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Foreword

Soft computing, as explained by Prof. Lotfi Zadeh, is a consortium of method-
ologies (working synergistically, not competitively) that, in one form or
another, exploits the tolerance for imprecision, uncertainty, approximate rea-
soning and partial truth, to achieve tractability, robustness, low-cost solution,
and close resemblance with human-like decision making. It has flexible infor-
mation processing capability for representation and evaluation of various real
life ambiguous and uncertain situations. Therefore, soft computing provides
the foundation for the conception and design of high MIQ (Machine IQ) sys-
tems. Fuzzy logic having capability of handling uncertainty arising from, say,
vagueness, incompleteness, overlapping concepts; neural networks providing
machinery for adaptation and learning, genetic algorithms for optimization
and learning, and probabilistic reasoning for inference were considered to be
the basic ingredients of soft computing. Recently, the theory of rough sets of
Prof. Z. Pawlak, having capability of handling uncertainty arising from granu-
larity in the domain of discourse, is found to be another significant component.

Since the aforesaid characteristic features are important in designing in-
telligent systems and making any computer application successful, several re-
search centres related to soft computing have been established over the world,
dedicated to conduct research both for the development of its theory and
demonstrating real life applications. The Department of Science & Technol-
ogy (DST), Govt. of India, has established, in this line, the nation’s first Soft
Computing Research Center at Indian Statistical Institute, Kolkata, in 2004.

One of the challenges of soft computing research lies in judicious inte-
gration of the merits of its component technologies so that the resulting one
has application-specific advantages, which can not be achieved using the in-
dividual techniques alone, in decision making. Among all such integrations,
neuro-fuzzy hybridization is the most visible one realized so far. Recently,
rough-fuzzy computing has drawn the attention of researchers as a strong
paradigm for handling uncertainty in many real life problems, e.g., bioinfor-
matics, web intelligence, and data mining & knowledge discovery. Since it
has led to the concept of fuzzy-granulation, or f-granulation, it has a strong



VI Foreword

relevance to the Computational Theory of Perceptions (CTP), which provides
the capability to compute and reason not using any measurements, but with
perception-based information. The perception-based information is inherently
imprecise and fuzzy-granular, reflecting the finite ability of the sensory organs
(and finally the brain) to resolve details and store information. Typical daily
life examples based on CTP include car parking, driving in city, cooking meal,
and summarizing story. The next decade is expected to bear the testimony of
many stimulating issues and solutions in this domain.

The present volume titled “Soft Computing and its Applications” by
Dr. D.K. Chaturvedi, an experienced researcher from Faculty of Engineering,
Dayalbagh Educational Institute, Agra, India, deals with the introduction and
basic concepts of fuzzy logic, artificial neural networks and genetic algorithms,
and their role in certain combinations. It also describes some applications like
load forecasting problem and power system identification. I believe the chap-
ters would help in understanding not only the basic issues and characteristic
features of soft computing, but also the aforesaid problems of CTP and in
formulating possible solutions. Dr. Chaturvedi deserves congratulations for
bringing out the nice piece of work.

Kolkata, India Sankar K. Pal
November 3, 2007 Director

Indian Statistical Institute



Preface

The modern science is still striving to develop consciousness-based machine.
In the last century, enormous industrial and technological developments had
taken place. Technology had developed laterally well up to the biggest giant-
sized complexes and also to the smallest molecular nano mechanisms. Thus,
having explored to the maxima of the two extreme fields, technology is ex-
ploring now vertically to reach the dizzy heights of soft computing, subtle
soft computing, and the millennium wonder of reaching the almost unchar-
tered height of evolving consciousness in computers (machines). This book
makes its small and humble contribution to this new astounding scenario
and possibly the greatest of all mechanical wonders, to transfer conscious-
ness of man to machine. Prior to World War II, numerical calculations were
done with mechanical calculators. Simulated by military requirements dur-
ing World War II, the first version modern digital computers began to make
their appearance in late 1940s and early 1950s. During that pioneering pe-
riod, a number of different approaches to digital computer organization and
digital computing techniques were investigated. Primarily, as a result of the
constraints imposed by the available electronics technology, the designers of
digital computers soon focused their attention on the concept of computer
system architecture, which was championed by Dr. John Von Neumann, who
first implemented it in the computer constructed for the Institute of Advanced
Studies at Princeton. Because of the pervasiveness of the Von Neumann ar-
chitecture in digital computers, during the 1950s and 1960s, most numerical
analysts and other computer users concentrated their efforts on developing al-
gorithms and software packages suitable to these types of computers. In 1960s
and 1970s, there were numerous modifications and improvements to comput-
ers of the earlier generation. The “bottle neck” of Neumann computers was
the memory buffer sizes and speeds on it. In the 1990s, there was a quantum
leap in the size of computer memory and speeds. As a result of this, Super-
computers have been developed, which could do lacs of calculations within
a fraction of a second. Supercomputers can also do all routine task and it
could handle it better with multi-coordination than a human being, and thus
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reducing a series of simple logical operations. It could store vast information
and process the same in a flash. It does not also suffer from the human moods
and many vagaries of mind.

But, the super computers cannot infer or acquire any knowledge from its
information contents. It cannot think sensibly and talk intelligently. It could
not recognize a person or could not relate his family background.

On the Other hand, as human beings, we continuously evolve our value
judgment about the information we receive and instinctively process them.
Our judgment is based on our feelings, tastes, knowledge and experience. But
computers are incapable of such judgments. A computer can be programmed
(instructed), i.e. to generate poetry or music, but it cannot appraise or judge
its quality.

Hence, there is a genuine and compulsory need for some other logic, which
can handle such real life scenario. In 1965, Prof. Lofti A. Zadeh at the Uni-
versity of California, introduced an identification tool by which this degree of
truth can be handled by fuzzy set theoretic approach. With the invention of
fuzzy chips in 1980s fuzzy logic received a great boost in the industry.

Now in this twentyfirst century, along with fuzzy logic, Artificial Neural
Network (ANN), and Evolutionary Algorithms (EA) are receiving intensive
attention, in both academics and industry. All these techniques are kept under
one umbrella called “soft computing.” Enormous research had already been
done on soft computing techniques to identify a model and control of its
different systems.

This book is an introduction to some new fields in soft computing with
its principal components of fuzzy logic, ANN, and EA, and it is hoped that it
would be quite useful to study the fundamental concepts on these topics for
the pursuit of allied research.

Intuitive consciousness/wisdom is also one of the frontline areas in soft
computing, which has to be always cultivated by meditation. This is, indeed,
an extraordinary challenge and virtually a new wondrous phenomenon to in-
clude such phenomena into the computers.

The approach in this book is

• To provide an understanding of the soft computing field
• To work through soft computing (ANN, fuzzy systems, and genetic algo-

rithms) using examples
• To integrate pseudo-code operational summaries and Matlab codes
• To present computer simulation
• To include real world applications
• To highlight the distinctive work of human consciousness in machine.

Organization of the Book

This book begins with the introduction of soft computing and is divided into
four parts.
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The first part deals with the historical developments in the exciting field
of neural science to understand the brain and its functioning (Chap. 2). This
is followed by the working of ANN and their architectures (Chap. 3). The feed
forward back-propagation ANNs are widely used in operations and control of
the various industrial processes and plants, for modeling and simulation of
systems, and for forecasting purposes. The ANN needs many pairs of input–
output (X–Y ) as training and testing data. The relation between input and
output, the size of neural network, type of neuron and connectivity of neu-
rons among various layers generally contribute to training time of the neural
network. The study has been conducted to observe the effect of range of nor-
malization like 0–1, −1–1, 0–0.9, etc., the type of mapping of input–output
pairs like X–Y , X–∆Y , ∆X–Y , and ∆X–∆Y and their sequence of pre-
sentation, threshold, and aggregation functions used for different neurons (i.e.
neuron structure) on training time. In addition, influence of noise in the input–
output data on accuracy of learning and training time has been studied. The
noise in input–output data has major contribution in generalization of ANN.
The neural network model has been developed to study the above-mentioned
issues for DC machines modeling to predict armature current and speed, and
for short-term load forecasting problems (Chap. 4). Efforts have been taken
in the past to reduce the training time of ANN by selection of an optimal
network and modification in learning algorithms. A new (generalized) neuron
model using neuro-fuzzy approach to overcome the problems of ANN incor-
porating the features of fuzzy systems at a neuron level had been developed
and tested on various bench mark problems (Chap. 5). Taking benefit of the
characteristics of the GN, it is used for various applications such as machines
modeling, electrical load forecasting system, aircraft landing control system,
load frequency controller, and power system stabilization problem (Chap. 6).

In the second part, the book concentrates on the introduction of fuzzy
logic concepts and basics of fuzzy systems (Chap. 7). Fuzzy logic is applied to
a great extent in controlling the process, plants, and various complex systems
because of its inherent advantages like simplicity, ease in design, robustness,
and adaptivity. It is established that this approach works very well especially
when the systems are not transparent. Also, the effect of different connectives
(like intersection, union, and compensatory operators as well as averaging
operators), different implication methods, different compositional rules, dif-
ferent membership functions of fuzzy sets and their degrees of overlapping,
and different defuzzification methods have been studied in the context of fuzzy
system based modeling of electrical machines and load forecasting problems.

The third part lays the foundation for genetic algorithms (GA) and its
variant (Chap. 9). In Chap. 10, the application of GA for load forecasting
problems is discussed. The most difficult and crucial part of fuzzy system
development is the knowledge acquisition. System dynamics technique (causal
relationships) helps in the knowledge acquisition and representation of it. The
integrated approach of systems dynamics technique and fuzzy systems has
been used for socio-economic systems like HIV/AIDS population forecasting
problem.
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The last part of this book covers the synergism between different com-
ponents of soft computing technology such as GA, fuzzy systems, and ANN.
The GA-fuzzy system based approach is used for power system applications
such as optimal electrical power flow problem, transmission pricing in dereg-
ulated environment and congestion management problems (Chap. 11). The
GA-fuzzy (GAF) approach has also been used for load forecasting problems
on long-term basis.

Chapter – 1 
 Introduction to Soft Computing 

Chapter – 3 
ANN and 
supervised 
learning 

Chapter – 5 
Development of 
GN Models and 

its Variants 

Chapter – 7 
Introduction to 

fuzzy sets 
theoretic 
Approach 

Chapter – 9
Introduction to

Genetic
Algorithms

Chapter – 8  
Fuzzy systems 

and its 
Applications 

Chapter – 10 
GA and Its 

Applications 

Chapter – 4 
Factors
affecting 

performance of 
ANN models

Chapter – 12 
Synergism of 

ANN and Fuzzy 
Systems 

Chapter – 11 
Synergism of 
GA – Fuzzy 

Systems 

Chapter – 6 
Applications of 
ANN and GN  

Chapter – 13 
Synergism of 
ANN – GA -

Fuzzy Systems 

Chapter – 2 
Life History of 

Brain 

Fig. P1. Schematic outline of the book
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Chapter 12 deals with the Adaptive Neuro-Fuzzy Inference System (AN-
FIS). The back-propagation learning algorithm is generally used to train
ANN and GN. The back-propagation learning has various drawbacks such
as slowness in learning, stuck in local minima, and requires functional deriv-
ative of aggregation and threshold functions to minimize error function.
Various researchers have suggested a number of improvements in simple
back-propagation learning algorithm developed by Widrow and Holf (1956).
Chapter 13 deals with the synergism of feed forward ANN with GA as
the learning mechanism to overcome some of the disadvantages of back-
propagation learning mechanism to minimize the error function of ANN. GA
optimization is slow and depends on the number of variables. To improve the
convergence of GA, a modified GA is developed in which the GA parameters
like cross-over probability (Pc), mutation probability (Pm), and population
size (popsize) are modified using fuzzy system with concentration of genes.
The ANN-GA-fuzzy system integrated approach is applied to different bench-
mark problems to test this approach. The schematic outline of the book is
shown in Fig. P1.

Dayalbagh, Agra, India D.K. Chaturvedi
Faculty of Engineering

Dayalbagh Educational Institute
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1

Introduction to Soft Computing

1.1 Introduction

Soft computing (SC) is a branch, in which, it is tried to build intelligent and
wiser machines. Intelligence provides the power to derive the answer and not
simply arrive to the answer. Purity of thinking, machine intelligence, freedom
to work, dimensions, complexity and fuzziness handling capability increase,
as we go higher and higher in the hierarchy as shown in Fig. 1.1. The final
aim is to develop a computer or a machine which will work in a similar way
as human beings can do, i.e. the wisdom of human beings can be replicated
in computers in some artificial manner.

Intuitive consciousness/wisdom is also one of the important area in the soft
computing, which is always cultivated by meditation. This is indeed, an extra-
ordinary challenge and virtually a new phenomenon, to include consciousness
into the computers.

Soft computing is an emerging collection of methodologies, which aim to
exploit tolerance for imprecision, uncertainty, and partial truth to achieve ro-
bustness, tractability and total low cost. Soft computing methodologies have
been advantageous in many applications. In contrast to analytical methods,
soft computing methodologies mimic consciousness and cognition in several
important respects: they can learn from experience; they can universalize into
domains where direct experience is absent; and, through parallel computer ar-
chitectures that simulate biological processes, they can perform mapping from
inputs to the outputs faster than inherently serial analytical representations.
The trade off, however, is a decrease in accuracy. If a tendency towards impre-
cision could be tolerated, then it should be possible to extend the scope of the
applications even to those problems where the analytical and mathematical
representations are readily available. The motivation for such an extension
is the expected decrease in computational load and consequent increase of
computation speeds that permit more robust system (Jang et al. 1997).

The successful applications of soft computing and the rapid growth of the
same suggest that the impact of soft computing will be felt increasingly in the
D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,
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coming years. Soft computing is likely to play an especially important role in
science and engineering, but eventually its influence may extend much farther.
In many ways, soft computing represents a significant paradigm shift in the
aims of computing – a shift which reflects the fact that the human mind, unlike
present day computers, possesses a remarkable ability to store and process
information which is pervasively imprecise, uncertain, lacking in categoricity
and approximations in containing high quality engineering solutions.

In soft computing the problem or task at hand is represented in such a
way that the “state” of the system can somehow be calculated and com-
pared to some desired state. The quality of the system’s state is the basis
for adapting the system’s parameters, which slowly converge towards the so-
lution. This is the basic approach employed by evolutionary computing and
neural computing.

Soft computing differs from conventional (hard) computing in many ways.
For example, soft computing exploits tolerant of imprecision, uncertainty, par-
tial truth, and approximation. In effect, the role model for soft computing is
the human mind.

Soft-computing is defined as a collection of techniques spanning many
fields that fall under various categories in computational intelligence. Soft-
computing has three main branches: fuzzy Systems, evolutionary computa-
tion, artificial neural computing, with the latter subsuming machine learning
(ML) and probabilistic reasoning (PR), belief networks, chaos theory, parts
of learning theory and wisdom based expert system (WES), etc. as shown in
Fig. 1.2.
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Soft computing is a partnership in which each of the partners contributes
a distinct methodology for addressing problems in its domain. In this per-
spective, the principal constituent methodologies in SC are complementary
rather than competitive. Furthermore, soft computing may be viewed as a
foundation component for the emerging field of conceptual intelligence.

1.2 Importance of Soft Computing

In many cases a problem can be solved most effectively by using WES, FS,
NC, GC and PR in combination rather than exclusively. A striking example of
a particularly effective combination is what has come to be known as “neuro-
fuzzy systems”. Such systems are becoming increasingly visible as consumer
products ranging from air conditioners and washing machines to photocopiers
and camcorders. Less visible but perhaps even more important are neuro-
fuzzy systems in industrial applications. What is particularly significant is
that in both consumer products and industrial systems, the employment of
soft computing techniques leads to systems which have high machine intel-
ligence quotient (MIQ). In a large measure, it is the high MIQ of SC-based
systems that accounts for the rapid growth in the number and variety of appli-
cations of soft computing. One of the important features of SC is acquisition
of knowledge/information from inaccurate and uncertain data. It is expected
that combination or fusion of the elemental technologies will help to overcome
the limitations of individual elements (Furuhashi 2001).
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Soft-computing is often robust under noisy input environments and has
high tolerance for imprecision in the data on which it operates.

1.3 Main Components of Soft Computing

Soft-computing, to some extent, draws inspiration from natural phenomena.
Neural computing tries to mimic the animal brain, genetic algorithms is found
on the dynamics of Darwinian evolution, while fuzzy logic is heavily motivated
by the highly imprecise nature of human speech.

1.3.1 Fuzzy Logic

The human beings deal with imprecise and uncertain information as we go
about our day to day routines. This can be gleaned from the language we
use which contains many qualitative and subjective words and phrases such
as “quite expensive”, “very young”, or “a little far”, “expensive”, etc. In
human information processing, approximate reasoning is used and tried to
accommodate varying degrees of imprecision and uncertainty in the concepts
and tokens of information that we deal with.

Fuzzy systems are a generalization of stiff Boolean logic. It uses fuzzy sets
which are a generalization of crisp sets in classical set theory. In classical set
theory, an object could just be either a member of set or not at all, in fuzzy
set theory, a given object is said to be of a certain “degree of membership” to
the set. Hence, in fuzzy sets membership value of an object could be in the
range 0–1, but in crisp set the membership value is always 0 or 1.

1.3.1.1 Historical Perspective of Fuzzy Logic

Fuzzy logic was conceived in the USA by Prof. Lotfi A. Zadeh,
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, in the early 1960s. But his
early work with the concept was severely criticized by many
of his colleagues in the field and did not gain much acceptance
by the scientific community. By the early seventies, some Eu-

ropean researchers had started applying fuzzy logic and made successful im-
plementations of it in industrial process and control.

In the 1980s, Japanese researchers became interested in the successful
applications of fuzzy logic in Europe. Also, some very prominent researchers
in Japan further developed the theory of it; the most notable among them
is Professor Michio Sugeno. The Japanese government and academic institu-
tions, as well as the big Japanese firms, were involved not only in fuzzy logic
R&D, but also in the mass marketing of fuzzy logic based products. This re-
sulted in widespread use of simple fuzzy logic components to control various
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home appliances such as washing machines, handy cam, micro-wave oven and
rice cookers. Even the bullet trains of Japan made use of such technology.

With the success of fuzzy logic applications in Europe and Asia, the United
States have recently given fuzzy logic a second look, much more receptive to
the “fuzzy” idea this time. Many applications of fuzzy systems have been
flourished. These applications include areas in industrial systems, intelligent
control, decision support systems, and consumer products. Fuzzy logic-based
products now account for billions of US dollar business every year.

1.3.1.2 Fuzzy System

A fuzzy expert system consists of a fuzzy rule base, a fuzzification module,
an inference engine, and a defuzzification module as shown in Fig. 1.3. The
fuzzification module pre-processes the input values submitted to the fuzzy
expert system. The inference engine uses the results of the fuzzification module
and accesses the fuzzy rules in the fuzzy rule base to infer what intermediate
and output values to produce. The final output of the fuzzy expert system is
provided by the defuzzification module.

1.3.2 Artificial Neural Networks

Artificial neural networks (ANN), or simply neural networks, can be loosely
defined as large sets of interconnected simple units which execute in parallel

Fuzzy Inference

DefuzzificationFuzzification

SYSTEMΣ

Desired

Pre-Processing Post-Processing

+

−

Fuzzy Knowledge Base

Data base Rule base

Fig. 1.3. Functional module of a fuzzy system
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to perform a common global task. These units usually undergo a learning
process which automatically updates network parameters in response to a
possibly evolving input environment. The units are often highly simplified
models of the biological neurons found in the animal brain.

Some basic characteristics of most neural network models:

• Inherent parallelism – practically all neural network models have some
element of parallelism in the execution of their numerous components;

• Similarity of components – to a very a large extent, the basic components
of a neural network look all alike and behave similarly;

• Access to local information – any given node’s level of activation and even-
tual output will depend exclusively on its current states and the outputs
of the other nodes to which it is connected; and

• Incremental learning – neural networks parameters undergo several small
changes, which, over time, would come to settle on their final values.

Neural network models can be classified in a number of ways as mentioned
below:

1. According to the network architecture, there are three major types of
neural networks namely,
a. Recurrent network,
b. Feed forward network and
c. Competitive networks.

2. According to the network structure:
a. Static (fixed) structure and
b. Dynamic structure.

3. According to the mode of learning
a. Supervised learning and
b. Unsupervised learning.

4. Neural network models can also be classified on the basis of their over-all
task such as
a. Pattern association,
b. Classification and
c. Function approximation.

5. According to the neuron structure

1. Based on aggregation function
a. Summation type neuron
b. Product type neuron
c. Combination of summation and product type
d. Averaging or compensatory type.

2. Based on activation function used
a. Sigmoid function
b. Gaussian function
c. Linear function, etc.
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1.3.2.1 Historical Perspective of ANN

In the early 1940s, McCulloch and Pitts’ monumental work on linear threshold
units was the first study in finite state machines that are designed to model
the way neurons in the brain are interconnected. The first wave of neural
network research towards producing intelligent machines thus began, under
what was then known as “cybernetics”. Just before the end of the 1940s, Hebb
published his thoughts on “cell assemblies” and how nearby neurons reinforce
each other in what is now known as “Hebbian learning”.

The early 1950s saw among the first re-inforcement learning systems built
by Marvin Minsky. By the early 1960s, Rosenblatt’s celebrated work on Per-
ceptrons opened up a second-wave of interest in neural networks. Much of
the euphorbia based on the Perceptron’s initial successes was, however soon
dampened by a rigorous analysis of the limitations of Perceptrons conducted
by Minsky and Papert. And so the 1970s was a calm period for neural network
research, although many researchers continued their work on the sidelines,
such as Stephen Grossberg, Teuvo Kohonen, and Shun-Ichi Amari.

The 1980s ushered in the third wave of neural network research, reinvig-
orated by Hopfield’s “Hopfield networks” and the independent discoveries of
“back-propagation” by Le Cun, Parker and the group of Rumelhart, Hinton
and Williams.

The 1990s has been marked by numerous applications of neural network
technology in all domains of computer work and intelligent hybrid systems.
There is now further consolidation and handshaking among researchers with
the flourishing of loosely grouped fields under soft-computing.

In recent years, the NN has been applied successfully to many fields of
engineering such as aerospace, digital signal processing, electronics, robotics
(Liu et al. 1989), machine vision, speech, manufacturing, transportation, con-
trols (Miller et al. 1990; Miller 1994; Zhang et al. 1995; Gupta and Sinha
1996) and medical engineering (a number of papers appeared in IEEE Trans.
On Bio-Medical Engineering). A partial list of NN industrial applications
includes control applications (Potter Don et al. 1997); inverted pendulum
controller (Jung Sooyong and Wen John 2003; Yongcai 2001; Yamakita et al.
1994; Wei et al. 1995]; robotics manipulators (Adam 2004), servo motor con-
trol (Ozcalik 2002); Automotive control (Miller et al. 1990); aircraft controls
(Ming et al. 2004); Image processing and recognition and process identification
(Narendra et al. 1995).

1.3.3 Introduction to Evolutionary Algorithms

The evolutionary algorithms (EA) which are inspired by the biological genetics
found in living nature which is simple, powerful, domain free, and probabilistic
approach to general problem solving technique. The phenomena incorporated
so far in EA models include phenomena of natural selection as there are selec-
tion and the production of variation by means of recombination and mutation,
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and rarely inversion, diploid and others. Most genetic algorithms (GA) work
with one large panmictic population, i.e. in the recombination step, each in-
dividual may potentially choose any other individual from the population as
a mate. Then GA operators are performed to obtain the new child offspring.
There are three important GA operators which are commonly used are as
follows:

(1) Crossover
(2) Mutation
(3) Selection and survival of the fittest.

1.3.4 Hybrid Intelligent Systems

In many cases, hybrid applications methods have proven to be effective in
designing intelligent systems. As it was shown in recent years, fuzzy logic,
neural networks and evolutionary computations are complementary method-
ologies in the design and implementation of intelligent systems. Each approach
has its merits and drawbacks. To take advantage of the merits and eliminate
their drawbacks, many ways of integrating these methodologies have been
proposed by researchers during the past few years. These techniques include
the integration of neural network and fuzzy logic techniques as well as the
combination of these two technologies with evolutionary methods. The merg-
ing of the ANN and FS can be realized in three different directions, resulting
in systems with different characteristics given in the Chap. 12.

1. Neuro-fuzzy systems: provide the fuzzy systems with automatic tuning
systems using ANN as a tool. The adaptive neuro fuzzy inference systems
(ANFIS) are included in this classification.

2. Fuzzy neural networks: retain the functions of ANN with fuzzification of
some of their elements. For instance, fuzzy logic can be used to determine
the learning parameters of ANN like learning rate and momentum factor.

3. Fuzzy-neural hybrid systems: utilize both fuzzy logic and neural networks
in a system to perform separate tasks for decouple subsystems. The archi-
tecture of the systems depends on a particular application. For instance,
the NN can be utilized for the prediction where the fuzzy logic addresses
the control of the system.

On the other hand, the ANN, FS and evolutionary computations can be
integrated in various ways. For example, the structure and parameter learning
problems of neural network can be coded as genes in order to search for op-
timal structures and parameters of neural network. In addition, the inherent
flexibility of the evolutionary computation and fuzzy systems has created a
large diversity and variety in how these two complementary approaches can
be combined to solve many engineering problems. Some of their applications
include control of temperature (Khalid and Omatu 1992), robot trajectory
(Rabelo and 1992), automatic generation control (Zeynelgil et al. 2002), deci-
sion support system (Zeng and Trauth 2005), system identification (Narendra
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et al. 1995), load forecasting (Park 1991; Chaturvedi 2000); system failure
(Naida et al. 1990), automotive control (Miller et al. 1990), and various other
applications (Simpson 1990).

We have lot of successful stories of soft computing applications in various
techno-socio-economical systems with the present conventional computers as
mentioned above. Hence, there exist a fusion between soft computing and con-
ventional (Hard) computing at algorithmic levels. It is the time to think about
the fusion of these techniques (Ovaska et al. 2002) not only on the algorithmic
level but also on the higher system level. In real world applications, such a
fusion is always a concrete response to some needs to improve performance,
reduce computational burden, or lower the total product/process cost. How-
ever, hard computing community seems to be more reluctant in applying the
complementing SC techniques. This situation will change only after positive
experience and the changing emphasis in engineering education.

1.4 Summary

Soft computing is an emerging approach to computing to construct intelli-
gent systems. It provides the ability of parallel computing as in human brain,
and also reasoning and learning in an uncertain and imprecise environmental
conditions. It consists of several computing paradigms, mainly neural net-
works, fuzzy systems and evolutionary algorithms. Strengths and weaknesses
of these paradigms are provided in Table 1.1.

Table 1.1. Strengths and weaknesses of main constituents of soft computing

ANN Fuzzy Evolutionary
Algorithms

Strengths 1. Learning
capability and
adaptability
2. Fault tolerant
capability
3. Model free
approach
4. Historical
(numerical) data
needed for training

1. Knowledge repre-
sentation in the form
of rules
2. Fault tolerant
capability
3. Expert knowledge
is required
4. Reasoning
capability

1. Systematic
random search
2. Provides multiple
solutions

Weaknesses 1. Black box
approach
2. It can only
handle quantitative
information
3. No reasoning
capability

1. No learning capa-
bility
2. It can only handle
qualitative
information

1. Convergence is
slow near optimal
solution
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The field of soft computing is evolving rapidly and synergism between
various constituents of it is coming up with faster rate. For better future of
mankind a highly automated and intelligent/wiser machine could be build.

1.5 Bibliography and Historical Notes

The comprehensive overview of state-of-the-art-theory and successful
industrial applications of soft computing around the world is given in the
edited book by Suzuki and his colleagues (2000). Computational intelligence,
natural computing and evolutionary computation gaining popularity which is
described by Shengxiang (2007). The concept of Pareto-optimality to machine
learning, particularly inspired by the successful developments in evolutionary
multi-objective optimization provided by Yaochu (2006). Complete overview
on the main constituents of soft computing is nicely written by Yaochu (2003).

1.6 Exercises

1. Define the soft computing
2. Mention its various components
3. What are the merits and demerits of main constituents of soft computing?
4. What are the differences between ANN, fuzzy systems and GA?
5. Who has developed artificial neuron? Who did point out the drawbacks

of that neuron?
6. Mention the historical background of fuzzy logic.
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Life History of Brain

In the structure of the human frame, the brain is the most extraor-
dinary organ. The functions of all its parts are, however, not quite
understood but the knowledge we possess of the functions of the brain
is of most superficial character and is quite incommensurate with the
economy of this wonderful apparatus.

Maharaj Sahab Pandit Brahm Sankar Misra
(Discourses on Radhasoami Faith, 1960)

2.1 Introduction

The history of our quest to understand the brain is certainly as long as human
history itself. Use this extensive timeline to meander through some of the
high-lights (and low-lights) of this great journey of understanding. There are
many evidences of ancient civilization which show that people were conducted
surgery on head (Brain). In Hindu religion, Lord Ganesh had the head of
elephant, Incarnation of Lord Narsingha, etc. Today due to fast progress of
neuro-science, we are at the verge of understanding that how brain functions
and what is the relationship between mind and brain, which may provide a
basis for understanding consciousness.

At this juncture, let us discuss an episode from the Hindu Epic:
“Ramayana”. It is said that demon king Ravana attained the status of
the Gods in heavens. It is said that he used his enormous power in his spir-
itual battery to fly his airplane called Puspak, by which he abducted Sitaji
to his palace in Lanka. In this regard, let us only confine ourselves to the
fact of harnessing consciousness by the demon king Ravana to propel his
plane, myriad millennium ago. This would indeed be a point to meditation
to top one’s consciousness and explain methodology to harness consciousness
in machine.

Plato hypothesized that the brain was the seat of the soul and also the
center of all control. It is somewhat surprising that he came to this correct

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,
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conclusion in spite of the fact he rejected experiment and observation, and
believed that true knowledge came only from pure reasoning and thought
such as that involved in mathematics. It is also mentioned that our pleasure,
joys, laughter and jests as well as our sorrows, pains, grief and tears every
thing is closely controlled by the brain condition.

2.2 Development of Brain with Age

A baby’s brain

A baby’s brain is a mystery whose secrets scientists are just beginning
to unravel. The mystery begins in the womb – only 4 weeks into gestation
the first brain cells, the neurons, are already forming at an astonishing rate:
250,000 every minute. Billions of neurons will forge links with billions of other
neurons and eventually there will be trillions and trillions of connections be-
tween cells. Every cell is precisely in its place, every link between neurons
carefully organized. Nothing is random, nothing arbitrary.

One way a newborn is introduced to the world
is through vision. The eyes and the visual cortex
of an infant continue to develop after birth ac-
cording to how much stimulation she can handle.
What happens to the brain when a baby is born
with a visual abnormality? Infant cataracts pose
an interesting challenge to scientists: How to re-
move the visual obstruction without compromis-
ing brain development.

Baby’s brains are more open to the shaping hand of experience than at any
time in our lives. In response to the demands of the world, the baby’s brain
sculpts itself. Scientists have begun to understand how that happens, but as
Neurologist Carla Shatz says, “There’s a great mystery left. Our memories
and our hopes and our aspirations all of that is in there. But we only have the
barest beginnings of an understanding about how the brain really works.”

Child’s brain

A child’s brain is a magnificent engine for
learning. A child learns to crawl, then walk, run
and explore. A child learns to reason, to pay at-
tention, to remember, but nowhere is learning
more dramatic than in the way a child learns
language. As children, we acquire language – the
hallmark of being human.
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In nearly all adults, the language center of the brain resides in the left
hemisphere, but in children the brain is less specialized. Scientists have demon-
strated that until babies become about a year old, they respond to language
with their entire brains, but then, gradually, language shifts to the left hemi-
sphere, driven by the acquisition of language itself.

Teenage brain

When examining the adolescent brain it is mystery, complexity, frustration,
and inspiration. As the brain begins teeming with hormones, the prefrontal
cortex, the center of reasoning and impulse control, is still a work in progress.
For the first time, scientists can offer an explanation for what parents already
know – adolescence is a time of rolling emotions, and poor judgment. Why
do teenagers have distinct needs and behaviors? Why, for example, do high
school students have such a hard time waking up in the morning? Scientists
have just begun to answer questions about the purpose of sleep as it relates
to the sleep patterns of teenagers.

A major challenge to the adolescent brain is schizophrenia. Throughout
the world and across cultural borders, teenagers from as early as age 12 suffer
from this brain disorder.

While adults spend about one third of their time sleeping, babies and
toddlers sleep away half of their early childhood. It cannot be the terrible
waste of time that it seems. Or can it be? Embarrassingly, scientists still
cannot persuasively point out the biological function of sleep. Sex, eating, and
sleeping constitute the triad of basic impulses of human beings. Yet, while the
functions of the first two have been obvious for millennia, it is not clear why
we crave to spend a third of our life in bed.

The first few hints for the function of sleep came from observations on
animals. All mammals sleep, as do birds and even bees. One theory suggests
that sleep is a simple protection mechanism, a way to keep animals quiet
and still, so that they attract less attention, and thus are less noticeable to
predators. This stillness is particularly important when the animal is most
vulnerable, which for many animals, is during the dark of night. But compar-
ing sleep patterns of different species suggests that this may be too simplistic
explanation. Opossum, for example, sleep up to 20 h a day. Giraffes, Dolphins
and whales also spend a very short time in sleeping. Some scientists even
claim that dolphins let only half of their brain sleep at a time. Clearly, sleep
is an opportunity to rest. Hence, many theorists have hypothesized that the
main purpose of sleep is to enable the muscles and the brain to recuperate
after a busy day. But measuring the electric activity of the brain unveils the
shortcomings of this theory: A sleeping brain is far from dormant.

Adult brain

The adult brain is the apotheosis of the human intellect, but what of
emotion? The science has changed the study of emotion: Emotion is now
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considered integral to our over-all mental health. In mapping our emotions,
scientists have found that our emotional brain overlays our thinking brain.

There is a critical interplay between reason and emotion. We are well aware
of how brain malfunctions can cause pain, depression, and emotional paralysis.
We must also understand that the brain affects positive emotional responses
such as laughter, excitement, happiness, and love. “Brain systems work to-
gether to give us emotions just as they do with sight and smell. If you lose
the ability to feel, your life, and the lives of people around you, can be devas-
tated.” – Antonio R. Damasio

Aging brain

The latest discoveries in neuroscience present
a new view of how the brain ages. Overturning
decades of dogma, scientists recently discovered
that even into our seventies, our brains continue
producing new neurons. Scientists no longer hold
the longstanding belief that we lose vast numbers

of brain cells as we grow older. The normal aging process leaves most mental
functions intact, and may even provide the brain with unique advantages that
form the basis for wisdom. The aging brain is also far more resilient than was
previously believed. Despite this, many people still suffer from the disease
most associated with aging.

Mind illusion

Vision has only partly to do with the retina,
lens, and cornea. Mostly it depends on the state
of brain. It is a reason for optical illusions. The
process of seeing begins with the presence of light,
an image being formed on the retina, and an im-
pulse transmitted to the brain, but there are many
other factors that play a part in how we perceive
visually. Our perceptions are influenced by our

past experiences, imagination, and associations.

2.3 Technologies for Study the Details of Brain

It’s an exciting time in the study of the human brain and mind. Much of
this advance in knowledge is the result of technological advances in brain
imaging. It seems that almost every time one hears about some neurological
experiment or advance in human neuroscience, the term “brain scan” appears.
There are five most important technologies that allowed scientists to peer into
the workings and structure of the living human brain.



2.3 Technologies for Study the Details of Brain 15

2.3.1 Electro Encephalo Graph (EEG)

The electro encephalo graph (EEG) deserves as one of the first and still very
useful ways of non-invasively observing human brain activity. An EEG is a
recording of electrical signals from the brain made by hooking up electrodes
to the subject’s scalp. These electrodes pick up electric signals naturally pro-
duced by the brain and send them to galvanometers which detect and measure
small electric currents that are in turn hooked up to pens, under which graph
paper moves continuously. The pens trace the signals onto the graph paper.

Although it was known in the nineteenth century that living brains have
electrical activity. An Austrian psychiatrist named Hans Berger was the first
to record this activity in humans, in the late 1920s. EEGs allow researchers to
follow electrical impulses across the surface of the brain and observe changes
over split seconds of time. An EEG can show what state a person is in – asleep,
awake, and anaesthetized because the characteristic patterns of current differ
for each of these states. One important use of EEGs has been to show how
long it takes the brain to process various stimuli. A major drawback of EEGs,
however, is that they cannot show us the structures and anatomy of the brain
or really tell us which specific regions of the brain do what.

2.3.2 Computerized Axial Tomography (CAT)

Developed in the 1970s, CAT (or CT) scanning is a process that com-
bines many two-dimensional X-ray images to generate cross-sections or three-
dimensional images of internal organs and body structures (including the
brain). Doing a CAT scan involves putting the subject in a special, donut-
shaped X-ray machine that moves around the person and takes many X-rays.
Then, a computer combines the two-dimensional X-ray images to make the
cross-sections or three-dimensional images. CAT scans of the brain can detect
brain damage and also highlight local changes in cerebral blood flow (a mea-
sure of brain activity) as the subjects perform a task.

2.3.3 Positron Emission Tomography (PET)

It is developed in the 1970s to scan or observe blood flow or metabolism in
any part of the brain. In a PET scan, the subject is injected with a very small
quantity of radioactive glucose. The PET then scans the absorption of the
radioactivity from outside the scalp. Brain cells use glucose as fuel, and PET
works on the theory that if brain cells are more active, they will consume
more of the radioactive glucose, and if less active, they will consume less of it.

A computer uses the absorption data to show the levels of activity as a
color-coded brain map, with one color (usually red) indicating more active
brain areas, and another color (usually blue) indicating the less active areas.
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PET imaging software allows researchers to look at cross-sectional “slices”
of the brain, and therefore observe deep brain structures, which earlier tech-
niques like EEGs could not. PET is one of the most popular scanning tech-
niques in current neuroscience research.

2.3.4 Magnetic Resonance Imaging (MRI)

MRI technique was a major breakthrough in 1977 in imaging technology. In
an MRI, the subject is placed on a moveable bed that is inserted into a giant
circular magnet. It is a non-invasive technique that does not involve exposure
to radiation. It is usually painless medical test that helps physicians diagnose
and treat medical conditions. MRI uses a powerful magnetic field, radio waves
and a computer to produce detailed pictures of organs, soft tissues, bone and
virtually all other internal body structures. The images can then be examined
on a computer monitor.

2.3.5 Magneto Encephalo Graphy (MEG)

It is a new technology that measures the very faint magnetic fields that em-
anate from the head as a result of brain activity. In MEG, magnetic detec-
tion coils bathed in liquid helium are poised over the subject’s head. The
brain’s magnetic field induces a current in the coils, which in turn induces
a magnetic field in a special, incredibly sensitive instrument called a super-
conducting quantum interference device (SQUID). Of all the brain scanning
methods, MEG provides the most accurate resolution of the timing of nerve
cell activity–down to the millisecond.

2.4 Brain Functioning

Animals, lizards, frogs, fish, even birds have brains. But none of these creatures
demonstrate the same capacity for learning, language, emotion and abstract
thought that distinguishes the human species. Neuroscientists learned plenty
about the functioning of the brain. But they admit there are aspects of brain-
power that remain among humanity’s most enduring mysteries. The brain
performs a number of functions, many of which are related to the physical
needs and actions of the body. For these functions, the brain can be thought
of as the command centre of the human nervous system, much like the head-
quarters of a military unit. It receives information from its vast network of
neurons throughout the body. Based on this information, it makes decisions
and issues commands that stimulate muscles and give the body movement.
Other brain functions are more like those of a university than a military head-
quarters. These functions give us the ability to read, write, talk and think
about issues more broad than where the next meal is coming from.
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2.5 Brain Structure

The brain is made of three main parts: the forebrain, midbrain, and hind-
brain. The forebrain consists of the cerebrum, thalamus, and hypothalamus
(part of the limbic system). The midbrain consists of the tectum and tegmen-
tum. The hindbrain is made of the cerebellum, pons and medulla. Often
the midbrain, pons, and medulla are referred to together as the brainstem.
The “wrist” is the brainstem, connecting the brain to the spinal column, and
the “fists” constitute the left and right hemispheres of the largest part of the
brain, the cerebrum. It is associated with higher brain function such as thought
and action. The cerebral cortex is divided into four sections, called “lobes”:
the frontal lobe, parietal lobe, occipital lobe, and temporal lobe. Figure 2.1
shows the cortex. Different areas or lobes of the cerebral cortex shown in figure
play specific roles in human thought and activity. For example:

The frontal lobes control behavior, intellect and emotion, talking, self-
monitoring, speaking (word finding), smell, abstract thinking and rea-
soning.

Temporal lobe is responsible for long-term memory storage, hearing, speech
and understanding of language.

Parietal lobe is associated with movement, sense of touch, differentiation
between size, shape colour, spatial perception, and visual perception.

Occipital lobe lies at the back of the brain and does vision function in
the brain.

The cerebrum has an outer layer of grey matter arranged in folds (wrinkled
texture). This outer layer, the cerebral cortex, is just a few millimeters thick
but because of its numerous folds constitutes 40% of the entire brain mass.
Essentially this makes the brain more efficient, because it can increase the

Frontal Lobe 

Temporal Lobe 

Brain stem 
Cerebellum

Occiptal lobe 

Parietal Lobe 

Fig. 2.1. Exposed view of brain
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Table 2.1. Comparison between brain size and body size of human and different
animals

Species Brain
length (cm)

Brain
weight (g)

Body
length (cm)

Body
weight (g)

Camel 15 680 200 529,000
Dolphin 1,700 305 160,000
Human 15 1,400 100 62,000
Kangaroo 5 56 150 35,000
Baboon 8 140 75 30,000
Monkey 5 100 30 7,000
Raccoon 5.5 39 80 4,290
Cat 5 30 60 3,300
Rabbit 5 12 30 2,500
Squirrel 3 6 20 900
Frog 2 0.1 10 18

surface area of the brain and the amount of neurons within it. The outer
cortex is divided into gyri (ridges) and sulci (valleys).

An obvious anatomical observation that one makes is that the brain is
divided into two cerebral hemispheres. The size of these hemispheres is quite
larger in humans than any other animal. The two hemispheres look mostly
symmetrical yet it has been shown that each side functions slightly different
than the other. In general, the right side of the brain controls movement in
the left side of the body and the left side controls the right. However, there
is some specialization. For example, language is more a function of the left
hemisphere and recognition of shapes is more a function of the right.

The cerebellum, or “little brain”, is similar to the cerebrum and below to it,
has two hemispheres and has a highly folded surface or cortex. This structure
is associated with regulation and coordination of movement, posture, and
balance.

The limbic system, often referred to as the “emotional brain”, is found
buried within the cerebrum. Underneath the limbic system is the brain stem.
This structure is responsible for basic vital life functions such as breathing,
heartbeat, and blood pressure. Scientists say that this is the “simplest” part
of human brains because animals’ entire brains, such as reptiles (who appear
early on the evolutionary scale) resemble our brain stem as given in Table 2.1.

2.6 Brainwaves to Study the State of Brain

It is well known that the brain is an electrochemical organ. Researchers have
speculated that a fully functioning brain can generate as much as 10 W of
electrical power. Electrical activity emanating from the brain is displayed in
the form of brainwaves. There are four categories of these brainwaves, ranging
from the least activity to the most activity.
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1. Delta waves
It is in the frequency range from 1 to 8 Hz. It is seen normally in babies and
young children. It may be seen in drowsiness or arousal in older children
and adults; it can also be seen in meditation.

2. Alpha waves
Alpha waves are shown when brain in non-arousal state. These waves are
slower and higher in amplitude. Their frequency ranges from 9 to 14 Hz.
A person who has completed a task and sits down to rest or meditates is
usually in an alpha state.

3. Beta waves
When the brain is aroused and actively engaged in mental activities, it
generates beta waves. These beta waves are of relatively low amplitude,
and are the fastest of the four different brainwaves. The frequency of beta
waves ranges from 15 to 40 Hz. Beta waves are characteristics of a strongly
engaged mind. These brain waves are often associated with active, busy
or anxious thinking and active concentration.

4. Gamma
It is the frequency range approximately 26–100 Hz. It represents binding
of different populations of neurons together into a network for the purpose
of carrying out a certain cognitive or motor function.
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5. Higher gamma waves
It is the frequency range approximately 100–130 Hz.

Do you know?

1. The brain is the main switching unit of the central nervous system; it is
the place to which impulses flow and from which impulses originate.

2. The spinal cord provides the link between the brain and the rest of
the body.

3. The brain has three main parts:
a. The cerebrum
b. The cerebellum
c. The brain stem

4. The brain is a highly organized organ that contains approximately 100
billion neurons and has a mass of 1.4 kg and it is protected by a bony
covering called the skull.

5. In order to perform the brain functions, it needs a constant supply of
food and oxygen. If the oxygen supply to the brain is cut off even for a
few minutes, the brain will usually suffer enormous damage. Such damage
may result in death.

The cerebrum

1. The cerebrum is the control center of the brain. It is the largest and most
prominent part of the human brain and 85% of the weight of a human
brain is of cerebrum. It is responsible for all the voluntary (conscious)
activities of the body.

2. It is the site of intelligence, learning and judgment. It functions in lan-
guage, conscious thought, memory, personality development, vision, and
other sensations.

3. The cerebrum takes up most of the space in the cavity that houses the
brain (skull). It is divided into two hemispheres, the left and right cerebral
hemispheres and a deep grove that separates the two hemispheres. The
hemispheres are connected in a region known as the corpus callosum. The
right and left cerebral hemispheres are linked by a bundle of neurons called
a tract. The tract tells each half of the brain what the other half is doing.

4. The most obvious feature on the surface of each hemisphere are numerous
folds. These folds and the groves increase the surface area of the cerebrum.
The ridges are called gyri, and the grooves are called sulcus.
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5. The cerebrum, which looks like a wrinkled mushroom, is positioned over
the rest of the brain. It contains thick layers of gray matter.

6. Each hemisphere of the cerebrum is divided into four regions called lobes.
These lobes are named as, frontal, parietal, temporal, and occipital lobes.

7. Scientist have discovered that the left side of the body sends its sensations
to the right hemisphere of cerebrum, and the right side of the body sends
its sensations to the left hemisphere. The right hemisphere is associated
with creativity and artistic ability and left hemisphere is associated with
analytical and mathematical ability.

8. The cerebrum consists of two surfaces, one is folded outer surface called
the cerebral cortex and consists of gray matter and second is the inner
surface called cerebral medulla, which is made up of white matter.

The cerebellum

1. The cerebellum is the second largest part of the brain, and is located
at the back of the skull. It coordinates muscle movements and balances
the body.

2. This is a small cauliflower shaped structure, and well developed in mam-
mals and birds. Bird performs more complicated feats of balance than
most mammals.

The brain stem

1. The brain stem connects the brain to the spinal cord and maintains life
support systems. It controls vital body processes.

2.7 Summary

The human brain is responsible for overseeing the daily operations of the
human body and for interpreting the vast amount of information it receives.
The adult human brain weighs an average of 1.4 kg, or about 2% of the total
body weight. Despite this relatively small mass, the brain contains approxi-
mately 100 billion neurons. Functioning as a unit, these neurons make up the
most complex and highly organized structure on Earth. The brain is respon-
sible for many of the qualities that make each individual unique-thoughts,
feelings, emotions, talents, memories, and the ability to process information.
Much of the brain is dedicated to run the body, the brain is responsible for
maintaining Homeostasis by controlling and integrating the various systems
that make up the body.

• Our brain is more complicated than any computer we can imagine. There
are 100 billion nerve cells in your brain, and every nerve cell has many
connections to other nerve cells. In fact, your brain has more connections
in it than there are stars in the universe!
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• Sleep deprivation also decreases brain activity and limits access to learning,
memory, and concentration. People who consistently slept less than 7 h had
overall less brain activity.

• Stress negatively affects brain function. Brain cells can die with prolonged
stress.

• Every time you learn something new your brain makes a new connection.
Learning enhances blood flow and activity in the brain.

2.8 Bibliography and Historical Notes

An excellent up to date introduction to neuroscience can be found in Bear
et al. (1996). Other interesting historical perspectives can be gleaned from
(Arbib 1987, 1995, 2003; Kandel 2000; Kandel and Schwartz 1982). Bridge-
man (1988) introduced the contemporary theories of behaviour and mind in
lucid manner. The historical development of brain and mind are provided in
accessible manner by Blackmore. For the detailed and advanced treatment
on neurons and their working look (Koch 1999). Neurobiological aspects of
memory are given in Dudai (1989).

2.9 Exercises

1. Explain the salient points of human brain development.
2. What do you mean by mind illusion?
3. Explain the different parts of human brain and also mention various func-

tions performed by these part.
4. Summarize the functions of the major parts of the brain.
5. Summarize the functions of the cerebrum, brain stem, and cerebellum.
6. Describe how the brain is protected from injury.
7. Compare the brain size and body size of human beings and different

animals.
8. Write in brief about the emotional brain of human being. Where does it

locate?
9. What do you mean by brain waves?

10. What are the different categories of these brainwaves?
11. Which type of brain waves often associated with active, busy or anxious

thinking and active concentration?
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Artificial Neural Network and Supervised
Learning

3.1 Introduction

Artificial neural networks are biologically inspired but not necessarily biolog-
ically plausible. Researchers are usually thinking about the organization of
the brain when considering network configurations and algorithms. But the
knowledge about the brain’s overall operation is so limited that there is little
to guide those who would emulate it. Hence, at present time biologists, psy-
chologists, computer scientists, physicists and mathematicians are working all
over the world to learn more and more about the brain. Interests in neural
network differ according to profession like neurobiologists and psychologists
try to understanding brain. Engineers and physicists use it as tool to recog-
nize patterns in noisy data, business analysts and engineers use to model data,
computer scientists and mathematicians viewed as a computing machines that
may be taught rather than programmed and artificial intelligentsia, cognitive
scientists and philosophers use as sub-symbolic processing (reasoning with
patterns, not symbols), etc.

A conventional computer will never operate as brain does, but it can be
used to simulate or model human thought. In 1955, Herbert Simon and Allen
Newell announced that they had invented a thinking machine. Their program,
the logic theorist, dealt with problems of proving theories based on assump-
tions it was given. Simon and Newell later developed the general problem
solver, which served as the basis of artificial intelligence (AI) systems. Simon
and Newell believed that the main task of AI was figuring out the nature of
the symbols and rules that the mind uses. For many years AI engineers have
used the “top-down” approach to create intelligent machinery. The top-down
approach starts with the highest level of complexity, in this case thought,
and breaks it down into smaller pieces to work with. A procedure is followed
step by step. AI engineers write very complex computer programs to solve
problems. Another approach to the modelling of brain functioning starts with
the lowest level, the single neuron. This could be referred to as a bottom-up
approach to modelling intelligence.
D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 23–50 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



24 3 Artificial Neural Network and Supervised Learning

3.2 Comparison of Neural Techniques and Artificial
Intelligence

Artificial intelligence (AI) is a branch of computer science that has evolved to
study the techniques of construction of computer programs capable of display-
ing intelligent behavior. It is the study of computations that make it possible
to perceive, reason, and act. Growth of artificial intelligence based on the hy-
pothesis that thought processes could be modeled using a set of symbols and
applying a set of logical transformation rules. It is important to note that any
artificially intelligent system must possess three essential components:

1. A representation mechanism to handle knowledge which could be general
or domain specific, implicit or explicit and of different level of abstraction.

2. An inference mechanism to get the appropriate conclusion for the given
information or fact.

3. A mechanism for learning from new information or data without disturb-
ing much to the existing set of rule.

The languages commonly used for AI model development are list process-
ing language (LISP) and programming in logic (PROLOG).

The symbolic approach has a number of limitations:

• It is essentially sequential and difficult to parallelize.
• When the quantity of data increases, the methods may suffer a combina-

torial explosion.
• An item of knowledge is represented by a rule. This localized representation

of knowledge does not lend itself to a robust system.
• The learning process seems difficult to simulate in a symbolic system.

The ANN approach offers the following advantages over the symbolic
approach:

• Parallel and real-time operation of many different components
• The distributed representation of knowledge
• Learning by modifying connection weights.

Both approaches are combined to utilize the advantages of both the tech-
niques. A brief comparison of these techniques is given in Table 3.1.

3.3 Artificial Neuron Structure

The human nervous system, built of cells called neurons is of staggering com-
plexity. An estimated 1011 interconnections over transmission paths are there
that may range for a meter or more. Each neuron shares many characteristics
with the other cells in the body, but has unique capabilities to receive, process,
and transmit electrochemical signals over neural pathways that comprise the
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Table 3.1. Comparison between ANN and AI

ANN AI

Type of information Quantitative Qualitative
Input Measurements Facts
Output Predictions Decision
Type of model Mathematical Logical
Requirement for model
development

Historical data Human experts

Adaptability Learning capability No learning capability
Flexibility Re-trained for other

problems
Completely change the knowl-
edge base if problem changes

Model accuracy Depends on learning Depends on the knowledge ac-
quired

Explanation No explanation Explanation depends on the
depth of knowledge

Processing Parallel and distrib-
uted

Sequential and logical

Representational structure
of knowledge

Store global patterns
or function informa-
tion

Declarative (a collection of
facts) or procedural (speci-
fying an algorithm code to
process information)

Soma 

Dendrite

Axon Axon
Hillock

Synaptic
gap  

Fig. 3.1. Structure of biological neuron

brain’s communication system. Figure 3.1 shows the structure of typical bio-
logical neurons. Biological neuron basically consists of three main components
cell body, dendrite and axon. Dendrites extend from the cell body to other
neurons where they receive signals at a connection point called a synapse. On
the receiving side of the synapse, these inputs are conducted to the cell body,
where they are summed up. Some inputs tend to excite the cell causing a
reduction in the potential across the cell membrane; others tend to inhibit its
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Σ
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X2

Xn 

Y

θ
Y

W1

W2

Wn

Summation
(soma)

a

Activation
function
(Axion Hillock)  

Weights
(Synaptic gap)  

Inputs

Fig. 3.2. Artificial neuron structure (perceptron model)

firing causing an increase in the polarization of the receiving nerve cell. When
the cumulative excitation in the cell body exceeds a threshold, the cell fires
and action potential is generated and propagates down the axon towards the
synaptic junctions with other nerve cells.

The artificial neuron was designed to mimic the first order characteristics
of the biological neuron. McCulloch and Pitts suggested the first synthetic
neuron in the early 1940s. In essence, a set of inputs are applied, each rep-
resenting the output of another neuron. Each input is multiplied by a cor-
responding weight, analogous to a synaptic strength, and all of the weighted
inputs are then summed to determine the activation level of the neuron. If this
activation exceeds a certain threshold the unit produces an output response.
This functionality is captured in the artificial neuron known as the thresh-
old logic unit (TLU) originally proposed by McCulloch and Pitts. Figure 3.2
shows a model that implement this idea. Despite of the diversity of network
paradigms, nearly all are based upon this neuron configuration. Here a set of
input labeled X1, X2, . . . .,Xn is applied from the input space to artificial neu-
ron. These inputs, collectively referred as the input vector “X” corresponds
to the signal into the synapses of biological neuron. Each signal is multiplied
by an associated weight W1, W2, . . . Wn, before it is applied to the summa-
tion block.

The activation a, is given by

a = w1x1 + w2x2 + . . . wnxn + θ. (3.1)

This may be represented more compactly as

a =
n∑

i=1

XiWi
+ θ, (3.2)

the output y is then given by y = f(a), where f is a activation function.
In McCulloh–Pitts Perceptron model hard limiter as activation function

was used and defined as:

y =

{
1 if a >= ß
0 if a < ß
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The threshold ß will often be zero. The activation function is sometimes called
a step-function. Some more non-linear activation functions also tried by the
researchers like sigmoid, Gaussian, etc. and the neuron responses for different
activation functions shown in Fig. 3.3 with the Matlab program.

(a) hard-limiter Threshold function.
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(c) Gaussian Threshold function.
   Y=exp(− (x1+x2).^2);
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(b) log-sigmoid Threshold function. 
    Y=1./(1+exp(-3.0*(x1+x2)));
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(d)  tanh Threshold function. 
    Y= tanh(- 3*(x1+x2))
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(e) Linear Threshold function.
    Y=0.5*(x1+x2) 

Fig. 3.3. Effect of different activation function on summation type simple neu-
ron model
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% 3-D surface generation program for simple neuron with
different threshold functions

% Inputs
x1=-1:.1:1;
x2=-1:.1:1;
[m n]=size(x1);
Th=0;
for i=1:n

for j=1:n
sum=x1(i)+x2(j)-0.05;
if sum>=Th Y(i,j)=1 else Y(i,j)=0 end

end
end
Y1=exp(-Y.^2);
surf(x1(1:n),x2(1:n),Y1)

3.4 Adaline

The next major development after the M & P neural model was proposed,
occurred in 1949 when Hebb (1949) proposed a learning mechanism for the
brain that became the starting point for artificial neural network learning
(training) algorithms. He postulated that as brain learns, it changes its connec-
tivity patterns. More specifically, his learning hypothesis is as follows: “When
the axon of cell A is near enough to excite cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that the A’s efficiency, as one of the cells firing cell B, is
increased.” Hebb further proposed that if one cell repeatedly assists in firing
another, the knobs of the synapse, are the junction, between the cells would
grow so as to increase the area of contact. The Hebb’s learning hypothesis is
schematically shown in Fig. 3.4 (Levine 1983). This idea of learning mecha-
nism was first incorporated in artificial neural network by (Rosenblatt 1958).
He combined the simple M & P model with the adjustable synaptic weights
based on Hebbian learning hypothesis to form the first artificial neural net-
work with the capability to learn. The delta rule or the least mean squares
(LMS) learning algorithm, was developed by Widrow and Hoff (1960). This
model was called ADALINE for ADAptive LInear NEuron which is shown in
Fig. 3.5. This learning algorithm first introduced the concept of supervised
learning using a teacher which guides the learning process. It is the recent
generalization of this learning rule into the backpropagation algorithm that
has led to the resurgence in biologically based neural network research today.
This states that if there is a difference between the actual output pattern and
the desired output pattern during training, then the weights are changed to
reduce the difference. The amount of change of weights is equal to the error on
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Fig. 3.4. Hebbian learning
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Fig. 3.5. ADLINE model

the outputs times the values of the inputs, times the learning rate. Many net-
works use some variation of this formula for training. In 1969 research in the
field of artificial neural networks suffered a serious setback. Minsky and Papert
published a book called Perceptrons (Minsky and Papert 1969) in which they
proceed that single layer neural networks have limitations in their abilities
to process data, and are capable of any mapping that is linearly separable.
They pointed out, carefully applying mathematical techniques that the logical
exclusive OR (XOR) function could not be realized by perceptrons. Further,
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Minsky and Papert argued that research into multi-layer neural network could
be unproductive. Due to this pessimistic view of Minsky and Papert, the field
of artificial neural networks entered into an almost total eclipse for nearly two
decades. Fortunately, Minsky and Papert’s judgement has been disproved; all
non-linear separable problems can be solved by multi-layer perceptron net-
works. Nevertheless, a few dedicated researchers such as Kohonen, Grossberg,
Anderson, Hopfield continued their efforts. A renaissance in the field of neural
networks started in 1982 with the publication of the dynamic neural archi-
tecture by Hopfield (1982). This was followed by the landmark publication
“Parallel Distributed Processing” by McClelland and Rumelhart (1986) who
introduced into the back-propagation learning technique for multi-layer neural
networks. Back-propagation, developed independently by Werbos (1974), pro-
vides a systematic means for training multi-layer neural networks. This devel-
opment resulted in renewed interest in the field of neural networks and since
mid-nineties a tremendous explosion of research has been occurring. Most of
the neural network structures used presently for engineering applications is
feed-forward neural networks (static). These neural networks comprising of
a number of neurons respond instantaneously to the inputs. In other words,
the response of static neural networks depends on the current inputs and
the weights. The absence of feedback in static neural networks ensures that
networks are conditionally stable. However, these networks suffer from the
following limitations:

(1) In feed forward neural networks, where the information flows from A to B,
to C, to D and never comes back to A. On the other hand, biological neural
systems almost always have feedback signals about their functioning.

(2) The structure of the computational (artificial) neuron is not dynamic in
nature and performs a simple summation operation. On the other hand, a
biological neuron is highly complex in structure and provides much more
computational functions than just summation.

(3) The static neuron model does not take into account the time delays that
affect the dynamics of the system; inputs produce an instantaneous out-
put with no memory involved. Time delays are inherent characteristics of
biological neurons during information transmission.

(4) Static networks do not include the effects of synchronism or the fre-
quency modulation function of biological neurons. In recent years, many
researchers are involved in developing artificial neural networks to over-
come the limitations of static neural networks mentioned above. Instead
of summation as an aggregation function, the product (Π) is used as an
aggregation function as shown in Fig. 3.6. The effect of different aggre-
gation functions are also studied and shown in Fig. 3.7. The aggregation
function could also be the combination of summation and product.

In product neuron the activation a, is given by

a = w1x1
∗w2x2

∗ . . . wnxn + θ.
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Π

Fig. 3.6. Product type neuron
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(a) Hard-limiter Threshold function.
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(b) Log-sigmoid Threshold function.
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(c) Gaussian Threshold function. 
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(d)  Tanh Threshold function.
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(e) Linear Threshold function. 

Fig. 3.7. Effect of different activation functions on the product type neuron
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This may be represented more compactly as

a =
n∏

i=1

XiWi
+ θ,

the output y is then given by y = f(a).
A major characteristic of perceptron (summation type neuron) is the linear

separation due to its threshold function. It can identify linearly separable
regions easily as shown in Fig. 3.8.

To be able to divide the area into two regions for the problem in Fig. 3.8a,
only one perceptron is required, since the whole area is divided into two sepa-
rate regions by a single line. However, the threshold area in Fig. 3.8b is formed
by many lines, thus we need more than one perceptron in different layers to
generate a solution to this problem as shown below in Fig. 3.9.

Here, θ1, θ2 and θ3 are the threshold values and w1j , w2j , and w3j are
the interconnection weights for the processing elements in the hidden layer,
1, 2 and 3, respectively. Each of the processing elements is connected to the
third layer, which is the output perceptron through equal weight of 1, and a
threshold value of 2.5 to be able to perform the operation. X and Y represent
the x-y co-ordinates of the point selected from the region specified in Fig. 3.8b.
Each perceptron separates the area into two regions by a line, but the solution
is the intersection of these areas. Therefore, one more perceptron is needed
to combine the outputs of these perceptrons to identify the marked area.
This special perceptron combines the outputs from other perceptrons with
unity weighing and the threshold value of “n–0.5”, where n is the number of
separation lines created.

The perceptron architecture is also able to perform an Exclusive OR op-
eration, for example, in identifying the truth table of the region given in
Fig. 3.10.

(a)

+1

-1

−1

−1

−1

−1

−1

−1

 +1

(b)

Fig. 3.8. (a) Two separate regions defined. (b) A selected region defined by a single
perceptron intersection of areas created by perceptrons
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Fig. 3.9. A solution perceptron network
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X

In A

In A

Out A

Out A Out B

Out B

In B

In B

0

0

1

1

Point 1 Point 1 Outcome

=

Fig. 3.10. The exclusive-OR problem

Lets identify the region A using a three-layer perceptron network. Hence
we need to compute the weights, wijs associated with the interconnections
between the input units, which represent the x-y co-ordinates of the points
given in Fig. 3.8b and a corresponding threshold value, θi to be able to make
the distinction between the two regions identified as +1 and −1 in the figure.
These values also correspond to the output values of perceptron model as
shown in Figs. 3.11–3.15.
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111

w11=-1 w12=1 w23=1
w13=0w22=0

q=2.5

q1=4 q2=-4 q3=-2

X Y

Fig. 3.11. Perceptron network for region A

y < −x/2 − 2; x > −4; y > −2
x/2 + y + 2 < 0; x + 4 > 0; y + 2 > 0
−x − 2y − 4 > 0

Similarly for region B;

y > −x/2 + 2; x < 4; y < 2
x + 2y − 4 > 0; −x + 4 > 0; −y + 2 > 0

To be able to produce result as in the truth table shown in Fig. 3.6, which is
an Exclusive OR operation, we need another three-layer perceptron as shown
in Fig. 3.9.

Thus the entire solution architecture is as shown above.

% Matlab Program for solving OR problem
clc; clear all;
X=[0 0 1 1;

0 1 0 1]; % Row wise inputs
D=[0 1 1 1]; % Row wise output
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Fig. 3.12. Perceptron network for region B
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Fig. 3.13. Perceptron network for XOR



36 3 Artificial Neural Network and Supervised Learning

XOR
Perceptron model  

Perceptron model
for region A  

Preceptron model
for region B   

X X Y Y

Fig. 3.14. Combined architecture for the subject problem
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Fig. 3.15. Comparison of neuron output with actual results
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% Initialization
W=randn(2,1); % Weight
B=randn(1,1); % Bias
LR=0.9; % learning rate
MF=0.1; % momentum factor
dW=zeros(2,1);dB=0; % change in weight
for i=1:500
wSum=W’*X+B; % Calculating activation
O=1./(1+exp(-wSum)); % Output of neuron
e=(D-O); % Error calculation
sse=sum(e.^2)/2; % Sum squared error
de=(e.*O.*(1-O)); % Derivative of error
dW=LR*X*de’+MF* dW;
dB=LR*sum(de’)+MF*dB;
B=B+dB; % New value of bias
W=W+dW % New value of weight

end
wSum=W’*X+B; % Testing
O=1./(1+exp(-wSum))
plot(D);
hold
plot(O, ‘--’)
xlabel(‘Pattern Number’)
ylabel (‘Output’)

The neurons or processing elements of an ANN are connected together and
the overall system behaviour is determined by the structure and strength of
these connections. This network structure consists of the processing elements
arranged in groups or layers. A single structure of interconnected neurons pro-
duces an auto-associative system and is often used as a content-addressable
memory. Connections between same neurons are referred as lateral connec-
tions and those that loop back and connected to the same neuron are called
recurrent connections. Multi-layered systems contain input and output neu-
ron layers that receive or emit signals to the environment and neurons, which
are neither, called hidden neuron layers. This hidden layer provides networks
with the ability to perform non-linear mappings as well as contributing to
the complexity of reliable training of the system. Inter-field connections or
connections between neurons in different layers can propagate signals in one
of two ways:

• Feed-forward signals only allow information to flow along connections in
one directions, while

• Feedback signals allow information to flow in either direction and/or
recursively.

Artificial neural networks can provide content-addressable memory
(CAM), which stores data at stable states in the weight matrix, and associative
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memory (AM), which provides output responses from, input stimuli. In this
hetero-associative memory system, the ANN recall mechanism is a function
g(.) that takes the weight matrix W and an input stimulus Inputk, and pro-
duces the output response Outputk. The two primary recall mechanisms are

1. Nearest-neighbour recall and
2. Interpolative recall.

Nearest-neighbour recall finds the stored input that closely matches the stim-
ulus and responds with the corresponding output using a distance measure
such as Hamming or Euclidean distance.

Interpolative recall takes the stimulus and interpolates the entire set of
stored inputs to produce the corresponding output.

3.5 ANN Learning

Learning in an ANN is defined as any progressive systematic change in the
memory (weight matrix) and can be supervised or unsupervised.

Unsupervised learning or self-organisation is a process that does not in-
corporate any external teacher and relies only upon local information and
internal control strategies. Examples include:

• Adaptive Resonance Theory (ART1 and ART2) (Carpenter and Grossberg
1988)

• Hopfield Networks (Hopfield 1982)
• Bi-directional Associative Memory (BAM) (Kosko 1987, 1988)
• Learning Vector Quantisation (LVQ) (Kohonen 1988, 1997)
• Counter-Propagation networks (Hecht-Nielsen 1987, 1988, 1990).

Supervise learning, which includes:

• Back-propagation
• The Boltzmann Machine (Ackley et al. 1985)

It incorporates an external teacher and/or global information and includes
such techniques as error-correction learning, reinforcement learning and sto-
chastic learning. Error-correction learning adjusts the correction weight ma-
trix in proportion to the difference between the desired and the computed
values of each neuron in the outer layer. Reinforcement learning is a tech-
nique by which the weights are reinforced for properly performed actions and
punished for inappropriate ones where the performance of the outer layer is
captured in a single scalar error value. Stochastic learning works by making
a random change in the weight matrix and then determining a property of
the network called the resultant energy. If the change has made this energy
value lower than it was previously, then the change is accepted, otherwise the
change is accepted according to a pre-chosen probability distribution. This
random acceptance of change that temporarily degrades the performance of
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the system allows it to escape from local energy minima in its search for the
optimal system state.

In a multi-layered net using supervised learning, the input stimuli can be
recorded into an internal representation and the outputs generated are then
representative of this internal representation instead of just the original pat-
tern pair. The network is provided with a set of example input–output pairs (a
training set) and the weight matrix modified so as to approximate the function
from which the training set has been derived. In the ideal case, the net would
be able, after training, to generalise or produce reasonable results for input
simulation that it has never been exposed to. Currently, the most popular
technique for accomplishing this type of learning in an ANN is the multi-
layered perceptron employing back-propagation. It evolved from Rosenblatt’s
perceptron; a two-layered supervised ANN, which provides nearest neighbour
pattern matching via the perceptron error-correction procedure. This proce-
dure effectively works to place a hyper plane between two classes of data in
an n-dimensional pattern space. It has been shown that this algorithm will
find a solution for any linearly separable problem in a finite amount of time.

3.6 Back-Propagation Learning

Error back-propagation through non-linear systems has existed in variational
calculus for many years but the first application of gradient descent to the
training of multi-layered nets was proposed by Amari (1967) who used a single
hidden layer to perform a non-linear classification. Werbos (1974) discovered
dynamic feedback and Parker and Chau (1987) talked about learning logic,
but the greatest impact on ANN field came when Rumelhart, Hinton and
Williams published their version of the Back-propagation algorithm.

One of the major reasons for the development of the back-propagation
algorithm was the need to escape one of the constraints on two layer ANNs,
which is that similar inputs lead to similar output(s). But, while ANNs like the
perceptron may have trouble with non-linear mappings, there is a guaranteed
learning rule for all problems that can be solved without hidden units. Unfor-
tunately, it is known that there is no equally powerful rule for multi-layered
perceptrons.

The simplest multi-layered perceptron implementing back-propagation is a
three-layered perceptron with feed-forward connections from the input layer to
the hidden layer and from the hidden layer to the output layer. This function-
estimating ANN stores pattern pairs using a multi-layered gradient error cor-
rection algorithm. It achieves its internal representation of the training set
by minimising a cost function. The most commonly used cost function is the
sum squared error or the summation of the difference between the computed
and desired output values for each output neuron across all patterns in the
training set. Other cost functions include the Entropic cost function, Linear
error and the Minkuouski-r or the rth power of the absolute value of the error.
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In all cases, the changes made to the weight matrix are derived by computing
the change in the cost function with respect to the change in each weight. The
most basic version of the algorithm minimises the sum-squared error and is
also known as the generalised delta rule (Simpson 1990).

Step 1: Assign small random weights to all weights on connections between
all layers of the network as well as to all neuron thresholds. The activation
used is logistic sigmoid function as given by (3.2) with λ = 1.

Step 2: For each pattern pair in the training set:
(a) Read the environmental stimuli into the neurons of the input layer

and proceed to calculate the new activations for the neurons in the
hidden layer using

hiddeni = f

(
n∑

h=1

inputh whi + θi

)
(3.3)

where f(.) is the activation function, there are n input neurons and
θi is the threshold for the ith hidden neuron.

(b) Use these new hidden layer activations and the weights on the connec-
tions between the hidden layer and the output to calculate the new
output activations using

outputj = f

(
n∑

i=1

hiddeni wij + Γj

)
(3.4)

where f(.) is the activation function, there are n hidden neurons and
Γj is the threshold for the jth output neuron.

(c) Determine the difference between the computed and the desired values
of the output layer activations using

diffj = outputj (1 − outputj) (desiredj − outputj) (3.5)

and calculate the error between each neuron in the hidden layer rela-
tive to the diffj using

erri = hiddeni (1 − hiddeni)
n∑

i=1

wijdiffj (3.6)

(d) Modify each connection between the hidden and output layers, and
∆wij = α hiddeni diffj , which is the amount of change to be made to
the weight on the connection from the ith neuron in the hidden layer
to the jth neuron in the output layer. α is a positive constant that
controls the rate of modification or learning.

(e) Perform a similar modification to the weights on the input to hidden
layer connections with ∆whi = β erri for the hidden units and ∆Γj =
α diffj for the output units.
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Step 3: Repeat Step 2 until all the diffjs are either zero or sufficiently low.
Step 4: After the BP-ANN has been trained; recall consists of two feed-

forward operations, which create hidden neuron values.

hiddeni = f

(
n∑

h=1

inputi whi + θj

)
(3.7)

and then we use them to create new output neuron values

outputj = f

(
n∑

i=1

hiddeni wij + Γj

)
(3.8)

Back-propagation is guaranteed only to find the local, not the global er-
ror minimum. And while this technique has proven extremely successful for
many practical applications, it is based on gradient descent, which can pro-
ceed very slowly because it is working only with local information. Practical
implementation factors that must be considered include:

• The number of units in the hidden layer.
• The value of the learning rate constants.
• The amount of data that is necessary to create the proper mapping.

Once these issues have been addressed, the power of back-propagation is re-
alised in a system that has the ability to store many more patterns that the
number of dimensions inherent in the size of its input layer. It also has the
ability to acquire arbitrarily complex non-linear mappings. This is possible if
the application allows for a reasonably long training time in an off-line mode.

Current research in the area of back-propagation improvements is look-
ing at:

• Optimising the number of units in the hidden layer and the effect of the
inclusion of more than one layer of hidden units.

• Improving the rate of learning by dynamic manipulation of the learning
rates and by the use of techniques such as momentum.

• The effects of dynamically changing and modular connection topologies.
• Analysing the scaling and generalisation properties of this ANN model.
• Employing higher-order correlations and arbitrary threshold functions.

During training the nodes in the hidden layers organize themselves such that
different nodes learn to recognize different features of the total input space.

During the recall phase of operation the network will respond to inputs
that exhibit features similar to those learned during training. Incomplete or
noisy inputs may be completely recovered by the network.

In its learning phase, you give it a training set of examples with known
inputs and outputs.
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An overview of training

The objective of training the network is to adjust the weights so that appli-
cation of a set of inputs produces the desired set of outputs. For reasons of
brevity, these input–output sets can be referred to as vectors. Training as-
sumes that each input vector is paired with a target vector representing the
desired output; together these are called a training pair. Usually, a network
is trained over a number of training pairs. For example, the input part of a
training pair might consist of a pattern of ones and zeros representing a binary
image of a letter of the alphabet. A set of inputs for the letter A drawn on a
grid. If a line passes through square, the corresponding neuron’s input is one;
otherwise, that neuron’s input is zero. The output might be a number that
represents the letter A, or perhaps another set of ones and zeros that could
be used to produce an output pattern. If one wished to train the network to
recognize all the letters of the alphabet, 26 training pairs would be required.
This group of training pairs is called a training set.

Before starting the training process, the weights must be initialized to
small random numbers. This ensures that the network is not saturated by
large values of the weights, and prevents certain other training pathologies. For
example, if the weights all start at equal values and the desired performance
requires unequal values, the network will not learn.

Training the back-propogation network requires the steps that follow:

Step 1. Select the training pair from the training set; apply the input vector
to the network input.

Step 2. Calculate the output of the network.
Step 3. Calculate the error between the network output and the desired

output (the target vector from the training pair).
Step 4. Adjust the weights of the network in a way that minimizes error.
Step 5. Repeat steps 1 through 4 for each vector in the training set until

the error for the entire set is acceptably low.

The operations required in steps 1 and 2 above are similar to the way in
which the trained network will ultimately be used; that is, an input vector is
applied and the resulting output is calculated. Calculations are performed on
layer-by-layer basis.

In step 3, each of the network outputs is subtracted from its corresponding
component of the target of the network, where the polarity and magnitude of
the weight changes are determined by the training algorithm.

After enough repetitions of these four steps, the error between actual out-
puts and target outputs should be reduced to an acceptable value, and the
network is said to be trained. At this point, the network is used for recognition
and weights are not changed.

It may be seen that steps 1 and 2 constitute “forward pass” in that the
signal propagates from the network input to its output. Steps 3 and 4 are a
“reverse pass”; here the calculated error signal propagates backward through
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the network where it is used to adjust weights. These two passes are now
expanded and expressed in a somewhat more mathematical form in Chap. 4.

% Matlab Program for Backpropagation for single hidden layer

% Input–output Pattern for EX-OR problem
clear all;
clc;
X=[0.1 0.1 0.1; 0.1 0.9 0.9; 0.9 0.1 0.9; 0.9 0.9 0.1];
% Training parameters
eta=1.0; % learning rate
alpha=0.6; % Momentum rate
err_tol=0.001; % Error tolerance
[row_x col_x]=size(X);
sum_err=0;
% ANN architecture
In=2; % number of input neurons
Hn=2; % number of hidden neurons
On=1; % number of output neurons
% Weight/delta weight Intialization
Wih=2*rand(In+1,Hn)-1;
Who=2*rand(Hn+1,On)-1;
DeltaWih=zeros(In+1,Hn);
DeltaWho=zeros(Hn+1,On);
deltaWihold=zeros(In+1,Hn);
deltaWhoold=zeros(Hn+1,On);
deltah=zeros(1,Hn+1);
deltao=zeros(1,On);
X_in=[ones(row_x,1) X(:,1:In)];
D_out=X(:,1:On);
sum_err=2*err_tol;
while (sum_err>err_tol)
sum_err=0;
for i=1:row_x
sum_h=X_in(i,:)*Wih;
out_h=[1 1./(1+exp(-sum_h))];
sum_o=out_h* Who;
out_o=1./(1+exp(-sum_o));
error=D_out(i) - out_o;
deltao=error.*out_o.*(1-out_o);
for j=1:Hn+1
DeltaWho(j,:)=deltao*out_h(j);
end
for k=2:Hn+1
deltah(k)=(deltao*Who(k,:)’)*out_h(k)*(1-out_h(k));
end
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for l=2:In+1
deltaWih(l,:)=deltah(2:Hn+1)*X_in(i,l);
end
Wih=Wih+DeltaWih+alpha*deltaWihold;
Who=Who+DeltaWho+alpha*deltaWhoold;
deltaWihold=DeltaWih;
deltaWhoold=DeltaWho;
sum_err=sum_err+sum(error.^2);
end
sum_err
end

Summary of back-propagation training:

• Objective is to find the global minimum on the error surface.
• Solution is obtained through gradient descent algorithm and ANN weights

are adjusted to follow the steepest downhill slope.
• The error surface is not known in advance, so explore it in many small

steps and the possibility to stuck in local minima is always there as shown
in Fig. 3.16.

The algorithm finds the nearest local minimum, not always the global
minimum. There can be two causes for this:

a. Over-fitted ANN
The overfitting of data is a common problem found in ANN during ap-
proximating a function, specially when ANN has too many weights. Too
many weights (free parameters) in ANN approximate the function very
accurately, but the generalization capability for unforeseen data is not so
good. On the other hand, a network with too few weights will also give
poor generalization capability as the ANN has very low flexibility and is

W

Error

Global
Minima 

Local 
Minima 

Fig. 3.16. Error curve with respect to weight
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unable to approximate the function. Hence, there is a trade off between
the number of training data and the size of the network.

b. Too many hidden nodes
• One node can model a linear function
• More nodes can model higher-order functions, or more input patterns
• Too many nodes model the training set too closely, preventing gener-

alization.
This problem could be resolved by optimizing the ANN size.

3.7 Properties of Neural Networks

1. Neural networks are inherently parallel and implementation can be done
on parallel hardware.

2. It has a capacity for adaptation.
3. In neural networks “memory” corresponds to an activation map of the

neurons. Memory is thus distributed over many units giving resistance to
noise. In distributed memories, such as neural networks, it is possible to
start with noisy data and to recall the correct data.

4. Fault tolerant capability
Distributed memory is also responsible for fault tolerance. In most neural
networks, if some neurons are destroyed or their connections altered
slightly, then the behavior of the network as a whole is only slightly de-
graded. The characteristic of graceful degradation makes neural comput-
ing systems extremely well suited for applications where failure of control
equipment means disaster.

5. Capacity for generalization
Designers of expert systems have difficulty in formulation rules which en-
capsulate an expert’s knowledge in relation to some problem. A neural
system may learn the rules simply from a set of examples. The general-
ization capacity of a neural network is its capacity to give a satisfactory
response for an input which is not part of the set of examples on which
it was trained. The capacity for generalization is an essential feature of a
classification system. Certain aspects of generalization behavior are inter-
esting because they are intuitively quite close to human generalization.

6. Ease of construction.

3.8 Limitations in the Use of Neural Networks

1. Neural systems are inherently parallel but are normally simulated on
sequential machines.
◦ Processing time can rise quickly as the size of the problem grows.
◦ A direct hardware approach would lose the flexibility offered by a

software implementation.
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2. The performance of a network can be sensitive to the quality and type of
preprocessing of the input data.

3. Neural networks cannot explain the results they obtain; their rules of
operation are completely unknown.

4. Performance is measured by statistical methods giving rise to distrust on
the part of potential users.

5. Many of the design decisions required in developing an application are not
well understood.

Fruit identification problem

This is a very simple example of identification of fruits. The inputs for this
problem are shape, size and colour of fruits.

Step-1 What the neural network is to learn?
Input 1 Shape = {Round, Large}
Input 2 Size = {Small, Large}
Input 3 Colour = {Red, Orange, Yellow, Green}.
Output Type of fruit = {Grape, Apple, Cherry, Orange, Banana}.
Step-2 Pre-processing of data

a. Representation of data
Neural Network could not work with qualitative information. Hence
the input must be converted into quantitative information like 0 and 1.

Shape= {0,1} zero stands of round and 1 for large.

Size = {0,1} small is zero and large is 1.

Colour = {0.0, 0.25, 0.5, 0.75, 1.0}.
Where 0.0 - Red; 0.25 - Orange, 0.5 - Yellow, 0.75 - Green.

Output = {0, 0.25, 0.5, 0.75, 1.0}.
Where 0.0 Grape, 0.25 - Apple, 0.5 - Cherry, 0.75 - Orange, 1.0 Banana.

b. Sequence of presentation of data

Input 1 shape Input 2 size Input 3 color Ouptut - fruit
0 - Round 0 - Small 0.0 - Red 0 - Grape
0 - Round 0 - Small 0.25 - Orange 0.5 - Cherry
0 - Round 1 - large 0.25 - Orange 0.75 - Orange
1 - Large 1 - Large 0.5 - Yellow 1.0 - Banana
0 - Round 1 - Large 0.75 - Green 0.25 - Apple

The inputs need not be the exact value as given in the table; we could
assign some other value depending on the situation. It also helps us
to incorporate the uncertainty in the model.

Step-3 Define Network Structure –
Number of input layer neurons = 3 (Number of inputs)
Number of output layer neuron = 1 (Number of outputs)
Number of Hidden layer neurons = 2 (generally average of input and

output neurons)
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Step-4 Selection of Neuron Structure

Σ

Normally the neuron structure is consisting of summation as aggregation
function and sigmoid as threshold function.

Step-5 Usually the network starts with random weight in the range (−0.1 to
+0.1). Sometimes to reduce the training time, the initialization of weights
is done with evolutionary algorithms.

Step-6 Training Algorithms and Error Function selection
Generally, gradient descent back-propagation training algorithm is used
with or without adaptive learning and momentum factors. In this the sum
squared error is fed back to modify the weight during training.

Step-7 Decision regarding selection of training parameters
Training parameters are

a. Number of epochs = 100 (number of iterations required to reach to
the desired goal)

b. Error tolerance = 0.001 (depends on the accuracy required)
c. Learning rate = 0.9 (near 1)
d. Momentum facto = 0.1 (smaller)

Step-8 Training and Testing of Network
The network is trained for the above given data and then test it to check its
performance. Generally, the testing data is slightly different from training
data (10% new data).

Step-9 Use the trained network for prediction

% Matlab Program for identification of fruit type

clc; clear all;

% Column wise input--output patterns
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x=[0 0 0.0 0; 0..0 .0.25 0.5; 0..1 ..0.25 ..0.75;

1...1..1.5 ..1.0; 0 ..1 ..0.75....0.25];

P=x(:,1:3)’;

T=x(:,4)’;

net=newff(minmax(P), [2 1],

{‘tansig’ ‘purelin’}); % defining~ANN

net.trainParam.epochs=100; % Define number of epochs

net.trainParam.goal=0.0001; % Define error~goal

net=init(net) % Initialize weights

net=train(net,P,T); % Training

Y=sim(net,P); % Testing

plot(1:5,T,‘-’,1:5,Y,‘o’) % Ploting the results

Results
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3.9 Summary

1. It is clear that the quantum of processing that takes place in biologi-
cal neurons is far more complex. It integrates hundreds or thousands of
temporal signals through their dendrites.

2. Artificial neuron is similar to biological neurons and receives weighted
input, which passes through aggregation function and activation function.
A hard limiter constitutes the nonlinear element of McCulloch – Pitts
neuron.
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3. Artificial neural network (ANN) consists of artificial neurons in two dif-
ferent architectures: feed forward and feedback. Feedforward networks are
static and the output depends only on input, but in feedback ANN output
is also feedback and therefore, it is dynamic in nature.

3.10 Bibliography and Historical Notes

The pioneer work in the area of neural network was done by McCulloch and
Pitts way back in 1943. McCulloch was a psychiatrist and neuroanatomist
by training. He spent nearly two decades in understanding the event in the
nervous system. Pitts was a mathematical prodigy. McCulloch and Pitts de-
veloped neuron model at the University of Chicago.

The next major development in the field of neural network came in 1949,
when Hebb wrote a book on The Organization of Behavior. He proposed that
the connections strength between neurons change while learning. Rochester
et al. (1956) is probably the first attempt to formulate neural learning theory
based on Hebb’s work.

Minsky submitted his doctorate thesis at Princeton University on the topic
of Theory of Neural – Analog Reinforcement Systems and Its Application to
the Brain-Model Problem in 1954. Then he published a paper on Steps To-
ward Artificial Intelligence. The significant contributions to the early devel-
opment of associative memory papers by Taylor (1956), Anderson (1972), and
Kohonen (1972).

In 1958 Rossenblatt introduced a novel method of supervised learning. In
1960 Widrow and Hoff gave least mean square (LMS) algorithm to formulate
ADALINE. Later on Widrow and his students developed MADALINE. The
books by Wasserman Philip (1989) and Nielsen (1990) also contain treatment
of back propagation algorithms. Minsky and Papert (1969) demonstrated the
fundamental limitations of perceptron.

In 1970s self-organizing maps using competitive learning was introduced
(Grossberg 1967, 1972). Carpenter and Grossberg also developed adaptive res-
onance theory (ART) in 1980 and used it for pattern recognition (Carpenter
and Grossberg 1987, 1988, 1990, 1996). Hopfield used an energy function to
develop recurrent networks with symmetric synaptic connections. Rumelhart
et al. (1986) developed back propagation algorithm. In early 1990s, Vapnik
et al. invented a computationally powerful class of supervised learning net-
works called support vector machines for different applications. An excellent
review article is that by Lippmann (1987). Kosko (1988) discusses on bidirec-
tional associative memory (BAM).

3.11 Exercises

1. Explore the method of steepest descent involving a single weigh w by
considering the following cost function:

f(w) = 0.7 A + W∗B + C∗W2 where A, B, and C are constants.
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2. The function expressed by f(x) = 1/x2

a. Write a matlab program to generate the two sets of data:
1. Training data
2. Testing data.

b. Use a three layer network and train it with back propagation learn-
ing algorithm for the data generated in part a. Consider the error
tolerance 0.01.

c. Test the network for generated testing data.
d. Compare the network performance for

1. Two or more hidden layers in the network.
2. Two or more neurons in each hidden layer.

3. In question 2, study the effect of starting (initial) weights.
4. A sigmoid function is f(x) = 1/(1 + e−λx). Find its inverse function and

plot both the function and its inverse for different values of λ.
5. Find the derivative of the above mentioned function with respect to x.
6. Find appropriate weights and threshold of neuron for logical AND

problem.
7. Solve the 3-bit even parity problem with three layer ANN using 3-hidden

neurons. Write the matlab program to solve the parity problem.



4

Factors Affecting the Performance of Artificial
Neural Network Models

Artificial neural network is widely used in various fields like system’s
modelling, forecasting, control, image processing and recognition, and many
more. The development of multi-layered ANN model for a particular appli-
cation involves many issues which affect its performance. ANN performance
depends mainly upon the following factors:

1. Network
2. Problem complexity
3. Learning Complexity.

4.1 Network Complexity

Network complexity broadly depends on

a. Neuron complexity
b. Number of neurons in each layer
c. Number of layers
d. Number and type of interconnecting weights.

4.1.1 Neuron Complexity

Mainly the neuron complexity could be viewed
at two levels; firstly at aggregation function level
and secondly at activation function level. There
are two types of aggregations functions used for
neuron modelling such as summation or product
functions, but some researchers used combination
of both summation and product aggregation function such as compensatory
operators (Chaturvedi et al. 1997, 1999). The threshold functions used in
neuron may be discrete like hard limiter used by McCulloch and Pitts (1943)

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 51–85 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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in their neuron model or continuous functions like linear or non-linear function
like sigmoid, Gaussian functions, etc.

The activation for a neuron can be thought of as the amount by which the
neuron is affected by the input it receives. One could picture a neuron vibrat-
ing degrees depending on how excited it has become, and different neurons
will be excited, or depressed the matter, by different stimuli and by differing
degrees. Actually defining this state of activation for each unit within a model,
and assigning a value to it, is a tricky process because the precision of the
model depends on the reaction of the individual units.

Some models use a set of discrete values, that is, one of a finite set of
possible values. These are often taken to be 0, 1 or −1. On the other hand, a
model may take any value between two limits. This termed a continuous set
of values, because for any two numbers there is always one that you can find
that lies between them. In some cases, the model may have no upper or lower
limit for the continuous values, but this presents problems, values can grow
to an unmanageable size very quickly.

In this section, the effect of various activation functions on ANN model
are considered for dc motor current prediction problem and found that the
tan sigmoid function at hidden layer and pure linear function at output layer
in a three layer network, where input layer is simply distributing the inputs
in various hidden layer and no processing takes place there, requires least
number of training epochs (i.e. 104). The comparisons of the results obtained
for different activation functions are shown in bar chart, Fig. 4.1. From bar
chart it is quite clear that the other functions takes more training epochs
then also the model cannot be trained to the desired error level for some
functions. The functions pure linear and pure linear in the model at hidden
and output layers respectively also requires same number of training epochs
but the results predicted for the non-linear problems are not so good. The
function pair log sigmoid and log sigmoid is also able to train the model upto
the desired error level but training epochs required is very large (in this case
it requires 2,175). Remaining all other function pairs can not train the model
up to the desired level when trained up to 2,200 epochs.

4.1.2 Number of Layers

While developing ANN model, two layers are
fixed, namely input layer and output layer. Gen-
erally, at the input layer, the inputs are distrib-
uted to other neurons in the next layer and no
processing takes place at this layer. Unlike the
input layer, at output layer processing is done.
Therefore, in a two layer network there is only
one processing layer and this type of ANN can be used for linearly separable
problems. Most of the real life problems are not linearly separable in nature
and hence this type of two layer network could not be used. In the literature
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Fig. 4.1. Effect of different activation functions at different layer

it is mentioned that the three layer network is a universal approximator and
could handle most of the problems. Then also for complex problems, it is dif-
ficult to train ANN with three layers network structure. Hence, most of the
time the ANN developer uses trial and error method to select the number of
layers in the ANN structure.

There are two ways to deal with this problem. Firstly, one can start with
three layers network and then during training the number of layers and neu-
rons may be increased till the satisfactory performance is obtained. Second
method to handle this situation is, one could begin with large number of layers
and then start deleting the layers and neuron, till the ANN size is optimal.

4.1.3 Number of Neurons in Each Layer

The number of neurons at input layer and output layer are equal to the
number of input and output variables, but the problem lies with the number
of neurons at hidden layers. It is mentioned that the number of neuron in the
hidden layer is the average of number of neurons at input and output layers.
But it is not hard and fast rule.

4.1.4 Type and Number of Interconnecting Weights

Generally every neuron in ANN is interconnected with its as previous layer
neurons and each interconnection has some weight (signal gain), which modi-
fies the input signal in one way or the other. The weights in the neural network
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could be deterministic or fuzzy in nature. Normally, ANN weights are deter-
ministic and can be determined by some learning rule. It is well proven and
logical also that it is not necessary to connect every neuron with the other
neuron in the next layer. We can remove some of the connections to reduce
the complexity of the ANN and ultimately the training time of it.

To select the optimal size of the network, there are two techniques generally
adapted; either one could start with large number of neurons in each layer of
the network and during training remove the connections till its performance is
not optimal or we can start with minimal size of network and then insert the
neurons and layers to achieve the optimal size of the network as mentioned
earlier.

4.2 Problem Complexity

The performance of ANN models does not depend only on the size of the
neural network that is chosen for the problem in hand, but it also depends
on the problem complexity. The problem complexity depends on the type of
functional mapping, accurate and sufficient training data acquired and their
effective way of presentation to ANN during training. During the training
phase of ANN, unknown neural network weights are to be determined. If the
unknown network weights are more than the training data, then they could not
be determined. Therefore, the training data must always be more in number
than unknown weights, otherwise network will not train perfectly (means the
error will never reach to global minima).

The training performance also depends on the effective way of presentation
of data, in which following points have to be considered.

4.2.1 Range of Normalization of Training Data

Normalisation has a major role in the training and testing of neural networks.
It is necessary to normalize the input and output in the same order of magni-
tude. Normalization is very critical issue in ANN. If the input and the output
variables are not of the same order of magnitude, some variables may ap-
pear to have more significance than they actually do. The training algorithm
has to compensate for order-of-magnitude differences by adjusting the net-
work weights, which is not very effective in many of the training algorithms
such as back propagation algorithm. For example, if one input variable has a
value of thousands and other input variable has a value in tens, the assigned
weight for the second variable entering a node of hidden layer 1 must be much
greater than that for the first. In addition, typical transfer functions, such as
a sigmoid function, or a hyperbolic tangent function, cannot distinguish be-
tween two values of xi when both are very large, because both yield identical
threshold output values of 1.0.
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Whenever we do normalisation of training and testing data, we need to
determine minimum and maximum value of the given data. The problem
is that these maximum and minimum values restrict the operating range of
the network (Welstead 1994). A network that has been trained to predict
a maximum change in output say 1% cannot possibly predict a change of
2%, even if the input data warrants it. This creates problems in trying to
model volatile change in data. The remedy for this situation is somewhat by
expanding the maximum and minimum values. First of all determine actual
max-min values and then new maximum values is computed by adding 10%
to the previous maximum value and a new minimum value is computed by
subtracting 10% to the previous minimum value. The network can now handle
values that fall within this expanded range and finally train the neural network
model for these normalised data. Note that normalised data is something that
is of interest only to the network. The user wants to get ANN output in the
range of the actual data. For this reason, it is necessary to convert back the
output of neural network into the actual range by denormalizing the ANN
output.

Too large a range in relation to the actual data value has the effect of
compressing the data so that it all looks the same to the network during
training. If the range is too short then the neural network model could not
predict the value outside that range and it will give absurd results. Hence,
the selections of suitable range (i.e. max–min values) is of great importance,
because it will affect the results of neural network model during testing.

The neural network is trained for different normalisation ranges and found
very encouraging results. The authors have seen that if the input data of neural
network model is normalised in the range of −0.9 to +0.9 and output data
in the range of 0.1 to 0.9 then model took least number of epochs to train
when threshold functions at hidden layer is tan sigmoid and at output layer
is pure linear. The comparison of various normalisation ranges during and
testing have been studied and the results given in Table 4.1, and Table 4.2 for
modelling and simulation of dc motor using neural network. The ANN model
was also developed for short term electrical load forecasting problem and the
effect of different normalization range had been studied. The simulation results
representing training and testing performance are complied in Tables 4.3–4.5
and shown in Fig. 4.2.

Generally it is found that the two layer neural network with tan sigmoid
threshold functions at hidden layer and pure linear threshold function at out-
put layer can train for any set of non-linear data and the performance will
improve if the normalisation range taken between −0.9 to +0.9 for input and
0.1 to 0.9 for output.

4.2.2 Type of Functional Mapping

There are four possibilities in preparing training patterns (input and output
vectors) for ANN models as shown in Fig. 4.3.
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Table 4.1. DC motor current simulations with different normalisation range
(Tolerable error = 10−3, mapping actual input and actual output (X–Y) Activa-
tion functions – tan sigmoid at hidden layer and pure linear at output layer.)

Normalization X (0.1−2.5) X (0.1−0.9) X (0.1−2.5) X (0.1−0.9) X (−0.9 to +0.9)
Y (0.1−2.5) Y (0.1−2.5) Y (0.1−0.9) Y (0.1−0.9) Y (0.1−0.9)

Epochs 1500 (NT) 93 81 104 86
Test 2.1725 2.1816 2.1779 2.1951 2.2030
Results 1.9809 1.9340 1.9403 1.9518 1.9569

1.7008 1.6976 1.7091 1.7136 1.7153
1.4955 1.4883 1.5018 1.5014 1.5006
1.3186 1.3096 1.3232 1.3201 1.3181
1.6101 1.1596 1.1724 1.1682 1.1662
1.0431 1.0349 1.0465 1.0420 1.0409
0.9399 0.9319 0.9421 0.9379 0.9383
0.8539 0.8478 0.8559 0.8522 0.8542
0.5655 0.5641 0.5678 0.5666 0.5782
0.5455 0.5446 0.5470 0.5469 0.5594

Table 4.2. DC motor speed simulations with different normalisation range
(Tolerable error = 10−3, mapping – actual input and actual output (X–Y) Acti-
vation functions – tan sigmoid at hidden layer and pure linear at output layer)

Normalization X (−0.1 to +0.9) X (0.1−2.5) X (0.1−0.9) X (0.1−2.5) X (0.1−0.9)
Y (0.1−0.9) Y (0.1−0.9) Y (0.1−2.5) Y (0.1−0.9) Y (0.1−0.9)

Epochs 53 64 71 3,000 (NT) 3,000 (NT)
Test 43.7420 40.2860 41.5429 41.0291 41.9124
Results 58.2756 57.4027 57.2390 57.3006 57.5467

71.6113 72.3925 71.2981 71.9746 71.7368
83.1838 84.7799 83.2701 84.3292 83.8102
92.9339 94.7392 93.2272 94.3757 93.7644

101.0195 102.6546 101.4171 102.4133 101.8504
107.6690 108.9259 108.1201 108.8045 108.3780
113.1148 113.9000 113.5955 113.8828 113.6386
117.5664 117.8571 118.0663 117.9255 117.8803
121.2035 121.0171 121.7179 121.1547 121.3059
124.1752 123.5504 124.7023 123.7417 124.0782
126.6045 125.5886 127.1431 125.8227 126.3263
127.2335 127.2335 129.1404 127.5014 128.1526

(1) Actual input vector and actual output vector (X-Y mapping)
(2) Actual input vector and change in previous value of output vector (X-∆Y

mapping)
(3) Change in input vector and actual output vector (∆X-Y mapping)
(4) Change in input vector and change in output vector (∆X-∆Y mapping).
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Table 4.3. Electrical load forecasting with different normalisation range
(Tolerable error = 1, mapping – actual input and actual output (X–Y) Activation
functions – tansig at hidden layer and pure linear at output layer)

Normalization X (±0.9) X (0.1–2.5) X (0.1–0.9)
Y (0.1–0.9) Y (0.1–0.9) Y (0.1–0.9)

Epochs 112 404 436
Test 2,257.4 2,254.4 2,285.6
Results 2,279.6 2,251.0 2,285.4

2,704.8 2,693.3 2,697.4
3,043.0 3,037.8 3,028.3
3,302.5 3,286.0 3,296.0
3,292.2 3,285.8 3,292.4
3,191.1 3,198.2 3,197.0
3,161.1 3,156.7 3,164.4
2,911.6 2,929.1 2,920.3
2,667.3 2,680.5 2,682.7
2,751.9 2,741.2 2,755.2
2,921.3 2,911.1 2,915.9
3,012.9 3,015.4 3,009.9
2,898.1 2,918.4 2,902.6
3,040.4 3,039.2 3,040.0
2,904.6 2,918.0 2,906.8
3,106.4 3,098.9 3,105.6
2,960.8 2,971.5 2,961.4
2,911.1 2,927.8 2,918.8

Table 4.4. Comparison of ANN training with different normalization ranges (acti-
vation function “tansig – purelin”, mapping x–y)

Range ω−
characteristics
of DC motor

ω − t
characteristics
of ind. motor

P-δ
characteristics
of alternator

Ia-t
characteristics

DC motor

STLF

X (−0.1 to 0.9)
Y (0.1 to 0.9)

53 1,311 85 – –

X (−0.1 to 2.5)
Y (0.1 to 0.9)

64 726 61 – –

X (0.1 to 0.9)
Y (0.1 to 2.5)

71 1,100 151 93 –

X (0.1 to 2.5)
Y (0.1 to 0.9)

3000 736 62 81 404

X (0.1 to 0.9)
Y (0.1 to 0.9)

3000 1,950 162 104 436

X (−0.9 to 0.9)
Y (0.1 to 0.9)

a 558 69 86 112

X (−0.9 to 0.9)
Y (−0.9 to 0.9)

a 1,666 54 – –

aANN not trained
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Table 4.5. ANN testing with different normalization ranges for STLF (Tansig-
Purelin, X–Y mapping)

Range of Normalization Max error Min error SS error

X (±0.9) − Y (0.1–0.9) 5.6491 −6.0533 11.0324
X (0.1–2.5) − Y (0.1–0.9) 5.4202 −5.8098 10.6585
X (0.1–0.9) − Y (0.1–0.9) 5.1044 −5.8446 9.2511

Fig. 4.2. Effect of normalization on short term load forecasting problem

There is no way of knowing a priori which of these myriad approaches is
the best one. In this section the effects of all these mappings on the training
and testing of following cases have been studied while

(a) Mapping of dc motor current and speed, and
(b) Predicting the electrical load demand.

The training file for dc motor consists of two inputs at adjacent time in-
stances (say I(t-to) and I(t-2∗to), where to is the sampling time) and one
output O(t). Testing file contains 80% of the training file data and 20% ad-
ditional data, which can test the model’s performance on data from outside
the training set. Similarly, for load forecasting problem we have taken data of
four Mondays and predict the data of fifth Monday.

CASE – I
The dc motor data are used to train back propagation feedforward neural
network for X-Y, X-∆Y, ∆X-Y, ∆X-∆Y mappings. The training algorithms
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Fig. 4.3. Different functional mappings between input and output space

used are steepest descent based and its modifications. The modified algorithm
is commonly known as Levenberg–Marquardt. These algorithms are available
in MATLAB Tool Box on neural networks. It is found that X-Y mapping
requires least number of epochs (i.e. 98) for training and X-Y mapping re-
quires maximum number of epochs (i.e. 105). Tables 4.6 and 4.7 represent
comparative analysis of the results of all these mappings and their training
epochs and predicted results for dc motor current and speed prediction under
starting conditions respectively. In these simulations: Tolerable error = 10−3,
Normalisation – input and output both in the range 0.1–0.9, and activation
functions – Tan sigmoid at hidden layer and pure linear at output layer.

CASE – II
For electrical load forecasting problem, the comparison between all these map-
pings is given in Tables 4.8–4.11. Figure 4.4 shows the percentage error during
forecasting of the electrical demand of the totally unforeseen data of the fifth
Monday.



60 4 Factors Affecting the Performance of Artificial Neural Network Models

Table 4.6. DC motor current simulations with different mappings

Mappings X–∆Y ∆X–Y X–Y ∆X–∆Y Actual values

Epochs 98 103 104 105
Test 2.1921 2.1942 2.1951 2.1921 2.1905
Results 1.9394 1.9198 1.9518 1.9388 1.9463

1.7004 1.6781 1.7136 1.6994 1.6960
1.4909 1.4728 1.5014 1.4894 1.4860
1.3129 1.3002 1.3201 1.3113 1.3082
1.1641 1.1575 1.1682 1.1625 1.2305
1.0406 1.0405 1.0420 1.0388 1.0955
0.9384 0.9424 0.9379 0.9366 0.9839
0.8540 0.8627 0.8522 0.8521 0.8920

Table 4.7. DC motor speed simulations with different mappings

Mappings X–∆Y ∆X–∆Y ∆X–Y Actual values

Epochs 56 140 248
Test 48.3522 48.0219 44.6986 49.3902
Results 62.8526 62.7167 58.7081 64.2083

75.3795 75.3599 71.9871 76.7749
85.9263 85.9497 83.6112 87.2634
94.7077 94.7455 93.4166 95.9506

101.9823 102.0209 101.5404 103.1190
107.9939 108.0276 108.2138 109.0232
112.9552 112.9814 113.6756 113.8815
117.0463 117.0645 118.1362 117.8775
120.4181 120.4284 121.7800 121.1635
123.1959 123.1988 124.7576 123.8653
125.4836 125.4791 127.1963 126.086

4.2.3 Sequence of Presentation of Training Data

In the natural learning process of the human being, generally the simple and
easy things we learn quickly. So we start our learning with simple things,
which motivate and encourage us to learn more. Once we have learned simple
things then more time can be spent on difficult things to learn. Hence, it
is very important that how we started our learning or what is the sequence
of presentation of data for learning. ANN training performance is also very
much dependent on in what manner the data is to be presented to ANN. If we
cluster the data and then present it to ANN, then it will learn more efficiently
and quickly.

4.2.4 Repetition of Data in the Training Set

Some difficult patterns which are not remembered by ANN we have to repeat
them. Now how many times that pattern is to be repeated? This is a very
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Table 4.8. Short term electrical load forecasting with different mappings

Mappings X–∆Y ∆X–∆Y ∆X–Y X–Y Actual demand

Epochs 35 87 800 (NT)∗ 52
Test 2,573.4 2,187.6 2,538.0 2,456.8 2,369
results 2,568.6 2,449.7 2,744.9 2,429.7 2,380

2,803.4 2,767.7 3,011.2 2,545.6 2,631
2,995.7 3,034.4 3,157.9 2,738.0 2,871
3,167.0 3,134.4 3,163.8 2,958.3 3,114
3,161.7 3,067.1 2,950.3 3,097.5 3,182
3,102.4 3,021.3 2,785.1 3,148.5 3,168
3,072.9 2,816.4 2,514.0 3,162.3 3,162
2,923.6 2,588.5 2,321.1 3,087.9 3,000
2,784.9 2,588.5 2,367.8 2,960.0 2,827
2,817.8 2,695.6 2,488.6 2,893.8 2,830
2,912.4 2,796.2 2,644.3 2,901.3 2,904
2,978.1 2,763.4 2,683.9 2,944.7 2,969
2,919.0 2,846.2 2,735.7 2,945.9 2,917
2,997.5 2,778.8 2,648.2 2,990.8 3,013
2,914.2 2,878.8 2,685.6 2,974.1 2,931
3,037.7 2,835.0 2,676.8 3,025.7 3,065

Table 4.9. ANN training performance with different functional mappings

Mapping DC motor current DC motor speed Short term load
forecasting

X–Y 104 107 52
∆X–Y 103 248 800
X–∆Y 98 56 35
∆X–∆Y 105 140 87

Table 4.10. ANN testing performance with different mappings for dc motor current

Mapping Max error Min error SS error

X–Y 0.0623 −0.0176 0.0112
∆X–Y 0.0730 −0.0037 0.0122
X–∆Y 0.0664 −0.0049 0.0111
∆X–∆Y 0.0680 −0.0034 0.0118

important question. For example while teaching English alphabets to the stu-
dents in the elementary classes; most often the students commit the mistake
while writing “b” and “d”. Then the teacher gives them as home assignment
to repeat these alphabets 10 times, 20 times or even more depending on the
students’ capability. Same thing is true for ANN learning.
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Table 4.11. ANN testing performance with different mappings for STLF

Mapping Max error Min error MSS error

X−Y 22.6300 −5.3319 160.3354
∆X−Y 13.7167 −5.6914 39.9838
X−∆Y 2.8178 −8.6281 13.2372
∆X−∆Y 5.0000 −4.7046 7.3138

Fig. 4.4. Effect of mapping on short term load forecasting problem

4.2.5 Permissible Noise in Data

The generalization characteristics of ANN models depends on the noise in-
cluded in the training data, but at the same time the accuracy reduces. Hence,
we have to trade off between the generalization capability of neural networks
and accuracy required in the results.

Usually when the measurements are taken by different measuring devices,
are not accurate due to various reasons. Hence, the noise will be there in the
measured quantities. According to the noise either in input or/and output of
the training file different pattern mappings are possible. In this chapter the
neural network is trained for the following mappings.

(1) Noisy input and accurate output patterns (Xnoise – Y mapping).
(2) Noisy input and noisy output patterns (Xnoise – Ynoise mapping).
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Table 4.12. DC motor current simulations with noisy data (Normalisation – input
0.1 to 2.5 and output in the range 0.1–0.9)

Mappings Xnoise–Y X–Ynoise Xnoise–Ynoise

Epochs 400 400 400
Error after training 0.00442398 0.00265015 0.00395185
Error during testing 1.6033 to −2.2048 −0.9237 to −3.800 2.8098 to 4.8763

Table 4.13. Training performance with noisy data for dc motor current (Ia) char-
acteristic

Mappings Xnoise–Y X–Ynoise Xnoise–Ynoise

Training error 0.00442398 0.00265015 0.00395185
(After 400Epochs)
Testing error 1.6033 to −2.2048 0.9237 to −3.8 −2.8908 to 4.8763

(3) Accurate input and noisy output (X – Ynoise mapping).
(4) Accurate input and accurate output (X–Y mapping).

The training and testing statistics of the neural network model for the
above combination is summarised in Tables 4.12 and 4.13 for dc motor sim-
ulation. It has been found that the X–noise mapping required least number
of training epochs and also giving good results during predictions. Here the
random noise of 5% is added in the training data either/both in input and
output data.

4.3 Learning Complexity

Performance of supervised learning depends upon:

a. Training algorithms
b. Initialization of weights
c. Selection of error Function
d. Mode of error calculation
e. Initialization of training parameters

4.3.1 Training Algorithms of ANN

Multi-layered networks have been applied successfully to solve some difficult
and diverse problems by training them in a supervised manner with a highly
popular algorithm known as the error back-propagation algorithm. This algo-
rithm is based on the error-correction learning rule.

Basically, the error back-propagation process consists of two passes
through the different layers of the network; a forward pass and a back-
ward pass. In the forward pass, an activity pattern (input vector) is applied
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to the sensory nodes of the network and its effect propagates through the
network, layer-by-layer. Finally a set of outputs is produced as the actual
response of the network. During the forward pass, the synaptic weights of the
network are fixed. During the backward pass, on the other hand, the synaptic
weights are adjusted in accordance with the error-correction rule. Specifically,
the actual response of the network is subtracted from a desired (target)
response to produce an error signal. This error signal is then propagated
backward through the network against the direction of synaptic connections –
hence the name “error back-propagation”. The synaptic weights are adjusted
so as to make the actual response of the network move closer to the desired
response.

A multi-layered perceptron network has three distinctive characteristics:

1. The model of each neuron in the network includes a differentiable non-
linearity, as opposed to the hard limiting used in McCullock and Pitt’s
perceptron model. A commonly used form of non-linearity that satisfies
this requirement is the sigmoid non-linearity.

f(net) =
1

1 + exp(−λ net)
(4.1)

The presence of non-linearity is important to prevent reduction of the
model to that of single-layered perceptron. The use of logistic function is
encouraging as it is a biologically motivated function.

2. The network contains one or more hidden layers that enable the network
to learn complex tasks by extracting multi-dimensional features from the
input pattern vectors.

3. The network exhibits a high degree of connectivity determined by the
synapses of the network. A change in the connectivity requires a change
in the population of synaptic connections/weights.

All these characteristics together with the ability to learn through training
that is the multi-layered perceptron derives its computing power. These same
characteristics, however, are also responsible for the deficiencies in knowing the
network behaviour. First, the presence of a distributed form of non-linearity
and the high connectivity of the network make the theoretical analysis of a
multi-layered perceptron difficult to undertake. Second, the use of hidden lay-
ers makes the learning process opaque to external environment. In an implicit
sense, the learning process is rigorous enough to decide which features of the
input pattern should be represented by the hidden layers and the search has
to be conducted on a larger space of possible functions.

The development of the back-propagation algorithm represents a “land-
mark” in the field of neural networks in that it provides a computationally
efficient method for the training of multi-layered perceptrons.
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Output layer

Input layer First hidden
layer

Second hidden
layer

Fig. 4.5. NN architecture with two hidden layers

4.3.1.1 Preliminary Fundamentals

The network shown in Fig. 4.5 is fully connected and the signal flows through
the network in a forward direction, from left to right and on a layer-by-layer
basis. The error signal flow propagates in a backward direction from right to
left, again on a layer-by-layer basis.

The signals should be appropriately called function signals as they are
calculated as a function of inputs and associated weights.

The error signal is so called because its computation by every neuron of
the network involves an error-dependent function in one or another form.

The hidden layer(s) are not part of the input or output layers and hence
designated as “hidden”. Their behaviour within the architecture is totally
“hidden” from analysis.

Each hidden or output neuron of a multi-layered perceptron is designated
to perform two computations.

1. The computation of the function signal appearing at the output of a neu-
ron, which is expressed as a continuous non-linear function of the input
signals and synaptic weights.

2. The computation of an instantaneous estimate of the gradient, i.e. the
gradient of the error surface with respect to the weights connected to
the inputs of a neuron, which is needed for the backward pass through
the network (Fig. 4.6).

4.3.1.2 The Back-Propagation Algorithm

Before getting into the derivation of the algorithm, we will see the notations
used in the derivation.

E(n) = Instantaneous sum of error squares at iteration n. The average of
E(n) over all values of n (i.e. the entire training set) yields the average
squared error Eav.
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Function signal 
Error signal 

Fig. 4.6. Signal flow illustration

ej(n) = Error signal at the output of neuron j for iteration n.
dj(n) = Desired response for neuron j used to compute ej(n).
yj(n) = Function signal appearing at the output of neuron j for iteration n.
wij(n) = Synaptic weight connecting neuron i to neuron j at iteration n.
∆wij(n) = The correction applied to the synaptic weight at iteration n.
vj(n) = The net internal activity level of neuron j at iteration n.
ϕj(.) = The activation function associated with neuron j.
θj = The threshold applied to neuron j which is equivalent to an extra

synapse.
xi(n) = The ith element of the input vector (pattern).
ok(n) = The kth element of the overall output vector (pattern).
η = The learning-rate parameter.

The error signal at the output of neuron j at iteration n (i.e. presentation
of the nth training pattern) is defined by

ej(n) = dj(n) − yj(n), (4.2)

neuron j is an output node.
The instantaneous sum of squared errors of the network at the output of

neuron j can be written as

E(n) =
1
2

∑
j∈c

e2
j (n), (4.3)

where c is the set of all neurons in the output layer of the network.
If N is the total number of patterns in the training set, the average squared

error over all the patterns is given by

Eav =
1
N

N∑
n=1

E(n). (4.4)
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y0 (n) = −1

w0 j = qj (n)

vj (n)

d j (n)

j(.)

yi (n)

ej (n)

 yp (n)

wi j (n)

Neuron j

yj (n)
-1

Fig. 4.7. Signal flow of output neuron j

The instantaneous sum of error squares E(n), and therefore, the average
squared error Eav is a function of the synaptic weights and thresholds. Thus
Eav represents the cost function of the learning process, which adjusts the
free parameters of synaptic weights and thresholds so as to minimise the cost
function. The training is done on a pattern-by-pattern basis and the errors
computed for each pattern presented to the network.

The neuron j as shown in Fig. 4.7, is fed from the layer to its left.

vj(n) =
p∑

i=0

wij(n)yi(n) (4.5)

where p is the total number of inputs excluding the threshold applied to
neuron j.

yj(n) = ϕj(vj(n)) (4.6)

The back-propagation algorithm applies a correction ∆wij(n) to the synap-
tic weight wij(n), which is proportional to the instantaneous gradient
∂E(n)/∂wij(n). According to the chain rule of partial derivatives, we may
express the gradient as follows:

∂E(n)
∂wij(n)

=
∂E(n)
∂ej(n)

× ∂ej(n)
∂yj(n)

× ∂yj(n)
∂vj(n)

× ∂vj(n)
∂wij(n)

. (4.7)

Now, differentiating (4.3) with respect to ej(n), we get

∂E(n)
∂ej(n)

= ej(n) (4.8)
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Differentiating (4.2) with respect to vj(n), we get

∂ej(n)
∂yj(n)

= −1. (4.9)

Differentiating (4.6) with respect to vj(n) yields

∂yj(n)
∂vj(n)

= ϕ′
j(vj(n)). (4.10)

Finally, differentiating (4.4) with respect to wij(n) yields

∂vj(n)
∂wij(n)

= yi(n). (4.11)

Thus (4.7) becomes
∂E(n)
∂wij(n)

= −ej(n)ϕ′
j(vj(n))yj(n) (4.12)

We know by delta learning rule, the correction to weight is

∆wij(n) = −η
∂E(n)
∂wij(n)

, (4.13)

where η is a positive constant called the learning rate.
From equations (4.12) & (4.13), we have

∆wij(n) = ηδj(n)yi(n), (4.14)

where δj(n) = ej(n)ϕ′(vj(n)) is called the local gradient at neuron j. The local
gradient δj(n) for output neuron j is equal to the product of the corresponding
error signal ej(n) and the derivative ϕ′(vj(n)) of the associated activation
function.

We note that a key factor involved in the calculation of the weight ad-
justment ∆wij(n) is the error signal ej(n). There are two distinct cases of
adjustment, depending on where in the network neuron j is located.

Case 1: Neuron j is an output node
When neuron j is located in the output layer of the network, the case
is pretty straight forward as the neuron will be supplied with a desired
response. We can use (4.2) to compute the error signal ej(n) associated
with this neuron and then use (4.14) to compute the local gradient.

Case 2: Neuron j is a hidden node
When neuron j is located in a hidden layer of the network, there is no
specific desired response for that neuron. Accordingly, the error signal for
a hidden neuron would have to be determined recursively in terms of the
error signals of all the neurons to which the neuron is directly connected.
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y0 = −1

w0j (n) = θj (n) dk(n)

vj (n) j (.) j (.)yj (n) yk(n) −1 ek (n)

wi j (n)
wjk (n)

yi (n)

  Neuron j                                 Neuron k

vk(n)

Fig. 4.8. Signal flow of hidden neuron j

Consider the case of the hidden neuron j as shown in Fig. 4.8 below.
We can redefine the local gradient

δj(n) = ej(n)ϕ′
j(v(n)) (4.15)

as

δj(n) = − ∂E(n)
∂yj(n)

× ∂yj(n)
∂vj(n)

(4.16)

= − ∂E(n)
∂yj(n)

ϕ′
j(vn(n)) (4.17)

neuron j is a hidden node.
To calculate the partial derivative ∂E(n)/∂yj(n), we may proceed as fol-

lows (see Fig. 4.4)

E(n) =
1
2

∑
k∈c

e2
k(n) (4.18)

neuron k is an output node

∂E(n)
∂yj(n)

=
∑

k

ek
∂ek(n)
∂yj(n)

(4.19)

Using the chain rule of partial derivatives, we can write (4.19) as

∂E(n)
∂yj(n)

=
∑

k

ek(n)
∂ek(n)
∂vk(n)

× ∂vk(n)
∂yj(n)

(4.20)

However,

ek(n) = dk(n) − yk(n)
= dk(n) − ϕk(vk(n)) (4.21)
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Hence
∂ek(n)
∂vk(n)

= −ϕ′
k(vk(n)). (4.22)

Also, the net internal activity for neuron k is

vk(n) =
q∑

j=0

wjk(n)yj(n), (4.23)

where q is the total number of inputs (excluding the threshold) applied to
neuron k.

Differentiating (4.23) with respect to yj(n) yields

∂vk(n)
∂yj(n)

= wjk(n) (4.24)

Thus using (4.22) and (4.24), we get

∂E(n)
∂yj(n)

= −
∑

k

ek(n)ϕ′
k(vk(n))wjk(n)

= −
∑

k

δk(n)wjk(n), (4.25)

where we have used the definition of the local gradient δk(n) given by (4.14)
with the index k substituted for j. Finally using (4.25) in (4.17), we get the
local gradient δj(n) for the hidden neuron j as

δj(n) = ϕ′
j(vj(n))

∑
k

δk(n)wjk(n) (4.26)

The factor ϕ′
j(vj(n)) involved in the computation of the local gradient

δj(n) depends solely on the activation function associated with the hidden
neuron j. The remaining factor, namely the summation over k, depends on
two sets of terms. The first set of terms, the δk(n), requires the knowledge
of the error signals ek(n), for all those neurons that lie in the layer to the
immediate right of the hidden neuron j, and that are directly connected to
neuron j; the second set of terms, the wjk(n), consists of the synaptic weights
associated with these connections.

We may summarise the relations as follows:(
Weight correction

∆wij(n)

)
=
(

learning rate parameter
η

)(
local gradient

δj(n)

)

×
(

input signal of neuron j
yi(n)

)
.
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The local gradient δj(n) depends on whether neuron j is an output node
or a hidden node:

1. If neuron j is an output node, δj(n) equals the product of the derivative
ϕ′

j(vj(n)) and the error signal ej(n), both of which are associated with
neuron j as given by (4.14).

2. If neuron j is a hidden node, δj(n) equals the product of the associated
derivative ϕ′

j(vj(n)) and the weighted sum of the δ’s computed for the
neurons in the next hidden or output layers that are connected to neuron
j as given by (4.26).

4.3.1.3 The Two Passes of Computation

The application of back-propagation algorithm is in two steps or two distinct
passes of computation. The first pass is referred as the forward pass and the
second pass is the backward pass.

In the forward pass, the synaptic weights remain unaltered throughout the
network, and function signals of the network are computed on a neuron-by-
neuron basis.

The function signal appearing at the output of neuron j is computed as

yj = ϕ(vj(n)), (4.27)

where
vj(n) =

p∑
i=0

wij(n)yi(n) (4.28)

p is the total number of inputs (excluding the threshold) applied to neuron j
and wij(n) is the synaptic weight connecting neuron i to j, and yi(n) is the
input signal of neuron j or the function signal appearing at the output of
neuron i.

If neuron j is in the first hidden layer of the network, then the index i
refers to the ith input terminal of the network, for which we write

yi(n) = xi(n) (4.29)

On the other hand, if neuron j is in the output layer of the network, the
index j refers to the jth output terminal of the network, for which we can write

yj(n) = oj(n) (4.30)

This output is compared with the desired response dj(n), obtaining the
error signal ej(n) for the jth output neuron. Thus the forward phase of com-
putation begins at the first hidden layer by presenting it with the input vector,
and terminates at the output layer by computing the error signal.

In the backward pass, the error signals computed are passed leftward
through the network, layer-by-layer and recursively computing the local
gradient δ for each neuron. The synaptic weights are varied according to the
back-propagation rule. The local gradient is computed by (4.15) or (4.26),
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depending on whether the neuron is in the output layer or hidden layer(s).
The recursive computation is continued layer-by-layer, by propagating the
changes to all synaptic weights from output layer to input layer. The com-
putation of δ for each neuron of the multi-layered architecture requires the
derivative of the activation function ϕ(.) associated with that neuron. For
this derivative to exist, we require the function ϕ(.) to be continuous. In basic
terms, differentiability is the only criterion that an activation function would
have to satisfy. It has been observed that a non-linear activation function with
maximum variation in the mid-values gives stability to the learning process.
Such an activation commonly used is the sigmoid activation, whose derivative
attains maximum at mid-value.

4.3.1.4 Rate of Learning and Momentum

The back-propagation algorithm provides an “approximation” to the trajec-
tory in the error-weight space computed by the method of steepest descent.

According to the method of steepest descent, the weights are adjusted in
an iterative fashion along the error surface with an aim of moving them pro-
gressively toward the optimum solution. The successive adjustments to the
weights are in the direction of the steepest descent of the error surface.

The rate of learning η decides the scaling of the gradient of the error sur-
face to be used for weight adjustment. The smaller we make the learning rate
parameter, the smaller will be the changes to the synaptic weights in the net-
work from one iteration to another and the smoother will be the trajectory in
the error-weight space, this improvement being achieved at the cost of a slower
learning. If we make the rate of learning η too large, so as to speed up the
rate of learning, the resulting large changes in the synaptic weights may make
the trajectory in the error-weight space oscillatory and unstable. It is better
to make the learning rate adaptive, i.e. start with a larger η and progres-
sively reduce as we move closer to the minimum. This is the implementation
of back-propagation with adaptive learning rate.

Another simple method of increasing the rate of learning, and yet avoiding
the danger of instability, is to include a momentum term as shown below.

∆wij(n) = α∆wij(n − 1) + ηδj(n)yi(n), (4.31)

where α is usually a positive number called the momentum constant. The
delta rule as given by (4.14) is a special case with α = 0.

In order to see the effect of using the momentum constant α, write (4.31)
as a time series with index t. The index goes from t = 0 to current iteration
t = n.

∆wij(n) = η

n∑
t=0

αn−tδj(t)yi(t), (4.32)

∆wij(n) = −η

n∑
t=o

αn−t ∂E(t)
∂wij(t)

. (4.33)

The above equations represent a time series of length n + 1.
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Following observations can be made:

1. The current adjustment ∆wij(n) represents the sum of an exponentially
weighted time series. For the time series to be convergent, the momentum
constant must be 0 ≤ |α| < 1. The momentum constant can be positive
or negative but it unlikely to use a negative α, in practice.

2. When the partial derivative ∂E(t)/∂wij(t) has the same algebraic sign
on consecutive iterations, the exponentially weighted sum ∆wij(n) grows
in magnitude and so the wij(n) is adjusted by a large amount. Hence
the inclusion of momentum in the back-propagation algorithm tends to
accelerate the descent in steady downhill direction.

3. When the partial derivative ∂E(t)/∂wij(t) has opposite signs on consecu-
tive iterations, the exponentially weighted sum ∆wij(n) shrinks in magni-
tude and so the wij(n) is adjusted by a small amount. Hence the inclusion
of momentum has a stabilising effect in the directions that oscillate in sign.

Thus the incorporation of momentum in the back-propagation algorithm
represents a minor modification to the weight update and yet it can have
highly beneficial effects on learning behaviour of the algorithm. The momen-
tum term also helps in preventing the learning process from trapping in local
minima. The momentum term can also be made adaptive just like the learning
rate and the back-propagation implementation with adaptive η and/or α has
been found to be much more efficient that the standard implementation.

4.3.1.5 The Stopping Criteria

There are several stopping criteria, each with its own practical merit, which
may be used to terminate the weight adjustments. The logical thing to do is
to think in terms of the unique properties of a local or global minimum of
the error surface. Let the weight vector w∗ denote a minimum, be it local or
global. Various convergent criteria can be stated as follows:

• The back-propagation algorithm is considered to have converged when the
Euclidean norm of the gradient vector reaches a sufficiently small gradient
threshold. This means g(w) → 0 at w = w∗. The drawback of this con-
vergence criterion is that, for successful trials, learning time may be long.
Also it requires the computation of the gradient vector g(w) of the error
surface to the weight vector w.

• Another unique property of a minimum that can be used is the fact that the
cost function or error measure Eav(w) is stationary at the point w = w∗.
The back-propagation algorithm is considered to have converged when the
absolute rate of change in the average error per epoch is sufficiently small.
Typically considered ranges are from 0.01 to 1% per epoch.

• Kramer and Sangiovanni-Vincentelli (1989) suggested a hybrid criterion
of convergence consisting of the former and the latter, as stated below:
The back-propagation algorithm is terminated at the weight vector wfinal

when ||g(wfinal)|| ≤ ε, where ε is sufficiently small, or Eav(wfinal) ≤ τ,
where τ is also sufficiently small.
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• Another useful criterion for convergence is as follows:
After each learning iteration the network is tested for its generalisation
performance. The learning is stopped when the generalisation performance
is adequate, or when it is apparent that the generalisation performance has
peaked.

4.3.1.6 Initialization of the Network

The first step in back-propagation is, of course, to initialise the network. A
good choice for the initial values of the free parameters (i.e. adjustable synap-
tic weights and threshold levels) of the network can be of tremendous help
in a successful network development. In cases where the prior information is
available, it may be better to use the information to guess the initial values
of the free parameters. But how do we initialise the network if no prior infor-
mation is available? It is also important to note that if all the weights start
out with equal values and the solution requires that unequal weights be devel-
oped, the system can never learn. This is because the error is propagated back
through the weights in proportion to the values of the weights. This means
that all hidden units connected directly to the output units will get identical
error signals, and since the weight changes depend on the error signals, the
weights from those units to the output units must always be the same. This
problem is known as the symmetry-breaking problem. Internal symmetries of
this kind also give the cost function landscape periodicities, multiple minima,
(almost) flat valleys and (almost) flat plateaus or temporary minima. The last
are most troublesome, because the system can get struck on such a plateau
during training and take immense time to find its way down the cost function
surface. Without modifications to the training set or learning algorithm, the
network may escape this type of “minimum” but performance improvement
in these temporary minima drops to a very low, but non-zero level because
of the very low gradient of the cost function. In the MSE vs. training time
curve, a temporary minimum can be recognised as a phase in which the MSE
is virtually constant for a long time after initial learning. After a generally
long training time, the approximately flat part in the energy landscape is
abandoned, resulting in a significant and sudden drop in the MSE curve. The
problem of unequal weights can be counteracted by starting the system with
random weights. However, as learning continues, internal symmetries may de-
velop and the network may encounter again temporary minima.

The customary practice is to set all the free parameters of the network to
random numbers that are uniformly distributed inside a small range of values.
This is because if the weights are too large, the sigmoids will saturate from
the very beginning of training and the system will become struck in a kind of
saddle point near the starting point (Haykin, 1994). This phenomenon is called
premature saturation (Lee et al. 1991). Premature saturation is avoided by
choosing the initial weights and threshold levels of the network to be uniformly
distributed inside a small range of values. This is so because when the weights
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are small, the units operate in their linear regions and consequently it is
impossible for the activation function to saturate. It is also maintained that
premature saturation is less likely to occur when the number of hidden neurons
is maintained low, and in consistent with the network requirement but the
viability of this belief is under question many a times.

Gradient descent can also become struck in local minima of the cost func-
tion. These are isolated valleys of the cost function surface in which the system
may get “stuck” before it reaches the global minimum. This is so because in
these valleys, every change in the weight values causes the cost function to
increase and hence the network is unable to escape. Local minima are funda-
mentally different from temporary minima as they cause the performance im-
provement of the classification to drop to zero and hence the learning process
terminates even though the minimum may be located far above the global
minimum. Local minima may be abandoned by including a momentum term
in the weight updates or by adding “noise” using the on-line mode training,
which is a stochastic learning algorithm in nature. The momentum term can
also significantly accelerate the training time that is spent in a temporary min-
imum as it causes the weights to change at a faster rate. Other approaches
include the modification of the cost function or the employment of techniques
such as simulated annealing.

There are two ways of initializing the weights, from which ANN starts
learning. If the initial weights are good, ANN needs less time to learn otherwise
it requires more time and/or stuck in local minima

1. Random selection
2. Using evolutionary algorithm

4.3.1.7 Faster Training in Back-Propagation Learning

Plain back-propagation is terribly slow and it is desired to have faster training.
There are a series of things that can be done to speed up training.

• Fudge the derivative term.
• Scale the data.
• Direct input–output connections.
• Vary the sharpness (gain) of the activation.
• Use a different activation.
• Use better algorithms.

1. Fudge the derivative term
The first major improvement to back-propagation is extremely simple:
fudge the derivative term in the output layer. If we are using the sigmoid
function given by

f(net) =
1

1 + exp(−λ net)
(4.34)
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and the derivative is

f ′(net) = f(net) (1 − f(net)) . (4.35)

The derivative is largest at net = 0.5 and it is here that we will get the
largest weight changes. Unfortunately, at values near 0 or 1, the derivative
term gets close to 0 and the weight change becomes very small. In fact, if
the network’s response is 1 and the target is 0, the network is off by quite
a lot with very small weight changes. It can take a very long time for the
training process to correct this. Falhlman’s solution was to add 0.1 to the
derivative term making it:

f ′
new(net) = 0.1 + f ′(net). (4.36)

The solution of Chen and Mass was to drop the derivative term al-
together, in effect, the derivative was 1. This method passes back much
larger error quotas to the lower layer, so large that a smaller η must be
used there. In their experiments on 10-5-10 codec problem, they found
that the best results came when η was 0.1 times the upper level η; hence
they called this method the “differential step size” method. One must ex-
periment with both upper and lower level η values to get the best results
depending on the problem. Besides that, the η used for the upper layer
must be much smaller that the η used without this method.

2. Direct input–output connections:
Adding direct connections from the input layer to the output layer can
often speed up training. It is supposed to work best when the function
to be approximated is almost linear and it only needs a small amount of
adjustment from non-linear hidden layer units. This method can also cut
down the number of hidden layer units needed. It is not recommended
when there are a large number of output units because, then there are
more free parameters to the net and possibly hurt the generalisation.

3. Adjusting the sharpness (gain) of the activation:
Izni and Pentland showed that training time can be decreased by increas-
ing the sharpness or gain λ in the standard sigmoid as given in (4.34). In
fact, they showed that the training time goes as 1/λ for training without
momentum and 1/

√
λ for networks with momentum. This is not a perfect

speed-up scheme since when λ is too large, we run the risk of becoming
trapped in a local minimum. Sometimes the best value for λ is less that 1.

4.3.1.8 Better Algorithms

Everyone wants faster training and there are many variations on back-
propagation that will speed up the training time enormously, but the credi-
bility of these variations are at question, at times. Very slow online update
methods will sometimes give the best results when compared to these acceler-
ation algorithms. People have observed this with sonar data: the best results
come from one pattern at a time updates. Having said this, in most cases, the



4.3 Learning Complexity 77

acceleration algorithms work much faster than either online or batch training
that they should be used first and then if better results are wanted, one can
try slower online methods.

In Sect. 5.4, we have already discussed the effect of having adaptive learn-
ing rate and momentum. As the training proceeds, increase η and α adaptively
if we keep going downhill, in terms of error. When the weight change gets too
large, we end up on the other side of the valley and for this, we must decrease
the learning rate and momentum in some way. These are basically first-order
algorithms, where we use only the first order information of the error gradi-
ent in weight updating. Then there is a set of algorithms known as conjugate
gradient methods, which use second order information also for faster training.
We will discuss a few such algorithms.

• The Resilient propagation Algorithm.
• The Delta-Bar-Delta Algorithm.
• The Quick-propagation Algorithm.
• The Conjugate Gradient methods.

(a) The Resilient propagation algorithm:
The Resilient propagation is a first-order algorithm performing supervised
batch learning in multi-layered perceptrons. The basic principle of Rprop
is to eliminate the harmful influence of the size of the partial error deriv-
ative on the weight step. As a consequence, only the sign of the derivative
is considered to indicate the direction of weight update. The size of the
weight change is exclusively determined by a weight-specific, so called
“update-value” ∆ij

(t):

∆w
(t)
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∆(t)
ij ; if

∂E

∂wij

(t)

> 0

+∆(t)
ij ; if

∂E

∂wij

(t)

< 0

0; otherwise

(4.36)

where ∂E
∂wij

(t)
denotes the summed gradient information over the patterns

of the pattern set (“batch learning”).
It should be note that, by replacing the ∆ij

(t) by a constant update-
value ∆, (4.36) yields the so-called “Manhattan” Algorithm.

The second step of Rprop learning is to determine the new update values
∆ij

(t). This is based on a sign-dependent adaptation process.

∆(t)
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η+ × ∆(t)
ij ; if

∂E

∂wij

(t−1)

× ∂E

∂wij

(t)

> 0

η− × ∆(t)
ij ; if

∂E

∂wij

(t−1)

× ∂E

∂wij

(t)

< 0

∆(t)
ij ; otherwise

(4.37)

where 0 < η− < 1 < η+.
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In other words, the adaptation rule works as follows: Every time, the
partial derivative of the corresponding weight wij changes its sign, which
indicates that the last update was too big and the algorithm has jumped
over local minimum, the update value ∆ij

(t) is decreased by the factor η−.
If the derivative retains the sign, the update value is slightly increased in
order to accelerate the convergence in shallow regions. Additionally, in
case of a change in sign, there should be no adaptation in the succeeding
learning step. In practice, this can be achieved by setting ∂E

∂wij

(t)
= 0.

In order to reduce the number of freely adjustable parameters, often
leading to a tedious search in parameter space, the increase and decrease
factor are set to fixed values. The choice of decrease factor η− was lead
by the following considerations. If a jump over a minimum occurred, the
previous update value was too large, for, it cannot be derived from gradient
information how much the minimum was missed. We have to estimate the
correct value. It will be a good guess to halve the update value (maximum
likelihood estimator), so we choose η− = 0.5. The increase factor η+, on
the other hand, has to be large enough to allow fast growth of the update
values in shallow regions of error function, but, on the other hand, the
learning process can be considerably disturbed if a too large increase factor
leads to persistent changes of the direction of the weight-step. In several
experiments, the choice of η+ = 1.2 gave very good results, independent
of examined problems. Slight variations of this value neither improve nor
deteriorate convergence time.

(b) Delta-Bar-Delta Algorithm:
The Delta-Bar-Delta is a method that implements four heuristics regard-
ing gradient descent. It was developed by Jacobs (1988). The method
consists of a weight update rule and learning update rule. The weight
update rule is applied to each weight wij(n) at iteration n through the
relationship given by

wij(n + 1) = wij(n) − ηij(n + 1)
∂E(n)
∂wij(n)

, (4.38)

where η(n) is the learning rate for the weight wij(n) at update iteration n.
The learning rate update rule for a given weight wij(n) is defined as

∆ηij(n) =

⎧⎨
⎩

k ; if δ̄ij(n − 1) × δij(n) > 0
−φηij(n) ; if δ̄ij(n − 1) × δij(n) < 0
0 ; otherwise

(4.38)

where

δij(n) =
∂E(n)
∂wij(n)

(4.39)

the partial derivative of the error with respect to wij(n) at iteration n,
and

δ̄ij(n) = (1 − θ)δij(n) + θδ̄ij(n − 1) (4.40)
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where k and φ are constants used increment or decrement the learning rate
respectively, and 0 < θ < 1 is an exponential “smoothing” base constant
for the nth iteration.

The heuristics implemented are as follows:

1. Every parameter (weight) has its own individual learning rate.
2. Every learning rate is allowed to vary over time to adjust to changes

in the error surface.
3. When the error derivative for a weight has the same sign for several

consecutive update steps, the learning rate for that weight should
be increased. This is because the error surface has a small curvature
at such points and will continue to slope at the same rate for some
distance. Therefore, the step-size should be increased to speed up the
downhill movement.

4. When the sign of the derivative of a weight alternates for several
consecutive steps, the learning rate for that parameter should be de-
creased. This is because the error surface has a high curvature at
that point and the slope may quickly change sign. Thus, to prevent
oscillation, the value of the step-size should be adjusted downward.

There are a few drawbacks of this algorithm. Using momentum along with
the algorithm can enhance the performance; however, it can also make the
search diverge wildly – especially if k is even moderately large. The reason
is that momentum “magnifies” learning rate increments and quickly leads
to inordinately large learning steps. One possible solution is to keep the k
factor very small, but this can lead to slow increase in η and little speedup.

Another related problem is that, even with a small k, the learning rate
can sometimes increase so much that the small exponential decrease is
not sufficient to prevent wild jumps. Increasing φ exacerbates the problem
instead of solving it because it causes drastic reduction of learning rate at
inopportune moments, leaving the search stranded at points of high error.
Thus the algorithm is very sensitive to small variations in the value of its
parameters – especially k.

(c) Quick-propagation algorithm:
Standard back-propagation calculates the weight change based upon the
first derivative of the error with respect to the weight. If the second deriva-
tive information is also available, then better step-size and optimum search
direction can be found out. Back-propagation networks are also slow to
train. Quick-propagation is a variation of standard back-propagation to
speed up training.

The quickprop modification is an attempt to estimate and utilise the
second derivative information (Fahlman 1988). This algorithm requires
saving the previous gradient vector as well as previous weight change.
The calculation of weight change uses only the information associated
with the weight being updated.
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∆wij(n) =
∇wij(n)

∇wij(n − 1) −∇wij(n)
× ∆wij(n − 1), (4.41)

where ∇wij(n) is the gradient vector component associated with weight
vector wij in step n, ∇wij(n − 1) is the gradient vector component asso-
ciated with weight wij in the previous step and ∆wij(n− 1) is the weight
change in step n − 1.

A maximum growth factor µ is used to limit the rate of increase of
step-size like
If ∆wij(n) > µ∆wij(n − 1), then ∆wij(n) = µ∆wij(n − 1)
Fahlman suggested an empirical value 1.75 for µ.

There are some complications in this method. First is the step-size
calculation that requires the previous value, which is not available at the
time of starting. This is overcome by using the standard back-propagation
method for weight adjustment. The gradient descent weight change is
given by

wij(n + 1) = wij(n) − η∇wij (4.42)

Value of η is taken suitably small.
Second problem is that the weight values are unbounded. They become

so large that they may cause an overflow. Suitable scaling of slope by a
factor less than 1 reduces the rate of increase of the weights.

(d) The conjugate gradient (CG) methods:
The conjugate gradient algorithms have become very popular for training
back-propagation networks. Just like all the second order methods, the CG
algorithm is implemented in batch-mode. The CG algorithm can search
the minimum of a multivariate function faster than the conventional gra-
dient descent procedure for BP networks. Each conjugate gradient step
is, at least, as good as the steepest descent method from the same point.
The formula is simple and the memory usage is in the same order as
the number of weights. Most important, the CG technique obviates the
tedious tasks of determining optimal learning parameters. Moreover, the
CG technique has very reliable convergence behaviour as compared with
the first-order gradient methods.

The basic back-propagation algorithm adjusts the weights in the steepest
descent direction, i.e. negative of the gradient. This is the direction in which
the performance function is decreasing most rapidly. It turns out that although
the function decreases most rapidly along the negative of the gradient, this
does not necessarily produce faster convergence. In the conjugate gradient
algorithms, a search is performed along the conjugate directions, which pro-
duces generally faster convergence (conjugate directions means at orthogonal
directions), than steepest descent directions.

In most training algorithms that we have discussed up to this point, a
learning rate is used to determine the length of the weight update (step-
size). In CG methods, the step-size is adjusted at every iteration. A search
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is made along conjugate gradient directions to determine the step-size, which
will minimise the performance function along that line.

The basic attempt in all second order enhancement methods is that the
current search direction d(n) to be a compromise between the exact gradient
∇E(n) and the previous search direction d(n − 1), i.e. d(n) = −∇E(n) +
βd(n − 1) with d(0) = −∇E(0).

The search direction is chosen (by appropriately setting β) so that it dis-
torts as little as possible the minimisation achieved by the previous step. In
conjugate gradient methods, the current search is chosen to be conjugate to
the previous search direction. Analytically, we require

d̄(n − 1)tH(n − 1)d̄(n) = 0 (4.43)

where the Hessian H(n−1) is assumed to be positive definite (H is the Hessian
matrix with components Hij = ∂2E

∂wi∂wj
).

β plays the role of an adaptive momentum and chosen according to the
Polack–Ribiere rule

β = β(n) =
[∇E(n) −∇E(n − 1)]t ∇E(n)

‖∇E(n − 1)‖2 (4.44)

Thus the search direction in the conjugate gradient methods at iteration
n is given by

d̄(n) = −∇E(n) + βd̄(n − 1)

= −∇E(n) +
[∇E(n) −∇E(n − 1)]t ∇E(n)

‖∇E(n − 1)‖2 d̄(n − 1) (4.45)

Now using d(n − 1) = (1/ρ)∆w(n − 1) and substituting the preceding
expression for d(n) in ∆w(n) leads to the weight update rule:

∆w̄(n) = −ρ∇E(n) + β(n)∆w̄(n − 1) (4.46)

When E is quadratic, the conjugate methods theoretically converge in N
or fewer iterations. In general, E is not quadratic, and therefore, this method
would be slower than what theory predicts. However, it is reasonable to assume
that E is approximately quadratic near a local minimum. Therefore, conjugate
gradient descent is expected to accelerate the convergence of back-propagation
once the search enters a small neighbourhood of a local minimum.

4.3.2 Selection of Error Functions

Normally in the supervised learning of multi-layer neural networks, sum
squared error is used. There are many other error functions which may used
for ANN training as given in Table 4.14.

These error functions, their derivates and delta functions have been plotted
against error as shown in Fig. 4.9. The three-dimensional surfaces for some
error function are shown in Fig. 4.10.
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Table 4.14. Different error functions for ANN learning

1. Sum square error 1/2
∑

ei
2

2. Logarithmic error
∑

[(1 + ypk)In{(1 + ypk)/(1 + Opk)}]+∑
[(1 − ypk)In{(1 − ypk)/(1 − Opk)}]

3. Mean fourth power error
∑

ei
4/p

4. Hyperbolic square error
∑

In{(1 − ei
2)/(1 + ei

2)}
5. Hubber’s error

∑
ei

2/2 if |ei| < c∑
c(ei − c/2) if |ei| >=c

6. Cauchy’s error
∑

c2[In{1 + (ei/c)2}]/2
7. Geman–McClure error

∑
ei

2/{2(1 + ei
2)}

8. Welsch error
∑

c2[1 − ei − (ei/c)2]/2
9. fair’s error

∑
c2[ei/c − In(1 − ei/c)]

10. Mean median error
∑

2[(1 + ei/2)1/2 − 1]

11. Log-cos-hyperbolic error
(Tasos Falas 1999)

∑
In[cos h(ei

2)]

12. Andrew error
∑

cos(π∗ei)/π2 If ei <=1∑
ei If ei > 1

13. Entropy error −In(1 − ei)
14. Hamlet error ei − In(1 − ei)
15. Fahlman error

∑
[(1+ei)In(1+ei)+ (1− ei)In(1− ei)]

4.3.3 Mode of Error Calculation

The error can be calculated in the pattern mode or in batch mode. In pattern
mode of error calculation the error is calculated after present each pattern,
i.e. one set of training inputs, which is used to modify the weights. In batch
mode all the patterns are presented and the errors are calculated for each
pattern and then sum square error is used to modify the weights.

4.4 Summary

Finally it could be concluded that the back propagation feedforward neural
networks training and testing performance is dependent on network complex-
ity, problem complexity and complexity of learning algorithm. In this chapter
it has been found that:

1. Tan sigmoid activation function at hidden layer and pure linear at output
layer is taking less training epochs and also giving very good results during
testing. Pure linear–pure linear combination is also taking same training
time but the results predicted with this pair is not very encouraging.

2. Prediction accuracy is comparable for different mappings. However train-
ing time is minimum for X-Y type of mapping (it requires only 98, 56,
and 35 epochs for dc machine current, speed predictions and electrical
load forecasting problem, respectively. The other mappings require signif-
icantly large training epochs.
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Fig. 4.9. Error functions, their derivates and delta functions for different error value

3. Xnoise–Y mapping is able to train up to error level 0.00265015 in 400
training epochs and the error during testing is also low as compared to
the other noisy mappings as shown in Table 2.4.
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Fig. 4.10. Error surfaces for different error functions

4. Normalization ranges −0.9 to 0.9 for input and 0.1 to 0.9 for output are
found very satisfactory for almost all problems.

5. They change the weights each time by some fraction of the change needed
to completely correct the error. This fraction, ß, is called learning rate.

6. High learning rates cause the learning algorithm to take large steps on the
error surface, with the risk of missing a minimum, or unstably oscillating
across the error minimum.

7. Small steps, from a low learning rate, eventually find a minimum, but
they take a long time to get there.

8. Some NN simulators can be set to reduce the learning rate as the error
decreases.

9. Local minima problem can be avoided by introducing the momen-
tum term.

10. To increase the speed of back propagation learning algorithms, adaptive
learning rate and momentum factor is considered.

11. The error tolerance also affects the training time and generalization ca-
pabilities of ANN.

4.5 Bibliography and Historical Notes

In multilayer ANN, it is reported that the training is very time-consuming
phase. Among the different approaches suggested to ease the back-propagation
training process, input data pre-treatment has been pointed out, although
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no specific procedure has been proposed. We have found that input data
normalization with certain criteria, prior to a training process, is crucial to
obtain good results as well as to fasten significantly the calculations. There
are some researchers (Sevilla Sola 1997; Kartam 1997) reported that how data
normalization affects the training performance of ANN.

4.6 Exercises

1. Consider a neuron whose activation function is sigmoid f(x) = 1
1+e−λx

a. Prove that the derivative of f(x) with respect to x is given as f ′(x) = λ.
f(x)(1 − f(x)).

b. Write a MATLAB program for plotting the activation function and
its derivative for different values of x for λ = 0.1, 0.5, 1.0.

2. Repeat (a) and (b) parts of questions 1 with hyperbolic activation func-
tion.

3. Implement the following logic gates using feedforward bckpropagation
ANN with one, two and three hidden layers:
a. NAND gate
b. NOR gate
c. EX-OR gate.

4. Repeat question 3 for product aggregation neuron and compare the train-
ing and testing performance of above ANN and Product ANN.

5. Write a step by step procedure for backpropagation algorithms.
6. Study the effect of different intial weights on the training performance on

backpropagation learning algorithms.
7. Write a MATLAB program to generate at least 100 training and 25 testing

data for the following function

f(x) = x∗ex.

a. Develop ANN model to map this function and compare the results
for fixed parameter backpropagation and adaptive backpropagation
learning.

b. Also train the ANN model using 5% noise in the training data and
test with actual data.
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Development of Generalized Neuron
and Its Validation

More recently, ANNs and fuzzy set theoretic approach have been proposed
for many different industrial applications. A number of papers have been pub-
lished in the last two decades. An illustrative list is given in bibliography. Both
techniques have their own advantages and disadvantages. The integration of
these approaches can give improved results.

In the previous chapter, the performance aspect of ANN has been discussed
in detail. To overcome some of the problems of ANN and improve its training
and testing performance, the simple neuron is modified and a generalized
neuron is developed in this chapter.

In the common neuron model generally the aggregation function is sum-
mation, which has been modified to obtain a generalized neuron (GN) model
using fuzzy compensatory operators as aggregation operators to overcome the
problems such as large number of neurons and layers required for complex
function approximation, which not only affect the training time but also the
fault tolerant capabilities of the artificial neural network (ANN) (Chaturvedi
1997).

5.1 Existing Neuron Model

The general structure of the common neuron is an aggregation function and
its transformation through a filter. It is shown in the literature (Widrow and
Lehr 1990) that the ANNs can be universal function approximators for given
input–output data. The common neuron structure has summation or product
as the aggregation function with linear or nonlinear (sigmoid, radial basis,
tangent hyperbolic, etc.) as the threshold function as shown in Fig. 5.1.

If variation at aggregation is only considered at the neuron level, two types
of neurons are possible:

1. Summation type neuron (
∑

- Neuron)
In summation type neuron summation function at aggregation level and
sigmoid function at activation level is considered as shown in Fig. 5.1a.

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 87–122 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



88 5 Development of Generalized Neuron and Its Validation

Σ ∫ Output Input 

Aggregation
Function 

Threshold
Function Bias 

Π ∫ Output Input 

Aggregation
Function

Thresholding 
Function Bias 

(a) (b)

Fig. 5.1. (a) Simple summation neuron model. (b) Simple product neuron model

Input Layer
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(Σ - Neuron)(Distributing Neuron)

Input 1

Input 2

Input 3

Input 4

Output  

Σ ∫

Processing Neuron 

Hidden Layer
(Σ - Neuron) 

Fig. 5.2. Summation type neural network (
∑

- ANN)

2. Product type neuron (Π – Neuron)
It consists of product function at aggregation level and sigmoid function
at activation level as shown in Fig. 5.1b.

Now using these neuron models four type of neural network could be
developed:

a. Summation type neural network (
∑

- ANN)
It contains all summation neuron at hidden layer as well as output layer
as shown in Fig. 5.2.

b. Product type neural network (Π – ANN)
It is made up of all product type neurons at both hidden layer and output
layer as shown in Fig. 5.3.

c. Mixed type neural network
In mixed type neural networks both summation and product type neurons
could be kept in two ways in the network as mentioned below:
1. Summation – product type neural network (

∑−Π – ANN)
Here summation type (

∑
) neuron is considered at the hidden layer

and product type (Π) neuron is considered at the output layer as
shown in Fig. 5.4.



5.1 Existing Neuron Model 89

Input Layer
Output Layer
(Π - Neuron)(Distributing Neuron) Hidden Layer

(Π - Neuron) 

Input 1
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Input 3
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Π ∫
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Fig. 5.3. Product type neural network (Π - ANN)
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Fig. 5.4. Summation - Product type neural network (
∑−Π - ANN)

2. Product – summation type neural network (Π-
∑

– ANN)
This is a network in which Π – neurons are taken at the hidden layer
and

∑
– neurons are at output layer as shown in Fig. 5.5.

Then all these four types of networks shown in Figs. 5.2–5.5 are used to
model the non-linear starting speed – torque characteristic of induction motor
and their performance have been compared for same initial weights and same
ANN learning parameters as shown in Table 5.1.
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Output Layer
(Π - Neuron)

(Σ - Neuron)

Input 1 

Input 2 

Input 3 

Input 4

Output
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Input Layer
(Distributing Neuron)

Hidden Layer

Fig. 5.5. Product-summation type neural network (Π −∑ -ANN)

Table 5.1. ANN learning parameters

Learning rate η 0.4
Momentum factor α 0.6
Gain scale factor λ 1.0
Error tolerance E 0.005

Table 5.2. Performance of different ANN models for mapping induction motor
characteristics

Models Training performance Testing performance
RMS error Min error Max error∑

- ANN 1150 0.02568 0.000376 0.888082
Π – ANN 4090 0.14097 0.000632 0.287738∑−Π – ANN 50 0.01661 0.000430 0.250279
Π −∑ - ANN 50 0.01358 0.000614 0.297254

The training and testing performance of all four type neural network is
given in Table 5.2. It is quite clear that the combination of these different
types of neuron layers in the network gave very interesting results. The mixed
type neural network only needed 50 iterations (epochs) during training and
testing results are also quite good for these type of networks.

5.2 Development of a Generalized Neuron (GN) Model

It is very clear from the above discussion that the combinations of summation
(
∑

) neurons and product (Π) neurons at different layers are giving quite
good results as compared to only summation neuron or product neuron in
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the whole network; which motivated to explore the possibilities of different
combinations. Thus, a generalized neuron model has been developed that
uses the fuzzy compensatory operators (listed in Table 5.3) that are partly
union and partly intersection given by Mizumoto in his paper on pictorial
representation of fuzzy connectives II in 1989.

Use of the sigmoid threshold function and ordinary summation or prod-
uct as aggregation functions in the existing models fails to cope with the

Table 5.3. Compensatory operators suggested by Mizumoto (1989)

S. No. Summation type operator Product type operator

1. [X1 ∩ X2]∗W + [X1 ∪ X2]∗(1 − W) [X1 ∩ X2]W∗[X1 ∪ X2](1−W)

2. (X1∗X2)∗W + (X1 + X2 − X1∗X2)
∗(1 − W)

(X1∗X2)W∗(X1 + X2 − X1∗X2)(1−W)

3. [0 ∪ (X1∗X2)]∗W] + [1 ∩ (X1 + X2)]

∗(1 − W)

[0∪ (X1∗X2)]W + [1∩ (X1 +X2)](1−W)

4. [X1 ∩ X2]∗W + (X1 + X2 − X1∗X2)
∗(1 − W)

[X1 ∩ X2]W∗(X1 + X2 − X1X2)(1−W)

5. [X1 ∪ X2]∗W + (X1∗X2)∗(1 − W) [X1 ∪ X2]W∗(X1∗X2)(1−W)

6. [X1 ∩X2]∗W+[1∩ (X1 +X2)]∗(1−W) [X1 ∩ X2]W∗[1 ∩ (X1 + X2)](1−W)

7. [X1∪X2]∗W+[0∪(X1+X2−1)]∗(1−W) [X1 ∪ X2]W∗[0 ∪ (X1 + X2 − 1)](1−W)

8. [X1∗X2]∗W + [1 ∩ (X1 + X2)]∗(1 − W) [X1∗X2]W∗[1 ∩ (X1 + X2)](1−W)

9. [X1 +X2−X1∗X2]∗W+[0∪(X1 +X2−
1)]∗(1 − W)

[X1 + X2 − X1∗X2]W∗[0 ∪ (X1 + X2 −
1)](1−W)

10. [X1∩X2]∗W+[0∪(X1+X2−1)]∗(1−W) [X1 ∩ X2]W∗[0 ∪ (X1 + X2 − 1)](1−W)

11. [X1 ∪X2]∗W+[1∩ (X1 +X2)]∗(1−W) [X1 ∪ X2]W∗[1 ∩ (X1 + X2)](1−W)

12. [X1∗X2]∗W+[0∪(X1+X2−1)]∗(1−W) [X1∗X2]W∗[0 ∪ (X1 + X2 − 1)](1−W)

13. (X1 + X2 − X1∗X2)∗W + [1 ∩ (X1 +
X2)]∗(1 − W)

(X1 + X2 − X1∗X2)W∗[1 ∩ (X1 +
X2)](1−W)

14. [X1 ∩ X2]∗W + [X1∗X2]∗(1 − W) [X1 ∩ X2]W∗[X1∗X2](1−W)

15. [X1 ∪ X2]∗W + (X1 + X2 − X1∗X2)
∗(1 − W)

[X1 ∪ X2]W∗(X1 + X2 − X1X2)(1−W)

16. [X1 ∩ X2]∗W + [(X1 + X2)/2]∗(1 − W) [X1 ∩ X2]W∗[(X1 + X2)/2](1−W)

17. [X1 ∪ X2]∗W + [(X1 + X2)/2]∗(1 − W) [X1 ∪ X2]W∗[(X1 + X2)/2](1−W)

18. [X1∗X2]∗W + [(X1 + X2)/2]∗(1 − W) [X1∗X2]W∗[(X1 + X2)/2](1−W)

19. [X1 + X2 − X1∗X2]∗W + [(X1 + X2)/
2]∗(1 − W)

[X1 + X2 − X1∗X2]W∗[(X1 + X2)/
2](1−W)

20. [0 ∪ (X1 + X2 − 1)]∗W + [(X1 +
X2)/2]∗(1 − W)

[0∪(X1+X2−1)]W∗[(X1+X2)/2](1−W)

21. [1 ∩ (X1 + X2)]∗W + [(X1 + X2)/2]
∗(1 − W)

[1 ∩ (X1 + X2)]W∗[(X1 + X2)/2](1−W)

22. [(X1∩X2)]∗W+[(X1 +X2)/2]∗(1−W) [(X1 ∩ X2)]W∗[(X1 + X2)/2](1−W)

23. [X1 ∪ X2]∗W + [1 − √
(1 − X1)

(1 − X2)]∗(1 − W)
[X1 ∪ X2]W∗[1 − √

(1 − X1)
(1 − X2)](1−W)

24. [X1 ∩ X2]∗W + [1 − √
(1 − X1)

(1 − X2)]∗(1 − W)
[X1 ∩ X2]W∗[1 − √

(1 − X1)
(1 − X2)](1−W)

25. [X1 ∪ X2]∗W + [
√

(X1∗X2)]∗(1 − W) [X1 ∪ X2]W∗[√(X1∗X2)](1−W)

26.
√

(X1∗X2)∗W + [1 − √
(1 − X1)(1 −

X2)]∗(1 − W)

√
(X1∗X2)W∗[1 − √

(1 − X1)
(1 − X2)](1−W)

27. [2X1X2/(X1 + X2)]∗W + [(X1 + X2 −
2X1X2)/(2 − X1 − X2)]∗(1 − W)

[2X1X2/(X1 + X2)]W∗[(X1 + X2 −
2X1X2)/(2 − X1 − X2)](1−W)
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Table 5.3. (Continued)

S. No. Summation type operator Product type operator

28. [(X1 + X2)/2]∗W +
√

(X1X2)]∗(1−W) [(X1 + X2)/2]W∗√(X1X2)(1−W)

29. [(X1 + X2)/2]∗W + [1−√
(1−X1)(1−

X2)]∗(1 − W)
[(X1 + X2)/2]W∗[1 −√

(1 − X1)(1 −
X2)](1−W)

30. [(X1 + X2)/2]∗W + [2X1X2/(X1 +
X2)]∗(1 − W)

[(X1 + X2)/2]W∗[2X1X2/(X1 +
X2)](1−W)

31. [(X1 + X2)/2]∗W + [(X1 + X2 −
2X1X2)/(2 − X1 − X2)]∗(1 − W)

[(X1 + X2)/2]W∗[(X1 + X2 −
2X1X2)/(2 − X1 − X2)](1−W)

32. [(X1X2)(X1 +X2−2X1X2)]∗W+[X1 +
X2−X1X2(X1 +X2−2X1X2)]∗(1−W)

[(X1X2)(X1 + X2 − 2X1X2)]W∗[X1 +
X2 − X1X2(X1 + X2 − 2X1X2)](1−W)

33. [(X1X2)(X1 ∩ X2)]∗W + [X1 + X2 −
X1X2 + X1 ∪ X2 − (X1 + X2 −
X1X2)(X1 ∩ X2)]∗(1 − W)

[(X1X2)(X1 ∩ X2)W∗[X1 + X2 −
X1X2 + X1 ∪ X2 − (X1 + X2 −
X1X2)(X1 ∩ X2)](1−W)

34. [(X1X2) + (X1 ∩ X2) − (X1X2)(X1 ∩
X2)]∗W + [(X1 + X2 − X1X2)(X1 ∪
X2)]∗(1 − W)

[(X1X2) + (X1 ∩ X2) − (X1X2)(X1 ∩
X2)]W∗[(X1 + X2 − X1X2)(X1 ∪
X2)](1−W)

X1 - Input # 1 for Σ – aggregation and
X2 – Input # 2 for Π - aggregation
W - Weight or parameter of the operator varies between 0 and 1

Note: Output of Σ – part of neuron may be considered as union operator of fuzzy
and Output of Π – part of neuron may be considered as intersection operator of
fuzzy system

non-linearities involved in real life problems. To deal with these, the proposed
model has both sigmoid and Gaussian functions with weight sharing. The gen-
eralized neuron model has flexibility at both the aggregation and threshold
function level to cope with the non-linearity involved in the type of applica-
tions dealt with. The neuron has both Σ and π aggregation functions. The Σ
aggregation function has been used with the sigmoid characteristic function
while the π aggregation function has been used with the Gaussian function
as a characteristic function. The final output of the neuron is a function of
the two outputs OΣ and Oπ with the weights W and (1–W) respectively as
shown in Figs. 5.6 and 5.7. Mathematically the output of summation type
generalized neuron (GN) may be written as

GN output = O∑ ∗ W + OΠ ∗ (1 − W),

where

O∑ – output of the summation part of the neuron Σ1

W – weight associated with O∑
OΠ – output of the product part of the neuron (π).

The neuron model described above is known as the summation type com-
pensatory neuron model, since the outputs of the sigmoidal and Gaussian
functions are summed up. Similarly, the product type compensatory neuron
models may also be developed. It is found that in most of the applications
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Fig. 5.6. (a) Internal structure of summation type. (b) Internal structure of product
type generalized neuron
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Fig. 5.7. (a) Symbolic representation of summation type generalized neuron model.
(b) Symbolic representation of product type generalized neuron model

summation type compensatory neuron model works well (Chaturvedi 2002).
Mathematically the output of product type generalized neuron may be writ-
ten as –

GN Output = O∑W ∗ O(1−W)
Π

5.3 Advantages of GN

1. Less number of unknown weights
The number of weights in the case of a GN is equal to twice the number
of inputs plus one, which is very low in comparison to a multi-layer feed-
forward ANN.

2. Less training time
The weights are determined through training. Hence, by reducing the
number of unknown weights, training time can be reduced.

3. Less number of training patterns
The number of training patterns required for GN training is dependent on
the number of unknown weights. The number of training patterns must be
greater or equal to number of GN weights. As mentioned above the number
of GN weights are lesser than multi layered ANN, hence the number of
training patterns required is also lesser.
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4. Size of hidden layers
There is no hidden layer required in case of GN and single neuron is
capable to solve most of the problems.

5. Complexity of GN
GN model is less complex as compared to multilayered ANN models.

6. Structural level flexibility
GN models are more flexible at structural level. The aggregation and
activations functions could be chosen depending on the problem in hand.

5.4 Learning Algorithm of a Summation Type
Generalized Neuron

The following steps are involved in the training of a summation type general-
ized neuron:

1. Foreward calculations
Step-1: The output of the Σ1 part of the summation type generalized
neuron is

OΣ =
1

1 + e−λs∗s net
(5.1)

where s net =
∑

WΣiXi + XoΣ.
Step-2: The output of the π part of the summation type generalized neu-
ron is

OΠ = e−λp∗pi net2 (5.2)

where pi net =
∏

WΠiXi∗XoΠ.
Step-3: The output of the summation type generalized neuron can be
written as

Opk = OΠ ∗ (1 − W ) + OΣ ∗ W (5.3)

2. Reverse calculation
Step-4: After calculating the output of the summation type general-
ized neuron in the forward pass, as in the feed-forward neural network,
it is compared with the desired output to find the error. Using back-
propagation algorithm the summation type GN is trained to minimize
the error. In this step, the output of the single flexible summation type
generalized neuron is compared with the desired output to get error for
the ith set of inputs:

Error Ei = (Y i − Oi) (5.4)

Then, the sum-squared error for convergence of all the patterns is

Ep = 0.5
∑

Ei2 (5.5)

A multiplication factor of 0.5 has been taken to simplify the calculations.
Step-5: Reverse pass for modifying the connection strength.
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(a) Weight associated with the Σ1 and Σ2 part of the summation type
generalized neuron is:

W (k) = W (k − 1) + ∆W (5.6)

where ∆W = ηδk(OΣ − OΠ)Xi + αW (k − 1)
and δk =

∑
(Y i − Oi)

(b) Weights associated with the inputs of the Σ1 part of the summation
type generalized neuron are:

WΣi(k) = WΣi(k − 1) + ∆WΣi (5.7)

where ∆WΣi = ηδΣjXi + αWΣi(k − 1)
and δΣj =

∑
δkW (1 − OΣ) ∗OΣ

(c) Weights associated with the input of the π- part of the summation
type generalized neuron are:

WΠi(k) = WΠi(k − 1) + ∆WΠi (5.8)

where ∆WΠi = ηδΠjXi + αWΠi(k − 1)
and δΠj =

∑
δk(1 − W )∗(−2∗pi net) ∗OΠ

α – momentum factor for better convergence
η – learning rate

Range of these factors is from 0 to 1 and is determined by experience.

Matlab Program for Summation type GN model

% Main Programm for Summation type Generalized neuron (GN)

clear all;

clc;

tr_exor; % training file name (tr_pat.m)

[i_row i_col]=size(x_tr);

patterns=i_row;

% Initialization of GN model

% weight Initialization

w=randn(in,on)*0.1; % Weight of sum part (size [in x on])

wpi=ones(in,on)+randn(in,on)*0.1; % Weight of product part

(size [in x on])

w1=0.6; % weight of sum-sum part

pi_bais=0.05; % bais of product part

s_bais=0.05; % bais of sum part

delta_w1=0.0; % Change in weights for sum-sum part

delta_w=zeros(in,on) % Change in weights for sum part

delta_wpi=zeros(in,o % Change in weights for product part

delta_s_bais=0.0; % Change in bais for sum part

delta_pi_bais=0.0; % Change in bais for sum part

ss_err=0; % sum quared error
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% Network parameters

eta=input(‘Value of Learning rate=’); %learning rate

alpha=input(‘Value of momentum factor=’); % momentum factor

lemda_s=1; % gain scale factor of sigma part

lemda_pi=1; % gain scale factor of pi part

err_tol=0.001; % error tolrence

max_epoch=20000; % maximum number of iterations

disp_itr=max_epoch/100; % Display training results after

so many epochs

x_in_tr=x_tr(:,1:in); % input pattern for training

y_desired=x_tr(:,(in+1):i_col); % Desired output

count1=0;

for epoch=1:max_epoch % Loop or cycle (both forward and

reverse calculation)

for i=1:patterns % Loop for calculating output

for GN model

s_net(i,:)=x_in_tr(i,:)*w+s_bais; % sigma of (xi*wi)

x_wpi=x_in_tr(i,:).*wpi’; % product of (xi*wi)

pi_net(i,:)=pi_bais+prod(x_wpi);

end

s_out=1./(1+exp(-lemda_s*s_net)); % output of sigma part

pi_out=exp(-lemda_pi*(pi_net.^2)); % output of pi part

y_cnn=(w1*s_out+(1-w1)*pi_out); % Final output

% Reverse calculation for adjusting weights and train GN model

% Network error

error=y_desired-y_cnn; % Error of GN model

s_err=(error.^2)./2; % square error

ss_err1=ss_err;

ss_err=sum(s_err); % sum square error

err_dot=ss_err1-ss_err; % change in sum square error

tr_res(epoch,:)=[epoch ss_err err_dot]; % training results

if ss_err<=err_tol; break; end

if count1==disp_itr

ss_err

count1=0;

end

count1=count1+1;

% weight adjustment of sigma-sigma part

delta_w1=eta*error’*(s_out-pi_out)+alpha*delta_w1;

w1=w1+delta_w1;

% weight adjustment of input-sigma part

f_desh=s_out.*(1-s_out);

delta_w=(lemda_s*eta*w1*(error.*f_desh)‘*x_in_tr)’+alpha*delta_w;

w=w+delta_w; % New weights for sum part
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% weight adjustment of input-pi part

fdesh_pi=-2*pi_out.*pi_net;

delta_wpi=lemda_pi*eta*(1-w1)*sum(error.*fdesh_pi.*(pi_net-pi_bais))./

wpi+alpha*delta_wpi;

wpi=wpi+delta_wpi; % New weights for product part

% modify bais of first sigma part

delta_s_bais=lemda_s*eta*w1*error’*f_desh+alpha*delta_s_bais;

s_bais=s_bais+delta_s_bais;

% modify bais of pi part

delta_pi_bais=lemda_pi*eta*(1-w1)*error’*fdesh_pi+alpha*delta_pi_bais;

pi_bais=pi_bais+delta_pi_bais;

end

% Testing of GN model

tst_exor; % Test File name (tst_pat.m)

[x_R x_c]=size(x_tst);

patterns1=x_R;

x_in1=x_tst(:,1:in);

y_desired1=x_tst(:,(in+1):i_col);

for i=1:patterns1

s_net1(i,:)=x_in1(i,:)*w+s_bais; % sigma of (xi*wi)

x_wpi1=x_in1(i,:).*wpi’; % product of (xi*wi)

pi_net1(i,:)=pi_bais+prod(x_wpi1);

end

s_out1=1./(1+exp(-lemda_s*s_net1)); % output of sigma part

pi_out1=exp(-lemda_pi*(pi_net1.^2)); % output of pi part

y_cnn1=(w1*s_out1+(1-w1)*pi_out1); % GN output

err_tst=(y_desired1-y_cnn1); % Error during testing

% plotting of training results

subplot(1,2,1); % Divide the display screen

in 1 row and 2 columns

plot(tr_res(:,1),tr_res(:,2),‘k-’); % plot (x,y)

xlabel(‘Number of Epochs’) ; % Label x-axis

ylabel(‘training ss_err’); % Label y-axis

title(‘Error’); % Title for the graph

subplot(2,2,2)

plot(tr_res(:,1),tr_res(:,3),‘k-’);

axis([0 20000 -0.001 0.001]);

xlabel(‘Number of Epochs’)

ylabel(‘Err_dot’)

title(‘Derivative of Error’)

% plotting of test results

subplot(1,2,2)
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plot(y_desired1,‘k--’);hold on

plot(y_cnn1,‘k-’)

xlabel(‘Number of Output’)

ylabel(‘Generalized Neuron output’)

title(‘GN output during testing’)

subplot(2,2,4)

plot(1:x_R, err_tst,‘k-*’)

xlabel(‘Number of Output’)

ylabel(‘Error during testing’)

title(‘testing Error’)

5.5 Benchmark Testing of Generalized Neuron Model

The generalized neuron model developed must be verified on Benchmark prob-
lems and compared with feed-forward multi-layered ANN under same training
conditions such as same gain scale factor, learning rate, momentum, initial
weights and error function used in back-propagation learning algorithm.

5.5.1 Ex-OR Problem

The multi-layered feed-forward ANNs are trained to produce an output of
one (zero) when binary input has an odd (even) number of bits. The Ex-OR
problem is a classification problem, which is linearly non-separable. It requires
minimum one hidden layer having two neurons for its solution. The input–
output pattern of Ex-OR problem is given in Table 5.4.

It arises in the case of XOR problem, which may be viewed as a special
case of points in the unit hypercube. Each point in the hypercube is class 0
or class 1. However, in the special case of the XOR problem, we need only the
four corners of the unit square that corresponds to the input patterns (0,0),
(0,1), (1,0) and (1,1). The first and third patterns are in class 0 and the input
patterns (0,1) and (1,0) are also at the opposite corners of the square, but are
classified together as output 1.

The use of a single neuron with two inputs results in a straight line for de-
cision boundary in the input space. For all points on one side of the line, the
neuron outputs 1; for all points on the other side of the line, it outputs 0.
The position and orientation of the line in the input space are determined
by the synaptic weights of the neuron connected to the input nodes, and the

Table 5.4. Input–output patterns for Ex-OR problem

Inputs Output

0 0 0
0 1 1
1 0 1
1 1 0
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threshold applied to the neuron. With the input patterns (0,0) and (1,1) lo-
cated on opposite corners of the unit square and likewise for the other two
input patterns (0,1) and (1,0), it is clear that we cannot construct a straight
line for a decision boundary so that (0,0) and (1,1) lie in one decision re-
gion and (0,1) and (1,0) lie in the other decision region. In other words, an
elementary perceptron cannot solve the XOR problem (Minsky and Papert
1969).

We may solve the XOR problem by using a single hidden layer with two
neurons. The signal flow graph is shown in Fig. 5.8 and the decision boundaries
formed in Fig. 5.9. The following assumptions are made here:

• Each neuron is represented by a McCulloch–Pitts model.
• Bits 0 and 1 are represented by 0 and +1.
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Fig. 5.8. XOR problem network

1

1

Input 1 

Input 2 

Fig. 5.9. Boundaries for Ex-OR problem
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The top neuron, labelled 1 in the hidden layer is characterised as follows:

w11 = w12 = +1
θ1 = +1.5

The bottom neuron, labelled 2 in the hidden layer is characterised as follows:

w21 = w22 = +1
θ2 = +0.5

The output neuron, labelled 3 is characterised by:

w13 = −2
w23 = +1
θ3 = +0.5

ANN and GN model both have been trained using gradient descent back-
propagation learning algorithm for 0.001 error tolerance with same training
parameters. The reduction in error during training of ANN and GN Model is
shown in Fig. 5.10 for Ex-or problem. Reduction in error during training is
faster for GNM in comparison to ANN as given in Table 5.5.

The training and testing performance of GNM are shown in Figs. 5.11
and 5.12 for all four input patterns for Ex-or problem. The testing results
in terms of RMS, max and min error of ANN and GNM during testing are
presented in Table 5.6. It is found that during testing GN model is giving
very good performance than ANN as the errors in output shown by them are
considerably less than ANN.
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Fig. 5.10. Training performance of GN model for Ex-OR problem
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Table 5.5. Training performance of ANN and GN Model (GNM) for EX-OR
problem

Models Structure Training epochs

ANN 2-2-1 60,680
GN Model Single neuron 20,435
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Fig. 5.11. Testing performance of GN model for Ex-OR problem
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Table 5.6. Testing performance of ANN and GN model For Ex-OR problem with
5% noise

Models RMS error MAX error MIN error

ANN 0.33673 0.21758 −0.11341
GN Model 0.11671 0.11201 −0.01832

% Training patterns for Ex-OR problem (train pat.m)
% Normalized input output patterns
in=2; % number of inputs (X1 and X2)
on=1; % number of outputs (Y)

% X1 X2 Y
x=[ 0.9 0.9 0.1

0.1 0.9 0.9
0.9 0.1 0.9
0.1 0.1 0.1];

% Normalized testing file (tst pat.m)

% X1 X2 Y
x=[ 0.89 0.9 0.1

0.1 0.9 0.9
0.9 0.1 0.9
0.12 0.1 0.1];

5.5.2 The Mackey-Glass Time Series

The Mackey-Glass (MG) time series is the most common problem to evaluate
a network for its prediction capabilities. The MG series is a model of chaotic
series. The Mackey-Glass equation represents a model for white blood cells
production in leukaemia patients. It mimics the non-linear oscillations in the
physiological processes involved. The Mackey–Glass delay difference equation
is given below

x(t + 1) = 0.9x(t) + [0.2 × (t − τ)/(1 + x10(t − τ))].
The function plot is shown in Fig. 5.13.

The model is complicated due to the addition of a time delay τ in the non-
linear equations. The objective of this analysis is to evaluate the efficiency of
networks to predict future values using a set of past values. The above M-G
equation is implemented with τ = 1.7, x(0) = 1.2, x(t) = 0 for t < 0. A
total of 301 points have been generated from t = 0 to t = 300, all points have
been used for training. The 0th, 6th, 12th, and 18th points have been used to
predict 19th point and so on.

The training results of ANN and GNM are shown in Table 5.7 and Fig. 5.14
for Mackey–Glass problem for error level 0.002. Reduction in error during
training is faster for GN Model in comparison to ANN. GN model is consis-
tently giving good results in training of this time series problem.
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Fig. 5.13. The Mackey-Glass time series

Table 5.7. Training performance of ANN and GN model for Mackey–Glass
problem

Models Structure Training epochs

ANN 4-4-1 13,340
GN model Single neuron 20,083
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Fig. 5.14. Error during training
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Once ANN and GNM are carefully trained for Mackey–Glass Problem,
it has been used for testing. The training and testing performance of ANN
and GNM are shown in Figs. 5.15 and 5.16. The test output of GN model
is nearly coinciding with the actual data for all test patterns. The results in
terms of RMS, max and min errors of ANN and GN Model during testing are
presented in Table 5.8.
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Fig. 5.16. Test results of Mackey–Glass problem during testing
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Table 5.8. Testing performance of ANN and GN model with MACKEY-GLASS
problem

Models Errors (after 200 training epochs)

RMS error MAX error MIN error

ANN 0.17301 0.32675 −0.20943
GN model 0.02101 0.03502 −0.03730

5.5.3 Character Recognition Problem

The GN model is used to distinguish five different characters, A, X, H, B, I.
Each character is represented by 5 × 7 dots. Hence, there are 35 inputs for
each character as shown below:

input=[ 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1

1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0];

The output of GN model is these characters. We can assign some values
to these characters, because Neural system can give only numerical outputs.

A - 0.1
X - 0.3
H - 0.5
B - 0.7
I - 0.9

Let’s train the GN model to recognize these characters. The training file
consists of the set of inputs–ouput data. Here the input has value 0 or 1. For
0 input product part of GN model does not work, therefore it is necessary
to normalize the data in 0.1–0.9 range and present them to GN model for
training. GN model uses the following parameters for training:

Learning rate = 0.1, momentum factor = 0.5, error tolerance = 0.0001 and
maximum epochs = 1,000. The following results are obtained – given error
tolerance level is achieved in 210 epochs (cycles) and weights of size w1(1×1),
w(1 × 35), wpi(1 × 35) are as follows:

w1 = [1.1256];
w = [0.0024 − 0.1337 0.1996 − 0.0314 0.0425 0.1887 − 0.2568 0.3413

−0.5350 0.1317 − 0.1299 − 0.0076 . . .

0.1993 − 0.0968 0.0157 − 0.0183 0.0938 0.4312 0.2867 − 0.1531
−0.0449 − 0.2633 0.1360 − 0.1022 . . .

−0.0940 − 0.0982 − 0.1757 0.4440 − 0.1252 − 0.0573 − 0.2875
0.1390 0.7092 0.1367 − 0.3039];
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wpi = [1.0247 0.8564 1.0149 0.8307 1.0719 1.1142 1.1552 1.1384 0.9242
1.0443 1.0911 0.8926 . . .

1.0202 1.0763 0.8712 0.9047 1.0778 0.9994 1.0524 1.1364 1.0482 0.9213
1.0752 0.9833 . . .

0.9184 1.2094 1.0080 0.9063 1.0636 1.1682 1.0594 1.0790 1.0105 0.9841
1.0871];

The training and testing performance is graphically shown in Figs. 5.17
and 5.18.

For the same given inputs GN output is [0.1005 0.3021 0.4968 0.7040
0.8870].

Now, one bit is changed in every character and then input data is prepared
for testing of GN performance. The GN output for

these set of testing data is [0.0869 0.3221 0.4999 0.7040 0.8737];
and expected output vector is [0.1 0.3 0.5 0.7 0.9].
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Fig. 5.17. Training performance of GN model for character recognition problem

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Output

G
en

er
al

iz
ed

 N
eu

ro
n 

ou
tp

ut

Desired output

GN model output

Fig. 5.18. Testing performance of GN model for character recognition problem
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Table 5.9. The performance comparison of GN model and ANN model

ANN GNN

Network size 35-5-1 (three layer network) 35-1 (Single neuron)
Training cycles 1000 210
Error achieved in training 0.008223 0.0001
Change one bit in each character 0.0120 0.0028

It shows that the GN performance does not detoriate too much if some
noise is present in the testing data set. It means the training patterns are
learned well. What happens if, we present foreign characters to the GN model?
Let us consider the letter M and J, as follows:

Testing = [1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
pattern 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0];

The results should show each foreign character in the category closest to
it. The results obtained from the model is [0.1977 0.8741]. In the first pattern,
M is categorized as A and J is categorized as I as expected.

The performance of GN model is also compared with ANN model and
results are given in Table 5.9.

5.5.4 Sin(X1) ∗ Sin(X2) Problem

This is a functional mapping problem to test the capabilities of GN model
for various types of functions. The mapping of two functions sin(x1) and
sin(x2) on to their product is used here. This is a popular functional mapping
problem Y = sin(x1)∗ sin(x2) as shown in Fig. 5.19. The training data for
sin(x1)∗ sin(x2) problem of the GNM and ANN is given in Table 5.10.

The ANN and GN model have been trained for Sin(x1) ∗ Sin(x2) problem
and training performance of both types of architectures is compared and given
in Table 5.9 and Fig. 5.20.

The testing performance of ANN and GN Model are shown in Fig. 5.21
with 5% noise in the testing data. The test output given by GN Model nearly
coincides with the actual data for all test patterns; however the test output
given by ANN is far away to coincide with actual data. The results in terms of
RMS, max and min errors of ANN and GN Model during testing are presented
in Table 5.11. It is found that during testing GN Model gives very good
performance than ANN as the errors in output shown by it is considerably
less than ANN.

5.5.5 Coding Problem

In this problem the network is presented with n distinct binary input pat-
terns, each with different bit positions and the network is trained to produce a
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Fig. 5.19. The Sin(x1) Sin(x2) problem
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Table 5.10. Training performance of ANN AND GN model for SIN (x1) ∗ SIN (x2)
problem

Models Structure Training epochs

ANN 4-4-4-1 50,870
GN model Single neuron 764
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Fig. 5.20. Training results of GN model
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Fig. 5.21. Testing results of GN model

Table 5.11. Testing performance of ANN and GNM SIN (X1) ∗ SIN (X2) problem

Models Errors (After 10,000 training epochs)
RMS error MAX error MIN error

ANN 0.36632 0.71788 −0.85541
GN model 0.04011 0.04442 −0.06601

particular output value corresponding to each set of bit. The training set
for coding problem is given below in Table 5.12. The training patterns are
normalized in the range 0.1–0.9 and then presented to ANN and GN model for
training. Once the model is trained then it can be used for testing. The training
and testing results are shown in Figs. 5.22–5.23 and Tables 5.13 and 5.14.
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Table 5.12. Training patterns for coding problem

Input pattern Output

1 1 1 1 1.5
1 1 1 0 1.4
1 1 0 1 1.3
1 1 0 0 1.2
1 0 1 1 1.1
1 0 1 0 1.0
1 0 0 1 0.9
1 0 0 0 0.8
0 1 1 1 0.7
0 1 1 0 0.6
0 1 0 1 0.5
0 1 0 0 0.4
0 0 1 1 0.3
0 0 1 0 0.2
0 0 0 1 0.1
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Fig. 5.22. Performance of GN model during training

For the GN model following points are important to discuss:

1. The GN input must be normalized in the appropriate range. Most of the
time 0.1–0.9 normalization range works very well. If the input is slightly
outside to the normalization range then there is a margin of 0.1 on both
sides, so the GN model could give appropriate results. If normalization
range is between 0 and 1, then for 0 inputs the output of product part
of GN model is zero. Hence this normalization range in not suitable for
GN model.

2. Learning rate and momentum factor should be decided in such a way
that GN model learns faster and give stable response. One can start with
very low value of learning rate and higher value of momentum factor. The
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Fig. 5.23. Performance of GN model during testing

Table 5.13. Training performance of ANN and GN model for coding problem

Models Structure Epochs

ANN 4-4-1 38,430
GN model Single neuron 689

Table 5.14. Testing performance of ANN and GN model for coding problem

Model RMS error MAX error MIN error

ANN 0.36543 0.79301 −0.55296
GN model 0.00079 0.0018 −0.00111

typical values are – Learning rate = 0.001 and momentum factor = 0.1 to
start with GN model. Then it could be increased.

3. For better generalization capability of GN model little amount of noise
may be included in the training data (e.g. 0–5%).

D. 3-D Surfaces for different types of neurons

A simple matlab program is written to draw the 3-D error surfaces for
single input single output system for all four type of neurons (i.e. Σ – neuron,
Π – neuron, summation type generalized neuron and product type generalized
neuron) as shown in Fig. 5.24–5.27. It is seen that for the simple Σ – neuron
the error surface is just a inclined plane. Hence, it can never map the non-
linear function. On the other hand, in Π – neuron the 3-D surface is a curved
one and it can handle non-linear problems, but the error surface suddenly
changes. In case for summation or product type generalized neuron the error
surfaces are curved and learn quickly.
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Fig. 5.24. 3-D surface for conventional Σ – neuron
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Fig. 5.25. 3-D surface for conventional Π – neuron
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Fig. 5.26. 3-D surface for summation type GN model

% Matlab program for surface generation for different types
of Neuron Models

clear all;
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Fig. 5.27. 3-D surface for product type GN model

w1=[-1:.1:1]; % Weight varaition in the range -1 to+1.

x=[0:.05:1]; % Input variation from 0 to 1

for i=1:21 % Loop

net_s=x(i)*w1; % Calculating weighted sum for the neuron output

net_pi=x(i)*w1; % Calculating the product of input

and weight

sumout=1./(1+exp(-net_s)); % Output of summation part

piout=exp(-net_pi.^2); % Output of product part

ysum(i,:)=sumout; % Output of summation neuron

ypi(i,:)=piout; % output of product neuron

ySGNM(i,:)=((sumout+piout)./2); % output of summation type

generalized neuron

yPGNM(i,:)=(sqrt(sumout.*piout)); % output of product type

generalized neuron

end

figure(1)

surf(x,w1,1-ysum); % Ploting the 3-D surface

xlabel(‘Input’); ylabel(‘Weight’); zlabel(‘Error’);

title(‘Standard Summation Neuron’);

figure(2)

surf(x,w1,1-ypi); xlabel(‘Input’);ylabel(‘Weight’); zlabel(‘Error’);

title(‘Standard Product Neuron’);

figure(3)

surf(x,w1,1-ySGNM); xlabel(‘Input’);ylabel(‘Weight’); zlabel(‘Error’);

title(‘Summation type Generalized Neuron’);

figure(4)

surf(x,w1,1-yPGNM);

surf(x,w1,1-ySGNM); xlabel(‘Input’);ylabel(‘Weight’); zlabel(‘Error’);

title(‘Product type Generalized Neuron’);
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5.6 Generalization of GN model

There are many GN models proposed based on the flexibility at both the
aggregation and activation function level to cope with the non-linearity in-
volved in the type of applications dealt with. The neuron can use “n” number
of aggregation and “m” number of activation functions. The final output of
the neuron is a function of output of all activation functions as shown in
Fig. 5.28–5.29.
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Fig. 5.28. Generalization of GN model
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5.6.1 GN Model-1

In this model of generalized neuron two aggregation functions (Σ and Π) and
two aggregation functions (Sigmoidal and Gaussian) have been considered.
Finally, the outputs are summed up to get the neuron output. The output of
new neuron can be mathematically written as:

Opk = f1out1 ∗ W1s1 + f1out2 ∗ W1p1 + f2out1 ∗ W1s2 + f2out2 ∗ W1p2
(2.22)

where,

W1p1 = (1 − W1s1),
W1p2 = (1 − W1s2)

Outputs of sigmoid activation functions are

f1out1 =
1

1 + e(−sumsigma∗Wfs1)

f1out2 =
1

1 + e(−product∗Wfp1)

Outputs of Gaussian activation functions are

f2out1 = e−(sumsigma∗Wfs2)2

f2out2 = e−(product∗Wfp2)2

where
Wfs2 = (1 − Wfs1), Wfp2 = (1 − Wfp1)

5.6.2 GN Model-2

In GN model-2 three activation functions sigmoid, Gaussian and straight line
have been tried with two aggregation functions “Σ” and “Π”. The outputs of
functions used in this case of the model are given below.

Outputs of activation function for Σ part are f1out1, f2out1 are same as
in Case-1.

f3out1 = K∗sumsigma, “straight line function”

Output of activation functions for Π part are f1out2, f2out2 are same as in
Case-1.

f3out2 = K∗product ‘straight line function’
K = slope of straight line

Output of the neuron is

Opk = f1out1 ∗ W1s1 + f1out2 ∗ W1p1 + f2out1 ∗ W1s2 + f2out2 ∗ W1p2
+ f3out1 ∗ W1s3 + f3out2 ∗ W1p3 (2.23)
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5.6.3 GN Model-3

In this case of new GN model-3 also three activation functions (sigmoid,
Gaussian and straight line) have been tried with two aggregation functions Σ
and Π. Three output weights (wl1, wl2, wl3) are independent for activation
functions, the other three dependent output weights are taken as given below:

wlp1 = 1 − wls1, wlp2 = 1 − wls2, wlp3 = 1 − wls3.

Output of the neuron is

Opk = f1out1 ∗ W1s1 + f1out2 ∗ (1 − W1s1) + f2out1 ∗ W1s2
+ f2out2 ∗ (1 − W1s2) + f3out1 ∗ W1s3 + f3out2 ∗ (1 − W1s3)

(2.24)

5.6.4 GN Model-4

In this case of new GN model-4 four activation functions namely sigmoid,
Gaussian, straight line and sinusoidal have been tried with two aggregation
functions Σ and Π. Output of the neuron is

Opk = f1out1 ∗ W1s1 + f1out2 ∗ Wlp1 + f2out1 ∗ W1s2 + f2out2 ∗ Wlp2
+ f3out1 ∗ W1s3 + f3out2 ∗ Wlp3 + f4out1 ∗ W1s4 + f4out2 ∗ Wlp4

(2.25)

where W1p1 = (1 − W1s1), W1p2 = (1 − W1s2), W1p3 = (1 −
W1s3), W1p4 = (1 − W1s4)

The above mentioned GN models have been tested for different bench-
marks problems and compared with ANN with the parameters shown in
Table 5.15. The ANN (4-4-4-1) and GNM both have been trained using gradi-
ent descent back-propagation learning algorithm for 0.002 error tolerance with
same training parameters. The results are as given in Tables 5.16 and 5.17.

3-D surfaces for GN models 1–4 are given in Figs. 5.30–5.33.

Table 5.15. Neural network parameters for ANN and GNM

Learning rate – 0.0001
Momentum – 0.9
Gain scale factor – 1.0
Tolerance – 0.002
All initial weights – 0.95
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Table 5.16. Training epochs of ANN AND GN models when 5% noise is included
in data

Problems ANN GNM-1 GNM-2 GNM-3 GNM-4

Ex-OR 150,680 50,435 3,452 7,967 3,470
4-bit parity 255,430 120,423 9,998 26,335 10,122
Mackey-Glass time series 30,340 183 131 150 162
Character recognition 70,945 3,037 2,358 268 241
Sin(x1) Sin(x2) 50,870 764 242 315 229
Coding problem 38,−30 689 7,478 421 223

Table 5.17. Testing performance (rms error) of ANN and GNM For benchmark
problem with 5% noise in testing data

Problems ANN GNM-1 GNM-2 GNM-3 GNM-4

Ex-OR 0.63673 0.48671 0.00261 0.00627 0.00292
4-bit parity 0.46543 0.12257 3.02 × 10−10 1.18 × 10−8 1.09 × 10−9

Mackey-Glass time series 0.27301 0.24426 0.02058 0.02654 0.02426
Character recognition 0.39375 0.13432 0.15084 0.03376 0.03201
Sin(x1) Sin(x2) 0.36632 0.04011 0.01841 0.03941 0.00613
Coding problem 0.36543 0.00079 3.74 × 10−6 9.91 × 10−2 2.21 × 10−12

5.7 Discussion on Benchmark Testing

Training performances of ANN and GN Models during training on vari-
ous benchmark problems are discussed in this chapter. Convergence in GN
model is much faster as compared to ANN. For Ex-OR, 4-bit Parity and
Mackey–Glass problems GN Model-2 requires only 3,452, 9,998 and 131
epochs, however, ANN requires 150,680, 255,430 and 30,340 epochs, respec-
tively, to achieve same tolerance (0.002) in output. In character recognition,
sin (x1)∗ sin (x2) and coding problems GN Model - 4 requires 241, 229 and
223 epochs only, which are much less as compared to epochs 70,945, 50,870
and 38,430 required by ANN to achieve same tolerance level in output.

This shows that GN models have better training performance than feed-
forward commonly used ANN. It is also observed that the performance of GN
model not only depends on type of problem but also depends on type and
number of activation and aggregation functions used. Apart from this, the
above model gives good performance over 5% noise in testing input data as
shown earlier.

In the GN model structural complexity is very less as compared to ANN.
Comparison of structural complexity associated with ANN and GN Model is
represented in Table 5.18. Four layered ANN with 13 neurons and 52 intercon-
nections with 13 number of biases uses for modeling of benchmark problems,
however GN Model - 4 uses only 1 neuron with 24 number of interconnections
and 2 biases. Further, ANN uses 13 activation functions for all its neurons;
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Fig. 5.30. (a) GNM Case-2. (b) Final output surface obtained from GNM-1

however, GN model -4 uses maximum eight activation functions. This shows
that ANN requires more complex structure as compared to GN model to
model a problem.

The computational complexity of ANN and GN models are also repre-
sented in Table 5.19. In one stroke, ANN requires 91 total number of opera-
tions, however GN Model requires only 31 operations as in the GNM case-4.
It means structural complexity as well as computational complexity involved
both are reduced in GN model as compared to ANN. Further, the computation
time required on PC – Pentium III in one stroke is also less, i.e. 125.5 ms in
case of GN model; however it is 808 ms for ANN.
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Fig. 5.31. Final output surface obtained from GNM-2
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Fig. 5.32. (a) GNM Case-3 (b) Final output surface obtained from GNM-3
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Fig. 5.33. (a) GNM-4 (b) Final output surface obtained from GNM-4

Table 5.18. Comparison of network complexity involved in ANN and GNM

Components ANN GN model-1 GN model-2 GN model-3 GN model-4

Number of neurons
used

13 1 1 1 1

Number of layers in
network

4 1 1 1 1

Number of intercon-
nections in network

52 16 20 20 24

Number of biases 13 02 02 02 02
Number of aggrega-
tion functions

13 03 03 03 03

Number of activa-
tion functions used

13 4 6 6 8
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Table 5.19. Comparison of ANN and GN model in one stroke for Mackey–Glass
problem

Operations ANN GN Model-1 GN Model-2 GN Model-3 GN Model-4

No. of summations 13 02 02 02 02
No. of product 52 17 21 21 25
No. of divisions 13 02 02 02 02
No. of exponential
functions computed

13 04 04 04 04

No. of sin functions
computed

− − − − 02

Total number of op-
erations

91 25 29 29 31

Time consumed in
one stroke (ms)

808 116.3 120.3 121.5 125.5

5.8 Summary

1. The training time of neural network models is a function of type and
number of aggregation activation functions used and configuration among
different functions. More number of configurations is possible in GN model
as compared to ANN because of large number of aggregation and activa-
tion functions used, which is helpful to reduce the training time.

2. Among all models GN Model-4 suits best for character recognition,
Sin(x1) ∗ Sin(x2) and coding problems taking minimum training epochs,
however for Ex-OR, Parity–4 and Mackey-Glass time series problem GN
Model-2 requires minimum training epochs to reach same tolerance level.
It shows that GN Model has flexibility to select proper configuration of
itself according to problem in hand.

3. The results reveal that convergence capability of GN Model is very good
for all benchmark problems.

4. The requirement of the total number of neurons and hidden layers is
reduced drastically in case of the GN models.

5. The GN model exhibits much superior property both in terms of conver-
gence time during training as well as prediction error during testing.

6. The performance of generalized neuron model is better compared to ANN
with noisy data also.

7. The structural complexity as well as computational complexity in GN
Model is reduced as compared to ANN.

8. The computation time in seconds has also been reduced in GN Model as
compared to ANN.
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5.9 Exercises

1. Explain various factors on which ANN performance depends
2. Write a matlab program for one hidden layer ANN and study the effect

of variation of hidden neurons.
3. What do you mean by over fitting of neural network? How this problem

may be overcome?
4. Use generalized mean as aggregation function of GN and sigmoidal as

activation function. Write a Matlab programfor this GN and train it with
back-propagation algorithm.

5. Test the above developed GN for benchmark problems.
6. Write a Matlab program for GN training with adaptive backpropagation

learning by varying learning rate and momentum factor.
7. Study the effect of noise on training and testing performance of GN.
8. Write step by step solution for training of GN with Gaussian as aggrega-

tion function.
9. Let us consider a function f(x) = x2∗e−5X

Deteremine 100 training and 25 testing patterns for ANN and GN. Compare
the performance of ANN and GN while training and testing. Also compare
the performance of both if 5% random noise is added in training.
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Applications of Generalized Neuron Models

In the earlier chapter, the development details of GN models have been stud-
ied. GN models have also been tested on benchmark problems. It is found that
the GN models are much better than multilayered ANN in all the benchmark
problems, which encouraged to use for different problems like modeling and
simulation of electrical machines, short term electrical load forecasting and
various control applications.

6.1 Application of GN Models to Electrical Machine
Modeling

Conventional models of rotating electrical machines give satisfactory results
over only certain ranges, as they fail to deal with the non-linear behavior of
the components involved in such systems. The neural network models of these
machines can deal with such problems.

The modeling of DC motor, induction motor and synchronous machine
have been done using artificial neural network with the new neuron mod-
els and the results have been compared with the existing back-propagation
multilayered ANN model. The training data for DC motor, induction motor
and synchronous generator have been generated using system dynamic mod-
els (Chaturvedi 1992, 1994; Chaturvedi and Satsangi 1993) of these machines
using DYNAMO software. The ANN models were trained and tested over a
wide range of data. The models have been developed and implemented. The
results and inferences presented for the following GN models.

6.1.1 GN Models

1. Model-0
In this model both

∑
as well as Π have been taken as the aggregation

functions and the output of these aggregation functions have been passed

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 123–221 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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through the sigmoid and Gaussian functions, respectively. Finally, the
outputs are summed up to get the neuron output. This type of summation
type GN model structure has been shown in Fig. 5.7a. The output of the
neuron can be mathematically written as:

Opk = O∑ ∗W∑ + OΠWΠ (6.1)

2. Model-1
This model is similar to the above mentioned model-0. The only differ-
ence is that in this model the weight associated with the output of the
product aggregation function when passed through the Gaussian function
is (1-W s). Hence the output of the neuron becomes:

Opk = O∑ ∗W∑ + OΠ(1 − W∑ ) (6.2)

The above mentioned neuron model is known as summation type com-
pensatory neurons model, since the outputs of the sigmoid and Gaussian
functions have been added up.

3. Model-2
The neuron model-2 is not a summation neuron model but a product type
compensatory neuron model. The output of the sigmoid and Gaussian
functions have been multiplied after being exponentiated to the powers
W∑ and (1-W∑ ). The output of this product type GN model is in the
form of product as given below and shown in Fig. 5.7b:

Opk = O∑W
∑ ∗OΠ

(1−W
∑

) (6.4)

4. Model-3
This neuron model has a complicated aggregation function which is neither
a summation function nor a product function alone but a summation type
compensatory aggregation function. The output of this neuron model is:

Opk = (O∑ − OΠ − O∑OΠ)∗W∑ − O∑WΠ (6.5)

5. Model-4
This model is similar to the above model but the output of the compen-
satory neuron is in the product form. As given below

Opk = (O∑ − OΠ − O∑OΠ)∗W
∑∗O∑WΠ (6.6)

6. Model-5
This is also a summation type compensatory neuron model, however it
uses the arithmetic and geometric means of the output of sigma and the
product aggregation functions. The neuron output is as follows:

Opk = (O∑ + OΠ)(1 − W∑ )/2 +
√

(O∑OΠ)W∑ (6.7)

7. Model-6
This model is similar to the above mentioned as follows:

Opk = (1/2)(O∑ + OΠ)(1−W
∑

)∗√(O∑OΠ)W∑ (6.8)
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6.1.2 Results

The results for modeling and simulation of induction motor, synchronous and
DC machines using ANN model and GN model-0 to GN model-6 are shown
in Figs. 6.1–6.3. The figures clearly show that the mappings using the new
models are far closer to the actual values as compared to the ordinary back
propagation model. The performance of the proposed neuron models and the
existing model for the simulation of aforesaid rotating electrical machine char-
acteristics with regard to the number of epochs, rms, min and max errors are
summarized in Tables 6.1–6.3, respectively. These simulation results related
with the precise input data (i.e. there is no noise in the input data). The
following inferences can be drawn from these results.

6.1.3 Discussions

The mapping is much closer to the actual values with the GN models as seen
in Figs. 6.1–6.3 which show the speed torque characteristics of induction mo-
tors and armature current characteristics of D.C. Motor. The existing model
deviates from actual values much more than the proposed models. From the
tables it is quite clear that the rms error in GN model mode is minimum as
compared to other models as shown in Tables 6.1–6.3. But for synchronous
machine power angle characteristics the neuron model-4 is best to predict the
results for unforeseen data. For all the above simulation learning rate was 0.4,
momentum scale factor 0.6 and error tolerance was 0.005.

6.1.4 Training Time and Data Required

The training time needed reduces drastically with reduction in the number
of neurons and hidden layers in the proposed models. The time for conver-
gence is lesser for the new models as given in Table 4.3, the number of epochs
required to train an existing summation neuron model for induction motor
characteristics is 1,150 whereas for model-1 number of epochs required are 60.
Model-1 gives consistently good results with respect to the epochs required
in training for DC motor, induction motor, and synchronous machine char-
acteristics. The data required for the training of networks using new neuron
models is nearly half as compared to the existing model.

6.1.5 Fault Tolerant Capabilities

The proposed neuron models are better in terms of fault tolerant capabilities.
The proposed neuron models have been tested with the noisy data (5% noise
is added in the data) and compared with the existing neuron model. The re-
sults obtained for induction motor, synchronous machine, and DC machine
are summarized in Tables 6.4–6.6, respectively. The results obtained for var-
ious rotating electrical machines show that the proposed generalized neuron
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(a) Comparison of GN model 0 and ANN model with actual speed
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(b) Comparison of GN model 1 and model 2 with actual speed
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Fig. 6.1. Simulation results of induction motor using ANN and GN models 0–6
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(c) Comparison of GN model 3 and model 4 with actual speed

(d) Comparison of GN model 5  and model 6 with actual speed 
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Fig. 6.1. (Continued)
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(a) Comparison of ANN model and GN model 0 with actual torque angle

(b) Comparison of GN model 1 and 2 with actual torque angle 
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Fig. 6.2. Simulation results of synchronous machine using ANN and GN models
0–6
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(c) Comparison of GN models 3 and 4 with actual torque angle 
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(d) Comparison of GN model 5 and 6 with actual torque angle 
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Fig. 6.2. (Continued)
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(a) Comparison of GN model 0 and ANN model with armature current
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(b) Comparison of GN model 1 and 2 output with motor armature current 

Ar. Current 

GN model 1 

GN Model 2 

Time (Sec.) -------

 1

0.8

0.6

0.4

0.2

 0

C
u
r
r
e
n
t

0 0.005 0.01 0.015 0.02

Fig. 6.3. Simulation results of DC motor armature current using ANN and GN
models 0–6
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(c) Comparison of GN model 3 and 4 output with motor armature current 
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(d) Comparison of GN model 5 and 6 output with motor armature current

Fig. 6.3. (Continued)



132 6 Applications of Generalized Neuron Models

Table 6.1. Comparison of different GN models for modeling of induction motor
starting characteristics

Models Training epochs Testing error

Rms Min Max

ANN 1150 0.025682 0.000376 0.888082
GN model-0 220 0.019238 0.000222 0.747365
GN model-1 60 0.023029 0.000291 0.952220
GN model-2 117 0.021297 0.001609 0.891138
GN model-3 850 0.012626 0.000543 0.614925
GN model-4 900 0.014925 0.000364 0.630239
GN model-5 200 0.020876 0.000156 0.871928
GN model-6 300 0.019674 0.000086 0.817356

Table 6.2. Comparison of different GN models for modeling of synchronous machine
P-δ characteristics

Models Training epochs Testing error

Rms Min Max

ANN 1800 0.010960 0.000751 0.096844
GN model-0 60 0.003394 0.000311 0.042720
GN model-1 45 0.007196 0.000851 0.096744
GN model-2 50 0.003355 0.000163 0.068143
GN model-3 250 0.002156 0.000052 0.050060
GN model-4 1585 0.002116 0.000146 0.046841
GN model-5 80 0.002814 0.000003 0.060138
GN model-6 295 0.002146 0.000150 0.047878

Table 6.3. Comparison of different GN models for modeling of D.C. Motor Ia –Time
characteristics

Models Training epochs Testing error

Rms Min Max

ANN 515 0.03830 0.031818 0.813412
GN model-0 490 0.066047 0.034573 0.837133
GN model-1 55 0.059934 0.015513 0.712920
GN model-2 90 0.050138 0.030655 0.666004
GN model-3 320 0.047194 0.027005 0.687586
GN model-4 220 0.049158 0.028547 0.708765
GN model-5 170 0.053734 0.034077 0.671988
GN model-6 325 0.062358 0.062358 0.693487

models are also fault tolerant. In case of induction machine the model-3 gives
least rms error during testing when the input set is noisy. Similarly, for syn-
chronous machine and DC machine model-3 and model-5 give least rms error,
respectively.
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Table 6.4. Comparison of different neuron models for predicting induction motor
characteristics (with 5% noise in input data)

Model RMS error MIN. error MAX. error

ANN 0.050128 0.003176 0.088808
GN model-0 0.049461 0.008725 0.075220
GN model-1 0.045468 0.013412 0.071863
GN model-2 0.045618 0.010788 0.078343
GN model-3 0.043670 0.003191 0.070937
GN model-4 0.047334 0.010546 0.097423
GN model-5 0.048881 0.000702 0.106806
GN model-6 0.049498 0.000684 0.098497

Table 6.5. Comparison of different neuron models for predicting synchronous ma-
chine characteristics (with 5% noise in input data)

Model RMS error MIN. error MAX. error

ANN 0.048658 0.003854 0.08474
GN model-0 0.038658 0.002854 0.08474
GN model-1 0.037912 0.001002 0.07591
GN model-2 0.029735 0.001420 0.07381
GN model-3 0.023402 0.004211 0.037016
GN model-4 0.025421 0.001427 0.039361
GN model-5 0.024175 0.000367 0.065905
GN model-6 0.024128 0.002098 0.038062

Table 6.6. Comparison of different neuron models for predicting dc machine char-
acteristics (with 5% noise in input data)

Model RMS error MIN. error MAX. error

ANN 0.087643 0.002818 0.0251999
GN model-0 0.082534 0.001813 0.0251999
GN model-1 0.084161 0.002746 0.0251999
GN model-2 0.082962 0.003718 0.0251999
GN model-3 0.085755 0.002416 0.0251999
GN model-4 0.086641 0.000712 0.0251999
GN model-5 0.082125 0.002726 0.0251999
GN model-6 0.085456 0.000464 0.0251999

6.1.6 Effect of Different Mappings on GN Models

There are four types of mappings generally used as explained in Chap. 4. The
mapping with accurate data and noisy data in training are studied. Both the
mappings are classified as input–output mapping, change in input–output,
input-change in output and change in input and change in output. It is not
possible to predict which mapping will be the best for the given problem.
Suitability of the mapping for a problem in hand cannot be guaranteed until
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Table 6.7. Effects of different mappings on results of DC machine predicted using
GN models and ANN model

Models Epochs for
X-Y (error

0.01)

Epochs for
DX-Y
(error
0.01)

Error for
X-DY

Epochs for
X-DY

Error for
DX-DY

Epochs for
DX-DY

GN model-0 380 7270 0.001 1,090 0.001128 144,698
GN model-1 140 1970 0.001 10 0.001 1,790
GN model-2 159 2333 0.02921 13,605 0.029932 8,644
GN model-3 700 16,950 0.030052 21,600 0.03 29,000
GN model-4 550 8,440 0.029931 7,350 0.0299 10,000
GN model-5 300 3,250 0.001 350 0.001 17,100
GN model-6 1050 2,750 0.029935 3,800 0.02991 6,450
ANN 950 3,600 0.0299932 52,114 0.02966 25,900

Table 6.8. Effects of different mappings on results predicted using GN models and
existing model of induction machine

Models Epochs
for X-Y
(error
0.01)

Error for
DX-Y

Epochs
for

DX-Y

Error for
X-DY

Epochs
for

X-DY

Error for
DX-DY

Epochs
for

DX-DY

GN model-0 130 0.46 6,590 0.09487 62,278 0.048415 52,734
GN model-1 710 0.381368 69,244 0.094923 58,628 0.027967 20,380
GN model-2 429 0.365593 109,461 0.131552 203,299 0.05039 13,728
GN model-3 800 0.50 21,500 0.082394 154,666 0.07 61,964
GN model-4 1,810 0.27948 149,698 0.341024 152,790 0.049549 39,594
GN model-5 400 0.37558 50,014 0.202034 34,614 0.04796 32,400
GN model-6 850 0.201545 56,444 0.084450 59,264 0.050334 22,550
ANN 400 0.097976 46,124 0.080189 69,286 0.034374 151,026

and unless it is trained with different mappings or some sound mathematical
basis is available. Unfortunately the second option is not so easy as it requires
sophisticated mathematical background. In the present work, the effect of
different mappings (without and with noise in data) has been studied for
different neuron models and the results are summerised in Tables 6.7–6.12.
From Table 6.7, it is seen that the least epochs are required (i.e. 10) in training
of d.c. machine characteristics upto error level 0.001 using X-Y mapping with
generalized neuron model-1. But at the time of testing of these models for dc
machine data, it was found that model-0 was the best one. Similarly in the
mapping of induction motor and synchronous motor characteristics without
noise, X–Y mapping using generalized neuron model-0 and mapping using
generalized neuron model-2, respectively, require least training time, to reach
upto the same error level.

In the real life situations it is not possible to get noiseless inputs, but
always the inputs have some noise and that noise may change with time or the
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Table 6.9. Effect of different mappings on training time of synchronous machine
models

Models Epochs for
X-Y (error

0.01)

Epochs for
X-DY

Error for
X-DY

Epochs for
DX-DY

Error for
DX-DY

GN model-0 260 660 0.01 87,214 0.031559
GN model-1 120 145,336 0.025023 62874 0.001
GN model-2 117 168,648 0.026861 65350 0.026579
GN model-3 600 149,376 0.027403 104328 0.031093
GN model-4 540 100,038 0.024880 47294 0.026718
GN model-5 200 114,178 0.025319 53114 0.031767
GN model-6 650 63,614 0.026540 58064 0.030166
ANN 550 35,464 0.025341 33216 0.032361

Table 6.10. Effect of noisy mappings on results predicted using GN models and
existing model of DC machine (with 5% random noise in training data and error
level = 0.01)

Models Epochs
for X-Y

Epochs for
Xnoise-Y

Epochs for
X-Ynoise

Epochs for
Xnoise-Ynoise

GN model-0 380 380 390 380
GN model-1 140 130 130 130
GN model-2 159 163 158 158
GN model-3 700 700 750 700
GN model-4 550 550 570 560
GN model-5 300 300 300 300
GN model-6 1,050 1,000 1,100 1,000
ANN 950 950 1,000 950

Table 6.11. Effect of noisy mappings on results predicted using GN models and
existing model of induction machine (with 5% random noise in training data)

Models Epochs for
X-Y

(error 0.01)

Epochs for
Xnoise-Y

(error 0.01)

Epochs for
X-Ynoise

(error 0.01)

Epochs for
Xnoise-Ynoise
(error 0.01)

GN model-0 130 140 810 790
GN model-1 710 980 810 730
GN model-2 429 755 626 500
GN model-3 800 1,250 1,400 1,200
GN model-4 1810 2,380 2700 2,420
GN model-5 400 800 650 500
GN model-6 850 1,050 1,150 1,050
ANN 400 150 950 900
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Table 6.12. Effect of noisy mappings on results predicted using GN models and
existing model of synchronous machine (with 5% random noise in training data and
error level = 0.01)

Models Epochs for
X-Y

Epochs for
Xnoise-Y

Epochs for
X-Ynoise

Epochs for
Xnoise-Ynoise

GN model-0 260 210 250 230
GN model-1 120 120 120 110
GN model-2 117 120 119 110
GN model-3 600 600 800 650
GN model-4 540 520 2,540 1,430
GN model-5 200 200 200 200
GN model-6 650 650 900 750
ANN 550 550 550 550

magnitude of the input. Therefore these noisy inputs in real systems will give
outputs which are different from the output predicted by generalized neuron
networks. Therefore, it is necessary to study the effect of noise in the input
and the output on the training time and the accuracy of the results predicted
by the different generalized neuron models. In this regard, all the aforesaid
mappings are tried with 5% random noise in the input output and in the
both input and output and the results are given in Tables 6.10–6.12. From
Table 6.10 it can be inferred that the generalized neuron model-1 requires
minimum number of epochs (i.e. 130) for Xnoise-Y, X-Ynoise and Xnoise-
Ynoise mappings for the dc machine problem. For induction motor the model-0
with X-Y mapping and for synchronous machine Xnoise-Ynoise mapping with
models 1 and 2 need least time for training when 5% random noise is mixed
in both input and output, respectively.

6.1.7 Effect of Different Normalizations on GNN Models

As in the earlier Chap. 4, it is seen that the training time and the accuracy
of the predicted result of existing neural networks depend upon the normal-
ization ranges which are used for the inputs. If the normalization ranges are
small then all the inputs are crowded in that range and the output of the
neural network is not significantly different. On the other hand, if the normal-
ization range is very wide, then neural network will clip the output. Hence it
is very essential to study the effect of different normalization ranges on gen-
eralized neural network models. The effect different normalization ranges has
been tried for the GNN models developed for the rotating electrical machines
and the results are tabulated in Tables 6.13–6.15. In case of dc machine −0.9
to 0.9 normalization range needs the least training epochs (40) as given in
Table 6.13. From Table 6.14, it is quite evident that the normalization range
−0.1 to 0.9 with model-5 requires 300 epochs and from Table 6.15, in syn-
chronous machine −0.9 to 0.9 normalization range with model-1 requires least
epochs(only 20 epochs).
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6.1.8 Conclusions

It is observe that the generalized neuron models are superior to the existing
neuron model, in all respects, like lesser number of neurons, lesser number of
weights and hidden layers, lesser training time and fewer training data required
to map complicated functions using artificial neural networks. The models are
tested for rotating electrical machines like dc machines, induction machines
and synchronous machines and the results obtained can be compared as shown
in Tables 6.16–6.18. From these tables, it can be seen that the new neuron

Table 6.16. RMS error while predicting the results of D.C. machine with different
mappings

Model X-Y DX-Y DX-DY X-DY

GN model-0 0.034263 0.036162 0.012260 0.01
GN model-1 0.033124 0.052313 0.015183 0.01133
GN model-2 0.029221 0.054379 0.063174 0.063162
GN model-3 0.035681 0.036397 0.063219 0.063300
GN model-4 0.034431 0.036333 0.063170 0.063177
GN model-5 0.033932 0.045148 0.014938 0.011184
GN model-6 0.034800 0.087006 0.063157 0.063166
ANN 0.034882 0.037734 0.063209 0.06

Table 6.17. RMS error while predicting the results of induction machine with
different mappings

Model X-Y DX-Y DX-DY X-DY

GN model-0 0.073581 0.212051 0.064401 0.084923
GN model-1 0.027614 0.191447 0.047364 0.084945
GN model-2 0.028087 0.202443 0.065865 0.102790
GN model-3 0.028618 0.207573 0.078158 0.170261
GN model-4 0.028348 0.166662 0.065298 0.084272
GN model-5 0.028101 0.187399 0.064304 0.143647
GN model-6 0.028425 0.133099 0.065570 0.08345
ANN 0.028411 0.190616 0.065451 0.101044

Table 6.18. RMS error while predicting the results of synchronous machine with
different mappings

Model X-Y DX-Y DX-DY X-DY

GN model-0 0.049373 0.025401 0.037032 0.092530
GN model-1 0.033758 0.032966 0.06733 0.078089
GN model-2 0.028179 0.034126 0.033965 0.213363
GN model-3 0.020401 0.034515 0.036766 0.020785
GN model-4 0.020595 0.032885 0.034075 0.020839
GN model-5 0.020696 0.033167 0.037167 0.034974
GN model-6 0.020411 0.033906 0.036147 0.020916
ANN 0.043384 0.034190 0.037501 0.032162
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models are very efficient and accurate. The proposed neuron models are also
tested when 5% noise is there in the input data and it is found that the new
neuron models are better in terms of fault tolerant capabilities. The successful
results validate the approach of applying compensatory operators to neural
networks. This approach may be extended to other applications of artificial
intelligence like pattern recognition, financial forecasting, classification tasks,
speech synthesis, and adaptive robotics control and data compression.

6.2 Electrical Load Forecasting Problem

The increase in demand of electrical energy has drawn the attention of power
system engineers towards the reliable operation of power systems. For reliable
operation of integrated power supply systems, a close tracking of electrical
load is required. For the economy of operations, this must be accomplished
over a broad spectrum of time intervals. While for a short range of seconds or
even minutes, the automatic generation control function involving economic
dispatch is used to ensure the matching of the load with economic allocation
among the committed generation sources, the security of supply still depends
on the availability of hot and cold reserves which in turn depend on the total
load demand at any time. Specially for periods of hours and day where wider
variation of loads occur, meeting the demand entails the start up and shut
down of the entire generating unit or interchange of the power with neighbour-
ing systems. For the preparation of the maintenance schedule of the different
units and auxiliaries, it is desirable to know prior to the demand profile of
important nodes of the system for wider length of time. All these necessitate
an accurate forecasting of the load with reasonable degree of accuracy.

The time range, ahead of which the forecast is required, has to be viewed
from the functional areas of planning, operation and management. Depending
on the time range, there are three types of forecasting, e.g. Long term (a few
months to a few years), medium term (one week to few months) and short term
forecasting (a few minutes to a few hours). It can also be classified depending
on the specific need and applicability.

Long term load forecasting (Brown 1983; Gupta 1994) is mainly concern
with the generation expansion planning, transmission and distribution plan-
ning, financial planning, energy exchange policy between organizations, plan-
ning for peaking capacity and maintenance of plants. Medium term forecasting
refers to economic scheduling of various energy sources, inventory control of
coal and liquid fuels, reservoir utilization and water management for irriga-
tion. It also helps in maintaining security constraints and proper planning of
load shedding. Short term load forecasting helps in load management with
on-line dynamic voltage control, load flow studies and exchange of power as
requirement for load frequency control.

There are various methods of electrical load forecasting. Methods of fore-
casting vary from simplest, intuitive and näıve ones to be most sophisticated
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learning system models. Selection of forecasting methods is guided by the
following factors (Basu 1993):

1. Accuracy of forecast. This is a major criterion in selecting a model for
forecasting and affects the operation cost of a system.

2. Data. Pattern, type and length of the data decide the nature of model.
3. Cost of computation. This is very important for short-term load forecast-

ing.
4. Ease of applicability. User must feel at ease to handle the model.
5. Interactive facility. Forecast procedure should be normally automatic and

provision must be kept for intervention through external control.
6. Constant monitoring facility. for adjustments during abnormal load

behaviour.
7. Risk due to load forecasting uncertainty: Operational risk independent of

the load forecasting such as lead-time (Douglas et al. 1998a,b).

6.2.1 Litreture Review

The variation in electrical load of a power system is inherently a stochastic
process. It is influenced by a number of factors. These factors are:

1. Economic factors:
Economic factors such as changes in the farming sector, levels of industrial
activity and economic trends have significant impact on the system load
growth.

2. Time:
Three principal time factors namely seasonal effects, weekly-daily cycle,
legal and religious holidays play an important role in influencing load
patterns.

3. Weather:
Meteorological conditions like temperature, wind, cloud cover and hu-
midity are responsible for significant variations in the load pattern. The
weather sensitive loads are space heaters, air-conditioners and agricultural
motors.

4. Random:
The IEEE load forecasting working group (IEEE committee report 1980,
1981) has published a general philosophy of load forecasting on the eco-
nomic issues in 1980–1981. Some of the older techniques stated in the
literature are general exponential smoothing (Christiaanse 1971), State
Space and Kalman filter (IEEE report 1981), and multiple regression
(Mathewman 1968). Kalman filtering is a state space method. The difficult
aspect of Kalman filtering is the selection of the process and observation
noise. The stochastic time series model was also used by Hagan (1987)
for short term load forecasting. Auto regressive moving average (ARMA)
models have received a great deal of attention in the literature (Galiana
et al. 1974). ARMA models can be used to model stationary processes
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with finite variances. Non-stationary processes can be modeled by dif-
ferencing the original processes. The differencing operation produces an
auto regressive integrated moving average (ARIMA) models. ARMA mod-
els fall into the time series category and can be implemented in state
space formulation. Generally, time series approaches assume that the load
can be decomposed into two components. One is weather dependent and
the other weather independent. Each component is modeled separately
and the sum of these two gives the total load forecast. The behaviour of
weather independent load is mostly represented as a function of time. It
has been observed that above models are acceptable during normal oper-
ating conditions. However, improvement is needed in the forecast during
vast and rapidly changing weather conditions (Sharma and Mahalanabis
1974; Peng et al. 1992; Douglas et al. 1998a). Rajurkar and Nissen (1985)
introduced stochastic modelling and analysis methodology called data-
dependent systems (DDS) for short time load forecasting (STLF), while
Goh and Ong refined the approach through stochastic time series analysis
so that with routinely available data from a number of key substations,
the substation demand patterns are separately characterized. Jenq-Neng
Hwang and Seokyong Moon (1991) discussed a power load forecasting
system based on a temporal difference (TD) method.

On the other hand, heuristic approaches like expert Systems, artificial
neural networks and fuzzy systems are also being used for load forecasting
purpose. Also Rahaman and Batnagar (1988), Ho (1990), and Rahaman and
Hazim (1993), Rahaman and Shrestha (1993) have proposed knowledge based
expert system. Further, in 1991–192 Park (1991) and Peng (1992) used ar-
tificial neural network (ANN) for short term load forecasting model. The
model suggested by Peng does not consider the weather dependency of the
load. Kalra (1995) improved the ANN model by incorporating the weather de-
pendent variables to predict the better results. On-line ANN model for short
term load forecasting for a feeder load was suggested by Khincha and Krishnan
(1996). One drawback of the ANN model is the large training time required for
model development. To reduce the training time Drezga and Rahaman (1997)
proposed input variable selection technique for ANN based load-forecasting
model. It was also felt that in the model development using ANN, one needs
accurate and sufficient data, but in short term load forecasting it is very dif-
ficult, or sometimes impossible, to obtain accurate and sufficient data, which
are related with weather. Hence, it was proposed by Dash et al. (1997) a real
time load forecaster using functional link neural network incorporating the
non-linearity due to temperature variation.

Over the past few years, the artificial neural networks (ANN) have re-
ceived a great deal of attention and are now being proposed as a powerful
computational tool (Patterson 1995; Al-Shakararchi and Ghulaim 2000;
Krunic and Rajakovik 2000; Sinha 2000; Shantiswarup and Satish 2002;
Osowski and Siwek 2002). They have been successfully applied in pat-
tern recognition classification and non-linear control problems. It has been
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demonstrated that multi-layered feed-forward back-propagation ANNs are
universal approximators and they are able to approximate any nonlinear
continuous function upto the desired level of accuracy. Efforts have also been
made to improve accuracy of short-term load forecasting using the ANN tech-
nique by introducing the fuzzy concepts by Dash et al. (1993). Mandal and
Agarwal (1997) has developed a Fuzzy – Neural Network for Short Term Load
Forecasting considering the Network Security. In that paper, ANN creates
non-linear relationship between fuzzy inputs and outputs. Daneshdoost et al.
(1998) used fuzzy set technique for hourly data classification into various
classes of weather conditions and then ANN model was developed. Hong Tzer
Yang and Huang (1998) developed self-organizing fuzzy ARMAX model for
forecasting hourly load. Chow et al. (1998) used fuzzy multi-objective decision-
making approach for land use based spatial load forecasting. Further, Douglas
et al. (1998a,b) considered the effect of weather forecast uncertainty in the
short term load forecasting. Papadakis et al. (1998) forecasted the demand
using fuzzy neural network approach on the basis of maximum and minimum
load of the day. Drezga and Rahaman (1999) developed a local ANN load
predictor by active selection of training data employing K-nearest neighbour
concept. Nazarko and Zalewski (1999) used fuzzy regression approach for
forecasting the peak load for 15 min ahead in distribution system.

Dillon et al. (1991), Ishibashi et al. (1992) and T. Matsumoto et al. (1993)
presented a method of short term load forecasting using artificial neural net-
works. Azzam-ul-Asar, McDonald and Khan investigated in 1992 the effec-
tiveness of an ANN approach to short-term load forecasting in power systems.
Examples demonstrate the learning ability of an ANN in predicting the peak
load of the day by using different preprocessing approaches and by exploiting
different input patterns to observe the possible correlation between histori-
cal load and temperatures. In 1993, Li Guangxi and Xiong Manli presented a
method of changing a topological ANN to forecast the load of a power system.
The model is almost an all-round reflection of various factors, which affect the
changing of load. Papalexopoulos et al. (1994) presented an ANN based model
for the calculation of next day’s load forecasts. The most significant aspects
of the model fall into the following two areas: training process and selection
of the input variables. At the same time Lee et al. (1993) presented a diago-
nal recurrent ANN with an adaptive learning rate. In 1993, S.D. Chaudhary,
P.K. Kalra, S.C. Srivastava & D.M.V. Kumar (1993) presented a fast and
accurate method of STLF using combinations of self-organising maps (SOM)
and multi-layer perception model. The SOM recognizes the type of day ex-
amining the variation of load which, along with the past load, temperature,
humidity, etc. Peng et al. (1993) used a linear adaptive neuron or adaptive
linear combiner called Adaline for STLF. Hence, it is very clear that ANN is
gaining momentum in load forecasting due to various reasons like ability to
cope up with non-linearity, adaptivity, intelligent and simplicity. Chaturvedi
et al. (2001) used the generalized neural network (GNN) approach for elec-
trical STLF problem to overcome the problem of ANN. The performance of
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Table 6.19. Features of conventional and ANN approach for short-term load fore-
casting

Features Time-series
method

Regression
analysis

ANN

Load information Required Required Required
Weather information Not required Required Not

necessarily
required

Functional relationship
between load and weather
information

Required Required Not required

Complex mathematical
calculations

Required Required Not required

Time required in prediction More More Less
Adaptability Less Less More

GN model has been again improved using (Xi + Wi)n instead of weighted
input (Xi∗Wi), so that a closed surface may be generated depending on the
requirements, by selecting the proper value of n.

The above discussion shows that artificial neural networks (ANN) offer a
reasonable alternative to the classical methods of load forecasting. As far as
the question of load forecasting is concerned, the main concern is to improve
the accuracy of forecasting as given in Table 6.19.

6.2.2 Short Term Load Forecasting Using Generalized Neuron
Model

The implementation of GN model based forecasting consists of two phases:

i. Model development phase. Development of the GN Model with its learning
and testing – this is an offline process; and

ii. Model testing phase. The online process in which the trained GN Model
developed in phase (1) is used for forecasting the load in daily operations.
The suitable number of past data (load history) is provided to train the
GN model for better predictions. Once the training is over then GN model
is validated and tested for little new data.

6.2.2.1 Model Development Phase

The model development using artificial neural network consists of the following
important considerations as shown in Fig. 6.4:

a. Data preparation
b. Selection of neural network structure
c. Selection of proper training algorithm
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Pre
Processing of

data
ANN model 

Post
processing of

data

Training
Algorithm

Σ

−

+     Desired  output 

Fig. 6.4. Block diagram for model development using ANN

The data preparation consists of selection of input and output variables,
collection of accurate and sufficient training data, and decision of proper nor-
malization range for input, output data.

Selection of Input Variables

The most important work in developing an ANN or GN model based load
forecasting model is the selection of input variables. The system load depends
on several factors, such as weather, type of day, load of previous day at same
hour, social and other activities, etc. The objective of neural network based
forecaster is to recognize these factors and forecast the load accordingly. There
is no general rule that can be followed in the selection of input variables. It
largely depends on engineering judgment and experience. For solving a short-
term load-forecasting problem, all of these inputs are not needed at the same
time. Depending on the forecast to be made whether daily or hourly, the
choice of input variable changes. For daily load forecasting, the time input
variables like temperature, humidity, wind speed, etc. are required along with
past load data. However, for hourly load forecasting, the past load data is
generally sufficient as input variable. Using auto-correlation factor it has been
found in the literature [56] that the hourly load has a very high correlation
with the load of previous same day type at same hour and the load of previous
weekdays at same hour. Therefore, for modeling and simulation of short-term
load forecast problem using ANN and GN model the following four inputs are
considered to get one output of next hour load as given in Table 6.20.

a. Load of previous day (of the same day type) at same hour and
b. Same hour load of three previous weeks on the same day are used.

Normalization of Input and Output Data

The input and output variables for the neural network may have very different
ranges if actual hourly load data is directly used. This may cause convergence
problem during the learning process. To avoid this, the input and output load
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Table 6.20. Number of inputs for ANN/GN model

Input 1 – Electrical demand of first last Monday (say), at time (t)
Input 2 – Electrical demand of second last Monday at time (t)
Input 3 – Electrical demand of third last Monday at time (t)
Input 4 – Electrical demand of previous day at time (t)
Output – Electrical demand of fourth Monday at time (t)

Where (t) is the time for forecasting

data are scaled such that they remain within the range (0.1–0.9). The lower
limit is 0.1, so that during testing it could not go far beyond lower extreme
limit, which is 0. Similarly, the upper limit is taken as 0.9, so that the data
could go upto upper extreme limit, which is 1.0, in testing. These margins of
0.1 on both sides (i.e. upper and lower) are called safe margins. The actual
load is scaled using the following expression for short-term load forecasting
problem:

Ls =
(Y max−Y min)
(Lmax−Lmin)

∗ (L − Lmin) + Y min (6.9)

where

L = The actual load, MW
Ls = The scaled load which is used as input to the net
Lmax = the maximum load
Lmin = the minimum load
Ymax = Upper limit (0.9) of normalization range
Ymin = Lower limit (0.1) of normalization range

Selection of Neural Network Structure

The structure of artificial neural network is decided by selecting the number
of hidden layers and number of neurons in hidden layer, input neurons, out-
put neurons. Hidden layers in ANN structure create decision boundaries for
the outputs. Larger the number of hidden layers (upto three), larger is the
capability to create complex decision boundaries for the outputs of non-linear
problems (Lee et al. 1993). Here, structure of ANN having three hidden layers
is selected for the short-term load-forecasting problem. The number of input
neurons is fixed with the number of input scalars in the input vector. Since, for
this short-term load forecasting problem, four input vectors (variables) have
been selected, therefore number of input neurons is taken four. Similarly, num-
ber of neurons in the output layers is equal to number of output scalars, so
number of neuron selected in output layer is one for this problem. Regarding
selection of number of neurons in a hidden layer, it has been found that with
too few neurons in a hidden layer, the network is unable to create complex
decision boundaries and so it will create difficulties in convergence during
training (Sinha et al. 2000). Therefore, four neurons in each hidden layer have
been taken, which are equal to input neurons. The selected structure of ANN
is shown in Fig. 6.5.
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Fig. 6.5. Four-layer structure of ANN used in short-term load forecasting

Selection of Proper Training Algorithm

The training or learning algorithm, which is commonly used for feed-forward
ANN, is gradient descent back-propagation algorithm. It is a popular learning
algorithm for multi-layered ANN mainly because of its computation simplic-
ity, ease in implementation and good results generally obtained for large num-
ber of problems in many different areas of application. The gradient descent
back-propagation algorithm adjusts the connection weights between different
neurons in proportion to the difference between the desired and computed val-
ues of each layer in ANN structure. Addition of momentum term improves the
stability of the process. The weight adjustment equation of back propagation
algorithm is given by

Wnew = Wold + ∆W, (6.10)

where,

∆W (k) = −η ∗ ∂Ess

∂W
+ α ∗ ∆W (k − 1)

η = learning rate,
α = momentum coefficient and
Ess = error function used.

The learning rate η and momentum α have very significant effect on learn-
ing speed of the back propagation algorithm. Large value of η results in faster
convergence but subjects to network oscillations. Where a small value of η
stabilizes the process but results in slower convergence. Similarly for higher
values of momentum coefficient α connection weights are updated in correct
direction and improve the convergence.

The performance of gradient descent back propagation algorithm also de-
pends on error function used. The sum-squared error function is the most
popular error function used in back propagation learning algorithm because
of its computation simplicity, it is being used here for the short-term load-
forecasting problem.
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6.2.3 Training of ANN and GN Model

The short-term demand of Gujarat State Electricity Board has been collected
and arranged in a proper format and normalized in the range of 0.1–0.9 as
shown in Table 6.21.

The parameters have been taken for GN model and commonly used ANN
are given in Table 6.22.

The proposed GN model and conventional ANN, with three hidden layers,
have been trained using the back propagation learning algorithm for the data
given in Table 6.22 with the goodness of fit represented by tolerable mean
squared error equal to 0.002. Training performance of ANN and GN model are
shown in Figs. 6.6a–6.11a graphically. The comparison of training and testing

Table 6.21. Normalized training data for ANN And GN model

Input 1 Input 2 Input 3 Input 4 Desired output

0.2690 0.1389 0.1461 0.1000 0.2201
0.1883 0.1768 0.1461 0.1068 0.1745
0.1526 0.1676 0.1154 0.1192 0.1248
0.1000 0.1000 0.1398 0.1733 0.1580
0.1019 0.1891 0.1000 0.1372 0.1000
0.2512 0.3622 0.2600 0.3133 0.3567
0.5845 0.6982 0.5178 0.7172 0.6320
0.8117 0.8068 0.4431 0.8425 0.6889
0.8343 0.8580 0.6142 0.8312 0.7965
0.8624 0.8283 0.7484 0.8300 0.8617
0.8709 0.7720 0.7603 0.7804 0.8700
0.7657 0.6460 0.6743 0.7375 0.7375
0.5620 0.4544 0.5576 0.5310 0.4829
0.7000 0.4636 0.6610 0.7398 0.5067
0.7150 0.5446 0.7016 0.7262 0.6019
0.7310 0.6091 0.7672 0.7702 0.6692
0.7451 0.6265 0.7421 0.7003 0.6485
0.8042 0.6449 0.7400 0.7567 0.7799
0.9000 0.8416 0.8420 0.8571 0.7965
0.8606 0.9000 0.9000 0.9000 0.8876
0.8192 0.7709 0.8497 0.8898 0.9000
0.6277 0.6306 0.7728 0.6924 0.7189
0.4962 0.5425 0.6890 0.6958 0.7220
0.3488 0.4370 0.5493 0.4870 0.5305

Table 6.22. Learning parameters

Learning rate – 0.0001
Momentum – 0.9
Gain scale factor – 1.0
Tolerance – 0.002
All initial weights – 0.95
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Fig. 6.6. Training and testing performance curves of ANN

Fig. 6.7. Training and testing performance curves of GN Model-1
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Fig. 6.8. Training and testing performance curves of GN Model-2

Fig. 6.9. Training and testing performance curves of GN Model-3



152 6 Applications of Generalized Neuron Models

Fig. 6.10. Training and testing performance curves of GN Model-4

Table 6.23. Comparison of training performance of ANN and GN model for short
term load forecasting problem (mean squared error tolerance = 0.002)

Models Structure Number of epochs

Existing ANN 4-4-4-1 Above 50,000
GNM-1 Single neuron 722
GNM-2 Single neuron 152
GNM-3 Single neuron 168
GNM-4 Single neuron 202

performance of GN Model and commonly used ANN in terms of training
epochs required to train the models upto desired tolerable error is given in
Table 6.23.

6.2.4 Testing of ANN and GNM

The test results of ANN and GN model are shown graphically in Figs. 6.6b–
6.11b. Table 6.24 represents actual output, and predicted output of ANN and
GN model. Prediction errors are shown in Table 6.25. The comparison of
testing performance of ANN and GN Models in terms of RMS, maximum and
minimum errors are shown in Table 6.26.
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Table 6.24. Actual and predicted outputs by ANN and GN models (epochs =
5, 000, learning rate = 0.0001, momentum = 0.9, for all models)

Actual ANN GNM GNM GNM GNM
output (4-4-4-1)a case-1 case-2 case-3 case-4

(1)a (1)a (1)a (1)a

0.2201 0.2231 0.1721 0.1667 0.1572 0.1490
0.1745 0.2063 0.1687 0.1574 0.1702 0.1703
0.1248 0.2203 0.1567 0.1355 0.1607 0.1560
0.1580 0.1448 0.1496 0.1140 0.1554 0.1377
0.1000 0.2155 0.1539 0.1281 0.1667 0.1643
0.3567 0.5183 0.3042 0.3452 0.3177 0.3367
0.6320 0.9184 0.6444 0.6593 0.6498 0.6598
0.6889 0.8928 0.7321 0.7356 0.7080 0.7030
0.7965 0.8962 0.7876 0.7817 0.7887 0.7900
0.8617 0.8398 0.8159 0.8054 0.8240 0.8232
0.8700 0.8033 0.7945 0.7862 0.7907 0.7927
0.7375 0.7447 0.7109 0.7128 0.6919 0.6923
0.4829 0.5860 0.5311 0.5685 0.5113 0.5235
0.5067 0.6200 0.6454 0.6560 0.6084 0.5939
0.6019 0.6392 0.6774 0.6826 0.6540 0.6490
0.6692 0.6448 0.7254 0.7201 0.7172 0.7121
0.6485 0.6611 0.7089 0.7098 0.6972 0.7024
0.7799 0.7070 0.7389 0.7350 0.7208 0.7182
0.7965 0.8161 0.8528 0.8401 0.8710 0.8667
0.8876 0.8155 0.8816 0.8673 0.9268 0.9214
0.9000 0.7677 0.8310 0.8134 0.8505 0.8389
0.7189 0.5581 0.6926 0.6928 0.7054 0.7154
0.7220 0.5900 0.6215 0.6329 0.6362 0.6407
0.5305 0.3291 0.4672 0.5067 0.4861 0.5071
aStructure of different models.

The fault tolerant capabilities of neural networks are generally tested with
noisy data. The performance of ANN and GN model are tested with noisy
data and the results are as shown in Table 6.27.

6.2.5 Discussion on Training and Testing Results

The training results of ANN and GN Models have been shown in Figs. 6.6a–
6.10a graphically, for short-term load forecasting problem. As shown in
Fig. 6.6a, during training of ANN, the reduction in error upto 400 epochs
is faster, but after 600 epochs the reduction in the error is too slow that it
could not achieve the required error (tolerance) level of 0.002 even in 50,000
training epochs as indicated in Table 6.23. The training epochs taken by vari-
ous cases of GNM to achieve output error (tolerance) level of 0.002 are shown
in Table 6.23. The required training epochs (722, 152, 168, 202) to achieve
the above tolerance level are much less as in all cases of GNM as compared
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Table 6.25. Prediction error of ANN And GNM

ANN GNM case-1 GNM case-2 GNM case-3 GNM case-4

−0.0031 0.0480 0.0534 0.0629 0.0710
−0.0318 0.0058 0.0171 0.0043 0.0043
−0.0955 −0.0319 −0.0106 −0.0359 −0.0312

0.0132 0.0084 0.0439 0.0026 0.0202
−0.1155 −0.0539 −0.0281 −0.0667 −0.0643
−0.1616 0.0525 0.0115 0.0389 0.0199
−0.2865 −0.0124 −0.0273 −0.0179 −0.0279
−0.2039 −0.0432 −0.0467 −0.0191 −0.0141
−0.0996 0.0089 0.0148 0.0078 0.0065

0.0219 0.0458 0.0563 0.0377 0.0385
0.0667 0.0755 0.0838 0.0793 0.0773

−0.0072 0.0267 0.0247 0.0456 0.0453
−0.1031 −0.0482 −0.0856 −0.0284 −0.0406
−0.1132 −0.1387 −0.0963 −0.0988 −0.0992
−0.0373 −0.0755 −0.0806 −0.0520 −0.0470

0.0244 −0.0562 −0.0509 −0.0480 −0.0429
−0.0126 −0.0604 −0.0613 −0.0487 −0.0539

0.0729 0.0410 0.0450 0.0591 0.0618
−0.0196 −0.0563 −0.0436 −0.0745 −0.0701

0.0720 0.0060 0.0203 −0.0393 −0.0338
0.1323 0.0690 0.0866 0.0495 0.0611
0.1608 0.0263 0.0261 0.0135 0.0035
0.1320 0.1009 0.0891 0.0858 0.0903
0.2014 0.0633 0.0238 0.0444 0.0235

Table 6.26. Testing performance of ANN and GNM For short term load forecasting
problem without noise in testing data (after 5,000 epochs)

Model RMS error MAX error MIN error

ANN 0.1166 0.2014 −0.2865
GNM case-1 0.0671 0.1009 −0.1387
GNM case-2 0.0426 0.0891 −0.0963
GNM case-3 0.0494 0.0858 −0.0988
GNM case-4 0.0525 0.0903 −0.0992

Table 6.27. Testing performance of ANN and GNM for short term load forecasting
problem with 5% noise in testing data (after 5,000 epochs)

Model RMS error MAX error MIN error

Existing ANN 0.1223 0.2490 −0.2756
GNM case-1 0.0696 0.1519 −0.1545
GNM case-2 0.0448 0.0819 −0.0923
GNM case-3 0.0500 0.0901 −0.0997
GNM case-4 0.0596 0.0940 −0.1052
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to ANN. Among all GN Models, the GN Model-2 shows fastest convergence
of error requiring only 152 training epochs to achieve same level of tolerance
0.002. It shows much faster convergence of GN Model for the short-term load
forecasting problem as compared to ANN.

The testing results of ANN and GN Model have been shown in Figs. 6.6b–
6.10b graphically, for the short-term load forecasting problem. The closeness
between actual and predicted output (load) curves in all cases of GN Model
is more as compared to ANN. Among all cases of GN Model, the closeness
between actual and predicted output curves is maximum in GN Model-2,
this fact is supported by outputs predicted by ANN and GN Model given in
Table 6.24. The error in output for ANN and GN Model is shown in Table 6.25.
The rms, maximum and minimum errors during testing (without noise) of
ANN and GN Model for the load forecasting problem are shown in Table 6.26.
These errors are less in case of GN Model as compared to ANN. Among all
cases of GN Model, the GN Model-2 shows minimum testing errors. The ANN
and GN Model are also tested for 5% noisy data, the testing errors for noisy
data are given in Table 6.27. GN Model performs better on noisy data also
as the errors shown in the Table 6.27 are less than the errors given by ANN.
Here also, the GN Model-2 performs best among all cases showing minimum
testing errors for noisy data.

6.3 Load Frequency Control Problem

In power system both active and reactive power are never steady, and they
continuously change with the rising and falling trends. Steam input to steam
turbine of turbo generator (or water input to hydro turbine of hydro gener-
ators) must therefore be continuously regulated to match the active power
demand, failing which machine speed will vary with consequent change in fre-
quency, which may be highly undesirable. Change in frequency causes change
in speed of the consumer’s plant affecting production process. Maximum per-
missible change in frequency is ±0.5Hz. Also the excitation of generators
must be continuously regulated to match the reactive power demand with the
reactive generation, otherwise the voltages at various systems buses may go
beyond the prescribed limits. In modern age large interconnected systems,
manual regulations are not feasible and therefore automatic generation and
voltage regulation equipment is installed on each generator. The controllers
are set for particular operating conditions and take care of small changes in
load demand without frequency and voltage exceeding the prescribed limits.
With the passage of time, as the change in load demand becomes large, the
controllers must be reset either manually or automatically.

It is known that for small changes active power is dependent on internal
machine angles (power angle) δ and is independent of bus voltage V: while bus
voltages are dependent on machine excitation (i.e. on reactive generation Q)
and is independent of machine angle δ. Change in δ is caused by momentary
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change in generators speed. Therefore, load frequency and excitation voltage
controls are non-interactive for small changes and can be modelled and an-
alyzed independently. Further more, excitation voltage control is fast acting
in which the major time constant encountered is that of the generator field;
while the power frequency control is slow acting with the major time constant
contributed by the turbine and the generator moment of inertia – this time
constant is much larger than that of generator field. Thus, the transients in
excitation voltage control vanish much faster and do not affect the dynamics
of power frequency control.

Changes in load demand can be identified as:

1. Slow varying changes in mean demand, and
2. Fast random variations around the mean.

The regulators must be designed to be insensitive to fast random changes;
otherwise the system will be prone to hunting, resulting in excessive wear and
tear of rotating machines and control equipment.

6.3.1 Need of Load Frequency Control

It is important to maintain (Zeynelgil et al. 2002) frequency constant in the
integrating power systems. The variations on the frequency cause some prob-
lems as mentioned below:

1. Most of a.c. motors run at speeds that are directly related to the frequency.
The speed, induced electromotive force may vary because of the change
in frequency of the power system.

2. When a system operates at frequencies below 49.5 Hz, turbines/rotors
undergo excessive vibration in certain turbine rotors states which results
in metal fatigue and blade failures.

3. A large number of electrically operated clocks are used. If frequency
changes, then operation of these clocks is affected.

4. The turbine regulated devices fully open when the frequency falls below
49 Hz; this situation causes the extra loadings on the generators. The
decrease in frequency may cause a reduction in the equipment efficiency.

5. The change in frequency can cause maloperation of power converters by
producing harmonics.

To study the load frequency control the excitation control influence on the
system performance can be ignored for the following reasons:

1. For small change it may safely be assumed that change in real power
only causes change in load angle. That’s why the vibrations in the load
angle cause momentarily change in generation speed. This means that the
generator has been supplied with sufficient reactive power to maintain the
voltage constant at the terminals.
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2. The time constants involved in the load frequency are turbines inertia
of the generators. Hence these time constants are much larger as compared
to the excitation system time constants. Therefore, it is fair to assume that
the transient of the excitation system will vanish much faster than the
transient of load frequency control system and doesn’t affect the response
of the load frequency control systems.

The load frequency control is based on an error signal called area controlled
error (ACE) which is linear combination of net interchange and frequency
error. The conventional controls strategy used in industries is to take the
integral of ACE as the control signal. It has been found that the use of ACE
is to calculate the control signal reduces the frequency and tie line power
errors to zero in steady state; but the transient response is not satisfactory.

The linear decentralized load frequency control using pole-placement lin-
ear control theory has been investigated to improve the transient response.
However the realization of such controllers is difficult and expensive because
the feedback portion of the above controller is a function of complete state
vector of the system. Generally, all the state variables are not achievable.
Even if state estimation techniques are used to estimate the inescapable state
variables the data needs to be transferred over long distance. This involves
additional cost of telemeter.

The third type controller called “variable structure system” (VSS) con-
troller has been used by some of the investigators. This controller algorithm
requires only two measurable variables for example frequency deviation and
tie-line power deviation. This controller is tactically as simple as that of
conventional controller and can be implemented with very little additional
cost. However, the VSS controller needs the switching strategy which may not
be simple for large and complex system. To select the best controller algorithm
the requirement must be known. These requirements are discussed below.

6.3.2 Requirements for Selecting Controller Strategy

The following requirements must be satisfied (Jaleey et al. 1990):

1. Control loop must be characterized by sufficient degree of stability.
2. Following a step load change, the frequency error should return to zero.

This is referring to as isochronous control. The magnitude of transient
frequency deviation must be minimized or in other words frequency should
not exceed ±0.02Hz.

3. The static change in the tie line power flow following a step load change
either area must be zero.

4. The integral of the frequency error should be minimized so that accuracy
of synchronous clocks is minimized. The time error should not exceed ±3 s.
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6.3.3 Modelling of Thermal Power Plant (Single Area System):

Let us consider the problem of controlling the power output of the generator of
a closely-knit area so as to maintain the schedule frequency. All the generators
in such area constitute a coherent group so that the generators speed up and
slow down together maintaining their relative power angles. Such an area is
defined as control area.

The boundaries of control area will generally coincide with that of an
individual electricity board.

To understand a load frequency control problem, let us consider a single
turbo generator system supplying an isolated load. Figures 6.11 and 6.12 show
schematically the speed governing system of a steam turbine. The system
consists of the following components:

1. Fly ball speed governor. This is the heart of the system, which senses the
change in speed (frequency). As the speed increases the fly ball moves
outwards and point B on the linkage mechanism moves downwards. The
reverse happens when the speed decreases.

2. Hydraulic amplifier. It comprises a pilot valve and main piston arrange-
ment. Low power level pilot valve movement is converted into high power
valve movement. This is necessary in order to open nor close the steam
valve against high-pressure steam.

Excitation
Controller

Generator Turbine 

Steam
Valve
controller

Voltage
Sensor and
comparator

Frequency
Sensor and
comparator

Pref 
P+jQ 

Fig. 6.11. Block diagram of load frequency and excitation voltage regulation
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Fig. 6.12. Functional diagram of single area system

3. Linkage mechanism. ABC is a rigid link pivoted at B and CDE is another
rigid link pivoted at D. This link mechanism provides a movement to
control valve in proportion to change in speed. It also provides a feed
back from the steam valve movement (link4).

4. Speed changer. It provides a steady state power output setting for the
turbine. Its downward movement opens the upper pilot valve so that more
steam is admitted to the turbine under steady conditions (hence more
steady power output). The reverse is true for upward movement of speed
changer.

6.3.3.1 Model of Speed Governing System

Assume the system is initially operating under steady conditions – the linkage
mechanism stationary and pilot valve closed, steam valve opened by a definite
magnitude, turbine running at constant speed with turbine output balancing
the generator load. Let the operating conditions be characterized by

f0 = system frequency
pg = generator output = turbine output (neglecting generator losses)
Ye = steam valve setting.

We shall obtain a linear incremental model around these operating con-
ditions. Let a point A on the linkage mechanism be moved downwards by a
small amount ∆ya. It is a command which causes the turbine power output
to change and can therefore can be written as

∆ya = Kc∆Pc (6.11)

where ∆Pc is the commanded increase in power.
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The command signal ∆Pc (i.e. ∆Ye) sets into a sequence of events – the
pilot valve moves upwards, high pressure oil flows on to the top of the main
piston moving it downwards; the steam valve opening consequently increases,
the turbine generator speed increases, i.e. the frequency goes up. Let us model
these events mathematically.

The two factors contribute to the movement of C:

1. ∆ya contributes −(i2/i1)∆ya or −k1∆ya (i.e. upwards) or −k1kc∆Pc.
2. Increase in frequency ∆f causes the fly balls to move outwards so that

B moves downwards by a proportional amount k2′∆f. The consequent
movement if C with a remaining fixed at ∆ya is +(i1 + i2/i1)K2

′DF =
K2

′DF (i.e. downwards).

The net movement of C is therefore

∆yc = −k1kc∆Pc + k2∆f (6.12)

The movement of D, ∆yd is the amount by which the pilot valve opens. it is
contributed by ∆yc and ∆ye and can be written as

∆Yd = [I1/(I3 + I4)]∆Yc + [I3/(I3 + I4)]∆Ye
= K3∆yc + K4∆Ye. (6.13)

The movement ∆yd depending upon its sign opens one of the ports of the
pilot valve admitting high-pressure oil into the cylinder there by moving the
main piston and opening the steam valve by ∆yd certain justifiable simplifying
assumptions, which can be made at this, are:

1. Inertial reaction forces of main piston and steam valve are negligible com-
pared to the forces exerted on the piston by high-pressure oil.

2. Because of (1) above the rate of oil admitted to the cylinder is proportional
to port opening ∆yd.

The volume of oil admitted to the cylinder is thus proportional to the time
integral of ∆yd. The movement ∆ye is obtained by dividing the oil volume
by the area of cross-section of the piston. Thus

∆Ye = K5

t∫
0

−(∆Y d)dt. (6.14)

It can be verified from the schematic diagram that a positive movement yd,
causes negative (upward) movement ∆ye accounting for the negative sign used
in (6.14).

Taking the Laplace transform of (6.12), (6.13) and (6.14), we get

∆Y c(s) = −K1Kc∆Pc(s) + K2∆F (s) (6.15)
∆Y d(s) = K3∆Y c(s) + K4∆Y e(s) (6.16)

∆Y e(s) = −K5
1
s
∆Y d(s) (6.17)
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Eliminating ∆Yc(s) & ∆Yd(s), we can write:

∆Y e(s) =
K1K3∆Pc(s) − K2K3∆F (s)

K4 + S
K5

=
[
∆Pc(s) − 1

R
∆F (s)

]
∗
{

Ksg

1 + Tsg

}
(6.18)

where

Ksg = gain of speed governor
R = speed regulation of the governor
Tsg = time constant of speed governor

The speed governing system of a hydro turbine is more involved. An ad-
ditional feedback loop provides temporary droop compensation to prevent in-
stability. This is necessitated by the large inertia of the penstock gate, which
regulates the rate of water input to the turbine as given in Fig. 6.13.

6.3.3.2 Turbine Model

Let us now relate the dynamic response of a steam turbine in terms of changes
in power output to change in steam valve opening ye. Figure 6.14 shows a
two stage steam turbine with a reheat unit. The dynamic response is largely
influenced by two factors:

∆ F(s)

Ksg

1+Tsg

1/R 

∆Pc(s)
∆Ye(s)

Fig. 6.13. The block diagram speed governing system

Steam Valve 

HP Stage LP Stage 

Reheater

Fig. 6.14. Two stage steam turbine
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∆Ye(s) ∆Pt(s)
Kt

1+T1s

Fig. 6.15. Turbine transfer function model

(1) Entrained steam between the inlet steam valve and first stage of turbine
(2) The storage action in the reheater, which causes the output of low pressure

stage to lag behind that of the high pressure stage.

Thus, the turbine transfer function is characterized by two time constants.
For ease of analysis, it will be assumed here that turbine can be modelled to
have a single equivalent time constant, Fig. 6.15 shows the transfer function
model of a steam turbine. Typically the time constant T1 lies in the range
0.2–2.5 s.

Steam valve

Writing the power balance equation, we have

∆PG −∆PD =
2HPr

f0

d

dt
(∆f) + B∆f.

Dividing throughout by Pr and rearranging, we get

∆PG(pu) − ∆PD(pu) =
2H

f0

d

dt
(∆f) + B(pu)∆f

Taking the Laplace transform, we can write ∆F(s)

∆F (s) =
∆Pg(s) − ∆Pd(s)

B + 2H
f0 (s)

= [∆Pg(s) − ∆Pd(s)] ∗
(

Kp(s)
1 + Tp(s)

)
(6.19)

where

Tps = 2H
Bf0 = power system time constant

Kps = 1
B = power system gain.

Equation (6.13) can be represented in block diagram form as shown in
Fig. 6.16.

6.3.3.3 Generator Load Model

The increment in power input to the generator load system is ∆Pg − ∆Pd
where ∆Pg = ∆Pd incremental turbine power output (assuming generator
incremental loss to be negligible) and ∆Pd is the load increment.
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∆F(s)

Kps

1+Tps S 

Fig. 6.16. Block diagram model of generator load model

This increment in power input to the system is accounted for in two ways:

1. Rate of stored kinetic energy in the generator rotor. At scheduled fre-
quency (f), the stored energy is

Wke = H∗Pr kW − s (kj)

Where Pr is the kW rating of the turbo-generator and H is defined as
its inertia is constant. The kinetic energy being proportional to square of
speed (frequency), the kinetic energy at a frequency of (f+∆f) is given by:

Wke = Wke0(f0 + ∆f)2/(f0)

= H Pr(1 + (2∆f/f0)) (6.20)

Rate of change of kinetic energy is therefore

d

dt
(Wke) =

2H Pr
f0

d

dt
(∆f) (6.21)

2. As the frequency changes, the motor load changes being sensitive to speed,
the rate of change of load with respect to frequency, i.e. can be regarded
as nearly constant for small changes in frequency ∆f can be expressed as(

∂PD

∂f

)
∆f = B∆f (6.22)

where the constant B can be determined empirically. B is positive for a
predominantly motor load.

6.3.4 Response of Load Frequency Control of an Isolated
(Single Area) Power System

Now the analysis of load frequency control of a simple power system is pre-
sented. The complete system to be considered for the design of controller is
shown in Fig. 6.17 the system response has been obtained for uncontrolled
and controlled cases in the following sections:
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Fig. 6.17. Block diagram model of load frequency control (isolated power system)

6.3.4.1 Uncontrolled Case

Steady state response:
In uncontrolled case, speed changer has fixed settings, i.e. ∆Pref = 0
For step load change ∆PD = M
Laplace transform of it is ∆Pref = 0
Now from block diagram in Fig. 6.14. We obtain by inspection[(

∆Pref − 1
R

∆f

)
GHGT − ∆PD

]
= ∆f (6.23)

In Laplace transform

∆f(s) − GP

1 +
(

1
R

)
GP GHGT

∆PD(s) (6.24)

Using the final value theorem

∆fSs = lim
s−0

[S∆f(s)] =
SGP

1 +
(

1
R

)
GP GP GT

∗ M

S

= − KP M

1 +
(

KP

R

) = − M

D + 1
R

Hz (6.25)

If β∆[D + 1/R]p.u. MWHz
Then

∆fs = −(M/β) (6.26)

where β is called area freq. response characteristic (AFRC). Thus, in uncon-
trolled case the steady state response has constant error.

Dynamic response:
Finding the dynamic response (for a step load) is quite straight forward.

By taking inverse laplace transform of (6.27) gives an expression for ∆f(t).
However, as GH, GT, GP contain at least one time constant each, the denom-
ination will be of third order, resulting in unwieldy algebra.

We can simplify the analysis considerably by making the reasonable as-
sumption that the action of the speed governor plus the turbine generation
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is instantaneous compared with the rest of power system. (Tg � Tt � Tp)
where Tp is generally 20 s. Tg ≈ Tt ≤ 1 s, thus assume Tg = Tt = 0 and gain
equal to

∆f(s) =
KP

1+STP

1 + 1
R

KP

1+STP

∗ M

S
(6.27)

Above equation can also be written as

∆F (s) = −M
RKP

R + KP

(
1
S

− 1
S + R+KP

RTP

)
(6.28)

Taking inverse Laplace transform of above equation we get

∆f(s) = −∆PD
RKP

R + KP

[
1 − e−t

[
KP + R

RTP

]]
(6.29)

Thus the error = e−t[KP +R
RT P

]. This persists in uncontrolled case.
A simulated response of uncontrolled single area non-reheat is shown in

Fig. 6.19.

6.3.4.2 Controlled Case

Control area:
The power pools in which all the generators are assumed to be tightly

coupled with change in load. Such as area, where all the generators are running
coherently is termed as control area.

Integral area:
By using the control strategy, we can control the intolerable dynamic fre-

quency changes with changes in load and also the synchronous clocks run on
time but not without error during transient period. We have added to the un-
controlled system in Fig. 6.20 an integral controller which actuates the speed
changer by real power command signal ∆Pc.

∆PC = −Kt

∫
∆fdt (6.30)

The negative polarity must be chosen so as to cause a positive frequency
error to give rise to a negative, or “decrease” command.

Here Kg and Kt are such that KgKt ∆ l.
In central load frequency control of a given area, the signal fed into the

integrator is referred to as area control error (ACE), i.e.

ACE ∆ ∆f (6.31)

Taking Laplace transform of above (6.30). We get ∆PC(s) = K1
s ∆f(s)



166 6 Applications of Generalized Neuron Models

And for step input load:

∆PD(s) =
M

S

∆f(s) =
KP

(1 + STP ) +
(

1
R + K1

S

) ∗ KP

(1+STg)(1+STt)

∗ M

S

=
RKP S(1 + STg)(1 + STt)

S(1 + STg)(1 + STt)(1 + STP )R + KP (RK1 + S)
∗ M

S

(6.32)

By using final value theorem, we readily obtain from the above equation the
static frequency droops:

∆fsteady = lim
s−0

[S∆f(S)] = 0, i.e. no error.

6.3.4.3 Single Area Thermal Plant

The block diagram representation of a single area Thermal plant is shown
in Fig. 6.20. The system response has been obtained for uncontrolled and
controlled systems.

(a) Uncontrolled case:

The block diagram of the plant shown in the Fig. 6.16 can be modeled in
the state space form with the help of the following matrix equations

x = Ax + Bu + Fp

Where

A =

⎡
⎢⎣

1
TP

KP

TP
0

0 −1
TT

1
TT

−1
RTH

0 −1
TH

⎤
⎥⎦, B =

⎡
⎣ 0

0
1

TH

⎤
⎦, F =

⎡
⎣−KP

TP

0
0

⎤
⎦, X =

⎡
⎣∆f

∆PT

∆PH

⎤
⎦, p = [∆PE ]

u = control vector, it is zero in uncontrolled case.
P = disturbance vector (disturbance in load).

Fig. 6.18. Single area representation of thermal plant (uncontrolled)
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Fig. 6.19. Single area thermal plant (frequency deviation for 10% disturbance
in load)

Fig. 6.20. Single area representation of thermal plant (controlled)

The response is taken with the help of MATLAB for 10% step change in
load. Figure 6.19 shows that there is a constant state error in the response for
the uncontrolled case.

(b) Controlled case with integral controller:

The steady state error of the uncontrolled system can be made zero by
using an integral controller in the forward path as shown in Fig. 6.20. When
an integral controller is used then the command signal, which actuates the
speed changer, is

∆Pref = ∆Pc = −Ki ∫ ∆fdt

The signal that is fed to the controller is called area control error (ACE).

ACE = ∆f

The response is taken with the help of MATLAB 6.5 for 10% step change
in load. Figure 6.21 shows the response of the single area thermal plant with
integral controller.
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Fig. 6.21. Single area thermal plant (frequency deviation for 10% disturbance in
load)
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Fig. 6.22. Two-area representation of thermal plant (uncontrolled)

6.3.4.4 Two-Area Thermal System

The response of two-area system is taken for uncontrolled as well as controlled
case with the help of MATLAB.

(a) Uncontrolled case:

The block diagram representation of two-area thermal plant without con-
troller is shown in Fig. 6.22.
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The block diagram of the plant can be modeled in the state space form
with the help of following equations.

x = Ax + Bu + Fp,

Where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
TP1

KP1
TP1

0 −KP1
TP1

0 0 0

0 −1
TT1

KT1
TT1

0 0 0 0
−KH1
TH1R1

0 −1
TH1

0 0 0 0
2πT0 0 0 0 −2πT0 0 0

0 0 0 KP2
TP2

−1
TP2

KP2
TP2

0
0 0 0 0 0 −1

TT2
KT2TT2

0 0 0 0 −KH2
TH2R2

0 −1
TH2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1

TH1
0

0 0
0 1

TH2

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−KP1
TP1

0
0 0
0 0
0 0
0 −KP2

TP2

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆f1

∆PT1

∆PH1

∆Ptie

∆f2

∆PT2

∆PH2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P =
[

∆PE1

∆PE2

]
, u =

[
∆Pref1

∆Pref2

]

state vectors
u = control vector, it is zero in uncontrolled case.
p = disturbance vector (load disturbance).

The frequency changes in area-1 and area-2 for the 10% step load pertur-
bation in area-1 is shown in Fig. 6.23. There is a steady state error in the
response.

(b) Controlled case with integral controller:

When an integral controller is added to each area of the uncontrolled plant
in forward path the steady state error in the frequency becomes zero.

The state space equation for the block diagram, shown in the Fig. 6.24 is
X = Ax + Bu + Fp.
Where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
TP1

KP1
TP1

0 −KP1
TP1

0 0 0 0 0

0 −1
TT1

KT1
TT1

0 0 0 0 0 0
−KH1
TH1R1

0 −1
TH1

0 0 0 0 0 0

2πT0 0 0 0 −2πT0 0 0 0 0

0 0 0 KP2
TP2

−1
TP2

KP2
TP2

0 0 0

0 0 0 0 0 −1
TT2

KT2
TT2

0 0

0 0 0 0 −KH2
TH2R2

0 −1
TH2

0 0

−Ki1B1 0 0 −Ki1 0 0 0 0 0

0 0 0 Ki2 −Ki2B2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

KH1
TH1

0

0 0
0 0
0 0

0 KH2
TH2

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 6.23. Two area thermal plant (frequency deviation for 10% disturbance
in area1)

Fig. 6.24. Two-area representation of thermal plant (controlled)

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−KP1
TP1

0

0 0
0 0
0 0

0 −KP2
TP2

0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, p =

[
∆PE1

∆PE2

]
, u =

[
∆Pref1

∆Pref2

]

xT = state vectors, [∆f1 ∆PT1 ∆PH1 ∆Ptie ∆f2 ∆PT2 ∆PH2]
u = control vector, it is zero in uncontrolled case and p = disturbance vector
(change in load).



6.3 Load Frequency Control Problem 171

Fig. 6.25. Two area thermal plant (frequency deviation for 10% disturbance
in area1)

The frequency changes in area-1 and area-2 for the value of integral gain
as is shown in Fig. 6.25.

6.3.4.5 Hydro – Thermal Plant

The system is simulated in MATLAB and the response is obtained for con-
trolled and uncontrolled case.

(a) Uncontrolled case

The hydro-thermal interconnected power system shown in Fig. 6.26 can
be represented by the following state space equation.

The system state equation can be written as X′ = Ax + Bu + Fp,
Where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
TP1

KP1
TP1

0 −KP1
TP1

0 0 0 0 0

0 −1
Tr1

1
Tr1

− KT1
TT1

KT1Kr1
TT1

0 0 0 0 0

0 0 −1
TT1

1
TT1

0 0 0 0 0
−1

TH1R1
0 0 −1

TH1
0 0 0 0 0

2πT0 0 0 0 0 −2πT0 0 0 0

0 0 0 0 KP2
TP2

−1
TP2

KP2
TP2

0 0

0 0 0 0 0 0 −1
Tr2

Kr2KT2
TT2

1
Tr2

− KT2
TT2

0 0 0 0 0 0 0 KT2
TT2

−1
TT2

0 0 0 0 0 −1
R2TT2

0 0 −1
TT2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Fig. 6.26. Two area hydro thermal plant (uncontrolled)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

1
TH1

0
0 0
0 0
0 −2Tr2

T1T2

0 0
0 Tr2

T1T2

0 TT1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−KP1
TP1

0
0 0
0 0
0 0
0 −KP2

TP2

0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u =
[

∆Pref1

∆Pref2

]
, P =

[
∆Pe1

∆Pe2

]

xT = [∆f1 ∆PG1 ∆PR1 ∆Xe1 T1e ∆f2 ∆PG2 ∆Xe2 ∆PR2]
u = control vector, it is zero in uncontrolled case and p= disturbance vector.

Figure 6.27 shows the response of uncontrolled hydro-thermal system.
There is a steady state error in the system. The disturbance of 10% step
load change is given in area-1 (thermal area).

a) Controlled case with integral controller:

The block diagram with integral controller is shown in Fig. 6.28. It can also
be modeled by following state space equation:

x = Ax + Bu + Fp.

The frequency response of two-area hydrothermal plant is shown in Fig. 6.29.
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Fig. 6.27. Two area hydro-thermal plant (frequency deviation for 10% disturbance
in thermal area)
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Fig. 6.28. Two areas hydrothermal plant (controlled)

6.3.4.6 Single Area Hydro System

(a) Uncontrolled case

The block diagram is shown in Fig. 6.30.
Frequency response of single area hydro system with 10% disturbance in

load is shown in Fig. 6.31.
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Fig. 6.29. Two area hydro-thermal plant (frequency deviation for 10% disturbance
in thermal area)
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Fig. 6.30. Single area hydro plant (uncontrolled)

Fig. 6.31. Single area hydro plant (frequency deviation for 10% disturbance)
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Fig. 6.33. Single area hydro plant (frequency deviation for 10% disturbance)

(b) Controlled case

The block diagram is shown in Fig. 6.32.
The frequency response of single area hydro system when controlled by

integral controller is shown in Fig. 6.33.

6.3.4.7 Results and Discussion

It has been found that the use of ACE as control signal reduces the frequency
and tie line power error to zero in steady state, but the transient response
is not satisfactory. It can be seen in Fig. 6.33 that overshoot is more than
0.02 Hz and settling time is also more compared to VSS controller.
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6.3.5 Development of GN Based Load Frequency Controller

Many investigations have been reported in the field of load frequency control
using neural network (Beaufays et al. 1999; Djukanovic et al. 1995; Zeynelgil
et al. 2002). A net interchange tie line bias control strategy has been widely
accepted by utilities. The frequency and the interchanged power are kept at
their desired values by means of feedback of the integral of area control error
(ACE), containing the frequency deviation and the error of the tie-line power
and controlling the prime mover input. The fixed gain controller based on
classical control theories in literature are insufficient because of changes in
operating point during a daily cycle (Demiroren et al. 2001). Load frequency
controller primarily consists of integral controller. The integrator gain is set
to a level that compromises between fast transient recovery and low over-
shoot in the dynamic response of the overall system. This type of controller is
slow and does not allow the designer to take into account possible nonlinear-
ities in the generator unit. The inherent nonlinearities in system components
and synchronous machines have led researchers to consider neural network
techniques to build a non-linear ANN controller with high efficiency of per-
formance (Davison and Tripathi 1978; Djukanovic et al. 1995). Here ANN
controller is used because the controller provides faster control than the oth-
ers. Beaufays et al. (1999) and Zeynelgil et al. (2002) used neural network
to act as the intelligent load frequency control scheme. The control scheme
guarantees that steady state error of frequencies and inadvertent interchange
of tie-lines are maintained in a given tolerance limitation.

There are some inherent problems of ANN as controller like long training
time is required, huge network is needed for a good controller. To overcome
these drawbacks Chaturvedi et al. (1999) has used a generalized neuron (GN)
model for modeling the rotating electrical machines and load forecasting prob-
lem. The ANN training is mainly depending on the input–output mapping,
range of normalization of training data, neuron structure and error function
used in training algorithms. Chaturvedi et al. (1996) already studied the effect
of mapping of input-output data, normalization range of training data and the
neuron structure. In this paper, the effect of different error functions on GN
based load frequency controller has been studied.

The power system considered here includes two different areas connected
through a tie-line. First area of the power system consists of the steam tur-
bines, which includes reheater. The second area consists of hydro turbine.
First, a step loading increasing in the first area of power system is considered.
The two area system is controlled using GN based load frequency controller
using back-propagation learning algorithm and results are compared with con-
ventional integral controller. The aim of this controller is to restore the fre-
quency to its nominal value in the shortest time whenever there is a change
in demand. The action of the controller should be coupled with minimum
frequency transients and zero steady state error.
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Conventional integral controller action is based on the change in the fre-
quency which make delayed than that of a GN controller whose action is based
on the rate of change of frequency. It also makes use of the rate of change of
frequency to estimate the electric load perturbation. The load perturbation
estimate could be obtained either by a linear estimator or by a non-linear GN
estimator.

6.3.5.1 Single Area System

It has been shown that the level variable vector [df dpt dph] of a single area
system controlled by an integral controller eventually converged to a steady
state value equal to [0 dpe dpe/K1] but this convergence was slow. The GNN
controller that replaces the integral controller should make a plant converge
to the same steady state vector, while limiting the duration and magnitude
of the transients. Such an operation cannot be performed instantaneously.
Besides, the value of the desired control action is not known beforehand.

The dynamic GN controller and plant structure is shown in Fig. 6.34. It is
quite clear from the figure that the frequency can be sensed at every time in-
stant. The GN controller output u can be determined from the past value of u
and the frequency variation and the load perturbation. The load perturbation
of large systems is not directly measurable. It must therefore be estimated by
linear estimator or by non-linear network estimator. If the non-linearities in
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the system justify, such an estimator takes as inputs a series of K-samples of
frequency fluctuations at the output of generator (df (t−1) df(t−2) . . . df(t−n)
and estimates the instantaneous value of load perturbation dpe based on this
input vector. The estimate dpe is then used to drive the plant controller. This
can also be implemented with the help of GN estimator. We assume that the
electric perturbation is a step function of amplitude. When the step load per-
turbation hits the system, the plant state changes which is necessary to control
to be achieved by GN controller. The one way to implement GN controller is
to built a neural network emulator for the plant and back propagating error
gradients through it is nothing other than approximating the true Jacobian
matrix of the plant using neural network training. Whenever the equations of
the plant are known a priori and they can be used to compute, analytically
or numerically, the elements of the Jacobian matrix. Error gradient at the
input of the plant is then obtained by multiplying the output error gradient
by the Jacobian matrix. This approach avoids the introduction and training
of neural network emulator, which brings a substantial saving in development
time. This approach is used by Beaufays.

The GN controller uses the frequency variation sample for predicting the
load, disturbance and that load disturbance is used by GN controller to control
the plant dynamics.

Computer stimulations have been conducted to illustrate the behaviour
of single area system to step load perturbation and the performance of GNN
controller is compared with the integral controller as shown in Figs. 6.35
and 6.36. ANN and GN based load frequency controller also compared and
GN based controller found better as shown in Fig. 6.37.

Without Controller 

Integral Controller 

GN Controller

Time (sec.)  

0
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12 148 10642

Fig. 6.35. Variation in tie line power of two area system
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Fig. 6.36. Block diagram of load frequency control of power systems using GNN
controller
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Fig. 6.37. Comparison of ANN and GN controller performance for a single area
system for df

6.3.5.2 GN Controller of a Two Area System

The GN control scheme for a two-area system is basically the same as for one
area system. The level variable vector of two area system was [df1 df2 dp12]
after step load perturbation has occurred in one area or simultaneously in
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Fig. 6.38. Frequency variation in two area system with and without controller

both areas the level variable vector deviates from its steady state value and the
controller will control these variables but the controller output is not instan-
taneous. The controller starts functioning after some delay time so that the
GN estimator can estimate the load perturbation and that signal is available
for the controller. The controllers of both areas start controlling when there
is any variation in the frequency from its normal value. The performance of
GN controller of two area system is simulated on computer and the results are
compared without controller and with integral controller. The performances
of GN controller is also tested under different values of regulation parameter
R. it is seen that when the value of R increases the frequency oscillations
also increases, but die out after certain time. Beaufays et al. (1999), in his
work controls the same plant dynamics using conventional ANN consisting
of 20 hidden neurons and one output neuron. In the present work the same
plant dynamics can be controlled by one generalized neuron. The frequency
deviations for both the areas are shown in Fig. 6.38.

6.3.5.3 Results and Discussion

GN model has been successfully applied to control the turbine reference power
of a single area system. The same principle has been applied to a simulated to
a two-area system. The GN controllers have been trained using back propa-
gation through time. The GN controller is found very suitable for controlling
the plant dynamics in relatively less time. Each GN controller receives only
local information about the system (frequency in that specific area). Such
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architecture decentralizes the control of the overall system and reduces the
amount of information to be exchanged between different modes of the power
grid. The successful application of this generalized neural network for the
load frequency control of power system motivates to use this technique for
estimation of load disturbance on the basis of frequency deviation (df) and
voltage variations (dv) at the different buses.

The GN controller with different error functions is also simulated.
Table 6.28 shows the frequency deviation for single area system when con-
trolled by conventional controller and GN based controller with different error
functions. Figure 6.39 shows the frequency deviation and change in turbine

Table 6.28. Comparison of conventional controller and GN based controller for
single area system

Settling
time (Ts) s

Frequency
Dip (Hz)

Controller

8.00 0.270 Conventional controller
2.20 0.240 Sum squared EF
2.25 0.200 Cauchy EF
2.05 0.210 Geman EF GN
2.50 0.245 Mean fourth power EF controller

Fig. 6.39. Response of single area system using sum squared error function
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Fig. 6.40. Response of single area system using Cauchy’s error function

power during disturbance. It is clear from the figure that GN controller with
sum squared EF during training has less overshoot and less settling time as
compared to integral controller.

Figure 6.40 represents the performance of GN controller with Cauchy’s EF.
In this case, there are slightly more oscillations in both frequency deviation
and change in turbine power as compared GN controller with sum squared
EF, although much less than integral controller. At the same time the dip in
frequency deviation is less.

Figure 6.41 portrays the performance of GN controller with Geman’s EF is
much better than GN controller with sum squared EF and integral controller
in terms of settling time, overshoot and oscillations. It is also comparable to
the GN controller with Cauchy’s EF.

The results show that frequency deviation and change in turbine power in
the single area system when the disturbance is applied when GN controller
with mean fourth power EF is used (refer Fig. 6.42). The performance of
GN controller with this EF is better than GN controller with sum squared
EF, but not as good as GN controller with Cauchy’s and Geman’s EFs. The
performance of GN controller with different EF is also tried for two area
system and the results are given in Table 6.29 and Figs. 6.43–6.47.
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Fig. 6.41. Single area system using Geman EF

Fig. 6.42. Response of single area system using MPFE error function
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Table 6.29. Comparison of conventional controller and GN based controller for two
area system

Frequency of
areas #1

Frequency of
areas #2

Controller

Ts (s) Dip (Hz) Ts (s) Dip (Hz)

Conventional controller
3.0 0.155 2.80 0.050 Sum squared EF
2.8 0.180 2.20 0.045 Cauchy EF GN based
2.9 0.180 2.40 0.040 Geman EF Controller
3.1 0.175 2.35 0.050 Mean fourth power

EF

Fig. 6.43. Response of two area system using SSE error function

Fig. 6.44. Response of two area system using Cauchy’s error function
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Fig. 6.45. Response of two area system using GEMAN error function

Fig. 6.46. Response of two area system using MPFE error function

Fig. 6.47. Response of two area system using combined error function
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6.3.5.4 Conclusions

Generalized neuron model has been successfully applied to control the turbine
reference power of a computer – simulated generator unit. The GN based
controller has been made adaptive using on-line back-propagation learning
through time. GN based controller is found quite suitable for controlling plant
dynamics in relatively less time. The same GN controller can also be used to
control two area system. The GN controllers use local information about the
system frequency in that area. Such architecture decentralises the control of
the overall system and reduce the amount of information to be exchanged
between different areas of the power grid.

6.4 Power System Stabilizer Problem

Earlier individual area requirements were met by a single generating station.
An operator was quite capable of manually adjusting the generator outputs to
suit the needs of customers in surrounding area. The evolution and revolution
of electric supply technology from small, isolated, multiple – kilowatt generat-
ing plants of late 19th century to today’s multiple gigawatt generating plants
is one of the outstanding development of the last century. Due to increased
power demands, small isolated system were unable to supply power with effi-
cient load frequency and voltage control and a reasonable degree of reliability.
In order to properly meet the large fluctuations in the load due to varied
number of power users, to lower overall production cost and save through the
utilization of a diversified system, individual generating stations and eventu-
ally, utility companies joined together over a transmission and distribution
network to form larger power pools. The deregulated environment is changed
the power sector completely. Now the power quality and reliability is one of
the most important aspects along with the cost in the power market.

To improve the power quality, in the late 1950s most of the generating units
added to electric utility system equipped with continuously acting automatic
voltage regulators (AVRs). These generators have a detrimental impact upon
the steady state stability of power system. Oscillations of small magnitude
and low frequency often persisted for a long time and in some cases presented
limitations on power transfer capability. These electro-mechanical oscillations
between parallel connected generators were of concern because they:

1. Gave rise to periodic variations in electrical voltages and phase angles at
the load buses in the system,

2. Caused excessive wear of mechanical control components,
3. Caused inadvertent operation of protection devices on the system or on

connected equipment.
4. Excited sub harmonic torsional shaft oscillations on large multistage tur-

bine units, or
5. Led to dynamic instability.
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It is well known that the AVRs introduced negative damping to weakly
damped interconnected systems. A supplementary control signal in the exci-
tation system and/or the governor system of a generating unit can provide
extra damping for the system and thus improve the unit’s dynamic perfor-
mance (DeMello and Laskowski 1979). Power system stabilizers (PSSs) aid in
maintaining power system stability and improving dynamic performance by
providing a supplementary signal to the excitation system. This is an easy,
economical and flexible way to improve power system stability. Over the past
few decades, PSSs have been extensively studied and successfully used in the
industry.

The conventional PSS (CPSS) was first proposed in the 1950s based on a
linear model of the power system at some operating point to damp the low
frequency oscillations in the system. Linear control theory was employed as
the design tool for the CPSS. After decades of theoretical studies and field
experiments, this type of PSS has made a great contribution in enhancing
the operating quality of the power system (DeMello et al., 1978; Larsen and
Swann 1981).

With the development of power systems and increasing demand for qual-
ity electricity, it is worthwhile looking into the possibility of using modern
control techniques. The linear optimal control strategy is one possibility that
has been proposed for supplementary excitation controllers (Ohtsuka et al.
1986). Preciseness of the linear model to represent the actual system and the
measurement of some variables are major obstacles to the application of the
optimal controller in practice.

A more reasonable design of the PSS is based on the adaptive control the-
ory as it takes into consideration the non-linear and stochastic characteristics
of the power systems (Pierre 1987; Zhang et al. 1993). This type of stabilizer
can adjust its parameters on-line according to the operating condition. Many
years of intensive studies have shown that the adaptive stabilizer can not only
provide good damping over a wide operating range but more importantly, also
can solve the coordination problem among stabilizers.

Power systems being dynamic systems, the response time of the controller
is the key to a good closed loop performance. Many adaptive control algo-
rithms have been proposed in the recent years. Generally speaking, the better
the closed loop system performance is, the more complicated the control algo-
rithm becomes, thus needing more on-line computation time to calculate the
control signal.

6.4.1 Conventional PSS

A practical CPSS [6] with the shaft speed input may take the form as shown
in the following transfer function

upss = −kg
sTw

(1 + sTw)
(1 + sT1)
(1 + sT2)

(1 + sT3)
(1 + sT4)

∆ω(s)
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The commonly used PSS (CPSS) is a fixed parameter device designed using
the classical linear control theory and a linear model of the power system
at a specific operating point. It uses a lead/lag compensation network to
compensate for the phase shift caused by the low frequency oscillation of the
system during perturbation. By appropriately tuning the parameters of the
lead/lag network, it is possible to make a system have the desired damping
ability. Although this type of PSS has made great contribution in enhancing
the operating quality of the power systems, it suffers from some problems.

Power systems are highly non-linear systems. They operate over a wide
range of operating conditions and are subject to multi-modal oscillations
(Larsen et al. 1981). The linearized system models used to design fixed pa-
rameter CPSS can provide optimal performance only at the operating point
used to linearize the system. Therefore, the following problems are presented
in the design of the CPSS:

1. Selection of a proper transfer function that covers the frequency range of
interest.

2. Automatic tracking of the system operating conditions.
3. Maintaining properly tuned parameters as system changes.

Application of the adaptive control theory can take into consideration the
non-linear and stochastic characteristics of the power system (Ohtsuka et al.
1986). Parameters of an adaptive stabilizer are adjusted on-line according to
the operating conditions. Many years of intensive studies have shown that the
adaptive stabilizer can provide good damping over a wide operating range
(Ohtsuka et al. 1986; Zhang et al. 1993; Swidenbank et al. 1999; Hiyama and
Lim 1989) and can also work in coordination with CPSSs (Changaroon et al.
2000; Segal et al. 2000).

More recently, artificial neural networks (ANNs) and fuzzy set theo-
retic approach have been proposed for power system stabilization problems
(Swidenbank et al. 1999; Abido and Abdel-Magid 1999; Hosseinzadeh and
Kalam 1999; Hsu and Chen 1991; Hornik et al. 1989). Both techniques have
their own advantages and disadvantages. The integration of these approaches
can give improved results.

The commonly used neuron model has been modified to obtain a general-
ized neuron (GN) model using fuzzy compensatory operators as aggregation
operators to overcome the problems such as large number of neurons and
layers required for complex function approximation, that not only affect the
training time but also the fault tolerant capabilities of the ANN (Fausett
Laurence 1994). Application of this GN as an adaptive PSS (GNAPSS) is
described in the following section.

6.4.2 GN Based PSS and its Training

A block diagram of the GN controller and power system is shown in Fig. 6.48.
The power system consists of a single machine connected to infinite bus
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Fig. 6.48. Block diagram of GN based PSS

through a double circuit transmission line. The angular speed of synchronous
machine, sensed at a fixed time intervals is used as input to the GN based PSS
(GNPSS). The GNPSS calculates the output or control action. The dynamic
model of the synchronous machine infinite bus system and its parameters are
given in the Appendix.

Training of an ANN is a major exercise. Performance of GN based PSS
depends upon the training of the GN. Data used for training must cover most
of the working range and working conditions in order to get good performance.
Of course it is impossible to train any GN under all working conditions that
the controller is likely to meet. Still most of the working conditions must be
included in the training. The current and past three generator speed signals
(i.e. ω (t), ω(t-T), ω(t-2∗T), and ω(t-3∗T), where T is the sampling period),
and past three values of the PSS output are used as inputs to the GN. Hence,
the input vector for the GN can be written as:

Xi = [ω(t), ω(t-T), ω(t-2∗T), ω(t-3∗T),
u(t-T),u(t-2∗T),u(t-3∗T)] (6.33)

where ω – angular speed in rad/s.

The output of the GN is the control signal u, which is a function of the
angular speed and past control signals.

Training data for the GN is acquired from the system controlled by the
CPSS, which is tuned for each operating condition. The GN is trained off-line
over a wide working range of the generator operating conditions i.e. output
ranging from 0.1 to 1.0 pu and the power factor ranging from 0.7 lag to 0.8
lead. Similarly, a variety of disturbances are also included in the training,
like change in reference voltage, governor input torque variation, one trans-
mission line outage and three phase fault on one circuit of the double circuit
transmission line.
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6.4.3 Comparison of GN and ANN PSS

The generalized neuron model is much less complex compared to a three-
layered ANN proposed earlier for PSS. These ANNs were 30-10-1 (Zhang et al.
1995), 20-20-1 (Zhang et al. 1993) and 35-1 (Zhang et al. 1993a). Taking, for
illustration purposes, an ANN with one hidden layer and much smaller number
of neurons, a comparison of structural complexity associated with ANN and
generalized neuron model is given in Table 6.14.

It is clear from Table 6.30 that the number of interconnections for a GNM
is very small as compared to ANN. Hence the number of unknown weights is
reduced drastically, which ultimately reduces the training time and training
data required. A comparison of the performance of the GN and ANN based
PSS is given in Fig. 6.49.

6.4.4 Simulation Results of GN Based PSS

A number of simulation studies were first performed to study the performance
of the GNPSS.

A. CPSS parameter tuning
With the generator operating at P = 0.9 pu and Q = 0.4 pu lag, a 100 ms
three phase to ground fault is applied at 0.5 s at the generator bus. The
CPSS is carefully tuned under the above conditions to yield the best
performance and its parameters are kept fixed for all studies.

B. Performance under three-phase to ground fault
The results have been compared for the GNPSS and conventional PSS for
a 100 ms three-phase to ground fault at generator bus under the following
operating conditions:

1. P = 0.9 pu and Q = 0.4 pu lag,
2. P = 0.7 pu and Q = 0.3 pu lead and
3. P = 0.2 pu and Q = 0.2 pu lead

The results are shown in Fig. 6.46 for deviation in angular speed. Because
CPSS has been tuned for P = 0.9 pu, Q = 0.4 pu lag, performance at

Table 6.30. Comparison of network complexity involved in ANN and GNM

Components ANN GNM

Structure of ANN/GN (7-7-1) (1)
Number of neurons used 08 01
Number of layers containing
processing neurons

02 01

Number of interconnections 56 15
Training epochs required to
reach error level of 0.001

64,7000 8,700
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(a) Removal of one line from two parallel line system, 
P= 0.2 pu, Q= 0.2 pu lag.  (b) 3-phase to ground fault, P= 0.7 pu, Q=0.3 pu lead 

(c) 20% step change in torque reference at P=0.9 pu, 
Q=0.4 pu.

Fig. 6.49. Comparison of the performance of ANN and GN based PSSs

this operating condition as shown in Fig. 6.50a is practically the same for
both the GNPSS and the CPSS. System performance at other operating
conditions, as given in Figs. 6.50b and c, is better with GNPSS than a
fixed parameter CPSS.

C. Performance with one line removed
The results have been compared under different operating conditions such
as P = 0.9 and Q = 0.4 pu lead, P = 0.7 pu and Q = 0.3 pu lead, P =
0.2 pu and Q = 0.2 pu lag when one line is removed from the system
with two parallel transmission lines operating initially. It can be seen
from Fig. 6.51 that the GNPSS damps out the oscillations very effectively.
Because the GNPSS is trained for a wide range of operating conditions,
it is able to adjust the control output to that suitable for the working
conditions.

D. Performance under reference operating point changes
Applying the change in several small steps instead of a large step can re-
duce the severity of reference changes. It is also possible to apply a ramp
with a small gradient in order to change the system reference settings.
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(a) P=0.9 pu and Q=0.4 pu lag (b)    P=0.7 pu and Q=0.3 pu lead 

(c)   P=0.2 pu and Q=0.2 pu lead

Fig. 6.50. Performance of GN-PSS and CPSS for a 3-phase ground fault

Both these things are done by the GNPSS to reduce the severity of
reference changes. The performance of GNPSS has been evaluated for
step changes in reference setting in Vref and Pref.
1. Step change in Governor reference (Pref)

The GNPSS performance is studied for a sudden change in the gover-
nor reference by 20% to its initial value. The results given in Fig. 6.52
show that the angular speed deviations are damped quickly with
the GNPSS.

2. Step change in voltage reference (Vref) of AVR
A step change of 5% to its initial value was applied to Vref under the
same operating condition as in the case of Pref change. The variation
in angular speed is shown in Fig. 6.53.

E. Performance under different H values
Performance of the GNPSS under different H values varying from 5 to
25 for a 20% step change in Pref is shown in Fig. 6.54. The results are
consistently good.
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(a)   P=0.9 pu and Q=0.4 pu lead (b)   P=0.7 pu and Q=0.3 pu lag 

(c)   P=0.2 pu and Q=0.2 pu lag

Fig. 6.51. Performance of GN-PSS based PSS when one line is removed from the
circuit

Fig. 6.52. Performance of GN based PSS when 20% step change in Pref at
P = 0.9 pu and Q = 0.4 pu lag
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Fig. 6.53. Performance of GN based PSS when 5% step change in Vref at P = 0.9 pu
and Q = 0.4 pu lag

Fig. 6.54. Performance of GN based PSS for different values of H under step change
in Pref

6.4.5 Experimental Test

The behavior of the proposed GNPSS has been further investigated on a
physical model in the Power System Research Laboratory at the University of
Calgary, Alberta, Canada. The physical model consists of a three-phase 3-kVA
micro-synchronous generator connected to a constant voltage bus through a
double circuit transmission line model. The transmission lines are modeled by
six Π sections, each section is equivalent of 50 km length. The transmission
line parameters are the equivalent of 1,000 MVA, 300 km and 500 kV. A field
time constant regulator has been employed to adjust the transient field time
constant (Tdo’) to the desired value (Huber et al. 1972).
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Fig. 6.55. Experimental setup for Laboratory Power System model

The governor turbine characteristics are simulated using the micro-
machine prime mover. It can be achieved by dc motor which is controlled
as a linear voltage to torque converter. An overall schematic diagram of this
physical model is given in Fig. 6.55. The Laboratory model mainly consists of
the turbine M, the generator G, the transmission line model, the AVR, DSP
board and Man-machine interface.

The GNPSS control algorithm is implemented on a single board computer,
which uses a Texas Instruments TMS320C31 digital signal processor (DSP)
to provide the necessary computational power. The DSP board is installed
in a personal computer with the corresponding development software and
debugging application program. The analog to digital input channel of DSP
board receives the input signal and control signal output is converted by the
digital to analog converter. The IEEE type PSS1A CPSS is also implemented
on the same DSP, with a 1ms sampling period. The following tests have been
performed on the experimental set up to study the performance of the GNPSS
and CPSS.

A. Step change in power reference (pref)
The experiment is performed on the micro-synchronous generator under
the following operating conditions:
1. 0.67 pu active power and 0.9 lagging power factor, and
2. 0.25 pu active power and 0.8 leading power factor.

A disturbance of 30% step decrease in reference power was applied at
0.5 and again increased to the same initial value at 4.5. The change in
generator electrical power with GNPSS and CPSS is shown in Fig. 6.56.
The proposed controller exhibits fast and well-controlled damping.

B. Transient faults
To investigate the performance of the GNPSS under transient conditions
caused by transmission line faults various tests on the experimental set
up have been conducted.
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(a)   P=0.67 pu and Power Factor = 0.9 lagging (b)   P=0.67 pu and Power Factor = 0.8 leading 

Fig. 6.56. Experimental results under 30% step change in power reference (Pref)

Fig. 6.57. Experimental results of single-phase fault at P = 0.25 pu and power
factor = 0.8 lagging

1. Single-phase to ground fault test
In this experiment, the generator was operated at P = 0.25 pu and
0.8 pf lag. At this operating condition and with both lines in oper-
ation, a single-phase to ground fault was applied in the middle of
one transmission line for 100 ms. The system performance is shown in
Fig. 6.57. It can be observed that the GNPSS provides faster settling.

2. Two-phase to ground fault test
The two-phase to ground fault test has been performed for the follow-
ing two operating conditions:
1. P = 0.25 pu and 0.8 lagging power factor, and
2. P = 0.67 pu and 0.8 leading power factor

at the middle of one transmission line. The results of these experiments
shown in Fig. 6.58 are consistently better with the GNPSS.

3. Three-phase to ground fault test
A 100 ms three-phase to ground fault was applied at different op-
erating conditions at the middle of one transmission line at 0.5.
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(a)    P=0.25 pu and power factor 0.8 lagging (b)   P=0.67 pu and power factor 0.8 leading

Fig. 6.58. Experimental results of 2-phase ground fault

(a)   P=0.25 pu and power factor = 0.8 leading (b) P=0.67 pu and power factor = 0.8 lagging 

Fig. 6.59. Experimental results of 3-phase to ground fault

Illustratative results for two tests at P = 0.25 pu, 0.8 pf lead, and
P = 0.67 pu, 0.8 pf lag are given in Fig. 6.59. The results show that
the GNPSS provides consistently good performance.

4. Successful re-closing
A three-phase to ground fault is applied on one of the transmission
lines and the faulty line is opened. After clearing the fault, transmis-
sion line is automatically re-closed. The results are shown in Fig. 6.60.
Both the overshoot and settling time for GNPSS are smaller.

C. Removal of one line
One line is removed at 0.5 s and again connected at 5.8 s. Figure 6.61 shows
that in this type of fault also the system performance with the GNPSS is
very good in terms of damping the oscillations.
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Fig. 6.60. Successful re-closing at P = 0.5 pu and pf = 0.8 leading

Fig. 6.61. Removal of one line and reconnected at P = 0.5 pu and pf = 0.8 lagging

6.4.6 Adaptive GN Based Power System Stabilizer

Most of the work done on adaptive PSS uses self-tuning adaptive control
approach as it is a very effective adaptive control scheme. The structure of a
self-tuning adaptive controller has two parts: an on-line plant model predictor
and a controller.

The plant model is updated by the on-line predictor each sampling period
to track the dynamic behavior of the plant. Then a suitable control strategy is
used to calculate the control signal based on the updated plant model. Any one
out of a number of control strategies, such as minimum variance, generalized
minimum variance, pole assignment, pole shift (PS) control (Bollinger et al.
1975; Clarke 1981) can be used in the self-tuning adaptive control.
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Studies have shown that an adaptive PSS can adjust its parameters on-line
according to the changes in environment, and maintain desired control ability
over a wide operating range of the power system. Taking advantage of the
neural networks to easily accommodate non-linearities and time dependencies
of non-linear dynamic systems, a GN is used to develop an adaptive PSS.

6.4.6.1 GN Predictor

Identification procedure includes setting up a suitably parameterized iden-
tification model and adjusting the parameters of the model to optimize a
performance function based on the error between the plant and the identified
model output.

A schematic diagram of the GN based plant predictor using forward mod-
eling is shown in Fig. 6.62. A GN predictor is placed in parallel with the
system and has the following inputs:

Xi(t) = [y vector, u vector] (6.33)

where
y vector=[y(t), y(t-T), y(t-2T), y(t-3T)]
u vector=[u(t-T), u(t-2T), u(t-3T)]

T is the sampling period, y is the plant output and u is the controller
output.

For application as a PSS, the plant output, y, may be the generator speed
deviation or the deviation of the generator output power. The PSS output is
the plant input, u, added at the input summing junction of the AVR.

The dynamics of the plant can be viewed as a non-linear mapping as below:

y (t+T) = fi(Xi(t)) (6.34)

Therefore, the GN-predictor for the plant can be represented by a non-linear
function Fi.

yi(t + T) = Fi(Xi(t), Wi(t)) (6.35)

where, Wi(t) is the matrix of GN predictor weights at time instant t.
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Fig. 6.62. Schematic diagram of the proposed GN predictor
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6.4.6.2 Training of GN-Predictor

Training of the proposed GN Predictor has two steps, off-line training and
on-line update.

Off-line training of the GN predictor for the PSS was performed with data
acquired from simulation studies on a generating unit model, equipped with
a governor and an AVR, and connected to a constant voltage bus through a
double circuit transmission line. The seventh order model of the synchronous
machine, the transfer functions of the AVR and governor and the parameters
are given in the Appendix. In off-line training, the GN Predictor is trained
for a wide range of operating conditions, i.e. output power ranging from 0.1
to 1.0 pu and the power factor ranging from 0.7 lag to 0.8 lead. Similarly,
a variety of disturbances, such as change in reference voltage, input torque
variation, one transmission line outage and three phase fault on one circuit of
the double circuit transmission line, are also included in the training.

Error between the system output and the GN predictor output at a unit
delay, called the performance index, Ji(t), of the GN predictor is used as the
GN predictor training signal:

Ji(t) =
1
2
[yi(t) − y(t)], (6.36)

where

yi(t) is the GN predictor output with unit delay.
y(t) is the actual plant output.

The weights of the GN predictor are updated as

Wi(t) = Wi(t − T ) + ∆Wi(t),

where ∆Wi(t), change in weight depending on the instantaneous gradient, is
calculated by

∆Wi(t) = −ηiJi(t + T )
∂Ji(t)
∂Wi(t)

+ α∆Wi(t − T ), (6.37)

where

ηi – learning rate and
αi – momentum factor for GN predictor.

The off-line training is performed with 0.1 learning rate and 0.4 momen-
tum factor. After off-line training is finished, i.e. the average error between
the plant and the GN-predictor outputs converges to a small value, the GN-
predictor represents the plant characteristics reasonably well, i.e.
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y(t + T) = fi (Xi(t)) ≈ yi(t + T) = Fi (Xi(t), Wi(t)),

it is connected to the power system for on-line update of weights. The learning
rate and momentum factor are very crucial factors in on-line updating and
greatly affect the performance of the GN predictor. If the value of learning rate
is high then the response of the GN may go unstable, and if it is too low then
time required to modify its behavior is large. The momentum factor is used to
overcome the problem of local minima of GN. Hence, for on-line training, the
values of these factors were chosen carefully based on the previous experience.

On-line performance of the GN predictor on a physical model of the gen-
erating unit connected to a constant voltage bus for a transient three-phase
to ground fault of 100 ms duration is shown in Fig. 6.63. Performance in re-
sponse to the removal of one line from the double circuit transmission line and
re-energized after 5 s is shown in Fig. 6.64. The error, difference between the
speed predicted by the GN predictor and the system speed, can be seen to be
very small. GN identifier is also experimentally test for 23% step change in
reference torque change, voltage reference change and 3-phase to ground fault
on one of the transmission line from double circuit transmission as shown in
Fig. 6.65.

6.4.6.3 GN Controller

A schematic diagram of the GN controller is shown in Fig. 6.66. The plant
consists of the single machine connected to the constant voltage bus as de-
scribed above. The last four sampled values of the output are used as input
to the GN controller. Besides the output, the past three control actions are

Fig. 6.63. Performance of GN predictor for a 100 ms 3-phase to ground transient
fault at generator bus
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Fig. 6.64. Performance of GN predictor when one line is removed at 0.5 s and
reenergized at 5.5 s

(a)   23% step change in Torque reference. (b) 15% step change in voltage reference. 

(c) Three-phase to ground fault for 100ms on one transmission line

Fig. 6.65. Experimental results of GN-predictor
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Fig. 6.66. Schematic diagram for GN controller

also given to the GN controller as inputs. These inputs are normalized in the
range 0.1–0.9. The output of the GN-controller is the control signal u(t).

u(t) = Fc(Xi(t),Wc(t)), (6.38)

where, Wc(t) is the matrix of neural controller weights at time instant t. The
u(t) is de-normalized to get the actual control action and then sent to the
plant and the GN-predictor simultaneously.

D. Training of GN controller
Training of the proposed GN controller is also done in two steps – off-line
training and on-line update. In off-line training, the GN controller is trained
for a wide range of operating conditions and a variety of disturbances similar
to those used in training the predictor. Off-line training data for the GN
controller has been acquired from the system controlled by the CPSS. For
this purpose, the CPSS was tuned for each operating condition.

The performance index of the neural controller is

Jc(t) =
1
2
[yi(t + T ) − yd(t + T )]2, (6.39)

where yd(t + T) is the desired plant output at time instant (t + T). In this
study it is set to be zero.

The weights of the GN controller are updated as

Wc(t) = Wc(t − T ) + ∆Wc(t) (6.40)

∆Wc(t), change in weight depending on the instantaneous gradient, is calcu-
lated by

∆Wc(t) = −ηcωi(t + T )
∂Jc(t)
∂u(t)

∂u(t)
∂Wc(t)

+ αc∆Wc(t − T ), (6.41)
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where

ηc learning rate for GN controller.
αc – momentum factor for GN controller.

Off-line training is started with small random weights (±0.01) and then
updated with relatively high learning rate and momentum factor (ηc = 0.1
and αc = 0.4).

After off-line training is finished, the proposed controller is connected
to the power system for on-line update with learning rate (ηc = 0.001)
and momentum factor (αc = 0.01). In on-line updating of GN-controller
weights, expected error is calculated from the one step ahead predicted output,
yi(t + T), of the GN-predictor. The expected error is then used to update the
weights on-line. Parameters of the GN predictor and controller are adjusted
every sampling period. This allows the controller to track the dynamic varia-
tions of the power system and provide the best control action.

GN adaptive PSS has been tested experimental for various operating con-
ditions and shown good performance.

1. Single-phase to ground fault test
In this experiment, with the generator operating at P = 0.8 pu, 0.9 pf lead,
a transient 100 ms single-phase to ground fault was applied in the middle
of one transmission line. The system performance is shown in Fig. 6.67.
It can be observed that the GNAPSS is able to reduce the magnitude of
system oscillations.

2. Two-phase to ground fault test
Results of a transient two-phase to ground fault test at P = 0.8 pu, 0.9 pf
lead at the middle of one transmission line are shown in Fig. 6.68.

3. Three-phase to ground fault test
A transient three-phase to ground fault was applied for 100 ms at differ-
ent operating conditions at the middle of one transmission line at 0.5 s.

Fig. 6.67. Experimental results for a single-phase fault at P = 0.8 pu, 0.9 pf lead
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Fig. 6.68. Experimental results for a two-phase to ground fault at P = 0.8 pu,
0.9 pf lead

Fig. 6.69. Experimental results for a 3-phase to ground fault at P = 0.5 pu, 0.9 pf lag

Fig. 6.70. Removal of one line and reconnection

An illustrative result at P = 0.5 pu, 0.9 pf lag is given in Fig. 6.69. Re-
sults show that the GNAPSS provides consistently good performance even
though the disturbance changes significantly in severity.

4. Removal of one line
In this test, with the generator operating at P = 0.8 pu, 0.9 pf lag, one
circuit of the double circuit line was disconnected at 0.5 s and re-connected
at 1.75 s. The results in Fig. 6.70 show that in this type of fault also the
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Fig. 6.71. Schematic diagram of a five-machine power system

system performance with the GNAPSS is very good in terms of damping
the oscillations.

6.4.6.4 GN Based Adaptive PSS for Multi-Machine System

A five-machine power system without infinite bus, that exhibits multi-mode
oscillations, Fig. 6.71, is used to study the performance of the previously
trained GNAPSS. In this system, generators #1, #2 and #4 are much larger
than generators #3 and #5. All five generators are equipped with governors,
AVRs and exciters. This system can be viewed as a two area system connected
through a tie line between buses #6 and #7. Generators #1 and #4 form one
area and generators #2, #3 and #5 form another area. Parameters of all
generators, Transmission line parameters, loads and operating conditions are
given in the Appendix. Under normal operating condition, each area serves its
local load and is almost fully loaded with a small load flow over the tie line.

6.4.6.5 Performance of GNAPSS with Torque Disturbance

1. Simulation studies with GNAPSS installed on one generator:
The GNAPSS is trained for a single machine infinite bus system and
the same parameters (weights) are used for GNAPSS with multi-machine
system. The proposed GNAPSS is installed only on generator #3 and
CPSSs with the following transfer function are installed on generator #1,
and #2:

upss = Ks
sT5

(1 − sT5)
(1 + sT1)
(1 + sT2)

(1 + sT3)
(1 + sT4)

∆Pe(s) (6.42)

The GNPSS was trained by data obtained from the system controlled
by a CPSS following the procedure explained in Sect. IIB. The following



6.4 Power System Stabilizer Problem 207

Fig. 6.72. System response with CPSS installed at generators #1, #2 and GNAPSS
at #3 for 30% Step change in Pref

parameters are set for the fixed parameter CPSS for all studies in the
multi-machine environment:

Ka = 0.2, T1 = T3 = 0.07, T2 = T4 = 0.03, T5 = 2.5.

Speed deviation of generator #3 is sampled at a fixed time interval of
30 ms. The system response is shown in Fig. 6.72 for the operating con-
ditions given in the Appendix. Each part of the figure shows difference in
speed between two generators.

2. GNAPSS installed on three generators:
In this test, GNAPSSs are installed on generators #1, #2 and #3. A
30% step decrease in mechanical input torque reference of generator #3
was applied at 1 s and returns to its original level at 10 s. The simulation
results of only GNAPSSs and only CPSSs applied at generators #1, #2,
and #3 are shown in Fig. 6.73. It is clear from the results that both modes
of oscillations are damped out very effectively.

6.4.6.6 Three Phase to Ground Fault

In this test, a three phase to ground fault is applied at the middle of one trans-
mission line between buses #3 and #6 at 1 s and the faulty line is removed
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Fig. 6.73. System response under change in Tref with only GNAPSS and only
CPSS installed on G1, G2, and G3

100 ms later. At 10 s, the faulty line is restored successfully. The GNAPSSs are
installed on all five generators. The system responses are shown in Fig. 6.74.
The results with CPSSs installed on the same generators are also shown in the
same figures. From the system responses, it can be concluded that although
the CPSS can damp the oscillations caused by such a large disturbance; the
proposed GNAPSS has much better performance.

6.4.6.7 Coordination Between GNAPSS and CPSS

The advanced PSSs would not replace all CPSSs being operated in the system
at the same time. Therefore, the effect of the GNAPSS and CPSSs working
together needs to be investigated. In this test, the proposed GNAPSS is in-
stalled on generators #1 and #3 and CPSSs on generators #2, #4 and #5.
The operating conditions are the same as given in the Appendix. A 0.2 pu
step decrease in the mechanical input torque reference of generator #3 is ap-
plied at 1 s and returns to its original level at 10 s. The system responses are
shown in Fig. 6.75. The results demonstrate that the two types of PSSs can
work cooperatively to damp out the oscillations in the system. The proposed
GNAPSS input signals are local signals. The GNAPSS coordinates itself with
the other PSSs based on the system behaviour at the generator terminals.
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Fig. 6.74. System response with only GNAPSS and only CPSS installed on all five
machines for 3-phase to ground fault

Fig. 6.75. System response with GNAPSS at G1, G3 and CPSS on G2, G4, G5.
for ±0.3 pu step change in torque reference
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6.4.7 Conclusions

A GN based PSS is adaptive in nature and having learning capabilities is
described in this paper. It can incorporate the non-linearities involved in the
system. It uses only one neuron and is trained using back-propagation learning
algorithm. Because it has a much smaller number of weights than the com-
mon multi-layer feed-forward ANN, the training data required is drastically
reduced. Training time is also significantly reduced, because the number of
weights to be determined is much less than an ANN.

GN has been employed to perform the function of a PSS to improve the
stability and dynamic performance of the power system. Computer simulation
studies described in the paper show that the performance of the GN based PSS
can provide very good performance over a wide range of operating conditions.

The proposed GN based PSS has been implemented on a DSP and its
performance investigated on a physical model of a single machine infinite bus
system under various operating conditions and disturbances such as transient
faults, one line removal from double circuit transmission, change in refer-
ence point, etc. It is found that the system performance with the GN based
PSS is consistently good indicating that it can adapt to changing operating
conditions.

6.5 Aircraft Landing Control System Using GN Model

It is observed that landing performance is the most typical phase of an aircraft
performance. During landing operation the stability and controllability are the
major considerations. To achieve a safe landing, an aircraft has to be controlled
in such a way that its wheels touch the ground comfortably and gently within
the paved surface of the runway.

The conventional control theory found very successful in solving well de-
fined problems which are described precisely with definite and clearly men-
tioned boundaries. In real life systems the boundaries can not be defined
clearly and conventional controller does not give satisfactory results.

Whenever, an aircraft deviates from its glide path (gliding angle) during
landing operation, it will affect the landing field, landing area as well as touch
down point on the runway. To control correct gliding angle (glide path) of
an aircraft while landing, various traditional controllers like PID controller or
state space controller as well as manoeuvring of pilots are used, but due to
the presence of non-linearities of actuators and pilots these controllers do not
give satisfactory results.

Since artificial neural network can be used as an intelligent control tech-
nique and are able to control the correct gliding angle, i.e. correct gliding path
of an aircraft while landing through learning which can easily accommodate
the aforesaid non-linearities. The existing neural network has various draw-
backs such as large training time, large number of neurons and hidden layers
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required to deal with complex problems. To overcome these drawbacks and
develop a non-linear controller for aircraft landing system a generalized neural
network has been developed.

6.5.1 Introduction

The basic limitation of conventional control theory is the need to know the
precise mathematical model of the system to be controlled. This information
is seldom available. The effect of disturbances and unmodeled dynamics on
the performance of the system must also be taken into account for real-life
systems.

Practically, one rarely has precise knowledge of the system model. Fur-
thermore, the system model may vary with time, e.g., the dynamic equations
of an aircraft near sea-level are very different from those of the same aircraft
at high altitudes. In such cases, to maintain the controller performance, it is
necessary to use an adaptive controller, so that it could adopt the variations
in system parameters and operating conditions.

6.5.2 Aircraft Landing System

The aircraft performance characteristics such as maximum speed, rate of
climb, time to climb, range and take-off are all predicted from estimates of
the variation of the lift, drag and thrust forces as functions of angle of attack,
altitude and throttle setting respectively. The forces acting on aircraft dur-
ing flying are lift (L), drag (D), thrust (T) and weight (W) of the aircraft.
The flight path of the aircraft can be controlled within the limitations of its
aerodynamic characteristics and structural strength, through control over the
equilibrium angle of attack (α), angle of side slip (β), angle of bank (φ) and
the output of the power plant.

The APPROACH AND LANDING exercise deals with landing of the air-
craft from the turn on to downwind position to the completion of the landing
run. A good landing follows a steady approach, hence it is important that
the circuit be standardised so that the final approach is such as to facilitate
a good landing. The final landing approach begins when the flight path is
aligned with the runway in preparation for straight ahead descent and land-
ing and ends when aircraft contacts the landing surface. Thus final approach
may be considered to have five distinct phases listed below and also shown in
Fig. 6.76 (Codvin 1942; Kermode 1970, 1984).

1. Level approach
2. Approach descent
3. Roundout
4. Float
5. Touchdown
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Fig. 6.76. Final Approach extents from line upto touch down in aircraft landing

The final approach involves a descent from the circuit height (1,000 feet)
to the landing check height. The pilot should plan the approach so that the
pilot gets sufficient time to judge the descent and position himself to carry
out the straight final approach from at least 400 ft. This gives sufficient time
to retrim the aircraft and concentrate on the final approach. The final turn-in
should be adjusted so as to line up with the landing path (glide path) and
s-turn should be avoided on the final approach. The adjustment of the rate of
descent will depend on the pilot’s judgment and type of approach. There are
two types of landing approaches (Neil 1957; Nelson 1990; Pallet 1983; Robert
1978):

1. Glide landing approach in which the pilot must judge the point from where
to start the approach, taking the prevailing wind into consideration. The
steepness of the descent can be adjusted by intelligent use of flaps. Full
flaps being lowered only when positive of making the intended touch-down
point safely. On no account should be allow his speed to drop below that
recommended, in an effort to stretch his glide. This approach is done under
the influence of the force of gravity and without the use of the engine.

2. Engine assisted landing approach, in which the descent should be started
slightly earlier than for the glide approach. The approach path is adjusted
with the throttle, speed being maintained by the elevators. This approach
is recommended for all modern aircraft due to following advantages:
1. Permits a flatter approach as the glide path of some aircraft is un-

comfortably steep.
2. The approach path can be adjusted as required.
3. The stalling speed is low, the approach can be carried at a speed, thus

reducing the landing run.
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4. Use of engine improves elevator and rudder control of propeller-driven
aircraft.

5. Landing is safer, quicker and more accurate.

6.5.3 Drawbacks of Existing Landing Control System

1. The ILS is a pilot interpreted system, pilot is directly depending on the
signals transmitted by ILS, he has to blindly follow the path shown. Even
slight mistake can lead to disastrous landing.

2. The ILS serviceability checks and calibrated are to be carried out by the
flying aircraft only and ground technicians cannot ensure its serviceability
merely on ground.

3. GCA system requires a high resolution radar and high talented ground
controller to guide pilot (Taylor and Parmar 1983; Houghton and
Corpenter 1996; Webb 1971).

4. In GCA system radar picks up the aircraft position and displays it on the
screen and ground controller in turn guides the pilot, but little parallax
error in this may take away from the actual centre line of the runway
(Barres and Cormic 1995; Courtland et al. 1949; Nagaraja 1975).

5. Atmospheric conditions are drastically changing and conventional con-
troller are unable to cope up with these conditions.

6. The inherent non-linearities in system components and cognition level of
human being have led researchers to consider neural network techniques to
build a non-linear ANN controller a with high efficiency of performance.

The existing simple neural networks have numerous deficiencies as
stated below:

1. The number of neurons required in hidden layers is large for complex
function approximation.

2. The number of hidden layers required for complicated functions may be
greater than three. Though it has been reported that a network with only
three layers can approximate any functional relation (Mingye et al. 1998;
Irie and Miyake 1988), it is found that the training time required is very
large, which can be computationally very expensive.

3. The fault tolerant capabilities of the existing neural networks are very
limited.

4. Existing neural networks require a large number of unknowns to be deter-
mined for complex function approximation. This increases the requirement
of the minimum number of input–output pairs.

In the present work an automatic controller for aircraft landing system has
been developed using Neural Networks to increase the accuracy and efficiency
of the control system at the time of landing (Nguyen and Widrow 1990). The
aim of this controller is to restore the glide path, if it is deviating from the
desired path in the shortest time.
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6.5.4 Mathematical Model Development of Aircraft
During Landing

There are four forces lift (L), drag (D), thrust (T) and weight (w) are acting
through centre of gravity of an aircraft along different axes under different
level of flight as shown in Fig. 6.77. Summation of forces along X and Z axes
and total moments acting about the Y axis, yields the equations of static
equilibrium for the aircraft in straight symmetric flight (Taylor and Parmar
1983).

ΣFX = 0, ΣFZ = 0, and ΣMcg = 0.

Considering the above cases following equations can be derived

T∗ cos α − D + W∗ sin β = 0 (6.43)
− T∗ sin α − L + W∗ cos β = 0 (6.44)
ΣMcg = 0 (6.45)
ΣMcg = Cmcg ∗ q ∗ s ∗ c (6.46)

From the above equations following conclusions have been drawn.

1. The pitching moment coefficient (Cmcg) is a function of Cl. The equilib-
rium can be stabilized if the components of aircraft are proportioned to
allow Cmcg = 0. Mcg = 0 at some useful lift coefficient (Cl). This useful
lift coefficient can be calculated from the required lift which is used for
equilibrium.

2. Since thrust T is a function of aircraft speed and throttle control, the
rate of climb (R/C) or rate of descent (R/S) is regulated through throttle
control. Hence the rate of climb or rate of descent is a function of thrust.

3. Velocity of aircraft (V) for a given wing loading (W/s) and altitudes are
purely a function of lift coefficient and the lift coefficient is a function of
angle of attack (α).

Touch Down Point

T

L H

Z

X

W

Meg

βα

Fig. 6.77. Forces acting on an airplane during landing
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4. Along shallow path of curve aircraft velocity (v) is a function of the angle
of attack or lift coefficient.

In this work only gliding approach (engines are cut off) landing perfor-
mances (i.e. round out, float and touch down) are considered. The aircraft
will glide under the influence of the force of gravity and without the use of
engine. The velocity of aircraft will be controlled by changing elevator angle
with the help of actuator operation. By changing the elevator angle the angle
of attack will be changed and hence, the gliding angle is controlled.

Since the angle of attack is relatively small angle, therefore cos α = 1 and
sin α = 0.

Equations (6.43)–(6.46) can be rewritten as

D = W sin β or sin β = D/W (6.47)
L = W cos β or cos β = L/W (6.48)

The lift forces, drag and drag coefficient can be given as

L = 0.5 ∗Cl ∗ v2 ∗ σ ∗ s (6.49)

D = 0.5 ∗Cd ∗ v2 ∗ σ∗s (6.50)

Cd = Cdf + Cl2/3.141 ∗ A ∗ e (6.51)

Divide (6.47) to (6.48) and (6.50) to (6.49)

tan β = D/L = Cd/Cl (6.52)

or β = tan−1(D/L) = tan−1(Cd/Cl) (6.53)

From (6.48) and (6.49)

W∗ cos β = 0.5 ∗ Cl ∗ v2 ∗ σ ∗ s

v =
√

[(2 ∗ W∗ cos βp/(Cl ∗ σ ∗ s)] (6.54)

6.5.5 Develpoment of Landing Control System Using GN Model

The generalized neural network developed here is used to control the air-
craft during landing using backpropagation through time learning algorithm
(Werbos 1990; Widrow and Lehr 1990). The following assumptions have been
taken for the development of the generalized neural network controller:

1. The gliding angle should be 5◦ to 7◦ and angle of attack should be 2◦ to
4◦.
a. The landing performance can be divided into two main phases:
b. Transition from threshold to touch down including round out

and float.
c. Braked ground run.

2. Here only transition from threshold to touch down is considered.
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a. The aircraft should start gliding after approaching the screen height
with constant gliding angle.

b. Air density is constant at all altitude, since speed taken is indicated
air speed.

The block diagram of generalized neural network controller and aircraft model
structure is shown in Fig. 6.78. The controller should make the aircraft to
follow the correct glide path. The aircraft variables and GNN controller pa-
rameters are given in Table 6.31. The gliding angle is sensed at every time
instant and if there is any deviation in the gliding angle will be corrected by
the GNN controller of aircraft. The inputs and output of GNN controller are
given in Table 6.32 and received from the aircraft model block.

The vector M consisting of [β v L D] and fed to the GNN controller after
a unit delay (i.e. at (t-1) time instant) as shown in Fig. 6.79.

The generalized neural network controller output u can be determined from
the past value of vector M. The GNN controller modifies the lift coefficient
depending on the control action u and the old value of Cl, and drag coefficient
by the following equation:

Cl = Cl + u

Cd = Cdf + Cl2/3.141 ∗ A ∗ e.

which in turn affect the lift and drag forces at every time instant (∆t). The
ratio of D/L which also equals to Cd/Cl is compared with desired ratio of

Aircraft System Model
(SM)

GN controller 
(GNC)

Delay

Tanβ

Learning
Algorithm

CL

Desired
Ratio

Fig. 6.78. Block Diagram for GN controller for aircraft landing
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Table 6.31. Values of variables and parameters

Variable Value

Lift coefficient 0.96
Desired L/D ratio 0.0875
Aspect ratio 9
Weight 3,000 lb
Cdf 0.02
Efficiency 0.8
Wing area 100 ft2

Air density 0.00248

Generalized neural network controller parameters

Learning rate 0.0001
Lamda 0.10
Momentum 0.3

Table 6.32. GNN controller variables

Input variables Output variable

Lift force (L) Control action for lift coefficient (Cl)
Drag force (D)
Velocity (v)
Gliding angle (β)

x(0) 
SMGNC

CL

SMGNC SMGNC

CL

x(1) x(n)

u(0) u(1) u(n) 

Fig. 6.79. GN controller and aircraft system model unfolded in time

Cd/Cl (i.e. 0.0875) and if there is any error then the controller will take a
corrective action by changing the weights of the controller during learning.

One way to implement GNN controller is to build a neural network em-
ulator of the aircraft model and backpropagation error gradient learning al-
gorithm can be used. This is nothing but approximating the true Jacobean
matrix of the plant using neural network.

In this work, a slightly different approach has been adopted by which the
introduction and training of a huge neural network for copying the aircraft
model can be avoided using aircraft equations. The basic idea is that instead
of building a neural network copy of aircraft equations using backpropaga-
tion error gradients learning algorithm, which brings a substantial saving in
development time. In addition, the true derivatives bring more precise than
the one obtained by approximately with a neural network emulator of aircraft
model. The controller training is faster and more precise.
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6.5.6 Simulation Results

The above developed GNN controller for aircraft landing control system has
been simulated on computer with initial lift coefficient = 0.96 and other vari-
ables given in Table 6.31. The GNN controller uses the four input variables
(i.e. lift force, drag force, velocity and gliding angle) for calculating the control
action u, which is finally modify the lift coefficient Cl in turn drag coefficient
Cd. Then the ratio of Cd to Cl is compared with the desired ratio and the
discrepancy is used for changing the weights of GNN controller as mentioned
above. This process will be repeated till the discrepancy becomes zero. When
the discrepancy is zero means the aircraft is following the correct glide path.

The computer simulation results obtained from the aircraft model with
GNN controller are given in Table 6.33. Figures 6.80–6.83 show the variations
of lift coefficient with respect to drag coefficient, Cl2 and Cd, time profiles of
gliding angle and velocity respectively.

Also the system is simulated using PID controller and the results obtained
with it is given in Table 6.34.

Table 6.33. Simulation results with GN controller

Cl Cd β v Time

4.289745 0.833179 0.189972 74.813024 0.1
4.569534 0.925332 0.201850 72.327003 1.0
3.807501 0.660654 0.172148 79.033864 2.0
3.052516 0.431755 0.140769 88.494391 3.0
2.557884 0.309124 0.122011 96.089215 4.0
2.259584 0.245621 0.108369 103.118216 5.0
2.074728 0.210215 0.101035 107.672751 6.0
1.956167 0.189097 0.096404 110.925259 7.0
1.878235 0.175892 0.093399 113.227821 8.0
1.826201 0.167374 0.091412 114.846160 9.0
1.791118 0.161766 0.090082 115.970648 10.0
1.767323 0.158024 0.089185 116.762429 11.0
1.751122 0.155505 0.088576 117.306505 12.0
1.740066 0.153663 0.088128 117.712575 13.0
1.732510 0.152640 0.087879 117.940931 14.0
1.727340 0.151850 0.087686 118.118959 15.0
1.723801 0.151310 0.087554 118.241297 16.0
1.721377 0.150941 0.087463 118.325304 17.0
1.719716 0.150688 0.087401 118.382960 18.0
1.718578 0.150515 0.087359 118.422516 19.0
1.717799 0.150397 0.087330 118.449647 20.0
1.717264 0.150316 0.087310 118.468254 21.0
1.76898 0.150260 0.087296 118.481013 22.0
1.76646 0.150222 0.087287 118.489761 23.0
1.76474 0.150196 0.087280 118.495759 24.0
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Table 6.34. Simulation results with PID controller

Cl Cd β V Time

4.289745 0.833179 0.189972 74.813024 0.1
5.467310 0.961323 0.210890 73.717020 1.0
4.791444 0.953321 0.201850 70.702300 2.0
4.175710 0.865065 0.182148 76.145864 3.0
3.552528 0.531345 0.151669 85.494391 4.0
3.057884 0.409124 0.132069 94.089215 5.0
2.859584 0.345621 0.118249 100.282160 6.0
2.294728 0.280215 0.103535 104.812751 7.0
2.156166 0.2181097 0.098704 109.192525 8.0
1.907823 0.1958911 0.095699 112.22782 9.0
1.842630 0.187374 0.093412 112.946160 10.0
1.790208 0.171766 0.092182 116.970648 11.0
1.777303 0.168024 0.091850 117.262429 12.0
1.762122 0.165505 0.090136 117.516405 13.0
1.751155 0.163663 0.089128 117.671250 14.0
1.735676 0.162640 0.088679 117.931561 15.0
1.730091 0.162350 0.087586 118.121233 16.0
1.728831 0.162110 0.087554 118.223197 17.0
1.722367 0.161989 0.087550 118.332304 18.0
1.721971 0.161985 0.087491 118.378960 19.0
1.719978 0.161965 0.087399 118.432456 20.0
1.718796 0.161917 0.087350 118.450767 21.0
1.718572 0.161816 0.087320 118.461254 22.0
1.716898 0.161760 0.087300 118.479803 23.0
1.716646 0.160211 0.087298 118.488895 24.0
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6.5.7 Conclusions

The generalized neural network control has been developed for aircraft landing
control system, which controls the lift coefficient Cl and drag coefficient Cd,
which in turns controls the lift and drag forces and ultimately correct the
angle of attack by changing elevator angle as per the velocity and deviation
in the gliding angle of aircraft. The following conclusions have been drawn:

1. The GNN controller is adaptive in nature and consisting of learning ca-
pabilities make the controller superior than conventional controllers.

2. The GNN controller can incorporate the non-linearities involved in the
system and cognition level of human beings.

3. The GNN controller is relatively efficient and accurate than conventional
controllers.

4. The GNN technique can be used for design and parameter calculation of
aircraft after the successful application in landing control system.

6.6 Bibliography and Historical Notes

Readers interested in gaining deep knowledge of other archetectures of ANN
may go through the book written by Sundararajan and Saratchandran (1998).
Hippert et al. (2001) gave an interesting review on ANN applica-
tions in load forecasting. Mandal et al. (2006) used ANN for electric-
ity price and short term load forecasting. Benaouda et al. (2006) used
wavelet- based model for electricity load forecasting. Benaouda and
Murtagh (2007) explained neuro-wavelet approach to time-series load fore-
casting.

Enrique and Pasi (2006) used soft approaches to information retrieval. Pal
(2004) used them for data mining.
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Introduction to Fuzzy Set Theoretic Approach

It is the mark of an instructed mind to rest satisfied with that degree
of precision which the nature of the subject admits, and not to seek
exactness where only an approximation of the truth is possible.

Aristotle, 384–322 BC
Ancient Greek philosopher

So far as the laws of mathematics refer to reality, they are not certain
and so far as the laws they are certain, they do not refer to reality.

Albert Einstein
Geometrie and Erfahrung

We must exploit our tolerance for imprecision.

Lotfi Zadeh
Professor, Systems Engineering, UC Berkeley, 1973

7.1 Introduction

The scientists have been trying to develop an intelligent machine similar to
human beings since last many years. There are many points of similarity and
differences between computers and human processing. A comparison between
computer (machine system) and human system is given in Table 7.1. The
computer is a logical machine, works on the basis of precise logic. Today
we have very fast computers with large memory to store data. Then also
these computers could not help us in answering simple questions as given
below.

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 223–293 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Table 7.1. Comparison between computer and human working

S. No. Items Computer Human

1. Input From physical sensors From six senses
(see, touch, hear, taste,
smell and intuition)

2. Type of input/output Precise Imprecise
3. Logic Binary logic Fuzzy logic
4. Processing Sequential Parallel
5. Information required Quantitative informa-

tion
Qualitative information

6. Repeatability Good for repetitive
work

Not good

7. Emotions No emotions Good in emotions
8. Intuitions No Good
9. Learning or adaptabil-

ity
No Good

10. Knowledge stored In the form of instruc-
tions

Thumb rules

11. Wisdom Absent Yes
12. Handling ill defined and

complex problems
Can not handle It can handle

13. Knowledge Structured Unstructured
14. Processing speed Very high slow
15. Reasoning With 0 or 1 From 0 to 1

SCHOOL

Why is this boy running?

Happy Sad Laughing Crying Surprising Anger

Can computer recognize the state of a person from facial expression?
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How to indicate sex or age by drawing hair style?
Or
Can computer recognize the ethnic origin of a person?

but Human Being may answer these questions. Hence, there is some thing
missing in our logical computing. Human logic is not the same as binary
logic. We work with imprecise and inaccurate information. Human beings
always work with fuzzy logic. Consider the following examples:

Example 1. Consider a heap of wheat as shown below.

Is it still a heap if we remove one grain of wheat?
How about two grains?
Three?
. . . . . . . . .
If it is argued bivalent by induction, we eventually remove all grains of

wheat and still conclude that the heap remains or that it has suddenly van-
ished. No single grain takes us from heap to non-heap.

Example 2. Similarly, if we pluck out hairs from a non-bald headed person.
Here, the transition is gradual and not abrupt, from a thing (non-bald) to its
opposite (bald). Physically it is experienced that there is a degree of occur-
rence or degree of truth, rather than simply true or false.

Example 3. There is a glass full with water, if remove one drop of water, glass
will remain full. If we remove two drops of water the glass will again remain
full. If we continue to does this then after removing whole water from the
glass, as per this logic glass remains full, which is not true.
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From the above examples it is quite clear that the conventional (Binary)
logic does not work well to handle the real life situations. Fuzzy logic is the
best option to handle these situations. The term “fuzzy” was first coined
by Prof. Lotfi A. Zade, University of California Barkley in the Engineering
Journal, “Proceedings of the IRE,” in 1962. This is the time for paradigm
shift from crisp set to fuzzy set. Fuzzy set can deal with Uncertainty in terms
of imprecision, nonspecific, vagueness, inconsistency, etc. Earlier uncertainty
is undesirable in science and should be avoided by all possible means and
science strives for certainty in all manifestation (precision, specific, sharpness,
consistency).

Binary logic 
(Yes or No) Human 

Reasoning 
/Fuzzy logic 
(maybe, more or 
less, very hot, 
heavy etc.) 

Alternative view, which is tolerant of uncertainty and insists that science,
can not avoid it. Warren Weaver (1948) mentioned that problems of organized
simplicity and disorganized complexity (randomness). Very few problems lay-
ing in these categories and most of the problems laying in between, he called
them organized complexity (nonlinear systems with large no. of components
and rich interactions), which may non-deterministic but not as a results of
randomness.

7.2 Uncertainty and Information

Only a small portion of the knowledge (information) for a typical problem
might be regarded as certain, or deterministic as shown in Fig. 7.1. Unfor-
tunately, the vast majority of the material taught in engineering classes is
based on the presumption that the knowledge involved is deterministic. Most
processes are neatly and surreptitiously reduced to closed-form algorithms –
equations and formulas. When students graduate, it seems that their biggest
fear upon entering the real world is “forgetting the correct formula.” These
formulas typically describe a deterministic process, one where there is no un-
certainty in the physics of the process (i.e. the right formula) and there is no
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Certain or
deterministic 

Random Uncertainty 

Uncertainty due to
Vagueness, Imprecision,
incomplete information

Fig. 7.1. World of information

(a) Unbaked Cookies (b) Baked Cookies (c) Over Baked Cookies

Fig. 7.2. Baking of cookies

uncertainty in the parameters of the. It is only after we leave the university,
it seems, that we realize we were duped in academe, and that the information
we have for a particular problem virtually always contains uncertainty. For
how many of our problems can we say that the information content is known
absolutely, i.e. with no ignorance, no vagueness, no imprecision, no element
of chance? Uncertain information can take on many different forms. There is
uncertainty that arises because of complexity; for example, the complexity in
the reliability network of a nuclear reactor. There is uncertainty that arises
from ignorance, from various classes of randomness, from the inability to per-
form adequate measurements, from lack of knowledge, or from vagueness, like
the fuzziness inherent in our natural language.

The nature of uncertainty in a problem is a very important point that
engineers should ponder prior to their selection of an appropriate method to
express the uncertainty. Fuzzy sets provide a mathematical way to represent
vagueness and fuzziness in humanistic systems. For example, to bake cookies
as shown in Fig. 7.2, how you give instructions. You could say that when the
temperature inside the cookie dough reaches 375◦F, or you could advise to take
out when the tops of the cookies turn light brown. Which instruction would
you prefer to give? Most likely, the second instruction. The first instruction
is too precise to implement practically; in this case precision is not useful.
The vague term light brown is useful in this context and can be acted upon
even by a child. We all use vague terms, imprecise information, and other
fuzzy data just as easily as we deal with situations governed by chance, where
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probability techniques are warranted and very useful. Hence, our sophisticated
computational methods should be able to represent and manipulate a variety
of uncertainties.

7.3 Types of Uncertainty

1. Stochastic uncertainty
It is the uncertainty towards the occurrence of a certain event, e.g. the
probability of hitting the target is 0.8. (well defined).

2. Lexical uncertainty
It is the uncertainty lies in human languages like hot days, stable occur-
rence, a successful financial year and so on.

Following is the base on which fuzzy logic is built:

As the complexity of a system increases, it becomes more
difficult and eventually impossible to make a precise
statement about its behavior, eventually arriving at a
point of complexity where the fuzzy logic method born in
humans is the only way to get at the problem.

(Originally identified and set forth by Prof. Lotfi A.
Zadeh, University of California, Berkeley)

What do you mean by the term Fuzzy?
English meaning of the word fuzzy is indistinct, blurred or not properly

focused and the technical meaning is imprecise, uncertain or unreliable knowl-
edge, uncertain/noisy/incomplete Information, ambiguity (vague/fuzzy con-
cepts) or partial truth (Fig. 7.3).

YES

NO

MAYBE

Binary logic                    Fuzzy logic 

Can they see each other in the fig. 7.3? 

Fig. 7.3. Difference between binary logic and fuzzy logic



7.3 Types of Uncertainty 229

Real-world vagueness
In our day-today conversation we often say such as
“Maria is tall,” or
“It is very hot today.”
Such statements are difficult to translate into precise language without

losing some of their semantic value. If we mention the statement
“Maria’s height is 1.60 m.” or
“Maria’s height is 1.25 standard deviations about the mean height for

women of her age in her country”
It does not convey directly that she is tall, because here the concept and

context both required like Maria belongs to which country and what is the
average height there?

Imprecision
The imprecision is nonetheless a form of information that can be quite

useful to humans. The ability to embed such reasoning in hitherto intractable
and complex problems is the criterion by which the efficacy of fuzzy logic is
judged. Undoubtedly this ability cannot solve problems that require preci-
sion – problems such as shooting precision laser beams over tens of kilometers
in space; milling machine components to accuracies of parts per billion; or
focusing a microscopic electron beam on a specimen the size of a nanometer.
The impact of fuzzy logic in these areas might be years away, if ever. But not
many human problems require such precision – problems such as parking a
car, backing up a trailer, navigating a car among others on a freeway, washing
clothes, controlling traffic at intersections, judging beauty contestants, and a
preliminary understanding of a complex system.

Requiring precision in engineering models and products translates to re-
quiring high cost and long lead times in production and development. For
other than simple systems, expense is proportional to precision: more preci-
sion entails higher cost. When considering the use of fuzzy logic for a given
problem, an engineer or scientist should ponder the need for exploiting the
tolerance for imprecision. Not only does high precision dictate high costs but
also it entails low tractability in a problem.

A
__
A

Well defined boundary 
(Crisp set) 

AA__
A

Fuzzy boundary
(Fuzzy set)  

A∩ A ≠ f and A∪ A ≠ X for fuzzy sets 

A∩ A = f and A∪ A = X for crisp sets 
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7.4 Introduction of Fuzzy Logic

Fuzzy logic is a superset of conventional (Boolean) logic that has been ex-
tended to handle the concept of partial truth–truth values between “com-
pletely true” and “completely false”.

The value zero is used to represent non-membership, and the value one
is used to represent membership. The truth or falsity of the statement “x
is in U” is determined by finding the ordered pair whose first element is x.
The statement is true if the second element of the ordered pair is 1, and the
statement is false if it is 0.

Similarly, a fuzzy subset F of a set S can be defined as a set of ordered pairs,
each with a first element that is an element of the set S, and a second element
that is a value in the interval [0, 1], with exactly one ordered pair present for
each element of S. This defines a mapping between elements of the set S and
values in the interval [0, 1]. The value zero is used to represent complete non-
membership, the value one is used to represent complete membership, and
values in between are used to represent intermediate degrees of membership.
The set S is referred to as the universe of discourse for the fuzzy subset F.

Let’s define a fuzzy subset TALL, which will answer the question “to what
degree is person x tall?” To each person in the universe of discourse, we have
to assign a degree of membership in the fuzzy subset TALL. The easiest way
to do this is with a continuous membership function based on the person’s
height as illustrated in Fig. 7.4.

{0, if height(x) < 5 ft.,
TALL(x) = (height(x) − 5ft)/2ft., if5 ft. <= height (x) <= 7 ft.,

1, if height(x) > 7 ft.}

Fuzzy set also sometimes represented by discrete fuzzy membership func-
tions like good friends as shown in Fig. 7.5.

5 7
Height (meter) 

1

0.5

0

µ

Fig. 7.4. Continuous membership function for tall
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Friends

Adam     Ben        Ram  Laloo     Karim

Good friends

Fig. 7.5. Discrete fuzzy membership function

7.5 Historical Development of Fuzzy Logic

Fuzzy set was specifically designed to mathematically represent uncertainty
and vagueness and to provide formalized tools for dealing with the imprecision
intrinsic to many problems. However, the story of fuzzy logic started much
earlier.

• To devise a concise theory of logic, and later mathematics, Aristotle posited
the so-called “Laws of Thought”. One of these, the “Law of the Ex-
cluded Middle,” states that every proposition must either be True (T)
or False (F).

• It was Plato who laid the foundation for what would become fuzzy logic,
indicating that there was a third region (beyond T and F) where these
opposites “tumbled about.”

• A systematic alternative to the bi-valued logic of Aristotle was first pro-
posed by �Lukasiewicz around 1920 (Klir and Yuan 1995), when he de-
scribed a three-valued logic, along with the mathematics to accompany it.

• The third value, he proposed, can best be translated as the term “possi-
ble,” and he assigned it a numeric value between T and F. Eventually, he
proposed an entire notation and axiomatic system from which he hoped
to derive modern mathematics.

• Later, he felt that three- and infinite-valued logics were the most intriguing,
but he ultimately settled on a four-valued logic because it seemed to be
the most easily adaptable to Aristotelian logic (Klir and Folger 2000).

• The notion of an infinite-valued logic was introduced in Zadeh’s seminal
work “Fuzzy Sets” (Zadeh 1965) where he described the mathematics of
fuzzy set theory, and by extension fuzzy logic.

• This theory proposed making the membership function (or the values F
and T) operate over the range of real numbers [0, 1]. New operations for
the calculus of logic were proposed, and showed to be in principle in 1968.

• Fuzzy logic provides an inference morphology that enables approximate
human reasoning capabilities to be applied to knowledge-based systems.
The theory of fuzzy logic provides a mathematical strength to capture the



232 7 Introduction to Fuzzy Set Theoretic Approach

uncertainties associated with human cognitive processes, such as thinking
and reasoning.

• 1972 An Association was formed called “Japan Fuzzy Systems Research”
which is now called International Fuzzy Systems Association (IFSA) to
promote the activities in this direction.

• 1973 Prof. L.A. Zadeh developed systematic treatment for Fuzzy Logic.

• Prof. Ebrahim H. Mamdani, U.K. (1974a,b) and Mam-
dani and Assilian (1975) used fuzzy sets with an adap-
tive feedback control strategy to control a small toy
steam engine. This was the first practical applications
of fuzzy logic. Human Reasoning is based on Fuzzy rea-
soning. The steam generating system in a power plant
is proved to be a most complicated non-linear system
and conventional controllers could not give very good
results. Hence, fuzzy logic controller was used.

• In 1976 it was applied in the automatic control system of a rotary furnace
for cement production by Mamdani (1976).

• In 1980 Smith & Co. (Denmark) had used fuzzy Controller commercially
for Cement Kiln. Larsen (1980) used fuzzy logic for various industrial
applications.

• Fuji Electric Co. Ltd., Japan designed a fuzzy controller for water purifi-
cation in 1983.

• First Fuzzy International Conference was held in 1985.
• Prof. Yamakawa (1987) designed a super high speed fuzzy controller for

the Sendai underground railways, which was utilized by Hitachi company
in Japan. This system automatically decreased the speed of a train on
entering a station, ensuring that the train stopped at a predetermined
place. It also had the benefit of being a highly comfortable ride through
mild acceleration and braking.

• 1989 Foundation of the Laboratory for Industrial Fuzzy Engineering
(LIFE) Research.

Today, there are number of products in the market which are controlled with
fuzzy (Yager and Filev 2002) and neuro-fuzzy (Nie and Linkens 1995; Jang
et al. 1997) techniques. Recently, Sony uses fuzzy logic to recognize Kanji
characters in the Palm Top Computers (Abraham et al. 2002). In Tokoyo
motor show, Mitsubishi had a computer in an WSR-IV prototype that uses
fuzzy logic to imitate the information processing in a driver’s brain. It studies
the driving habits and responses of driver under different situation. Then
assist the driver while driving, if the driver does not respond as the computer
predicted, then computer can automatically take control of the brakes to avoid
a collision. In these applications precision is not so important.
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Precision Significance

A 1500Kg mass 
is approaching 
your head at 
45.3 m/sec. 

Look Out ! 

Fig. 7.6. Difference between precision and significance

7.6 Difference Between Precision and Significance

The two valued logic has proved very effective and successful in solving well
defined problems, which are characterized by precise description of the system
being dealt with in quantitative form. But, in everyday life there are many
situations, which can not be dealt satisfactorily with simple “yes” or “no”
basis, but some shade of gray is required. Fuzzy sets allow the description
of the situation in the linguistic terms rather than in terms of precise and
numeric values. Consider an example of an industry, a crane carrying a load
and a person standing in the way as shown in the diagram (Fig. 7.6). There
are two statements to express the situation, one is crisp and other is fuzzy, as
mentioned in diagram. Now, which one is better and effective?

7.7 Fuzzy Set

A Fuzzy set is a any set that allows its member to have a different grades of
membership function in the interval of [0,1]. Fuzzy set theory is a methodology
which shows how to tackle uncertainty, and to handle imprecise information in
a complex situation. Let X be a collection of objects or a universe of discourse
then a fuzzy set A in X is a set of ordered pairs A = {µA(x)/x} where µA(x)
is the characteristics function (or membership function) of x in A (Fig. 7.7).
If the membership function of A is discrete then A is written as

A = [µ1(x)/x1 + µ2(x)/x2 + µ3(x)/x3 + · · · · · · + µn(x)/xn]
= Σ[µi(x)/xi]

where “+” sign or Σ denotes union.
µi(x) – Membership value/grade
xi – Variable value
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True 
FalseFalse

False True 

0       1  
(a) Crisp Set (b) Fuzzy Set 

Fig. 7.7. Characteristic (membership) functions

When the membership function is continuous then the fuzzy set A is written as

A = ∫ µA(x)/x

where the integral denotes the fuzzy singletons.

Examples:

1. High temperature.
2. A set of all tall persons.
3. A set of all educated persons.

There are three basic methods by which a set can be defined:

1. List of elements
A set may be defined by all the elements along with their membership
value or membership grade associated with it.

A = [µ1(x)/x1 + µ2(x)/x2 + µ3(x)/x3 + · · · · · · + µn(x)/xn] or
= [µ1(x)/x1, µ2(x)/x2, µ3(x)/x3, · · · · · · , µn(x)/xn]

2. Rule method
A set may be represented by some rule which all the elements follow. A is
defined by the following notation as the set of all elements of x for which
the proposition P(x) is true.

A = {x |p(x)}
where | denote the phrase “such that”
p(x) − x has the property p.

3. Characteristics (membership) function
A set may also be defined by a characteristic (membership) function which
will give the membership value of each element.

µA(x) =
f(x) for x ∈ A

0 for x �∈ A

where f(x) could be any function like f(x) = 0.5x + 1 or f(x) = 1.5∗e−1.2x.
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Some main useful features of the fuzzy sets:

1. Fuzzy logic provides a systematic basis for quantifying uncertainty due to
vagueness and incompleteness of the information.

2. Classes with no sharp boundaries can be easily modeled using fuzzy sets.
3. Fuzzy reasoning is an informalism that allows the use of expert knowledge

and is able to process this expertise in a structured and consistent way.
4. There is no broad assumption of complete independence of the evidence

to be combined using fuzzy logic, as required for the other subjective
probabilistic approach.

5. When the information is inadequate to support a random definition, the
use of probabilistic methods may be difficult. In such cases the use of fuzzy
set is promising.

Subset
If every member of set A is also a member of set B (i.e. x ∈ A implies

x ∈ B), then A is called subset of B and written as A ⊆ B. Subset has the
following properties:

1. Every set is subset of itself and every set is a subset of the universal set.
2. If A ⊆ B and B ⊆ A then A = B (equal set).
3. If A ⊆ B and B �= A then A ⊂ B (A is proper subset of B).

Power set
The family of all subsets of a given set A is called the power set of A and

denoted by P(A). The family of all subsets of P(A) is called second order
power set of A, denoted by P2(A).

P2(A) = P(P(A)).

7.8 Operations on Fuzzy Sets

7.8.1 Fuzzy Intersection

A         B 

A ∩ B
x

µFuzzy intersection of two sets A and B is inter-
preted as “A AND B” which takes the minimum
value of two membership functions.

A ∩ B(x) =
∑

{µA(x)ΛµB(x)}
= min(µA(x), µB(x))

7.8.2 Fuzzy Union

The fuzzy union is interpreted as “A OR B” which takes maximum value of
two membership functions i.e.

AVB(x) =
∑

µA(x) VµB(x)

= max(µA(x), µB(x))
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Table 7.2. Different averaging operators

S. No. Name of averaging operator Formula

1. Harmonic mean 2 µA.µB/(µa1+µB)

2. Geometric mean
√

(µA.µB)

3. Arithmetic mean (µA + µB)/2

4. Dual of geometric mean 1 −√
((1 − µA) + (1 − µB))

5. Dual of harmonic mean (µA + µB − 2 µA.µB)/(2 − µA − µB)

6. Median med (µA, µB, α), αE(0, 1)

7. Generalized mean ((µA
α + µB

α)/2)1/α, α ≥ 1

8. Weighted generalized mean ((w1.µA
α + w2.µB

α)/2)1/α, α ≥ 1

A         B 

x

µ

A ∪ B

Union and intersection operators qualify as
aggregation operations on fuzzy sets. The results
of aggregation will be maximum or minimum
value in all sets. It do not produce value between
min(a1, a2, a3, . . . an) and max(a1, a2, a3, . . . an).
Hence the operator whose output value lies
between these limits are called compensat-
ing/averaging/mean operators. Mathematically, it can be written as:

min(µa1, µa2, µa3, . . .µan) ≤ h(µa1, µa2, µa3, . . .µan) ≤ max(µa1, µa2, µa3, . . .µan).

In decision process the idea of trade-offs corresponds to viewing the global
evaluation of an action as lying between worst and the best local ratings.
This occurs in the presence of conflicting goals, when a compensation be-
tween corresponding capabilities is allowed. Averaging operators realize trade
offs between objectives, by allowing a positive compensation between ratings.
Different types of averaging operators are given in Table 7.2.

7.8.3 Fuzzy Complement

The complement of a fuzzy set A, which is understood as “NOT(A)”, is
defined by

Ā =
∑

(1 − µA(x))

where Ā stands for the complement of A.
A         

x

µ
A         

The relative compliment of a set A with respect
to set B is the set containing all members of B
that are not members of A denoted by B-A.

(B − A) = {x | x ∈ B and x /∈ A}
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If set B is universal set then compliment is absolute. The absolute compliment
is always involutive. Absolute compliment of empty set is always equal to
universal set and vice versa.

φ = X and X = φ

7.8.4 Combination

The convex combination is an operator which combines different fuzzy sets
into a single fuzzy set using the weights assigned to each fuzzy set. The total
membership function µT (x) as a result of convex combination of the mem-
bership functions µA1, µA2, . . . , µAn, is defined by

µT(x) = w1(x)µA1(x) + w2(x)µA2(x) + · · · + wn(x)µAn(x)

where w1,w2, . . . ,wn are the weights of the fuzzy sets A1, A2, . . . ,An, respec-
tively such that:

w1(x) + w2(x) + · · · + wn(x) = 1

where the “+” sign in the above equations denotes an arithmetic addition.

7.8.5 Fuzzy Concentration

x

µ
A         CON(A) The concentration of the fuzzy sets produces a

reduction in membership value µi(x) by taking
power more than 1 to the membership value of
that fuzzy set. If a fuzzy set A is written as:

A = {µ1/x1 + µ2/x2 + · · · + µn/xn,}
then fuzzy concentrator applied to a fuzzy set A is defined:

CON(A) = Am = {µ1
m/x1 + µ2

m/x2 + · · · + µn
m/xn,}

where CON(A) represents the concentrator applied to A.
m is any number greater than 1.

7.8.6 Fuzzy Dilation

x

µ
A            DIL(A) The Fuzzy dilation is an operator which increases

the degree of belief in each object of fuzzy set by
taking the power less than 1 of the membership
value. The dilation has an opposite effect to that
of concentration.

DIL(A) = Am = {µ1
m/x1 + µ2

m/x2 + · · · · · · · · · · · · + µn
m/xn}

where m is any number lesser than 1.
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The fuzzy operations of plus and minus applied to a fuzzy set give an
intermediate effect of CON(A) and DIL(A) where the value of m is 1.25 and
0.75, respectively. If a set A is fuzzy set then the plus and minus may be
defined as:

Plus(A) = A1.25 and Minus(A) = A0.75

7.8.7 Fuzzy Intensification

x

µ
A            INT(A) Intensification is an operator which increases the

membership function of a set above the cross
point (at α = 0.5) and decreases below the
cross point.

If A is a fuzzy set, x ∈ A then the intensifica-
tion applied to A is defined as-

µINT(A)(x) ≥ µA(x), µA(x) ≥ 0.5

µINT(A)(x) ≤ µA(x), µA(x) ≤ 0.5

Bounded Sum
The bounded sum of two fuzzy sets A and B in the universes X and Y

with the membership functions µA(x) and µB(y) respectively is defined by

A ⊕ B = µA⊕B(x) = 1 ∧ (µA(x) + µB(y))
= min(1, (µA(x) + µB(y))

where the “+” sign is an arithmetic operator.

Bounded product
The bounded product of two fuzzy sets A and B in the universes X and Y

with membership functions µA (x) and µB(y) respectively is defined as

A ⊗ B = µA⊗B(x) = 0 ∨ (µA(x) + µB(x) − 1)
= max(0, (µA(x) + µB(x) − 1)).

7.8.8 α-Cuts

α-cuts are the slices through a fuzzy set producing regular (non-fuzzy) sets. If
Ā is a fuzzy subset of some set Ω, then an α-cut of Ā, written Ā[α] is defined
as (Fig. 7.8)

Let

Young = {1/5, 1/10, 0.8/20, 0.5/30, 0.2/40, 0.1/50}
Young0.8 = {1/5, 1/10, 0.8/20}

The distinct α-cut of a fuzzy set A is called a level set (Aα) of A. Hence, the
fuzzy set is the union of all possible level set, i.e. A = U Aα. This is also called
first decomposition theorem.



7.8 Operations on Fuzzy Sets 239

A [α] = {x C Ω |A(x) ≥α} for all α, 0<α ≤1.

α1

α2

α3

α4

α5

α6

Fig. 7.8. α-cuts for a given fuzzy set A

α = 0.8 

5 10 3020 40 50 Age (Years)

Strong α-cut
Strong α-cut of a fuzzy set A is also a crisp set Aα+ that contains all the

elements of the universal set X that have a membership grade in A greater to
the specified values of α between 0 and 1.

Aα+ = {x|A(x)A > α}

For example Young0.8+ = {1/5, 1/10}.
The α-cut of a given fuzzy set A for two distinct values of α say α1 and α2

such that α1 < α2 are Aα1 and Aα2 such that Aα1 ⊇ Aα2. Similarly for strong
α-cut Aα1+ ⊇ Aα2+.
Properties of α-cut

a. Aα+ ⊆ Aα

b. (A ∩ B)α = (Aα ∩ Bα) and (A ∪ B)α = (Aα ∪ Bα)
c. (A ∩ B)α+ = (Aα+ ∩ Bα+) and (A ∪ B)α = (Aα ∪ B+α)
d. Āα = Ā(1−α)+

7.8.9 Fuzzy Quantifier/Modifier/Hedges

These are special terms by which the fuzzy sets are modified. Mathematically
it can be written as:

h(A) = µA
n
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where µA membership value of fuzzy set A.
n - is value of modifier.

Every modifier h satisfy the the following conditions:

a. Boundary conditions, i.e. modifier operator (h) does not change the mem-
bership values at extreme points. h(0) = 0 and h(1) = 1

b. h is a continuous function.
c. If h is strong modifier then h−1 is weak modifier and vice versa.
d. Composition of two modifier operators is also a modifier.

Basically there are two types of fuzzy modifier depending on relativity:

1. Absolute modifier
2. Relative modifier

1. Absolute modifier
These are the modifiers with respect to the absolute quantity like about
10, much more than 100, at last about 5, etc.

2. Relative modifier
These are the modifiers which modify the fuzzy set with respect to some
other fuzzy set/quantity like almost all, about half, most of it, etc.

Fuzzy modifier may also be classified based on the strength of modifier:

1. Strong modifier
2. Weak modifier
3. Identity modifier

1. Strong modifier
If the value of modifier n ≥ 1 then fuzzy modifier is called a strong modifier
(concentrator), because the area under fuzzy membership function get
reduced (ref. Fig. 7.9).
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Fig. 7.9. Strong fuzzy modifier
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Let
close to ‘3’ = {0/1, 0.5/2, 1/3, 0.5/4, 0/5}
Very close to ‘3’ = µA

2 = {0/1, 0.25/2, 1/3, 0.25/4, 0/5}
Extremely close to ‘3’ = µA

1.25 = {0/1, 0.25/2, 1/3, 0.25/4, 0/5}

% Matlab Program for Strong Fuzzy Modifiers

% Close_to_3=A
A=[0:.1:1, .9:-0.1:0];
x=[0:6/20:6];
Very_Close_to_3=A.^2;
Extermey_Close_to_3=A.^1.25;
plot(x,A)
hold
plot(x,Very_Close_to_3, ‘--’)
plot(x,Extermey_Close_to_3, ‘:’)
legend(‘Close to 3’, ‘Very close to 3’,
‘Extremely close to 3’)
xlabel(‘Natural Numbers -->’)
ylabel(‘Membership value’)

2. Weak fuzzy modifier
If the value of modifying parameter n ≤ 1 then, modifier is called weak
modifier (also called dilution, because the area under fuzzy membership
function is increased as shown in Fig. 7.10). For example:
More or less close to ‘3’= µ0.75

A = {0/1, 0.5946/2, 1/3, 0.5946/4, 0/5}
Extremely close to ‘3’= µ0.5

A = {0/1, 0.7071/2, 1/3, 0.7071/4, 0/5}
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Fig. 7.10. Weak fuzzy modifier
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% Matlab Program for Weak Fuzzy Modifiers

clear all
% Close_to_3=A
A=[0:.1:1, .9:-0.1:0];
x=[0:6/20:6];
More_or_less_Close_to_3=A.^0.75;
fairly_Close_to_3=A.^0.5;
plot(x,A)
hold
plot(x,More_or_less_Close_to_3, ‘--’)
plot(x,fairly_Close_to_3, ‘:’)
legend(‘Close to 3’, ‘More or Less close to 3’,
‘fairly close to 3’)
xlabel(‘Natural Numbers -->’)
ylabel(‘Membership value’)

3. Identity modifier
If the value of modifier n = 1, then it is called identity modifier. Under this
condition there is no change in the area under fuzzy membership function.

Intensification
It is the combination of strong and weak modifiers. If the membership

value of fuzzy set is less than 0.5, the strong fuzzy modifier is used and when
the membership value of fuzzy set is greater than 0.5, the weak fuzzy modifier
is used as shown in Fig. 7.11. This is an operator which make a fuzzy set
nearly a crisp set (Table 7.3).

h(A) =
µA

n
1 n1 ≥ 1If 0 ≤ µA ≤ 0.5

µA
n
2 n2 ≤ 1 If 0.5 ≤ µA ≤ 1.0

For example intensified close to 3 =
2µA

2 If 0 ≤ µA ≤ 0.5

1 − 2(1 − µA)2 If 0.5 ≤ µA ≤ 1.0
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Fig. 7.11. Intensified modifier
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Table 7.3. Summary of operations on fuzzy sets

S. No. Operations Symbol Formula

1. Intersection A ∩ B min (µA(x), µB(x))
2. Union A ∪ B max (µA(x), µB(x))
3. Compliment Ā 1-µA(x)
4. Concentration CON(A) µm

i if m ≥ 1
5. Dilution DIL(A) µm

i if m ≤ 1
6. Intensification INT(A) µm

i if m ≥ 1 for µi < 0.5
© µm

i if m ≤ 1 for µi > 0.5
7. Bounded sum A ⊕ B min(1, (µA(x) + µB(y))
8. Bonded difference A - B max(0, (µA(x) − µB(x)))
9. Bounded product A ⊗ B max(0, (µA(x) + µB(x) − 1))
10. Equality A = B µA(x) = µB(x)

% Matlab Program for intensified fuzzy modifiers

clear all
% Close_to_3=A
A=[0:.1:1, .9:-0.1:0];
x=[0:6/20:6];
[l n]=size(A);
for i=1:n

if A(i)<=0.5
A1(i)=2*A(i).^2

else
A1(i)=1-2*(1-A(i)).^2

end
end
plot(x,A); hold
plot(x,A1, ‘:’)
legend(‘Close to 3’, ‘intensified close to 3’)
xlabel(‘Natural Numbers -->’)
ylabel(‘Membership value’)

Linguistic hedges
Linguistic hedges such as very, much, more or less, etc. modify the meaning

of atomic as well as composite terms and thus serve to increase the range of
linguistic variable from a small collection of primary term.

A hedge h may be regarded as an operator which transforms the fuzzy set
M (u), representing the meaing of u, into the fuzzy set M (hu). For example,
by using the hedge very in conjunction with not, and the primary term tall,
we can generate the fuzzy sets very tall, very very tall, not very tall, tall and
not very tall, etc.
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very x = x2

very very x = (very x)2 = x4

not very x = (very x)
plus x = x1.25

minus x = x0.75

From last two, we have the approximate identity

plus plus x = min us very x

Example

If U = 1 + 2 + 3 + 4 + 5 and small = 1/ 1 + 0.8/ 2 + 0.6/ 3 + 0.4/ 4 + 0.2/5
Then very small = 1/1 + 0.64/ 2 + 0.36/ 3 + 0.16/ 4 + 0.04/ 5 = µA

2/A

very very small = 1/ 1 + 0.4/ 2 + 0.1/3 (Neglecting small terms)

not very small = 0/ 1 + 0.36/ 2 + 0.64/ 3 + 0.84/ 4 + 0.96/5
plus small = 1/ 1 + 0.76/ 2 + 0.53/ 3 + 0.32/ 4 + 0.13/5
min us small = 1/ 1 + 0.85/ 2 + 0.68/ 3 + 0.5/ 4 + 0.3/5

7.9 Characteristics of Fuzzy Sets

7.9.1 Normality

A fuzzy set is said to be normal if the greatest value of its membership function
is unity. Vx µ(x) = 1, where Vx stands for the supremum of the µ (x) (least
upper bound) otherwise the set is subnormal as shown in Fig. 7.12.

7.9.2 Convexity

A convex fuzzy set is described by a membership function whose membership
values are strictly monotonically increasing, or strictly monotonically decreas-
ing, or strictly monotonically increasing then strictly monotonically decreasing
with the increasing value for elements in the universe of discourse X, i.e. if
x, y, z ∈ A and x < y < z then µA(y) ≥ min [µA(x), µA(z)] (ref. Fig. 7.13).

x

µ

A
11

(b) Non - Normal Fuzzy Set  

0.5

x

µ

A

(a) Normal Fuzzy Set  

Fig. 7.12. Normality of fuzzy set
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µ

A
1

(a) A is Convex Fuzzy Set
x

B
1

(b) B is Non - Convex Fuzzy Set

Fig. 7.13. Convexity of fuzzy set
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Fig. 7.14. Cross over points

xb ca

µ(x) 

A

Fig. 7.15. Fuzzy singletone

7.9.3 Cross Over Point

The cross over points of a membership function are defined as the elements
in the universe for which a particular fuzzy set Ã has values equal to 0.5, i.e.
for which µ(x) = 0.5. For example a, b are the cross over points as given in
Fig. 7.14.

7.9.4 Fuzzy Singletone

A fuzzy single tone is a fuzzy set which only has a membership grade for
a single value. Let A be a fuzzy single tone of a universe of discourse X,
x ε X, then A is written as A = µ/x. With this definition, a fuzzy set can be
considered as the union of the fuzzy single tone. In the given Fig. 7.15 range
from a to c is the support and the element b only has the membership value
greater than zero. Fuzzy sets of this type are called Fuzzy Singletone.
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Fig. 7.16. Height of membership function

7.9.5 Height

The height of a fuzzy set Ã is the maximum value of the membership func-
tion, i.e. max {µ(x)}. The height of fuzzy set in the given example is 0.8 (ref.
Fig. 7.16).

7.9.6 Cardinality

The number of members of a finite discrete fuzzy set A is called cardinality
of A and denoted by |A|. The number of possible subsets of a set A is equal
to 2|A| which is also called the power set.

7.10 Properties of Fuzzy Sets

7.10.1 Commutative Property

The fuzzy sets follow commutative property, i.e.

A ∪ B = B ∪ A or max [µA(x), µB(y)] = max [µB(x), µA(y)]
and A ∩ B = B ∩ A or min [µA(x), µB(y)] = min [µB(x), µA(y)].

7.10.2 Associative Property

The fuzzy sets also follow associative property, i.e.

A ∪ (B ∪ C) = (A ∪ B) ∪ C or
max [µA(x), max(µB(x), µc(z)] = max[µA(x), max {µB(y), µc(z)}]
and A ∩ (B ∩ C) = (A ∩ B) ∩ C or
min[µA(x), min {µB(y), µC(z)}] = min[min {µA(x), µB(y)}, µC(z)]

7.10.3 Distributive Property

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) or
max [µA(x), min(µB(x), µc(z)] = min[max {µA(x), µB(y)},

max {µA(x), µc(z)}].
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7.10.4 Idem Potency

A ∪ A = A means max {µA(x), µA(x)} = µA(x)
and A ∩ A = A means min {µA(x), µA(x)} = µA(x).

7.10.5 Identity

A ∪ φ = A means max {µA(x), 0} = µA(x)
A ∩ X = A means min {µA(x), 1} = µA(x)
A ∩ φ = A means min {µA(x), 0} = 0
and A ∪ X = X means max {µA(x), 1} = 1.

7.10.6 Involution

A = A i.e. 1-(1-µA(x)) = µA(x).

7.10.7 Excluded Middle Law

This law is only valid for classical set theory and not true for fuzzy set theory.
A ∪ Ā �= X means max {µA(x), µĀ(x)} �= 1.

A

x

µ

A

A    A
A

x

µ

A

A ∩ A 

7.10.8 Law of Contradiction

This is also true for classical sets and not for fuzzy sets.
A ∩ Ā �= ϕ means min {µA(x), µĀ(x)} �= 0.

7.10.9 Demorgan’s Law

1. (A ∪ B) = A ∩ B
A circuit of diodes as shown in the following figure can physically repre-
sent this.



248 7 Introduction to Fuzzy Set Theoretic Approach

2. (A ∩ B) = A ∪ B A circuit of diodes as shown in the following figure can
physically represent this.

7.10.10 Transitive

If A ⊆ B and B ⊆ C Then A ⊆ C (Table 7.4).

Table 7.4. Summary of laws of fuzzy set

S. No. Property Formula

1. Commutative A ∪ B = B ∪ A
2. Associative A ∪ (B ∪ C) = (A ∪ B) ∪ C
3. Distributive A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
4. Idem potency A ∪ A = A and A ∩ A = A
5. Identity A ∪ ϕ = A, A ∩ X = A

A ∩ ϕ = A, and A ∪ X = X

6. Involution A = A

7. Demorgan’s Law (A ∪ B) = A∩B and (A ∩ B) = A∪B
8. Convexity Strictly monotonic
9. Transitive If A ⊆ B and B ⊆ C Then A ⊆ C
10. Reflexive
11. Equivalence If set is convex, transitive and reflexive
12. Absorption (A ∩ B) = A and A ∩ (A ∪ B) = A

A ∪ X = X and A ∩ φ = φ
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7.11 Fuzzy Cartesian Product

Let A be a fuzzy set on universe X and B be a fuzzy set on universe Y; then the
Cartesian product between fuzzy sets A and B will result in a fuzzy relation
R, which is contained within the full Cartesian product space, or

A × B = R ⊂ X × Y

where the fuzzy relation R has membership function

µR(x, y) = µA×B(x, y) = min(µA(x), µB(y))

The Cartesian product defined by A × B = R above is implemented in the
same fashion as it is the cross product of two vectors. The Cartesian product
is not the same operation as the arithmetic product. Each of the fuzzy sets
could be thought of as a vector of membership values; each value is associated
with a particular element in each set.

For example, a fuzzy set (vector) A that has four elements, hence column
vector of size 4×1, and for a fuzzy set (vector) B that has five elements, hence
a row vector size of 1 × 5, the resulting fuzzy relation, R will be represented
by a matrix of size 4 × 5; i.e. R will have four rows and five columns.

Example 1. Suppose we have two fuzzy sets, A defined on a universe of
four discrete temperatures, X = {x1, x2, x3, x4), and B defined on a uni-
verse of three discrete pressures, Y = (y1, y2, y3), and we want to find the
fuzzy Cartesian product between them. Fuzzy set A could represent the
“ambient” temperature and fuzzy set B the “near optimum” pressure for
a certain heat exchanger, and the Cartesian product might represent the
conditions(temperature-pressure pairs) of the exchanger that are associated
with “efficient” operations.

Let

A = 0.2/x1 + 0.5/x2 + 0.8/x3 + 1/x4

and B = 0.3/y1 + 0.5/y2 + 0.9/y3

Here A can be represented as a column vector of size 4 × 1 and B can be
represented as a row vector of size 1 × 3. Then the fuzzy Cartesian product,
results in a fuzzy relation R (of size 4× 3) representing “efficient” conditions,

A × B = R =

y1 y2 y3

x1

x2

x3

x4

⎡
⎢⎢⎣

0.2 0.2 0.2
0.3 0.5 0.5
0.3 0.5 0.8
0.3 0.5 0.9

⎤
⎥⎥⎦
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7.12 Various Shapes of Fuzzy Membership Functions

It can be any real valued function, but in general normalized membership
functions with values between 0 and 1.

a. Triangular membership function
Fuzzy number is defined as a convex single-point normal fuzzy set defined
on the real line as shown in Fig. 7.17. Let us consider a fuzzy one. Its
maximum membership will be at one and reduces on both sides as number
increases or decreases as shown below. It is also called triangular fuzzy
number.

b. Trapezoidal fuzzy membership function
A fuzzy set A is called trapezoidal fuzzy number
with tolerance interval [a, b], left width α and
right width β if its membership function has the
following form

A(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − a−t
α if a − α ≤ t ≤ a

1 if a ≤ t ≤ b

1 − t−b
β if a ≤ t ≤ b + β

0 otherwise

and we use the notation A = (a, b, α, β). It can easily be shown that

[A]γ = [a − (1 − γ)α, b + (1 − γ)β],∀γ ∈ [0, 1]

The support of A is (a − α, b + β).

A trapezoidal fuzzy number may be seen as a fuzzy quantity “x is approx-
imately in the interval [a, b]”.

Features of the membership function:
The following are the some of the features that are defined for a member-
ship function.

Number 

µ

0 0.5 1.0 1.5

Fig. 7.17. Fuzzy one
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Core
The core of a membership function for some fuzzy set is defined as that
region of the universe that is characterized by complete or full membership
value in the set.

Support
Support of a membership function for some fuzzy set is defined as that
region of the universe that is characterized by nonzero membership value
in the set.

Boundaries
Boundaries of a membership function for some fuzzy set is defined as that
region of the universe containing elements that have a nonzero member-
ship but not complete membership value that is this value lies between 0
and 1 (Fig. 7.18).

c. Gaussian or bell shaped membership function
The Gaussian or bell shaped membership function is also used in fuzzy
set theory. The general expression for bell shaped membership function is
given by following equation:

f(x, α, β, γ) = γ exp(−(x − α)2/β),

where α, β, γ – are the parameters of bell shaped functions.

d. Generalized membership function
It is a membership function by which any shape can be generated. It is
consisting of minimum four segments A, B, C, and D as shown in Fig. 7.19.
The length and angle of these segments can be altered depending on the
need to develop a membership function.

Fig. 7.18. Core, support and boundaries of a membership function



252 7 Introduction to Fuzzy Set Theoretic Approach

A       D 

B    C 

Fig. 7.19. Generalized membership function

%Matlab Program for plotting bell shaped membership function.

clear all,
clc;
a=1;
b=0.16;
gamma=1.1;
x=0:.1:3;
f=gamma*exp(-(x-a).^2/b);
plot(x,f);
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Properties of membership function:

1. The membership function should be strictly monotonically increasing,
or strictly monotonically decreasing, or strictly monotonically increas-
ing then strictly monotonically decreasing with the increasing value for
elements in the universe of discourse X, i.e.

If x, y, z ∈ A and x < y < z then
µA(y) ≥ min[µA(x), µA(z)].

2. The membership function should be continuous/piecewise continuous.
3. The membership function should be differentiable to provide smooth

results.
4. The membership function should be of simple straight segments to make

the process of fuzzy models easy and to high accuracy.
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5. The membership function should satisfy the condition of a partition of
unity i.e. the sum of the memberships of each element x from the universe
of discourse X is equal to 1, i.e.

∑
µA(x) ≡ 1, ∀x ∈ X.

7.13 Methods of Defining of Membership Functions

There are numerous methods of constructing membership functions. They are
constructed either intuitively or based on some algorithmic or logical opera-
tions. These methods can be classified as:

• Direct methods
• Indirect methods

Both direct and indirect methods are further classified to methods that involve
one expert and methods that require multiple experts.

Direct methods:
In direct methods, each expert is expected to assign to each given element

x, a membership grade A (x) that according to his opinion best captures the
meaning of the linguistic term represented by the fuzzy set A.

In case of multiple experts, the most common method to aggregate the
opinions of individual expert is based on probabilistic interpretation of mem-
bership functions.

Let,

n = Number of experts
ai (x) = degree of belongingness of x to A in the opinion of expert-i
ci = degree of competence of the expert-i

A(x) =
n∑

i=1

ciai (x) where,
n∑

i=1

ci = 1.

Indirect methods:
In indirect methods, experts are required to answer simple questions, easier

to answer and less sensitive to the various biases of subjective judgments,
which pertain to the constructed membership functions only implicitly. The
answers are subject to further processing based on various assumptions to get
the membership function.

The direct method with single expert gives very inconsistent result as it is
based on a single person’s opinion in a detailed manner. It is simply derived
from the capacity of humans to develop membership functions through their
own innate intelligence and understanding. On the other hand, the indirect
method with multiple expert results in a very accurate and consistent dataset
but the procedure is complicated.
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Construction of membership from sample data:
It is assumed that n sample data (x1, a1), (x2, a2), (x3, a3) . . . . . . . (xn, an)

are given where ai is a given grade of membership of xi in a fuzzy set A;
i.e. ai = A(xi). The problem is to determine the whole membership function A.

• Artificial neural network
• Interpolation
• Curve fitting

Artificial neural network:
The multi-layer artificial neural networks is used for constructing member-

ship functions based on learning patterns from sample data. The backpropa-
gation algorithm is used to train the above neural network.

Interpolation:
Interpolation means to find the values of a function f(x) for an x between

different x values x0, x1, . . . . . . .xn at which the values of f(x) are given. With
the interpolation we can approximate continuous function with desired accu-
racy.
There are many interpolation methods such as:

• Lagrange interpolation
• Newton’s interpolation
• Newton–Gregory forward interpolation
• Spline interpolation, etc.

Curve fitting:
In case of least square curve fitting for bell shaped function with Υ = 1,

it gives a normal membership function. For minimization of sum square error
with the function parameters, steepest descent method, or some optimization
method may be used. Some more advanced technique, e.g. Genetic algorithm
for minimizing the error can also be used.

7.14 Fuzzy Compositional Operators

Let R be the fuzzy relation from X to Y and s be the fuzzy relation from Y
to Z then the composition of R and S is a fuzzy relation from X to Z and is
represented by RoS. The fuzzy compostion RoS is given by

(i) MAX-MIN composition:

RoS ⇒ ∫ ∨(µR(x, y)∧µS(y, z))/(x, z)
XxZ where ∨ = max and ∧ = min
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Example: Let fuzzy relations R and S are given as:

R =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ S =

⎡
⎣0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

Then fuzzy composition RoS is given by:

RoS =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ o

⎡
⎣ 0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

=

⎡
⎣0.3 ∪ 0.1 ∪ 0.4 0.3 ∪ 0.4 ∪ 0.4 0.3 ∪ 0.5 ∪ 0.4

0.5 ∪ 0.1 ∪ 0.3 0.5 ∪ 0.4 ∪ 0.3 0.5 ∪ 0.6 ∪ 0.3
0.8 ∪ 0.1 ∪ 0.5 0.6 ∪ 0.7 ∪ 0.9 0.7 ∪ 0.6 ∪ 1

⎤
⎦

=

⎡
⎣0.4 0.4 0.5

0.5 0.5 0.6
0.8 0.9 1

⎤
⎦

SoR = [S]o[R] =

⎡
⎣0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦ o

⎡
⎣ 0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦

=

⎡
⎣0.3 ∪ 0.5 ∪ 0.7 0.5 ∪ 0.6 ∪ 0.7 0.4 ∪ 0.3 ∪ 0.7

0.1 ∪ 0.4 ∪ 0.6 0.1 ∪ 0.4 ∪ 0.6 0.1 ∪ 0.3 ∪ 0.6
0.3 ∪ 0.5 ∪ 0.9 0.5 ∪ 0.6 ∪ 0.7 0.4 ∪ 0.3 ∪ 1

⎤
⎦

=

⎡
⎣0.7 0.7 0.7

0.6 0.6 0.6
0.9 0.7 1

⎤
⎦

Now it is clear that RoS �= SoR.

(ii) MIN-MAX composition: This composition is defined as:

RoS ⇒ ∫ ∧(µR(x, y)∨µS(y, z))/(x, z)
XxZ where ∨ = max and ∧ = min

Example: Let fuzzy relations R and S are given as:

R =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ S =

⎡
⎣0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦
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Then fuzzy composition RoS is given by:

RoS =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ o

⎡
⎣ 0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

=

⎡
⎣0.8 ∩ 0.5 ∩ 0.5 0.6 ∩ 0.5 ∩ 0.9 0.7 ∩ 0.6 ∩ 1

0.8 ∩ 0.6 ∩ 0.3 0.6 ∩ 0.6 ∩ 0.9 0.7 ∩ 0.6 ∩ 1
0.9 ∩ 0.7 ∩ 1 0.9 ∩ 0.7 ∩ 1 0.9 ∩ 0.7 ∩ 1

⎤
⎦

=

⎡
⎣0.5 0.5 0.6

0.3 0.6 0.6
0.7 0.7 0.7

⎤
⎦

(iii) MAX-MAX composition: This composition is defined as:

RoS ⇒ ∫ ∨(µR(x, y)∨µS(y, z))/(x, z)
where ∨ = max and ∧ = min

Example: Let fuzzy relations R and S are given as:

R =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ S =

⎡
⎣0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

Then fuzzy composition RoS is given by:

RoS =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ o

⎡
⎣ 0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

=

⎡
⎣0.8 ∪ 0.5 ∪ 0.5 0.6 ∪ 0.5 ∪ 0.9 0.7 ∪ 0.6 ∪ 1

0.8 ∪ 0.6 ∪ 0.3 0.6 ∪ 0.6 ∪ 0.9 0.7 ∪ 0.6 ∪ 1
0.9 ∪ 0.7 ∪ 1 0.9 ∪ 0.7 ∪ 1 0.9 ∪ 0.7 ∪ 1

⎤
⎦

=

⎡
⎣0.8 0.9 1

0.8 0.9 1
1 1 1

⎤
⎦

(iv) MIN-MIN composition: This type of fuzzy composition is defined as fol-
lowing:

RoS ⇒ ∫ ∧(µR(x, y)∧µS(y, z))/(x, z)
where ∨ = max and ∧ = min

Example: Let fuzzy relations R and S are given as:

R =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ S =

⎡
⎣0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦
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Then fuzzy composition RoS is given by:

RoS =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ o

⎡
⎣ 0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

=

⎡
⎣0.3 ∩ 0.1 ∩ 0.4 0.3 ∩ 0.4 ∩ 0.4 0.3 ∩ 0.5 ∩ 0.4

0.5 ∩ 0.1 ∩ 0.3 0.5 ∩ 0.4 ∩ 0.3 0.6 ∩ 0.6 ∩ 0.3
0.8 ∩ 0.1 ∩ 0.5 0.6 ∩ 0.7 ∩ 0.9 0.7 ∩ 0.6 ∩ 1

⎤
⎦

=

⎡
⎣0.1 0.3 0.3

0.1 0.3 0.3
0.1 0.6 0.6

⎤
⎦

(v) MAX-product: This class of composition is defined as:

RoS ⇒ ∫ ∨(µR(x, y).µS(y, z))/(x, z)

where ∨ = max and ∧ = min.

Example: Let fuzzy relations R and S are given as:

R =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ S =

⎡
⎣0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

Then fuzzy composition RoS is given by:

RoS =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ o

⎡
⎣ 0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

=

⎡
⎣0.24 ∪ 0.05 ∪ 0.20 0.18 ∪ 0.20 ∪ 0.36 0.21 ∪ 0.30 ∪ 0.4

0.40 ∪ 0.06 ∪ 0.15 0.30 ∪ 0.24 ∪ 0.27 0.35 ∪ 0.36 ∪ 0.30
0.72 ∪ 0.07 ∪ 0.5 0.54 ∪ 0.28 ∪ 0.9 0.63 ∪ 0.42 ∪ 1

⎤
⎦

=

⎡
⎣0.24 0.36 0.40

0.40 0.30 0.36
0.72 0.36 1

⎤
⎦

(vi) MAX-average: This is defined as following:

RoS ⇒ 1/2[∫ ∨(µR(x, y) + µS(y, z))/(x, z)]
XxZ where ∨ = max and ∧ = min .

Example: Let fuzzy relations R and S are given as:

R =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ S =

⎡
⎣0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦
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Then fuzzy composition RoS is given by:

RoS =

⎡
⎣0.3 0.5 0.4

0.5 0.6 0.3
0.9 0.7 1.0

⎤
⎦ o

⎡
⎣ 0.8 0.6 0.7

0.1 0.4 0.6
0.5 0.9 1.0

⎤
⎦

= 1/2

⎡
⎣ 1.1 ∪ 0.6 ∪ 0.9 0.9 ∪ 0.9 ∪ 1.3 1.0 ∪ 1.1 ∪ 1.0

1.3 ∪ 0.7 ∪ 0.8 1.1 ∪ 1.0 ∪ 1.2 1.2 ∪ 1.2 ∪ 1.3
1.7 ∪ 0.8 ∪ 1.5 1.5 ∪ 1.1 ∪ 1.9 1.6 ∪ 1.4 ∪ 2

⎤
⎦

= 1/2

⎡
⎣ 1.1 1.3 1.1

1.3 1.2 1.3
1.7 1.9 2

⎤
⎦ =

⎡
⎣0.55 0.65 0.55

0.65 0.60 0.65
0.85 0.95 1

⎤
⎦

7.15 Relation

If A and B are two sets and there is a specific property between elements x
of A and y of B, this property can be described using the ordered pair (x, y).
A set of such (x, y) pairs, x ∈ A and y ∈ B, is called a relation R.

R = {(x, y)|x ∈ A, y ∈ B}
R is a binary relation and a subset of A × B.

The term “x is in relation R with y” is denoted as

(x, y) ∈ R or xRy with R ⊆ A × B.
If (x, y) /∈ R, x is not in relation R with y.
If A = B or R is a relation from A to A, it is written (x, x) ∈ R or xRx for

R ⊆ A × A.

n-ary relation

For sets A1, A2, . . . , An the relation among elements x1 ∈ A1, x2 ∈
A2 . . . , xn ∈ An can be described by n-tuple (x1, x2, . . . , xn). A collection of
such n-tuples (x1, x2, . . . , xn) is a relation R among A1, A2, . . . , An. That is

(x1, x2, . . . , xn) ∈ R

R ⊆ A1 × A2 × . . . × An

Domain and range

Let R stand for a relation between A and B. The domain and range of this
relation are defined as follows (Fig. A.2):

dom(R) = {x|x ∈ A, (x, y) ∈ R for some y ∈ B}
ran(R) = {y|y ∈ B, (x, y) ∈ R for some x ∈ A}
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Here we call set A as support of dom(R) and B as support of ran(R).
dom(R) = A results in completely specified and dom(R) ⊆ A incompletely

specified. The relation R ⊆ A×B is a set of ordered pairs (x, y). Thus, if we
have a certain element x in A, we can find y of B, i.e. the mapped image of
A. We say “y is the mapping of x” (Fig. 7.20).

7.15.1 Representation Methods of Relations

There are four methods of expressing the relation between sets A and B.

(1) Bipartigraph
The first is by illustrating A and B in a Fig. 7.21 and representing the
relation by drawing arcs or edges.

(2) Coordinate diagram
The second is to use a coordinate diagram by plotting members of A on
x axis and that of B on y axis, and then the members of A × B lie on
the space. Figure 7.22 shows this type of representation for the relation
R, namely x2 + y2 = 9 where x ∈ A and y ∈ B.

(3) Matrix
The third method is by manipulating relation matrix. Let A and B be
finite sets having m and n elements respectively. Assuming R is a relation

A B 

dom(R) ran(R)

Fig. 7.20. Domain and range

A                                                                        B 
a1

a2

a3

a4

b1

b2

b3

Fig. 7.21. Binary relation from A to B
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3

x

-3 3 

y

Fig. 7.22. Relation of x2 + y2 = 9

between A and B, we may represent the relation by matrix MR = (mij)
which is defined as follows:

MR = (mij)

mij =
{

1, (ai, bj) ∈ R
0, (ai, bj) /∈ R

i = 1, 2, 3, . . .. . .,m
j = 1, 2, 3, . . .. . .,n

Such matrix is called a relation matrix, and that of the relation in Fig. 7.21
is given in the following:

R b1 b2 b3
a1 1 0 0
a2 0 1 0
a3 0 1 0
a4 0 0 1

(4) Digraph
The fourth method is the directed graph or digraph method. Elements are
represented as nodes, and relations between elements as directed edges.
A = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (2, 4),
(4, 1)} for instance. Figure 7.23 shows the directed graph corresponding
to this relation. When a relation is symmetric, an undirected graph can
be used instead of the directed graph.

7.15.2 Fundamental Properties of a Relation

Now we shall see the fundamental properties of relation defined on a set, that
is, R ⊆ A × A. We will review the properties such as reflexive relation, sym-
metric relation, transitive relation, closure, equivalence relation, compatibility
relation, pre-order relation and order relation in detail.



7.15 Relation 261

1

4
2

3

Fig. 7.23. Directed graph

(1) Reflexive relation
If for all x ∈ A, the relation xRx or (x, x) ∈ R is established, we call it
reflexive relation. the reflexive relation might be denoted as

x ∈ A → (x, x) ∈ or µR(x, x) = 1,∀x ∈ A,

where the symbol “→” means “implication”,
If it is not satisfied for some x ∈ A, the relation is called “irreflexive”. If
it is not satisfied for all x ∈ A, the relation is “antireflexive”.
When you convert a reflexive relation into the corresponding relation ma-
trix, you will easily notice that every diagonal member is set to 1. A
reflexive relation is often denoted by D.

(2) Symmetric relation
For all x, y ∈ A, if xRy = yRx, R is said to be a symmetric relation and
expressed as

(x, y) ∈ R → (y, x) ∈ R or
µR(x, y) = µR(y, x),∀x, y ∈ A

The relation is “asymmetric” or “nonsymmetric” when for some x, y ∈
A, (x, y) ∈ R and (y, x) /∈ R.
It is an “antisymmetric” relation if for all x, y ∈ A, (x, y) ∈ R and
(y, x) /∈ R.

(3) Transitive relation
This concept is achieved when a relation defined on A verifies the following
property. For all x, y, z ∈ A

(x, y) ∈ R, (y, z) ∈ R → (x, z) ∈ R
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(4) Closure
When relation R is defined in A, the requisites for closure are:
(1) Set A should satisfy a certain specific property.
(2) Intersection between A’s subsets should satisfy the relation R.
The smallest relation R′ containing the specific property is called closure
of R.

Example 1. If R is defined on A, assuming R is not a reflexive relation, then
R′ = D ∪ R contains R and reflexive relation. At this time, R′ is said to be
the reflexive closure of R.

Example 2. If R is defined on A, transitive closure of R is as follows (Fig. 7.24),
which is the same as R∞ (reachability relation).

R∞ = R ∪ R2 ∪ R3 ∪ . . . .

The transitive closure R∞ of R for A = {1, 2, 3, 4} and R =
{(1, 2), (2, 3), (3, 4), (2, 1)} is, R∞ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1),
(2, 2), (2, 3), (2, 4), (3, 4)}.
Equivalence relation

Relation R ⊆ A × A is an equivalence relation if the following conditions
are satisfied.

(1) Reflexive relation
x ∈ A → (x, x) ∈ R

(2) Symmetric relation
(x, y) ∈ R → (y, x) ∈ R

(3) Transitive relation

(x, y) ∈ R, (y, z) ∈ R → (x, z) ∈ R

2

4

1 3

2

4

31

Fig. 7.24. Transitive closure
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7.15.3 Fuzzy Relation

If a crisp relation R represents that of from sets A to B, for x ∈ A and y ∈ B,
its membership function µR(x, y) is,

µR(x, y) =
{

1 iff (x, y) ∈ R
0 iff (x, y) /∈ R

This membership function maps A × B to set {0, 1}.
µR : A × B → {0, 1}

We know that the relation R is considered as a set. Recalling the previous
fuzzy concept, we can define ambiguous relation.

Fuzzy relation has degree of membership whose value lies in [0, 1].

µR : A × B → [0, 1]
R = {((x, y), µR(x, y))|µR(x, y) ≥ 0, x ∈ A, y ∈ B}

Here µR(x, y) is interpreted as strength of relation between x and y. When
µR (x, y) ≥ µR (x′, y′), (x, y) is more strongly related than (x′, y′).

When a fuzzy relation R ⊆ A×B is given, this relation R can be thought
as a fuzzy set in the space A × B.

Let’s assume a Cartesian product space X1 ×X2 composed of two sets X1

and X2. This space makes a set of pairs (x1, x2) for all x1 ∈ X1, x2 ∈ X2.
Given a fuzzy relation R between two sets X1 and X2, this relation is a set of
pairs (x1, x2) ∈ R. Consequently, this fuzzy relation can be presumed to be
a fuzzy restriction to the set X1 × X2. Therefore, R ⊆ X1 × X2.

Fuzzy binary relation can be extended to n-ary relation. If we assume
X1, X2 , . . . , Xn to be fuzzy sets, fuzzy relation R ⊆ X1 × X2 × · · · × Xn

can be said to be a fuzzy set of tuple elements (x1, x2, . . . , xn), where
x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn.

Example 1. Figure 7.25 for instance, crisp relation R in the figure (a) reflects
a relation in A × A. Expressing this by membership function, µR(a, c) =
1, µR(b, a) = 1, µR(c, b) = 1 and µR(c, d) = 1.

If this relation is given as the value between 0 and 1 as in Fig. 7.25(b),
this relation becomes a fuzzy relation. Expressing this fuzzy relation by mem-
bership function yields,

µR(a, c) = 0.8, µR(b, a) = 1, µR(c, b) = 0.9 and µR(c, d) = 1.

It’s corresponding fuzzy matrix is as follows.

�
��A
A

a b c d

a 0.0 0.0 0.8 0.0
b 1.0 0.0 0.0 0.0
c 0.0 0.9 0.0 1.0
d 0.0 0.0 0.0 0.0
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a

cb

(a) Crisp relation (b) Fuzzy relation 

d

0.8 1

0.9 

1

a

cb

d

Fig. 7.25. Crisp and fuzzy relation

Fuzzy relation is mainly useful when expressing knowledge. Generally, the
knowledge is composed of rules and facts. A rule can contain the concept of
possibility of event b after event a has occurred. For instance, let us assume
that set A is a set of events and R is a rule. Then by the rule R, the possibility
for the occurrence of event c after event a occurred is 0.8 in the previous fuzzy
relation. When crisp relation R represents the relation from crisp sets A to
B, its domain and range is defined as:

dom(R) = {x|x ∈ A, y ∈ A,µR(x, y) = 1}
ran(R) = {y|x ∈ A, y ∈ A,µR(x, y) = 1}

Domain and range of fuzzy relation
When fuzzy relation R is defined in crisp sets A and B, the domain and

range of this relation are defined as:

µdom(R)(x) = min
y∈B

µR(x, y)

µran(R)(y) = max
x∈A

µR(x, y)

The “height of the relation” is defined as follows:

h(R) = max
y∈B

max
y∈A

µR(x, y)

Set A becomes the support of dom(R) and dom(R) ⊆ A. Set B is the support
of ran(R) and ran(R) ⊆ B.

Example 2. Let

X = {1, 2, . . . . . . ., 100}, Y = {50, 51, . . . . . . ., 100}.
And Binary fuzzy relation R is defined as “x is much smaller than y”
Its membership function defined as:

µR(x, y) =
{

1 − x
y , for x ≤ y

0, otherwise
where x ∈ X and y ∈ Y
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Domain of R : µdom(R)(x) = max
y∈Y

µR(x, y) = max
y∈Y

(
1 − x

y

)
= 1 − x

100

Range of R : µran(R)(y) = max
x∈X

µR(x, y) = max
x∈X

(
1 − x

y

)
= 1 − 1

y

Height of R : h(R) = max
y∈B

max
x∈A

µR(x, y) = 1 − 1
100

=
99
100

= 0.99.

Fuzzy matrix
Given a certain vector, if an element of this vector has its value between

0 and 1, we call this vector a fuzzy vector. Fuzzy matrix is a gathering of
such vectors. Given a fuzzy matrix A = (aij) and B = (bij), we can perform
operations on these fuzzy matrices.

(1) Sum
A + B = Max[aij , bij ].

(2) Max product
A • B = AB = Max

k
[Min(aik, bkj)]

Example 3. The followings are examples of sum and max product on fuzzy
sets A and B.

A =

a b c
a 0.2 0.5 0.0
b 0.4 1.0 0.1
c 0.0 1.0 0.0

B =

a b c
a 1.0 0.1 0.0
b 0.0 0.0 0.5
c 0.0 1.0 0.1

A + B =

a b c
a 1.0 0.5 0.0
b 0.4 1.0 0.5
c 0.0 1.0 0.1

A • B =

a b c
a 0.2 0.1 0.5
b 0.4 0.1 0.5
c 0.0 0.0 0.5

Here let’s have a closer look at the product A • B of A and B. For instance,
in the first row and second column of the matrix C = A • B, the value 0.1
(C12 = 0.1) is calculated by applying the max–min operation to the values of
the first row (0.2, 0.5 and 0.0) of A, and those of the second column (0.1, 0.0
and 1.0) of B.

0.2 0.5 0.0
Min ⇓ 0.0 0.5 0.1

0.0 0.5 0.0
⇒ 0.5

Max

And for all i and j, if aij ≤ bij holds, matrix B is bigger than A.

aij ≤ bij ⇔ A ≤ B.

Also when A ≤ B for arbitrary fuzzy matrices S and T , the following relation
holds from the max-product operation.

A ≤ B ⇔ SA ≤ SB, AT ≤ BT
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Fuzzy relation matrix
If a fuzzy relation R is given in the form of fuzzy matrix, its elements

represent the membership values of this relation. That is, if the matrix is
denoted by MR, and membership values by µR(i, j), then MR = (µR(i, j)).

7.15.4 Operation of Fuzzy Relation

We know now a relation is one kind of sets. Therefore we can apply operations
of fuzzy set to the relation. We assume R ⊆ A × B and S ⊆ A × B.

(1) Union relation
Union of two relations R and S is defined as follows:

∀(x, y) ∈ A × B

µR ∪ S(x, y) = Max[µR(x, y), µS(x, y)]
= µR(x, y) ∨ µS(x, y).

We generally use the sign ∨ for Max operation. For n relations, we extend
it to the following.

µR1 ∪ R2 ∪ . . . . . . ∪ Rn(x, y) = ∨
Ri

µRi(x, y).

If expressing the fuzzy relation by fuzzy matrices, i.e. MR and MS , matrix
MR ∪ S concerning the union is obtained from the sum of two matrices.

MR ∪ S = MR + MS .

(2) Intersection relation
The intersection relation R∩S of set A and B is defined by the following
membership function.

∀(x, y) ∈ A × B

µR ∩S (x, y) = Min[ µR(x, y), µS(x, y)]
= µR(x, y) ∧ µS(x, y)

The symbol ∧ is for the min operation. In the same manner, the intersec-
tion relation for n relations is defined by

µR1 ∩ R2 ∩ . . . . . . ∩ Rn(x, y) = ∧
Ri

µRi(x, y)

(3) Complement relation
Complement relation R for fuzzy relation R shall be defined by the fol-
lowing membership function.

∀(x, y) ∈ A × B
µR(x, y) = 1 − µR(x, y)
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Example 4. Consider two binary relations R and S on X × Y defined as

R : x is considerably smaller than y
S : x is very close to y

The fuzzy relation matrices MR and MS are given as

MR y1 y2 y3

x1 0.3 0.2 1.0
x2 0.8 1.0 1.0
x3 0.0 1.0 0.0

MS y1 y2 y3

x1 0.3 0.0 0.1
x2 0.1 0.8 1.0
x3 0.6 0.9 0.3

Fuzzy relation matrices MR∪S and MR∩S corresponding to R∪S and R∩S
yield the followings.

MR∪S y1 y2 y3

x1 0.3 0.2 1.0
x2 0.8 1.0 1.0
x3 0.6 1.0 0.3

MR∩S y1 y2 y3

x1 0.3 0.0 0.1
x2 0.1 0.8 1.0
x3 0.0 0.9 0.0

Where the union of R and S means that “x is considerably smaller than
y” OR “x is very close to y”.
And the intersection of R and S means that “x is considerably smaller
than y” AND “x is very close to y”.
Also complement relation of fuzzy relation R shall be

MR a b c
1 0.7 0.8 0.0
2 0.2 0.0 0.0
3 1.0 0.0 1.0

(4) Inverse relation
When a fuzzy relation R ⊆ A × B is given, the inverse relation of R−1 is
defined by the following membership function.
For all (x, y) ⊆ A × B, µ−1

R (y, x) = µR(x, y)

Composition of fuzzy relation
Two fuzzy relations R and S are defined on sets A, B and C. That is,
R ⊆ A×B, S ⊆ B ×C. The composition S •R = SR of two relations R
and S is expressed by the relation from A to C, and this composition is
defined by the following.

For (x, y) ∈ A × B, (y, z) ∈ B × C,

µS •R (x, z) = Max
y

[Min(µR(x, y), µS(y, z))]

= ∨
y
[µR(x, y) ∧ µS(y, z)]

S •R from this elaboration is a subset of A×C. That is, S •R ⊆ A×C.
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If the relations R and S are represented by matrices MR and MS , the
matrix MS•R corresponding to S •R is obtained from the product of MR

and MS .
MS•R = MR • MS

Example 5. Consider fuzzy relations R ⊆ A × B, S ⊆ B × C. The sets
A, B and C shall be the sets of events. By the relation R, we can see the
possibility of occurrence of B after A, and by S, that of C after B. For
example, by MR, the possibility of a ∈ B after 1 ∈ A is 0.1. By MS , the
possibility of occurrence of 7 after a is 0.9.

R a b c d
1 0.1 0.2 0.0 1.0
2 0.3 0.3 0.0 0.2
3 0.8 0.9 0.1 0.4

S α β γ
a 0.9 0.0 0.3
b 0.2 1.0 0.8
c 0.8 0.0 0.7
d 0.4 0.2 0.3

Here, we can not guess the possibility of C when A is occurred. So our
main job now will be the obtaining the composition S • R ⊆ A × C. The
following matrix MS•R represents this composition and it is also given in
Fig. 7.26.

Fig. 7.26. Composition of fuzzy relation



7.15 Relation 269

S • R α β γ
1 0.4 0.2 0.3
2 0.3 0.3 0.3
3 0.9 0.9 0.8

Now we see the possibility of occurrence of α ∈ C after event 1 ∈ A is 0.4,
and that for β ∈ C after event 2 ∈ A is 0.3, etc.

Presuming that the relations R and S are the expressions of rules that
guide the occurrence of event or fact. Then the possibility of occurrence
of event B when event A is happened is guided by the rule R. And rule
S indicates the possibility of C when B is existing. For further cases, the
possibility of C when A has occurred can be induced from the composition
rule S • R. This manner is named as an “inference” which is a process
producing new information.

7.15.5 Projection and Cylindrical Extension

We can project a fuzzy relation R ⊆ A × B with respect to A or B as in the
following manner.

For all x ∈ A, y ∈ B,
µRA(x) = Max

y
µR(x, y) : projection to A

µRB(y) = Max
x

µR(x, y) : projection to B.

Here the projected relation of R to A is denoted by RA, and to B is by RB.

Example 6. There is a relation R ⊆ A × B. The projection with respect to A
or B shall be

�
��A
B

b1 b2 b3

a1 0.1 0.2 1.0
a2 0.6 0.8 0.0
a3 0.0 1.0 0.3

MRA
=

a1 1.0
a2 0.8
a3 1.0

MRB
=

b1 b2 b3

0.6 1.0 1.0

In the projection to A, the strongest degree of relation concerning a1 is 1.0,
that for a2 is 0.8 and that for a3 is 1.0.

Projection in n dimension
So far has been the projection in two-dimensions relation. Extending it to

n-dimensional fuzzy set, assume relation R is defined in the space of X1×X2×
. . . . . . .×Xn. Projecting this relation to subspace of Xi1 ×Xi2 × . . . . . .×Xik,
gives a projected relation : RXi1×Xi2×........×Xik
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µRXi1i1×Xi2×......×Xik
(xi1, xi2, . . .. . ., xik)

= Max
Xj1,Xj2,...,Xjm

µR(x1, x2, . . .. . ., xn).

Here Xj1 , Xj2 , . . . , Xjm represent the omitted dimensions, and Xi1 , Xi2 , . . . ,
Xik gives the remained dimensions, and thus

{X1,X2, . . . . . . ., Xn} = {Xi1,Xi2,. . . . . .,Xik} ∪ {Xj1, Xj2, . . . , Xjm}.

Cylindrical extension
As the opposite concept of projection, cylindrical extension is possible. If

a fuzzy set or fuzzy relation R is defined in space A×B, this relation can be
extended to A × B × C and we can obtain a new fuzzy set. This fuzzy set is
written as C(R).

µC(R)(a, b, c) = µR(a, b)
a ∈ A, b ∈ B, c ∈ C

Example 7. In the previous example, relation RA is the projection of R to
direction A. If we extend it again to direction B, we can have an extended
relation C(RA). For example

µC(RA)(a1 , b1 ) = µRA
(a1 ) = 1.0

µC(RA)(a1 , b2 ) = µRA
(a1 ) = 1.0

µC(RA)(a2 , b1 ) = µRA
(a2 ) = 0.8

MC(RA) =

b1 b2 b3

a1 1.0 1.0 1.0
a2 0.8 0.8 0.8
a3 1.0 1.0 1.0

The new relation C(RA) is now in A × B.
Let two fuzzy relations be defined as follows:

R ⊆ X1 × X2, S ⊆ X2 × X3

Even though we want to apply the intersection operation between R and S, it
is not possible because the domains of R and S are different each other. If we
obtain cylindrical extensions C(R) and C(S) to space of X1 ×X2 ×X3 , and
then C(R) and C(S) have the same domain. We can now apply operations on
the two extended sets C(R) and C(S). Therefore join (or intersection) of R
and S can be calculated by the intersection of C(R) and C(S).

join (R,S) = C(R) ∩ C(S)

The projection and cylindrical extension are often used to make domains same
for more than one fuzzy sets.
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7.16 Approximate Reasoning

In 1979 Zadeh introduced the theory of approximate reasoning. This theory
provides a powerful framework for reasoning in the face of imprecise and
uncertain information.

Central to this theory is the representation of propositions as statements
assigning fuzzy sets as values to variables.

Suppose we have two interactive variables x ∈ X and y ∈ Y and the causal
relationship between x and y is completely known. Namely, we know that y
is a function of x.

y = f(x) Then we can make inferences easily

premise y = f(x)
fact x = x′

consequence y = f(x′)

This inference rule says that if we have y = f(x),∀x ∈ X and we observe that
x = x′ then y takes the value f(x′)

Suppose that we are given an x′ ∈ X and want to find y′ ∈ Y which
correponds to x′ under the rule-base.

Rule 1: If x = x1 Then y = y1

and
Rule 2: If x = x2 Then y = y2

and
Rule 3: If x = x3 Then y = y3

and
. . . .. . . . . . ..
Rule n : If x = xn Then y = yn

Fact: x = x′

Consequence: y = y′

Let x and y be linguistic variables, e.g. “x is Big” and “y is Medium”. The
basic problem of approximate reasoning is to find the membership function of
the consequence C from the rule-base and the fact A.
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Rule 1: If x = A1 Then y = C1

and
Rule 2: If x = A2 Then y = C2

and
. . . .. . . . . . ..
Rule n : If x = An Then y = Cn

Fact: x = A

Consequence: y = C

Zadeh introduced a number of translation rules which allow us to represent
some common linguistic statements in terms of propositions in our language.
Entailment rule:

x is A Anjali is very beautiful
A ⊂ B very beautiful ⊂ beautiful

x is B Anjali is beautiful

Conjuction rule:

x is A Anjali is beautiful
and
x is B Anjali is intelligent

x is A ∩ B Anjali is beautiful and intelligent

Disjunction rule:

x is A Anjali is married
or
x is B Anjali is bachelor

x is A ∪ B Anjali is married or bachelor

Projection rule:

(x, y) have relation R: x is ΠX(R)
(x, y) have relation R: y is ΠY(R),

e.g.

(x, y) is close to (3, 2): x is close to 3
(x, y) is close to (3, 2): y is close to 2.

Negation rule:

not (x is A): x is A,
e.g. not (x is high): x is not high.
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Table 7.5. Truth table for classical implication

P Q P → Q

T T T
T F F
F T T
F F T

The classical implication

Let P = “x is in A” and Q = “y is in B” are crisp propositions, where A
and B are crisp sets for the moment. The implication P → Q is interpreted
as ¬(p ∩ ¬q).

“P entails Q” means that it can never happen that P is true and Q is
not true.

It is easy to see that P → Q = ¬P ∪ Q
In 1930s Lukasiewicz, polish mathematician explored for the first time

logics other than Aristotelian (classical or binary logic) (Rescher 1969; Ross
1995). In this implication the proposition P is the hypothesis or the an-
tecedent, and the proposition Q is also referred to as the conclusion or the
consequent. The compound proposition P → Q is true in all cases except
where a true antecedent P appears with a false consequent Q, i.e. a true
hypothesis cannot imply a false conclusion as given in the Truth Table 7.5.

Generalized Modus Ponens (GMP)

Classical logic elaborated many reasoning methods called tautologies. One of
the best known is Modus Ponens. The reasoning process in Modus Ponens is
known as follows:

Rule IF X is A THEN Y is B

Fact X is A
Conclusion Y is B

In classical Modus Ponens tautology the truth value of the premise “X
is A” and conclusion “Y is B” is allowed to assume only two discrete values
0 or 1 and fact considered “X is . . .”, must fully agree with the implication
premise: IF X is A THEN Y is B.

Only then may the implication be used in the reasoning process. Both the
premise and the rule conclusion must be formulated in a deterministic way.
Statements with non-precise formulations as given below are not accepted.

X is about A,
X is more than A,
Y is more or less B,
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In fuzzy logic an approximate reasoning has been applied. It enables the use
of fuzzy formulations in premises and conclusions. The approximate reasoning
based on he Generalized Modus Ponens tautology is:

Rule IF X is A THEN Y is B

Rule
Fact X is A′

Conclusion Y is B′

Where A′, B′ can mean e.g.: A′ = more than A, B′ = more or less B,
etc. A reasoning example according to the Generalized Modus Ponens (GMP)
tautology can be like:

Rule IF (route of the trip is long) THEN (traveling time is long)
Fact Route of the trip is very long
Conclusion Travelling time is very long

Here, fuzzy implication is expressed in the following way:

∀u ∈ U,∀v ∈ V

µR(u, v) =

{
1 if µA(u) ≤ µB(v)

µB(v) otherwise

µB′(v) = sup
u∈U

min(µA′(u), µR(u, v))

In fuzzy logic and approximate reasoning, the most important fuzzy impli-
cation inference rule is the Generalized Modus Ponens (GMP). The classical
Modus Ponens inference rule says:

premise if p then q
fact p

Consequence q

This inference rule can be interpreted as: If p is true and p → q is true then
q is true.

The fuzzy implication inference is based on the compositional rule of in-
ference for approximate reasoning suggested by Zadeh.

Compositional rule of inference

premise if x is A then y is B
fact x is A′

consequence y is B′
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Table 7.6. Truth table for modus ponens

P Q P → Q [P ∩ (P → Q)] [P ∩ (P → Q)] → Q

0 0 1 0 1
0 0.5 1 0 1
0 1 1 0 1
0.5 0 0 0 1
0.5 0.5 1 0.5 1
0.5 1 1 0.5 1
1 0 0 0 1
1 0.5 0.5 0.5 1
1 1 1 1 1

where the consequence B′ is determined as a composition of the fact and the
fuzzy implication operator

B′ = A′ ◦ (A → B) that is
B′(v) = sup

u∈U
min{A′(u), (A → B)(u, v)}, v ∈ V

The consequence B′ is nothing else but the shadow of A → B on A′.
The Generalized Modus Ponens (GMP), which reduces to classical modus

ponens when A′ = A and B′ = B, is closely related to the forward data-driven
inference which is particularly useful in the fuzzy logic control. The truth
table for GMP is given in Table 7.6.

The classical Modus Tollens inference rule says: If p → q is true and q is
false then p is false. The Generalized Modus Tollens.

premise if x is A then y is B
fact y is B′

consequence x is A′

which reduces to “Modus Tollens” when B = B and A′ = A, is closely related
to the backward goal-driven inference. The consequence A′ is determined as
a composition of the fact and the fuzzy implication operator

A′ = B′ ◦ (A → B)

Fuzzy relation schemes

Rule 1: If x = A1 and y = B1 Then z = C1

Rule 2: If x = A2 and y = B2 Then z = C2

. . . .. . . . . . ..
Rule n : If x = An and y = Bn Then z = Cn

Fact: x is x0 and y is y0

z = C
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The ith fuzzy rule from this rule-base
Rule i: If x = Ai and y = Bi Then z = Ci

is implemented by a fuzzy relation Ri and is defined as

Ri(u, v,w) = (Ai × Bi → Ci)(u,w)
= [Ai(u) ∩ Bi(v)] → Ci(w)

For i = 1, 2, . . ..,n

Find C from the input x0 and from the rule base: R = {R1, R2, . . . . . . , Rn}
Interpretation of

• Logical connective “and”
• Sentence connective “also”
• Implication operator “then”
• Compositional operator “o”

We first compose x0 X y0 with each Ri producing intermediate result

Ci
′ = x̄0 ∩ ȳ0 ◦ Ri

for i = 1, . . . , n. Here C ′i is called the output of the ith rule

Ci
′(w) = Ai(x0) ∩ Bi(y0) → Ci(w) for each w.

Then combine the C ′
i component wise into C ′ by some aggregation operator:

C = ∪C ′
i = x̄0 x̄ ȳ0 ◦ R̄1 ∪ . . . . . x0 x y0 ◦ Rn

Ci(w) = Ai(x0) ∩ Bi(y0) → Ci(w) ∪ . . . . . . ∪ An(x0) ∩ Bn(y0) → Cn(w)

Steps involved in approximate reasoning

• Input to the system is (x0, y0)
• Fuzzify the input (x0, y0)
• Find the firing strength of the ith rule after aggregating the inputs is

Ai(x0) ∩ Bi(y0)

• Calculate the ith individual rule output is

Ci
′(w) = Ai(x0) ∩ Bi(y0) → Ci(w)

• Determine the overall system output (fuzzy) is

C = C1
′ ∪ C2

′ . . . ∪ Cn
′

• Finally, calculate the defuzzified output.



7.16 Approximate Reasoning 277

We present five well-known inference mechanisms in fuzzy rule-based
systems.

Mamdani: The fuzzy implication is modeled by Mamdani’s minimum op-
erator and the sentence connective also is interpreted as oring the propositions
and defined by max operator.

The firing levels of the rules, denoted by αi, i = 1, 2, are computed by

α1 = A1(x0) ∩ B1(y0) and α2 = A2(x0) ∩ B2(y0).

The individual rule outputs are obtained by

C1
′(w) = (α1 ∩ C1(w)) and C2

′(w) = (α2 ∩ C2(w)).

Then the overall system output is computed by calculating the individual rule
outputs as shown in Fig. 7.27

C(w) = C1
′(w) ∪ C2

′(w)
= (α1 ∩ C1(w)) ∪ (α2 ∩ C2(w))

Finally, to obtain a deterministic control action, we employ any defuzzification
strategy.
Tsukamoto: All linguistic terms are supposed to have monotonic membership
functions.

The firing levels of the rules, denoted by αi, i = 1, 2, are computed by

α1 = A1(x0) ∩ B1(y0) and α2 = A2(x0) ∩ B2(y0).

In this mode of reasoning the individual crisp control actions z1 and z2 are
computed from the equations

α1 = C1(z1), α2 = C2(z2),

A2

A1 B1

B2

w

w

vu

vu
min

x0 y0

C1

C2

Fig. 7.27. Fuzzy inference
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and the overall crisp control action is expressed as

z0 =
α1z

∗
1 + α2z

∗
2

α1 + α2

i.e. z0 is computed by the discrete center-of-gravity method.
If we have n rules in our rule-base then the crisp control action is com-

puted as

z0 =

n∑
i=1

αizi

n∑
i=1

αi

where αi is the firing level and zi is the (crisp) output of the ith rule, i =
1, . . . , n.
Sugeno: Sugeno and Takagi use the following architecture

Rule 1: If x = A1 and y = B1 Then z1 = a1x + b1y
Rule 2: If x = A2 and y = B2 Then z2 = a2x + b2y
. . . .. . . . . . ..
Rule n : If x = An and y = Bn Then zn = anx + bny
Fact: x is x0 and y is y0

Consequence: Z0

The firing levels of the rules are computed as shown in Fig. 7.28

α1 = A1(x0) ∩ B1(y0) and α2 = A2(x0) ∩ B2(y0),

0.7
0.3 0.3

A1 B1 C1

u y z1 = 8 w

0.6 0.8 0.6

A2 B2 C2

u vy0x0 z2 = 4 wmin

Fig. 7.28. Tsukamoto inference
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A1

B2B1

A2

u

x yu

v

v

a1x + b1y

a2x + b2ymin

α1

α2

Fig. 7.29. Sugeno inference mechanism

then the individual rule outputs are derived from the relationships (Fig. 7.29)

z1
∗ = a1x0 + b1y0,z2

∗ = a2x0 + b2y0,

and the crisp control action is expressed as z0 = α1z∗
1+α2z∗

2
α1+α2

.
If we have n rules in our rule-base then the crisp control action is com-

puted as

z0 =

n∑
i=1

αiz
∗
i

n∑
i=1

αi

where αi denotes the firing level of the ith rule, i = 1, . . . , n.

Larsen: The fuzzy implication is modeled by Larsen’s product operator and
the sentence connective also is interpreted as oring the propositions and de-
fined by max operator.

Let us denote αi the firing level of the i-th rule, i = 1, 2 as shown in
Fig. 7.30

α1 = A1(x0) ∩ B1(y0) and α2 = A2(x0) ∩ B2(y0)

Then membership function of the inferred consequence C is point-wise
given by

C(w) = (α1C1(w)) ∪ (α2C2(w)).

To obtain a deterministic control action, we employ any defuzzification
strategy.

If we have n rules in our rule-base then the consequence C is computed as

C(w) =
n∨

i=1
(αiCi(w)),

where αi denotes the firing level of the ith rule, i = 1, . . . , n.
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A1

A2 B2 C2

u

ux0 y0

v

v

w

w

B1 C1

min

Fig. 7.30. Inference with Larsen’s product operation rule

7.17 Defuzzification Methods

The output of the inference process so far is a fuzzy set, specifying a possibility
distribution of control action. In the on-line control, a nonfuzzy (crisp) control
action is usually required. Consequently, one must defuzzify the fuzzy control
action (output) inferred from the fuzzy control algorithm, namely:

z0 = defuzzifier(C),

where z0 is the nonfuzzy control output and defuzzifier is the defuzzification
operator.

Defuzzification is a process to select a representative element from the fuzzy
output C inferred from the fuzzy control algorithm. The most often used de-
fuzzification operators are:

1. Center-of-area/gravity
The defuzzified value of a fuzzy set C is defined as its fuzzy centroid:

z0 =

∫
w

zC(z)dz∫
w

C(z)dz
.

The calculation of the center-of-area defuzzified value is simplified if we
consider finite universe of discourse W and thus discrete membership func-
tion C(w)

z0 =

∫
w

zjC(zj)dz∫
w

C(zj)dz
.

2. First-of-maxima
The defuzzified value of a fuzzy set C is its smallest maximizing ele-
ment, i.e.

z0 = min{z
∣∣∣C(z) = max

w
C(w)}
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3. Middle-of-maxima
The defuzzified value of a discrete fuzzy set C is defined as a mean of all
values of the universe of discourse, having maximal membership grades

z0 =
1
N

N∑
j=1

zj ,

where {z1, . . . , zN} is the set of elements of the universe W which attain
the maximum value of C.
If C is not discrete then defuzzified value of a fuzzy set C is defined as

z0 =

∫
G

zdz∫
G

dz
,

where G denotes the set of maximizing element of C.

4. Max-criterion
This method chooses an arbitrary value, from the set of maximizing ele-
ments of C, i.e.

z0 ∈ {z
∣∣∣C(z) = max

w
C(w)}.

5. Height defuzzification
The elements of the universe of discourse W that have membership grades
lower than a certain level α are completely discounted and the defuzzified
value z0 is calculated by the application of the center-of-area method on
those elements of W that have membership grades not less than α:

z0 =

∫
[C]α

zC(z)dz∫
[C]α

C(z)dz

where [C]α denotes the α-level set of C as usually.
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7.18 Fuzzy Rule Based System

The inputs of fuzzy rule-based systems should be given in fuzzy form, and
therefore, we have to fuzzify the crisp inputs, i.e pre-processed sensor’s out-
put. Furthermore, the output of a fuzzy system is always a fuzzy output,
and therefore to get appropriate crisp value we have to defuzzify and post
process it. Fuzzy logic control systems usually consist of three major parts:
Fuzzification, Approximate reasoning and Defuzzification (Fig. 7.31).

A fuzzification operator has the effect of transforming crisp data into fuzzy
sets. In most of the cases we use fuzzy singletons as fuzzifiers

fuzzifier (x0) = x0,

where x0 is a crisp input value from a process.

1. Preprocessing module does input signal conditioning and also performs a
scale transformation (i.e. an input normalization) which maps the physical
values of the current system state variables into a normalized universe of
discourse (normalized domain).

2. Fuzzification block performs a conversion from crisp (point wise) input
values to fuzzy input values, in order to make it compatible with the fuzzy
set representation of the system state variables in the rule antecedent.

3. Fuzzy knowledge Base of a FKBS comprises knowledge of the application
domain and the attendant control goals. It includes the following:
1. Fuzzy sets (membership functions) representing the meaning of the

linguistic values of the system state and control output variables.
2. Fuzzy rules in the form of If x is A THEN y is B. x is state

variable and y output variable. A and B are linguistic variables. The
basic function of the fuzzy rule base is to represent in a structured way
the control policy of an experienced process operator and/or control
engineer in the form of set of production rules. Rules have two parts:
antecedent and consequent.

Sensor’s
Pre-processing Post - processing

Fuzzifier

Fuzzy
Input

Fuzzy
Output

DefuzzifierApproximate
Reasoning

Fuzzy
Knowledge
Base

Fuzzy
Inference

Output
Output

Fig. 7.31. Fuzzy knowledge Based System (FKBS)
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4. Fuzzy inference. There are two basic types of approaches employed in
the design of the inference engine of a FKBC: (1) Composition based
inference (firing) and (2) individual rule based inference (firing). Mostly
we use second type of inference. The basic function of inference engine
of the second type is to compute the overall values of the control output
variable based on the individual contribution of each rule in the rule base.

5. Defuzzification converts the set of modified control output values into a
single point wise value. Six most often used defuzzification methods: centre
of area (COA), centre of sum (COS), centre of largest area (CL), first
maxima (FM), mean of maxima (MOM) and height (weighted average)
defuzzification.

6. Post processing module involves de-normalization of fuzzy controller crisp
output onto its physical domain.

7.19 Summary

• This chapter introduces the basics of fuzzy logic and different types of
uncertaininty.

• The different types of operation on fuzzy sets are discussed, including
different types of membership function and their representations.

• The chapter also discusses the fuzzy quantifiers/modifiers. Fuzzy modifier
is the strength of fuzzy logic systems.

• Difference between precision and significance is also explained.
• Difference between fuzzy relation and crisp relation is described and rep-

resentation of fuzzy relationship is mentioned in the chapter.
• The approximate inference techniques like generalized modus ponens and

generalized modus tolence are explained.
• Various defuzzification schemes used in fuzzy systems are also explained

in brief.
• In the last portion of the chapter, the Fuzzy system blocks are explained

like fuzzification, approximate reasoning and defuzzification blocks. Some-
times the pre-processing and post-processing is also required, which is also
discussed.

7.20 Bibliography and Historical Remarks

Prof. Lofti A. Zadeh is the father of fuzzy logic. He first time coined the word
fuzzy by publishing a seminar paper on fuzzy set in 1965. He included fuzzy
relation, projection. He is awarded by Prestigious IEEE award and IEEE
published an article the describes Zadeh’s personal journey along with the
concept of fuzzy logic.

Research progress in fuzzy logic is nicely summarized in a collection edited
by Gupta, Saridis and Gaines. Mamdani gives a survey of fuzzy logic control
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and discussed several important issues design, development and analysis of
fuzzy logic controller. Bart Kasko introduced the geometric interpretation
of fuzzy sets and investigated the related issues in late 1980s. Basu (2004)
used a fuzzy-based simulated annealing technique for economic emission load
dispatch. Thukaram and Yesuratnam (2007) explained fuzzy expert system
technique for load curtailed to improved reactive power dispatch.

7.21 Exercises

1. Differentiate between fuzzy and crisp logic.
2. Discuss the situation where binary logic is not helpful?
3. What are the motivations for developing fuzzy logic?
4. What are the historical perspectives of fuzzy logic?
5. Explain the terms:

a. Vagueness
b. Imprecision

6. Mention the advantages and disadvantages of standard logic and
fuzzy logic.

7. Explain the uncertainty in real life situations and how does it help in
modeling complex situations.

8. Differentiate between lexical and stochastic uncertainty.
9. Find two examples of fuzzy sets in the news paper article and highlight

the fuzzy words in it.
10. Draw the fuzzy membership function for “Tall Building”?
11. What are the different methods be used to assign the membership values

for “Tall Building”?
12. Explain the difference between precision and significance.
13. The quality of students in a class could be divided in the range 0–10,

which is the universe of discourse for this variable. How do the membership
values be assigned for excellent, good, fair and bad students. Also draw
their shapes.

14. Explain different operations which could be performed on fuzzy sets.
15. What do you mean by a fuzzy modifier or Hedges. Also explain the strong

and weak modifiers.
16. Describe in brief about the concentration, dilution and intensification of

fuzzy sets.
17. Construct the membership function for

a. Not bad
b. Very good
c. not good or not bad
d. Extremely fair and
e. more or less excellent.

Use the membership function for excellent, good, fair and bad defined in
question 7.13.
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18. “Fuzzy sets are context and concept dependent”. Justify the above men-
tioned statement.

19. a. Let A and B be two fuzzy sets in the universe of U and V, respectively.
Let R be the Cartesian product of A and B. Is the projection of R on
U identical to A?

b. Let R and S be two fuzzy relations defined as:

R =
y1 y2 y3

x1
x2

[
0.1 0.5 0.2
0.7 0.8 1.0

]

S =

z1 z2 z3
y1
y2
y3

⎡
⎣0.1 0.8 0.2

0.4 0.7 0.9
0.3 0.1 0.8

⎤
⎦

(a) Find the result of R o S max-min composition.
(b) Also find the result of R o S max-product and sum product method

of composition.
20. Let the membership function of A is defined by f(x) = 1/(1 + x2), and

B = exp(−x2)
Draw these membership functions and find

i. A U B
ii. A ∩ B
iii. ¬A
iv. ¬B.

21. Prove that P → Q is logically equivalent to P ∪ (P ∩ Q).
22. Define convexity for fuzzy set.
23. Explain term coordinality based and fuzzy set based uncertainty.
24. Define various basic operation of fuzzy set. Also list out the properties

satisfied by fuzzy set.
25. Draw typical membership function of approximately ‘3’.
26. Define “x plus” and “x minus”.
27. Suppose that

u = 1 + 2, v = 1 + 2 + 3,
A = 1/1 + 0.8/2 − B = 0.6/1 + 0.9/3 + 1/3

Determine relation between A and B.
28. Explain projection and cylindrical extension principles.
29. Develop a reasonable membership function for the following fuzzy sets

based on height measured in centimeter:

(a) “Tall”
(b) “Short”
(c) “Not short”
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30. Develop a reasonable membership function for the fuzzy color set “red”
based on the wavelength of the color spectrum.

31. Develop a reasonable membership function for a square, based on the
geometric properties of a rectangle. For this problem use L as the length
of the longer side and l as the length of the smaller side.

32. For the cylindrical shapes shown in figure, develop a membership function
for each of the following shapes using the ratio d/h, and discuss the reason
for any overlapping among the three membership functions:

(a) Disc (b) Cylinder (c) Rod

33. The question of whether a glass of water is half - full or half - empty is
an age old philosophical issue. Such descriptions of the volume of liquid
in a glass depend on the state of mind of the person asked the question.
Develop membership functions for the fuzzy sets “half-full”, “empty”, and
“half-empty” using percentage volume as the element.

34. If u = 1 + 2 + 3 + 4 . . . 10
A = 0.8/3 + 1/5 + 0.6/6
B = 0.7/3 + 1/4 + 0.5/6
Determine - (i) A′

(b) 0.4 A
(c) DIL (A)

35. Suppose “approximately 2” and “approximately 6” are defined as follows.
Determine “approximately 12”.
approximately 2 = 1/2 + 0.6/1 + 0.8/3
approximately 6 = 1/6 + 0.8/5 + 0.7/7.

36. The output can be affected by quality of camera, as well as the quality of
film. A possible Universe of camera rating is X = {1, 2, 3, 4, 5}, where
1 represents the highest camera rating. A possible universe of picture
ratings is Y = {1, 2, 3, 4, 5}, where once again, 1 is the highest rating
for pictures. We now define two fuzzy sets

A = “above average camera” = {.7/1 + 0.9/2 + 0.2/3 + 0/4 + 0/5}
B = “above average picture quality” = {0.6/1+0.8/2+0.5/3+0.1/4+0/5}
(a) From the proposition, IF A THEN B, find the relation using Mamdani

implication,
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(b) Suppose the camera manufacturer wants to improve camera and film
sales by improving the quality of the camera. A new camera is rated
as follows:
A′ = “new and improved camera” = {0.8/1+0.8/2+0.1/3+0/4+0/5}
What might be resulting picture rating from this new camera?

37. Using your own intuition, develop fuzzy membership functions on the real
line for the “approximately 2 and approximately 8”, using the following
function shapes:

(a) Symmetric triangle
(b) Trapezoids
(c) Gaussian functions.

38. Using your own intuition and your own definitions of the universe of dis-
course, plot fuzzy membership functions for the following variables:

(a) Weight of people
(a) Very light
(b) Light
(c) Average
(d) Heavy
(e) Very heavy

(b) Age of people
(a) Very young
(b) Young
(c) Middle-aged
(d) Old
(e) Very old

(c) Education of people
(a) Fairly educated
(b) Educated
(c) Highly educated
(d) Not highly educated
(e) More or less educated

39. Given the continuous, noninteractive fuzzy sets A and B on universes X
and Y, using Zadeh’s notation for continuous fuzzy variables.

A = ∫(1 − 0.1|x|)/x for x ∈ [0,+10]
B = ∫ 0.2|y|/y for y ∈ [0,+5]

(a) Construct a fuzzy relation R for the Cartesian product of A and B.
(b) Use max-min composition to find B′, given the fuzzy sigleton A′ = 1/3.

40. In the above question, calculate the relation between behaviour and re-
ward using max-product composition show that a raise is easier to get
than a compliment?
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41. Given that

D1 = {1/1.0 + 0.75/1.5 + 0.3/2.0 + 0.15/2.5 + 0/3}
D2 = {1/1 + 0.6/1.5 + 0.2/2 + 0.1/2.50/3}

For these two fuzzy sets, find the following:

(a) D1 ∪ D2
(b) D1 ∩ D2
(c) D1′

(d) D2′

(e) D1|D2
(f) (D1 ∪ d2)′

(g) (D1 ∩ D2)′

(h) D1 ∩ D2′

(i) D2 ∪ D1′

(j) D2 ∪ D2′

42. In the field of photography, the exposure time and development time of
negative are the two factors that determine how the negative will come out
after processing. Define two fuzzy sets, A = {exposure time of holographic
plates}, and B = {Development times for the exposed plates}. The relative
density or relative darkness, of the processed plate, which varies between
0 and 1, is shown in figure. As shown by the fuzzy sets A and B in the
figure, the two variables exposure time and development time complement
each other in determine the density of the negative.

µ Α Load

B

Speed

2 6 10

That is, if a negative is exposed for a shorter period of time, the plate can
be developed for a longer time. Find the following graphically:

(a) A ∪ B
(b) A ∩ B
(c) A′ ∪ B
(d) A ∩ B′

43. The speed of a hydraulic motor is a highly critical parameter, as it ul-
timately controls volume of fluid to be displaced. A typical problem in
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the control of the hydraulic motor is that the load is placed on the motor
can vary due to different circumstances. Define the load and speed as two
fuzzy sets in the control of the hydraulic motor, with the membership
functions shown in Fig. 7.6. Also assume that the load on the motor has
an influence on the speed of the motor (finite torque output of the motor);
e.g. when the motor load (L) increases, the motor speed (S) decreases, and
vice versa. Graphically determine the following:

(a) L ∪ S
(b) L ∩ S
(c) (L′ ∪ S)′

(d) (L ∩ S′)′

44. A company sells a product called a video multiplexer, which multiplexes
the vedio from 16 video cameras into a single video cassette recorder
(VCR). The product has a motion detection feature that can increase the
frequency with which a given camera’s video is recorded to tape depend-
ing on the amount of motion that is present. It does this by recording
more information from that camera at the expense of the amount of video
that is recorded from the other 15 cameras. Define a universe X to be
the speed of the objects that are present in the video of camera 1 (there
are 16 cameras). For example, let X = {Low Speed, Medium Speed, High
Speed}= {LS, MS HS}. Now, define a universe Y to represent the fre-
quency with which the video from camera 1 is recorded to a VCR tape,
i.e. the record rate of camera 1. Suppose, Y = {Slow Record Rate, Medium
Record Rate, Fast Record Rate}= {SRR, MRR, FRR}.
Let us now define a fuzzy set A on X and fuzzy set B on Y, where A
represents a fuzzy slow moving object present in video camera 1 and B
represents a fuzzy slow record rate, biased to the slow side. For example,

A = {1/LS+0.4/MS+0.2/HS} and B = {1/SRR+0.5/MRR+0.25/FRR}
(a) Find the fuzzy relation for the Cartesian product A and B
(b) Suppose we introduce another fuzzy set C which represent a fuzzy

fast moving object present in video camera 1, say for example, the
following:

C = {0.1/LS + 0.3/MS + 1/HS}
Find the relation between C and B using Cartesian product

(c) Find C o R using max–min composition.
(d) Find C o S using max–min composition.
(e) Comment on the meaning of ports (c) and (d) and on the differences

between the results.

45. All new jet aircraft are subjected to intensive flight simulation studies
before they are ever tested under actual flight conditions. In these stud-
ies an important relationship is that between the mach number (% of
the speed of sound) and the altitude of the aircraft. This relationship is
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important to the performance of the aircraft and has a definite impact
in making flight plans over populated areas. If certain mach levels are
reached, breaking the sound barrier (sonic booms) can results in human
discomfort and light damage to glass enclosures on the earth’s surface.
Current rules of thumb establish crisp breakpoints for the conditions that
cause performance changes (and sonic booms) in aircraft, but in reality
these breakpoints are fuzzy, because other atmospheric conditions such as
the humidity and temperature also affect breakpoints in performance. For
this problem, suppose the flight test data can be characterised as “near”
or “approximately” or “in the region of” the crisp database breakpoints.
Define a universe of aircraft speeds near the speed of sound as X =
{0.73, 0.735, 0.74, 0.745, 0.75} and a fuzzy set on this universe for the
speed “near mach 0.74” = M, where

M = {0/0.73 + 0.8/0.735 + 1/0.74 + 0.8/0.745 + 0/0.75}

and define a universe of altitudes as Y={22.5, 23, 23.5, 24, 24.5, 25, 25.5}
in k-feet, and a fuzzy set on this universe for the altitude fuzzy set “ap-
proximately 240,000 feet” = A, where

A = {0/22.5k+0.2/23k+0.7/23.5k+1/24k+0.7/24.5k+0.2/25k+0/25.5k}

(a) Construct the relation R = M x A
(b) for another aircraft speed, say M1 = “in the region of mach

0.74”, where

M1 = {0/0.73 + 0.8/0.735 + 1/0.74 + 0.6/0.745 + 0.2/0.75}

find the relation S = M1 o R using max-min composition.
46. Three variables of interest in power transistors are the amount of current

that can be switched, the voltage that can be switched, and the cost. The
following membership functions for power transistors were developed from
a hypothetical components catalog:
Average current (in amps) = I = {0.4/0.8 + 0.7/0.9 + 1/1 + 0.8/1.1 +

0.6/1.2}
Average voltage (in volts) = V = {0.2/30+0.8/45+1/60+0.9/75+0.7/90}
Note how the membership values in each set taper off faster toward the
lower voltage and currents. These two fuzzy sets are related to the “power”
of the transistor. Power in electronics is defined by an algebraic operation,
P = VI, but let us deal with a general Cartesian relationship between
voltage and current i.e. simply with P = V x I.

(a) Find the fuzzy Cartesian product P = V x I.
Now let us define a fuzzy set for the cost C in dollars, of a transistor,
for example,

C = {0.4/0.5 + 1/0.6 + 0.5/0.7}
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(b) Using a fuzzy Cartesian product, find T = I x C. What would this
relation T, represent physically.

(c) Using max–min composition, find E = P o T. What would this relation
E, represent physically.

(d) Using max-product composition, find E = P o T. What would this
relation E, represent physically.

47. The relation between temperature and maximum operating frequency R
depends on various factors for a given electronic circuit. Let T be a tem-
perature fuzzy set (in degrees Fahrenheit) and F represent a fuzzy set (in
MHz), on the following universe of discourse:

T = { − 100, −50, 0, 50, 100} and F = {8, 16, 25, 33}

Suppose a Cartesian product between T and F is formed that results in
the following relation:

R =

−100 −50 0 50 100
8
16
25
33

⎡
⎢⎢⎣

0.2 0.5 0.7 1 0.9
0.3 0.5 0.7 1 0.8
0.4 0.6 0.8 0.9 0.4
0.9 1 0.8 0.7 0.4

⎤
⎥⎥⎦

The reliability of the electronic circuit is related to the maximum operat-
ing temperature. Such a relation S can be expressed as Cartesian product
between the reliability index, M = {1, 2, 4, 8, 16} (in dimensionless
units) and the temperature, as in the following example:

S =

1 2 4 8 16
−100
−50
0
50
100

⎡
⎢⎢⎢⎢⎣

1 0.8 0.6 0.3 0.1
0.7 1 0.7 0.5 0.4
0.5 0.6 1 0.8 0.8
0.3 0.4 0.6 1 0.9
0.9 0.3 0.5 0.7 1

⎤
⎥⎥⎥⎥⎦

Composition can be performed on any two or more relations with compat-
ible row-column consistency. To find relationship between frequency and
the reliability index, use
(a) max-min composition
(b) max-roduct composition

48. Two fuzzy sets A and B both defined on X, are as follows:

µ(xii) x1 x2 x3 x4 x5 x6

A 0.1 0.6 0.8 0.9 0.7 0.1
B 0.9 0.7 0.5 0.2 0.1 0
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Express the following λ-cut sets using Zadeh’s notation:
(a) (A)0.7

(b) (B)0.4

(c) (A ∪ B)0.7

(d) (A ∩ B)0.6

(e) (A ∪ A′)0.7

(f) (B ∩ B′)0.5

(g) (A ∩ B)′0.7

(h) (A′ ∩ B′)0.7

49. Which of the following are equivalence relations?

Set Relation in the set
(a) People Is the brother of
(b) People Has the same parents
(c) Points on a map Is connected by a road to
(d) Lines in plane
geometry

Is perpendicular to

(e) Positive integers For some integer k, equals 10K times

Draw graphs of the equivalence relations with appropriate labels on the
vertices.

50. The accompanying Sagittal diagram show two relations on the universe,
X = {1, 2, 3}. Are these relations equivalence relations:

1

2 3

51. Two companies bid for a contract. A committee has to review the esti-
mates of those companies and give reports to its chairperson. The reviewed
reports are evaluated on a non-dimensional scale and assigned a weighted
score that is represented by a fuzzy membership function, as illustrated
by the two fuzzy sets B1 and B2 in figure. The chairperson is interested
in the lowest bid, as well as metric to measure the combined “best” score.
For the logical union of the membership functions shown here, find the
defuzzified value z∗, using each of the seven methods. Comment on the
differences of the methods.
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B1 B2

210 3 4210 3 4 5 6

52. Under what conditions of P and Q is the implication P → Q a tautology?
53. The exclusive -or is given by the expression, P∪Q = (P′ ∩Q)∪ (P∩Q′).

Show that the logical - or, given by P ∪ Q, gives a different results from
the exclusive-or and comment on this difference using an example in your
own field.

54. For a proposition R of the form P → Q, show the following:

(a) R and its counter positive are equivalent, i.e. prove that (P → Q) ↔
(Q′ → P′).

(b) The converse of R and the inverse of R are equivalent, i.e. prove that
(Q → P) ↔ (P → Q′).

55. (a) Show that the dual of the equivalence (P ∪ Q) ∪ (P′ ∩ Q′) ↔ X is
also true.

(b) Show that De Morgan’s laws are duals.

56. You are faced with the problem of controlling a motor that is subjected
to a variable load. The motor must maintain a constant speed, regardless
of the load placed on it; therefore, the voltage applied to the motor must
change to compensate for changes in load. Define fuzzy sets for motor
speed (rpm) and motor voltage (volts) as follows:
A = “motor speed OK” = {0.3/20 + 0.6/30 + 0.8/40 + 1/50 + 0.7/60 +

0.4/70}
B = “motor voltage nominal” = {0.1/1 + 0.3/2 + 0.8/3 + 1/4 + 0.7/5 +

0.4/6 + 0.2/7}
(a) Using classical implication, find a relation for the following compound

proposition:
“IF motor speed OK THEN motor voltage is nominal”.

(b) Now specify a new antecedent A′ = “motor speed a little slow”, where

A′ = {0.4/20 + 0.7/30 + 1/40 + 0.6/50 + 0.3/60 + 0.1/70}
Using max-min composition (i.e. B′ = A′oR), find the new consequent.

57. Fill in the following table using Zadah implication. Also show that how
the results affected by the various other implications used.

A B A → B
0 0
0 1
1 0
1 1
0.2 0.3
0.2 0.7
0.8 0.3
0.8 0.7
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Applications of Fuzzy Rule Based System

In almost every case you can build the same product without Fuzzy
logic, but fuzzy is faster and cheaper.

Prof. LA Zadeh
University of California, Barkley

If you do not have a good plant model or if the system is chang-
ing, then fuzzy will produce a better solution than conventional control
technique.

Bob Varley
Aerospace Company, Palmbay, Florida

8.1 Introduction

The basic concepts of fuzzy system were described in the earlier chapter. There
are numerous applications of fuzzy systems in various fields such as operations
research, modeling, evaluation, pattern recognition, control and diagnosis, etc.
Fuzzy systems theory is the starting point for developing models of ambigu-
ous thinking and judgment processes, the following fields of application are
conceivable:

a. Human models for management and societal problems;
b. Use of high level human abilities for use in automation and information

systems;
c. Reducing the difficulties of man-machine interface;
d. Other AI applications like risk analysis and prediction, development of

functional device.

Fuzzy systems are quite popular in control applications. In standard control
theory, a mathematical model is assumed for the controlled system, and con-
trol laws that minimize the evaluation functions are determined; but when
the object is complicated, mathematical models cannot be determined and
D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 295–362 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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one cannot figure out how to decide on the evaluation functions. In these
cases, skilled individuals perform control functions by using their experience
and intuition to judge situations on the basis of what they think.

8.2 System’s Modeling and Simulation Using Fuzzy
Logic Approach

Modeling and simulation is playing important role in every field of engineer-
ing. There are various techniques available for modeling the systems. The
conventional linear mathematical models of electrical machines are quite ac-
curate in the operating range for which they were developed, but for slightly
different operating conditions mathematical model output degrades, because
mathematical model is unable to cope up the non-linearity of the system.
If a non-linear model is developed for these systems, then model complex-
ity is increases. It is difficult to simulate the complex system model and the
computation time is unbearably long. To deal with system non-linearity non-
conventional methods like ANN, Fuzzy systems, genetic algorithms etc. are
used. The accuracy of ANN models depends on the availability of sufficient
and accurate historical (numerical) data for training the network. Also there
is no exact method to find the size of ANN and training method. The standard
gradient descent training algorithm performance depends on initial weights,
learning parameters, and quality of data. Most of the time in real life situa-
tions, it is difficult to get sufficient and accurate data for training ANN, but
the operator experience may be helpful in these situations to develop fuzzy
logic based models. Also, neither mathematical nor ANN models are trans-
parent for illustration purpose, because in these models, information buried
in model structure (differential or difference equations or ANN connections).
Hence it is not easy to illustrate the model to others. Fuzzy model is quite sim-
ple and easy to explain due to its simple structure and complete information
in the form of rules.

Fuzzy logic is applied to a great extent in controlling the processes, plants
and various complex and ill defined systems, due to its inherent advantages
like simplicity, ease in design, robustness and adaptability. Also it is estab-
lished that this approach works very well especially when the systems are not
clearly understood and transparent. In this section, this approach is used for
modeling and simulation of D.C. machine to predict its characteristics. Also
the effect of different connectives (aggregation operators) like intersection,
union, averaging and compensatory operators, etc. different implications, dif-
ferent compositional rules, different membership functions of fuzzy set and
their percentage overlapping, and different defuzzification methods have been
studied.

The fuzzy logic model is developed on the basis of causal relationships
between the variables. The causal relationship as depicted by the causal loop
diagram of causal models is often fuzzy in nature. For example, there is no
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simple calculation to find the answer of ‘how much load increase in a intercon-
nected power system would results a given change in power angle? If one would
like to answer this question it is necessary to simulate a complex differential or
partial differential equations for the interconnected power system. This exer-
cise is quite time expensive and cumbersome. It can be represented by a simple
causal relationship as shown in Fig. 8.1 with appropriate fuzzy membership
functions for load and power angle linguistic values. The system dynamics
technique is used for modeling electrical machines (Chaturvedi 1992). The
knowledge gathered in causal model is used to develop the fuzzy rule base.
The flow chart of development of fuzzy simulator is shown in Fig. 8.2.

In fuzzy logic system development needs following vital decisions:

a. Selection of input and output variables
b. Normalization range of these variables
c. The number of fuzzy sets for each variable.

Load Power angle δ
+

Fig. 8.1. Positive causal diagram

Input

Input data preparation 

Define fuzzy sets their overlapping 

Develop knowledge base from causal model 

Select suitable connectives, Implication, Composition
and defuzzification method 

Generate fuzzy relational matrices 

Determine fuzzy output 

Defuzzification

Crisp output 

Fig. 8.2. Flow chart for development of fuzzy simulator



298 8 Applications of Fuzzy Rule Based System

d. Selection of membership functions for each fuzzy set.
e. Determination of overlapping of fuzzy sets.
f. Acquire knowledge and define appropriate number of rules
g. Selection of intersection operators.
h. Selection of union operators.
i. Selection of implication methods.
j. Selection of compositional rules and
k. Selection of defuzzification methods.

8.2.1 Selection of Variables, their Normalization Range
and the Number of Linguistic Values

The selection of variables depends on the problem situation and the type
of analysis one would like to perform. For example, if one needs to conduct
steady state analysis, the variables will be different from those for transient
analysis. The reason, behind this is that in transient analysis it is necessary
to take the flow rate variables into account, while in steady state analysis,
theses variables can be neglected. In steady state analysis the analyzer is
generally not interested in the manner the variable is attaining its steady state
value. But in the study of transient behaviour the purpose is to determine
how the variable achieves its final value. Hence, for transient analysis more
variables have to be handled. After identifying the variables for a particular
system one can draw the casual loop diagram for formulating the fuzzy rules
as mentioned above.

Once the variables are identified, it is also necessary to decide about the
normalization range for input and output variables. Then specify the num-
ber of linguistic values for each variable. The number of linguistic values
also greatly affects the results. If there are more number of linguistic values,
smoother output could be obtained, but the computational effort increases.
For the basic commutating machine, the fuzzy model is simulated using three
fuzzy sets, five fuzzy sets and seven fuzzy sets. The general experience is that
as the number of fuzzy sets increases the computational time increases ex-
ponentially. Complex problems having numerous variables require enormous
simulation time.

8.2.2 Selection of Shape of Membership Functions
for Each Linguistic Value

The fuzzy membership function can be a triangular function, trapezoidal
function, S-shaped function, π-function, or exponential function. For differ-
ent fuzzy sets one can use different fuzzy membership functions. The most
popular membership function is the triangular function due to the simplicity
and ease in calculations. In the present research work, modeling and simula-
tion of the basic commutating machine has been done using the triangular
fuzzy membership function.
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8.2.3 Determination of Overlapping of Fuzzy Sets

As one fuzzy set reaches its end, it is not necessary that the next fuzzy set
should continue from where the previous one ended. In other words, a par-
ticular value of the variable may belong to more than one fuzzy set. As the
domain of one fuzzy set finishes, another one may have already started. Thus
there is an overlap of two or more fuzzy sets. It is observed that overlapping
of neighboring fuzzy sets affects the results to a great extent.

8.2.4 Selection of Fuzzy Intersection Operators

The intersection of two fuzzy sets A and B is specified in general by a binary
operation on the unit that is, a function of the form: i : [0, 1]×[0, 1]→[0, 1]

For each element x of the universal set, this function takes as its argument
the pair consisting of the element’s membership grades in set A and in set B,
and yields the membership grade of the element in the set constituting the
intersection of A and B. Thus,

(A ∩ B)(x) = i[A(x),B(x)] ∀x ∈ X

The various t-norms of the Dombi, Frank, Hamcher, Schweizer & Sklar
1,2,3,4, Dubious & Prade, Weber and Yu classes, which are defined by dif-
ferent choices of the parameters as given in Table 8.1, may be interpreted as
performing fuzzy intersections of various strengths and shapes as shown in
Figs. 8.3–8.8.

8.2.5 Selection of Fuzzy Union Operators

Fuzzy unions are close parallels of the fuzzy intersections. Like fuzzy inter-
section, the general fuzzy union of two fuzzy sets A and B is specified by a
function u : [0, 1] × [0, 1] → [0, 1].

Table 8.1. Fuzzy intersection operators (T-norms)

Year Name Intersection opertor i Parameter

- Schweizer & Sklar 2 1 − [(1 − a)w + (1 − b)w w > 0

−(1 − a)w (1 − b)w]1/w

- Schweizer & Sklar 3 exp(−(|In a|w + |In b|w)1/w) w > 0

- Schweizer & Sklar 4 ab/[aw + bw − aw bw]1/w w > 0

1963 Schweizer & Sklar 1 {max(0, a−w + b−w − 1)}−1/w, −∞ < w < ∞
1978 Hamcher ab/[w + (1 − w)(a + b − ab)] w > 0
1979 Frank logs[1 + {(wa − 1)(wb − 1)/(w − 1)}] w > 0, w �= 1

1980 Yager 1 − min {1, [(1 − a)w + (1 − b)w]1/w} w > 0
1980 Dubois & Prade ab/max(a,b,w) w /∈ [0, 1]

1982 Dombi [1 + {(1/a) − 1)w + ((1/b) − 1)w}1/w]−1 w > 0
1983 Weber max(0, {(a + b + w. ab − 1)/(1 + w)} w > −1
1985 Yu max[0, (1 + w)(a + b − 1) − w ab] w > −1



300 8 Applications of Fuzzy Rule Based System

0
0.2 0.4

0.6
0.8

1

0

0.5

a

w = 0.1

b

ou
tp

ut

0
0.2

0.4
0.6

0.8
1

0

0.5

a

w = 0.4

b

0
0.2

0.4
0.6

0.8
1

0

0.5

a

w = 0.7

b

1
0

0.2

0.4

0.6

0.8

1

ou
tp

ut

1
0

0.2

0.4

0.6

0.8

1

ou
tp

ut

1
0

0.2

0.4

0.6

0.8

1

Fig. 8.3. Shapes and strength of Dombi t-norm operator changes as parameter
value changes

The argument of this function is the pair consisting of the membership
grade of some element x in fuzzy set A and the membership grade of that
same element in fuzzy set B. The function returns the membership grade of
the element in the set A ∪ B. Thus,

(A ∪ B)(x) = u[A(x),B(x)] x ∈ X.

The various t-conorms of Dombi, Frank, Hamcher, Schweizer & Sklar 1,2,3,4,
Dubois & Prade, Weber and Yu, defined by different choices of the parameters
as mention in Table 8.2, can be interpreted as performing union operations of
various strengths and shapes as shown in Figs. 8.9–8.14.
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Fig. 8.4. Shapes and strength of Hamcher t-norm operator changes as parameter
value changes

It is possible to define alternative compensatory operators (Mizumoto
1989) by taking the convex combination of min (∩) and max (∪) as men-
tioned in Table 5.3.

(x ∩ y)(1−w) . (x ∪ y)w, 0 ≤ w ≤ 1

In general, we can obtain many kinds of compensatory operators by using
t-norms T(x,y) and t-conorms S(x,y) dual to T(x,y).

Hence, in addition to the intersection (t-norm) and union (t-conorm) oper-
ators, the fuzzy simulator that has been developed also accommodates fuzzy



302 8 Applications of Fuzzy Rule Based System

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

a

w = 10

b

ou
tp

ut

1
0

0.2

0.4

0.6

0.8

1

ou
tp

ut

1
0

0.2

0.4

0.6

0.8

1

ou
tp

ut

0
0.2

0.4
0.6

0.8
1

0

0.5

a

w = −1.0

b

0
0.2

0.4
0.6

0.8
1

0

0.5

a

w = −100

b

Fig. 8.5. Schweizer & Sklar 1 t-norm operator for different parameter values

compensatory operators, some of which can be obtained using t-norms, t-co
norms, averaging operators and compensatory operators. The 3-D surfaces
for compensatory operator for different parameters are shown in Figs. 8.15
and 8.16.

8.2.6 Selection of Implication Methods

To select an appropriate fuzzy implication for approximate reasoning under
each particular situation is a difficult problem. The logical connective impli-
cation (Yaochu 2003; Ying 2002), i.e. P → Q (P implies Q) in classical theory
T(P → Q) = T(P′ ∪ Q).

Various types of implications operators summarized in Table 8.3.



8.2 System’s Modeling and Simulation Using Fuzzy Logic Approach 303

1
0

0.2

0.4

0.6

0.8

1

ou
tp

ut

1
0

0.2

0.4

0.6

0.8

1

ou
tp

ut

1
0

0.2

0.4

0.6

0.8

1

ou
tp

ut

0
0.2

0.4
0.6

0.8
1

0

0.5

a

w = 0.1

b

0 0.2
0.4

0.6
0.8

1

0

0.5

a

w = 1

b

0
0.2

0.4
0.6

0.8
1

0

0.5

a

w = 10

b

Fig. 8.6. Yager t-norm operator for different parameter values

8.2.7 Selection of Compositional Rule

The modus ponens deduction is used as a tool for making inferences in rule
based systems. A typical if – then rule is used to determine whether an an-
tecedent (cause or action) infers a consequent (effect or reaction). Suppose we
have a rule of the form IF A THEN B, where A is a set defined on universe
X and B is set defined by the universe Y. This can be translated into relation
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Fig. 8.7. Dubois & Prade t-norm operator for different parameter values

between sets A and B, that is, R = (A × B) ∪ (A′ × Y). Now suppose a new
antecedent say Aa is known and we want to find its consequence Bb.

Bb = Aa o R = Aa o((A × B) ∪ (A′ × Y)).

where symbol o denotes the composition operation. Modus ponens deduc-
tion can also be used for the compound rule, IF A, THEN B, ELSE C, where
this compound rule is equivalent to the relation

R = (A × B) ∪ (A′ × C). or R = max(min(A,B),min(A′,C)).
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Fig. 8.8. Yu t-norm operator for different parameter values

This is also called Max – Min compositional rule. There are various other
compositional rules also, which is given in Table 8.4 (Zimmermann 1991; Yager
and Zadeh 1992).

8.2.8 Selection of Defuzzification Method

In modeling and simulation of systems, the output of a fuzzy model needs to
be a single scalar quantity, as opposed to a fuzzy set. The conversion of a fuzzy
quantity to a precise quantity is called defuzzification, just as fuzzification is
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Table 8.2. Fuzzy unions (T-conorms)

Year Name Union operator u Parameter

- Schweizer & Sklar 2 [aw + bw − aw bw]1/w w > 0

- Schweizer & Sklar 3 1 − exp(−(|In(1 − a)|w + |In(1 − b)|w)1/w) w > 0
- Schweizer & Sklar 4 1 − [(1 − a)(1 − b)/[(1 − a)w + (1 − b)w

−(1 − a)w(1 − b)w]1/w w > 0

1963 Schweizer & Sklar 1 1 − {max(0, (1 − a)w + (1 − b)w − 1)}1/w w > 0
1978 Hamcher [a + b + (w − 2)ab]/[w + (1 − w)ab] w > 0
1979 Frank 1 − logs[1 + {(wa − 1)(wb − 1)/(w − 1)}] w > 0, w �=1

1980 Yager min {1, [aw + bw]1/w} w > 0
1980 Dubois & Prade 1 − [(1 − a)(1 − b)/ max((1 − a), (1 − b), w)] w ∈ [0, 1]

1982 Dombi 1/[1 + {(1/a) − 1)w + ((1/b) − 1)w}−1/w] w > 0

1983 Weber min 1, {a + b + w.ab/(1 − w)} w > −1
1985 Yu min[1, a + b + w.ab] w > −1
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Fig. 8.9. Dombi t-conorm operator with different parameter value
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Fig. 8.10. Hamcher t-conorm operator with different parameter value

the conversion of a precise quantity to a fuzzy quantity. There are a number
of methods in the literature, among them many that have been proposed by
investigators in recent years, are popular for defuzzifying fuzzy output (Yager
and Filev 1993].

The fuzzy logic system development software works as shown in Fig. 8.17.

8.2.9 Steady State D.C. Machine Model

The schematic diagram and the terminal graph of D.C. Machine is shown in
Fig. 8.18. It is consisting of three ports, i.e. armature port, field port and shaft
port. The measurements are done at each port for the pair of complimentary
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Fig. 8.11. Schweizer & Sklar 1 t-conorm operator for different parameter values

terminal variables with associated positive reference directions. In motoring
mode of operation of D.C. machine at field port field current is kept constant.

The static model of D.C. machine contains a fewer variables as compared to
the dynamic model. In case of D.C. machine static model, suppose we want
to find the effect of load torque on the motor speed. Then speed and load
torque are the variables of interest. Hence, the causal relationship is identified
between these variables. As load torque increases, machine speed reduces (ref.
Fig. 8.19), assuming that the other variables are constant.
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Fig. 8.12. Yager t-conorm operator for different parameter values

The causal relationships (links) are fuzzy in nature, hence fuzzy logic sys-
tem could help in incorporating the beliefs and perception of the modeler in a
scientific way. It also provides a methodology for qualitative analysis of system
dynamics models. Since, most of the concepts in natural language are fuzzy,
a fuzzy set theoretic approach provides the best solution for such problems.
Normally the experts or operators in a particular domain can tell the relation-
ship between variables, but it is difficult to tell the exact degree of relationship
between variables. Most of the time, the degree of relationship is fuzzy like
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Fig. 8.13. Dubois & Prade t-conorm operator for different parameter values

change the relay setting slightly. It is also quite effective way of dealing the
complex situations. Hence, integrated fuzzy logic approach and system dynam-
ics technique is a natural choice for dealing with these type of circumstances.
The system dynamics technique helps in identifying the relationship between
variables and fuzzy logic helps in modeling these fuzzy related variables.

Step-1 Identifying linguistic variable

The very first step in modeling and simulation of this integrated approach
is to identify variables for the given situation and then determine the causal
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Fig. 8.14. Yu t-conorm operator for different parameter values

links (relationships) between them keeping the remaining system variables
unchanged.

For D.C. machine modeling under steady state conditions the variables
will be load torque, speed and armature current.

Step-2 Defining range of linguistic variables

Once the variables are identified, the next step is to find the possible mean-
ingful range of variation of these variables. This could be found out from
the experimental results or operator experience. The operator can easily tell
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Fig. 8.15. Effect of change in parameter on compensatory (product) operator-1

about the variable range for a particular application and specific context. For
D.C. Machine modeling the range of the variables mentioned above could be
as shown in Table 8.5.

Step-3 Defining Linguistic values for variables

Define linguistic values for linguistic variables, i.e. load torque (TL), speed (ω)
and armature current (Ia). Each of these variables subdivided into the optimal
number of linguistic values. In case of steady state model of D.C. machine five
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Fig. 8.16. Effect of change in parameter on compensatory (summation) operator-1

linguistic values are considered for each of these variables such as very low
(VL), low (L), medium (M), high (H) and very high (VH). The linear shape
(membership function) of these linguistic values can be represented in the
form of Table 8.6. Graphically, it can be shown in Fig. 8.20.

Step-4 Defining of rules

As mentioned earlier, for defining rules, we have to draw causal links between
identified variables. In case of D.C. Machine the causal link between variables
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Table 8.3. List of fuzzy implications

Year Name of implication Implication function

1973 Zadeh max [1 − a, min(a,b)]
1969 Gaines – Rescher 1 if a ≤ b

0 if a > b
1976 Godel 1 if a ≤ b

0 if a > b
1969 Goguen 1 if a ≤ b

b/a if a > b
1938, 1949 Kleene – Dienes max (1 − a, b)
1920 Lukasiewicz min(1, 1 − a + b)
1987 Pseudo – Lukasiewicz – 1 min[1, {1 − a + (1 + w)b}/(1 + wa)] w > −1

1987 Pseudo – Lukasiewicz – 2 min[1, (1 − aw + bw)1/w] w > 0
1935 Reichenbach 1 − a + ab
1980 Willmott min[max(1− a), max(a, 1− a), max(b, 1− b)]
1986 Wu 1 if a ≤ b

min(1 − a, b) if a > b
1980 Yager 1 if a = b = 0

ba others
1994 Klir and Yuan – 1 1 − a + a2b
1994 Klir and Yuan – 2 b if a = 1

1 − a if a �= 1, b �= 1
1 if a �= 1, b = 1

Mimdani min(a,b)
Stochastic min(1, 1 − a + ab)
Correlation product a∗b

1993 Vadiee max(ab, 1 − a)

may be drawn as shown in Fig. 8.21. The arrow of causal link represents
direction of influence and + or − sign shows the effect. Depending of the sign
causal links can be categorized as positive or negative causal links and fuzzy
rules may be written from these causal links as shown in Fig. 8.22.

Let us derive the fuzzy relational matrix for rule – 1 after max–min oper-
ations.

Rule 1 = R (TL,ω)

= VLTL × VHω + LTL × Hω + MTL × Mω + HTL × Lω + VHTL × VLω

Rule 1

[1/0 + 0.75/1 + 0.5/2 + 0.25/3 + 0/4] × [0/156.12 + 0.5/156.75 + 1/157.35 + 0.5/158.04

+ 0/158.85] + [0/2 + 0.50/3 + 1.0/4 + 0.50/5 + 0/6] × [0/154.96 + 0.5/155.56 + 1/156.12

+ 0.5/156.75 + 0/157.35] + [0/4 + 0.50/5 + 1.0/6 + 0.50/7 + 0/7] × [0/153.71 + 0.5/154.33

+ 1/154.96 + 0.5/155.56 + 0/156.12] + [0/6 + 0.50/7 + 1.0/8 + 0.5/9 + 0/10] × [0/152.22

+ 0.5/153.00 + 1/153.71 + 0.5/154.33 + 0/154.96] + [0/8+0.25/9+0.5/10+0.75/11+1/12]

× [1/150.88 + 0.75/151.46 + 0.5/152.22 + 0.25/153.00 + 0/153.71];
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Rule 1 =

150.88 151.46 152.22 153.00 153.71 154.33 154.96 155.56 156.12 156.75 157.35 158.04 158.85

0
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8

9

10

11

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25 0.5 0.75 1.00

0.25 0.5 0.75 0.75

0.25 0.5 0.5 0.5

0.5000 0.5000 0.5000 0.2500 0.2500 0.2500

0.5 1 1

0.5000 0.5 0.5 0.5

0.5 1 0.5

0.5 0.5 0.5 0.5 0.5

0.5 1 0.5

0.2500 0.2500 0.5000 0.5000 0.5000 0.5000

0.5 0.5 0.25 0.25

0.75 0.75 0.5 0.25

1 0.75 0.5 0.25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, other relational matrices can also be determined as given below.

Rule – 2 R(TL, Ia)

3.0484 4.3210 5.5905 6.8601 8.1271 9.3944 10.664 11.933 13.202 14.471 15.747 17.0151 18.286

0

1

2

3

4
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7

8

9

10

11

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.75 0.5 0.25

0.75 0.75 0.5 0.25

0.5 0.5 0.5 0.25

0.2500 0.2500 0.2500 0.5000 0.5000 0.5000

0.5 0.5 0.5

0.5 0.5 0.5000 0.5000 0.5

0.5 1 0.5

0.5 0.5 0.5 0.5 0.5

0.5 1 0.5

0.2500 0.2500 0.2500 0.5000 0.5000 0.5000

0.25 0.25 0.5 0.5

0.25 0.5‘ 0.75 0.75

0.25 0.5 0.75 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 8.4. Compositional rule

1. Max-min b = max {min(a, r)}
2. Min- max b = min {max(a, r)}
3. Min – min b = min {min(a, r)}
4. Max-max b = max {max(a, r)}
5. Godel r = 1 if a ≤ r

r = r otherwise
b = max(1, r)

6. Max- product (max – dot) b = max(a, r)
7. Max – average b = max((a + r)/2)
8. Sum - product b = f(Σ(a, r))

Where a, b and r are the membership values µa (x), µb(y)
and µr (x, y) and f – is a function.

Analysis
Let us take an example where the modeler interested in study the effect

of load torque (say 4.55 Nm) on D.C. motor back EMF and armature current.
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Selection of number of input - output variables 

Selection of normalization range for each variable 

Selection of number of linguistic values for each variable 

Selection of appropriate shape for each linguistic value 

Determine appropriate overlapping between fuzzy sets 

Acquire knowledge and defining fuzzy rule base 

Selection of appropriate aggregation operators 

Selection of implication and compositional operator

Selection of defuzzification method 

De-normalization of output 
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Fig. 8.17. Different windows of fuzzy system

Load 
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Speed ω
-

Fig. 8.18. D.C. machine

(a) Schematic Diagram (b) Terminal Graph 

ω
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Vf Va ω , T 

If Ia

Vf Va

If Ia

Fig. 8.19. Negative causal diagram

First of all fuzzify the given crisp torque value into fuzzy linguistic vales
(fuzzification). Project TL = 4.55Nm to find the percentage of fuzzy linguis-
tic terms.
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Table 8.5. Range of variables for steady state D.C. machine model

Load torque Speed Armature
current

Mini value 0 150.88 3.0484
Max value 12 156.85 18.286

Table 8.6. Membership function values of linguistic variables

Linguistic variables Linguistic values

TL ω Ia very low Low Medium High Very high

0 150.88 3.0484 1 0 0 0 0
1 151.46 4.3210 0.75 0 0 0 0
2 152.22 5.5905 0.5 0 0 0 0
3 153.00 6.8601 0.25 0.5 0 0 0
4 153.71 8.1271 0 1.0 0 0 0
5 154.33 9.3944 0 0.5 0.5 0 0
6 154.96 10.664 0 0 1 0 0
7 155.56 11.933 0 0 0.5 0.5 0
8 156.12 13.202 0 0 0 1.0 0
9 156.75 14.471 0 0 0 0.5 0.25
10 157.35 15.747 0 0 0 0 0.5
11 158.04 17.0151 0 0 0 0 0.75
12 158.85 18.286 0 0 0 0 1.0

Fuzzy load torque belongs to low and medium categories. It is 0.775 low
and 0.275 medium torque as shown in Fig. 8.23.

Fuzzy (TL) = [0/0 + 0/1 + 0/2 + 0.5/3 + 0.75/4 + 0.5/5 + 0.25/6
+0.25/7 + 0/8 + 0/9 + 0/10 + 0/11 + 0/12].

From these torque values speed can be inferred from Rule – 1.

Fuzzy(ω) = Fuzzy(TL) o Rule 1

= [0.25/153.00 + 0.25/153.71 + 0.5/154.33 + 0.5/154.96

+ 0.5/155.56 + 0.75/156.12 + 0.75/156.75

+ 0.25/157.35 + 0.25/158.04 + 0.25/158.85];

This fuzzified speed output is defuzzified using defuzzification methods men-
tioned in earlier chapter to determine the crisp speed. One can use weighted
average method as shown below:
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Fig. 8.20. Membership functions for different linguistic variables

Load Torque 
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(a) Negative causal link 
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Current Ia

+

(b) Negative causal link 

Fig. 8.21. Causal links for D.C. machine model

Rule 1 if TL is VL then ω is VH elseif TL is
L then ω is H elseif TL is M then ω is M
elseif TL is H then ω is L elseif TL is VH
then ω is VL.

Rule 2 if TL is VL then Ia is VL elseif TL is
L then Ia is L elseif TL is M then Ia is M
elseif TL is H then Ia is H elseif  TL is VH
then Ia is VH.

Fig. 8.22. Fuzzy rule derived from causal links
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Fig. 8.23. Fuzzification process

Crisp speed =

n∑
i=1

WiXi

n∑
i=1

Wi

= (0.25 ∗ 153.00 + 0.25 ∗ 153.71 + 0.5 ∗ 154.33 + 0.5 ∗ 154.96

+ 0.5 ∗ 155.56 + 0.75 ∗ 156.12 + 0.75 ∗ 156.75 + 0.25 ∗ 157.35

+ 0.256 ∗ 158.04 + 0.25 ∗ 158.85)/(0.25 + 0.25 + 0.5 + 0.5 + 0.5

+ 0.75 + 0.75 + 0.25 + 0.25 + 0.25) = 155.8388 rev/s.

Similarly, armature current can also be determined for the given load torque
using rule 2.

Rule − 2R(TL,Ia) => Ia = 8.98Amp.

These results can be further improved by taking more points in discrete fuzzy

sets. In the above calculation only 13 points are considered to specify the
fuzzy membership value for each variable. If the number of points are more the
accuracy of the results will be better, but at the same time the computational
labor and time both increase.



320 8 Applications of Fuzzy Rule Based System

8.2.10 Transient Model of D.C. Machine

The transient model provides the information about the variation of different
variables with respect to time in the system (transient behavior). Hence, the
transient model needs to capture the dynamics of the system. To do that one
needs to develop all possible causal links in the system and combine them to
get causal loop diagram. The causal loop diagram is the first step in modeling
the system dynamics using system dynamics technique (Forrester 1961). The
causal loop diagram for D.C. Machine is given in (Chaturvedi 1992, 1997)
shown in Fig. 8.24.
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Fig. 8.24. Causal loop diagram for D.C. machine with four negative causal loops
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The D.C. Machine (basic commutating machine) in electro-mechanical
transducer mode of operation in which field port variables are constant. Hence,
the causal loop diagram reduces to have only three causal loops after remov-
ing the causal loop of field port (bottom portion of Fig. 8.24). The reduced
causal loop diagram consists of two level variables, i.e. armature current and
angular speed and two rate variable (state variable) namely rate of change of
armature current and angular acceleration, exogenous variables such as ap-
plied voltage and load torque, machine parameters like armature inductance,
armature resistance, moment of inertia and damping coefficient of machine.
From this causal loop diagram the fuzzy knowledge rule can be developed.

Rule 1 if AC is VL then RAC is VH elseif AC is L then RAC is H elseif
AC is M then RAC is M elseif AC is H then RAC is L elseif AC
is VH then RAC is VL.

Rule 2 if ω is VL then ώ is VH elseif ω is L then ώ is H elseif ω is M then ώ
is M elseif ω is H then ώ is L elseif ω is VH then ώ is VL.

Rule 3 if VA is VL then RAC is VL elseif VA is L then RAC is L elseif
VA is M then RAC is M elseif VA is H then RAC is H elseif VA
is VH then RAC is VH.

Rule 4 if AC is VL then ώ is VL elseif AC is L then ώ is L elseif AC is M
then ώ is M elseif AC is H then ώ is H elseif AC is VH then ώ is VH.

Rule 5 if TL is VL then ώ is VH elseif TL is L then ώ is H elseif TL is M
then ώ is M elseif TL is H then ώ is L elseif TL is VH then ώ is VL.

Rule 6 if ω is VL then RAC is VH elseif ω is L then RAC is H elseif ω is
M then RAC is M elseif ω is H then RAC is L elseif ω is VH then
RAC is VL.

Rule 7 if RAC is VL then AC is VL elseif RAC is L then AC is L elseif
RAC is M then AC is M elseif RAC is H then AC is H elseif RAC
is VH then AC is VH.

Rule 8 if ώ is VL then ω is VL elseif ώ is L then ω is L elseif ώ is M then ω
is M elseif ώ is H then ω is H elseif ώ is VH then ω is VH.

The above developed fuzzy logic model for D.C. Machine has been simulated
for the machine parameters given in Table 8.7.

i. Study of different connectives
The fuzzy logic model is simulated for different t-norms and t-conorms as
given in the litreture (Dubois and Prade 1980, 1985, 1992; Klir 1989, 1995;
Zimmermann 1991) like Yager, Weber, Yu, Dobois and Parade, Hamcher,
etc. with Mamdani Implication. Results as shown in Fig. 8.25–8.29. All,
except Weber connectives are found to give satisfactory results in the
range of load torque from 4 to 8 N m. Dubois and Prade connectives
perform better in the range from 1 to 11 N m of load torque, but not in the
complete range. It is considered expedient to try compensatory operators
as connective. Hence the simulation has been performed for compensatory
operators with Gains Rascher implication, max-min compositions and the
results are shown in Fig. 8.30–8.32.
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Table 8.7. Machine parameters of D.C. machine

Armature resistance Ra = 0.40 ohm
Armature inductance La = 0.1 H
Damping coefficient B = 0.01 N ms
Moment of inertia J = 0.0003N ms2

Torque constant K = 13
Operating conditions
Applied voltage Va = 125V
Load torque TL = 1 N m
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Fig. 8.25. Results with Mamdani implication and Yager connective (w = 0.9)
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Fig. 8.26. Results with Mamdani implication and Weber connective

ii. Study of different implications methods
The D.C. Machine fuzzy logic model is simulated for different implication
methods such as Goguen, Kleene-Dienes, Godel, Wu, etc. as shown in
Fig. 8.34–8.36.
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Fig. 8.27. Results with Mamdani implication and Yu connective
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Fig. 8.28. Results with Mamdani impaction and max-min connective
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Fig. 8.29. Results with Mamdani implication and Dubois and Prade connective

iii. Different compositional rules
The effect of different compositional rules on the fuzzy model simula-
tion of D.C. Machine have been studied. The results obtained for various
compositional rules are shown inFig. 8.37 andTable 8.8–8.10withMamdani
implication. It is found that max-product composition gave good results.
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Fig. 8.30. Effect of Compensatory operator (summation type −5) with min = 0.1
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Fig. 8.31. Effect of compensatory operator (summation type −5) with min = 1.0
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Fig. 8.32. Effect of Compensatory operator (product type) with min = 1.0
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Fig. 8.33. Simulation results with Gaines-Rescher implication
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Fig. 8.34. Simulation results with Wu implication
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Fig. 8.35. Simulation results with Pseudo-Likasiewicz implication with w = 0.1
and min = 1.0

iv. Different defuzzification methods
It gives the crisp output from the fuzzy output. The effects of different
defuzzification have been studied for D.C. Machine model with compen-
satory operator as connective, Gaines Rascher implication and max-min
composition as shown in Fig. 8.38 and Fig. 8.40.
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Fig. 8.36. Simulation results with Godel implication with w = 0.1 and min = 1.0
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Fig. 8.37. Effect of compositional rules

Table 8.8. Effect of compositional rules for load torque = 1 N m

Compositions Speed (actual
value = 158.04)

Armature current
(actual value =
4.321)

Max(a, b)−min(a b) 157.5641 10.67
Max(a b)−product(a b) 156.8617 7.3117
Max(a, b) − max(0, a + b − 1) 158.23083 3.9428
Max(a + b − ab) − min(a, b) 157.0845 7.7276
Min(1, a + b) − min(a, b) 157.4973 7.8753
Min(1, a + b) − product(a, b) 158.339 5.985

v. Effect of overlapping between membership functions
The effects of different degree of overlap between fuzzy sets have been
studied and the simulation results are summarized in Tables 8.11. It is
found that the slope of fuzzy set 0.5 and the membership variation of 0.1
gives relative better results (Fig. 8.30).
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Table 8.9. Effect of compositional rules for load torque = 4.55 N m

Compositions Speed (actual
value = 155.76)

Armature current
(actual Value=
8.7647)

Max(a, b)−min(a, b) 155.805 8.98
Max(a, b)−product(a, b) 155.9298 8.7244
Max(a, b) − max(0, a + b − 1) 155.13403 8.12858
Max(a + b − ab) − min(a, b) 155.7086 10.2293
Min(1, a + b)–min(a, b) 155.635 10.6725
Min(1, a + b)–product(a, b) 155.7437 8.84

Table 8.10. Effect of compositional rules for load torque = 6.55 N m

Compositions Speed (actual
value = 154.46)

Armature current
(actual value=
11.304)

Max(a, b)−min(a,b) 154.2701 10.67
Max(a, b)−product(a,b) 154.6919 13.095
Max(a, b) − max(0, a + b − 1) 154.7079 10.6642
Max(a + b − ab) − min(a, b) 154.3165 11.09594
Min(1, a + b) − min(a, b) 154.5325 9.345
Min(1, a + b) − product(a, b) 154.610 11.334
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Fig. 8.38. Effect of defuzzification methods

8.2.11 Conclusions

In this integrated method for qualitative analysis:

a. Subjective beliefs and perceptions can be incorporated easily and scien-
tifically in the model.

b. The system dynamics methodologies can give better insight about the
system, specially when the system is ill defined.



328 8 Applications of Fuzzy Rule Based System

Time (sec.)

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Actual Speed

Last MaxFirst Max

Mean Max

Centroid

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
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c. This method provides a systematic approach for qualitative analysis sys-
tem dynamics.

d. System dynamics which are not clear from the causal loop diagram can
be understood with this methodology.

e. It is easy to write down the fuzzy rules once the causal relationship is
established between variables.
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Table 8.11. Effect of different overlapping and supports of fuzzy sets on fuzzy
models

(a) Load torque = 1 N m

Slope of fuzzy sets Membership
variations

Speed Armature current

0.25 0–1 158.0175 4.3447
0.5 0–1 158.002 4.3452
0.375 0.25–1 157.8051 3.9294
0.25 0.5–1 157.653 3.7149
0.1875 0.25–1 157.4557 5.4967
0.125 0.5–1 157.3017 5.7984

(b) Load torque = 4 .55 N m

Slope of fuzzy sets Membership
variations

Speed Armature current

0.25 0–1 155.48 9.4932
0.5 0–1 155.825 8.7613
0.375 0.25–1 155.707 9.015
0.25 0.5–1 155.6383 9.1841
0.1875 0.25–1 155.2684 9.93936
0.125 0.5–1 155.1192 10.2529

(c) Load torque = 6 .55 N m

Slope of fuzzy sets Membership
variations

Speed Armature current

0.25 0–1 154.766 11.002
0.5 0–1 154.6325 11.2985
0.375 0.25–1 154.5292 11.5117
0.25 0.5–1 154.4275 11.7215
0.1875 0.25–1 154.8207 10.8849
0.125 0.5–1 154.8794 10.7594

f. The following inferences can be deduced from the results obtained from
various simulations of fuzzy system models:
a. 50% overlapping produces satisfactory results from mapping DC ma-

chines characteristics, whereas for induction machine different overlap-
ping could map out different portions of the characteristics. Therefore,
sliding mode overlapping model can be developed in which there is a
facility that the overlapping could change as the speed changes.

b. The connectives like Schweizer and Sklar – 1,2,3,4, Yu, Dubois and
Prade, Frank connectives with Mamdani implication and correlation –
product implication are found suitable for DC machine and induction
machine models.

c. Compensatory operators have also been used for modeling and simu-
lation of machine characteristics and it is found that most of the time
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the compensatory operators (product-type) with Gaines Rascher im-
plication and max-min composition gave good results.

d. Various compositions have also been tried with Mamdani implication.
It is found that sum-product, max-min, and max product composition
gave better results. With correlation-product implication max-product
and max-min composition also gave optimal results.

e. Various defuzzification methods have been adapted and it is found
that with Gaines Rascher implication and compensatory (product
type)-1 as connective centre of gravity and weighted average defuzzi-
fication methods give satisfactory results.

8.3 Control Applications

Goal of control system is to enhance automation within a system while pro-
viding improved performance and robustness, for example cruise control for
automobile to reduce drivers from tedious task of speed regulation while they
are going on long trips.

Conventional controllers are derived from control theory techniques based
on mathematical models of the open-loop process, called system, to be con-
trolled. The purpose of the feedback controller is to guarantee a desired re-
sponse of the output y. The process of keeping the output y close to the set
point (reference input) y∗, despite the presence of disturbances of the system
parameters, and noise measurements, is called regulation. The output of the
controller (which is the input of the system) is the control action u.

The general form of the discrete-time control law is

u(k) = f(e(k), e(k − 1), . . . , e(k − τ), u(k − 1), . . . , u(k − τ))

providing a control action that describes the relationship between the input
and the output of the controller.
Where

e error between the desired set point y∗ and the output of the system y,
τ defines the order of the controller, and
f is in general a nonlinear function.

The block diagram representing simple feedback control system is shown in
Fig. 8.41.

System Controller 
Reference

input

output

−

+

e u

Fig. 8.41. Simple feedback control system
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In a fuzzy logic controller (FLC), the dynamic behavior of a fuzzy system
is characterized by a set of linguistic rules defined by expert knowledge. The
expert knowledge is usually of the form IF (atencedent i.e. a set of condi-
tions are satisfied) THEN (a set of consequences can be inferred). Since the
antecedents and the consequents of these IF-THEN rules are associated with
fuzzy concepts (linguistic terms), they are often called fuzzy conditional state-
ments. Basically, fuzzy control rules provide a convenient way for expressing
control policy and domain knowledge. Furthermore, several linguistic variables
might be involved in the antecedents and the conclusions of these rules. When
this is the case, the system will be referred to as a multi-input-multi-output
(MIMO) fuzzy system. For example, in the case of two-input-single-output
(MISO) fuzzy systems, fuzzy control rules have the form

Rule 1 : If x = A1 and y = B1Then z = C1

Also

Rule 2 : If x = A2 and y = B2 Then z = C2

. . ... . . .. . ..

Rule n : If x = An and y = Bn Then z = Cn

where x and y are the process state variables, z is the control variable, Ai,
Bi, and Ci are linguistic values of the linguistic variables x, y and z in the
universes of discourse U, V , and W , respectively, and an implicit sentence
connective also links the rules into a rule set or, equivalently, a rule base.

We can represent the FLC in a form similar to the conventional control law

u(k) = F (e(k), e(k − 1), . . . , e(k − τ), u(k − 1), . . . , u(k − τ))

where the function F is described by a fuzzy rule base.
A typical FLC describes the relationship between the changes of the control

action on the one hand,

∆u(k) = u(k) − u(k − 1)

and the error e(k) and its change ∆e(k) on the other hand.

∆e(k) = e(k) − e(k − 1).

Such control law can be formalized as ∆u(k) = F (e(k), ∆(e(k))
The actual output of the controller u(k) is obtained from the previous

value of control u(k − 1) that is updated by ∆u(k) as given in the expression
u(k) = u(k − 1) + ∆u(k).
Suppose now that we have two input variables x and y. A fuzzy control rule
Rule i: if (x is Ai and y is Bi) then (z is Ci)
is implemented by a fuzzy implication Ri and is defined as

Ri(u, v, w) = [Ai(u) and Bi(v)]→ Ci(w) where i = 1, 2, 3, . . . n
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Fig. 8.42. Closed loop control system using fuzzy controller

where the logical connective and is implemented by the minimum operator, i.e.

[Ai(u) and Bi(v)]→ Ci(w) = [Ai(u) ∩ Bi(v)]→ Ci(w)
= min {Ai(u), Bi(v)} → Ci(w)

When fuzzy logic controller is appropriate?
Fuzzy logic controller is appropriate for systems with the following

characteristics:

1. One or more continuous variables are there, which need control.
2. An exact mathematical model of the system does not exist. If it exists

then it is too complex to use on line.
3. Serious non-linearities and delays are present in the system, which makes

system model computationally expensive.
4. Time variant properties of system exists.
5. System requires operators intervention.
6. Human intuitions are required to control the system.
7. Written data base of system information is not sufficiently available, but

system expertise are available (i.e. mental data base is there). Hence
quantitative modeling is not possible, but qualitative model could be
developed.

8. Where sufficient human experts knowledge available.

The computational structure of a fuzzy knowledge base controller (FKBC)
in the closed loop is shown in Fig. 8.42.

8.3.1 Adaptive Control

Adaptation is fundamental characteristics of living organism (Human being,
animal), since they attempt to maintain physiological equilibrium in the midst
of changing environmental conditions.

An Adaptive controller can be designed so that it estimates some uncert-
ainty within the system, then automatically designs a controller for the esti-
mated plant uncertainty. In this way the control system uses information
gathered on-line to reduce the model uncertainty, that is, to figure out exactly
what the plant is at the current time so that good control can be achieved.
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Control Plant

Approximator

Fig. 8.43. Indirect adaptive controller

In conventional controller the gain of a controller are normally fixed, but in
adaptive controllers it changes with the situation. Hence, adaptive controller
modifies its behavior with changes. The basic difference between conventional
adaptive control and adaptive fuzzy control systems stems from the use of the
tuning of general non-linear structures (i.e. Fuzzy Systems) to match some
unknown non-linearity (even if only the parameters that enter linearly are
tuned). This shows that this type of controller has self organizing features in it.

There are two types of adaptive controllers: indirect adaptive and direct
adaptive control systems.

A. Indirect adaptive control scheme
An indirect approach to adaptive control is made of an approximator (often

referred to as an “identifier” in the adaptive control literature) that is used
to estimate unknown plant parameters and a certainty equivalence control
scheme in which the plant controller is defined (designed) assuming that the
parameter estimates are their true values. The indirect adaptive approach is
shown in Fig. 8.43. Here the adjustable approximator is used to model some
of component of the system. If the approximation is good (i.e. we know how
the plant should behave), then it is easy to meet our control objective. If, on
the other hand, the plant output moves in the wrong direction, then we may
assume that our estimate is incorrect and should be adjusted accordingly.

An example of indirect adaptive controller, consider the cruise control
problem where we have an approximator that is used to estimate the vehicle
mass and aerodynamic drag.

B. Direct adaptive control scheme
The Direct adaptive controller is shown in Fig. 8.44. Here the adjustable

approximator acts as a controller. The adaptation mechanism is then designed
to adjust the approximator causing it to match some unknown nonlinear con-
troller that will stabilize the plant and make the closed loop system to achieve
its performance objective. Note that we call this scheme “direct” since there
is a direct adjustment of the parameters of the controller without identifying
a model of the plant. This type of control is quite popular.
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Neural networks and fuzzy systems can be used as the “approximator” in
the adaptive scheme. Neural networks are parameterized nonlinear functions.
Their parameters are, for instance, the weights and baises of the network and
adjustment of these parameters results in different shaped nonlinearities.

Figure 8.45 shows the adaptive fuzzy logic based controller. The system
output is compared with the desired output and error is calculated. This error
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and its rate of change is passed to fuzzy controller which controls the system
behaviour. To make the controller adaptive the error and error rate is also
given to the tunning module which tunes the the fuzzy rule base, shape and
overlapping of membership functions, modifies the parameters of aggregation
operators, compositional operator and implication operator, etc.

Some Examples on Control System:
Let a linear second order system whose transfer function is given by G(s)

and input to the system is unit step u(t) for t ≥ 0.

8.3.2 PID Control System

The block diagram of a system controlled by feedback error signal based PID
controller is given in Fig. 8.46 and its simulink (Matlab) model is given in
Fig. 8.47.

8.3.3 Fuzzy Control System

Controlling the second order system using fuzzy logic based controller, two
inputs are taken (error and error rate) and based on these inputs controller
action is determined as shown in Fig. 8.48.

Input variables = {error, error rate} and output = {control action}

The linguistic values of these variables are as follows:

System
PID

Controller
Reference

input

output

−
+

e u

Fig. 8.46. Linear PID feedback control system
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Fig. 8.47. Simulink model for PID controlled system
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Fig. 8.48. Fuzzy Logic based feedback control system

Input variables = {Negative (N), Zero (Z), and Positive (P)} and
Output variable = {Negative large (NL), Negative small (NS), Zero (Z),

Positive Small (PS) and Positive Large (PL)}.

After selecting appropriate number of input and output variables and their
linguistic values, we have to draw the membership function for these linguistic
values. The membership function for error, error rate and output variables are
shown in Fig. 8.49.

Depending on these input variable values the output variable value is to be
decided from the experience encoded in the form of rules. There are nine rules
defined as given in the fuzzy associative memory (FAM) Table 8.1. Simulink
model for fuzzy controlled system is shown in Fig. 8.50. The three dimension
control surface is als shown in Fig. 8.51.

FAM table for fuzzy controller

e de/dt N Z P

N NL NS Z
Z NS Z PS
P Z PS PL

Using Matlab Fuzzy Toolbox, one can easily develop the fuzzy controller
with the help of fis editor as shown in Fig. 8.52. Graphically fuzzy rules can
be represented as shown in Fig. 8.53.

The performance of PID controller and fuzzy controller are compared as
shown in Fig. 8.54 and Table 8.12, and it is found that fuzzy controller is
better than PID controller. The performance of fuzzy controller can even be
improved by tuning its parameters. Then performance of this controller also
compared when there is a delay between the controller and the system of 0.5 s.
The fuzzy controller performance is quite good as shown in Fig. 8.55. When
there is a variable delay the problem become more sever. These controllers
have also been tested for variable delay between controller and system and
found that PID controller could not control the system output and it becomes
unstable, but fuzzy controller is able to control it as shown in Fig. 8.56.

Response of fuzzy logic controller is almost same as conventional PID
controller for linear system but it gives better response for highly nonlinear
and delay type system.
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Fig. 8.49. Membership functions for input and output variables

8.3.4 Power System Stabilizer Using Fuzzy Logic

The design and application of power system stabilizers has been the subject
of continuing development for many years. Most of the designs of conventional
PSS are typically based on analog or digital implementations of lead, lag or
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lead-lag networks. Many researchers (Huang 1991; Kothari 1993; Bollinger
et al. 1978; Yu 1990; Srinivas 1981) have used power system stabilizer design
via eigen structure assignment or pole placement problem. The technique
involves obtaining a frequency response of the systems and the problem asso-
ciated with power systems when noise inputs are present.

In recent years artificial neural network (ANN) (Guan 1996; Liu 2003)
and fuzzy set theoretic approach (Hsu 1990; Gawish 1999; Hosseinzadeh and
Kalam 1999; Gibbard 1988; Wang 1995; Ortmeyer 1995; Hassan 1991) have
been proposed for power system stabilization problems. Both these techniques
have their own advantages and disadvantages. The integration of this approach
can give improved results. Fuzzy set is used to represent knowledge in an in-
terpretable manner. Neural networks (Chaturvedi 2004) have the capability
of interpolation over the entire range for which they have been trained and
provides the capability of adaptability not possessed by fixed parameters de-
vices designed and tuned for one operating conditions. A generalized neuron
based PSS (Chaturvedi 2004, 2005) has been proposed to overcome the prob-
lems of conventional ANN and combining the advantages of self-optimizing
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Fig. 8.52. FIS editor of fuzzy tool box of matlab for the development of fuzzy
controller

Fig. 8.53. Graphical representation of fuzzy rules
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Table 8.12. Performance comparison of Fuzzy and PID controller

PID controller Fuzzy controller

Max overshoot 1.2955 1.2784
Settling time (with 5% tol.) (s) 7.43 s 4.67 s
Peak time (s) 2.03 s 1.92 s
Rise time (from 10 to 90%) (s) 1.38 s 1.29 s

adapting central strategy and the quick response of the GN, to provide good
damping to the power system over a wide operating range. The main issue of
ANN stabilizer is its training. To properly train ANN one needs sufficient and
accurate data for training, efficient training algorithms and optimal structure
of ANN. It is really difficult to get appropriate and accurate training data for
real life problems. It is also difficult to select an optimal size of ANN for a
particular problem.

To overcome these problems the fuzzy logic controllers are proposed where
no numerical training data is required and the operator experience can be
used. This makes fuzzy logic controllers very attractive for ill defined systems
or systems with uncertain parameters. With the help of fuzzy logic concepts,
expert’s knowledge can be used directly to design a controller. Fuzzy logic
allows one to express the knowledge with subjective concepts such as very
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big, too small, moderate and slightly deviated, which are mapped to numeric
ranges (Zadeh 1973). Fuzzy control implementation of power system stabiliz-
ers has been reported in a number of publications (Hsu 1990; Gawish 1999;
Hosseinzadeh 1999; Gibbard 1988; Wang 1995; Ortmeyer 1995; Hassan 1991).
Due to its lower computation burden and its ability to accommodate uncer-
tainties in the plant model, fuzzy logic power system stabilizers (FPSS) appear
to he suitable for implementing PSSs. FPSSs can he implemented through sim-
ple microcomputers with A/D and D/A converters (Hiyama 1993; El-Metwally
1996). The performance of FPSSs depends on the operating conditions of the
system, although it is less sensitive than conventional linear PSSs (Parniani
1994).

In this paper, an adaptive polar fuzzy controller has been proposed for
the power system stabilizer to reduce the computational burden and time to
compute the stabilizing signal. Generalized neuron is used as identifier, which
can identify complex and dynamic system through learning, which can easily
accommodate non-linearities and time dependencies. Adaptive polar fuzzy
PSS can adjust its parameters according to the changes in environment and
maintains desired control ability over a wide operating range of power system.

8.3.4.1 Polar Fuzzy Sets

The Polar fuzzy sets were first introduced by Hadipriono and Sun in 1990. Po-
lar fuzzy sets differ from standard fuzzy sets only in their coordinate descrip-
tion. Polar fuzzy sets are defined on a universe of angle, hence are repeating
shapes every 2π cycles.

Polar fuzzy in environmental engineering deals with the qualitative infor-
mation about the pollutions. The pH value of some water samples collected
from polluted pond and give these pH reading linguistic labels such as very
basic, fairly acidic, etc. The neutral solution has a pH value of 7. The lin-
guistic terms can be built in such a way that a “neutral” (N) corresponds
to θ = 0 rad, “absolutely basic” (AB) corresponds to θ = π/2 rad and “ab-
solutely acidic” corresponds to θ = −π/2. Levels of pH varies between 14 and
7 can be labeled as “very acidic” (VA). “acidic” (A) “ fairly acidic” (FA) and
are represented between θ = 0 and π/2. The Polar fuzzy set model for these
linguistic labels of pH is shown in Fig. 8.57.

The membership functions for the pH value of water is shown in Fig. 8.58.
Polar fuzzy is useful in situations that have a natural basis in polar coordinates
or in situations where the value of a variable is cyclic.

8.3.4.2 Polar Fuzzy Logic Based Power System Stabilizer

A power systems model consisting of a synchronous machine connected to a
constant voltage bus through a double circuit transmission line is shown in
Fig. 8.59. The state equations representing the power system and the synchro-
nous machine, governor and the AVR parameter are given in Appendix. The
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control signal generated by the PSS is injected as a supplementary stabilizing
signal to the AVR summing point.

The fuzzy logic based PSS with several rules indeed gives a consistently
better performance than the CPSS but controller design and mathematical
operation with several rules is rather complex and time consuming. Simple rule
based stabilizer is proposed depending upon the polar fuzzy information. One
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of the alternatives would be to represent the two states of the generator speed
deviation ∆ω and acceleration ∆ώ in polar form and generate the PSS signal
based on the magnitude R and angle θ as shown in Fig. 8.61. The origin “O”
is the desired equilibrium point and all the control efforts should be directed
to shift the generator state R toward the origin “O” of the phase plane.

Two fuzzy membership functions LN and LP were defined for the input
angle θ. The values of these two functions are complimentary to each other, were
either 0 or 1 or varied linearly over the operating range as shown in Fig. 8.60.
Fuzzy Inputs: Angle

LP = [1.0/45 0.9/90 0.5/135 0.2/180 0/225 0.2/270 0.5/3150.9/360 1.0/405]

and

LN = 1 − LP;

= [0.0/45 0.1/90 0.5/135 0.8/180 1.0/225 0.8/270 0.5/315 0.1/360 0.0/405]

Fuzzy Output of Controller Uc:
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P = [0/0.5 0.25/0.56 0.50/0.63 0.75/0.69 1.00/0.75 0.75/0.81 0.50/0.88

0.25/0.94 0.0/1.0];

N = [0/−1 0.25−0.94 0.50−0.88 0.75−0.81 1.00−0.75 0.75−0.69 0.50−0.63

0.25−0.56 0−0.5];

The overall gain of PSS was linearly increased with magnitude R and de-
viation in angular speed. The output of the PSS was generated directly by
utilizing the values of LN and LP. This effectively means that LN = 0 for
(α < α i or α > 2π).

And LP = 1 − LN where αi is tuning parameter. The maximum and
minimum value of membership function LN and LP respectively dependent
on αi which is depending on the system requirements sometime it is necessary
to rotate the min-max axis by a suitable angle this can be done either by
modification of input membership function along the axis of angle θ or by
modifying the angle θ directly. The former method is used where upper domain
of θ for MFS is fixed to 2π but the problem associated with this is that, when
αi is shifted then change in angle θ at lowest domain is maximum and keep
on decreasing towards θ = 2π and finally to zero. So the effect on controller
performance is not same for all θ in the domain [θ2π].

In PFPSS there is no need to use two separate input gains for ∆ω and
∆ώ because the FLC of PFPSS uses the polar angle of the properly scaled
inputs which depends upon the ratio of the scaled inputs and consider only
one gain Kacc. The scaling factor Kacc decides as to which variable, speed
deviations or acceleration has more weightage in magnitude R(k). In the pro-
posed controller the magnitude of output from the FLC is set to be maximum
and minimum at 45◦ and 135◦ axis, respectively. The maximum and mini-
mum is fixed at these angles. But due to scaling of ∆ώ the gain Kacc, all the
points in the phase plane are relocated and sometimes system conditions may
also require these points to be relocated. Hence there is a need for clockwise
or anticlockwise rotation, for better tuning of the PSS. This can be done by
adding or subtracting an angle “β” from phase plane angle “θ” of the polar
form. The configuration of the proposed polar fuzzy logic controller is shown
in Fig. 8.62.

The required control strategy is

a) In sector A (0◦–90◦) controls from FLC should be large positive as both
scaled ∆ω and ∆ώ are positive.

b) In Sector B (315◦–360◦) control signal from FLC should be low positive
as scaled ∆ω is large positive and scaled ∆ώ is small negative.

c) It sector – C (270◦–315◦) control signal from FLC should be low negative
as scaled ∆ω is small positive and scaled ∆ώ is large negative.

d) In should D, E, F all the situation are completely opposite to those in
sector A, B and C, respectively.
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Fig. 8.62. Block diagram of proposed polar fuzzy logic controller

The output of FLC is divided into two linguistic variables variable “P”
and “N”, which are triangular membership function. So here only two simple
rules are generated.

1. If “θ” is LP then Vo is P or mathematically:

R1 = LP × P or

R1 = [1.0/45 0.9/90 0.5/135 0.2/180 0/225 0.2/270 0.5/315 0.9/360 1.0/405]

× [0/0.5 0.25/0.56 0.50/0.63 0.75/0.69 1.00/0.75 0.75/0.81 0.50/0.88

0.25/0.94 0.0/1.0];

2. If θ′ is LN then Vo is N, i.e.

R2 = LN × N

R2 = [0.0/45 0.1/90 0.5/135 0.8/180 1.0/225 0.8/270 0.5/315 0.1/360 0.0/405]

× [0/−1 0.25/−0.94 0.50/−0.88 0.75/−0.81 1.00/−0.75 0.75/−0.69

0.50/−0.63 0.25/−0.56 0/−0.5];

These can be represented in the matrix form in Tables 8.13 and 8.14.
At an angle of 45◦ or 405◦ the value of membership function of LP is

maximum and that for LN is minimum so that “Vo” is positive maximum.
At an angle of 135◦ and 315◦ the value of membership function for both LP
and LN is same, so that Vo is minimum (zero). At an angle of 225◦ the value
of membership function LP is minimum and that for LN is maximum so that
Vo is negative maximum. The input to FLC is angle θ′ is defined as:

θ′ = (θ − β) + 360◦ for θ − β < 45◦

θ′ = θ − β for θ − β ≥ 45◦.



8.3 Control Applications 347

Table 8.13. Rule matrix R1

.5 0.56 .63 0.69 .75 0.81 .88 0.94 1
45 0 0.25 0.5 0.75 1.0 0.75 0.5 0.25 0
90 0 0.25 0.5 0.75 0.9 0.75 0.5 0.25 0
135 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0
180 0 0.25 0.5 0.75 0.8 0.75 0.5 0.25 0
225 0 0 0 0 0 0 0 0 0
270 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0
315 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0
360 0 0.25 0.5 0.75 0.9 0.75 0.5 0.25 0
405 0 0.25 0.5 0.75 1 0.75 0.5 0.25 0

Table 8.14. Rule matrix R2

−1 −.94 −.88 −.81 −.75 −.69 −.63 −.56 −.5
45 0 0 0 0 0 0 0 0 0
90 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
135 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0
180 0 0.25 0.5 0.75 0.8 0.75 0.5 0.25 0
225 0 0.25 0.5 0.75 1.0 0.75 0.5 0.25 0
270 0 0.25 0.5 0.75 0.8 0.75 0.5 0.25 0
315 0 0.25 0.5 0.75 0.5 0.75 0.5 0.25 0
360 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
405 0 0 0 0 0 0 0 0 0

Hence, the output of FLC unit is uFLC = f1(θ, β), and final output u = f2
(uFLC, Ko, R, ωi, dωi)
where

θ – angle in degree,
β – modifier (tunning parameter) in degree,
Ko – multiplier (tunning parameter),
R – magnitude
∆ωi – angular speed as GN-identifier output, rad/s.
∆ώ – angular acceleration as GN-identifier output, rad/s2

8.3.4.3 Generalized Neuron Identifier

The generalized neuron developed earlier is used as the plant identifier using
forward modeling is shown in Fig. 8.63. A GN identifier is placed in parallel
with the system and has the following inputs:

Xi(t) = [ω vector, ώ vector, u vector]

where
ω vector = [∆ω(t), ∆ω(t-T ), ∆ω (t-2T )]
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Fig. 8.63. Schematic diagram of proposed GN identifier

ώ vector = [∆ώ (t), ∆ώ (t-T ), ∆ώ(t-2T )]
u vector = [u(t-T ), u(t-2T ), u(t-3T )]
T is the sampling period,
∆ω is angular speed deviation from synchronous speed, rad s−1,
∆ώ is angular acceleration rad/sec2 and u is controller output.

The dynamics of the change in angular speed of the synchronous generator
can be viewed as a non-linear mapping with the inputs mentioned in (1) and
could be mathematically written as:

[∆ωi∆ώ] = fi(Xi(t)) (8.1)

where fi is a non-linear function.
Therefore, the GN-identifier for the plant can be represented by a non-linear
function Fi.

Identifier out = [∆ωi∆ώ] = Fi(Xi(t),Wi(t)) (8.2)

where, Wi(t) is the matrix of GN identifier weights at time instant t.
The error between the system and the GN identifier output at a fourth

order delay is used as the GN identifier-training signal. The error square is
used as the performance index:

Ji(t) = 0.5 ∗ (Delayed Identifier out − Desired out)2 (8.3)

The weights of the GN identifier are updated during training to minimize
the error. After training the GN-identifier represents the plant characteristics
reasonably well, i.e.

ω(t + T ) = f i(Xi(t)) ≈ ωi(t + T ) = F i(Xi(t),Wi(t)),

the proposed GN-identifier will be connected to the power system for on-
line update of weights. The performance of the GN identifier are shown in
Figs. 8.64 and 8.65.
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Fig. 8.64. Results of GN identifier during the line removal and reconnection of one
line in a double line circuit at P = 0.9 pu and Q = 0.9 pu (lag)
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Fig. 8.65. Results of GN identifier during three phase fault of 100 ms at P = 0.5 pu
and Q = 0.4 pu (lag)

8.3.4.4 Adaptive Polar Fuzzy PSS

The output of GN-identifier is passed on to the polar fuzzy controller as shown
in Fig. 8.66 to make adaptive neuro-fuzzy PSS.

8.3.4.5 Simulation Results and Discussion

The proposed adaptive polar fuzzy logic based power system stabilizer (AF-
PSS) is exposed to variety of operating conditions and disturbances to check
its performance. The results are compared to CPSS.

A. Normal load condition
Under normal operating condition P = 0.9 pu and Q = 0.3 pu lag, the
controllers are tested for different situations like 3pf dead short circuit
transient fault for 100ms, one line removal from the double circuit line,
and change in reference voltage. Simulation results of PFPSS and CPSS
are shown in Fig. 8.67.
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Fig. 8.66. Adaptive polar fuzzy PSS

0 1 2 3 4 5 6 7 8 9 10
312.5

313

313.5

314

314.5

315

315.5

Time (sec) 

A
ng

ul
ar

 S
pe

ed
 , 

ra
d

/s
ec

CPSS
AFPSS

(a) 3-phase transient fault for 100ms

0 1 2 3 4 5 6 7 8 9 10
312.5

313

313.5

314

314.5

315

315.5

316

Time (sec)

A
ng

ul
ar

 S
pe

ed
 , 

ra
d

/s
ec

CPSS
AFPSS

(b) One of the double circuit lines is removed at 0.5s
and reconnected at 6.5s.
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Fig. 8.67. Comparison of AFPSS and CPSS at normal load P = 0.9 and Q = 0.3
(lagging)

B. Light load condition
At P = 0.3 pu and Q = 0.3 pu lag and the performance of both PSSs are
evaluated and compared as shown in Fig. 8.68.
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(b) 3-phase transient fault for 100ms.
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(c) One of the double circuit lines is removed at 0.5s
 and reconnected at 6.5s. 

Fig. 8.68. Comparison of AFPSS and CPSS at P = 0.3 and Q = 0.3 (lag)

C. Heavy Load condition
The system is operating at P = 1.1 pu and Q = 0.4 pu lag the performance
of the AFPSS, CPSS has been compared under these loading conditions
and the results are shown in Fig. 8.69.

Under these conditions when there is 3-phase ground fault on one line of
double circuit, which was removed after 220 ms by disconnecting the faulty
line and reconnected at 5.5 s and it is found that the CPSS could not control it
and system became unstable, but the AFPSS worked well and system stability
is maintained as shown in Fig. 8.70.

8.3.4.6 Experimentation on Physical Set Up

Behavior of the proposed AFPSS has been further investigated on a physical
model in the Power System Research Laboratory at the University of Cal-
gary. The physical model consists of a three-phase 3-kVA micro-synchronous
generator connected to a constant voltage bus through a double circuit trans-
mission line. The transmission lines are modeled by six Π sections, each sec-
tion is equivalent of 50 km length. The transmission line parameters are the
equivalent of 1,000 MVA, 300 km and 500 kV.
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Fig. 8.69. Comparison of AFPSS and CPSS at P = −1.1 and Q = −0.4
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Fig. 8.70. Comparison of AFPSS and CPSS at P = −1.1 and Q = −0.8 when
there is 3-phase ground fault on one line of double circuit, which was removed after
220 ms by disconnecting the faulty line and reconnected at 5.5 s

The governor turbine characteristics are simulated using the micro-
machine prime mover. It can be achieved by dc motor which is controlled as
a linear voltage to torque converter. The Laboratory model mainly consists
of the turbine, the generator, the transmission line model, the AVR, DAQ
board and Man-machine interface.



8.3 Control Applications 353

50 100 150 200 250 300 350 400
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

dP
, p

u

Fig. 8.71. Experimental results of AFPSS and CPSS at torque disturbance at
P = 0.67 pu and pf = 0.9 (Lag)

The AFPSS control algorithm is implemented on real time window (RTW)
toolbox of Matlab Ver. 6.5 with 50 ms step size. The DAQ board is installed
in a personal computer with the corresponding development software. The
analog to digital input channel of DSP board receives the input signal and
control signal output is converted by the digital to analog converter. CPSS
is also implemented on the same RTW of Matlab. The following tests have
been performed on the experimental set up to study the performance of the
AFPSS and CPSS.

A. Step change in power reference (Pref)
A disturbance of 22% step decrease in reference power was applied and
then again increased to the same initial value. The angular speed devia-
tion (∆w) with GNPSS and CPSS is shown in Fig. 8.71. The proposed
controller exhibits fast and well-controlled damping as shown by solid line
in the figures.

B. Transient faults:
To investigate the performance of the GNPSS under transient conditions
caused by transmission line faults various tests have been conducted on
the experimental set up.

1. Single-phase to ground fault test
In this experiment, the generator was operated at P = 0.67 pu and 0.9 pf
lead. At this operating condition and with both lines in operation, a single-
phase to ground (transient) fault was applied in the middle of one trans-
mission line for 100 ms. The system performance is shown in Fig. 8.72. It
can be observed that the GNPSS provides faster settling.

2. Two-phase to ground fault test
The two-phase to ground fault test was performed at P = 0.3 pu and 0.8
lagging power factor, and at the middle of one transmission line of double
circuit transmission. The results of these experiments shown in Fig. 8.73
are consistently better with the AFPSS.
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Fig. 8.72. Experimental results of AFPSS and CPSS at single phase to ground
fault (transient) at P = 0.67 pu and pf = 0.9 (Lead)
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Fig. 8.73. Experimental results of AFPSS and CPSS at two-phase to ground fault
(transient) at P = 0.3 pu and pf = 0.8 (Lag)

8.3.4.7 Multi-Machine System

A five-machine power system without infinite bus, that exhibits multi-mode
oscillations as shown in Fig. 8.74, is used to study the performance of AFPSS.
In this system, generators #1, #2 and #4 are much larger than generators #3
and #5. All five generators are equipped with governors, AVRs and exciters.
This system can be viewed as a two area system connected through a tie
line between buses #6 and #7. Generators #1 and #4 form one area and
generators #2, #3 and #5 form another area. Parameters of all generators,
loads and operating conditions are given in the Appendix. Transmission line
parameters are given in (Chaturvedi 2004). Under normal operating condition,
each area serves its local load and is almost fully loaded with a small load flow
over the tie line.

A. Simulation studies with AFPSS installed on one generator
The proposed AFPSS is installed only on generator #3 and CPSSs with
the following transfer function are also installed on same generator to
compare their performance.
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Fig. 8.74. Schematic diagram of a five-machine power system

upss =
kδ

ka

sT5

(1 − sT5)
(1 + sT1)
(1 + sT2)

(1 + sT3)
(1 + sT4)

∆Pe(s) (8.4)

The following parameters are set for the fixed parameter CPSS for all
studies in the multi-machine environment:

Kδ = 10,T1 = T3 = 0.19,T2 = T4 = 0.04, T5 = 10 for G3, G5
Kδ = 25,T1 = T3 = 0.06, T2 = T4 = 0.01,T5 = 10 for G1,G2 G4

Speed deviation of generator #3 is sampled at a fixed time interval of
50 ms. The system response is shown in Fig. 8.75 for the operating con-
ditions given in the Appendix. Each part of the figure shows difference in
speed between two generators. The results show that the AFPSS unable
to do much on the oscillations between Generator #1 and #2 (ω12), but
ω23 and ω31 damped out nicely, because it is installed on Generator #3.

B. AFPSS installed on three generators
In this test, AFPSSs are installed on generators #1, #2 and #3. A 10%
step decrease in mechanical input torque reference of generator #3 was
applied at 1 s and returns to its original level at 10 s. The simulation
results of only AFPSSs and only CPSSs applied at generators #1, #2,
and #3 are shown in Fig. 8.76. It is clear from the results that both
modes of oscillations are damped out very effectively.

C. Three phase to ground fault:
In this test, a three phase to ground fault is applied at the middle of
one transmission line between buses #3 and #6 at 1 s and the faulty line
is removed 100 ms later. At 10s, the faulty line is restored successfully.
The AFPSSs are installed on all five generators. The system responses
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Fig. 8.75. Performance of CPSS and AFPSS when applied to Generator 3 and
Reference torque is changed by 10%

are shown in Fig. 8.77. The results with CPSSs installed on the same
generators are also shown in the same figures. From the system responses,
it can be concluded that although the CPSS can damp the oscillations
caused by such a large disturbance; the proposed AFPSS has much better
performance.

D. Coordination between AFPSS and CPSS
The advanced PSSs would not replace all CPSSs being operated in the sys-
tem at the same time. Therefore, the effect of the AFPSS and CPSSs work-
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Fig. 8.76. System response under change in Tref with only AFPSS and only CPSS
installed on G1, G2, and G3

ing together needs to be investigated. In this test, the proposed AFPSS
is installed on generators #1 and #3 and CPSSs on generators #2, #4
and #5. The operating conditions are the same as given in the Appendix.
A 0.2 pu step decrease in the mechanical input torque reference of genera-
tor #3 is applied at 1 s and returns to its original level at 10 s. The system
responses are shown in Fig. 8.78. The results demonstrate that the two
types of PSSs can work cooperatively to damp out the oscillations in the
system. The proposed AFPSS input signals are local signals. The AFPSS
coordinates itself with the other PSSs based on the system behaviour at
the generator terminals.
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Fig. 8.77. Performance of AFPSS and CPSS when these PSS applied to all the
machines and three phase fault is created at the middle of bus 3 and Bus 6

8.3.4.8 Conclusions

AFPSS has been employed to perform the function of a PSS to improve the
stability and dynamic performance of the single machine infinite bus as well
as a multi-machine power system. Simulation studies described in the chapter
show that the performance of the AFPSS is good over a wide range of operat-
ing conditions. The effectiveness of AFPSS to damp multi-mode oscillations in
a five machine power system provides satisfactory results and can cooperate
with other AFPSSs or CPSSs.
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Fig. 8.78. System response with AFPSS at G1, G3 and CPSS on G2, G4, G5, for
±0.1 pu step change in torque reference

8.4 Summary

• In this chapter the Fuzzy logic system is used for the following applications:
1. Electrical machines modeling
2. Load frequency control problem
3. Power system stabilizer problem

a. Single machine infinite bus system and
b. Multi- machine power system.

• The effect of different connectives, implications and compositional opera-
tors are studied on electrical machines modeling problem.
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• The effect of different membership functions and their overlapping are also
studied.

• FLC is used to control load frequency problem and the performance is
compared with conventional integral controller. It is found that the fuzzy
controller works better than conventional controller.

• Direct and indirect adaptive controllers are also discussed and adaptive
polar fuzzy power system stabilizer is theoretically developed and experi-
mentally tested on the physical system.

• Polar fuzzy PSS work is extended for multi-machine power system. The
co-ordination aspects of fuzzy PSS and conventional PSS are explained.

8.5 Bibliography and Historical Notes

Fuzzy logic offers the option to try to model the non-linearity of the function-
ing of the human brain when several pieces of evidence are combined to make
an inference. There are several publications available on fuzzy aggregation
operators, of which a few notable ones are (Kaymak and Sousa 2003; Mendis
et al. 2006; Bandemer and Gottwald 1995; Bloch 1996; Combettes 1993;
Cubillo et al. 1995; Czogala and Drewniak 1984; Dubois and Prade 1985; 1992;
Klir and Yuan 1995; Trillas et al. 1983; Yager 1977, 1981, 1988, 1991, 1996;
Radko et al. 2000; Ai-Ping et al. 2006).

The choice of fuzzy implication as well as other connectives is an important
problem in the theoretical development of fuzzy logic, and at the same time, it
is significant for the performance of the systems in which fuzzy logic technique
is employed. There are mainly two ways in fuzzy logic to define implication
operators: (1) an implication operator is considered as the residuation of con-
junction operator; and (2) it is directly defined in terms of negation, conjunc-
tion, and disjunction operators (Demirli and Turksen 1994; Ying 2002).

The different compositional operators are described in (Zeng and Trauth
2005; Wang 2006).

Fuzzy implication rules and generalized modus ponens were first intro-
duced by Zadeh (1975). This area soon became the most active research topic
for fuzzy logic researchers. Gains (1976, 1983, 1985) described a wide range
of issues regarding fuzzy logic reasoning, including fuzzy implications.

Fukami, Mizumoto and Tanaka proposed a set of intuitive criteria for com-
paring fuzzy implications.

There is great interest in the area of hierarchical fuzzy control systems.
Wang and his colleagues (1993, 1994a) did some work in this area. Similarly,
auto tuning PID type controller as well as other types of adaptive fuzzy control
could also be considered as hierarchical type control strategies (Wang 1994).
A book edited by Terano et al. (1984) contains a chapter that describes several
good applications of fuzzy expert systems. Negoita (1985) also wrote a book
on fuzzy expert systems.
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Pin (1993) implemented fuzzy behavioural approaches to mobile robot navi-
gationwhichhavebeen implementedusing special purpose fuzzy inference chips.

Several approaches to fuzzy object-oriented data models have been pro-
posed in the late 1990s. Cheng and Ke proposed a scheme for translating fuzzy
queries into relational data bases in the late 1970s.

The literature dealing with the use of neural networks for learning mem-
bership functions or inference rules is rapidly growing; the following are a few
relevant references: (Takagi and Hayashi 1991; Wang and Mandel 1992; Jang
1993; Wang 1994).

The overview of the role of fuzzy sets in approximate reasoning were pre-
pared by Dubois and Prade (1991) and Nakanishi et al. (1993).

Most of the fuzzy logic applications are in the area of control systems.
There are many research papers published in this area starting with plain
fuzzy controller (Antsaklis 1993) to adaptive controller (Akbarzadeh et al.
1997; Amizadeh 1994).

Fuzzy computer hardware is also one of the most growing area. There is
long list of publications in computer hardware (Gupta and Yamakawa 1988;
Diamond and Kloeden 1994). An important contribution to fuzzy logic hard-
ware is a design and implementation of a fuzzy memory to store one digit
fuzzy information by Hirota and Ozawa (1989).

In the area of communication fuzzy set theoretic approach is used as fuzzy
adaptive filters to non-linear channel equalization (Wang and Mandel 1993),
signal detection (Saade and Schwarzlander 1994).

It is also used for analysis of Fuzzy cognitive maps (Styblinski and Meyer
1991), in robotics (Palm 1992; Nedugadi 1993; Chung and Lee 1994), vision,
identification, reliability and risk analysis. Besides this Fuzzy logic is used
in medical diagnosis, Ray et al. (2006) used fuzzy PI control application to
load-frequency problem.

8.6 Exercises

8.1 Consider a simple first order plant model which is given by

ẋ(t) = Ax(t) + bu(t)

where values of A and B are dependent on system parameters.

u(t)–input vector.

Develop a fuzzy logic controller for this simple system and compare the
performance with conventional PI controller.

8.2 Explain how is fuzzy controller different to conventional controller?
8.3 Is fuzzy controller non-linear? If yes, explain reasons.
8.4 Explain qualitatively the influence of membership function, cross over

points and method of defuzzification on fuzzy controllers.
8.5 Discuss different types of rules used to generate the controller output.
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8.6 Generate table which shows all sets of rule relating, e,�e, with u.
8.7 Discuss role of Normalization and scaling for generating set of rules for

the knowledge base.
8.8 Described methods for realizing fuzzy PID controllers.
8.9 List out various steps involved in development of fuzzy logic control.

8.10 Distinguish between self organizing and fixed rules controller using fuzzy
logic approach.

8.11 Explain the following rule

If PE = NB and CPE = not(NB or NM) and SE = ANY and CSE = ANY
then HC= PB

elseif PF = NB or NM and CPE = NS and SE = ANY and CSE = ANY
then HC= PM.

(a) Represent the rule using “max” and “min” operators.
(b) Represent the rule in narrative style.
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Genetic Algorithms

“Genetic algorithms are good at taking large, potentially huge search
spaces and navigating them, looking for optimal combinations of
things, solutions you might not otherwise find in a lifetime.”

Salvatore Mangano
Computer Design, May 1995

9.1 Introduction

Origin with a protozoa (prime unicell animal) to existence of human (most
developed living being) in nature as a result of evolution, is the main theme,
adopted by genetic algorithms (GA), one of the most modern paradigm for
general problem solving. Since the paradigm simulates the strategy of evolu-
tion, it is surprisingly simple but powerful, domain free approach to problem
solving. GAs are gaining popularity in many engineering and scientific ap-
plications due to their enormous advantages such as adaptability, ability to
handle non-linear, ill defined and probabilistic problems. As the approach is
domain free, it has wide scope of applications and most of the optimization
problems can be handled successfully with this approach.

The emergence of massively parallel computers made these algorithms of
practical interest. There are various well known programs in this class like
evolutionary programs, genetic algorithms, simulated annealing, classifier sys-
tems, expert systems, artificial neural networks and fuzzy systems. This chap-
ter discusses a genetic algorithm – which is based on the principle of evolution
(survival of fittest). In such algorithms a population of individuals (potential
solution) undergoes a sequence of transformations like mutation type and
crossover type. These individuals strive for survival; a selection scheme, bi-
ased towards fitter individuals, selects the next generation. After some number
of generations the program converges to the optimal value.

Genetic algorithm has been applied to various problems in electrical power
systems such as generation scheduling (Orero and Irving 1996, 1996a, 1998;

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 363–381 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Huang 1998), Economic load dispatch (Song and Xuan 1998), reactive power
optimization (Iba 1994), distribution network planning (Miranda et al. 1994),
alarm Processing (Wen et al. 1998), Electrical long term load-forecasting
(Chaturvedi et al. 1995) and optimal control problems. Genetic algorithms
are more robust than existing directed search methods. Another important
property of GA based search methods is that they maintain population of
potential solutions – all other methods process a single point of the search
space like hill climbing method. Hill climbing methods provide local optimum
values and these values depend on the selection of starting point. Also there is
no information available on the relative error with respect to global optimum.
To increase the success rate in hill climbing method, it is executed for large
number of randomly selected different starting points. On the other hand, GA
is a multi-directional search maintaining a population of potential solutions
and encourages information formation and exchange between these directions.
The population undergoes a simulated evolution and at each generation the
relatively good solution reproduce, while the relatively bad solutions die out.
To distinguish between different solutions we use an objective function which
plays the role of an environment.

9.2 History of Genetics

Genetics is a science which deals with the transfer of biological information
from generation to generation. Genetics deals with the physical and chemi-
cal nature of these informations itself. Geneticists are concerned with whys
and hows of these transfer of biological information, which is the basis for
certain differences and similarities that are recognized in a group of living
organisms. What is the source of genetic variations? How are difference dis-
tributed in populations? Why not all variations among living things however
are inherited? All these are concern with genetics.

Long before human began to wonder about genetic mechanism, they al-
ready operating effectively in nature. Population of plants and animals are now
known to have built in potentials for consistency and change that are depen-
dent on genetics. Change that are established through these mechanism over
long period of time in a population of living things is called EVOLUTION.



9.2 History of Genetics 365

Many potential changes have been accomplished by human interventions
in genetic mechanism that now accrue to benefit human beings. By selective
breading, domesticated organisms have been made to serve human society
increasingly better. Improve quantity and quality of milk, eggs, meat, wool,
maize, wheat, rice, cotton and many other sources of food, fiber and shelter
at least to the success of human intervention in genetic mechanism.

The mechanism of genetics is entirely based on gene. The gene concept
however, had been implicit in model’s visualization of a physical element or
factor that acts as the foundation of development of a trait. He first postulated
the existence of genes from their end effects, as expressed in altered charac-
teristics. The word “allelmorph”, shortened to “allele” is used to identify the
member of paired genes that control different alternative traits. The gene
is characterized as an individual unit of genetic mechanism. Genes replicate
themselves and reproduce chromosomes, cells and organisms of their own kind.
Gene is the part of chromosome. Some chromosomal genes work together, each
making a small contribution to height, weight or intelligence, etc. Genes not
only have a basic role in the origin and life of individual organisms, but they
also, through variation in gene frequencies, cause change in populations.

Let us have a quick look at the brief history of genetics:
“The fundamental principle of natural selection as the main evolutionary

principle long before the discovery of genetic mechanism has been presented
by C. Darwin. He hypothesized fusion or blending inheritance, supposing that
parental qualities mix together.

This theory was first time objected by Jenkins. He mentioned that there
is no selection in homogenous populations. It is simply a nightmare called
Jenkins nightmare.

In 1865, Gregor Johann Mandel discovered the basic principles of trans-
ference of hereditary factors from parents to offspring and explained the
Jenkins nightmare. The Danish biologist Wilhelm Johannsen called these fac-
tors genes. It is now known as the genes not only transmitted hereditary traits
but also mastermind the entire process of life. The genes are located in the
chromosome (thread-like bodies) which are themselves situated in the nucleus
of the cell. They are always found in pairs. Chromosomes vary in number ac-
cording to species. The fruitfly, for example, has 4 pairs or 8 chromosomes in
all, and the garden pea has 7 pairs (14 in all), mice have 20 pairs (Lawrence
1991) and humans 23 pairs (Brest et al. 2006).

Genetics was fully developed by Morgan and his collaborators. They
proved experimentally that chromosomes are the main carriers of hereditary
information, which later proved that Mendelian laws to be valid for all sexually
reproducing organisms.

1920s Cetverikov proved that Mendel’s genetics and Darwin’s theory of
natural selection are in no way conflicting and that their marriage yields
modern evolutionary theory.

Prof. John Holland of the University of Michigan, Ann Arbor envisaged
the concepts of GA algorithms and published a seminal work (Holland 1975).
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There after, number of other researchers (Davis 1991; Goldberg and
Holland 1989; Michalewiccz 1992) contributed to developing and improve
the original GA.

9.3 Genetic Algorithms

The beginnings of genetic algorithms can be traced back to the early 1950s
when several biologists used computers for simulations of biological systems
(Goldberg and Holland 1989). However, the work done in late 1960s and early
1970s at the University of Michigan under the guidance of John Holland led to
genetic algorithms as they are known today. GA vocabulary is being borrowed
from natural genetics. The idea behind genetic algorithms is to do what na-
ture does. Genetic algorithms (GAs) are stochastic algorithms whose search
methods inspired from phenomena found in living nature. The phenomena
incorporated so far in GA models include phenomena of natural selection as
there are selection and the production of variation by means of recombination
and mutation, and rarely inversion, diploid and others. Most Genetic algo-
rithms work with one large panmictic population, i.e. in the recombination
step each individual may potentially choose any other individual from the
population as a mate. Then GA operators are performed to obtain the new
child offspring; the operators are:

i. Selection
ii. Crossover,
iii. Mutation,
iv. Survival of fittest (Heistermann 1990; Michalewiccz 1992; Muzhlenbein

1989; Holland 1973; Nowack and Schuster 1989).

9.3.1 Selection

As in natural surroundings it holds on average: “the better the parents, the
better the offsprings” and “the offspring is similar to the parents”. Therefore,
it is on the one hand desirable to choose the fittest individuals more often, but
on the other hand not too often, because otherwise the diversity of the search
space decreases (Braun 1990). GA researchers have developed a variety of se-
lection algorithms to make it more efficient and robust. In the implementation
of genetic algorithm the best individuals have been select using roulette wheel
with slot sized according to fitness, so that the probability of selection of best
strings are more as shown in Fig. 9.1a. Besides the roulette wheel selection,
researchers have developed a variety of selection algorithms like proportionate
selection, linear rank selection, tournament selection and stochastic remainder
selection.
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Fig. 9.1a. Roulette Wheel Selection

9.3.1.1 Roulette Wheel Selection

In roulette selection chromosomes are selected based on their fitness relative to
all other chromosomes in the population as shown in Fig. 9.1a. One disadvan-
tage of using roulette wheel is that its selective pressure reduces as population
converges upon a solution, which reduces the convergence rate and may not
allow finding the better solutions.

% Matlab sub-routine for roulette wheel selection

function x=roul(num_to_be_sel,popsize,pop,f);
f=f/sum(f);
roul_wheel(1)=f(1);
for i=2:popsize

roul_wheel(i)=roul_wheel(i-1)+f(i);
end;

% create n=num_to_be_sel random numbers for roulette
selection : r(i)

r=rand(num_to_be_sel,1);
% determine selected strings according to roul_wheel :
sel_str(popsize,lchrom)

for i=1:num_to_be_sel
flag=1;
for j=1:popsize

if (r(i)<=roul_wheel(j) & flag==1)
x(i,:)=pop(j,:);
flag=0;

end;
end;

end;
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9.3.1.2 Tournament Selection

In this process of selection, one parent is selected by randomly comparing
other individual in the same population and select with the best fitness. To
select the second parent the same process is repeated. It is most popular
selection method due to its simplicity (Baker 1987).

9.3.1.3 Linear Rank Selection

In this method the individuals are ordered according to their fitness values
(Grefenstette 1986). The individuals of highest fitness are kept on the top
and worst on the bottom. Then each individual in the population is assigned
a subjective fitness based on linear ranking function as

f(r)=(popsize-rank)(max-min)/(Popsize-1)+min
where popsize – population size

rank – rank in the current population
max, min – maximum and minimum subjective fitness determined
by the user.

Now this subjective fitness value is assigned to the individual and the selection
is done on the basis of roulette wheel spinning. In this selection process the
selective pressure is constant and does not change with generation to genera-
tion. However, in this process, it is necessary to sort the population according
to their fitness values and the individuals of same fitness will not have the
same probability of being selected.

9.3.2 Crossover

Obviously, selection alone can not generate better offsprings. To produce bet-
ter new off springs a crossover operator is required. A crossover operator can
be termed loosely as recombination or slice-exchange-merge operator. The
most common type of crossover operator mentioned above is called single
point crossover. In this operation select two parents and randomly selects
a point between two genes to cut both chromosomes into two parts. This
point is called crossover point. In crossover operation combine the first part
of first parent and second part of second parent to get first offspring. Simi-
larly, combine the first part of second parent and second part of first parent
to get second offspring. These offsprings belong to the next population. The
crossover operator has three distinct substeps:

a. Slice each of the parent strings in two substrings.
b. Exchange a pair of corresponding substrings of parents.
c. Merge the two respective substrings to form offsprings.

For example, suppose following two binary strings are mated together and
undergoes the crossover operation. The strings are 1100000, 0101111. By a
random choice the crossover site is fixed at 3 which is shown by a vertical bar.
Then the effect of cross over will be as shown in Fig. 9.1b.
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To increase the speed of convergence of GA, the population is divided from
the middle and two halves (subgroups) are used in group cross over as shown
in Fig. 9.1 c. Another type of crossover is multi-point cross over, in which two
or more than two sites have been selected and exchange have been done as
illustrated in Fig. 9.1d.

Parents P1

Crossover site 

Parents P2

(i) Before crossover 

Child C1

Child C2

(ii) After crossover

1 1 0 0 0 0 0

1 1 0 0 0 1 1

0 1 0 1 1 1 1
0 1 0 1 1 0 0

Fig. 9.1b. Single point cross over operation with two strings

Group of Parents P1

1 1 1 0 1

0 1 0 

0 0 1 

0 0

1 0

1 1 1 0 0

Group of Parents P2

1 0 1 1 1 

1 1 0 0 1 

0 1 1 0 0 

1 0 1 0 1 

(i) Before Crossover

Group of Children C1

1 1 1 1 1 

0 1 0 0 1

 0 0 1 0 0 

1 1 1 0 1 

Group of Children C2

1 0 1 0 1

1 1 0 0 0

0 1 1 1 0

1 0 1 0 0

(ii) After Crossover 

Fig. 9.1c. Single point Group Cross over operation

Parents P1       Crossover sites 

Parents P2 

(i) Before crossover 

Child C2 

Child C1 

(ii) After crossover 

1 1 0 0 0 0 0 

0 1 0 1 1 1 1 

1 1 0 1 1 0 0 

0 1 0 0 0 1 1 

Fig. 9.1d. Multipoint crossover
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% Matlab code for single point crossover operation

j2=2*i;
j1=j2-1;
a=rand(1); % Random number generation.
site=round(a*(lchrom-2)+1); % Random selection of crossover site
temp=sel_str(j1,site:lchrom); % lchrom - length of cromosome
sel_str(j1,site:lchrom)=sel_str(j2,site:lchrom);
sel_str(j2,site:lchrom)=temp;

9.3.3 Mutation

The newly created individuals have no new inheritance information and the
number of alleles is constantly decreasing. This process results in the con-
traction of the population to one point, which is only wished at the end of
the convergence process, after the population works in a very promising part
of the search space. Diversity is necessary to search a big part of the search
space. It is one goal of the learning algorithm to search always in regions not
viewed before. Therefore, it is necessary to enlarge the information contained
in the population. One way to achieve this goal is mutation. The mutation
operator M (chromosome) selects a gene of that chromosome and changes the
allele by an amount called the mutation variance (mv), this happens with
a mutation frequency (mf). The parameter mutation variance and mutation
frequency have a major influence on the quality of learning algorithms. For
binary coded GAs mutation is equivalent of flipping a bit at any particular
position. Since, mutation is to be used sparingly its probability is very low.
The mutation operation may be shown as in Fig. 9.1e. The group mutation
and multipoint mutation may also be performed to improve the results.

% Matlab code for mutation operation

% sel_str is now the intermediate pop for mutation
for i=1:popsize

for j=1:lchrom
if (flip(pmute)==1)

if(sel_str(i,j)==0)
sel_str(i,j)=1;

else
sel_str(i,j)=0;

end;
end;

end;
end;
function y=flip(prob)

a=rand(1);
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Mutation site

1 1 0 0 0 1 1 

(i) before mutation

1 1 0 1 0 1 1 

(ii) After mutation

Fig. 9.1e. Single point mutation operation

if (a <=prob)
y=1;

else
y=0;

end;

9.3.4 Survival of Fittest

Further more we only accept an offspring as a new member of population, if
it differ enough from the other individuals, that means here its fitness differ
from all other individuals at least by some significant amount. After accepting
a new individual we remove one of the worst individual (i.e. its fitness value is
quite low) from the population in order to hold the population size constant.

To maximize the efficiency of GAs, three inherent parameters of GAs are
to be optimized, the mutation probability Pm, the crossover probability Pc,
and the population size POPSIZE. For GA parameter optimization sev-
eral results have been obtained over the last few years. DeJong and Schuster
proposed heuristics for an optimal setting of the mutation probability Pm
(Nowack and Schuster 1989; Schuster 1985), Fogarty and Booker investigated
time dependencies of the mutation and the crossover probability respectively
(Fogarty 1989), Greffenstette Schaffer and Jong found optimal settings for all
three parameters of the GA by experiment (Greffensette 1986; Schaffer et al.
1989; De Jong and Spears 1990). The brief description of these parameters
are given below:

Duplicates
Individuals that represent the same candidate solution are known as

duplicate individuals. It has been mentioned (Davis 1991) that eliminating
duplicates increases the efficiency of a genetic search and reduces the danger
of premature convergence.

9.3.5 Population Size

A group of individuals (chromosome) collectively comprise is known as popu-
lation. Population size is the number of individuals (chromosome) in the pop-
ulation maintained by a GA. As discussed by De Jong and Spears (1990) [30]
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Fig. 9.2. Effect of population size on maximum fitness

that the choice of population size has a strong interacting effect on the results.
Smaller population size tends to become homogeneous more quickly and there
is a danger of premature convergence upon a suboptimal solution. With large
population size the crossover productivity effect is much less dramatic, hence
takes longer time to converge upon a solutions.

Usually the population size for GA varying from tens to thousands and
it is noted that this parameter is mostly problem dependent. If the problem
in hand is simpler then smaller population size can also serve the purpose,
but if the problem is complex, large population size is required and it is also
necessary to run for large number of generations.

The effect of population size on maximum fitness value of GA is shown
in Fig. 9.2. Form the figure it is clear that the GA performance is good for
population size 50, 80 and 100. The optimal performance of GA is obtained
at popsize equals to 50. The average fitness is also compared for different
population sizes as shown in Fig. 9.3.

9.3.6 Evaluation of Fitness Function

The evaluation function of a GA is used to determine the fitness of chro-
mosomes in the population. The binary coded chromosomes also known as
a genotype. To find the fitness of binary coded chromosomes, they must be
decoded first and then evaluated the fitness. But in case of real coded chro-
mosome which is also called as phenotype and for them, there is no need of
decoding is required.
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Fig. 9.3. Effect of population size on average fitness

9.4 Effect of Crossover Probability on GA Performance

For better results, it is advisable to select the crossover rate quite large than
mutation rate. This is the usual practice to take crossover rate 20 times greater
than the mutation rate. Crossover rate generally ranging from 0.25 to 0.95.
The effect of crossover probability (pcross) on GA performance in terms of
average fitness is shown in Fig. 9.4.

9.5 Effect of Mutation Probability on GA Performance

Schaffer (Mbamalu and Hawary 1993) found experimentally that mutation
probability (Pm) is approximately inversely proportional to the population
size. Mutation rate generally varying from 0.001 to 0.05. The effect of mutation
rate is shown in Fig. 9.5. If the mutation rate is high then there are more
fluctuations in the fitness value. On the other hand if the mutation rate is low
then it the search area is reduced. Hence, the optimal value of mutation rate is
selected for good performance of GA or one can dynamically change its value.

Maximum number of generations
The selection of maximum number of generations is a problem depen-

dent parameter. For complex problems, the maximum number of genera-
tions is large enough, so that the results should converge to optimal value
(Greffensette 1986).
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Length of chromosome (lchrome)
The value of lchrome is dependent to the precision required and can be

calculated with the help of the following expression –

2lchrome = (max parm − min parm) ∗ 10r

Where, r is number of places after decimal, up to which the precision is
required.

Max parm – Upper bound of parameter
Min parm – Lower bound of parameter

9.6 Main Components of GA

A GA (or any evolutionary program) for a particular problem must have the
following five components:

1. A genetic representation for potential solutions to the problem (Coding).
2. A way to create an initial population of potential solution.
3. To evaluate rank of a solution define an objective function.
4. To alter the composition of offspring’s define genetic operators.
5. Define GA parameters like population size, probabilities of genetic oper-

ators, etc.

Coding
In order to solve any problem with genetic algorithms, variables are first

coded in some string structures. There are some of the studies in which directly
variables values are taken, but most of the GAs work with binary coded
variable strings (Fig. 9.6).

START 

INITIALIZATION 

Population

Parameter

Max Generation

Check
Performance

Reproduction

Selection

Cross Over

Mutation

STOP Satisfied

Not-Satisfied

Decode strings 
Calculate
Fitness

Fig. 9.6. Flow chart of simple genetic algorithm
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Example 1. Minimize the surface area of a cylindrical closed end container,
with the following constraints:

i. Volume is 5m3

ii. Radius of cylinder is not less than 0.5 m and not more than 1.0 m.

Solution

A. Problem formulation
It is a double variable optimization problem, which could be modified into
a single variable optimization problem.

Volume of container V = π r2l = 5m3

L = 5/π r2

Surface area A = 2π r2 + 2πr l
= 2π r2 + 2π r (5/π r2)
= 6.28 r2 + 10/r

B. Implement GA code in MATLAB
C. Given

Upper bond ub = 1.0
Lower bond lb = 0.5

D. Data preparation
i. Size of population popsize = 30
ii. Length of chromosome lchrom is determined as:

2lchrom ≥ (ub − lb) ∗ 10dp

If the precision required upto four places after decimal dp = 4.
Hence, lchrom = 13

iii. Since it is a minimization problem and genetic algorithms evaluate
the strings on the basis of fitness function, which is maximization
function.
Objective function = C − A.
Where C is a constant, whose value is more than the area A.

= 50 − A

iv. Number of maximum generation = 10
v. Cross over probability Pc = 0.5
vi. Mutation probability Pm = 0.01

E. Generate initial population

Generate a random binary matrix of size (popsize × lchrom (= 30×13)).

F. Determine the fitness value for each chromosome in the population.
G. If the fitness is equal to some specified value then stop, otherwise perform

GA operations (Table 9.1).
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Table 9.1. Fitness values in different generations

Generation
number

Maximum
Fitness value

Minimum Fitness
value

0 33.8156 33.2806
1 33.8158 33.3760
2 33.8158 33.3855
3 33.8158 33.4126
4 33.8158 33.4576
5 33.8158 33.4853
6 33.8158 33.5147
7 33.8158 33.6076
8 33.8159 33.5559
9 33.8159 33.6155
10 33.8159 33.6349

Overall maximum fitness value = 33.8159
Hence, the minimum surface area A = 50 − Maximum fitness = 50 −

33.819 = 16.1841m2

Alternate method
The calculus method may also be used to solve the above mentioned prob-

lem, because there is one variable in the objective function. The function
which is to be minimized is

Surface area A = 6.28r2 + 10/r

Differentiate the ara A with respect to r and equate it to zero.

∂A/∂r = 0
6.28 ∗ 2 r − 10/r2 = 0
r3 = 10/(6.28 ∗ 2) = 5/6.28
r = 0.9268

Substitute the value of r in the expression of surface area.

Amin = 6.28 ∗ (0.9268)2 + (10/0.9268)

= 16.1840m2

Hence it is very clear that the GA results are quite close to the results cal-
culated from the calculus method. The calculus method is good for small size
problems, but if the problem size is large and complex or large number of
variables. Then calculus method may give good results.

9.7 Variants

The simplest algorithm represents each chromosome as a bit string. Typically,
numeric parameters can be represented by integers, though it is possible to use
floating point representations. The floating point representation is natural to
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evolution strategies and evolutionary programming. The notion of real-valued
genetic algorithms has been offered but is really a misnomer because it does
not really represent the building block theory that was proposed by Holland
in the 1970s. This theory is not without support though, based on theoretical
and experimental results. The basic algorithm performs crossover and muta-
tion at the bit level. Other variants treat the chromosome as a list of numbers
which are indexes into an instruction table, nodes in a linked list, hashes,
objects, or any other imaginable data structure. Crossover and mutation are
performed so as to respect data element boundaries. For most data types,
specific variation operators can be designed. Different chromosomal data
types seem to work better or worse for different specific problem domains.

When bit strings representations of integers are used, gray coding is often
employed. In this way, small changes in the integer can be readily effected
through mutations or crossovers. This has been found to help prevent prema-
ture convergence at so called Hamming walls, in which too many simultaneous
mutations (or crossover events) must occur in order to change the chromosome
to a better solution.

Other approaches involve using arrays of real-valued numbers instead of bit
strings to represent chromosomes. Theoretically, the smaller the alphabet, the
better the performance, but paradoxically, good results have been obtained
from using real-valued chromosomes. A very successful (slight) variant of the
general process of constructing a new population is to allow some of the better
organisms from the current generation to carry over to the next, unaltered.
This strategy is known as elitist selection.

Parallel implementations of genetic algorithms come in two flavours.
Coarse grained parallel genetic algorithms assume a population on each of the
computer nodes and migration of individuals among the nodes. Fine grained
parallel genetic algorithms assume an individual on each processor node which
acts with neighboring individuals for selection and reproduction. Other vari-
ants, like genetic algorithms for online optimization problems, introduce time-
dependence or noise in the fitness function.

It can be quite effective to combine GA with other optimization methods.
GA tends to be quite good at finding generally good global solutions, but quite
inefficient at finding the last few mutations to find the absolute optimum. Other
techniques (such as simple hill climbing) are quite efficient at finding absolute
optimum in a limited region. Alternating GA and hill climbing can improve the
efficiency of GA while overcoming the lack of robustness of hill climbing.

A problem that seems to be overlooked by GA-algorithms thus far is that
the natural evolution maximizes mean fitness rather than the fitness of the
individual (the criterion function used in most applications).

An algorithm that maximizes mean fitness (without any need for the defin-
ition of mean fitness as a criterion function) is Gaussian adaptation, provided
that the ontogeny of an individual may be seen as a modified recapitulation of
evolutionary random steps in the past and that the sum of many random steps
tend to become Gaussian distributed (according to the central limit theorem).
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This means that the rules of genetic variation may have a different meaning
in the natural case. For instance – provided that steps are stored in consec-
utive order – crossing over may sum a number of steps from maternal DNA
adding a number of steps from paternal DNA and so on. This is like adding
vectors that more probably may follow a ridge in the phenotypic landscape.
Thus, the efficiency of the process may be increased by many orders of mag-
nitude. Moreover, the inversion operator has the opportunity to place steps in
consecutive order or any other suitable order in favour of survival or efficiency.
(See for instance (Mahalanbis et al. 1991)).

Gaussian adaptation is able to approximate the natural process by an
adaptation of the moment matrix of the Gaussian. Gaussian adaptation may
serve as a genetic algorithm replacing the rules of genetic variation by
a Gaussian random number generator working on the phenotypic level.
Population-based incremental learning is a variation where the population
as a whole is evolved rather than its individual members.

9.8 Applications of Genetic Algorithms

GA is not only used for solving optimization problems, but there are number
of GA applications as mentioned below:

1. Industrial design by parameterization
2. Scheduling problems such as manufacturing, facility scheduling, allocation

of resources, etc.
3. System design
4. Time series prediction
5. Data base mining
6. Control system
7. Artificial life system
8. Various medical applications, such as image segmentation and modeling
9. Combinatorial optimization problems like travelling sales man problem,

routing, bin packing, graph partitioning and colouring.
10. Trajectory planning of robots
11. Game playing like chase playing, prisoner’s dilemma, etc.
12. Resource allocation problem
13. Graph colouring and partitioning, etc.

9.9 Summary

During the last few decades there has been growing interest in natural process
based algorithm. In this chapter, we provided a brief introduction to the field
of evolutionary computing and an overview of genetic algorithms (GAs).GA
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Number of chromosome 
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Fig. 9.7. Multiple solutions of GA for single population

describes the behaviour of genetic search. GA has a capability to provide
multiple solutions for a given problem as shown in Fig. 9.7. These solutions
(fitness value) improve from generation to generation.

9.10 Bibliography and Historical Notes

Some of good books on genetic algorithms are written by Goldberg and
Holland (1988, 1989) and Lozano et al. 2006. The practical aspects and ap-
plications of genetic algorithms are given in Handbook of Genetic Algorithms
edited by Davis (1991). The classical papers on genetic algorithms are given
in Genetic Algorithms, edited by Buckles and Petry (1992) and Auger and
Hansen (2005a,b) and Srinivas and Patnaik (1994a). Yaochu J. and Branke
(2005) wrote a very lucid survey paper on evolutionary optimization. Albert
et al. (2005) Hybrid Optimization Approach for a Fuzzy Modelled Unit Com-
mitment Problem. Bath et al. (2007) had optimized the security constrained
multi-objective optimal power dispatch.

Genetic programming (GP) is very computationally intensive and so in
the 1990s it was mainly used to solve relatively simple problems. But more
recently, thanks to improvements in GP technology and to the exponential
growth in CPU power, GP produced many novel and outstanding results in
areas such as quantum computing, electronic design (Garrison et al. 2006),
game playing, sorting, searching (Smith 2002) and many more. GP has also
been applied to evolvable hardware as well as computer programs (Eiben and
Smith 2003; Fogel 2000; Auger and Hansen 2005a,b).

9.11 Exercises

1. What do you understand by genetic algorithms?
2. How does genetic algorithm work?
3. What do you mean by crossover and muation operations in GA. Write

Matlab codes for these operations.
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4. Mention different types of crossover operations and compare them.
5. Write Peuso codes for simple GA and implement simple GA using Matlab

and study the effect of chromosome length, crossover and muation rates
for the minimization of ocnnection length on a printed circuit board.

6. Simulated the above problem with different population size and compare
the results.
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Applications of Genetic Algorithms to Load
Forecasting Problem

Evolutionary programs are gaining popularity in many engineering and
scientific applications due to their enormous advantages such as adaptability,
ability to handle non-linear, ill-defined and probabilistic problems. Specific
reference to genetic algorithms (Gas), some parameters that influence the con-
vergence to the optimal value are the population size (popsize), the crossover
probability (Pc) and the mutation propability (Pm). Normally these values
are prescribed initially and do not vary during the execution of the program,
although these parameters greatly affect the performance of GA.

The present chapter deals with the development of an improved genetic
algorithm (IGA) by introducing a variation in the values of the parameters
like population size (popsize), the crossover probability (Pc) and the mutation
propability (Pm). The aim of this variation is to minimize the convergence
time. This work presents a method of dynamically varying the parameters of
operation of the GA program using fuzzy state theory (FST) so that the final
convergence is obtained in a shorter time.

Also, in this chapter a function has been developed and optimized for
long-term load forecasting problem using IGA. This technique does not re-
quire any previous assumption of a function for load forecasting, further, it
does not need any functional relationship between dependent and independent
variables. The results obtained by this technique are compared with the data
available from central electricity authority (CEA), India to demonstrate the
effectiveness of the proposed technique.

10.1 Introduction

During the last few years there has been a growing interest in algorithms that
rely on analogies to natural processes. The emergence of massively parallel
computers made these algorithms of practical interest. There are various well-
known programs in this class like evolutionary programs, genetic algorithms,
simulated annealing, classifier systems, artificial neural networks and fuzzy
systems, etc.
D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 383–402 (2008)
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This chapter discusses a genetic algorithm – which is based on the principle
of evolution (survival of fittest). In such algorithm a population of individ-
uals (potential solution) undergoes a sequence of transformations like muta-
tion type and crossover type. These individuals strive for survival; a selection
scheme, biased towards fitter individuals, selects the next generation. After
some number of generations the program converges the optimal value. The
rate of convergence the optimal value is dependent on the values of various
GA parameters and the problem in hand (Deb 1995).

In the present work, it has been suggested that the convergence is not
the optimal for any fixed set of GA parameter values for all the problems.
Dynamic control of the parameters values should lead to improvement in the
performance of the genetic algorithm and converged results should be avail-
able in lesser time. An improved genetic algorithm (IGA) program has been
developed which controls the GA parameters (i.e. population size (popsize),
crossover probability (Pc) and mutation probability (Pm)) during execution
using fuzzy set theoretic approach. The IGA developed above has been used to
model long term load forecasting problem and compared the results obtained
with the load given by CEA.

10.2 Introduction to Simple Genetic Algorithms

Genetic algorithm (GAs) are inspired from phenomena found in living nature.
The phenomena incorporated so far in GA models include phenomena of nat-
ural selection as there are selection and the production of variation by means
of recombination and mutation, and rarely inversion, diploid and others. Most
genetic algorithms work with one large population, i.e. in the recombination
step each individual may potentially choose any other individual from the
population as a mate. Then GA operators are performed to obtain the new
individuals (chromosome vectors). The operators are selection, crossover, mu-
tation and survival of fittest (Booker 1987; Braun 1990; De Jong et al. 1990;
Heistermann 1990; M{u}hlenbein 1989).

The genetic algorithm involves in finding a mathematical function (ex-
pression) in symbolic form, that provides a good, best or perfect fit between
a given finite sampling of values of independent variables and the associated
values of the dependent variables. Unlike the conventional linear, quadratic or
polynomial regression, which merely involve finding the numeric coefficients,
GA used for finding both the functional form and the numeric coefficients for
modeling the long-term load-forecasting problem.

A GA performs a multidirectional search by maintaining a population of
potential solutions and encourages information and exchange between these
directions. The population undergoes a simulated evolution: at each gener-
ation the relatively “good” solution reproduces, while the relatively “bad”
solution dies. To distinguish between different solutions we use an objective
(evaluation) function which plays the role of an environment.
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During any iteration n, a GA maintains a population of potential solutions
(chromosome vectors),

P(n) = {X1
n, X2

n, X3
n, X4

n, . . . . . . . . . . . . . Xpopsize
n}

where popsize – the population size and

Xi
n – chromosome vectors (i.e. binary strings or symbolic functions)

n – generation number (varying from 1, 2, 3, . . . . . . . . . maxgen.)

Each Xi
n is decoded and then evaluated to give some measure of its

“fitness”. Then selecting the more fit individuals to form a new population
(next iteration n+1). While getting a new population some Xi

n directly taken
if their expected count is greater than one. Remaining members of Xi

n+1 of
new population is obtained by selecting the chromosome vectors from the
roulette wheel which is developed according to the decimal part of expected
count of Xi

n undergoes reproduction by means of crossover and mutation. The
expected count is defined as:

Expected count = (popsize/sum(H))∗H;

where H is the fitness value of objective function.
In this section, the crossover, mutation operations and population size are

described in brief.

10.2.1 Crossover Operation

The crossover operation in the creation of two new individuals (functions)
out of each pair of parent individuals (functions) of the current population of
individual (Ichalewiccz 1992). An individual can be viewed as a function on
chromosome level, e.g.

+

/ *

+ − − +

x 3 y 4 4 x 7

F1 (x,y) = (x+3)/(y-4) + (4-x)*(7+y) 

A crossover site is chosen at random and the child chromosome are ob-
tained by exchanging the part of the parent strings to one side of the site as
shown below:
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F1(x,y)

+

/ *

+ - -

-

+

x 3 y 4 4 x y

+

+

* / + *

x 6 y 5 2 x y

F2(x,y)

9 7

Then the child strings are obtained after crossover as

*

- +

* / - +

x 6 y 5 4 x y

C2(x,y) =
+

* /

+ - + *

x 3 y 4 2 x y

C1(x,y) =

9  7

It is generally recommended that the crossover probability should be large
in comparison to the mutation propability.

10.2.2 Mutation

The crossover operation results in new offspring having no new inheritance in-
formation. This can be corrected by having a mutation operator which would
create diversity in the population and which would enable checking of a larger
area of the search space, e.g. if a chromosomes is F (x,y) and mutation oc-
curs at the mutation site (m site), then the new string will be F1 (x,y) as
shown below:

Mutation arbitrarily alters one or more bit of information of a selected
individual (function) by a random change with a probability equal to the
mutation probability (Pm). Schaffer et al. (1989) has reported that the muta-
tion probability (Pm) should be approximately inversely proportional to the
population size (popsize).
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F1 (x,y) F1’ (x,y) 

+ +

x 3 y 4 4 x 7 y x 3 y 4 4 x 7 y

++ − − ++ − −

/ /* --

10.2.3 Population Size (Pop Size)

The choice of the population size had a strong interacting effect on the results.
Smaller population sizes tend to become homogenous more quickly. With large
population sizes the crossover probability effects are much less dramatic.

The choice of the population size is largely dependent on the complexity
of the problem. If the problem in hand is simple then a smaller population
size is sufficient, but a complex requires a large population size.

10.3 Development of Improved Genetic
Algorithm (IGM)

The details of parameters variations and their influence on the optimization
process have been studied by many reasearchers (Holland 1973; Fogarty 1981;
Goldberg and Holland 1988, 1989; Schaffer et al. 1989; Deb 1995; Chaturvedi
et al. 2000; Back 1997; Beyer 2001, 2002; Bingul 2007). In all these studies
the objective function is optimized using GA for different set of parameters
which are initialized at the time of starting and during optimization those
parameters are kept constant.

In the improved genetic algorithm (IGA) there are three important GA
parameter:

i. Crossover probability (Pc),
ii. Mutation probability (Pm) and
iii. Population size (popsize)

are proposed to be varied dynamically during execution of the program ac-
cording to the fuzzy knowledge base which has been developed from the ex-
perience to maximize the efficiency of GA. These parameters and the basis of
their change are described in this section.
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10.3.1 Basis of Variation of Pc, Pm and Popsize

The philosophy behind varying these parameters is that the response of the
optimization method/procedure depends on the stage of optimization, i.e. a
high fitness value may require a relative high population size, a low cross over
probability and high mutation probability for further improvement; alterna-
tively, at low fitness values the response would be better with a relatively low
population size, a high cross over probability and a low mutation probability.
The reason behind it is that at the time of starting high cross over prob-
ability (Pc) and low mutation probability (Pm) yield good results, because
large number of crossover operation will produce better chromosome vectors
whose fitness value are relatively high. This process will continue for some
finite number of generations after that the fitness value of each chromosome
vector becomes almost same (around 0.9). Beyond that the effect of crossover
is not significant due to little variation in the chromosome vectors in that
particular population. Hence, at this stage, the population can be diversified
by the following means:

1. By increasing the mutation rate of the chromosome vector to inculcate
the new characteristics in the existing population.

2. By introducing new chromosome vectors in the existing population whose
characteristics are different from the existing chromosomes vector (i.e. by
increasing the population size (popsize)).

3. By introducing new chromosome vector in the existing population whose
characteristics are different from the existing chromosome vectors and
remove the chromosome vector from the existing population whose fit-
ness value H is relatively low (i.e. Keeping the population size (popsize)
constant).

Several methods of optimization have been proposed over the past few
years; Schuster proposed heuristics for an optimal setting of the mutation
probability Pm, Fogarty (1981) and Booker (1987) investigated time de-
pendencies on the mutation and the crossover probability respectively, and
Grefenstette (1981) found optimal settings for all three parameters of the
GAs by experiment.

In the present work, a fuzzy control of the values of the three parameters
is attempted. For this purpose the proposed ranges of these parameters have
been divided into low, medium and high membership function, and each is
given some membership value. These are presented graphically in Table 10.1.

The parameters are varied based on the value of the fitness function and
its variation:

1. For this purpose the best fitness (BF) for each generation is considered.
2. This value is expected to change over generations. If the BF does not

change significantly over a number of generations (UN) then this infor-
mation also is considered to effect changes in the GA parameters.

3. The diversity of population is one of the factors which influence the search
for a true optimum.
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Table 10.1. Membership functions and range of variables

S. No. Variable Linguistic
term

Membership functions

1. Crossover
probability

Pc Low
medium
High

2. Mutation
probability

Pm Low
medium
High

3. Population
size

Popsize Low
medium
High

4. Best fitness BF Low
medium
High

5. Number of
gen. for
unchanged
BF

UN Low
medium
High

6. Variance of
Fitness

VF Low
medium
High
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The variances of the fitness values of objective functions (VF) of a popu-
lation is a measure of its diversity and hence, considered as a factor based on
which the GA parameters may be changed.

10.3.2 Development of Fuzzy System

The membership functions and membership values for these three quantities
are selected based on the experience and ease in computation. The support
and overlapping of these membership functions are optimized and final results
are presented graphically in Table 10.1.

The knowledge base for modifying the GA parameters is described below:
Fuzzy knowledge base

(a) For controlling Pc
1. If BF is low then Pc is High
2. If BF is medium or High and UN is Low then Pc is High
3. If BF is medium or High and UN is Medium then Pc is medium
4. if UN is High and VF is Low or Medium then Pc is Low
5. if UN is High and VF is High then PC is Medium

(b) For controlling Pm
6. If BF is Low then Pm is Low
7. If BF is Medium or high and UN is low then Pm is Low
8. If BF is Medium or High and UN is Medium then Pm is Medium
9. If UN is High and VF is Low then Pm is High

10. If UN is High and VF is Medium or High then Pm is Low.

(c) For controlling Popsize
11. If BF is Medium and UN is High then pop size is Medium
12. If BF is low and UN is high then popsize is High
13. If BF is high and UN is low and popsize is Low

10.4 Application of Improved Genetic Algorithm (IGA)
to Electrical Load Forecasting Problem

Improved genetic algorithm is best suited for the function generation and
optimization of problems like load forecasting. Load forecasting plays an im-
portant role in power system planning, designing, operation and control. The
load at the various load buses is required to be known a few seconds to several
minutes before to plan the generation and distribution schedules contingency
analysis and for checking system security (know as very short time load fore-
casting). For the allocation of the spinning reserve, it would be necessary to
predict the load demands at least half an hour to a few hours ahead (know
as short term load forecasts). On the other hand preparing to meet the load
requirements at the height of the winter or summer season may require a load
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forecast to made a few days to few weeks in advance. Forecasts with such
lead time constitute medium term load forecasts. Finally to plan the growth
of the generation capacity, it would be necessary to make “long term” load
prediction which may involve a lead time of a few months to a few years. Long
term load forecasting of a future demands on a realistic basis is important in
power planning.

Major power projects have long gestation periods, which may extend to 10
years more. Therefore, decisions on investment have to be taken in advance for
demands, if the energy benefits are to materialize at appropriate time needed.
Thus, it is necessary not only to have demand forecast covering a 15–20 years
period but only to update the same every 3–5 year in order to fit into the 5
years plan.

Many techniques and approaches have been used for the electrical load
forecasting problem in the last two decades (IEEE Report 1980, 1981;
Mahalanbis et al. 1991). These are after different in nature and apply different
engineering considerations and economic aspects. Traditional approaches are
load survey methods, mathematical models like correlation or extrapolation
models (linear growth pattern, exponential growth pattern, parabolic growth
pattern, or sigmoid growth pattern) combination of both, regression and time
series analysis and mathematical models considering economic parameter.
These traditional methods for load forecasting may not give sufficiently ac-
curate results. Also these methods are cumbersome and time consuming, as
they require a lot of information about variables on which load forecasting
depends (Georg 1987). The information regarding variables may be incorrect,
improper and insufficient, casing error in forecasting; more the number of
such variables, higher may be the error in forecasting. Therefore, a method
is required which can forecast the power demand with minimum number of
variables giving sufficient accuracy and the method is not quite complex and
cumber some. In this respect, Lee and his collogues (Lee et al. 1997) have
taken population and GDP as two variables for predicting the long term
demand for Korea.

In this section an attempt has been made to develop a function for long
term load forecasting from the available data of peak demand using IGA in
two steps:

I. Function development: the functional relationship is developed between
the variables and constants.

II. Function optimization: the function obtained in the previous step is to
be optimized by selecting the suitable values of coefficients used in the
function.

A. Function Development
A function or expression is composed of three parts:
I. Variables (x1, x2, x3 . . . . . . . . . . . . . . . .)

II. Constant (k1, k2, k3 . . . . . . . . . . . . . . .) and
III. Operation (o1, o2, o3 . . . . . . . . . . . . . . . ..)
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The operators connect the variables and constants constituting a func-
tion. Therefore a function or expression is a string of variables, constant and
operators arranged in a proper way as given below:

F (x1, x2 . . . . . . . . . ..) = x1 o1 k1 o1 x2 o3 k2 o4 x3 o5 k3 . . . . . . . . . xn on kn

In the above string, the constants (k1, k2, k3 . . . . . . . . . . . . kn) may be real or
integers; the operators (o1, o2 o3 . . . . . . . . . . . . on) are mathematical operators
like {‘+’, ‘−’, ‘/’, ‘exp’, ‘log’,‘∗’, }, etc.

The stepwise procedure of function development for load forecasting prob-
lem through IGA is given below:

Step-1: Initialization: Give the initial values to GA parameters to start GA
optimization. In load forecasting problem following initial values for
GA parameters have been taken.

Chromosome length (lchrome) = 22
Population size (popsize) = 60
Maximum number of generation (maxgen) = 20
Crossover probability (Pc) = 0.9
Mutation Probability (Pm) = 0.005

Step-2: Generate the initial population of function in the form of binary
strings equals to the popsize and length of each function string equal
to the lchrome.

Step-3: Decode the value of constant as well as operators of each function
string and develop the functions for the complete population. A
developed function from the corresponding string of population is
shown below which representing the change in electrical demand:
001101000010101100110010 F(x) = (x + 1)∗(x/4) + (x− 1)− x∧3)
Population string Developed Function

Step-4: Each string of a population is decoded in the form of a function
which predict the change in demand. From this change in electrical
demand, the demand as well as the error in predicted load and actual
load can be calculated. The objective function developed for long
term load forecasting problem uses the error calculated above.

Objective function = 1/(1 + Σ Errori)

Where Errori - is the error of the demand predicted by ith decoded
chromosome vector of nth Generation and the demand available
from CEA.

Step-5: Performs crossover and mutation operations among selected strings
of population according to the probabilities of mutation and crosses
over. Also, the fuzzy controller during execution through fuzzy
knowledge base controls the crossover and mutation probabilities
in IGA. In this step the old population is modified by crossover and
mutation operation to produce better strings.
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Step-6: Repeat Step 3, 4 and 5 till the fitness value will not reach near unity
or the error in forecast will minimize.

b. Function Optimization

The function, which is developed in the previous section, is optimized to
predict the long term load with better accuracy. In function optimization,
the coefficient of variables and constant are optimized using IGA to reduce
the error during prediction. While optimizing the functional coefficients and
constants using IGA, it was observed that the best fitness (BF) value con-
tinuously increases as the generation increase. Very rarely the BF Value of
present generation goes below the BF value of the previous generation. If it
goes below then IGA select the appropriate value of Pc and Pm from fuzzy
knowledge base and immediately recovers the BF value to the same or more
than that. On the other hand, in simple GA if the BF value goes below in any
generation it could not be recovered and remains same for significant number
of generations.

10.5 Results

The simple GA is used to develop the functional relationships between vari-
ables and constants. After selection the function for long term load forecast-
ing problem, improved genetic algorithm is used to optimize the functional
coefficients of the function generated by the simple GA. For load forecasting
problem, the results obtained by improved genetic algorithms (IGA) are com-
pared with the data given by annual power survey (APS) carried out by CEA
as shown in Fig. 10.1; which is very close to the actual curve.

10.6 Integrated Fuzzy GA Technique

The fuzzy set theoretic approach has been described in earlier chapters. It is a
practical, robust, economical and intelligent alternative for system’s modeling
and control. However, this technique has a serious set back that without the
precise and quality expert knowledge it could not give good results. Most of
the time it is difficult to get precise quality expert knowledge due to various
reasons like unavailability of domain experts, expert hide some of the informa-
tion or forget to give, etc. To solve this problem, fuzzy logic is complimented
with various other techniques such as ANN, Evolutionary algorithms, etc.

Evolutionary algorithms are one of the suitable tools for optimizing the
behaviour of fuzzy systems without the human intervention. There is no prob-
lem of local minima as in gradient descent algorithms. Also it provides number
of solutions at a time.

Hence, hybridization of Fuzzy systems and GAs is a good choice for de-
veloping the adaptive fuzzy systems. The tuning of fuzzy system is done by
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Fig. 10.2. Block diagram of adaptive fuzzy system

optimizing its parameters using GAs. GA performs well in noisy, non-linear
and uncertain optimization of fuzzy systems.

Various issues like determining the shape of fuzzy set, its parameters,
overlapping and parameter of aggregation operators can be handled with GA
optimization. GA optimization includes large search space, non-differentiable
objective function involving uncertainty and noise. Due to these characteris-
tics GA is quite suitable for fuzzy system parameter optimization and gives
potential solution in parallel and hence easily avoid local optima. The block
diagram of this adaptive fuzzy system is shown in Fig. 10.2.
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The following steps are used in adaptive fuzzy system parameter optimiza-
tion using GA:

Step-1: Identify parameters of fuzzy system for optimization using GA. The
number of fuzzy system parameters affect the complexity of objective
function of GA, which in turn slows down the optimization process.

Step-2: Representation of these parameters (Encoding)

The system parameters should be represented in a proper form, so that GA
optimizes them. It could be represented by binary strings (genomes). If there
will be large number of parameters then the length of chromosomes should
also be large. It will increase the complexity, slow down the convergence and
also affect the accuracy of results. In such situations normalized real number
representation improves the convergence and accuracy.

Step-3: Initialization

Initial population greatly affect the convergence time.

Step-4: Definition of objective function

The designing of objective/fitness function has large impact on the perfor-
mance of GA. Let us consider a minimization problem, the objective function
could be designed as

1. Fitness function = Max value – functions f(xi)
2. Fitness function = 1/(1 + function)
3. Fitness function = exp(–function)

10.6.1 Development of Adaptive Fuzzy System

The most crucial and important part of fuzzy system is its knowledge base.
Knowledge required for fuzzy system can be divided into two parts:

1. Domain knowledge – It is acquired from domain expert.
2. Meta knowledge – This contains the knowledge about the fuzzy member-

ship functions, firing strength of each rule, aggregation operator, defuzzi-
fication method, implication and compositional rules.

Based on the above two types of knowledge, fuzzy system can be made
adaptive by

a. Fixing the domain knowledge and optimize meta knowledge.
b. Fixing the meeta knowledge and optimize the domain knowledge.
c. Optimizing domain knowledge (coarse tuning) and then optimizing meta

knowledge (fine tuning).
d. Optimizing both the knowledge simultaneously.
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(a) Optimization of membership functions:

1. In the optimization of membership functions, it is necessary to find the
universe of discourse in which fuzzy sets could be defined.
Universe of discourse U = [−u + u]

2. Type of membership function
Triangular, trapezoidal, Gaussian or generalized membership func-
tion, etc.

3. Encode for GA optimization

Type of membership function and shape must be encoded as shown below:
Various types of membership functions are used in fuzzy systems like trian-

gular, trapezoidal, Gaussian or one can also use the generalized membership
function of four segments. Most often the triangular membership functions
are used in fuzzy systems due to its simplicity.

Case-1 If core = 0 and left base = right base then membership function (MF)
is symmetrical triangular function.

Case-2 If core = 0 and left base or right base (any one) = 0 then right angled
triangle MF.

Case-3 when all these parameters are there it is trapezoidal MF.

Hence, the encoded value as binary strings and length of these strings depend
on the accuracy required. The complete membership function will be defined
as binary string or real value is shown in Table 10.2.

and left base + core + right base <= 1.

In four segment generalized membership function as shown in Fig. 10.3, every
segment has two attributes with it. First is the length of the segment and
second is the angle associated with it.

For segment a, the length is l1 and angle θ1. Similarly for b (l2, θ2),
c (l3, θ3) and for d (l4, θ4). In this case, segment length is in the range 0–2,
but the angle is 0–180◦. Both these parameters in different ranges, hence it is
necessary to normalize the value of these attributes in the same range from
0 to 1.

Suppose multi-input – single output (MISO) systems, with two inputs
as shown in Fig. 10.4. Each input three fuzzy sets (membership functions).
Each fuzzy membership function has four segments and each segment has two
attributes, which could be represented by say three binary bits. Hence, the
total length of chromosome for single fuzzy input variable will be

Table 10.2. Encoding of membership functions

Left base Core Right base

Binary strings 01010 0110 01010
Real values 0.1 0.2 0.1
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Fig. 10.4. Details of optimization parameter of adaptive fuzzy system

Length of chromosome = number of variables × number of fuzzy sets
×number of segments × number of attributes
×number of binary bits

= 2 × 3 × 4 × 2 × 3 = 144.

If the number of variables is more, GA optimization will be more complicates.
Therefore, it is necessary to represent the chromosome in real normalized
values, to reduce the length of chromosome. In this case it will be 24, which
may be calculated as
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Table 10.3. FAM table for fuzzy system

MF21 MF22 MF23

MF 11 Po1 Po2 Po3

MF12 Po4 Po5 Po6

MF13 Po7 Po8 Po9

Length of chromosome = number of variables × number of fuzzy sets

×number of segments × number of attributes

= 2 × 3 × 4 × 2 = 48.

(b) Optimization of Rule base
For the above mentioned system the rule base consisting of maximum nine

rules which is represented by rule table, also called fuzzy associative memory
(FAM) Table 10.3.

The initial population may be randomly generated consisting FAM tables
with different output fuzzy sets as given below. Then select any two FAM
tables and perform point radius crossover and mutation. Finally check the fit-
ness of each FAM table of child population and prepare the parent population
from child population using Darwinian survival of fittest principle. Repeat
this process till the good solution is not obtained (Fig. 10.5).

(c) Optimization of rule strength of each rule
The rule strength is the strength of the particular rule which affects the

final solution if that rule is fired. Normally, the rule strength is unity i.e.
all the rule output equally participate in the final output of fuzzy system. If
someone want to reduce the weightage of any rule or wish to increase it then
rule strength may be changed. It is also one of the parameter to optimize
using GA to get suitable rule strengths of each rule.

(d) Optimization of aggregation parameter
As mentioned in the earlier chapter the aggregation function affects the

firing strength of rules which are fired for the given inputs. Normally max
and min aggregations operators are used. Some of the researcher used their
own aggregation operators, compensatory or averaging operator. Lee and
Esbensen (1996) optimize the parameters of these operators to improve upon
the results.

Example – Cart Pole Problem
It is a system consisting of an inverted pole on a moving cart. The goal is

balance this pole by moving the cart to and fro as shown in Fig. 10.6. This
problem is also called inverted pendulum problem.
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(a) Point radius crossover on FAM tables of parental population.

(b) Mutation operation on FAM table. 
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Fig. 10.5. Crossover and mutation operation to optimize FAM table

The cart can move right or left on rails when a force is exerted on it. This
dynamic system is characterized by the following equation

Angular acceleration ω̇ =
g . sin θ + cos θ

(−f − mlω2 sin θ

mc + m

)

l

(
4
3
− m. cos2 θ

(mc + m)

)

Linear acceleration v̇ =
f + ml(ω̇2 sin θ − ω̇ cos θ)

(mc + m)
.

where

θ – Angle of pole from the vertical plane (rad)
ω – Angular velocity (rad/s2)
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Moving Cart 

θ

f

x, v 

Fig. 10.6. Cart pole problem

x – displacement (m)
ν – Linear velocity (m/s2)
l – half length of pole (m)
m – mass of pole (kg)
mc – mass of cart (kg)
g – acceleration due to gravity (9.81m/s2)

The state variable vector is consisiting of [θ ω x ν]. The aim is to find suitable
force F to balance the pole in a satisfactory manner, of regardless of the cart
position.

Problems with conventional controller:

i. System is non-linear.
ii. Delay is involved.
iii. Saturation of core due to heavy flux when heavy current flows in the motor

of moving cart.
iv. System parameters are time varying.

Due to these problems conventional controller is unable to perform well. Lee
and Takagi (1993) used fuzzy controller for this problem.

Diversity in solutions has an important role on the convergence property
of GA. Proposed different methods for maintaining diversity by dynamically
changing mutation rate. Consider the two extreme case of mutation rate.

1. If mutation rate is zero, it means there is no diversity at all. In this case
after some iteration, all the solutions in a particular population are equally
good and crossover operation does not affect the fitness. It results the
premature convergence of GA. Lower value of mutation rate is normally
used for fine tuning of adaptive fuzzy systems and on-line implementation
of optimization tool.
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2. If mutation rate is one means always there is a random population, which
reduces the rate of convergence and leads low average fitness and high
diversity. High value of mutation rate explores almost complete search
space. The higher values of mutation rate are good if the expert’s knowl-
edge is not available or available but incomplete for the development of
adaptive fuzzy systems.

Hence, a suitable value of mutation rate is required to quickly get an optimal
solution.

Selection of Fitness function for GA optimization
GA performance also depends on the fitness function used in optimization

to guide the direction of its search. There is no general way to define fitness
function for a problem; however, it is often designed such that the more de-
sirable solutions corresponding to high solutions. Fitness function includes all
the parameters which need to be optimized. For example, in a second order
system it is desirable to get a fast and accurate response with lower overshoot.

Therefore the fitness function =

tf∫
to

1
e2 + ζ2 + 1

dt

where, to initial time

tf – finish time
e – error, i.e. the difference between desired and actual outputs.
ξ – overshoot

More general fitness function=
ζ

tf − to

tf∫
to

1
K1P 2

1 + K1P 2
1 + . . . . . . KnP 2

n + ζ
dt

Ki – is the weightage

10.7 Limitations of GA

a. GA is quite time intensive algorithm for optimization. Even with high
speed computers, real time GA implementation is still a challenge. In
GA, GA may provide on-line learning capability in intelligent adaptive
robots and evolve their performance, on-line GA implementation is still
difficult.

b. In GA based adaptive fuzzy systems, GA drastically alters fuzzy knowl-
edge base system architecture and after that it is difficult or no longer
identifiable by a human operators. This is important when intuitive hu-
man understanding of system is a significant component in its control.
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c. Meaningful relation between membership function and fuzzy rules may be
lost from human point of view after GA optimization.

d. For more intelligent systems require more complex and autonomous sys-
tems. GA-fuzzy integrated technique best suited for this type of applica-
tions.

10.8 Summary

The genetic algorithm, which is inspired from the biological genetics, is simple,
powerful, domain free and probabilistic approach to general problem solving
techniques. It is best suited for the problems like load forecasting for electri-
cal power.

The performance of genetic algorithms can be improved by dynamically
varying its operating parameters during execution. The effect of varying the
probability of mutation and the probability of crossover is quite significant in
controlling the trend of the best fitness value, especially when the best fitness
is not very close to its maximum value.

IGA claims to provide near optimal or optimal solution for computation-
ally intensive problems. Therefore, the effectiveness of genetic algorithm so-
lutions should always be evaluated by experimental results.

The graph obtained from developed function through IGA is much closer
to the graph obtained by APS carried out by CEA, India. Therefore, it is
capable to produce a function for non-linear variations from the available
data, which can save a lot of labor and complexity during analysis of any type
of non-linear phenomena.

There is a vast area of application in which the GAs can be used. The
idea of producing a function for non-linear variation has a vast application
area. It can be applied to solve problems of science, engineering and technical
fields. Additional features like multi-site crossover and other algorithms for
chromosome selection should also be tested with GA optimization.

Exercise

1. Write the merits and demerits of GA and Fuzzy System.
2. Explain the different possibilities of combining GA and Fuzzy systems to

get integrated tool.
3. Using GA-Fuzzy systems approach solve traveling salesman problem to

minimize the distance traveled for n-cities.
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Synergism of Genetic Algorithms and Fuzzy
Systems for Power System Applications

11.1 Introduction

The power system of today is a complex interconnected network having four
major components – generation, transmission, distribution and loads. Elec-
tricity is being generated in large hydro, thermal and nuclear power stations,
which are normally located far away from the load centers. Large and long
transmission networks are wheeling the generated power from these gener-
ating stations to different distribution systems, which ultimately supply the
load. The distribution system is that part of the power system which connects
the distribution substations to the consumers’ service-entrance.

Earlier the utilities were mainly concerned about the optimal dispatch of
active power only, but evolvement of competition has also resulted in the op-
timal dispatch of reactive power. When only total cost is minimized by real
power scheduling of available generator in a system, the optimal power flow
(OPF) corresponds to Active Power Dispatch. Some of the solution techniques
successfully used for active power dispatch include classical co-ordination
methods based on Lagrangian multiplier approach (Chowdhury and Rahman
1990), Linear programming (LP) based methods (Stott and Hibson 1978;
Stott and Marinho 1979), quadratic programming (QP) approach (Nanda
et al. 1989), Gradient method using steepest descent technique (Dommel and
Tinney 1968) and Newton’s methods (Sun et al. 1984; Maria and Findlay
1987). A comprehensive review of various optimization techniques available
in the literature is reported in references (Happ 1977; Sasson and Merril 1974;
Carpantier 1985). The classical method of optimization is relatively simple,
fast and requires less memory space but sometimes it is unable to handle the
system constraints effectively and sometimes convergence is not obtained. The
LP based method involves approximation in linearizing the objective function
and constraints and may result in zigzagging of the solution. Gradient based
methods compute the derivative of the function at each step. They require a
close initial guess and in general suffer from convergence difficulties and may
stuck to local minima.
D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,
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The GAs (genetic algorithms) have been applied to solve unit commitment
problem (Kazarlis et al. 1996), Optimal reactive power dispatch (ORPD) prob-
lem (Singh et al. 1993; Swarup et al. 1996; Lee et al. 1997) and for economic
load dispatch problem (Walters and Sheble 1993; Sheble and Britigg 1995;
Chen and Chang 1995; Orero and Irving 1996; Achyuthakan 1997). Miranda
et al. (1996) have provided a survey of three branches of evolutionary pro-
gramming (EP), genetic algorithms (GAs) and discusses their relative merits
and demerits.

The superiority of GA methods in handling continuously non-differentiable
objective has been given in (Walters and Sheble 1993; Achyuthakan 1997).
For better results and faster convergence, conventional GA models have been
modified by including new operators such as elitism, shuffle in reproduction,
multi-point or uniform crossover and creep mutation. Considering three added
features, a refined GA is used to solve economic load dispatch (ELD).

A pyramid genetic algorithm (PGA) has been used in Lee et al. (1997) for
voltage profile optimization. The PGA can analytically determine the bound
values of mutation and crossover probabilities, which are otherwise, chosen by
experience. The GA-Fuzzy approach presented in this paper is developed to
get above mentioned advantages by varying crossover and mutation probabil-
ities throughout the generations by fuzzy-rule base.

11.2 Transmission Planning, Pricing
and Structure/Models of Indian Power Sector

A bibliographical survey of power system wheeling under deregulated environ-
ment is presented by Sood et al. (2002). A lot of literature is available for the
issue of transmission open access. Christie and Anjan Bose (1996) discussed
the complete deregulation scenarios and technical issues related to operation
and control of the system. Various aspects of pricing of transactions in open
access are discussed by Silva et al. (1998), David (1998), Arriaga et al. (1995b)
and Vojdani et al. (1996).

1. Transmission planning

A genetic algorithm based dynamic transmission planning methodologies
are formulated by Rudnick et al. (1996) and Lima et al. (1998) to deter-
mine the economically adapted transmission system in open access. But since
the transmission planning is a complex, nonlinear and dynamic problem, a
simple GA method is not suitable. Object oriented software for transmission
planning in open access is proposed by Handschim et al. (1998). Raga et al.
(2005) have presented a multi-criteria formulation (i.e. investment costs, op-
erational cost and the expected energy not supplied) for multiyear dynamic
transmission expansion planning problems. The solution algorithm adapts an
interactive decision-making approach that starts at a non dominated solution
of the problem.
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2. Transmission pricing methods

Transmission pricing has been discussed in a detail in the literature. Happ
(1994) has presented computational procedure and data requirements for em-
bedded cost methods, incremental cost methods and marginal costs methods.

Caramanis et al. (1986) has presented new wheeling rates for buying and
selling. A computer program WRATES is developed by Caramanis et al.
(1989) is used to provide the practical means of computing the marginal cost
of wheeling. This analysis requires a load flow program integrated with con-
straints and economic load dispatch simulation.

First extensive computations of marginal cost of wheeling and rates based
on marginal costs are carried out by Merrill and Erickson (1989). Different
methodologies for costing of transmission services have been developed and are
reported by Shirmohammadi and Thomas (1991) and Shirmohammadi et al.
(1991). The theory to evaluate optimal wheeling rates for the case of bus to
bus wheeling is developed in (Lo and Zhu 1993). It is based on the marginal
cost theory which has been used for electricity pricing. On the basis of the
equitable sharing of the benefits arising from wheeling transactions among
the wheeler, the power seller and the buyer, this approach has the advantage
over others. It avoids the direct evaluation of the network maintenance cost
and the quality of supply cost components.

Several methodologies have been reported for cost of wheeling. A non-
linear optimization program with linear constraints is developed by Li et al.
(Li and David 1993) to calculate the amount of wheeled energy and wheeling
price solved by gradient projection method.

The principles and practices of a new methodology for wheeling rate eval-
uation without assuming the existence of the spot price based market place
is describe by Lo and Zhu (1994). Li et al. (1994) have used a wheeling rate
based on marginal cost pricing and implemented using the modification of the
optimal power flow.

A load flow based model for calculating the various cost components is
presented by Kovacs and Leverett (1994). A separate pricing of transmission
and distribution services is proposed by Farmer et al. (1995). SRMC and
LRMC based models are proposed by Lima and Pereira et al. (1995) for
allocating transmission cost among users of centralized transmission service.
A novel approach that alleviates the inherent shortcomings of SRMC based
pricing and maintains the economic efficiency of the price signals are proposed
by Farmer et al. (1995). But the effect of security analysis has not been taken
care while considering the optimal conditions.

Lima (1996) has proposed load-flow based Megawatt-mile, Modulus, Zero
counter complex calculations and greater data and provides no incentive
to users.

Pereira et al. (1996) have presented a method for evaluating an optimal set
of transmission prices to be charged for use of a transmission system on a time-
of-use basis. Prices are calculated by maximizing the global benefit of using
the transmission system that allocates both capacity and operational cost.
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A methodology to allocate the cost of transmission network facilities to
wheeling transactions in decentralized power systems using Game theory is
proposed by Tsukamoto et al. (1996) and Ferrero et al. (1998). The concept
of game theory is employed to deal with the conflicts in a deregulated power
system.

Wakefield et al. (1997) have presented transmission costing framework and
its application for analyzing the transmission costing issues. Zobian and Illic
(1997) have proposed a methodology for allocating transmission cost among
users of a centralized transmission service. The share of each participant is
proportional to its impact on system transmission investment requirements.
This allocation rule provides incentives for all participants to remain in the
pool and ensures revenue reconciliation. Yu and David (1997) have proposed
an approach which distinguishes between operating and embedded costs and
have developed separate methods in respect of each of these components.

In (1999) a method for long run marginal cost (LRMC) based pricing in
multi-area interconnected system, based on the incremental use of each area’s
transmission network at times of peak flow, is proposed.

In (Muchayi Maxwell and El-Hawary 1999) unlike other methods which use
only the variation of fuel cost for generation to estimate the rate structures, the
proposed pricing algorithm incorporates the optimal allocation of transmission
system operating costs based on time-of-use pricing. The transmission costs
are obtained by assigning a price k to each unit of power flow in the network.

In (Moya 2002), a model of marginal adequacy costs is developed in order
to reflect the influence that any nodal load has on system static security.
An adequacy cost function is defined, making use of the load that must be
theoretically withdrawn at each node in order to re-establish power flows on
transmission elements, after any static contingency of a predefined set occurs.

Chen et al. (2002) have presented a method to provide a detailed descrip-
tion of each nodal price, by breaking down each nodal price into a variety of
parts corresponding to the concerned factors, such as generations, transmis-
sion congestion, voltage limitations and other constraints or elements.

Gang et al. (2005) have proposed a transmission and wheeling pricing
method based on the monetary flow tracing along power flow paths: the mon-
etary flow–monetary path method. Active and reactive power flows are con-
verted into monetary flows by using nodal prices. The method introduces an
uniform measurement for transmission service usages by active and reactive
powers.

Gil et al. (2006) presents an approach for the allocation of transmission net-
work costs by controlling the nodal electricity prices. The proposed approach
introduces generation and nodal injection penalties into the traditional eco-
nomic dispatch so as to create nodal price differences that recover the required
transmission revenue from the resulting congestion rent.

Galetovic and Montecinos (2006) describes the new method used in Chile
to allocate transmission charges among generating companies and customers.
They show that the new Chilean transmission charge scheme is a hybrid based
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on marginal cost pricing, identification of use through economic benefits and
flow identification methods, and last, a postage stamp to redistribute almost
all the charges that customers have to pay.

Sedaghati (2006) has proposed a novel method for allocation of the fixed
cost of the transmission systems to agents using facilities. In (Verma and
Gupta 2006), a nonlinear optimization problem has been formulated to max-
imize the social welfare in the open power market using a unified power flow
controller (UPFC).

3. Market structures/models

A Poolco model suitable for power system planning and decomposing spot
prices to reveal components caused by congestion is presented by Finny et al.
(1997).

Illic and Prasad et al. (2003) provided simulation-based demonstrations
of hybrid electricity market that combines the distributed competitive advan-
tages of centralized markets.

Ren et al. (2004, 2004a) compared the quantitative behavior of the two
markets, i.e. pay as bid and marginal pricing, assuming that generators sub-
mit the best strategic offers that correspond to the specified pricing method.
In Part I of their two-part study, assuming that the system marginal costs for
pay-as-bid (PAB) and marginal pricing (MP) are random with known proba-
bility density functions, they develop generator strategic offers by maximizing
the corresponding expected values of the generator profits over the offer para-
meters. In Part II relations are established between the system marginal costs
(SMCs) for each market type and a common random demand, thus allowing
the two markets to be compared through the expected values and variances
of the individual generation profits and of the consumer payments.

Competitive markets for electricity determine either a uniform marginal
price (UMP), a set of nodal marginal prices (NMPs), or a smaller set of
zonal marginal prices (ZMPs). Ding and David (2005) prove that, the UMP
or ZMP models (a) do not affect the total economic surplus, (b) redistribute
the surplus among generators and loads at the different nodes, and (c) give
perverse incentives for generation expansion.

Fleten and Erling (2005) have proposed a stochastic linear programming
model for constructing piecewise-linear bidding curves to be submitted to
Nord Pool, which is the Nordic power exchanger. They have considered the
case of a price-taking power marketer who supplier electricity to price-sensitive
end users.

Plazas et al. (2005) considers a profit-maximizing thermal producer that
participates in a sequence of spot markets, namely, day-ahead, automatic
generation control (AGC), and balancing markets. The producer behaves as
a price-taker in both the day-ahead market and the AGC market but as a
potential price-maker in the volatile balancing market.

Li and Mohammad (2005) describes a method for analyzing the competi-
tion among transmission-constrained generating companies (GENCOs) with
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incomplete information. Each of GENCO models and its opponents’ unknown
information with specific types for transforming the incomplete game into a
complete game with imperfect information.

Ongasakul and Chayakulkheeree (2006) have proposed a coordinated fuzzy
constrained optimal power dispatch (CFCOPD) algorithm for bilateral con-
tract, balancing electricity and ancillary services markets.

Bompard et al. (2006) has presented comprehensive approach to evaluate
the performance of the electricity markets with network representation in
presence of bidding behavior of the producers in a pool system. A supply
function strategic bidding model for the producers is introduced, and then
different scenarios in terms of bidding behavior and network constraints are
studied and compared on the basis of a set of microeconomic metrics.

Philpot and Erling (2006), present a model of a purchaser of electricity in
Norway, bidding into a wholesale electricity pool market that operates a day
ahead of dispatch.

Olmos and Neuhoff (2006) have proposed an algorithm and apply it to
the European electricity network to identify a balancing point that reduces
market power of generation companies and is well connected. Market-level
data or detailed information about demand is not required.

4. Congestion management

Congestion management is one of the major tasks performed by system
operators (SOs) to ensure the operation of transmission system within op-
erating limits. In the emerging electric power market, the congestion man-
agement becomes extremely important and it can impose a barrier to the
electricity trading. Kumar et al. (2005) presented bibliographical survey of
papers/literature on congestion management issues in the deregulated elec-
tricity markets.

A study of congestion management based on congestion pricing is proposed
by Glavitsch and Fernando (1998).

Singh et al. (1998) studied the management of costs associated with trans-
mission constraints (i.e. transmission congestion costs) in a competitive elec-
tricity market. The paper examines two approaches for dealing with these
costs. The first approach is based on a nodal pricing framework and forms
the basis of the so-called pool model. The second approach is based on cost
allocation procedures proposed for the so-called bilateral model. An advanced
analytical method for secure and efficient operation of power system is pro-
posed by Shirmohammadi et al. (1998).

A congestion problem formulation should take into consideration inter-
actions between intra-zonal and inter-zonal flows and their effects on power
systems. It is perceived that phase-shifters and tap transformers play vital pre-
ventive and corrective roles in congestion management. These control devices
help the ISO mitigate congestion without re-dispatching generation away from
preferred schedules. In Ref. (2000) a procedure is introduced for minimizing
the number of adjustments of preferred schedules to alleviate congestion and
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apply control schemes to minimize interactions between zones while taking
contingency-constrained limits into consideration.

Service identification and congestion management are important functions
of the ISO in maintaining system security and reliability. In Fu and John
et al. (2001), a combined framework for service identification and congestion
management is proposed. Verma et al. (2001) presents the development of
simple and efficient models for suitable location of unified power flow controller
(UPFC), with static point of view, for congestion management.

Gan and Donald et al. (2002) briefly review the New England power sys-
tem (NEPOOL) locational pricing proposal being implemented. Two new ap-
proaches for locational market power screening are presented. The first one is
based on a zonal network model and the second is based on a nodal transmis-
sion model.

The paper by Bompard et al. (2003) briefly reviews the congestion man-
agement (CM) schemes and the associated pricing mechanism used by the
independent grid operators (IGOs) in five representative schemes. These are
selected to illustrate the various CM approaches in use: England and Wales,
Norway, Sweden, PJM, and California. They develop a unified framework for
the mathematical representation of the market dispatch and redispatch prob-
lems that the IGO must solve in CM.

Kristiansen (2004) gives an overview of the current practice for conges-
tion management, transmission pricing, and area price hedging in the Nordic
region. Transmission congestion in the Nordic region is managed by using
the area price model and counter trade. In Kumar et al. (2004), a new
zonal/cluster-based congestion management approach has been proposed. The
zones have been determined based on lines real and reactive power flow sensi-
tivity indexes also called as real and reactive transmission congestion distrib-
ution factors. The generators in the most sensitive zones, with strongest and
nonuniform distribution of sensitivity indexes, are identified for rescheduling
their real power output for congestion management.

A new congestion management system is proposed in Mendez and Hugh
(2004), applied under nodal and zonal dispatches with implementation of fixed
transmission rights (FTR) and flow gate rights (FGR). The FTR model proves
to be especially suitable for congestion management in deregulated central-
ized market structures with nodal dispatch, while the FGR is suitable for
decentralized markets.

In the paper (Aguado et al. 2004), authors deal with the operation of
power systems consisting of several interconnected electricity markets. They
proposed an alternative approach to inter-regional trade that avoids the flaws
of forward markets with explicit auctioning of interconnections capacities.
They proposed the integration of a forward market with a balancing (spot)
market for inter-regional exchanges based on nodal pricing.

Alomoush (2005) presents some performance indices to compare different
dispatch options, where it proposes to use some congestion and system utiliza-
tion measures. These measures are used in the paper to indicate level of system
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usage and congestion severity under different dispatch scenarios, and may en-
able the system operator or the qualified dispatch decision-making entity to
decide which dispatch, among different dispatch scenarios, is the optimal.

The paper by Conejo et al. (2006) addresses the congestion management
problem avoiding offline transmission capacity limits related to stability. These
limits on line power flows are replaced by optimal power flow-related con-
straints that ensure an appropriate level of security, mainly targeting voltage
instabilities, which are the most common source of stability problems.

11.3 GA-Fuzzy System Approach for Optimal Power
Flow Solution

The present day power system is a very large and integrated power system
comprising of several generators and buses. Recent trends of deregulation of
power system have resulted in increased competition in the area of generation,
transmission and distribution of power. The problem of economic operation of
power system had emerged when it was required to operate two or more units
to meet economically the demand when net generation exceeds the demand.

In the recent past, methods using genetic algorithms (GAs) (Goldberg
1989) have become popular to solve the optimization problems mainly because
of its robustness in finding optimal solution and ability to provide near optimal
solutions close to global minima. GAs are search algorithms based on the
mechanics of natural selection and natural genetics. The performance of GA
can also be improved by introducing new problem specific genetic operators.
In Maha et al. (2006) a new genetic operator named pluck is introduced that
incorporates a problem specific knowledge in population generation and leads
to a better channel utilization in mobile computing problem. GAs are different
from other optimization methods in the following ways:

• GAs search from population of several points, not a single individual point
in the population.

• GAs have inherent parallel computation ability.
• GAs use pay off information (objective function) and not derivatives or

auxiliary knowledge.
• GAs use probabilistic transition rules, so they can search a complicated

and uncertain area to find the global optimum.

The basic idea in GA is to maintain a population of chromosomes that
evolves through a process of competition and controlled variation. Simple
forms of GAs performance largely depend on the appropriate setting of ge-
netic parameters namely crossover probability and mutation probability. It
has been observed that after few generations, the fitness value of each chromo-
some becomes almost equal to other chromosomes from the same population.
The effect of crossover beyond this stage becomes insignificant due to very
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small variation in the chromosomes in a particular population. Therefore, it
is difficult to find optimal settings for these parameters.

The techniques developed to set these parameters are classified by Eiben
and Smith (2003) as parameter tuning and parameter control. For parameter
tuning, the parameter values are set in advance (before the run) and are kept
constant during the whole execution of the algorithm. In parameter control
techniques, parameters are initialized at the start of execution and are allowed
to change during the run. Parameter control techniques are classified mainly
into three groups based on the type of change they introduce:

• Deterministic: the parameter value is updated according to some deter-
ministic rule without using any feedback from the population. The deter-
ministic mutation rate schedule implementation proposed in Smith and
Fogarty, (1997) has successful results for hard combinatorial problems.

• Self adaptive: the parameter is evaluated and updated by the evolutionary
algorithm itself by encoding the parameters into the chromosomes and un-
dergo mutation and recombination. The basic idea is that better parameter
values will survive in the population since they belong to the surviving in-
dividuals. Bäck (1993) refers to this approach as on-line learning. In their
work, they propose a self adaptation mechanism of a single mutation rate
per individual.

• Individually adaptive: the parameter value is updated based on some feed-
back (usually fitness values of individuals) from the population. Srinivas
and Patnaik. (1994) has proposed this approach by giving mutation rate
adaptation rule in the form of following equations:

pm = k2(fmax − f)/(fmax − favg), f ≥ favg

pm = k4, f < favg

where

f = fitness value of the individual,
fmax = best fitness value of the current generation,
favg = average fitness value of the current generation,
constants k2 and k4 = 0.5.

In an adaptive GA-Fuzzy algorithm developed in present research work has
two important parameters namely, crossover probability (Pc) and mutation
probability (Pm). They are varied dynamically during the execution of the
program according to a fuzzy knowledge base which has been developed from
experience to maximize the efficiency of GA.

11.3.1 OPF Problem

The optimal power flow problem is concerned with optimization of steady state
power system performance with respect to an objective function f , subject
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to numerous constraints. For optimal active power dispatch, the objective
function f is the total generation cost as expressed below:

min f =
Ng∑
i=1

(ai + biPgi + ciP
2
gi) (11.1)

where

Ng = total number of generation units,
ai, bi and ci = cost coefficients of generating unit,
Pgi = real power generation of ith unit i = 1, 2, . . . .Ng

subject to following constraints:
Equality constraints as

Pgi − Pdi −
N∑

j=1

|Vi‖Vj‖Yij | cos(δi − δj − θij) = 0 (11.2)

and

Qgi − Qdi −
N∑

j=1

|Vi‖Vj‖Yij | sin(δi − δj − θij) = 0 (11.3)

Inequality constraints as

Pgi
min ≤ Pgi ≤ pgi

max (11.4)

Qgi
min ≤ Qgi ≤ Qgi

max (11.5)

V min
i ≤ Vi ≤ V max

i (11.6)

tk
min ≤ tk ≤ tk

max (11.7)

δgi
min ≤ δgi ≤ δgi

max (11.8)
line flow1 ≤ line flowmax

1 (11.9)

Qcm
min ≤ Qcm ≤ Qcm

max (11.10)

where, N = Total number of buses,
NT = Total number of tap changing transformers,
Qcm = mth shunt capacitor/reactor compensations,
Nl = Total number of lines,
Nc = Total number of shunt capacitors
i and j = 1, 2, . . . . N ,
k = 1, 2, . . . .. NT ,
l = 1, 2, . . . . Nl,
m = 1, 2, . . . . Nc,
Pgi and Qgi = real and reactive power generation at bus i,
Pdi and Qdi = real and reactive power demands at bus i,
|Vi| and |Vj | = voltage magnitudes at bus i and j respectively,
δi and δj = voltage angles at bus i and j,
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Yij = |Yij |∠θij = admittance matrix,
tk = tap setting of kth transformer,
line flowl = line flow at lth line

11.3.2 Synergism of GA-Fuzzy System Approach

At the starting stage, high crossover probability and low mutation probability
yield good results, because a large number of crossover operations produce
better chromosomes for a finite number of generations, after that the fitness
value of each chromosome vector becomes almost equal. Beyond this the effect
of crossover is insignificant due to little variation in the chromosome vectors
in that particular population. At later stages, increasing the mutation rate
of the chromosomes inculcates new characteristics in the existing population
and therefore diversifies the population.

Therefore, philosophy behind varying Pc and Pm is that the response of
the optimization procedure depends largely on the stage of optimization, i.e.
a high fitness value may require relatively low crossover and high mutation
probabilities for further improvement, alternatively, at low fitness values the
response would be better with relatively high crossover and low mutation
probabilities.

Schuster (1985) proposed heuristics for optimal setting of the mutation
probability (Pm). Fogarty, (1981) and Booker (1987) investigated time depen-
dencies on the mutation and crossover probabilities respectively. Grefenstette,
(1981) and Schaffer (1981) found optimal settings for all these parameters of
the GA by experiment.

In this work, a GA-Fuzzy approach is used in which ranges of parameters –
crossover probability (Pc) and mutation probability (Pm) have been divided
into LOW, MEDIUM and HIGH membership functions.

The GA parameters (Pc and Pm) are varied based on the fitness function
values as per the following logic:

The value of the best fitness for each generation (BF) is expected to change
over a number of generations, but if it does not change significantly over
a number of generations (UN) then this information is considered to cause
changes in both Pc and Pm.

The diversity of a population is one of the factors, which influences the
search for a true optimum. The variance of the fitness values of objective
function (VF) of a population is a measure of its diversity. Hence, it is also
considered as another factor on which both Pc and Pm may be changed.

The membership functions and membership values for these three variables
(BF, UN and VF) are selected after several trials to get optimum results.

11.3.3 GA-Fuzzy System Approach for OPF Solution (GAF-OPF)

Figure 11.1 is a diagrammatic representation of an approach to incorporate
fuzzy logic to find GA based OPF solution.
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Yes 

No 

+ Gen. Cost 

Fitness 

VF 

BF

UN

Pm

Pc

Fuzzy Rule
Base System

GA-OPF Gen>Maxgen

Stop

Fig. 11.1. Implementation of fuzzy system to GA for OPF solution

Therefore, this approach may be divided broadly in two parts namely
GA-OPF and fuzzy rule base system (for controlling the GA parameters Pc
and Pm dynamically during execution).

(A) GA technique for OPF

In GA-OPF, GA is used as a search technique for optimization of power
flow in different lines of the power system. The GA requires the evaluation of
the so-called fitness function (FF) to assign a quality value to every solution
produced. Movement in a GA is accomplished using three primary opera-
tions: Parent reproduction, crossover and mutation. The details of important
operations during solution of GA-OPF are as follows:

1. Encoding

Binary coded strings having 1s and 0s are used for building chromosomes
through random process. The randomly generated chromosomes represent bi-
nary coded values of controllable variables e.g. power generation at all gen-
erator (PV) buses other than slack bus, the voltage magnitude at all PV
buses, tap settings of variable tap transformers and shunt capacitor/reactor
compensations.

The bits of each chromosome are separated out for different control vari-
ables and are converted into equivalent decimal values by the following for-
mula:

Xi = Xmin
i + deci(b1b2. . .. . .)2 × ((Xmax

i − Xmin
i )/(2bits reqdi − 1)) (11.11)

where,

deci(b1 b2 . . . . . .)2 =decimal values of bits corresponding to ith control
variable,

Xmin
i = minimum generation value of ith control variable,

Xmax
i = maximum generation value of ith control variable,

bits reqd = Total number of bits required to represent ith control variable.

Load flow using Newton–Raphson method is run for set of control vari-
ables values belonging to each chromosome. If load flow converges and slack
bus generation obtained from load flow solution is within specified limits then
chromosome is included to complete initial population. Otherwise, a new chro-
mosome is generated according to same procedure and checked again.
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2. Fitness function evaluation

GAs are usually designed so as to maximize the fitness function (FF),
which is a measure of quality of each candidate solution. The objective of
the OPF problem is to minimize the total generation cost including power
flow constraint for each line and other equality and inequality constraints
stated above. In proposed GA-Fuzzy approach, penalty index (pen indexi)
for each generated chromosome is calculated for lines having power overflows
(over flowl), based on respective penalty factors (pl) as follows:

pen indexi =
ni∑
l=i

pl ∗ overflow1 (11.12)

and fitness function is modified to keep line flows under limits as:

FFi={A/(1 + costi)}e−(k∗pen index)i (11.13)

Where as

i = 1 to population size,
nl = total number of lines in system,
l = 1 to nl,
over flowl = overflow in lth line, if any otherwise zero,
pen indexi = penalty index for ith chromosome,
FFi = fitness value of function for ith chromosome,
A and k = large numerical constant,
costi = cost corresponding to ith chromosome.

3. GA operators

As a next step in solution finding process, GA operators – Reproduction,
Crossover and Mutation are applied in above sequence for each generation.
The reproduction operator selects a chromosome string from the previous gen-
eration based on the string’s fitness and its probability of propagation to the
next generation. In the reproduction operator a stochastic remainder selection
is used instead of simple Roulette wheel. In simple Roulette wheel selection,
there is no guarantee that the best strings would be selected. To overcome this
problem the stochastic selection is used in this work. Selection continues until
the population of the next generation is filled. The crossover and mutation
operators work in conjunction with selection similarly as in simple GA. The
values for Pc and Pm are assigned respectively for first generation, then after
these values are determined by fuzzy rule base for the successive generations.

After crossover and mutation, load flow using Newton-Raphson method is
run. If load flow converges and slack bus generation obtained from load flow
solution is within specified limits then chromosome is included to valid pop-
ulation. For any generation, the minimum generation cost amongst all valid
chromosome and corresponding generation pattern is stored in variable Cmin.
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For first generation, value of Cmin is stored in another variable Cmin gen rep-
resenting generation minimum cost, and for successive generations if Cmin <
Cmin gen then Cmin gen is replaced by Cmin otherwise Cmin gen of previous
generation is reconsidered. The process continues till last generation.

11.3.3.1 Fuzzy System for Controlling Crossover and Mutation
Probability

The best fitness (BF) for each generation, number of generations for un-
changed BF (UN) and variance of fitness values of objective functions (VF)
for population of each generation are computed. These variables values are
fed as input to fuzzy rule base system, as shown in Fig. 11.1.

Fuzzy rule base for GA-fuzzy approach

The GA parameters (PC, Pm) in GA-Fuzzy algorithm are varied based
on fuzzy rules base as mentioned in earlier chapter for the solution of optimal
power flow (OPF).

11.3.4 Test Results

GA-OPF and GA-Fuzzy OPF proposed here are tested by solving various
test systems. These systems are 26-bus system (Saadat 2002), 6-bus system
(Osman et al. 2004), IEEE 30-bus system and modified IEEE 30-bus system
(Lee et al. 1985; Lai et al. 1997). The data for all the above systems are given
in Appendix C, D, E, F respectively. The test examples have been run on
1.7 GHz Celeron with 128 MB RAM PC.

11.3.4.1 6-Bus System

Osman et al., (2004) have developed a modified co-evolutionary genetic algo-
rithm (M-COGA) and compared the results with classical economic dispatch
and standard flow (ED+LF), Weber (1997) and simulated annealing (OPFSA)
(2003) on a 6-bus system. The proposed GA-Fuzzy OPF and GA-OPF are
tested using the GA parameters given below:

Population size: 50,
Maximum no. of Generations: 200,
Selection operator: Stochastic remainder,
Initial crossover probability: 0.9,
Initial mutation probability: 0.01

The voltage magnitude limits, active and reactive power limits and line
flows limits are taken same as in references (Osman et al. 2004; Web 1997).
All the lines have power flow limit of 100 MVA, except line 4–5 whose limit is
50 MVA. The values of Pc and Pm changes from 35th generation and remain
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constant after 71st generation (Pc ≈ 0.5676 and Pm ≈ 0.0665), as shown in
Fig. 11.2b. It is observed that convergence of GA-Fuzzy OPF is better than
GA-OPF as shown in Fig. 11.2a. The results are tabulated in Table 11.1.
The results highlight the goodness of this solution technique having minimum
generation cost while satisfying all constraints. Load flow solution and lines
flows are given in Table 11.2.

In ED+LF method though the cost is low but losses are more as compare
to GA-Fuzzy OPF and also there are certain limit violations.

11.3.4.2 26 Bus System

The 26 bus system has 46 branches, 6 generators and 7 variable tap trans-
formers (Saadat 2002). The OPF problem has been solved GA-OPF and GA-
Fuzzy OPF. The performance of the method proposed by Sadaat (2002) and
GA-OPF are compared with GA-Fuzzy OPF. GA-OPF and GA-Fuzzy OPF
are compared for same initial population and following GA parameters in
Table 11.3.

In GA-Fuzzy OPF approach, Pc and Pm are dynamically changed during
execution and governed by fuzzy rules as shown in Fig. 11.3b.

For GA-OPF and GA-Fuzzy OPF, transformers tap settings are assumed
to vary within a range of ±10% of rated values. The lower voltage magnitude
limits for all buses are 0.9 p.u. whereas the upper limits for PV buses are
1.1 p.u. and for remaining buses including the slack bus the limit is 1.025 p.u..

Fig. 11.2a. Convergence of generation cost & max. fitness for GA-OPF & GA-Fuzzy
OPF for 6-bus. Generation cost is in $/h
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Fig. 11.2b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for 6-bus system

Table 11.1. Comparison of different OPF methods for 6-bus system

Classical
optimization

methods

Non-classical optimization methods

ED + LF Weber
[23]

OPFSA
[24]

M-COGA
[22]

GA-OPF GA-
Fuzzy
OPF

Unit 1 (MW) 99.74 160.39 131.80 152.3252 108.466 140.865
Unit 2 (MW) 216.17 133.39 190.98 151.6563 235.337 188.025
Unit 3 (MW) 50.00 143.00 109.15 118.0913 130.938 100.244
Unit 4 (MW) 250.00 169.00 178.24 187.0893 134.262 180.205

Cost ($/h) 7, 860 8, 062 7, 938 7, 987.1764 7, 990.2795 7, 905.9163

Losses (MW) 15.91 5.38 6.33 9.2088 9.003 9.33

Violating 2 0 0 0 0 0
quantities

As shown in Fig. 11.3b, the values of Pc and Pm in GA-Fuzzy OPF change from
8th generation and remain constant after 14th generation (Pc. ≈ 0.56759 and
Pm ≈ 0.06654882). It is evident from Fig. 11.3a and comparison of methods
tabulated in Table 11.4, that GA-Fuzzy OPF has better convergence rate and
results least generation cost amongst the three methods. Transformer tapings
and voltage magnitudes (Table 11.5) are also found to be within limits.
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Table 11.2. Load flow solution and lines flows of 6-bus system using GA-Fuzzy OPF

Bus Voltage
(pu)

Angle(degrees) Load Generation

MW MVAr MW MVAr

1 1.001 0.000 100 20 140.856 8.357
2 1.017 1.338 100 20 188.025 15.495
3 1.01 −5.495 100 20 100.244 95.456
4 1.00 −1.300 100 20 180.205 11.556
5 0.977 −3.489 100 50 0.0 0.0
6 0.981 −5.664 100 10 0.0 0.0

From
bus

To bus Line flow
(MVA)

1 2 32.176
2 4 56.43
1 5 72.725
3 5 52.314
4 5 49.347
3 6 31.607
4 6 87.413

Table 11.3. GA parameters

Population size 30
Maximum generation 100
Initial crossover probability 0.9
Initial mutation probability 0.01
Selection operator Stochastic remainder

11.3.4.3 IEEE 30-Bus System

The proposed GA-Fuzzy OPF is also applied to IEEE 30 bus system. Two
sets of generator cost curves are used to illustrate the robustness of the tech-
nique. In case (i) a quadratic cost curve (Alsac and Stott 1974; Yuryevich
and Wong 1999) is taken. In case (ii), some of the cost curves are replaced
with quadratics plus sine components [YUR99]. Therefore in case (ii), there
are many local optimum solutions for the dispatch problem and as a result
steepest descent (SD) method cannot determine the global optimum solution.
The problem is therefore well suitable for validating the proposed algorithm.
The GA-OPF and GA-Fuzzy OPF are compared for IEEE 30-bus system for
same parameters as 26 bus system discussed earlier except a mutation proba-
bility (= 0.005), population size (= 50) and maximum number of generations
(= 50).
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Fig. 11.3a. Convergence of generation cost and max. fitness for GA-OPF & GA-
Fuzzy OPF for 26 Bus system. Generation cost is in $/h

Fig. 11.3b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for 26 bus system
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Table 11.4. Comparison of different OPF methods for 26 bus system

Generation

Sadaat-OPF GA-OPF GA-Fuzzy OPF
(in MW) (in MW) (in MW)

Bus no. 1 447.611 444.703 449.642
Bus no. 2 173.087 170.968 162.317
Bus no. 3 263.363 258.495 264.086
Bus no. 4 138.716 135.239 139.932
Bus no. 5 166.099 181.525 173.9
Bus no. 26 86.939 83.939 85.924

Gen.Cost ($/h) 15447.72 15434.67 15431.69

Losses (MW) 12.8 11.869 12.8

Table 11.5. Load flow solution and transformer tap settings of 26 bus system using
GA-Fuzzy OPF

Bus no. Voltage
magnitude
(in p.u.)

Angle (in
degrees)

Load

MW MVAr

1 1.025 0 51 41
2 1.025 −0.239 22 15
3 1.074 −0.47 64 50
4 0.91 −2.138 25 10
5 1.026 −1 50 30
6 0.994 −2.771 76 29
7 0.992 −2.388 0 0
8 0.992 −2.258 0 0
9 0.979 −4.476 89 50
10 0.976 −4.334 0 0
11 0.992 −2.798 25 15
12 0.987 −3.325 89 48
13 0.991 −1.12 31 15
14 0.984 −2.338 24 12
15 0.978 −3.156 70 31
16 0.97 −3.907 55 27
17 0.974 −4.563 78 38
18 1.004 −1.872 153 67
19 0.976 −6.075 75 15
20 0.967 −4.777 48 27
21 0.965 −5.452 46 23
22 0.963 −5.363 45 22
23 0.956 −6.428 25 12
24 0.949 −6.726 54 27
25 0.955 −6.329 28 13
26 1.015 −0.324 40 20

Total 1263.00 637.00
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Table 11.5. (Continued)

Transformer tap settings
Line 2–3 Line 2–13 Line 3–13 Line 4–8 Line 4–12 Line 6–19 Line 7–9

0.98 1.000 1.080 0.932 0.90 0.983 0.9903

Table 11.6. Best and worst solutions for GA-Fuzzy OPF for IEEE 30 bus system
(quadratic cost curve)

Worst solution ($/h) Best solution ($/h) % Difference

EP [36] 805.61 802.62 0.371147
GA-Fuzzy OPF 802.32054 802.00031 0.03991

Case (i) Quadratic Cost Curve

In this case the unit cost curves are represented by quadratic func-
tions. The program is tested for 100 different runs. The generation costs
of 802.32054 $/h and 802.00031 $/h are obtained for worst and best solu-
tions, respectively (0.03991% difference), through GA-Fuzzy OPF. It shows
the consistency in the results and better performance of the proposed method
than evolutionary programming (EP) OPF for the same number of runs
(Table 11.6).

As shown in Fig. 11.4b, the values of Pc and Pm change from 2nd genera-
tion and remain constant after 15th generation (Pc. ≈ 0.5676 and Pm≈0.0666)
for the best solution. The solutions obtained from other GA and non-GA tech-
niques available in literature (Roa and Pavez-lazo 2003; Alsac and Stott 1974;
Abido 2002; Paranjothi and Anburaja 2002; Yuryevich and Wong 1999) are
compared in Table 11.7. The load flow and transformer tap settings for best
solution are provided in Table 11.10. It is observed that in GA-Fuzzy OPF a
better convergence rate is obtained (as in Fig. 11.4a) and a minimum gener-
ation cost is also achieved in GA-Fuzzy OPF (as in Table 11.7).

Case (ii) Quadratic Cost Curve with Sine Components

In this case, a sine component is added to the quadratic equation cost of
the generators at buses 1 and 2 to reflect the valve-point loading effects. The
values of cost coefficients are given in Table 11.8.

The cost curves of other generators are taken same as in case (i). The
algorithm is tested for 100 different runs. The generation costs of the worst
and the best solutions are 924.3387 and 921.3506 $/h, respectively (0.323%
difference). As per Table 11.9, percentage difference between worst and best
solution for GA-Fuzzy OPF is less than evolutionary programming (EP) based
OPF. Therefore, GA-Fuzzy approach is found to be superior in solving OPF
for cost curve with sine components for same number of runs.

As per Fig. 11.6b values of Pc and Pm vary from 4th generation onwards
till 50th generation (Pc. ≈ 0.57292 and Pm ≈ 0.06392) for best solution. The
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Fig. 11.4a. Convergence of generation cost and max. fitness for GA-OPF & GA-
Fuzzy OPF for IEEE 30 bus system (case i). Generation cost is in $/h

Fig. 11.4b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for IEEE 30 bus system (case ii)
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Table 11.8. Generator cost coefficients for case (ii)

Bus PG
min

(in MW)
PG

max

(in MW)
Cost coefficients

a b c d e

1 50 200 150 2.00 0.0016 50.00 0.0630
2 20

80
25 2.50 0.0100 40.00 0.09890

Generation cost function: cos ti = ai + biPgi +i ciP
2
gi

+ |di sin(ei(P
min
gi

− Pgi))|

Table 11.9. Best and worst solutions for GA-Fuzzy OPF for IEEE 30 bus (quadratic
cost curves with sine components)

Worst solution ($/h) Best solution ($/h) % Difference

EP [36] 926.68 919.89 0.7327
GA-Fuzzy 924.336729 921.350629 0.323

solution details including load flow, transformer tap settings and line flows
are provided for best solution in Table 11.10.

The line flows obtained in this case are within the limits and other con-
straints are also satisfied. Again GA-Fuzzy OPF proves to be consistently
superior to GA-OPF due to faster convergence and lesser generation cost, as
shown in Fig. 11.5a.

11.3.4.4 Modified IEEE 30-Bus System

The original IEEE 30-bus network consists of 6 generator buses, 21 load buses
and 41 lines, of which 4 lines (6, 9),(6, 10),(4, 12) and (28, 27) are under-load-
tap-setting transformer lines. In modified IEEE 30-bus system buses 10, 12,
15, 17, 20, 21, 23, 24 and 29 have been selected as shunt capacitor/reactor
compensation buses. The apparent power flow limit in line (8, 28) is taken as
12 MVA.

The GA-OPF and GA-Fuzzy OPF are compared as shown in Fig. 11.6. for
this system for same parameters as for 6-bus system discussed earlier except
crossover probability (= 0.95), mutation probability (= 0.005), population size
(= 50) and maximum number of generations (= 50).

Hence for best case solution, the changes in values of Pc and Pm start from
4th generation and till 50th generation (Pc. ≈ 0.67479 and Pm ≈ 0.04901),
as shown in Fig. 11.7a, and b. The OPF solutions obtained from other GA
technique based on dynamical hierarchy of the coding system and non-GA
technique based on gradient projection method (GPM) are available in liter-
ature (Lee et al. 1985), respectively. These results are compared along with
other methods in Table 11.11.

It indicates minimum generation cost obtained due to optimal values of
controllable variables, i.e. active power generations, generator bus voltages,
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Table 11.10. Load flow solution and transformer tap settings of IEEE 30 bus system
using GA-Fuzzy OPF

Bus Voltage in p.u. Angle in degrees Generation Load

Case

(i)

Case

(ii)

Case

(i)

Case

(ii)

MW

Case

(i)

MW

Case

(ii)

MVAr

Case

(i)

MVAr

Case

(ii)

MW MVAr

1 1.05 1.05 0 0 174.9664 199.672 −6.562 −9.126 0 0

2 1.034 1.034 −3.608 −4.335 50.35294 20 22.356 39.212 21.7 12.7

3 1.022 1.016 −5.675 −5.875 0 0 0 0 2.4 1.2

4 1.016 1.008 −6.817 −7.062 0 0 0 0 7.6 1.6

5 1.006 1.006 −10.509 −11.007 21.45098 22.275 30.372 31.548 94.2 19

6 1.008 1.005 −7.944 −8.232 0 0 0 0 0 0

7 0.999 0.998 −9.529 −9.904 0 0 0 0 22.8 10.9

8 1.003 1.003 −8.154 −8.431 21.17647 23.725 18.89 25.987 30 30

9 1.029 1.018 −10.152 −10.121 0 0 0 0 0 0

10 1.021 1.027 −12.059 −11.951 0 0 0 0 5.8 2

11 1.071 1.051 −8.783 −8.483 12.66667 14.706 21.737 16.89 0 0

12 1.018 1.038 −11.139 −11.135 0 0 0 0 11.2 7.5

13 1.048 1.048 −10.228 −10.144 12.1098 13.427 22.635 8.075 0 0

14 1.005 1.023 −12.096 −12.07 0 0 0 0 6.2 1.6

15 1.002 1.019 −12.242 −12.188 0 0 0 0 8.2 2.5

16 1.012 1.026 −11.832 −11.764 0 0 0 0 3.5 1.8

17 1.013 1.021 −12.214 −12.111 0 0 0 0 9 5.8

18 0.997 1.009 −12.917 −12.825 0 0 0 0 3.2 0.9

19 0.996 1.007 −13.113 −13.005 0 0 0 0 9.5 3.4

20 1.002 1.011 −12.911 −12.801 0 0 0 0 2.2 0.7

21 1.009 1.015 −12.535 −12.43 0 0 0 0 17.5 11.2

22 1.009 1.016 −12.524 −12.422 0 0 0 0 0 0

23 0.996 1.01 −12.707 −12.652 0 0 0 0 3.2 1.6

24 0.997 1.008 −12.956 −12.913 0 0 0 0 8.7 6.7

25 1.001 1.015 −12.759 −12.826 0 0 0 0 0 0

26 0.983 0.997 −13.193 −13.248 0 0 0 0 3.5 2.3

27 1.012 1.028 −12.361 −12.5 0 0 0 0 0 0

28 1.002 0.999 −8.433 −8.71 0 0 0 0 0 0

29 0.992 1.008 −13.619 −13.72 0 0 0 0 2.4 0.9

30 0.98 0.996 −14.522 −14.595 0 0 0 0 10.6 1.9

Total 292.7233 293.806 109.43 112.585 283.4 126.20

Gen. Cost

($/h)

Losses

(MW)

Transformer tap setting

Line 6–9 Line 6–10 Line 4–12 Line 28–27

Case (i) 802.0003 9.494 1.0032 0.9645 1.0161 0.9645

Case (ii) 921.3506 10.406 1.0355 0.9129 0.9452 0.9452

1–2 117.211 139.6258

1–3 58.3995 61.0022

2–4 34.0758 30.7947

2–5 63.7783 61.7539

2–6 45.3399 41.6185

3–4 54.5622 56.8812

4–6 50.2703 48.6008

4–12 30.5889 33.3706

5–7 14.1355 16.1981

6–7 33.9924 35.221
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Table 11.10. (Continued)

Lines Line flow (in MVA)

Case (i) Case (ii)

6–8 13.6882 9.2172

6–9 22.4033 27.0031

6–10 14.6187 20.0154

6–28 16.5409 16.0689

8–28 3.3685 3.0049

9–11 24.1764 21.6919

9–10 32.7929 31.3223

10–20 11.0315 9.8192

10–17 9.861616 7.33966

10–21 18.96153 18.074

10–22 9.0741 8.5101

12–13 24.9376 15.5102

12–14 7.6911 8.1147

12–15 17.4525 18.8445

12–16 6.34027 7.723838

14–15 1.2313 1.5983

15–18 5.4066 6.18

15–23 4.5343 5.358

16–17 3.2983 3.756

18–19 2.3627 2.8022

19–20 8.5117 7.3363

21–22 2.0887 3.1629

22–24 6.9397 5.7964

23–24 1.4447 1.8148

24–25 1.3934 1.8788

25–26 4.2647 4.2626

25–27 5.633 6.1149

27–29 6.4154 6.4095

27–30 7.2897 7.2825

28–27 19.7428 20.07

29–30 3.7542 3.7525

transformer taps and shunt capacitors/reactive compensations. The conver-
gence of GA-Fuzzy OPF is better than GA-OPF as evident from Fig. 11.7a.
The apparent power flows at line (8, 28) is 3.034 MVA and 3.317 MVA for
GA-OPF and GAF-OPF respectively. The load flow solution for best solution
is provided in Table 11.12.

GA-Fuzzy OPF is run for 100 different runs with different initial popu-
lations on above system. The convergence graphs for generation costs and
maximum fitness in best and worst cases are shown in Fig. 11.8, which are
converging very close to each other. The total generation cost obtained in
worst case is 801.1601 $/h. Therefore, GA-Fuzzy OPF gives consistently good
results as percentage deviation between best case and worst case generation
costs is ≈ 0.089%, which is a very small variation.
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Fig. 11.5a. Convergence of generation cost and Max. fitness for GA-OPF & GA-
Fuzzy OPF for IEEE 30 bus system (case ii). Generation cost is in $/h

Fig. 11.5b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for IEEE 30 bus system (case ii)
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Fig. 11.6a. Convergence of generation cost & max. fitness for GA-OPF & GA-Fuzzy
OPF for modified IEEE 30-bus system

Fig. 11.6b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for modified IEEE 30-bus system
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Fig. 11.7. Convergence of generation cost & max. fitness for best and worst cases
for modified IEEE 30-bus system using GA-Fuzzy OPF

Table 11.11. Comparison of different OPF methods for modified IEEE 30-bus
system

Bus Active power generations (in MW) Generat-
ion cost
($/h)

Real
power
losses
(MW)

1 2 5 8 11 13

Lee et al. [25] 187.219 53.781 16.955 11.288 11.287 13.355 804.853 10.485
Lai et al. [26] 177.7594 48.722 21.454 20.954 11.768 12.052 800.805 9.309
GA-OPF 175.462 50.118 22.000 20.686 11.882 12.439 801.447 9.187
GA-Fuzzy OPF 174.886 48.941 21.176 22.647 12.588 12.000 800.442 8.838

Bus Generator bus voltages (in p.u.)
1 2 5 8 11 13

Lee et al. [25] 1.1 1.08 1.03 1.04 1.08 1.08
Lai et al. [26] 1.081 1.063 1.034 1.038 1.1 1.055
GA-OPF 1.073 1.052 1.03 1.04 1.076 1.061
GA-Fuzzy OPF 1.081 1.063 1.031 1.039 1.095 1.07
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Table 11.11. (Continued)

Line Transformer tap settings
(6,9) (6,10) (4,12) (28,27)

Lee et al. [25] 1.072 1.07 1.032 1.068
Lai et al. [26] 1.0 0.975 0.975 1.0
GA-OPF 1.016 1.0419 1.087 1.0097
GA-Fuzzy OPF 0.99032 0.98387 0.99032 0.96451

Bus Shunt capacitor/reactor compensations (in MVAr)
10 12 15 17 20 21 23 24 29

Lee et al [25] 0.692 0.046 0.285 0.287 0.208 0.000 0.330 0.938 0.269
Lai et al. [26] 0.1 0.7 1.9 2.4 1.5 2.2 4.7 4.7 2.4
GA-OPF 3.033 2.544 4.618 4.266 4.736 0.528 2.476 4.442 4.194
GA-Fuzzy OPF 3.982 0.02 4.149 4.99 4.432 4.354 4.54 4.687 2.097

11.3.5 Conclusions

The proposed GA-Fuzzy OPF has also been tested in different test systems as
indicated earlier. It has shown better results in terms of convergence, consis-
tency in different runs and minimum generation cost as compared to simple
GA-OPF and the other techniques. These advantages are mainly due to the
changes in crossover and mutation probabilities values which are governed by
a set of fuzzy rule base, although they are stochastic in nature. The varia-
tions in above GA parameters governed by fuzzy rule base have resulted in
lesser generation costs with high convergence rates than other GA and non
GA-OPF variants tested for 26-bus, 6-bus, IEEE 30-bus and modified IEEE
30-bus systems (Figs. 11.9–11.12).

In order to demonstrate the real potential of such technique, the proposed
GAF-OPF is successfully tested on IEEE 30 bus system for quadratic cost
curve with sine components also. The results obtained are compared with EP
based OPF with greater satisfaction. This proves the superiority of the pro-
posed GA-Fuzzy OPF method to the gradient-based conventional and other
GA variants for finding OPF solution.

11.4 Transmission Pricing Model Under Deregulated
Environment

11.4.1 Introduction

Several methods are developed for allocation of the costs embedded in
the system to various transactions (embedded cost based pricing) and
those incurred by system from one additional transaction (incremental
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Table 11.12. Load flow solution for modified IEEE 30-bus system using GA-Fuzzy
OPF

Bus Voltage
in p.u.

Angle in
degrees

Generation Load

MW MVAr MW MVAr

1 1.081 0 174.886 5.021 0 0
2 1.063 −3.279 48.941 30.435 21.7 12.7
3 1.05 −5.273 0 0 2.4 1.2
4 1.05 −6.347 0 0 7.6 1.6
5 1.034 −9.588 21.176 29.221 94.2 19
6 1.041 −7.361 0 0 0 0
7 1.03 −8.761 0 0 22.8 10.9
8 1.039 −7.568 22.647 36.845 30 30
9 1.049 −9.574 0 0 0 0
10 1.025 −11.429 0 0 5.8 2
11 1.095 −8.414 12.588 17.344 0 0
12 1.032 −10.671 0 0 11.2 7.5
13 1.07 −9.736 12 10.337 0 0
14 1.021 −11.649 0 0 6.2 1.6
15 1.02 −11.883 0 0 8.2 2.5
16 1.023 −11.319 0 0 3.5 1.8
17 1.022 −11.673 0 0 9 5.8
18 1.012 −12.495 0 0 3.2 0.9
19 1.01 −12.661 0 0 9.5 3.4
20 1.014 −12.451 0 0 2.2 0.7
21 1.016 −11.968 0 0 17.5 11.2
22 1.016 −11.95 0 0 0 0
23 1.015 −12.378 0 0 3.2 1.6
24 1.007 −12.42 0 0 8.7 6.7
25 1.014 −12.173 0 0 0 0
26 0.996 −12.596 0 0 3.5 2.3
27 1.026 −11.749 0 0 0 0
28 1.035 −7.814 0 0 0 0
29 1.008 −13.027 0 0 2.4 0.9
30 0.996 −13.878 0 0 10.6 1.9

cost based pricing). In (Sood 2003), an evolutionary programming based
SRMC method is proposed and several embedded cost based methods
in (Uttar Pradesh 2004) are proposed for Indian system. But their re-
sults are obtained for different transmission subsystems. The method-
ologies for determination of transmission pricing should be so designed
that basic goals of transmission pricing can be achieved. Therefore, the
methodology can be designed on the basis of marginal cost or embedded
cost or a composite cost, i.e. the combination of marginal and embed-
ded cost.

In this chapter, marginal cost method is used and tested on modified IEEE-
30 bus system. Embedded cost allocation methods, e.g. Postage Stamp and
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MW-Mile methods are also tested and analyzed on Indian UPSEB 75 bus
system. A new variant of MW-Mile is proposed and analyzed. Finally, a hybrid
type marginal cost based transmission pricing model is proposed for Indian
transmission system with pool, bilateral and multilateral transactions. In this
model, supplementary/complementary charges left as unrealized revenue after
applying marginal cost method are allocated using the MW-Mile methods.
This model is tested on Indian UPSEB 75 bus system.

11.4.2 Marginal Cost Based Transmission Pricing Method

In this section the marginal cost based transmission pricing method is an-
alyzed and tested, which dispatches the pool in combination with privately
negotiated bilateral and multilateral wheeling contracts, with maximization
of social benefit with all system constraints. In the method, all scheduled firm
transactions are considered to be added to the system. The method is based



11.4 Transmission Pricing Model Under Deregulated Environment 435

on GA-Fuzzy optimization technique, which has been described earlier. The
losses taking place in transmission network due to transactions as well as
pool are considered to be supplied from the pool itself. They are not supplied
by transactions generators or cope up with transaction loss supply contracts
which are complex to setup and coordinate.

As the process of developing suitable transmission pricing methodologies
in India is in initial stages, hence following facts are considered for application
of pricing method to modified IEEE 30 bus system and Indian UPSEB 75 bus
system.

1. All the pool generators are required to bid their generation cost charac-
teristics to the pool along with maximum generation.

2. There are no non-firm bilateral transactions.
3. The active and reactive power of pool loads are known from load forecast-

ing and kept constant during optimization. Therefore, there is no bidding
from pool demands.

4. The other costs of system like maintenance and different overheads, etc.
are not being included in proposed model, which should be considered
independently.

1. Mathematical formulation

Let n = number of buses in a system
nfbt = number of schedule firm bilateral transactions
nfmt = Groups of schedule firm multilateral transactions

Firm bilateral transaction load component at jth bus (Pdfb
j ) =

n∑
i=1

FBTij

(11.14)
where FBTij = Firm bilateral transactions delivered at the jth load bus from
the ith generator bus.

Generation at ith bus for firm bilateral transactions (Pgfb
j ) =

n∑
j=1

FBTij

(11.15)
For a firm bilateral transaction fbt from ith to a jth bus

Pgfbt
i = Pdfbt

j (11.16)

where, Pgfbt
i and Pdfbt

j are real power generation and demand for a firm
bilateral transaction fbt, at ith and jth bus, respectively.

Vector of real power demand from firm bilateral transactions may be writ-
ten as

Pdfb = FBTT × U =
{

Pdfb
j ; j = 1, 2, . . . . . . , n

}
(11.17)

where FBT = matrix of firm bilateral transactions delivered at the jth load
bus from the ith generator bus.
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U = Unity vector of dimension n.

Vector of real power generation from firm bilateral transactions also be
written as

Pgfb = FBTT × U =
{

Pdfb
i ; i = 1, 2, . . . . . . , n

}
(11.18)

In case of a multilateral transaction, there are many generation points
(at least more than one), similarly there are many load points (at least more
than one).

Let PMT k = size of kth group of multilateral transaction, i.e. total power
that has to be transferred from generation points to the load points of a kth
group of multilateral transaction.

ngk = number of generation points for a kth group
ndk = number of demand points for a kth group

Real power demand of kth multilateral transaction = Pdmk
j where k =

1 , 2 , . . . .n.
Real power generation from kth multilateral transaction = Pgmk

i where
i = 1 , 2 , . . . .n.

For kth group of multilateral transaction with total power transfer
PMT k is

n∑
i=1

Pgmk
i

n∑
j=1

Pdmk
j = PMT k (11.19)

Total generation at ith bus due to nfmt groups of multilateral transac-
tions is

Pgm
i =

nfmt∑
k=1

Pgmk
i (11.20)

Total demand at jth bus due to nfmt groups of multilateral transactions is

Pdm
j =

nfmt∑
k=1

Pdmk
j (11.21)

Generation vector of all firm multilateral transaction groups may be writ-
ten as

Pgm = {Pgm
i ; i = 1, 2, . . . .., n} (11.22)

Demand vector of all firm multilateral transaction groups may be writ-
ten as

Pdm = {Pdm
j ; j = 1, 2, . . . .., n} (11.23)

The gencos participating in the pool bid their cost function and maximum
generation, which they want to deliver to the pool. After optimization of social
benefit generations at power pool generation buses are known.
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Let the vector of pool real power generation

Pgp = {Pgp
i ; i = 1, 2, . . . . . . .., n} (11.24)

Vector of pool real power demand

Pdp = {Pdp
j ; j = 1, 2, . . . . . . .., n} (11.25)

Let the vectors of the total real power demand and generation be

PdT = {PdT
j ; j = 1, 2, . . . . . . . . . ., n} (11.26)

PgT = {PgT
i ; i = 1, 2, . . . . . . . . . ., n} (11.27)

From equations (11.21), (11.23) and (11.25)

PdT = Pdp + Pdfb + Pdm (11.28)

Similarly, from equations (11.18), (11.22) and (11.24)

PgT = Pgp + Pgfb + Pgm (11.29)

All firm transactions are ready to pay the system marginal price and they
do not bid.

The load point of the transaction and pool may have reactive power com-
ponent in addition to real power.

Let Qdp and Qdfb be the vector of the reactive power demand due to pool
and firm bilateral transaction, respectively.

Qdp = {Qdp
j ; j = 1, 2, . . . ..n} (11.30)

Qdfb = {Qdfb
j ; j = 1, 2, . . . ..n} (11.31)

In the combined power pool transaction dispatched, gencos supplying the
loads by transactions may also participate in the pool. Therefore, all such
gencos in combinations may meet the reactive power requirements at all the
buses of the system. It means that the power balance equation (11.16) for
bilateral transactions and (11.19) for multilateral transaction is not necessary
for reactive power. However for specific situation when a genco is not par-
ticipating in pool and it is supplying loads by a transaction and the reactive
power requirement of the load is to be supplied by the genco of the transaction
only, then these equations for reactive power are also valid.
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It is better to supply the reactive power as per requirement of the system,
rather than supplying the reactive power at the generation point of a trans-
action equal to reactive power of load at the load point of the transaction. All
generators are paid and loads are charged for the reactive power accordingly.

2. Objective function and constraints

The objective function for the optimization problem is to minimize the
overall costs of active and reactive power generation with the capital invest-
ment of capacitor. Based on the assumption of constant loads, to minimize the
total cost is equivalent to maximize the social benefits. Therefore, suggested
objective function to maximize social benefit is given as follows:

min
ng∑

j=1

[Ci(Pgi) + Ci(Qgi)]
ncap∑
j=1

Ccj(Qcj) (11.32)

Let the active power generation cost curve bid of the generator at ith bus =
Ci(Pgi)

Reactive power generation cost of generator at ith bus = Ci(Qgi)
Equivalent production cost of jth capacitor = Ccj(Qcj)
where, j = 1, 2, . . . .. ncap, as ncap = Total number of capacitors operating

in the system
ng = Total number of pool generators.

It is seen that GA-Fuzzy OPF technique works successfully for non-linear
active generation cost curves. Therefore, proposed model is also capable of
handling all types functions such as linear, quadratic, non-linear, convex or
non-convex, continuous or discontinuous, etc. used for representing active
power generation cost curve bids function in (11.32). For sake of simplicity
cost curves for active power generation are modeled by following quadratic
function:

Ci(Pgi) = a + Pgi + cPg2
i (11.33)

Guo et al. (2004) have used equation for reactive power generation cost of
the same form of quadratic equation as (11.33) but with different a, b and c
coefficients. Another form introduced in (Lamont and Fu 1999) and used in
(Dai et al. 2001) is based on opportunity cost.

The equivalent production cost for capital investment return of capacitors
in (11.32) can be expressed as their depreciated rate (the life span of capacitors
is 15 years) as follows:

Ccj(Qcj) = Qcj × $11600/MVAr ÷ (15 × 365 × 24 × h)h
= Qcj × $13.24/(100 MVArh) (11.34)

where h represents the average usage rate of capacitors taken as 2/3. Qcj is in
per unit on 100 MVA base. Equation (11.34) is a linear cost function with the
slope of dCcj(Qcj)/dQcj = $13.24/(100MVArh) representing approximately
the capacitor investment impacts on reactive pricing.



11.4 Transmission Pricing Model Under Deregulated Environment 439

The equality constraints are load flow equations:

g(V, δ) = 0 (11.35)

where

g(V, δ) =

{
Pgi − Pdi − Pi(V, δ) ⇒ For each PV and PQ bus except slack bus
Qgi − Qdi − Q(V, δ) ⇒ For each PQ bus only

}

where

Pi = active power injection into ith bus
Qi = reactive power injection into ith bus
Pdi = active load on ith bus
Qdi = reactive load on ith bus
Pgi = active generation on ith bus
Qgi = reactive generation on ith bus

The inequality constraints are:

• Active power generation Pgi at PV buses

Pgmin
i ≤ Pgi ≤ Pgmax

i (11.36)

where Pgmin
i and Pgmax

i are respectively minimum and maximum value of
active power generation at ith PV bus.

• Reactive power generation Qgi at PV buses

Qgmin
i ≤ Qgi ≤ Qgmax

i (11.37)

where Qgmin
i and Qgmax

i are respectively minimum and maximum value
of reactive power generation at ith PV bus.

• Reactive power output limit of capacitor

0 ≤ Qcj ≤ Qcmax
j (11.38)

where Qcmax
j is maximum value of output of capacitor at jth bus.

• Voltage magnitude V of each PV and PQ bus

V min
i ≤ Vi ≤ V max

i (11.39)

where, V min
i and V max

i are respectively minimum and maximum voltage
at ith bus

• Phase angle δ of voltage at all the buses.

δmin
i ≤ δi ≤ δmax

i (11.40)

where, δmin
i and δmax

i are respectively minimum and maximum allowed
value of voltage phase angle at ith bus
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• Transmission power limit
Sij ≤ Smax

ij (11.41)

where, Smax
ij is the maximum rating of transmission line connecting bus

i and j.

Based on the above mathematical model the corresponding Lagrangian
function of this optimization problem takes the form:

L =

ng∑
i=1

[Ci(Pgi) + Ci(Qgi)] +

ncap∑
j=1

Ccj(Qcj) −
n∑

i=1

λpi[Pgi − Pdi − Pi(V, δ)]

−
n∑

i=1

λqi[Qgi − Qdi − Qi(V, δ)] +

ng∑
i=1

µpi,min(Pgmin
i − Pgi)

+

ng∑
i=1

µpi,max(Pgi − Pgmax
i ) +

ng∑
i=1

µqi,min(Qgmin
i − Qgi)

+

ng∑
i=1

µqi,max(Qgi − Qgmax
i ) +

ncap∑
j=1

µcj,max(Qcj − Qcmax
j )

+
n∑

i=1

n∑
i=1
j �=1

ηij(Sij − Smax
ij ) +

n∑
i=1

υi,min(V min
i − Vi) +

n∑
i=1

υi,max(Vi − V max
i )

According to the theory of microeconomics, the marginal prices for ac-
tive and reactive power on ith bus are λpi and λqi, respectively, in the above
Lagrangian function and are taken as the corresponding spot prices in elec-
tricity markets. Similar to vector λ, the vectors µ, η and υ contain marginal
change in cost with respect to the corresponding constraints. The elements of
vectors µ, η and υ respectively are different than zero only in case that the
corresponding constraints are active.

Optimization of (11.32), with power flow relations included as equality con-
straints (11.35), inequality constraints (11.36) to (11.41) along with generation
bidding constraints GA-Fuzzy approach. All the control variables, e.g. V at
PV bus and tap ratio of tap setting transformers are also taken care in this
optimization process. GA-Fuzzy approach does not provide Lagrange multi-
pliers required for determination of SRMC (short run marginal cost) during
optimization process directly. Therefore, in the proposed model method used
to determine LMP (locational marginal prices) and hence SRMC is explained
in the next section. A solution to this optimization problem provides the pool
demands Pdp

i and pool generations Pgp
i .

1. Method for determination of LMP and SRMC

The optimization problem is solved, if the following equations of optimality
are satisfied.

∂L

∂Pgi
=

∂Ci(Pgi)
∂Pgi

− λpi = 0 i = 1, . . . . . . ng (11.42)

∂L

∂Qgi
=

∂Ci(Qgi)
∂Qgi

− λqi = 0 i = 1, . . . . . . ., ng (11.43)
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∂L

∂δi
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[
λpj
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]
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]
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+
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⎛
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+
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+

⎛
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ng+nload∑
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+

nload∑
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j �=s

λqj
∂Qj

∂δi

⎞
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where i = 1, 2, . . . .(ng + nload) and i �= s

∂L

∂Vi
=

n∑
j=1

[
λpj

∂Pj

∂Vi

]
+

n∑
j=1

[
λqj

∂Qj

∂Vi

]
= 0

=

⎛
⎜⎝λps

∂Ps

∂Vi
+

ng+nload∑
j=1
j �=s

λpj
∂Pj

∂Vi

⎞
⎟⎠+

⎛
⎜⎝λqs

∂Qs

∂Vi
+

ng∑
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j �=s

λqj
∂Qj
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+

nload∑
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∂Ps
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λqj
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∂Vi

⎞
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⎛
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λpj
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+
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λqj
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∂Vi

⎞
⎟⎟⎠

(11.45)

where i = 1, 2, . . . ..nload and i �= s

∂L

∂λpi
= Pi(V, δ) − Pgi + Pdi = 0 (i = 1, . . . . . . .n) (11.46)

∂L

∂λqi
= Qi(V, δ) − Qgi + Qdi = 0 (i = 1, . . . . . . .n) (11.47)

where n = total no. of buses
s = slack bus
ng = total no. of generator buses
nload = total no. of load buses
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Equations. (11.45) and (11.46) can be expressed in matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎣

λps ∂Ps
∂δi

+ λqs
∂Qs
∂δi

+
ng∑

j=1
j �=s

λqj
∂Qj

∂δi
i = 1, . . . (ng + nload)

λps ∂Ps
∂Vi

+ λqs
∂Qs
∂Vi

+
ng∑

j=1
j �=s

λqj
∂Qj

∂Vi
i = 1, . . . (nload)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Pj

∂δi
j = 1, . . . (ng + nload)

∂Qj

∂δi
j = 1, . . . nload

i = 1, . . . (ng + nload) i = 1, . . . (ng + nload)
i and j �= s i and j �= s

−− −−−−−−−−−− −− −−−−−−−−−−
∂Pj

∂Vi
j = 1, . . . (ng + nload)

∂Qj

∂Vi
j = 1, . . . nload

i = 1, . . . (ng + nload) i = 1, . . . (ng + nload)

i and j �= s i and j �= s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λpj

j = 1, . . . (ng + nload)
j �= s
−−−−−−−−−−
λqj

j = 1, . . . (nload)
j �= s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

It can also be expressed as:⎡
⎢⎢⎢⎢⎢⎣

λps
∂Ps

∂δi
+ λqs

∂Qs

∂δi
+

ng∑
j=1
j �=s

λqj
∂Qj

∂δi
i = 1, . . . (ng + nload)

λps
∂Ps

∂Vi
+ λqs

∂Qs

∂Vi
+

ng∑
j=1
j �=s

λqj
∂Qi

∂Vi
i = 1, . . . nload

⎤
⎥⎥⎥⎥⎥⎦

+[J ]T

⎡
⎢⎢⎣

λpj
j = 1, . . . (ng + nload)

j �= s

λqj
j = 1, . . . nload

j �= s

⎤
⎥⎥⎦ =

[
0
0

]

where J = Jacobian obtained from N-R load flow method for final optimized
results.[

λpj j = 1, . . . (ng + nload)
λqi j = 1, . . . nload

]
= −

(
[J ]T

)−1

×

⎡
⎢⎢⎢⎢⎢⎣

λps
∂Ps

∂δi
+ λqs

∂Qs

∂δi
+

ng∑
j=1
j �=s

λqj
∂Qj

∂δi
i = 1, . . . (ng + nload)

λps
∂Ps

∂Vi
+ λqs

∂Qs

∂Vi
+

ng∑
j=1
j �=s

λqj
∂Qi

∂Vi
i = 1, . . . nload

⎤
⎥⎥⎥⎥⎥⎦ (11.48)
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Equation. (5.30) can be written for slack bus as:

λps =
∂Cs(Pgs)

∂Pgs
(11.49)

and (11.43) can be written for slack and PV buses respectively as:

λqs =
∂Cs(Qgs)

∂Qgs
(11.50)

λqi =
∂Ci(Qgi)

∂Qgi
i = 1, . . . . . . ng (11.51)

Therefore, real (λp) and reactive (λq) marginal prices for slack bus, PV
buses and PQ buses are obtained solving (11.48)–(11.51).

Short run marginal cost (SRMC) of real power wheeling PWCij and re-
active power wheeling QWCij for transaction from bus i to j are calculated
by following equations:

PWCij = PWijx (λpj − λpi) (11.52)
QWCij = QWijx (λqj − λqi) (11.53)

where, PWCij and QWCij are real power and reactive power to be
wheeled from bus i to j, respectively.

3. Algorithm for marginal cost transmission pricing method

Step 1 All system voltages and pool loads are set to initial conditions. All
feasible (scheduled) firm transactions are added to the system.

Step 2 For active power generation cost, reactive power generation cost of all
pool generators and capacitor reactive power support cost, the optimiza-
tion of objective function (11.32) is carried out satisfying all constraints
(11.35)–(11.41) using GA-Fuzzy approach. The inequality constraints of
tap setting transformers are also considered in this optimization process.

Step 3 After the optimization, voltages, tap settings, capacitors reactive sup-
ports and pool generations are obtained.

Step 4 Marginal costs for both real and reactive power at all buses are cal-
culated using (11.48–11.50).

Step 5 SRMC of wheeling for bilateral transactions are calculated using
(11.52) and (11.53), respectively.

Step 6 The amount to be paid by each demand and amount to be received by
each genco is determined based on marginal cost. Similarly, multilateral
transaction is treated.

Step 7 The Marginal network revenue is determined based on total payments
and receipts.
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4. Application of marginal cost transmission pricing method

The results of method tested for modified IEEE 30 bus system are
presented here. The data and single line diagram of this system is given in
Appendix F.

The calculations shown in Tables 11.13–11.17 indicates that due to imple-
mentation of marginal prices (i.e. nodal prices), marginal network revenue of
40.301905 $/h is obtained.

Table 11.13. Revenue received from Pool demand

Bus
no.

Real
demand
(MW)

λpi ($/MW h) Revenue
($/h)

Reactive
demand
(MVAr)

λqi

($/MVAr
h)

Revenue
($/h)

1 0 3.31921 0 0 0.049762 0
2 21.7 3.435997 74.56113 12.7 0.042547 0.540345
3 2.4 3.513915 8.433397 1.2 0.101652 0.121983
4 7.6 3.570239 27.13382 1.6 0.110167 0.176267
5 94.2 3.690331 347.6292 19 0.127005 2.413096
6 0 3.612632 0 0 0.129748 0
7 22.8 3.66913 83.65617 10.9 0.144936 1.579805
8 30 3.626385 108.7916 30 0.150447 4.513415
9 0 3.616505 0 0 0.123827 0
10 5.8 3.621814 21.00652 2 0.13621 0.27242
11 0 3.61415 0 0 0.094843 0
12 11.2 3.599261 40.31173 7.5 0.126418 0.948136
13 0 3.598323 0 0 0.123478 0
14 6.2 3.676129 22.792 1.6 0.141555 0.226487
15 8.2 3.685928 30.22461 2.5 0.134784 0.336961
16 3.5 3.634265 12.71993 1.8 0.141915 0.255447
17 9 3.64232 32.78088 5.8 0.143435 0.831922
18 3.2 3.723113 11.91396 0.9 0.142798 0.128519
19 9.5 3.728377 35.41958 3.4 0.142602 0.484848
20 2.2 3.704354 8.149579 0.7 0.13277 0.092939
21 17.5 3.662132 64.08731 11.2 0.159024 1.78107
22 0 3.659034 0 0 0.156488 0
23 3.2 3.722763 11.91284 1.6 0.12908 0.206529
24 8.7 3.736867 32.51075 6.7 0.158234 1.060166
25 0 3.746257 0 0 0.152652 0
26 3.5 3.822748 13.37962 2.3 0.203776 0.468684
27 0 3.674906 0 0 0.128106 0
28 0 3.640752 0 0 0.140059 0
29 2.4 3.783965 9.081516 0.9 0.116025 0.104422
30 10.6 3.858995 40.90535 1.9 0.147013 0.279325

Total 1037.401 Total 16.82278
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Table 11.14. Expenditure for generation

Bus
no.

Real
generation

(MW)

λpi

($/MW h)
Expenditure

($/h)
Reactive

generation
(MVAr)

λqi

($/MVArh)
Expenditure

($/h)

1 174.961 3.31921 580.7323 11.902 0.049762 0.592267
2 47.529 3.435997 163.3095 15.599 0.042547 0.663691
5 21.176 3.690331 78.14645 36.06 0.127005 4.5798
8 24.51 3.626385 88.8827 34.885 0.150447 5.248344
11 12.039 3.61415 43.51075 15.297 0.094843 1.450813
13 12.329 3.598323 44.36372 21.845 0.123478 2.697377

Total 998.9454 Total 15.23229

Table 11.15. Revenue received from Bilateral transactions

Transaction
no.

From bus To bus Size (MW) SRMC
($/MW h)

Revenue
Received

($/h)

1 9 13 5 −0.018182 −0.09091
2 22 25 5 0.087223 0.436115

Total 0.345205

Table 11.16. Revenue received from multilateral transactions

Bus
no.

MW λpi

($/MW h)
Expenditure

($/h)
Bus no. MW λpi

($/MW h)
Revenue
received
($/h)

6 4 3.612632 14.450528 11 2 3.61415 7.2283
7 2 3.66913 7.33826 13 3 3.598323 10.794969

14 1 3.676129 3.676129

Total 21.788788 Total 21.699398

Table 11.17. Summary of results

S. no. In ($/h)

1 Revenue received from pool real demand 1,037.401
2 Revenue received from pool reactive demand 16.82278
3 Revenue received from bilateral transactions 0.345205
4 Revenue received from multilateral transactions −0.08939
5 Expenditure for real generation 998.9454
6 Expenditure for reactive generation 15.23229
7 Total revenue 1,054.479595
8 Total expenditure 1,014.17769
9 Marginal network revenue 40.301905
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11.4.3 Postage Stamp Method

It is a simplest method of transmission pricing and makes no distinction be-
tween transaction with regard to the power flow path, supply or delivery
points, or the time when it takes place.

The results of this method tested for Indian UPSEB-75 bus system are pre-
sented in Table 11.18 in this section (Fig. 11.13–11.17). Single line diagram and
transmission ARR (annual revenue requirement) data is given Appendix G.

Table 11.18. Embedded cost allocation for Indian UPSEB 75-bus system using
postage stamp method

Transactions Rs. lakh/h

Bilateral T1 0.211683854
Bilateral T2 0.190515469
Bilateral T3 0.15876289
Bilateral T4 0.105841927
Bilateral T5 0.088589693
Bilateral T6 0.034504468
Bilateral T7 0.042336771
Bilateral T8 0.02857732
Bilateral T9 0.031752578
Bilateral T10 0.148178698
Bilateral T11 0.052920963
Bilateral T12 0.465704479
Multilateral 2.937854367
Pool 1.264408828

Total ARR 5.761632306
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Fig. 11.13. Real marginal price for Indian UPSEB 75-bus system
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11.4.4 MW Mile Methods

It requires the accurate load flow results to compute the power flow in the
lines. Once the power flow in each line is known, system usage index for each
transaction is calculated. The transmission charge is then proportional to the
transmission usage by individual transaction. The system usage index for each
transaction is calculated by following relation:

UITi
=
∑

j

⎡
⎣ Pj;Ti

∗ (Lj ∗ F ′
j)

(
∑
i

Pj;Ti
+ Pj;pool)

⎤
⎦ (11.54)

UITi
= Price charged for transaction Ti in $ (System Usage Index)

Pj,Ti
= Incremental loading of line j due to transaction (bilateral/multilateral)

Ti, MW.
Pj;pool = Loading of line j due to pool transactions, MW.
Lj = Length of the line j, mile.
F ′

j = Cost of the line per unit length, $/Mile.

(i) Procedure to calculate system usage index
Step 1: Find the cost of the line by multiplying the unit cost of the line

by the line lengths (L∗
j F ′

j).
Step 2: Find the base case power flow on all lines, which can be obtained

using an OPF.
Step 3: Find the new load flow solution with each transaction Ti and

hence the power flows on each line.
Step 4: Calculate the incremental power flows in each line caused by

the transaction Ti.
Step 5: Calculate each line usage due to transaction Ti by multiplying

incremental line flows obtained in Step 4 and cost of per unit length
of line in Step 1, i.e. P ∗

j,Ti
(L∗

j F ′
j), where j is any line.
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Step 6: Find the total system usage by transaction Ti, i.e.
∑
j

P ∗
j,Ti

(L∗
j F ′

j).

Step 7: The system usage UITi
(System Usage Index) of each trans-

action Ti is calculated for proportional allocation of ARR given by
equation (11.54).

Step 8: Calculate the proportional allocation of ARR to transaction Ti.
(ii) Proposed methods for proportional allocation of ARR

Let

UITi
= system usage index of any transaction Ti(bilateral/multilateral) as

given by (11.54)
UIpool = system usage index due to pool transactions, as given by (11.55)

UIpool =
∑

j

⎡
⎣ Pj;pool ∗ (Lj ∗ F ′

j)
(
∑
i

Pj;Ti
+ Pj;pool)

⎤
⎦ (11.55)

UIcombinedi
= system usage index due to all transactions taken simultane-

ously, i.e. bilateral+multilateral (if any), as given by (5.44)

UIcombined =
∑

j

[
Pj;

∑
Ti

∗ (Lj ∗ F ′
j)

(Pj;
∑

Ti
+ Pj;pool)

]
(11.56)

where Pj;
∑

Ti
= Incremental loading of line j due to all transactions taken

simultaneously, i.e. bilateral+multilateral (if any), MW.

The ARR allocation can be done by two possible methods discussed below:

Method-1 (When all transactions are considered independently)

Transmission charges paid for transaction Ti(RTi
)

= ARR × UITi

(
∑
i

UITi
+ UIpool)

(11.57)

Transmission charges paid for pool transactions (Rpool) = ARR – Trans-
mission charges paid for transactions Ti, i.e. (Bilateral and Multilateral, if
any)

= ARR × UIpool

(
∑
i

UITi
+ UIpool)

(11.58)

In this method ARR is shared by all transactions (bilateral, multilateral
and pool) on the basis of their respective system usage. The system usage is
measured here in terms of system usage index. Whenever another bilateral
or multilateral transaction takes place, the ARR is redistributed among all
transactions according to new and lesser system usage index values. Therefore,
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charges paid by each transaction become less compared to earlier case (i.e.
when new transaction did not take place). This method gives incentive to all
old transactions whenever new transaction takes place in the system.

This method suffers from a major drawback whenever two or more than
two transactions take place simultaneously. In that case it charges higher than
actual values (transactions are taken simultaneously) for bilateral and mul-
tilateral transactions. Therefore, pool transactions have advantage of paying
lesser amount of charges. The reason of this drawback is that combined usage
index (UIcombined) of transactions, i.e. (bilateral + multilateral, if any) is less
than sum of usage indexes (

∑
i

UITi
) of transactions, i.e. (bilateral + multi-

lateral, if any) treating each of them independently. This is due to difference
in actual value of power flow in each line (considering all transactions taking
place simultaneously) and algebraic sum of power flow in each line due to
bilateral and multilateral transactions (if any) independently.

Method-2 (When all transaction are considered simultaneously)

Allocation of transmission charges paid for bilateral and multilateral trans-
actions simultaneously

(Rcombined) = ARR × UIcombined

(UIcombined + UIpool)
(11.59)

Transmission charges paid for transaction Ti(RTi
) = Rcombined × UITi∑

i

UITi

(11.60)

Transmission charges paid for pool transactions (Rpool) = ARR −
∑

i

RTi

(11.61)

In this method, collective charges for all bilateral and multilateral transac-
tions (if any) are calculated. Then individual contribution to collective charges
for each transaction is calculated on the basis of system indexes of transac-
tions (while considering all transactions independently). Therefore, drawback
of method-1 is rectified in this method. This method is more transparent in
nature than method-1.

(iii) Application of proposed MW-Mile methods

The results obtained for both the methods on Indian UPSEB 75-Bus sys-
tem are given in Table 11.19, whereas system data and line data are given
in Appendix G. System usage indices for both the methods are given in
Table 11.20. The results reveal that due to effect of all the transactions tak-
ing place simultaneously in method-2 the charges allocated to bilateral and
multilateral transactions are lesser as compared to method-1.
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Table 11.19. Embedded cost allocation for Indian UPSEB 75-bus system using
MW-mile methods

Transactions Method-1
(Rs. lakh/h)

Method-2
(Rs. lakh/h)

Bilateral T1 0.132874487 0.073341923
Bilateral T2 0.226654476 0.125105094
Bilateral T3 0.042219114 0.023303428
Bilateral T4 0.056802223 0.031352778
Bilateral T5 0.058398303 0.032233757
Bilateral T6 0.015925418 0.008790256
Bilateral T7 0.023775288 0.013123101
Bilateral T8 0.012272944 0.006774222
Bilateral T9 0.195182687 0.107733801
Bilateral T10 0.12254473 0.06764027
Bilateral T11 0.052171774 0.028796937
Bilateral T12 0.498692644 0.275260348
Multilateral 2.227124232 1.229292226
Pool 2.096993986 3.738884167

Total ARR 5.761632306 5.761632306

Table 11.20. System usage indexes for transactions when all transactions are taking
place independently

S. no. Transaction System index

1 Bilateral T1 0.001286717
2 Bilateral T2 0.002194855
3 Bilateral T3 0.000408837
4 Bilateral T4 0.000550056
5 Bilateral T5 0.000565512
6 Bilateral T6 0.000154217
7 Bilateral T7 0.000230233
8 Bilateral T8 0.000118848
9 Bilateral T9 0.001890091
10 Bilateral T10 0.001186687
11 Bilateral T11 0.000505216
12 Bilateral T12 0.004829192
13 Multilateral 0.021566811
14 Pool 0.020306668

Total 0.05579394
(Bilateral+Multilateral+Pool)

When all bilateral and multilateral transactions are taking
place simultaneously

S. No. Transaction System index

1 Bilateral+multilateral 0.032869084
2 Pool 0.02668025

Total (Bilateral+Multilateral+Pool) 0.059549334
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11.4.5 Hybrid Deregulated Transmission Pricing Model

To facilitate efficient competition in generation, the transmission utility, i.e.
Transco (which shall continue to operate as monopoly) is obliged to provide
full access to the transmission facilities in a non-discriminatory manner. In
order for Transco to operate viably, the charges should be sufficient to cover
Transco’s revenue requirement. It is noted in (Tabors 1994) and findings of
study team report (Echauz and Vachtsevanos 1994) discussed that in a reg-
ulated environment such as in electric transmission business, marginal cost
based pricing provides an efficient economic and engineering solution to de-
veloping a tariff structure.

However, it has been observed that relying solely on this marginal pric-
ing does not generate sufficient revenue for the transmission utility, and the
common solution is to establish supplementary charges which when added
to the marginal network income would equal to the total network cost. This
would mean that a composite cost paradigm may be implemented, based on
embedded costs and marginal costs to reflect transmission pricing based on
actual costs of existing network facilities, as well as the operation cost. After
identifying need of supplementary charges, a brief discussion on the method
of supplementary charges allocation and application of the hybrid model to
the Indian UPSEB 75-Bus system are in following section.

1. Method of supplementary charge allocation
The allocation of supplementary charges creates additional challenge as
how to allocate the charge among transmission users in an equitable man-
ner and to ensure that it does not distort the economic signals provided
by marginal pricing. Probably the most popular method is linking the
charge with the actual use of the system by the user. In the MW-Mile
methodology the actual use of transmission facilities is expressed, con-
ceptually, by a product of power due to a particular transaction times
the distance this power travels in the network. Therefore in this hybrid
model supplementary charges are allocated on the basis of two MW-Mile
methods already explained in earlier section.

2. Application of proposed Hybrid transmission pricing model to Indian UP-
SEB 75-Bus system
The results of proposed model tested for Indian UPSEB 75-Bus system
are presented here.

The results are obtained for marginal prices, generator bus voltages, real
power generations and reactive power generations after applying algorithm for
marginal cost based transmission pricing method. The calculations shown in
Tables 11.21–11.25 that due to implementation of marginal prices (i.e. nodal
prices), marginal network revenues of 112,954.4 Rs/h is obtained.
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Table 11.21. Revenue received from pool demand

Bus
no.

Real
demand
(MW)

λpi Case-II
(Rs/MW h)

Revenue
Case-II
(Rs/h)

Reactive
demand
(MVAr)

λqi Case-II
(Rs/MVAr

h)

Revenue
Case-II
(Rs/h)

1 0 1028.018 0 0 0.558 0
2 0 1023.905 0 0 0.086 0
3 0 1082.344 0 0 0.473 0
4 0 1108.433 0 0 0.162 0
5 0 1034.929 0 0 0.013 0
6 0 1034.556 0 0 0.039 0
7 0 960.118 0 0 −14.59 0
8 0 1146.357 0 0 −0.424 0
9 0 1036.89 0 0 0.636 0
10 0 1080.348 0 0 6.428 0
11 0 1027.98 0 0 0.368 0
12 27 1033.528 27905.26 0 0 0
13 12 1034.753 12417.04 0 0 0
14 0 1109.193 0 0 0 0
15 0 1085.629 0 0 10.432 0
16 0 1030.641 0 0 3.998 0
17 0 1036.924 0 0 3.731 0
18 0 1082.531 0 0 3.335 0
19 0 1067.155 0 0 9.05 0
20 56.37 1069.194 60270.47 1.06 8.928 9.46368
21 0 1098.966 0 0 0.791 0
22 0 1102.138 0 0 1.23 0
23 0 1075.28 0 0 9.573 0
24 27.95 1086.46 30366.56 7.66 8.927 68.38082
25 0 1110.085 0 0 2.591 0
26 0 1084.315 0 0 10.519 0
27 106 1094.203 115985.5 7.83 11.769 92.15127
28 0 1118.675 0 0 0.669 0
29 0 1094.279 0 0 1.201 0
30 0 1098.456 0 0 0.944 0
31 0 1045.211 0 0 −0.742 0
32 18.11 1045.804 18939.51 11.59 −0.419 −4.85621
33 0 959.137 0 0 −9.132 0
34 0 1146.321 0 0 −0.422 0
35 0 1037.723 0 0 2.895 0
36 0 1063.1 0 0 8.97 0
37 0 1067.299 0 0 9.852 0
38 0 1096.058 0 0 −5.066 0
39 0 1089.664 0 0 −7.35 0
40 0 1055.626 0 0 5.665 0
41 0 1037.16 0 0 2.311 0
42 112.5 1039.465 116939.8 −294.7 1.173 −345.683
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Table 11.21. (Continued)

Bus
no.

Real
demand
(MW)

λpi Case-II
(Rs/MW h)

Revenue
Case-II
(Rs/h)

Reactive
demand
(MVAr)

λqi Case-II
(Rs/MVAr

h)

Revenue
Case-II
(Rs/h)

43 0 1109.193 0 0 0 0
44 0 1087.5 0 0 10.409 0
45 0 1093.023 0 0 9.998 0
46 0 1058.116 0 0 5.942 0
47 34.55 1087.35 37567.94 4.38 4.748 20.79624
48 0 1063.089 0 0 6.057 0
49 25.72 1062.683 27332.21 15.8 7.055 111.469
50 2.1 1077.431 2262.605 9.2 5.617 51.6764
51 57.75 1149.66 66392.87 0.62 12.028 7.45736
52 14.27 1183.529 16888.96 −23.36 5.45 −127.312
53 12.63 1096.113 13843.91 0.33 1.16 0.3828
54 21.95 1131.157 24828.9 17.02 3.673 62.51446
55 14.23 1129.993 16079.8 2.81 7.392 20.77152
56 0 1114.006 0 0 0.362 0
57 52.78 1107.552 58456.59 18.53 −1.514 −28.0544
58 54.19 1112.947 60310.6 11.29 −0.335 −3.78215
59 21.89 1103.845 24163.17 11.01 −6.318 −69.5612
60 24.2 1128.782 27316.52 2.44 2.963 7.22972
61 56.5 1092.145 61706.19 6.58 1.651 10.86358
62 17.18 1067.086 18332.54 7.41 1.461 10.82601
63 58.01 1135.825 65889.21 5.31 5.95 31.5945
64 56.79 1090.578 61933.92 13.33 13.518 180.1949
65 47.84 1100.608 52653.09 12.81 1.361 17.43441
66 31.74 1077.662 34204.99 15.18 12.384 187.9891
67 0 1090.699 0 0 8.145 0
68 42.87 1087.015 46600.33 33.6 6.571 220.7856
69 55.94 1081.533 60500.96 32.53 18.014 585.9954
70 23.34 1140.459 26618.31 2.3 6.715 15.4445
71 0 1102.819 0 0 10.169 0
72 52.52 1135.953 59660.25 11.76 6.586 77.45136
73 37 1099.594 40684.98 4.46 10.297 45.92462
74 18 1074.16 19334.88 8.87 9.803 86.95261
75 0 1089.873 0 0 1.252 0

Total 1306388 Total 1344.501

As Transco’s total revenue requirement is 576,163.2306 Rs/h, therefore
supplementary charges of (576, 163.2306–112, 954.4 = 463, 208.8306 Rs/h) can
be realized by MW-Mile based supplementary charge allocation method.
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Table 11.22. Expenditure for Generation

Bus
No.

Real
Generation

(MW)

λpi

(Rs/MW
h)

Expenditure
(Rs/h)

Reactive
Generation

(MVAr)

λqi

(Rs/MVArh)
Expenditure

(Rs/h)

1 669.08 1028.018 687826.3 74.39 0.558 41.50962
2 100 1023.905 102390.5 21.46 0.086 1.84556
3 20 1082.344 21646.88 70.59 0.473 33.38907
8 20 1108.433 22168.66 24.05 0.162 3.8961
5 140 1034.929 144890.1 6.36 0.013 0.08268
6 36.3 1034.556 37554.38 8.14 0.039 0.31746
7 33.72 960.118 32375.18 0 −130.59 0
8 60 1146.357 68781.42 0 −0.424 0
9 60 1036.89 62213.4 45.44 0.636 28.89984
10 90 1080.348 97231.32 56 6.428 359.968
11 60 1027.98 61678.8 30.44 0.368 11.20192
12 – – – 115.71 0 0
13 – – – 28.99 0 0
14 – – – 14.42 0 0
15 – – – 35 10.432 365.12

Total 1338757 Total 846.2303

Table 11.23. Revenue received from bilateral transactions

Transaction
no.

From bus To bus Size (MW) SRMC
(Rs/MW h)

Revenue
Received
(Rs/h)

1 2 50 200 53.426 10, 685.2
2 3 55 180 47.649 8, 576.82
3 4 37 150 −41.134 −6, 170.1
4 5 20 100 34.265 3, 426.5
5 6 52 83.7 148.973 12, 469.04
6 7 62 32.6 106.968 3, 487.157
7 8 57 40.0 −38.805 −1, 552.2
8 9 74 27.0 37.27 1, 006.29
9 10 60 30.0 48.434 1, 453.02
10 11 54 140.0 103.177 14, 444.78
11 16 48 50.0 32.448 1, 622.4
12 75 73 440.0 9.721 4, 277.24

Total 53,726.15

Allocation of supplementary charges
Finally, in order to complete realization of Transco’s revenue require-

ment, allocation of supplementary charges by both the MW-Mile methods
is tabulated in Table 11.26. Again, method-2 will be preferred over method-1
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Table 11.24. Revenue received from multilateral transactions

Bus no. MW λpi

(Rs/MW h)
Expenditure

(Rs/h)
Bus
No.

MW λpi

(Rs/MW h)
Revenue
Received
(Rs/h)

12 1, 273 1, 033.528 1, 315, 681 24 100 1, 086.46 108, 646
13 898.7 1, 034.753 929, 932.5 25 211 1, 110.085 234, 227.9
14 150.0 1, 109.193 166, 379 27 100 1, 094.203 109, 420.3
15 454.0 1, 085.629 492, 875.6 28 227 1, 118.675 253, 939.2

30 126 1, 098.456 138, 405.5
34 141 1, 146.321 162, 433.7
39 170 1, 089.664 185, 242.9
42 1, 000 1, 039.465 1, 039, 465
46 156 1, 058.116 165, 066.1
56 144 1, 114.006 160, 416.9
67 200 1, 090.699 218, 139.8
71 200 1, 102.819 220, 563.8

Total 2,904,868 Total 2,995,967
Net Revenue received = 91 , 099

Table 11.25. Summary of results

S. no. (Rs/h)

1 Revenue received from pool real demand 1, 306, 388
2 Revenue received from pool reactive demand 1, 344.501
3 Revenue received from bilateral transactions 53, 726.15
4 Revenue received from multilateral transactions 91, 099
5 Expenditure for real generation 1, 338, 757
6 Expenditure for reactive generation 846.2303

7 Total Revenue 1,452,557.6
8 Total Expenditure 1,339,603.2

9 Marginal Network Revenue 112,954.4

because it is more transparent. Moreover, in deregulated competitive business
environment method-2 encourages more bilateral and multilateral transac-
tions by charging lesser supplementary charges.

11.4.6 Conclusion

A SRMC based marginal pricing method using GA-Fuzzy technique is devel-
oped and tested on IEEE 30-bus system while optimizing real and reactive
generation costs and capacitor reactive support cost. This method enables to
calculate reactive power wheeling charges also. In category of embedded cost
allocation methods – Postage Stamp allocation method and two MW-Mile
methods are employed to determine embedded costs revealed that MW-Mile
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Table 11.26. Supplementary charges allocation for Indian UPSEB 75-bus system
using MW-mile methods

Transaction Method-1 (in lakh Rs h) Method-2 (in lakh Rs h)

Bilateral T1 0.106824984 0.058963537
Bilateral T2 0.182219829 0.100578771
Bilateral T3 0.0339422 0.01873487
Bilateral T4 0.045666393 0.025206201
Bilateral T5 0.046949571 0.025914469
Bilateral T6 0.012803304 0.007066962
Bilateral T7 0.019114255 0.010550379
Bilateral T8 0.009866922 0.005446185
Bilateral T9 0.156917909 0.086613025
Bilateral T10 0.098520359 0.054379684
Bilateral T11 0.041943715 0.023151418
Bilateral T12 0.400926047 0.221296713
Multilateral 1.790505797 0.988294604
Pool 1.685887022 3.005891488
Supplementary charges 4.632088306 4.632088306

(method-2) is best among all the three methods tested for Indian UPSEB-75
bus system.

Finally, a hybrid type marginal cost based deregulated transmission pric-
ing model is proposed and tested for Indian UPSEB 75-bus system with
pool, bilateral and multilateral transactions. In this supplementary charges
are allocated by MW-mile methods. Therefore, a complete framework for
transmission pricing is designed and implemented on Indian system.

11.5 Congestion Management Using GA-Fuzzy
Approach

11.5.1 Introduction

Congestion is a consequence of various network constraints characterizing a
finite network capacity that may limit the simultaneous delivery of power
from an associated set of power transactions (Singh et al. 1998). The network
constraints include thermal limits, voltage/VAR requirements and the sta-
bility considerations. Among all the constraints, thermal limits are the most
frequently considered factor in determining network capacity.

In a deregulated electricity market, the task of ISO (Independent System
Operator) is to ensure that contracted power transactions are carried out
reliably. However, due to the large number of transactions that take place
simultaneously, transmission networks may easily get congested. Congestion
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may result in preventing new contracts, unfeasibility in existing and new con-
tracts, additional outages and damages to system components.

Managing congestion to minimize the restrictions of the competitive mar-
ket has become the central activity of systems operators. It has been observed
that the unsatisfactory management of transactions could increase the con-
gestion cost which is an unwanted burden on customers. For different power
market structures, the approach to manage congestion may vary. A number of
methods dealing with congestion management in deregulated electricity mar-
kets have been discussed earlier. Hogan (1992) proposed the contract network
and nodal pricing approach using the spot pricing theory for pool type market.
Chao and Peck (1996) proposed an alternative approach which is based on
parallel markets for link based transmission capacity rights and energy trading
under a set of rules defined and administered by the System Operator (SO).

A congestion management approach after the deregulation of the Slovenian
power system is presented in Grgic et al. (2001, 2002). The method is based
on countertrade method where the system operator, based on technical and
economic data, decides the optimal redispatch that eliminates congestion.

Singh and David (2003) has proposed dynamic security constrained con-
gestion management in an unbundled electric power system. The different
zones have been determined based on lines real and reactive transmission
congestion.

Several optimal power flow (OPF) based congestion management schemes
for multiple transactions also have been proposed. An approach using the min-
imum total modification to the desired transactions for relieving congestion
is presented. A variant of this least modification approach used a weighting
scheme with the weights being the surcharges paid by the transactions for
transmission usage in the congestion-relieved network. Marginal cost signals
were used for generators to manage congestion. A similar approach is proposed
in (Singh et al. 1998), where the congestion cost is bundled with marginal cost
at each bus in pool model and a congestion cost minimization is adopted in
bilateral model.

Fu and Lamout (2001) has proposed the objective function consisting of
congestion cost and service costs. A new mechanism of congestion manage-
ment in multilateral transaction networks has been developed based on phys-
ical flows.

There are two broad paradigms that may be employed for congestion man-
agement. The first method includes actions like outage of congested lines or
operation of transformer taps, phase shifters or FACTS devices. These means
are termed as cost-free only because the marginal costs (and not the capital
costs) involved in their usage are nominal.

The not-cost-free means include:

(1) Rescheduling generation
Here, system operator re-dispatches power generation in such a way,
that resulting power flows does not overload any line. Every generation
unit can bid an increase or decrease of its production in a similar manner
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as this is done on a balancing market, while the responsibility of sys-
tem operator is to select bids in efficient way. Somehow, counter trade
approach based congestion management can be viewed as simplified op-
timal power flow problem, where optimization variables are re-dispatch
of the active power production and criteria function is minimum of the
costs related to this active power re-dispatch.

(2) Prioritization and curtailment of loads/transactions
A parameter termed as willingness-to-pay-to-avoid-curtailment was in-
troduced in the objective function. This can be an effective instrument
in setting the transaction curtailment strategies which may then be in-
corporated in the optimal power flow framework.

In this chapter, countertrade congestion management on GA-Fuzzy based
OPF formulations incorporating (1) and hybrid type, i.e. both ((1) and (2))
above are presented and tested. The function of above OPF based models is to
modify system dispatch to ensure secure and efficient system operation based
on the existing operating condition. It would use the dispatchable resources
(i.e. real and reactive power generations and capacitor reactive supports) and
controls (i.e. transformer tappings) subject to their limits and determine the
required curtailment of transactions to ensure uncongested operation of the
power system. A new load curtailment scheme for pool loads is proposed where
all connected loads are divided into three different groups depending on their
willingness to pay up to certain load curtailment value.

11.5.2 Transmission Congestion Penalty Factors

A concept of transmission congestion penalty factors is developed and im-
plemented to control line overflows in proposed GA-Fuzzy approach for con-
gestion management. Transmission congestion penalty factor for each trans-
mission line is computed which can adopt a suitable value depending upon
amount of power flow (in MVA) above/below the maximum limit. There-
fore, the congested line/lines and lines near to congested line/lines have
higher values of transmission congestion penalty factors than other lines in
the system. These transmission congestion penalty factors are helpful in de-
ciding appropriate re-dispatchment of dispatchable resources. The procedure
for determining transmission congestion penalty factors is explained in next
section.

1. Procedure to determine transmission congestion penalty factors
A base case situation is considered for congestion management. This base
case refers to optimal settings of real power generation schedule, trans-
former tap settings and capacitor reactive support settings under normal
state and with these settings now system is subjected to congestion (with
one/more than one line limits is/are violated).

The following steps are followed to compute these penalty factors.
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Step 1. Load flow solution and line flows (Sij-base) are obtained for base case.
Step 2. Set the line limits in congestion case (Sij-M ).
Step 3. GA-Fuzzy approach as described earlier, is used to generate popula-

tion of different generation schedules satisfying equality and non-equality
constraints (except line flows limits).

Step 4. Line flows (Sij-tr) are calculated for each such generation schedule
and line penalty factors (Pij , where i and j denote bus numbers bet-
ween which transmission line is connected) are calculated according to
Fig. 11.18.

Step 5. Another parameter, line flow sum representing cumulative effect of
penalty factors and transmission line flows in congestion is computed as
follows:

line flow sum =
n1∑
l=1

Pij ∗ Sij−tr

where nl = no. of transmission lines.
These new types of transmission congestion penalty factors have two ad-

vantages. First, separate slope for penalty factor of each transmission line
is determined depending upon power overflow above rated line flow value of
that transmission line. It means that line with lesser power overflow will have
lower value of slope, and thus will result small value of penalty factor. Simi-
larly, it is understood that line with comparatively higher power overflow will
have higher value of penalty factor. This adaptive feature is helpful in finding
right solution (optimal values of control parameters, e.g. real power genera-
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Fig. 11.18. Graphical representation of penalty factors as straight lines
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tion, transformer tapping and capacitors values) by search techniques such
as GA. Secondly, only single logic mentioned in step-4 works for determining
these congestion penalty factors based on magnitude of power overflow in the
line/lines. Therefore, no difficulty arises in choosing suitable values of penalty
factors.

11.5.3 Proposed Methods for Congestion Management

Three methods are proposed with different objectives using GA-Fuzzy optimal
approach and are explained below:

Method-1. Objective of minimization of line overflows only.
Method-2. Objective of minimization of line overflows along with (real power

generation + reactive generation) redispatch cost and change in capacitor
support cost.

Method-3. Objective of minimization of line overflows along with (real power
generation + reactive generation) redispatch cost, change in capacitor
support cost and load curtailment.

Mathematical functions representing redispatch cost of real power gen-
eration, reactive power generation and change in capacitor support cost are
given below. The real power redispatch cost Cadj(∆Pg,k-m) is computed by ad-
justing generation of each generating unit less or more than base case value,
with the help of adjustment bids characteristics curves shown in Fig. 11.19.
These curves are decided by special adjustment bids Cadj,Pg,k-m invited from
all the generator units for generating power less or more than base case values.
Therefore, real power redispatch cost ca be expressed as:

Cadj(∆Pg,k-m) − Cadj,Pg,k-m ∗ ∆Pk-m $/hr (11.62)

The reactive power cost of generator is also called opportunity cost Dai
(2001). The reactive power output of a generator will reduce its active power
generation capability which can serve at least as spinning reserve, and the
corresponding implicit financial loss to generator is modeled as an opportunity
cost. Therefore reactive power redispatch cost Cadj(∆Qg,k-m) of generator as
defined by Kumar (2004) is:

Cadj(∆Qg,k−m) = �Cpg(SG,max,k−m)

− Cpg(
√

S2
G,max,k−m − ∆Q2

g,k−m)�kprofit $/h (11.63)

where Cpg(PG,k−m) = ak + bkPG,k−m + ckmP 2
G,k−m

i.e. the cost of active power generation is modeled by above quadratic
function. Where ak, bk and ck are costs coefficients of kth generator and
SG,max,k−m is the nominal maximum apparent power of generation and kprofit
is the profit rate of active power generation taken between 5 and 10% [DAI01].
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∆Pk-m

∆Pk1-m ∆Pk2-m ∆Pk3-m ∆Pk4-m ∆Pk5-m ∆Pk6-m ∆Pk7-m

Fig. 11.19. Adjustment bid characteristic representing cost function of the change
of active power production at the kth generator

The equivalent cost for return on the capital investment of the capacitors,
which is expressed as their depreciation rates (the life span of capacitors is
assumed as 15 years) is computed as

C(QC,kc−m) = QC,kc−m
($11600/Mvar)

(15∗365∗24∗h) hour

= QC,kc−m
∗$13.24/(100M var hour) (11.64)

where h is the average usage rate of capacitors taken as 2/3. Equation (11.64)
is a linear cost function with the slope of dCadj,kc−m(QC,kc−m)

dQC,kc−m
= $13.24

100 M var hour ,
which can be approximately represented as:

Cadj(∆QC,kc−m) = ∆QC,kc−m
∗(13.24/100)$/hr (11.65)

Method 1 - Objective of minimization of line overflows only

Step 1. Real power generation redispatch ∆Pg,k-m, reactive power generation
redispatch ∆Qg,k-m and change in capacitor reactive support ∆QC,kl-m
are computed for each valid generation schedule in population, where k =
generating unit no., kc = capacitor unit no. and m = no. of generation
schedule in population.

Step 2. Correspondingly, redispatch costs of real power generation
Cadj(∆Pg,k-m), reactive power generation Cadj(∆Qg,k-m) and change in
capacitor reactive support Cadj(∆QC,kcm) are computed as per expressions
(11.62), (11.63), and (11.65), respectively.

Step 3. Fitness of each generation schedule in a population is calculated as:

Fitness =
1

A∗line flow sum
(11.66)

where, A = numerical constant.
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Step 4. Finally values of real and reactive power generation schedule, trans-
formers tapping values, bus voltages, capacitor reactive support values and
line flows calculated in last generation of GA-Fuzzy based optimization ap-
proach.

Method 2 - Objective of minimization of line overflows along with (real power
generation + reactive generation) re-dispatch cost and change in capacitor
support cost

1. Step1 and Step 2 of method-1 are followed.
2. Fitness of each generation schedule in a population is calculated as:

Fitness =
e
−B×

(
NG∑

g
Cadj(∆Pg,k−m)+

NG∑
g

Cadj(∆Qg,k−m)+
NC∑

c
Cadj(∆QC,kl−m)

)

A × line flow sum
(11.67)

where A and B are numerical constants.
3. Step 4 of method-1 is followed.

Method 3 – Objective of minimization of line overflows along with (real power
generation + reactive generation) redispatch cost, change in capacitor support
cost and load curtailment

1. Step1 of method-1 is followed.
2. If real loads connected on load buses under congestion are termed as

base load values, then load cutailment is done by reducing base load
values in three different groups (G-1, G-2 and G-3). G-1, G-2 and G-3
refer to groups of loads (consumers) which are paying fee (willingness
to pay) for load curtailment upto 80, 60 and 40 of their base case load
values respectively, in a congestion state. Load values after curtailment
(Pd,kl-m,gr−i) in three different groups (G-1, G-2 and G-3) are computed.

3. Step2 of method-1 is followed.
4. Fitness of each generation schedule in a population is calculated as:

Fitness =

e−B ×
(

NG∑
g

Cadj(∆Pg,k−m) +
NG∑

g

Cadj(∆Qg,k−m) +
NC∑

c

Cadj(∆QC,kc−m)

+
3∑

i=1
Ki(

NL∑
kl

(Pd,kl−m,gr−i) −
NL∑
kl

(Pd,kl−m,base−i))
2
)

A × line flow sum
(11.68)

where A, B and Ki are numerical constants.
5. Step4 of method-1 is followed.

11.5.4 Test Results

The proposed methods are implemented on modified IEEE 30 bus system.
The busdata and linedata are given in Appendix F. Line (8,28) get congested
(exceeding flow limit of 12 MVA) if outage of line (6,28) is considered.
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Fig. 11.20. Convergence of different parameters, crossover probability and mutation
probability variations using GA-Fuzzy approach for Method-1
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Fig. 11.21. Convergence of different parameters, crossover probability and mutation
probability variations using GA-Fuzzy approach for Method-2

Figures 11.20, 11.21 and 11.22 show the convergence of different parame-
ters along with crossover probability and mutation probability variations.

Figures 11.23–11.26 and Table 11.27 represent bus voltage profile for dif-
ferent methods.
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Fig. 11.21. (Continued)

11.5.5 Conclusions

The results tabulated in Table 11.28a shows optimal values of active power
generation, reactive power generation and capacitor reactive support to avoid
congestion for method-1 and method-2. Method-1 is found to be superior
than method-2 so far controlling of power overflow is concerned. In table 28b
method-2 seems to be more economical than method-1. The differences in
performance of both the methods are due to modeling of their respective
fitness function. In method-1, emphasis is only on control of power over-
flow on the Lines, whereas control of power overflow along with redispatch
costs of (real power + reactive power) generation and change in capacitor
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Fig. 11.22. Convergence of different parameters, crossover probability and mutation
probability variations using GA-Fuzzy approach for Method-3

reactive support cost are intermingled in method-2. It is also clear from
Fig. 11.21 for method-2 that a controlling action to check power overflow
is dominant over economic redispatchment cost feature throughout the GA-
Fuzzy based optimization procedure. From the results it is seen that slightly
lesser load bus voltage variation (i.e. between maximum and minimum load
bus voltages) with very small increment in average system voltage value
(i.e. average of all bus voltages of the system). It means that from voltage
point of view, method-2 is not inferior than method-1, although this par-
ticular aspect requires verification for other power systems also. Therefore,
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Fig. 11.22. (Continued)
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Fig. 11.22. (Continued)
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Fig. 11.23. Bus voltage profile using congestion management method-1

method-1 and method-2 both have applicability from congestion management
view point.

Method-3 is developed for a scenario different from one in which method-1
and method-2 work. In this method, a load curtailment feature is also added
in fitness function by mathematical modeling. This feature enables pool cus-
tomers to pay extra charges in order to avoid congestion as shown in Ta-
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Fig. 11.24. Bus voltage profile using congestion management method-2, when
kprofit = 5%
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Fig. 11.25. Bus voltage profile using congestion management method-2, when
kprofit = 10%
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Fig. 11.26. Bus voltage profile using congestion management method-3

Table 11.27. Comparison of maximum and minimum voltage levels at Load buses
and average system voltages for proposed methods of congestion management

Method-1 Method-2 Method-3

Kprofit =
5%

Kprofit =
10%

Maximum Bus 12:
1.048 p.u.

Bus 9:
1.049 p.u.

Bus 12:
1.048 p.u.

Bus 9:
1.047 p.u.

load bus Minimum Bus 30:
0.95 p.u.

Bus 30:
0.956 p.u.

Bus 30:
0.954 p.u.

Bus 30:
0.959 p.u.

Difference 0.098 p.u. 0.093 p.u. 0.094 p.u. 0.088 p.u.
Average value
of system volt-
age

1.005533
p.u.

1.0139
p.u.

1.012433
p.u.

1.0135
p.u.

ble 11.28c. This method can be applicable in deregulated environment as it
seems to be fair, transparent and consumer satisfaction to great extent.

A hybrid strategy having two stages is also formed on the basis of three
methods developed and tested on modified IEEE 30 bus system. In first stage,
method-1 or method-2 can be used. If congestion is still not avoidable then
under second stage method-3 with load-curtailment and willingness to pay
feature can be used.

11.5.6 Bibliography and Historical Notes

The application of genetic algorithms for altering membership functions of
fuzzy controllers to make it adaptive Karr and Gentry 1993; Park et al. 1994).
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The idea of fuzzifying genetic algorithms emerged in 1990s. Various ways
of integrating fuzzy systems and genetic algorithms were proposed by Sanchez
(1993), Xu and Vukovich (1993) and Buckley and Hayashi (1994a).

El-Hawary (1998) has shown various fuzzy system applications to Elec-
tric Power Applications in deregulated Environment. Iyer (2003) mentioned
an integrated fuzzy-neural approach to electricity spot-price forecasting in a
deregulated electricity market. Ming et al. (2004) used an ARIMA approach
to forecasting electricity price. Saini et al. (2006) explained the GA-Fuzzy
integrated System Approach to solve OPF problem and help in congestion
management. Ravikumar et al. (2007) paper deals with the intelligent ap-
proach for fault diagnosis using support vector machines.



11.5 Congestion Management Using GA-Fuzzy Approach 473

T
a
b
le

1
1
.2

8
a
.

C
o
m

p
a
ri

so
n

o
f

re
d
is

p
a
tc

h
m

en
t

o
f

P
,

Q
,

ch
a
n
g
e

in
ca

p
a
ci

to
r

re
a
ct

iv
e

p
ow

er
su

p
p
o
rt

a
n
d

li
n
e

fl
ow

a
t

li
n
e

(8
,2

8
)

fo
r

m
et

h
o
d
-1

a
n
d

m
et

h
o
d
-2

R
ea

l
p
ow

er
g
en

er
a
ti

on
re

d
is

p
a
tc

h
co

st
(i

n
$
h
)

=
N

G ∑ g

C
a

d
j
(∆

P
g
,k

−
m

)
M

et
h
od

−
1

F
it

n
es

s
=

1
A
×

li
n

e
f

lo
w

s
u

m

R
ea

ct
iv

e
p
ow

er
g
en

er
a
ti

on
re

d
is

p
a
tc

h
co

st
(i

n
$
h
)

=
N

G ∑ g

C
a

d
j
(∆

Q
g
,k

−
m

)
M

et
h
od

−
2

f
it

n
es

s

=
e
−

B
×
( N

G ∑ g
C

a
d
j
(∆

P
g

,k
−

m
)+

N
G ∑ g

C
a

d
j
(∆

Q
g

,k
−

m
)+

N
C ∑ c

C
a

d
j
(∆

Q
C

,k
l−

m
))

A
×

li
n

e
f

lo
w

s
u

m

C
h
a
n
g
e

in
ca

p
a
ci

to
r

su
p
p
or

t
co

st
(i

n
$
h
)

=
N

C ∑ c

C
a

d
j
(∆

Q
c
,k

c
−

m
)

M
et

h
od

−
3

F
it

n
es

s

=
e
−

B

( N
G ∑ g

C
a

d
j
(∆

P
g

,k
−

m
)+

N
G ∑ g

C
a

d
j
(∆

Q
g

,k
−

m
)+

N
C ∑ c

C
a

d
j
(∆

Q
C

,k
c
−

m
)+

3 ∑
i
=

1
K

i
(N

L ∑ k
l
(P

d
,k

l−
m

,g
r
−

i
)+

N
L ∑ k
l
(P

d
,k

l−
m

,b
a

s
e
−

i
))

2
)

A
×

li
n

e
f

lo
w

s
u

m

S
.
n
o
.

G
en

er
a
ti

o
n

a
t

In
co

n
g
es

ti
o
n

st
a
te

C
o
n
g
es

ti
o
n

m
a
n
a
g
em

en
t

m
et

h
o
d

M
et

h
o
d
-1

M
et

h
o
d
-2

W
h
en

k
p
ro

fi
t

=
5
%

W
h
en

k
p
ro

fi
t

=
.1

0
%

P
g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r)
P

g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r)
P

g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r)
P

g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r)

1
.

B
u
s

1
1
7
5
.1

6
5

4
.6

2
4

1
5
6
.5

6
8

7
2
.9

1
4

1
6
3
.9

6
2

3
2
.2

3
1
5
6
.3

4
8

7
.9

5
8

2
.

B
u
s

2
4
8
.9

4
1

2
9
.3

4
5

3
3
.6

4
7

−4
.2

6
2

4
1
.8

8
2

3
9
.6

9
2

4
8
.4

7
1

4
1
.5

9
6

3
.

B
u
s

5
2
1
.1

7
6

2
8
.2

1
3
3
.9

4
1

2
5
.8

2
0
.7

6
5

3
3
.4

0
3

2
1
.0

3
9

3
9
.7

2
5

4
.

B
u
s

8
2
2
.6

4
7

4
0
.5

5
9

1
2
.5

4
9

2
9
.3

8
6

1
1
.6

6
7

2
7
.0

7
3

1
2
.4

5
1

2
9
.3

0
1

5
.

B
u
s

1
1

1
2
.5

8
8

1
7
.1

2
4

2
6
.7

0
6

8
.0

7
8

2
6
.4

7
1

2
2
.0

8
2
1
.0

5
9

1
1
.0

9
5

6
.

B
u
s

1
3

1
2
.0

0
1
0
.2

6
3

2
8
.8

6
.6

3
4

2
8
.0

3
1

−8
.3

7
3
3
.0

8
2

3
.1

0
8

T
o
ta

l
2
9
2
.5

1
7

1
3
0
.1

2
5

2
9
2
.2

1
1

1
3
8
.5

5
1

2
9
2
.7

7
8

1
4
6
.1

0
7

2
9
2
.4

5
1
3
2
.7

8
2



474 11 Synergism of Genetic Algorithms and Fuzzy Systems

T
a
b
le

1
1
.2

8
a
.

(C
o
n
ti
n
u
ed

)

S
.
n
o
.

G
en

er
a
ti

o
n

a
t

In
co

n
g
es

ti
o
n

st
a
te

C
o
n
g
es

ti
o
n

m
a
n
a
g
em

en
t

m
et

h
o
d

M
et

h
o
d
-1

M
et

h
o
d
-2

W
h
en

k
p
ro

fi
t

=
5
%

W
h
en

k
p
ro

fi
t

=
.1

0
%

P
g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r)
P

g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r)
P

g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r)
P

g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r)

S
.N

o
.

C
a
p
a
ci

to
r

a
t

Q
C

(i
n

M
V
A

r)
Q

C
(i

n
M

V
A

r)
Q

C
(i

n
M

V
A

r)
Q

C
(i

n
M

V
A

r

1
.

B
u
s

1
0

3
.9

8
2

1
.5

8
5

2
.2

9
9

4
.0

1
2

2
.

B
u
s

1
2

0
.0

2
2
.9

1
6

1
.0

3
7

0
.0

2
3
.

B
u
s

1
5

4
.1

4
9

0
.9

9
8

4
.3

5
4

3
.8

3
6

4
.

B
u
s

1
7

4
.9

9
3
.0

4
3

1
.9

3
7

3
.5

6
2

5
.

B
u
s

2
0

4
.4

3
2

1
.5

2
6

2
.1

1
4

4
.6

5
8

6
.

B
u
s

2
1

4
.3

5
4

0
.8

0
2

0
.7

7
3

3
.7

4
8

7
.

B
u
s

2
3

4
.5

4
3
.5

0
3

1
.1

5
5

3
.4

6
4

8
.

B
u
s

2
4

4
.6

8
7

4
.2

3
7

1
.7

9
1

2
.4

8
5

9
.

B
u
s

2
9

2
.0

9
7

4
.3

5
5

3
.3

8
7

2
.9

0
3

T
o
ta

l
3
3
.2

5
1

2
2
.9

6
5

1
8
.8

4
7

2
8
.6

8
6

L
in

e
fl
o
w

a
t

li
n
e

(8
,2

8
)(

in
M

V
A

)
1
6
.6

4
1
1
.9

2
1

1
1
.9

9
3

1
1
.9

7
1
5



11.5 Congestion Management Using GA-Fuzzy Approach 475

T
a
b
le

1
1
.2

8
b
.

C
o
m

p
a
ri

so
n

o
f
co

n
g
es

ti
o
n

re
li
ef

ch
a
rg

es
fo

r
m

et
h
o
d
-1

a
n
d

m
et

h
o
d
-2

S
.
N

o
.

G
en

er
a
ti

o
n

a
t

C
o
n
g
es

ti
o
n

m
a
n
a
g
em

en
t

m
et

h
o
d

M
et

h
o
d
-1

M
et

h
o
d
-2

W
h
en

k
p
ro

fi
t

=
5
%

W
h
en

k
p
ro

fi
t

=
.1

0
%

C
(∆

P
g
)(

in
$

h
)

C
(∆

Q
g
)(

in
$

h
)

C
(∆

P
g
)(

in
$

h
)

C
(∆

Q
g
)(

in
$

h
)

C
(∆

P
g
)(

in
$

h
)

C
(∆

Q
g
))

(i
n

$
h
)

1
.

B
u
s

1
−5

9
.8

2
3

2
.0

7
6
4

−3
6
.0

2
1
7

0
.3

3
4
3

−6
0
.5

3
1
2

0
.0

0
9
7

2
.

B
u
s

2
−4

8
.4

6
3
3

1
.6

3
5
9

−2
3
.3

3
9
3

0
.1

5
2
5

−1
.5

4
9
5

0
.4

2
7
8

3
.

B
u
s

5
5
8
.2

9
5
8

0
.0

2
1
1

−1
.3

9
3
6

0
.0

9
7
8

−0
.4

2
3
9

0
.9

6
3
1

4
.

B
u
s

8
−3

5
.7

5
4
7

0
.3

4
9
6

−3
8
.7

9
6
7

0
.5

1
5

−3
6
.0

9
2
7

0
.7

1
0
2

5
.

B
u
s

1
1

5
5
.1

7
3
5

0
.3

1
1
7

5
4
.1

4
6
5

0
.0

9
2
5

3
1
.6

5
8
7

0
.2

7
4
5

6
.

B
u
s

1
3

6
7
.8

0
.0

4
1
2

6
4
.5

3
1
7

1
.1

2
4
7

8
7
.5

3
9
5

0
.3

2
1
5

T
o
ta

l(
in

$
h
)

3
7
.2

2
8
3

4
.4

3
5
9

1
9
.1

2
6
9

2
.3

1
6
9

2
0
.6

0
0
9

2
.7

0
6
9
7
5

S
.
N

o
.

C
a
p
a
ci

to
r

a
t

C
(∆

Q
c
)(

in
$
/
h
r)

C
(∆

Q
c
)(

in
$
/
h
r)

C
(∆

Q
c
)(

in
$
/
h
r)

1
.

B
u
s

1
0

−0
.3

1
7
4

−0
.2

2
2
8

0
.0

0
4

2
.

B
u
s

1
2

0
.3

8
3
4

0
.1

3
4
7

0
3
.

B
u
s

1
5

−0
.4

1
7
2

0
.0

2
7
1

−0
.0

4
1
4

4
.

B
u
s

1
7

−0
.2

5
7
8

−0
.4

0
4
2

−0
.1

8
9
1

5
.

B
u
s

2
0

−0
.3

8
4
8

−0
.3

0
6
9

0
.0

2
9
9

6
.

B
u
s

2
1

−0
.4

7
0
3

−0
.4

7
4
1

−0
.0

8
0
2

7
.

B
u
s

2
3

−0
.1

3
7
3

−0
.4

4
8
2

−0
.1

4
2
5

8
.

B
u
s

2
4

−0
.0

5
9
6

−0
.3

8
3
4

−0
.2

9
1
5

9
.

B
u
s

2
9

0
.2

9
9

0
.1

7
0
8

0
.1

0
6
7

T
o
ta

l(
in

$
h
)

−1
.3

6
1
9

−1
.9

0
7
1

−0
.6

0
4
1

G
ra

n
d

to
ta

l(
in

$
h
)

4
0
.3

0
2
3

1
9
.5

3
6
7

2
2
.7

0
3
7
7
5



476 11 Synergism of Genetic Algorithms and Fuzzy Systems

T
a
b
le

1
1
.2

8
c
.
R

ed
is

p
a
tc

h
m

en
t

o
f
(R

ea
l
p
ow

er
+

re
a
ct

iv
e

p
ow

er
g
en

er
a
ti

o
n
),

ch
a
n
g
e

in
ca

p
a
ci

to
r

re
a
ct

iv
e

p
ow

er
su

p
p
o
rt

a
n
d

li
n
e

fl
ow

a
t

li
n
e

(8
,2

8
)

fo
r

m
et

h
o
d
-3

S
.
n
o
.

G
en

er
a
ti

o
n

a
t

M
et

h
o
d
-3

P
g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r
)

1
.

B
u
s

1
1
5
0
.7

4
7

1
3
.3

1
6

2
.

B
u
s

2
4
2
.3

5
3

3
2
.1

9
6

3
.

B
u
s

5
1
9
.5

2
9

3
0
.0

0
4

4
.

B
u
s

8
1
0
.0

9
8

3
1
.1

3
1

5
.

B
u
s

1
1

1
5
.0

2
1
3
.2

4
6

6
.

B
u
s

1
3

1
9
.0

2
7

2
3
.3

8
1

T
o
ta

l
2
5
6
.7

7
4

1
4
3
.2

7
3

S
.N

o
.

C
a
p
a
ci

to
r

a
t

Q
C

(i
n

M
V
A

r)

1
.

B
u
s

1
0

2
.3

2
9

2
.

B
u
s

1
2

2
.8

0
8

3
.

B
u
s

1
5

1
.6

9
3

4
.

B
u
s

1
7

0
.4

0
1

5
.

B
u
s

2
0

1
.9

8
6

6
.

B
u
s

2
1

1
.0

2
7

7
.

B
u
s

2
3

1
.1

1
5

8
.

B
u
s

2
4

1
.1

1
5

9
.

B
u
s

2
9

3
.1

6
T
o
ta

l
1
5
.6

3
6



11.5 Congestion Management Using GA-Fuzzy Approach 477

T
a
b
le

1
1
.2

8
c
.

(C
o
n
ti
n
u
ed

)

S
.
n
o
.

G
en

er
a
ti

o
n

a
t

M
et

h
o
d
-3

P
g
(i

n
M

W
)

Q
g
(i

n
M

V
A

r
)

S
.
n
o
.

L
o
a
d
.

G
ro

u
p
-1

P
l(

in
M

W
)

L
o
a
d

G
ro

u
p
-2

P
l(

in
M

W
)

L
o
a
d

G
ro

u
p
-3

P
l(

in
M

W
)

In
C

o
n
g
es

ti
o
n

M
et

h
o
d
-3

In
C

o
n
g
es

ti
o
n

M
et

h
o
d
-3

In
C

o
n
g
es

ti
o
n

M
et

h
o
d
-3

1
.

B
u
s

7
2
2
.8

2
1
.6

2
3
2

B
u
s

4
7
.6

7
.0

1
1
6

B
u
s

2
2
1
.7

1
4
.5

6
2
.

B
u
s

8
3
0
.0

2
8
.4

5
1
6

B
u
s

5
9
4
.2

8
6
.9

0
7
1

B
u
s

3
2
.4

1
.6

1
0
3

3
.

B
u
s

1
7

9
.0

8
.5

3
5
5

B
u
s

1
5

8
.2

7
.5

6
5
2

B
u
s

1
0

5
.8

3
.8

9
1
6

4
.

B
u
s

1
8

3
.2

3
.0

3
4
8

B
u
s

1
6

3
.5

3
.2

2
9

B
u
s

1
2

1
1
.2

7
.5

1
4
8

5
.

B
u
s

2
6

3
.5

3
.3

1
9
4

B
u
s

2
1

1
7
.5

1
6
.1

4
5
2

B
u
s

1
4

6
.2

4
.1

6
6
.

B
u
s

2
9

2
.4

2
.2

7
6
1

B
u
s

2
3

3
.2

2
.9

5
2
3

B
u
s

1
9

9
.5

6
.3

7
4
2

7
.

B
u
s

3
0

1
0
.6

1
0
.0

5
2
9

B
u
s

2
4

8
.7

8
.0

2
6
5

B
u
s

2
0

2
.2

1
.4

7
6
1

T
o
ta

l
8
1
.5

7
7
.2

9
3
5

T
o
ta

l
1
4
2
.9

1
3
1
.8

3
6
9

T
o
ta

l
5
9
.0

3
9
.5

8
7

L
in

e
fl
ow

a
t

li
n
e

(8
,2

8
)

(i
n

M
V
A

)
1
1
.8

2
3

G
ro

u
p

G
1
-

lo
a
d

gr
o
u
p

1
G

ro
u
p

G
2
-

lo
a
d

gr
o
u
p

2
G

ro
u
p

G
3
-

lo
a
d

gr
o
u
p

3



12

Integration of Neural Networks and Fuzzy
Systems

Neuro-Fuzzy and Soft Computing, as a mature and extensive cover-
age of neuro-fuzzy soft computing, demonstrates a paradigm shift in
managing complexity, uncertainty and subjectivity.

Irena Nagisetty
∗Advanced Manufacturing Technology Development

Ford Motor Company

12.1 Introduction

The literature reveals that the ANN and Fuzzy set theoretic approaches have
been often used for non-linear and complex problems such as load forecasting
in power system. The integration of these approaches gives improved results
as compared to conventional techniques. Both the modeling techniques have
their own merits and demerits as follows:

1. Fuzzy models possess large power in representing linguistic and structured
knowledge by fuzzy sets and performing fuzzy reasoning by fuzzy logic in
qualitative manner and usually rely on the domain experts to provide
the required knowledge for a specific problem. Further, the compensatory
operators in the fuzzy models as connectives are found quite suitable and
produce results, which are very close to the actual results (Mizumoto
1989).

2. On the other hand, neural network models are particularly good for non-
linear mappings and for providing parallel processing facility to simulate
complex system. The neural network models are developed via training.

3. Furthermore, while the behavior of fuzzy models can be understood eas-
ily due to their logical structure and step-by-step inference procedures.
Neural network models act normally as a black box, without providing
explanation facility.
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From these investigations, it is quite natural to consider the possibilities of
integrating the two paradigms, in order to utilize the desired strength of both
types of models to produce improved results. There are three possibilities for
combining fuzzy systems and neural networks to work together competitively
and/or co-operatively:

1. Fuzzy systems work at higher level in hierarchy and neural networks per-
form the lower level computations as shown in Fig. 12.1.

2. The task in hand is divided broadly into two categories, i.e. problems
need qualitative modeling and other part needs quantitative modeling.
The qualitative work is done by fuzzy systems and quantitative work is
done by ANN. Both of these techniques work in co-operation as shown in
Fig. 12.2.

Fuzzy
Systems

ANN1 ANN2 ANN3 ANN4 ANNn 

Problem

Fig. 12.1. Hierarchal Combination of Fuzzy Systems and Neural Network

Fuzzy
System ANN

Problem

Fig. 12.2. ANN and Fuzzy System working in co-operation.
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Fuzzy
System

ANN

Fig. 12.3a. Neuralizing the Fuzzy System

ANN 

Fuzzy
System

Fig. 12.3b. Fuzzifying ANN

3. Emerging Fuzzy System and ANN techniques:

(a) By neuralizing fuzzy systems, i.e. the introduction of neural network con-
cepts in fuzzy systems. Technically, it may be realized by mapping out
fuzzy systems into neural network, either functionally or structurally as
shown in Fig. 12.3a.

(b) Or fuzzifying neural networks by introducing fuzzy concepts in neural
networks as shown in Fig. 12.3b. The fuzzy neural networks retain the
basic properties and architecture of neural network and simply fuzzify
some of their elements. It is well recognized that fuzzy systems are logical
based with fuzzy set representation and flexible fuzzy logic operations.
Thus the resulting fuzzy neural system may include minimum, maximum
or compensatory operators, apart from usual sum and product operators
found in neural computing.

12.2 Adaptive Neuro-Fuzzy Inference Systems

In Sects. A and B, ANN and fuzzy systems have been explained in the detail.
However, the design of fuzzy systems relies on two important factors:

1. Knowledge acquisition – To acquire knowledge, an appropriate knowledge
acquisition technique is required.

2. Human expert – The expert in a particular field is also equally important
to share his knowledge.
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Table 12.1. Comparison of Mamdani and Sugeno models

S. No. Characteristics Mamdani model Sugeno model

1. Output membership
function

Could be of any
continuous shape

Only spikes can be used

2. Aggregation,
implication, or
compositional methods

Any method can be
used

Almost fixed structure
for Sugeno Models

3. Defuzzification method Any method could be
used

Only weighted average
method can be used

4. Complexity Less complex Complex
5. Adaptibility Not adaptive system adaptive system
6. Training data No need of training

data
Requires

These factors restrict the application of fuzzy systems. The adaptive neuro-
fuzzy inference systems (ANFIS) could be used to overcome the effect of these
factors to a certain limit (Jang 1992, 1993, Jang and Sun 1995).

The ANFIS architecture can identify the near optimal membership func-
tions of Fuzzy systems for achieving desired output. It is generated by the
fuzzy toolbox available in MATLAB, which allows to optimize standard
Sugeno Fuzzy model, which was introduced in 1985 (Sugeno 1985). The differ-
ence between Sugeno model and Mamdani model is that in Sugeno model the
output membership functions are singleton spikes rather than a distributed
fuzzy sets. The comparision of Mamdanoi and Sugeno models are given in
Table 12.1.

In case of Sugeno models, singleton membership functions of the output
of fuzzy system simplify the defuzzification step. The typical rule in a Sugeno
model has the form

If X1 = x and X2 = y then output is z = ax + by + c
The output level zi of each rule is weighted by the firing strength Wi of the

rule. In the above case the firing strength is Wi = AndMethod(F1(x), F2(y))
as shown in Fig. 12.4 along with its output surface in Fig. 12.4b.

The final output of the system is the weighted average of all the rule
outputs computed as

Final output =

n∑
i=1

WiZi

n∑
i=1

Wi

Luckily, it is frequently the case that singleton output functions are com-
pletely sufficient for the needs of a given problem. Sugeno models is very well
suited to the task of smoothly interpolating the linear gains that would be
applied across the input space; it is natural and efficient systems.
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1. low low low

Fuzzy Inputs Aggregation Output

2. Medium Medium Medium

3. High High High

Let  X1 = 3                         X2 = 8

Min

Min

Min

Final output

Rule 1 If  X1 is low and X2 is low Then  output Z is low

Rule 2 If  X1 is Medium and X2 is Medium Then  output Z is Medium

Rule 3 If  X1 is High and X2 is High Then  output Z is High

Fig. 12.4. Graphical representation of Inference with Sugeno Model
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Fig. 12.5. ANFIS architecture based on Two input Sugeno Fuzzy model.

In the ANFIS, ANN uses a back propagation gradient descent method for
training fuzzy system membership function parameters to emulate a given
training data set. Figure 12.5 shows a simple two input ANFIS architecture
for a Sugeno Fuzzy model. It is composed of five layers. The output of the
first layer can be mathematically written as

Oi
1 = µAi(X1) (12.1)

where µ is the membership function for that particular input.
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The output of second layer is the product of two membership functions

Oi
2 =

∏
Oi

1 = µFi (X1) µFi (X2) (12.2)

Output of Layer 3

Oi
3 =

O2
1

O2
1 + O2

2

(12.3)

Output of Layer 4
Oi

4 = Oi
3(Pi

1 ∗ X1 + Pi
2 ∗ X2) (12.4)

Output of Layer 5
Oi

5 =
∑

i

Oi
4 (12.5)

This ANFIS structure can update its parameters according to the gradient
descent approach.

The layers from 1 to 5 are called: input linguistic layer, condition layer,
rule layer, consequent layer and output linguistic layer. The fuzzification of
the inputs and the defuzzification of the outputs are respectively performed by
the input linguistic and output linguistic layers respectively while the fuzzy
inference is collectively performed by the rule, condition and consequence
layers.

12.3 Constraints of ANFIS

1. It is much more complex than simple fuzzy system. Hence, it is suitable
for first or zeroth order Sugeno type systems.

2. It only supports Sugeno models. Therefore, it can only be developed for
single output systems.

3. In ANFIS only weighted average method of defuzzification can be used.
4. The strength of every rule has unity weight.
5. It is less flexible.

12.4 HIV/AIDS Population Model Using Neuro-Fuzzy
Approach

The Human Immunodeficiency Virus/Acquired Immunodeficiency syndrome
(HIV/AIDS) is spreading rapidly in all regions of the world. But in India it
is only 20 years old. Within this short period it has emerged as one of the
most serious public health problems in the country, which greatly affect the
socio-economical growth. The HIV problem is very complex and ill defined
from the modeling point of view. Keeping in the view the complexities of the
HIV infection and its transmission, it is difficult to make exact estimates of
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HIV prevalence. It is more so in the Indian context, with its typical and varied
cultural characteristics, and its traditions and values with special reference to
sex related risk behaviors. Therefore, it is necessary to develop a good model
which will help in making exact estimates of HIV prevalence that may be used
for planning HIV/AIDS prevention and control programs. In this paper Neuro-
Fuzzy approach has been used to develop dynamic model of HIV population
of Agra region.

12.4.1 Introduction

Mathematical models of transmission dynamics of HIV play an important role
in better understanding of epidemiological patterns and methods for disease
control as they provide short and long term prediction of HIV and AIDS
incidence and its dependence on various factors. The modeling study is also
helpful in determining the demographic and economic impact of the epidemic,
which in turn helps us to develop reasonable, scientifically, and socially sound
intervention plans in order to reduce the spread of the infection. Mathematical
and statistical models can serve as tools for understanding the epidemiology
of HIV and AIDS if they are constructed carefully. Here an attempt is made
to model the spread of HIV in a comprehensive manner with limited data of
Agra Region.

12.4.2 Roots of HIV/AIDS

Investigators have assessed high-risk patients by studying long-distance truck
drivers (Bwayo et al. 1991), female sex workers Kreiss et al. (1993), STD
clinics (Bwayo et al. 1991; Bollinger et al. 1997; Rodrigues et al. 1995), and
tuberculosis patients.

It has been estimated that there are at least several million female sex
workers (FSW) in India. The number of clients is of course much higher. In
India, it has been examined that the most men with sexually transmitted
infections (STI) probably acquired their infections from sex workers. In India,
from current knowledge, approximately 80% of sexually transmitted infections
are first generation infections derived from sex work. Also, HIV infection in
monogamous women (Gangakhedkar et al. 1997) is probably linked to their
husbands having visited sex workers. This problem is more severe in rural areas
where the people do not open their mouth and allow this disease to spread
silently. It has long been recognized that sexual behavior is very heterogeneous,
most people have few partners, while a minority (the core group) have many
and therefore account for a much of the transmission of HIV and STI in a
population. Prevention of mother-to-child transmission is possible through
peripartum antiretroviral treatment of mother and child and followed by non-
breastfeeding (Gibb and Tess 1999).
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Three different male-female partnerships were considered.

1. Commercially sex worker (CSW) - client relationships. The risk of trans-
mission during a single unprotected sex worker-client contact is deter-
mined by the risk factors of the risk of transmission from female-to-male
and from male-to-female, respectively. The number of sex contacts be-
tween sex workers and clients is determined by the demand for it and the
number of available sex workers.

Commercially
SexWorker

α1−−−→←−−−
α2

Client−−−→
α3

Life
Partner

2. Spousal relationships. “Spousal” partnerships between low risk (non-
client) men and low risk (non CSW) women were considered to be more
risky than above case, as these partnerships usually involve several or
many sexual encounters. However, per sexual act these partnerships are
implicitly assumed to be safer than individual sex worker contacts. The
rate by which women form such partnerships is determined by the rate by
which men form such partnerships. This simply ensures that the number
of partnerships formed by men equals that formed by women, and it does
not aim to be reflective of any realistic pattern of partnership formation.
Transmission can occur when one of the two partners is HIV positive and
enters into such a relationship.

+Non-CSW α4−−−→Non-client Person

3. In addition to these new “spousal” partnerships formed at (presumably)
a low rate between low risk men and low risk women, all other sexual rela-
tionships between men and women. We modeled the effect of transmission
occurring as a result of such relationships and subsequent HIV transmis-
sion to existing “spousal” partnerships and other contacts by allowing
HIV positive individuals to “leak” infection to low-risk individuals of the
opposite sex. Most individuals are married or have other “spouse-like”
sex partners among the low risk population. If these people become HIV
infected from other partners (via sex worker or other routes) they have a
high risk of “leaking” the infection to their spouses or other partners.

Vertical transmission
HIV infected women were considered as fertile as uninfected women. The

fraction of births of infected women also infected with HIV.
The latest estimate for the HIV/AIDS infected adult population in the

country is 3.8 million in 2000. HIV/AIDS is not a disease which spreads ran-
domly and is transmitted as a consequence of a specific behavioral pattern and
has strong socio-economic implications. It not only costs huge sum of money
in terms of controlling the opportunistic infections such as TB, Pneumonia
and Cryptococcus meningitis, but seriously affects individuals in their prime
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productive years causing serious economic loss to them and their Families.
To study the socio-economic effect of these diseases on the country, it is very
important to predict the correct values of HIV/AIDS population. The infor-
mation gathered from the infected people is not 100% accurate and correct
(but it has ambiguity and vagueness). Most of the time, the infected individ-
uals hide the information due to number of reasons like society’s fear, etc.
To overcome the problem of dealing with imprecise and vague informations,
Fuzzy Logic Based Approach works well. Fuzzy Set Theoretic Approach is the
best technique to deal with such uncertainties due to vagueness, imprecise-
ness, or incomplete information. On the other hand, a number of NGOs and
GOs are collecting the data for HIV/AIDS, these data may be numeric or
non-numeric in nature. Unfortunately, Fuzzy systems could not deal with nu-
merical data. Hence, artificial neural network is used along with Fuzzy System
to use numeric as well as non-numeric data in modeling.

12.4.3 Neuro-Fuzzy Approach of Modeling

In recent years, various modeling studies have been conducted to describe the
transmission dynamics of HIV (Ram Naresh 2000; Srinivasa Rao 2003; Nagelk-
erke and Jha 2001; Vanhowe 1999; Chaturvedi et al. 2001; Bhave et al. 1995;
Aggarwal et al. 1997; Brookmeyer et al. 1996; Ghani et al. 2002; Garnett et al.
2002; Stover et al. 2002). In particular, Anderson et al. (1986) described some
preliminary attempts to use mathematical models for transmission of HIV in a
homosexual community. In 1987 May and Anderson showed that if the proba-
bility of developing AIDS increases linearly with time since infection then the
distribution of the AIDS incubation period is a Weibull distribution. Nowak
et al. (1991) analyzed a model where the mean rate of acquisition of new part-
ners depends on the size of the sexually active population. Srinivasa Rao et al.
developed a Mathematical model of AIDS epidemic. Baily et al.presented a
model for HIV infection and AIDS in which infected people proceed through
a sequence of stages to AIDS and then to death. Most of the above men-
tioned models consider only one population but HIV transmission takes place
in populations that are heterogeneous in a variety of ways. The models incor-
porating demographic factors has also been studied by May et al., Anderson
et al. (1986). The incubation period of AIDS in India estimated through de-
convoluting HIV epidemic density and reporting AIDS cases, is between 8 and
12 years. Quantitative information on female commercial sex (FSW) activity
in India is available through various sources, but it is just impossible to get
accurate information. Due to lack of information, it is not possible to develop
an exact model using conventional method. Hence, there is need to develop
non-conventional (Neuro-Fuzzy) modeling technique to model this problem.

In the earlier models the population was taken constant and the growth
rate is not taken into account, but this aspect is very important in the spread
of disease due to long incubation period during which the population might
have doubled particularly in developing countries.
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Further, there is strong argument that variable infectivity, the nature and
type of social/sexual mixing structures and the long and variable periods of
infectiousness are key factors in modeling of HIV+ population dynamics.

12.4.3.1 Survey Results

The investigator surveyed the rural and urban areas of Agra region in which
HIV is spreading rapidly and also surveyed the Blood-Banks of Agra region.

1. Blood-banks data
The survey results of blood banks are tabulated in Table 12.2 and graph-
ically represented in Fig. 12.6.

High risk group:

• Commercial Sex workers (C.S.W.)
• Clients:

◦ Pre marital relation
◦ Extra marital relation

Table 12.2. Blood bank information

Year Total donation/
consumption of

blood 106 unit/year

No. of HIV+in
Agra region

2000 3,298 3
2001 3,221 10
2002 3,282 15
2003 11,098 30

2000 2000.5 2001 2001.5 2002 2002.5 2003
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Time (years) --->
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Fig. 12.6. Trend of blood demand and HIV+ cases
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• Blood recipient
• Children of HIV+ (mother to child)
• Policeman and military personal

Low risk group:

• Students
• General mass

Main castes responsible for spreading HIV+ in Agra Region are Bediya,
Bhantu, Kabutare. Main Red light areas in Agra city are Seb ka bazaar,
Mal ka bazaar, Kashmiri bazaar, Panni gali, Sikandra and in Rural areas
of Fatehabad such as Chaurahe mauhalla, Kanoon goyan, Ambedkar nagar,
Village ai and lodhai; Shamsabad: Kans tila, Gopalpura; Bah: Basaur, Sab-
ora, Rai khilla, Nagla Swaroop Lal; Fatehpur sikri: Churiyari, Shringarpur,
Korai; Zarar: Manikpura, Pinahat; Jagner; Jalesar.

No of HIV+ detected in rural areas = 60 cases.
These results show that 67% HIV+ population is in the age from 18 to

45 years as shown in Fig. 12.7, which can contribute in national economy.
Almost all HIV+ individuals are of low or medium income group (i.e. labour,
or farmers) as shown in Table 12.3.
Main reason of HIV+ infection in Agra region

– Sexual contact (unsafe) = 80%
– Mother to child = 10%
– Blood transmission = 6%
– Using infected injections = 4%

40

14
60

10

20

30

40

50

1. Male 
2. Female 
3. Children 

321

Fig. 12.7. HIV Infected male, female and children population

Table 12.3. Statistics of HIV spread in rural area

S. No. Person No. of Age group Income Married/unmarried
HIV (years) level

1. Male 40 18–45 Labour &
farmer

70% married
30% unmarried

2. Female 14 18–45 Labour 100% married
3. Infants 6 6–9 – –
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Table 12.4. Literacy level of HIV+ people in Agra

Sex % of Primary High sec. Inter-mediate
literacy level (%) level (%) level (%)

Male 95 60–75 25 1
Female 10 100 – –

Table 12.5. Population and literacy level of Agra region (according to 2001 survey
data)

Rural Urban
Population Literacy Population Literacy

Male 1,114,971 675,043 834,804 614,428
Female 938,985 292,586 722,541 373,444

700

750

800

850

900

950

1000

1991

Pop

Sex R

2001

Fig. 12.8. Population Density and Sex Ratio of Agra region

This shows that most of the HIV+ people are educated only upto primary
level and a very few educated upto higher secondary level and almost none
upto intermediate and higher education level as shown in Table 12.4. Another
important observation from these data is that the percentage of female literacy
level is very low specially in rural areas as mentioned in Table 12.5. This is
also an important reason of high rate of HIV infection. Hence, attention is
required to improve the literacy level of female. Also the sex ratio is 85.2%
and population density is 89.7% of Agra region as per the survey results of
Govt. of India 2001 (ref. Fig. 12.8).

Rehabilitation
There is no community care center in Agra region as far as author’s knowl-

edge is concern. Doctors prefer the HIV+ patients for home care and they
provide medicines only for opportunistic infections (e.g. fever, cough, etc).

12.4.3.2 Model Development Phase

For modeling and simulation of HIV+ Population using Neuro-Fuzzy Ap-
proach, the following steps have to be followed.
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Table 12.6. Variables and their ranges

S. no. Variable name Range (%)

1. FSW 1–5
2. Literacy level 20–70
3. Low income group 10–50
4. Migration 0–8
5. Awareness level 0–100
6. Blood demand 0–20,000 unit/year
7. Population density 800–950
8. Sex ratio 80–110%
9. Risk 0–100%

Step-1 The first step in model development is the identification of key vari-
ables. The key variables identified for the HIV+ infected population are:
Risk, Female Sex Worker (FSW) of different caste as Bediya, Kabutare
and Bhantu in Agra region, Blood demand (BD), Literacy Level, Low In-
come Group (LIG), Migration (M), Infected population (IP), Awareness
level (AL), Rate of Awareness (RA), Government Support (GS), Man
Power available for IEC (MP), Population Density (PD), Sex Ratio (SR),
Susceptible Population (SP), Rural Population, Urban Population, Rate
of Infection (RIP), Social Economy (SE), Injecting drug users (IDU) but
there is no case identified of IDU in Agra as per the records. The range
of these variables are given in Table 12.6.

Step-2 Causal links have been developed between a pair of variables un-
der cetris paribus conditions (i.e. keeping other variables constant) as in
the System Dynamic methodology. From these causal links a causal loop
diagram is drawn as shown in Fig. 12.9.

Step-3 Development of fuzzy knowledge base from causal link developed in
Step-2.

Fuzzy Knowledge Base

Rule–1 If FSW is high then Risk is high Else if FSW is medium then Risk
is medium Else if FSW is low then Risk is low.

Rule–2 If Literacy is low then Risk is high Else If Literacy is medium then
Risk is medium Else if Literacy is high then Risk is low.

Rule–3 If LIG is high then Risk is high Else if LIG is medium then Risk is
medium Else if LIG is low then Risk is low.

Rule–4 If M is high then Risk is high Else if M is medium then Risk is
medium Else if M is low then Risk is low.

Rule–5 If AL is high then Risk is low Else if AL is medium then Risk is
medium Else if AL is low then Risk is high.

Rule–6 If PD is high then Risk is low Else if PD is Medium then Risk is
Medium Else if PD is low then Risk is low.
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Fig. 12.9. Causal Loop Diagram for HIV/AIDS model

Rule–7 If SR is high then Risk is high Else if SR is Medium then Risk is
Medium Else if SR is low then Risk is high.

Rule–8 If Risk is high then IP is high Else if risk is medium then IP is
medium Else if risk is low then IP is low.

Rule–9 If BD is high then RIP is high Else if BD is medium then RIP is
medium Else if BD is low then RIP is low.

Rule–10 If SP is high then RIP is high Else if SP is medium then RIP is
medium Else if SP is low then RIP is low.

Rule–11 If RIP is low then IP is low Else if RIP is medium then IP is medium
Else if RIP is high then IP is high.

Rule–12 If IP is high then SP is high Else if IP is medium then SP is medium
Else if IP is low then SP is low.

Rule–13 If IP is high then SE is low Else if IP is medium then SE is medium
Else if IP is low then SE is high.

Rule–14 If TP is low then SP is low Else if TP is medium then IP is medium
Else if TP is high then IP is high.

Rule–15 If BR is high then TP is high Else if BR is medium then TP is
medium Else if BR is low then TP is low.

Rule–16 If DR is high then TP is low Else if DR is medium then TP is
medium Else if DR is low then TP is high.

Rule–17 If RA is high then AL is high Else if RA is medium then AL is
medium Else if RA is low then AL is low.
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Fig. 12.10. Fuzzy Membership functions

Rule–18 If IEC is high then RA is high Else if IEC is medium then RA is
medium Else if IEC is low then RA is low.

Rule–19 If MP is high then RA is high Else if MP is medium then RA is
medium Else if MP is low then RA is low.

Rule–20 If GS is high then RA is high Else if GS is medium then RA is
medium Else if GS is low then RA is low.

Rule–21 IF GS is high then CCS is high else if GS is low CCS is low.
Rule–22 If CCS is high then RA is high else if CCS is low RA is low.

The suitable triangular fuzzy sets have been defined for the identified vari-
ables as shown Fig. 12.10. The rule matrices have been developed for different
rules using discrete fuzzy sets and max min fuzzy composition, e.g.

Rule 1 = HFSW × HRisk + MFSW × MRisk + LFSW × LRisk

= [0/2.9, 0.25/3.375, 0.5/3.85, 0.75/4.225, 1.0/4.8] × [0/50, 0.25/62.5,

0.5/75, 0.75/87.5, 1.0/100] + [0/1, 0.25/1.475, 0.5/1.95, 0.75/2.425, 1/2.9,

0.75/3.375, 0.5/3.85, 0.25/4.225, 0/4.8] × [0/0, 0.25/12.5, .5/25, 0.75/37.5,

1/50, 0.75/62.5, 0.5/75, 0.25/87.5, 0/100] + [1/1, 0.75/1.475, 0.5/1.95,

0.25/2.425, 0/2.9] × [1/0, 0.75/12.5, .5/25, 0.25/37.5, 0/50]

The rule 1 may also be represented in the matrix form as given in Table 12.7.
Let us find the effect of FSW on Risk.
Given Crisp % FSW = 1.475
Fuzzy % FSW = [1/1, 0.75/1.475, 0.5/1.95, 0.75/2.425, 1/2.9, 0.75/3.375,

0.5/3.85, 0.25/4.225, 0/4.8]
After getting fuzzified valued of % FSW, determine the risk using rule #1

and max-min composition.
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Table 12.7. Representation of rule 1 in matrix form

0 12.5 25 37.5 50 62.5 75 87.5 100

1 1 0.75 0.5 0.25 0 0 0 0 0
1.475 0.75 0.75 0.5 0.25 0.25 0.25 0.25 0.25 0
1.95 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0
2.425 0.25 0.25 0.25 0.75 0.75 0.75 0.5 0.25 0
2.9 0 0.25 0.5 0.75 1.0 0.75 0.5 0.25 0
3.375 0 0.25 0.5 0.75 0.75 0.75 0.5 0.25 0.25
3.85 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5
4.225 0 0.25 0.25 0.25 0.25 0.25 0.5 0.75 0.75
4.8 0 0 0 0 0 0.25 0.5 0.75 1
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Fig. 12.11. Block diagram of ANFIS model of risk

RiskFSW = Fuzzy % FSW o Rule1
= [1/0, 0.75/12.5, 0.5/25, 0.75/37.5, 1/50, 0.75/62.5, 0.5/75,

0.5/87.5, 0.5/100]

Similarly risk from other factors also calculated and then finally combined
risk is calculated.

Step-4 The fuzzy knowledge base developed in step-3 is fixed and does
not have adaptability. Hence, Neuro-fuzzy approach has been used to
make it more flexible and adaptive. The ANFIS model of risk is shown
in Fig. 12.11, which is developed, in Fuzzy toolbox of Matlab Ver. 7.0.
Similarly the Infected population model is developed.
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12.4.3.3 Simulation Phase

Step-5 The above-developed ANFIS Model is simulated and the results have
been compared with the actual results. The model is tuned for error (i.e.
deviation in the model response from actual response).

Step-6 Tuned Model is used for prediction purposes and the results are
shown in Figs. 12.12–12.18.

12.4.4 Conclusions

It has been accepted that HIV/AIDS is not a health problem alone, but a
problem of such magnitude that it affects every facet of human life. The coun-
try will have serious socio-economic consequences if sufficient and necessary
steps are not taken. In the paper, the dynamic model of HIV/AIDS population
has been developed by establishing the cause – effect (causal) relationship be-
tween a pair of variables and then from these relationships a Fuzzy knowledge
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Fig. 12.14. Awareness Level among the common man
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Fig. 12.18. Trend of infected population

base is prepared. For the variables used in causal relations, the information
is gathered through the survey. The problems faced during survey are men-
tioned below:

1. There is no information obtained for HIV+ unmarried female due to typ-
ical Indian culture.

2. People do not want to disclose that he/she is HIV+ due to stigma.
3. Some private blood banks do not have full proof HIV testing facility.

Due to the above mentioned difficulties, the information gathered is not quite
accurate and correct, which in turn affect the model. Hence, fuzzy system
is used for modeling of HIV population dynamics to include the uncertainty
in the data. To include adaptability in the developed model, ANN is used
to change the rules and membership functions of fuzzy sets. The neuro-fuzzy
model developed for HIV/AIDS population dynamics is quite suited for this
application. The model includes the variable growth rate of population, dif-
fusion of population due to migration, transmission in a heterosexual com-
munity, role of exposed classes, demographic factors, effect of education and
intervention programmes.
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12.5 Summary

Some of the main topics covered in this chapter are mentioned below:

1. The merits and demerits of ANN and fuzzy systems are mentioned.
2. The different approaches to combine these two techniques are also de-

scribed.
3. The ANFIS model of neuro-fuzzy system is described in detail.
4. ANFIS always works with Sugeno model of Fuzzy inferencing. Hence

Sugeno model is also explained in this chapter.
5. Sugeno model is compared with Mamdani model.
6. Backpropagation gradient descent learning algorithm is used to identify

the parameters of fuzzy system.

12.6 Bibliographical and Historical Notes

Takagi and Hayashi did pioneer work in developing neuro-fuzzy technology in
the late 1980s. They have also worked closely with leading Japanese indus-
tries and developed many consumer products using neuro-fuzzy systems. P.
Werbos published a paper in which he mentioned several means of integrat-
ing ANN and fuzzy systems. Jang did his Ph.D. on neuro-fuzzy systems in
1990s and developed ANFIS for Matlab of Mathworks. Jang, Sun and Mizu-
tani later wrote a book on neuro-fuzzy systems and soft computing. Abraham
and Nath (2001) used neuro-fuzzy approach for modeling electricity demand.
Denai et al. (2000) and Nounou and Rehman (2000) used this approach for
modeling and control of ac machines. Jain and Kumar (2007) demonstrated
the hybrid approach for forecasting problems. Patidar et al. (2007) used hyrbid
appraoch for voltage contingency analysis.

12.7 Exercise

1. Discuss the merits and demerits of ANN, Fuzzy systems and neuro-fuzzy
systems?

2. Discuss the similarities and difference between Mamdani model and
Sugeno model of inference.

3. Explain the different possible integration of ANN and fuzzy systems.
4. Consider the following non-linear model Y = 1 − exp(−k∗t) + 0.5∗

sin(w∗t) + e(k)
Where e(k) is a zero mean Gaussian noise with variance 0.1. Generate 500
simulated data points from the model. Construct a neuro-fuzzy model us-
ing the first 400 data points and then test the model using the remaining
100 data points. Compare the accuracy of neuro-fuzzy model with math-
ematical model.
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5. What is the difference between neuralizing the fuzzy systems and fuzzify-
ing the ANN.

6. Let two universe of discourse defined as U = [1, 2, 3, 4, 5] and V =
[0, 10, 20 30].

The fuzzy set small = {(2, 0.3), (3, 0.8), (4, 0.1)} and Large = {(3, 0.2), (4, 0.5),
(5, 1.0)}.

Consider the following Sugeno model Rule 1 If x is small then y = 2x + 2,
Rule 2 If x is Large then y = 10 − x.

What is the model’s output for x = 2, 3, 4, 5.
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ANN – GA-Fuzzy Synergism
and Its Applications

The feed-forward backpropagation artificial neural networks (ANN) are widely
used to control the various industrial processes, modelling and simulation of
systems and forecasting purposes. The backpropagation learning has vari-
ous drawbacks such as slowness in learning, stuck in local minima, requires
functional derivative of aggregation function and thresholding function to
minimize error function etc. Various researchers suggested a number of im-
provements in simple back-propagation learning algorithm developed.

In this paper, a program is developed for feed-forward artificial neural
network with genetic algorithm (GA) as the learning mechanism to overcome
some of the disadvantages of backpropagation learning mechanism to minimize
the error function of ANN.

Genetic algorithm (GA) simulates the strategy of evolution and survival
of fittest. It is a powerful domain free approach integrated with ANN as a
learning tool. The ANN – GA integrated approach is applied to different
problems to test this approach. It is well known that the GA optimization is
slow and depending on the number of variables. To improve the convergence
of GA, a modified GA is developed, in which, the GA parameters are modified
using five fuzzy rules and concentration of genes is suggested.

13.1 Introduction

The optimization algorithms may be classified as follows:

1. The algorithms that are deterministic, with specific rules for moving from
one solution to the other like gradient descent optimization. These algo-
rithms have been successfully applied to many engineering design prob-
lems.

2. There has been a new and very popular method for the optimization
emerged now and that is the optimization with Genetic Algorithm. The
difference between GA and traditional methods of optimization is, GA
works with a binary strings representing variables instead of the actual

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 501–508 (2008)
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values of those variables. The advantage of the binary strings is that the
discontinuous function can be handled with no extra cost. This allows
GA to be applied to a wide variety of problems. Another advantage is
that the GA operators exploit the similarities in string structures to make
an effective search. The most striking difference between GA and many
traditional optimization methods is that GA works with a population of
points instead of a single point. Because there are more than one string
being processed simultaneously, it is very likely that the expected GA
solution may be global solution. In GA previously found good information
is emphasized using reproduction operator and propagated adaptively
through crossover and mutation operator.

The genetic algorithms takes the same number of strings as the population
size and among them it selects the better strings of the population for the
training ANN. The error function of ANN is taken as the objective function
and the adjustment of the weights is done in such a way that while training,
the error should be minimized.

The comparison of GA and traditional back-propagation training may be
given as:

1. The generalized delta rule which gets the optimal value, reduces the
search space for the next iterations, thereby some good solutions are
likely to be left behind in that process. Whereas in the GA search space
is never reduced and it takes all possible good population for every itera-
tion. Hence the possibility of leaving any good solution is negligibly small.

2. The most important advantage of using GA as the training algorithm
is that the discontinuous function can be handled very easily, whereas
the general back-propagation algorithm could not train the ANN; if the
aggregation function and/or thresholding function are not a continuous
one, because it requires a derivative of the function.

13.2 Training of ANN

The major development in learning of neuron occurred, after the development
of neuron in 1943 by Mc-Culloh Pits, when D.O. Hebb (Baldi and Hornik 1989)
proposed a learning mechanism for the brain that became the starting point
for artificial neural network learning (training) algorithms. He postulated that
as brain learns, it changes its connectivity patterns. More specifically, his
learning hypothesis is as follows:

“When the axon of cell A is near enough to excite cell B and repeatedly or
persistently takes part in firing it, some growth process or metabollic change
takes place in one or both cells such that the A’s efficacy, as one of the cell
firing cell B, is increased”.

Hebb further proposed that if one cell B repeatedly assists in firing another,
the knobs of the synapse, or the junction, between the cells would grow so as to
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increase the area of contact. The Hebb’s learning hypothesis is schematically
given in Chap. 3.

Although this technique has been used in neural nets after certain modifi-
cations suggested by Bernard Widrow in 1962, which was called “delta rule”.
Later on a chain rule was developed called generalized delta rule or standard
back-propagation learning algorithm for artificial neural networks.
Drawbacks of back-propagation learning algorithm

The back-propagation learning algorithm has various drawbacks as follows:

1. The slowness of the learning process, especially when large training sets
or large networks have to be used.

2. Network may stuck in local minima (Chaturvedi et al. 1996, Chaturvedi
and Das 2000).

3. The learning rate and momentum have great effect of the training time.
With constant step size of learning rate and momentum the convergence
of back-propagation tends to be very slow and often yields sub-optimal
solutions.

4. Initial weights also affect the training time.
5. The neural network may not Converge at all if the initial weights are not

selected properly (Hinton 1996).
6. The threshold function should be differentiable and non decreasing (Fu,

1994).
7. The training time is a function of the error function (Humpert 1994).
8. The normalization range of training data and input output mapping also

affect the training time and accuracy (Chaturvedi et al. 1996).
9. Network complexity, i.e. number of hidden layers and number of hidden

units and their interconnections with neuron of other layers greatly affects
the learning speed of ANN.

13.3 Advantages of GA

The central theme of research on genetic algorithms has been robustness, the
balance between efficiency and efficacy necessary for survival in many different
environments. The following are the advantages of GA:

1. The genetic algorithms are a set of sophisticated search and improve
procedures based on the mechanics of natural genetics; the search is ab-
solutely blind, but guided by pre-designated precise operators.

2. The potentials of genetic algorithms as a problem solving especially in
finding near optimal solution (Humpert 1994).

3. Genetic algorithms search from a population of points, not a single point.
4. Genetic algorithms use pay off information’s (objective function), not

derivatives or auxiliary knowledge.
5. GA uses probabilistic transition rules, not deterministic rules.
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6. Genetic algorithms work with a coding of the parameter themselves.
7. GA uses probabilistic procedure to select input to produce outputs for the

next generations that include only fittest among the input and output.

13.4 ANN Learning Using GA

In the ANN learning, GA model replaces the back propagation mechanism of
learning. The error, which is caused due to the difference between the desired
output and the actual output as obtained from the ANN, is fed-back to GA
model and with the help of GA the weights are optimized to obtain minimum
error as shown in Fig. 13.1. A computer program for ANN-GA is developed
in MATLAB Ver. 7.1.

The simple genetic algorithm, for which the program has been formu-
lated, contains non-overlapping string populations. The population as an ar-
ray of individuals where each individual contains the coded parameter, the
bit strings and the fitness (objective function) value along with the auxil-
iary information. To obtain new population three operators namely select,
crossover, and mutation is performed. In conventional GA, the selection is
done according to the roulette wheel, which is developed on the basis of fit-
ness value of strings. In this selection criterion there is no guaranty that the
best strings will be selected. Therefore, the convergence time will be affected.
To overcome this problem, the stochastic remainder selection is performed as
suggested by Deb (1995).

The objective function is taken as the error function and is given by

F = 1/(1 + e2); where e is the sum squared error.

The program GA-ANN uses binary strings to representing the parameter
values, there it makes to clear that decoded value of string by which a para-
meter is represented is not equal to the parameter value. A coefficient named,
normalizing coefficient is used to calculate the actual value of a parameter

ANN

Modified GA 

Input 
Output 

Error

Desired 
output

Fuzzy System 

Fig. 13.1. GA as learning tools for ANN
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represented by a particular string. The value of coefficient can be calculated
by following formula:

Coeff = 2lchrom − 1/(ub − lb)

Where lchrom is the length of chromosome of a string (number of bits in
string), ub and lb are the upper and lower limits of parameter value (range of
parameter).

The important GA parameters which are reqiured by GA program are
listed below:

Population size (popsize) Maximum no of generations (maxgen)
= 20 to 50 = 10–50

Crossover probability (pcross) Mutation probability (pmutation)
= .25 to .6 = .001 to .003

13.5 Validation and Verification of ANN-GA Model

The earlier developed improved GA (GA-Fuzzy technique) has been used to
train ANN for the four different types of problems. The ANN used for training
these problems are shown in Fig. 13.2.

The weights of neural network

W(p, 1) ={w(p, 11),w(p, 12),w(p, 13),bais1},
W(p, 2) ={w(p, 21),w(p, 22),w(p, 23),bais2}

and

W(p, 3) ={w(p, 31),w(p, 32),w(p, 33),bais3}.
Initially, Improved Genetic Algorithm has been used to optimize the neural

network set of weights like W(p,1), W(p,2) and W(p,3). Then keeping any two
sets of weights constant (e.g. W(p,2) and W(p,3)) and optimize the remaining
weights (eg. w(p,11), w(p,12) and w(p,13)). This process is repeated till error
is not become zero or near zero.

bais

W(p,3)

W(p,2)

W(p,1)

Input Input layer Hidden layer output layer output

Fig. 13.2. Three Layered ANN
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The following four problems have been considered as shown in Table 13.1
for training and testing of ANN-GA model.

The results of ANN training using improved GA have been shown in
Table 13.2.

The test results for all four problems are shown in Table 13.3.

Table 13.1. Different problems considered for validation of ANN-GA approach

Problem no. Problem Expression

1. EX-OR problem X + Y = output
2. Square function X2 + Y2 = output
3. Product function X . Y = output
4. Power function XY = output

Table 13.2. ANN weights obtained for different problems after training of ANN
using improved genetic algorithms

Problem – 1 Problem – 2 Problem – 3 Problem – 4

x(p,11) −15.0000 −1.4032 −8.2258 −7.2581
x(p,12) −4.3548 7.2580 0.4838 3.3871
x(p,13) −15.000 −1.1129 −3.3870 −3.3871
x(p,21) −13.0645 −13.0645 3.3871 −3.3871
x(p,22) −13.0645 −13.0645 3.3871 −3.3871
x(p,23) −13.0645 −13.0645 3.3871 −2.4194
x(p,31) 13.0645 13.0645 2.4194 3.3871
x(p,32) 13.0645 13.0645 2.4194 1.4516
x(p,33) 13.0645 13.0645 2.4194 2.4194

Fitness value 0.9999 0.9983 0.9416 0.9519

Table 13.3. Simulation results of ANN-GA

Problem 1 – Ex-OR function

X Y Actual value ANN-GA

0 0 0 0.0001
0 1 1 0.996
1 0 1 0.994
1 1 0 0.001
0 0 0 0.0001

Problem 2 – Square function

0.1 0.1 0.02 0.0019
0.2 0.2 0.08 0.0078
0.3 0.3 0.18 0.1790
0.4 0.4 0.32 0.3210
0.5 0.5 0.5 0.5010
0.6 0.6 0.72 0.7200
0.7 0.7 0.98 0.9800
0.8 0.8 1.28 1.2801
0.9 0.9 1.62 1.6201
1 1 2 2.0010
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Table 13.3. (Continued)

Problem 3 – Product function

0.1 0.1 0.01 0.0101
0.2 0.2 0.04 0.0401
0.3 0.3 0.09 0.0899
0.4 0.4 0.16 0.1598
0.5 0.5 0.25 0.2479
0.6 0.6 0.36 0.3610
0.7 0.7 0.49 0.4890
0.8 0.8 0.64 0.6401
0.9 0.9 0.81 0.8088
1 1 1 0.9960

Problem 4 – Power function

0.1 0.1 0.7943 0.7939
0.2 0.2 0.7247 0.7246
0.3 0.3 0.6068 0.60679
0.4 0.4 0.6931 0.6930
0.5 0.5 0.7071 0.7070
0.6 0.6 0.7360 0.7361
0.7 0.7 0.7790 0.7788
0.8 0.8 0.8365 0.8364
0.9 0.9 0.9095 0.9095
1 1 1 0.9960

13.6 Summary

The ANN can be trained through exposure to a set of samples of input and
output. There are many different procedures that might be used for training of
an ANN. Improved Genetic Algorithm has been used to train artificial neural
networks. Learning is achieved by adjusting the weights (by optimizing the
variables (weights of ANN) of GA optimization function i.e. sum squared error
function) of the network until its action computing performance is acceptable.
The results show that the neural network with the help of IGA performs well
with non-derivative learning mechanism. It helps us to minimize the error very
near to zero (i.e. the fitness value of objective function reaches near to one).

The approach may be further extended in the following directions:

1. More complex problem may be tried.
2. Fuzzy aggregation operators like t-norm, t-co-norm, averaging or

compensatory operators may be used as the aggregation function(s)
of ANN-GA model.

3. The IGA training algorithm could be made more adaptive by selecting
length of chromosome and maximum number of generations using fuzzy
system for better accuracy.
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13.7 Bibliography and Historical Notes

There are numerous books on the subject of integration of ANN, fuzzy sys-
tems and evolutionary (genetic) algorithms. An excellent compendium on the
subject of neuro-fuzzy integration is in the books by Lin and Lee (1996), Jang
et al. (1997) and Abraham et al. (2002). An excellent collection of papers on
the subject of integration of these techniques is in the books Bezdek and Pal
(1992), Carpenter and Grossberg (1996), and Frank Hoffman (2005).

The relation of genetic algorithms and soft computing is explored in
Herrera and Verdegay (1996), Jose Manuel Beńıtez (2003), Wang (2003),
Rutkowski (2004) and Melin (2005).

In addition to all these there are a number of journals that publish papers
on all aspects of softcomputing. IEEE publishes three transactions: Transac-
tions on Neural Networks, Transactions on Fuzzy Systems, and Transactions
on Evolutionary Algorithms. Springer is also publishing International Jour-
nal of Soft Computing: A Fusion of Foundations, Methodologies and Appli-
cations. Other includes: Evolutionary comutation, Fuzzy Sets and Systems,
Softcomputing.

Ang et al. (2003, 2005) proposed a good combination of Fuzzy and ANN.
Antsaklis (1990), Anderson (1988) mentioned ANN applications for control.
Buckley (1994b, 1994c), Sun (1994), Kosko (1992), Brill (1992), Chang (1998),
Chaturvedi et al. (Dec. 1999, 2001, 2005) discussed about synergism of ANN,
fuzzy based systems and GA.
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Köhler, W., Gestalt Psychology. Liveright, New York, 1929.
Kohonen, T., Correlation matrix memories. IEEE Transactions on Computers,

c-21:353–359, 1972.
Kohonen, T., Self Organizing Maps, 2nd Edn. Springer-Verlag, Berlin, 1997.
Kohonen, T., Self-Organization and Associative Memory, 3rd Edn. Springer-Verlag,

New York, 1988.
Kosko, B., Bidirectional associative memory, Applied Optics, 26(23): 4947–

4960, 1987.
Kosko, B., Bidirectional associative memory, IEEE Transactions on Systems, Man

and Cybernetics, 18(1): 49–60, 1988.
Kosko, B., Fuzzy Engineering,. Prentice Hall, Upper Saddle River, NJ, 1997.
Kosko, B., Neural Network for Signal Processing. Prentice-Hall, Englewood Cliffs,

NJ, 1992.
Kothari M.L., Nanda. J and Bhattcharya K., “Design of variable structure power

system stabilizers with desired eigen values in the Sliding Mode”, IEE Proc.,
part-C, Vol. 140–4, PP. 263–268, July 1993.

Kovacs, R.R. and Leverett, A.L., A load flow based method for calculating embed-
ded, incremental & marginal cost of transmission capacity. IEEE Transactions
on Power Systems, 9, 272–278, 1994.

Kramer Alan, H. and Sangiovanni-Vincentelli, A., Advances in neural informa-
tion processing systems. Morgan Kaufmann, San Francisco, CA, USA, pp. 40–
48, 1989.

Kreiss, J.K., Hopkins, S.G., The association between circumcision status and human
immunodeficiency virus infection in homosexual men. J Infect Dis 168, 1404–8
1993.

Kristiansen, T., Congestion management, transmission pricing and area price hedg-
ing in the Nordic region. Electrical Power and Energy Systems 26 (2004),
pp. 685–695.



534 References

Krunic, M.S.S.C. and Rajakovik, N., An improved neural network application for
short term load forecasting in power system. Electric Machines and Power Sys-
tems, 28: 703–721, 2000.

Kumar, A., Srivastava, S.C., and Singh, S.N., A zonal congestion management ap-
proach using real and reactive power rescheduling. IEEE Transactions on Power
Systems, 19(1): 554–561, 2004.

Kumar, A., Srivastava, S.C. and Singh, S.N., Congestion management in competitive
power market: a bibliographical survey. Electric Power Systems Research, 76:
153–164, 2005.

Kupperstien, M. and Rubinstein, J., Implementation of an adaptive neural controller
for sensory-motor coordination. IEEE Control Syst, 9(3): 25, 1989.

Lai, L.L., Ma, J.T., Yokoyama, R., and Zhao, M., Improved genetic algorithms for
optimal power flow under both normal and contingent operation states. Electrical
Power and Energy Systems, 19(5): 287–292, 1997.

Lajwanti and Chaturvedi, D.K., Education and computerisation, 40th WEF Inter-
national Conference on Educating for a Better World: Vision to Action, Launce-
ston, Australia, pp. 5–10, Jan. 1999.

Lajwanti, C.D.K., Nandita, S., Satsangi, S.P., Role of computers in higher education,
World Conference on Education India: The Next Millennium, New Delhi, India,
pp. 54, Nov. 12–14, 1997.

Lajwanti, C.D.K. and Soami, D.V., Teaching and learning through computer games,
International Conference on Educational Management, Technology and Values,
Udaipur (Raj.), India, Souvenir, p. 56, Dec. 10–12, 1999.

Lakhmi C.J., and Jain, R.K. (eds.). Hybrid Intelligent Engineering Systems. World
Scientific Publishing, Co. Pte. Ltd., USA, 1997.

Lamont, J.W. and Fu, R., Cost analysis of reactive power support. IEEE Transac-
tions on Power Systems, 14(3): 890–898, 1999.

Langdon, W.B. and Poli, R., Foundations of Genetic Programming. Springer-Verlag,
Berlin, 2002.

Larsen, P.M., Industrial applications of Fuzzy Logic Control, International Journal
of Man–Machine Studies, 12(1), 3–10, 1980.

Larsen, E.V. and Swann, D.A., Applying Power System Stabilizer, IEEE Trans-
actions on Power Apparatus and Systems, Vol. PAS-100, 3017–3046, 1981.

Lawrence, D., Handbook of Genetic Algorithms. Von Nostrand Reinhold, New
York, 1991.

LeCun, Y., Jackel, L.D., et al., Handwritten Digital Recognition: Application of
Neural Network Chips and Automatic Learning. IEEE Communications Maga-
zine, 41, 1988.

Lee, K.Y., Park, Y.M., and Ortiz, J.L., A united approach to optimal real and
reactive power dispatch. IEEE Transactions on Power Apparatus and Systems,
PAS-104(5): 1147–1153, 1985.

Lee, M. and Esbensen, H., Evolutionary algorithms based multiobjective techniques
for intelligent systems design. FUZZ-IEEE, 360–364, 1996.

Lee, M.A. and Takagi, H., Integrating design stages of fuzzy systems using genetic
algorithms, Proceedings of the Second IEEE International Conference on Fuzzy
Systems, Sanfransisco, pp. 612–617, 1993.

Lee, S.K., Son, K.M. and Park, J.K., Voltage profile optimization using a pyramid
genetic algorithm. Proceedings ISAP 97, Seoul, Korea, pp. 407–414, July 6–
10, 1997.



References 535

Lee, Y., Oh, S.H., and Kim, M.W., The effect of initial weights on premature sat-
uration in backpropagation learning. IEEE International Joint Conference on
Neural Networks, (Seattle), New York, 1: 765–770, 1991.

Lee, D.G., Lee B.W., and Chang S.H., Genetic programming for long term forecast-
ing of electric power demand. Electric Power System Research, 40: 17–22, 1997.

Lee, K.Y., Choi, T.I., Ku, C.C., and Park, J.H., Short-term load forecasting using
diagonal recurrent neural network, IEEE Proceedings of the Second International
Forum on Applications of Neural Networks to Power Systems, pp. 227–32, New
York, NY, USA, 1993.

Leibniz, G.W., Discourse on Metaphysics. Translated by D. Garter and R. Aries.
Hackett, Indianapolis, 1686, 1991.

Levine, J., Materialism and qualia: the explanatory gap. Pacific Philosophical Quar-
terly, 64: 354–361, 1983.

Levine, J., On leaving out what it’s like”. In Davies, M. and Humphreys, G. (eds.)
Consciousness: Psychological and Philosophical Essays. Blackwell, Oxford, 1993.

Levine, J. Out of the closet: a qualophile confronts qualophobia. Philosophical Top-
ics, 22/1–2: 107–26, 1994.

Levine, J. Purple Haze: The Puzzle of Conscious Experience. The MIT Press,
Cambridge, MA, 2001.

Lewis, D., Psychophysical and theoretical identifications. Australasian Journal of
Philosophy, 50: 249–258, 1972.

Lewis, D., What experience teaches. In Lycan, W. (ed.) Mind and Cognition: A
Reader. Blackwell, Oxford, 1990.

Li, G. and Manli, X., Changing topological artificial neural network for load fore-
casting. Automation of Electric Power Systems, 17(11): 28–33, 1993.

Li, T. and Shahidehpour, M., Strategic bidding of transmission-constrained GEN-
COs with incomplete information. IEEE Transactions on Power Systems, 20(1):
437–447, 2005.

Li, Y.Z. and David, A.K., Optimal multi-area wheeling. IEEE Transactions on
Power Systems, 9(1): 288–294, 1993.

Li, Y.Z. and David, A.K., Wheeling rates of reactive power flow under marginal cost
pricing. IEEE Transactions of Power Systems, 4(2): 594–605, 1989.

Li, Y. and Flynn, P.C., Deregulated power prices: changes over time. IEEE Trans-
actions on Power Systems, 20(2): 565–572, 2005.

Liang and Cheng, C.C., Combined regression Fuzzy approach for short-term load
forecasting. IEE Proceedings, 147(4): 261–265, 2000.

Libet, B., Subjective antedating of a sensory experience and mind-brain theories.
Journal of Theoretical Biology, 114: 563–570, 1982.

Libet, B., Unconscious cerebral initiative and the role of conscious will in voluntary
action. Behavioral and Brain Sciences, 8: 529–66, 1985.

Lima, J.W.M. and De Oliveira, E.J., Long-term impact of transmission pricing.
IEEE Transactions on Power Systems, 30(4): 1514–1520, 1998.

Lima, J.W.M., Allocation of transmission fixed charges: an overview. IEEE Trans-
actions on Power Systems, 11(3): 1409–1417, 1996.

Lima, J.W.M. and Pereira, M.V.F., An integrated framework for cost-allocation in a
multi-owned transmission system. IEEE Transactions on Power Systems, 10(2):
971–977, 1995.

Lin, C.T. and Lee, C.S.G., Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent Systems. Prentice Hall, Upper Saddle River, NJ, 1996.



536 References

Linkens, D.A. (ed.), Intelligent Control in Biomedicine. Taylor & Francis, Lon-
don, 1994.

Lipmann, R.P., Pattern Classification Using Neural Networks. IEEE Communica-
tions Magazine, Nov., 1989.

Lippmann, R.P., An Introduction to Computing with Neural Network. IEEE
Acoustic, Speech, and Signal Processing Magazine, 4, 1987.

Lister, R., Bakker, P., and Wiles, J., Error signals, exceptions, and back propagation,
Proceedings of International Joint Conference on Neural Networks, Nagoya, vol.
1, pp. 573–557 (1993).

Lister, R., and Stone, J.V., An empirical study of the time complexity of various
error functions with conjugate gradient backpropagation, Proceedings IEEE In-
ternational Conference on Neural Networks, 1: 237–241, 1995.

Liu, H., Iberall, T., and Bekey, G., Neural network architecture for robot hand
control. IEEE Control Systems, 9(3): 38, 1989.

Liu W., Moorthy G.K.V., Wunsch D.C. II. “Adaptive Neural Network Based Power
System Stabilizer Design” IEEE Trans. Power Systems, PP. 2970–2975, 2003.

Llinas, R. I of the vortex: from neurons to self. MIT Press, Cambridge, MA, 2001.
Lo, K.L. and Zhu, S.P., Wheeling and marginal wheeling rates: theory and case

study results. Electric Power Systems Research, 27: 11–26, 1993.
Lo, K.L. and Zhu, S.P., A theory of pricing wheeled power. Electrical Power Systems

Research, 28: 191–200, 1994.
Lo, C.H., Chan, P.T., Wong, Y.K., Rad, A.B., Cheung, K.L., Fuzzy-genetic algo-

rithm for automatic fault detection in HVAC systems. Applied Soft Computing,
7(2): 554–560, 2007.

Loar, B., Phenomenal states. In Block, N., Flanagan, O., and Guzeldere, G. (eds.)
The Nature of Consciousness. MIT Press, Cambridge, MA, 1997.

Lockwood, M., Mind, Brain, and the Quantum. Oxford University Press,
Oxford, 1989.

Lorenz, K., Behind the Mirror (Rückseite dyes Speigels). Translated by R. Taylor.
Harcourt Brace Jovanovich, New York, 1977.
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Glossary

I. Artificial Neural Network

Activation/threshold It is a function which controls the neuron output.
function
Artificial neuron Mimic the behaviour of biological neuron with the

help of electronic circuit.
Axon output channel.
Back propagation ANN models where error at output layer propagated

back to modify the weights.
Bias It is connection strength for a fixed input.
Biological neuron The tiny processing cell in the human brain.
Cell Body Accumulator (with threshold function)
Cerebrum It is the most complex part of human brain, compris-

ing of sheet of neurons (arranged into layers) that
folds at the gyri and sulci. It localized the important
functions of human body.

Dendrites Input receptors in neuron.
Epoch/Iteration A cycle of processing in a neural network, which con-

tains, forward calculation for determining Neural out-
put as well as backward calculation to update the
weights.

Global Minima There is no other value of x in the domain of the
function f, where the value of the function is smallest.

Hidden Layer An array of neurons positioned between the input and
output layers.

Input layer An array of neurons to which an external input or
signal is presented.

Local minima During learning of ANN the network could not reach
to its absolute minima is called local minima.

Noise A distortion of an input.
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Output Layer An array of neurons to which output from the net-
work is taken.

Percetron A neural network for linear pattern matching. It is a
single neuron of feedforward binary threshold type.

Supervised learning A learning process where the out for the given input
is known and used for modifying the weights. In this
learning examples are used.

Synapses Communication between neurons takes place through
specialized contact points between neurons called
synapses.

Training The process of changing weights or rather refining
weights is called learning/training.

Unsupervised Learning in the absence of external information on
outputs.Learning

Weight It is connection strength between different neuron sit-
uated at different layers.

Working Memory A component or a place of computer system where
the intermediate results of intelligent system are tem-
porarily stored.

II. Fuzzy Systems

Artificial Intelligence The discipline devoted to producing systems that per-
form tasks which would require ‘intelligence’ if per-
formed by a human being.

Automatic knowledge A branch of machine learning devoted to explicating
the principles of the induction of rule bases.

Acquisition
Backtracking The process of backing up through a series of infer-

ences in the face of unacceptable results.
Backward chaining An inference mechanism which works from a goal and

attempts to satisfy a set of initial conditions. Also
referred to as goal – directed chaining.

Cognition A intelligent process by which knowledge is gained
about perceptions or ideas.

Convex Fuzzy Set Fuzzy sets whose α cuts are crisp sets for all α ∈ [0, 1].
Data base system A system which marries the properties of database

systems with the properties of expert systems.
Domain A bounded area of knowledge. A pool of values used

to define columns of a relation.
Domain Expert The person who provides the expertise on which a

knowledge base is modified.
Equivalence relation Relation that is reflexive, symmetric, and transitive.
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Expert System A computer system that achieves high levels of per-
formance in areas that for human beings require large
amounts of expertise.

Expertise A set of capabilities underlying skilled performance
in some task area.

Fact A relationship between objects.
Forward Chaining An inference mechanism which works from a set of

initial conditions to a goal. Also referred to as a data –
directed chaining. Making inferences by matching the
condition sides of the IF-THEN rules to the facts at
hand. It works from facts to conclusions, it also called
antecedent mode, event-driven mode, or data driven
mode of inference.

Fuzzy aggregation It is an operator which aggregated two or more fuzzy
sets. h[0, 0, 0, . . . 0] = 0 and h[1, 1, 1 . . . ., 1] = 1.
H[0, 1]n → [0, 1], where n ≥ 2 and h is a continu-
ous monotonically increasing function.

operator

Fuzzy Systems A system whose variables (Fuzzy) values are linguis-
tic terms.

Heuristic A rule of thumb. A mechanism with no guarantee of
success.

Inference Engine That part of a knowledge base system which makes
inferences from the knowledge base.

Inference The process of generating conclusions from conditions
or new facts from known facts.

Information It is the interpreted data. Information is data with
attributed meaning in context.

Knowledge It is derived from information by integrating informa-
tion with existing knowledge. The same data may be
interpreted differently by different people depending
on their existing knowledge.

Knowledge base A system containing knowledge which can perform
tasks that require intelligence if done by human
beings.

System

Knowledge base An artificial intelligence data base that is made up
not merely of files of uniform content, but of facts,
inferences, and procedures corresponding to the type
of information needed for problem solution.

Knowledge A person, analogous to the system analyst in tra-
ditional computing, who builds a knowledge base
system.

Engineering

Knowledge The process of mapping the knowledge of some do-
main into a computational medium.representation

Knowledge source Any source for knowledge – documentats, manuals,
tape recording etc.
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Natural Language Processing of natural language (English, for exam-
ple) by a computer to facilitate human communica-
tion with the computer – or the other purposes, such
as language translation.

processing

Parallel Processing Simultaneous processing, as opposed to the sequential
processing in a conventional (Von-Neumann) type of
computer architecture.

Production rules An IF-THEN rule having a set of conditions and a
set of consequent conclusions.

Rule A mechanism for generating new facts.
Syllogism A deductive argument in logic whose conclusion is

supported by two premises.

III. Genetic Algorithms

Allele One of a pair or series of alternative genes that oc-
cur at a given locus in chromosome: one constraining
form of genes (bit value or feature value).

Carriers A heterozygous individual with recessive and domi-
nant both alleles in allelic pair.

Chromosome Microscopically observable thread like structures
which are the main carriers of hereditary information
(coded string).

Crossover A genetic process which results gene exchange by
combining the different chromosome selected from
previous generation (parents).

Deoxyribonucleic acid A chemical known as genetic material from which the
genes are composed.(DNA)

Diploid An organism or cell having a set of two genome.
Dominance Applied one member of an allelic pair that has the

ability to manifest itself at the exclusion of the ex-
pression of the other alleles.

Fitness Survivability of a living being in a particular environ-
ment. It is the objective function value.

Gametes They are reproductive cells.
Gene A hereditary determiner specifying a biological func-

tion; a unit of inheritance located in a fixed place on
chromosome. It has feature, character or detector.

Genome A complete set of chromosomes inherited as a unit
from one parent. It is the complete string of all
variables.

Genotype Actual gene constitution for a trait (String structure).
Heterozygous An organism carrying unlike alleles in allelic pair.
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Homozygous An organism carrying same alleles in allelic pair.
Lethals An allele which has an influence on viability of an

organism in such a way that the organism is unable to
live, known as lethal gene. (String which disappears
under specified conditions).

Mutation Sudden change in genetic material or gene in chro-
mosome. It is just flipping a bit within a string.

Phenotype Visible expression of traits. In GA it is the set of
parameters or a decoded string.
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Power System Model and its Parameters

A.1 Single Machine Infinite Bus System

1. The generating unit is modeled by seven first order non-linear differen-
tial equations for power system stabilizer application as given below:

dδ

dt
= ω0(ω − 1),

dω

dt
=

1
2H

(Tm − Te + kd
∗ dδ

dt
+ g)

dλd

dt
= ed + ra

∗id + ω0ωλq,
dλq

dt
= eq + ra

∗iq + ω0ωλd,

dλf

dt
= ef − rf

∗if ,
dλkd

dt
= −rkd

∗ikd,
dλkq

dt
= −rkq

∗ikq

2. The AVR and exciter used in the system have the transfer functions,
respectively:

va =
ka

(1 + sTa)
(vref − vt + upss), vf =

ke

(1 + s ∗ TTe)
va

3. The governor used in the system has the transfer function

g =
Tref + kg

∗ω
(1 + s∗Tg)

, Tm =
g

(1 + s ∗ Ts)

5. Parameters used in the simulation studies are given below:

5.1 Machine parameters

ra = 0.00528, rf = 0.00116, rkd = 0.0179, rkq = 0.0179,

xmd = 1.74, xmq = 1.65, xf = 0.16, xkd = 0.09, xkq = 0.146,

H = 5.83, kd = 0.027

5.2 Governor Parameters Tg = 0.1, Ts = 0.3, kg = 0.0796
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5.3 AVR and Exciter Parameters ka = 0.001; Ta = 0.01;
ke = 5.56; TTe = 0.01;

5.4 CPSS parameters T1=1.14, T2=0.02, Tw=2.5, Kδ = 0.03;
5.5 GNN based PSS Parameters

Learning Rate η = 0.05, Gain Scale Factor λ = 1.0 Momentum
factor α = 0.9

5.6 Transmission Line Parameter - Rt = 0.06, Xt = 0.25
5.7 Transformer Parameter - Rtr = 0.008, Xtr = 0.10

All resistance and reactance are in per unit and time-constants in
seconds.

A.2 Multimachine Power System

1. For a Multi-machine Power System Generator Parameters on a 100
MVA base:
for small generators #3 and #5:
xd= 1.026, xq= 0.6580, xd’= 0.3390, xd”= 0.2690, xq”= 0.3350,
H= 10;
for big generators #1, #2 and #4:
xd= 0.1026, xq= 0.0658, xd’= 0.0339, xd”= 0.0269, xq”= 0.0335,
H= 80;
Time constant for all generators: Tdo’=5.67, Tdo”=0.614,
Tqo”=0.723.
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Fig. A.1. Schematic diagram of AVR and exciter model
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2. Simplified IEEE standard type ST1A AVR and exciter model is shown
in Fig. A1 and its parameters are:
Rc= 0.0, Xc= 0.0, Tr = 0.04, Ka= 190.0, Tf = 1.0, Kf = 0.05, Kc=
0.08, Ta= 0.0,
Tc= 1.0, Tc1= 0.0, Tb = 10.0, Tb1= 0.0, Voel= 999.

3. Governor Model: g =
[
a + b

1+sTg

]
d
dtδ

where Tg=0.25, a = −0.00133, b = −0.170 for generator #3 and #5.
Tg=0.25, a = −0.00015, b = −0.0150 for generator #1, #2 and #4.

4. Operating conditions:

G1 G2 G3 G4 G5

P, pu 5.4200 8.5835 0.8055 8.5670 0.8501
Q, pu 6.8177 4.3452 0.7280 4.4493 0.1608
V, pu 1.0750 1.1300 1.0250 1.0750 1.0250
δ, rad 0.0 0.4600 0.3060 0.1032 0.3101

5. Load admittance (pu):

L1 = 7.4 − j 4.0, L2 = 8.5 − j 5.0,L3 = 7.0 − j 4.0.
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C-Code For Fuzzy System

B.1 Introduction

This appendix consisting of a C-program for the fuzzy simulation of power
system. The program has the codes for the following tasks:

I. Generate the Fuzzy sets for different variables from the given input.
Fuzzy set may be linear or non-linear.

II. Rule matrix is to be generated form these fuzzy sets, using any one im-
plications, out of seventeen. There is also a choice that, with any impli-
ucation, any one union and any one intersection operator can be taken.

III. Fuzzy output is to be calculated from the given fact and the rule matrix
which is generated. Any compositional rule may be used out of six. Also
any Union and Intersection operator can be choosen for the selected
compositional rule.

IV. Defuzzification module is used to calculate defuzzified output from the
fuzzified output of fuzzy simulator. Here also the flexibility to choose any
one defuzzification method from COG method, Weighted area method,
First max method, middle max or mean max method, and last max
method.

V. Inspite of these, there is a possibility to take compensatory operators
instead of union and intersection operators. because in natural infer-
encing we never use exact max or min, but use combinations of both
(i.e. compensatory operators say 20% max and 80% min).

B.2 Program for Fuzzy Simulation

/* Module I for fuzzification */
# define matlimit 20
# define limit 50
void main()
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{
float useless,loadmat[matlimit][limit],endmat[limit],max();
float crisp,minima,step,loadval[limit],slope,maxmem;
int i,j,nmat,order,betweenfirst,present[limit],numpresent;
numpresent=betweenfirst=0;
for (i=0;i<=limit-1;++i)
{ present[i]=0;
endmat[i]=0; }
for (i=0;i<=8;++i)
scanf ("%f",&useless);
scanf ("%d",&nmat);
scanf ("%d",&order);
for (j=0;j<=nmat-1;++j)
{
for (i=0;i<=order-1;++i)
scanf ("%f",&loadmat[j][i]);
for (i=0;i<=order-1;++i)
scanf ("%f",&useless); }
scanf ("%f",&minima);
scanf ("%f",&step);
for (i=0;i<=order-1;++i)
scanf ("%f",&useless);
scanf ("%f",&crisp);
for (i=0;i<=order-1;++i)
loadval[i]=minima+i∗step;
i=0;
while (loadval[i] < crisp)
++i;
if (crisp==minima) betweenfirst=0; else betweenfirst=--i;
for (i=0;i<=nmat-1;++i)
{
if (loadmat[i][betweenfirst] != 0 || loadmat[i]

[betweenfirst+1] != 0)
{present[numpresent]=i;
++numpresent;
}
}
for (i=0;i<=numpresent-1;++i)
{
slope=(loadmat[present[i]][betweenfirst+1]

-loadmat[present[i]][betweenfirst])/
(loadval[betweenfirst+1] - loadval[betweenfirst]);

maxmem = slope*(crisp-loadval[betweenfirst])
+ loadmat[present[i]][betweenfirst];
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{
for (j=0;j<=order-1;++j)
if (loadmat[present[i]][j] > maxmem)

loadmat[present[i]][j] = maxmem;
}
}
for (i=0;i<=numpresent-1;++i)
{
for (j=0;j<=order-1;++j)
endmat[j]=max(endmat[j],loadmat[present[i]][j]);
}
for (i=0;i<=order-1;++i)
printf ("%f",endmat[i]);
printf ("\n");}
float max(a,b) float a,b; { if (a>b) return(a);

else return(b);}

/* Module I - for the Generation of fuzzy set */

# define limit 100
# define matlim 10
void main() {
float step,slope,loadmat[2][limit][matlim],endmat[2][limit]

[matlim];
float pts[2][limit][matlim],maxima,minima,min_param,

max_param;
float imp_param,crisp,speed;
int currentorder,oldfinalorder,finalorder,totalorder[matlim],

npoints,i,j;
int initialzero,nmat,initialj,k,j1,optmin, optmax, optimp,

optcompos;
int optcomp,optdef;
scanf ("%d",&optdef);
scanf ("%d",&optcomp);
scanf ("%d",&optimp);
scanf ("%f",&imp_param );
scanf ("%d",&optmin );
scanf ("%d",&optmax );
scanf ("%f",&min_param );
scanf ("%f",&max_param );
scanf ("%d",&optcompos );
scanf ("%d",&nmat);
for (k=0;k<=1;++k) { if (k==0) initialj = 0;
else {
initialj=nmat;
nmat=nmat*2; }
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scanf("%f",&step);
scanf("%f",&minima);
scanf("%f",&maxima);
for(j=initialj;j<=nmat-1;++j) {
scanf("%f%f",&pts[0][0][j],&pts[1][0][j]);
loadmat[0][0][j] = pts[0][0][j];
loadmat[1][0][j] = pts[1][0][j];
totalorder[j] = (maxima-minima)/step + 1;
oldfinalorder=1;
finalorder=npoints=1;
while (pts[0][npoints-1][j] != 100) {
scanf ("%f%f",&pts[0][npoints][j],&pts[1][npoints][j]);
if (pts[0][npoints][j] != 100) { currentorder

= (pts[1][npoints][j]-pts[1][npoints-1][j])/step + 1;
finalorder = finalorder + currentorder - 1;
slope = (pts[0][npoints][j] - pts[0][npoints-1][j])/

(pts[1][npoints][j]-pts[1][npoints-1][j]);
for (i=oldfinalorder;i<=finalorder-1;++i)
{ loadmat[1][i][j] = pts[1][npoints-1][j]

+ (i-oldfinalorder+1)*step;
loadmat[0][i][j] = (loadmat[1][i][j]-pts[1][npoints][j])

*slope + pts[0][npoints][j];
}
oldfinalorder = finalorder; }
++npoints; }
if (loadmat[1][0][j]==0) initialzero=0;
else initialzero=(loadmat[1][0][j]-minima)/step;
for (i=0;i<=initialzero-1;++i)
{
endmat[0][i][j]=0;
endmat[1][i][j]=minima + step*i;
}
for (i=initialzero;i<=initialzero+finalorder-1;++i)
{ endmat[0][i][j]=loadmat[0][i-initialzero][j];
endmat[1][i][j]=loadmat[1][i-initialzero][j];
}
for (i=initialzero+finalorder;i<=totalorder[j]-1;++i)
{ endmat[0][i][j]=0;
endmat[1][i][j]=minima+step*i;
} } }
nmat = nmat/2;
printf ("%d \n",optdef);
printf ("%d \n",optcomp);
printf ("%d \n",optimp);
printf ("%f \n",imp_param );
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printf ("%d \n",optmin );
printf ("%d \n",optmax );
printf ("%f \n",min_param );
printf ("%f \n",max_param );
printf ("%d \n",optcompos );
printf ("%d \n",nmat);
printf ("%d \n",totalorder[0]);
for (j=0;j<=nmat-1;++j) { { for (i=0;i<=totalorder[j]-1;++i)
printf ("%f",endmat[0][i][j]);
printf ("\n"); } { j1 = j+nmat;
for (i=0;i<=totalorder[j1]-1;++i)
printf ("%f",endmat[0][i][j1]);
printf ("\n"); } }
printf ("%f \n",minima);
printf ("%f \n",step);
for (i=0;i<=totalorder[0]-1;++i)
{ scanf ("%f",&speed);
printf ("%f",speed);
}
printf ("\n");
scanf ("%f",&crisp);
printf ("%f \n",crisp); }

/* Module - II for finding rule matrix */

# include <math.h>
# define limit 30
void main() { float mat[limit][limit],loadmat[limit],

speedmat[limit];
float min(),max(),implication(),min_param, max_param,

imp_param, speed,useless;
float compmax(),compmin(),comp(),compsum(),v;
int order,i,j,k,nmat,optmin, optmax, optimp,optcompos,

optcomp,optdef;
scanf ("%d",&optdef);
scanf ("%d",&optcomp);
scanf ("%d",&optimp);
scanf ("%f",&imp_param );
scanf ("%d",&optmin );
scanf ("%d",&optmax );
scanf ("%f",&min_param );
scanf ("%f",&max_param );
scanf ("%d",&optcompos );
scanf ("%d",&nmat);
scanf ("%d",&order);
if (optcomp == 2) v=1.0; else v=0.0;
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for (i=0;i<=limit-1;++i)
{ for (j=0;j<=limit-1;++j)
mat[i][j]=v;
}
for (j=0;j<=nmat-1;++j) {
for (i=0;i<=order-1;++i)
scanf ("%f",&loadmat[i]);
for (i=0;i<=order-1;++i)
scanf ("%f",&speedmat[i]);
for (i=0;i<=order-1;++i)
{ for (k=0;k<=order-1;++k)
mat[i][k] = implication(mat[i][k],loadmat[i],speedmat[k],
optmin,optmax,optimp,min_param,max_param,imp_param,
optcomp);
} }

printf ("%d \n",optdef);
printf ("%d \n",optcomp);
printf ("%d \n",optmin );
printf ("%d \n",optmax );
printf ("%f \n",min_param);
printf ("%f \n",max_param);
printf ("%d \n",optcompos );
printf ("%d \n",order);
for (i=0;i<=order-1;++i)
{
{ for (j=0;j<=order-1;++j)
printf ("%f",mat[i][j]);
}
printf ("\n");
}
scanf ("%f %f",&useless,&useless);
for (i=0;i<=order-1;++i)
{ scanf ("%f",&speed);
printf ("%f",speed);
}
printf ("\n"); }
float min(ua,ub,opt,w)
float ua,ub,w;
int opt; { float x,y,m;
switch(opt) {
case 1 : { if (ua<=ub) m=ua;
else m=ub;
break; }
case 2:
{ /* Yu min */
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x=(1.0+w)*(ua+ub-1.0)-w*ua*ub;
m=max(0.0,x,1,0.0);
break;}

case 3:
{ /* Hamcher min */

x= ua*ub;
y= w+(1.0-w)*(ua+ub-x);
m=x/y;
break;}
case 4:
{/* schweizer & sklar 1*/

x=pow(ua,w)+pow(ub,w)-1.0;
m=pow(max(0.0,x,1,0.0),(1.0/w));
break;}
case 5:
{ /* Schweizer & sklar 2*/

x=pow((1.0-ua),w);
y=pow((1.0-ub),w);
m=1.0-pow((x+y-x*y),(1.0/w));
break;}
case 6:
{ /* Schweizer & Sklar 3 */

x=pow(abs(log(ua+0.12)),w);
y=pow(abs(log(ub+0.12)),w);
m=exp(-pow((x+y),(1.0/w)));
break;}
case 7:
{ /* Schweizer & Sklar 4 */

x=pow(ua,w);
y=pow(ub,w);
m=ua*ub/(pow((x+y-x*y),(1.0/w))+0.001);
break;}
case 8:
{ /* Dubois & Prade [1980] */

m=ua*ub/max(max(ua,ub,1,0.0),w,1,0.0);
break;}
case 9:
{ /* Yager min [1980] */

x=pow((1.0-ua),w);
y=pow((1.0-ub),w);
m=1.0-min(1.0,pow((x+y),(1.0/w)),1,0.0);
break;}
case 10:
{ /* Weber min [1983] */

x=ua+ub+w*ua*ub-1.0;
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y=x/(1+w);
m=max(0.0,y,1,0.0);
break;}
case 11:
{ /* Dombi min [1982] */

x=pow(((1.0-ua)/(ua+0.01)),w);
y=pow(((1.0-ub)/(ub+0.01)),w);
m=pow((1.0+pow((x+y),(1.0/w))),(-1.0));
break;}
case 12:
{ /* Frank [1979] */

x = (pow(w,ua)-1.0)*(pow(w,ub)-1.0)/(w-1.0);
m = log(1.0+x)/log(w);
break;} }
return(m);
}
float max(ua,ub,opt,w) float ua,ub,w; int opt;
{ float x,y,m; switch(opt) {

case 1: { if (ua>=ub) m=ua;
else m=ub;
break;}

case 2:
{ /*Yu max [1985]*/

x=ua+ub+w*ua*ub;
m=min(1.0,x,1,0.0);
break;}
case 3:
{ /* Hamcher max [1978] */

y=(ua+ub+(w-2.0)*ua*ub)/(w-(1.0-w)*ua*ub);
m=y;
break;}
case 4:
{/* schweizer & sklar 1 [1963]*/
x=pow((1.0-ua),w)+pow((1.0-ub),w)-1.0;
m=1.0-pow(max(0.0,x,1,0.0),(1.0/w));
break;}

case 5:
{ /* Schweizer & sklar 2*/
x=pow(ua,w);
y=pow(ub,w);
m=pow((x+y-x*y),(1.0/w));
break;}

case 6:
{ /* Schweizer & Sklar 3 */

x=pow(abs(log(1.001-ua)),w);
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y=pow(abs(log(1.001-ub)),w);
m=1.0-exp(-pow((x+y),(1.0/w)));
break;}
case 7:
{ /* Schweizer & Sklar 4 */

x=pow((1.0-ua),w);
y=pow((1.0-ub),w);
m=1.0-((1.0-ua)*(1.0-ub)/(pow((x+y-x*y),(1.0/w))+0.001));
break;}
case 8:
{ /* Dubois & Prade [1980] */

m=1.0-(1.0-ua)*(1.0-ub)/max(max((1.0-ua),(1.0-ub),1,0.0),
w,1,0.0);

break;}
case 9:
{ /* Yager max [1980] */

x=pow(ua,w);
y=pow(ub,w);
m=min(1.0,pow((x+y),(1.0/w)),1,0.0);
break;}
case 10:
{ /* Weber max [1983] */

x=ua+ub-w*ua*ub/(1.0-w);
m=max(1.0,x,1,0.0);
break;}
case 11:
{ /* Dombi min [1982] */

x=pow(((1.0-ua)/(ua+0.01)),w);
y=pow(((1.0-ub)/(ub+0.01)),w);
m=pow((1.0+pow((x+y),(-1.0/w))),(-1.0));
break;}
case 12:
{ /* Frank [1979] */

x = (pow(w,(1.0-ua))-1.0)*(pow(w,(1.0-ub))-1.0)/(w-1.0);
m = 1.0 - log(1.0+x)/log(w);
break;}
}
return(m); }

float implication(umat,ua,ub,optmin,optmax,optimp,
w1,w2,w3,optcomp) float umat,ua,ub,w1,w2,w3; int optmin,
optmax,optimp,optcomp; { float x,m; switch(optimp)
{ case 1: { /* Zadeh Implication [1973] */

x=compmax(compmin(ua,ub,optmin, w1,optcomp),1.0-ua,optmax,
w2,optcomp);

m=compmax(x,umat,optmax ,w2,optcomp);
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break;}
case 2:
{ /* Gaines - Rescher Implication [1969] */

if (ua<=ub) x=1.0;
else x=0.0;
m=compmax(x,umat,optmax, w2,optcomp);
break;}
case 3:
{ /* Godel Implication [1976] */

if (ua<=ub) x=1.0;
else x=ub;
m=compmin(umat,x,optmin ,w1,optcomp);
break;}
case 4:
{/* Goguen Implication [1969] */

if (ua<=ub) x=1.0;
else x=ub/ua;
m=compmax(umat,x,optmax, w2,optcomp);
break;}
case 5:
{ /* Kleene - Dienes Implication [1949] */

x=compmax(1.0-ua,ub,optmax ,w2,optcomp);
m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 6:
{ /* Lukasiewicz Implication [1920] */

x=compmin(1.0,1.0-ua+ub,optmin ,w1,optcomp);
m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 7:
{ /* Pseudo -Lukasiewicz 1 Implication [1987] */

x=compmin(1.0,(1.0-ua+(1.0+w3)*ub)/(1.0+w3*ua),optmin,
w1,optcomp);

m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 8:
{ /* Pseudo -Lukasiewicz 2 Implication [1987] */

x=compmin(1.0,pow(1.0-pow(ua,w3)+pow(ub,w3),(1.0/w3)),
optmin,w1,optcomp);

m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 9:
{ /* Reichenbach Implication [1935] */

x=1.0-ua+ua*ub;
m=compmax(umat,x,optmax ,w2,optcomp);
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break;}
case 10:
{ /* Willmott Implication [1980] */

x=compmin(compmax(1.0-ua,ub,optmax ,w2,optcomp),
compmax(ua,1.0-ua,optmax ,w2,optcomp),
compmax(ub,1.0-ub,optmax ,w2,optcomp),optmin ,w1,optcomp);

m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 11:
{ /* Wu Implication [1986] */

if (ua<= ub) x=1.0;
else x=compmin(1-ua,ub,optmin ,w1);
m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 12:
{ /* Yager [1980] */

if (ua==0 & ub==0) x=1;
else x=pow(ub,ua);
m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 13:
{ /* Klir&Yuan 1 [1994] */

x=1.0-ua+ub*pow(ua,2.0);
m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 14:
{ /* Klir & Yuan 2 [1994] */

if (ua==1.0) x=ub;
else if (ua!=1.0 & ub!=1.0) x=1.0-ua;
else x=1.0;
m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 15:
{ /* Mimdani Implication [1994] */

x=compmin(ua,ub,optmin ,w1,optcomp);
m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 16:
{ /* Stochastic min Implication [1994] */

x=compmin(1.0,1.0-ua+ua*ub,optmin ,w1);
m=compmax(umat,x,optmax ,w2,optcomp);
break;}
case 17:
{ x = ua*ub;

m = compmax(umat,x,optmax ,w2,optcomp);
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break;}
}
return(m);
} float compmax(ua,ub,optmax ,w,optcomp) float ua,ub,w;
int optmax ,optcomp; { float x;

if (optcomp==2) x=comp(ua,ub,optmax ,w);
else if (optcomp==3) x=compsum(ua,ub,optmax ,w);
else x=max(ua,ub,optmax,w);
return(x); }
float compmin(ua,ub,optmin ,w,optcomp) float ua,ub,w;

int optmin, optcomp; { float x;
if (optcomp==2) x=comp(ua,ub,optmin, w);
else if (optcomp==3) x=compsum(ua,ub,optmin, w);
else x=min(ua,ub,optmin,w);
return(x); }
float comp(ua,ub,optcompos ,w) float ua,ub,w; int optcompos;

{ float x,y,c; switch(optcompos) {
case 1 : x=pow(min(ua,ub,1,1.0),(1.0-w));
y=pow(max(ua,ub,1,1.0),w);
c=x*y;
break;
case 2 : x=pow((ua*ub),(1.0-w));
y=pow((ua+ub-ua*ub),w);
c=x*y;
break;
case 3 : x=pow(max(0,(ua+ub),1,1.0),(1.0-w));
y=pow(min(1.0,ua+ub,1,1.0),w);
c=x*y;
break;
case 4 : x=pow(min(ua,ub,1,1.0),(1.0-w));
y=pow((ua+ub-ua*ub),w);
c=x*y;
break;
case 5 : x=pow(max(ua,ub,1,1.0),(1.0-w));
y=pow((ua*ub),w);
c=x*y;
break;
case 6 : x=pow(min(ua,ub,1,1.0),(1.0-w));
y=pow(min(1.0,(ua+ub),1,1.0),w);
c=x*y;
break;
case 7: x=pow(max(ua,ub,1,1.0),(1.0-w));
y=pow(max(0,(ua+ub-1.0),1,1.0),w);
c=x*y;
break;
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case 8: x=pow((ua*ub),(1.0-w));
y=pow(min(1.0,(ua+ub),1,1.0),w);
c=x*y;
break;
case 9: x=pow((ua+ub-ua*ub),(1.0-w));
y=pow(max(0,(ua+ub-1.0),1,1.0),w);
c=x*y;
break;
case 10: x=pow(max(0,(ua+ub-1.0),1,1.0),(1.0-w));
y=pow(min(ua,ub,1,1.0),w);
c=x*y;
break;
case 11: x=pow(max(ua,ub,1,1.0),w);
y=pow(min(1.0, (ua+ub),1,1.0),(1.0-w));
c=x*y;
break;
case 12 : x=pow((ua*ub),w);
y=pow(max(0,(ua+ub-1.0),1,1.0),(1.0-w));
c=x*y;
break;
case 13: x=pow(min(1.0,(ua+ub),1,1.0),(1.0-w));
y=pow((ua+ub-ua*ub),w);
c=x*y;
break;
case 14: x=pow((ua*ub),(1.0-w));
y=pow(min(ua,ub,1,1.0),w);
c=x*y;
break;
case 15: x=pow((ua+ub-ua*ub),(1.0-w));
y=pow(max(ua,ub,1,1.0),w);
c=x*y;
break;
case 16: x=pow(min(ua,ub,1,1.0),(1.0-w));
y=pow(((ua+ub)/2.0),w);
c=x*y;
break;
case 17: x=pow(max(ua,ub,1,1.0),(1.0-w));
y=pow(((ua+ub)/2.0),w);
c=x*y;
break;
case 18: x=pow((ua*ub),(1.0-w));
y=pow(((ua+ub)/2.0),w);
c=x*y;
break;
case 19: x=pow((ua+ub-ua*ub),(1.0-w));
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y=pow(((ua+ub)/2.0),w);
c=x*y;
break;
case 20: x=pow(max(0,(ua+ub-1.0),1.0),(1.0-w));
y=pow(((ua+ub)/2.0),w);
c=x*y;
break;
case 21: x=pow(min(1.0,(ua+ub),1,1.0),(1.0-w));
y=pow(((ua+ub)/2.0),w);
c=x*y;
break;
case 22: x=pow(min(ua,ub,1,1.0),(1.0-w));
y=pow(sqrt(ua*ub),w);
c=x*y;
break;
case 23: x=pow(max(ua,ub,1,1.0),(1.0-w));
y=pow((1.0-sqrt((1.0-ua)*(1.0-ub))),w);
c=x*y;
break;
case 24: x=pow(min(ua,ub,1,1.0),(1.0-w));
y=pow((1.0-sqrt((1.0-ua)*(1.0-ub))),w);
c=x*y;
break;
case 25: x=pow(max(ua,ub,1,1.0),(1.0-w));
y=pow(sqrt(ua*ub),w);
c=x*y;
break;
case 26: x=pow(sqrt(ua*ub),(1.0-w));
y=pow((1.0-sqrt((1.0-ua)*(1.0-ub))),w);
c=x*y;
break;
case 27: x=pow((2.0*ua*ub/(ua+ub)),(1.0-w));
y=pow(((ua+ub-2.0*ua*ub)/(2.0-ua-ub)),w);
c=x*y;
break;
case 28: x=pow(sqrt(ua*ub),w);
y=pow((ua+ub)/2.0,(1.0-w));
c=x*y;
break;
case 29: x=pow(((ua+ub)/2.0),(1.0-w));
y=pow((1.0-sqrt((1.0-ua)*(1.0-ub))),w);
c=x*y;
break;
case 30: x=pow(((ua+ub)/2.0),(1.0-w));
y=pow((2.0*ua*ub/(ua+ub)),w);
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c=x*y;
break;
case 31: x=pow(((ua+ub)/2.0),(1.0-w));
y=pow(((ua+ub-2.0*ua*ub)/(2.0-ua-ub)),w);
c=x*y;
break;
case 32: x=pow((ua*ub*(ua+ub-ua*ub)),(1.0-w));
y=pow((ua+ub-ua*ub*(ua+ub-ua*ub)),w);
c=x*y;
break;
case 33: x=pow((min(ua,ub,1,1.0)*ua*ub),(1.0-w));
y=pow((ua+ub-ua*ub+max(ua,ub,1,1.0)

-(ua+ub-ua*ub)*max(ua,ub,1,1.0)),w);
c=x*y;
break;
case 34: x=pow((ua*ub+min(ua,ub,1,1.0)

-ua*ub*min(ua,ub,1,1.0)),(1.0-w));
y=pow(((ua+ub-ua*ub)*max(ua,ub,1,1.0)),w);
c=x*y;
break;
}

return(c); } float compsum(ua,ub,optcompos ,w) float ua,ub,w;
int optcompos ; { float x,y,c; switch(optcompos ){

case 1 : x=min(ua,ub,1,1.0)*(1.0-w);
y=max(ua,ub,1,1.0)*w;
c=x+y;
break;
case 2 : x=(ua*ub)*(1.0-w);
y=(ua+ub-ua*ub)*w;
c=x+y;
break;
case 3 : x=max(0,(ua+ub-1),1,1.0)*(1.0-w);
y=min(1.0,ua+ub,1,1.0)*w;
c=x+y;
break;
case 4 : x=min(ua,ub,1,1.0)*(1.0-w);
y=(ua+ub-ua*ub)*w;
c=x+y;
break;
case 5 : x=max(ua,ub,1,1.0)*(1.0-w);
y=(ua*ub)*w;
c=x+y;
break;
case 6 : x=min(ua,ub,1,1.0)*(1.0-w);
y=min(1.0,(ua+ub),1,1.0)*w;
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c=x+y;
break;
case 7: x=max(ua,ub,1,1.0)*(1.0-w);
y=max(0,(ua+ub-1.0),1,1.0)*w;
c=x+y;
break;
case 8: x=(ua*ub)*(1.0-w);
y=min(1.0,(ua+ub),1,1.0)*w;
c=x+y;
break;
case 9: x=(ua+ub-ua*ub)*(1.0-w);
y=max(0,(ua+ub-1.0),1,1.0)*w;
c=x+y;
break;
case 10: x=max(0,(ua+ub-1.0),1,1.0)*(1.0-w);
y=min(ua,ub,1,1.0)*w;
c=x+y;
break;
case 11: x=max(ua,ub,1,1.0)*w;
y=min(1.0, (ua+ub),1,1.0)*(1.0-w);
c=x+y;
break;
case 12 : x=(ua*ub)*w;
y=max(0,(ua+ub-1.0),1,1.0)*(1.0-w);
c=x+y;
break;
case 13: x=min(1.0,(ua+ub),1,1.0)*(1.0-w);
y=(ua+ub-ua*ub)*w;
c=x+y;
break;
case 14: x=(ua*ub)*(1.0-w);
y=min(ua,ub,1,1.0)*w;
c=x+y;
break;
case 15: x=(ua+ub-ua*ub)*(1.0-w);
y=max(ua,ub,1,1.0)*w;
c=x+y;
break;
case 16: x=min(ua,ub,1,1.0)*(1.0-w);
y=((ua+ub)/2.0)*w;
c=x+y;
break;
case 17: x=max(ua,ub,1,1.0)*(1.0-w);
y=((ua+ub)/2.0)*w;
c=x+y;
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break;
case 18: x=(ua*ub)*(1.0-w);
y=((ua+ub)/2.0)*w;
c=x+y;
break;
case 19: x=(ua+ub-ua*ub)*(1.0-w);
y=((ua+ub)/2.0)*w;
c=x+y;
break;
case 20: x=max(0,(ua+ub-1.0),1.0)*(1.0-w);
y=((ua+ub)/2.0)*w;
c=x+y;
break;
case 21: x=min(1.0,(ua+ub),1,1.0)*(1.0-w);
y=((ua+ub)/2.0)*w;
c=x+y;
break;
case 22: x=min(ua,ub,1,1.0)*(1.0-w);
y=sqrt(ua*ub)*w;
c=x+y;
break;
case 23: x=max(ua,ub,1,1.0)*(1.0-w);
y=(1.0-sqrt((1.0-ua)*(1.0-ub)))*w;
c=x+y;
break;
case 24: x=min(ua,ub,1,1.0)*(1.0-w);
y=sqrt(1.0-((1.0-ua)*(1.0-ub)))*w;
c=x+y;
break;
case 25: x=max(ua,ub,1,1.0)*(1.0-w);
y=sqrt(ua*ub)*w;
c=x+y;
break;
case 26: x=sqrt(ua*ub)*(1.0-w);
y=(1.0-sqrt((1.0-ua)*(1.0-ub)))*w;
c=x+y;
break;
case 27: x=(2.0*ua*ub/(ua+ub))*(1.0-w);
y=((ua+ub-2.0*ua*ub)/(2.0-ua-ub))*w;
c=x+y;
break;
case 28: x=sqrt(ua*ub)*w;
y=((ua+ub)/2.0)*(1.0-w);
c=x+y;
break;
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case 29: x=((ua+ub)/2.0)*(1.0-w);
y=(1.0-sqrt((1.0-ua)*(1.0-ub)))*w;
c=x+y;
break;
case 30: x=((ua+ub)/2.0)*(1.0-w);
y=(2.0*ua*ub/(ua+ub))*w;
c=x+y;
break;
case 31: x=((ua+ub)/2.0)*(1.0-w);
y=((ua+ub-2.0*ua*ub)/(2.0-ua-ub))*w;
c=x+y;
break;
case 32: x=(ua*ub*(ua+ub-2.0*ua*ub))*(1.0-w);
y=(ua+ub-ua*ub*(ua+ub-ua*ub))*w;
c=x+y;
break;
case 33: x=min(ua,ub,1,1.0)*ua*ub*(1.0-w);
y=(ua+ub-ua*ub+max(ua,ub,1,1.0)

-(ua+ub-ua*ub)*max(ua,ub,1,1.0))*w;
c=x+y;
break;
case 34: x=(ua*ub+min(ua,ub,1,1.0)

-ua*ub*min(ua,ub,1,1.0))*(1.0-w);
y=((ua+ub-ua*ub)*max(ua,ub,1,1.0))*w;
c=x+y;
break;
}
return(c); }

/* Module -III for

A3. Example

The contents of the input file should be as follows:

1. Option of defuzzification method
2. Option of max-min/compensatory
3. Option of implication method
4. Parameter value of intersection in implication option
5. Parameter value of union in implication option
6. Parameter value of Intersection for compositional rule
7. Parameter of union for compositional rule
8. Number of fuzzy sets
9. Step size for calculating intermediate values

10. Minimum value of variable
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11. Maximum value of variable
12. Membership values and corresponding variable value

(There should be number of fuzzy sets times entries and each entry should
be terminated by the entry 100 0). The entries of the first rule should be
the first

The options for union operator are:

1. Ordinary min
2. Yu max[0,{(1+w1)*(ua+ub-1)-w1*ua*ub)}] w1 > -1
3. Hamcher - ua*ub/{w1+(1-w1)*(ua+ub-ua*ub)} w1 > 0
4. Schweizer & Sklar 1 {max(0,ua^w1+ub^w1-1)}^(1/w1)

-inf to +inf w1 != 0
5. Schweizer & Sklar 2 {1-((1-ua)^w1+(1-ub)^w1-((1-ua)^w1)

*((1-ub)^w1)}^(1/w1) w1 > 0
6. Schweizer & Sklar 3

exp[-(abs(log(ua)^w1+abs(log(ub)^w1)^(1/w1)] w1 > 0
7. Schweizer & Sklar 4 ua*ub/(ua^w1+ub^w1-(ua^w1*ub^w1))

w1 > 0
8. Dubois & Prade ua*ub/max(ua,ub,w1) 0 <= w1 <= 1
9. Yager 1-min[1,{(1-ua)^w1+(1-ub)^w1}^(1/w1)] w1 > 0
10. Weber max(0,ua+ub+w1*ua*ub-1)/(1+w1) w1 > -1
11. Dombi [1+(((1/ua)-1)^w1+((1/ub)-1)^w1)^(!/w1)]^(-1)

w1 > 0
12. Frank log(to base w1)[1+((w1^a-1)*(w1^b-1))/(w1-1)]

w1 > 0 w1 != 1
The Intersection operators are as follows:
1. Ordinary max
2. Yu - min[1,(ua+ub+w2*ua*ub)] w2 > -1
3. Hamcher - (ua+ub+(2-w2)*ua*ub))/(w2+(1-w2)*ua*ub) w2 > 0
4. Schweizer & Sklar 1

(1-max(0,(1-ua)^w2+(1-ub)^w2-1))^(1/w2)
-inf to +inf w2 != 0

5. Schweizer & Sklar 2
(ua^w2+ub^w2-(ua^w2)*(ub^w2))^(1/w2) w2 > 0

6. Schweizer & Sklar 3
1-exp[-(abs(log(1-ua)^w2+abs(log(1-ub)^w2)^(1/w2)]
w2 > 0 7. Schweizer & Sklar 4
1-((1-ua*(1-ub)/((1-ua)^w2+(1-ub)^w2
-((1-ua)^w2*(1-ub)^w2)^(1/w2)) w2 > 0

8. Dubois & Prade 1-(1-ua)*(1-ub)/max((1-ua),(1-ub),w2)
0 <= w2 <= 1

9. Yager min[1,(ua^w2+ub^w2)^(1/w2)] w2 > 0
10. Weber min(1,ua+ub-w2*ua*ub/(1-w2)) w2 > -1
11. Dombi [1+(((1/ua)-1)^w2+((1/ub)-1)^w2}^(-1/w2)]^(-1)

w2 > 0
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12. Frank 1-log(to base w2)[1+((w2^(1-a)-1)*(w2^(1-b)-1))/
(w2-1)] w2 > 0 w2 != -1

The options of operators are:

1 - max-min
2 - min-max
3 - min-min
4 - max-max
5 - Godel
6 - max-product
7 - max-average
8 - sum-product

The options of compensatory operators are from 1 to 34 (product)
The implications are:

1. Zadeh
2. Gaines-Rascher
3. Godel
4. Goguen
5. Kleenes-Diene
6. Lukasiewicz
7. Pseudo-Lukasiewicz 1
8. Pseudo-Lukasiewicz 2
9. Reichenbach

10. Willmott
11. Wu
12. Yager
13. Klir & Yuan 1
14. Klir & Yuan 2
15. Mimdani
16. Stochastic min
17. Correlation product

The options of defuzzification are:
1-centroid
2-weighted average
3-mean max
4-first max
5-last max

The options of max/min or compensatory product or compensatory
sum are:
1-maxmin
2-product compensatory
3-sum compensatory
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The input file for dc machine problem is given as follows -
3 2 2 1 1 1 1.0 0.7 1 5 1 0 12
1 0
0.2 4
100 0
0.2 2
1 4
0.2 6
100 0
0.2 4
1 6
0.2 8
100 0
0.2 6
1 8
0.2 10
100 0
0.2 8
1 12
100 0
1
0 12
0.2 8
1 12
100 0
0.2 6
1 8
0.2 10
100 0
0.2 4
1 6
0.2 8
100 0
0.2 2
1 4
0.2 6
100 0
1 0
0.2 4
100 0
150.28 151.16 152.22 152.9651 153.71 154.195 154.94 155.5222 156.12

156.76 157.4 158.0175 158.65 11.5



C

Data For 26-Bus System

See Fig. C.1.

Fig. C.1. 26-bus system
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Generation data

Bus no. Voltage (p.u.) Generation (MW) Mvar limits
Min. Max.

1 1.025 – – –
2 1.020 79.0 40.0 250.0
3 1.025 20.0 40.0 150.0
4 1.050 100.0 40.0 80.0
5 1.045 300.0 40.0 160.0
26 1.015 60.0 15.0 50.0

The generator’s real power limits are:

Generator real power limits

Gen. Min. MW Max. MW

1 100 500
2 50 200
3 80 300
4 50 150
5 50 200
26 50 120

C1 = 240 + 7.0 P1 + 0.0070 P2
1 C2 = 200 + 10.0 P2 + 0.0095 P2

2

C3 = 220 + 8.5 P3 + 0.0090 P2
3 C4 = 200 + 11.0 P4 + 0.0090 P2

4

C5 = 220 + 10.5 P5 + 0.0080 P2
5 C26 = 190 + 12.0 P26 + 0.0075 P2

26

The line and transformer data containing the series resistance and reac-
tance in per unit and one-half the total capacitance in per unit susceptance
on a 100-MVA base are tabulated below.

Line data

Bus Bus R, pu X, pu 1
2
B, pu Bus Bus R, pu X, pu 1

2
B, pu

no. no. no. no.

1 2 0.0005 0.0048 0.0300 10 22 0.0069 0.0298 0.005
1 18 0.0013 0.0110 0.0600 11 25 0.0960 0.2700 0.010
2 3 0.0014 0.0513 0.0500 11 26 0.0165 0.0970 0.004
2 7 0.0103 0.0586 0.0180 12 14 0.0327 0.0802 0.000
2 8 0.0074 0.0321 0.0390 12 15 0.0180 0.0598 0.000
2 13 0.0035 0.0967 0.0250 13 14 0.0046 0.0271 0.001
2 26 0.0323 0.1967 0.0000 13 15 0.0116 0.0610 0.000
3 13 0.0007 0.0054 0.0005 13 16 0.0179 0.0888 0.001
4 8 0.0008 0.0240 0.0001 14 15 0.0069 0.0382 0.000
4 12 0.0016 0.0207 0.0150 15 16 0.0209 0.0512 0.000
5 6 0.0069 0.0300 0.0990 16 17 0.0990 0.0600 0.000
6 7 0.0053 0.0306 0.0010 16 20 0.0239 0.0585 0.000
6 11 0.0097 0.0570 0.0001 17 18 0.0032 0.0600 0.038
6 18 0.0037 0.0222 0.0012 17 21 0.2290 0.4450 0.000
6 19 0.0035 0.0660 0.0450 19 23 0.0300 0.1310 0.000
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6 21 0.0050 0.0900 0.0226 19 24 0.0300 0.1250 0.002
7 8 0.0012 0.0069 0.0001 19 25 0.1190 0.2249 0.004
7 9 0.0009 0.0429 0.0250 20 21 0.0657 0.1570 0.000
8 12 0.0020 0.0180 0.0200 20 22 0.0150 0.0366 0.000
9 10 0.0010 0.0493 0.0010 21 24 0.0476 0.1510 0.000
10 12 0.0024 0.0132 0.0100 22 23 0.0290 0.0990 0.000
10 19 0.0547 0.2360 0.0000 22 24 0.0310 0.0880 0.000
10 20 0.0066 0.0160 0.0010 23 25 0.0987 0.1168 0.000

Shunt capacitors

Bus no. Mvar

1 4.0
4 2.0
5 5.0
6 2.0
11 1.5
12 2.0
15 0.5
19 5.0

Transformer tap

Bus no. Mvar

2–3 0.960
2–13 0.960
3–13 1.017
4–8 1.050
4–12 1.050
6–19 0.950
7–9 0.950

Load data

Bus no. Load Bus no. Load

MW Mvar MW Mvar

1 51.0 41.0 14 24.0 12.0
2 22.0 15.0 15 70.0 31.0
3 64.0 50.0 16 55.0 27.0
4 25.0 10.0 17 78.0 38.0
5 50.0 30.0 18 153.0 67.0
6 76.0 29.0 19 75.0 15.0
7 0.0 0.0 20 48.0 27.0
8 0.0 0.0 21 46.0 23.0
9 89.0 50.0 22 45.0 22.0
10 0.0 0.0 23 25.0 12.0
11 25.0 15.0 24 54.0 27.0
12 89.0 48.0 25 28.0 13.0
13 31.0 15.0 26 40.0 20.0



D

Data For 6-Bus System

See Fig. D.1.

Fig. D.1. 6-bus system

Bus characteristics for six-bus system

Bus Load Load Min. generation Max. generation
number (MW) (MVAR) (MW) (MW)

1 100 20 50 250
2 100 20 50 250
3 100 20 50 250
4 100 20 50 250
5 100 50 0 0
6 100 10 0 0
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Economic information for six-bus system

Generator bus a
[

$
h

]
b
[

$
MWh

]
c
[

$
MW2h

]
1 105 12.0 0.012
2 96 9.6 0.0096
3 105 13.0 0.0130
4 94 9.4 0.0094

Line characteristics for six-bus system

From bus To bus Resistance Reactance Line charging Line limit
(P.U.) (P.U.) (P.U.) (MVA)

1 2 0.04 0.08 0.02 100
1 5 0.04 0.08 0.02 100
2 4 0.04 0.08 0.02 100
3 5 0.04 0.08 0.02 100
3 6 0.04 0.08 0.02 100
4 5 0.04 0.08 0.02 50
4 6 0.04 0.08 0.02 100



E

Data For IEEE 30-Bus System

See Fig. E.1.

Fig. E.1. IEEE 30-bus system
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Generator data

Bus no. PG
min PG

max QG
min SG

max Coefficients
(MW) (MW) (MVAR) (MVA) a b c

1 50 200 −20 250 0.0 2.0 0.00375
2 20 80 −20 100 0.0 1.75 0.0175
5 15 50 −15 80 0.0 1.0 0.0625
8 10 35 −15 60 0.0 3.25 0.00834
11 10 30 −10 50 0.0 3.0 0.025
13 12 40 −15 60 0.0 3.0 0.025

Generating cost fi = ai + biPGi + ciP2
Gi£/h.

Transformers with assumed tapping range of 10%. The assumed branch
loading limits are for convenience taken to be the same in the base and con-
tingency cases, and similarly for bus voltage–magnitude limits.

The lower voltage-magnitude limits at all buses are 0.95 p.u., and the
upper limits are 1.1 p.u. for generator buses 2, 5, 8, 11, and 13, and 1.05 p.u.
for the remaining buses including the reference bus 1.

Branch data

Branch no. Bus no. R p.u. X p.u. B (total)
p.u.

Rating
MVA

1 1–2 0.0192 0.0575 0.0264 130
2 1–3 0.0452 0.1852 0.0204 130
3 2–4 0.0570 0.1737 0.0184 65
4 3–4 0.0132 0.0379 0.0042 130
5 2–5 0.0472 0.1983 0.0209 130
6 2–6 0.0581 0.1763 0.0187 65
7 4–6 0.0119 0.0414 0.0045 90
8 5–7 0.0460 0.1160 0.0102 70
9 6–7 0.0267 0.0820 0.0085 130
10 6–8 0.0120 0.0420 0.0045 32
11 6–9 0.0 0.2080 0.0 65
12 6–10 0.0 0.5560 0.0 32
13 9–11 0.0 0.2080 0.0 65
14 9–10 0.0 0.1100 0.0 65
15 4–12 0.0 0.2560 0.0 65
16 12–13 0.0 0.1400 0.0 65
17 12–14 0.1231 0.2559 0.0 32
18 12–15 0.0662 0.1304 0.0 32
19 12–16 0.0945 0.1987 0.0 32
20 14–15 0.2210 0.1997 0.0 16
21 16–17 0.0824 0.1932 0.0 16
22 15–18 0.1070 0.2185 0.0 16
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23 18–19 0.0639 0.1292 0.0 16
24 19–20 0.0340 0.0680 0.0 32
25 10–20 0.0936 0.2090 0.0 32
26 10–17 0.0324 0.0845 0.0 32
27 10–21 0.0348 0.0749 0.0 32
28 10–22 0.0727 0.1499 0.0 32
29 21–22 0.0116 0.0236 0.0 32
30 15–23 0.1000 0.2020 0.0 16
31 22–24 0.1150 0.1790 0.0 16
32 23–24 0.1320 0.2700 0.0 16
33 24–25 0.1885 0.3292 0.0 16
34 25–26 0.2544 0.3800 0.0 16
35 25–27 0.1093 0.2087 0.0 16
36 28–27 0.0 0.3960 0.0 65
37 27–29 0.2198 0.4153 0.0 16
38 27–30 0.3202 0.6027 0.0 16
39 29–30 0.2399 0.4533 0.0 16
40 8–28 0.0636 0.2000 0.0214 32
41 6–28 0.0169 0.0599 0.0065 32
42 10–10 0.0 −5.2600 – –
43 24–24 0.0 25.0000 – –

Load data

Bus no. Load Bus No. Load
MW MVAR MW MVAR

1 0.0 0.0 16 3.5 1.8
2 21.7 12.7 17 9.0 5.8
3 2.4 1.2 18 3.2 0.9
4 7.6 1.6 19 9.5 3.4
5 94.2 19.0 20 2.2 0.7
6 0.0 0.0 21 17.5 11.2
7 22.8 10.9 22 0.0 0.0
8 30.0 30.0 23 3.2 1.6
9 0.0 0.0 24 8.7 6.7
10 5.8 2.0 25 0.0 0.0
11 0.0 0.0 26 3.5 2.3
12 11.2 7.5 27 0.0 0.0
13 0.0 0.0 28 0.0 0.0
14 6.2 1.6 29 2.4 0.9
15 8.2 2.5 30 10.6 1.9
Base MVA = 100



F

Data For Modified IEEE 30-Bus System

See Fig. F.1.

Fig. F.1. Modified IEEE 30-bus system
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Variable limits and generator cost parameters

Power generation limits and fuel cost parameters (SB = 100 MVA)

Bus 1 2 5 8 11 13

Pmax
g 2 0.8 0.5 0.35 0.3 0.4

Pmin
g 0.5 0.2 0.15 0.1 0.1 0.12

Qmax
g 2 1 0.8 0.6 0.5 0.6

Qmin
g −0.2 −0.2 −0.15 −0.15 −0.1 −0.15

a 0 0 0 0 0 0
b 200 175 100 325 300 300
c 37.5 175 625 83.4 250 250

Bus voltage limits (in p.u.)

Vmax
g Vmin

g Vmax
load Vmin

load Branch apparent power
limit Smax

k (in MVA)
Branch (8, 28)

1.1 0.95 1.05 0.95 12

Transformer tap setting limits

Branch (6, 9) (6, 10) (4, 12) (28, 27)

Tmax
k 1.1 1.1 1.1 1.1

Tmin
k 0.9 0.9 0.9 0.9

Capacitor/reactor installation limits (in MVAr)

Bus 10 12 15 17 20 21 23 24 29

Qmax
c 5 5 5 5 5 5 5 5 5

Qmin
c 0 0 0 0 0 0 0 0 0

Variable Lower limit Upper limit

P1 (MW) 50 200
P2 (MW) 20 80
P5 (MW) 15 50
P8 (MW) 10 35
P11 (MW) 10 30
P13 (MW) 12 40
Q1 (MVAR) −20 200
Q2 (MVAR) −20 100
Q5 (MVAR) −15 80
Q8 (MVAR) −15 60
Q11 (MVAR) −10 50
Q13 (MVAR) −15 60
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Line data

Line From To Line impedance tap setting
number bus number bus number R (p.u.) X (p.u.)

1 1 2 0.0192 0.0575 –
2 1 3 0.0192 0.1852 –
3 2 4 0.0452 0.1737 –
4 3 4 0.0570 0.0379 –
5 2 5 0.0132 0.1983 –
6 2 6 0.0472 0.1763 –
7 4 6 0.0581 0.0414 –
8 5 7 0.0119 0.1160 –
9 6 7 0.0460 0.0820 –
10 6 8 0.0267 0.0420 –
11 6 9 0.0120 0.2080 1.078
12 6 10 0.0000 0.5560 1.069
13 9 11 0.0000 0.2080 –
14 9 10 0.0000 0.1100 –
15 4 12 0.0000 0.2560 1.032
16 12 13 0.0000 0.1400 –
17 12 14 0.1231 0.2559 –
18 12 15 0.0662 0.1304 –
19 12 16 0.0945 0.1987 –
20 14 15 0.2210 0.1997 –
21 16 17 0.0824 0.1932 –
22 15 18 0.1070 0.2185 –
23 18 19 0.0639 0.1292 –
24 19 20 0.0340 0.0680 –
25 10 20 0.0936 0.2090 –
26 10 17 0.0324 0.0845 –
27 10 21 0.0348 0.0749 –
28 10 22 0.0727 0.1499 –
29 21 22 0.0116 0.0236 –
30 15 23 0.1000 0.2020 –
31 22 24 0.1150 0.1790 –
32 23 24 0.1320 0.2700 –
33 24 25 0.1885 0.3292 –
34 25 26 0.2544 0.3800 –
35 25 27 0.1093 0.2087 –
36 28 27 0.0000 0.3960 1.068
37 27 29 0.2198 0.4153 –
38 27 30 0.3202 0.6027 –
39 29 30 0.2399 0.4533 –
40 8 28 0.6360 0.2000 –
41 6 28 0.0169 0.0599 –
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Load data

Bus no. Load Bus no. Load

P (p.u.) Q (p.u.) P (p.u.) Q (p.u.)

1 0.000 0.000 16 0.035 0.018
2 0.217 0.127 17 0.090 0.058
3 0.024 0.012 18 0.032 0.009
4 0.076 0.016 19 0.095 0.034
5 0.942 0.190 20 0.022 0.007
6 0.000 0.000 21 0.175 0.112
7 0.228 0.109 22 0.000 0.000
8 0.300 0.300 23 0.032 0.016
9 0.000 0.000 24 0.087 0.067
10 0.058 0.020 25 0.000 0.000
11 0.000 0.000 26 0.035 0.023
12 0.112 0.075 27 0.000 0.000
13 0.000 0.000 28 0.000 0.000
14 0.062 0.016 29 0.024 0.009
15 0.082 0.025 30 0.106 0.019
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Data For Indian UPSEB 75-Bus System

The 75-bus UPSEB, Indian Power System is shown in Fig. G.1. The system
data is taken from the project report of UPSEB. The generation (for pool and
bilateral transactions), the generation (for multilateral transactions), pool de-
mand, reactor/capacitor, transformer and transmission line data are provided
in the tables. The data in per unit (p.u.) is on 100 MVA base. The voltage
at all buses is maintained within the limits 0.9 and 1.1 p.u. The tap ratio of
transformers is kept between 0.90 and 1.1. The voltage phase angle is main-
tained between −45 degree and +45 degree. For the analysis on this system,
minimum limits for all generation, demand and non-firm transaction bids have
been considered to be zero if not specified.

Generation data (pool and bilateral transactions)

Generator Bus no. Real power rating (p.u.) Reactive power rating (p.u.)

Minimum Maximum Minimum Maximum

G1 1 1.000 15.000 −1.000 4.000
G2 2 1.000 3.000 0.000 0.960
G3 3 0.400 2.000 0.000 0.830
G4 4 0.400 1.700 0.000 0.600
G5 5 0.000 2.400 0.000 0.310
G6 6 0.000 1.200 0.000 0.200
G7 7 0.000 1.000 0.000 0.190
G8 8 0.200 1.000 0.000 0.680
G9 9 0.600 5.700 0.000 2.500
G10 10 0.300 2.500 0.000 0.560
G11 11 0.400 2.000 0.000 1.050
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Fig. G.1. Indian UPSEB 75-bus system

Generation data (multilateral transactions)

Generator Bus no. Maximum real power rating Reactive power rating
(p.u.) (p.u.)

Minimum Maximum

G12 12 13.000 0.000 3.440
G13 13 9.000 0.000 2.800
G14 14 1.500 −0.300 0.840
G15 15 4.540 −1.000 0.350
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Cities of U.P. state at different buses

Bus no. City Bus no. City Bus no. City

1 Obra 26 Lucknow 51 Sitapur
2 Obra 27 Lucknow 52 Shahajanpur
3 Unchchahar 28 Harduaganj 53 Barut
4 Harduaganj 29 Muradnagar 54 Mainpuri
5 Yamuna-I 30 Muradnagar 55 Agra
6 Yamuna-II 31 Yamuna-I 56 Khurja
7 Ramganga 32 Yamuna-II 57 Meerut
8 Paricha 33 Ramganga 58 Rishikesh
9 Anpara 34 Parichcha 59 Muzzafarnagar
10 Panki 35 Anpara 60 Nehtaur
11 Tanda 36 Azamgarh 61 Shamli
12 Singrauli 37 Azamgarh 62 Saharanpur
13 Rihand 38 Rishikesh 63 Ferozabad
14 NAPP 39 Rishikesh 64 Gonda
15 Auraiya 40 Tanda 65 Sahibabad
16 Obra 41 Singrauli 66 Phulpur
17 Obra 42 Rihand 67 Nebhasta
18 Unchchahar 43 Napp 68 Rai Bareily
19 Sultanpur 44 Auraiya 69 Jaunpur
20 Sultanpur 45 Auraiya 70 Badaun
21 Saharanpur 46 Mughal Sarain 71 CHNT
22 Moradabad 47 Fatehpur 72 Bareily
23 Panki 48 Basti 73 Agra
24 Panki 49 Gorakhpur 74 Kanpur
25 Moradabad 50 Allahabad 75 Dadri

The system generators G1–G11 are assumed to participate in power pool as
well supplying power through bilateral transactions as shown in tables. The
system generators at bus numbers 12, 13, 14 and 15 are considered not to
participate in pool, but to supply power only through a multilateral
transaction.

Transmission line data

Line
no.

From
bus

To
bus

Series impedence
(p.u.)

Half line
charging
susceptance
(p.u.)

MVA
rating
(p.u.)

Length
(km)

Annual Cost
(ARR) 105

(Rs/year) or
(Rs lakh/year)

R X

33 16 46 0.01620 0.07760 0.07015 1.500 196.6 619.290
34 16 46 0.01620 0.07760 0.07015 1.500 196.6 619.290
35 16 50 0.02979 0.14238 0.12881 1.500 360.0 1134.000
36 16 50 0.02979 0.14238 0.12881 1.500 360.0 1134.000
37 16 50 0.29790 0.14238 0.12881 1.500 360.0 1134.000
38 17 19 0.00468 0.04770 0.62450 5.000 230.0 724.500
39 17 23 0.00785 0.07990 1.04738 5.000 386.6 1217.790
40 19 26 0.00294 0.02997 0.39206 5.000 145.0 456.750
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41 47 50 0.01093 0.05221 0.18892 3.000 117.0 368.550
42 47 67 0.00662 0.03164 0.11451 3.000 38.6 121.590
43 24 27 0.00505 0.02416 0.08730 3.000 122.0 384.300
44 24 54 0.02582 0.12342 0.11164 1.500 311.0 979.650
45 24 54 0.02582 0.12342 0.11164 1.500 311.0 979.65
46 25 43 0.01270 0.06416 0.05220 1.500 155.0 488.250
47 54 28 0.01060 0.05060 0.18320 3.000 256.0 808.290
48 28 43 0.00580 0.02900 0.02370 1.800 20.0 63.000
49 28 56 0.00370 0.01780 0.06440 3.000 110.0 346.500
50 56 30 0.00490 0.02370 0.08590 3.000 95.0 299.250
51 30 57 0.00750 0.03840 0.03110 1.800 45.8 144.270

52 53 30 0.00679 0.03412 0.02782 1.800 41.0 129.140
53 53 61 0.00666 0.03390 0.02672 1.500 39.7 125.055
54 30 61 0.01440 0.07310 0.05850 1.500 86.6 272.790
55 57 58 0.00670 0.03390 0.02670 1.800 46.0 144.900
56 57 59 0.00583 0.02956 0.02346 1.800 50.0 157.500
57 59 39 0.01410 0.07180 0.05700 1.500 143.7 452.655
58 39 31 0.01440 0.07250 0.05900 1.500 96.6 304.290

59 54 63 0.00990 0.05090 0.04010 1.500 76.6 241.290
60 55 63 0.00780 0.03980 0.03140 1.800 30.0 94.500
61 61 62 0.01160 0.05830 0.04750 1.500 69.5 218.925
62 62 32 0.01380 0.07000 0.05630 1.500 85.0 267.750
63 62 32 0.01380 0.07000 0.05630 1.500 85.0 267.750
64 35 36 0.00479 0.04880 0.63614 5.000 241.9 761.985
65 46 37 0.01732 0.08784 0.06973 1.500 103.9 327.285
66 19 36 0.00254 0.02584 0.33798 5.000 125.5 395.325
67 17 35 0.00051 0.00517 0.06760 6.000 9.5 29.925
68 40 48 0.00830 0.04240 0.3340 1.500 52.7 166.005
69 74 41 0.00927 0.09429 1.23293 5.000 45.0 141.750
70 74 41 0.00833 0.08478 1.10855 5.000 45.0 141.750
71 26 41 0.00823 0.08375 1.09503 5.000 125.0 393.750
72 48 49 0.00930 0.04750 0.03740 1.500 56.1 176.715
73 49 40 0.01330 0.06680 0.05420 1.500 32.0 100.800
74 38 29 0.00370 0.03762 0.48870 5.500 182.7 575.505

75 38 22 0.00325 0.03307 0.43264 5.500 159.8 503.370
76 18 47 0.00437 0.02552 0.09399 3.600 113.0 355.950
77 30 65 0.00248 0.01186 0.04294 3.600 7.0 22.050
78 41 42 0.00031 0.00310 0.04056 6.000 10.0 31.500
79 42 74 0.00918 0.09306 1.21680 5.000 255.0 803.250
80 23 74 0.00015 0.00155 0.02704 12.000 25.0 157.500
81 24 67 0.00124 0.00593 0.02147 3.600 40.0 126.000
82 18 68 0.00336 0.01963 0.01808 1.800 108.0 340.200
83 18 71 0.01344 0.07852 0.07230 1.700 120.0 378.000
84 27 68 0.01344 0.07852 0.07230 1.700 122.0 384.300

85 27 71 0.00336 0.01963 0.01808 1.800 110.0 346.500
86 43 58 0.01315 0.06696 0.05278 1.500 83.0 261.450
87 43 56 0.00499 0.02397 0.08523 3.000 120.0 378.000
88 55 44 0.01996 0.09588 0.08523 1.500 90.0 283.500
89 55 44 0.01996 0.09588 0.08523 1.500 90.0 283.500
90 73 45 0.00121 0.01109 0.72815 10.000 90.0 567.000
91 29 22 0.00260 0.02646 0.34610 5.500 187.5 590.625
92 21 65 0.00830 0.00396 0.01431 3.500 868.0 2734.200
93 34 54 0.03540 0.17020 0.15130 3.000 38.31 120.677
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94 34 54 0.03540 0.17020 0.15130 3.000 38.31 120.677
95 39 33 0.14100 0.07180 0.05700 1.500 250.0 787.500
96 39 33 0.14100 0.07180 0.05700 1.500 250.0 787.500
97 31 32 0.00050 0.00253 0.00805 3.600 10.0 31.500
98 20 40 0.01160 0.05880 0.04710 1.500 69.5 218.925
99 20 40 0.01160 0.05880 0.04710 2.400 69.5 218.925
100 21 30 0.00695 0.03500 0.02843 1.500 875.0 2756.250
101 28 55 0.01998 0.10127 0.08051 1.500 97.7 307.755
102 35 41 0.00031 0.00310 0.04056 3.600 9.5 29.925
103 37 69 0.01212 0.06100 0.04956 3.000 43.3 136.395
104 25 60 0.01660 0.8430 0.06720 1.500 67.7 213.255

105 51 52 0.01550 0.07940 0.06300 1.500 93.8 295.470
106 20 64 0.01830 0.09270 0.07390 1.500 110.0 346.500
107 70 72 0.00878 0.04430 0.03580 1.800 52.4 165.060
108 20 66 0.01325 0.06667 0.05416 1.500 77.3 243.495
109 29 75 0.00051 0.00517 0.06760 6.000 15.0 47.250
110 26 22 0.00650 0.06617 0.86521 5.000 294.0 926.100
111 23 29 0.00806 0.08169 1.06808 5.000 395.2 1244.880

112 74 73 0.00559 0.05686 0.74354 5.000 240.0 756.000
113 25 72 0.01598 0.08108 0.06436 1.500 75.5 237.825
114 27 51 0.01600 0.08100 0.06440 2.000 96.2 303.030

Cost coefficients for real and reactive generation costs for Indian UPSEB
75-bus system

Bus no. Real generation cost
= a + bPg + cP 2

g (in Rs/h)
Reactive generation cost
= a′+b′Qg +c′Q2

g (in Rs/h)

a b c a′ b′ c′

1 0 1023 0.00375 0 0 0.00375
2 0 990 0.002 0 0 0.002
3 0 1010 0.00335 0 0 0.00335
4 0 1012 0.003375 0 0 0.003375
5 0 470 0.001 0 0 0.001
6 0 980 0.002375 0 0 0.002375
7 0 960 0.00175 0 0 0.00175
8 0 1035 0.00375 0 0 0.00375
9 0 1040 0.007 0 0 0.007
10 0 990 0.00675 0 0 0.00675
11 0 1025 0.00605 0 0 0.00605
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