec-
tion) and build or refine a model of a domain (modelling). Here, we briefly indicate
some of the types of knowledge Consultant uses to recommend an algorithm for a
classification application -
Classes: number, whether they overlap, . . .
Examples: number, complexity, distribution among classes, noise, availability of
negative examples, representation, . . .
Interaction: availability of expert, ability to classify artificial examples, preferred
output format, . . .
Background knowledge: availability, format, . . .

MLT's algorithms generate self-contained knowledge bases which can be used with
one or more problem solving methods. Hence Consultant's recommendation is not



18 CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

dictated by the underlying problem solver. In contrast, many learning systems are de-
signed for, or actually include, a particular problem solving method, e.g. PRODIGY
[Carbonell (1991)], SOAR [Laird (1991)], and the choice of the learning system is
heavily biased by the required problem solving paradigm.

4.3 Analysis
Although the underlying method of assembling evidence is based on certainty fac-
tors, it is not desirable to rely on them as exact, precise values. Therefore, Consultant
offers several means of presenting its recommendations and justifications for its rec-
ommendations:

• The barchart represents the certainty attached to each algorithm recommen-
dation as a bar. In Figure 1 we see that KBG and Makey are most favoured
and SICLA-c has been eliminated as a possible algorithm for this learning task.
The barchart display is shown while questions are being answered and is con-
tinually updated to reflect the current status. The bars have narrow shadow
bars underneath to reflect the previous bar position before the current question
was answered. This display has been well liked by domain experts because they
value the immediate feedback, and in some cases have rethought the answer to
a question when they saw its effect. The barchart is the only display which
shows the "raw" certainties.

• An explanation provides textual justification for the level of support for an
algorithm. Each piece of evidence for or against an algorithm is shown, but in-
stead of quoting the raw certainties, the importance of the evidence is described
on an eleven point scale: conclusive, large, significant, small, slight evidence for
and against and no evidence for or against.3 The user may ask for a justification
of the recommendation for some or all of the algorithms. Section 3 contained
explanations for APT and NewID.

• A comparison contrasts the discriminating task features which have con-
tributed to the support for two algorithms, often chosen because they were
closely recommended. The user may choose which algorithms to compare, but
the default is the two most highly recommended algorithms. Section 3 contained
comparisons for APT with NewID, and NewID with CN2.

• The summary recommends the most favoured algorithm, or lists all those
leading algorithms which are closely rated to the most favoured one(s).

• The log records all the questions which have been asked so far, and the answers
which have been given. This was used to provide part of the log in Section 3.

3The names for these levels will change in the next version to: conclusive, large, moderate,
small, tiny evidence for and against and no discriminatory evidence exists; also the certainties they
represent change slightly.



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox 19

5 HELP SYSTEM
Consultant's help facilities are an important feature for assisting a domain expert.
They must be extensive and supportive for a beginner, but should not be dictatorial
or oppressive for an ML expert. The architecture diagram in Figure 5 also indicates
the three help mechanisms available within Consultant:

• Glossary: an easy way to present brief help to a beginner;

• Information Browser: a comprehensive source of help files on ML and MLT
topics, useful and accessible for both beginner and expert users of MLT; and

• ML Database: a collection of current ML abstracts, more relevant for ML
experts.

The glossary contains short entries for basic terminology in ML. It is accessed by
clicking on keywords which are displayed in red when they appear in dialogue text.
This ensures that the user is able to get help at the point where the unfamiliar word
has been used. The glossary entry for 'example' (or 'case') contains:
"The term Case or Example refers to the description of an object based on observed
(or calculated) descriptors. A case can be a collection of several facts about an object,
about a state or about an event, which are all related to each other; alternatively,
simply an attribute-vector may be used to describe an object. An example differs
from a case in that a case need not be classified as belonging to a particular class.
That is, if a case is classified as a member of a particular class, the classified case is
a positive example for the class."

The more extensive help system is available in parallel with the advising module and
can be accessed by the user at any time. It consists of a large collection of help
files with an easily used retrieval system. The help files include information on MLT
algorithms and their requirements, more general ML topics, descriptions of MLT
applications and successful "marriages" with algorithms. A help file is retrieved
by assembling a collection of keywords for it. To assist this process, Consultant
highlights those keywords which make sense if added to the existing list. In Figure 1
the keyword list, comprising only ID, can be extended by clicking on the highlighted
words: How-to-use, Example, Parameters, Applications, etc., but the ID keyword
alone has retrieved an overview help file for ID; more specific lists of keywords retrieve
more specific help files.

Combinations of keywords are arranged in a hierarchical lattice structure4. The
nodes in this keyword lattice represent meaningful concepts described by conjunc-
tions of keywords. The lattice allows even a novice user to easily navigate through

4 Many hierarchies of concepts are trees, but if some nodes in a hierarchy can be reached by more
than one route then it forms a lattice.



20 CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

the range of topics. Not only is he presented with suitable keywords, one of which
he may be seeking, but it encourages him to explore files which he may not have
considered retrieving.

Finally, Consultant provides ML assistance by allowing access to the ML database
[Morales (1990)], a selection of ML relevant topics retrieved from the Turing Insti-
tute's ever growing database of references.

6 VALIDATION AND TESTING
The algorithm developers have inspected the knowledge about their algorithm. To
ease this process, a natural language translator for Consultant's knowledge base has
been written. As inconsistencies in the knowledge are reported and new features are
incorporated in algorithms, refinements to the knowledge base are implemented.

All partners, but in particular applications partners, have tested Consultant by using
it with in-house learning tasks. Some of this testing was done by MLT members, but
much of the testing of Consultant was carried out by domain experts who were new
to ML. Testing highlighted questions which were commonly misunderstood or were
difficult to understand. The questions are being continually updated in response to
such comments. Valuable testing was achieved by comparing Consultant's recom-
mendations with those given by ML experts advising on suitable MLT algorithms.
Such testing revealed that Consultant's advice compared favourably with those of
ML experts.

A principled approach to the validation of expert systems is a current research is-
sue, [VIVA (1992)]. Since, Consultant is simply an advice system for an expert; its
recommendations need not be followed, and so rigorous validation is not appropri-
ate. Our testing has been achieved by using an ML expert to verify Consultant's
recommendations, and update the KB as necessary, during extended use at partner
sites.

One of the aims of MLT has been to explore the use of ML algorithms for real-sized
applications. The available applications cover a wide range of domains; e.g. design,
medical, financial planning, fault diagnosis, etc. Consultant has been used with all
these applications, and domain experts from a wide range of disciplines have been
exposed to sessions with Consultant. It is noticeable that the speed of answering
Consultant's questions varies with the expert's level of computer, and in particular
ML, exposure. However computer-confident experts often rush through questions,
hence misinterpreting certain questions and thus giving inappropriate answers. In
contrast, more naive users answer the questions more carefully and are more willing
to read the elaborations and investigate the help system. Therefore, a naive user
often gets more useful advice on the initial run, although the more expert user often
subsequently adjusts his replies to questions in response to receiving explanations



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox 21

from Consultant which alert him to his wrongly answered questions. Consultant
allows the beginner to gradually articulate his learning task and encourages him to
rethink earlier answers.

7 SUMMARY
Consultant is an integrated advice system for MLT to assist a domain expert to
choose and use an ML algorithm; particularly a beginner in ML. Consultant has
developed from the rigid, restrictive, black-box system, Consultant-O, through the
well-liked, successful, flexible advice environment, Consultant-1 to the currently de-
veloping Consultant-2 system which allows a feedback loop through the algorithm
runs. Consultant has been judged by partners and domain experts to be a support-
ive system giving appropriate, and useful, advice on applying MLT algorithms.

Consultant has some unusual features as an expert system. It embodies expertise
not otherwise available in one source. This difficult knowledge acquisition task is
eased by being restricted to discriminating knowledge about a relatively small set of
often dissimilar ML algorithms. The need for a flexible control mechanism precluded
the use of a standard shell. Consultant is tailored for use with MLT and the tool-
box interface provides a common "look and feel" among Consultant and the MLT
algorithms.

8 ACKNOWLEDGEMENTS
Knowledge for the various versions of Consultant and testing of existing implemen-
tations has been provided by other members of the consortium: Alcatel Alsthom
Recherche (F), British Aerospace (UK), Foundation of Research and Technology -
Hellas (Gr), Gesellschaft fur Mathematik und Datenverarbeitung (D), INRIA (F),
ISoft (F), Siemens AG (D), The Turing Institute (UK), Universidade de Coimbra
(P), Universite de la Reunion (F) and Universite de Paris-Sud (F). In particular
we thank Robert Davidge and Riidiger Oehlmann, Aberdeen University, who im-
plemented Consultant-O, and Chris Moore, British Aerospace, who implemented the
knowledge functions for Consultant-1 and the natural language translator for Con-
sultant's knowledge base. The development of Consultant is supported by the CEC
as part of the Esprit II "Machine Learning Toolbox" project, P2154. Finally, we
thank an anonymous reviewer for his useful comments.

9 REFERENCES

[Bisson (1992)] G. Bisson. Learning in FOL with a Similarity Measure. In Proc. 11th
National Conference on Artificial Intelligence, 1992.

[Carbonell (1991)] J. G. Carbonell, C. A. Knoblock, and S. Minton. PRODIGY:
an integrated architecture for planning and learning. In K. VanLehn, editor,
Architectures for Intelligence. Lawrence Erlbaum, Hillsdale, NJ, 1991.



22 CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox

[Clark (1991)] P. Clark and R. A. Boswell. Rule induction with CN2: Some recent
improvements. In Y. Kodratoff, editor, Proc. Fifth European Working Session
on Learning (EWSL), pages 151-163. Springer Verlag, 1991. No. 482 of Lecture
Notes in Artificial Intelligence.

[Craw (1992)] S. Craw, N. Graner, M. Rissakis, S. Sharma, and D. Sleeman. Spec-
ification of Consultant-2. Deliverable 5.5, Machine Learning Toolbox ESPRIT
Project P2154, 1992.

[Davis (1984)] R. Davis. Interactive transfer of expertise. In B. Buchanan and E. H.
Shortliffe, editors, Ride-Based Expert Systems, pages 171-205. Addison-Wesley,
Reading, MA., 1984.

[Graner (1992)] N. Graner, S. Sharma, D. Sleeman, M. Rissakis, C. Moore, and
S. Craw. The Machine Learning Toolbox Consultant. Technical Report
AUCS/TR9207, University of Aberdeen, 1992.

[Hutber (1987)] D. Hutber and P. Sims. Use of Machine Learning to Generate Rules.
In Proceedings of the Third Alvey Vision Conference, 1987.

[Laird (1991)] J. Laird, M. Hucka, S. Huffman, and P. Rosenbloom. An analysis of
Soar as an integrated architecture. SIGART Bulletin, 2(4):98-103, 1991.

[Michalski (1991)] R. S. Michalski and G. Tecuci, editors. Proceedings of the First
International Workshop on Multistrategy Learning (MSL-91), George Mason
University, Fairfax, VA, 1991.

[Morales (1990)] E. Morales. The Machine Learning Toolbox Database. Deliverable
5.8, Machine Learning Toolbox ESPRIT Project P2154, 1990.

[Morik (1991)] K. Morik. Underlying assumptions of knowledge acquisition and ma-
chine learning. Knowledge Acquisition Journal, 3, 1991.

[Morik et al (1991)] K. Morik, K. Causse, and R. Boswell. A Common Knowledge
Representation Integrating Learning Tools. In R. S. Michalski and G. Tecuci, ed-
itors, Proceedings of the 1st International Workshop on Multi-Strategy Learning
(MSL-91), West Virginia (USA), pages 81-96, 1991.

[Nedellec (1991)] C. Nedellec. A Smallest Generalization Step Strategy. In L. Birn-
baum and G. Collins, editors, Proceedings of the Eighth International Workshop
on Machine Learning (IWML 91), pages 529-533. Morgan Kaufmann Publishers,
Inc., 1991.

[Parsons (1989)] T. J. Parsons. Conceptual clustering in relational structures: An
application in the domain of vision. EWSL89, Proceedings of the Fourth Euro-
pean Working Session on Learning, pages 163-177, 1989.



CRAW, SLEEMAN, ET AL: advice for the machine learning toolbox 23

[Sleeman (1991)] D. Sleeman, S. Sharma, N. Graner, M. Rissakis, R. Davidge, and
R. Oehlmann. Specification of Consultant-1. Deliverable 5.3, Machine Learning
Toolbox ESPRIT Project P2154, 1991.

[van Heijst (1992)] G. van Heijst, P. Terpstra, B. Wielinga, and N. Shadbolt. Using
generalised directive models in knowledge acquisition. In Proceedings of EKAW
92, 1992.

[van Hoff (1990)] A. van Hoff. HyperNeWS 1.4. Technical report, The Turing Insti-
tute, Glasgow, Scotland, 1990.

[VIVA (1992)] VIVA Partners Verification, Improvement & Validation of Knowledge
Based Systems. Technical report, ESPRIT III Project 6125, 1992.

[WP5 (1990)] WP5 Partners. ^Overview of Consultant-0. Deliverable 5.2a, Machine
Learning Toolbox ESPRIT Project P2154, 1990.





A Methods Model for the Integration of KBS and
Conventional Information Technology

C. HARRIS-JONES*, T. BARRETT*, T. WALKERt, T. MOORESj,
J. EDWARDSJ

* BIS Information Systems, Ringway House, 45 Bull Street, Colmore Circus,
Birmingham, B4 6AF

t Expert Systems Ltd, The Magdalen Centre, Oxford Science Park, Oxford, 0X4 4GA
X Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET

1. INTRODUCTION

The last few years has seen a significant change in commercial KBS development.
Organisations are now building KBS to solve specific business problems rather than simply
to see what the technology can do. There has also been a move away from building KBS
on stand alone PCs to using the corporate resources of networks, mini and Mainframe
computers, and existing databases. As a result of these changes, two significant questions
are now being regularly asked by organisations developing or interested in developing
KBS:

• How can KBS be linked into existing systems to enhance their processing
functions and make better use of data already held?

• What methods can be used to help build commercial applications using KBS
techniques?

The key to these questions is the use of an integrated approach to the development of all
IT systems. There are many methods available for conventional systems development,
such as Information Engineering, SSADM, Jackson and Yourdon. There are also a
number of KBS methods available or under development such as KADS, KEATS, and
GEMINI. However, commercial organisations with well established procedures for
conventional development do not want to use two different methods side-by-side, nor do
they wish to discard their current conventional development method and replace it with a
method claiming to cover all aspects of conventional and KBS development.



26 HARRIS-JONES ET AL: The integration of KBS and conventional IT

Organisations therefore require some way of integrating KBS methods into their existing
methods.

This paper presents a framework, currently under development, which allows the
integration to be carried out in a consistent and coherent manner. It is being developed at
a relatively high level, and is aimed at the integration process itself and the subsequent use
of the integrated method. Metrics are also being developed to answer project management
questions, such as the cost and duration of the project and the expected quality of the
hybrid products.

This research is part of a collaborative project between BIS Information Systems (Project
leaders), Expert Systems Ltd and Aston University, under the Information Engineering
Advanced Technology Programme (project number IED4/1/1426) and is jointly funded by
the DTI, SERC and the industrial project partners. Much of the work has been based on
the extensive experience of methods installation and integration, and development of KBS
that exists within the consortium partners.

2. INTEGRATED PROJECTS

2.1. The integration problem
The increasing maturity of KBS technology has led to its wider application and an
appreciation of the benefits it can bring to new or existing computer systems. For instance,
a recent commercial project sought to develop an allocation and scheduling system which
made use of conventional data entry, Operational Research algorithms and knowledge-
based rules to generate and optimise a schedule. Such a system typifies the increasingly
close relationship between KBS and conventional systems; the KBS and conventional
elements are closely related with substantial data requiring conventional data analysis
techniques and knowledge-based scheduling requiring KBS techniques. This type of
project could be carried out by separating out the KBS elements and developing them
using a KBS method, while using a conventional approach for the other parts of the
project. However, attempting to run two different methods which use different
terminology, different deliverables, and different management styles within a single project
is not very satisfactory — particularly when there is a common database involved to which
both the conventional and KBS elements need access. In some cases, the relationship
between the KBS and conventional elements is so close that an integrated method is the
only solution.

One way of approaching the problem of methods integration is to develop a method which
allows for both conventional and KBS components. However, this would simply add to
the plethora of existing methods and potential users would have to reject their current



HARRIS-JONES ET AL: The integration of KBS and conventional IT 27

method and way of working and substitute the "new" method. This approach is very
unlikely to gain commercial acceptance simply because of the large sums of money
involved in methods installation and training. An alternative is to develop a framework
allowing the integration of existing conventional and KBS methods. This would then only
require organisations to supplement their existing expertise rather than replace it with new
skills.

Another important issue in the use of methods is the need to tailor methods to individual
projects. All projects are different and no single method can possibly fit all projects.
Development methods, although targeted towards a particular type of application (for
example business transaction processing or real-time process control), are usually intended
to support the production of a wide range of applications within the target area. Many
methods available provide a set of many hundreds of tasks, products and techniques. One
of the problems observed in many organisations using such methods is that they will
frequently use the whole method regardless of the nature of the project. The consequence
is that a considerable amount of time can be spent "following the method" rather than
actually building the intended system.

2.2. Methods modelling
In line with the rise in the number of different development methods over the last decade
several models of what a method "is" have been produced. These range from high level
abstract models (Glasson, 1989) to very detailed models (AMADEUS, Loucopolous, et al
1987). These two are described below as representatives of methods modelling work.
Other work includes Iivari (1990a and 1990b) and Ould & Roberts (1988).

Glasson's meta-model. Glasson describes a meta-model of system development which
uses three main concepts — system evolution, system states and development
deliverables. He takes the view that information systems are constantly evolving and uses
system states to describe the process. At any given time the system is in a particular state,
for example Identified problem or Specified requirements, and these describe the
evolution of the system. The model provides a structure which allows sets of states to be
organised into a system development sequence which is appropriate for a given project.
The process of getting to a particular state is not described. This allows total flexibility in
terms of the techniques which are used. For example, sets of techniques from many
methods would allow a project to reach the state Data analysis complete even though
there can only be one state where data analysis is complete. System states are comprised
of, and defined by, a set of deliverables. The focus here is on the 'what' rather than the
'how'. One set of states and deliverables can be configured into a number of different life
cycles depending on the requirements of the project.



28 HARRIS-JONES ET AL: The integration of KBS and conventional IT

AMADEUS. This project recognises the need for a multi-method approach, although it is
not specifically considering KBS/conventional methods. The AMADEUS project is
attempting to integrate methods at the semantic level (AMADEUS = A Multi-method
Approach to Developing Unified Specifications). The aim of AMADEUS is to produce "a
unified conceptual model which is rich enough semantically to maintain system
specifications derived from any of the leading contemporary development methods"
(Loucopolous, op cii). It identifies two views of system development methods: process
control which looks at the steps and transformations applied during analysis, and the
model representation view which looks at the deliverables of the process. AMADEUS
concentrates on the latter, and attempts to develop a way of modelling the contents of
methods such that all methods can be converted into a common model and then converted
back into a different method. This is interfaced to tools so that the user of the tools does
not need an awareness of how AMADEUS operates.

3. METHODS MODELLING

The primary purpose of our project is to develop a framework which describes
conventional and KBS methods in such a way that different methods can be integrated into
a coherent whole. This will enable organisations to take their existing conventional method
and integrate it with a KBS method. The integration process will also take account of
information about the project on which the method is to be used, tailoring its contents
appropriately. In this way, not only is a fully integrated method generated, but it also
provides a sound basis for detailed project planning. This project is taking a high level
approach closer to that of Glasson than AMADEUS. However, there is no reason why
this high level approach should not eventually meet the very detailed approaches (such as
AMADEUS).

A wide range of both KBS and conventional methods (including SSADM, Information
Engineering, Modus, KADS, GEMINI and KEATS) have been analyzed and a methods
model developed. This consists of three major parts — the Structural Model, the
Perspectives Model, and the Methods Process Model. These models are outlined in the
following sections.

3.1. Structural Model
The purpose of the Structural Model is to provide a generic definition of the contents of
methods and show the relationships between individual elements. It was developed by
looking in detail at the contents of methods. The model has three layers of increasing
abstraction (see Figure 1). The most abstract layer (3) contains a generic description of
methods, identifying the individual components that go to make up development methods
such as tasks, techniques and products; over 100 different components have so far been



HARRIS-JONES ET AL: The integration of KBS and conventional IT 29

S i
ra

ct
ic

t/)
.Q
00

4—

o

ev
el

si
ng

 1

CO
at

In
cn

3

2

1

Structural model
i

SSADM
:omponent

k i

SSADM
component

KADS
component

KADS
component

1

Modus
component

Modus
component

y 7 V 7 V 7
\ / \ / \ /

Method
i.e. SSADM

Method
i.e. KADS

Method
i.e. Modus

Figure 1: Diagram of 3 layer Structural Model

identified. This is not an attempt to develop an idealised method, the Structural Model
simply takes those elements which already exist in methods and attempts to model them.
The bottom layer (1), the least abstract, contains the methods descriptions as provided by
the methods' vendors. The intermediate layer (2) provides the mapping of the individual
methods onto the methods model. This middle layer takes the contents of the development
methods and provides a library of discrete methods components in a format which allows
them to be manipulated easily. One of the main purposes of the Structural Model is to act
as a reference model against which the models of the source methods are constructed (ie
SSADM, KADS, etc). This enables the methods to be assessed in terms of their coverage
of the development process allowing omissions and overlaps to be identified.

3.2. Perspectives Model
The Perspectives Model looks at the types of components which have to be modelled
during systems development. The concept of a perspective has existed for a number of
years and was initially used to classify development methods into either data-oriented or
process-oriented. This was enhanced in the 1980s by a behaviour perspective. These have
been described in detail by Olle et al (1988). The data perspective describes the data that
are required in a system, typically through the use of data normalisation techniques and
Entity-Relationship diagrams. The process perspective describes the processes which take
place and is documented using techniques such as functional decomposition and process
dependencies. The third perspective, behaviour, is less well defined: it describes how the



30 HARRIS-JONES ET AL: The integration of KBS and conventional IT

system responds to events and is usually most developed in methods aimed at real-time
systems. The use of these three views of systems development can also be found in a
number of other authors including Kung & Solvberg (1986) who describe Structure,
Activity and Behaviour modelling; and Iivari (1990) who describes Structure, Function
and Behaviour abstractions. These views can also be found in a number of object oriented
methods, including Ptech (Martin & Odell, 1992).

Comparing the three perspectives with the scope of KBS methods it becomes clear that
some additional features are needed. KBS methods tend to be particularly strong in two
main areas — problem solving behaviour and domain knowledge. The problem solving
aspects map onto many of the aspects of the behaviour perspective and consequently we
have expanded the scope of this perspective to take account of these features. The domain
knowledge — in particular the semantics of the domain — are not modelled anywhere in
the current definition of the perspectives. We have therefore added a fourth perspective —
knowledge. The "map" of methods thus provided by the perspectives shows the areas in
which conventional and KBS methods need to be integrated. The relationship between the
four perspectives is shown in figure 2.

Static vs dynamic. The data and knowledge perspectives contain "static" information
which is manipulated by the process and behaviour perspectives. Ideally the static

Data

Knowledge

Process
Semantically

poor

Behaviour
Semantically

rich

Static Dynamic

Figure 2: Diagram of four quadrant perspectives model



HARRIS-JONES ET AL: The integration of KBS and conventional IT 31

information is application-independent. This has some degree of truth in well designed
corporate databases, it is also the ideal to which some KBS methods aspire, but very few
KBS applications have yet achieved. One view is that this is due to a lack of understanding
of what knowledge actually is, and to a lack of appropriate software tools. The opposing
view is that it is impossible to analyse knowledge in a task-independent manner.

Semantic content. The process and data perspectives contain very little semantic
information which can be used directly by the application. To some extent this is a truism
since much of conventional analysis is aimed at removing as much meaning from data and
processes as possible, for example data normalisation reduces all data to a common level
and the links between data relations are purely cross-references. At the opposite extreme,
modelling of domain knowledge attempts to capture as much of the semantics as possible.
This semantic information is typically conveyed through the use of structures such as
consists-of hierarchies, classification hierarchies and semantic nets. The middle ground
appears to be occupied by object oriented techniques since these attempt to model some
semantics while retaining an analysis of data necessary for conventional data-intensive
applications. There is a similar correspondence of semantic content between the process
and behaviour perspectives. The process perspective analyses the processes carried out in
a system in a purely deterministic fashion. Some conventional IT methods capture
behavioural information in as much as they record how the system responds to events —
this is particularly true for real-time methods. Entity Life Histories provide high level
behavioural information although this technique is often used purely for checking data and
processes rather than a way of capturing behaviour to be coded explicitly. Knowledge-rich
systems contain much semantic information which can be used to determine how to carry
out actions and to structure tasks dynamically. This can also be used to generate
explanations and to modify their own behaviour, for example so that the interaction with
the user changes according to their level of expertise.

Perspectives evolution. Each component in the perspectives undergoes a transformation
through the life of a development project and are usually referred to by different names at
each stage. The top state of the perspectives is in the real world before any analysis has
been carried out. Each component that is of relevance to the system being developed
undergoes a series of transformations.

For example:

form -> entity -» data staicture -» database table definition
job —> task —> function definition —> program specification

The evolution of the perspectives components is modelled as part of the Perspectives
Model.



32 HARRIS-JONES ET AL: The integration of KBS and conventional IT

Data

Entity-Relationships

Data definitions

Object hierarchies

Semantic nets

Knowledge

Process

Functional decomposition

Task descriptions

Tactics

Strategies

Behavio

Figure 3: Details of the four quadrants: Analysis

Perspectives components. The contents of the four perspectives have been defined in some
detail and is partly based on the work of Olle et al (1988). An overview of the
components found in analysis is given in figure 3. Methods usually provide techniques for
modelling a sub-set of the components contained in the model. They also provide
techniques which straddle the boundaries and thus provide inter-perspective links. The
most obvious example of this is the standard data flow diagram which relates the tasks to
the data entities. There is a similar correspondence between the knowledge and behaviour
perspectives exemplified by the inference structures found in KADS (Breuker, 1987).
These document metaclasses which are abstract classifications of objects in the knowledge
perspective, and knowledge sources which are descriptions of the ways in which
knowledge can be used from the behaviour perspective. Object oriented methods are now
appearing which do not make the separation of data and process in the same way, such as
SOMA (Graham, 1991). These approaches can still be mapped onto the perspectives
model since it represents the type of information which is captured rather than the way in
which it is actually captured. Techniques from individual methods can then be mapped
onto the model as appropriate.



HARRIS-JONES ET AL: The integration of KBS and conventional IT 33

3.3. Methods Process Model
The Methods Process Model (MPM) shows how the various elements of the Structural
Model fit together to configure a life cycle for a development project. Some methods
describe this explicitly but very few provide detailed descriptions of process models. The
MPM is the dynamic model which supports the production of a project plan. It is
important not to confuse methods and life cycles. The former describe the tasks,
techniques and products which can be used (and is described by the Structural Model), the
latter describe how the tasks are configured for use on a specific project. Typical life-
cycles are the waterfall model and prototyping; the structures within these high-level
models are described by the MPM. One consequence of this explicit separation is that
similar methods components can be used within different life cycles. This is graphically
illustrated with the rise of Rapid Development Methods. Many of the same methods
components used in projects with a waterfall approach are used in Rapid Development
Methods.

The MPM is used largely in the configuration process where the detailed tasks are put
together to produce a complete plan for an application development. Once the selected
KBS and conventional development methods have been integrated using the Structural
and Perspectives Models, the MPM is used to configure the life cycle. The most abstract
level of the model shows the four principle types of tasks defined in the Structural Model

Figure 4: Diagram of the top level of the MPM



34 HARRIS-JONES ET AL: The integration of KBS and conventional IT

(see figure 4) in the sequence in which they are normally carried out. This is used to guide
the high level configuration of tasks. More detailed levels of the Methods Process Model
are then used to configure the project plan in detail.

The top level of the MPM bears a significant resemblance to Boehm's spiral model
(Boehm, 1988). This is not surprising since both Boehm's model and our model have been
derived from best current practice. The major difference is the renaming of the Risk
quadrant to Decision. This was done because it was felt that it reflected the systems
development process more accurately. At this point in a project a decision has to be made
about the next step. Although an assessment of the risk is a very significant element in the
decision making process, there are other elements including, for example, internal political
issues. These can often kill a project far more efficiently than risk factors.

4. METRICATION

Even with a well-constructed method in place, whether the proposed system is developed
at all could well depend on the project manager's ability to accurately estimate certain
properties of the project. In particular, the client would like to know the likely cost and
duration of the project, while the project manager would need to be able to assess the
expected quality of the products. If mistakes are made over these properties then at best
there will be a strain on limited personnel and hardware resources, and at worst, the
project could be cancelled due to costs outweighing any remaining benefits.

Metrics have been developed since the early 1970s to provide answers to these questions
of cost, duration and quality for conventional systems. 'Metrics' are measurements of
some aspect of the development process or products which are then used to develop
estimating tools. For instance, COCOMO (Boehm, 1981) represents the relationship
between person-months of effort (E) and thousands of lines of delivered source
instructions (KDSI) with the model

E = 3 *(KDSI)1 1 2

Where the inputs to these models are known early in the development process and the
model proves to give accurate results, a tool which calculates the outputs from the model
would provide valuable support for the project manager's estimating decisions.

Given that the systems being dealt with by the methods integration tool contain both
conventional and KBS components, it might seem reasonable to follow the classic process
and develop an estimating tool which can be applied to both types of components.
However, the usefulness of following this process can be doubted. Firstly, there appears to



HARRIS-JONES ET AL: The integration of KBS and conventional IT 35

be some resistance to the use of estimating tools amongst project managers (IPL, 1989;
van Genuchten & Koolen 1991). Secondly, even where they are used, evidence suggests
estimating tools are not accurate (Kusters et al, 1991). In the face of these problems,
following the same process to build a hybrid metrics model would seem to be pointless.

It was decided to investigate these issues, and it was found (Moores & Edwards, 1992;
Moores, 1992; Edwards & Moores, 1992) that the problem lay not with the process of
developing estimating tools, but with the nature of the final product and what was being
modelled. Specifically, although project managers often produce estimates even before
drawing up a project plan, this is not regarded as a "true" estimate. Instead, project
managers see estimation as a bottom-up task first performed when a detailed (top-down)
plan is produced. Although a number of commercially available tools can give task-based
estimates, this form of estimation is not their primary mode of generating an estimate and
so it is no surprise that managers fail to perceive the relevance of estimating tools to their
work.

So, while the existing process of developing estimating tools would seem to remain
appropriate, it is a task-based model which seems to be the more useful model for project
managers. A clear definition of the range of tasks involved in hybrid software development
is being formulated within the methods model. However, a second feature of a hybrid
metrics model is that it must be equally applicable to both conventional and KBS
components. But these components are portrayed as being very different in character (eg.
Bader et al, 1988), and so it is unclear whether any metric can be applied to both
conventional and KBS components and produce meaningful data. Without the data, no
hybrid model can be built. The question therefore becomes: "Are there any hybrid
metrics?"

An experimental approach is being taken which is investigating the feasibility of building
on existing work by extending three well-known conventional metrics (Halstead, 1977;
McCabe, 1976; Henry & Kafura, 1984) to a KBS language. Prolog has been chosen as the
KBS language. The approach is experimental because the concepts behind these
conventional metrics do not have exact analogues in the KBS world. Halstead's program
length metric talks of operators and operands. What should be counted as an operator in
Prolog? McCabe's cyclomatic complexity metric suggests that once the structure of a
program exceeds a certain level the number of bugs will dramatically increase. What is this
level for Prolog? Henry and Kafura's data-flow metric suggests that high data-flow
indicates a component which will require more reworking if other components are
changed. Is this also true for a language like Prolog?

To answer these and other questions a tool has been developed which applies all three
metrics to static Prolog code. The next step is to allow a number of commercial companies



36 HARRIS-JONES ET AL: The integration of KBS and conventional IT

to use the tool to analyse their own library of programs. By also collecting development
time and error-rate data, it will then be possible to establish whether these three simple
metrics can indeed form the basis of an accurate and useful hybrid estimating tool.

5. TOOL SUPPORT

So far the theoretical basis for methods integration work has been described. The project
also has a practical stream: the construction of a tool for supporting the integration and
configuration of methods. There are two reasons for undertaking this work:

• It is necessary to undertake some form of validation. Building a tool shows up
gaps in the theory and forces clarification of concepts. It also provides quicker test
results than attempting the process "by hand".

• For the project's results to have their desired practical application, they will need
to be made widely available in an easy to use form.

The tool being constructed is called Russet. It runs in Microsoft's Windows 3.1
environment, and is written in the language Prolog-2for Windows 3, from Expert Systems
Ltd.

5.1. Methods Representation
The representation chosen for the methods and the Structural Model is a frame-like
structure. This gives ease of use to the methods engineers encoding the source methods,
together with the power of inheritance in the resulting hierarchy.

Class :
Class membership :
Subclasses :

Class description :

Cardinality :
Perspective :

Plan
\Product
Terms of reference, Project
plans report, Development plan,
Phase plans, Standards,
Resources
Plan products are used to
coordinate the usage of the
method
1:1
null

Figure 5: A product frame from the Structural Model



HARRIS-JONES ET AL: The integration of KBS and conventional IT 37

An example of a frame (for the generic product Plan) in the Structural Model is shown in
figure 5. The "Class membership" slot refers to its place in the Structural Model;
"Subclasses" refers to the frames directly below in the Structural Model; "Cardinality"
tells us there should only be one such classification per method; and the "Perspective"
slot maps onto the Perspectives Model. The perspectives Model is represented in a similar
way, but requires more complex links because of the time progression element; both the
Structural Model and the Perspectives Model are loaded automatically every time Russet
is consulted.

The source methods themselves are represented in a similar way to the Structural Model.
Figure 6 shows a product from the KADS KBS method in this form. As can be seen, there
are considerably more slots than for the Structural Model. Information contained here
includes references to the Structural Model (the "Class membership" slot) and the
Perspectives Model (the "Perspectives" and "P-Components" slots). Once the entire
method's product hierarchy has been encoded in this form the method may be read by
Russet.

Product name
Method
Parent product
Class membership

Abbreviated name
Cardinality
AKO
Child products
Description

Perspectives
P-Components

P-Representations

Document support
Tasks
Techniques

Inference Layer
KADS
Model of Expertise
\Product\Development\System
options\Alternative solutions
M4
1
null
null
A specification of the inferences
which may be performed over the
knowledge base
Knowledge, Behaviour
\Perspective\Knowledge\Object, etc,
etc
Inference Structures, Knowledge
Sources, Metaclasses

: Interpretation Model Library
Construct Model of Expertise

: ...

Figure 6: A KADS product in its Russet-prepared format



38 HARRIS-JONES ET AL: The integration of KBS and conventional IT

II Russet lv0.2)
File Domain Show Move Check Construct... Window Help Prolog

D:\RUSSETACODE\SSADMP
Current product = Project Products

Figure 7: The Russet tool after the opening ofSSADM

5.2. The Russet Tool in Use
The version of Russet described in this paper (0.2) has been used to validate the work of
the project to date, as described in earlier sections.

Russet runs in the Microsoft Windows environment, and follows the Multiple Document
Interface format (IBM, 1989); it is built around the notion of "methods windows". At the
start of a session the user will open a methods document referring to one of the source
methods. Figure 7 shows the state of the application after the SSADM product hierarchy
has been loaded.

A brief description of each of the menus — and hence the system's functionality —
follows:

Fjle

Domain

Covers all the standard Windows file manipulation actions: New, Open,
Save, Print, etc. Files which have been opened from the textual frame
descriptions can be saved in Prolog's internal format, thus speeding up later
consultation.

Allows the user to select which type of methods components (Products,
Tasks or Techniques) to display and integrate.



HARRIS-JONES ET AL: The integration of KBS and conventional IT 39

Russet |v0.2)
File Domain Show Move Check Construct... Window Help Prolog

D:\RUSSET\CODE\SSADM-P
: Attribute/Data Iten Descriptions
: SSADM U4
: \Product\Deuelopment\Systen description\Exist

Product name
Method
Class membership
system\Description
Parent product : [Data Catalogue]
Description : Packages all Attributes/Data Item Description
gether. Each description documents all of the details relation to a pa
ular attribute or data item, regardless of which technique has been us
n obtaining the information, only one central description of an attrit
of data item is to be maintained and accessed whenever necessary.
Perspectives
P-Components
P-Representations
Document support
Tasks
.Step 3iiO,Step 358,Step
tep 630,Step 640,Step 650,Step 660,Step 670]
Techniques
Abbreviated name
AKO
Cardinality

[Data]
[\Data\Attribute]

[Attribute/data item description proforma]
[140,Step 320,Step 120,Step 150,Step 310,Step

360,Step 510,Step 520,Step 530,Step 610,Step 6

[]
[]
[]
none

Figure 8: The "Details" of one of SSADM's products

Show Has three options, and all operate on the currently active methods window.
These are:

• "Details" which shows the contents of the current product (whose
name is displayed in the methods window) in a frame-like format — see
figure 8 for an example.

• "Hierarchy" which displays the entire (product) hierarchy of the
current method, indented.

• "Structural Model" which displays the Structural Model, indented,
together with the products in the current method which reference it.

Move Navigates the product hierarchy: the menu options consist of a series of
movement commands (Up, Down, Next, etc). There are plans to replace
this with a graphical "point-and-click" view of the hierarchy.



40 HARRIS-JONES ET AL: The integration of KBS and conventional IT

Russet (v0.2)
File Domain Show Move Check Construct... Window Help Prolog

D:\RUSSET\CODE\GEMINI-P
Current product = Gemini Products

Currfa D:\RUSSET\CODE\SSADM-P
P-Representations
Document support
Tasf
,St
tep
Tec
Abb
AKO
Car

Cur

: [fittribute/data item desc«

Untitled 1

Figure 9: Russet before creating an integrated method

Check Contains a series of consistency checks that the user may perform on the
current method. Although used on single methods as a debugging aid, the
real use of these functions is on newly created integrated methods.

Construct... Prompts the user for further methods to load into the current Methods
window. Figure 9 shows Russet with three Methods windows open,
SSADM, GEMINI and a new, "Untitled" method. Using "Construct..."
both SSADM and GEMINI may be integrated to create a new method.

Window Covers the standard windows manipulation functions: Tile, Cascade, etc.

Help Provides access to Windows Help files.

Prolog A debugging option only; will not appear in any final release.

5.3. The Future of Russet
At present Russet is a fairly primitive prototype primarily designed to verify the theoretical
results of the project.



HARRIS-JONES ET AL: The integration of KBS and conventional IT 41

It is ultimately seen as a methods expert's workbench — using knowledge based
technology to make sensible decisions in integrating and configuring methods. It will still,
however, require some input from human experts. It is not designed to be usable by people
completely unfamiliar with information systems and KBS methods; it will be usable by
practitioners skilled in methods, but not necessarily those methods that they are
integrating.

Eventually, it is envisaged that there will be a number of source methods descriptions
available to potential users on a plug-in basis. In this way all the popular methods can be
covered, but users will only need those which are appropriate to their organisation.

Once a suitable integrated method has been constructed Russet should be able to
configure the hybrid method to fit the development in question — ensuring that only the
necessary tasks are undertaken. Once such detailed task lists have been constructed, then
it is possible to use the task-based estimating tools when planning the project, and then
project management tools for monitoring and controlling the project as it progresses.

6. CONCLUSIONS

The project is attempting to produce a model of conventional and KBS methods which
guides the integration for use on hybrid commercial development projects. Three models
have been built and work has started on a prototype to validate the approach and provide
automated support.

The approach being taken has worked to date although the methods model is far from
complete. However, it has already been used successfully in a number of different areas :

• The methods model has been used to assist in the structuring of a set of methods
to be delivered in hypertext format.

• It has been used to check the completeness of manually integrated methods before
they have been used on projects.

• It is currently being used on a major development project building tools to support
RDBMS design which requires the use of a hybrid method.

The need for a task-based estimating tool has also been clearly identified, with doubts over
the classic process of developing estimating tools being overcome. A metrics tool has been
developed to help in the collection of the data upon which the hybrid estimating tool is to
be based. Three relatively simple metrics are being applied (implementation size,



42 HARRIS-JONES ET AL: The integration of KBS and conventional IT

cyclomatic complexity, data flow), with early results suggesting that these metrics are both
accurate and useful.

7. REFERENCES

Bader J., Edwards J.S., Harris-Jones C, & Hannaford D., (1988) Practical Engineering of
Knowledge Based Systems, Information and Software Technology, 30(5),
266-277.

Boehm B.W., (1981) Software Engineering Economics. Prentice-Hall, Englewood Cliffs,
New Jersey.

Boehm B.W., (1988) A spiral model of software development and enhancement,
Computer, May 1988, pp61-72.

Breuker J. (Ed.), Weilinga B., van Someren M., de Hoog R., Schreiber G., de Greef P.,
Bredeweg B., Weilemaker J., Billeaut J-P., Davoodi M., Hayward S.,
Model Driven Knowledge Acquisition Interpretation Models, Deliverable
Dl, task Al, Esprit project 1098, Feb 1987.

Edwards, J.S. & Moores, T.T. (1992) Metrics and project management models in the
development of hybrid information systems. To appear in The Proceedings
of the International Conference on Economics/Management and
Information Technology, Tokyo, 31 August-4 September, 1992.

van Genuchten, M. & Koolen, H. (1991) On the use of software cost estimating models.
Information & Management, 21, pp37-41.

Glasson B.C. (1989), Model of system evolution, Information and Software Technology,
31, No 7, Sept 1989.

Graham I. (1991), Object Oriented Methods, Addison Wesley, 1991.
Halstead, M.H. (1977) Elements of Software Science. Elsevier North-Holland, New

York.
Henry, S. & Kafura, D. (1984) The evaluation of software systems' structure using

quantitative software metrics. Software — Practice and Experience,
14(6), 561-571.

IBM (1989) Common User Access: Advanced Interface Design, International Business
Machines Corp., Document No. SY0328-300-R00-1089, 1989.

Iivari J. (1990a), Hierarchical spiral model for information system and software
development. Part 1 Theoretical background, Information and Software
Technology, 32, No 6, July/August 1990.

Iivari J. (1990b), Hierarchical spiral model for information system and software
development. Part 2: design process, Information and Software
Technology, 32, No 7, Sept 1990.

IPL (1989) Software Quality Survey. Confidential report cited with permission from
Information Processing Limited, Eveleigh House, Grove Street, Bath.



HARRIS-JONES ET AL: The integration of KBS and conventional IT 43

Kusters, R.J., van Genuchten, M. & Heemstra, F.J. (1991) Are software cost-estimating
models accurate? In The Economics of Information Systems and Software
(Veryard. R, Ed), ppl55-161, Butterworth-Heinemann, Oxford.

Kung C.H. & Selvberg A. (1986), Activity modelling and behaviour modelling, in
Olle T.W. Sol H.G. and Verrijn-Stuart A.A. (Eds) Information Systems
Design methodologies: Improving the practice, Elsevier Science 1986.

Loucopolous P., Black W.J., Sutcliffe A.G. & Layzell P.J. (1987), Towards a unified view
of system development methods, //// Jnl of Information Management, V7,
pp205-218, 1987.

Martin J. & Odell J., Object Oriented Analysis and Design, Prentice Hall, 1992.
McCabe, T. (1976) A complexity measure. IEEE Transactions on Software Engineering,

SE-2(4), 308-320.
Moores, T.T. (1992) On the use of software cost estimating tools. Doctoral Working

Paper No. 6 (NS), Aston Business School, Aston University, April 1992.
Moores, T.T. & Edwards, J.S. (1992) Could large UK corporations and computing

companies use software cost estimating tools? — a survey. European
Journal of Information Systems, 1(5), 311-319.

Olle T.W., Hagelstein J., Macdonald I.G., Rolland C, Sol HG, Van Assche FJM, Verrijn-
Stuart AA, (1988), Information Systems Methodologies : A Framework for
Understanding, Addison Wesley, 1988.

Ould M.A. & Roberts C, Defining formal models of the software development process,
Software Engineering Environments, Ellis Horwood, 1988.





KBS Methodology as a framework for
Co-operative Working

John Kingston
Knowledge Engineering Methods Group

AIAI
University of Edinburgh

Abstract

This paper describes the development of the Injection Moulding Process
Expert System (IMPRESS). The IMPRESS system diagnoses faults in injec-
tion moulding machinery which lead to dirt or other contamination appearing
in the plastic mouldings which are produced. This KBS has recently been
put into use at Plastic Engineers (Scotland) Ltd, and is proving useful both
as an expert assistant when technical help is otherwise unavailable, and as a
training aid.

The IMPRESS system was built by a member of Plastic Engineers' staff
with assistance from a KBS consultant. It was decided that the project
would be based around a KBS methodology; a 'pragmatic' version of the
KADS methodology was chosen. The methodology was used not only to
formalise and guide the development of the KBS itself, but also to act as
a framework for dividing the work between the two members of the project
team. By gaining an understanding of the methodology, the staff member
from Plastic Engineers was able to understand the knowledge analysis and
KBS design documents produced by the consultant, and to use these docu-
ments to implement part of the KBS, both during the development of the
system and when system maintenance was required.

The use of a methodology for this project on this project had both benefits
and weaknesses, which are discussed at the end of the paper.

1 Introduction

In January 1992, Plastic Engineers (Scotland) Ltd obtained funding from Scottish
Enterprise to help them in the development of a knowledge based system (KBS)
for fault diagnosis. Plastic Engineers manufacture precision plastic mouldings, such
as casings for PCs, or control panels for video recorders. They have a reputation



46 KINGSTON: KBS methodology as a framework for co-operative working

for high quality, which they want to maintain. However, from time to time, prob-
lems with their injection moulding machines mean that substandard mouldings are
produced, and these have to be scrapped to maintain the reputation for quality.
While Plastic Engineers have technicians who are very competent at solving these
problems, these technicians have a variety of roles to perform. If a technician is
working on an urgent task, or is absent through holidays or illness, it may take some
hours before diagnostic expertise is available. Shift leaders are able to provide some
backup to technicians, but they have even more demands on their time than the
technicians do. As a result, there are times when no-one with diagnostic knowledge
is available, particularly during some night shifts.

After attending a seminar organised by AIAI and the Scottish Office in the
summer of 1991, the idea of building a KBS to help with the diagnostic process
was born. The project was set up in January 1992 with Plastic Engineers releasing
one member of staff to work on the project for two days per week. This member of
staff [JM] was a newly recruited graduate in Polymer Technology with knowledge
of the process of injection moulding, but very little computing experience. AIAI
were engaged to provide JM with initial training in KBS programming, knowledge
elicitation and knowledge engineering (a total of 7 days' training) and then to
provide 15 man days' consultancy spread over the 4-month duration of the project.
The intention was that by the end of the project, JM would be fully conversant with
the techniques used to develop the KBS, and would therefore be able to maintain
the system if any changes were needed after installation.

AIAI decided to use a methodological approach to this project. The use of
KBS methodology in the commercial world is still in its infancy, but AIAI were
sufficiently convinced of the benefits of methods to use a simplified version of the
KADS methodology on this project. However, in this project, the methods were
used not only to formalise and guide the development of the KBS itself, but also to
act as a framework for the division of labour and transfer of KBS expertise. This
paper describes the benefits and drawbacks of using a methodology in this way.

Before any development could take place, however, a number of factors needed
to be established to ensure that the KBS project stood a good chance of success.
These included:

• Economic considerations. Plastic Engineers do have a genuine problem with
quality control - they scrap around 2% of their production each month. The
KBS is likely to make a significant improvement to the availability of di-
agnostic expertise, and to the early detection of faults, thus reducing scrap
rates.

• Technical considerations. Diagnosis is known to be a task type which KBS are
well suited for; also, the technicians currently take between several minutes
and a few hours to solve problems, so there are unlikely to be any stringent
requirements for real-time problem solving.



KINGSTON: KBS methodology as a framework for co-operative working 47

• Personnel considerations. The project was initiated by Plastic Engineers'
General Manager, so management support was assured. The users - the ma-
chine operators - are likely to appreciate any help their shift leaders can give
them in diagnosing faults. However, the commitment of the shift leaders and
technicians themselves was unclear, so the AIAI consultant [JK] made a pre-
sentation to these people, which included a demonstration of a very simple
KBS which diagnosed three different faults in the plastic moulding process.
While the underlying structure of this demonstration system was very shallow
in its reasoning, and drew knowledge from just one day of knowledge acqui-
sition, it was sufficient to convey the concept of a KBS to the shift leaders
and technicians, and to excite their curiosity so that they began to ask ques-
tions about the capabilities of the system. This was deemed to be sufficient
commitment for the project to proceed.

The project was named IMPRESS (the Injection Moulding PRocess Expert
SyStem project).

2 The framework of the IMPRESS project

The KADS methodology divides the process of KBS development into three phases:
knowledge elicitation and analysis, KBS design and KBS implementation. The IM-
PRESS project was set up with a number of intermediate milestones accompanied
by deliverables; these milestones were based around the phases specified by KADS.
The phases specified in the project plan were:

• Knowledge elicitation and analysis - 6 weeks.

• KBS design - 4.5 weeks

• KBS implementation - 4.5 weeks

• Testing and installation - 2 weeks

The workload was divided between JM and JK in a manner which was intended
to get the project completed within the deadline, but also to give JM a sufficient
awareness of KBS development and the contents of the IMPRESS system to enable
him to update it. The policy pursued was for both JK and JM to attend knowledge
elicitation sessions; then for JK to perform the knowledge analysis and KBS de-
sign while JM undertook background reading on KADS so that he understood the
deliverables which JK produced; and finally for JM to undertake the lion's share
of the implementation, and to carry out user acceptance testing, any consequent
alterations, and installation. The plan was adhered to fairly closely, and JM was
indeed able to make alterations to the KBS himself in response to comments from
the users.



48 KINGSTON: KBS methodology as a framework for co-operative working

3 Progress of the project

3.1 Knowledge Elicitation

Knowledge elicitation for the IMPRESS system was carried out at Plastic Engi-
neers' premises in Ayrshire. The first interview was with one of the shift leaders,
who was asked to provide a general overview of the problems which arise in the
plastic moulding process. The interview was guided using the "laddered grid"
knowledge elicitation technique [6]. This technique supplies a number of template
questions which are designed to prompt experts to supply further information about
a taxonomic hierarchy - for example, the question "Can you give me some examples
of Class" will supply information about instances or subclasses of the class Class.
The technique can also be used to elicit procedural information. In the interview
with the shift leader, the resulting grid comprised both a detailed description of
some of the faults which arise in the plastic moulding process, including descriptions
of different symptoms and associated faults, and also explanations and corrective
action for some faults. While it is not desirable for analysis purposes for the expert
to be allowed to mix taxonomic and procedural information in his replies^ this inter-
view nevertheless provided a concise introduction to the domain and the diagnostic
task.

The next interview was with the Quality Manager, who provided a breakdown
of the five main categories of fault. These categories are

• Contamination - dirty marks of some kind on the final moulding

• Shorts - certain parts of the mould do not fill with plastic

• Burns - discolouration due to plastic being overheated

• Degate - human error when trimming with a knife

• Others

The Quality Manager keeps detailed statistics of the number of times each fault
has occurred, and how long it takes to solve. From examination of these statistics,
it became obvious that contamination was the most frequently occurring problem,
and that contamination problems took an average of almost 2.5 hours to solve.
Based on this information, it was decided that the KBS would initially be limited
to diagnosing contamination problems only.

All other knowledge elicitation interviews were conducted with technicians, who
are the day to day diagnostic experts. Most of these interviews used a "20 ques-
tions" knowledge elicitation technique [1]. This technique is normally used after
several knowledge elicitation sessions, because it requires the knowledge engineer to
be fairly familiar with the task. The knowledge engineer selects a potential fault,



KINGSTON: KBS methodology as a framework for co-operative working 49

which the expert is required to diagnose; the expert does this by asking questions,
which the knowledge engineer answers. As JM had some knowledge of the injection
moulding process and of Plastic Engineers' machinery, it was possible to use this
technique from a very early stage.

A typical "20 Questions" session is shown below. The hypothesised fault was
dust entering the machine via the drier which dries the raw material. The technician
was told that there were "black specks on the moulding". JM's answers to the
technician's questions are shown in brackets.

What's the tool? [155]
Where are the marks? [Back face, sides - a l l over]
How long has the job been running? [2 days]
Has the problem been present since s ta r t up? [Yes]
Is the problem getting worse? [Yes]
Have you cleaned the shims? [Yes, i t caused a l i t t l e improvement, but
the problem recurred]
Is the temperature unstable, or too high? [No]
Check the thermocouplings [OK]
Check the condition of the screw, and look for black specks on the
screw [OK]

On being told the answer, the technician commented that dust from the drier
was almost never a problem because of the reliability of the drier's filtration system.

The technician was then asked to explain his reasons for asking each question.
The information which was extracted from the conversation described above and
the subsequent explanation included:

• Possible faults include dirty shims, incorrect temperature settings, loose ther-
mocouplings, and dirt on the screw.

• Some faults are more prevalent on certain machine tools - usually tools which
produce large mouldings.

• If the marks had appeared only on the bottom edges of the moulding, this
would have been a very strong indicator of one particular fault.

• Certain faults only occur shortly after the machine has been started up. Many
of these are due to the machine not being cleaned properly before being shut
down.

• If the problem only occurs for a short time, then the fault is likely to be
contamination in a single batch of raw material.

• If the problem is getting worse, then it is likely to be due to some material
which is trapped in the machine and slowly degrading



50 KINGSTON: KBS methodology as a framework for co-operative working

• Dust in the drier hardly ever causes a problem because it is filtered out

The "20 Questions" technique proved to be very helpful for eliciting diagnostic
information, with a lot of useful information obtained in a concise format in a short
period of time.

3.2 Knowledge Analysis

The technicians' knowledge divides into three main categories:

• Declarative knowledge - the workings of the machine, and knowledge of all
faults which may occur.

• Procedural knowledge - knowing how to test for and how to fix faults.

• Control knowledge - performing tests in a sensible order.

The declarative and procedural knowledge was relatively straightforward to ex-
tract from the results of the "20 Questions" sessions, but the control knowledge
required a little more thought. It was eventually determined that the likelihood of
a fault occurring, and the time required to perform a particular test, were the most
important factors in deciding the order in which tests should be performed. For
example, in the "20 Questions" session quoted above, the technician asked about
the condition of the screw last, because it takes a couple of hours to dismantle the
machine sufficiently to expose the screw, and he did not ask about dust in the drier
at all, because it is such a rare fault.

It turned out that there are quite a number of rare faults. However, as JM spent
much of his time on the shop floor when he was not working on the KBS, it was
decided that JK would press ahead with the analysis phase while JM completed
the elicitation of all possible faults from the experts. The final KBS contains about
40 faults (broken down into five subclasses) and a similar number of tests.

3.3 KBS design, implementation, testing and installation

The analysed knowledge was transformed into a KBS design using techniques based
on the KADS methodology (these techniques are outlined in section 4). The KBS
was then implemented in KAPPA-PC version 1.2 on an Apricot 486 PC. The re-
sulting design suggested that faults, tests, and test results should be represented
using individual objects, while inference should be implemented primarily using a
mixture of rules and functions, with a little use of object-oriented methods and
demons. However, it transpired that some of the desired rule functionality was
unavailable in KAPPA-PC; it also became clear that the time taken to execute a
rule which matched on a set of objects was similar to the time taken for a function
to iterate over the same objects. As a result, it was decided that rules would not be



KINGSTON: KBS methodology as a framework for co-operative working 51

used at all, and so much of the inference in the IMPRESS system was implemented
using functions.

The KBS was subjected to testing by developers concurrently with the imple-
mentation of the user interface, and was installed in the first week of August 1992.
At the time of writing, few firm results were available, because there have been
relatively few occasions since the installation of the KBS when there has been no
technical expert available to answer questions. However, the fact that the system
can be used "off-line" has been appreciated, and the KBS has been used several
times for training purposes by interested machine operators.

4 Using KADS for the IMPRESS project

The KADS methodology for KBS development [2] is intended both to guide and to
formalise KBS development. To this end, it provides guidance on obtaining knowl-
edge, analysing it, and transforming it into a detailed design for an implemented
KBS. The IMPRESS project did not use the KADS methodology in its entirety,
but instead followed the "pragmatic KADS" approach described in [3].

4.1 Knowledge analysis: interpretation models

Once some knowledge has been acquired, the KADS methodology recommends
selection of an interpretation model. Interpretation models are task-specific break-
downs of the inferences and items of knowledge required in a typical task of that
type. These models are intended both to formalise acquired knowledge and to guide
further knowledge acquisition. For the IMPRESS system, it was obvious from the
start that the task type was diagnosis; however, KADS offers several different inter-
pretation models for different methods of performing diagnosis. Eventually, it was
decided that the interpretation model for systematic diagnosis was the most appro-
priate. This model is shown in Figure 1 below; the ovals are known as "inference
functions", and the boxes as "knowledge roles"1.

'Strictly speaking, Figure 1 represents only one component of an interpretation model. How-
ever, under "pragmatic KADS", the other component is not used, and so the structure shown in
this diagram is described as an interpretation model throughout this paper.



52 KINGSTON: KBS methodology as a framework for co-operative working

Possible

tests

Universum of

observables

i

Recommended

test

]

select-4

Variable value

Universum of

system models

specify

compare
Norms

Difference

Figure 1: Interpretation model for systematic diagnosis

This model represents the inference which is expected to be performed when a
task involving systematic diagnosis is executed. For example, if a user reports a
problem with a machine, it is expected that a particular system model representing



KINGSTON: KBS methodology as a framework for co-operative working 53

the correct operation of that machine will be selected, and a number of faults will be
suggested. Based on a 'focussed' subset of these faults, a number of characteristics
of the machine will be measured and compared with their expected values in the
system model.

This model was then adapted to the domain of the IMPRESS system, as shown
in Figures 2 and 3 below (Figure 3 is an expansion of the select-1* inference func-
tion in Figure 2), to produce a problem-specific inference structure. This inference
structure indicates that the IMPRESS system will identify a set of possible faults
(hypotheses) based on the reported contamination problem. A test is then recom-
mended, based on the likelihood of the hypotheses, the time required to perform a
test and the time required to alter the state of the machine so that the test can be
performed. Once it has been decided which test will actually be performed, the test
is carried out, and the actual result is compared against a set of expected results
(see below) in order to update the set of hypotheses.

It can be seen that the adaptation from the interpretation model to the inference
structure involved a number of changes. Most of these changes are relatively minor,
such as the removal of the focussing of the set of hypotheses into a smaller set; it was
felt that the set of hypotheses was sufficiently small that such a step was not nec-
essary. However, one of the changes implies a fundamental change to the approach
taken to reasoning. This change involved the interpretation model's suggestion of
comparing values against a system model, which is a model-based approach to KBS
construction. While a model-based approach would have worked adequately for the
IMPRESS system, it was felt that explicitly representing injection moulding pro-
cesses was not worth the effort, primarily because all Plastic Engineers' machines
operate in the same manner, and so only one "system model" would be required.
Instead, it was decided that for every known fault, the expected results of each test
would be represented. For example, if the fault was "Contamination of raw material
due to the box of material being left open", then a check on the material currently
being fed into the machine should produce the result Contamination present, while
a check on a fresh box of material should produce the result Contamination absent.
These values were explicitly represented, and compared against the actual results
of tests, as shown at the bottom of Figure 2.



54 KINGSTON: KBS methodology as a framework for co-operative working

Contamination
problem

Recommended

test

State of machine ( select-2

update-2
Test to

perform

Hypotheses

confirmed/

ruled out

Confirming/
disconfirming results

Figure 2: Inference structure for IMPRESS system



KINGSTON: KBS methodology as a framework for co-operative working 55

State of

machine

Appropriate

tests

I compute-1

i

Cost of tests

\

)
C compute-2 )

Information value

of tests

Utility value

of tests

\

C select-3 J

Recommended

test

Figure 3: Inference structure for test selection in IMPRESS system



56 KINGSTON: KBS methodology as a framework for co-operative working

4.2 Further guidance provided by pragmatic KADS

The remaining stages of the pragmatic KADS analysis and design phases gradually
extend and transform the knowledge which is represented in the inference structure
into a detailed KBS design, with any design decisions being explicitly recorded.
These stages are:

Knowledge analysis:

• The task structure identifies the flow of control between inference functions,
and also identifies any inputs and outputs of the KBS.

• The model of interaction, an addition to the KADS methodology used by
AIAI [4], assigns inference functions to the KBS, the user, or the two working
together. The model of interaction is based on KADS' "model of coopera-
tion", which is used to determine which overall task(s) should be performed
by a knowledge based system. The model of interaction performs a similar
function within a single KBS; it helps determine which of the inference func-
tions should be performed by the system, which by the user, and which by
the two working together. It also explicitly identifies every input and output
within the system.

The main decision made when developing the model of interaction for the
IMPRESS system was that the selection of a test to perform would be done
by the KBS and user in conjunction, rather than by the KBS alone; in other
words, the KBS would recommend a. test to perform, but the user would be
free to reject the recommendation.

KBS design:

• Functional decomposition involves laying out the inference functions, knowl-
edge roles and inputs/outputs in a single diagram, and identifying the data
flow between them.

• Behavioural design involves the selection of AI "design methods", such as
best-first search, blackboard reasoning, or truth maintenance, to implement
each function in the functional decomposition. AIAFs pragmatic KADS ap-
proach makes use of a set of probing questions, based on the work of Kline &
Dolins [5], to recommend design methods.

• Physical design involves the selection of rules, objects, or other low-level de-
sign techniques to implement the chosen design methods. This proved to be
the most difficult of all the analysis and design stages, partly because the
behavioural design stage did not produce many strong recommendations for
particular design methods.



KINGSTON: KBS methodology as a framework for co-operative working 57

KADS recommends that the selection of a KBS implementation tool should
be based on the results of this stage; however, an implementation tool has
often been chosen by the time this stage of the project is reached, and so it is
sensible if the capabilities of the KBS tool are borne in mind when performing
physical design.

Once the physical design is complete, KADS suggests using conventional soft-
ware engineering methods. While these methods are likely to work for implemen-
tation, they may not be adequate for verification and validation, which may differ
significantly between a KBS and conventional computer programs [7].

4.3 Technology transfer using KADS

During the stages of knowledge analysis and KBS design, technology transfer was
accomplished by introducing JM to KADS. This was achieved during JM's initial
training. JM was also asked to read sections of the best current single reference on
KADS[2]. With this background, JM was able to understand the deliverables from
the analysis and design phases at a detailed level, and to use these deliverables as
a basis for the implementation of the IMPRESS system.

The aim of using KADS for technology transfer was that JM would understand
the KADS models sufficiently well that, should the occasion arise, he would be able
to make a change to the inference structure and propagate the change through all
the remaining stages in order to produce a revised physical design. This change
would then be implemented in the KBS, and the revised set of models would serve
as up to date documentation for the system. This purpose appears to have been
achieved.

5 Benefits and weaknesses of methods for the
IMPRESS project

The use of pragmatic KADS for the IMPRESS project provided a number of ben-
efits, but also had some weaknesses. These are outlined below.

Benefits: The major advantage of KADS from the point of view of technology
transfer is the large number of models which are produced during the development
of the KBS. These models represent the KBS from a number of different viewpoints,
so a novice stands a much greater chance of understanding the workings of the KBS
from these models than from any single document describing the KBS. The variety
of models also helps greatly when a new piece of knowledge or a new procedure
must be added to the KBS, and it is difficult to decide where this new information
fits into the previous structure. These models also force the KBS developer to



58 KINGSTON: KBS methodology as a framework for co-operative working

document design decisions explicitly, which is almost essential for successful long-
term maintenance, and can constitute a set of deliverables from each stage of the
project for the management or project monitoring officer.

KADS itself has some particular advantages. The library of interpretation mod-
els is widely thought to be the most useful contribution of KADS to knowledge
engineering, and it certainly provided a lot of assistance for the IMPRESS project.
There is also some reasonably comprehensible background reading available on
KADS which helps introduce novices to the methodology.

Weaknesses : Perhaps the biggest disadvantage of using KADS, when compared
with a "rapid prototyping" approach to KBS development, is that implementation
does not begin until relatively late in the project. While the preparation of a design
which has been thought out and documented well provides plenty of justification
for KADS' approach, late implementation carries disadvantages both for technical
development and for technology transfer.

From the viewpoint of technical development, KADS' approach loses the advan-
tages of iterative prototyping for knowledge acquisition and investigating possible
implementation techniques. KADS does not rule out the use of prototyping as
a knowledge acquisition technique, but it is time-consuming to build a prototype
based on an uncertain system design which will eventually be thrown away, and it
was decided that this approach was not worthwhile for a small-scale project such
as the IMPRESS project. Iterative prototyping is also very useful for identifying
omissions or misunderstandings in knowledge acquisition and analysis, and the fact
that most of KADS' models are based on the analysed knowledge (directly or indi-
rectly) means that errors in knowledge acquisition and analysis are costly, because
they require almost all the models to be updated. A CASE tool for KADS would
go a long way towards alleviating this difficulty.

From the viewpoint of technology transfer, KADS' approach means that a novice
KBS programmer (JM in this project) is thrown into programming at the deep
end, rather than being gradually introduced to implementation techniques as the
prototype is built. While JM was given some training and programming exercises
in KAPPA-PC while the analysis and design phases were being conducted, it is
received wisdom that the only way to understand a KBS implementation tool fully
is to use it to develop a full-scale KBS, and this project reinforced that belief. This
unfamiliarity was a major contributor to the fact that the implementation phase
overran by about 3 weeks, the only phase to show a significant deviation from the
initial plan.

Two other features of KADS were noted which were minor disadvantages in the
IMPRESS project:

• KADS provides little guidance on user interface design, which is something
of a disadvantage since the development of user interfaces may take up a



KINGSTON: KB S methodology as a framework for co-operative working 59

large proportion of the code and the development time for a KBS. For the
sake of simplicity, the IMPRESS project used KAPPA-PC's built-in user
interface facilities (menus, message boxes and text windows) to develop its
user interface.

• The physical design stage should take into account the features of the chosen
KBS implementation tool. KADS recommends that a tool should be chosen
based on the results of the physical design stage, but in practice a tool has
almost always been chosen before this stage. For example, the physical design
for the IMPRESS system recommended the use of a series of demons on
the slots of the State of the machine object to calculate the total time
required for the machine to be put into a particular state. However, demons
in KAPPA-PC do not return a value, so instead of using a return value, the
technique had to be implemented using a global variable to accumulate the
total time.

6 Conclusion
On the whole, the use of a methodology as a framework for technology transfer
worked well on the IMPRESS project, and is recommended for other projects.
However, a number of factors must be considered carefully when doing so:2

• Considerable effort is required to make sure that knowledge analysis is done
properly, because of the effort required to correct errors at a later stage.
In larger projects, or other projects where the knowledge to be acquired is
particularly complex, it may well be worth developing a prototype to assist
in knowledge acquisition.

• The implementation stage should be given at least as much time as the anal-
ysis stage, if not more, unless the chief programmer is fully conversant with
the KBS implementation tool before the implementation stage is reached.

• Documentation should be prepared in a format which is fairly easy to update,
since it is expected that the documentation will change over time.

• The features of the chosen implementation tool should be taken into account
at the physical design stage (or equivalent stage in the chosen methodology).

2These comments assume that the methodology uses the three phases of analysis, design and
implementation.



60 KINGSTON: KBS methodology as a framework for co-operative working

References

[1] Burton A M, Shadbolt N R, Rugg G and Hedgecock A P. Knowledge Elicitation
Techniques in Classification Domains. In Proceedings of ECAI-88: The 8th
European Conference on Artificial Intelligence, 1988.

[2] F. Hickman, J. Killin, L. Land et al. Analysis for knowledge-based systems: A
practical introduction to the KADS methodology. Ellis Horwood, Chichester,
1989.

[3] J. Kingston. Pragmatic KADS: A methodological approach to a small KBS
project. Submitted to Expert Systems: The International Journal of Knowledge
Engineering. This paper is also available as AIAI Technical report AIAI-TR-110.

[4] J. Kingston. The model of interaction. Newsletter of the BCS Methodologies
Interest Group, (1), August 1992. Also available from AIAI as AIAI Technical
Report AIAI-TR-115.

[5] Kline, P J & Dolins, S B. Designing expert systems : a guide to selecting
implementation techniques. Wiley, 1989.

[6] Shadbolt N.& Burton, M. Knowledge elicitation. In J. Wilson and N. Corlett,
editor, Evaluation of Human Work: A Practical Ergonomics Methodology, pages
321-346. Taylor and Francis, 1990.

[7] T.J. Lydiard. A survey of verification and validation techniques for KBS. Knowl-
edge Engineering Review, 7(2), June 1992.



Project Management for the Evolutionary
Development of Expert Systems

Ian Watson

EDESIRL PROJECT
Department of Surveying, University of Salford,
SALFORD, M5 4WT. S + 44 (0)61-745-5227
EMAIL: I.WATSON@SURVEYING.SALFORD.AC.UK

Abstract

The development of expert systems is inherently uncertain and so involves a high degree
of risk. This paper describes a project management method that helps manage this
uncertainty. It has been tailored to the Client Centred Approach — an expert system
development method that is being designed for use by small and medium sized
enterprises. This context implies that the management technique and its accompanying
documentation must not over burden the resources of a smaller developer. The helix
method of project management introduced in this paper represents a different view of
Boehm's Spiral Model. It accepts that conventional linear project planning methods are
not always suitable for developers of expert systems. Having accepted this, the helix
method allows plans to be made for each development stage within the Client Centred
Approach. We believe the Client Centred Approach is applicable wherever prototyping
is used, and we contrast it with the methods being developed by KADS-II.

1. INTRODUCTION

This paper describes proposals for handling project management within the Client
Centred Approach (CCA). The principles of the CCA are described in Basden [1989].
The thinking behind the approach, and its current state of development, are described in
greater detail in Basden et al. [1991] and Watson et al. [1992]. Although the technique
described here is applicable for any project that uses prototyping to develop a system
(around forty five per cent of all commercial expert system projects according to a
recent survey [DTI, 1992]), it has been developed specifically for small and medium
sized enterprises (SMEs), rather than larger organisations. The DTI's report [1992]
shows that forty per cent of expert system (ES) applications are being developed by
SMEs {i.e., companies with less than five hundred employees).



62 WATSON: The evolutionary development of expert systems

While ESs remained within the research labs as largely experimental demonstrators,
there was less necessity to manage their development. That is, an ES would take as long
to develop as the research grant provided for, or its development would last until a
doctoral thesis was submitted [Inder & Filby, 1991]. However, as the development of
ESs has become more routine, insofar as many are now being developed by and for
commercial companies, project management is becoming a central area of concern
[Bright et al., 1991; Klahr, 1991; Taylor era/., 1991; Thomas, 1991].

For conventional systems development (e.g., databases), the main determiners of the size
of the eventual system are the number of data items, functions performed on them, and
input/output routines of the desired system. The quantities of each of these can be
estimated reasonably accurately at the start of the project. From these estimates,
development time scales can be calculated from experience. However, with ESs this is
rarely possible [Thomas, 1991], although attempts are being made to evaluate metrics
for ES development [Moores & Edwards, 1992].

Expert systems contain human knowledge that is used for problem solving. This
expertise is the main determinant of the project size and complexity. However, there is
no accurate way of estimating the effort involved in obtaining, structuring and
representing this knowledge until a substantial amount of work has been done [Thomas,
1991]. Project planning must therefore be flexible, since early plans will not be accurate.
The managers of expert system projects therefore need a project management technique
that controls the flexibility while maintaining the visibility and accountability for all
aspects of the project.

The CCA addresses this by making the development of an ES more visible through a
well-defined project management method that explicitly deals with threats; i.e., areas of
uncertainty or risk that may jeopardise the project.

This paper first outlines the CCA's background and stages. It then describes a different
perspective (or view) of Boehm's Spiral Method. The types of documentation that
should accompany the evolving system are described, along with the project
management activities. The paper concludes by outlining the potential benefits of the
CCA's project management method to ES developers.

2. THE CLIENT CENTRED APPROACH

2.1. The Background

Basden [1989] argues that a problem common to most current ES development methods
is that they are technology centred. They place too much emphasis on the activities used
to develop the systems, such as "elicitation," "implementation," and "verification," and
not enough emphasis on what the clients can see and understand. It has been argued that



WATSON: The evolutionary development of expert systems 63

by putting people at the centre of the development process [Diaper, 1987 & 1989] there
is a greater chance of the resulting system being useful. The DTI advises that "involving
the users in all aspects of the system development from the outset will help to avoid
potential problems" [DTI, 1992].

Basden, however, identifies the "client" as an individual or group distinct from the
eventual end users of the system. Thus, in a corporate environment the client may be the
senior management commissioning the system and not the eventual end users. The CCA
covers the full development life cycle of an ES providing milestones to guide the project.
These milestones refer to what the clients can see being demonstrated and not to the
conventional tasks such as elicitation, acquisition, representation. This accepts that the
clients may not understand the jargon or the distinction between the tasks involved in
development but will be able to perceive demonstrable changes in the system.

2.2. An Overview of the CCA

The stages of the CCA are illustrated in Figure 1 and are described in more detail below.
The CCA is divided into two broad activities:

THE
CLIENT CENTRED % r t . \>5 " decommissioning

APPROACH

Figure 1. Seven Stages of the CCA

Evolutionary development part one (EDI). This considers the development of the
ES and takes it to a saleable stage. Each stage is a deliverable that the client can see,
and that the developers must meet and plan for.



64 WATSON: The evolutionary development of expert systems

• Evolutionary development part two (ED2). This considers how the system can be
kept in regular beneficial use, and considers such factors as training of users and
most importantly the maintenance of the system. This phase only ends when the ES
is decommissioned.

• Start (the 5 hurdles)
The purpose, roles, benefits, and stakeholders are identified. The impact of the
system on the client organisation is discussed, and those involved with the
project get to know each other. As part of this process developers should
considering five crucial questions or hurdles:

1. Is the problem suitable for computerisation?
2. Is the problem suitable for expert systems?
3. Is the knowledge available to solve the problem?
4. Is the system worth developing?
5. Will the system be used?

An ES is considered appropriate only if all the hurdles are crossed. The
deliverables are documents outlining the feasibility of the project giving a
"holistic picture" of the project.

• Skeleton System
The deliverable is a mock-up that behaves and looks as the final system might but
contains little knowledge. It is simply a set of interactive screens that show a few
dummy questions, provide some dummy examples and possibly a report. The
purpose of the Skeleton System is to let the clients see what the system might
eventually be able to do, and how it might do it. It is also a vehicle for discussing
the form of the inputs and outputs of the system, and is therefore a tool for
knowledge elicitation. It can also be used to explore user interface requirements
and other aspects of system functionality, similar to Colebourne et al. [1992]

• Demonstration Systems
During this stage and the following stages iterative cycles of prototyping occur.
Therefore, there may be several demonstration systems, each demonstrating a
different aspect of the system's functionality. The first prototypes contain real
domain knowledge, but can only produce acceptable results in a limited subset of
the domain. Nonetheless, they demonstrate to the client that the system can solve
the problem or let the project to be re-evaluated if necessary. This stage is used
to explore issues relating to knowledge representation and system architecture
before committing to a particular approach. The deliverables are the
demonstration systems.



WATSON: The evolutionary development of expert systems 65

• Trustable System
The knowledge in this deliverable is complete and correct. It gives correct results
to all the problems the system will encounter. However, it will be difficult to use
(even by its creators) and will be prone to operational problems.

• Usable System
This deliverable has a usable interface and can link to external software if
necessary. It also provides useful explanations, "what-if' facilities, and reports.
This version could be used for real business benefit by those sympathetic to the
system. Meeting this deliverable should involve evaluating the usability of the
ES, possibly using techniques such as Evaluative Classification of Mismatch
[Booth, 1990 & 1991].

• Saleable System
This is the final deliverable version of the ES. The term "saleable" does not
necessarily imply that the system will be sold for money. Instead the term is used
to mean that the system may have to be "sold" to people who are not committed
to its use (e.g., given to other departments or other sites within an organisation).
Its release involves the production of user documentation, training materials, and
help lines (if required). The ES will have been introduced to a wider community
(e.g., alpha and beta releases). Appropriate changes will have been made and
system bugs fixed.

• In Use
This ensures that the system is used correctly by checking that the clients, users,
and their organisations understand the strengths and weaknesses of the ES.
Importantly, it also involves maintaining the knowledge base and updating the
functionality of the system on a regular basis. This ensures that the ES remains in
beneficial use over the longest possible time, thereby maximising the return on
the investment in its development. The deliverables of this stage are the
continuing business benefits that the organisation receives from using the system.

The CCA is an "evolutionary" methodology insofar as it supports the continuing
evolution of an ES and because it is accepted that the methodology itself will evolve
with time. The stages of the CCA state what should be delivered during the ES project.
The CCA does not prescribe how each deliverable should be met or how the ES
developers should work, and what tools and techniques they should use. The
stakeholders in the project are free to use their own experience to decide this. However,
the CCA does offer advice and guidance, and it can help the stakeholders plan for each
deliverable and manage the project. This is described below.



66 WATSON: The evolutionary development of expert systems

3. THE SPIRAL MODEL

Boehm's spiral model for project management [1986 & 1989] is gaining in popularity,
even among conventional software developers. It is specifically designed to manage risk
and is being used by the KADS-II consortium [Bright et al, 1991; Killin et al., 1991].
Risk may be defined as, "an event or situation that will have a negative impact on the
project goals, schedules or budgets and whose probability is not known" [Bright et al.,
1991].

Risk Plan

Develop
& Monitor

Figure 2. Boehm's Spiral Model

Essentially, the spiral model, shown in Figure 2, provides a way of visualising risk
management. The process is divided into quadrants that represent management activities.
In the first quadrant (Risk) the project team and their management assess areas of risk
that may affect the project by compiling a list of risks. Boehm provides ten areas:

personnel shortfalls,
unrealistic schedules and budgets,
developing the wrong software functions,
developing the wrong user interface,
gold plating of functions,
continuous requirement changes,
shortfalls in externally provided components,
shortfalls in performed tasks,
real time performance capabilities, and
straining computer science capabilities.

To this list one may add risks that are specific to ES projects or to one's individual
circumstances, for example



WATSON: The evolutionary development of expert systems 67

• poor access to experts,
• uncooperative experts,
• lack of commitment of users, and
• variation in user population.

After compiling a list of risks, managers should rate their assessment of each risk. One
can use LOW, MEDIUM, and HIGH, 1 to 5 or any convenient rating. Having prepared
this estimate of risk the managers next consider what options can be taken to reduce the
risk in high areas.

Initially all possible options should be considered, including completely fanciful ones.
Each option is then considered in turn against the project's known constraints. This
quickly removes those that are impractical leaving options that could benefit the project.

At this point, one enters the second quadrant (Plan) as the managers prepare a plan for
the next cycle. This plan will include the new options decided upon during the Risk
quadrant. The plan should outline the targets for the cycle, including deliverables,
responsibilities, and budgets if necessary. This results in a new work package plan that
each member of the development team can use.

During the third quadrant (Development & Monitor) development work continues and is
monitored daily by the project leader if necessary. This quadrant concludes with the
production of project progress reports, and deliverable software and documentation as
specified in the work package plan.

The progress reports and deliverables are then assessed by project managers during the
assessment quadrant to see if they meet expectations. This process can be carried out by
a steering or review committee if one has been established to guide the project. This is
followed by further cycles of risk assessment, planning, development, and assessment
until the system is embedded in use.

Although the spiral model is divided into four equal quadrants, these will not occupy
equal lengths of time. The time spent on development may, of course, be greater than all
the others. However, the spiral model shows that each activity is equally important to
the success of the project.

4. THE HELIX METHOD

A large ES shell producer and consultancy has warned that the spiral model can confuse
managers, and misrepresents progress, since it implies that the project is going round in
circles [pers comm. Klahr, 1991]. The spiral model can be represented more intuitively,
as shown in Figure 3, as a helix showing that the project does not continually cover the
same ground, and that the development is progressing towards the project's goals. It also



68 WATSON: The evolutionary development of expert systems

demonstrates (as the original spiral model does) that the management activities are
regularly repeated during the project's development.

• Threats
• Plan
T Develop
• Assess

Figure 3. The Helix Method (a different view ofBoehm's Spiral)

5. DOCUMENTATION

Assessment of the project's progress is a key activity within the helix or spiral models.
To do this successfully, managers need the following documents:

• a clear statement of the objectives of the project,
• a clear statement of the expected benefits,
• clear milestones with planned deliverables, and
• clearly defined roles for all the stakeholders in the project.

Some of these will be represented as project documents. This documentation lets
managers make informed decisions based on progress. The documentation also becomes
a permanent record of the project and is a vital resource during ED2 when the system is
maintained.

KADS is an expert system development method that is gaining in popularity. It describes
a very comprehensive set of project documentation [Bright et ai, 1991]. However,
KADS is designed for and by large organisations (e.g., Siemens, Touche Ross, Lloyd's
Register) and may not be suitable for use by smaller companies and smaller projects
\pers. comm. Wielinga, 1991]. Developers using KADS sometimes make statements
like,

"KADS is exactly the kind of methodology that one can follow most by slavishly
applying least" [Killin et al. 1991 ].



WATSON: The evolutionary development of expert systems 69

This implies that developers tend to "pick and choose" elements of KADS that they find
useful. The documentation set that accompanies the KADS method involves a minimum
of fifty documents (and in practice many more). These range from documents that detail
the motivation and aims of the project through to documents that define every functional
block within the system.

Whilst we believe that comprehensive project documentation is useful, the heavy
documentation burden of KADS is one aspect that reduces its suitability for SMEs. In
particular, small development teams would find the generation and maintenance of this
documentation very time consuming. We are not advising developers to ignore
documentation. Instead we are proposing a rational approach that combines effective
(but possibly minimal) documentation with efficient use of project resources.

Section 7 outlines the contents of the documents that should accompany the CCA.
These documents need not be lengthy, but each item should be addressed if only to say
that it is not applicable. These documents are produced when necessary and may be
amended to reflect changes in the evolving system. The management activities that
accompany each stage are also described in section 7. Both the content of the
documentation and the management activities are derived from those of the KADS-II
Framework [Bright et al., 1991] and from Boehm [1986 & 1989]. However, they have
been simplified to suit the more limited resources of SMEs.

6. MAINTAINING THE SYSTEM

Because knowledge changes over time, maintaining ESs is significantly different from
maintaining conventional systems [Chee & Power, 1990; Pau & Kristinsson, 1990, Killin
et al., 1991; Bench-Capon & Coenen, 1992; Coenen & Bench-Capon, 1992]. There may
be many maintenance cycles within ED2. Depending on the resources available, the
nature of the system, and its expected life, each management cycle may occur every
quarter, bi-annually, annually, or at other periods. However, regular management
meetings should be scheduled to plan the maintenance of the system. The following
documentation should be in place by this stage:

System Documentation. This includes the location of all the project documents: the
requirements, architectural, functional and knowledge specifications, along with source
code. It should also record what changes have been made to the system's functionality
or knowledge, why they were made, when, and by whom.

User Documentation. This records the latest version of the user documentation that
accompanies any system updates, including training materials, installation instructions,
trouble shooting advice, and work-arounds.



70 WATSON: The evolutionary development of expert systems

1. REVIEW OF THE HELIX METHOD

As with other aspects of the CCA we do not intend to be prescriptive {i.e., the CCA
states "what" and "when" actions should be taken, not "how" they are performed).
Details will vary between projects and with individual management styles. Indeed, on
small projects it is feasible for the system to be its own functional specification and for
its knowledge base to be the statement of knowledge included in it. Essentially, the
project management documentation should be made up of the following components at
each stage:

• a document recording the conclusions of the progress assessment,
• a document describing the current requirements and architecture specifications of the

developing system (in smaller projects the knowledge base of the system can form
this document itself),

• a document describing the knowledge included in the current system (in smaller
projects the knowledge base of the system can form this document itself),

• an interim "optimistic" project plan (i.e., what could be achieved in a perfect world),
• a document describing the threats assessment, and
• a "realistic" project plan for the next stage detailing deliverables and task allocation.

These reflect the management activities that occur during each project management
cycle. These activities or tasks are described as follows:

• assess progress,
• prepare interim project plan,
• identify threats,
• consider alternatives,
• consider constraints,
• select valid alternatives,
• prepare plan,
• gain acceptance, and
• develop & monitor.

It is not essential for developers following the CCA to use the helix method, but it does
provide a way of managing the uncertainty inherent in developing expert systems. The
management activities need not be time consuming. For each cycle they may be reduced
to just a few hours. The documentation can also be reduced, so that the developing
system is its own specification. However, developers should remember that the lack of
system documentation may later become a threat to the successful maintenance of the
system.



WATSON: The evolutionary development of expert systems 71

8. CONCLUSION

The helix method of project management recognises that conventional project planning
is not always suitable for the inherently uncertain and risky process of implementing an
expert system. Having accepted this the helix method allows plans to be made for each
development stage within the CCA. At its simplest, there could be one management
cycle round the helix for each deliverable within the CCA. The helix method combined
with the CCA has the following potential advantages:

It closely involves all the stakeholders in the system in the development process.
It provides a clearly defined set of natural milestones for development, which can
serve as auditing points.
It provides a project management technique that guides development stage by stage.
It visualises the threats to the project's success, reducing the risk of costly failure.
It is directly suitable for smaller organisations since it does not overburden
developers either with exhaustive documentation or time consuming management
techniques.

• It accepts that an expert system's knowledge base requires ongoing maintenance and
provides a way of managing that maintenance.

Although this project management method has been informed by KADS-II and
especially Boehm, it places great emphasis on the reduction of effort, particularly
regarding documentation. This is an acceptance that small developers may not have the
resources to support a method as exhaustive as KADS but will still benefit from a staged
method. Moreover it explicitly recognises that the development of an expert system does
not stop once it is brought into use, and that its maintenance will require planning.

9. ACKNOWLEDGEMENTS

This research was funded under the IEATP Program, Project No. IED4/1/2062. We
would also like to acknowledge our collaborators: The Royal Institution of Chartered
Surveyors, Inference Europe Ltd., Imaginor Systems, and the members of our project
user group.

10. REFERENCES

Basden, A. 1989, A Client Centred Methodology for Building Expert Systems, in People and

Computers, V. Sutcliffe, A., & Macaulay, L. (Eds.), Cambridge University Press, Cambridge,

UK.

Basden. A., Watson, I.D., & Brandon, P.S. (1991).

The evolutionary development of expert systems. In: Research & Development in Expert

Systems VIII, (eds. Graham, I.M., & Milne, R.W.), pp.67-81 Cambridge University Press,

Cambridge, UK.



72 WATSON: The evolutionary development of expert systems

Bench-Capon, T.J.M., & Cocncn, F. (1992).

The Maintenance of Legal Knowledge Based Systems. AI Review, Vol & pp.129-43.

Boehm, B. (1986).

A spiral model for software development and enhancement. IEEE Computer, May 1988.

Boehm, B. (1989).

Software Risk Management. IEEE Computer Society Press.

Booth, P.A. (1990).

ECM: A scheme for analysing user-system errors. In Diaper, D. et al., (Eds.), Human-

Computer Interaction - Interact '90: Proc. of the 3rd. IFIP Conf. on HCI, pp.47-54. Elsevier

Science Publishers B.V. (North-Holland).

Booth, P.A., (1991).

Errors and theory in human-computer interaction. Acta Psychologica, 28: pp.69-96.

Bright, C , Martil, R., Williams, D., & Rajan, T. (1991).

The KADS-Il Framework for KBS Project Management. Proc. 1st SGES Int. Workshop on

Knowledge-Based Systems Methodologies.

Chee, C.W.J., & Power, M.A. (1990).

Expert Systems Maintainability. Proc. of the Annual Reliability & Maintainability Symposium,

pp.415-18.

Coenen, F., & Bench-Capon, T.J.M. (1992).

Maintenance & Maintainability in Regulation based Systems. ICL Technical Journal, May,

pp.76-84.

Colebourne, A., Sawyer, P., & Sommerville, I. (1992).

Evolutionary Development of Interactive Systems. Dept. of Computing, Lancaster University,

UK. pers comm.

Diaper, D. (1987).

POMESS: a People Orientated Methodology for expert System Specification, in Proc. 1st.

European Workshop on Knowledge Acquisition for Knowledge Based Systems. Addis, T.,

Boose, J., & Gains, B. (Eds.).

Diaper, D. (1989).

Knowledge Elicitation: Principles, Techniques & Applications. Ellis Horwood Ltd.,

Chichester, UK.

Department of Trade and Industry (1992).

Knowledge Based Systems Survey of UK Applications. Report performed by Touche Ross and

commisioned by the DTI, February, 1992

Inder, R., & Filby, I. (1991).

Survey of Methodologies & Supporting Tools. Proc. 1st SGES Int. Workshop on Knowledge-

Based Systems Methodologies.

Killin, J., Morgan-Gray, L., & Porter, D. (1991).

Knowledge Engineering Within Software Engineering - Similarities & Differences. Proc. 1st

SGES Int. Workshop on Knowledge-Based Systems Methodologies.

Klahr,P.,(1991).

Strategic Implications of KBS Methodologies. Proc. 1st SGES Int. Workshop on Knowledge-

Based Systems Methodologies.



WATSON: The evolutionary development of expert systems 73

Moores, T.T., & Edwards, J.S. (1992).

Could large UK corporations and computing companies use Software Cost Estimating tools? A

survey. In, European Journal of Information Systems, in print.

Pau, L.F., & Krisiinsson, J.B. (1989).

SOFTM: A Software Maintenance Expert System in Prolog. J. of Software Maintenance:

Research & Practice, 2(ii): pp.87-111.

Taylor, R.M., Bright, C , Martil, R., & de Hoog, R. (1991).

The management of knowledge-based systems development and maintenance under KADS-1I.

In: Research & Development in Expert Systems V l l l , (eds. Graham, I.M., & Milne, R.W.),

pp.52-66. Cambridge University Press, Cambridge, UK.

Thomas, M. (1991).

What Constitutes a KBS Methodology. Proc. 1st SGES Int. Workshop on Knowledge-Based

Systems Methodologies.

Watson, I.D., Basden, A., & Brandon, P. (1992).

A client centred approach to the development of expert systems. In, Proc. 12th. International.

Workshop on Artificial Intelligence, Expert Systems & Natural Language, in print.





The Specification and Development of Rule-Based
Expert Systems

Pete Maher

Department of Mathematics and Computer Science University of Missouri - St. Lou-
is, St. Louis, MO 63121 USA.

Owen Traynor

FB 3 Informatik und Mathematik, Universitat Bremen, Bremen 33, Germany.

1 Abstract
This paper describes and illustrates the use of a methodology suitable for the formal
development of expert systems. It addresses the problems of verification and valida-
tion of expert systems in a realistic way, though the methods are not advocated as a
general tool for expert system development. The framework described allows for both
the specification of Knowledge and the specification of the Inference methods which
provide the basis for deduction. A flexible and extensible environment for the develop-
ment and testing of specific types of expert system is presented. Various tools and
results are shown to be useful in determining properties of both the knowledge base
and the inference system when these are developed within the proposed framework.

The framework is based on exploitation of the transformational model of software de-
velopment in combination with techniques from algebraic specification.

2 INTRODUCTION
The development of expert systems, within a formal development framework (see
[Krieg-Bruckner and Hoffmann 91]), can be seen as a significant advance in expert
system technology. The benefits accrued from such an approach are substantial. In
particular the following are notable: a formal foundation for reasoning about properties
of the knowledge base and inference system is provided. Inductive and deductive
methods are available to help in both the construction of the expert system and as a
tool for analysis of the knowledge bases. A well defined language, with well defined
semantics, provides the basis for specifying both the expert system and the associat-
ed knowledge bases. This results in a unified development framework.

The same methodology used for developing an efficient expert system can be used for
developing an efficient knowledge base. Existing support systems may be exploited



76 MAHER & TRAYNOR: Rule-based expert systems

in constructing expert systems using such a methodology. The methodology and sys-
tem also support redevelopment, maintenance, and reuse of both knowledge base defi-
nitions (and developments) and inference system definitions (and developments). The
approach to constructing expert systems may be classified as follows: an inference
system is constructed by defining an algebraic type which models the computational
components of the desired inference system [Krieg-Briickner 88]. The algebraic type is
then developed, using a transformational development system [Krieg-Briickner and
Hoffmann 91], to an implementation of the inference engine. The inference engine is
subsequently incorporated as a development method within the transformational devel-
opment system. A prototype system is operational. For further details see [Krieg-
Briickner and Hoffmann 91] and [Krieg-Briickner et al 91].

A type system is constructed to accommodate the knowledge base. Relations may be
specified as mappings (functions), classes of objects as types, and productions as axi-
oms. The inference system now exists as a transformational development method.
This method may then be used in combination with the other development rules of the
system, to optimize, manipulate, and deduce properties of the knowledge base.

The specification language used is an algebraic language with high level structuring
mechanisms from Ada [Ada 83]. Type hierarchies can be generated using subtyping,
higher order functions and genericity can be used to specify general properties over
classes of objects.

Development of an expert system can then be seen as a two level activity, both activi-
ties carried out within the same general development framework; specification of the
inference system(s) and specification of the knowledge base(s). Figure 1 illustrates
the structure of the overall development framework.

C Inference J
N^JSystem(s)_ii^

/

Transformation
System

Development

Knowledge )
V^jJase y

Transformation
System +
Inference
Method(s)

Deductions/Inferences

Figure 1. The development model

In order to construct the inference system in the manner outlined above, there must be
some domain (type) over which the specification of the inference system is made. In
fact this is a formulation of the actual specification language itself as an algebraic type.



MAHER & TRAYNOR: Rule-based expert systems 77

The inference system is then a specification of how to manipulate terms of the specifi-
cation language when these terms represent a knowledge base.

The signature of the algebraic type (used as the foundation for constructing the knowl-
edge base) generates the Herbrand Universe for any knowledge base. Axioms and re-
lations are used to structure the admissible terms of the Herbrand universe. The infer-
ence system then manipulates the terms defined by the knowledge base in order to
answer queries or to perform deductions/inductions. General purpose tools may also
be used to determine the consistency of the knowledge base and verify the implemen-
tation of the inference system.

In addition to the basic mechanisms for development, a library management system
also provides refinement management. The Library represents and maintains the com-
plete development history of programs from their specifications. This provides auto-
mated support for the redevelopment activity. It also allows for straight forward back-
tracking during a development. This is achieved by simply ascending the development
tree.

3 GOALS AND ADVANTAGES OF THE METHOD
The logic programming paradigm has been advocated as an effective means of con-
structing expert systems. The declarative nature of logical languages allow, for exam-
ple, rule based expert systems to be expressed in a concise and comfortable way.
This paradigm alone, however, does not address the pressing problem of verification
and validation in expert system development [Plant 90]. Also, such development
frameworks lack, for example, secure type systems and effective analysis tools. Such
languages make verification and validation difficult and provide few means to raise the
level of confidence in the finished product.

The methods advocated hen; are not meant as a replacement to the traditional tried
and tested mechanism for developing expert systems. They are proposed as an alter-
native development paradigm which more effectively supports the verification and val-
idation needs of many expert system application domains.

A secure and well developed type system is provided which alone raises the level of
confidence that even knowledge based specifications are consistent and free from the
sort of inadvertent errors which can creep in when a logical (untyped) language such
as Prolog is used. In addition, tools can be used to test for the consistency of such
specifications before they ever get used operationally.

The declarative style of definition is still supported, and refinement, perhaps even to
Prolog programs, is possible. Currently, projection of detailed designs to an Ada sub-
set, a Functional language, and C are supported. Most importantly perhaps is that all
development is done within a formal framework, which can be exercised to verify and



78 MAHER & TRAYNOR: Rule-based expert systems

validate at all stages in the development of an expert system, from construction of the
inference mechanisms to the definition of knowledge bases and rules.

4 THE FORMAL FRAMEWORK
When undertaking formal development of programs of any kind, a vital issue is that of
a formalism which will support the quest for formality. This generally means a formal
specification language of one kind or another. We distinguish formality from rigour
since rigorous construction of software does not require a demonstration of correct-
ness but merely an intuitive 'hunch' or confidence that the resulting software is cor-
rect. This is reasonable since care was taken in its construction and the development
methods are based on sound underlying mathematical foundations. Formality on the
other hand, guarantees that the software is correct with respect to some, initial, for-
mal requirements specification. This implies that the language used to construct the
requirements specification must have a clear and well defined semantics. It must also
be flexible enough to make the task of writing formal specifications more attractive
than actually writing (constructing) implementations.

The approach taken here is that of the specification of abstract data types together
with the definition of computational structures over these abstract types. The formal
framework and semantics of languages allowing such specification is well developed
[Ehrig and Mhar 85]. Specifically, a language called PAnndA-S will be the formalism
used to construct specifications (for details of the language see Vol II of [Krieg-
Briickner and Hoffmann 91]).

4.1 The Specification Language
The specification language used to illustrate the proposed framework is based on the

PAnndA language, a wide spectrum language used in the PROSPECTRA project
[Krieg-Bruckner and Hoffmann 91]. The specification subset of this language is called

PAnndA-S (meaning Prospectra AdA A"nA Specification subset) It has the follow-
ing notable features:

• Structuring and information hiding constructs from Ada: packages (including with
clauses), subtypes, generics, and derived types.

• Higher order functions.

• Non- Strict functions.

• Predicates (including equality).

• Partial functions.



MAHER & TRAYNOR: Rule-based expert systems 79

An example of a simple specification in PAnndA-S is given below.
with NAT_S;
Package sqrt_nat Is

sqrt: NAT --> NAT;
axiom for all N, K: NAT =>K = sqrt(N) -> sqr(K) <= N and not(sqr(succ(K)) <= N);

end sqrt_nat

Figure 2. An example specification

To explain: sqrt is defined as a function from NAT to NAT. The axiom part then defines
the constraints on the sqrt function. These are that, if the result of applying sqrt to N
is K then K satisfies the two conditions that (i) K squared is less than or equal to N
and (ii) that K+1 squared is greater than N. This specification outlines those proper-
ties that should be exhibited by a function which computes the square root of a natural
number. The package NAT_S, mentioned in the with clause, contains the definition of
functions such a sqr, <=, and so on.

Specifications are typically non-constructive. What should be done is specified, not
how it should be achieved. The production of the design and implementation is left to
the developer. Thus, the above specification is a requirements specification for
square root. The full developments of this example (with verification of the associated
correctness conditions) may be found in [Traynor and Liu 91].

A development has three parts: an interface, a private part, and a body. The interface
corresponds to the specification of the component, the private part to the design of the
functions specified in the interface. The body defines the implementation, however,

bodies are not part of the PAnndA-S subset of PAnndA. The transformational model
of software development is illustrated in figure 3.

Requirements Analysis
Informal Problem Analysis
Informal Requirements Specification

Development

Formal

Formal

Formal

Evolution

Requirement Specification

li
Design Specification

U
Construction of implementation

Changes in requirements =>

Figure 3. A transformational

It Validation

It Verification

It Verification

Re-development tt

model of software development



80 MAHER & TRAYNOR: Rule-based expert systems

The production of the original requirements involves the construction of the interface
specification. Development (or refinement) will produce the private part and the body.
The latter two are constructed by transformation. Transformations encapsulate or for-
malise a grain of programming expertise and are selected by the developer and ap-
plied by the system with appropriate interactive guidance. The selection and parame-
terisation of the transformations correspond to design decisions made by the develop-
er.

4.2 The Algebra of Data
Specifications of all objects are given by modeling the required properties with alge-
braic types. Algebraic specification of data types has been used extensively to model
various types of system (for some illustrative examples see [Broy 90], [Breu 91],
and [Astesiano et al 90]). The theoretical foundations are well studied [Ehrich and
Mahr 85] and algebraic methods provide a powerful toolset for attacking many class-
es of specification and development problem.

Informally, a signature generates a universe of terms (a term algebra or Herbrand Uni-
verse,). A set of axioms over the terms generates a quotient algebra from this uni-
verse. The axioms can be thought of as partitioning the elements of the term algebra
into accessible an inaccessible portions. The specification below gives an algebraic
definition of family relationships.

package family is

is_father_of: person X person —» boolean;

is_grandfather_of: person X person —» boolean;

is_mother_of: person X person —> boolean;

father_of: person —> person;

grandfather_of: person —» person;

mother_of: person —> person;

axiom for all x, y: person ->
is_father_of(x, x) = false,
is_mother_of(x, y) -> is_father_of(x, y) = false,
is_mother_of(x, x) = false,
is_father_of(x, y) -> is_mother_of(x, y) = false,
(exists z:person => is_father_of(z, x) -> father_of(x) = z),
(exists z:person => is_mother_of(z, x) -> mother_of(x) = z),
(exists z:person => (is_father_of(z, y) or is_mother_of(z, y)) and

is_father_of(x, z) -> is_grandfather_of(x, y) = true),
father_of(father_of(x)) = y -> grandfather_of(x) = y,
father_of(mother(x)) = y -> grandfather_of(x) = y;

end family;

Figure 4. Knowledge about family relationships

Notice that the specification leaves out information which may be considered an im-



MAHER & TRAYNOR: Rule-based expert systems 81

portant in the definition of a family structure. For example, there is no explicit classifi-
cation of sex; this is an implicit part of the specification, the developer may decide to
make this explicit in the process of developing an efficient implementation. Notice al-
so that no specific family is defined. Only the structure of family relationships is given.
A specific family unit may be defined by importing the functions defined here into a
new package and then using these functions to specify the relationships between indi-
viduals of a particular family. Note that the definition of grandfather_of will allow more
than one solution.

The parameterisation of the knowledge representation structure given in figure 4 is
given below and will be used as the knowledge base for a subsequent example.

with family;
package Jones_Clan
fred, jean, mary, John,
axiom

father_of(fred) =
father_of(phil) =
father_of( mary
father_of( jean)
father_of(john)
mother_of(phil)
father_of(mary)

end Jones_Clan;

Is
phil, tom:person;

= tom,
fred,
= fred,

= fred,
= fred,
= mary,
= tom;

Figure 5. An example knowledge base

4.3 The Algebra of Programs
Definition: Algebraic formalisation of programs.
PL is the signature of some programming language defined as an abstract data type,

in this case the PAnndA language itself where PL = {SP, CP}. SP is a set of sorts
corresponding to syntactic categories of the language PL and CP is a set of function
symbols whose domain and range are members of the set SP.
V is a set of symbols, with associated types from SP, denoting variables (scheme
variables).
A program is a well-formed formula from the term algebra W[PL].
A program scheme is a well-formed formula from W[PL, V]; terms with typed scheme
variables.
Definition: Transformation rules as theorems in the semantic domain.
A function F, with some syntactic category as domain and range, is called a transfor-
mation rule if and only if for all the programs fragments P : P Impl F(P) where Impl is
the implementation relation (defined in Vol I of [Krieg-Briickner and Hoffmann 91])
with respect to the semantics of the language, i.e. P Impl P' through some transfor-
mation rule or function F if and only if the formula V P: P = F(P) is a the theorem in the
semantic domain of the language.
Definition: Conditional Transformations.



82 MAHER & TRAYNOR: Rule-based expert systems

A conditional transformation is a transformation rule for which V P: P = F(P) cannot
be shown to be a theorem in the semantic domain of the language. However,
R(P) -> V P: P = F(P) can be shown to hold. The undischarged portions of the correct-

ness proof become a precondition on the application of the transformation function.

Conditional transformation rules are necessary in the situations where properties of
the program fragments, denoted by scheme variables, are necessary to prove the cor-
rectness of the transformation. In such situations, lemmas are assumed in the correct-
ness proofs. Such assumptions must be discharged when the transformation is instan-
tiated in context. The lemmas assumed in the correctness proof become the precondi-
tion on the transformation.

Constructing terms corresponding to program fragments results in program terms in
their canonical form. When specifying transformations, the concrete form of the object
language is a much more comfortable and efficient form of expression. Note that
terms, constructed from using the functions from the algebraic type defining a formal-
ism, will reflect the abstract syntax structure of the formalism being modeled. Defin-
ing program transformations using the abstract syntax of the programming language
is laborious. In general, it is more comfortable to use the concrete syntax. The result-
ing specification is also much more readable. In the following example, concrete pro-
gram fragments are delimited by the brackets f J.

The example below defines a transformation rule which commutes the arguments of
the logical connective, and.

with pannda_s
package Commute Is
comm : Expression —> Expression;
axiom for all a, b Expression =>

comm( fa and b j ) = fb and aj;
end Commute;

Figure 6. A transformation rule in concrete form

The equivalent canonical form of this transformation is rather lengthy, due to the com-
plexity of the specification language, and is also difficult to read, this provides suffi-
cient motivation for the use of the concrete form in specifications.

The basic approach outlined here is used to construct the inference system used in de-
ducing properties (making inferences) on knowledge bases. Knowledge bases are
constructed as outline in section 2.2.



MAHER & TRAYNOR: Rule-based expert systems 83

5 THE DEVELOPMENT MODEL

5.1 Specifying an Inference System
The inference system which will be used to illustrate the deduction process, is the de-
fault deduction system of the PROSPECTRA methodology. This is used for conve-
nience, other inference methods may be defined and used within the system.

The inference rules of the deduction system are specified in PAnndA-S. The rules are
relatively straightforward and correspond to a deduction system based on intuitionis-
tic first order logic. The inference rule are formulated as goal directed tactics and are
derived from Gentzen's Ga3 calculus (see [Gentzen 69], [Schmidt 84], and [Ritchie
88]). Property deductions are constructive and explanations can be retrieved from the
residue of the reasoning process.

There are two portions of the inference system. The first manipulates the formulae of
first order logic, used to describe the knowledge base (this also include manipulation
of the equality predicate). The second component allows the specification of strate-
gies and tactics to guide the deduction system and provides a mechanism for deter-
mining inductive properties of a knowledge base.

Deductions are represented by trees. The nodes of the tree are constructed by the ap-
plication of inference rules while attempting to deduce some property. Figure 7 gives
a portion of the specification of the inference system.

with pannda_s, term_manipulation;
package lnf_Rules Is

ForAIIElim: E: Exp X P: Exp :: NotCaptured(P, E) = true —» Exp;
axiom for all E, E1, P : Exp; X: Designator; T: Type_Expression =>

(E = f for all X:T => E1 J) -> ForAIIEIim(E, P) = Subst(P, X, E1)
others -> ForAIIEIim(E, P) = E;

end lnf_Rules;

Figure 7. The inference rule for for all elimination

In the above definition the function subst replaces all occurrences of the variable, X, in
expression El, with the pattern P. An additional restriction, imposed in the domain of
the function declaration of ForAIIElim, ensures that no variables in the term P are cap-
tured by any inner declaration of the expression E. Renaming may be used to resolve
this conflict if it arises.

All the inference rules are formulated in this way. These are then transformed to a
language called SSL. This is the input language for an environment generator tool
called the Cornell Synthesizer Generator (CSG) (see [Reps and Tietlebaum 86]).
These rules are then compiled into the transformational development system (which



84

is itself generated using the CSG).

MAHER & TRAYNOR: Rule-based expert systems

As a result, these rules are available within the transformational development sys-
tem as transformations. All the inference rules shown in figure 8 are developed in this
way. Note that deductions in the inference system are represented as the manipula-
tion of sequents. The formulae on the left of the turnstile are referred to as the ante-
cedent of the sequent. The formula on the right of the turnstile is the consequent.
Elimination and Introduction rules apply to the antecedent and consequent respective-

The deduction system which results from these rules is quite rudimentary. However,
given that strategies and tactics can also be defined, the rules here can be thought of
as a kernel which is used to build up more complex (composite) inference methods.
The inference rules used in the default deduction system are given below.

Immediate Validity

Duplication

Connective

A (and)

V(oi)

—• (implication)

-> (not)

V (foi all)

3 (exists)

r , A h A

r, A h c
r , A , A h C

Rules foi Logical Connectives

Antecedent

T.AAB h C
r , A , 5 h C

r,AVJ9 \-C
T . A h C V,B\-C

r,A-+BhC
rhA rh c

r h A

r,V*A(r)hC
r, A(t) h c

I\3*A(*)hC
r, A(X') h c

rh
r

r,

Consequent

rh AAB
T h A V\-B

AWB T\-AVB
h A T\- B

Th A-+J3
T.AhB

A h contrtiiction

T h Vi?A(jr)

T h A(r')

T h 3xA(x)
rhA(t)

Figure 8. The inference rules



MAHER & TRAYNOR: Rule-based expert systems 85

The rules are presented in a top own manner, reflecting the way in which they are ap-
plied in a deduction. In the rules, t is a term, well selected so as to allow a successful
conclusion to the deduction and x' is a free variable, not already used in the deduction.
As a simple example of how the above rules are applied (and the result of their appli-
cation) is given in the following section.

5.2 Analysis of a Knowledge Base by an Inference Method
As an example, take the problem of trying to determine the grandfather of John, using
the knowledge base defined in figure 5. Given this knowledge base, figure 9 shows
the sequence of deductions which allows us to satisfy the conjecture 3 x:person =>
grandfather_of(john) = x.

Notice that, in the first few stages of the deduction, some instantiation of the quanti-
fied variable, x, is necessary. This may be arbitrary since, at some later stage, the
original instantiation may be changed.

Proof of <3 x:person => grandfather_ofQohn) = x>

1 .» empty |- 3 x:person => grandfather_of(john) = x by Exist Intro with <anyone>
2 . » empty |- grandfather_of(john) = anyone by adding

<V x, y: person => father_of(father_of(x)) = y —»grandfather_of(x) = y>
3 . » V x,y: person => father_of(1ather_of(x)) = y —> grandfather_of(x) = y |-

grandfather_of(john) = anyone by Forall Elim with <john>
4 . » V y: person => father_of(father_of(john)) = y - » grandfather_ofQohn) = y |-

grandfaither_of(john) = anyone by Forall Elim with <anyone>
5 . » father_of(father_of(john)) = anyone -» grandfather_of(john) = anyone |-

grandfa.ther_of(john) = anyone by Implies Elim
6 . 1 » empty |- father_of(father of(john)) = anyone by Applying

<1ather_of(john)=fred>
6 . 2 » empty |- father_of(fred) = anyone by Adding

<father_of(fred) = tom>
6 . 3 » father_of(fred) = torn |- father_of(fred) = anyone by Immediate

Not Proven
AND 7 .1 » grandfather_of(john) = anyone |- grandfather_of(john) = anyone

by Immediate
Proven

Not Shown

Figure 9. Deducing variable instances

Note that, in the deduction, the variable instantiations in steps 1 and 4 may be modi-
fied at any point in the deduction. Deduction step 6.3 provides the appropriate instan-
tiation for variables. The 'anonymous' term, anyone, is used as a placeholder for the
actual term which provides a solution. The terms in italic font are extracted from the
current theory of the knowledge base (the context in which the deduction is carried
out).

The above example, with the correct instantiations for variables, is given in figure 10



86 MAHER & TRAYNOR: Rule-based expert systems

below.

Proof of <3 x:person => grandfather_of(john) = x>

1 .» empty |- 3 x:person => grandfather_of(john) = x by Exist Intro with <tom>
2 . » empty |- grandfather_of(john) = anyone by adding

<V x, y: person => father_of(father_of(x)) = y —> grandfather_of(x) = y>
3 . » V x, y: person => father_of(father_of(x)) = y -> grandfather_of(x) = y |-

grandfather_of(john) = torn by Forall Elim with <john>

4 . » V y: person => father_of(father_of(john)) = y -> grandfather_of(john) = y |-
grandfather_of(john) = torn by Forall Elim with <tom>

5 . » father_of(father_of(john)) = torn -> grandfather_of(john) = torn |-
grandfather_of(john) = torn by Implies Elim

6 . 1 » empty |- father_of(father_of{john)) = torn by Applying
< father_of(john)=fred>

6 . 2 » empty |- father_of(fred) = torn by Adding
<father_of(fred) = tom>

6 . 3 » father_of(fred) = torn |- father_of(fred) = torn by Immediate
Proven

AND 7 . 1 » grandfather_of(john) = torn |- grandfather_of(john) = torn
by Immediate

Proven
QED

Figure 10. The complete deduction

A straight forward strategy could be envisaged which would allow simple deductions
like this to be done automatically. For example, the matching of the left hand sides of
the conjectures in steps 2, 6.1, and 6.2, with the rules in the knowledge base, identi-
fies the correct rules for the subsequent deductions. Similar observations can be made
for the other rule applications in the deduction. In addition, the deduction tree pro-
vides a constructive basis for generating an explanation. Looking at the deduction in a
bottom up manner, the justification is given by steps 6.2, 6.1, and 5. The purpose of
the other steps in the deduction are for instantiation of variables and for validating the
application of rules.

5.3 Other Inference Methods and Strategies
Other inference rules and methods may be easily specified within the system using
the language PAnndA-S. This requires that a transformation be defined which manip-
ulates the object terms in a manner consistent with the desired inference system.

For example, the resolution rule [Robinson 65], which is the basis of the Prolog lan-
guage could be defined. A library of transformations exist which simplifies this task.
The libraries already defined for the transformation system include such facilities as
unification, pattern matching, rewriting, and substitution. The rewriting, available
within the system, may also be used as a simple mechanism for forward or backward
chaining through a knowledge base. Specifying strategies is also straightforward. For
example, a simple strategy, which would result in the deduction shown in section 3.2



MAHER & TRAYNOR: Rule-based expert systems 87

is given in figure 11.

with pannda_s, Generaljrafo, Proof, currentjheory;
package solver Is

Esolve, solve: Exp x TP_THEORY -> boolean;

axiom for all Q: Exp; Th:TP_THEORY =>Esolve(Q, Th) = solve(fempty |- Q J , Th);

axiom for all V,X,Y>Z,Q,Q1,Q2: Exp; Quant: Quantifier; Vxdesignator; Tvar: Type_exp;
Th:TP_THEORY =>

Immediate(Q) -> solve(Q, Th) == true,

OrJntro(Q) = f 0 1 or Q2J -> solve(Q, Th) = solve(Qi, Th) or solve(Q2, Th),

AndJntro(Q) = f o i and Q2j -> solve(Q, Th) = solve(Q1, Th) and solve(Q2, Th),

Or_Elim(Q) = T Q I and Q2J -> solve(Q, Th) = solve(Q1, Th) and solve(Q2, Th),

Q = f x |- Y ->zj and ImpliesJntro(Q) = Q1 -> solve(Q, Th) = solve(Q1, Th),

Q = f x -> Y |- z j and ImpliesJEIim(Q) = f o i and Q2J ->
solve(Q, Th) = solve(Q1, Th) and solve(Q1, Th),

Q = [Quant Vx:Tvar => X |- Y J and Get_Var_Alnst(FQuant Vx:Tvar => X J, Q, Th) = V and
Quant_Elim(Q, V) = Q1) -> solve(Q, Th) = solve(Q1, Th),

Q = f x |- Quant Vx:Tvar => Y J and Get_Var_Clnst(fQuant Vx:Tvar => Y J, Q, Th) = V and
Quant_lntro(Q, V) = Q1 ••> solve(Q, Th) = solve(Q1, Th),

not Immediate(Q) and Get_Left_Rule(Q, Th) = R and Add_Rule(Q, R) = Q1 ->
solve(Q,Th) = solve(Q1,Th),

others -> solve(Q, Th) = false;
end solver;

Figure 11. A deduction strategy

Some of the functions used in the definition require explanation. Get_Var_AInst and
Get_Var_CInst attempt to instantiate a quantified variable appearing in the anteced-
ent and conclusion respectively. Get_Left_Rule matches the conclusion with the left
hand side of a rule in the knowledge base (denoted by Th), and Add_Rule adds this to
the current deduction.

This strategy, uses only the rales defined as part of the calculus. Esolve requires, as
parameters, the deduction query to be satisfied and the local theory of the current
specification. The strategy is not as general as it could be. At the expense of some
more sophisticated analysis and matching, the strategy could be made very general,
and could be used for a large class of deduction problem.

6 AN EXAMPLE
In the following example, a slightly different form of knowledge base is used. Here an
inference system may be employed which may be based on the resolution principle.
The example illustrates the problem of deducing which sport is being described when
various attributes concerning the sport are given as the basis of the deduction. The



88 MAHER & TRAYNOR: Rule-based expert systems

type framework in which the knowledge base is defined in given in figure 12.
package Sports Is
type sport is private;
type area is private;
type field is private;
Has_players: sport x natural - » bool;
Has_area: sport x area - » bool;
Has_field_struct: sport x field —» bool;

Usesjball: sport —»bool;
rect, circ, squr: area;
net, nonet, divnet: field;

end Sports;

Figure 12. The type framework

Note that only the definition mechanism and the construction functions are given here.
Figure 13 shows the above type system being used to construct a knowledge base
which is, essentially, in conjunctive normal form, this is given below.

with Sports
package Games is
cricket, squash, badminton, volleyball, basketball, boxing, soccer, tennis: sport;
axiom for all X:sport =>

Uses_ball(X) and Has_area(X, rect) and Has_players(X,2) and
Has_field_struct(X,nonet) -> X = squash,
Uses_ball(X) and Has_area(X, rect) and Has_players(X,22) and
Has_field_struct(X,nonet) -> X = soccer,

not Uses_ball(X) and Has_area(X, squr) and Has_players(X,2) and
Has_field_struct(X,nonet) -> X = boxing,
Uses_ball(X) and Has_area(X, circ) and
Has_field_struct(X,nonet) -> X = cricket,
UsesJball(X) and Has_area(X, rect) and Has_players(X,12) and
Has_field_struct(X,divnet) -> X = volleyball,

not Uses_ball(X) and Has_area(X, rect) and (Has_players(X,2) or
Has_players(X,4)) and Has_field_struct(X,divnet) -> X = badmington,
UsesJball(X) and Has_area(X, rect) and Has_players(X,10) and
Has_field_struct(X,nonet) -> X = baskeyball,
Uses_ball(X) and Has_area(X, rect) and (Has_players(X,2) or Has_players(X,4))

and Has_field_struct(X,divnet) -> X = squash;
end Sports;

Figure 13. The knowledge base



MAHER & TRAYNOR: Rule-based expert systems 89

Inferences in this knowledge base may be carried out as shown in figure 14. It should

Proof of <3 x:sport => Uses_ball(x) and Has_area(x, rect) and Has_players(x,22) and
Has_field_struct(x, nonet) -> x=x>

1 . » empty |-3 x:sport => Uses_ball(x) and Has_area(x, rect) and Has_players(x,22) and
Has_field_struct(x, nonet) -> x=x

by Exist Intro with <soccer>
2 . » empty |-A3 and A1 and AO and A2 -> soccer=soccer by adding

<V x: sport UsesJball(X) and Has_area(X, rect) and
Has_players(X,22) and Has_field_struct(X,nonet) -> X = socceo

3 . » V x: sport Uses_ball(X) and Has_area(X, rect) and
Has_players(X,22) and Has;Jield_struct(X,nonet) -> X = soccer |-
A3 and A1 and AO and A2 -> soccer=soccer by Forall Elim with <soccer>

4 . » (A3 and A1 and AO and A2) -> soccer = soccer |-
(A3 and A1 and AO and A2) -> soccer = soccer by implies Intro

5.»A3 and A1 and AO and A2 and (A3 and A1 and AO and A2) -> soccer = soccer
|- soccer=soccer by Implies Elim

6.»A3 and A1 and AO andA2 and soccer=soccer |- soccer=soccer by immediate
Proven

AND 7 .1 » A3 and A1 and AO and A2 |- A3 and A1 and AO and A2 by And Intro
7 . 2 » A3 and A1 and AO and A2 |- A3 by immediate

Proven
AND 7.3»A3 and A1 and AO and A2 |- A1 and AO and A2 by And Intro

7 .4» A3 and A1 and AO and A2 |-A1 by immediate
Proven

AND 7 .5» A3 and A1 and AO and A2 |- AO and A2 by And Intro
7.6»A3 and A1 and AO and A2|- AO By Immediate
Proven
AND 7.7»A3 and A1 and AO and A2|- A2 by immediate
Proven

QED

Figure 14. The deduction

be noted, that textual, local, abbreviations can be defined which substantially reduces
the size of the deduction. Given the abbreviations Has_players(soccer, 22) = AO,
Has_area(soccer, rect) = Al, Has_field_struct(soccer, nonet) = A2, and Us-
es_ball(soccer) = A3, the deduction would be presented as in Figure 14.

The initial query is straight forward where facts about the game in question are given
and the existentially quantified variable represents the deduction to be performed.
There are various forms the conjecture may take, but the instantiation of the quanti-
fied variable is given by the knowledge base directly. It should be noted that from
step 4 of the deduction onwards, the in-built automatic deduction features derive all
the required deduction steps (independently of any strategy). A strategy is required
to determine the initial instantiations. This strategy would be similar to that shown in
figure 11. It should also be noted, that the immediate validity rule is directly applica-
ble in step 4 of the deduction. If it had been applied here the deduction would be com-
plete. However, in the general case, it is probably desirable to construct as full a de-
duction as possible, in particular, when explanations are desirable.



90 MAHER & TRAYNOR: Rule-based expert systems

7 FURTHER WORK
The work presented in this paper is a description of on-going research. The current
thrust is in the development of more sophisticated inference methods within the de-
velopment environment. The extensibility of the system allows such activities to be
carried out in a convenient and straight-forward manner.

Development histories provide the basic mechanism for generating explanations.
They also provide a basis for re-development, abstraction and reuse of concrete de-
velopments and deductions. The properties of the deduction system presented here
also offer a flexible framework for the development of deduction strategies
(heuristics). More details of the deduction system may be found in [Traynor 92].

The incorporation of weights in the knowledge base, as a means of undertaking infer-
ence base on probabilistic reasoning, is a area of interesting future work. Again, the
extensibility of the development system makes such experimentation a relatively
comfortable activity.

The possible use of the rules of inductive inference which are available in the develop-
ment environment have only been explored briefly, these methods show promise as a
means of constructing generalisations from specific knowledge bases.

A complete formalisation of the transformation development framework is not given
here. The detail of such an abstract semantic framework are under construction and
preliminary details can be found in [Liu and Traynor 92]. Such a framework is a pre-
requisite for the formalisation of expert system development within the transforma-
tional framework.

8 CONCLUSIONS
The framework outlined here presents a rigorous methodology for the development of
expert system shells and their associated knowledge bases. The powerful tools,
available as part of the basic transformational environment, also contribute signifi-
cantly to the effectiveness of the system outlined. Deductions performed within the
default deduction system are guaranteed to be correct. However, introducing new in-
ference rules requires the correctness of the inference method to be demonstrated,
this point has not been addressed here.

The tools available within the development environment for determining properties of
knowledge bases have not been illustrated due to lack of space. However, the consis-
tency and completion mechanisms are important tools in the knowledge engineering
phase of expert system construction. More details of these tools may be found in Vol
I and II of [Krieg-Briickner and Hoffmann 91].



MAHER & TRAYNOR: Rule-based expert systems 91

9 REFERENCES
[Ada 83] The Ada programming language reference manual. ANSVMILSTD 1815A,
US Dept. of Defence, Goverment Printing Office, 1983.
[Astesiano et al 90] Astesiano, E., Giovani, A., and Reggio, G., Processes as Data
Types: Observational Semantics and Logic. Semantics of Systems of Concurrent Pro-
cesses, Springer LNCS 489, (1990).
[Breu 91] Breu, R. Algebraic Specification techniques in Object-Oriented Program-
ming Environments. Thesis Dissertation, Passau, (1991).
[Broy 91] Broy, M., Some Algebraic and Functional Hocus Pocus with Abracadabra.
Information and Software Technology, (1991).
[Enrich and Mahr 85] Ehrich, H. and Mahr, B. Fundamentals of Algebraic Specifica-
tion I: Equations and Initial Semantics. Springer (1985).
[Gentzen 69] Gentzen, G.: Investigations into Logical Deduction, In: 'The Collected
Papers of Gerhard Gentzen', pages 68-131, North-Holland (1969).
[Krieg-Briickner and Hoffmann 91] Krieg-Briickner, B., Hoffmann, H.
(eds.):PROgram development by SPECification and TRAnsformation: Vol. 1: Method-
ology, Vol. 2: Language Family, Vol. 3: System. PROSPECTRA Reports M.1.1.S3-R-
55.2, -56.2, -57.2. Universitat Bremen, (1990). (to appear in LNCS).
[Krieg-Briickner 88] Krieg-Briickner, B.: Algebraic Formalisation of Program Devel-
opment by Transformations, in : Proc. European Symposium On Programming '88,
LNCS 300, pages 34-48, (1988).

[Krieg-Briickner et al 91] Krieg-Briickner, B., Karlsen, E., Liu, J., Traynor, O.: The
PROSPECTRA Methodology and System: A unified development Framework. In
Proc. VDM '91, Springer Verlag, LNCS 552, pages 361-397 (1991).
[Liu and Traynor 92] Liu, J and Traynor, O., A Review of Transformational Develop-
ment System, Technical Report Universitat Bremen, In Preparation.
[Plant 90] Robet T. Plant, On the Verification, Validation, and Testing of Knowledge-
Based Systems. , The Journal of Knowledge Engineering, Vol. 3, No. 1, pgs 59-67,
1990.
[Ritchie 88] Ritchie, B.: The Design and Implementation of an Interactive Proof Edi-
tor, Ph.D. Thesis, University of Edinburgh, (1988).
[Schmidt 84] Schmidt, D.: A Programming Notation for Tactical Reasoning, Proc. of
the 7th Intl. Conf. on Automated Deduction, LNCS 170, Springer Verlag, (1984).
[Traynor 92] Traynor, O., The PROSPECTRA Proof System, in Vol III, Chapter. 4 of
[Krieg-Briickner and Hoffmann 91]
[Traynor, Liu 91] Traynor, O., Liu, J., The Development of Correct Programs by Speci-
fication and Transformation, in Proc. ICYCS Conference, Beijing, July 1991.





TOWARDS A METHOD FOR
MULTI-AGENT SYSTEM DESIGN

Arturo Ovalle & Catherine Garbay

Groupe SIC (Integrated Cognitive Systems)
Equipe de Reconnaissance des Formes et de Microscopie Quantitative

Laboratoire TIM3 - Institut IMAG
Bat. CERMO - BP 53X - 38041 Grenoble Cedex, FRANCE

Abstract

We describe a method for Multi-Agent System design which is assisted by two original typologies,
resulting from the deeper study of knowledge and reasoning. The first typology reflects a formal
character while the second reflects a technological character. The purpose of the Formal Typology is
the classification and structuring of knowledge and reasoning. The Technological Typology handles
the parameters governing the reasoning intrinsic to Multi-Agent technology, not only at the individual
level of the agent but also within a group of agents. Possible correspondence between both of these
typologies will become concrete by the presentation of the Multi-Agent generator MAPS (Multi-Agent
Problem Solver), and the Multi-Agent system KIDS (Knowledge based Image Diagnosis System)
devoted to Biomedical Image Interpretation.

Keywords

Second Generation Expert Systems, Multi-Agent System Design, Distributed Artificial Intelligence,
Knowledge and Reasoning Modeling, Control, Biomedical Image Interpretation.

1. INTRODUCTION

Among knowledge based systems using artificial intelligence techniques we are particularly interested
in the Multi-Agent systems which arise from their second generation (systems using multiple
reasoning schemes). The Multi-Agent paradigm results from distributed artificial intelligence
approaches and makes it possible to overcome the drawbacks encountered during the resolution of
complex problems. The main issue of the Multi-Agent approach involves the distribution of tasks and
skills among intelligent entities that co-operate, pooling their knowledge and their expertise to attain
an aim (Ferber 88). In this way, not only a multi-modal knowledge representation, and reasoning
schemes handling are permitted but also, co-operative problem solving. In addition, a variety of
reasoning schemes emerge which corresponds not only to individual behaviour but also to behaviour
developed within the group of agents.

However, one of the major difficulties of Multi-Agent approaches results in the risk for the developer
of such systems to be rapidly "lost" as a result of the variety of parameters to be handled, which
characterizes this technology. It should be noted that there is a remarkable evolution in this
technology. But there is a need for conceiving methods which can integrate specificities of Multi-
Agent technology.

The aim of the work presented here is thus to propose a method for Multi-Agent system design
composed of two essential parts: a Formal Design followed by a Technological Design, which are
respectively assisted by a Formal Typology and a Multi-Agent Technological Typology. The Formal
Typology for knowledge and reasoning classification permits a synthetic view of elements which are
usually presented in an unstructured way. In addition, this typology provides a tool to assist
modeling of knowledge and reasoning. The Technological Typology handles the parameters



94 OVALLE & GARBAY: Towards a method for multi-agent system design

governing the reasoning intrinsic to Multi-Agent technology, and not only at the individual level of
the agent but also within a group of agents.

Technological \
Design

Multi-Agent
Technological

Typology

Reasoning
Formal Typology

Knowledge
ormal Typology

Multi-Agent
Conceptual

Reasoning Model

Multi-Agent
Organizational

Architecture

Operational
Multi-Agent

System Multi-Agent
Implementation

Figure 1 : Method for Multi-Agent System Design :
Formal Design and Technological Design.

A variety of methodologies have been proposed for structuring and analyzing knowledge such as
KADS (Breuker 89) or KOD (VOG 88) especially for knowledge acquisition purposes. They are
totally independent of a technique or system. KADS methodology assists user to construct several
models, including conceptual models of domain knowledge and reasoning, model of the user /
system cooperation, model of the functional conception and physical models. In KOD methodology
two axes are introduced which define models and paradigms to assist the knowledge acquisition
process.The method presented here proposes to bring together knowledge and reasoning
formalisation with specific characteristics related to Multi-Agent technology.

The Formal Design and the Technological Design (Fig.l) which comprises our method are
respectively presented in parts 2 and 3. Possible matches between Formal Design and Technological
Design then become concrete by the presentation of Multi-Agent generator MAPS (Multi-Agent
Problem Solver) described in part 4 and the Multi-Agent system KIDS (Knowledge based Image
Diagnosis System) described in part 5. The KIDS system is intended for Biomedical Image
Interpretation purposes.

2. FORMAL DESIGN

Figure 1 shows the three main steps followed by the Formal Design : knowledge and reasoning
identification step (1), knowledge and reasoning model analysis step (2) and Multi-Agent
architectural design step (3). The first step uses Formal Typologies for knowledge and reasoning
structuring that will be described later. The second step uses a model of knowledge and reasoning
obtained from the previous step which is handled by the Multi-Agent system. The third step aims at
completing agent skills for each of the agents comprising the Multi-Agent architecture. Feedback is
indeed possible between these three steps to complete and enhance the Multi-Agent architecture.



OVALLE & GARBAY: Towards a method for multi-agent system design 95

2.1. Formal Typology for Knowledge Structuring
The Formal Typology for knowledge structuring organizes knowledge elements into four axes
underlying properties and differences which distinguish each of the classes and sub-classes that have
been identified : functional axis, structural axis, level of abstraction axis and domain specific axis.
These four axes are described below.

Functional Axis
The functional axis determines a distinction among "figurative" knowledge (objects), "operative"
knowledge (actions), "reflexive" knowledge (knowledge about knowledge) and heuristic (knowledge
about knowledge handling). Each of these knowledge classes can be distinguished from the others
by means of its functional character, useful for medical reasoning modeling. In fact, we have used a
task (operative knowledge) oriented modeling approach for cytological expertise modeling (Ovalle
91c). These tasks handle different types of knowledge including descriptive knowledge ("figurative"
knowledge) which frequently exhibits an uncertain or imprecise character ("reflexive" knowledge).
Finally, it should be noted that this variety of knowledge schemes is finally handled by specific
strategies ("heuristic" knowledge).

Figurative Knowledge (or objects) permits the naming and the description of the elements of a
problem involving data, facts, hypotheses or even results. Some examples of figurative knowledge
handled in cytological diagnosis are the following : a specific image of a specimen, microscopic field,
cellular morphology or pathology.

Operative Knowledge (or actions) denotes a procedure or inference rule carried out according to
figurative knowledge elements. Operative knowledge can be classified according to the structural axis
determined by structural relationships relating the figurative knowledge they handle.

Reflexive Knowledge can be defined as that giving information on the nature of a knowledge element
with respect to a specific domain. A figurative or operative knowledge might thus be qualified as
vague or imprecise, uncertain, ambiguous, complete or partial, coherent or conflicting,.. .(Aussenac
89). The Heuristic knowledge denotes every knowledge element which indicates different the ways
and conditions to handle a knowledge element : two types of heuristics can be distinguished
depending on the figurative or operative character of the knowledge they handle. Both of them are in
fact knowledge about knowledge and imply the expression of a variety of reasoning schemes and
they will therefore be examined in this context.

Structural Axis
Structural knowledge can be described as an arrangement of knowledge elements that are related
together by different types of associations. Structural axes distinguishes between intrinsic,
contextual, compositional, taxonomic and causal knowledge.

Intrinsic Knowledge describes properties related to knowledge. It is required to determine
representative properties able to describe, identify and differentiate a special type of knowledge from
others. Morphological descriptors such as size, shape, texture, colour, thickness... or malignancy
descriptors including grade or state for a tumour may be attached to visual objects in medicine.

Contextual Knowledge permits to focalize or situate an object or an action within a specific context.
The same object placed in two different contexts might differently be seen : an object will not display
the same apparent size if its neighbourhood involves big or small objects. An action can be relevant
or insignificant depending on context. Compositional knowledge describes the simple or complex
character of objects and actions. For a specific object it is required to determine whether it is
comprised or not of other objects or if it determines in itself an unique undecomposed entity.

Taxonomic Knowledge is every structure that can be described by means of a tree where its nodes
are figurative or operative knowledge related by hierarchically specialized relationships. Causal
Knowledge describes cause/effect relationships which bring together not only the variables of a
system (biological or physical) but also their observed state (malignant or faulty). Taxonomies and
causal graphs are essentially used by experts for classifying pathologies in diagnosis formulation
(Ovalle 91c).



96 OVALLE & GARBAY: Towards a method for multi-agent system design

Level of Abstraction and Specific Domain Axes
It should be noticed that figurative, operative, reflexive and heuristic knowledge types may be
distributed among several level of abstractions : in computer vision for example we can distinguish
among the following levels : sensorial, perceptual, iconic and semantic. Some of these are highly
dependent of a specific domain of application while others are completely independent: already in the
computer vision field it is considered that "high" level knowledge is domain dependent while "low"
level knowledge is in opposition independent. Figurative knowledge in cytology defines the
following three levels of abstraction (Ovalle 91c) : image level, image descriptor level, and
interpretation level.

2.2. Formal Typology for reasoning structuring
Formal Typology for knowledge structuring has organized knowledge elements into four axes (§
2.1): functional axis, structural axis, level of abstraction axis and domain specific axis. Since the
reasoning strongly depends on the type of knowledge elements they handle, these four axes will also
determine different types of reasoning. In fact, this organization will help us for reasoning
classification and analysis purposes. It should be noticed that elementary reasoning interact to
constitute complex reasoning schemes that will be called "hybrid".

A elementary reasoning handles a specific type of knowledge (e.g. "figurative" or "operative"), as
defined through the Formal Typology. An example of elementary reasoning is the hierarchical
handling of operative knowledges (e.g. an action scheduling), so-called planning.

A hybrid reasoning results from the need to integrate or combine elementary reasonings. A hybrid
reasoning thus handles different types of knowledge. Figure 2 illustrates an operative &
compositional hybrid reasoning which drive the execution of the main expert tasks that are implied
during diagnosis formulation in cytopathology.

Diagnosis

Validation
Jl Field
~ Selection

1 4
E*p
Com

oration
pleiion 1

/

Diagnosis formulation completion

Analysis
completion

/
Cell

Selection

CcU
Identification

Low
Resolution Failure

Field
Analysis

Analysis
completion

High
Resolution

Cell
Analysis

Diagnosis
Formulation

Figure 2 : Operative & compositional hybrid reasoning.

A deeper reflexion on different types of classes and sub-classes for reasoning schemes which
compose the Formal Typology can be found in (Ovalle 91c).

3. MULTI-AGENT TECHNOLOGICAL DESIGN

The three main steps followed by the Multi-Agent Formal Design are also used by the Multi-Agent
Technological Design (Fig. 1 at the right)': reasoning identification step (1), reasoning model
analysis step (2) and Multi-Agent architectural design step (3). The first step uses the Multi-Agent
Technological Typology that will be described afterwards. The second step uses a model of



OVALLE & GARBAY: Towards a method for multi-agent system design 97

reasoning obtained from the previous step and handled by the Multi-Agent system. The third step
aims at completing agent skills for each of the agents composing the Multi-Agent architecture.
Feedbacks are also possible among steps in the Technological Design in order to complete and
enhance the Multi-Agent architecture design.

3.1. Multi-Agent Technological Typology
Multi-Agent reasoning must be examined according to two perspectives, as follows : the perspective
of the agent and the perspective of the group of agents (society of agents). Reasoning developed in a
society of agents depends on choice made at the individual level (i.e. internal structure of the agents)
and within the group of agents level (task and skill distribution modes, communicating protocols and
modes, co-operating and organization modes). Parameters composing the Technological Typology
which govern individual level reasoning will be described first those which govern reasoning at the
group of agent level will be subsequently described.

Agent Internal Structure

The
Communications

The Knowledge
Base Managment
System

• The Skills

• The Intentional
Layer

Groupe of Agents

• Task & Skill Distribution

• Communication Protocols & Modes

• Organization & Co-operation Modes

Figure 3 : Multi-Agent Technological Typology through two perspectives :
agent individual level (left side in the figure) and group of agents level (right side in the figure).

The agent
From the individual agent point of view the study of the Agent Internal Structure is made to analyze
different types of reasoning developed by the agent. Reasoning from the individual point of view
should consider the parameters which depend on the sophistication degree of the agent :
communication and reaction possibilities to external events, knowledge base management abilities,
problem solving skills and expertise, autonomous degree for making decisions, and knowledge
about itself and others.

The structure of the agent is thus comprised of four essential parts (Ferber 91): the first describes the
agent as a "communicating" and "reactive" entity ; it is responsible of interactions with others agents
and the environment. The second part describes the agent as a "rational" entity ; it determines the
control mechanisms that have been given to the agent : planning possibilities and internal task
supervision (internal information request, knowledge base updating) and external task supervision
(external information request, environment movements, . . . ) ; the third part describes the agent as a
"specialist" and is strongly dependent on the application domain. It thus concerns the expertise of the
agent, its skill domain, its expertise. Finally, the fourth part describes the agent as an "intentional"
entity in which knowledge is included about itself and others. This issue implies the ability of the
agent to reason with respect to others, which thus implies the ability of modeling the knowledge of
others (beliefs), their abilities and objectives, and also the ability of anticipating their behaviour and
action plans (their intentions). These four levels of agent structuring and sophistication are
considered below as parameters allowing the definition of our Multi-Agent reasoning Typology from
the individual agent perspective.

A deeper study of reasoning associated with communications among agents has been made by
(Chaib-Draa 90). This author established that information exchange among agents participating in co-
operation is vital, not only for local task solving, but also for enhancing the coherence and co-
ordination at the group of agents level. The three essential components of communication paradigm
should more deeply analyzed for information exchange optimization : information exchange
modality, message exchange content (Durfee 85) and finally the protocol to be used. It should be
noted that the modes most commonly used for Multi-Agent information exchange are the information



98 OVALLE & GARBAY: Towards a method for multi-agent system design

sharing (blackboard approach) and message sending modes.

Reasoning associated with Knowledge Base Management implies the control possibilities of the
agent such as operational access to the knowledge base, but also task execution, information request
decisions and task delegation abilities (explicit requests for action execution). Information searching
activated by external request can, in fact, fail since the agent knowledge base may be incomplete : the
request for information should be transmited in this case within the agent network. The same case
holds for tasks requested of the agent that could not be accomplished by him : these specific tasks
should be therefore delegated to other agents.

Reasoning associated to resource handling concerns the agent skills, which are domain dependent.
These are described according to the agent expertise : its know-how in a specific domain or, more
precisely, criteria used to choose significant objects or actions that will be used for a problem solving
step at a given time.

Intentional Reasoning is developed within agents provided with "intentionality". Their reasoning
allows agents to analyze their own problem solving abilities, and to decide the best way to handle
their abilities. Moreover, they make it possible to reason with respect to their knowledge on others,
thus adapting their behaviour with respect to the outside.

The group of agents
Reasoning developed at the group of agents level (society of agents) depends on choices performed
within the group of agents on the following three parameters :

- task and skill distribution modes ;
- communication protocols and modes ;
- co-operation and organization modes.

The task and skill distribution can be carried out in a modular manner ; the expertise can also be
decomposed according to multiple or concurrent points of view. In this last case, it is necessary to
assign the agent network new reasoning abilities which could allow it to manage conflicts which
result from problem solving performed in concurrence.

Communication protocols establish the means and modes of communication among agents. Two
types of Multi-Agent systems can be distinguished depending on whether information exchange is
made throughout a common memory or blackboard (implicit communication mechanism) or whether
it is performed by message sending (explicit communication mechanism). In the first case,
communication reasoning becomes simpler in that agents do not directly communicate with others.
The problem of the choice of an "addressee" agent is not considered in this case.

Co-operation and organization modes describe the manner in which a group of agents co-operate for
problem solving. This co-operation depends on numerous factors such as agent role assignment or
bounded rationality associated to information exchange among agents.

The choice of a co-operation approach such as the "network protocol", for example, implies that
extensive reasoning abilities should be assigned to agents not only in order to establish contracts but
also to synchronize tasks among agents of the same group. In the "intermediate result exchange"
approach, a particular reasoning scheme is handled that focuses on truth maintenance on several
agent knowledge bases.

In "local planning" approaches a specific reasoning scheme is used that concerns the local plan
generation. In this case, several plans are created for task planning not only at the individual level but
also in a co-ordinated manner at the group level. In "organizational" approaches role allocation and
assessment of relationships among agents are made a priori by creating an organization adapted to the
problem to be solved.

It is obvious that a compromise should be found between choices made within the internal
architecture of agents, which constrain local reasoning schemes, and choices made within the group
of agent organizations, which constrain the reasoning at more global level. We can moreover observe



OVALLE & GARBAY: Towards a method for multi-agent system design 99

an inter-dependence between choices adopted for the internal agent structure and choices concerning
the group of agents organization.

4. THE MULTI-AGENT GENERATOR MAPS

MAPS (Multi-Agent Problem Solver) is defined as a generic environment dedicated to the design of
distributed knowledge-based systems (Baujard 90).

4.1. The Basic Structure of Agents
We first describe the internal architecture of the agents, communication modes, knowledge base
management abilities, problem solving skills and expertise, and high level behaviours throughout the
Technological Typology described above.

The agent internal architecture
Two classes of agents are involved in MAPS generator, called Knowledge Server (KS) and
Knowledge Processor (KP), communicating by message sending (Fig. 4). These agents are
responsible for handling descriptive and operative knowledge elements respectively : they thus entail
a distribution of knowledge in terms of static and dynamic elements, that permits a balance to be
reached between problem modeling and problem solving abilities.

K S (KnowledgeServer)

• objets
• propagation rules
• proposition rules
• interrogation rules

KP

•

(Knowledge Processor)

action rules
strategy rules

Figure 4 : Agent Model for MAPS generator through Technological Typology :
two types of agents, KS (Knowledge Server) and KP (Knowledge Processor), are instanciated from this Model.

The external layer or communication layer describes the social behaviour of an agent, seen as an
autonomous agent able to react to external events. Communication is based on a very simple message
sending protocol : any request is sent in an explicit way to a specific agent, according to a
"command" mode (Hautin 86) in opposition to information sharing mechanism as in the blackboard
approach (Laasri 89) (Hayes-Roth, 1985). Four types of messages are used for the information
exchange among the MAPS agents : "Receive and Supply" are addressed to KS agents and "Process
and Solve" are addressed to KP agents.



100 OVALLE & GARBAY: Towards a method for multi-agent system design

The Knowledge Base Management layer concerns the classical operations to access the knowledge
base, such as consultation or modification of elements (for KS agents) but also task execution and
task delegation abilities (for KP agents). Low level operations that are performed by the inference
engine, such as production rules filtering and application are also considered as involved in this
layer.

The Skill layer is determined by the dedicated skills which are specific domain dependent and
described by the expertise and know-how of the agent. There are in this layer several rules for object
selection (within KS agents) and for action selection (within KP agents) which are applied at a given
time in the problem solving.

Intentional layer: high level behaviours
- KS Agents: specific behaviour (or high level reasoning) are developed when external requests
"Receive" and "Supply" have been received, as follows:

Receive
(AND Update

Propagate
(OR (AND Propose info

SEND KP Process info)
(AND Interrogate pb

SEND KP Solve pb)))

Supply
(OR Get

SEND KP Solve pb
(AND Propose info

SEND KP Process info)
(AND Interrogate pb

SEND KP Solve pb)))

Agents thus reason in an autonomous way in the manner best suited to answer the sending request,
through their own resources, but also depending on services offered by the KP agents with whom
they communicate. As can be seen, in case of a "Receive" request, a first attempt is made to Update
the knowledge base, then to search valid information (Propose) and finally to send it outside (Send
KP Process). In case of failure at any of these three steps, the KS agent can search for the lacking
information (Interrogate), to request it of an outside KP agent (Send KP Solve), and finally to
resume the whole Receive cycle. The basic role of a KS agent is the completion and dissemination of
knowledge. In case of a Supply request, the element is first of all tentatively obtained (Get call), and
then sent back to the caller. In case of failure, the KS agent can try to resume the current
unsuccessful solving strategy, by entering a Propose/Interrogate cycle, which is similar to the
previous one.

- KP Agents : two methods called "Process" and "Solve" are used here which in turn call the
corresponding internal methods (respectively Data-Drive and Goal-Drive). The behaviour of a KP
agent may thus be represented by a very simple linear scheme : such an agent may only conclude the
success or failure of its activities. The sole processing alternative it might propose in case of failure
occurs at the rule selection level. Reasoning abilities have not been assigned to these agents. Such
agents involve a set of rules, which may describe any deductive or procedural analysis, and a set of
meta-rules driving their selection.

The group of agents
We first describe choices adopted in the Task and Skill Distribution, Communication Protocol and
modes, are described below and finally Co-operation & Organization modes.

Task and Skill Distribution
Task and Skill Distribution is made in a modular manner: the notion of conflict or multiple points of
view are not considered here. An agent is finally designed as an autonomous entity : it is able to react
to a limited number of requests, through a predetermined solving scheme. This scheme determines a
behavioural scheme which depends on the current problem being solved, the agent resources to solve
problems, but also the possible help that could be given by other agents.

Communication Protocol and modes
Communication among agents is made by a message sending mechanism : any request is sent in an
explicit way to a specific agent according to a "command" mode (Hautin 86) in opposition to
information sharing mechanism as in the blackboard approach (La'asri 89) (Hayes-Roth, 1985).



OVALLE & GARBAY: Towards a method for multi-agent system design 101

Figure 6 shows thus an information exchange among agents performed in a KS & KP "minimal"
multi-agent architecture.

Figure S : A KS & KP "minimal" multi-agent architecture.

Co-operation & organization modes
A "minimal" generic architecture for problem solving may thus be defined as involving one KS agent
communicating with one KP agent: the KS agent in this case involves both the data and results
associated to the problem at hand, while the KP agent involves some problem solving elements.
However, a more realistic scheme implies 2 KS agents communicating with one KP agent in order
that the data and results be distributed between 2 different agents (Fig. 5).

Such "minimal" generic architecture may in turn be specialized to model complex problems.
Distributing static knowledge elements among several KS agents makes it possible to differentiate
between them according to their conceptual levels and thus handle them in a dedicated way.
Distributing dynamic knowledge elements among several KP agents makes possible to model
successive processing steps, but also to point out the presence of high level processing alternatives.

From a dynamic point of view, finally, the functional as well as structural agent features that have
been described give rise to powerful problem solving strategies which appear to depend on the
resources and competences of the various agents, but not on the individual decision of a centralized
control structure.

Flexible prediction/verification stiategies can thus be obtained as a local reasoning developed by a
specific KP agent (production rule selection through meta-rules), or as a Propose/Interrogate cycle
locally produced within a KS agent where initial hypothesis has been produced by an external KP
agent. Prediction/verification is thus modelled with a more "operative" character in the first case and
with more "figurative" character in the second.

Control cycle chaining : sources of hybrid reasoning
The control cycle chaining resulting from the interaction of KS and KP agents (Fig. 6) determines the
control cycle of the MAPS system. It thus alternates between a KS control cycle and a KP control
cycle. A specific KS control cycle essentially develops the following two operations : a searching and
selection of objects that likely applied, which we call "local figurative selection" followed by a
searching and selection of tasks (KP agents) also likely applicable called "global operative selection".
This last operation insures that control will be transferred to a KP agent.

A specific KP control cycle, on the other hand, generates three operations : a searching and selection
of actions likely to be applied, that we call "local operative selection" followed by the action
application called "execution" with associated results, and finally a search and selection of specific
representation level (KS agents) called "globalfigurative selection". Values obtained as a result of an
action execution should be used to update a knowledge base of an KS when necessary, which stores
figurative knowledge elements.



102 OVALLE & GARBAY: Towards a method for multi-agent system design

object

Local Figurative
Selection

Global Operative
Selection

I KP agent '

i - ~ ' A i
KS agent

Global Figurative
Selection

Local Operative
Selection

result
action

Execution

Figure 6 : Control cycle chaining of MAPS agents :
source of figurative & operative hybrid reasoning.

5. THE KIDS MULTI-AGENT SYSTEM

KIDS has been designed under MAPS as a Multi-Agent System (Ovalle 91a) to model the human
reasoning approach in cytology. This system handles heterogeneous knowledge such as those
described above (figurative, operative, reflexive and heuristic knowledge), involved in cytological
specimen exploration. We first describe different knowledge schemes that are handled by the KIDS
system through the Formal Typology, and then describe the three analyses steps which determine
three different groups of agents.

5.1. The Knowledge
Figurative and operative knowledge which reflect the medical expertise have been distributed within
several KS and KP connected in a network (rightmost window in Fig. 7).

Figurative Knowledge
Figurative knowledge describes the set of objects handled at different stages in cytological specimen
analysis. These knowledge elements have been distributed within different KS agents not only
depending on their specific level of abstraction, but also on existent relationships during problem
solving. Here, we can distinguish the specimen image level, the lowest magnification level, the
highest magnification level, cellular morphological descriptors level, observed cellular type
representation level, and finally the diagnosis formulation level. The following 4 main knowledge
representation levels can be determined : the image level, the descriptor level, the identification level,
and finally the interpretation level. These levels are in fact vital levels in the understanding of a visual
image.

Operative Knowledge
Six main tasks have been modelled in the KIDS system and represented through KP agents (Ovalle
91b). These tasks are listed below : they correspond to different axes of knowledge organization :

- specimen validation
- field selection
- magnification change
- morphological analysis
- cellular identification

- diagnosis interpretation

--> intrinsic axis (description);
--> contextual axis (focusing);
--> intrinsic axis;
--> intrinsic & structural axes (perception & description)
--> intrinsic axis

& taxonomic (matching & classification);
--> causal & taxonomic axes (deduct & propagation);



OVALLE & GARBAY: Towards a method for multi-agent system design 103

Reflexive and Heuristic Knowledge
The reflexive knowledge used in the KIDS system describes the uncertain and evolutive character of
knowledge inherent in medical diagnosis. The attribute "presence" has thus been introduced to
qualify the confidence of each diagnosis hypotheses formulated. The following are the possible
values for this attribute : absent, low-probability, uncertain, perhaps, without-doubt and likely.
Propagation rules have also introduced the role is truth maintenance verification of current diagnosis
hypotheses that haven been produced.

Heuristic knowledge determines local criteria for relevant information selection purposes (fields or
cells in particular) or some decision making, such as low/high magnification alternation. This
decision making is presently handled in interactive mode : an agreement must in fact be required from
an external observer.

5.2. Group of Agent Behaviour
Three essential analysis steps, which determine three different group of agents, can be distinguished
in KIDS (Ovalle 91a): The Specimen Exploration Step or validation and field selection step, the Cell
Type Identification Step which concerns a preliminary analysis of morphological descriptors
followed by the identification task, and Diagnosis Formulation Step or interpretation step.

Specimen Exploration Step
The task and skill distribution for Specimen Exploration Step is the following : Specimen Image
Acquisition is driven by KS-Specimen agent, Specimen Exploration is driven by KP-Explore agent
and Field Selection is driven by KS-Low-Resolution agent.

The Group of Agents Behaviour for this phase can be described as follows : an image of the
specimen is acquired by KS-Specimen agent and then transmitted to KP-Explore agent. A particular
specimen exploration strategy is implemented in that agent, in the form of a loop which controls the
successive sending of fields to KS-Low-Resolution agent. After reception by KS-Low-Resolution,
user agreement is requested to know whether analyzing such field is relevant or not, or whether it
would need high magnification analysis.

Cell Type Identification Step
The task and skill distribution concerning the Cell Type Identification Step is the following: Cellular
Morphological Analysis is driven by KP-Analyze agent, Descriptor Computation is driven by KS-
Morphology agent, and Cell Type Identification is driven by KP-Identify agent.

The Group of Agents Behaviour for this phase can be described as follows : after reception by KP-
Analyze agent, the field is segmented and a second loop is implemented, which controls the
successive sending of cells to the KS-Morphology agent. The latter is then responsible for collecting
relevant morphological information and send it to KP-Identify agent for further identification. It
should be observed that user agreement is again requested, to know whether analyzing the current
cell is relevant or not. The various cell descriptors are currently requested of the user: the contour of
current cell is graphically highlighted for this purpose. Cell type identification is afterwards
performed by KP-Identify agent by means of inference rules, based on a cross-correlated table in
which cell morphologies are assigned to cell types. Such identification may then be validated or not
by the user (activation of KS-Cell-Type interrogation rules). In case of acceptance, a scoring
procedure is activated as conclusion part of KS-Cell-Type propagation rule. In the opposite case, the
next cell is simply proposed for analysis, i.e. control is sent back to loop 2.

Diagnosis Formulation Step
The task and skill distribution for the Diagnosis Formulation Step is the following : Diagnosis
Formulation is driven by KP-Interpret agent, and Potential Diagnosis Hypothesis Storing is driven
by KS-Diagnosis agent.



104 OVALLE & GARBAY: Towards a method for multi-agent system design

.U
E

S
*

*
>
u

ca

1
B

L
E

-A
T

T
R

1

w

o

u

z
z
-J

o
V)

u

zo

S£, |

S
M

A
L

V I

z'
Q
u

L
A

R
G

E
 M

>
M

o

O
N

G

•̂u
u

o
z

o
QC

i

z

.G
R

A

CJ

o
o
z
o
X

X
u-i
EC?

o
E -

• J

S
M

A
L

z'
a
u

L
A

R
G

E
 M

>
M

f" A

z

e-
z
u ^
m ^
* Z

5 *

Zw' Z

Z * VJOC

U Z UM
-J ft _1 A

O ^ O-J

• • • •

S d <f S P 3 3
z o u . 5 o o
< •, a. o « = =

i
• 1

tr
3
i

I
.1

I "
2 ;

1

£

Figure 7 : The KIDS graphical interface (rightmost interaction window) interacting with the MAPS programming
environment (leftmost interaction window). Reasoning performed by the Cell Type Identification step is illustrated here

: the "cancer" cell type is associated to the 1st cell analyzed within the 7th exploration field.



OVALLE & GARB AY: Towards a method for multi-agent system design 105

The Group of Agents Behaviour for this phase can be described as follows : the scoring of cell types
directly assists the diagnosis formulation that is performed by KP-Interpret and based on a cross-
correlated table tying cell types to pathologies.

Proposed diagnosis hypothesis is finally received by KS-Diagnosis agent; activating propagation
rules then entails requesting the user to validate the proposed diagnosis or not. Control is sent back to
previous steps even if a satisfactory diagnosis has been obtained. Different behaviour could indeed
be developed.

6. CONCLUSION

A method for Multi-Agent system design has been presented which first develops a Multi-Agent
Formal Design assisted by two formal typologies that have been shown to be very useful for
knowledge and reasoning structuring. The main interest in the use of these Formal Typologies are the
following:

- facility for identifying and computer transcribing of several classes of knowledge and reasoning
comprised within the expertise to be modelled;

- comprehension of intrinsic characteristics of reasoning according to the variety of knowledge they
handled;

- potential integration analysis of reasoning not only within the tasks but also when a co-operation
between tasks takes place;

- possibility of a "constructive" design of the system (Chandrasekaran 87) by first integrating
simple reasonings schemes and then obtaining complex combinations of reasoning;

Even though structuring facilities as given by these formal typologies are shown to be useful for
knowledge and reasoning modeling, these typologies still remain very general, difficult to understand
and can be distant from informatic implementation. In fact, these typologies do not permit direct
implementation. A Technological Typology was thus necessary for more efficient handling of the
informatic tools but also for defining technological specifications. Moreover, we attempted to
produce a thought tool to better understand, if possible, difficulties and requirements of Multi-Agent
technology.

There are a variety of advantages in using the Technological Typology proposed above, among
which are:

- the definition of general parameters governing reasoning not only at individual level of the agent
but also at the group of agents level;

- the lightening of system design tasks by means of a better understanding of the Multi-Agent
Technology;

- the specification of high level behaviour permitting a general problem solving modeling;
- the study of MAPS programming environment from a new perspective.

The Multi-Expert generator MAPS has been therefore presented through a new perspective to
combine Formal and Technological typologies proposed above. MAPS is in fact a robust software
approach which permits not only the integration of different kinds of informatic tools (multi-
functional operators, a variety of processing methods, for example) but also it permits the integration
of solving strategies and control mechanisms.

During the design of Multi-Agent systems such as KIDS, Formal and Technological typologies
which assist our method were satisfactorily complemented. In fact, knowledge and reasoning
modeling is facilitated by formal typology which combines informatic transcription and human
expertise. Moreover, expertise transfer is facilitated by the alternation between the identification and
informatic transcription of diverse knowledge and reasoning schemes. If we look at knowledge and
reasoning elements composing the expertise and consider the dedicated abilities of different KIDS
agents, they can be identified by means of categories established within Formal and Technological
Typologies.

Technological Typology, on the other hand, combine system developer with intrinsic issues



106 OVALLE & GARB AY: Towards a method for multi-agent system design

characterizing Multi-Agent environments. This typology allows the developer to better handle the
Multi-Agent generator MAPS thus reducing system design tasks.

The KIDS system still remains a prototype and has not yet been used in medical practice. Special
studies will therefore be devoted to man-machine communication and also to system validation. In
fact, even though a multiple window mechanism is used by the KIDS system and permits
visualization of results from reasoning made by diverse groups of agents, user dialogue still remains
limited and primitive. As for system validation, a special effort will be made to complete knowledge
elements that are handled by the system and to integrate new reasoning schemes. Moreover, an
additional effort will be devoted to the interactive acquisition of specimen images by interfacing a
camera to the microscope. This microscope will be provided with motorized stages that are directly
driven by the system which will therefore control the slide exploration. This will allow us to develop
a really operational version of the KIDS system.

References
(Aussenac 89) Aussenac, N. : Conception d'une mithodologie et d'un outil d'acquisition de

connaissances expertes. These de docteur en Informatique, Spdcialite : Intelligence Artificielle.
University Paul Sabatier de Toulouse, octobre 1989.

(Baujard 90) Baujard, O. & Garbay, C. : A programming environment for distributed expert
system design. Expert System Applications, ExpertSys., pp. 27-32.

(Breuker 89) Breuker A. & Wielinga B.J. : Knowledge acquisition as modelling expertise : The
KADS methodology , Proceedings first European workshop on knowledge acquisition for
knowledge-based systems.

(Chaib-Draa 90) Chaib-Draa B. Contribution a la resolution distribute deprobltme : une approche
bas£e sur les itats intentionnels. These de docteur es sciences, spe'cialite' Automatique
Industrielle et Humaine. University de Valenciennes et du Hainaut-Chambre'sis, 1990.

(Chandrasekaran 87) Chandrasekaran, B.: Towards a functional architecture for intelligence based
on generic information processing tasks. Proc. 10th IJCAI pp. 1183-1192. IEEE Computer
Society Press, 1987.

(Durfee 85) Durfee E.H., Lesser V.R. et Corkill D.D. Coherent Coorporation Among
Communicating Problem Solving. Proc. of the Distributed Artificial Intelligent Workshop, pp.
231-276, dec, 1985.

(Ferber 88) Ferber, J. & Ghallab, M. : Problimatique des univers multi-agents intelligents. Actes
des Journeys nationales du PRC-GRECO "Intelligence Artificielle", pp 295-320.Teknea., 1988.

(Ferber 91) Ferber J. Introduction a I'Intelligence Artificielle Distribute. Dossier : Intelligence
Artificielle Distribute. Bulletin de TAFIA, n°6, pp. 16-19, juillet, 1991.

(Hautin 86) Hautin, F. et Vailly, A. : La cooperation entre systimes experts, Actes des Journ6es
nationales du PRC-GRECO "Intelligence Artificielle", Cepadues Editions, 1986.

(Hayes-Roth 85) Hayes-Roth, B. A blackboard model of control. Artificial Intelligence, vol 26, pp.
251-321, 1985.

(Laasri 89) Laasri H. et Maitre ^.Organisation du controle dans les architectures de blackboard, RIA
1989,Vol3N°l.

(Ovalle 89) Ovalle, A., Pesty, S., Seigneurin, D. et Garbay, C. D6veloppement de Systemes d
Base de Connaissance pour I Interpretation d'Images Biomidicales. Tutorial : RFIA. Demi-
journde de synthe"se: Nouvelles perspectives de l'image'rie medicale ; microscopie et
macroscopie, de l'analyse a l'interpre'tation. AFCET-INRIA, 1989.

(Ovalle 91a) Ovalle, A. et Garbay, C. KIDS : A Distributed Expert System for Biomedical Image
Interpretation. 12th International Conference on IPMI, pp. 419-433. Colchester et Hawkes
(Eds), Springer-Verlag, 1991.

(Ovalle 91b) Ovalle, A. et Garbay, C. Raisonnement et Controle en Univers Multi-Agent : Une
Application a I'Interpretation d'Images Biome'dicales, Actes du congres AFCET-RFIA., pp.
625-633, Lyon, nov. 1991.

(Ovalle 91c) Ovalle, A.: Contribution a I'itude du raisonnement en univers multi-agent: KIDS, une
application a I'interpretation d' images biome'dicales. These de docteur en Informatique de l'UJF,
1991.

(Smith 80) Smith R.G.The contract net protocol : high level communication and control in a
distributed problem solver, IEEE Trans Comput, C-29, pp. 1104-1113.

(Vogel 88) Vogel C.: Ginie cognitif. Paris, Masson, collection science cognitive 1988.



Jigsaw: Configuring knowledge acquisition tools

D. R. PUGH and C. J. PRICE

Department of Computer Science
University of Wales
Aberystwyth
Dyfed
SY23 3DB
United Kingdom

Abstract

This paper describes work on the construction of a configurable knowledge
acquisition tool, Jigsaw. Unlike automated knowledge acquisition programs such
as MORE [Kahn, 1988], MOLE [Eshelman, 1988], and OPAL [Musen, 1989], each
of which automates elicitation for just one problem solving method, it is possible
to alter Jigsaw's knowledge acquisition strategy to match different problem solving
methods.

The work is based upon eliciting knowledge for problem solvers made up from
different combinations of generic task (as denned in [Chandrasekaran, 1986] and
[Chandrasekaran, 1988]). Each combination of generic tasks defines the functionality
of a different problem solving method. However, the eventual aim of this work is that
it will be possible to adapt it to a range of different KADS [Schreiber .tt. al., 1987]
interpretation models and thus it will be part of a complete knowledge acquisition
methodology.

The paper outlines the requirements for such a knowledge acquisition tool and
details the distributed architecture which allows the tool, Jigsaw, to achieve the
required flexibility to elicit knowledge for such problem solvers. An important part of
this flexibility is the way in which Jigsaw can be configured to match different types
of problem solver. This is described in some detail.

Jigsaw has been used to reproduce the MDX2 [Sticklen, 1987] knowledge base,
which was initially constructed by using manual knowledge acquisition techniques.
The paper gives a description of how Jigsaw elicited this knowledge.

Finally, conclusions are drawn from the work with Jigsaw and pointers are given
to further work which needs to be carried out.



108 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

1 INTRODUCTION
Several of the more useful knowledge acquisition tools address the problem of acquiring
knowledge for a single problem solving task. For example, MOLE elicits knowledge for
a variant of "heuristic classification" [Clancey, 1985] called "cover and differentiate". The
advantage with this type of knowledge acquisition tool is that the questioning of the expert
can be tailored to eliciting information specifically required by the problem solving strategy.
On the down side, these tools are only useful if the intended knowledge based system can
employ the problem solving strategy understood by the tool. Therefore, these tools only
cover a very small proportion of the total number of potential knowledge based systems
that could be constructed.

KADS on the other hand, a methodology for constructing knowledge based systems, aims
to provide the knowledge engineer with a means by which a large number of very different
knowledge based systems can be constructed. One of the main aims in KADS is to construct
a conceptual model. This model is a description of the expert's knowledge in terms which
are independent of a computer implementation.

A knowledge engineer can construct a KADS conceptual model in two ways. The first is
to simply build it from scratch, which can be a long and arduous task. The knowledge
engineer not only has to collect the domain knowledge, but also has to elicit the inferences,
structures of the domain knowledge, and problem solving strategies employed. The second
way a conceptual model can be constructed is to select an appropriate problem solving
method (called an interpretation model in KADS) from the interpretation model library.
This can be then be used as a basis for eliciting the domain knowledge from the expert.

Eliciting knowledge to construct the conceptual model using a predefined problem solving
method in KADS is comparable to MOLE eliciting knowledge for its problem solving
method of "cover and differentiate"1. Therefore, if a knowledge engineer using KADS
decided that "cover and differentiate" was the required problem solving method, then
MOLE could be used to elicit the knowledge from the expert as opposed to the knowledge
engineer performing it manually.

At present, the interpretation library in KADS has around 30 different problem solving
methods, and the KADS team acknowledge that further types of problem solving methods
need to be constructed for many knowledge based system tasks. If we wished to automate
knowledge elicitation within the KADS system, many different knowledge acquisition tools
as complex as MOLE would need to be built in order to cover the variety of tasks included
in the interpretation model library.

There is possibly an easier solution to this problem. KADS structures its interpretation
models by splitting each of the problem solving methods into smaller, more basic, problem

1 The primary difference is that MOLE takes into account that the elicited knowledge must be automatically
turned into an executable knowledge based system. KADS expects the knowledge engineer to do this manually
at a later stage.



PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools 109

solving chunks. Each interpretation model could be thought of as being made up from a
number of simple problem solving methods each of which could be obtained from a central
toolset.

It would now be possible to write a knowledge acquisition module for each of these basic
problem solving methods and then, when an interpretation model is chosen by the knowledge
engineer, these knowledge acquisition modules could be combined to match the structure
of the problem solving method described by the interpretation model. This would allow
automated elicitation to take place for the chosen interpretation model. Configuring a set of
simple knowledge acquisition modules for each interpretation model is much less work than
building a whole new knowledge acquisition tool for each interpretation model. Once the
knowledge acquisition modules have been configured for a particular interpretation model,
this configuration can be stored ready to be used again.

In essence, this is what we have achieved with Jigsaw. In order to simplify the experiment,
we have used Chandrasekaran's generic tasks as building blocks for a range of problem
solving methods. These tasks can be combined in order to construct more comprehensive
problem solving methods as are found in the interpretation model library in KADS.

The description of how Jigsaw provides configurable knowledge acquisition modules is
split into the following main sections:

Requirements for reusable knowledge acquisition. This section discuses the requirements
for a tool which is to elicit knowledge for problem solvers made up from a number
of generic tasks.

The Jigsaw system. Jigsaw is described in some depth over a number of sections. The
description covers the architecture, the information flow within the architecture, and
a description of the individual components, including information on how Jigsaw is
configured to match a particular combination of generic tasks.

Constructing a medical diagnostic system. This section outlines the main stages of eliciting
knowledge for the MDX2 knowledge base, and then shows part of the completed
knowledge base.

Further work and conclusions. Finally, further work to be performed on Jigsaw is outlined
and conclusions about the work are made.

2 REQUIREMENTS FOR REUSABLE KNOWLEDGE ACQUISITION
There are three main requirements for a knowledge acquisition tool which is capable of
eliciting knowledge for combinations of generic tasks:

1. The knowledge acquisition modules need to be easy to configure to different combi-
nations of generic tasks.



110 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

2. The tool must be easy to use. One way this can be achieved is by making the dialogue
between the expert and the knowledge acquisition tool as natural as possible.

3. The tool should be able to produce executable code.

The first two of the above requirements suggest that the knowledge acquisition modules
should be combined in some form of architecture. This would allow the knowledge engineer
to specify to a central point the modules required for each new problem solver. Otherwise
the modules would have to be "glued" together each time automated knowledge acquisition
is to take place. It would also allow each of the modules to communicate information
during the elicitation process, allowing this process to be more fluid.

An architecture designed by Hunt [Hunt, 1990] was used as a basis for the architecture of
Jigsaw. The next section describes Jigsaw in some detail.

3 THE JIGSAW SYSTEM
Jigsaw has been constructed in Popl 1 under the Poplog system on Sun workstations.

As can be seen in figure 1, Jigsaw consists of a number of components: the manager, a
communications node; various knowledge acquisition modules; and a datastore for each of
the knowledge acquisition modules.

Exact information flow within Jigsaw is defined at run time — as Jigsaw responds to the
answers the expert gives. However, once the expert decides to initiate the knowledge
elicitation process, the information flow takes the following basic path:

1. The manager asks the expert for some information which will be used to document
the system.

2. Depending upon the configuration of the problem solver, the manager makes a choice
of the first knowledge acquisition module to be called into action. (Because of the
way the knowledge engineer defines the configuration, within a separate file, this
choice is trivial.)

3. The manager sends a message to the communications node specifying that the
knowledge acquisition module in question is to start eliciting information from the
expert.

4. The communications node passes this message on to the relevant knowledge acqui-
sition module.

5. The knowledge acquisition module initiates knowledge elicitation. If at any time the
knowledge acquisition module is unable to elicit the information needed to define a
particular concept within the domain, the knowledge acquisition module:



PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools 111

datastore

datastore

Triangle for
hierarchical

classification

Manager

/coicommunications
node

Puzzle for
hypothesis
matching

Machine for
functional
reasoning

//t\\

CD

Genius for
intelligent
database

To olhcr knowledge acquisition modules

Figure 1: The architecture of Jigsaw

datastore

datastore



112 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

(a) Sends a broadcast message to the communications node asking if any knowledge
acquisition module is capable of eliciting this particular type of knowledge.

(b) The communications node sends this message to each of the knowledge acqui-
sition modules in turn until it receives a reply saying that it managed to elicit
the appropriate information, or until every knowledge acquisition module has
been visited.

(c) The calling knowledge acquisition module is sent a message from the commu-
nications node stating the success of the broadcast message.

(d) If no knowledge acquisition module is able to elicit the required knowledge then
a warning message is produced for the knowledge engineer. The knowledge
engineer will subsequently have to add the required information (obtained from
the expert) to the code produced by Jigsaw.

(e) The knowledge acquisition module continues eliciting information.

6. When the knowledge acquisition module has completed its elicitation, control reverts
back to the manager (via the communications node).

7. The manager calls upon the next knowledge acquisition module asking it to perform
its knowledge elicitation until there are no further modules to be called.

The next four sections are devoted to describing the individual components of Jigsaw in
more detail.

4 THE MANAGER
The manager is in charge of the elicitation process. It is responsible for the overall control
of problem solving, and for providing the main interface to the expert. It is the manager
which uses information about how the tasks are configured to decide which knowledge
acquisition modules to call and when.

4.1 Configuration
Which knowledge acquisition modules are used, and when, depends upon the configuration
of generic tasks in the problem solver.

Figure 2 shows seven example problem solvers constructed from four different generic
tasks2. Jigsaw is capable of performing the knowledge acquisition for each configuration
of these generic tasks providing that the correct problem solving structure has been provided
for the manager by the knowledge engineer. At present this information is defined within
a file, which is then read by Jigsaw.

These are the four tasks that we have been working with.



PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools 113

I
Intelligent
database

^J

(1)

[Hypothesis] [Functional ]
I matching J ireasoningJ

I
Intelligent
databaseD

(2)

[Hierarchicaij
yclassificatiopf

[Hypothesis]
I matching J

[Intelligent]
Idatabase/

(3)

I
[Functional]
I reasoning J

[ Intelligent I
\^ database J

(4)

[Hierarchical ^[Functional]
y l̂assificatiory ^ reasoning^

(5)

[Hypothesis]
I matching J

Intelligent ] [Functional ]
database J \^ reasoning J

(6)

ierarchicaT|
assificationl

[Functional] [Hypothesis]
I reasoning JI matching J

MnteiligenM
I database J

(7)

Figure 2: Different problem solvers



114 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

Depending upon the structure of the generic tasks in the problem solver, different knowledge
acquisition modules will have to be called at different times. The knowledge engineer has
to define the order in which to call the knowledge acquisition modules. For the four
tasks, hierarchical classification, hypothesis matching, functional reasoning and intelligent
database, defining the order in which they are to be called is straightforward because the
generic tasks are strongly inter-related.

For example, it is usual for the hierarchical classification task to require another generic
task to define how to traverse the hierarchy — either hypothesis matching or functional
reasoning. In this situation, it is Triangle's duty (the knowledge acquisition module for
hierarchical classification) to call upon the services of the relevant knowledge acquisition
module, Puzzle or Machine, to find this information. Therefore, even though three
knowledge acquisition modules are being used, the manager has only to call upon the
services of Triangle, which sorts everything else out.

In combination 7 in figure 2, that used by MDX2, hierarchical classification is responsible
for asking the knowledge acquisition modules for functional reasoning or hypothesis
matching to perform their task. In turn, they are both responsible for initiating the
knowledge acquisition module for the intelligent database. The knowledge engineer
specifies hierarchical classification to the manager, and the knowledge acquisition modules
work out the rest. Hierarchical classification is the main generic task in the problem solver.

In figure 2 all the combinations, except for configuration 5, can be described to Jigsaw
by specifying that the main generic task is the top task in the figure. For configuration
1 it would be hypothesis matching, configuration 2 it would be functional reasoning and
so on. In configuration 5 there are two main tasks — hierarchical classification and
functional reasoning. The results from executing the classification hierarchy are passed to
the functional reasoning task—hierarchical classification is not usingfunctional reasoning
to solve an intermediate problem, whereas it is in configuration 7.

Another aspect of the configuration process is the specification of available knowledge
acquisition modules to the communications node. The communications node is able to
utilise this information when knowledge acquisition modules are trying to find a knowledge
acquisition module capable of eliciting the information to solve an intermediate problem.

5 THE KNOWELDGE ACQUISITION MODULES
Each knowledge acquisition module is connected to the communications architecture
through a similar knowledge acquisition module interface. This section will first look
at this interface and then a brief description will be given of the four knowledge acquisition
modules which have been implemented.



PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools 115

5.1 The Knowledge Acquisition Interface
The interface provides a means by which each knowledge acquisition module can commu-
nicate with other resources — either the manager or another knowledge acquisition module.
Therefore, to facilitate this cooperation between tasks, each knowledge acquisition module
interface has a number of features. These include:

Ability to send messages. A knowledge acquisition module will need to send two different
types of message. The first is a message to another named knowledge acquisition
module. The second is a broadcast message to all other modules. In each case, the
communications mechanism deals with distributing the messages. Therefore, the
interface has only to send the relevant information to the communications node.

Ability to receive messages. Various messages will be received by the node from both the
manager and other knowledge acquisition modules.

Request checking. Each time a message is sent to a knowledge acquisition module interface,
it is checked to see if the module is able to deal with the request. This is made possible
because the interface has information about what sorts of knowledge the module is
capable of eliciting.

Acceptance of failure. If a knowledge acquisition module has failed to perform the knowl-
edge elicitation that the interface undertook on behalf of the module, then other
modules must be informed. This information will change depending on the type of
message that was received.

5.2 Example Knowledge Acquisition Modules
Each knowledge acquisition module shares a number of similar features. These include:

A datastore. This holds the elicited knowledge in an easily accessible form.

A code producer. This converts the information in the datastore into executable code to be
run by the generic task shells.

Each knowledge acquisition module has a different strategy for performing knowledge
acquisition. This strategy is targeted to the representation of the generic task for which
the knowledge acquisition is being performed. Due to limited space it is not feasible to
describe each knowledge elicitation strategy in any detail. A brief description of each is
given in order to make the example in section 8 more clear. For a more in-depth description
of Triangle and Puzzle see [Pugh and Price, 1992].



116 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

5.3 Triangle
Triangle, the knowledge acquisition module for hierarchical classification, has three main
aims within its knowledge acquisition strategy. These are:

1. To identify the components of the hierarchy.

This can be carried out in one of two ways: top down or bottom up.

2. To find the relationships between the different levels within the hierarchy.

The generic task for hierarchical classification requires information on whether child
nodes are mutually exclusive, if they are then a path down the hierarchy can only be
followed through one child; and if a child has more than one parent node, whether a
path through both parents is required for the path to follow through the child.

3. To find information about each node in the hierarchy so that the hierarchy can be
traversed correctly.

For each node in the hierarchy, this involves asking all the other knowledge acquisition
modules whether they can find this information. If one of them can, then a link to
the information in that other knowledge acquisition module's datastore is sent back
to Triangle.

5.4 Puzzle
Puzzle, the knowledge acquisition module for hypothesis matching, is composed of four
different stages. These are:

1. Identify the hypothesis.

This information will either come from another knowledge acquisition module (which
has called upon the services of Puzzle); or Puzzle will ask the user.

2. Identify how accurate the result defining the probability of the hypothesis is to be.

The result could range from a simple yes or no, to a string of nine possible results
ranging from confirmed to ruled out.

3. Identify a list of factors which affect the probability of the hypothesis.

The factors can be anything which affects the outcome of a hypothesis. Each one can
either be a simple variable, or another hypothesis.

4. For every possible result to be returned by the hypothesis matcher, find the allowable
values of each of the factors.



PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools 117

5.5 Machine
Machine, the knowledge acquisition module for functional reasoning, has three stages
within its knowledge elicitation process. These are:

1. Decompose the device into its functional components.

This can be carried out in one of three ways: top down, bottom up, and a mixture
of the two. The top down and bottom up methods are similar to those found in
Triangle (section 5.3). The mixture of the two methods involves a general top
down decomposition first, then finishing with a bottom up description of the specific
components. This is very useful when describing large physical devices.

2. Identify the functions of the device and its sub-components.

For the device and its sub-components ask their individual functions. This is
performed top down.

3. Find out how the device operates in terms of the interaction of the functions of its
sub-components.

Each function is either described in terms of the functions below it in the hierarchy,
or in terms of functions that are assumed (for example, Newton's second law).

5.6 Genius
Presently, Genius, the knowledge acquisition module for the intelligent database, has just
two stages. These are:

1. Identify the possible values a variable can take.

2. Identify if the variable has a default value.

The strategy defined for the intelligent database is the minimum requirement for being
able to use the other tasks. The functionality of this knowledge acquisition module will be
expanded at a later date.

6 THE DATASTORES
Each knowledge acquisition module works to construct a datastore of its own type of
knowledge. This datastore can be altered in much the same way as a simple database
(deletions, updates, and amendments).

The information within the datastore is held in a different representation to that of the
generic task code it represents. The reason for this is to make the datastores easier to
manage in terms of altering the contents and saving the information to file. To run the



118 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

information which has been stored, a simple conversion program converts the information
in the datastore to the code which implements the generic task represented by that datastore.

7 THE COMMUNICATIONS SYSTEM
The communication mechanism has two main functions. The first is to allow communication
between each of the components during knowledge elicitation. The second is to maintain
consistency between the individual datastores.

7.1 Communication Between Components
There are three way in which communication between the components of Jigsaw can take
place. That is communication between manager and knowledge acquisition modules and
vice versa, and between the knowledge acquisition modules themselves. Messages take
one of the following form:

• A direct call to another knowledge acquisition module. This can be the manager or
a knowledge acquisition module asking another module to execute.

• A broadcast message calling for help. This is directed at any knowledge acquisition
module able to deal with the request. This type of message comes from a knowledge
acquisition module which knows the type of knowledge which needs to be elicited,
but does not know which knowledge acquisition module to call.

• An order for each knowledge acquisition module to perform a certain duty. This type
of request comes from the manager. An example would be asking each module to
store the contents of its datastore in a particular file.

7.2 Consistency Between Individual Datastores
With each knowledge acquisition module having its own datastore, maintaining consistency
is an important issue. Each datastore holds information pertaining to an individual generic
task, but this does not mean that the information in one datastore can be altered without
affecting the other datastores. The reason for this is that the problem solving capabilities
of concepts within the domain may be spread over a number of generic tasks. Therefore
information is interlinked between datastores. If a change is made in one datastore, then
information in another datastore may have to be altered or discarded. This issue has not
been addressed in any detail as yet.

One final aspect of the communications mechanism is that it is capable of serving any
number of knowledge acquisition modules. New knowledge acquisition modules can be
added, and provided that the communications node knows where to access the new modules,
the modules become an integral part of Jigsaw.



PUGH& PRICE: Jigsaw: configuring knowledge acquisition tools 119

8 CONSTRUCTING A MEDICAL DIAGNOSTIC SYSTEM
Due to space limitations it is not possible to give a complete demonstration of how Jigsaw
elicits knowledge from an expert. A description will be given of the main steps in
constructing one particular knowledge based system. The system in question is MDX2
first written by Sticklen. We have been attempting to reproduce the MDX2 knowledge base
using Jigsaw.

The structure of the MDX2 knowledge base in terms of generic tasks can be seen in figure 3.

(I-Jierarchicah ^ f abductive^
^classification! ^ ^ assembly J

Functional] [Hypothesis
j ^ matching

esis^
i ng^

[Intelligent^
I database J

Figure 3: Generic task structure in MDX2

It can be seen that MDX2 includes five different tasks. Two of these tasks are main tasks
— hierarchical classification and abductive assembly.

In MDX2, the classification hierarchy is used to limit the number of possible results. Each
level of the hierarchy is a specialisation of the level above. The aim of problem solving
is to reach the lowest possible level in the hierarchy and hence the most well defined
answer. It is possible to follow more than one path through the hierarchy, and when problem
solving ceases, hierarchical classification returns the most specialised node reached by each
path. To allow decisions about which paths to take through the hierarchy, the hierarchical
classification task can obtain heuristic knowledge in the hypothesis matcher, and knowledge
obtained from first principles defined within the functional reasoner. In MDX2, once the
classifier has done this task its results are passed to the abductive assembler which finds the
best combination of results which describe an answer to the problem.

Currently, we do not have a knowledge acquisition module for the abductive assembly
generic task, therefore Jigsaw only elicits knowledge for the main part of MDX2's problem
solving.

The first stage in the construction of MDX2:

. 1. The knowledge engineer specifies that hierarchical classification is the main task
within the file Jigsaw reads (to find out this information).



120 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

2. The expert starts the knowledge elicitation session.

3. Jigsaw asks the expert a few general questions. These include both the expert's and
the knowledge engineer's names.

4. Jigsaw then reads the file describing the main generic tasks.

5. The main task is hierarchical classification therefore the manager calls Triangle.
This is done via the communications node.

Once Triangle has received the call from the Manager (via the communications mechianism)
it starts its own process of querying the expert for information. As this information is entered
Triangle stores it in its own datastore. Stage two, Triangle eliciting knowledge, is as follows:

1. Triangle asks the expert the type of elements to be classified. In this case the answer
is: patient Aiseases.

2. It then asks which method of decomposition is to be used to create the hierarchy. The
answer is: Top down.

3. Working from top to bottom, Triangle elicits the patientAisease hierarchy. Part of
this information can be seen in figure 4.

anaemia

patient_diseases

acute_blood_loss_anaemia
hemolytic_anaemia

protein_disease-

hyperviscosity —

sciatica -*d!l

host_defence_disease •

infectious_disease -

internal_medicine -

neoplasm-^^^

neurological_disease ^ d l

Figure 4: An outline of MDX2's hierarchy as acquired by Jigsaw

parasitic_disease
viral_disease
fungal_disease
bacterial_disease

liver disease

4. Once the hierarchy has been elicited, Triangle examines the hierarchy and asks the
expert about some of the relevant relationships between the different levels of the
hierarchy. Are child elements mutually exclusive? Do both parents of an element



PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools . 121

have to be true for a child to be true? (when a child has more than one parent, in a
tangled hierarchy).

Triangle then goes through the whole hierarchy, from top to bottom, finding out information
about how to traverse the hierarchy during problem solving. This information comes from
either hypothesis matching or functional reasoning.

Triangle achieves this by putting a broadcast message on the communications node.
Essentially, this message is a call for help. Triangle is unable to elicit this type of knowledge
and it is asking other modules if they can. The communications node takes the message
to each of the other modules in turn, clockwise around the node. Therefore, this message
is first sent to the manager which looks to see if it has the capabilities of dealing with
the request. It does not, and the message is sent to Puzzle. Puzzle can deal with the
request, but does not know if this type of knowledge is required in this case, so it asks the
expert. If the expert replies yes then Puzzle will elicit the required knowledge and send
an appropriate message to Triangle. Triangle will then continue with the next item in the
hierarchy. Otherwise the message continues around the communications node. Genius
cannot elicit this type of knowledge and subsequently ignores the request. Machine then
receives the message and asks the expert if it can elicit the correct type of knowledge. If it
can, it does so. Finally, if the message is returned unanswered to Triangle it leaves a stub
for the knowledge engineer to fill in at a later date.

Both Puzzle and Machine elicit knowledge following the outlines given in sections 5.4 and
5.5 respectively. During their knowledge elicitation both call upon the services of Genius,
to find out information about different variables which have been entered.

8.1 THE KNOWLEDGE BASE
The code which Jigsaw produces is very similar to the code used to execute MDX2.
Figure 5 shows part of the MDX2-Jigsaw knowledge base. It can be seen that there are
two different code constructs. The first is from Triangle's datastore, code for hierarchical
classification; and the second is from Puzzle's datastore, code for hypothesis matching.

9 FURTHER WORK
There are a number of areas where Jigsaw could benefit from further work. Areas
identified to date include:

Backtracking errors. Currently, Jigsaw does not allow its user to alter information once it
has been input into the knowledge base. If Jigsaw were to be used in earnest then
this would have to be overcome. The main challenge is in maintaining consistency
between each of the datastores: information in one datastore often references other
datastores.



122 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

(deiine-classification-specialistpatient_disease
(classifier= patient_disease_hierarchy)
(sub-specialists= anaemia

bone_disease
protein_disease
hyperviscosity
sciatica
host_defence_disease
infectious_disease
internal_medicine
neoplasm
neurological_disease)

(establish-reject= (judge patient_disease_summary))
(establish-confidence-vocabulary= usual-9-val)
(establish-threshold= likely)
(suspend-threshold= unlikely)
(child-join= exclusive))

; This is the top level in the hierarchy

; This is where to look for information on how to
; traverse the hierarchy

(dcfine-classificau'on-specialistinternal_medicine
(classifier= patient_disease_hierarchy)
(super-specialists= patient_disease)
(sub-specialists= liver_disease)
(estabh'sh-reject= (judge intemal_medicine_summaiy))
(establish-confidence-vocabulary= usual-9-val)
(establish-threshold= very likely)
(suspend-threshold= likely))

)

; internal_medicine is a subspecialist of
; patient_disease

(dcfine-classification-specialistliver_disease
(classifies patient_disease_hieraichy)
(super-specialists= internalmedicine)
(establish-reject= (judge liver_disease_summaiy))
(cstablish-confidence-vocabulary= usual-9-val)
(establish-threshold= very likely)
(suspend-threshold= likely) )

)

liver_disease is a subspecialist of
internal medicine

(define-recbgnition-agentliver_disease_summary
match-1 -recognition-agent

(output-confidence-vocabulary= usual-9-val)
(no-match-confidence= unlikely)
(features= (ask IDABLE IsoEnzymelncreaselmagingAbnormality usual-3-val)

(ask IDABLE Clinical_generalLab_results usual-3-val)
(ask IDABLE History usual-3-val))

(pattems= ((yes yes yes) 3 => very-likely)
(yes yes ?) 3 => likely)
(yes no yes) 3 => likely)
(yes neutral yes) 3 => likely)
(yes no ?) 3 => somewhat-likely)
(yes neutral ?) 3 => somewhat-likely)
(no yes yes) 3 => somewhat-likely)
(neutral yes yes) 3 => neutral)
(no no yes) 3 => neutral)
(neutral yes ?)3 => neutral)
(neutral ? yes) 3 => neutral)
(neutral ? neutral) 3 => neutral)
(no no neutral) 3 => somewhat-unlikely)
(neutral ? false) 3 => somewhat-unlikely)
(no no no) 3 => unlikely) ) )

;;; This is the information liver-disease uses
;;; to find out if it is to be part of the path
;;; traversing the hierarchy

Figure 5: Part of MDX2-Jigsaw's knowledge base



PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools 123

Iterative refinement of the knowledge base. Knowledge based system construction is an
iterative process — continually improving a prototype until both the knowledge
engineer and the expert are satisfied with the result. Jigsaw should be able to cope
not only with adding, deleting and altering information, but also able to alter the
structure of the intended knowledge base by adding generic tasks and altering the
way that the generic tasks are combined.

Improved user interface. The current interface is textual. Adding some form of graphical
interface would provide a means by which the expert could have a better idea of
what sort of structures were being created.

Inclusion of domain knowledge. Protege [Musen, 1989] is a tool which constructs an
automated knowledge acquisition tool (p-OPAL) by first eliciting domain
knowledge. This domain knowledge is used to make the knowledge acquisition tool
more effective, because it can ask questions which are related to the domain and
therefore more specific in their nature.

This sort of pre-processing, along with some form of graphical interface, would
make Jigsaw much easier to use.

10 CONCLUSIONS
Work on Jigsaw is still in its infancy. Much work is still required in order for it to become
a usable tool for constructing knowledge based system. Even so, a number of important
conclusions can be drawn from this work.

Jigsaw shows that it is indeed possible to bridge the gap between comprehensive
methodologies, which cover many different types of knowledge based system, and
automated knowledge acquisition tools which are capable of eliciting detailed domain
knowledge. Jigsaw is capable of eliciting knowledge for a number of different problem
solving methods and, more importantly, it can be expanded to cover more problem solving
methods by adding knowledge acquisition modules for other generic tasks.

Providing it is possible to split the interpretation models within KADS into smaller
problem solving chunks (similar to generic tasks), which we believe it is, it should be
possible to adapt Jigsaw to include knowledge acquisition modules for these chunks of
data. This would allow Jigsaw to automate the elicitation of knowledge for a number of
different interpretation models, and hence be part of a complete methodology.



124 PUGH & PRICE: Jigsaw: configuring knowledge acquisition tools

References

[Chandrasekaran, 1986] B. Chandrasekaran. Generic Tasks in Knowledge-based
Reasoning: High-level Building Blocks for Expert System
Design. IEEE Expert, Vol 1, pp. 23-30, Fall 1986.

[Chandrasekaran, 1988] B. Chandrasekaran. Generic Tasks as Building Blocks for
Knowledge-based Systems: The Diagnosis and Routine Design
Example. In The Knowledge Engineering Review, pages
183-210. Cambridge University Press, September 1988.

[Clancey, 1985]

[Eshelman, 1988]

[Hunt, 1990]

[Kahn, 1988]

[Musen, 1989]

W.J. Clancey. Heuristic Classification. Artificial Intelligence,
27(3):289-350,1985.

L. Eshelman. MOLE: A knowledge-acquisition tool for
cover-and-differentiate systems. In S. Marcus, editor,
Automating Knowledge Acquisition for Expert Systems, pages
37-80. Kluwer Academic Publishers, 1988.

J. E. Hunt and C. J. Price. Performing Augmented Model-based
Diagnosis. Presented at the International Symposium on
Mathematical and Intelligent Models in System Simulation,
Brussels, September 1990.

G. Kahn. MORE: From observing knowledge engineers to
automating knowledge acquisition. In S. Marcus, editor,
Automating Knowledge Acquisition for Expert Systems, pages
7-35. Kluwer Academic Publishers, 1988.

M. .A. Musen. Automated Generation of Model Based
Knowledge Acquisition Tools. Research Notes in Artificial
Intelligence. London:Pitman, 1989.

[Pugh and Price, 1992] D. R. Pugh and C. J. Price. Acquiring different types of
knowledge: A distributed architecture. To be published in
European Knowledge Acquisition Workshop '91.
Springer-Verlag, 1992.

[Schreiber et. al., 1987] G. Schreiber, J. Breuker, B. Bredeweg, and B. Wielinga.
Modelling in KBS Development. In Avingnon '87, pages
283-296,1987.

[Sticklen, 1987] J. Sticklen. MDX2, An Integrated Medical Diagnostic System.
PhD Thesis, The Ohio State University, 1987.



On the Relationship between Repertory Grid and
Term Subsumption Knowledge Structures:
Theory, Practice and Tools

MILDRED L G SHAW & BRIAN R GAINES

Knowledge Science Institute
University of Calgary
Calgary, Alberta, Canada T2N 1N4
mildred@cpsc.ucalgary.ca & gaines@cpsc.ucalgary.ca

A number of practical knowledge acquisition methodologies and tools have been based
on the elicitation and analysis of repertory grids. These result in frames and rules that are
exported to knowledge-based system shells. In the development of repertory grid tools,
the original methodology has been greatly extended to encompass the data types required
in knowledge-based systems. However, this has been done on a fairly pragmatic basis,
and it has not been clear how the resultant knowledge acquisition systems relate to
psychological, or computational, theories of knowledge representation. This paper shows
that there is a close correspondence between the intensional logics of knowledge, belief
and action developed in the personal construct psychology underlying repertory grids,
and the intensional logics for term subsumption knowledge representation underlying
KL-ONE-like systems. The paper gives an overview of personal construct psychology
and its expression as an intensional logic describing the cognitive processes of
anticipatory agents, and uses this to survey knowledge acquisition tools deriving from
personal construct psychology.

1 PERSONAL CONSTRUCT PSYCHOLOGY
George Kelly was a clinical psychologist who lived between 1905 and 1967, published a
two volume work (Kelly, 1955) defining personal construct psychology in 1955, and
went on to publish a large number of papers further developing the theory many of which
have been issued in collected form (Maher, 1969). Kelly was a keen geometer with
experience in navigation and an interest in multi-dimensional geometry. When he came
to formalize his theory he took as his model Euclid's Elements and axiomatized personal
construct psychology as a fundamental postulate together with eleven corollaries,
terming the primitives involved elements and constructs. Kelly presented his theory as a
geometry of psychological space (Kelly, 1969), and his conceptual framework is very
clear if seen in these terms.



126 SHAW&GAINES: Repertory grids and knowledge structures

What Kelly achieved through the use of geometry was an intensional logic, one in which
predicates are defined in terms of their properties rather than extensionally in terms of
those entities that fall under them. Logics of knowledge and belief are essentially
intensional (Hintikka, 1962), and in his time there were no adequate formal foundations
for intensional logic. It was not until 1963 that Hintikka published the model sets
formulation that gave intensional logic its possible worlds formal foundations (Hintikka,
1963), and hence formal foundations for cognitive science in logical terms only became
possible in the late 1960s. The intensional nature of semantic networks in artificial
intelligence was recognized in the late 1970s (Woods, 1975; Brachman, 1977; Shapiro,
1979), and their philosophical and logical structure as cognitive models has been detailed
by Zalta (1988).

The dichotomous aspect of constructs is the most significant aspect of the difference
between Kelly's constructs and current usage of the term, 'concept.' His dichotomy
corollary states this (Kelly, 1955):

"A person's construction system is composed of a finite number of dichotomous constructs." (p.59)
and it is a consequence of the two-sided nature of a distinction represented in the
geometry. That people tend to conceptualize the world in terms of restricted sorts that are
then dichotomized is a phenomenon identified in antiquity (Lloyd, 1966) and common
across many cultures (Maybury-Lewis and Almagor, 1989).

The taxonomic, abstraction, or subsumption, hierarchy between concepts is recognized in
Kelly's organization corollary (Kelly, 1955):

"Each person characteristically evolves, for his convenience of anticipating events, a construction
system embracing ordinal relationships between constructs." (p.56)

He uses this ordinal relation in the development of the psychology to model the dynamics
of change in conceptual systems. For example, that one has "core constructs" that one is
very reluctant to change because of the dependencies that exist within one's
constructions.

Kelly's "repertory grid" methodology for eliciting conceptual structures has become a
widely used and accepted technique for knowledge elicitation, and has been implemented
as a major component of many computer-based knowledge acquisition systems. A
comprehensive computer-based elicitation and analysis system for repertory grids was
developed by Shaw with applications mainly in educational, clinical and management
studies (Shaw, 1979). Gaines and Shaw suggested that repertory grids would provide a
useful development technique for expert systems (Gaines and Shaw, 1980), and later
published a validation study of the elicitation of the BIAIT methodology from
accountants and accounting students using computer-based repertory grid elicitation
(Shaw and Gaines, 1983). Boose, in an independent parallel study, reported success in a



SHAW & GAINES: Repertory grids and knowledge structures 127

wide range of industrial expert system developments using computer elicitation of
repertory grids (Boose, 1984), and since then many knowledge acquisition systems have
incorporated repertory grids as a major elicitation technique (Boose and Bradshaw, 1987;
Diederich, Ruhmann and May, 1987; Garg-Janardan and Salvendy, 1987; Shaw and
Gaines, 1987; Ford, Canas, Jones, Stahl, Novak and Adams-Webber, 1990).

The repertory grid methodology has evolved in the light of application experience and
now has major differences from that described by Kelly. Shaw took advantage of the
processing power and interactivity of computers to introduce on-line analysis and
feedback to the person from whom the grid was being elicited (Shaw, 1980). In expert
systems terms, this can be seen as highlighting correlations that might be spurious and
lead to incorrect rules in later analysis. Shaw and Gaines introduced new forms of
analysis of the repertory grid based on fuzzy sets theory (Shaw and Gaines, 1979) which
became the basis of rule extraction (Gaines and Shaw, 1986). Boose and Bradshaw made
changes to the grid structure introducing hierarchical data structures to cope with more
complex domains (Boose and Bradshaw, 1987). Bradshaw, Boose, Covington and Russo
showed how many problems that did not seem appropriate to repertory grids could be
formulated in terms of them (Bradshaw, Boose, Covington and Russo, 1988).

The original repertory grid methodology was based on only one aspect of Kelly's
personal construct psychology, his dichotomy corollary. The standard grid is a flat
structure of elements described in terms of dichotomous constructs that does not represent
the hierarchical structure of Kelly's organization corollary. Hinkle developed a technique
of laddering, based on "why" and "how" questions, for investigating ordinal relations
between constructs (Hinkle, 1965), and Boose incorporated a laddering tool in ETS
(Boose, 1986). However, ordinal relations between constructs were not the primary focus
in initial applications of repertory grid tools.

This changed as the second generation toolbench, AQUINAS (Boose and Bradshaw,
1987), was developed in the light of experience with ETS, and hierarchical structures of
tasks, experts, elements and constructs were introduced into the data structures and
interfaces. It also changed as conceptual induction techniques were used to derive
hierarchical concept structures from the rules extracted from repertory grids (Gaines and
Shaw, 1992). Recently, the intensional logic underlying the psychological primitives of
personal construct psychology has been developed in detail (Gaines, 1990), and this has
been used to develop knowledge acquisition tools based on a visual language that
corresponds to a formal semantics for semantic nets (Gaines, 1991c). These later
developments suggest that personal construct psychology can also provide foundations
for tools in which ordinal relations are a primary focus, such as those that use some form
of semantic network to build domain and task ontologies directly.



128 SHAW & GAINES: Repertory grids and knowledge structures

2 THE INTENSIONAL LOGIC OF PERSONAL CONSTRUCT PSYCHOLOGY
Kelly's geometrical model of personal construct psychology may be reformulated as a
corresponding intensional logic of knowledge representation. We take his notion of a
distinction as primitive and examine how distinctions may relate to each other in
psychological space. If one distinction carves out a region that contains that carved out
by another then the first distinction may be said to subsume the second. If one distinction
carves out a region that does not overlap that carved out by another then the first
distinction may be said to be disjoint to the second. These relations are in themselves
sufficient to define an intensional logic of distinctions in that the more complex relations
may be composed from them. Extensional considerations may be introduced by noting
that, if an element is placed within the region carved out by a distinction, then we may
say that the distinction is asserted to apply to the element.

The subsumption and disjoint relations may be defined in an algebraic formalism by
representing distinctions by bold lower case letters such that a distinction applied to
another distinction is concatenated to the right of it. Then the definition above translates
as one distinction will be said to subsume another if it can always be applied whenever
the other can. It can be represented formally as:

"b subsumes a" a—>b <=> ^ a = > h x b (1)

That is, b subsumes a, if and only if whenever one asserts xa one also asserts xb. The
definition is to be read intensionally in terms of a commitment to the way in which
distinctions will be made, such that if a is made then there is a commitment to b being
made also. This is why the form Vx is avoided—the notion of all the distinctions to
which a and b may be applied is not well-defined.

Subsumption corresponds to increasing generality since the subsuming distinction can be
applied to at least as many things as that subsumed. In (1) concept a is said to be
subordinate to concept b, and b superordinate to a. Subsumption supports Kelly's
organization corollary, and captures his use of the term that one construct subsumes
another, and also the use of the same term in knowledge representation, that one concept
subsumes another. Subsumption between computational concepts corresponds to the "is-
a" relation in knowledge representation schema. The interpretation of subsumption in
terms of commitment above corresponds to the definitional form of the "is-a" relation.
The computed form of "is-a" requires some further structures which are developed in the
next section when primitive and non-primitive concepts are differentiated.

The disjoint relation is definable in similar terms, that one distinction is disjoint with
another in that one can never be applied whenever the other can. It can be represented as:

"a disjoint b" a—b <=> F xa => -i V xb (2)



SHAW & GAINES: Repertory grids and knowledge structures 129

That is, a is disjoint with b, if and only if whenever one asserts xa one does not assert xb.
The definition is again to be read intensionally in terms of a commitment to the way in
which distinctions will be made, such that if a is made then there is a commitment to b
not being made. Disjoint is a symmetric, intransitive relation over distinctions, and
supports Kelly's dichotomy corollary and the definition of disjoint concepts in knowledge
representation.

It is interesting to note that definition (2) is an asymmetric definition of what is clearly a
symmetric relation. Logically, this is possible because the reverse implication can be
derived from (2), that is, if one asserts xb one cannot assert xa because that would imply
—i b xb. This derivation of symmetry from asymmetry may be logically simple, but it is
not semantically trivial. In terms of knowledge representation it corresponds to the
essential sequence of definitions: if we define a first we cannot define it to be disjoint
with b because b is not yet defined. Psychologically, this asymmetry appears to be
related to the empirical asymmetries Adams-Webber has observed in the use of the,
apparently symmetric, poles of al construct (Adams-Webber, 1979).

The —> and — relations are complementary in establishing four possible binary relations
between distinctions, that a—»b, b—»a, a—b, or none of these. The two subsumption
relations can hold together giving an equivalence relation on distinctions. The disjoint
relation is incompatible with the subsumption relations, and is inherited through
subsumption, that is:

a—b and c->a => c—b (3)

3 A VISUAL LANGUAGE FOR THE LOGIC
The arrow and line notion adopted in definitions (1) and (2) translates to a graphical
notation defining a visual language for the logic (Gaines, 1991c). As shown at the top of
Figure 1, Kelly's "construct" in psychological space can be represented by a pair of
disjoint concepts corresponding to what he terms the construct "poles," both subsumed by
a third concept corresponding to what he terms the "range of convenience." It is this
fundamental conceptual unit, or templet that we fit over the world, being a pair of disjoint
concepts applied to a restricted domain that characterizes Kelly's use of the logic as a
foundation for cognitive psychology. In logical terms, he emphasizes the importance of
opposition as relative negation applied within a context, rather than absolute negation free
of any context. The psychological unit is the triple of concepts in the relation shown
rather than the individual concept, or logical predicate, in isolation.

At the center of Figure 1, the abstract components of a concept are given specific
instances to exemplify their application. "Evaluable" things may be classified into two
disjoint classes, "good" and "bad."



130 SHAW & GAINES: Repertory grids and knowledge structures

IDI PCP Basics

Primitiue)[ Content )(Constraint)fEKception )( Urn?
Concept )[lndiuidual][ Role )[ Rule ]( - flrc ]("Compile

Kelly's notion of a
"construct" dividing a
universe defined by the
"range of convenience* of
the construct into two

disjoint parts defined by
the "left pole" and the

"right pole" of the
construct

R typical bipolar
construct, that the

universe of evaluable
things may be divided

up into those which ar^
good and those which

are bad

SuppIemen t i ng the bas i c
bipolar concept with

intermediate associated
associated concepts

gives rise to the scales
typically used in
repertory grids

evaluable

Figure 1 Representation of abstract and specific constructs and scales in a visual
language for specifying deflnitions and assertions in the intensional logic

The emphasis on dichotomous concepts may give the impression that constructs are
essentially binary in nature. However, at the bottom of Figure 1 is shown how Kelly's
"shades of gray" arise naturally through the addition of related concepts compatible with
the original dichotomy. The dichotomy has been split into two such that "bad" is now
disjoint both from "good" and "fairly good", and "good" is now disjoint from both "bad"
and "fairly bad." "Mediocre" has been added as an additional concept intermediate
between "good" and "bad", defined as "fairly good" and "fairly bad." In tools such as the
repertory grid these intermediate concepts are represented on a numeric scale as shown
under the bottom structure of Figure 1.



SHAW & GAINES: Repertory grids and knowledge structures 131

The structures in Figure 1 are simple semantic networks in the style of KL-ONE
(Brachman and Schmolze, 1985) or KRS (Gaines, 1991a), but they have well-defined
logical semantics as defined above, and also strong psychological foundations in personal
construct psychology. There is an analogy between the visual language and the
representation of chemical structures as atoms and bonds. Distinctions are the atomic
primitives in personal construct psychology, and further constructions may be seen as
complex 'molecules' formed by distinctions joined through subsumption and disjoint
'bonds.' For example, the complex structure at the bottom of Figure 1 may be seen as the
composition of two of the basic construct structures shown at the top. Figure 2 illustrates
this with an example developed later in the paper.

PCP Rules
Prirnitiue ][ Context )[Constraint][ Exception)(
Concept") [Indiuidual

l.uu>

Role Rule )[ »K Compile

Concepts
defined as

the
intersection
of others

Non-1 inear "*N.
i nterpoI at i on s

(" Local & ^ \ / Global & \ /
L i near j ( (Son-1 i near j (

interpolation / \ interpolation y \

Global &
L i near

interpolation

Local 8, \
Non-1inear j

interpolation S

An t i c ipa t i on tha t
the appIi cab iIi ty
of one concept
implies that of

another expressed
as a rule

flssertion of
facts about

Hand
contouring

c LocaI 6
L i near

interpolation

L i near
interpolation

Hand
contouring

and
Hand

contouring

Leads
automatically

to the
inference

Hand
contouring

Ifit a
Figure 2 Concepts defined in terms of others, and their application to representing

anticipations as rules supporting inference



132 SHAW & GAINES: Repertory grids and knowledge structures

Multiple constructs in psychological space correspond to multiple axes of reference, and
the planes representing their distinctions and ranges of convenience intersect to define
regions of the space corresponding to conjunction, composition and multiple inheritance
in the logic as shown at the top of Figure 2. This also illustrates an important distinction
between the concepts defined by basic distinctions and those defined by intersections.
The former are said to be primitive concepts and the latter non-primitive, or computed,
concepts. In the visual language primitive concepts are distinguished by having a small
internal horizontal line at their left and right edges. A primitive concept is incompletely
defined in that we have complete freedom of choice as to where to place an element
relative to the regions defining its distinction. However, no such freedom exists for non-
primitive concepts since they are defined as the intersection of primitive concepts.
Logically, we have to assert that a primitive concept applies to an element, whereas we
can either assert that a non-primitive applies or recognize that it applies through the
previous assertion of the primitives that define it. In knowledge representation this
recognition is termed classification (Borgida, Brachman, McGuiness and Resnick, 1989).

The definition of subsumption in (1) applies to non-primitive concepts, but it is no longer
a matter of direct commitment but rather of derivation from the composition of
commitments for concepts defining the intersection. The "is-a" relation for non-primitive
concepts is computable rather than definable—the commitment to their definition in
terms of their structure entails a commitment to a derived, rather than a defined, "is-a"
relation. Confusion about these two forms of concept, and associated "is-a" relations,
caused problems in early developments of semantic nets (Brachman, 1983).

Kelly's theory of anticipation is based on attaching significance to such recognizable
intersections:

"What one predicts is not a fully fleshed-out event, but simply the common intersect of a set of
properties" (Kelly, 1955)

The logic remains intensional because there is no implication that elements have already
been construed within the intersections. The attachment of an anticipation to the intersect
corresponds to a commitment to place an element that falls in this intersect in the region
defined by the pole of some other construct also. In logic this is a material implication
rather than an entailment in that it is not necessitated by the way in which the distinctions
are defined but is instead an auxiliary commitment or rule. Rules allow a cognitive
system to be anticipatory in containing structures which from one set of distinctions made
about an event will imply that others should be made leading to prediction or action.
Rules play a similar role in computational systems in generating recommendations for
decision or action. Overtly modeling the conceptual system of an expert as such a
structure is a basis for emulating the expert's performance in a knowledge-based system.



SHAW & GAINES: Repertory grids and knowledge structures 133

As shown in Figure 2, Kelly's model of anticipation is represented in the visual language
by an additional primitive, a rectangle with vertical bars, representing material
implication or a rule. The rule in the center applies to a spatial mapping techniques
example used later in this paper. It has the premise that if a technique is "Local" and
involves "Linear interpolation" then the conclusion is that it is "Requires no model." At
the bottom right of Figure 2, an individual "Hand contouring", represented in the visual
language as a rectangle, is asserted to be "Local" and "Linear interpolation," represented
by arrows from the individual to these concepts. When the entire knowledge structure of
concept definitions, rules and assertions, is then compiled and run through the inference
engine, the graph output is that shown at the bottom right of Figure 2. Hand contouring
has been inferred to require no model.

The logic based on Kelly's axiomatic presentation of personal construct psychology, and
the visual language representing it, both extend to support the additional features normal
in term subsumption knowledge representation systems, such as attributes and relations,
or "roles" as they have been termed generically (Brachman and Schmolze, 1985), rules
with exceptions (Gaines, 1991b), and contexts (Sowa, 1984). Figures 1 and 2 have been
presented in a graphing tool, KDraw, that provides a fully operational semantics for the
input and output of knowledge structures in the visual language, and further illustrations
of its application are given later.

4 THE REPERTORY GRID
Kelly introduces the "role repertory grid" (Kelly, 1955) as a means for investigating a
person's conceptual structure relevant to inter-personal relations by having them classify
a set of people significant to them in terms of elicited personal constructs. Figure 3
shows the general form of a repertory grid and its relation to the conceptual structures
already discussed. If one takes a particular concept somewhere in the lattice, and a set of
individuals asserted to fall under that concept, then the properties defining the concept
generate distinctions about the individuals falling under that concept. These distinctions
form the rows of a matrix, the individuals form the columns, and the constraints applying
to a particular individual relative to a particular distinction form the values in the matrix.

In simple applications of the repertory grid these constraints are taken to be the values of
the individuals on the roles corresponding to the distinctions. However, it is apparent
from Figure 3 that concepts subordinate to those defining the scope of the grid may also
be used as if they were individuals, and these may be expected to have more general
constraints than single values. Hence in extended repertory grid elicitation, such as that
of AQUINAS (Boose and Bradshaw, 1987) the 'values' in the matrix can in themselves
be complex constraints.



134 SHAW & GAINES: Repertory grids and knowledge structures

Concepts

^ s 1 Individuals

Constructs
Distinction 1
Distinction 2
Distinction 3
Distinction 4
Distinction 4

Element 1 Element 2 Element 3
Constraint
Constraint
Constraint
Constraint
Constraint

1,
2,
3,
4,

1
1
1
1
1

Constraint
Constraint
Constraint
Constraint
Constraint

1,2
2,2
3,2
4,2
5,2

Constraint
Constraint
Constraint
Constraint
Constraint

1,
2,
3,
4,
5,

3
3
3
3
3

Repertory Grid

Figure 3 The repertory grid as a matrix of concepts, individuals and constraints

Requires no model

Interval data

Non-polynomial

Global

Intuitive

Requires spatial search

Discontinuous

Does not honour data

Linear interpolation

Difficult to understand

Few points

Does not consider non-spatial attributes

5

5

5

1

4

5

5

5

5

2

1

2

5

1

5

1

4

5

5

5

5

4

3

2

4

1

1

3

5

2

4

2

2

1

1

2

1

1

1

4

3

1

2

3

2

4

5

2

3

4

1

4

2

2

1

1

3

4

3

3

1

4

1

4

1

3

3

2

1

5

1

3

4

1

S

5

S

5

5

4

5

1

3

1

4

1

1

2

4

5

5

4

5

2

2

1

5

1

5

1

5

5

5

S

5

1

1

2

2

1

1

4

3

3

5

2

5

4

4

1

5

1

5

1

5

5

5

1

5

1

2

5

Requires model

Nominal data

Polynomial

Local

Mathematical

Does not require spatial search

Continuous

Honours data

Non-linear interpolation

Easily understood

Many points

Considers non-spatial attributes

- Vector trend surface analysis

• Negative exponential surface

Most predictable surface

Double Fourier series

Bicubic splines

Hand contouring

• Proximal mapping

' Distance weighted averaging

Kriging

Trend surface analysis

Probability mapping

Figure 4 A repertory grid about spatial mapping techniques



SHAW & GAINES: Repertory grids and knowledge structures 135

Figure 4 shows a basic repertory grid elicited from a geographer about spatial mapping
techniques. The mapping techniques used as elements are listed as column names at the
bottom. The poles of the constructs elicited are listed on the left and the right as row
names. The ratings of the mapping techniques along the dimensions of the constructs
form the body of the grid. Figure 5 shows the constructs defined in Figure 4 exported to
KDraw in the format of Figure 1. The tool used for the elicitation and analysis of grids,
KSSO, also allows them to be exported to KDraw and shells such as NEXPERT and
BABYLON, as attribute-value structures rather than conceptual primitives.

Concept ][ Indiuiduai ](

Spatial Mapping Techniques

ConteHt [[Constraint)!Exception]! Liiu?

<r~_'Forma I i ty~";->

Mathematical ~~;> <;" In tu i t i ve"

fypaj

inuous _>—<~S$iscantinuous_"> *C^y^01*'°L.S*~^-1 j j o n ~P° 'ynonial_^

^"^Tnterpolat |£n[ * > S3" Anders tand i ng_ ~'H"

Non-linear ""-̂  £ Easily
interpolation^' V_understood

L i near
polation

Does not
cons i der

non-spatial
attr i butes

Cons i ders
non-spatial
attributes

«f|' Forma I i ty "]

;_ Undar stand i ng|~;;

'~ I nterpo I at I on "

•£ Cont inui ty ~j
/'fton-spatiaT'N
V. attributes 7

Figure 5 Spatial mapping techniques domain represented in the visual language



136 SHAW & GAINES: Repertory grids and knowledge structures

The psychological function of the repertory grid is to provide a technique for building the
conceptual structure without direct elicitation of concepts and their structures and
relationships. The assumption is that it may be easier for a person to provide exemplary
individuals in the domain of interest, and then to state in fairly concrete terms how they
would distinguish them in terms of properties relevant to the purpose of eliciting the grid.
In terms of the intensional logic of the concept structure, the extensional specification of
how concepts apply to individuals is clearly inadequate to fully specify the concept
structure. However, the structure must be consistent with its model and hence it is
possible through suitable analysis techniques to approximate the structure from the
extensional data, as is discussed in the next section.

5 CONCEPTUAL CLUSTERING
In analyzing repertory grid data, distance measures play an important role in conceptual
clustering and induction. In terms of the logic and visual language, there is a natural
construction of a distance between two concepts, x and y, as shown on the left of Figure
6. Let u be some minimal upper bound of x and y subsuming both of them, and 1 some
maximal lower bound subsumed by both of them, and U be the extension of u, and L the
extension of I over some universe of individuals. If x and y are identical so will be U and
L, whereas if they are disjoint L will be empty. Hence a natural distance measure is the
number of individuals that are in U but not L:

"x distance y" d(x, y) = CU - CL (4)

where CU and CL are the cardinalities of U and L respectively. This measure satisfies
the triangle inequality and can be normalized by dividing by its maximum possible value,
CU. It is clearly dependent on the universe of individuals involved, but this is
appropriate to measuring concept distance in an extensional context. Intensional concept
"distance" independent of context is reflected in the relational structures already
developed.

The distance measure defined readily extends to dichotomous constructs through the
comparison of poles as shown on the right of Figure 6:

"b—c distance d—e" d(b—c, d—e) = CA - CF - CG (5)

This measure is a count of the numbers of individuals that fall under the opposite pole of
the other construct. Note that it is not invariant if one construct is reversed. This
construction generalizes to scales with more than three points. If these scales are
numbered linearly it computes a "city block" distance measure—which is precisely that
used in construct clustering algorithms such as FOCUS (Shaw, 1980). These distance
measures enable natural clusters to be seen that may be grouped as part of a coherent
concept, for example, in that they are all contributors to an evaluatory dimension.



SHAW & GAINES: Repertory grids and knowledge structures 137

Figure 6 Calculation of distance measures between concepts and between constructs

For example, Figure 7 shows a FOCUS analysis of the grid of Figure 4 in which the
distance measure defined in (:5) has been used to develop two matrices of inter-element
and inter-construct distances. The sets of elements and constructs have then each been
sorted to re-order the grid in such a way that similar elements and similar constructs are
close together. Thus, near the bottom of the construct clusters, it can be seen that the
dimension "Discontinuous—Continuous" is used very similarly to "Requires spatial
search—Does not require spatial search", and that both of these relate closely to "Linear
interpolation—Non-linear interpolation." Similarly near the top of the element clusters,
"Probability matching", "Most predictable surface" and "Trend Surface Analysis" are
construed as closely related techniques with very few distinctions between them.

Many points

Easily understood

Intuitive

Requires no model

Local

Does not honour data

Non-polynomial

Linear interpolation

Requires spatial search

Discontinuous

Nominal data

Considers non-spatial attributes

IIP
111
III
I I
2

1

2

2J
III
HI
III

A
I

i

i

2

2

1

1

3

3
2

3

3

2

2

3

2

1

1

3
2
1

2

3

1

2

i
i

?.

•i

i

;;

i
-ti

i>
4

2

2

3
2

2

2

1

S
3

$

5

s

4
4

4

4

4

4

1

*

*

*

3

?•

S
4
1

4
S
it
S

s

3

2

<*

S

$

•S

»

*

S

*

$
S
s
$
s
5
£
?•
S
S-
4

.3
4
4

i

$
5

9
$

$
i

A

4

S

*
1

s
s

1

100 90 80 70
Few points

Difficult to understand

Mathematical

Requires model

Global

Honours data

Polynomial

Non-linear interpolation

Does not require spatial search

Continuous ~ , * , * * , * .

Interval data "••"•"•*•"*•"•"""*•

Does not consider non-spatial attributes

100 90 80 70 60

' Vector trend surface analysis

• Probability mapping

Most predictable surface

' Trend surface analysts

• Bicubic splines

Double Fourier series

' Negative exponential surface

• Distance weighted averaging

• Proximal mapping * * » - » - » -

, Hand contouring.**.****,*

• Kriging •

Figure 7 FOCUS hierarchical clustering of spatial mapping grid



138 SHAW & GAINES: Repertory grids and knowledge structures

6 RULE INDUCTION
The measures used in the induction of a rule linking to concepts are also readily derived
as shown in Figure 8. CX is the number of anticipations made by concept x as the left
hand side of a rule, and CL is the number which are correct. Thus, the measures of the
validity of inducing the rule, x—»—»y, are:

"prior probability of y" p(y) = CY/CU (6)

"probability correct x-»-»y" p(x-»-»y) = CL/CX (7)

"probability by chance x-»->y" c(x->->y) = Ip(y)(CX-CL, CL+1) (8)

where I is the incomplete beta function summing a binomial distribution tail.

These measures are precisely those used by Induct
(Gaines, 1989) in inducing rules from datasets. In
the application to repertory grids Induct searches
for potential rules whereby a target predicate may
be deduced from some of the others, and constrains
the search to rules whereby the probability that they
arise by chance is less than some prescribed
threshold. The basic search techniques have been
well documented by Cendrowska (Cendrowska,
1987) but for practical applications they need to be
controlled by these probabilistic measures, and also
to be extended to generate rules with exceptions as
these are both more compact and more in
accordance with human practice (Gaines, 1991b).

Figure 8 Induction of rules
between concepts

To illustrate rule induction from repertory grids, Figure 9 shows an Induct analysis of the
grid of Figure 4 in an attempt to determine the rules underlying the use of the term
"model," which was a major source of conceptual and terminological difference between
experts in the studies from which this data is drawn (Shaw and Gaines, 1989).

Points=Many points -> ModeURequires no model 100% 7.44%
Locality=Local & lnterpolation=Linear interpolation -> Model=Requires no model 100% 7.44%
Data type=lnterval data & Type=Non-polynomial & Locality=Local -> Model=Requires no model 100%

7.44%
Data type=lnterval data & Type=Non-polynomial & Understanding=Easily understood -> Model-Requires no

model 100% 7.44%
Formality=Mathematical -> Model=Requires model 100% 4.23%
Search=Does not require spatial search -> Model=Requires model 100% 6.64%
Understanding=Difficult to understand -> ModeURequires model 100% 6.64%

Figure 9 Induct analysis of spatial mapping data



SHAW & GAINES: Repertory grids and knowledge structures 139

The first percentage at the end of each rule is the probability correct as defined in (7), and
the second is the probability by chance, or statistical significance, as defined in (8).
Figure 10 shows these rules exported from KSSO to KDraw. The frame definition of
Figure 5 and the rules of Figure 10, both derived from the grid of Figure 4, may be edited
within KDraw and then exported to a knowledge-based system shell as an operational
knowledge structure. Practical system development involves the derivation of such
structures for the different sub-domains involved, together with the addition of rules that
export inferences from one sub-domain to another.

Spatial Mapping Rules
[ Primitiuell Content [[Constraint]! Exception]} tine ]

Concept ][lndiuiduaT)f Role ]( Rule )(~Compile

O

Does not
requ i re
spatial
search

D i f f i c u l t
to

unders tand

ffi
Figure 10 Rules about which techniques require a model represented in the visual

language



140 SHAW & GAINES: Repertory grids and knowledge structures

7 USING REPERTORY GRIDS
The use of the repertory grid to elicit concept structures involves a variety of
psychological and analytical techniques, including:
1. Careful definition of the purpose of the elicitation and the appropriate sub-domain to

be considered. Maintaining this context so that the purpose and domain do not tacitly
change during elicitation is also very important.

2. Choice of exemplary individuals that characterize the relevant features of a domain.
This choice is very important and is a major focus of attention in both tool design and
application. Fortunately, experts often find it natural to discuss a domain in terms of
stereotypical cases, but much care is required to elicit a full range of stereotypes
adequate to characterize a domain.

3. Various techniques may be used for initial element elicitation including interviews,
protocol analysis, brainstorming with groups of experts, and keyword extraction from
relevant textual material (Shaw and Gaines, 1987; Shaw and Woodward, 1990).

4. Online analysis of the interim conceptual structures may be used to detect closely
related distinctions and use this to request information on potential stereotypes that
might specifically reduce the closeness of the distinctions (Shaw, 1980).

5. The elicitation of some initial distinctions may again derive from interviews, protocols,
brainstorming and text analysis.

6. When no prior information is available, triadic elicitation in which a randomly selected
set of three individuals is presented with a request to state in what way are two alike
and differ from the third can be effective.

7. Online analysis of the interim conceptual structures may be used to detect closely
related individuals and use this to request information on potential distinctions that
might specifically reduce the closeness of the individuals (Shaw, 1980).

8. The conceptual structure can be developed through various forms of hierarchical and
spatial cluster analysis such as FOCUS (Shaw, 1980) and principal components
analysis (Slater, 1976, 1977).

9. Rule induction may be used both to derive potential implications between concepts and
also, since the premise of a rule is itself a concept, to develop non-primitive concepts
and their subsumption relations (Gaines and Shaw, 1992).

10. Direct elicitation of the concept structure may be mixed with indirect development of
the grid (Boose and Bradshaw, 1987; Gaines and Shaw, 1990).

8 CONCLUSIONS
Personal construct psychology is a theory of individual and group psychological and
social processes that has been used extensively in knowledge acquisition research to
model the cognitive processes of human experts. The psychology has the advantage of
taking a constructivist position appropriate to the modeling of specialist human
knowledge but basing this on a positivist scientific position that characterizes human
conceptual structures in axiomatic terms that translate directly to computational form.



SHAW & GAINES: Repertory grids and knowledge structures 141

The repertory grid knowledge elicitation methodology is directly derived from personal
construct psychology. In its original form, this methodology was based primarily on the
notion of dichotomous constructs and did not encompass the ordinal relations between
them captured in semantic net elicitation. However, it has been extended in successive
tools developed for applied knowledge acquisition and tested in a wide variety of
applications.

This paper has given an overview of personal construct psychology and its expression as
an intensional logic describing the cognitive processes of anticipatory agents. A
theoretical framework has been developed and shown to provide logical foundations for
personal construct psychology and computational knowledge representation schema. The
framework is generated from the single primitive of "making a distinction." It has been
used to provide cognitive and logical foundations for existing knowledge acquisition
tools and techniques, and for the design of integrated knowledge acquisition systems.

ACKNOWLEDGMENTS
Financial assistance for this work has been made available by the Natural Sciences and
Engineering Research Council of Canada. We are grateful to many colleagues for
discussions over the years that have influenced the research described in this paper, in
particular John Boose, Jeff Bradshaw, Marc Linster, Alain Rappaport, Nigel Waters,
Brian Woodward and colleagues at the Knowledge Acquisition Workshops world-wide.

REFERENCES
Adams-Webber, J.R. (1979). Personal Construct Theory: Concepts and Applications.

Chichester, UK, Wiley.
Boose, J.H. (1984). Personal construct theory and the transfer of human expertise.

Proceedings AAAI-84. pp.27-33. California, American Association for Artificial
Intelligence.

Boose, J.H. (1986). Expertise Transfer for Expert Systems. Amsterdam, Elsevier.
Boose, J.H. and Bradshaw, J.ML (1987). Expertise transfer and complex problems: using

AQUINAS as a knowledge acquisition workbench for knowledge-based systems.
International Journal of Man-Machine Studies 26 3-28.

Borgida, A., Brachman, R.J., McGuiness, D.L. and Resnick, L.A. (1989). CLASSIC: a
structural data model for objects. Proceedings of 1989 SIGMOD Conference on the
Management of Data, pp.58-67. New York, ACM Press.

Brachman, R.J. (1977). What's in a concept: structural foundations for semantic nets.
International Journal of Man-Machine Studies 9 127-152.

Brachman, R.J. (1983). What IS-A is and isn't. IEEE Computer 16(10) 30-36.
Brachman, R.J. and Schmolze, J. (1985). An overview of the KL-ONE knowledge

representation system. Cognitive Science 9(2) 171-216.



142 SHAW &GAINES: Repertory grids and knowledge structures

Bradshaw, J.M., Boose, J.H., Covington, S.P. and Russo, P.J. (1988). How to do with
grids what people say you can't. Proceedings of the Third AAAI Knowledge
Acquisition for Knowledge-Based Systems Workshop, pp.3-1-3-15. Banff,
University of Calgary.

Cendrowska, J. (1987). An algorithm for inducing modular rules. International Journal
of Man-Machine Studies 27(4) 349-370.

Diederich, J., Ruhmann, I. and May, M. (1987). KRITON: A knowledge acquisition tool
for expert systems. International Journal of Man-Machine Studies 26(1) 29-40.

Ford, K.M., Cafias, A., Jones, J., Stahl, H., Novak, J. and Adams-Webber, J. (1990).
ICONKAT: an integrated constructivist knowledge acquisition tool. Knowledge
Acquisition 3(2) 215-236.

Gaines, B.R. (1989). An ounce of knowledge is worth a ton of data: quantitative studies
of the trade-off between expertise and data based on statistically well-founded
empirical induction. Proceedings of the Sixth International Workshop on Machine
Learning, pp. 156-159. San Mateo, California, Morgan Kaufmann.

Gaines, B.R. (1991a). Empirical investigations of knowledge representation servers:
Design issues and applications experience with KRS. ACM SIGART Bulletin 2(3)
45-56.

Gaines, B.R. (1991b). Integrating rules in term subsumption knowledge representation
servers. AAAI'91: Proceedings of the Ninth National Conference on Artificial
Intelligence, pp.458-463. Menlo Park, California, AAAI Press/MIT Press.

Gaines, B.R. (1991c). An interactive visual language for term subsumption visual
languages. UCAI'91: Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence, pp.817-823. San Mateo, California, Morgan Kaufmann.

Gaines, B.R. and Shaw, M.L.G. (1980). New directions in the analysis and interactive
elicitation of personal construct systems. International Journal Man-Machine
Studies 13 81-116.

Gaines, B.R. and Shaw, M.L.G. (1986). Induction of inference rules for expert systems.
Fuzzy Sets and Systems 18(3) 315-328.

Gaines, B.R. and Shaw, M.L.G. (1992). Integrated knowledge acquisition architectures.
Journal for Intelligent Information Systems 1(1) to appear.

Gaines, B.R. & Shaw, M.L.G. (1990). Cognitive and logical foundations of knowledge
acquisition. Proceedings of the Fifth AAAI Knowledge Acquisition for
Knowledge-Based Systems Workshop, pp.9-1-9-24. Banff, Canada, University of
Calgary.

Garg-Janardan, C. and Salvendy, G. (1987). A conceptual framework for knowledge
elicitation. International Journal of Man-Machine Studies 26(4) 521-531.

Hinkle, D.N. (1965). The change of personal constructs from the viewpoint of a theory of
implications. Ohio State University.

Hintikka, J. (1962). Knowledge and Belief. Ithaca, New York, Cornell University Press.



SHAW&GAINES: Repertory grids and knowledge structures 143

Hintikka, J. (1963). The modes of modality. Acta Philosophica Fennica 16 65-81.
Kelly, G.A. (1955). The Psychology of Personal Constructs. New York, Norton.
Kelly, G.A. (1969). A mathematical approach to psychology. Clinical Psychology and

Personality: The Selected Papers of George Kelly, pp.94-113. New York, Wiley.
Lloyd, G.E.R. (1966). Polarity and Analogy. Cambridge, Cambridge University Press.
Maher, B., Ed. (1969). Clinical Psychology and Personality: The Selected Papers of

George Kelly. New York, Wiley.
Maybury-Lewis, D. and Almagor, U., Ed. (1989). The Attraction of Opposites. Ann

Arbor, University of Michigan Press.
Shapiro, S.C. (1979). The SNePS semantic network processing system. Associative

Networks: Representation and Use of Knowledge by Computers, pp. 179-203. New
York, Academic Press.

Shaw, M.L.G. (1979). Conversational heuristics for enhancing personal understanding of
the world. General Systems Research: A Science, A Methodology, A Technology.
pp.270-277. Louisville, Kentucky, Society for General Systems Research.

Shaw, M.L.G. (1980). On Becoming A Personal Scientist: Interactive Computer
Elicitation of Personal Models Of The World. London, Academic Press.

Shaw, M.L.G. and Gaines, B.R. (1979). Externalizing the personal world: computer aids
to epistemology. Improving the Human Condition: Quality and Stability in Social
Systems, pp.136-145. Louisville, Kentucky, Society for General Systems Research.

Shaw, M.L.G. and Gaines, B.R. (1983). A computer aid to knowledge engineering.
Proceedings of British Computer Society Conference on Expert Systems, pp.263-
271. Cambridge, British Computer Society.

Shaw, M.L.G. and Gaines, B.R. (1987). KITTEN: Knowledge initiation & transfer tools
for experts and novices. International Journal of Man-Machine Studies 27(3) 251-
280.

Shaw, M.L.G. and Gaines, B.R. (1989). A methodology for recognizing conflict,
correspondence, consensus and contrast in a knowledge acquisition system.
Knowledge Acquisition 1(4) 341-363.

Shaw, M.L.G. and Woodward,, B. (1990). Mental models in the knowledge acquisition
process. Knowledge Acquisition 2(3) 179-206.

Slater, P., Ed. (1976). Dimensions of Intrapersonal Space: Vol. 1. London, John Wiley.
Slater, P., Ed. (1977). Dimensions of Intrapersonal Space: Vol. 2. London, John Wiley.
Sowa, J.F. (1984). Conceptual Structures: Information Processing in Mind and

Machine. Reading, Massachusetts, Adison-Wesley.
Woods, W.A. (1975). What's in a link: Foundations for semantic networks.

Representation and Understanding: Studies in Cognitive Science, pp.35-82. New
York, Academic Press.

Zalta, E.N. (1988). Intensional Logic and the Metaphysics of Intentionality.
Cambridge, Massachusetts, MIT Press.





STRATEGY MAZE: An On-line Tool for Supporting

Management of the Knowledge Acquisition Process

Nora Y L YUE & Benita COX

The Management School, Imperial College of Science, Technology & Medicine,

53 Prince's Gate, Exhibition Road, London SW7 2PG, ENGLAND

ABSTRACT

This paper describes an on-line system which serves to support the management of the

Knowledge Acquisition Process. Research on Knowledge Acquisition has tended to focus

on the difficulties encountered in the elicitation of cognitive processes from the human

expert with less emphasis being placed on the specific difficulties encountered in the

management of Knowledge-Based Systems projects. The results of empirical research

undertaken by the authors identified the need for improved rigour in the management of

the Knowledge Acquisition Process [Yue & Cox, 1991, 1992a,b]. The Strategy Maze is

the implementation of these results.

The goal of the Strategy Maze is to reduce and prevent risks to Knowledge Acquisition

projects through improved management. The Strategy Maze identifies those management

issues which must be addressed at the planning and implementation stages of the project

if risk is to be minimised. The system consists of three levels: the Scoping Level which

is designed to reduce and prevent those risks arising from the lack of clear project



146 YUE & COX: Strategy maze: an on-line tool

definition; the Requirements Analysis Level which provides a comprehensive checklist of

the tasks and activities which need addressing prior to implementation of the project; and

the Implementation Level which assists in the reduction and prevention of potential

project risks during the implementation, monitoring, and control stages of the project.

1 INTRODUCTION

Knowledge-Based Systems (KBS) differ from conventional computer systems in their

degree of dependence upon the elicitation, representation and emulation of human

knowledge. This dependence on the particular 'cognitive components' of systems design

has resulted in a class of problems and difficulties specific to the building of KBS

systems. These problems are different and frequently more complex than those associated

with traditional software engineering design. As a consequence, current literature on

Knowledge Acquisition (KA) has tended to focus on the difficulties encountered in the

elicitation of cognitive processes from the human expert, and hence, the associated

technical difficulties encountered in building such systems. Less emphasis has been

placed on the specific difficulties encountered in the management of KBS projects.

This emphasis on KA is reflected in current model-based KA tools, such as KADS

[Breuker & Wielinga (1987); Breuker et al (1987); Wielinga et al (1991)] and KEATS

[Motta et al, 1986; 1988], which provide model-based support for the KA process, but

do not directly address or provide support for the management aspects of the KA process.

The results of empirical research undertaken by the authors identified the need for

improved rigour in the management of the KA process [Yue & Cox, 1991, 1992a,b].

The Strategy Maze represents the integration and analysis of the these research results

with existing literature. Whilst it is acknowledged that it is not possible to provide a

single methodology applicable to all KA scenarios, it is the purpose of this paper to

provide guidelines based on our research findings of the most pertinent management

attributes for consideration. In particular, the following work are integrated with our

empirical research results: Stammers R, Carey M S and Astley J A (1990) on task



YUE & COX: Strategy maze: an on-line tool 147

analysis; Laufmann S C, DeVaney D M and Whiting M A (1990) on the source of

knowledge; Scott A C, Clayton J E and Gibson E L (1991) on development time

estimation, case characteristics definition, interview preparation, and formation of

conceptual model; Meyer M and Booker J (1991) on the selection of question areas and

questions; Kirman B (1990) on human reliability assessment; and Parker M F (1990) on

project status reporting, project reviews, project change control and project completion.

KBS systems have somewhat different architectures from conventional software systems.

This difference requires a managerial approach specific to the development of KBS

systems, and in particular, to the KA process. KBS development life cycle is very similar

to a conventional software development life cycle at the requirements analysis stage.

However, at the requirements specification stage, there are more significant differences,

particularly during the analysis phase. The managerial analysis performed in the Strategy

Maze is a detail process which not only involves requirement analysis, but also

specifically towards knowledge acquisition, and it is in this area that the methodology of

the Strategy Maze differs most significantly from conventional methodologies. In fact,

KBS and conventional methodologies share greater similarities towards the

implementation end of the development spectrum, and then separate again during the

post-implementation phases. Because the Requirements Analysis Level of the Strategy

Maze differs the most from conventional systems development, particular attention has

been specifically placed and emphasised on this level of analysis. Subsequent phases such

as implementation and maintenance are quite similar to their conventional counterparts

and therefore, only the managerial aspects of the activities in these phases are covered.

The Strategy Maze integrates traditional approaches to conventional software project

management process with managerial requirements specific to KA projects. It integrates

the "requirements analysis", "requirements specification", and "maintenance" phases of

conventional software development life cycle together with other component phases

specific to the KA process into an on-line tool for supporting management of KA

projects.



148 YUE&COX: Strategy maze: an on-line tool

2 OVERVIEW OF THE STRATEGY MAZE

The Strategy Maze is designed to reflect the traditional management functions of

planning, organising, staffing, directing and controlling, and their application to the KA

process. In particular, it focuses on the planning procedures associated with the KA

process.

The goal of the Strategy Maze is to reduce, minimise, and prevent risks to KA projects

through improved management by means of assessing the completeness of the managerial

planning activities. The subject of risk management in traditional software engineering

project has been extensively discussed [Boehm (1981, 1989); Deutsch (1981)]. This paper

addresses risk management in the context of KA projects.

The system has been designed to assist the knowledge engineer in the following areas:

* Risk Management
H reduce and prevent potential project risks;
wm prioritise potential project risks;
H facilitate risk management planning;
H assist in risk monitoring.

* Project Scheduling
H schedule the stages of the KA project;
H facilitate time management of the KA project;
H prevent unrealistic time scheduling.

* Project Milestone Management
H define individual milestone checkpoints;
H track the project's progress;
H monitor and control project reviews.

* Uncertainty Management
mt minimise uncertainties in areas within each project milestone;
H prevent changes to project requirements.



YUE&COX: Strategy maze: an on-line tool 149

* Critical Success Activities Management
H identify critical success activities at crucial stages of the project;
H ensure major critical success activities are carried out.

The high risk managerial planning activities identified from the empirical research are

group into sets of components according to their importance and expected time of

execution in the KA process. The managerial activities to be carried out can broadly be

divided into three distinctive groups:

(i) managerial activities aimed at reducing and preventing potential project risks arising

from the lack of clear project definition;

(ii) high risk managerial activities which need to be accomplished prior to implementation

of the project; and

(iii) managerial activities aimed at reducing and preventing potential project risks during

the implementation, monitoring, and control stages of the project.

The Strategy Maze is designed to identify those management issues in these three broad

groups. Hence, the system consists of three main programs each representing one of the

three levels of analysis (figure 1):

Requirements

Analysis

Implementation

Figure 1: The Three Levels of Analysis in Strategy Maze



150 YUE&COX: Strategy maze: an on-line tool

Each of these levels represents an important phase in the KA project and consists of a

series of components which constitute the architectural framework of the Strategy Maze

as shown in figure 2.

SCOPING LEVEL

Al: Identify Project
Boundary & Tasks

A2: Define KA Project
Objectives

REQUIREMENTS ANALYSIS LEVEL

B2: Manage Data
& Resource
Acquisition

B3: Plan
Elicitation

IMPLEMENTATION
LEVEL

Bl: Assess
the Risks

B4: Plan
Interview

Cl: Document KA
Project Plan

C2: Manage the
Modelling Process

C3: Review Knowledge
Contents in the
Conceptual Model

C4: Manage
Elicitation Process

Update &
Review
Changes

C6: Conduct
Expert

Verification

C5: Document
Project
Completion

Figure 2: Architectural Framework of the Strategy Maze



YUE&COX: Strategy maze: an on-line tool 151

The three levels have been designed to assist in risk management, project scheduling,

project milestone management, uncertainty management, and critical success activities

management. The aim of each level is shown below:

I Scoping Level - designed to reduce and prevent high potential project risks arising

from the lack of clear project definition. Figure 3 shows the sub-level components within

the Scoping Level. The Scoping Level assists in reducing, minimising, and preventing

risks associated with:

H project specification/identification/assessment;

H ill-defined project objectives;

H incomplete identification of or changes in project scope;

H ill-defined project boundary and domain characteristics;

H incomplete identification of major tasks and subtasks;

mm lack of determination and identification of critical success factors.

II Requirements Analysis Level - designed to reduce and prevent potential project risks

associated with tasks and activities which need addressing prior to implementation of the

project. Figures 4 and 5 show the sub-level components within the Requirements Analysis

Level. The Requirements Analysis Level assists in reducing, minimising, and preventing

risks associated with:

wm unrealistic estimation of project costs and budgets;

H shortfalls in essential project personnel;

H inappropriate operating environment;

tm ill-managed knowledge sources;

a B unrealistic project schedules;

H lack of planning and organisation of elicitation;

H inadequate planning and organisation of interviews.

III Implementation Level - designed to reduce and prevent potential project risks during

the implementation, monitoring, and control stages of the project. Figures 6 and 7 show



152 YUE & COX: Strategy maze: an on-line tool

the sub-level components within the Implementation Level. The Implementation Level

assists in reducing, minimising, and preventing risk associated with:

H lack of documentation of project plan;

H incomplete project progress record at each milestone;

H undelivered project status reporting;

H inadequate project reviews;

M lack of continuous knowledge-base assessment;

H continuing stream of requirement changes;

H incomplete project documention;

H lack of expert verification and evaluation;

SCOPING LEVEL

Al: Identify Project Boundary & Tasks

Al.l Define Project Boundary

r

A1.2 Identify Tasks & Subtasks

t

A2: Define KA Project Objectives

A2.1 Define Project Objectives

A2.2 Identify Project Scope

}

A2.3 Identify Success Factors

REQUIREMENTS ANALYSIS LEVEL

Figure 3: Sub-Level Components within Scoping Level



YUE & COX: Strategy maze: an on-line tool 153

REQUIREMENTS ANALYSIS LEVEL
PHASE I

Bl:

I B l . 1

1 Ell. 2

Assess the Risks

Risk Analysis

Economic Analysis

B2: Manage Data & Resource Allocation

B2.1 Personnel

B2.1.1 Manage the
Participants

B2.1.4 Manage the
Knowledge Engineers

B:

Management

.1.2 Assign Authorit
Project personnel

i
B2.1.3 Manage the

Experts

B2.2 Technology
Management

B2.3 Operations
Environment
Management

B2.4 Knowledge Sources Management

B2.4.1 Manage the
General Knowledge
Sources

B2.4.2 Manage the
Experts' Knowledge
Sources

B2.5 Time Management

T
REQUIREMENTS ANALYSIS LEVEL

PHASE II

Figure 4: Sub-Level Components within Requirements Analysis Level Phase I



154 YUE & COX: Strategy maze: an on-line tool

REQUIREMENTS ANALYSIS LEVEL
PHASE II

B3: Plan Elicitation

B3.1 Essential Considerations for Planning
the Elicitation Procedure

B3.2 Evaluate & Select Elicitation
Techniques

B3.3 Decide Format for Recording
Knowledge

B4: Plan Interview

B4.1 Essential Considerations for Interview Plan

B4.1.1 Plan the Content
of the Interview

B4.1.4 Prepare the Expert
& Knowledge Engineers

B4.1.2 Identify All
Essential Materials

r

B4.1.3 Determine th«
Time & Venue

I
B4.2 Outline Question Areas

1
B4.3 Identify Relevant

Case Features

IMPLEMENTATION LEVEL

Figure 5: Sub-Level Components within Requirements Analysis Level Phase II



YUE & COX: Strategy maze: an on-line tool 155

IMPLEMENTATION LEVEL
PHASE I

Cl: .Document KA Project Plant

C2: Manage the Modelling Process

C2.1 Analyze Strategic Knowledge

1
C2.2 Analyze Judgmental Knowledge

C2.2.1 Define reasoning steps
for making conclusions

i

C2.2.2 Define reasoning steps for
for re£3ponding to new information

C2 2.3 Describe the system's overall
inference structure

C2

C2

C2

C2.3 . 3

.3

.3

.3

I
Analyze Factual Knowledge

1 Classify the characteristics

2 Arrange case-independent facts

Arrange case-independent relationships

I
C2.4 Organise Project Design Document

IMPLEMENTATION LEVEL
PHASE II

Figure 6: Sub-Level Components within Implementation Level Phase I



156 YUE & COX: Strategy maze: an on-line tool

IMPLEMENTATION LEVEL
PHASE II

C3: Review Knowledge Contents in the Conceptual Model

C3.1 Review & Evaluate Intermediate Representation

C3.2 Review Strategic Knowledge

C3.3 Review Judgmental Knowledge

C3.4 Review Factual Knowledge

C4: Manage Elicitation Process

C4.1 Assess Human
Reliability

C4.2 Pursue Progress
Record

C4.3 Report Project
Status

C4.4 Perform Follow-Up
Reviews

C4.5 Update & Assess
Knowledge-Base

C4.6 Monitor & Control
Changes

C5: Document KA Project
Completion

1
C6: Conduct Expert

Verification

Figure 7: Sub-Level Components within Implementation Level Phase II



YUE & COX: Strategy maze: an on-line tool 157

3 ASSESSMENT OF THE STRATEGY MAZE

The Strategy Maze is based on a collection and synthesis of "issues". An issue is a

statement representing a managerial task or activity. Each is designed to reduce and

prevent potential project risks by identifying tasks and subtasks necessary to ensure rigour

in the management activities associated with the KA project.

Each of the three levels is divided into several sub-level components, each consisting of

a number of issues (examples of issues for the three levels are shown in figures 8,9,10).

The user indicates his orientation to each issue (i.e. the degree to which he feels he has

successfully addressed that particular issue). These orientations are then scored on a five

level scale ranging from strong positive to strong negative indicating the strength of his

conviction. An example of a scoring table is shown in figure 11.

A2.1 Define Project Objectives
B Define the project's purpose or goals.
B Determine the objectives of the project from the knowledge

engineer's perspective.
B Determine the objectives of the project from the expert's

perspective.
B Determine whether the objective is to collect the experts'

answers or their problem-solving processes.
B Determine if the project assumptions and constraints are well

formed, realistic, and defensible.
B Determine and set out milestones for the project.
B Assess the users' requirements.
B Emphasise the importance of giving proper consideration to end

user requirements during product development.
B Identify the deliverables from the project.

Figure 8: Examples of Management Issues within Scoping Level



158 Y U E & C O X : Strategy maze: an on-line tool

B2.4.1 Manage the General Knowledge Sources
B Identify all knowledge sources or supporting documents.
B Assess the magnitude of the information required.
g Determine the level of complexity of knowledge required.
B Determine the nature of the knowledge.
I Determine whether the knowledge is resident in individual

experts or is a community involvement.
a Determine the accessibility to the knowledge.
B Compare the relative quantities of problem-solving knowledge

with that of domain-specific data involved in the project.
m Determine the familiarity of elicitor with domain knowledge.

Figure 9: Examples of Management Issues within Requirements Analysis Level

C2.1 Analyze Strategic Knowledge
B Identify the high-level steps the system should perform,
g Draw a flow chart to illustrate the order in which the

system should perform these high-level steps.
g Define the conditions under which the system should perform

each high-level step.
g Subdivide any high-level step that consists of more than a

small number of input, reasoning, and output actions.
I Define as many levels of substeps as required.
B Define the objectives of each substep.
B Identify the information that should be available to the

system before it undertakes the step.
g Describe the sequence of input, reasoning, and output

actions that should be performed in the step.

Figure 10: Examples of Management Issues within Implementation Level



YUE & COX: Strategy maze: an on-line tool 159

ASSIGN INDICATION LEVEL

Please assign an indication level for this
issue with its own orientation and strength:

Strong Positive Indication [ ]
Weak Positive Indication [ ]
Neutral/Inconclusive Indication [ ]
Weak Negative Indication [ ]
Strong Negative Indication [ ]

Figure 11: Scoring Table

4 EVALUATION & INTERPRETATION OF RESULTS

The Strategy Maze interprets and analyses the inputs by assessing the total counts for

each of the indication levels (Strong Positive to Strong Negative) together with the degree

of importance of the individual groups of issues for the KA project according to the

weightings assigned to them.

The users' responses are assessed at the completion of each level, minimum targets are

set which the user must attain before he is recommended to progress to the next level.

These targets constitute the issues in each level, each issue successfully addressed is

assigned a count. The total number of counts for each indication level is given in an

indication score table as shown in figure 12 below.

INDICATION SCORE TABLE
The total number of indication scores
obtained for each indication level are
shown as follows:

No. of Strong Positive Indications [
No. of Weak Positive Indications [
No. of Neutral/Inconclusive Indications (
No. of Weak Negative Indications [
No. of Strong Negative Indications [

Figure 12: Indication Score Table



160 YUE&COX: Strategy maze: an on-line tool

Weights are assigned to each of the sub-level components. The value of these weights are

set according to the weights of the perceived risks identified from previous research

which each sub-level component is designed to reduce and prevent. These perceived risks

are weighted in accordance with their associated factors and criteria which influences the

management of the KA process as identified from research [Yue & Cox, 1991, 1992a,b]

Thus, the three main levels (Scoping Level, Requirements Analysis Level and

Implementation Level) have been designed and arranged according to the weights

assigned to their associated sub-level components.

Analysis is performed at the completion of each level after the total number of counts for

each indication level is completed in the scoring table. The underlying assumption in the

interpretation of these total counts is that the potential project risk is related to the level

of completeness of the managerial activities that has been undertaken. The following

shows the general guidelines on the recommendations resulted from the Scoping Level

analysis:

* If the user has scored over ten percent of all issues with strong negative
indicators regardless of the percentage or strength of other issues, this
signifies that too high a percentage of highly relevant issues have not been
sufficiently well addressed. The user is strongly recommended to reconsider
these issues again before proceeding to the Requirements Analysis Level.

* If the user has scored over twenty percent of all issues with negative
indicators regardless of its strength, this again signifies that too high a
percentage of highly relevant issues have not been sufficiently well
addressed. This user is strongly advised to reconsider these issues again
before proceeding to the Requirements Analysis Level.

* If the user has scored over fifty percent of all issues with neutral or
inconclusive indicators, it indicates that there is a high degree of uncertainty
or potential risk to the project since neutral indicators identify areas where
adequate information is lacking. The user is advised to reconsider these
issues again before proceeding to the Requirements Analysis Level.

* If the user has positively scored over fifty percent and negatively scored
under twenty percent of all issues regardless of their strength, this indicates
that the user has adequately gathered the majority of important information
and satisfied the minimum requirements for this level. The user is advised
to proceed to the Requirements Analysis Level.



YUE & COX: Strategy maze: an on-line tool 161

* If the user has scored less than fifty percent of all issues with positive
indicators, less than twenty percent of all issues with negative indicators,
and less than fifty percent of all issues with neutral or inconclusive
indicators, this shows that the majority of all the issues were either
negatively or neutrally addressed. This indicates that although there are no
significant areas where important information is lacking, uncertainty and risk
of failure of the project would be further reduced by addressing these issues.
The user is advised to reconsider those negatively and neutrally addressed
issues again before proceeding to the Requirements Analysis Level.

The recommended general guidelines given in the Strategy Maze are, therefore, based

upon the percentages scored for each indication level for each level of analysis. There

are minimum targets with fixed percentages which the user must attain before he is

advised to progress to the next level. The choice of these fixed percentages was arbitrary

and based on the author's perceived importance of each of the levels according to the

weights assigned to each of their associated sub-level component. The following gives

a summary of the minimum targets set for each level of analysis:

For Scoping Level, the user must score:
under 10% of all the issues strong negatively,
under 20% of all the issues negatively,
under 50% of all the issues neutrally, and
over 50% of all the issues positively.

For Requirements Analysis Level Phase I, the user must score:
under 10% of all the issues strong negatively,
under 20% of all the issues negatively,
under 50% of all the issues neutrally, and
over 50% of all the issues positively.

For Requirements Analysis Level Phase II, the user must score:
under 20% of all the issues strong negatively,
under 40% of all the issues negatively,
under 50% of all the issues neutrally, and
over 50% of all the issues positively.

For Implementation Level, the user must score:
under 25% of all the issues strong negatively,
under 40% of all the issues negatively,
under 50% of all the issues neutrally, and
over 50% of all the issues positively.

These recommendations are based on different weights assigned to all components of the

framework as explained previously.



162 YUE & COX: Strategy maze: an on-line tool

5 CONCLUSION

This paper has described an on-line system, the Strategy Maze, developed in response

to the need for a structured method for improved rigour in the management of the

Knowledge Acquisition process as reported by knowledge engineers. It is aimed at

reducing, minimising, and preventing potential project risk through improved

management. The Strategy Maze consists of three levels of analysis each of which

contains several sub-level components. For each sub-level component, those management

issues that are critical and important to the potential success of the Knowledge

Acquisition project, and which ultimately will directly affect and improve the quality of

the knowledge base have been identified. The system captures the user's response, scores

the analysis automatically, and offers recommendations.

The Strategy Maze is intended to be used so that outcomes from the managerial activities

can be recorded and justified. A limitation of this system is the depth and breadth of

information required to be entered by the user in order for the analysis to be performed.

It is acknowledged that the answers to some of the questions raised cannot be known until

the Knowledge Acquisition project is in progress. However, the intent is not always to

derive precise responses, but to highlight and raise awareness of potential problem areas.

The Strategy Maze provides a foundation upon which knowledge engineers can plan the

management of future elicitation sessions by generating permanent documentation and

justification of the assessment task and results. It highlights critical management issues

in the planning and implementation stages of Knowledge Acquisition projects, enabling

knowledge engineers and development staff to address these issues before they become

major problems or risks to the project. Thus, the system can contribute significantly to

successful Knowledge Acquisition projects. The Strategy Maze is currently under

evaluation and review. Early analysis of results has been positive. In addition, the system

may be incorporated into knowledge acquisition systems within future knowledge-based

systems environments. The Strategy Maze is expected to further evolve to better



YUE&COX: Strategy maze: an on-line tool 163

accommodate the managerial needs of knowledge engineers, enabling them to address

these issues prior to and during the Knowledge Acquisition Process.

REFERENCES

[Boehm, 1981] Boehm B W. Software Engineering Economics. Prentice-Hall, Englewood
Cliffs, N.J., 1981.

[Boehm, 1989] Boehm B W. Software Risk Management. IEEE Computer Society Press,
1989.

[Breuker and Wielinga, 1987] Breuker J A and Wielinga B J. "Knowledge acquisition as
modelling expertise: the KADS methodology". Proceedings of the first European
Workshop on Knowledge Acquisition for Knowledge-Based Systems, Reading: Reading
University, section Bl, UK, 2-3 September 1987.

[Breuker et al., 1987] Breuker J, Wielinga B, Someren M, de Hoog R, Schreiber G, de
Greef P, Bredeweg B, Wielemaker J and Billault J-P. "Model-driven knowledge
acquisition: interpretation models". Deliverable task Al, Esprit Project 1098,
Amsterdam: University of Amsterdam, 1987.

[Deutsch, 1981] Deutsch M S. "Software Project Verification and Validation", Computer,
14(4), pp.54-70, 1981.

[Kirwan, 1990] Kirwan B. "Human Reliability Assessment" in Evaluation of Human
Work, J R Wilson and E N Corlett (Editors), Taylor & Francis Ltd., pp.706-754, 1990.

[Laufmann et al., 1990] Laufmann S C, DeVaney D M and Whiting M A. "A
Methodology for Evaluating Potential KBS Applications". IEEE Expert, Volume 5,
Number 6, pp.43-66, December 1990.

[Meyer and Booker, 1991] Meyer M and Booker J. "Selecting Question Areas and
Questions" in Eliciting and Analyzing Expert Judgement. Academic Press, pp.55-67.
1991.

[Motta et al., 1986] Motta E, Eisenstadt M, West M, Pitman K and Evertsz R. "KEATS:
The knowledge engineer's assistant (Alvey Project 1KBS/20)". Final Project Report,
HCRL Technical Report No. 20, December 1986. Milton Keynes, UK: Human Cognition
Research Laboratory, The Open University, 1986.



164 YUE & COX: Strategy maze: an on-line tool

[Motta et al., 1988] Motta E, Eisenstadt M, Pitman K and West M. "Support for
knowledge acquisition in the knowledge engineer's assistant". HCRL Technical Report
No. 30, January 1988. Milton Keynes, UK: Human Cognition Research Laboratory, The
Open University; also published in Expert Systems, Vol. 5, No. 1, pp.6-28, 1988.

[Parker, 1990] Parker M F. "Managing Successful Applications" in Managing
Information Systems for Profit, T Lincoln (Editor), Wiley Series in Information Systems,
pp.180-183, 1990.

[Scott et al., 1991] Scott A C, Clayton J E and Gibson E L. A Practical Guide to
Knowledge Acquisition, Addison Wesley, 1991.

[Stammers et al., 1990] Stammers R B, Carey M S and Astley J A. "Task Analysis" in
Evaluation of Human Work, J R Wilson and E N Corlett (Editors), Taylor & Francis
Ltd., pp. 134-160, 1990.

[Wielinga et al., 1991] Wielinga B J, Schreiber A The, Breuker J A. "KADS: A
Modelling Approach to Knowledge Engineering". Esprit Project P5248 KADS-1I, An
Advanced and Comprehensive Methodology for Integrated KBS Development,
Amsterdam, 1991.

[Yue and Cox, 1991] Yue N Y L and Cox B. "Towards a Clearer Definition of
Requirements for the Enhancement of the Knowledge Acquisition Process". Proceedings
of the Australian Workshop on Knowledge Acquisition for Knowledge-Based Systems,
Pokolbin, (Uni. of Sydney),pp. 185-201, August 20-23, 1991.

[Yue and Cox, 1992a] Yue N Y L and Cox B. "MAFKAP: A Management Framework
for the Knowledge Acquisition Process". Proceedings of the Fifth International
Symposium on Knowledge Engineering, Seville, Spain, October 5-9, 1992.

[Yue and Cox, 1992b] Yue N Y L and Cox B. "Towards a framework for the
Management of Knowledge Acquisition: MAFKAP". Proceedings of the Second Japanese
Knowledge Acquisition for Knowledge-Based Systems Workshop: JKAW92, Kobe and
Hatoyama, Japan, November 9-13, 1992.



Concurrent Engineering using Collaborating Truth

Maintenance Systems

CJ.HINDE & A.D.BRAY

Dept. Computer Studies
University of Technology
Loughborough
LeicsLE113TU.

1 ABSTRACT
The truth maintained blackboard model of problem solving as used in the Loughborough
University Manufacturing Planner had supported collaboration between experts which were
closely linked to the management system. On realistic problems the size of the assumption
bases produced by the system and the overall size of the blackboard combined to impair the
performance of the system. This model of design supported the collaboration of experts around
a central blackboard. Clearly collaboration is a necessary condition for concurrent decision
making and so the basic framework for collaboration is preserved in this model.

The Design to Product management system within which the Planner had to operate had a
central "Tool Manager" through which all communication was routed. In order to implement a
model of simultaneous engineering and also to support collaborative work using this model a
multiple context design system is useful, if not essential. Our model extends this by distributing
the control between the various expert agents where each agent treats the others as knowledge
sources to its own private blackboard. All interaction between agents is done using a common
communication protocol which is capable of exchanging contextual information necessary to
separate contexts in the Assumption based Truth Maintenance System (de Kleer 84)
environment. The hierarchical model of control by a central tool manager has been replaced by a
hierarchical model of distributed control. The agents are configured using a single line
inheritance scheme which endows each agent with its required knowledge and also allows it to
declare its functionality to its colleagues. Because the systems are distributed the assumption
bases can be kept much smaller as the private reasoning leading to a particular consequence
from a set of premises is hidden from the agents colleagues who are only aware that a particular
set of choices result from a set of premises.

2 CONCURRENT ENGINEERING
The particular problem area we have been concerned with is the design of a suitable architecture
with which to support concurrent engineering. Engineering design, and in fact design of many



166 HINDE & BRAY: Concurrent engineering

sorts has proceeded with a statement of requirements followed by a "design" phase where the
designer produces a specification of a form which will fulfil the functional requirements of the
"user". This is then passed to the production engineer who designs a method of manufacture
which will produce the specified form in the most economic manner often using the machinery
available but sometimes by designing special purpose machinery. Typically the requirements
specification will only seek to specify that which is known to be producible and the design
phase will similarly consider the requirements of production. Concurrent engineering will take
into account all aspects which may influence a decision at the time that decision is to be made.

The "Design to Product" Alvey demonstrator (Burrow 89, Burrow & Hinde 90) went some
way towards the concept of concurrent engineering but concentrated more on isolated elements
of problem solving (Hinde et al. 89,Millington 90) within an overall integrating framework
(BUITOW & Hinde 90) rather than to apply the concepts of concurrent engineering throughout
the project.

DESIGN
FOR

FUNCTION

/

[ INTE<

DESIGN
FOR

LOW COST

,3 H A

DESIGN
FOR

MANUFACTURE

STBON J

DESIGN
FOR

RELIABILITY

Figure 1. The central concept behind concurrent engineering is integration.

The central organising concept (Figure 1) was that of an "Information Management System" to
represent the developing design and a 'Tool manager" to manage communications between the
various components of the "Design to Product" system. All communication was routed through
the Tool Manager" and all information made available to the tools was kept in the "Information
Management System". The elements of the "Information Management System" were of various
kinds including geometrical objects, process plans etc. Two of the components of the "Design



HINDE&BRAY: Concurrent engineering 167

to Product" system were based on de Kleer's Assumption Based Truth Maintenance ideas (de
Kleer 84) although their use of the ATMS was in some respects different. The two elements
which were based on truth maintenance system were the Edinburgh Designer System
(Millington et al. 90) and the Loughborough University Manufacturing Planner (Hinde et al.
89). The components of the "Design to Product" system are represented by the squares
however the "Information Management System" and the "Tool Manager" are encompassed in
the central "Integration" circle.

3 BASIC ARCHITECTURE
The work done at Loughborough is based on a Truth Maintained Blackboard system
(Engelmore & Morgan 88). This works around the concept of a number of experts
collaborating around a common blackboard, moderated by a manager. All communication
between experts and intermediate results are stored in this area. The multiple context nature of
the blackboard allows inconsistent environments to be developed, which allow the system and
the operator to follow up more than one idea concurrently, in much the way that humans tend to
work.

The TMS works around the concept of a blackboard containing entries. Entries given to the
blackboard by users as specifications or requirements are in the form of assumptions, with
associated ratings which specify how feasible or desirable the assumptions are felt to be. When
an expert or calculating engine talces a number of entries and produces a result from it, then this
result is called a consequence of those entries, and the list of assumptions that led to the
consequence is called the assumption base. Assumptions are initial defeasible entries, whereas
initial indefeasible entries are facts. In the Loughborough system an expert can derive a
consequence in two key ways; necessarily and possibly. A necessary assumption is one where
the assumption base could only lead to that result through processing by the expert, and a
possible assumption is one where more than one outcome is possible even if there is only one
outcome delivered by the expert. The expert must also specify how feasible any outcome of a
possible result is, to give it a ranking compared to other possible consequences of that
assumption base. All the truth maintained agents in our system are Assumption Based in that
each entry can stand without reference to its derivation path, only the assumptions which
underpin its validity are needed.

In order to understand the problems that are found later in the paper, it may help to have an idea
of the internal representation used in the ATMS. This should give a feel for the amount of data
that may need to be stored when many assumptions are used to solve a large problem. The
format of the entries is:

(tag, entry, assumption bases)



168 HINDE&BRAY: Concurrent engineering

tag is a unique tag to distinguish entries from one another and to provide a reference for
building assumption bases,

entry is the actual entry,
assumption bases are the lists of assumptions which underpin the entry, or justify it.

The statement:

{[], user, possible, [a=l]} would result in the following entry being made:

(1, a = 1, [[1]] ) This is a self justifying assumption. The reading of this is that "a=l" is
true if entry 1 is true, i.e. if "a=l" is true. It stands on its own but may be contradicted.

(2, b = 0, [[2]]) This is also self justifying.

(3, c = -4, [[3]] )

(4, a*x2 + b*x + c = 0, [[4]])

These may be presented to an algebraic equation solver which could deliver, as possible
answers, the two entries "x=2" & "x=-2".

(5, x = -2, [[1, 2, 3, 4, 5]]) This is a partially self justifying assumption.i.e. a possible
derivation of entries 1-4.

(6, x = 2, [[1,2,3,4,6]]) As is this.

(7, x > 0, [[7]] ) This eliminates the entry "x=-2" from any environment containing

assumption 7.

(0, false, ([[0],[l,2,3,4,5,6],[l,2,3,4,5,7]]) This is the entry that declares 5 and 6 are
inconsistent in the context of 1,2,3 & 4 etc. If we were able to state that 5 & 6 are inconsistent
in all possible worlds then the assumption base of our false entry would be
[[0],[5,6],[l,2,3,4,5,7]]. This results in shorter assumption bases.

The protocol used in the "Design to Product" tool manager routed everything through a central
controller which potentially caused bottlenecks. By distributing the message passing around the
agents we encourage point to point contact but by means of the collection of agents into a
project we also control which agents are allowed to talk to one another. The other fundamental



HINDE&BRAY: Concurrent engineering 169

difference which must be emphasised is the fact that each element is a central controller for all

other elements and so we have a heterarchy instead of a hierarchy.

4 TOLERANCES
We were keen at the end of "Design to Product" to explore concurrent engineering further and
studied the ideas of economic tolerances using the Taguchi system (Taguchi et al. 89). Briefly
the Taguchi system relates required tolerances, costs of not achieving those tolerances denoted
as failure costs, process tolerances and process costs together so that expensive high tolerance
processes are not used to produce low value goods. The required tolerances for the product are
specified as part of the functional specification and these may be performance tolerances as well
as dimensional tolerances. If the product is a high value product then it would be expensive to
produce a product which did not meet those tolerances, such a product would be a jet engine
turbine blade, and so a process delivering a very close tolerance would be used possibly costing
a large amount of money. Manufacturing processes tend to deliver tolerances according to a
distribution and so we associate a probability that a particular process can meet the particular
required tolerance. We may use more expensive processes to reduce the incidence of failure,
however this must be offset against the cost of the process versus the cost of failure.

Although we can specify the required functional tolerances before selecting the processes used
to manufacture a product we cannot select the tolerances to manufacture to unless we already
know the cost of those processes, and we cannot know the costs of those processes until we
know what those processes are. This particular problem exemplifies all the problems of
concurrent engineering and requires circular or iterative logic to overcome them. The
manufacturing tolerances cannot be selected until the costs of the processes are known, the
costs of the processes cannot be known until the processes have been selected and the
processes cannot be selected until the tolerances have been determined, figure 2 illustrates this.

FAILURE: COSTS

FUNCTIONAL
TOLERANCES

- MANUFACTURING
TOLERANCES

MANUFACTURING
^ PROCESSES

MANUFACTURING ~"
COSTS

Figure 2. The relationship between costs, manufacturing tolerances and selection of processes.



170 HINDE&BRAY: Concurrent engineering

One of the traditional ways round this problem of assigning tolerances to components is to use
default tolerances on the entire component and to assign closer tolerances where necessary.
These higher tolerances are assigned using expert knowledge and by consulting the
organisation's book of tolerances. Other ways include assigning the same tolerance to all parts
of the component in order to reduce the number of tolerances that must be specified. This can
be wasteful leading to over engineered products costing too much to manufacture.

The book of tolerances will contain commercially useful information and is based on past
experience of manufacturing similar products. By keeping the justifications which lead to the
assignment of dimensions and tolerances this book can be updated and the context within which
various tolerance assignments are made is preserved.

In order to make progress in this circular argument we need to make assumptions, the first
simplifying assumption is that the manufacturing tolerances will not exceed the required
tolerances, in other words we will not deliberately make something outside the required
tolerances, or make something which costs more to make than we can sell it for. This
assumption gives us an outer envelope of tolerances such that any process which delivers a
tolerance distribution outside cannot possibly be economic. As our management system is a
multiple context blackboard system we are then able to make a set of assumptions about the
processes which are possible, and also the relationships between the processes (Bray et al. 92).
The relationship between the form of the product and the manufacturing processes also needs to
be determined and there will typically be many such alternative relationships; again we are able
to assume a wide range of interpretations in this (Herbert et al. 90) because of our use of a
TMS. Again the use of a single context message passing system which stores results and not
their contexts precludes this multiple context refinement strategy.

Having made our initial assumptions about sets of possible processes we are now able to
calculate the effect of the tolerances delivered by those processes and therefore the functional
tolerances implied by those processes. The cost of manufacture can now be ascertained and the
manufacturing tolerances associated with those costs be calculated, these are invariably closer
than the initial sets of tolerances and so some sets of processes can be eliminated. Interestingly
a close toleranced product that can actually be manufactured by the system is much easier to
deal with than an easily made product as there are fewer sets of feasible processes.

The interaction between the functional requirements and manufacturing processes introduces
various problems not only concerned with meeting the functional requirements as initially
specified but also in modifying those requirements in the light of further knowledge of what can
be manufactured. It would be possible, and the Design to Product demonstrator explored this
path, to design and build an expert system which would determine at the design stage whether



HINDE&BRAY: Concurrent engineering 171

or not a particular product could be manufactured however this system should also offer
constructive criticism of the form chosen rather than just give a yes/no answer, the
critic/modifier pair is popular idea in rule induction systems (Bundy 85). In order for this to be
effected the modifier needs to have some idea of the initial requirements, often a change in the
nominal value and achievable tolerances of one parameter will require changes in the nominal
values and required tolerances of other parameters, we are constrained in any realistic system to
consider both the functional requirements and the manufacturing capabilities simultaneously.

This interaction is illustrated easily by considering the manufacture of a hole where there are
only a limited set of drill bits. If we have a tolerance assigned to the volume of the hole to be
drilled then we have a relationship between the diameter of the hole, its depth and its volume.
We may assign a preferred depth to the hole and then derive a diameter consistent with our
functional requirements only to find the required diameter cannot be manufactured with a simple
drilling operation. By assigning a set of suitably close drills we can derive a set of diameters
and depths, each diameter associated with a particular depth satisfying the required volume. The
design form is therefore modified by considerations of manufacture.

The technology we have used is one solution to the problem of providing software systems to
support concurrent engineering however the use of a single blackboard based truth maintenance
system becomes unwieldy as the entries can attract very many assumptions, we have found
several hundred assumptions attached to some entries towards the end of a session. Clearly
although the idea of an ATMS allows multiple contexts to be explored it can carry with it a high
computational cost.

The use of a standard for communicating design tools as employed in the final phase of "Design
to Product" (Burrow & Hinde 90) and becoming popular eliminates the large assumption bases
as they have no relevance to the essentially single context system which is the outside world of
the design tools. It would also be unreasonable to insist that all components of an engineering
design system could cope with the assumption bases and operate in multiple contexts. We
therefore also have to be able to integrate single context systems into our design environment.

We have two problems now, the first problem is that we wish to operate in a multiple context
environment and not all the components of our system can necessarily maintain multiple
contexts; secondly if they could we would soon find the cost of maintaining those assumption
bases becoming prohibitive.

5 THE SOLUTION
In using our system we have noticed that in many problem solving situations various different
paths lead to the same conclusion. The entry corresponding to that final conclusion then



172 HINDE&BRAY: Concurrent engineering

contains several assumption bases corresponding to the different chains of reasons which gave
rise to that conclusion, this is so even when we are very careful to make sure that every entry
on the blackboard is unique. The chain of reasons, or justification path, leading to a conclusion
may then be of the form in figure 3.

Initial
Premisses

Intermediate Reasoning

O O
Final

Possible
Conclusions

Figure 3. showing a reason graph justifying two final possible conclusions from a set of initial
premises. The intermediate reasoning may be quite complex.

We are using the notation and language associated with Justification based Truth Maintenance
systems (Doyle 79) as even though each entry stands alone supported only by its basic
assumptions it is the reasoning path that has lead to those assumptions.

The agent requiring the statement that two final possible conclusions may be derived from the
set of initial premises does not need to know how those two conclusions were arrived at but
merely that they are possible consequences. The situation in figure 3 would have several
possibly large assumption bases tagged on to the final possible conclusions corresponding to
and as a result of the intermediate reasoning. Only if the intermediate reasoning was a chain of
necessary consequences would the final assumption bases be relatively small.

Representing the derivation of the final conclusions as a direct possible consequence of the
initial set of consequences we arrive at figure 4.



HINDE&BRAY: Concurrent engineering 173

Initial
Premisses

Final
Possible

Conclusions

Figure 4. Showing the reduced chain of reasons derived from figure 3.

The preceding argument has focused strongly on the relationship of the consequences to the
initial premises via the justifications used to produce those consequences. The external message
passing protocol must necessarily focus on what consequences can be drawn from what
premises and cannot know the set of assumptions required to fully support the conclusions. In
that sense the outside message passing system is acting as a Justification based Truth
Maintenance system but the major disadvantage of using such a system, namely long
justification paths, is eliminated as each message contains only short paths. Only if all the
justifications were placed together would we find the system becoming unmanageable. We have
a mixture of two technologies, ATMS and JTMS, taking advantage of both when appropriate.

6 MESSAGE PASSING PROTOCOL
The form of most messages between elements of the system are of the form:

Starting with these premises (P1.P2,..) can you derive something of the form (R1,R2,..)
where PI, P2 are instantiated and R1,R2 are patterns giving some goal direction. The reply will
state whether the result is a possible result or a necessary result introducing modality into the
system.

The system passes messages from element to element in the following basic forms:

{preconditions, source, modality, source_result_patterns}

This is the form used to ask a question from an element, the requesting agent sends a message
to another element which has declared its ability to answer such questions, in that it will make
declaration of the form:

{precondition_patterns, self, self_result_patterns}

meaning that given a set of preconditions matching precondition_patterns self is prepared to

produce something which matches self_result_patterns.



174 HINDE&BRAY: Concurrent engineering

The questioner instantiates precondition_patterns to suitable values and may also partially
instantiate result_patterns in which case this will restrict the ability of self to answer but also
give self a better idea of what source is looking for.

self will send a message back to source with all the fields instantiated and also adding a

modality field which will tell the receiver the status of the results, in the form:

{preconditions, self, modality, results)

For example an algebraic equation solver might be posed the following question from an
interested agent, 'user' is an agent who simply make statements which they may or may not be
able to justify.

{[], user, possible, [a = l,b = 0,c = -4,a*x2 + b*x + c = 0]}

means that "with no preconditions user states that it is possible that a = l,b = 0,c = -4,a*x2 +

b*x + c = 0 are conjointly true".

Another way of stating almost the same thing is to use the modality necessary:

{[], user, necessary, [a = l,b = 0,c = -4,a*x2 + b*x + c = 0]}

meaning that "with no preconditions user is prepared to assert that it is necessary that a = l,b =

0,c = -4,a*x2 + b*x + c = 0 are conjointly true".

This now has the status of being universally true and has no preconditions attached to it, if
anything whatsoever contradicts this statement then the contradictory statement is inconsistent
with all possible worlds (necessary) leading from the empty set of preconditions and is
therefore false or wrong.

The algebraic equation solver could take this information, and produce the following pair of

statements:

{[a*x2 + b*x + c = 0, a = 1, b = 0, c = -4], user, possible,[x = -2] }

{[a*x2 + b*x + c = 0, a = 1, b = 0, c = -4], user, possible, [x = 2] }

Clearly, these assumptions are inconsistent, but at the moment each is equally valid. If we add



HINDE&BRAY: Concurrent engineering 175

the assumption:

{[], user, necessary, x > 0 }

x = -2 is not consistent with this information, and so any environment based on this new
assumption must base its work upon x = 2 and not x = -2. As we made the statement "x > 0"
necessarily true with no preconditions then the alternative value "x=-2" cannot exist in any
possible world as it contradicts a statement which is true in all worlds, "x = -2" would still be a
valid entry if we had made the statement:

{[], user, possible, x > 0 }

and may be of use in other contexts should we require them. Within an ATMS there is no
reason to dispose of x = -2 or consider it to be redundant only because it is inconsistent with
one possible view, however if x>0 were made a necessary fact and not an assumption, then we
there would be no justification for keeping x=-2, and it would be lost.

Our communications protocol between elements of the system requires that each element be able
to return not only the answer to a question but also the question itself, this ensures that any sub
system capable of maintaining several contexts can insert the new fact into the correct context
and can do so without creating an excessively large assumption base. We are therefore
operating a need-to-know information system, if an explanation is required for any reason it is
straightforward to request the complete justification path.

For example we may request an algebraic equation solver to start with a*x^ + b*x + c = 0 and

request an answer of the form:

x=?.

In a conventional single context system the algebraic equation solver might reply with:

x=2

which is a possible answer given suitable values for the coefficients. What we have hidden here
is the work done by the algebraic equation solver in determining suitable coefficients and
determining actual values for a, b and c. Clearly x=2 is always a possible answer but it is also
possibly the least helpful of all.

The answer "x=2" could be transmitted around the system as



176 HESfDE&BRAY: Concurrent engineering

{[],possible,[x=2]}

meaning "with no preconditions a possible answer is x=2".

A much more helpful answer enabling the receiver to reconstruct the assumption bases would

be

{[a*x2 + b*x + c = 0],possible,[x=2]}

meaning "a possible solution to a*x2 + b*x + c = 0 is x=2".

We are stating that x=2 is a possible solution to the quadratic equation as given however the
equation solving system will have obtained values for a,b and c but has not been required to
deliver the values and so can only give a possible answer. The set of answers in this case could
be of the form:

{[a*x2 + b*x + c = 0],possible,[x=2]}

{[a*x2 + b*x + c = 0],possible,[x=-2]}

depending upon the various values of a,b and c whereas the second case would give us the

contexts within which x could take on the various possible values.

We gain in representational efficiency in almost all cases, in our earlier example it was clear
from how easily and quickly the assumption bases increase in size, however this result could be
passed on to another agent as:

{[a*x2 + b*x + c = 0],possible,[x=2])

{[a*x2 + b*x + c = 0],possible,[x=-2]}

and restored as truth maintained entities within that agent as

(l,[a*x2 + b*x + c = 0], [[1]]).

demonstrating a large economy of representation.



HINDE & BRAY: Concurrent engineering 177

So far we have demonstrated how separation of truth maintenance systems may be achieved by
delivering the essential justifications of consequences but eliminating much of the intermediate
reasoning. The intermediate course of transmitting minimal justifications based on the belief that
each subsystem can be relied on to produce reliable results but keeping sufficient contextual
information for the subsequent reasoning to be justified allows both multiple context reasoning
throughout the system and economical representation. This generally makes a substantial
difference to the representation of a problem provided the paths branch out and subsequently
come together. If the problem is partitioned to minimise inter agent communication, much the
way as we would select entities in an entity relationship analysis (Chen 76) or select objects in
an object oriented system (Booch 90) then we achieve the economy of representation outlined.

7 DECENTRALISATION

The method of organising such a system of collaborating truth maintenance systems as a set of
objects is typically through a centralised message handler as in SmallTalk (Goldberg 84) and the

Figure 5. The system elements collaborate in a heterarchical fashion with no central control, this
shows the presence of users integrated into the system having declared their interests to their
collaborators and become part of the group as equal partners.



178 HINDE & BRAY: Concurrent engineering

Design to Product Tool Manager (Burrow 89, Burrow & Hinde 90). Each of the elements in
our system is based on a truth maintained architecture and is derived from the LUMP
manufacturing planning system (Hinde et al. 89). Each element of this sort is therefore capable
of acting as a central organising system treating all other agents as contributory engines that
make bids to the blackboard manager for information and deliver justified entries to the truth
maintained blackboard. Each element is also an object in the sense that it has an encapsulated
data space which is truth maintained and responds to messages from other agents which see
themselves as the centre of their own particular universe. The system can either be regarded as
one with no centralised control or one with several centralised controllers, each blackboard can
be independently scheduled and the flow of information round the system is essentially
asynchronous. The elements all contain a management system and are extended by adding
various knowledge sources to give tightly coupled computing ability or adding a standard
communications interface to communicate with other system elements. Figure 5 shows a
collection of elements, some computer based, but others as humans participating in the overall
problem solving process as partners in a heterarchy. We introduce here the concept of a
"problem centred" system rather than "human centred" or "computer centred" system. The
users are assumed to be able to "keep their options open" and as such may be viewed as
multiple context systems and as rational agents would therefore be "Truth Maintained".

As each element is "fired up" it announces its presence and functionality to other members of its
"project" which it is designed to communicate with and they will then be able to ask it questions
as and when required. The only concession to centralisation is a table containing the sets of
declared functionality which each member, as it joins, will consult to be able to use correctly the
already existing members of the project community.

8 COLLABORATION BETWEEN PROJECTS

Figure 6. Projects are denoted by capital English letter whereas agents are denoted by small

Greek letters. Agent a in project A may communicate with agent y in project C by passing

requests first to agent (3 in project B, who then passes the request to agent e in project C who

then finally makes a request to agent y.



HINDE&BRAY: Concurrent engineering 179

Each element of a collection of collaborating truth maintenance systems may be a member of
one or more projects, a project is a collection of collaborating elements which have agreed to
share resources by becoming members of a project community. Project communities may
intersect and share agents which may declare a different functionality to each project thereby
acting as a gateway between them. The gateway agents will tend to declare a wide ranging
functionality and pass requests to other more specific members for consideration.

9 CONFIGURATION
All truth maintained agents within the system contain a private ATMS blackboard system and
the basic means to interact with one another and so there is a common kernel to all agents. A
particular set of "skills" may be attached to this kernel by loading various calculating engines to
specialise the agent to its particular task. Although not all elements require the same set of skills
most require the ability to solve simple algebraic equations and so there are other larger kernels
which can form the basis of even larger agents. The line of inheritance takes on properties
which allow the agent to perform various tasks and there is no barring or preclusion involved in
the configuration stage (Touretzky 86). Although the inheritance is single line the possibility of
one of the calculating engines delivering the wrong results contradicting results delivered by
another engine is real, as it is with any large scale system, but causes no actual problems due to
the multiple context nature of the system. Contradiction by one engine of another's results
merely results in separate contexts being formed and so we are able to build in redundancy if
required and to run two or more engines in parallel given they may implement different problem
solving strategies. The freedom to contradict results allows two or more human users to work
simultaneously on the same problem in different ways. Although we explicitly have single line
inheritance the potential duplication of functionality means we have to cope with the problems
of multiple inheritance, the use of an ATMS circumvents any serious problems.

10 SUMMARY
The paper has outlined some of the problems associated with concurrent engineering, notably
the requirement that each element of the concurrent system has available not only the results of
its computations but also a range of results which would generally be justified. A prototype
system which takes parametrised geometrical forms and attaches manufacturing plans to them
using the Taguchi system of quality engineering has been developed and implemented. This
system has been separated into several sub systems responsible for various aspects of the
overall problem solving demonstrating the increase in efficiency brought about by partitioning
the problem.

11 REFERENCES

Booch, G., 1986, Object-Oriented Development, IEEE Trans, on Software Eng., Vol. SE12 No
2 Feb. 1986, pp. 211-221.



180 HINDE&BRAY: Concurrent engineering

Bray, A.D., Hinde, C.J., Herbert, P.J., Temple, D.M. & Round, D. 1992, Multiple Context
Planning within a Truth Maintenance System, Knowledge Based Systems, in press.

Bundy, A., Silver, B. and Plummer, D., 1985, An analytical comparison of some rule learning

programs. Artificial Intelligence, Vol. 27, 1985, pp. 137-181.

Burrow, L.D., 1989, The Design to Product Alvey Demonstrator. I.C.L. Technical Journal,
\bl.6 No. 3.

Burrow, L.D., & Hinde, C.J., 1990, Integrated Information Systems for Design and

Manufacture, Business Benefits of Expert Systems, sponsored by the S.G.E.S., Sept. 1990.

Chen, P.P., 1976, The Entity-Relationship Model - Toward a Unified View of Data, ACM
Trans, on Database Systems, Vol. 1, No. 1 March 1976, pp. 9-36.

Goldberg, A., 1984, SmallTalk-80: The Interactive Programming Environment, Addison-

Wesley.

de Kleer, J., 1984, Choices without backtracking. Proceedings of the Conference of the
American Association for Artificial Intelligence.

de Kleer, J., 1986a, An Assumption-based TMS. Artificial Intelligence Journal, Vol. 28, pp.
127-162.

de Kleer, J., 1986b, Extending the ATMS, Artificial Intelligence 28, pp. 163-196.

de Kleer, J., 1986c, Problem solving with the ATMS, Artificial Intelligence 28, pp. 197-224.

Doyle, J., 1979, A Truth Maintenance System, Artificial Intelligence Journal, Vol. 12, pp.
231-272.

Engelmore, R. & Morgan, A., 1988, Blackboard Systems, Addison-Wesley, London.

Herbert, P.J., Hinde, C.J., Bray, A.D., Launders, V.A., Round, D. & Temple, D.M., 1990,
Feature Recognition Within a Truth Maintained Process Planning Environment, I.J.C.I.M. 3
No 2. Taylor & Francis.

Millington, K., 1990, Edinburgh Designer System. Business Benefits of Expert Systems,
sponsored by the S.G.E.S., Sept. 1990.



HINDE&BRAY: Concurrent engineering 181

Hinde, C.J., Bray, A.D., Herbert, P.J., Launders.V.A. & Round, D., 1989, A Truth
Maintenance Approach to Process Planning, in ed. Rzevski, G., 1989, Artificial Intelligence in
Manufacturing, Computational Mechanics Publications: Southampton Boston Springer-Verlag:
Berlin Heidelberg New York London Paris Tokyo.pp 171-188.

Taguchi, G., Elsayed, E.A. & Hsian, G.T., 1989, Quality Engineering in Production
Systems, McGraw-Hill.

Touretzky, D.S., 1986, The Mathematics of Inheritance Systems, Pitman Publishing Ltd.,
London.





OCKHAM'S RAZOR AS A GARDENING TOOL

Simplifying Discrimination Trees by Entropy MiniMax

Richard S. Forsyth,
Department of Mathematical Sciences
University of the West of England
Coldharbour Lane
BRISTOL BS16 1QY
+44 (0)272-656261
email: rs_forsyth@uk.ac.brispoly.cv

[Copyright (c) 1992, Richard Forsyth.]

"Pruning is done to prevent over-crowding, for the health of the plant, to open up
the lower branches to the light and to create space." - Ashley Stephenson, The
Garden Planner (1981).

Abstract: Discrimination or Classification Trees are a popular form of knowledge
representation, and have even been used as the basis for expert systems. One reason
for their popularity is that efficient algorithms exist for inducing such trees
automatically from sample data (Brieman et al., 1984; Quinlan, 1986). However,
it is widely recognized among machine-learning researchers that trees derived from
noisy or inconclusive data sets tend to be over-complex. This unnecessary
complexity renders them hard to interpret and typically degrades their performance
on unseen test cases. The present paper introduces a measure of tree quality, and
an associated tree pruning technique, based on the minimum-message-length (MML)
criterion (Wallace & Freeman, 1987; Wolff, 1991). Empirical trials with a variety
of data sets indicate that it achieves greater than 80% reduction in tree size, coupled
with a slight improvement in accuracy in classifying unseen test cases, thus
comparing favourably with alternative simplification strategies. Moreover, it is
simpler that previously published pruning techniques, even those based on the MML
principle such as that of Quinlan & Rivest (1989).

Keywords: Machine Learning, Data Compression, Inductive Inference, Information
Theory, Entropy Minimax, Classification Algorithms, Discrimination Trees.



184 FORSYTH: Ockham's razor as a gardening tool

1. INTRODUCTION

One reason for the popularity of discrimination trees (also known as decision trees) for representing
knowledge is that they are relatively easy to understand. The example tree in Figure 1, for
discriminating between aquatic and non-aquatic species of animal, should illustrate this point.

[Figure 1 — Aquatic versus Non-Aquatic Animals.]

Another reason for the popularity of such trees is that several induction algorithms exist for
generating them from example data. Of these, the best known is Quinlan's ID3 (Quinlan, 1979)
which is one of the most popular machine-learning algorithms. However, when applied to noisy
data it tends to generate large, complex discrimination trees that fit the training instances well but
generalize poorly to unseen cases. This problem (not unique to ID3) has been called "the cancerous
problem of contrivedness" (Christensen, 1980) but is more usually known as overfitting.

To reduce the risk of overfitting, modern versions of ID3, and similar algorithms, generally
incorporate tree-pruning or simplification mechanisms. Simplification can be achieved either by
halting the tree-growing process early (pre-pruningi or by growing the tree to its full extent and
then cutting off branches which cover too few training instances to be statistically reliable (post-
poning). It is generally found that post-pruning is preferable to pre-pruning (Niblett, 1987), since
it partly compensates for the fact that the ID3 algorithm does no explicit look-ahead.

Several different methods of post-pruning have been proposed.

Brieman et al. (1984) have developed a technique known as cost-complexity pruning which
attempts to find a near-optimal compromise between the complexity of the decision tree and its
accuracy by using the statistical technique of cross-validation (Stone, 1977). It is a practically
effective but computationally very expensive technique.

Niblett (1987) has investigated ways of minimizing the expected classification error-rate of a
decision tree on future cases, without reference to the complexity of the tree. This entails using
a more realistic error estimate, the Laplacian error estimate, than that provided by resubstitution
of the training data. It normally also leads to a simplification of the fully grown tree.

Quinlan (1986, 1987) has compared several statistically based pruning methods, as well as a
method which involves translating the decision tree into a set of production rules.

Most of these methods have been found to give better predictive results on noisy data sets than
using the unmodified ID3 algorithm; thus, in pragmatic terms, the problem of overfitted decision
trees can be regarded as solved. Nevertheless, recent work in this area (e.g. Quinlan & Rivest,
1989) continues in an attempt to find tree pruning methods with a sounder theoretical basis.

2. LEARNING AS DATA COMPRESSION

This approach draws on a long tradition in cognitive science which emphasizes the principle of



FORSYTH: Ockham's razor as a gardening tool 185

information economy, an idea that was fashionable a generation ago (e.g. Quastler, 1956;
Attneave, 1959; Edwards, 1964) but which subsequently fell from favour.

Recently, however, this idea has been revived as the minimum-message-length (MML) criterion
(Rissanen, 1987; Wallace & Freeman, 1987; Cheeseman, 1990). This paper uses the related
terminology of Wolff (1982, 1988) who used essentially the same principle as the basis of a
grammatical induction program called SNPR. A key feature of SNPR is that it is able to correct
overgeneralized rules without the need for explicit error-correcting feedback in the form of counter-
examples because it is always seeking the most economical description of its input data.

Briefly, Wolff's system seeks the most efficient grammar for describing a body of text. The
efficiency of a grammar (eg) with reference to a particular text corpus is:

eg = (sr - se) / sg [1]

where sr is the size, in bits, of the raw text, se is the size, in bits, of the text after encoding by the
grammar and sg is the size of the grammar itself, again measured in bits.

Learning a grammar is thus viewed as a data-compression task. Given two grammars of equal size
the one which achieves greater compression when applied to the training text is preferred.
Likewise, given two grammars capable of making equivalent savings by encoding the training data,
the smaller is preferred. (For further elaboration of these ideas, see Wolff, 1991.)

3. A METHOD OF TREE-COMPRESSION

The present study approaches the tree-simplification problem in a similar manner, by treating it
as a data-description task in which the discrimination tree plays a role analogous to the grammar
in Wolff's system. The objective is then to find the tree that allows greatest compression of the
training data relative to its own size.

In order to quantify this objective, a measure of tree quality is needed which takes into account
both the complexity of the tree and of the savings it achieves in encoding the training data.
Information theory (Shannon & Weaver, 1949) is used here as the basis for such a measure which,
for computational convenience, is expressed as a cost to be minimized rather than a figure of merit
to be maximized.

3.1 A Measure of Tree-Quality

The cost of a tree is computed as the sum of the costs attached to all its leaf nodes:

cost(Tree) = E cost(node() [2].

The cost of each leaf node has two components, the cost attributable to the node itself and the cost
of the subset of training cases it classifies (assuming optimal encoding):



186 FORSYTH: Ockham's razor as a gardening tool

cost(nodei) = d ; + e; * n( [3]
where

d: is the depth of the node concerned, i.e. the number of steps down
from the root of the tree;

e| is the average entropy of the outcome data at that node;
n, is the number of cases sorted to that node.

The depth of a node (d;) provides a good measure of its cost because the tree-pruning program
described herein (TREEMIN) at present deals only with binary decision trees. Hence to reach a
node at depth d implies that d binary choices have been made. This one-off cost is incurred by
having that node in the (notional) alphabet of symbols used to encode the training data and is set
against any savings that can be achieved by using that node to compress the data.

The second component of the cost function

uses standard information-theoretic principles (Abramson, 1963) to calculate the cost, in bits, of
an optimal Huffman coding of the outcome data from the frequencies positive and negative
instances that reach node;.

Once again, use is made of the fact that TREEMIN deals only with two-choice outcomes (though
extension to multiple categories poses no problem in principle) so that

e, = -(p*log(p) + (l-p)*log(l-p)) [4]

where p is the proportion of positive instances falling into nodei and logarithms are to the base 2.
(Note that 0*log(0) is defined to equal 0.)

To sum up, the tree is viewed as an encoding scheme and its cost computed as the sum of its own
size plus the size of the encoded outcome data. Both the size of the tree and the size of the encoded
data are measured in a 'common currency', namely information-theoretic bits.

3.2 A Tree Optimization Procedure

Given a suitable cost measure, the tree optimization procedure becomes relatively straightforward.

The TREEMIN program reads in an unpruned tree and assigns a static value to every node,
including non-terminal nodes. This is calculated from formula [3] by treating each node as if it
were a leaf node.

Then a dynamic value is assigned to each node by summing the best values of its subnodes (i.e.
the lesser of their static or dynamic values) using a recursive procedure. Leaf nodes have no
subnodes, so their dynamic values are equal to their static values.



FORSYTH: Ockham's razor as a gardening tool 187

Next the program scans the tree:, seeking non-terminal nodes whose static values are less than or
equal to their dynamic values. Such nodes are made into leaf nodes by cutting off their descendant
branches, as these descendants do not improve the quality of the tree. (Note: as presently
implemented, the program never allows deletion of the root node.) Finally the pruned tree is
printed out in a suitable format.

The tree produced by this procedure is an optimal abbreviation of the original tree (with respect
to the cost function employed). It does not follow, however, that it is the optimum tree obtainable
from the same data, since TREEMIN, like most such programs, does not attempt to rearrange the
order of nodes.

4. EMPIRICAL TRIALS

TREEMIN has been tested empirically by comparing its results with three other commonly used
methods of tree-pruning on a number of test data sets. These data sets are briefly described below.

4.1 Test Data-Sets

1. QUIN : This is an artificial data-set designed to model a task in which only
probabilistic classification is possible and which contains disjunctions. It is
effectively the same as Quinlan's "Prob-Disj" data-set (Quinlan, 1987) and consists
of ten random binary variables (vl to vlO). The outcome (Y or N) or each case is
assigned according to the conditional expression:

IF vl & v2 & v3
OR v4 & v5 & v6
OR v7 & v8 & v9
THEN outcome == Y (prob=0.9), outcome = N (prob=0.1)
ELSE outcome = Y (prob=0.1), outcome = N (prob=0.9).

One attribute, vlO, is irrelevant. A training set of 400 cases and a test-set of 200
cases were generated.

2. RAND : This is simply a random data set containing twelve random binary
variables plus a target variable which is 1 in approximately 50% of the cases and
0 in the other 50%. A training set of 255 instances and a test set of 100 training
instances were used.

3. DIGIDAT : This example is essentially the same as that used by Brieman et al.
(1984) as a test case. Each data record is generated by simulating a faulty Liquid
Crystal Display in which digits are displayed by setting bars on or off. There are
seven bars, each of which can be on or off. A training file of 359 examples and a
test set of 642 examples was used, in which every bar had a 0.1 probability of being
in error - either on when it should have been off or vice versa. In addition, four
spurious fields, containing purely random data, were included with each case. Here
the binary decision task given to the tree-growing program was to distinguish 8's
and 9's from the other numerals.



188 FORSYTH: Ockham's razor as a gardening tool

4. ZOOBASE : The fourth data-set contains details of 101 animal species. Each is
described in terms of 18 attributes such as the number of legs it has and whether it
gives milk to its young. The data was randomly split into a training set of 51
records and a test set containing the remaining 50 cases. The learning task for the
system was to induce a rule for distinguishing aquatic from land-living creatures.
This data has been more fully described elsewhere (Forsyth, 1990).

5. CARDIAC : The fifth data-set was taken from Afifi & Azen (1979). It describes
113 critically ill patients brought into a hospital in Los Angeles. Attributes measured
for each patient on admission include systolic pressure, mean arterial pressure, heart
rate and shock-type (a categorical variable). Here the classification task is to
discriminate the patients who survived from those that died. For the present trial this
data was randomly divided into a training set of 69 cases and a test set of 44 cases.

6. GRANDEE : The sixth data-set contained details of the horses taking part in the
Grand National steeplechase (held at Liverpool every year) in the years 1987 to
1992 inclusive. Each horse was described in terms of a number of variables, such
as betting odds, age, longest winning distance, weight carried etc. Only the first 24
horses in racecard order were included, as horses lower down the handicap very
rarely finish in the first four. This data was divided chronologically rather than
randomly: the years 1987 to 1989 formed a training set of 72 cases; the years 1990
to 1992 formed the test set, also of 72 cases. The objective here was to form a tree
that would distinguish horses that completed the course from those that failed to
finish. (70 of the 144 horses in the total data-set did manage to finish the course.)

7. MELANOMA : The final data-set was obtained from Frenchay Hospital, Bristol,
as part of a long-term study of patients with Melanoma, a dangerous form of skin
cancer that has become increasingly prevalent in Britain in recent years. Details of
307 patients were used for the present trial, measured on such variables as age-at-
presentation, sex, thickness of tumour, site of tumour and so on. The objective here
was to find a tree that would distinguish patients who were still alive five years after
surgery from those that died within five years. Training was done on a random
subset of 199 cases and testing on the remaining 108.

4.2 Results

On each data-set, the basic ID3 algorithm was used to produce an unpruned discrimination tree,
then four different simplification strategies were employed.

Method 1 : Prune backwards from leaf nodes till a node is reached such that the
Chi-squared statistic (Siegel & Castellan, 1988) at that node has a probability of less
than 0.05 under the null hypothesis -- i.e. prune backwards to the 95% confidence
level.

Method 2 : As Method 1 but pruning back till the value of Chi-squared has a



FORSYTH: Ockham's razor as a gardening tool 189

probability of less than 0.01 -- i.e. prune back to the 99% confidence level.

Method 3 : Prune the tree as described in section 3.2 but using the Laplacian error-
rate as the quantity to be minimized (rather than coding cost). In two-outcome tasks,
the Laplacian error rate (Le,) of a node (assuming prior ignorance in a Bayesian
sense) is

Le, = (1 + min(y,n)) / (y + n + 2) [5]
where y is the number of positive exemplars and n the number of negative
exemplars found at that node.

Method 4 : Prune the tree to minimize the overall coding cost as described in
sections 3.1 and 3.2 (MinCost pruning).

[Table 1 -- Number of Leaf Nodes.]

Data Set

QUIN

RAND

DIG1DAT

ZOOBASE

CARDIAC

GRANDEE

MELANOMA

Sums :

Saving %

Original
Tree

50

68

37

6

11

10

26

208

0

95% C.I.

19

7

9

3

4

4

16

62

70.19

99% C.I.

12

2

6

3

3

2

7

35

83.17

Laplace

40

62

12

3

10

6

22

155

25.48

MinCost

10

3

7

3

4

4

7

38

81.73

Table 1 shows the sizes of the decision trees produced on each of the four data sets by the various
methods. Clearly all the pruning methods do reduce the number of terminal nodes.

Table 2 lists the percentage error rates obtained when using the pruned and unpruned trees on the
corresponding test data. Percentage error rate is a simple but reasonably sensitive index of
predictive accuracy.

The figures show that simplification is not normally bought at the expense of accuracy.



190 FORSYTH: Ockham's razor as a gardening tool

[Table 2 -- Percentage Error Rates on Unseen Data.]

Data Set

QUIN

RAND

DIGIDAT

ZOOBASE

CARDIAC

GRANDEE

MELANOMA

Mean :

Original
Tree

16.5

55

15.11

16

25

38.89

40.74

29.61

95% C.I.

18.5

47

11.68

14

29.55

34.72

41.67

28.16

99% C.I.

15.5

47

11.68

14

29.55

40.28

37.04

27.86

Laplace

15.5

55

12.3

14

25

38.89

42.59

29.04

MinCost

16.5

43

11.68

14

29.55

34.72

35.19

26.38

Clearly all the pruning methods tested achieve significant simplifications coupled, on the whole,
with improved classification accuracy on unseen data. This agrees with the findings of earlier
studies (e.g. Clark & Niblett, 1987; Quinlan, 1987).

Benchmarking exercises such as the present one can never be conclusive, but these figures do
suggest that:

(1) the MinCost method is a viable methods of tree simplification; and
(2) the Laplacian error estimate, at least in its basic form, gives poor results.

5. CONCLUSIONS

The BitCost measure used by TREEMIN is based on a very simple model of descriptive
parsimony. Essentially it states that a leaf node in a decision tree can only justify its existence if
the number of bits required to specify that node is balanced by an equivalent reduction in the
number of bits required to specify the outcome data which arrive at that node.

Given its simplicity, the performance of this model on test data is quite impressive. The empirical
results on these medium-sized data sets are consistent with the view that minimizing this measure
of coding cost (as proposed in sections 3.1 and 3.2) gives decision trees that are at least as good
as, and possibly better than, pruning to the 99% confidence level. This lends support, at least
indirectly, to Wolff's SP theory (Wolff, 1991) from which our model was derived.

A notable coup for the MinCost method was its performance on the random data set. In theory,
optimal pruning should leave only a single node, the root, with this data. MinCost pruning reduced
this tree from 68 to 3 leaf nodes (one more than pruning to the 99% confidence level). However,
its performance in classifying the test data was actually better than chance and better than that of



FORSYTH: Ockham's razor as a gardening tool 191

the other methods. The explanation for this seems to be that it managed to exploit a minor flaw
in the random number generator used to create the data. One could hardly ask for more from an
inductive technique than that it should find a hidden regularity that is not even supposed to exist.

5.1 Advantages of MinCost Pruning

TREEMIN's method of tree pruning appears to have certain advantages over previously published
techniques.

1. It is easy to compute.

2. It uses all the data (unlike cross-validation, which requires splitting the full data-
set into two or more sets).

3. It does not need any 'fiddle factors' such as coefficients weighting tree-size
against error-rate, or even the setting of an arbitrary conventional significance level
(e.g. 5% versus 1% significance level).

4. It does not depend on any assumptions from sampling theory such as Gaussian
noise distribution nor does it attempt to estimate population parameters such as mean
or standard deviation.

5. It does not depend on anyone's skill at encoding an actual tree, but rather uses
an ideal or limit-case measure of tree-size.

In the first and last points above the present work differs from recent work based on the MML
(Minimum Message Length) principle, e.g. that of Quinlan & Rivest (1989).

Although set within a data-compression context and inspired in particular by Wolff's work on
information economy, TREEMIN effectively performs a different size-vs-fit trade-off from other
similar systems. Rather than explicitly balancing the cost of sending the tree down some imaginary
communication channel against the information gained about the dependent variable by using that
tree, TREEMIN implicitly balances the cost of the information used about the independent
variables (in feature space) against the information gained about the dependent variable.

5.2 Discussion

This paper has presented an information theoretic model (the MinCost model) and an associated
quality function (the BitCost measure) for the task of decision-tree simplification. The results of
using the model and its associated quality measure on several test problems are promising enough
to warrant further investigation.

As has been pointed out:



192 FORSYTH: Ockham's razor as a gardening tool

"the predictive promise of a [tree] depends on the apparent error-rate of the tree and
on the size of the tree. These criteria work in opposite directions, and the problem
is that there is no obvious a priori method of establishing the correct trade-off
between them." (Watkins, 1987.)

Most previous methods of establishing the complexity-versus-accuracy trade-off have indeed been
somewhat ad hoc, but it is the contention of the present paper that - by setting the induction task
within an entropy-minimaxing framework ~ a rational measure of tree quality can be obtained
using information theory.

If this contention is correct, we are not confined merely to the pruning of decision trees. We can
easily apply a similar logic to the pruning of regression trees. Indeed a general quality measure
would apply to other formalisms (such as production rules) created by other algorithms (such as
simulated annealing).

For example, it should be possible to adapt this approach to another of the guises in which the
complexity-vs-accuracy trade-off crops up, namely the problem of correctly 'sizing' a neural
network. It would be especially interesting to attempt to apply the MinCost model to the Upstart
Algorithm (Frean, 1990), which dynamically extends a network of Perceptron-type linear threshold
units as learning proceeds, resulting in a hierarchical structure rather like an ID3 decision tree.

Undoubtedly the MinCost model is not the last word on this subject, but it does represent a modest
contribution to the ongoing philosophical debate on induction, since it provides a practical
implementation of the principle of scientific parsimony known as Ockham's Razor, in honour of
the 14th-century philosopher William of Ockham, who stated that entities should not be multiplied
without need.

A modern enunciation of this principle is Wittgenstein's dictum that:

"the procedure of induction consists in accepting as true the simplest law that can
be reconciled with our experiences" (Wittgenstein, 1961).

Though widely accepted, this maxim is somewhat ill-defined. Philosophers of science have argued
at length over the meanings of its two key terms: (a) simplicity and (b) compatibility with the facts
(Popper, 1959, 1980; Katz, 1962). One merit of the present work is that it provides a relatively
straighforward operational measure of these two key terms, within the framework of information
theory.

Acknowledgements

Part of the development of TREEMIN, and associated software, was supported by the UK
Transport and Road Research Laboratory under contract ref. BIX-516. The author would also like
to express thanks to Bridget Broggio, David Clarke, Dave Elliman, James Higgs, Dean McKenzie,
Gerry Wolff and Richard Wright for helpful comments and suggestions.



FORSYTH: Ockham's razor as a gardening tool 193

References

Abramson, N. (1963) — Information theory and coding: McGraw-Hill, New York.

Afifi, A.A. & Azen, S.P. (1979) -- Statistical analysis: a computer oriented approach. 2nd ed.:
Academic Press, New York.

Attneave, F. (1959) - Applications of information theory to psychology: Holt, New York.

Brieman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984) - Classification and regression
s: Wadsworth, Calif.

Cheeseman, P. (1990) -- The minimum message length criterion. In J. Shrager & P. Langley
(eds.) Computational models of scientific discovery & theory formation: Morgan Kaufmann, San
Mateo, CA.

Christensen, R. (1980) - Entropy minimax sourcebook. vol 3: Entropy Ltd., Lincoln, Mass.

Clark, P. & Niblett, T. (1987) -- Induction in noisy domains. In: I. Bratko & N. Lavrac (eds.)
Progress in machine learning: Sigma Technical Press, Wilmslow, Cheshire, pp. 11-30.

Edwards, E. (1964) - Information transmission: Chapman & Hall Ltd., London.

Forsyth, R.S. (1990) - Neural learning algorithms: some empirical trials: Proc. 3rd Int. Conf. on
neural nets & their applications (Neuro-Nimes-90): EC2, Nanterre, pp. 301-317.

Frean, M. (1990) - The Upstart algorithm: a method for constructing & training feedforward
neural networks: Neural Computation. 2, pp. 198-209.

Katz, J.J. (1962) - The problem of induction and its solution: Univ. Chicago Press, Illinois.

Niblett, T. (1987) - Constructing decision trees in noisy domains. In: I. Bratko & N. Lavrac
(eds.) Progress in machine learning: Sigma Technical Press, Wilmslow, Cheshire, pp. 67-78.

Popper, K.R. (1959, 1980) - The logic of scientific discovery: Hutchinson, London. (1st German
edition, 1935.)

Quastler, H. (1956) -- Information theory in psychology: Free Press of Glencoe, New York.

Quinlan, J.R. (1979) — Discovering rules by induction from large collections of examples. In: D.
Michie (ed.) Expert systems in the micro-electronic age: Edinburgh University Press, pp. 168-201.

Quinlan, J.R. (1986) -- Induction of decision trees: Machine learning. 1, pp. 81-106.

Quinlan, J.R. (1987) -- Simplifying decision trees: Int. J. man-machine studies. 27, pp. 221-234.



194 FORSYTH: Ockham's razor as a gardening tool

Quinlan, J.R. & Rivest, R.L. (1989) — Inferring decision trees using the minimum description
length principle: Information & Computation. 80, pp. 227-248.

Rissanen, J. (1987) -- Stochastic complexity: J. Royal Statistical Soc. (B). 49, 3, pp. 223-239.

Shannon, C. & Weaver, W. (1949) -- The mathematical theory of communication: U. Illinois
Press, Urbana.

Siegel, S. & Casetllan, N.J. (1988) - Nonparametric Statistics. 2nd ed.: McGraw-Hill, New York.

Stephenson, A. (1981) - The garden planner: Book Club Associates, London.

Stone, M. (1977) - Cross-validation: a review: Math, operationforsch. statist, ser. statist.. 9, pp.
127-139.

Wallace, C.S. & Freeman, P.R. (1987) - Estimation and inference by compact coding: J. Royal
Statistical Soc. (B). 49, pp. 240-265.

Watkins, C.J.C.H. (1987) - Combining cross-validation and search. In: I. Bratko & N. Lavrac
(eds.) Progress in machine learning: Sigma Technical Press, Wilmslow, pp. 79-87.

Wittgenstein, L. (1961) — Tractatus logico-philosophicus: Routledge & Kegan Paul Ltd., London
(tr. by Pears & McGuinness).

Wolff, J.G. (1982) — Language acquisition, data compression and generalization: Language &
communication. 2(1), pp. 57-89.

Wolff, J,G. (1988) - Learning syntax and meanings through optimization and distributional
analysis. In: Y. Levy, I.M. Schlessinger & M.D.S. Braine (eds.) Categories and processes in
language acquisition: Lawrence Erlbaum, New York, pp. 179-215.

Wolff, J.G. (1991) - Towards a theory of cognition and computing: Ellis Horwood, Chichester.



FORSYTH: Ockham's razor as a gardening tool 195

Figure 1 — Example Decision Tree :
Aquatic versus Non-Aquatic
Animals.





A Designer's Consultant
J.W. Brahan, B. Farley, R.A. Orchard, A. Parent, C.S. Phan

Institute for Information Technology
National Research Council
Ottawa Canada K1A 0R6
jack@ai.iit.nrc.ca

Abstract

Most expert systems perform a task on behalf of the user. The task usually involves
gathering and analyzing data, and recommending or initiating the appropriate ac-
tion. However, expert systems can also play an important role in showing the user
how to perform a task. In this role, the expert system provides support until it even-
tually becomes of decreasing importance as its knowledge base is transferred to the
user. This category includes Help Systems, Coaching Systems, and Tutorial Systems.
In this paper, we discuss the development of an Intelligent Advisor combining the
three functions in a system to assist the user in acquiring and refining the knowl-
edge required to carry out a design task. The combined system provides a means
of introducing a training facility as an integral part of the work environment. The
primary goal of our project is the creation of a system in which the generic advisor
components are identified along with the methodology required to adapt them to
specific applications. The conceptual modelling phase of database design was chosen
as the application domain to develop the system and to demonstrate feasibility. An
initial prototype has been implemented, which illustrates the operation of the sys-
tem in each of the three modes as applied to database modelling. The technology is
currently being extended to a second application domain.

1 Introduction
ERMA (Entity-Relationship Modelling Advisor) is a knowledge-based system that
serves as a consultant to the user of a computer-based design tool, providing advice
as required. While most expert systems carry out a task on behalf of the user,
ERMA shows the user how to perform a task. Its underlying goal is to transfer
to the user those parts of its knowledge base that respond to needs identified from
user questions and user problems encountered in interacting with the design tool. It
provides support until it eventually becomes of decreased importance as its knowledge

NRCC33234



198 BRAHANETAL: A designer's consultant

is transferred. Common types of systems that are concerned with knowledge transfer
are Help Systems (Breuker, 1990), Coaching Systems (Burton and Brown, 1979),
and Tutorial Systems (Clancey, 1986). In this paper, we address the topic of an
Intelligent Advisor, that combines these three functions to support the acquisition
of knowledge adapted to the needs of the individual user. ERMA was developed
within the framework of an Intelligent Advisor Project that involved the collaboration
of the National Research Council, Laval University, the University of Leeds, and
Systemoid Ltee1. The primary goal of this project was the creation of a system
in which the generic advisor components are identified along with the methodology
required to adapt them to specific applications. The conceptual modelling phase of
database design was chosen as the application domain and an initial prototype has
been implemented to demonstrate feasibility.

2 System Functionality

The Intelligent Advisor serves as an interface between the user and an interactive
computer system. It is aimed primarily at facilitating use of those systems, such as
engineering design tools, where knowledge of the application domain is a prerequisite
to using the tool effectively. This knowledge is not part of the tool, but is expertise
that the user must bring to the interaction. The Intelligent Advisor is intended
to serve users who possess skill levels in the application domain that extend from
neophyte to experienced user. Three main functions are provided. In a reactive
mode, the Advisor provides help in response to the user's questions. The help that
is given must be directly related to the user's indicated need and must be effective
in helping the user get on with the task at hand. In a proactive mode, the Advisor
observes the user's interaction with the system and offers advice aimed at helping
the user achieve his or her desired goals more effectively. The third role is that of
a tutor. Using an apprenticeship-based approach, the tutor uses pre-solved design
cases and builds on the reactive and proactive functionalities to introduce the user to
the domain concepts and design methodology necessary to apply the design tool.

3 Knowledge Acquisition

Development of an Advisor with the desired functionality requires knowledge of the
application domain. It also requires a knowledge of the communication protocols
governing the interchange between a user and an advisor. For example: what types
of questions are asked by the user? what answers are given by an expert advisor?
what is the nature of the dialogue that takes place between user and advisor to
clarify questions and answers? To address the requirement for knowledge governing
the communication protocols, a series of simulations were run. User and expert were
placed in separate rooms. The user was assigned the task of producing a conceptual

Succeeded by CSA Recherche Ltee



BRAHANETAL: A designer's consultant 199

data model using the Silverrun-ERM design tool (Modell, 1989). The user was shown
how to use the design tool and how to communicate with the expert through his
workstation. He was instructed to ask questions when in difficulty or in doubt and
to express his thoughts aloud so that they could be recorded. The expert advisor
could observe the user's conceptual model on a reproduction of the user's screen and
could communicate with the user via his terminal. Six subjects participated in the
study. Four had little or no formal training and little or no relevant experience in
data modelling. Two subjects were experienced data modellers. The task consisted
of designing a conceptual data model for an Unsatisfactory Condition Report (UCR)
Management System for use within the Department of National Defence. (The UCR
is a formal report used to record problems with materiel and related procedural
matters.) An initial, incomplete model was given to the user to make the task easier.

A process adapted from Dialogue Game Theory was applied to analyze the collected
protocols (Levin and Moore, 1977). A classification scheme was based on the analysis
of a single subject representative of the primary target users of the system: an analyst
with little formal training and limited experience in conceptual data modelling but a
good knowledge of the application domain. The approach was developed and applied
to the first subject in collaboration with the Computer-Based Learning Unit at the
University of Leeds and subsequently completed at the National Research Council
using the data from the five remaining subjects. Results of the analysis provided
question and response typologies on which the reactive help function of the Advisor is
based. The protocol analysis has identified 12 types of questions that a user might ask.
The examples presented in Table 1 are drawn from the entity-relationship modelling
domain. However, the question types are believed to be sufficiently general to apply
to any design application involving concepts, objects associated with those concepts,
and actions or tasks to manipulate the concepts and objects.

4 The Design Tool
For the simulation experiment, a commercial CASE tool, Silverrun-ERM was used.
This is a graphics tool designed for the preparation of the conceptual design of a
database based on the entity-relationship model. The tool is essentially a. mechanism
for creating a dictionary of objects to be defined and manipulated through a graphics
interface. It was provided by Systemoid Ltd. who also made the modifications to the
tool necessary to link it to the NRC program that provided the communication be-
tween the user and advisor in the simulation. However, the complete communication
support required between the CASE tool and Advisor could not be accurately de-
fined early in the project. With the constraints on changes to a commercial software
product, it was decided that a CASE tool emulator would have to be built to achieve
the necessary flexibility. The HyperNeWS system (van Hoff, 1989), which was used
for the Advisor interface, incorporated a fairly powerful drawing tool. This provided
a convenient mechanism for development of the required CASE tool emulator.



Table 1. Types of Questions

Question Type Description Example

1. General Elaboration Request for information on a concept of the design domain or the domain Tell me about entities,
to which it is applied. The expected answer is a description of the concept
tailored according to the system's assessment of the user's knowledge.

2. Specific Elaboration Request for information on a specific aspect of a concept What is the purpose of cardinalities

3. Validation of the Current
Model

Request to check that an object in the user's design is valid, i.e. Does the
object fulfil the purpose of its conceptual type? Does its value reflect the
user's intended meaning?

Check the validity of the minimum
cardinality between the entity professor and
the relationship teach.

4. Validation of a Future Model Request to check the validity of a proposed action to modify the current
model, such as creating a new object or changing a value.

5. Validation of a Future
Model — Alternative actions

Request to be told which of two different actions would be more
appropriate.

Should I create the relationship registration!

Should I assign the attribute date to the entity
course or to the relationship registration!

6. Enablement — Decision
about taking an action

Request for information on the conditions and/or rules that determine if a
given action should be carried out.

How do I decide if I should create an entity?

7. Enablement — Decision
about taking alternative
actions

Request for information on the conditions and/or rules that determine
which of two different actions should be carried out.

How do I decide whether I should create an
entity or create a relationship?

w

X

r
>

3

1

8. Enablement — Decision
about names and values

Request for information on the conditions and/or rules that govern the
value to which an attribute is set or the name that should be assigned an
object.

How do I decide on the value of the
maximum cardinality of a link between an
entity and a relationship?
How do I decide on the name of an entity?

9. Enablement — Decision
about time of an action

Request for information on the conditions and/or rules that determine
when a given action should be carried out.

When should I set the cardinalities?

10. Enablement — Performing
an action

Request for information on the conditions and/or rules that govern the
execution of a given action.

How can 1 represent the triple professor -
teaches — courses'!

11. Value Assignment Request to be told the value that should be assigned an attribute of a
given object.

What value should I give to the minimum
cardinality of the link between the entity
professor and the relationship teaches!

12. Knowledge Base Content
Query

Request for information on the contents of the knowledge base in terms
of concepts, tasks, or constraints.

Give me a list of all concepts that apply to
entity-relationship modelling.



BRAHANETAL: A designer's consultant 201

5 System Architecture

The system, illustrated in Figure 1, consists of three primary modules corresponding
to the three Advisor functions: Proactive Help, Reactive Help, and Tutorial. These
primary modules are supported by the Design Knowledge Base and two data modules:
the Data Model and the User Model. The Data Model, which is maintained by
a session monitor within the Advisor-side Interface unit, represents the conceptual
model design that is being created by the user. The User Model, which is maintained
by the User Modeller, provides an estimate of the user's knowledge of conceptual
modelling tasks and concepts.

Communication between the Advisor and the computer-based design tool is through
the Advisor-Tool Interface. It consists of two components: the Tool-Side Interface and
the Advisor-Side Interface. The Tool-Side Interface transmits the user's operations
on the design tool to the Advisor and forwards requests from the Advisor to the
design tool. The Advisor-Side Interface monitors the user design operations in order
to maintain an internal copy of the data model created by the user. When a user
operation is identified, this module sends a message to the System Scheduler to be
forwarded to other modules of the Advisor for appropriate actions. The Scheduler
coordinates the invocation of the Tutor, the Help Modules, and the User Modeller
in response to user operations. Interactions between the user and the Advisor are
through the User Interface Module.

The prototype Advisor is implemented in Common Lisp on a Sun SPARCstation
using HyperNeWS 1.4 for the graphics interface. Currently under consideration is the
transfer of the implementation to a PC platform and the X-Window environment.

6 Knowledge Representation
The knowledge that is used by the Proactive Help Module for constraint checking and
rule or plan detection is primarily of a procedural nature, as is the knowledge used
by the Tutorial Module. However, the knowledge used by the Reactive Help Module
for answer generation is primarily of a declarative nature. Moreover, in order for the
answerer to manipulate the static knowledge in an effective and efficient manner, the
knowledge elements need to be structured and linked by various kinds of relations
to form semantic networks. Given these mixed requirements, a frame-based repre-
sentation offers many advantages. Knowledge elements can be structured easily with
frames and they can be linked by relations to form networks. Procedural knowledge
can be conveniently coded as slot values to be executed by external interpreters. The
Advisor frame representation is implemented in Common Lisp. Each frame is a data
structure consisting of a set of slots and a set of values for each slot. There are two
types of slots. Attribute slots are used to store descriptive information. Relation slots
are used to define linkage between frames. The frame system allows demons to be



202 BRAHAN ET AL: A designer's consultant

Computer-based
Design Tool

Entity-Relationship
Modeller

Advisor-Tool
Interface

Tutor
Proactive
Reactive Help

Help- *

User

Tool-Side
Interface

Proactive Help Reactive Help

frule:
ftasks

^constraints

concepts

Knowledge Base

Tutor

Figure 1: System Architecture

defined and attached to slots to take appropriate action when the value of the slot is
changed.

The relation feature of the frame system permits the establishment of inheritance
hierarchies through which information about an ancestor is inherited by its descen-
dants if the information is not defined locally in the descendant frames. In the
Advisor knowledge base, this feature is used, for example, to establish specialization
and generalization relations between concepts. Any relation can be defined to have
an inverse relation. This feature is used throughout the Advisor's knowledge base
and the inverse linkages are automatically created and maintained by the system.

Four types of knowledge elements are identified: concepts, constraints, tasks, and rules
of good practice. Concepts are generally referred to as the what is type knowledge.
They are the basic elements of knowledge that one has to understand in order to
perform a design task effectively. Examples of concepts are entity, relationship, and
cardinality. Constraints, in general, are conditions that must be satisfied or validated
during various stages of a design process. Three types of constraints are identified:



BRAHANETAL: A designer's consultant 203

value constraints, constituent constraints, and validity constraints. The maximum
cardinality must be greater than zero is an example of value constraint type. Tasks
are design steps to achieve specific goals. For example, creating entity-set is a task,
or design step, with its obvious goal of creating an entity set. A task can be primitive
or composite. A primitive task is one that requires no other tasks to achieve its goal.
This collection of tasks corresponds to the set of the primitive design operations such
as creating entity-set, making attribute link. A composite task, on the other hand, is
one that consists of some group of tasks to be carried out in a certain order to achieve
the intended goal. Rules of good practice are the heuristics that an expert uses to
achieve a better design or to do his or her design more efficiently. Cardinalities should
be defined immediately after an entity relation link is made is an example of a rule of
good practice.

7 User Model
The User Model provides information relating to the user's knowledge of the appli-
cation domain based on the history of his or her interaction with the system. Its
purpose is to support the adaptation of the system's response and interventions to-
wards matching the requirements of the individual user. Data are gathered as the
user performs tasks using the design tool, requests help, and violates design con-
straints. The content of the user model as implemented in the prototype is based
on the analysis of the dialogue protocols gathered during the previously described
simulation experiments. Each answer or dialogue episode was described in relation
to a set of variables relevant to the experts choice of content and organization. The
variables found to be of significance include the following:

- User beliefs in respect to concepts and tasks.

- Previous questions asked by the user.

- Results of requests to validate the user's conceptual data model.

- History of the user's constraint violations.

Information from the User Model is used to identify different answering strategies
and different factors within the strategies and to control the presentation of guidance
information in the Tutorial Module. The value of the user model, however, remains
to be proven and this will be a key topic in the evaluation of the prototype.

In considering the role of the User Model, it is to be noted that a strong emphasis has
been placed on user initiative in providing for adaptation to individual user require-
ments. An embedded hypertext facility provides for adaptability but with control in
the hands of the user. Information generated by the system in the form of answers to
questions, reports of constraint violations, and tutorial information provides links to



204 BRAHANETAL: A designer's consultant

related information within the knowledge base. By selecting any of the items iden-
tified in bold font in text generated by the advisor, the user can obtain additional
information.

8 The Reactive Help Module (Question Answering)
Design of the Reactive Help Module or Question-Answering Module is based on the
results of the protocol analyzes described previously. The user composes a question via
menu. By pressing the Question Button, the user gains access to the menu containing
the different question types in the form of introductory question statements. After the
user selects the question type, the corresponding menus for completing the question
are presented in sequence, with the appropriate choices of concepts and tasks. In some
cases, the user will be required to type the name of an object or to pick an object
from the model displayed in the design window. Once a question has been completed
and confirmed with the Confirm Button the answer is displayed. The menu content
is either predetermined or generated at run time. Our current goal is to move as
far a.s possible towards generating all menus at run time. This feature allows the
knowledge base to be built incrementally. Any addition or deletion of knowledge
elements will be reflected dynamically in the menus without changing the question
generating procedures.

The answers generated by the Advisor depend on several factors: the local need
(question type, topic, and source), the user's level of knowledge, the local context,
etc. The form of the answers and to a certain extent their content have been identified
from the protocol analysis. Our approach to the implementation of the question-
answering module has been derived from that taken at the University of Leeds in the
EUROHELP project based on the use of rhetorical predicates (Hartley et al, 1990).
Associated with each question type is an answer type or answer frame, consisting
of a sequence of functions or predicates that set the directions for retrieving the
content of, structuring, and uttering the answer. In this way, answers are constructed
from pieces of information found in the knowledge base through the use of content
predicates with structure determined by organizational and instantiation predicates.
We have augmented this with a knowledge expansion facility in the answer based on
a hypertext mechanism.

Of the 12 question types identified, 4 have been implemented to date in our initial
prototype. These are: general elaboration, specific elaboration, validation of current
model, and validation of future model. Work is currently underway on the develop-
ment of tools to facilitate the implementation of the remaining question types and
the extension of the knowledge base.



BRAHANETAL: A designer's consultant 205

9 Proactive Help

The Proactive Help Module provides a coaching function. It monitors the user's
interaction with the design tool and intervenes with suggestions to assist in attaining
the intended goal. When a change is detected in the conceptual model that the user
is designing, a situation recognizer is called into play. This serves as a first focusing
step in checking for nonconformance to rules and for violation of constraints. In
the current prototype, the number of situations that have been identified is limited.
First, we have the set of primitive design operations. This includes operators such as
creation of a new entity and modification of the cardinality of an entity-relation link.
In addition to these primitive design operators, several status points are identified
as recognizable situations. These include: end of session, a few steps after creation
of an entity, and a few steps after the creation of an entity-relation link. Rules and
constraints are checked when any of these situations is encountered. For example,
the rule stating that an identifier should be specified immediately after the creation
of an entity will be checked at the situation: a few steps after entity creation.

The situation recognizer invokes a constraint and rule check which detects any con-
straint violations, subsequent corrections, and rule nonconformities. Results are
passed to the User Modeller for updating the User Model and to the Intervener,
which generates advice to the user as appropriate.

10 Tutorial Module

The Tutorial Module provides a means whereby the neophyte can be introduced to
the domain knowledge necessary to apply the design tool. It has been designed using
apprenticeship learning as the basic model (Collins et al., 1986). This approach em-
phasizes the acquisition of skills directly related to the accomplishment of meaningful
tasks. Abstract concepts are only introduced as they are required to explain a given
task. The student is guided through a set of examples that illustrate application of
the target skill set. In the initial exposure, tasks are executed and explained by the
system. As the student is exposed to the skills, responsibility for executing the tasks
is gradually handed over until the student is capable of carrying out the tasks with
little or no interaction from the Tutorial Module. Course content consists of a set of
solved design problems. In each of these, the design process is defined by an initial
state, which is the statement of the problem to be solved, a final state, which is the
solution, and a number of intermediate states that represent the steps in solving the
problem. Each of these states has a situation description, identification of the ap-
plicable design concepts, the decision to be made based on the methodology that is
being followed, and the action to be taken. If the User Model indicates no evidence
that the user knows the applicable concepts, the Tutor will execute the task, provide
an explanation of the action and the concepts involved, and provide an update to the
user model as appropriate. Once a concept has been explained, the next time a task
is encountered based on that concept, the student will be given the opportunity to



206 BRAHANETAL: A designer's consultant

carry out the task. At any point the student can ask for a hint and if still incapable
of executing the task can request the system to do so. It is important to note that
the Tutor is embedded in the Advisor environment giving the student full access to
the two other modules or modes of operation. At any time, the student can enter
the reactive help mode to ask a question. All actions by the student that change the
design model are processed by the Proactive Help module which provides warning of
any constraint or rule violation.

During initial development of the tutorial module, one tutorial case was prepared
and manually incorporated in the system. However, the potential was recognized for
the use of the system to interact with the expert in the creation of tutorial cases
through a role-reversal approach. In this mode, the system acts as the student while
the expert carries out a design exercise using the CASE tool. At each step in the
design, the system prompts the expert for the required supporting information. Once
the case is completed, the system analyzes the steps and identifies the solution paths
that are permitted by the design methodology. The solution set is then presented
to the expert for verification. Two cases have been prepared using this facility. The
results clearly indicate that it offers a cost-effective means for creating tutorial cases
and a tool that can be used by the expert in a natural mode of interaction.

11 Conclusion
Our goal in this project is the development of Advisor technology that will assist the
user of an interactive computer-based design tool to acquire and apply the knowledge
necessary to make effective use of that tool. The Advisor must be capable of being
integrated in the work environment as a transparent facility that does not interfere
with a user who only wants to consult the Advisor occasionally. By combining the
functions Coach, Help, and Tutor with a hypertext knowledge expansion facility,
we have created an environment that demonstrates a natural means of knowledge
transfer consistent with the information workstation environment. It allows the user
to participate actively as an intelligent agent, in the control of the process. Facilities
incorporated in the Advisor support the economical creation of tutorial cases by the
domain expert and a practical means of adapting the system to particular application
needs.

Feasibility has been demonstrated with a limited prototype developed for the concep-
tual data modelling domain. Application to a second domain has been initiated in a
project to develop an Advisor for use in the siting of navigational beacon antennas
at airports.



BRAHANETAL: A designer's consultant 207

Acknowledgements

We are indebted to our many colleagues who participated in the Intelligent Advi-
sor Project, which resulted in the system described in this paper. We are partic-
ularly grateful to Roger Hartley, Andrew Cole, Rachel Pilkington, Colin Tatter-
sall, and Qassim Hasson, of the University of Leeds, for their contribution to the
question-answering facility and to the formulation of the initial project proposal; to
Marie-Michele Boulet of Laval University, who contributed a large part of the do-
main knowledge and an early Advisor implementation; to Philippe Duchastel, for
the early studies that lead to the tutorial design; to Daniel Pascot who suggested
the application domain, provided the Silverrun CASE tool and advice regarding con-
ceptual design techniques; to Andre Laurendeau, who organized the subjects for the
simulation experiments and developed the first tutorial case; to Philippe Davidson,
who implemented the initial version of the tutorial module; to Xueming Huang, who
implemented the case acquisition module; and to Francois Vernadat, who provided
advice at many critical stages in the project.

References
Breuker J. (ed) (1990). EUROHELP: Developing Intelligent Help Systems. ESPRIT
Project Report, University of Amsterdam, Department of Social Science Informatics,
Amsterdam.

Burton R.R and Brown J.S. (1979). An investigation of computer coaching for infor-
mal learning activities. International Journal of Man-Machine Studies, 20, 21-23.

Clancey W.J. (1986) Intelligent Tutoring Systems: A Tutorial Survey. Stanford Uni-
versity, Stanford CA. Report No. STAN-CS-87-1174.

Collins A., Brown J.S. and Newman S.E. (1986). Cognitive Apprenticeship: Teaching
the Craft of Reading, Writing and Mathematics. BBN Laboratories Incorporated,
Cambridge MA. Technical Report No. 6459.

Hartley J.R., Pilkington R., Tait K. and Tattersall C. (1990). Question interpretation
and answering, in J. Breuker (editor). EUROHELP: Developing Intelligent Help
Systems.

Levin J.A. and Moore J.A. (1977). Dialogue Games: Meta-communication structures
for natural language interaction. Cognitive Science, 1(14).

Modell, H. (1989). Six CASE products for the Macintosh. Computer Language, 6(6),
111-131.

van Hoff, A.A. (1989). HyperNeWS 1.3 User Manual. The Turing Institute, Glasgow.





Fairness of Attribute Selection
In Probabilistic Induction

A.R White and W.Z. Liu

Computer Centre
University of Birmingham
Birmingham B15 2TT

Abstract . In this paper, the problem of obtaining unbiased attribute selection
in probabilistic induction is described. This problem is one which is at present only
poorly appreciated by those working in the field and has still not been satisfactorily
solved. It is shown that the method of binary splitting of attributes goes only part
of the way towards removing bias and that some further compensation mechanism
is required to remove it completely. Work which takes steps in the direction of
finding such a compensation mechanism is described in detail.

1 Introduction

Automatic induction algorithms have a history which can be traced back to Hunt's
concept learning systems (Hunt et al., 1966). Later developments include AQ11
(Michalski & Larson, 1978) and ID3 (Quinlan, 1979). The extension of this type of
technique to the task of induction under uncertainty is characterised by algorithms
such as AQ15 (Michalski et al., 1986) and C4 (Quinlan, 1986). Other programs,
developed specifically to deal with noisy domains include CART (Breiman et al.,
1984) and early versions of Predictor (White 1985, 1987; White & Liu, 1990). A
recent review of inductive techniques may be found in Liu & White (1991). However,
efforts to develop these systems have uncovered a problem which is at present only
poorly appreciated by those working in the field and has still not been satisfactorily
solved.

The principle behind automatic induction should, by now, be well known.
Briefly, the idea involves using a suitable inductive algorithm to operate on a set
of training cases (i.e. examples) in order to generate rules for dealing with similar
cases which might arise in future. If required, the derived rules can be subsequently
incorporated into an expert system.

In general, attributes in the training set may be categorized into two types:
discrete attributes and continuous attributes. An attribute is discrete if it takes
values in a finite set. Discrete attributes can be further divided into two types:



210 WHITE & LIU: Fairness of attribute selection

categorical and ordered discrete attributes. Categorical attributes are those whose
values have no natural ordering and ordered discrete attributes are those whose
values can be naturally ordered. An attribute is called continuous if its measured
values are real numbers. For example, in medical data, age and blood pressure
are continuous attributes, while blood type and sex are categorical attributes and
social class (as measured on a five-point scale) is an ordered discrete attribute.

Discrete attributes may have different numbers of values, i.e. their degree of
discreteness differs. The number of possible distinct values that a discrete attribute
may take is called its "arity". Continuous attributes, on the other hand, may take
values from an infinite set. These differences between attributes pose a serious
problem for attribute selection.

2 Discrete Attributes
During the process of building the medical diagnostic system ASSISTANT
(Kononenko et al., 1984), it was found that discrete attributes with more values
were often being chosen by the algorithm in preference to more relevant attributes
with fewer values when the transmitted information criterion, HT, was used. This
problem was also identified by Hart (1985). She pointed out that the more distinct
values an attribute can take, the more likely it is to appear to discriminate well by
chance. Thus, those discrete attributes with high arity have an "unfair advantage"
over those having fewer values. This empirical finding has been proved theoreti-
cally by Quinlan (1988). A simple example may clarify the argument. Suppose we
wish to compare the informativeness (i.e. the discrimination power) of two discrete
attributes of different arity, e.g. sex (two values) and blood type (four values), in
a subject domain with k classes. The technique of attribute selection by using
transmitted information runs into the difficulty that the two values of HT are not
directly comparable because they have been derived from tables with different num-
bers of cells (one contingency table has k — 1 degrees of freedom, while the other
has 3(fc — 1)). (It should be noted that this particular problem does not occur if
the x2 test statistic is used. Although x2 values with different numbers of degrees
of freedom are not themselves directly comparable, the x2 probability, however, can
take into account, via the degrees of freedom parameter, the number of attribute
values for each attribute).

One naive remedy that allows transmitted information to be used was suggested
by Kononenko et al. (1984). This requires that all tests have only two outcomes.
Instead of having one branch for each possible value of an attribute in the decision
tree, values of the attribute are divided into two subsets and the inductive algorithm
builds only binary branches, one for each subset of values. In order to decide how
to split the values of the attribute into two subsets, all possible binary partitions
are considered. The one which gives the highest value for HT is considered the
best way to split that attribute and this maximum value of HT is used to represent



WHITE & LIU: Fairness of attribute selection 211

the discrimination power of that attribute on class. Quinlan believed that the HT
values worked out in this way can fairly measure the informativeness of attributes.
He declared (Quinlan, 1988):

If all tests must be binary, there can be no bias in favour of attributes
with large numbers of values and so the objective has certainly been
achieved.

In fact, this statement is not true. The method just described does not provided a
complete solution to the problem. There is another aspect to the difficulty. Simply
having the same shape of k X 2 contingency table by binary splitting those attributes
with high arity into two subsets does not root out the bias towards those attributes
with more values. Consider a categorical attribute with TO different values. It is
obvious that there are 2m~1 — 1 ways of splitting the TO values into two subsets
and that a value of HT can be calculated for each of these. The maximum of
these 2m~1 — 1 quantities is then used to represent the discrimination power of
the attribute. This is obviously misleading because true binary attributes, such
as sex, only have one possible way of splitting. This criticism also applies to the
technique of using the %2 test as a selection criterion. If we denote the best x2

value by Xm««> experiments with binary splitting of random variables show that the
resulting distribution of Xmax 1S strongly dependent on the number of values of the
attribute under consideration. For attribute selection to be unbiased, some further
compensation is needed to overcome the bias towards those attributes with more
values.

Although the remedy implemented in ASSISTANT was incomplete, it did reduce
the bias towards high-arity attributes because, at least, all contingency tables from
which HT was derived were of the same dimension. This is consistent with the
report of Kononenko et al. that smaller decision trees with an improved classification
performance have been built in this way.

Other methods of overcoming the problem posed by attributes with different
numbers of values have been attempted by several researchers. Kononenko et al.
(1984) also tried to reduce the bias towards those attributes with more values
by normalizing HT by dividing it by the logarithm of the number of values of
attributes. The results achieved with this method were not satisfactory because
very important attributes with large numbers of values were then discriminated
against. Quinlan (1988) suggested an alternative method by using the gain ratio
(i.e. the ratio of information gain HT to attribute information HA), as an attribute
selection criterion, instead of HT- However, this criterion is not fair either. Consider
the following 2 x 3 contingency table, in which rows represent classes and columns
represent attribute values:

Ci

c2

10
2

12

20
4

24

5
9

14

35
15
50



212

and another slightly different one:

WHITE & LIU: Fairness of attribute selection

a2
15
3
18

15
3
18

5
9
14

35
15
50

Intuitively, we know the discrimination power of the attributes in these two tables
are the same. If the gain ratio is to be a fair criterion of attribute selection, then
we would expect them to have the same magnitude of gain ratio. However, they
have different values of gain ratio, 0.0989 and 0.0952 respectively. This is obviously
misleading. Furthermore, if we consider the following contingency table:

c2

«1

16
3
19

"2

14
3
17

"3

5
9
14

35
15
50

which is derived from the second table by introducing more association between
attribute and class. The gain ratio of the attribute in this table, 0.0955, is still
less than that in the first table. Thus, the gain ratio criterion unfairly favours
those attributes with smaller attribute information HA. Unlike this criterion, other
measures such as the x2 or HT can detect that the attributes in the first two tables
are of the same discrimination power and that the attribute in the third table is
more informative than those in the first two tables.

3 Continuous Attributes and Optimal Splitting
Based on the discussion so far, the x2 probability seems to be a better criterion for
attribute selection since other measures, such as HT and its variants, have at least
one of the following disadvantages:

• Their distribution under the null hypothesis is unknown. Thus, a stopping
rule is impossible to implement.

• They favour those attributes with more distinct values.

However, the method of simply using the \2 probability alone also presents some
problems. First of all, having one branch for each possible value is infeasible be-
cause a discrete attribute may have a great number of values and, furthermore,
continuous attributes may take values from an infinite set of values. Also, values of
continuous attributes of future cases may not exist in cases of the training set at all,
making it impossible for the derived decision tree to classify such cases. Secondly,
continuous attributes give contingency tables which are too big for the %2 test.



WHITE & LIU: Fairness of attribute selection 213

These contingency tables may have too many cells with low expected values, ren-
dering the chi-square distribution a poor approximation to the actual distribution
of the x2 test statistic. The worst case is when attributes are completely continuous
so that the frequency counts in the cells of the contingency tables are all 0 or 1.

One solution to the problems described above is to use the technique of opti-
mal splitting (i.e. binary splitting in the optimal place). The technique is to work
entirely with binary trees. All attributes which are not originally binary are con-
verted into "pseudo-binary" attributes by the technique of optimal splitting. Its use
in dealing with discrete attributes has been discussed by Kononenko et al. (1984)
and was described in the previous section. Continuous attributes can be dealt with
in a similar way. This involves splitting the initial attribute between every possible
pair of adjacent values (in a sense of numerical order) to yield a number of derived
binary variables which replace the original non-binary attributes. If the original at-
tribute has TO distinct values present in the training set, this would mean generating
TO — 1 binary variables. The best of these TO — 1 variables, as judged by the criterion
for attribute selection (i.e. the x2 test), then becomes the pseudo-binary attribute
which is used in place of the original attribute. In more detail, each of the TO — 1
derived variables is cross-tabulated against class for all the cases at the node under
consideration and a x2 value is calculated for each of them. The variable with the
largest %2 (denoted by Xmax) 1S chosen as the pseudo-binary attribute to represent
the original attribute. Perhaps it should be mentioned that this technique leaves
open the possibility that a multi-valued attribute may legitimately be branched on
more than once (at different cutting points) in the same path of the decision tree.

As regards the method of binary splitting, Quinlan (1988) pointed out two
undesirable side-effects. First, it could lead to unintelligible decision trees with
unrelated attribute values being grouped together and multiple tests on the same
attribute in the same path. Secondly, a discrete attribute with TO values has 2m - 1 — 1
different ways of splitting the TO values into two subsets. This is not a problem if
m is small, but the approach would appear infeasible for an attribute with many
values.

Let us consider these criticisms in more detail. Different types of attribute
should be dealt with in different ways. Categorical attributes do not have any
natural ordering on their values. For this reason, it is essential to consider all
possible binary combinations of values in order to decide where to split an attribute.
On the other hand, ordered discrete attributes can be treated in the same manner
as continuous ones, as described above. Thus, for ordered attributes, there will be
no grouping of unrelated values. This approach would appear to answer Quinlan's
first objection.

The next point is that of unintelligible trees resulting from branching more than
once on the same attribute in the same path. This criticism seems too strong. Paths
with this property may not correspond to the sort of production rules that a human
expert would provide but they are nevertheless intelligible.



214 WHITE & LIU: Fairness of attribute selection

The final point relates to the combinatorial explosion of 2m~1 - l a s m increases.
Mathematically, this must be admitted. However, for most practical examples, this
would not appear to be a problem. It is usually the case that categorical attributes
take only a small number of possible values — rarely more than four.

At first sight, optimal splitting seems to be a very satisfactory solution to the
problem posed by attributes having different numbers of values because each at-
tribute is converted into a binary one, which makes all the derived attributes have
the same base of k x 2 contingency tables (where k is the number of classes at the
node under consideration). However, as mentioned before, this does not provides
a complete solution to the problem. Instead, it raises the difficulty of requiring
further compensation for taking the maximum x2 value from different numbers of
candidates. The necessity for further compensation is not appreciated by most re-
searchers in the area of automatic induction. None of the work cited previously
addresses this problem, which is addressed below.

4 Compensating ,2
^rnax

As mentioned in the previous section, the optimal splitting technique gives unfair
advantage to pseudo-binary attributes (in comparison with true binary attributes)
during attribute selection. This makes it necessary to build a further compensation
function for taking the maximum x2 value, Xmax> from different numbers of possible
candidates, in order to make all Xmax values directly comparable.

Another aspect of the problem is the implementation of a stopping rule, which
is based on a statistical significance test. In the case of optimal splitting, the test
will not have the same actual significance level for pseudo-binary attributes derived
from attributes of different numbers of distinct values. This is because the test is
applied to Xmax rather than a straightforward x2 value. Under the null hypothesis
of no association between attribute and class, the x2 statistic is approximately
distributed as chi-square with k — 1 degrees of freedom (where k is the number
of classes) but Xmax w^u n ° t ke distributed in this way and its c.d.f. (cumulative
distribution function) is not known. Ideally, if a compensation function can be
found to reduce bias towards non-binary attributes, then the statistical significance
test which can be applied to x2 values of true binary attributes can also be applied
legitimately to compensated Xmax values of non-binary attributes which have been
subjected to optimal splitting.



WHITE & LIU: Fairness of attribute selection 215

5 Simulating the Behaviour of xmax with Ordered
Attributes

5.1 Aims

Because of the intractable problems involved in finding a satisfactory theoretical
formulation for the behaviour of xmax> ^ w a s decided to investigate (using Monte
Carlo simulation techniques) the behaviour of xmax under the null hypothesis of no
association between attribute and class. As with the x2 values, we are interested in
the upper percentage points of the c.d.f. (cumulative distribution function) for Xmax-
For any given significance level a (e.g. 0.05), if we can establish a function for the
expected value of Xmax (under the null hypothesis), with N', the number of splitting
points, as one of its parameters, then a stopping rule can be implemented. This
function can be regarded as a baseline. Any attribute with a Xmax v a l u e above the
baseline is considered to be significantly associated with class. If none of the Xmax
values is found to exceed the baseline, then the whole branching process stops. As
regards the problem of attribute selection, if we can obtain the various probabilities
of the Xmax values of these significant attributes, through a similar function to that
of the baseline, then we can simply select that attribute (from those significant
ones) whose value for xmBx n a s the most extreme probability, i.e. the one with the
least probability of occurring by chance, given no actual association with class.

5.2 Method

In the experiment, a continuous attribute and a vector of classes were randomly
generated for n cases so that there was no inherent association between class and
attribute. Two classes were simulated, the most frequent class with probability p.
In order to investigate the behaviour of Xmax a s a function of the number of splitting
points, (N1), of the attribute, this latter parameter was assumed to take a number
of different values ranging from 2 to n — 1, in approximately equal logarithmic
steps. These splitting points were arranged so that, as far as possible, the resulting
intervals contained equal numbers of scores.

The sample size, n, was varied systematically in approximately equal logarithmic
steps from 21 to 2001. Six different class probability ratios were used, with the
probability of the most frequent class ranging from 0.5 to 0.95. For each combination
of parameters, 500 simulation trials were performed, yielding 500 values of Xmax"
The required upper percentage points of the c.d.f. for Xmax were then estimated
from these data and summarised as a series of 42 tables.



216 WHITE & LIU: Fairness of attribute selection

5.3 Results
Shortage of space precludes the display of these tables. However, two points were
immediately evident from casual inspection. Firstly, the results for xL*x did not
seem to be very reliable, i.e. the standard errors for estimating this statistic were
obviously high. (This is hardly surprising. Maxima tend not to be well behaved and
are consequently difficult to estimate accurately). Secondly, the prevalence of ties
in the values for ^ M was very noticeable. Brief examination suggested that these
tended to occur more frequently for small values of n or when the upper percentage
point was close to unity.

However, some systematic tendencies were discernible in the data. For exam-
ple, there was a clear tendency for Xmax *° increase with N' and also with p(Ci).
Dependence on n was less clear.

5.4 Regression Analysis
The foregoing remarks indicate that there is little point in trying to fit a smooth
multi-parameter function for estimating Xmax m terms of the upper percentage
point, N', n and p(Ci). However, we should bear in mind that, at any given node
(during the path-generating process), the number of cases and the class probabilities
will be the same for all attributes and the significance level, a will have been decided
as a parameter for the entire path-generation process. For this reason, it was decided
to examine the dependence of Xmax o n N' only.

Close inspection of the data suggested that, for any particular combination of
parameter values for n, a and p, Xmax increases linearly with log(iV'). Thus, the
estimated upper percentage point (1 — a) for xmax> denoted by estf(Xaimax) will be
given by an equation of the form:

est(XlmJ = a + b\og(N') (1)

For a true binary attribute, there is only one possible way of splitting, i.e. JV' =
1. In this case, est{xl,,m&x) 1S actually x^- Thus, the intercept, a, is x« with k — 1
degrees of freedom (where k is the number of classes), i.e. the upper percentage
point of the c.d.f. for chi-square corresponding to a significance level of a. It is only
the slope, b, that needs to be estimated empirically. Thus we arrive at the following
equation:

(2)

This relationship was investigated formally by using least squares regression tech-
niques to find the slopes for each combination of parameter values. The method
used was to fit a model with no intercept and to determine the intercept separately
from theoretical considerations (described above).



WHITE & LIU: Fairness of attribute selection 217

5.5 Discussion
There are basically two matters to be considered - the stopping rule and the at-
tribute selection problem. As indicated previously, at any given node, n and p(C\)
are the same for all attributes (provided that the number of missing values is small)
and a has been fixed. This means that a compensation function for N' can be deter-
mined by performing a Monte Carlo simulation, in situ, at each node. This should
provide a consistent stopping rule.

The problem of attribute selection is more difficult. An earlier idea proposed by
White & Liu (1990) was to regard Equation (2) as a baseline for attribute selection
and to select that attribute whose value for Xmax exceeds the relevant baseline by
the largest amount. The branching process is terminated when none of the Xmax
values is found to exceed the baseline.

Initially, this approach seemed to work well. Unfortunately, the regression re-
sults displayed in the previous section show that this method is badly flawed. In
the proposed solution, the Xmax functions in log(iV') are assumed to be parallel.
However, the results obtained for the slopes indicated clearly that this assumption
cannot be maintained. There is a marked tendency for the slopes to increase with
increasing percentage value and also with class probability. Also, these increases
interact positively, i.e. the rate of increase with class probability is itself greater for
high percentage values.

These results mean that the attribute with the greatest distance from the stop-
ping rule baseline is not necessarily the one with the Xmax value of most extreme
probability. Figure 1 gives an illustrative counter-example. In this figure, attribute
A-i has a larger distance from the the baseline than attribute A\. According to the
original idea, attribute A2 should have preference for selection over attribute A\.
This is not correct because A\ is the attribute with the Xmax value of more extreme
probability.

This criticism does not apply to the stopping rule because, for any given a, the
slope, b, can always be properly estimated by Monte Carlo simulations. In attribute
selection, it is impossible to estimate the slope, b, because the probabilities, a, of
the Xmax values of various attributes are unknown. In fact, these probabilities are
the very features of the attributes that we wish to compare with each other in order
to select the attribute with the Xmax v^ue of the most extreme probability. One
possible way to get rid of this problem is to establish a function, / , of the slope, b,
with a as one of its parameters:

Then Equation (2) could be re-expressed as follows:

(3)

Unfortunately, fitting such a function seems difficult and pointless for the following
reasons:



218 WHITE & LIU: Fairness of attribute selection

a2

3.84

Base

N[ log(N')

Figure 1: Attribute selection with multiple compensation functions.

• As described above, slopes of Xmax f°r different percentage points are different.

• Slopes differ considerably and do not seem to be estimated reliably. This is
really not surprising because maxima drawn from any distribution tend to
have large standard errors.

• Slopes depend on too many parameters. It seems that they depend on both
the a and p(C\). There is a suspicion that they may also depend on n.

As a result, it seems impossible to implement a suitable compensation function
for attribute selection, using Xmax' ^ *s worth mentioning that another problem
with the Monte Carlo simulation technique is that it is very clumsy and time-
consuming. At every step of the branching process, it is necessary perform the
simulation because those parameters such as the number of cases n, class probability
p(Ci) and number of splitting points N' may change after case partitioning. Strictly
speaking, it is necessary to perform a simulation for each attribute at each node!
Clearly, a more efficient procedure is required.



WHITE & LIU: Fairness of attribute selection 219

6 TheUseofxLan
Let us consider again, the technique of optimal splitting, described in Section 3.
An ordered attribute with rn distinct values, has (m. — 1) possible splitting points.
Splitting at each of these points yields (m — 1) X2 values. It seems reasonable to
suppose that the best place to split the attribute is at the point which gives the
largest value of x2 (denoted by Xmax)- The approach described in the previous sec-
tion, was to use this Xmax v a l u e to represent the discrimination power of the original
attribute and then try to compensate for attributes with different numbers of dis-
tinct values. However, from the discussion in the previous section, this approach
seems infeasible. Now that the use of Xmax c a u s e s intractable problems, using the
mean (denoted by Xmean) °f these (771 — 1) x2 values to represent the discrimination
power of the original attribute becomes a natural choice to try, because of the fact
that the standard error of the mean should be substantially smaller than that of
the maximum.

A small experiment with genuine data indicated that, when real association
between class and attributes was present, Xmean behaved much like Xmax m select-
ing the important attributes. This gave reassurance concerning the viability of
this approach and so further simulation experiments were undertaken to establish
which parameters were important in determining the values for Xmean m the upper
percentage points of its distribution.

Further simulation experiments were conducted to investigate the influence of
various parameters on the upper percentage points of Xmean u n ( ier the null hypoth-
esis, i.e. when no association between class and attribute was present. Shortage
of space precludes the detailed description of these experiments. For this reason, a
summary is presented below. Particularly important points are dealt with in more
detail.

1. Xmaxand Xmeanwere compared in an experiment which used two equi- proba-
ble classes and three different sample sizes, n, of an ordered attribute drawn
from a uniform distribution. A range of values for N' (number of splitting
points) was employed. The results indicated that, whereas Xmax increased
monotonically with N', xmean

 w a s much less influenced by this parameter and
appeared to decrease to an asymptotic value as N' became large. Further-
more, although the dependence of Xmax o n n w a s quite weak, the relationship
between xmean

 an(^ n w a s weaker still.

2. The effect of class probability, n and N' on Xmean were investigated. As before,
an ordered attribute drawn from a uniform distribution was employed. Best
subset regression techniques showed that neither class probability nor n had
any discernible effect on the upper percentage points for Xmean" ^ ° r a g i y e n

upper percentage point, the only parameter of importance was the reciprocal
of N', which accounted for approximately 87% of the variance of Xmean f°r

both the 90th. and 95th. percentiles.



220 WHITE & LIU: Fairness of attribute selection

These results show a pleasing simplicity. They indicate that most of the variance
of Xmean c a n be accounted for in terms of a simple function of a single variable.
The implications of this are that it should be possible to implement a stopping
rule for Xmean* wt ich does not involve performing Monte Carlo simulations at each
node. Instead, for any given significance level, termination thresholds could be
decided in advance for each of the attributes, yielding considerable improvements
in computational efficiency.

7 Simulating the Behaviour of Xmean with Differ-
ent Attribute Distributions

Another experiment was undertaken for two principal reasons. Firstly, it was
thought desirable to investigate the effects of attribute distribution on the behaviour
of Xmean) m case some allowance needs to be made for attributes drawn from dif-
ferent distributions. Secondly, as the previous experiment gave such encouraging
results for expressing Xmean m terms of the reciprocal of N', it was decided to try
to extend the model to include some function of a, in order to fit a surface to all
the upper percentage points of Xmean' A. third, subsidiary, aim for the experiment
was to check again that the number of cases, n, was not an important parameter as
regards influence on Xmean1 The method used in this experiment was similar to that
described earlier except that the class probability was fixed at 0.5 and two different
attribute distributions were used - uniform and normal.

Preliminary inspection of the results showed that the data from the two distri-
butions differed, so it was decided to deal with each separately. Statistical analysis
focused on the top ten percentage points of the xmean distribution. Trial fitting of
various combinations of these variables for the data obtained from the normally
distributed attributes, revealed that a bivariate linear function in log(a) and ^
accounted for an adjusted R2 of 85.3%. However, this fit was improved by the
inclusion of a product term of these two variables, giving an adjusted R2 of 93.2%.
A similar approach with the data from the uniformly distributed attributes showed
that the corresponding bivariate linear function accounted for an adjusted R2 of
92.4% and that adding the product term increased this figure to 95.9%. On the
basis of these results, it was decided not to include any further parameters.

On the whole, these results seemed satisfactory. However, examination of the
residuals revealed a small number of excessively large residuals. Such occurrences
did not appear for every combination of parameter values but, when they were
present, they were always associated with the most extreme a values. This feature
is not due to a poor choice of function but is actually caused by a phenomenon which
requires some explanation. Firstly, because of the nature of the data, the Xmean va^'
ues are correlated and hence large residuals will tend to cluster together. Secondly,
the standard errors of estimate of the upper percentage points are inversely related
to a. Thirdly, the sampling distribution of these parameters becomes more and



WHITE & LIU: Fairness of attribute selection 221

more highly skewed as a decreases. These factors work together with the result
that, as a becomes more extreme, the estimates become increasingly unreliable and
subject to large positive error.

For this reason, the regressions were performed again, using robust regression
techniques. The two resulting equations were:

(4)

for the normal case and:

ea*(Xa,me«n) = °-0 3 6 ~ 0.820 log(a) '— '• „ , (5)

for the uniform.
As a final check, these empirical functions were used to estimate x2 values for

three upper percentage points, namely the 95th., 99th. and 99.9th. These were
calculated to be 3.89, 6.48 and 10.19 respectively, for the uniform distribution and
3.91, 6.47 and 10.14 for the normal. These compare favourably with the theoretical
values of 3.84, 6.64 and 10.83. For both distributions, the estimates are very good
for the first two points and even for the 99.9th. point, the error is less than ten per
cent.

In summary, these results seem most satisfactory. They indicate that a quadratic
surface can be used to fit the upper percentage points of the xLeandi^ibution, w n e n

this statistic is derived from, a normally or uniformly distributed attribute by the
binary splitting process, described earlier. Such a surface could not have been fitted
if the xL&x statistic had been used. However, it must be noted that the function
coefficients do depend on the attribute distribution used.

8 Simulating the Behaviour of Xmean w ^ h Cate-
gorical Attributes

As mentioned earlier, a categorical attribute with nc distinct values has 2nc~1 — 1
different ways of binary splitting, while an ordered attribute only has n — 1 splitting
points. It has already been shown in the previous section that a quadratic surface
can be used to fit the upper percentage points of Xmean ^or ordered attributes. The
first purpose of this experiment was to check that, under the null hypothesis of no
association between attribute and class, Xmean behaves in a comparable manner for
categorical attributes to that shown in previous sections for continuous attributes.
The second purpose was to investigate the importance of class probability and
number of cases, n, on the behaviour of Xmean-

The method used in this experiment was similar to that used previously. Two
classes were considered and sbc level of class probability were employed. Number of
cases, n, was varied in eight approximately equal logarithmic steps. The simulated



222 WHITE & LIU: Fairness of attribute selection

attribute was drawn from a discrete uniform distribution. Thus, the categories
were arranged to be of equal size, on average. Since binary categorical attributes
can only be split in one way, they can be treated in the same manner as ordered
attributes. Thus, they were excluded from this experiment. Number of categories,
nc, was varied from 3 to 8. Consequently, the number of splitting points, Nj., ranged
from 3 to 127.

As before, statistical analysis focused on the top ten percentage points of the
Xmean distribution and the same statistical methods were used. However, there was
an additional difficulty with this experiment. For the earlier experiments with or-
dered attributes, it was shown that quadratic functions in log(a) and the reciprocal
of N' provided good approximations for the upper percentage points of Xmean- With
categorical attributes, it is not immediately obvious whether the counterpart of N'
is Nj. or nc — 1. In the case of ordered attributes, the number of splitting points
is one less than the number of categories. On the other hand, when categorical
attributes are used, it is not clear whether it is the number of splitting points or
the number of categories (less one) which is important. The best quadratic function
was actually a "mixture" of the two ideas and involved log(a), the reciprocal of N'c
and the product of log(a) and the reciprocal of nc — 1. This was a rather untidy
result but this function did produce an adjusted R2 of 96.0%. More importantly,
however, the function produced better estimates for known upper percentage points
of x2 than any other quadratic function and was preferred on these grounds. Just
as with the ordered attributes, neither n nor class probability were found to be
important. By employing robust regression, the following equation was obtained:

The corresponding estimated x2 values for the 95th., 99th. and 99.9th. upper per-
centage points were 3.98, 6.66 and 10.48 respectively. These were felt to be satis-
factorily close to the theoretical values of 3.84, 6.64 and 10.83. Again, these results
seem quite satisfactory. They indicate that a quadratic surface can be used to fit
the upper percentage points of the Xmean distribution, when this statistic is derived
from a categorical attribute by taking all possible binary combinations of categories.

9 The Application of Compensation Functions
The various simulation experiments reported earlier, strongly support the idea that
it is possible to find reasonable approximations for the upper percentage points of
Xmean» when this statistic has been derived by cross-tabulating class and pseudo-
binary attribute, as described earlier. This means that it is possible to derive a
small set of compensation functions which can be used to control the processes
of attribute selection and branching termination, in a way which is statistically
acceptable.



WHITE & LIU: Fairness of attribute selection 223

The compensation functions could be used like this. At each node in the branch
under consideration, that at tribute with the smallest compensated Xmean probability
is selected for branching on, provided that it is less than the stopping rule threshold.
Obviously, different compensation functions need to be used for different attribute,
according to their type and distribution. In principle, this would appear to offer an
empirical solution to the problem of fairness of attribute selection that was men-
tioned earlier. Of course, some further work is needed with categorical attributes,
in order to investigate the behaviour of Xmean m those circumstances in which the
categories do not have equal probability.

Perhaps one of the most exciting ideas comes from considering the application
of these techniques in the more simple circumstances where all the attributes are
ordered and truly continuous, i.e. where there are no tied values in the observations.
Under these conditions, this approach constitutes a method for conducting a form
of non-parametric discriminant analysis. It is obvious that the classification results
of the method will be invariant over any monotonic transformation of any of the
attributes. Thus, the method could be of importance to those dealing with ordinal
data.

When attribute values are grouped, the technique does not work quite as neatly.
At present, the best that can be done under these circumstances, is to identify which
distribution type best approximates each attribute and apply to each attribute the
appropriate compensation function. However, another interesting idea is to attempt
to parameterise the shape of the distribution in some way that can be incorporated
into a more general compensation function. Work is continuing along these lines.

References

Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and
Regression Trees. Belmont: Wadsworth.

Hart, A.E. (1985). Experience in the use of an inductive system in knowledge engi-
neering. In Research and Development in Expert Systems, edited by M.A. Bramer,
pp. 117-126. Cambridge: Cambridge University Press.

Hunt, E.B., Marin, J. & Stone, P.J. (1966). Experiments in Induction. New York:
Academic Press.

Kononenko, I., Bratko, I. & Roskar, E. (1984). Experiments in automatic learning
of medical diagnostic rules. Technical Report. Jozef Stefan Institute, Ljubjana,
Yugoslavia.

Liu, W.Z. and White, A.P. (1991). A review of inductive learning. In Research and



224 WHITE & LIU: Fairness of attribute selection

Development in Expert Systems VIII, edited by I.M. Graham and R.W. Milne,
pp. 112-126. Cambridge: Cambridge University Press.

Michalski, R.S. and Larson, J.B. (1978). Selection of most representative training
examples and incremental generation of VL\ hypotheses: the underlying methodol-
ogy and the descriptions of programs ESEL and AQ11. Report No. 867, Department
of Computer Science, University of Illinois, Urbana, Illinois.

Michalski, R.S., Mozetic, I., Hong, J. & Lavrac, N. (1986). The multi-purpose
incremental learning system AQ15 and its testing applications to three medical do-
mains. In Proceedings of the AAAI Conference (Philadelphia).

Quinlan, J.R. (1979). Discovering rules by induction from large collections of exam-
ples. In Expert Systems in the Micro-Electronic Age, edited by D. Michie, pp. 168-
201. Edinburgh: Edinburgh University Press.

Quinlan, J.R. (1988). Decision trees and multi-valued attributes. Machine Intelli-
gence, 11 , 305-318.

Quinlan, J.R., Compton, P., Horn, K.A. & Lazarus, L. (1986). Inductive knowledge
acquisition: a case study. Technical Report 86.4, School of Computing Science, New
South Wales Institute of Technology.

White, A.P. (1985). PREDICTOR: An alternative approach to uncertain inference
in expert systems. In Proceedings of the Ninth International Joint Conference on
Artificial Intelligence (Los Angeles, 1985), edited by A. Joshi, vol. 1, pp. 328-330.
Los Altos: Morgan Kaufmann.

White, A.P. (1987). Probabilistic induction by dynamic path generation in virtual
trees. In Research and Development in Expert Systems III, edited by M.A. Bramer,
pp. 35-46. Cambridge: Cambridge University Press.

White, A.P. & Liu, W.Z. (1990). Probabilistic induction by dynamic path gener-
ation for continuous attributes. In Research and Development in Expert Systems
VII , edited by T.R. Addis and R.M. Muir, pp. 285-296. Cambridge: Cambridge
University Press.



An Application of Case-Based Expert System
Technology to Dynamic Job-Shop Scheduling

A. BEZDRGAN

Institute for Automation, Technical University Vienna
TreitlstraBe 3 / 1 8 3 / 1 , A-1040 Vienna, Austria
Tel: 00 43 - 1 - 588 01 - 81 84, Fax: 00 43 - 1 - 56 32 60
e-mail: aberziga@email.tuwien.ac.at

ABSTRACT

This paper describes the structure and components of a case-based scheduler named
CBS-1 which is being created to demonstrate the feasibility and utility of case-based rea-
soning (CBR) for dynamic job-shop scheduling problems. The paper describes the
characteristics of a specific real-world scheduling task used in the work on CBS-1,
identifies major problems to consider, and gives arguments for and against the
application of CBR. The functions of the components of the system are illustrated by
examples. Finally, some existing case-based schedulers are compared with CBS-1.

1 INTRODUCTION

Scheduling is the allocation of resources, like machines or human power, to operations
over time to achieve certain goals. In job-shop scheduling the goals to be achieved are
the processing or production of discrete parts in several steps each requiring several
different resources. Dynamic scheduling is scheduling simultaneously with the execution
of the processes that are affected by the created schedules.

In the Interuniversitary Centre for CIM (IUCCIM) in Vienna the production process for
remote controlled toy cars is used to demonstrate the main ideas in CIM. In this context
the problem of scheduling incoming orders for toy cars into the ongoing production
process arises. There are several reasons for the complexity of such a scheduling task.

• There is a combinatorial explosion of the number of possible schedules (which must
be checked for feasibility) in each problem dimension such as the number of ma-
chines and operations. This makes it necessary to use implicit representations of the
search space instead of enumerative representations.



226 BEZIRGAN: A case-based system for dynamic scheduling

• There are a number of constraints which a valid schedule must satisfy such as due
dates and constraints concerning operation sequences. Interactions of these
constraints make scheduling decisions difficult.

• Scheduling decisions very often depend on context. This makes it difficult to write
down an explicit goal function. What is good in one context can be bad in another.

• Dynamic scheduling involves reacting in time to changes in the environment.

On the other hand, in a CIM environment there is an abundance of information of va-
rious kinds available in machine readable form. Orders, prices, inventory lists, and pro-
duction process logs can be stored over a long period of time. These informations repre-
sent a repository of valuable real-world experience. Today, the main user of such expe-
rience is the human scheduler, who utilises it to perform dynamic scheduling manually.

This abundance of information and its use through human schedulers is a pointer to the
applicability and utility of CBR. The availability of cases is a prerequisite for the
applicability of CBR (see Kolodner and Riesbeck (1989)). Reasoning from cases does
not involve exploring the whole search space. Thus the problem of combinatorial explo-
sion is avoided. One strength of CBR lies in its ability to deal with context dependent
information. Thus constraint interaction and context dependency can be modelled
efficiently in a case-based system. On the other hand, CBR is not well suited for
optimisation problems since it does not explore the whole search space. However, the
impact of this weakness becomes smaller in a real-time environment in which a timely
solution is often better than a perfect solution that misses deadlines. Further, CBR is
usually faster than enumerative methods. Thus after weighing advantages and
disadvantages against each other, CBR seems to have the characteristics needed for a
reasoning method to be suitable for dynamic scheduling tasks.

The CBS-1 (Case-Based Scheduler One) project represents an attempt to demonstrate the
feasibility and utility of CBR for dynamic job-shop scheduling problems by creating a
CBR system for scheduling orders for toy cars in the IUCCIM. The next section
introduces the toy car production process in some detail. After that the architecture and
the components of CBS-1 are described.

2 TOY CAR PRODUCTION AT THE IUCCIM

The main products of the IUCCIM factory at this time are the remote controlled toy car
(Ferrari Testarossa) and its parts. It is planned to allow custom designed parts to be
produced in future. About 30 of the 60 parts needed for the complete Ferrari are
produced in the IUCCIM factory. The other parts are delivered by other companies. The
latter parts are only needed in the final assembly stage of the production process and are



BEZIRGAN: A case-based system for dynamic scheduling 227

usually stored in sufficient amounts in the factory. Orders are accepted for whole cars or
parts. An order usually specifies the ordered part, a production deadline, an amount,
quality criteria, such as the surface quality of a part, and some other requirements such as
the colour of the car. Orders may arrive at any time and are to be scheduled as soon as
possible. Orders also have priorities.

There is a total of 12 machines including laser cutting tools, turning machines, and drills.
Each machine is capable of performing several operations. We assume that a machine
cannot perform two or more operations simultaneously. Although generally one opera-
tion can be performed by more than one machine, the quality of the result of the opera-
tion and its execution time depend on the machine on which the operation is performed.
For each part there is a fixed set of alternative process plans. In the process plans the
average machine preparation durations and operation execution durations are given as
exact times though they may vary in real-world operation.

The IUCCIM factory is used for courses in CIM, for product demonstrations, and as a
platform for trying out research ideas in CIM related technology. CBS-1 is an instance of
the latter category.

3 THE CASE-BASED SCHEDULER CBS-1

Figure 1 shows the structure of CBS-1. The central knowledge store in CBS-1 is the case
base. The case base contains information on machines, products, processing operations,
process plans, orders, and the current status of the factory. It also contains historical
information on these items, i.e. a log of the temporal development of the factory.
Scheduling decisions made earlier are also kept in the case base and make up the cases in
CBS-1. These pieces of information are all linked together and build a semantic net
organised around a time-line. The most important linking elements in this net are the so
called justification structures. These structures use a rich causal vocabulary to describe
the relations between states and events that led to a particular scheduling decision. For
example, such a justification structure could state that an inferior machine B was used
for a certain operation since machine A which would be used otherwise was out of order.

The case base manager keeps the information in the case base about the current state of
the factory up-to-date. This is done by monitoring information on the success or failure
of processing steps (schedule execution report, SER) delivered by the underlying process
control system. It also updates predictions about the future state of the factory by
inserting newly created schedules into the case base. Since the case base can become
quite large, the case base manager also realises a "forgetting" function, which removes
information no longer needed, not used often, or not used for a long time.



228 BEZIRGAN: A case-based system for dynamic scheduling

ORDER M A N A G E M E N T

SER Orders

Retrieval

Case

Retry

Adaptation

Schedule

Retry

Evaluation
Simulation

CBS-1 Schedule

Case Base
Manager

Schedule

Schedule
execution
report (SER)

Schedule

PROCESS CONTROL

Figure 1: The structure of CBS-1

Given a new order and the knowledge structures mentioned above the retrieval compo-
nent retrieves a set of similar previous cases from the case base. The most similar case is
then passed on to the adaptation component. Similarity is judged by several means. First,
superficial features of orders, e.g. kinds of parts ordered, amount ordered, and time
remaining to due date, hint to relevant cases. Second, constraints on orders represent a
further hint. Orders with comparable constraints, such as a certain required maximum
production duration, are considered more similar than others. Third, similarity of the
current status of the factory and its state during a previous case points to further relevant
cases. If machine A has a breakdown now and it had a breakdown in a previous case then
these cases are somewhat similar. Fourth, similarity is assessed by analysing the current



BEZIRGAN: A case-based system for dynamic scheduling 229

causal configuration and comparing it with the justification structures in the case base. If
two operations are known to require the same bottleneck resource then a similar case
may be retrieved by searching for the causal configuration "scheduling of operation A
on machine B made scheduling operation C on machine B impossible".

The adaptation component is a rule-based system for manipulating the most similar pre-
vious case to create a schedule for the current orders. To do so it utilises the justification
structure of the old case, analyses the old solution and the differences between the old
and the new orders. Rules map the above pieces of information to functions. These func-
tions are applied to the solution in the old case to obtain a schedule for the new orders.
For example, if the justification structure in an old case states that a certain machine M
had to be used because M is fast and the due dates were tight, then the adaptation com-
ponent can check if these conditions are valid for the new order and if not, select another
machine which may be slower but also cheaper in operation. Another simple adaptation
would involve using a machine other than the one mentioned in the old case if the new
order has higher quality requirements that cannot be met by that machine.

Although the adaptation component proposes new schedules by making plausible and
rational changes to old feasible schedules, the proposed schedules cannot be guaranteed
to be feasible. Hence a simulator is used to evaluate the feasibility of the proposed sche-
dules. Each of the three stages, namely retrieval, adaptation, and evaluation may signal
the previous stage the need for an alternative input if the current input does not lead to
success. If the evaluation signals unfeasibility of the proposed schedule, alternative
adaptation strategies may be tried. If adaptation signals inadaptability, retrieval can
deliver the next most similar case. If retrieval cannot find similar cases it signals this to
the order manager. There is an upper limit to this retrial mechanism. If this limit is
reached without generating a feasible schedule the order manager is informed. Note also
that CBS-1 cannot process any orders for which the retrieval component cannot find a si-
milar case. If all goes well, a schedule is passed on to process control for execution.

4 CASES

One can imagine several different definitions of the term case in a job-shop scheduling
environment. First, a case can be a record of information related to a single scheduling
decision, e.g. which process plan to select for a certain ordered part or which machine to
use for a certain operation. This definition of case is related to the constraint satisfaction
problem view of scheduling (see for example Fox and Sadeh (1990)) and makes many
connections between cases in the case base necessary. These connections represent the
dependencies of scheduling decision on each other. Second, cases can be memory pack-
ages containing information involved in scheduling a certain order, i.e. a case contains a
log of all relevant activities in the factory from the time of arrival of an order until the



230 BEZIRGAN: A case-based system for dynamic scheduling

ordered product leaves the factory. Since the scheduling of incoming orders is influenced
by the schedules of earlier and later orders, cases are once again strongly interconnected.

We could also try to define cases from a more resource centred point of view rather than
from the order based view above. However, no matter how one defines cases, strong
interactions between them are inevitable. This is a consequence of the strong dependency
of scheduling decisions on each other, on context, and on problem constraints, and is to
be seen as an intrinsic characteristic of job-shop scheduling problems. Thus it seems that
the goal of defining tightly coupled units capturing global scheduling information (cases)
which are loosely interconnected (in the case base) is infeasible in this context. Therefore
cases are taken to be sets of related pieces of information having to do with the
scheduling of a certain order and connected with pointers. These sets have fuzzy (i.e.
unsharp) and floating (i.e. changing with time) boundaries.

4.1 Problem Descriptions
The problem description in a case consists of information on goals, on constraints on
goals, and on the problem environment. The main goal is the generation of a schedule for
a new order. Figure 2 shows a sample order. Orders may specify vague values for certain
fields, such as very fast for speed. These can be interpreted as soft constraints which can
be relaxed to a certain extent to obtain a feasible schedule.

Order no.: 3412
Customer name: Mr. Henry
Part: Ferrari Testarossa
Order date: 13.6.1992 8:00
Colour: red
Wheels: standard

Customer importance: very important
Amount: 5
Due date: 13.8.1992 12:00 ± 5 h
Speed: very fast
Remote control range: short

Figure 2: A sample order

Constraints describe restrictions on the kinds of solutions to be generated, e.g. cost or
quality requirements. The different types of constraints which can be specified here are
much like in the ISIS system (see Fox (1987)). Some constraints are introduced by the
production company, e.g. maximal allowed production cost, earliest/latest start date,
earliest/latest finish date, wish to minimize stores, and order priorities. There are also
constraints which are derived by a pre-processor from an order and the current state of
the factory. Figure 3 shows a possible constraint list for the above order. The language
used in expressing constraints must be a restricted language since retrieval and
adaptation must be able to check equality and subsumption relations between constraints
which would be infeasible if, for example, unrestricted first order predicate calculus
expressions were allowed. For the following demonstrations simple feature lists are used.



BEZIRGAN: A case-based system for dynamic scheduling 231

Order no.: 3412 max. prod, costs: AS 1000,00 / piece
earliest finish: 12.8.1992 12:00 priority: high (important customer)

Figure 3: Constraints

An internal model of the factory and its current status make up the problem environment.
This model is kept as part of the case base and updated when necessary, e.g. when events
like machine breakdown occur. Thus it does not have to be specified explicitly in every
problem description. The information managed in this context is the same information
that a Gantt-Diagram conveys. Figure 4 shows the status information for a machine.

Machine no.:
Schedule:

13.6.1992
13.6.1992
13.6.1992
13.6.1992

12

10:00-12:00:
12:00-16:00:
16:00-18:00:
18:00-22:00:

Name

Order
Order

Hueller Hille

3407; Plan
3314; Plan

Maintenance
Order 3408; Plan

2; Op.
l;Op.

l;Op.

3
1

6

Figure 4: Schedule for a sample machine

4.2 Solutions
The solution consists of an assignment of resources to operations over time. This repre-
sents a prediction of the development of the activities in the factory. The output of the
system is an event-driven schedule and a set of commands to machines and personnel
ensuring the execution of the schedule. The system also produces a prediction of the
temporal development of the production process. A line of the form "13.6.1992 12:00-
16:00: Order 3314; Plan 1; Op. 1" in Figure 4 represents a part of such a prediction. The
event-driven schedule consists of rules of the form "if 1 x parti and 1 x part2 and 2 x
part3 are available then assemble them to part21".

4.3 Justification Structures
For each scheduling decision a case also contains a justification structure that gives
reasons for this decision. In justification structures a causal vocabulary is used which
facilitates adapting previous schedules. This vocabulary makes it possible to express
causal dependencies like "scheduling operation O\ of plan 1 for order no. 1243 on
machine 15 at 16.6.1992 9:00-15:00 made scheduling operation O2 of plan 2 for order
no. 1423 on machine 15 on 16.6.1992 impossible" (see figure 5). This way relations of
scheduling decisions and constraints which were important in a certain decision process
can be recorded. The language of causal configurations contains relations like "A enables
B", "A causes B", "A disables B", "A is a side-effect of B", "A is the desired effect of B".



232 BEZIRGAN: A case-based system for dynamic scheduling

Machine no.: 15
Schedule:

16.6.1992 00:00-09:00:
16.6.1992 09:00-15:00:
16.6.1992 15:00-24:00:

Name:

idle
Order
idle

O\ needs machine 15 for 6 hours.
O2 needs machine 15 for 10 lours.

Collet Minor

1243; Plan 1; Oi

O\ indivisible.
O2 indivisible.

Figure 5: A conflict situation

The justification structures build causal links between problems encountered in
scheduling an order and their solutions. In the above example one possible solution could
be to start O\ an hour later. This would make it possible to schedule O2 between 00:00
and 10:00. This solution would be recorded in the case base linked to the problem and to
the justification structure. Furthermore, the justification structures are generalised to
build causal problem classes. These classes improve the connectivity of the case base as
will be seen in retrieval. The above justification could be generalised to the class: The
side-effect of one scheduling decision leads to the infeasibility of a later scheduling task.

5 RETRIEVAL

When a new order arrives the retrieval component searches the case base for a previous
order that is most similar to the current one. The methods for assessing similarity have
already been mentioned. In CBR we try not to retrieve cases that cannot be adapted.
Thus similarity is judged by the ease of adapting an old solution to become a solution to
the new problem. This means that the definition of similarity - and hence retrieval - de-
pends crucially on the capabilities of the adaptation component. The most similar old
order is not found by comparing all old orders to the new one but by exploiting the
semantic net to get from one similar case (case sharing one or more constraints or other
features with the new order) to another.

For example, given a new order we can easily retrieve all previous orders for the same
product. This is possible since all cases have pointers to the descriptions of the products
produced as well as to the plans used. The associated cases are similar to the new order
in the sense that they deal with the same product. Using further constraints on quality or
quantity we can further differentiate between these cases. Following other links we can
get to further cases which may be of use. For example, having decided to use a certain
plan we can take a look at previous usages of that plan and the problems that were
encountered then. Further, using some deeper features such as constraint looseness may



BEZIRGAN: A case-based system for dynamic scheduling 233

help in retrieving more useful cases. Finally, the adaptation component is not bound to
use one case in generating a new schedule. It can as well use several cases, one in
solving each specific scheduling decision problem. In the following, adaptation from a
single case is assumed.

The following example shall demonstrate the utility of justification structures in
retrieval. Suppose that the order shown in figure 6 is received. Suppose further that to
satisfy the order only one machine and one operation is needed, namely machine 32.
Figure 6 also shows the schedule for machine 32 representing the current status of the
factory. This causal configuration (infeasible scheduling task, side-effect of a previous
scheduling decision being responsible) could then lead - through utilisation of the
justification structures in the case base - to a reminding of the case related to figure 5.
Thus the system could try to use the same strategy of moving the hindering operation
slightly to get a larger block of idle time to schedule the new order.

Order no.: 3442
Customer name: Mr. Mayer
Part: base-plate
Order date: 16.6.1992 8:00

Customer importance: important
Amount: 100
Due date: 16.6.1992 18:00

Needed: Plan 1, Op. 1 => Machine 32 for 8 hours

Machine no.: 32
Schedule:

16.6.1992 08:00-09:00:
16.6.1992 09:00-11:00:
16.6.1992 11:00-18:00:

Name: EMCO

idle
Order 3489; Plan 1; Op. 2
idle

Figure 6: A new order and current machine status

The system could have other remindings too, such as that of a case in which the same
problem was solved by splitting up the order in two parts, scheduling one part before the
hindering operation and the other after it. This solution is worse than the previous one,
because the duration of the operation will increase due to the doubled machine
preparation time. Nevertheless, this approach could lead to a feasible schedule, too. At
the present time no notion of optimality is supported in our system. The point is, that
remindings using justification structures helped a lot in solving the scheduling problem.

After the most similar old order is selected adaptation is performed. The result of the
adaptation is a new case including a solution to the new problem. Next it is checked



234 BEZIRGAN: A case-based system for dynamic scheduling

either the new solution satisfies all constraints. If it does, we are done. Else either the
next similar old order is tried or a soft constraint is relaxed. If after several adaptation
tries no solution is found then the system is unable to deal with the given problem and
the user must be consulted. For example, the adapted unsuccessful solutions may be
presented to the user or he may be requested to relax some hard constraints.

6 ADAPTATION

The justification structures in the case base play a central role in adaptation. They make
it possible to alter old cases in a plausible and rational manner. Justification structures
associated with retrieved cases indicate conditions under which the solution was
adequate in the past. For the example in figure 6, the adaptation component would check
the applicability of the retrieved problem solution strategy (that was to slightly
reschedule the hindering operation) by checking the validity of the conditions that led to
the past solution. These conditions are available through justification structures. Such
conditions would be that both the old (Orderv3489; Plan 1; Op. 2) and the new (Order
3442; Plan 1; Op. 1) operations be indivisible and that the sum of the idle times of the
required machine in the relevant time interval be greater than the total duration of the
new operation. If the strategy is applicable then a suitable rate for shifting the hindering
operation must be calculated, the operation must be rescheduled, and the new order must
be scheduled. If the strategy is not applicable then another strategy is searched. If such a
strategy is found, the adaptation tries to fit it to the new situation. Otherwise either the
problem is infeasible or lies beyond the capabilities of the system.

7 CONCLUSIONS \

CBS-1 is not the first system to attack scheduling tasks with CBR methods. Hennesy and
Hinkle (1991), Barletta and Hennessy (1989), and Mark (1989) report of a system called
Clavier which performs autoclave management and which shall schedule several
autoclave ovens in a real-world environment. However, Clavier does not operate in the
domain of dynamic job-shop scheduling and deals only with a small and special set of
machines. Miyashita and Sycara (1992) introduce work on the CABINS system which
operates in a domain comparable to the one of CBS-1. However, CABINS is concerned
with the interactive repair of schedules and not with automatic schedule generation.
Inserting a system like CABINS between CBS-1 and production control could lead to a
more powerful scheduler capable of dealing with a richer set of scheduling problems.
Future work on CBS-1 will include the implementation of the system and its evaluation
in real-world environment. A further goal is to broaden the class of scheduling problems
that can be handled.



BEZIRGAN: A case-based system for dynamic scheduling 235

REFERENCES

R. Barletta, D. Hennessy, Case Adaptation in Autoclave Layout Design, in Proc. Case-
Based Reasoning Workshop, Morgan Kaufmann Pub., Inc., 1989, p. 203-207.

A. Bezirgan, Case-Based Reasoning Systems, Technical Report, Christian Doppler
Laboratory for Expert Systems, Vienna, 1992, forthcoming

M. S. Fox, Constraint-Directed Search: A Case Study of Job-Shop Scheduling, Morgan
Kaufmann Pub., Inc., 1987, 184 p.

M. S. Fox, N. Sadeh, Why is Scheduling Difficult? A CSP Perspective, in Proceedings
ECAI 90, 1990, p. 754-767

D. Hennesy, D. Hinkle, Initial Results from Clavier: A Case-Based Autoclave Loading
Assistant, in Proc. Case-Based Reasoning Workshop, Morgan Kaufmann Pub.,
Inc., 1991, p. 225-232.

J. Kolodner, C. Riesbeck, Case-Based Reasoning, Tutorial MA2 at the IJCAI-89, 1989

W. Mark, Case-Based Reasoning for Autoclave Management, in Proceedings Case-
Based Reasoning Workshop, Morgan Kaufmann Pub., Inc., 1989, p. 176-180

K. Miyashita, K. Sycara, CABINS: Case-Based Interactive Scheduler, in Working Notes,
AAAI Spring Symposium Series, Symposium: Practical Approaches to
Scheduling and Planning, 1992, p. 47-51.

C. K. Riesbeck, R. C. Schank, Inside Case-Based Reasoning, Lawrence Erlbaum
Associates, Pub., 1989,423 p.





Neural Network Design via LP

James P. Ignizio §

and Wonjang Baek t

§ University of Virginia
t Mississippi State University

1 INTRODUCTION

Examples of the pattern classification problem (known variously as: pattern recognition,
discriminant analysis, and pattern grouping) are widespread. In general such problems
involve the need to assign objects to various groups, or classes, and include such
applications as: (i) the assignment of production items to either defective or non-defective
classes as based upon the results of tests performed on each part, (ii) the assignment of
personnel to jobs as based upon their test scores and/or physical attributes, (iii) the
assignment of an object detected by radar to either a friendly or unfriendly category, (iv) the
categorization of investment opportunities into those that are attractive and those that are
not, and so on. Early (scientific) efforts to model and solve the pattern classification
problem utilized, for the most part, statistical approaches. In turn, these approaches usually
rely upon the somewhat restrictive assumptions of multivariate normal distributions and
certain types of (and conditions on) covariance matrices. More recent attempts have
employed expert systems, linear programming (LP) and, in particular, neural networks. In
this paper, we describe the development of an approach that combines linear programming
(specifically, traditional linear programming and/or linear goal programming [Ignizio,
1982]) with neural networks, wherein the combined technique is itself monitored and
controlled by an expert systems interface.

More specifically, we describe the use of expert systems and linear programming in the
simultaneous design and training of neural networks for the pattern classification problem.
While a relative handful of other investigators have recently proposed linear programming
for neural network design and training, the approach proposed here differs from earlier
concepts in that it:

• reduces, if not eliminates the somewhat ad hoc and heuristic nature of earlier
approaches

• substantially reduces both the number and size of the linear programming models that
need to be solved

• resolves, in a systematic fashion, the determination of the actual types of network
processing elements — and thus permits ultimate, actual hardware replication



238 IGNIZIO & BAEK: Neural network design via LP

• resolves certain limitations (and/or open questions) of earlier approaches (e.g., for
objects with ambiguous classifications)

• allows for a greater variety of performance measures, as well as for multicriteria
performance measures

• permits a systematic means for the conduct of meaningful and accurate sensitivity
analyses

2 BACKGROUND

Pattern classification has evolved from a primarily ad hoc, purely judgmental process to
one that is now relatively scientific and systematic. However, the most rigorous of the
conventional approaches to pattern classification utilize statistically-based methods (e.g.,
Fisher's Linear Discriminant function) that are subject to a variety of restrictive
assumptions — assumptions that often are simply not defensible in real world application.
This has led to efforts dedicated toward the development of more robust and/or improved
methods — most recently through the use of neural network classifiers. However, there are
certain significant drawbacks to the neural network concept — and these limitations have
led to increased interest in alternative approaches, including renewed interest in the use of
linear programming (LP) as either a pattern classifier (i.e., by itself) or as a means to more
efficiently design and train neural network classifiers. In the past few years, considerable
progress has been made in this area through the efforts of a number of investigators, and
particularly through the contributions of Bennett and Mangasarian [1990], and Roy and
Mukhopadhyay [1991]. However, while these approaches have shown considerable
promise, they have certain shortcomings that we believe that we have been able to
overcome, or at least mitigate, in the approach to be discussed.

We describe, in this paper, an improved LP-based approach for the simultaneous design
(i.e., architecture specification) and training of neural networks for pattern classification.
More specifically, this approach involves:

1. The development of a totally algorithmic approach to the design and training of neural
network classifiers. (Existing approaches require the use of various heuristic,
judgmental and ad hoc procedures in the conduct of their methodology — as will be
discussed in more detail in the following section.)

2. A substantial reduction in both the size and number of LP models to be solved (i.e., in
comparison to existing LP-based methods) — by means of: (i) the concepts of foreign
object masking and supermasking, and (ii) other constraint reduction techniques that
are specifically designed to take advantage of the peculiar nature of the forms of LP
models encountered in the pattern classification problem.

3. The development of a means for the elimination or mitigation of certain limitations of
alternative LP-based approaches. In particular, the problem of ambiguous
classifications (i.e., instances in which an object to be classified either falls within the
boundaries of two or more classes or falls outside the boundaries of all existing
classes) is addressed and resolved.



IGNIZIO & BAEK: Neural network design via LP 239

4. The coordination and oversight of the entire process by means of an intelligent
interface. More specifically, we use an expert system to access the data, form the
associated LP models, evaluate the intermediate results, and finally list the architecture
and parameters of the neural network for pattern classification.

3 OVERVIEW OF ALTERNATIVE METHODS

Since there exists extensive literature on the more conventional approaches to pattern
classification — and of their advantages and disadvantages — there is no need to reiterate
that material. Instead, in this section we very briefly describe the characteristics of the
relatively few earlier methods of pattern classification using linear programming —
focusing then on the two most recent and promising of these. Evidently, one of the earliest
(if not the earliest) proposals for the use of LP in pattern classification was due to
Mangasarian [1965]. This was followed — in the 1980s — by a number of proposals for
various enhancements and extensions [Freed and Glover, 1981]. However, until recently,
the use of LP in pattern classification was considered as a strictly "stand alone" concept.
This perspective was changed with the proposal, by Bennett and Mangasarian [1991], to
transform the results of the LP approach into an equivalent and predetermined neural
network (i.e., a network in which the complete architecture and all link weights are
known).

3 .1 The Methods of Bennett and Mangasarian and of Roy et al
In essence, the work of Bennett and Mangasarian resulted in an approach to simultaneously
train and design a feed-foward neural network. In comparing their approach to
conventional backpropagation, it was noted that the Bennett and Mangasarian method had a
number of significant advantages, including: the automatic determination of the number of
hidden units, 100% correctness on the training set, substantially faster training, and the
elimination of parameters (e.g.,, as in the case of backpropagation in which such values are
both judgmental and sensitive) from the approach. The method has been dubbed the
Multisurface Method, or MSM. It was shown that pattern classification could be
accomplished via the solution of a sequence of LP models, resulting in the separation of the
various classes by piecewise-linear surfaces — with convergence in polynomial time.
Bennett and Mangasarian then proposed "a novel representation of the MSM classifier as a
trained feed-forward neural network."

Bennett and Mangasarian have compared the performance of their approach (although not
in hardware form and only, evidently, on a limited number of examples) with that of
backpropagation (BP) for a number of test cases. Details with regard to this comparison
may be found in the reference [Bennett and Mangasarian, 1990]; however, the result was
that the MSM method required much less training time, achieved 100% correctness on the
training set — and similar correctness (i.e., as compared with BP) on the test set, and
utilized a similar number of nodes in the hidden layer. Yet another very important
advantage of the MSM approach is that all operations are on linear models (i.e., linear
programs) and thus a global optimal solution is assured. On the other hand, the training of
conventional neural networks (e.g., backpropagation networks) is typically accomplished



240 IGNIZIO & BAEK: Neural network design via LP

by means of nonlinear search, and thus there is always the likelihood of becoming stuck at
a local optimal solution — and in fact a solution that may not even be feasible.

More recently, Roy and Mukhopadhyay [1991] have proposed and evaluated (again, on but
a few examples) an approach similar to the Bennett and Mangasarian MSM method.
However, there is at least one significant difference between the two concepts. Specifically,
Roy's method incorporates quadratic separating surfaces — while still retaining linear
models (i.e., LP models). This is because a quadratic (or any polynomial) function is linear
in terms of its coefficients — and the variables (i.e., the class test scores) are always
known in the pattern classification problem.

Roy's method involves the development, via the solution of a sequence of LP models, of a
set of "masks." These masks, in turn, are simply quadratic functions whose coefficients
have been determined via the solution of the LP models. However, essential to this
approach is the need for some method of clustering — plus some ad hoc approach to the
identification and elimination of data points that are assumed to be "outliers." In narrative
form we may describe Roy's method as follows:

• We first attempt to "weed out" the outliers for every class under consideration. Roy
proposes to accomplish this by means of cluster analysis.

• Clustering is accomplished via some heuristic cluster algorithm — such as k-means
clustering. In essence, in the initial phase a number of clusters are developed and any of
these which contain less than some arbitrary number of objects is considered to be an
outlier — and these data (i.e., all of the objects in the associated cluster) are then
dropped from consideration. The result of this phase is an initial set of clusters for all of
the elements in each class.

• For the remaining clusters, and starting with the first class, we attempt to find a mask
(i.e., quadratic function) that serves to separate this class from all others. This is to be
accomplished via the solution of a set of LP models (where such models may involve
up to as many constraints as there are objects, of all classes, to be classified). If a
feasible LP is developed, then complete separation has been achieved.

• If complete separation is possible, we then move on to the next class. However, if
complete separation is not possible (denoted by an infeasible LP), we must break up the
sample patterns in the infeasible clusters into smaller clusters using, once again, a
clustering analysis procedure. This procedure is repeated until complete separation is
achieved and all necessary masks for the class have been developed. We then move to
the next class and repeat the process.

• The final result of Roy's method (as with that of Bennett and Mangasarian) is the
development of all the information necessary to establish a trained neural network for
pattern classification.

While we certainly consider the methods of Bennett and Mangasarian, or Roy et al, to be
significant contributions, we still felt that significant improvement was possible. For
example, Bennett and Mangasarian's method involves the development of a piecewise-
linear boundary and we have found (as should be intuitively obvious) that this requires the



IGNIZIO & BAEK: Neural network design via LP 241

solution of a large number of LP models if complete accuracy is to be achieved. In other
words, separation can only be accomplished via nonlinear surfaces and the approximation
of such surfaces, by piece-wise linear approximations, can be a tedious process.

Roy's method uses quadratic (or, if desired, any polynomial) surfaces and thus alleviates
what we consider to be one disadvantage of the method of Bennett and Mangasarian.
However, Roy's method is not without drawbacks. One of the most prominent of these is
the fact that there is a repeated need for cluster analysis — and any clusters so derived are a
function of the particular (heuristic) cluster analysis method employed. As such, the
successful implementation of Floy's method requires — we believe — a substantial amount
of art, judgement, and experience. Further, the final solution obtained by Roy's method is
dependent upon the order in which the classes are considered, the specific clustering
algorithm used, and the judgement of the user (e.g., as to when to consider points to be
outliers). Consequently, for the same problem, different individuals can develop different
solutions and different network structures. Another drawback of the method is that the LP
models that must be solved are frequently of large size. In fact, such models often have as
many (or nearly as many) rows as there are objects of all classes. Consider, for example, a
rather modest-size problem with five classes and roughly 100 objects per class in the
training set. The solution of this problem via Roy's method would require the frequent
solution of LP models with about 500 constraints per model.

3.2 A Comparison with Our Method
Before addressing the details of the approach that we propose, let us compare our concept
with that of both Bennett/Mangasarian and Roy. Specifically, our method:

• never requires the solution of any LP model of size greater than (mk + Fk) rows by (j)
variables; where mk is the number of objects in class k, j is the number of scores (i.e.,
features, or attributes), and Fk is the number of foreign objects within the supermask of
class k (typically, a small number). (Thus, for the five class, 100 training objects/class
example stated above, our method would never require the solution of an LP exceeding
roughly 100 constraints while that of Roy would require the solution of models with
500 constraints. And, by taking advantage of the peculiar structure ofLP models for
pattern classification, we are able to even further reduce the sizes of these models.)

• employs a strictly algorithmic, systematic procedure that avoids heuristic and/or ad hoc,
judgmental methods (e.g., such as clustering analysis and/or outlier deletion) and thus
will develop results that may be replicated.

• utilizes, as does Roy's method, nonlinear separation surfaces and thus avoids the need
for less efficient piece-wise linear surfaces.

• is, like the method of Bennett/Mangasarian or Roy, completely nonparametric and
results in all of the information needed to construct a fully-trained neural network
classifier.

• Further, the method that we have developed addresses, directly, a number of issues that
have not been addressed in the earlier, alternative concepts. These include:

specific hardware design and implementation considerations



242 IGNIZIO & BAEK: Neural network design via LP

- efficient classification of "ambiguous" objects (i.e., those new objects that either
do not lie within any existing boundaries or that lie within the regions claimed by
two or more classes)

- the adaptation of LP-based sensitivity analysis for the sensitivity analysis of the
resultant classifier

4 OVERVIEW OF MOST

The method that we have developed is denoted as the "Method of Supermasking and
Trimming," or the MOST procedure. In order to best explain the MOST approach, consider
a set of training data for objects associated with a problem of pattern classification. As may
be noted in either Table 1 or Figure 1, there are 12 objects in class A and 8 in class B (the
method is not limited to just the two-class problem as it proceeds in an identical fashion for
any number of classes). Each object happens to be associated with two attributes (i.e.,
score 1 and score 2) and the values for these attributes are listed in the second and third
columns of the table. Thus, our goal is to find a means to develop class boundaries that
may then be used to classify any future objects that are encountered (i.e., into class A or
B). Note that in Figure 1 the black boxes represent the class A objects and the circles
represent those of class B. Clearly, linear separation is not possible and neither is it
obvious as to whether or not those objects of class B (i.e., bl, b2, and b3) that appear to
fall "within" class A are "outliers." (In fact, we may assume here that they are not and thus,
if discarded, this decision would result in the development of less efficient boundaries.)

TABLE 1. Illustrative Training Set Data

Training
Object

al
a2
a3
a4
a5
a6
a7
a8
a9
alO
all
al2
bl
b2
b3
b4
b5
b6
b7
b8

Score 1
[*i.i.kl

0.2
0.2
0.3
0.3
0.4
0.4
0.5
0.5
0.6
0.6
0.6
0.7
0.4
0.4
0.5
0.6
0.7
0.7
0.8
0.8

Score 2
[x;.2.k]

0.5
0.8
0.4
0.7
0.3
0.9
0.3
0.8
0.4
0.6
0.7
0.5
0.5
0.6
0.5
0.9
0.8
0.9
0.7
0.8

Object
class

A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B



IGNIZIO & BAEK: Neural network design via LP 243

0.8 -

0.6 -

0.4 -

0.2 -

0

C

•
•

•
O

• o
•

•

1 1
> 0.2 0.4

O

•
•
•

o
•

am

i
0.6

O

o

•

o
0

1
0.8 1.0

FIGURE 1. Graph of Training Set

The specific algorithm for the conduct of MOST (i.e., the Baek and Ignizio algorithm) is
provided in the Appendix to this paper. Here, we simply illustrate its application on the
training set listed previously.

We shall use the following notation throughout the remainder of the discussion:

xi,j,k = represents the score, on attribute j , of the ith object of class k (e.g, in
Table 1, the score of object "a2" on test 2 may be denoted as x^ii)

i = l ,2,. . . ,m; j = 1, 2,...,n; k = l , 2 , . . . , K

We may — analogous to the masking concept proposed by Roy — employ a quadratic
function to represent our nonlinear separating hypersurfaces, where this function is denoted
as m(x), or the masking function. Thus, the mask boundary defined by m(x) = 0 may be
represented as a hyperquadric — such as a hyperellipsoid.

In the two-dimensional case (i.e., just two attributes), the form taken on by the masking
function is simply:

m(x) = v l X u k 2 + v2xi2k2 + v3xUjkxii2ik + v 4 x U k + v5xi2ik + v6

where vt = the weight to be assigned to term t of the quadratic function

Since the attribute scores (i.e., the values of the x's) are known, the masking function itself
becomes simply a linear function of the unknown weights (the v's).

Given a set of training data, we proceed by first selecting all training data points associated
with a specific class (e.g., class r). From this data, we form an associated LP model — and
solve this model. The solution of the model provides us with the supermask for the class
under consideration. In general, the LP model for a supermask is given as:



244 IGNIZIO & BAEK: Neural network design via LP

minimize

subject to:
5r(x)-p,=0 / eP r ,

v,=-l ,
p,>0 iePr,

where: Pr = the set of object indices associated with class r

Pi = deviation of any object of class r outside the boundaries of the supermask
sr(x) is the quadratic masking function for which the coefficients (i.e., the v,'s)
are to be determined and is of the form as presented previously by m(x)

The solution of the above model will provide us with the coefficients of a quadratic
expression. We term such a function a supermask and it always encompasses, within its
boundaries, all of the training data points of the specific class under consideration. And this
supermask concept is one of the new features of our approach — and a feature permitting,
we believe, far more efficient classification. (It may also be noted that our supermasking
concept completely eliminates the need for the repeated clustering analysis as employed in
Roy's method.)

For our example, the LP model for determining the supermask of class A is given by:

minimize pi+p2+p3+P4+P5+P6+P7+P8+P9+Pl(HPll+P12
subject to:

0.04vi+0.25v2+0.10v3+0.20v4+0.50v5+v6-pi=0
0.04vi+0.64v2+0.16v3+0.20v4+0.80v5+v6-P2=0
0.09VI+0.16V2+0.12V3+0.30V4+0.40V5+V6-P3=0

0.09VI+0.49V2+0.21V3+0.30V4+0.70V5+V6-P4=0

0.16VI+0.09V2+0.12V3+0.40V4+0.30V5+V6-P5=0

0.16vi+0.81v2+0.36v3+0.40v4+0.90v5+v6-p6=0
0.25vi+0.09v2+0.15v3+0.50v4+0.30v5+v6-P7=0
0.25VI+0.64V2+0.40V3+0.50V4+0.80V5+V6-P8=0

0.36vi+0.16v2+0.24v3+0.60v4+0.40v5+v6-p9=0
0.36vi+0.36v2+0.36v3+0.60v4+0.60v5+v6-pi0=0
0.36vi+0.49v2+0.42v3+0.60v4+0.70v5+v6-pll=0
0.49vi+0.25v2+0.35v3+0.70v4+0.50v5+v6-pi2=0

vi=-l and V2,v3,...,v6 unrestricted
pi> 0 i=l,2 12

Solving this LP model, we obtain the following values for the supermask:
v , = - l , v2 = -0.75, v3 =-0.375, v4 = 1.0875, v5 = 1.05, v6=-0.4775.

Therefore, the supermask for the objects of class A is defined by:
-xf - 0.75x2

2 - 0.375JC,JC2 +1.0875*, + 1.05x2 - 0.4775 > 0.



IGNIZIO & BAEK: Neural network design via LP 245

It is possible that a supermask may encompass objects of another class or classes — points
we designate as foreign objects. If so, we must form one or more additional LP models so
as to determine the masks of these foreign objects. In our example, the supermask function
listed above will encompass 3 foreign objects: bl, b2, and b3. Thus, we develop a mask
for these foreign objects. In general, the LP model to be solved for the determination of
foreign object masks is given as:

minimize ^ 7],

subject to:

/wriB(x)<0 / e P r ,

m r u ( x ) + n i - A = 0 i e A w ,

Tj.-.p^O i e A w ,

where; mr u(x) represents the u^ foreign object mask of class r

A<M) = the set of indices of all foreign objects prior to the development of the u*
foreign object mask

T); = the deviation variable associated with the ft1 foreign object

For our particular example, the LP model associated with the 3 foreign objects is given by:

minimize TH+T12+T13
subject to:

0.04vi+0.25v2+0.10v3+0.20v4+0.50v5+v6^0
0.04vi+0.64v2+0.16v3+0.20v4+0.80v5+v6<0
0.09vi+0.16v2+0.12v3+0.30v4+0.40v5+v6<0
0.09vi+0.49v2+0.21v3+0.30v4+0.70v5+v6^0
0.16vi+0.09v2+0.12v3+0.40v4+0.30v5+v6<0
0.16vi+0.81v2+0.36v3+0.40v4+0.90v5+v6^0
0.25vi+0.09v2+0.15v3+0.50v4+0.30v5+v6^0
0.25vi+0.64v2+0.40v3+0.50v4+0.80v5+v6<0
0.36vi+0.16v2+0.24v3+0.60v4+0.40v5+v6^0
0.36vi+0.36v2+0.36v3+0.60v4+0.60v5+v6^0
0.36vi+0.49v2+0.42v3+0.60v4+0.70v5+v6^0
0.49vi+0.25v2+0.35v3+0.70v4+0.50v5+v6<0

0.16vi+0.25v2+0.20v3+0.40v4+0.50v5+v6+ni-pl=0
0 .16VI+0 .36V2+0 .24V3+0 .40V4+0 .60V5+V6+T12-P2=0

0.25vi+0.25v2+0.25v3+0.50v4+0.50v5+v6+Ti3-p3=0

Pl+P2+P3=l
Tii,pi>0 i=l,2,3

vt (t=1,2,...,6) unrestricted

The solution of this latest LP model is given as:



246 IGNIZIO & BAEK: Neural network design via LP

v6=-8.1429.v,=-7.1429, v2 =-28.5714, v 3 =0, v4 = 6.4286, v5 = 28.5714,
Using these results, we may define the mask for the three foreign objects within the
supermask of class A by the following function:

-7.1429*,2 -28.5714^ + 6.4286*, + 28.5714;c2 - 8.1429 > 0.

Since r\x = TJ2 = 773 = 0, all foreign objects are masked. We may then plot the supermask

and the single associated foreign mask for class A — as depicted in Figure 2.

0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. Supermask and Foreign Objects Mask for Class A

l.O

0.8 -

0.6 -

x2

0.4 -

0 . 2 -

0 0.2 0.4 0.6 0.8 1.0

FIGURE 3. Supermask and Foreign Objects Mask for Class B

Any object within the boundaries of the supermask and not within a foreign mask may be
considered to be of the same class as that associated with the supermask. The procedure is
repeated for all remaining classes under consideration. The results for class B are depicted
in Figure 3. There, the supermask is the ellipse encompassing all objects of class B and the
foreign object mask is the unshaded region within the supermask of class B.



IGNIZIO & BAEK: Neural network design via LP 247

Once we have solved our series of LP models so as develop the supermasks and associated
foreign object masks, we may then establish the associated neural network representation.
Such a representation, in general form, is depicted in Figure 4.

Output
(Class layer)

Hidden
(Mask layer)

Input layer
(Term layer)

FIGURE 4: Neural Network Representation — General Form

The number of nodes in the output layer is equal to the number of classes. The number of
nodes in the input layer is equal to the number of terms in the quadratic expression used to
define the supermask or foreign object mask, and is denoted as T. The number of hidden
layer nodes is equal to the number of supermasks and masks that had to be developed so as
to define the boundaries of each class. Note further that:

• Sk represents the supermask node for class k (k = 1,2,...,K)
• M^u is the u* foreign object mask node associated with the supermask for class k
• zt represents the input signal presented to the first layer node associated with the t^

term of the quadratic function employed in the analysis

Finally, the weights on the various branches are determined as follows:

• The branch weight from input node t to a supermask (or mask) node of the hidden layer
is given by the coefficient of the t* term of the quadratic function for that supermask
(or mask).

• The branch weight from the hidden layer node associated with a supermask to an output
layer node is given a value of +1.

• The branch weight from the hidden layer node associated with a foreign object mask to
an output layer node is given a value of -1.

Returning to our numerical example, we may construct the associated (and trained) neural
network using the results of the solution of our LP models. This network is depicted in
Figure 5. Note that, in this figure, only the weights associated with the two supermasks
have been specified in order to reduce the complexity of the drawing.



248 IGNIZIO & BAEK: Neural network design via LP

Class layer
(Output layer)

Mask layer
(Hidden layer)

Input layer

FIGURE 5. The Associated Neural Network for Table 1

For sake of discussion, assume that a new object is to be classed and has scores of 0.45,
0.55. Using the above neural net, classification is achieved. First, the scores will be
transmitted to the input layer of the network. This will cause nodes MA and SB to be
activated. This is because the object's scores fall within both the foreign mask of A and the
supermask of B. The resultant activation of node MA will assure that the output layer node
A will be turned off while the activation of node SB will cause output layer node B to be
turned on. On the other hand, consider a new object with scores of 0.6, 0.5. It should be
clear that such a data point will lie within both the foreign mask of A as well as the foreign
mask of B — and would seem to then be assigned to neither class. However, in such
"ambiguous" cases, we have refined the network so as to incorporate "maximum selector"
layers (e.g, such as those advocated by Lippman [1987]) that serve to associate such data
points to their "nearest" (in whatever sense desired) class.

4.1 Additional Enhancements
While the approach as proposed above is, we believe, already a substantial improvement
over existing methods, there are still a number of additional enhancements that we are
presently investigating. As we noted above, our concept of supermasking accomplishes
two things: (i) it eliminates any need for cluster analysis (as used in Roy's method), and (ii)
it serves to substantially reduce the size of the LP models that need to be solved. However,
we can even further reduce these LP models by taking advantage of the specific nature of
the LP models that are used to represent supermasking or masking construction. Here, we
note but four examples of such model size reduction and/or exploitation.

First, it appears to almost always be possible (and relatively easy) to further reduce the size
of the LP models employed for the determination of supermasks. This is because that the
binding constraints in such models are those associated with objects closest to the exterior
of the supermask boundaries. For example, in Figure 2 it may be noted that the object at
coordinates 0.3 and 0.7 lies in the interior of the supermask and plays no role in the
construction of that mask. In real world problems, with real world data, the occurrence of



IGNIZIO & BAEK: Neural network design via LP 249

these "interior" elements is even more typical. Thus, we are examining methods for
identifying and eliminating such objects (and thus their associated constraints) from the
supermasking phase. One simplistic — but seemingly effective — way to accomplish this
is to eliminate those objects closest to the centroid determined by all of the objects of the
class for which the supermask is to be determined.

The second concept is similar to that noted above. However, here we note that it appears to
be almost always possible (and, again, relatively easy) to further reduce the size of the LP
models employed for the determination of foreign object masks. Here, we note that the
objects associated with the mask, and "far" from the centroid of the foreign objects appear
to seldom play a role in the determination of the foreign object mask.

Finally, in a typical LP model for supermasking and foreign object masking, the number of
variables is generally far less than the number of rows. Since it is well known that the
number of pivots required to solve an LP is a function of the number of rows, it would
appear that the solution of the dual of these LP models should be considered.

5 THE EXPERT SYSTEM INTERFACE

While the primary thrust of both our method and this paper has been that of the integration
of LP and neural networks, we have found that this integration could be facilitated by
means of an expert systems interface. In fact, such an approach amounts to the use of
intelligent interfacing [Ignizio, 1991]. Thus, our total concept involves the use of an expert
system for the access of the date (i.e., training set) and the automatic transformation of this
data into the LP models utilized in the algorithm. Further, the expert system analyzes the
output of the LP problem solver so as to decide on the next step (e.g., if the object function
value for the LP of a foreign object mask is zero-valued, we proceed to the next supermask
— and if not, a new LP must be solved) and, finally, once all supermasks and foreign
object masks have been constructed, the expert system uses that information to determine
the architecture and branch weights of the associated neural network classifier. In addition
to all of this, we are investigating the employment of the expert systems interface in the
conduct and interpretation of the. sensitivity analysis of the resulting network.

6 EMPIRICAL RESULTS

We have applied the MOST approach to a variety of problems, many of which have
appeared in the literature on either pattern classification via statistical methods or in papers
on the use of neural networks. In addition, a number of other training sets were
synthesized. The results achieved thus far have been excellent. In all cases we are able to
guarantee 100% accuracy of classification of the training set data while, at the same time,
we retain the ability to generalize (i.e., by means of the maximum selector layers discussed
earlier). More specifically, we are able to either surpass or, at the worst, duplicate the
classification accuracy results achieved by either Bennett and Mangasarian, or Roy and
Mukhopadhyay, while employing considerably smaller LP models. We intend, however,



250 IGNIZIO & BAEK: Neural network design via LP

to continue this investigation and we hope to summarize the results obtained in a paper to
follow.

7 SUMMARY AND CONCLUSIONS

The MOST method extends the notions presented in earlier works on the application of LP
to neural network design and training. In particular, the results obtained by such methods
(i.e., in pattern classification) may be, at the least, duplicated while employing smaller LP
models and, typically, fewer iterations. Two of the most important new features of our
approach is that of the employment of supermasks and reduction (trimming) of the size of
the LP models in employed — leading to the name given the approach: MOST, for method
of supermasking and trimming. In addition, we have incorporated the concept of
generalization in our associated network structure.

8 REFERENCES

Bennett, K.P. and Mangasarian, O.L. (July 1990). "Neural Network Training via Linear
Programming," Computer Sciences Technical Report #948, University of Wisconsin -
Madison.

Freed, N. and Glover, F. (1981). "Simple But Powerful Goal Programming Models for
Discriminant Problems," European Journal of Operational Research, 7,44-66.

Ignizio, J. P. (1982). Linear Programming in Single and Multiple Objective Systems,
Englewood Cliffs, New Jersey: Prentice-Hall.

Ignizio, J. P. (1991). An Introduction to Expert Systems, New York: McGraw-Hill.

Lippman, R.P. (April 1987). "An Introduction to Computing with Neural Nets," IEEE
ASSP Magazine, 4-22.

Mangasarian, O. L. (1965). "Linear and Nonlinear Separation of Patterns by Linear
Programming," Operations Research, 13,444-452.

Roy, A. and Mukhopadhyay, S. (1991). "Pattern Classification Using Linear
Programming," ORSA Journal on Computing, 3(1), 66-80.

9 APPENDIX: BAEK AND IGNIZIO ALGORITHM

It is assumed that we are provided with a training set consisting of K classes of objects.
Further, we shall represent the set of indices associated with the objects of class r by Pr

1. Set r=\, where r is the index associated with the class of objects presently under
consideration.

2. Establishment of a Supermask: To obtain the supermask of class r, denoted as
sr(\), solve the following LP model



IGNIZIO & BAEK: Neural network design via LP 251

minimize

;<=p,

subject to:

s r (x)-p,=0 i e P r ,

where sr(x) is the quadratic supermasking function for which the coefficients (i.e.,
the v,'s) are to be deteimined.

3. Identification of Foreign Objects: Let A be the set of indices for those objects within
the supermask of class r and which do not belong to class r, as defined by:

and j € TJ PL

; (A.2)
\k*r

(a) SetM=l, A(1) = A.
(b) Construction of Foreign Object Mask: To obtain the M* foreign object mask

of class r, denoted as mr u(x), solve the following LP model

minimize V T]i
.•eA<">

subject to:

ieA

77;,A>0 i e A « , ( A 3 )

where mru(x) is the quadratic masking function for which the coefficients

are to be determined.

(c) If the LP model of (A.3) has the solution of ^ T J ; = 0, go to step 4.

Otherwise, proceed to step 3d, below.
(d) Identify the un separated objects of the set A by

A(u+1) = {;|7j,.>0}. (A.5)

Set «=M+1 and go to step 3.b.
4. If r=K, stop. Otherwise, set r=r+\ and return to step 2.





KEshell2:
An Intelligent Learning Data Base System

XINDONG WU

Department of Artificial Intelligence
University of Edinburgh

80 South Bridge. Edinburgh EH1 1HN, UK

Email: xindongw@castle.ed.ac.uk

Abstract
An intelligent learning data base (ILDB) system is an integrated

learning system which implements automatic knowledge acquisition
from data bases by providing formalisms for 1) translation of standard
data base information into a form suitable for use by its induction en-
gines. 2) using induction techniques to produce knowledge from data
bases, and 3) interpreting the knowledge produced efficiently to solve
users' problems. Although a lot of work on knowledge acquisition
from data bases has been done, the requirements for building prac-
tical learning systems to learn from conventional data bases are still
far away for existing systems to reach. A crucial requirement is more
efficient learning algorithms as realistic data bases are usually fairly
large. Based on KEshell. dBASES and the low-order polynomial in-
duction algorithm HCV. this paper presents a knowledge engineering
shell. KEsheH2. which implements the 3 phases of automatic knowl-
edge acquisition from data bases in an integral way.

1 INTRODUCTION

Over the past twenty years data base research has evolved technologies that
are now widely used in almost every computing and scientific field. However,
many new advanced applications including computer-aided design (CAD),
computer-aided manufacturing (CAM), computer-aided software engineer-
ing (CASE), image processing, and office automation (OA) have revealed
that traditional data base management systems (DBMSs) are inadequate,
especially on the following cases [VVu 90b]:



254 WU: KEshell2: an intelligent learning data base system

• Conventional data base technology has laid particular stress on dealing
with large amounts of persistent and highly structured data efficiently
and using transactions for concurrency control and recovery. For some
applications like CAD/CAM [Wu 92c] where the data schemata need
to vary frequently, new data models are needed.

• In some applications like geographical data and image data, the se-
mantic relationships among data need to be represented as well as the
data itself. Conventional data models in data base technology cannot
support any representation facility for complex semantic information.

• Traditional data base technology can only support facilities for process-
ing data. Along with the developments of other subjects, like decision
science and AI, more and more applications need facilities for support-
ing both data and knowledge management.

That is why integrating AI technology into data base technology, called IDB
(intelligent data base) research, has been identified [Brodie 88] as one of
the research frontiers of data base technology and has become a popular
research topic all over the world. The current research of IDB centers on five
themes, i.e., object-oriented data base systems; deductive data base systems;
expert data base systems; intelligent man-machine interfaces which include
the design of meaningful operation interfaces and of friendly natural-language
interfaces; and recursive query optimization. The knowledge bases (which
contain deductive rules and/or semantic information such as the conceptual
hierarchy among data) in existing IDB systems can only be built up by hand
with known technology. Knowledge acquisition in IDB systems has become
a central and difficult problem in IDB research. Research in this area is
expected to lead to significant progress in the whole data base field.

Broadly speaking, all kinds of attribute-based learning algorithms can be
adapted to extract knowledge from data bases. It is not difficult to add an
induction engine to an existing data base system in an ad hoc way (such as
[Cai et ai 91] and [Ke et al 91]) to implement rule induction from data bases
or design some specific engines to learn from domain-specific data sets (e.g.,
[Blum 82]). However, when we integrate machine learning (ML) techniques
into data base systems, we must face many problems [Quinlan 89] such as:

• The knowledge learned needs to be tested and/or used back in the
integrated IDB systems. This implies more expressive representations
for both data (e.g., tuples in relational data bases, which represent
instances of a problem domain) and knowledge (e.g., rules in a rule-
based system, which can be used to solve users' problems in the domain)
and deduction/inference mechanisms are needed.



WU: KEshell2: an intelligent learning data base system 255

• More efficient induction algorithms are needed. The algorithms should
be capable of being applied to realistic data bases, e.g., > 106 relational
tuples. This needs the algorithms to be more efficient than existing
ones. Exponential or even medium-order polynomial complexity will
not be of practical use.

• Another problem is how to balance ML facilities and other functions
in the IDB systems, particularly when is the proper time to trigger the
ML facilities.

The first and the third problems both relate how to couple ML facilities
with data base and knowledge base technology in IDB systems. This is the
main difficulty in developing practical IDB systems. However, the second
problem concerning low-order polynomial time induction algorithms is the
crucial requirement for knowledge acquisition from data bases. Although
a lot of work (e.g., [Cai et al. 91], [Ke et al. 91] and various induction al-
gorithms [Wu 92b]) has been done, the requirements above for knowledge
acquisition from realistic data bases are still far away for existing systems to
reach and no existing systems have been reported to be able to integrate ML
techniques with both data base and knowledge base technology effectively.

Meanwhile, although some commercial successes have been found in ex-
isting learning systems, there are limitations on current ML techniques for
both research and applications. Existing knowledge acquisition tools (such
as [Mowforth 86, Boose and Gaines 88, Marcus 88]) have concentrated on
building knowledge bases for expert systems and designing various learning
algorithms. As data base technology has found wide applications in various
fields, it will surely generate significant effect on ML research if we can couple
them well. Therefore, research on knowledge acquisition from data bases can
be viewed as an important frontier for both data base and ML technology
[Wu 92b].

In this paper, we will describe an integrated learning system, KEshellS,
which couples ML techniques with both data base and knowledge base tech-
nology. It provides mechanisms for 1) translating relational data base infor-
mation into a unified representation which integrates data and knowledge,
2) using induction techniques to extract rules from data bases, and 3) in-
terpreting the rules produced to solve users' problems. We define a system
which has mechanisms to do all of these 3 phases of work as an intelligent
learning data base system (ILDB). With an ILDB system, one can, for ex-
ample, produce 100 or 200 conjunctive rules for 50 diseases from a million
medical cases of the 50 diseases. Then, the ILDB system can use the rules
in 2 different ways: keeping these rules instead of the original cases because
the original cases might take a large space; and using these rules to diagnose
new cases.



256 WU: KEshell2: an intelligent learning data base system

Monitor

I/D Engine

KBMS DBMS

Utility

Access Storage Interface 0 S

Figure 1: The System Structure of KEshell2

2 SYSTEM STRUCTURE

Figure 1 shows the system structure of KEshell2, the improved version of
KEshell [Wu 90a, Wu 91b] with the knowledge acquisition engine, K.A. En-
gine, which implements induction from data bases, and the data base man-
agement subsystem, DBMS, based on dBASE3 being integrated.

In the diagram, Monitor is a man-machine interface which exchanges
information with users in form of pull-down menus. I/D Engine is an infer-
ence and deduction engine based on the inference engine of KEshell. KBMS
and DBMS are facilities adopted mainly from KEshell and dBASES respec-
tively to support knowledge base and data base management functions. Util-
ity contains a set of common procedures that are shared by K.A. Engine,



WU: KEshell2: an intelligent learning data base system 257

KBMS and DBMS. Access Storage Interface is composed of the basic knowl-
edge/data operators. DB and KB denote data bases and knowledge bases
respectively and OS indicates operating system facilities. For the implemen-
tation of KEshell2, the operating system used was PC-DOS, referred to as
DOS hereafter.

2.1 Monitor
The Monitor module in KEshell2 accepts users' operational commands and
calls corresponding functional modules in the system.

There are five options in its main menu: 1. KBMS; 2. I/D Engine; 3. K.A.
Engine; 4. DBMS; and 5. DOS with their second-level menus being as follows.

• KBMS: 1. Build a Knowledge Base, 2. Adapt Knowledge, 3. Find Cy-
cles, 4. Sort a Knowledge Base, 5. List Rule Schemata, 6. List Concrete
Rules, 7. Edit a KB File, and 8. Clear Working Memory.

• I/D Engine: 1. Forward Chaining, 2. Backward Chaining, 3. Deduction,
4. Knowledge Trace, 5. Clear Evidence, and 6. Adapt Facts.

• K.A. Engine: 1. Semantic Information, 2. Rule Induction by HCV, and
3. Rule Induction by ID3.

• DBMS: 1. Enter dBASE3, and 2. List a Relation.

• DOS: 0. Enter PC-DOS, 1. Load a KB File, 2. Save Knowledge, 3.
Directory, 4. Print, 5. Copy, 6. Delete, 7. Rename, 8. Time, 9. Date,
10. List Facts, 11. Adapt Facts, 12. Save Working Memory, 13. Edit a
Text File, 14. List a DOS File, and 15. Quit.

The functions of most of the second-level submodules are just what their
names have said.

2.2 KBMS

The KBMS module in KEshell.2 is adopted from the KEshell system [Wu
90a, Wu 91b]. It supports facilities for interactively building, adapting and
displaying knowledge bases, checking for semantic inconsistencies including
dead cycles [Wu et al. 90a], sorting knowledge bases into partial order to
implement linear forward chaining [Wu 91a] and editing knowledge base files.



258 WU: KEshell2: an intelligent learning data base system

2.3 DBMS

The DBMS module in KEsheWS is based on dBASE3, a commercial rela-
tional data base management system. Users can do conventional data base
operations by simply entering dBASE3. However, a new function, List a
Relation, is developed here to translate dBASE3 files into the Prolog-based
representation [Wu 92e] which will be described in Section 3.

2.4 I/D Engine

All the submodules except Deduction in I/D Engine are taken from KEshell.
The Deduction submodule which will be described in Section 5 is designed
to interpret the rules produced by the K.A. Engine to solve users' problems.

2.5 K.A. Engine

There are three submodules in the K.A. Engine in KEshell2: 1) Semantic
Information, which is a simplified implementation of the approach to genera-
tion of semantic networks from relational data base schemata [Wu et al. 91],
2) Rule Induction by HCV, which implements the HCV algorithm designed
by the author [Wu 92a, Wu 92d], and 3) Rule Induction by ID3, which im-
plements the well-known ID3 induction algorithm [Quinlan 86]. The second,
Rule Induction by HCV, and the first, Semantic Information, are the core
of the KEshell2 system. We will describe them in detail in Section 4 and
Section 3 respectively.

3 TRANSLATION OF DATA BASE
INFORMATION

3.1 The Prolog-based Representation

Semantic information in the real world includes four different categories:

• descriptive knowledge about entities,

• inherent laws and constraints between attributes or fields in entities,

• relationships among entities which can be further divided into six types
[Wu et al. 90b]1, i.e., hierarchy, fellow member, attribute, role, causal-

*In order to give a more precise semantic classification, it is possible to divide one or
more of the relationship types here into greater detail. The completeness of a semantic
model can only be defined in terms of specific applications. We cannot say whether all
the relationships here are necessary for every application. Neither can we say they are
complete. However, as we have shown in [Wu 92e], they do exist in the real world.



WU: KEshell2: an intelligent learning data base system 259

ity and logical implication, and

• dependency types in the relationships between entities.

The E-R model is one of the most successful methods of formulating use-
ful abstract models in the conceptual structure design of data bases and the
key design aid for conventional data bases implemented under a wide vari-
ety of commercially available systems [Kazic et al. 90]. By focusing on the
entities and their relationships, it structures the way designers approach the
problem of creating extensible data bases. However, there are two substan-
tial problems here. One is that transforming an E-R model into a relational
model during the logical design of data bases results in loss of some semantic
information that exists in the E-R model. In other words, the entities and
relationships are not distinguished in the relational data model. It is impos-
sible for the relational data model to describe the changes of relationship(s)
and other entities caused by an entity in an E-R. model. For example, age
is an important factor for counting an employee's salary in many British
institutions. However, we cannot explicitly express whether the employee's
salary will increase according to the change of his/her age in the relational
data model. The other problem is that the E-R model itself is insufficient
in expressing complex semantic information as its relationship types, such as
one to many and many to many, are too simple to describe explicitly semantic
features of the relationships between entities and within entities themselves.
For example, different types of relationships, such as logical implication and
conceptual inheritance, cannot be expressed in the E-R model.

The E-R model and the relational data model are successful in those ap-
plications where only the ability to deal with large amounts of persistent
and fixed-format data efficiently is needed. For new applications, such as
those mentioned in the introductions, new representation models are in de-
mand. Object-oriented data models are a new generation of extended data
models, based on the relational data model. However, object-oriented mod-
els are themselves data models although some systems (e.g., POSTGRES
[Cattell et al. 91]) have included rule processing facilities. Data manage-
ment, object management and knowledge management are three different
dimensions of problem solving techniques. They would all be needed in
some complex applications. Knowledge management entails the ability to
represent, acquire and enforce a collection of expertise which is part of the
semantics of an application. Such expertise describes integrity constraints
among data in the application as well as allowing the derivation of data
which is usually called virtual data contrasting to the real data stored in
the data base(s). The task of knowledge management is a key motivation of
deductive data bases research.

To implement both data base and knowledge base management in a sin-
gle system, we have designed a Prolog-based representation in KEshellS with



260 WU: KEshell2: an intelligent learning data base system

a.n emphasis on expressing the semantic information which cannot be rep-
resented in the relational data model or the E-R model. The following is a
summary of the thirteen predicates in the Prolog-based representation. De-
tailed descriptions and examples of these predicates can be found in [Wu
92e].

relation(RelationName, FieldList, Tuples) (1)
field(RelationName, FieldName, Type) (2)
is — assoc(Relation) (3)
assoc — entity(Relation, EntityList, AssocTypeList) (4)
assoc — type(Relation, AssocType) (5)
label(Entity, Relation, Label) (6)
schema(Relation,CauseEntityList, Re suit Entity), (7)
body - left(Relation, No, CauseOr Result Entity, Attri, RelSym, Value), (8)
body - right(Relation, No, ResultEntity, Attri, Value) (9)
constraintl(Relation, Attribute, RelSym, Value) (10)
constraint2(Relation, MappingType) (11)
constraint3(Relation, Attribute, OuterVariableList, ConstraintStriny) (12)
function((Relation, Attribute), (Rel, Attri)List, Function) (13)

Predicates (1) and (2) explicitly describe both relational schemata and
tuples. Predicate (3) distinguishes relationships from entities. Predicate (4)
describes an entity-relationship association in the E-R model. Predicates
(5) and (6) identify the semantic type of each relationship and each entity's
semantic role in each relationship. Predicates (7), (8) and (9) represent rules
in the form of "rule schema + rule body" [Wu 90a, Wu 91b]. Predicates (10),
(11) and (12) describe three kinds of constraints knowledge: the integrity of
attributes in each relation in the relational data model, the dependency type
of each relationship, and the constraint relationship between an attribute in a
relation and outer variables. Finally, Predicate (13) describes the regularities
of the attributes themselves.

The thirteen predicates here can explicitly represent all the information
that can be expressed in the E-R model (i.e., entities, relationships and con-
straints). Also, the representation binds the actual data, data schemata and
semantic constraints together in an explicit way as against the characteristic
[Nieme et al. 91] of the current deductive data bases that only actual data is
represented explicitly in logic while the data schema is implicitly described
in form of predicates and thus the disadvantages of the normal way to model
relational data bases in Prolog have been eliminated.

3.2 Translation of dBASE3 Files into the Prolog-based
Representation

The List a Relation submodule in DBMS reads and translates relational data
bases in the form of dBASE3 files into the predicates in the Prolog-based
representation outlined in Section 3.1.



WU: KEshell2: an intelligent learning data base system 261

Table 1: Relational Schema in GOLF.DBF

FIELD

ORDER
OUTLOOK
TEMPERATURE
HUMIDITY
WINDY
DECISION

TYPE
numeric

string

string
string
string
string

WIDTH

2
8
4

6
5
10

Table 2: Tuples in GOLF.DBF
ORDER

1
2
3
4
5
6
7
8
9
10
11
12
13
14

OUTLOOK
rain
rain

overcast
overcast

rain
overcast
sunny
sunny
sunny
rain
rain

sunny
sunny
rain

TEMPERATURE
hot
cool
hot

mild
hot
cool
hot
mild
mild
cool
hot
hot
cool
mild

HUMIDITY
high

normal
high

normal
high

normal
normal

high
normal
normal

high
high

normal
normal

WINDY
true
true
true
false
false
true
true
true
false
false
false
false
false
true

DECISION
Don't Play
Don't Play

Play
Play
Play
Play

Don't Play
Don't Play

Play
Play
Play

Don't Play
Don't Play
Don't Play



262 WU: KEshell2: an intelligent learning data base system

For example, GOLF (adapted from [Quinlan 86]) is a sample dBASE3 file.
The relational schema and tuples included in the file are listed in Tables 1 and
2 respectively. The corresponding predicates translated by List a Relation
are given below.

relation("GOLF",
["ORDER", "OUTLOOK", "TEMPERATURE", "HUMIDITY",

"WINDY", "DECISION"],
[tuple("l", rain, hot, high, true, "Don't Play"),
tuple("2", rain, cool, normal, true, "Don't Play"),
tuple("3", overcast, hot, high, true, "Play"),
tuple("4", overcast, mild, normal, false, "Play"),
tuple("5", rain, hot, high, false, "Play"),
tuple("6", overcast, cool, normal, true, "Play"),
tuple("7", sunny, hot, normal, true, "Don't Play"),
tuple("8", sunny, mild, high, true, "Don't Play"),
tuple("9", sunny, mild, normal, false, "Play"),
tuple("10", rain, cool, normal, false, "Play"),
tuple("ll", rain, hot, high, false, "Play"),
tuple("12", sunny, hot, high, false, "Don't Play"),
tuple("13", sunny, cool, normal, false, "Don't Play"
tuple("14", rain, mild, normal, true, "Don't Play"])
field("GOLF", "ORDER", integer)
field("GOLF", "OUTLOOK", string)
field("GOLF", "TEMPERATURE", string)
field("GOLF", "HUMIDITY", string)
field("GOLF", "WINDY", string)
field("GOLF", "DECISION", string)

3.3 Semantic Information Acquisition

The theme of KEshellS is the provision of mechanisms for extracting knowl-
edge from data bases. It has not been expected to provide a meaningful
operation interface which can detect semantic errors in users' questions by
using complex semantic information rather than simply supporting answers
or 'no solution'. Therefore, only deductive knowledge which can be used to
trigger induction engines are acquired in the Semantic Information submod-
ule.

Simplified from the approach that generates semantic networks from re-
lational data base schemata [Wu et al. 91], the Semantic Information sub-
module in the K.A. Engine works according to the following steps.

1. Find all relations in the working directory, which can be set or changed
by the Directory submodule in the DOS module;

2. Ask the user to identify which of the relations is a relationship and of
either causality or logical implication type;



WU: KEshell2: an intelligent learning data base system 263

3. Read the schema in the identified relation and ask the user to describe
the causality structure between the fields in the schema; and

4. Read the tuples in the relation and translate them into executable forms
for induction.

The following is an example run of this submodule on the GOLF file
shown in Tables 1 and 2. The sentences with K: at the beginning are gener-
ated by KEshellS and those with M: are input of the user.

K: All the relations in the current working memory have been detected are:
K: DISEASE, GOLF, M0NK1, M0NK2, M0NK3
K: Please indicate which of them is a relationship AND
K: of either causality or logical implication type:
M: GOLF
K: Now, please identify the semantic labels of attributes
K: in the relationship:
K: (All the fields in the GOLF relationship are
K: ORDER, OUTLOOK, TEMPERATURE, HUMIDITY, WINDY, DECISION)
K: The result field:
M: DECISION
K: and the condition fields:
M: OUTLOOK, TEMPERATURE, HUMIDITY, WINDY
K: O.K. The logic structure is:
K: IF OUTLOOK, TEMPERATURE, HUMIDITY, WINDY then DECISION
K: Would you like to induce rules from your current data base now?
M: N

If 'Y'(yes), this submodule will automatically call the Rule Induction by
HCV submodule.

4 INDUCTION FROM DATA BASES

4.1 A Survey of Induction Algorithms

Machine learning is a major subfield of artificial intelligence. It has been seen
as a feasible way of avoiding the knowledge bottleneck problem in knowledge-
based systems development. Research on ML has concentrated in the main
on inducing rules from unordered sets of examples, especially attribute-based
induction, a formalism where examples are described in terms of a fixed
collection of attributes. The learning systems in commercial use today are
only inductive ones. Among various induction algorithms [Wu 92b], the three
typical families are: the generalization-specialization strategy based AQ-like
family including the version space (candidate elimination) and Focussing
algorithms, the decision-tree method based ID3-like family, and the extension
matrix approach based family.



264 WU: KEshell2: an intelligent learning data base system

AQll [Michalski et al. 78] and ID3 [Quinlan 86] are the two most
widespread algorithms in ML. They are respectively representatives of the
AQ-like family and the decision-tree method based family. Although AQll
has been improved on its capacities of noise (including poor description) han-
dling, incremental induction, decreasing rule complexity under noise environ-
ments, and constructive induction in its successors such as CN2
[Clark et al. 89], AQ15 [Michalski et al. 86], and AQ17 [Bloedorn et al. 91],
and ID3 has been improved on its capacities of decision trees binarization,
processing real-valued attributes, incremental induction, gain ratio heuristic
for selecting tests, post-pruning of decision trees, and converting decision
trees into production rules in its descendants such as Newld [Boswell 90],
ID5R [Utgoff 89] and C4.5 (personal communication with Ross Quinlan, May
28, 1992), the ideas developed in AQll and ID3 are still the core of the 2
families of algorithms.

However, a new family of inductive algorithms based on the extension
matrix approach has been proposed recently. Some experiment has shown
[Hong et al. 86] that an AEl algorithm of this family is faster than AQll in
some cases. We will show below that the new HCV algorithm of this family
designed in KEshelW has some significant features in time complexity and
rule compactness. Since the AQll algorithm has been shown [O'Rorke 82]
to be more expensive in both the cost of rule production and the complexity
of rules produced than the ID3 algorithm, we will compare HCV with only
ID3.

4.2 The HCV Induction Algorithm

Let a be the number of attributes {Xi, ...,Xa} in an example space, n be
| NE |= | {e^~,...,e~} | where e~ (z = l , . . . ,n) is the z-th negative example
and NE is the set of negative examples, p be | PE | = | {ef,..., e+} | where
ef (z = l , . . . ,p) is the z-th positive example and PE is the set of positive
examples, and NEM — {ej~,..., e~}T = (r,j)n«a where T stands for the
transpose of a matrix. The extension matrix of the k-th (k = 1, ...,p) positive
example e j = (vfk, •••,v£k) against NE is defined as

EMk = (rijk)nma

where
_ j * when vfk = NEMij

Tijk = \ NEMtJ when vfk + NEM%3

and '*' denotes a dead element which can not be used to distinguish the
positive example from negative examples.

A set of n nondead elements r,jt (z 6 {1,...,«}, ji € {!,..., a}) that come
from the n different z rows of EMk is called a path in EMk. The path



WU: KEshell2: an intelligent learning data base system 265

corresponds to the following conjunctive formula

which covers e£ against NE. Each [Xjf ^ r,^] here is a selector in variable-
valued logic [Michalski 75].

When there exists at least one common path in EM^, ...,EM{k of a
positive example set {e+,...,e+} against NE, the positive example set is
called an intersecting group and a formula which corresponds to a common
path covers all the intersecting group against NE.

There are two striking optimization problems in the extension matrix
approach:

• The minimum formula (MFL) problem: Generating a conjunctive for-
mula that covers a positive example or an intersecting group of positive
examples against NE and has the minimum number of different con-
junctive selectors.

• The minimum cover (MCV) problem: Seeking a cover which covers all
positive examples in PE against NE and has the minimum number of
conjunctive formulae with each conjunctive formula being as short as
possible.

As the extension matrix EM^ of each positive example ej against NE
contains all such paths that each correspond to a conjunctive formula of e*
against NE and an optimal cover of PE against NE is such a minimum set
of formulae that is a logical combination of all the formulae from every EMjt
(k — l,...,p), both MFL and MCV problems have been proved to be NP-
hard [Hong 85]. [Hong 85] proposes two heuristic strategies in AE1: starting
search from the columns with the most nondead elements; and simplifying
redundance by deductive inference rules in mathematical logic. However, as
shown in [Wu 92d], the first heuristic can easily lose optimal solutions in
some cases and the second one is still NP-hard in time complexity.

The basic idea for the HCV algorithm is to partition PE into p' (p' < p)
intersecting groups first; call the heuristic algorithm HFL, which is designed
to find a heuristic conjunctive formula (Hfl) which corresponds to a path in
an extension matrix or a common path in all the extension matrixes of an
intersecting group of positive examples, to find a Hfl for each intersecting
group; then finally give the covering formula by logically ORing all the HfTs.

Four strategies are adopted in the HFL algorithm:

1. The fast strategy. In an extension matrix EMk — (r,-j)n»tt, if there is
no dead element in a (say j) column, then [Xj ^ rj] where rj = V"=1r,-j
is chosen as the one selector cover for



266 WU: KEshell2: an intelligent learning data base system

2. The precedence strategy. When a rtJ in column j is the only nondead
element of a row i in an extension matrix EMk = (r,-j)n»a, the selector
[Xj ^ rj] where ry = V"=1r,j is called an inevitable selector and thus is
chosen with top precedence.

3. The elimination strategy. When each appearance of some nondead
element in the ji-th column of some row is always coupled with another
nondead element in the .72-th column of the same row in an extension
matrix EMk — (r;j)n, a, [X^ / r,,] where r,-, = V^r,-^ is called an
eliminable selector and thus eliminated by selector [Xj2 ^ rj2] where

4. The least-frequency strategy. When all inevitable selectors have been
chosen and all eliminable selectors have been excluded but all the
selectors chosen have not yet covered all the rows in an extension
matrix, exclude a least-frequency selector which has least nondead
elements in its corresponding column in the extension matrix.

The first three strategies are complete, which means if there exists one or
more shortest conjunctive formulae in an extension matrix they will find it,
while the fourth strategy is a sensible heuristic because choosing a column
with fewer nondead elements means more columns thus more selectors may
be involved in connecting a path.

The time complexity for HCV is O(pna3 +p2na) [Wu 92b] and there are
2 theorems below concerning its correctness and performance.

Theorem 1. The formula generated by HCV covers all the positive
examples against negative examples in a given example set.

Theorem 2. If there exists at least one conjunctive cover in a given
training example set, the formula produced by HCV must be a conjunctive
one.

4.3 An Example Run

Taking the data set in Table 2 as an example, the Rule Induction by HCV
submodule in the K.A. Engine produces five rules:

if [ OUTLOOK=overcast ] then [DECISION=Play],
if [ WINDY=false ] & [ OUTLOOK=rain ] then [DECISION=Play],
if [ TEMPERATURE=mild ] & [ WINDY=false ] then [DECISION=Play],
if [ OUTLOOK=[sunny,rain] ] k [ WINDY=true ] then [DECISION=Don't

Play], and
if [ OUTLOOK=sunny ] & [ TEMPERATURE=[cool,hot] ] then

[DECISION=Don't Play].



WU: KEshell2: an intelligent learning data base system 267

OUTLOOK

Don't Play Don't Play HUMIDITY

Play

high

Don't Play

Don't Play Play

Figure 2: A decision tree for GOLF.

Meanwhile, the decision tree generated by ID3 in the Rule Induction
by ID3 submodule for the same example set is shown in Figure 2 which is
equivalent to the following decision rules:

if OUTLOOK=overcast then Play;

if OUTLOOK=raink WINDY=truc then Don't Play;

if OUTLOOK=raink WINDY=false then Play;

if OUTLOOK=sunny k TEMPERATURE = hot then Don't Play;

if OUTLOOK=sunny k TEMPERATURE - cool then Don't Play;

if OUTLOOK-sunnykTEMPERATURE = mild k HUMIDITY-normal
then Play; and

if OUTLOOK=sunny k TEMPERATURE = mild k HUMIDITY-high
then Don't Play.



268 WU: KEshell2: an intelligent learning data base system

4.4 A Comparison with HCV and ID3

The reason for using decision trees rather than rules, such as the variable-
valued logic rules adopted in AQll and HCV, is said by [Jackson 90] to be
that the ID3-like algorithms are comparatively simpler than other learning
algorithms. From the time complexity of HCV, we can say that the argument
is now no longer convincing. Although the information theoretic heuristic
(the entropy measure) in ID3 is by no means complete, ID3 needs to examine
all possible candidate attributes and their values to choose one attribute
at each non-leaf node of its decision trees and thus its time complexity is
still expensive [Utgoff 89]. In HCV, although all of the fast, precedence and
elimination strategies are complete, which means if there exists one or more
shortest conjunctive formulae in an extension matrix they will not lose it, the
fast strategy can choose an optimal attribute as soon as it finds the attribute
without any attention to other attributes and the precedence strategy can
choose an inevitable attribute by examining only the values of a row in an
extension matrix. High efficiency has been seen as an important requirement
for knowledge discovery and exponential or even medium-order polynomial
complexity will not be of practical use [Quinlan 89] in realistic data bases.
Therefore, the first significant advantage of the HCV algorithm is its low-
order polynomial time. It supports a reasonable solution to the NP-hard
problem in the extension matrix approach for inductive learning.

With respect to rule compactness, different values of the same attribute
(either symbolic or numerical) which take on only positive examples can be
easily grouped into a selector in the variable-valued logic. In ID3, once an
attribute is selected, all arcs labeled by values that attribute takes must be
expanded. This can still make the number of branches (paths) large since at
each arc only one value can be labeled, and resulting paths might be longer
than those actually needed because, by the time specific concepts (leaves on
the decision tree) are developed, irrelevant variables may have been intro-
duced. All of the four strategies in HFL and the partitioning technique in
HCV are designed to reduce the number of selectors. For those problems
where the fast, precedence and elimination strategies are enough to produce
their final formulae, we can guarantee that the formulae are optimal. From
Theorem 2, if there exists at least one conjunctive cover in a given training
example set for positive examples against negative examples, the formula
produced by HCV must be a conjunctive one. However, the information
theoretic heuristic in ID3 is not complete, which means it is not guaran-
teed to find the simplest decision tree that characterizes the given training
instances. From the example set given above and various experiments on dif-
ferent sized data sets including the MONK's problems [Thrun et al. 91], the
rules produced by HCV are always more compact in terms of the numbers of
conjunctive rules and conjunctions than the decision trees or their equivalent



WU: KEshell2: an intelligent learning data base system 269

decision rules produced by ID3. So, the compactness of rules in HCV is its
second advantage. However, the least-frequency strategy is still heuristic. We
cannot guarantee the rules produced by HCV must be more compact than
the decision trees generated by ID3 in all cases.

Also, the rules in the form of variable-valued logic produced in HCV
are similar to that adopted in AQll, which is said [O'Rorke 82] to be the
advantage of AQll over ID3.

5 INTERPRETING RULES TO SOLVE
USERS' PROBLEMS

The Deduction submodule in the I/D Engine is designed to classify examples
according to the rules produced by the Rule Induction by HCV submodule.
It is actually a data-driven forward chaining engine.

Taking the rules produced by HCV in Section 4.3 as an example, the
following is an example run of the Deduction submodule.

K: The rules (Hfl's) in the working memory are:
K: if [ OUTLOOK=overcast ] then [DECISION=Play]
K: if [ WINDY=false ] k { OUTLOOK=rain ] then [DECISION=Play]
K: if [ TEMPERATURE=mild ] k [ WINDY=false ] then [DECISION=Play]
K: Please input your example in form of <field/attribiite>=<value>:
M: OUTLOOK=rain, TEMPERATURE=hot, HUMIDITY=normal, WINDY=false
K: According to the 2nd hfl, (i.e.,
K: if [ WINDY=false ] k [ OUTLOOK=rain ] then [DECISION=Play]
K: ), the deduction result is: Play.

6 CONCLUSIONS

Knowledge acquisition from data bases has been worked over by researchers
in several disciplines including AI and data bases for 20 years and is still an
important research frontier for both machine learning and data base technol-
ogy [Wu 92b]. Although a lot of work has been done and some commercial
learning packages are available already, existing work has concentrated on
the following 4 aspects: 1) building knowledge bases for expert systems, 2)
designing various learning algorithms; 3) adding an induction engine to an
existing data base system in an ad hoc way to implement rule induction from
data bases; and 4) designing a specific engine to learn from a domain-specific
data set. As we have described, KEshellS is an integrated knowledge engi-
neering shell which couples machine learning techniques with both data base
and knowledge base technology. It has provided mechanisms for 1) translat-
ing dBASES files into the Prolog-based representation which integrates data
and knowledge, 2) using induction techniques to extract knowledge from data



270 WU: KEshell2: an intelligent learning data base system

bases, and 3) interpreting the knowledge produced to solve users' problems.
Although there are still some limitations on the current KEshell2 for putting
it into large applications due to it being implemented on PC machines, all
the functions and capacities shown in KEshell2 have demonstrated that the
target of building practical intelligent data base systems to implement auto-
matic knowledge acquisition from data bases is no longer difficult or elusive.
KEshell2 is the first ILDB system reported to date which implements the
whole three phases of automatic knowledge acquisition from data bases in an
integral way.

Acknowledgements

The work presented in this paper was supported in part by the National
Natural Science Foundation of China under Grant No. 68975025 when the
author was the grant holder and designer of the 68975025 project and is
supported in part by the ORS Award of the United Kingdom and the Uni-
versity of Edinburgh Research Scholarship. The author would like to thank
Dave Robertson, Robert Rae and Peter Ross for their valuable comments
and advice.

References
[Bloedorn et al. 91] E. Bloedorn, R.S. Michalski, and J. Wnek, AQ17 - A Multistrategy

Constructive Learning System, Reports of Machine Learning and Inference Labo-
ratory, Center for Artificial Intelligence, George Mason University, 1991.

[Blum 82] R.L. Blum, Discovery, Confirmation, and Incorporation of Causal Relationships
from a Large Time-Oriented Clinical Data Base - The RX Project, Computers and
Biomedicat Research, 15(1982), 2: 164-187.

[Boose and Gaines 88] J.H. Boose and B.R. Gaines (Eds.), Knowledge Acquisition Tools
for Expert Systems, Academic Press, 1988.

[Boswell 90] R. Boswell, Manual for NewID version 6.1, TI/P215J,/RAB/J,/2.5, The
Turing Institute, Glasgow, 1990.

[Brodie 88] M.L. Brodie, Future Intelligent Information Systems: The Combination of
Artificial Intelligence and Data Base Technology, Readings in Artificial Intelligence
and Data Bases, 1988.

[Cai et al. 91] Y. Cai, N. Cercone and J. Han, Learning in Relational Databases: An
Attribute-Oriented Approach, Computational Intelligence, 7(1991), 3: 119-132.

[Cattell et al. 91] R.G.G. Cattell et al., Next Generation Database Systems, Communica-
tions of the ACM (special section), Vol. 34, No. 10, 1991.



WU: KEshell2: an intelligent learning data base system 271

[Clark et al. 89] P. Clark and T. Niblett, The CN2 Induction Algorithm, Machine Learn-
ing, 3(1989), 261-283.

[Hong 85] J. Hong, AE1: An Extension Matrix Approximate Method for the General
Covering Problem, International Journal of Computer and Information Sciences,
14(1985), 6:421-437.

[Hong et al. 86] J.R. Hong, R.S. Michalski and C. Uhrik, An Extension Matrix Ap-
proach to the General Covering Problem, Applications of Artificial Intelligence I,
J. Gilmore (Ed.), Proceedings of SPIE 635, Orlando, Florida, USA, 1986.

[Jackson 90] P. Jackson, Introduction to Expert Systems, Second Edition, Addison-Wesley,
1990.

[Kazic et al. 90] T. Kazic, E. Lusk, R. Olson, R. Overbeek and S. Tuecke, Prototyping
Databases in Prolog, The Practice of Prolog, L.S. Sterling (Ed.), The MIT Press,
1990, 1-29.

[Ke et al. 91] M. Ke and M. Ali, A Knowledge-Directed Induction Methodology for In-
telligent Database Systems, International Journal of Expert Systems, 4(1991), 1:
71-115.

[Marcus 88] S. Marcus (Ed.), Automating Knowledge Acquisition for Expert Systems,
Kluwer Academic Publishers, 1988.

[Michalski 75] R.S. Michalski, Variable-Valued Logic and Its Applications to Pattern
Recognition and Machine Learning, Computer Science and Multiple-Valued Logic
Theory and Applications, D.C. Rine (Ed.), Amsterdam: North-Holland, 1975,
506-534.

[Michalski et al. 78] R.S. Michalski and J. Larson, Selection of Most Representative
Training Examples and Incremental Generation of VL1 Hypothesis: the Under-
lying Methodology and Description of Programs ESEL and AQ11, Tech. Report
UIUCDCS-R-78-867, Dept. of Computer Science, Univ. of Illinois at Champaign-
Urbana, 1978.

[Michalski et al. 86] R. Michalski, I. Mozetic, J. Hong and N. Lavrac, The AQ15 Induc-
tive Learning System: An Overview and Experiments, Proceedings of IMAL 1986,
Universite de Paris-Sud, Orsay, 1986.

[Mowforth 86] P. Mowforth, Some Applications with Inductive Expert Systems Shells,
TIOP-86-002, The Turing Institute, Glasgow, 1986.

[Nieme et al. 91] T. Nieme and K. Jarvelin, Prolog-Based Meta Rules for Relational
Database Representation and Manipulation, IEEE Transactions on Software Engi-
neering, 17(1991), 8: 762-788.

[O'Rorke 82] P. O'Rorke, A Comparative Study of Inductive Learning Systems AQllP
and ID3 Using a Chess End-Game Test Problem, ISG 82-2, Computer Science
Department, University of Illinois at Urbana-Champaign, 1982.

[Quinlan 86] J.R. Quinlan, Induction of Decision Trees, Machine Learning, 1(1986),
81-106.



272 WU: KEshell2: an intelligent learning data base system

[Quinlan 89] J.R. Quinlan, Requirements for Knowledge Discovery in Data Bases, Pro-
ceedings of IJCAI-89 Workshop on Knowledge Discovery in Data Bases, Detroit,
USA, 1989, xiv.

[Thrun et al. 91] S.B. Thrun, et al., The MONK's Problems - A Performance Comparison
of Different Learning Algorithms, CMU-CS-91-197, School of Computer Science,
Carnegie Mellon University, 1991.

[Utgoff 89] P.E. Utgoff, Incremental Induction of Decision Trees, Machine Learning,
4(1989), 161-186.

[Wu 90a] X. Wu, Constructing Expert Systems, Hefei: Press of the University of Science
and Technology of China, China, 1990.

[Wu 90b] X. Wu, A Study on Intelligent Data Base Techniques, Proceedings of the First
Chinese Joint Conference on Artificial Intelligence, Jilin, China, 1990, 23-30.

[Wu 91a] X. Wu, A Linear Forward Reasoning Algorithm Based on Knowledge Sorting,
Chinese Science Bulletin, Chinese edition: 36(1991), 3: 230-232; English edition:
36(1991), 18: 1574-1577.

[Wu 91b] X. Wu, KEsheli. A "Rule Skeleton + Rule Body" Based Knowledge Engineering
Shell, Applications of Artificial Intelligence IX (Proceedings of SPIE 1468), M.M.
Trivedi (Ed.), SPIE Society, Bellingham, USA, 1991, 632-639.

[Wu 92a] X. Wu, Optimization Problems in Extension Matrixes, Science in China, Series
A, Chinese edition: 35(1992), 2: 200-207; English edition, 35(1992), 3: 363-373.

[Wu 92b] X. Wu, Inductive Learning: Algorithms and Frontiers, Artificial Intelligence
Review, 6(1992): in press.

[Wu 92c] X. Wu, A Frame Based Architecture for Information Integration in CIMS, Jour-
nal of Computer Science and Technology, 7(1992): in press.

[Wu 92d] X. Wu, HCV: A Heuristic Covering Algorithm for Extension Matrix Approach,
DAI Research Paper No. 578, Department of Artificial Intelligence, University of
Edinburgh, 1992.

[Wu 92e] X. Wu, A Prolog-Based Representation for Integrating Knowledge and Data,
DAI Research Paper No. 580, Dept. of Artificial Intelligence, Univ. of Edinburgh,
1992.

[Wu et al. 90a] X. Wu and L. Fan, A Cycle Recognition Algorithm for Reasoning Net-
works, Journal of Applied Sciences (in Chinese), 8(1990), 349-353.

[Wu et al. 90b] X. Wu and D. Zhang, A Study of Knowledge Types, Tech. Report NNSFC-
HUT-CS-68975025-90-1, Hefei University of Technology, 1990; Journal of Systems
Engineering (in Chinese), accepted, to appear.

[Wu et al. 91] X. Wu and D. Zhang, An Approach to Generation of Semantic Network
from Relational Data Base Schema, Chinese Science Bulletin, Chinese edition:
35(1990), 21: 1674-1676; English edition: 36(1991), 14: 1222-1225.



Approaches to Self-Explanation and System Visibility in
the Context of Application Tasks.

G.A. Ringland, H.R. Chappel, S.C. Lambert, M.D. Wilson & G.J. Doe

SERC Rutherford Appleton Laboratory.
Chilton, Didcot, OXON. 0X11 OQX.
United Kingdom.

ABSTRACT
The degree to which users understand and accept advice from Knowledge-Based Systems
can be increased through explanation. However, different application tasks and different
sets of users place diverse requirements on an explanation component of a Knowledge-
Based System. Thus, the degree of portability of explanation components between appli-
cations is reduced. This paper discusses the aspects of explanation that change between
application tasks and those that are required for any satisfactory explanation. The require-
ments placed on Knowledge-based Systems resulting from explanatory capabilities raises
implications for the structure and contents of the knowledge-base and the visibility of the
system. The discussion is illustrated by four Knowledge-Based System projects.

1. INTRODUCTION
An important feature of knowledge-based systems compared to other information-provid-
ing systems is that the knowledge on which they are based is represented explicitly in the
system rather than hidden in the design of the system, or represented implicitly in an algo-
rithm. The knowledge can therefore be used not only to solve the problem for which the
knowledge-based system was built, but also to show the user what knowledge is used to
solve the problem and hence go some way to explain the system's behaviour. However,
whilst the explicitness of the knowledge makes it possible to provide some explanatory
capability, it does not necessarily mean that the system is capable of producing every
explanation required by its users. Some explanations require further reasoning and knowl-
edge to retrieve and act on the knowledge already present in the knowledge-based system.

There are many reasons to add explanation to a knowledge-based system, for example:
1) To justify the system's conclusions to the user (e.g. because the user is sceptical);
2) To help users understand tile application and how the conclusion is reached (e.g.
because they are learning how to perform the task);



274 RINGLAND ET AL: Self-explanation and system visibility

3) To allow the user to discover how changes in conditions produce different conclusions;
(e.g. because the user wants to see what change would produce a preferred conclusion);
4) To allow knowledge engineers to understand the reasoning of a system (e.g. for debug-
ging or maintenance purposes).

If these explanations are successful then they will have various beneficial consequences:
user confidence in the system is increased; user-training is improved and their understand-
ing of the problem solving process increased; the conclusions of the system are more sat-
isfactory to the user; and the reliability of the system is improved. However, this
highlights that there are different purposes and users of explanations even without consid-
ering differences arising between applications tasks. The explanation that satisfies the user
in each of the cases mentioned above could be different. Even if the explanation-users in
(1) and (4) both want to follow the system's reasoning, the terms used in the explanation
and the justifications used need to be more system/code-oriented in (4) and more domain-
oriented in (1). In (2) the explanation user does not necessarily know whether the system's
conclusion is acceptable or how the conclusion should have been reached and so will
require a fuller explanation than the explanation user in (1). The explanation user in (3)
may ask the system hypothetical questions about other conclusions that may have been
reached rather than explanations about the conclusion that has been reached.

2. ADDITIONS TO A KNOWLEDGE-BASED SYSTEM FOR EXPLANATION
The Knowledge Engineering group at the Rutherford Appleton Laboratory (RAL) has
been involved in several projects which incorporate explanation in various forms. The
projects illustrate the requirements needed for explanation in knowledge-based systems
and they are presented in sections 3-6 as case studies. From these projects, three compo-
nents of explanation in knowledge-based systems can be identified: system visibility;
explanation generation; and tailoring of explanations. These three components are intro-
duced below:

(a) System visibility is the property of a system of making its structure, contents and
behaviour accessible to a user. It is dependent on there being a structure to the system in
the first place, and thereby can be seen to be partly achieved through the design principles
on which the system was built. However it is also dependent on the means by which the
structure, contents and reasoning are communicated to the user, and so is affected by the
interface and user support facilities of the system.

(b) Explanation generation goes a step further than system visibility, it involves reasoning
about the structure, contents and behaviour of the system so that it can communicate
information to the user about the way it works or the knowledge it holds. It therefore
involves additional inferences or knowledge to those that were needed to reach the sys-



RINGLAND ET AL: Self-explanation and system visibility 275

tern's conclusion. The additional reasoning may not be any more than just creating a trace
of how the system reached its conclusion or why it needs a certain fact, such as that used
in MYCIN (Wallis and Shortliffe, 1984). Despite this relative simplicity it was found that
70% of doctors who followed advice from a MYCIN-like system when an explanation
was provided would otherwise have ignored it (Wyatt, 1987). Alternatively, the additional
reasoning may involve complex hypothetical reasoning about how other conclusions may
have been reached, or meta-knowledge about the way that the system reasons.

(c) Successful communication of an explanation requires the user to understand the infor-
mation from the system, but not all users will necessarily understand the same explana-
tion. Also, for the explanation to be useful requires it to be relevant to the user's purpose,
but different applications and different users of the system will require explanations for
different purposes. Therefore the user and the user's reason for needing an explanation
must be taken into account when generating an explanation. Where a system has multiple
users and/or the system is used for multiple tasks, successful explanation requires the
explanation to be tailored to the current user or the current task.

The following case studies illustrate these aspects of explanation.

3. AN EXAMPLE OF SYSTEM VISIBILITY: THE WATER DISTRIBUTION
EXPERT SYSTEM

A knowledge-based system is being developed by the Knowledge Engineering Group at
RAL which demonstrates system visibility: The Water Distribution Expert System is a
three year project funded by a consortium of UK water supply companies to develop an
advanced knowledge-based system for the water supply industry. The project is coordi-
nated by the Water Research Centre (WRc). The project for eight Water Companies
(Anglian, Mid Kent, North West, Thames, Three Valleys, Southern, Wessex and York-
shire) commenced in September 1989.

The Water Distribution Expert System has an advanced architecture combining model-
based reasoning about the water supply network with several components of heuristic rea-
soning. The model-based reasoning allows events on a water supply and distribution sys-
tem to be simulated at a level of abstraction at which domain experts explain their
reasoning. A number of heuristics act on the simulation to make the user aware of signifi-
cant events that happen during the simulation. A further module detects problems on the
supply system and suggests remedial actions to the user, and the user can use the model-
based simulation to try out these actions or actions of their own.

It was found that users did not necessarily require explanations for the remedial actions
suggested by the expert system, because they could simulate the effects of performing



276 RINGLAND ET AL: Self-explanation and system visibility

these actions using the model-based reasoning in the expert system and see for themselves
whether they would work or which actions were preferable. However, what users wanted
was confirmation that the model-based reasoning was acting in a realistic way to reflect
the behaviour of the real supply system. To satisfy this requirement, the system was
designed with a large amount of system visibility so that the model-based reasoning and
the contents of the model were always accessible to the user.

The Expert System simulates the behaviour of the real supply system using supply system
model. The initial state of the supply system model represents a certain state of the real
supply system. When the Expert System runs one step forward, the supply system model
changes to the state in which the real supply system would be 30 minutes after the previ-
ous state represented, taking only seconds for the Expert System to do. The contents of the
model are made accessible to the user through a graphical interface representing a sche-
matic of the actual supply system. At each simulated half hour step, the graphical interface
reflects the state of the internal supply system model. Each object in the graphical inter-
face gives graphical feedback as to whether it is currently in a normal or abnormal state.
In addition, each object can be selected to give a pop-up which shows the condition of that
object. For example, the pop-up of a pump shows the size of the pump, whether it is on or
off, broken or working, working automatically or having its normal behaviour overridden,
'on-manual'. The user is able to change the state of the supply system through these pop-
ups to reflect actions that would be performed on the real supply system.

The accessibility of the dynamic behaviour of the model is achieved through a running
commentary about important events that are happening in the supply system model during
the simulation, e.g. Reservoir levels dropping too quickly. The choice of what event is
important is selected by a knowledge-base developed from domain expertise. In this way,
the user is kept informed of the salient behaviour of the supply system model during the
simulation without being overloaded by detail of every parameter.

The essence of the system visibility here is that there is a simple graphical representation
of the contents of the system model that is open to inspection to reveal the state of the sup-
ply system model, and a textual output that gives the user an understanding of the
dynamic behaviour of the supply system model. Thus the system model is made visible
through the interface. This gives users confidence in the Expert System's advice because
the user can ensure that the advice is based on a believable representation of the supply
system and its behaviour. What can be generalised from this example to other applica-
tions, such as those involving model-based reasoning, is the means for achieving system
visibility: the design principles on which the system was made understandable to the user.



RINGLAND ET AL: Self-explanation and system visibility 277

4. EXPLANATIONS IN MMI2

MMI is a five year research project drawing on 60 man years of effort that started in Jan-
uary 1989 with funding from the CEC under the Esprit initiative1. The objective of the
project is to develop a highly interactive interface which will allow users to interact with
knowledge based systems through co-operative multi-modal dialogues. Users are able to
interact with the system by using a command language, natural languages (English,
French and Spanish), by mouse gestures, or by graphics with direct manipulation.
Advanced dialogue management controls user/system initiative, appropriate response
mode, context driven interpretation, etc. The demonstration domain for the interface is
local area computer network design and analysis (Wilson et al 1991).

4.1 Explanation Generation
RAL have been investigating explanation within the MMI project and relating it more
globally to the knowledge requirements for explanation in KBS development. Rich expla-
nation capabilities require more knowledge to be made explicit than that needed for the
system to perform its task. The aim of work in MMI is to identify what knowledge is
needed for explanation for a specific application and identify a methodology for obtaining
it during the knowledge acquisition phase of system development. The work uses KADS
as a basis for describing the knowledge-modelling required.

To understand what there is to explain for an application task, it is necessary to look at the
tasks that the system and user are performing within the whole application task. The
knowledge that the users require to perform their part of the tasks and to understand the
results of the system's tasks is the knowledge that the system potentially needs to explain.
The word "potentially" is used because user may to a greater or lesser extent already have
the knowledge required. Therefore the explanation presented needs to take into account
the knowledge already known by the user.

The system's tasks in MMI are: to turn the user's informal requirements into a formal
specification of the network; to discover incompleteness in the user's informal require-
ments; to synthesize a design based on the requirements; and finally to describe the design
to the user. The user's tasks are to express their informal requirements for the network to
the system; resolve problems if the system cannot change these into a consistent formal
specification; to analyse the design to see if it is acceptable; and to find a solution in terms
of changes to the requirements if the design is not acceptable. Consequently, the knowl-
edge that the user needs within the whole system-user task in MMI2 is:

1. The consortium undertaking the project consists of BIM (Belgium), Intelligent Software Solu-
tions (Spain), University of Leeds (UK), Ecole des Mines de Saint-Etienne (France), SERC/RAL
(UK), ADR/CRISS (France), INR1A (France).



278 RINGLAND ET AL: Self-explanation and system visibility

1) The mental model of the problem. Included here is the user's knowledge of the domain
and their informal requirements and constraints on their network design problem. (This
knowledge is needed for users to be able to describe their requirements; to find a solution
to problems in producing the formal specification; and to be able to decide whether the
design model is a satisfactory solution).

2) The complete detailed design model resulting from a synthesis operation on the formal
specification. Understanding the detailed design model will also involve the user's knowl-
edge of the domain.

3) The system's problem solving strategy used to perform the design. (Needed either to
learn how to perform the whole network design task or to be able to find a solution if the
design produced is unsatisfactory).

4) The system's interface and the limitations on the dialogue: for successful communica-
tion where the system's task relies on information from the user, or vice versa.

Dialogues with the MMI system can be seen to be either performing some subtask within
the overall system-user task of designing a network, or providing information to the user
as explanation. The purpose of the explanation is to enable the user to understand and per-
form the subtasks involved in the application. Therefore the knowledge that is to be
explained to the user is the knowledge that the user needs for the tasks but does not
already have, or knowledge required to correct errors and inconsistencies in the knowl-
edge already possessed by the user.

Currently, the user can obtain a wide variety of explanations about the domain itself and
the design model that is created by the system, adding to the knowledge identified in (1)
and (2) above. The knowledge is represented explicitly in the Network Design Expert
System or in the other components of the interface because the system needs it to perform
the design, allowing the user to interrogate the system with respect to the classes and
instances of objects in the application domain and the relation between them. The inter-
face also contains meta-knowledge about the application and the interface itself which
allows the user to ask questions about the expert system, the interface or the requirements
for the problem specification. This provides the user with some of the knowledge identi-
fied in (1) and (4). The mechanism by which explanations can be given is the same as by
which any input of the user is dealt with in the system, although extra reasoning facilities
are needed to amplify the answer into a more cooperative one if it was only going to be
"yes" or "no". Some examples of explanations from MMI are given:



RINGLAND ET AL: Self-explanation and system visibility 279

For (1): The mental model of the domain, informal requirements and constraints on the
design solution

User: <in Command mode> help WORKSTATION
System: A workstation is a subtype of computer, and a supertype of apollo and
hp_station and microvax_station and sun.

User: <in graphical mode: selects a horizontal shaft>
User: <in natural language> Is using thin cable possible in this shaft?
System: Yes. Using thin cable is possible in any shaft Thick cable may not be used
in horizontal shafts.

User: What are the requirements?
System: <Lists requirements to make a network design>

For (2): The detailed design model
User: Which machines are in which rooms?
System: <Displays a table of rooms and locations>

User: What are the departmentalisation problems?
System: There are no departmentalisation problems.

For (4): The system's interface and limitations of the system
User: Add a workstation to the network.
System: I am sorry.
The location and type of the workstation cmr98 are underspecified. Adding a work-
station requires specification of location and type.
What is the type of the workstation cmr98?

User: What is the task of the system?
System: computer network design

User: <in Command mode> help bananas
System: I am sorry, but "bananas" is unknown to the system.

In order to answer questions about (3), how the system's performs the application task,
further knowledge and inference capabilities must be added to the system. The system
should be able to help the user understand how a particular design was made, how designs
are made in general, and how changing the initial requirements of the network results in
different designs. Because of the natural language interface, the user is able to express
questions of this nature, e.g. "Why does the design include thick cable?", "How is the
backbone designed?", "Do I have to give this requirement now?", and work is on-going in
adding these explanation facilities. Here, additions to the Network Design Expert System
are needed to make the knowledge more explicit and accessible. This will enable the
states reached by the expert system in synthesizing the design, and the process by which
transitions between states occur to become available to an explanation generating compo-
nent that produces an explanation of the design task for the user.



280 RINGLAND ET AL: Self-explanation and system visibility

4.2 Tailored Output: MMI2

A further aspect of explanation is explored in the MMI system: that of tailoring the gen-
erated explanations, as suggested by McKeown (1985), according to who the user is, what
task is being performed and the dialogue context. If explanation can be described as add-
ing to and correcting bodies of knowledge the user has for performing specific tasks, then
these bodies of knowledge will not have the same content for all users, they will change
throughout the dialogue, and the knowledge needed will be different for different tasks.
For these reasons the system's explanations in MMI2 are tailored by knowledge about the
user, the current task and the dialogue context. This knowledge comes from an embedded
user-modelling component; a component that detects the user's current task; and a model
of the dialogue context respectively.

The overall aim is to tailor the output so that the knowledge being given is pertinent to the
current user at this time for the task they are performing. The explanation is then assured
to be useful because it is adding to or correcting a body of knowledge that the current user
needs to perform a task or to understand a system task. Tailoring of the output occurs in
several ways: the system avoids telling the user domain knowledge it believes the user
already knows; information that has already been told to the user in the dialogue is told in
an abbreviated form on subsequent tellings; different types of user have different levels of
detail or content in their explanation; graphical responses that can be shown as tables or
graphs are chosen and designed to suit the user's current task and to correspond to the
user's preferences and type; system questions are postponed if the user is at the stage of
the task where requirements are being given to avoid taking the user's initiative.

5. GRAPHICAL EXPLANATIONS: PARALFEX

The Paralfex project, a research project conducted by the Knowledge Engineering Group
at RAL under the Alvey programme, ran for three years until April 1989. The aims of Par-
alfex were to develop an effective graphical explanation system, to investigate methods
for enhancing the modifiability, extendability and transformability of knowledge bases,
and to investigate problem solving strategies.

A Source of Finance Adviser was constructed from existing knowledge acquisition tran-
scripts that advises a user on the feasibility of different sources of finance. The knowl-
edge-base was built on the principle that knowledge should be represented as explicitly as
possible—not only heuristics but also strategic, structural and support knowledge (Ring-
land 1986). The advantages of analysing the knowledge base in these terms is that the
graphical interface can then employ different forms of presentation for different types of
knowledge, the user can be given control of the consultation by separating out the control
knowledge, and knowledge reuse becomes possible (both within a domain and across
domains). For a fuller description see Lambert and Ringland (1990).



RINGLAND ET AL: Self-explanation and system visibility 281

The system advises on the feasibility of different sources of finance depending on a
number of contributing factors. The users in this case represented a company which was
seeking finance. The users were not interested in an explanation about the system's use of
strategic knowledge - they were not trying to learn how to do the task that the system was
performing. The explanation they wanted was about how other conclusions could have
been reached. The reason for this was that some of the user's figures represented prefer-
ences rather than actual values and so they wanted to see what effect changing such value
would have on the options for finance possible to them (Lambert and Ringland, 1986).
Their question might include:

"Would the option be viable if this figure was altered?"
"What was the constraining factor in ruling out this option?"
"Why are current assets relevant here?"

The system decides between six options representing different sources of finance. At any
time, the relative merit of each of the options is represented as a probability figure. To
show the user a comparison of the current values of the different options, a "probability
meter" is displayed for each option, giving a marker between 0 and 1 representing the
probability value of an option. As the consultation proceeds, the probability values are
updated. Thus some of the users questions are answered because they can see at a glance
which options are looking promising and which are not.

To answer hypothetical questions about what factors need to change in order to make an
option viable, the user can expand the probability meter to show how the contributing fac-
tors lead to the probability value. The expanded display takes the form of a second rank of
meters showing the beliefs in the assertions corresponding to the contributing factors. The
user can see which one is constraining the belief in the option as a whole. The contributing
factors can themselves be expanded to show the assertions or numerical quantities on
which they depend. To show how changing a value affects the system, the user can enter a
new value and watch it propagate through the part of the net on display, changing the sys-
tem's relative belief in assertions. These graphical responses can be seen as an example of
system visibility, allowing the user to understand the structural knowledge of the knowl-
edge base: the nature of the entities in the knowledge-base and the existence and signifi-
cance of links between them as described by Clancey (1983).

To explain the dependency of an option on a contributing factor, each time a quantity is
expanded to show what it depends upon, a textual explanation is displayed, explaining the
relationship. The knowledge made visible here is the domain knowledge on which the
relationships between the entities in the knowledge-base is based. Finally, justifications
and typical values of the domain knowledge can be shown graphically and textually, mak-
ing support knowledge (which justifies the domain knowledge) visible to the user.



282 RINGLAND ET AL: Self-explanation and system visibility

The purpose of explanation in this application was identified as being to allow users to
understand how different conclusions could have been reached. To fulfil this purpose, the
graphical representation of the system's state and reasoning implicitly anticipates and
answers the questions of interest to the user without the user having to explicitly formulate
the questions. The interface helps the user not just understand why the system's conclu-
sion was reached, but also answer hypothetical questions about how other conclusions
may be reached. Explanation is achieved by system visibility through graphical and tex-
tual representations of both the static and dynamic aspects of the knowledge-base. This
requires knowledge to be made explicit in the knowledge base and for it to be structured,
and for the graphical and textual representation of the knowledge to reflect that structure.

6. INTERACTIVE SELF-EXPLANATION ENGINE: I-SEE

I-SEE is a project that will be starting in 1992 with funding from the CEC under the
ESPRIT initiative . The goal of the project is to develop foundations on which "Self-
Explaining Systems" may be built. The idea behind such systems is to make their reason-
ing and output understandable to their users. I-SEE will be applicable to various domains
and various markets, but will be initially applied to two visible and self-explaining sys-
tems; a sewage plant monitoring system and a pollution monitoring system, and also cre-
ate generic tools to build such systems.

I-SEE will concentrate on the two aspects of making systems understandable to users dis-
cussed above: visibility and explanation. Visibility will relate to the system design, the
user interface, the relation between the interface and the system design, and user-support
facilities such as help facilities and on-line access to information about the system. Expla-
nation will include both dynamic explanation generation and tailoring of the system out-
put according to the current user, and the user's task, taking note of the purpose of
explanation for the application. It will therefore attempt to include all of the aspects of
explanation mentioned above in order to provide rich self-explaining systems. In doing so,
the distinction between general principles required for all applications and specific appli-
cation-dependent features will be clarified.

7. CONCLUSIONS

Several systems have been described which try to provide explanations for three of the
four purposes identified in the introduction:

(1) The Water Distribution Expert System justified the system's conclusions to the user
via the visibility of the model-based reasoning.

1. The consortium undertaking the project are: SYSECA, (France); British Maritime Technology
(UK); Lyonnaise des Eaux Dumez (France); BIM (Belgium); SERC/RAL (UK); Conservatoire
National des Arts et Metiers (France)



RINGLAND ET AL: Self-explanation and system visibility 283

(2) The MMI2 demonstrator tries to help different types of users understand more about
Computer Network design and aims to explain how the design task is performed, through
explanation generation and tailoring of the explanations produced.

(3) The Source of Finance Adviser allows the user to discover how changes in conditions
produce different conclusions through system visibility of the changing contents of the
knowledge-base as the consultation proceeds, and through pre-stored explanations of
domain and support knowledge.

The fourth reason for explanation: to allow knowledge engineers to understand the rea-
soning of a system is already provided in many expert system shells through rule-tracing.
A good example of explanation of this type through system visibility and explanation gen-
eration is the Transparent Rule Interpreter described by Domingue (1988).

The case studies described have illustrated that successful designing of explanation capa-
bilities for a given application rely on first knowing the purpose of explanation for this
users of the application. Knov/ing this will elucidate which aspect of the knowledge-based
system needs to be made understandable to the user. Explanation cannot be achieved with-
out an explicit representation of that aspect. If explanation is to be achieved through sys-
tem visibility, the relevant aspect of the system is simply made accessible to the user.
Where explanation is achieved through generating an explanation, knowledge about this
aspect is required, such as what the function of it is, what relations it holds with other
knowledge, what role it played in the system's conclusion, etc. This meta-knowledge is
used in generating the explanation. For both of these types of explanation the knowledge-
base requires explicitness and structure, but for explanation generation further knowledge
is required than that needed to reach the system's conclusion. In other words, meta-knowl-
edge of some aspect of the application. The knowledge needed in order to be able to tailor
explanations for the current user, or the current task again needs knowledge in addition to
that required for the system to reach its conclusion. Here the knowledge required is about
the end-users of the system and about the reasons they require explanation and needs to be
acquired during system development.

There is a great deal of generality in the concept of system visibility since it is achieved
through design principles and so can be applied to many applications, although the instan-
tiation of the design and the user interfaces through which it is accessed will be applica-
tion-dependent. Explanation generation and tailoring of explanations is more application-
dependent because further knowledge is required in addition to that used for the applica-
tion task. However, what can be made general is the method by which explanations are
generated or tailored. A further advance would be to develop a methodology for identify-
ing the additional knowledge required for explanation during system development.



284 RINGLAND ET AL: Self-explanation and system visibility

8. REFERENCES

Clancey, WJ. (1983) The epistemology of a rule-based expert system: a framework for
explanation. Artificial Intelligence, 20(3), pp215-251.

Domingue J. (1989) TRI: The Transparent Rule Interpreter. In B.Kelly and A.L. Rector
(Eds.) Research and Development in Expert Systems V, Cambridge: Cambridge University
Press, pp 126-138.

Lambert S.C. and Ringland G.A. (1987) An approach to Question-Answering and expla-
nation in an Expert Consulting System. In Proceedings of the Second Workshop of the
Alvey Knowledge Based System Club Explanation Special Interest Group, (University of
Surrey, January 8-9th 1987), ppl64-168.

Lambert, S.C. and Ringland, G.A.,(1990) "Knowledge representation and interfaces in
financial expert systems", In Proceedings UK IT 1990, IEE:London pp.434-441.

Lambert, S.C, Ringland, G.A. & Chappel, H.R. (1990) The Development of a Knowl-
edge-based System for the Water Supply Industry. In IAKE'90: Second Annual Confer-
ence of the International Association of Knowledge Engineers, (San Fransisco, October
3rd-5th 1990). Systemsware Corporations: Rockville, USA, pp323-330.

McKeown K.R. (1985) Tailoring Explanations for the User. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, (Los Angeles, California),
pp794-798.

Ringland G.A. (1986) PARALFEX - Research into Expert Systems in the Financial Sec-
tor. In Proceedings of the Alvey IKBS Expert Systems Theme Workshop on Explanation,
(University of Surrey, 20-21 March 1986), IEE:Hitchin, ppl32-135.

Wallis, J.W. and Shortliffe, E.H. (1984) Customized explanations using causal knowledge.
In Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Pro-
gramming Project, Chapter 20, pp317-388, Addison-Wesley Publishing Company.

Wilson, M.D., Sedlock, D., Binot J-L, Falzon, P. (1991) An Architecture For Multimodal
Dialogue. In M.M. Taylor, F. Neel & D.G. Bouwhuis (eds.) Proceedings of the Second
Venaco Workshop on Multi-Modal Dialogue, (Acquafredda di Maratea, Italy, September
1991), ISSN 1018-4554.

Wyatt J. (1987) Improving the Usability of Knowledge-Based Medical Decision-Aids,
paper represented at IKBS in Medicine, EEC, Brussels, November 1987.



An object oriented approach to distributed
problem solving

A. Eliens
Viije Universiteit, Department of Mathematics and Computer Science

De Boelelaau 1081, 1081 HV Amsterdam The Netherlands

email: eliens@cs.vu.nl

Abstract

One of the principal difficulties in developing a distributed problem solver is
how to distribute the reasoning task between the agents cooperating to find a
solution.

We will propose the distributed logic programming language DLP as a vehicle
for the design and implementation of distributed knowledge based systems. The
language DLP combines logic programming with active objects.

We will show how object oriented modeling may be applied for the specifi-
cation and implementation of a distributed diagnostic (medical) expert system.
The example illustrates how the diagnostic process is distributed over the agents
participating in the diagnosis according to the structure of the knowledge of that
particular domain.

Keywords: object oriented modeling, distributed problem-solving, knowledge-based
systems, expert systems, distributed logic programming

1 Introduction
Logic programming offers a declarative way to solve problems in Artificial Intelligence.
However, when implementing large (possibly distributed) systems, traditional software
engineering problems such as modularization and the distribution of data and control
reoccur. Cf. [Subrahmanyam, 1985].

One of the principal difficulties in developing a distributed problem solver is how to
distribute the reasoning task between the agents cooperating to find a solution.

Due to its declarative nature, logic programming has become popular for implement-
ing knowledge-based systems. However, lacking adequate modularization facilities,
logic programming languages such as Prolog fall short in providing the mechanisms
necessary to specify the distribution of data and control.



286 ELIENS: An object oriented approach to distributed problem solving

Object oriented modeling To tackle these problems, we suggest in this paper to
embed the logic programming paradigm into an object oriented approach. Such an
approach encourages to design a system — which consists of a collection of objects and
relations between them — so that its structure corresponds with the natural structure
of the problem domain. An object oriented decomposition of a system may thus reflect
in a declarative way the structure of the reality it models. From this perspective, we
may regard object oriented modeling as complementary to the declarative description
provided in a logic program, since it directly expresses the structural characteristics
of the problem domain. In our view, these structural characteristics may serve as a
guideline in deciding how to control the activity of the agents taking part in the process
of problem solving. Cf. [Booch, 1991].

DLP As a vehicle for the design and implementation of distributed knowledge-based
systems, we will propose the distributed logic programming language DLP [Eliens,
1992]. The language DLP combines logic programming with object oriented features
and parallelism.

To enable abstraction and encapsulation, DLP supports objects, which are basically
named sets of clauses. Also, an inheritance mechanism is provided as to specify the
relations between objects.

DLP supports active objects. Method calls for such objects result in a rendez-vous.
In order to allow for search-based techniques, DLP supports (distributed) backtracking
over the results of a method call by rendez-vous.

Related work As related approaches in combining logic programming, object ori-
ented programming and parallelism, I wish to mention first of all Delta Prolog that
also supports distributed backtracking, but in the context of a less powerful commu-
nication mechanism. [Pereira et al, 1986]. Delta Prolog does however not provide any
modularization construct.

Modularization in an object oriented style is offered by MultiLog, a multi-tasking
object oriented Prolog developed to support prototyping embedded systems, that are
(eventually) to be implemented in Ada. [Karam, 1988]. The distinguishing feature
of DLP with respect to MultiLog however is that DLP supports backtracking over
the answers of a method call by rendez-vous, whereas MultiLog proceeds from the
assumption that such backtracking is not needed.

Other efforts at extending logic programming with object oriented features are re-
ported in [Shapiro and Takeuchi, 1983], [Zaniolo, 1984], [Davison, 1989] and [Moss,
1990].

Also related is the work on distributing (medical) reasoning tasks reported in [Gomez
and Chandrasekaran, 1981]. A logical basis to this approach has been provided in
[Kowakzyk and Treur, 1990].

The DLP approach to the issue of defining generic reasoning tasks comes from a
programming perspective. In this respect DLP may be compared to the proposal in



ELDENS: An object oriented approach to distributed problem solving 287

[Hynynen and Lassila, 1989], exploring the use of the object oriented programming
paradigm in a distributed problem solver.

The structure of this paper is as follows. We will start by investigating the support
that the object oriented paradigm offers to tackle the problems occurring in distributed
problem solving. Next, we shall describe the distributed logic programming language
DLP. Then we will describe the specification and implementation of a distributed
medical expert system, illustrating our use of object oriented modeling techniques
to arrive at a proper distribution of the diagnostic process. Finally, we will discuss the
current status of our work and our plans for future research.

2 Distributed problem solving
From a software engineering perspective the issues that arise in developing a distributed
knowledge based system are no different than in developing any distributed system:
the distribution of data and control. Cf. [Smith and Davis, 1981]. The distribution of
data involves decisions concerning shared resources and protocols that enable a safe use
of these resources. To properly distribute control requires to partition the reasoning
process into appropriate subtasks that may be distributed over the agents participating
in this process.

Static knowledge The actual distribution of static knowledge may be suggested by
the way the knowledge is structured for domain experts. As an example, in the realm
of medical diagnosis systems an early attempt at distributing knowledge can be found
in [Gomez and Chandrasekaran, 1981]. They propose to structure the knowledge as a
hierarchy of medical concepts. They moreover suggested to associate with each concept
a process that is busy checking whether the observed symptoms justify the diagnosis of
the disease represented by that concept. Another approach at distributing knowledge
can be found in [Aikins, 1980], where a frame-like system supporting prototypes is used
to model the diagnosis of lung diseases.

Specialists In the medical expert system that will be described in section 4 we
introduce specialists (in its literal meaning) to explore classes of diagnoses. In contrast
with the approach described in [Gomez and Chandrasekaran, 1981], where each concept
actively searches for symptoms fitting its diagnosis, our specialists are general purpose
problem solvers capable of generating diagnoses within a particular medical area. An
instance of a specialist, with knowledge of a specific field, is created in order to explore a
subtree of the hierarchy embodying the static knowledge, the medical concepts applying
to that particular field. Specialists are created only when during the diagnostic process
the need arises to refine a given diagnosis. The specialists operate quasi-independently.
They cooperate implicitly, however, by virtue of sharing the dynamic data storing the



288 ELLENS: An object oriented approach to distributed problem solving

observed symptoms and the derived intermediate diagnoses. An important feature
of our approach is that the creation and activity of the agents cooperating to find a
solution is governed by the structure of the static knowledge concerning that domain.
See [Fox, 1981] and [Davis, 1980] for alternative approaches.

3 The language DLP
The language DLP may be regarded as an extension of Prolog with object declarations
and statements for the dynamic creation of objects, communication between objects
and the assignment of values to non-logical instance variables of objects.

3.1 Object declarations
Object declarations in DLP have the form

object name {
var variables,
clauses

object

Both object and var are keywords. The variables declared by var are non-logical vari-
ables that may be assigned values by a special statement.

Objects act as prototypes in that new copies may be made by so-called new state-
ments. Such copies are called instances. Each instance has its private copy of the
non-logical variables of the declared object. In other words, non-logical variables act
as instance variables.

3.2 Statements
DLP extends Prolog with a number of statements for dealing with non-logical variables,
the creation of objects and the communication between objects. These statements may
occur as atoms in a goal.

Non-logical variables For assigning a term t to a non-logical variable x the state-
ment

• x := t

is provided. Before the assignment takes place, the term t is simplified. The non-logical
variables occurring in t are replaced by their current values.



ELIENS: An object oriented approach to distributed problem solving 289

For accessing the value of a non-logical variable x of some object O a term of the
form

0@x

is used. This term is simplified to the value of that non-logical variable when the atom
in which it occurs is evaluated.

New expressions For dynamically creating instances of objects the statement

• O — new(c)

is provided, where c is the name of a declared object. When evaluated as an atom, a
reference to the newly created object will become bound to the logical variable O. For
creating active objects the statement

• 0 - new(c(tu...,tn))

must be used. The activity of the newly created object consists of evaluating the
constructor goal c(ti,..., £„), where c is the object name and ti,..., tn denote the actual
parameters. The constructor goal will be evaluated by using constructor clauses, which
are clauses defining a predicate with the same name as the object.

Method calls A method call is the evaluation of a goal by an object. To call the
method m of an object 0 with actual parameters ti, ...,tn the statement

• O\m(ti,...,tn)

must be used. It is assumed that O is a logical variable referring to the object to which
the request is addressed. When such an atom is encountered, the object O is asked
to evaluate the goal m(ti, ...,tn). If the object to which the call is addressed is willing
to accept the request then the result of evaluating rn(ti,...,tn) will be sent back to
the caller. After sending the first result, subsequent results will be delivered whenever
the caller tries to backtrack over the method call. If no alternative solutions can be
produced the call fails.

Active objects must explicitly interrupt their own activity and state their willingness
to accept a method call by a statement of the form

• accept(m1,...,mn)

which indicates that any request for one of the methods mi, ...,mn will be accepted.

3.3 The computation model of DLP

The computation model of DLP combines the computation model underlying Prolog
and the model underlying a parallel object oriented language. Parallel object oriented
processing must support objects, processes and communication between objects.



290 ELIENS: An object oriented approach to distributed problem solving

Objects contain non-logical data, persisting during the life time of the object, and
clauses defining the functionality of the object.

Objects may be active or passive. The activity of an object is defined by constructor
clauses that describe the own activity of an object. Apart from constructor clauses,
active objects may also contain method clauses that are used when the object receives
a method call. A method call is simply the request to evaluate a goal.

Processes are created when creating a new active object and for the evaluation of a
method call. The process executing the own activity of an active object is called the
constructor process. For each method call a process is created to enable backtracking
over the results of a method call.

Passive objects have no activity but answering to method calls. Active objects must
explicitly interrupt their own activity to indicate the willingness to answer a method
call. Because of this feature active objects provide strong encapsulation.

Communication with another object takes place by engaging in a (synchronous)
rendez-vous. In order to achieve compatibility with the ordinary Prolog goal evaluation,
DLP supports global backtracking over the results of a rendez-vous. With respect to
backtracking, it is transparent whether a goal is evaluated remotely, by another object
or locally, provided the necessary clauses are defined. This transparency holds for both
passive and active objects.

Below it is pictured what happens when a process issues a method call to an active
object.1

process

O\m(t !,...,*„)

result**-

constructor

>m(t1,...,tn)
accept(...,m,...)

answer 9 resume

As soon as both the process calling the method and the constructor process of the
object to which the call is addressed have synchronized, the activity of the constructor
is interrupted and a process is created to evaluate the goal m(ti, ...,tn). The constructor
is interrupted for safety reasons, in order to guarantee that no other method call will
be accepted.

JIn the diagram, vertical lines represent computations. A node represents a particular state in a
computation. A horizontal line between two nodes represents a communication taking place between
the processes to which these nodes belong.



ELIENS: An object oriented approach to distributed problem solving 291

3.4 Inheritance

An essential feature of the object oriented approach is the use of inheritance to define
relations between objects. C.f. [Wegner, 1987]. From the perspective of modeling,
inheritance must be regarded primarily as a means to refine behavior. Cf. [Halbert
and O'Brien, 1987]. From an implementation perspective, inheritance is a facility to
share code.

The declaration for an object inheriting from an object base is

object name : base {
var variables,
clauses

inheritance

This declaration will result in adding the non-logical variables and clauses declared for
the object base to those of the declared object.

4 The specification and implementation of a dis-
tributed medical expert system

In modeling medical diagnosis it seems appropriate to assume that a doctor comes to
a conclusion concerning a certain disease by applying knowledge to facts. The assump-
tions with respect to how this takes place are embodied in the reasoning component
that consists of the objects infer and facts. The knowledge that is needed to make
inferences belong to the area of medical practice itself. The reasoning component,
however, is dependent on the format of the knowledge.

In our medical (toy) expert system we employ a simple rule-based reasoning com-
ponent. In addition we introduce a number of objects to model the (structure) of
the knowledge involved and the behavior of the agents participating in the diagnostic
process. The medical knowledge presented here is purely fictional.

4.1 The reasoning component

The reasoning component of our expert system consists of two parts: a store of facts
that initially contains the observed symptoms and an inference engine that deduces
new facts by using knowledge rules embodying the expertise.

Knowledge rules of the form

conditions —> conclusion



292 ELLENS: An object oriented approach to distributed problem solving

are used by the system to add new facts when the given facts satisfy the conditions of
the rule.

Facts Facts are stored in the object declared below.

object facts {
var data=[].

facts(D) :- data := D, run.

run :- accept(holds, add), run.

holds(X) :- member(X,data).
add(X) :-

append( [X] ,data,R) >
data := R.

facts

The object facts has a non-logical variable data containing an initially empty list of
facts. When creating an active instance of facts the instance variable data is initialized
to the given facts. The object may then be asked whether a particular fact holds, or
it may be asked to add a new fact.

Inference engine The inference engine operates on a collection of facts, by applying
knowledge contained in rules. A derivation is successful if the item that must be derived
either holds as a fact or is derivable by recursively applying a knowledge rule.

object infer {
var knowledge, facts.

derive(H) :- facts!holds(H),!.
derive(H) :-

knowledge!rule(P,H),
test(P),
facts!add(H).

test([]).
test([X|R]) :-

derive(X),
test(R).

infer



ELIENS: An object oriented approach to distributed problem solving 293

The strategy by which new facts are derived may be characterized as backward reason-
ing. It proceeds by taking the conclusion of a rule, for example as a possible diagnosis,
and checking the conditions of the rule. A condition is satisfied when it is either a fact,
or it may be derived as a fact by applying some of the other rules.

The object infer as presented is of an abstract nature. It has non-logical variables to
store knowledge and facts. However, these variables can only be given a value by an
object inheriting the capabilities of infer.

4.2 Modeling medical practice
The agents that play a role in our conception of medical practice are doctors, having
general knowledge of diseases, and specialists, having knowledge of special diseases. We
will also introduce a clinic to assign doctors and specialists to patients for consultation.

An object oriented modeling technique has also been applied in the hierarchic repre-
sentation of knowledge about diseases.

Doctor A doctor inherits the reasoning capacity needed to derive a diagnosis from the
object infer. In other words, a doctor is a straightforward modification of an inference
engine. C.f. [Wegner and Zdonik, 1988]. A doctor possesses knowledge about diseases
as represented by the object disease described below. This knowledge is also used to
suggest the possible diagnoses the doctor will look for.

object doctor : infer {

doctor() :-
knowledge := disease,
accep<(diagnosis),
doctor().

diagnosis(F,D) :-
facts := F,
member(D.knowledge@diagnoses),
derive(D).

doctor

Before being able to accept the request for a diagnosis, the non-logical variable knowledge,
inherited from infer, must be initialized to disease. The non-logical variable facts is
updated when starting to search for a diagnosis. All possible diagnoses a doctor knows
of will be tried.

Disease Knowledge concerning diseases is structured as an inheritance tree with at
the top node the most general knowledge that is refined for specific diseases further



294 ELIENS: An object oriented approach to distributed problem solving

down the tree. C.f. [Gomez and Chandrasekaran, 1981].
At the root of the tree we have the object disease, that represents the most general

knowledge of diseases.
This knowledge is laid down in rules that enable to assess whether a patient has the

symptoms of someone who is ill.

object disease {
var diagnoses — [disease],

causes = [liver ,lungs].

rule( [high_temperature] ,fever).
rule( [fever] ,disease).

disease

Apart from the rules that contain the knowledge needed to establish a diagnosis, the
object contains also a list of possible diagnoses, which for the generic case simply
states that a patient may have a disease. These diagnoses function as hypotheses when
searching for the actual diagnosis. The rules inform us that a patient has a disease if
he has fever, that is a high temperature.

Diagnosis Before we proceed, let us see what a doctor can do.

F = new(facts([high_temperature,yellow_skin])),
M = new(doctor()),
M!diagnosis(F,D).

The diagnosis delivered will be disease, since the doctor is not assumed to know any-
thing about other diseases. The patient needs a (in this case a liver disease) specialist
for a more refined diagnosis.

In addition, the knowledge concerning a disease contains an indication of its possible
causes. Such knowledge is included to allow specialists to give advice about the further
examinations.

4.3 Refining knowledge

Other diseases are specializations of the generic object disease. The objects represent-
ing specific diseases share by inheritance the more general knowledge. This knowledge
is, for each disease, augmented with a number of rules embodying the specific knowl-
edge concerning that disease. Each specific disease contains also a list of possible
diagnoses in order to direct the search for a diagnosis. This list overwrites the list of
diagnoses pertaining to the more general case.



ELIENS: An object oriented approach to distributed problem solving 295

As an example of refining the generic object disease to a particular case consider the
declaration for a liver disease.

object liver : disease {
var diagnoses = [liver_disease],

causes = [intrahepatic, extrahepatic].

rule([disease,yellow_skin],liver_disease).

hver

Notice that, in accordance with our discussion of inheritance, the values of the variables
diagnoses and causes are determined by the object containing the knowledge of a liver
disease.

We may now further enlarge our body of knowledge.

object lungs : disease {
var diagnoses = [tuberculosis, asthma],

causes = [].

rule ([coughing,bleeding],tuberculosis).
rule( [coughing,red_eyes] ,asthma).

lungs

The knowledge added contains some fictional rules concerning lung diseases. Also we
add some knowledge refining the knowledge about liver diseases.

object intrahepatic : liver {
var diagnoses = [intrahepatic],

causes = [].

rule([liver.disease,sweating],intrahepatic).

intrahepatic

Intrahepatic liver diseases represent one particular variant of liver diseases. Another
variant is represented by extrahepatic liver diseases.



296 ELIENS: An object oriented approach to distributed problem solving

extrahepatic

object extrahepatic : liver {
var diagnoses = [extrahepatic],

causes = [].

rule([liver.disease,bleeding],extrahepatic).

Neither for lung diseases nor for the intrahepatic and extrahepatic variants of liver
diseases are any causes known. As a remark, distributed backtracking may occur for
instance when more than one of the possible diagnosis for a lung-disease applies.

Specialist The hierarchical structure of medical knowledge suggests to distribute
the search for possible diagnoses over a number of specialists. A specialist is a doctor
having specific knowledge of a certain class of diseases. Apart from giving a diagnosis,
a specialist also gives advice for further examination. This definition of a specialist
enables to search, for the most specific diagnosis, taking the most general disease as a
starting point. In this search, the possible causes indicate how to traverse the hierarchy
of diseases.

object specialist : doctor {

specialist(K) :-
knowledge := K,
accepi(diagnosis),
accep<( ad vice).

advice(A) :- A = knowledge@causes.

specialist

The non-logical variable knowledge, inherited from infer (by being a doctor), is assigned
the object representing a particular class of diseases. The constructor for a specialist
further enforces that advice may be asked for only if a diagnosis has been given. Here
we have an example how a protocol of interaction may be enforced by active objects.

4.4 The diagnostic process

The distributed nature of our diagnostic system comes to light in the definition of a
clinic, that handles the distribution of tasks among the specialists.



ELIENS: An object oriented approach to distributed problem solving 297

Clinic A clinic receives patients and assigns to each patient a doctor. This doctor
is a specialist knowing all about diseases in general. When the specialist comes to the
conclusion that the patient has a disease, he gives advice for further examinations.

object clinic {

case(C,D) :-
F = new(facts(C)),
examine(d.isease,F,D).

examine(K,F,[D|R]) :-
M = new(specialist(K)),
M!diagnosis(F,D),
M!advice(A),
explore(F,A,R).

examine(K,_,[]).

explore(F,0,0).

explore(F,[K|T],[D|R]) :-
examine(K,F,D) & explore(F,T,R).

clinic

The advice given by a specialist is used to consult other specialists, having more specific
knowledge of the diseases listed in the advice. An examination results in listing all the
diagnoses that apply to the case. The advice given by a specialist consists of a list of
possible causes. For each possible cause a specialist is created to examine the patient.
Exploring the possible causes may occur in parallel, as indicated by the use of the
parallel ^-operator.2 The result of exploring the possible causes is a (possibly empty)
list of diagnoses.

Below I present the worst case that I can imagine.

?- clinic!case([high_temperature,yellow_skin,sweating,coughing,bleeding],D).

The reader is invited to compute the appropriate diagnoses by hand.

5 Conclusions
We have illustrated how object oriented modeling techniques may be used to represent
knowledge and to direct the search for a solution. Our approach allows to control the

2The language DLP supports and-parallelism in a straightforward way. See [Eliens, 1989]. Another
feature supported by DLP is the allocation of processes to nodes in a network in order to arrive at a
proper distribution of the reasoning process.



298 ELIENS: An object oriented approach to distributed problem solving

creation of the agents participating in a reasoning task and the distribution of sub-
tasks over these agents by means of a suitable representation of the domain knowledge
reflecting the structure of that knowledge in a natural way.

As a vehicle for the specification and implementation of distributed knowledge based
systems we have proposed the distributed logic programming language DLP. Currently,
there exists only a rather inefficient prototype implementation of DLP. See [Eliens,
1992]. The prototype has been implemented in a variant of the language described
in [America, 1987]. Recently, we developed Active C++, an extension of C++ with
active classes and communication by rendez-vous [Eliens and Visser, 1992]. We are
now in the process of implementing a more efficient version of DLP in Active C++.

References

[Aikins, 1980] J.S. AlKINS, Prototypes and Production Rules: A knowledge represen-
tation for consultations, Report STAN-CS-80-814 (1980) Stanford

[America, 1987] P. AMERICA, POOL-T: a parallel object oriented language, in:
[Yonezawa and Tokoro, 1987]

[Booch, 1991] G. BOOCH, Object oriented design with applications, Benjamin Cum-
mings (1991)

[Davis, 1980] R. DAVIS, The Contract Net Protocol: High Level Communication and
Control in a Distributed Problem Solver, IEEE Transactions on Computing C-29
(12) (1980) pp. 1104-1113

[Smith and Davis, 1981] R.G. SMITH AND R. DAVIS, Frameworks for Cooperation in
Distributed Problem Solving, IEEE Transactions on Systems, Man, and Cyber-
netics 11 (1) (1981) pp. 61-69

[Davison, 1989] A. DAVISON, Polka: A Parlog object oriented language, Ph.D. thesis,
Dept. of Computing, Imperial College, London (1989)

[Eliens, 1989] A. ELIENS, Extending Prolog to a Parallel Object Oriented Language,
Proc. IFIP W.G. 10.3 Working Conference on Decentralized Systems (1989) Lyon

[Eliens, 1991] A. ELIENS, Distributed Logic Programming for Artificial Intelligence,
AI Communications Vol. 4 No. 1, 1991, pp. 11-21

[Eliens, 1992] A. ELIENS, DLP - A language for Distributed Logic Programming, Wiley
(1992)

[Eliens and Visser, 1992] A. ELIENS AND C. VlSSER, Active C++, active classes and
communication by rendez-vous, Technical Report Vrije Universiteit (to appear)



ELIENS: An object oriented approach to distributed problem solving 299

[Fox, 1981] M. Fox, An organizational view of distributed systems, IEEE Transactions
on Systems, Man, and Cybernetics 11 (1) (1981) pp. 70-80

[Gomez and Chandrasekaran, 1981] F. GOMEZ AND B. CHANDRASEKARAN, Knowl-
edge Organization and Distribution for Medical Diagnosis, IEEE Transactions on
Systems, Man, and Cybernetics 11 (1) (1981) pp. 34-42

[Halbert and O'Brien, 1987] D. HALBERT AND P. O'BRIEN, Using types and inher-
itance in object oriented programming, IEEE Software 4 (5) (1987) pp. 71-79

[Hynynen and Lassila, 1989] J. HYNYNEN AND O. LASSILA, On the use of object
oriented paradigm in a distributed problem solver, AI Communications, 2 (3/4)
(1989) pp. 142-151

[Karam, 1988] G.M. KARAM, Prototyping Concurrent systems with Multilog, Tech-
nical Report Dept. of Systems and Computer Engineering Carleton University
(1988)

[Kowalski, 1979] R. KOWALSKI, Logic for problem solving, North Holland (1979)

[Kowalczyk and Treur, 1990] W. KOWALCZYK AND J. TREUR, On the use of a for-
malized generic task model in knowledge acquisition, in: Proc. EKAW 90, IOS
Press (1990) pp. 198-220

[Moss, 1990] C. MOSS, An introduction to Prolog++, Report Imperial College 90/10

[Pereira and Nasr, 1984] L.M. PEREIRA AND R. NASR, Delta Prolog: A distributed
logic programming language, in: Proc. FGCS, ICOT (1984) pp. 283-231

[Shapiro and Takeuchi, 1983] E. SHAPIRO AND A. TAKEUCHI, Object-oriented pro-
gramming in Concurrent Prolog, New Generation Computing, Vol. 1, No. 2
(1983) pp. 5-48

[Subrahmanyam, 1985] P.A. SUBRAHMANYAM, The Software Engineering of Expert
Systems: Is Prolog appropriate?, IEEE Transactions on software engineering 11
(1985) pp. 1391-1400

[Zaniolo, 1984] C. ZANIOLO, Object oriented programming in Prolog, in: Proc. Int.
Symp. on Logic Programming, Atlantic City, IEEE (1984) pp. 265-270





Intelligent User Interface
for Multiple Application Systems

X. ZHANG, J.L. NEALON, R. LINDSAY

Knowledge Engineering Research Group
School of Computing & Mathematical Sciences
Oxford Polytechnic

Abstract: Current intelligent user interfaces have two limitations: (i) They are do-
main specific and mainly built for existing database management systems, (ii) They
are specific to the target systems for which they are constructed. However, user goals,
which motivate interactions with a computer, are likely to be complicated and to re-
quire the use of multiple target systems in various domains. In this paper, we discuss
the development of intelligent user interfaces which are not subject to the limitations
identified. An architecture is proposed, the major function of which is the dynamic
integration and intelligent use of multiple target systems relevant to a user's goals.
Other important features of the proposed system include its theoretical orientation
around relevance relationships, mental models and speech acts, and the introduction
of "system experts" and "goal manager". A prototype Intelligent Multifunctional
User Interface, (IMUI), is briefly described which indicates that the proposed archi-
tecture is viable, the methodology is promising, and the theoretical ideas introduced
are worthy of further investigation.

1 INTRODUCTION
Computer-based systems are coming to play an ever more important part in our so-
ciety, and as they do so, they become increasingly complicated and difficult to use
effectively. As a consequence, the need to develop flexible and versatile intelligent
interfaces has become more crucial than ever.

What would an ideal interface look like, and how can such a system be designed
and implemented? Most investigators would agree that it should behave like an in-
telligent human assistant who has expert knowledge both of user characteristics and
requirements, and of target system(s)1. The interface should thus be an "intelligent
intermediary" between user and target system able to effectively integrate their capac-
ities so as to achieve the user's goals. Recently, the design of intelligent interfaces has

target systems refer to the computer-based systems the interface is built for.



302 ZHANG ET AL: Intelligent user interface for multiple application systems

begun to attract increased attention from AI and cognitive scientists. For example,
research has been reported on the development of natural language interfaces which
can translate the user's natural language input into formal commands acceptable to
the target system, and translate the target system's output into natural language
sentences. [Wal84, DB88]; and there has been research on the development of on-line
and off-line help systems [JV91, Chi91].

Generally speaking such systems continue to be monofunctional, i.e. they only pro-
vide single assistant functions for the use of single target systems. Like a good human
assistant, an ideal intelligent user interface must provide a multiplicity of assistant
functions for the use of multiple target systems. The intelligent user interface should
be able to help us to communicate with the target systems, answer our questions, and
provide appropriate advice or warnings; it should not be confined to helping us to use
a single target system, but any and all target systems relevant to our current task. To
increase naturalness and efficiency, the interface should also be able to talk with the
user via a range of media, including written language, speech, graphics, gesture, and
so on. In summary, an ideal user interface should be multifunctional across multiple
dimensions. These requirements are illustrated in Figure. 1.

D1: communication media

speech

text

gesture

graphics

target system run

off-line consultancy

on-line help

tutoring

D3 assistance functions

experts systems

database systems

UNIX, DOS, VMS.

Wordperfect, LaTex

D2: target systems

Figure 1: Multiple Dimentions of Multiple Functions



ZHANG ET AL: Intelligent user interface for multiple application systems 303

In the secions following, problems associated with the design and development of an
Intelligent Multifunctional User Interface, (IMUI), will be discussed. An architec-
ture and its operating principles are also proposed. This is followed by discussion
of processing components required by the design, illustrated by a running example.
The present paper concentrates on the second dimension of multifunctionality illus-
trated in Figure 1 (D2): the dynamic integration of multiple target systems. A more
comprehensive discussion of multidimensional, multifunctional, intelligent interfaces
is given in [Zha92].

2 SYSTEM DESIGN
Before getting involved with more technical issues, it is valuable to consider how a
human expert can act as an effective interface between a user and a target computer
system. First, the goals and intentions of the user must be established. This can only
be done on the basis of such factors as the content of the user's discourse, knowledge
about the user, current context and the interaction environment, commonsense and
domain knowledge. Secondly, a relevant plan which is capable of achieving the goal
must be formulated. Thirdly, it must be decided what functions, of which target
systems are required. Finally, an efficient way to use the relevant target systems to
help fulfil the user's goal must be established.

Figure 2 illustrates an architecture for a multifunctional intelligent user interface.
It consists of a natural language parser, a pragmatic interpreter, a goal manager,
knowledge bases, a response planner, a natural language generator and one or more
"system experts", (depending on the number of target computer-based systems).
Natural language commands or queries from the user are first passed to the natural
language parser for syntactic and semantic interpretation; the result is a set of possible
literal meanings represented in logical form [A1187]. The pragmatic interpreter takes
these logical forms as input and makes inferences based on general (commonsense)
knowledge, the output is a candidate set of user goals and relevant plans. These
goals and plans are then passed to the goal manager for further analysis and inference
supported by domain knowledge. The output of this stage is a set of domain oriented
metacommands (goals and plans), which are then sent to the appropriate system
experts. A system expert is the local manager of an underlying target system and
is capable of generating commands and queries acceptable to it. The system expert
is also responsible for the generation of an appropriate reply for the goal manager,
based on the response of the target system. When the goal manager receives a reply
message from the relevant system experts, it makes inferences and analysis based
upon this message and other relevant knowledge, such as the context model, user
model, domain knowledge and general knowledge. The normal output of the goal
manager is a set of strategic goals and associated plans which are appropriate for
response generation. Based on these "meta-goals and plans", the response planner
generates refined (tactical) plans and subgoals for the natural language response
generator, which in turn, generates natural language utterances.



304 ZHANG ET AL: Intelligent user interface for multiple application systems

What is described above is a simplified single directional flow of information through
the system. In practice things are much more complicated. We cannot expect the
user to "talk" correctly all the time in respect of syntax, semantics, pragmatics and
the technical features of the query domain. Even if the user's natural language
input is correct, it might be full of ambiguity, which must be filtered out at different
comprehension phases. And we should recognize that the capacity of the system is
necessarily limited. Hence, feedback paths are provided for discovery and recovery of
errors, as shown in Figure 2. Detailed discussion of these issues are outside the scope
of this paper.

natural
language
input

l ^ Human User j f

error
recovery
queries

Natural Language Parser
(syntactic & semantic
interpretation)

logical forms

/ *
Knowledgebases

( linguistic KB

tpragmatic error
message

Pragmatic Interpreter
(with general knowledge)

candidate
goals & plans

goal
management
error

general KB

domain KB

user model

context model

natural language
response
(normal output)

Natural Language
Response
Generater

refined
goals &
plans

Response
Planer

Goal Manager
(domain oriented)

strategic
response
goals and
plans

domain-oriented
goals and plans ^/response

f Target
Systems

3T\

Target
System 1

System
Expert 1

commands.
queries

i

System
Expert 2

response
i

w

System
Expert n

1

i

r

t v . , . . . , .

Target
System 2

Target
System n

Figure 2: System Architecture



ZHANG ET AL: Intelligent user interface for multiple application systems 305

3 INDIVIDUAL COMPONENTS
The last section provided a general description of the architecture and operating
principles of a multifunctional intelligent interface. In this section, we will discuss
some of the more important components in greater detail.

3.1 Knowledgebases
The capabilities of the intelligent multifunctional user interface are determined by the
knowledge which is available to it. Different kinds of knowledge are kept in distinct
knowledgebases. They are used and updated by other system modules to help achieve
user goals and determine the mental models of the world with which the system can
operate.

The first category of knowledge in a system such as IMUI, is knowledge about lan-
guage. The linguistic knowledgebase contains syntactic, semantic and lexical knowl-
edge. This is mainly used by the natural language parser and natural language
generator for the interpretation and production of natural language.

The "general" knowledgebase contains the commonsense knowledge required by the
application. It seems beyond reasonable doubt that commonsense knowledge is es-
sential for non-trivial problem solving and natural language understanding. [LG90,
Hay90]. However, the quantity of commonsense knowledge available to humans is
enormous, and its structure and the mechanisms by which it is manipulated are still
not well understood. It is not practical to build a huge knowledgebase such as the
Cyc system to support IMUL Fortunately, any particular application of a computer
system does not require the whole set of human commonsense knowlege, instead only
a small fraction is needed. So it is reasonable to put only such relevant commonsense
knowledge into the system as is convenient for the user and the system to maintain
and update.

Another kind of knowledge is domain knowledge, i.e., knowledge about the appli-
cation domain of an intelligent system. For example, an intelligent library inquiry
system has its domain knowledge about general library information, and various tar-
get application systems.

If a computer system is to interact intelligently with a user, it must have some knowl-
edge about its interlocutor. User models are used to represent the computer system's
understanding of the user. Such models include the system's knowledge about the
user's goals and plans, preferences, capacities, characteristics, knowledge about the
domain, and knowledge about the computer system, etc.

The context model contains two kinds of knowledge: the discourse model and the en-
vironmental model. The former is the system's understanding of the user's discourse,
which represents the historical, (vertical), context. It is a mental model represented



306 ZHANG ET AL: Intelligent user interface for multiple application systems

as a network of the user's goals and plans integrated with the system's goals and
plans which functions to assist the user in achieving goals. The environmental model
reflects the horizontal dimension of context, i.e., the current state of world. For a
robotic system in a workshop, this might include the current locations of machines it
is to use, and of the objects upon which it is working, whether the robot's own hand
is empty or not, etc.

3 .2 Pragmatic Interpreter
The major function of this module is to further analyse the literal meanings provided
by the syntactic-semantic parser in the light of general world knowledge, user models
and the model of context. The theories of mental models [Joh83], speech acts [A1187],
goal dependent-expressions and relevance [GL89, SW86] are all utilised during this
stage, and the next. (The latter concerns domain oriented goal management and is
discussed in the next subsection). The output of the pragmatic interpreter is the
candidate goals and plans implied by the user's utterance.

3.3 Goal Manager
The goal manager is the most important element of the system. Its first major
function is to carry out speech action analysis based on relevant domain knowledge,
user models and the contextual model; and to plan actions accordingly.

• If the analysis fails, then try to recover from failure locally.

• If the local error recovery fails, generate an error message which helps the
pragmatic interpreter to recover from error.

• If the analysis is successful, that is to say, the user's real plans and goals are
found, the goal manager will check if the user's intended goals and plans are
legal.

— If the goal is illegal or unattainable (such as trying to delete some body
else's file without authorisation, or asking the computer to print a 1000-
page file within 20 minutes), refuse to attempt the task and explain it to
the user.

— If the user's goal is legal but the plan is illegal or impractical, then try to
help the user find a practical way to achieve the goal.

— If the user's plan and goal are legal and implementable, set up correspond-
ing system goals and plans to help achieve the goal, and assign subtasks
among the relevant system experts. The goal manager is responsible for
organising and scheduling the underlying target systems to help achieve
the user's goal through different system experts.

The second major function of the goal manager is the maintenance of the user model,
context model and domain knowledgebases. For example, the interpretation of the



ZHANG ET AL: Intelligent user interface for multiple application systems 307

user's intended goals and plans, or responses from the system experts normally pro-
duce a change in the current state of the system's mental world, and so leads to the
updating of appropriate knowledgebases or mental models.

The third major function of the goal manager is to provide strategic goals and plans to
the response planner to guide the generation of acceptable natural language output.
These are a kind of metainstruction, the detailed plans and goals for generating
natural language output will be worked out by the response planner.

3 .4 System Experts
These are domain-oriented expert systems with expertise about individual target
systems. They sit between the goal manager and the target systems, as shown in
Figure 2. There is one system expert for each target system. The introduction of
system experts brings several advantages.

• By separating the target-system-oriented knowledge and functions from the goal
manager, a more uniform and higher lever interface is formed between the target
systems and the goal manager. That gives more flexibility and adaptability to
the whole intelligent interface system. It also means that the goal manager
is freed from the trivial tasks of direct communication with different target
systems at lower levels, and can concentrate on strategic planing and reasoning.

• As a local expert with the expertise about its corresponding target system,
(including the target system's knowledge, state, functions, and effective domain
strategies,) a system expert is capable of working out more effective commands
and queries for the target system.

• Finally, our system will not only help the user to use one target system more
intelligently, but also make it possible to integrate a flexible number of indepen-
dent application systems under the same goal manager, which can use them in a
coordinated manner to achieve a wider range of goals, and to achieve particular
goals more efficiently.

3.5 Response Planner
The response planner is responsible for producing detailed (tactical) goals and plans
which are compatible with the metacommands (i.e., strategic response goals and
plans) provided by the goal manager. The knowledge required includes general knowl-
edge, domain knowledge, user models, and the context model. The output provides
specific pragmatic information to the natural language generator about: what to say,
how it should be said, what are the system's current goals, which goals are to be
achieved by the utterance to be generated, etc. In a sense, the response planner
carries out operations which are the inverse of those carried out by the pragmatic
interpreter.



308 ZHANG ET AL: Intelligent user interface for multiple application systems

4 AN EXAMPLE
To help make these ideas clear, this section presents a simple example of how the
intelligent interface works within the domain of library inquiry servicing2. The target
systems for this application include, among others, the database management systems
(DBMSs) for each subject section (such as computer science, psychology, linguistics,
etc.) and a means-ends planner to plan a route between two given locations on a
map of the library. They are all integrated via the intelligent interface, as shown in
Figure 3.

•

i t
Goal Manager
(the main inquiry desk)

domain-oriented
goals and plans ^V*response w ^

System Expert 1
(computer librarian)

System Expert 2
(psychology librarian)

commands, I A
queries I [response

Computer Science
DBMS

i

t

i

Psychology
DBMS

System
Expert n

J l
Means-Ends
Planner

Library
Map

Figure 3: IMUI's Application in Library Inquiry

Suppose a user is interested in books on "expert systems". Without the intelligent
interface, users must decide for themselves which database(s) to use. If they lack do-
main knowledge, they might have to try every one. Then retrieval must be carried out
with the formal query language or menus provided by the database systems. Prob-
ably the best thing which can be done, is to use key words to retrieve those books
whose titles include the noun phrase "expert system". Obviously, this will locate
only a limited subset of the relevant books in the library's stock. The database fails
to retrieve many of the relevant references because of its lack of any real knowledge
about expert systems. The retrieval operations carried out used only blind pattern
matching. After accessing appropriate reference information, the user will probably

2This example is based on the Headington Campus Library of Oxford Polytechnic



ZHANG ET AL: Intelligent user interface for multiple application systems 309

want to know how to get to the place where the books are physically located. This
requires finding and using the route planner. If the user do not know of the existence
of the planner, he/she cannot not benefit from it at all.

Within the present architecture, all the functions useful to the user are integrated
behind a single intelligent interface. A user can talk to the interface by simply typing
"I would like to read some books on expert systems.", just as if they were talking to
a human assistant at the information desk of the library. The system will look after
the rest. The utterance input by the user is first sent to the natural language parser
for syntactic and semantic interpretation. The parsing procedure will generate the
following logical form representing the literal meaning of the utterance:

(PRES wl WANT
(AGENT user22 PERSON)
(OBJECT

(INF rl READ
(AGENT user22)
(OBJECT bl BOOK

(FIELD esl EXPERT-SYSTEMS))))),

which can be paraphrased as

There is a PRESent WANT event wl . The AGENT of w l is user22
who is a PERSON. The OBJECT of w l is a READ event rl that user22
reads BOOKs b l in the FIELD of EXPERT-SYSTEMS.

The logical form expression is then sent to the pragmatic interpreter for further inter-
pretation in the light of more general knowledge. According to the commonsense rule:

want(agent, event)&practical(event) —> goal(agent, event).

the pragmatic interpreter finds that the user's goal is the reading event which he/she
wants to achieve, i.e.,

read(user, books)&in-field(books, expert-systems).

This is regarded as the current goal of the user and added to the user model. Since
the goal is legal, the system sets a new goal for itself: to help the user fulfil their
current goal. The new system and user goals (as well as any relevant plans once they
become available) are then integrated into the context model. Two general rules will
be available from the "General" Knowledgebase, (See Fig. 2, above), which will help
the user to achieve a particular goal, G:

Rule 1
If the system can directly achieve G by itself through some implementable
plan, P, then do it.



310 ZHANG ET AL: Intelligent user interface for multiple application systems

Rule 2
If the user is pursuing G through a plan P, and some, but not all of the
elements in the plan are achievable by the system, then achieve these
elements and cooperate with the user to achieve the rest.

In the present example, since the system cannot do the reading for the user, Rule 1
is not satisfied. The commonsense plan for the goal of reading books involves two
steps:

Step 1 get the books, and

Step 2 read them.

This is the plan which the user must be supposed to be pursuing. The first step of
the plan is where the system can help, while the second step falls entirely within the
user's capabilities. Therefore Rule 2 is satisfied, and Step 1 of the plan becomes the
system's current goal. Again, according to commonsense knowledge, there are several
candidate plans for this subgoal, including:

1. get the books for the user.

2. tell the user the particular locations of the books and assist in getting there.

These candidate goals and associated plans are passed to the goal manager for fur-
ther interpretation taking domain knowledge into account. In the light of its domain
knowledge about library services, the goal manager regards the second candidate plan
as preferable. Again, according to its domain knowledge, the goal manager knows
that books on expert systems may be found in the computer section or the psychol-
ogy section of the library. Therefore, domain-oriented goals and plans are generated
and sent to the system experts in charge of the computer science DBMS and the
psychology DBMS respectively, asking them to provide details of the locations of the
books on expert systems under their local management.

Since the system experts are experts on the target systems with which they are as-
sociated, they are much more intelligent and powerful than simple DBMSs. In the
present example, when the computer science system expert is given the task of pro-
viding the locations of books on expert systems, it will attempt to retrieve all those
books which actually deal with the subject. Many such books might not contain the
term "expert systems" in their titles at all. Instead, they might be on "knowledge-
based systems", "knowledge engineering", or "rule-based systems". Since research on
expert systems is an important part of artificial intelligence, the system expert will
also consider general books on "artificial intelligence". It should be clever enough not
to retrieve older books because books on expert systems did not appear until early
1970's. These intelligent actions are possible because the system expert has knowl-
edge about computer science and the books under its management. This knowledge



ZHANG ET AL: Intelligent user interface for multiple application systems 311

can be continually improved.

The system experts interact with the target database system through its specific
query language. In the case of the prototype system IMUI described here, the target
system is a typical relational database (called CS), with an SQL interface. The output
of the system expert will be:

(select * from CS where subset ([expert, system], TITLE))

(select * from CS where subset([knowledge-based, system], TITLE))

(select * from CS where subset([knowledge^engineering], TITLE))

(select * from CS where subset([rule-based systems], TITLE))

(select * from CS where (subset([artificial, intelligence], TITLE)
&(PUB-TIME > 1970)))

In exactly the same way, the system expert on the psychology DBMS will find the
required books under the subsections of cognitive psychology and cognitive science.
The goal manager is analogous to the library's main inquiry desk, and the two sys-
tem experts have functions which are similar to the computer science and psychology
subject librarians.

Once the appropriate information (including each relevant book's title, author, pub-
lication time, location, etc) has been retrieved from the database systems and sent
back to the system experts, it is integrated with any necessary additional domain
information, (such as the general locations of the AI books and the relation between
expert systems, knowledge engineering, knowledge-based systems, AI, etc), before
being passed back to the goal manager .

The goal manager next consults the user model to see whether there is any reason to
believe that the user knows how to get to the place where the books are physically
located. If no such reason exists, the goal manager will call the system expert in
charge of the route planner to find an efficient route. Since the target system is a
general means-ends planner, it lacks domain knowledge and its performance may be
very poor if it is left to work alone. The first route found may be very inefficient.
For example: it may move up and down between floors several times before reaching
the destination. If the planner is required to generate the shortest route, it will seek
to examine possibilities exhaustively, and as a consequence, will probably do a great
deal of unnecessary computation. Supplementary domain knowledge can be provided
for the system expert on route planning, which allows it to use the general planner
in a more efficient way. For example, when calling the planner to find a route, the
system expert will additionally supply useful hints (or constraints), such as " Don't
go up one staircase and down another stairs.", "Use the nearest staircase available",
etc. In general, system experts allow general purpose software to be used for specific
purposes in an efficient way.



312 ZHANG ET AL: Intelligent user interface for multiple application systems

Once an efficient route is found and passed to the goal manager,it will work out a
strategic goal and set of associated plans for generating a reply to the user. This goal

Expert systems is a subfield of artificial intelligence
(AI), which is in turn a subfield of computer science. You
can find the following relevant books on the AI shelves in
the computer science section.

Author Title Pub Time State

Waterman, A.
Oshea,T.

So&so
Rich, R.

A Guide to Expert Systems 1986
Intelligent Knowledge- 1987
Based Systems
Knowledge Engineering 1990
Artificial Intelligence 1991

borrowed
3 available

1 available
2 available

Research on artificial intelligence and expert systems is
also done in the field of psychology, especially on
cognitive psyshology and cognitive science. You can find
the following relevant books on the AI bookshelf in the
psychology section of our library.

Author Title Pub Time State

Somebody Psychology Background of 1980
Knowledge-Based Systems

Scort, L. Cognitive Science 1991
Projects in Prolog

2 available

1 available

The locations of both the computer section and the
psychology section are shown in the following map. A route
to visit them from here is also suggested.

We are here.
Inquiry desk

Staircase

Figure 4: Final Output for the User



ZHANG ET AL: Intelligent user interface for multiple application systems 313

and plan complex will contain information such as: what to tell the user, how to tell
the user, etc. These plans are constructed in the light of knowledge available in the
user model, the context model and any other knowledgebases which are relevant.

If the user is a novice in the domain of expert systems, the goal manager is capable of
adding extra information, such as text describing the relationships between computer
science, artificial intelligence, expert systems, psychology, cognitive science, etc. In
the current example, the strategic response messages generated by the goal manager
for the response planner might be:

Goal: Help the user find books on expert systems(higher level goal: to
help the user know more about expert systems).
Plan:

1. State the relationship between expert systems, artificial intelligence,
and computer science.

2. Present the title, author, publication date and state of availability
of each book about expert systems located in the computer science
section.

3. State the relationship between expert systems, artificial intelligence,
psychology and cognitive science.

4. Present the title, author, publication date and state of availability of
each book about expert systems located at the psychology section.

5. Provide the user with an efficient route to the computer science sec-
tion and the psychology section of the library.

The response planner is responsible for working out detailed (tactical) plans and
goals. It may decide for example, that the route can best be explained with a brief
map; that information about individual books can be presented in the form of a table;
and that natural language will be used to convey other information.

All of these detailed goals, plans and other requirements are now fed into the natural
language generator to generate the system's natural language response to the query.
The natural language generator is responsible for making linguistic decisions which
effectively carry out the input plans, based on the goals of the system, the user model,
the context models, etc. These will include

1. syntactical decisions such as sentence voice (active or passive), tense (present
tense ), mood (declaration), word order in a sentence, etc.;

2. semantic decisions such as concept (or word sense) usage, the use of anaphoric
expressions, ellipsis, etc.;



314 ZHANG ET AL: Intelligent user interface for multiple application systems

3. decisions concerning multimedia communication such as the format of tables
containing book information, the layout of the map, etc.

The form of output resulting from these decisions is illustrated in Figure 4.

The example presented above illustrates only a simple, one-shot dialogue between a
user and the intelligent interface. The interface system has the potential for involve-
ment in much richer dialogue.

5 IMPLEMENTATION
A prototype of IMUI has been developed in Prolog within the application domain
of library inquiry servicing. It consists of the three lower layers of the architecture
proposed earlier. They are

• goal manager layer:

a goal manager.

• system expert layer:

3 target software system oriented expert systems:

— the computer science subject librarian expert system,

— the psychology subject librarian expert system

— the expert system of a typical means-ends route planner.

• target system layer:

target systems:

- a relational database system for computer science AI books

- a relational database system for psychology AI books

- a means-ends route planner.

In its present form, the prototype demonstrates the principles and techniques de-
scribed above. It accepts general goals and plans as input and generates useful
output for the user.

6 DISCUSSION AND FURTHER RESEARCH
The example discussed above shows how an intelligent multifunctional system can
provide better service to users by effectively organising and coordinating the functions
provided by individual target systems. As pointed out at the beginning of the paper,
this discussion only reflects one dimension of the concept multifunctional, namely,
the integration of multiple target systems behind a uniform interface. The other two
dimensions can also be realized within the system architecture proposed. To support



ZHANG ET AL: Intelligent user interface for multiple application systems 315

multimedia communication with the user, the natural language parser and generator
must be augmented to deal with information represented in other forms than written
sentences, such as speech, graphics, gestures, etc. Different assistance modes are also
possible: the intelligent interface can help the user achieve a goal by actually execut-
ing a relevant plan (or part of the plan) on the target systems. But the system is
also capable of providing consultancy or giving advice, on for example: how to solve
a problem or achieve a goal. IMUI can also provide advice at different levels with
different granularity of details.

The development of a practical multifunctional intelligent system is by no means an
easy task. Quite a few problems need a good deal of further research. Some of the
more important ones are:

1. what is an optimal design for the goal manager;

2. how should the knowledgebases be developed and maintained, especially the
user model and the context model;

3. how to provide the specific definition and formalism of the interface between
the goal manager and the system experts;

4. how can the system experts communicate with the target systems more effi-
ciently.

7 CONCLUSION
Current intelligent interfaces are mainly uni-functional: they are usually dedicated
to a single application target system to provide a single type of assistance. This
paper first argues for the importance and feasibility of implementing a multifunctional
intelligent interface. The term multifunction has three underlying dimensions:

1. Support of multimedia communication.

2. Integration of multiple target application systems behind a uniform intelligent
interface, which is competent to understand both the target systems and the
user, and which can help users achieve a goal by coordinating the individual
functions of target systems.

3. Provision of different types of help in interfacing with the application domain,
such as acting as a consultant, a practical assistant, or an actual task executor.

Secondly, a methodology and architecture for the design of the proposed intelligent in-
terface is described, and a simple example is presented and discussed. Some outstand-
ing research problems associated with the proposed intelligent interface are itemised.
The paper concentrates on the dynamic integration of multiple target systems and
describes an already implemented proof-of-concept prototype as evidence that the
approach is workable and promising.



316 ZHANG ET AL: Intelligent user interface for multiple application systems

References

[A1187] Allen, J. Natural Language Understanding, Benjamin/Cummings, 1987.

[Chi91] Chin, D. N, Intelligent Interfaces as Agents, in Sullivan, J. W. and Tyler, S.
W(edt.) Intelligent User Interfaces, ACM Press (frontier series), 1991.

[DB88] Debille, L. and Binot, J.-L, LOQUI: a natural language interface to databases,
Proceeding of the Sun User Group European Conference, March 1988.

[GL89] Gorayska, B. and Lindsay, R, On Relevance: goal dependence expressions and
the control of planning processes. Research Report 16, Dept. of Computing
and Mathematical Sciences, Oxford Polytechnic, 1989.

[Hciy90] Hayes, P. J. The Naive Physics Manifesto, in Boden, M. A,(ed.), The Phi-
losophy of Artificial Intelligence, Oxford University Press, 1990.

[Joh83] Johnson-Laird, P. N, Mental Models: Towards Cognitive Science of Lan-
guage, Inference, and Consciousness, Cambridge University Press, 1983.

[JV91] Jones, J., and Virvou, User Modelling and Advice Giving in Intelligent Help
Systems for Unix, in Information and Software Technology, vol 33 no. 2 March
1991.

[LG90] Lenat, D. B and Guha, R. V, Building Large Knowledge-Based Sys-
tems(Representation and Inference in the Cyc Project), Addison-Wesley Pub-
lishing Company, Inc., 1990.

[SW86] Sperber, D. and Wilson, D., Relevance: Communication and Cognition, Basil
Blackwell, 1986.

[Wal84] Wallace, M, Communicating with Databases in Natural Language, Ellis Hor-
wood Limited, 1984.

[Zha92] Zhang, X, Intelligent Multifunctional User Interface, Research Report (6),
Knowledge Engineering Research Group, Oxford Polytechnic, 1992.



Combining Qualitative and Quantitative Information
for Temporal Reasoning

H. A. Tolba, F. Charpillet and J.-P. Haton

CRIN-CNRS and INRIA-Lorraine
Campus Scientifique - B.P. 239
54506 Vandceuvre-les-Nancy Cedex, FRANCE

1 Introduction

Time is an important aspect of any intelligent knowledge representation. This has led to a
rising need for reasoning about time in various applications of artificial intelligence such as
process control or decision making. Different schemes for temporal information
representation have been proposed so far. A natural way to refer to a temporal event
consists in making references to a clock providing a quantitative or numerical
representation of time, as well as several concepts such as duration and calendar.
However, a clock reference is not always available or relevant. In such cases, a qualitative
(symbolic) representation of time can be used to describe the situations in question.

In spite of the different representations of temporal information proposed, most are not
completely satisfactory. Looking at existing work, Allen's representation [Allen 83] is a
very powerful representation in describing the relativity between intervals. Vilain and kautz
proposed a subinterval algebra [Vilain & Kautz 86], Ghallab and Mounir [Ghallab &
Mounir 89] based on the notion of subinterval algebara, have also proposed a model with
symbolic relations but within the framework of subinterval algebra. However, these
models don't address numerical aspect of time. On the other hand, the time map of Dean
and McDermott [Dean & McDermott 87], Rit geometrical model [Rit 86] and the temporal
constraint networks [Dechter, Meiri & Pearl 91] are designed for handling metric
information and can't handle in a good way symbolic ones.

We propose in this paper a new temporal representation combining the notions of
intervals, dates and durations. Our model [Tolba, Charpillet & Haton 91] is based on
constraint representation. We highlight in this paper the integration in a single framework
of both quantitative temporal information (tempoal windows and durations) and qualitative
ones (Allen's 13 relations). A powerful language has been defined for representing both
kinds of constraints: symbolic and numeric. The reasoning procedure is based on
constraint-propagation algorithms. These algorithms are a generalization of AC4 an



318 TOLBA ET AL: Combining qualitative and quantitative temporal information

optimum algorithm for arc-consistency and can handle n-ary constraints. The manipulation
of both symbolic and numerical temporal information is done via two temporal constraints
propagation levels. This original method of propagating temporal constraints permits
flexible control over both levels as well as the independence between those two levels.

There are relatively few related works in the literature. Meiri [Meiri 91] has proposed such
a model, capable of handling both qualitative and quantitative temporal information.
However contrary to our approach his model is based on a single network managing both
constraints. It uses the usual arc-consistency algorithms converting AC-3 to a path
consistency one. Thus, it suffers from the fact that it is local consistent and the solution is
incomplete. However, new classes of tractable problems have been discovered, some of
which can be solved in polynomial time using arc and path consistency. In such cases
Meiri's algorithms are complete. A second approach very close to ours has been described
in [Kautz & Ladkin 91]. The authors presented an idea separating the two types of
constraints. However, in this work the information exchange is not complete. The only
exchange done is the translation carried out from Allen's primitives to point algebra. It
also, suffers from the incompleteness of conventional CSA. In [Dechter, Meiri & Pearl 91]
the authors present the TSCP. This model is an equivalent approach to Dean's time map
manager and based on propagation of constraints. This approach is based on representing
temporal numerical constraints in form of inequalities. Thus, no symbolic constraints are
available in this case.

2 Knowledge Representation
We propose a discrete model of time which relies on a partition of R, the set of real
numbers. We define a temporal reference Tr (Cf. figure 1) as the maximal set of discrete
and adjacent temporal units u j . Each unit represents the smallest discrete portion of time
that can be obtained over the temporal reference. Using these units another temporal entity
is defined : the interval. An interval I is represented by a couple of units ( u i , u j ) ,
where u i and u j are the start and end times respectively. Uo represents a particular
reference.

Each interval I is identified with a lower-bound and an upper-bound identified with relative
offsets ( e s t , 1 s t ) and ( e e t , l e t ) . The precision of the starting and ending points
of an interval depend obviously on the size of the unit uj.

This model relies on the definition for each interval I of the Sets Of Possible Occurences
(SOPOs) where it can take place. In our model a SOPO 0 is restricted to be a temporal
window; i.e. a set of intervals with a constant duration. Our SOPOs are defined by couples
of units ( u i , U J ) , where u± and u j are the start and end time respectively of the



TOLBA ET AL: Combining qualitative and quantitative temporal information 319

specified window. An instance of an interval taking place in a SOPO is called an
occurrence. Events represent intervals that take place during windows. Between any two
events we can define any number of Allen's thirteen primitives. Every event is self
constrained by its duration and the window in which it takes place. The propagation of
constraints is used to deduce all the possible relations between any pair of events leading to
a consistent labeling. The events which are numerically self constrained use the result of
the propagation to eliminate the impossible numerical constraints represented in the
windows in function of the existing symbolic constraints between events.

I
TR

est 1st

est = earliest start time
1st = latest start time

eet let

eet = earliest end time
let = latest end time

Figure 1. Time-line partition

More formally, on each couple O1XO2 of SOPOs (windows), a relation R is defined. This
relation is composed of a disjunction of the 13 Allen primitives. A primitive is defined by:
P : O1XO2 - » { F , T}

(O1XO2) —» P d i , I2) and I]_ in Oi and I2 i n O2.
where Oi and O2 are SOPOs, I i and 12 are intervals and P one of the 13 primitives
of Allen. The primitive P expresses a constraint over the beginning and the end of the
occurrences with respect their SOPOs. For example, let P be the meet or a f t e r Allen's
primitive, b ( I ) the beginning of I and e (I) the end of I :
m e e t ( l l f l 2 ) = T » b ( I 2 ) = e d i ) ;

a f t e r ( I 1 , I 2 ) = T <=> b ( I 2 ) <e ( I i ) .

The goal of the constraint propagator is then to delete from all SOPOs Oi, 02, ..., On

the occurrences which do not respect the constraints expressed by the edges of the
temporal graph. The disjunctive relations are handled by considering the union of the
SOPOs allowed by each relation of the disjunction.

3 Propagating Temporal Constraints

3.1 Introduction

Let N be a set of variables x[, each defined on a discrete domain {an,.. . , ain} and R a set



320 TOLBA ET AL: Combining qualitative and quantitative temporal information

of constraining relations on a subset of theses variables. A constraint satisfaction problem
(CSP) consists in finding all sets of values {a 1 j 1,..., anjn) for (xi, ...,xn} satisfying all
relations belonging to R. The network G=(N, R) characterizing the CSP is generally a
hyper-graph in which the vertices represent variables and hyper-edges represent relations.
Since the CSP is NP-complete, algorithms assuming only local consistency were invented.
These algorithms aim at transforming the network G into an equivalent and simpler one G'
by removing from the domain of each variables all values that cannot belong to any global
solution. A k-consistency algorithm removes all inconsistencies involving all subset of k
variables belonging to N. When k=2 and k=3 we say that the solution is respectively arc
and path consistent. The k-consistency problem is in polynomial time O(n^) where n is the
cardinal of N. Among the arc consistency algorithms found in the literature, Ac4 [Mohr &
Henderson 86] developed in our laboratory has been proved optimum for discrete
relaxation. This algorithm was extended in Gac4 [Mohr & Masini 88] to handle n-ary
constraints. This algorithm is also optimum. We have extended in a first step [Tolba,
Charpillet & Haton 91] a version of Gac4 for handling temporal constraints. However,
GAC4 suffers from many short comings. Indeed, it's simple but it consumes a lot of
memory space. Furthermore, Gac4 does not provide us with a good solution to address
the world's evolution [Bessiere 91]. For these two reasons, we chose to develop a new
algorithm called ANGEL [Tolba, Charpillet & Haton 91]. This algorithm can be used for
both symbolic and numeric constraint propagations.

3.2 A Two Level Constraint Propagator

Our temporal propagator works in two steps. First it tries to complete and deduce all
missing information between events. Then, deduced information is used to reduce the size
of the temporal windows and the symbolic relations linking every pairs of events. The
numerical and symbolic temporal constraints are handled by two separate communicating
TMM.

The symbolic and numerical TMMs operate in an interactive manner. The symbolic
relations which cannot be satisfied by the numerical level are deduced and fed back to the
symbolic propagation level via a communication module. Inversely, the symbolic relations
which are eliminated by the symbolic level are communicated to the numerical level. This
feed-back operation provides a solution refinement and a flexible method to control the
problem reduction. This procedure ends when there are no more results to be processed.
Figure 2 illustrates this process.

3.2. ISsymbolic propagation
Allen has proposed a path consistency algorithm with a complexity of O(n^). However,
no proof of its optimality exists. Fortunately, it is possible to transform Allen's algorithm



TOLBA ET AL: Combining qualitative and quantitative temporal information 321

into a CSP. This algorithm relies on a graph G where nodes represent intervals and arcs
are labelled by a set of Allen's primitives. For each triplet of nodes (i,j,k) for which the
admissible relations between (i,j) and (j,k) are known, the transitivity table allows the
admissible relations between (i,k) to be computed. As we have to find the actual relations
between events, the relations should be considered as the labels by the propagation
algorithm. (G) is thus transformed into another graph A(G) in which a node noted (ij)
represents the set of relations l(Rij) constraining the intervals i and j . A node (ij) is linked
with any node (ik) and (kj) by the hyper-edges (ijk) of A(G). An hyper-edge (ijk)
specifies the following constraint: {Rij) o {Rjk} = {Rik}

on

o, _h_

t t

n

o 2 i2

Numerical propagalor

occurences ^
elimination ^ *

relations
ef miration

m,o

=, m, o

Symbolic propagator

Figure 2. A Two Level Constraint Propagator.

3.2.2 Numerical propagation

The numerical level propagates the numerical constraints
represented by windows to find out the precise date of events. The numerical
propagation consists in finding for each event all occurrences satisfying locally the
temporal constraints (3-consistency). The symbolic constraints and the occurrences which
cannot be satisfied are eliminated. Traditionally the propagation algorithm relies on a graph
where nodes are events (with a domain in the form of a window) and edge are symbolic
constraints. In order to transform this representation into a CSP one, a similar
transformation as the one used for Allen's algorithm is needed.

3.2.3 GAC4
GAC4 handles relations such R{i,j,... k) specifying the admissible labels for the nodes
i,j,...k. It is represented by an edge in a hyper-graph. R{ij,... k} can be defined as the
enumeration of all the p-tuples of labels admissible for {i,j,...k}: ((i,a),(j,b),...(k,c)).
GAC4 works as a recursive label pruning. When a label a has to be removed from the set
Li of admissible labels for i, all the p-tuples including a have to be discarded. When a p-
tuple is discarded from a relation R, it may happen that this p-tuple be the last of R which



322 TOLBA ET AL: Combining qualitative and quantitative temporal information

was supporting a particular label. This label has thus to disappear, and so on. An efficient
implementation of the algorithm is described in [Mohr & Masini 88]. The algorithm, in
fact, runs in two steps. The first step consists in building the data structure from the list of
admissible labels for all the hyper-edges R. The second step prunes the labels which are
not admissible.

The complexity of GAC4 is O(n^), where n is the number of nodes of (g). However, as
Allen's relations are oriented, we have to deal with their symmetry, i.e. compute three
labellings for each hyper-edge. Also, GAC4 gives us the possibility of choosing the
consistency order in which the propagation is to be done.

3.2.4 ANGEL

We have designed the path consistency algorithm called ANGEL which is capable of
propagating n-ary constraints. It runs on the graph which has been processed by the other
special purpose of the algorithm or GAC4 in the previous tool version. The principles
demonstrated for GAC4 are thus also true for it: the final result is a path-consistent graph.
Contrary to most existing constraint propagation algorithms, ANGEL is dynamic, i.e. it
dynamically builds the graph on which it works by progressively processing the
constraints one by one. Whereas the input of GAC4 is the set of non-admissible relations
delivered by the initialization step, it receives admissible set of relations under the form of
a set of all the possible occurrences for a given event. The constraints received by the
algorithm (propagator) are placed in a input-diary to be processed in the order of arrival. If
the hyper-edge corresponding to the current constraint does not exist yet, it is created.

If the set of occurrences is modified for any of the edges of the current hyper-edge, all the
hyper-edges having the edge in question in common are to be loaded into the input-diary in
order to be examined later. When the input-diary becomes empty, the propagation stops,
waiting for a new input. The symbolic relations which cannot be satisfied are deduced and
fed back to the symbolic propagation level via a communication module. This feed-back
operation presents a kind of solution refinement allowing this one pass procedure to be
repeated till no more possible solutions or problem reduction can be obtained.

Algorithm:

while input-diary <> nil do

hyper-edge = pop(input-diary)

verify-constraints(hyper-edge)
if modified(hyper-edge) then

push(input-diary, succ(hyper-edge)
where verify-constraints applies the constraints specified by an hyper-
edge, modified checks if the nodes linked by an hyper-edge have been



TOLBA ET AL: Combining qualitative and quantitative temporal information 323

modified and succ returns all hyper-edges having a common arc with a given
hyper-edge.

Evaluation for numerical propagation:
Since there is a finite number of labels and hyper-edges, ANGEL is guarantied to
terminate. As for the complexity, the fact that it is a dynamic algorithm led us to consider it
from the following point of view. We normally start with an empty input-diary and the
algorithm stops working when this diary is empty or when there are no more hyper-edges
to be processed. Thus the complexity problem is controlled by the number of hyper-edges
formed from the triplet of nodes (ij,k) defining an interval. The number of updates for an
arc (ij) is limited, due to the limited number of intervals found in the temporal graph.
Therefore, the possibility for an hyper-edge to return in the agenda is limited. The
complexity cost in this case is bounded by the number of hyper-edges and it will be in the
order of K0(n3) where n is the number of the graph nodes.

4 TOOL DESCRIPTION

The TemPro tool is based on a dynamic arc-consistency algorithm characterized by its
ability to manipulate n-ary constraints. A control procedure to build the time map and
exchange information between the two propagators encloses both constraint propagators.

4.1 Communication Module

The communication module carries out important functions of the TemPro. It is
responsible for passing the results from the output of each module to the input of another.
During this operation, it matches the numerical and symbolic constraints resulting from
both propagation modules. Thus, in case either of numerical or symbolic constraints are
determined to be impossible by a verification module, the labels are eliminated. The
verification module matches the symbolic constraints with numerical constraints for given
events (nodes on the time map). This is done over the hyper-edges propagated. If the
symbolic constraints cannot be satisfied via the numerical ones, the symbolic are removed
from the event's labels. The communication module then stacks all the hyper-edges in
common with the events being tested in the algorithm's queue to be examined later.

The input agenda (algorithm's queue) are the surveyed by this module. It acts as the door-
keeper looking after the loading of agenda for both propagators. It detects if a stability
point is reached and thus the TemPro becomes passive. This termination process is done
when the agenda becomes empty.

The complexity of such an algorithm si equal to that of the propagators multiplied by a



324 TOLBA ET AL: Combining qualitative and quantitative temporal information

coefficient. The verification step complexity is dependent on the size of step granularity <T,
number of intervals in a window for an event V and the number of symbolic constraints p.
Therefore constant coefficient K is 0" * v * p. The complexity of this algorithm in
general is: K O(complexity of the propagator). The termination of this algorithm is
guaranteed since both propagators work on a finite number of nodes in a time map and
consequently terminates when the communication module algorithm terminates.

4.2 Propagators

The propagator's role is to propagate temporal constraints, and to detect if any
modification on the labels of a hyper-edge it processes. If a modification is detected it
returns a list of the hyper-edges having an edge in common with the one it processes to the
communication module.

3.2.1 Symbolic propagator

0) While Next (Corn-Agenda) <> End Of List do
1) W-hyper-wdge := Next (Corn-Agenda);
2) Composition (w-hyper-edge);
3) If Modified (w-hyper-edge) Then
4) Return Related-Edges(w-hyper-edge)
5) end if;
6) end While.

The Composition function we define here has the ability of treating n-ary constraints. That
means it is defined in the traditional sense as defined by [Allen 83] or it is able to achieve
more than 3-consistency. This is done using the definition in [van Beek 89]. The
difference is done over the length of a hyper-edge passed to the function to be propagated.
Modified is a function where intersection is defined between the result of composition and
old labels given for a hyper-edge. Related-Edges returns the list of hyper-edges to be
examined in the following propagation cycle.

4.2.2 Numerical propagator

The numerical propagator is similar to that of symbolic propagator except for one
modification. This modification takes place in the functional propagation step. Step 2 in the
last propagator is changed with the following line: Apply-constraints (w-hyper-edge).
The function Apply-constraints matches the symbolic and numerical constraitns for a
hyper-edge processed.

4.2.3 Conclusion

We can conclude from the last sections the importance of the separation of both constraints
types from each other. In fact, it is the key to our representation and TemPro. The idea of



TOLBA ET AL: Combining qualitative and quantitative temporal information 325

the two propagation levels allows us to perform a sort of progressive reasoning while
propagating. Also, such reasoning can give us the possibility of refining the solution of the
problem on which we are working. Another aspect is the fact of separating the complexity
and the modular nature of the tool. The complexity of each module can be calculated
separately which leads of an over all acceptable complexity. The most important issue, is
that of the completeness. We know that the symbolic propagator is not complete.
However, the numerical one is. This fact leads us to use the numerical propagation to
complete the symbolic one via the communication module. This is due to the fact that each
constraints type is separated and independent thus allowing the exchange of information
between both of them in order to complete the propagation till stability.

4.3 Query Language

Modifying, updating and querying the time map are important aspects neglected by several
temporal representation models. We propose an interface and a language built over our
TemPro. This is missed in the similar representations discussed earlier. The syntax of this
language is a lisp-like. This language is used to command the TemPro as well as its
interrogation. It takes the form of functions call to modify an entry or update it. This
language also can be used by an inference engine to pilot the tool. Several query types are
supported by the tool. For example we can ask the tool to add a new node to the graph or
to use only one propagator. We can ask it to check the possible relations or to give the
different forms of a temporal window of an event: disjunctive or window form. Asking the
tool to find a possible solution according to a given condition is also possible. This query
is an important one especially in a planning type application. The tool can provide the user
with a limited number or all the possible solutions of the problem in question. Thus
allowing the user or the interrogating part to take more accurate decisions. This was
implemented by a improving a forward checking like algorithm. An X-window graphical
interface has been developed. Its goal is to illustrate the reasoning process and to allow the
user to easily interact with the TemPro shell.

5 Tool Evaluation

Several tests to analyze the performance and the capacities of the tool were carried out with
random data and according to the following procedure. The numerical and symbolic Time
Maps are randomly initialized 100 times. As we want to consider only the consistent Time
Maps, we have introduced the label bef in the randomly generated labels of an event over
the time map. Thus, we guarantee at least an ordered possible solution and a coherent
graph. This was for symbolic initialization. For the numerical one, we generate windows
and durations for the ordered events found previously. Both windows and duration are
randomly generated and the only fixed obligation is the size of a window: it is at least ten



326 TOLBA ET AL: Combining qualitative and quantitative temporal information

times that of an interval's duration. These tests must evaluate the dynamic, static features
of the TemPro. Also, the execution time (CPU time) is calculated for them as well as both
propagators. The TCP is subjected to different conditions: step changing increasing and
decreasing its size. Also, the confidence interval is calculated for the important features.
These results represent the average calculated time over 100 tests for every feature
analyzed. The TemPro propagates a completely connected graph. It is written in Common
Lisp and runs on a SUN Sparc2 workstation.

We will present limited number of tests, because of the space limits, in order to give the
reader a sufficient idea of its capacities. Figure 3 shows curves for a symbolic time map;
its maximum size is 200 nodes. Sample results varying from 5 to the 200 nodes are shown
over the curves. For every sample chosen the number of labels over the nodes,
representing events now, are varied from one label to the thirteen labels (labels are Allen's
primitives). All curves provide us with a clear view of the execution time of the time map.
This execution time is influenced by the number of labels existing over the events
propagated. This is due to the time spent in the composition function. That is why every
time the number of labels increases the execution time, directly proportional in this case,
increases. So, the curve propagating 13 labels is the highest one although logically the
composition function should spend its least effort to calculate the new labels. We can not
due this result as a problem of interval algebra. However, an algorithm or a more
intelligent function can give us better results in such a case.

The performance of the numerical part is shown in figure 4. Another important aspect
shown here is that of the varying time step. The time step reduces the number of intervals
in a window. This has a direct effect on the complexity coefficient factor and reduces the
execution time considerably. As it is clear by the curves for nodes carrying 5 labels.
Changing the step causes the execution time to decrease by a factor of 3 to 4 between
curves. We must note that the interval's duration in this case, for every event is at least 10
times that of a window.

To give an idea of the performance of the tool in general, figure 5 shows the overall
performance of the tool's three blocks: the two propagators and the communication
module. The curves of figure 5 show the results of propagating events over a time map
carrying 4, 7, and 11 labels through symbolic and numerical propagators and the
verification step. As we mentioned that the propagation steps execution time can be
compared with that of the communication exchange step. There, the TemPro passes a
considerable part of its time. Also the numerical step time is much more important than that
of symbolic. Although we could not determine, or estimate, the number of passes needed
by the time map to reach stability, which may be considered as a disadvantage. However,



TOLBA ET AL: Combining qualitative and quantitative temporal information 327

compared with the results gained by information exchange and leading to solution
refinement is more importante, the time spent in the last step is worth.

CPU ami In lerondi

One Itret ofprovocation uymboUc)

G DJUA
e •OSLafti

lLaotli

25 SO 75 100 i:S :S0 175

Cnrvn: 3 to /.' hlbeWnodr

Figure 3. Symbolic propagator

Ontpmpatation tr*tt(S'ttmmcal Propagator)

\tcmpiCPUn inondt
2S0M
24000
21000

220.00
210.00

200.00
19000
ISO DO
170.00
16000
ISO 00
140.00
110.00
120.00
11000

100.00
90.00
9000
70.00

60.00
KM
40.00
!0M
20.00
10.00

0.00

p . 2 unlB)
v- 7 5 labtiMlitrp* 1 (Ufa)
• • 5 laotti (tttp • 4itnta} i

I

0 2$ 50 75 100 125 IV /75 200 22S

Currtw with S latieti and amtitn-tHp
Sumbcr of noda

Figure 4. Numerical propagator



328 TOLBA ET AL: Combining qualitative and quantitative temporal information

Toof performance (2 leicti ofpmpefalion)

CPVOmelniecmuli

25 50 75 100 125 150 nS 200 223

Cuna of 4. 7 et 11 tabeU
Numberofnalm

Figure 5. Tool performance curves

6. Conclusion and Future Work

In this paper we have proposed a new representation of time which combines both
symbolic and numerical temporal information. We have also presented an original
constraint propagation strategy based on two levels of propagation. The ANGEL algorithm
presents the new feature of being dynamic, thus allowing to be used with an inference
engine. A tool has ben presented. It provides any potential user with a useful interface
language allowing interfacing the tool with other modules or exploiting the advantages of
the temporal model. Such tool was missing in the previous representations.

Presently, we are working on improving and providing a more powerful interrogation
language. The language extension is to support more complex queries. The improvement
of the graphical interface is also previewed. The integration of this tool in a functioning
expert system application is one of our near future goals.

References
[Allen 83] J. F. Allen, "Maintaining Knowledge about Temporal Intervals,"

Communications of ACM, 26(11):832—843, November 1983.
[Bessier 91] C. Bessiers, Arc Consistency in Dynamic Constraint Satisfaction Problems,

In AAAI, pages 329-335, 1991.
[Dean & McDermott 87] T. L. Dean and D. V. McDermott, "Temporal Data Base



TOLBA ET AL: Combining qualitative and quantitative temporal information 329

Management," Artificial Intelligence, 32:1—55,1987.
[Dechter, Meiri, & Pearl 91] R. Dechter, I. Meiri and J. Pearl," Temporal Constraints

Networks," Artificial Intelligence, 49:61-95, 1991.
[Ghallab & Mounir 89] M. Ghallab, A. Mounir-Alaoui, "Managing efficiently temporal

relations through indexed spanning trees," In IJCAI89, pages 1297-1303,1989.
[Kautz & Ladkin 91] H. A. Kautz and P. Ladkin, "Integrating Metric and Qualitative

Temporal Reasoning," In AAAI, pages 241-246, 1991.
[Meiri 91] I. Meiri, "Combining Qualititaive and Qualitative Constraints in Temporal

Reasoning," In AAAI, pages 260-267,1991.
[Mohr & Henderson 86] R. Mohr and T. C. Henderson, "Arc and Path Consistency

Revisited," Artificial Intelligence, 28:228-233, 1986.
[Mohr & Masini 88] R .Mohr and G. Masini, "Good Old Discrete Relaxation," In 8th

ECAI, pages 651-656, 1988.
[Rit 86] J.F. Rit, "Propagating temporal constraints for scheduling", in AAAI, pp. 383-

388.
[Tolba, Charpillet & Haton 91] H. Tolba, F. Charpillet and J-P. Haton, "Representing

and propagating Temporal Constraints," AICOM, vol 4, No. 4, pages 145-151,
1991.

[Vilain & Kautz 86] M. Vilain and H. Kautz, "Constraint Propagation Algorithms for
Temporal Reasoning," In AAAI, pages 377-382, 1986.

[van Beek 89] P. van Beek, "Approximation Algorithms for Temporal Reasoning," In
IJCAI, pages 1291-1296, 1989.





Documents as Expert Systems
BRIAN R GAINES & MILDRED L G SHAW

Knowledge Science Institute, University of Calgary
Calgary, Alberta, Canada T2N 1N4.
gaines@cpsc.ucalgary.ca & mildred@cpsc.ucalgary.ca

This paper is written in a document production tool that appears to a user as a word
processor but also acts as an expert system shell with frame and rule representations
supporting deductive inference. The electronic version of the document is active,
providing typographic text and page layout facilities, versioning, hypermedia sound and
movies, hypertext links, and knowledge structures represented in a visual language. It can
be read as a hypermedia document and also interrogated as a knowledge-based system for
problem-solving. The paper version of the document, which you are now reading, is
produced by printing the elecconic version. It loses its active functionality but continues to
act as a record of the knowledge in the document. The overall technology has been
developed as an alternative approach to the dissemination of knowledge bases. It also
provides a different interface to knowledge-based systems that emulates document
interfaces with which many users are already familiar.

1 INTRODUCTION
The knowledge document publication system emulates
conventional word-processing packages as closely as
possible to require the minimum of new skills in the
user. It produces documents that are formatted and
paginated for printing so that parallel publication of
paper and electronic documents is available. It allows
diagrams, pictures, video and sound to be integrated in
documents, with their preparation and editing being
based on existing packages so that again the user has
the minimal learning requirements. For example, the
picture inset in this paragraph is a QuickTime video with moving picture and sound
commentary that may be played by double clicking in the picture. The mechanism for
linking to multi-media material is also used to provide simple and versatile hypertextual
linking. Formal knowledge structures may also be embedded in documents, represented as
semantic networks in a visual language easily understood by people. The same knowledge
structures may also be accessed through computer programs to provide the decision
support and problem solving capabilities of an expert system.



332 GAINES & SHAW: Documents as expert systems

The knowledge document publication system is part of a research program on general
'knowledge support systems' integrating many information technologies to support
knowledge processes in human society (Gaines, 1990). Since the intended users are not
computer specialists, our objective has been to achieve all the functionality outlined above
through an environment that appears simple and natural to the user. That is, the project is
successful to the extent that the system appears like a conventional word processor rather
than an over-engineered concatenation of multi-media and artificial intelligence
functionality. This paper focuses on the expert system functionality of the system and
illustrates this through some studies of organizational modeling and problem solving
which were reported in greater detail in an (inactive) paper at the Conference on
Organizational Computing Systems (Gaines, 1991d).

The problem considered is one of room allocation from an ESPRIT project (VoB,
Karbach, Drouven, Lorek & Schuckey, 1990) that has recently been made part of Project
Sisyphus. Sisyphus is a research program to encourage international collaboration in
knowledge-based system development initiated by the European Knowledge Acquisition
Workshop in 1989. A number of problem datasets have been made available through
Sisyphus, and a major part of the EKAW'91 program was devoted to reports on the
solution of these problems using different approaches and techniques (Linster, 1991).

What is remarkable about the document you are reading is that the paper version of it
reports a solution to the problem, giving all the knowledge structures involved in visual
form, and the electronic version of it is the solution. That is, if you opened this paper in
the associated word processor you could interrogate it to solve room allocation problems.
You could edit the visual knowledge structures within the document, for example by
adding additional rules, and when you interrogated it again those rules would be in effect.
Thus, the document itself provides an active, editable knowledge base and problem-
solving inference engine.

The next section gives an overview of the architecture of the system, followed by the
visual language for knowledge representation and the problem formulation and solution in
this language.

2 KSSn ARCHITECTURE
KSSn (Knowledge Support System n) is the latest in a series of developments deriving
from our initial implementation of KSSO (Gaines, 1988a,b) and KSS1 (Shaw & Gaines,
1987). These early knowledge support systems focused on knowledge acquisition and
conceptual modeling, and have been extended through heterogeneous integration to offer
close integration with hypermedia and expert system shells (Gaines, Rappaport & Shaw,
1989; Gaines & Linster, 1990). KSSn is designed as a C++ class library implementing
KRS (Gaines, 1991a), a KL-ONE-like (Brachman & Schmolze, 1985) knowledge
representation server, and a set of associated functional modules for knowledge elicitation,
text analysis, empirical induction, graphic knowledge base editing, and so on.



GAINES & SHAW: Documents as expert systems 333

Figure 1 shows the architecture of KSSn as a family of modules attached to the knowledge
representation server, KRS. The modules are (reading clockwise from the top left):
• Interface modules to other knowledge bases and servers, including databases.
• A hypermedia module allowing informal knowledge structures in text and images to be

captured, accessed and linked. The linkage structure itself is held as a knowledge base.
• A text analysis module allowing documents to be analyzed in terms of word usage, and

associations between significant words to be graphed—based on TEXAN in KSSO.
This enables protocols and technical documents to be used to initiate knowledge
acquisition.

• A repertory grid expertise transfer module allowing graphic definition of concepts and
graphic creation and editing of individuals—based on the elicitation screens of KSSO.

• A conceptual clustering module allowing interactive definition of new concepts—based
on the hierarchical and spatial clustering from KSSO.

• A knowledge editing module allowing the interactive development and editing of
knowledge structures through a visual language.

• A conceptual induction module creating rules about specified subsets of individuals and
transforming them to a minimal set of concepts and default rules—based on the Induct
algorithm.

• A problem solving module, supporting frame, rule and case-based inference from the
knowledge structures.

• A grapher laying out specified parts of the concept subsumption graph, concept
structures and individual structures—based on an incremental layout algorithm that can
be used interactively to support the production of clear visual knowledge structures.

• A language interface accepting and generating definitions and assertions in formal
knowledge representation languages, both textual and visual.

The knowledge representation services of KRS, the central server module, correspond to
those of CLASSIC (Borgida, et al, 1989), augmented with inverse roles, data types for
integers, reals, strings and dates, and with rule representation that allows one rule to be
declared an exception to others. KWrite, the document production tool used to produce
this paper, may be seen as providing a word processing user interface to the functionality
shown in Figure 1.

3 KDRAW VISUAL LANGUAGE
An important component of KWrite and KSSn in the context of this paper is the graphic
knowledge editor, KDraw, at: the right of Figure 1. This is a drawing tool designed for
ease of use that provides a visual structure editor for semantic networks representing
classes, objects and rules in KRS. Nosek and Roth (1990) have demonstrated empirically
that the visual presentation of knowledge structures as semantic nets leads to more
effective human understanding than does textual presentation of the same structures. We
have developed a formal visual language that corresponds exactly to the underlying
algebraic semantics of KRS that has remarkably few visual primitives and is easily learnt
and understood (Gaines & Shaw, 1990).



334 GAINES & SHAW: Documents as expert systems

Other Formal
Knowledge

& Data Bases

Other
Knowledge

Representation
Servers

Formal Knowledge Base

Hypermedia
Informal

knowledge
base

Text
Analysis
Graphic

interaction

Dictionaries
Concept Records
Extension Records

Co-Reference Records
Subsumption Records

Role Records
Individual Records

Filler Records
Dependency Records

Rule Records
External Records

Z
Knowledge

Representation Server

Definition
Assertion

Subsumption
Recognition

Constraint Propagation
Rule Propagation

Exception Reasoning
Query Satisfaction
External Interface

Repertory Grid
Elicitation
Graphic

interaction

Conceptual
Clustering

Graphic concept
generation

Knowledge
Editing
Graphic

interaction

Knowledge
Representation

Languages

Textual,
Visual

Language
Interface

Compilers,
Generators

Conceptual
Induction

Concepts &
default rules

Problem
Solving

Frame/rule/case-
based inference

Figure 1 Architecture of the knowledge representation server

Visual representation of knowledge structures has been common since the early
development of diagrams and taxonomies, and was associated with semantic networks in
the early days of artificial intelligence (Quillian, 1968). The early development of such
nets resulted in criticisms that the semantics of particular diagrams was not well-defined
(Woods, 1975; Brachman, 1977). Nodes, arcs and their labels could be used very freely
and ambiguously and diagrams were subject to differing interpretations. In the 1970s there
were proposals for network formalisms with well-defined semantics (Cercone &
Schubert, 1975; Fahlman, 1979; Brachman, 1979). However, these preceded two
important developments in computing: first, the ubiquity of personal workstations with
high resolution graphics supporting visual languages as operational editors (Glinert,
1990); second, the studies of complexity issues in knowledge representation, leading to
the simplified and tractable semantics of CLASSIC (Borgida et al, 1989).

Computer production of visual forms of knowledge represented in a computer has been a
topic of research since the early days of knowledge representation research (Schmolze,
1983) and a feature of many research systems (Kindermann & Quantz, 1989) and
commercial products. Abrett and Burstein's (1988) KREME system graphically displays
the computed subsumption relations between concepts so that those entering knowledge
structures can see the consequences of definitions and detect errors due to incorrect or
inadequate definitions.



GAINES & SHAW: Documents as expert systems 335

The KDraw design (Gaines, 1991c) has drawn upon this previous research and experience
to develop the visual syntax and underlying semantics of a visual language for term
subsumption knowledge representation languages in the KL-ONE family. It focuses on
the use of the language to enter and edit knowledge visually, and on its application in a
highly interactive graphic structure editor. KDraw may be used just to support the entry of
conceptual structures and facts in a knowledge base. However, it is capable of going
beyond this and accepting problem solving knowledge structures in the form of concepts
defining the premise and conclusion of rules. The rule structure provided in KDraw and
KRS is itself powerful in both its representational and inference capabilities in supporting
exceptions and defaults (Gaines, 1991b).

The structures below show the top level conceptual structures of an organizational domain.
The visual language used in these diagrams is precisely defined. Concepts are ovals,
primitive concepts are ovals with small horizontal lines inside each side, individuals are
rectangles, roles are unboxed text, rules are rectangles with double lines at the sides,
constraint expressions are rounded-corner boxes. Lines without arrows connecting
primitive concepts denote that the concepts are disjoint, and those connecting roles denote
that they are inverse. The interpretation of the arrows in the editor is overloaded but well-
defined by the types of the objects at their head and tail, e.g.:

concept —> concept definitional subsumption

concept -» role —> concept definitional role with conceptual constraint

concept —> role —> constraint definitional role with extensional, cardinality or numeric
constraint

constraint —»individual extensional constraint

individual —> concept asserted constraint on individual

individual —> role —> individual asserted value of role for individual

concept —> rule —> concept production rule

rule —> rule first rule exception to second

Thus knowledge structure 1 defines "animate" and "inanimate" to be disjoint primitive
concepts of type "Individual"; "person" and "organization" to be disjoint concepts
inheriting from "animate"; and "location" and "activity" to be disjoint concepts inheriting
from "inanimate". Knowledge structure 3 further defines "general organization" as an
"organization" (nodes may be freely duplicated for the sake of visual appearance) to have
the role "head" filled by exactly one individual of type "head", to have the role "secretary"
possibly filled by individuals of type "secretary", and to have the role "member" possibly
filled by individuals of type "person". A project, since it is shown to inherit from
"organization" also has these roles and constraints but is further constrained to have its
"head" role filled by a "group head" and its "member" role filled by individuals of type
"researcher".



336 GAINES & SHAW: Documents as expert systems

_organi za t ion]^ ^Toca t ion^ CCgctivity^

Structure 1: Top Level Ontology

<^secretary^> /without
office

Structure 2: Employee Ontology

— ; — -
organization

• occupies

^project

member —»<^researcher^> project -»<[jj>roject^>

Structure 3: Organization Ontology

Structure 4: Office Ontology



GAINES & SHAW: Documents as expert systems 337

The underlying knowledge representation inference engine propagates constraints so that
defining an individual as a "project" and then filling its "member" role with "Marc M." will
automatically lead to "Marc M." being inferred to be a "researcher". Structure 4 shows
some other features of the language. For example "occupant" and "occupies" are defined
to be inverses, as are "near" and "near". Hence, if "Marc M." is asserted to fill the
"occupant" role of office "C5-120" then it will be inferred that "C5-120" fills the
"occupies" role of "Marc M.", and if "C5-119" is asserted to fill the "near" role of office
"C5-120" then it will be inferred that "C5-120" fills the "near" role of "C5-119."

Structures 5 and 6 show the way in which facts may be asserted about individuals in the
visual language. For example, the "RESPECT Project" in structure 5 is shown to be one
of the fillers of the "project" role of "YQT Research Center" which is defined to be an
instance of a "research group" defined in structure 3. This concept instantiation has the
consequence that the conceptual constraints defined in structures 1 through 3 will be
inherited appropriately by individuals in structure 5. For example, from structure 3 it will
be inferred that "Thomas D." is "group head", "head", and the only filler of the "head"
role, from structure 2 that he is an "employee" and a "person", and from structure 1 that
he is "animate" and of type "Individual". Structure 6 supplies further facts about the
project and the rooms that will be needed in the problem-solving activity.

These structures have a number of significant features as semantic networks. First, the
structures shown are fully operational. They were created in the KDraw graphic structure
editor and compile directly into knowledge structures in KRS. In this document they are
active as well as operational, and can be edited with immediate impact on inference.
Second, the visual language used is completely formally defined and intertranslatable with
the underlying KL-ONE knowledge structures. Third, the freedom in layout has been used
to create knowledge structures that are natural to the people involved. Structure 5 looks
like an organization chart. Structure 6 is based on the actual room layout in the building.
Fourth, editing these structures changes the ontologies and facts, and hence any related
problem solving activity. For example, at the top right of the room layout, room "C5-119"
is the only room asserted to be "central". If this appears to be restrictive when the room
allocation rules are run then it is easy for the user to add arrows from "C5-117" and "C5-
120" to"central" and see what changes result in the room allocation behavior.

Double-clicking in the structures above brings up a floating dialog box allowing them to be
edited as shown in Figure 2. Human-computer interaction in the editor is modeled on
Apple's MacDraw with additional features appropriate to the language such as arcs
remaining attached to nodes when they are dragged. A popup menu that appears when one
mouses down on the right edge of a node allows connecting lines to be entered easily. The
syntax of possible node interconnections and constraint expressions is enforced—it is not
possible to enter a graph that is syntactically incorrect. Cut-and-paste of graphs and
subgraphs is supported, and scroll and fit-to-size capabilities allow large structures with a
thousand or more nodes to be edited in KDraw.



338 GAINES & SHAW: Documents as expert systems

MLT
I Project

ASERTI
Project

BABYLON
Product
Project

RESPECT
Project

• head•

• head

head

member

• member »>

Katharina
N.

Joachim
I.

EULISP
Project

• member

Autonomous
Systems
Project

Michael
T.

Jiirgen
L.

TUTOR
2000

Project

• member

- member
Andy
L.

KRITON
Project

•member

Structure 5: Organization Chart

Marc
M.

c e n t r a l ^

Structure 6: Room Layout



GAINES & SHAW: Documents as expert systems 339

Marc Michael
M.

Werner
L.

Jurgen
L. /

Angi
W.

Uwe
T.

Andy
L.

Hans
W. Katharina

N.

Structure 7: Smoking Employees

BCES92B flctiue

- f - J i . J±.
t t t f. EI 11:1 i ^ m\ 1=1 Bl 1=1

Marc
M.

[Michael

Jiirgen
L. /

flngi
U.

Hans
U. Kath<

Strmctaie 7: Smoking Employees ^

\4 SOLUTION OF A ROOM ALLOCATION PROBLEMS!

Rrroui To
Hrrou; Both
Line

Others
Constraints

.Tf Firamr mfl̂ r "hp n<tpH m^f tr\ q n n n n r t
Smoking Em

nf rmnrpTtt fnrtt in
mokinq Empiouees

Primitiue]( Content )[Constraint)(EHception)[ Rrrouj
( Concept~l(lndiuidual)[ Role ] f Rule - flrc )[ Compile"

Ulrike U.
• en ;

|The problem is to take sample protocol from an expert making room assignments to;

Figure 2 Screen dump of this page of this paper being edited in KWrite.
Double clicking on knowledge structure 7 above has brought up a floating
dialog box to edit it. A popup menu has been accessed at the right edge of
a particular graphic item in order to enter a connecting arrow. Some of the

word-processing features of KWrite are also apparent in this figure.



340 GAINES & SHAW: Documents as expert systems

4 SOLUTION OF A ROOM ALLOCATION PROBLEM
The problem is to take sample protocols from an expert making room assignments to
researchers occupying a new building. The rules derived from the expert protocols are, in
order of declining priority:
A large, central office should be allocated to the Head of Group.
A large office already occupied by a secretary should be allocated to another secretary.
A large office near the Head of Group is suitable for the secretaries.
A single office near the Head of Group is suitable for the Manager.
A single office near the Head of Group is suitable for a Project Leader.
An office with one smoking researcher occupant should be allocated to another smoking

researcher.
An office with a non-smoking researcher occupant should be allocated to another non-

smoking researcher.
A large office should be allocated to researchers.

It is not sufficient just to implement these rules. Resource allocation problems tend to be
either over-determined, and hence notionally insoluble, or under-determined, and hence
subject to combinatorial explosion. People deal with this by problem reformulation, which
is a strongly knowledge-based process, and this is expedited by systems that generate
meaningful partial solutions that indicate the sources of obstacles to solution. What is
required is a system that uses the rules to suggest allocations, allowing the user to make
choices when the problem is under-determined, and to resolve conflicts when the problem
is over-determined. The system should support retraction and backtracking if the user
wishes to explore alternative solutions, perhaps involving considerations not expressed in
the knowledge base. An agenda mechanism to support this approach is itself programmed
as knowledge structure 8, with the concept of a prioritized task defined at the top and
appropriate tasks and priorities defined at the bottom.

Structure 9 shows a rule used to determine if a room is "near" to that of the "group head".
The upper left concept defines a "head office" as an "office" with at least one occupant and
such that every occupant is a "group head". The rule "near head office" then asserts that an
office "near" such an office is "near head office", that is the concept "near head office" will
be asserted of it. The lower left concept defines an "occupied near head office" office as
one which is "near head office" and has at least one occupant. Such an office again has its
neighbors classified as "near head office". This captures the expert's reclassification of
offices further away from head office as being "near" to it as intervening offices are filled.

Structures 10 and 11 show the representation of the rules above. For example, at the top
of siructure 10, if an individual is a "group head" and "without office" (both defined in
structure 2) then that individual is classified as "group head without office" and the "group
head request" rule fires placing "group head task" in the "person recommended" role of the
individual. Hence, since this role is defined as self-inverse in structure 8, the individual is
inferred to be in the "person recommended" role of "group head task".



GAINES & SHAW: Documents as expert systems 341

actionable \\-& action

room
allocation

agenda

office
recommended

I
office

recommended
person

recommended
I

person
recommended

group
head
task

• priority

room
allocation

agenda

secretarial
task

secretary
fill task

managerial
task • priority

all
without
task

non smoking
researcher
fill task

smoking
researcher
fill task

researcher
task

project
leader
task

• priority

• priority

• priority

• priority

Structure 8: Agenda Mechanism for Room Allocation

occupied
near head

office

near
near
head

.office.

Structure 9: Rule for Room "Near Head Office'



342 GAINES & SHAW: Documents as expert systems

group head
without
office

without
office

secretary
without
office

secretary
request

manager
without
office

manager
request

without
office

project
leader
without
office

project
leader
request

project
leader

researcher
without
office

research
request

without
office

smoking
researcher
without
office

smoking
research
request

.researcher^

non smoking
researcher
without
office

person
recommended

person
recommended

person
recommended

person
'recommended

person
recommended'

person
'recommended

secretarial
task

secretary
fill task

managerial
task

project
leader
task

researcher
task

smoking
researcher
fill task

non
smoking
research
request

^[janployee^
person
without
office

person
'recommended'

person
recommended

non smoking
researcher
fill task

all
without
task

Structure 10: Rules for Employee's Office Requirements



GAINES & SHAW: Documents as expert systems 343

office for
group head
request

group head
recommendation

office
recommendedlarge

office

unoccupied

large
office office for

large near
request

office
recommended

secretarial
task

large near
recommendation

near
head
office

office for
secretarial

fill

secretary
fill

request

large
office

office
recommended

secretary
fill task

project
leader
task

for
single near
request

single near
recommendation

managerial
taskrecommended

all
without
task

office
recommended

researcher
recommendation researcher

task

office
for

smokinc
fill '

smoking
fill

request

smoking
researcher
fill task

office
recommended

large
office

non
smoking
fill

request

office for
non-smoking

fill

large
office recommended

office
recommended

room
available^""unoccupied

non smoking
researcher
f i l l task

all
without

task

[researcher]^

Structure 11: Rules for Office Suitability



344 GAINES & SHAW: Documents as expert systems

Jurgen
L.

Harry
C.

Uwe
T.

|C5-113 I |C5-114[ | C 5 - 1 1 5 | | C 5 - 1 1 6 | | C5-117 |

Structure 12: Initial State of Employees and Offices

Structure 12 shows an initial state for problem solving when no one has been allocated a
room and no rooms are occupied (the roles have been closed with no fillers). Other initial
states are possible corresponding to partial allocation. All of the knowledge structures
required for the room allocation problem are in this paper. They provide the user interface
for domain, problem-solving and particular problem description. It remains to describe the
user interface for problem solving. KRS is a server providing problem-solving
capabilities, and KWrite and KDraw provide knowledge entry and editing sub-systems for
creating a knowledge base. It is possible to use either textual or graphic querying of KRS
to solve a particular problem. However, for the Sisyphus example the use of HyperCard
to provide an open architecture user interface to KRS was demonstrated. Figure 3 shows
the overall architecture.

KWrite/KDraw KRS HyperCard

Text & Graphic
Structure

Editor

Visual Language
for Knowledge

Knowledge
Representation

Server

Subsumption,
Recognition,

Inference

Problem-Solving

Query
Generation,
Assertion &
Retraction,

Backtracking

User

Enter concepts,
classification
rules & data

User

Override
problem-solving

process

Figure 3 System architecture, functions and user interaction



GAINES & SHAW: Documents as expert systems 345

HyperCard communicates with KRS, as do KDraw and KWrite, through Apple's System
7 inter-application communication protocol. This allows a server instantiation to exist
anywhere on a network and be accessed locally or remotely. The electronic version of this
document serves as the knowledge base for KRS, and the visual knowledge structures
shown above are compiled directly into concepts, roles, individuals and rules in KRS.

Figure 4 shows the initial screen in HyperCard. The fields at the lower left list the
knowledge bases embedded in this paper that will be used in problem solving. The user
clicks on the "Solve" button to load these into a KRS server and commence inference. A
sequence of recommended room allocations is then shown. If the problem is under-
determined, this will involve some choice. Figure 5 shows the screen when the group
head has been allocated and now the secretarial allocations are possible and top priority.

The person and room recommended for allocation are highlighted but users can over ride
these by clicking on their own choices if they wish. Clicking on the "Allocate" button
sends a message to KRS allocating the highlighted room to the highlighted person. The
windows on the right in Figure 5 show all the employees without rooms and all the rooms
available so that the user can override the recommendation process completely if desired.
The user can also go to the screen shown in Figure 6 at any time, see the allocations
already made, select any number of them and retract them if desired. The KRS truth
maintenance system automatically undoes any conclusions based on retracted data.

Room Rllocation IH I

Sisyphus 2 - X&S Solution
1 " " " fc^^^ * E 1

i i r * t r ~i~

*£5&,

Top Ontology
Office Ontology
Employee Ontology
Organization Ontology
Agenda Mechanism
Near Head Office Rule
Employee Rules
Office Rules
Room Layout

Initial Facts

o

Room Rllocation

KSSn

( Solue )

BO O c>

Figure 4 Initial HyperCard screen



346 GAINES & SHAW: Documents as expert systems

People Recommended

rlonika X.
Ulrike U.

Office Recommended

C5-120
C5-117

secretarial task

People Without Offices
<> Werner L.

Jurgen L.
Marc M.
Angi W.
Andy L.
Michael T.
Harry C.
UweT.

Offices fluoilable
<>

o

C5-123
C5-122
C5-121
C5-120
C5-117
C5-113
C5-114
C5-115

( allocate } |j<^

111

ji • i
111

o

o
111

111

111

Mill

o

Figure 5 Secretarial room allocation recommendations

flllocations Made
Thomas D. <-> C5-1 19
Monika X. <-> C5-120
Ulrike U. <-> C5-120

( R 6 t r a C V
Figure 6 Allocations and retraction



GAINES & SHAW: Documents as expert systems 347

4 CONCLUSIONS
This paper is written in a document production tool that appears to a user as a word
processor but also acts as an expert system shell with frame and rule representations
supporting deductive inference. The electronic version of the document is active,
providing typographic text and page layout facilities, versioning, hypermedia sound and
movies, hypertext links, and knowledge structures represented in a visual language. It can
be read as a hypermedia document and also interrogated as a knowledge-based system for
problem-solving. The paper version of the document, which you have just read, is
produced by printing the electronic version. It loses its active functionality but continues to
act as a record of the knowledge in the document. The overall technology has been
developed as an alternative approach to the dissemination of knowledge bases. It also
provides a different interface to knowledge-based systems that emulates document
interfaces with which many users are already familiar.

In addition to demonstrating the knowledge document system, this paper has reported
some experience in the design and implementation of a lightweight, object-oriented
knowledge representation server, and its application to organizational modeling and
problem solving. The primary user interface is through a formal visual language
implemented simply and naturally as a drawing environment on graphic workstations. The
open architecture implementation of the server allows it to be integrated with existing
applications, such as corporate database and accounting systems, and also allows
additional functionality to be added through self-contained modules requiring no changes
in the kernel system.

The problem solving example given has shown how knowledge entered visually can be
used to model organizational structures in a way that is simple and natural, and leads
directly to operational problem solving. The process described here has the following
features:
• The knowledge and data structures are totally overt and easily edited
• The knowledge document format allows a single instance of them to be disseminated

both as an active knowledge base and as a passive paper report
• The visual language allows knowledge associated with structures such as the

organization chart and room layout to be presented very naturally
• The problem solving strategy is incremental and can be applied to extend an existing

partial solution
• The arbitrary choices that arise in undetermined problems can be made by the system or

made by a person with, perhaps, additional considerations in mind
• Condensed and understandable information is available through the agenda items to

support an attractive presentation of the problem solving process to the user
• The solution developed is a highly generic problem solving strategy
• The various components of the solution may be envisioned as coming from different

archives in a corporate knowledge repository



348 GAINES & SHAW: Documents as expert systems

ACKNOWLEDGEMENTS
Financial assistance for this work has been made available by the Natural Sciences and
Engineering Research Council of Canada. We are grateful to many colleagues for
discussions that have influenced the research described. We are particularly grateful to
Marc Linster, the GMD and the Esprit Reflect Project for making the dataset available. The
research reported here would not have been possible without access to the word
processing and page makeup software developed by Gary Crandall of Datapak, and much
of the significant document processing functionality is a direct consequence of his work.

REFERENCES
Abrett, G. & Burstein, M.H. (1988) The KREME knowledge editing environment. In

Boose, J.H. & Gaines, B.R., Eds. Knowledge Acquisition Tools for Expert Systems.
pp. 1-24. London, Academic Press.

Borgida, A., Brachman, R.J., McGuiness, D.L. & Resnick, L.A. (1989). CLASSIC: a
structural data model for objects. Clifford, J., Lindsay, B. & Maier, D., Eds.
Proceedings of 1989 ACM SIGMOD International Conference on the Management of
Data, pp.58-67. New York: ACM Press.

Brachman, R.J. (1977) What's in a concept: structural fondations for semantic nets.
International Journal of Man-Machine Studies 9,127-152.

Brachman, R.J. (1979). On the epistemological status of semantic nets. In Findler, N.V.,
Ed. Associative Networks: Representation and Use of Knowledge by Computers.
pp. 3-50. New York: Academic Press.

Brachman, R.J. & Schmolze, J. (1985). An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2) 171-216 (April-June).

Cercone, N. & Schubert, L. (1975). Towards a state-based conceptual representation.
Proceedings of AAAI75. pp.83-90. Los Altos: Morgan Kaufmann.

Crandall, G. (1990). Word Solution Engine Programmer's Manual. Vancouver,
Washington, DataPak.

Fahlman, S.E. (1979). NETL: A System for Representing and Using Real-World
Knowledge. Cambridge, Massachusetts: MIT Press.

Gaines, B.R. (1988a). Structure, development and applications of expert systems in
integrated manufacturing. Kusiak, A., Ed. Artificial Intelligence Implications for CIM.
pp.117-161. Bedford, UK: IFS Conferences.

Gaines, B.R. (1988b). Knowledge acquisition systems for rapid prototyping of expert
systems. INFOR, 26(4), 256-285 (November).

Gaines, B.R. (1990). Knowledge support systems. Knowledge-Based Systems 3(3) 192-
203.

Gaines, B.R. (1991a) Empirical investigation of knowledge representation servers: design
issues and applications experience with KRS. AAAI Spring Symposium: Implemented
Knowledge Representation and Reasoning Systems, pp. 87-101. Stanford
(March)—SIGART Bulletin 2(3), 45-56 (June).

Gaines, B.R. (1991b). Integrating rules in term subsumption knowledge representation
servers. AAAI'91: Proceedings of the Ninth National Conference on Artificial



GAINES & SHAW: Documents as expert systems 349

Intelligence, pp.458-463. Menlo Park, California: AAAI Press/MIT Press (July).
Gaines, B.R. (1991c). An interactive visual language for term subsumption visual

languages. IJCAI'91: Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence. San Mateo, California: Morgan Kaufmann.

Gaines, B.R. (1991). Organizational modeling and problem solving using an object-
oriented knowledge representation server and visual language. COCS'91: Proceedings
of Conference on Organizational Computing Systems, pp.80-94. ACM Press.

Gaines, B.R. & Linster, M. (1990). Integrating a knowledge acquisition tool, an expert
system shell and a hypermedia system. International Journal of Expert Systems
Research and Applications 3(2) 105-129.

Gaines, B.R., Rappaport, A. & Shaw, M.L.G. (1989). A heterogeneous knowledge
support system. Boose, J.H. & Gaines, B.R., Eds. Proceedings of the Fourth AAAI
Knowledge Acquisition for Knowledge-Based Systems Workshop, pp.13-1-13-20.
Banff (October).

Gaines, B.R. & Shaw, M.L.G. (1990) Cognitive and logical foundations of knowledge
acquisition. Boose, J.H. & Gaines, B.R. (Eds) Proceedings of the Fifth AAAI
Knowledge Acquisition for Knowledge-Based Systems Workshop, pp. 9-1-9-25.
Banff (November).

Glinert, I.P., Ed. (1990) Visual Programming Environments: Paradigms and Systems.
Los Alamitos, California: IEEE Computer Society Press.

Kindermann, C. & Quantz, J. (1989) Graphics-oriented user interfaces for KL-ONE. KIT
Internal Report 23. Technical University of Berlin.

Linster, M., Ed. (1991) Sisyphus Working Papers Part 2: Models of Problem Solving.
EKAW91, Glasgow: University of Strathclyde.

Nosek, J.T. & Roth, I. (1990) A comparison of formal knowledge representations as
communication tools: predicate logic vs semantic network. International Journal of
Man-Machine Studies 33, 227-239, 1990.

Quillian, M.R. (1968). Semantic memory. Minsky, M, Ed. Semantic Information
Processing, pp.216-270. Cambridge, Massachusetts: MIT Press.

Schmolze, J. (1983). KLONEDRAW—a facility for automatically drawing pictures of KL-
ONE networks. Research in Knowledge Representation for Natural Language
Understanding, pp.41-44. Report No.5421, Cambridge, Massachusetts: Bolt Beranek
and Newman Inc.

Shaw, M.L.G. & Gaines, B.R. (1987). KITTEN: Knowledge Initiation & Transfer Tools
for Experts & Novices. International Journal of Man-Machine Studies, 27, 251-280.

VoB, A., Karbach, W., Drouven, U., Lorek, D. & Schuckey, R. (1990)
Operationalization of a synthetic problem. ESPRIT Basic Research Project P3178
REFLECT Task 1.2.1 Report (July).

Watanabe, H. (1989). Heuristic graph displayer for G-BASE. International Journal of
Man-Machine Studies, 30(3) 287-302 (March).

Woods, W.A. (1975) What's in a link: Foundations for semantic networks. Bobrow,
D.G. & Collins, A.M. (Eds) Representation and Understanding: Studies in Cognitive
Science, pp.35-82. New York: Academic Press.


	Contents
	Introduction and Overview
	CONSULTANT: Providing Advice for the Machine Learning Toolbox*
	A Methods Model for the Integration of KBS and Conventional Information Technology
	KBS Methodology as a framework for Co-operative Working
	Project Management for the Evolutionary Development of Expert Systems
	The Specification and Development of Rule-BasedExpert Systems
	Jigsaw: Configuring knowledge acquisition tools
	On the Relationship between Repertory Grid and Term Subsumption Knowledge Structures: Theory, Practice and Tools
	STRATEGY MAZE: An On-line Tool for Supporting Management of the Knowledge Acquisition Process
	Concurrent Engineering using Collaborating Truth Maintenance Systems
	OCKHAM'S RAZOR AS A GARDENING TOOL
	A Designer's Consultant
	Fairness of Attribute Selection In Probabilistic Induction
	An Application of Case-Based Expert System Technology to Dynamic Job-Shop Scheduling
	Neural Network Design via LP
	KEshell2: An Intelligent Learning Data Base System
	Approaches to Self-Explanation and System Visibility in the Context of Application Tasks.
	An object oriented approach to distributed problem solving
	Intelligent User Interface for Multiple Application Systems
	Combining Qualitative and Quantitative Information for Temporal Reasoning

