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Preface

Wireless spectrum is a scarce resource, and historically it has been divided into
chunks and allocated to different government and commercial entities with long-
term and exclusive licenses. This approach protects license users from harmful
interferences from unauthorized users, but leaves little spectrum for emerging new
services and leads to low spectrum utilizations in many spectrum bands. The way to
turn spectrum drought into spectrum abundance is to allow dynamic and oppor-
tunistic spectrum sharing between primary licensed and secondary unlicensed users
with different priorities. Such sharing is becoming technologically feasible due to
the recent advances such as cognitive radio and small cell technologies, which
allow multiple wireless devices to transmit concurrently in the same spectrum
without significant mutual negative impacts.

As the spectrum opportunities are often dynamically changing over frequency,
time, and space due to primary users’ stochastic traffic, secondary users need to
make intelligent spectrum access and sharing decisions. In this book, we propose a
novel social cognitive radio networking framework—a transformational and
innovative networking paradigm that promotes the nexus between social interac-
tions and distributed spectrum sharing. By leveraging the wisdom of crowds, the
secondary users can overcome various challenges due to incomplete network
information and limited capability of individual secondary users. Building upon the
social cognitive radio networking principle, we develop three socially inspired
distributed spectrum sharing mechanisms: adaptive channel recommendation
mechanism, imitative spectrum access mechanism, and evolutionarily stable spec-
trum access mechanism. Numerical results also demonstrate that the proposed
socially inspired distributed spectrum sharing mechanisms can achieve superior
networking performance.

The outline of this book is as follows. Chapter 1 overviews the related literature
and discusses the motivations of social cognitive radio networking. Chapter 2
presents the adaptive channel recommendation mechanism, which is inspired by the
recommendation system in the e-commerce industry for collaborative information
filtering. Chapter 3 presents the imitative spectrum access mechanism, which
leverages the common social phenomenon “imitation” to achieve efficient and fair
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distributed spectrum sharing. Chapter 4 presents the evolutionarily stable spectrum
access mechanism, which is motivated by the evolution rule observed in many
animal and human social interactions. Chapter 5 summarizes the main results in this
book.

We would like to thank the series editor, Prof. Xuemin (Sherman) Shen from
University of Waterloo, for encouraging us to prepare this monograph. We also
want to thank members of the Network Communications and Economics Lab
(NCEL) at the Chinese University of Hong Kong, for their supports during the past
several years.
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Chapter 1
Overview

1.1 Spectrum Under-Utilization Issue

Global mobile traffic has been growing rapidly in the past several years [1]. Not only
the average smartphone data usage tripled in 2011, but the non-smartphone wireless
traffic also more than doubled in the same year. These sharp increases in mobile
traffic are expected to continue in the foreseeable future [1]. In July 2011, Credit
Suisse reported that wireless base stations in the United States were operating at
80% of their maximum capacity during busy periods [2]. Compounding the issue
of congested cellular networks is the wide use of social networking applications on
mobile devices, where a viral social content can have a rapid increase in popularity in
a short time (called a flash crowd [3]) and contributes to the significance increase of
mobile data usage. This combination of exploding data demands and limited wireless
resources poses a significant challenge for future wireless network design.

To address this challenge, regulatory agencies (e.g., FCC in U.S. and Ofcom in
U.K.) around the world are actively working on the reformation of wireless spectrum
access policies and regulations. Traditionally, wireless spectrum is regulated under
the static and exclusive spectrummanagement policy, such that spectrum is allocated
to spectrum licensees over large geographical areas for years or even decades [4].
A network operator (who is often a spectrum licensee) will use the licensed spectrum
exclusively to serve his own primary licensed users. As a result, secondary unlicensed
users cannot access the licensed bands under the static license arrangement. Since
most spectrums have been licensed to different government and commercial entities,
this will soon lead to the spectrum drought for many emerging newwireless services.

On the other hand, however,many existing licensed spectrumbands are not always
efficiently utilized. According to [4], the temporal and spatial variations in the utiliza-
tion of the licensed spectrum rang from 15 to 85%, with a large portion of licensed
spectrum being severely under-utilized. A field measurement by Shared Spectrum
Cooperation shows that the overall average utilization of a wide range of different
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2 1 Overview

types of spectrum bands is lower than 20% even in densely populated cities such as
Chicago and New York City [5].

To address the spectrum under-utilization problem and support the growing
wireless traffic demand, a novel dynamic spectrum sharing approach has been
proposed [6]. Dynamic spectrum sharing enables unlicensed secondary wireless
users equipped with cognitive radios to opportunistically share the spectrum with
licensed primary users, in order to improve the spectrum utilization. A key challenge
of dynamic spectrum sharing is how to achieve efficient spectrum sharing among
secondary users in a distributed fashion. This is because that the spectrum opportu-
nities for secondary users are often dynamically changing over frequency, time, and
space due to stochastic traffic of primary users, and individual secondary users often
have limited information of the entire network environment due to hardware con-
straints. Furthermore, if too many secondary users utilize the same vacant spectrum
simultaneously, they would generate severe interferences to each other, leading to a
poor system performance. Achieving an efficient distributed spectrum sharing thus
requires that each secondary user has the ability to make intelligent decisions based
on limited network information.

1.2 Social Cognitive Radio Networks

To overcome this challenge, a large body of literature has focused on investigating
the individual intelligence of secondary users. For the individual intelligence, sec-
ondary users act with full rationality and share the spectrum through noncooperative
competitions. Noncooperative game theory has been widely used to model the com-
plex interactions among competitive secondary users and compute the best response
based spectrum access strategy. To have full rationality, however, a secondary user
typically needs to have a high computational power to collect and analyze the net-
work information in order to predict other users’ behaviors. This is often not feasible
due to the limitations of today’s mobile devices.

Along a different line, in this book we explore the social intelligence of secondary
users for achieving an efficient distributed spectrum sharing. For the social intelli-
gence, secondary users act with bounded rationality and share the spectrum through
cooperative social interactions. The motivation for considering social intelligence is,
by leveraging the wisdom of crowds, to overcome the challenges due to incomplete
network information and limited capability of individual secondary users. In fact,
the emergence of social intelligence has been observed in many social interactions
of animals [7], and has been utilized for engineering algorithm design. For exam-
ple, Kennedy and Eberhart designed the particle swarm optimization algorithm by
simulating social movement behaviors in a bird flock [8]. Pham et al. developed
the bees algorithm by mimicing the food foraging behaviors of honey bees [9]. The
understanding of human social phenomenon also sheds new light into the design of
more efficient engineering systems such as wireless communication networks. For
example, the small-world phenomenon in social networks has been applied to design
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efficient decentralized routing strategy and topology control algorithms for ad hoc
networks in [10, 11], respectively.

Building upon the principle of social intelligence, in this book we propose a novel
social cognitive radio networking paradigm that promotes the nexus between social
interactions and distributed spectrum sharing. Specifically, we develop three socially
inspired distributed spectrum sharing mechanisms: (1) Inspired by the recommen-
dation system in the e-commerce industry such as Amazon, we propose an adap-
tive channel recommendation mechanism, such that secondary users collaboratively
recommend “good” channels to each other for achieving more informed spectrum
access decisions; (2) By leveraging a common social phenomenon “imitation” in
human and animal society, we devise an imitative spectrum access mechanism, such
that secondary users imitate the spectrum access strategies of their elite neighbours to
improve the networking performance; (3) Motivated by the evolution rule observed
in many animal and human interactions, we propose an evolutionarily stable spec-
trum access mechanism, such that each secondary user takes a comparison strategy
(i.e., compare its performance with the collective network performance) to evolve
its spectrum access decision adaptively over time.

1.3 Related Research

For the individual intelligence, a common modeling approach is to consider selfish
secondary users, and model their interactions as non-cooperative games. There is
a vast literature along this line, and here we will briefly outline some representa-
tive ones. Nie and Comaniciu [12] designed a self-enforcing distributed spectrum
access mechanism based on potential games. Niyato and Hossain [13] proposed a
dynamic game approach for analyzing the competition among secondary users for
spectrum access. Flegyhzi et al. [14] proposed a two-tier game framework for cogni-
tive radio medium access control (MAC) mechanism design. Yang et al. [15] studied
a price-based spectrum access mechanism for competitive secondary users. Li et al.
[16] proposed a game theoretic framework to achieve incentive compatible multi-
band sharing among the secondary users. Chen and Huang [17, 18] developed a
spatial spectrum access game framework to model the competitive spectrum access
among the secondary users by taking the spatial reuse effect into account. South-
well et al. [19] studied the distributed QoS satisfaction for spectrum sharing based
on game theory. Law et al. [20] studied the system performance degradation due
to the competition of secondary users in distributed spectrum access game. A com-
mon assumption of the above results is that each user knows the complete network
information to act with the best response strategy. This is, however, often expensive
or infeasible to achieve due to significant signaling overhead and the competitors’
unwillingness to share information.

To mitigate the strong information requirement for distributed spectrum access,
some research results investigate the learning approach for distributed spectrum
access such that secondary users adapt the spectrum access decisions locally. Han
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et al. [21] and Maskery et al. [22] used no-regret learning to solve this problem,
assuming that the users’ channel selections are common information. The learning
converges to a correlated equilibrium [23], wherein the common observed history
serves as a signal to coordinate all users’ channel selections. When users’ channel
selections are not observable, authors in [24–26] designed amulti-agent multi-armed
bandit learning algorithm to minimize the expected performance loss of distributed
spectrum access. Li [27] applied reinforcement learning to analyze Aloha-type spec-
trum access. Such learning mechanisms relax the strong information requirement
by relying on each individual secondary user’s local adaption and experience. In a
sharp contrast, the proposed social cognitive radio network mechanisms in this book
overcome the challenge of limited network information through cooperative social
interactions among secondary users.

Only a few efforts have been made to investigate the social intelligence for
distributed spectrum sharing. Xing and Chandramouli [28] proposed to use anthro-
pological models in human society to enhance the performance of cognitive radio
networks. Li et al. [29] applied the social network approach to analyze the social
behavior in cognitive radio networks. Chen et al. [30] proposed a social group utility
maximization framework for database-assisted spectrum access such that each user
is socially aware and cares about its social friends. In this book, we develop socially
inspired distributed spectrum sharing schemes by leveraging three important social
mechanisms (i.e., recommendation, imitation, and evoltuion) in human and animal
social interactions.
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Chapter 2
Adaptive Channel Recommendation
Mechanism

2.1 Introduction

Designing an efficient spectrum access mechanism for cognitive radio networks is
challenging for several reasons: (1) time-variation: spectrum opportunities available
for secondary users are often time-varying due to primary users’ stochastic activities
[1]; and (2) limited observations: each secondary user often has a limited view of the
spectrum opportunities due to the limited spectrum sensing capability [2]. Several
characteristics of the wireless channels, on the other hand, turn out to be useful for
designing efficient spectrumaccessmechanisms: (1) temporal correlations: spectrum
availabilities are correlated in time, and thus observations in the past can be useful in
the near future [3]; and (2) spatial correlation: secondary users close to one another
may experience similar spectrum availabilities [4]. In this chapter, we shall explore
the time and space correlations and propose a recommendation-based cooperative
spectrum access algorithm, which achieves good communication performances for
the secondary users.

Our algorithm design is directly inspired by the recommendation system in the
electronic commerce industry. For example, existing owners of various products
can provide recommendations (reviews) on Amazon.com, so that other potential
customers can pick the products that best suit their needs. Motivated by this, Li [5]
proposed a static channel recommendation scheme that encourages secondary users
to recommend the channels they have successfully accessed to nearby secondary
users. Since each secondary user originally only has a limited view of spectrum
availability, such information exchange enables secondary users to take advantages of
the correlations in time and space, makemore informed decisions, and achieve a high
total transmission rate. Similarly as the Geo-location database approach required by
FCC for white-space spectrum access [6], we can view the channel recommendation
approach as a real-time distributed database generated by the secondary users. This is
desirable, for example, when the PU activities change fast (e.g., cellular systems) and
a centralized database is difficult to capture the real-time status of all primary users.
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8 2 Adaptive Channel Recommendation Mechanism

Fig. 2.1 Illustration of the channel recommendation scheme.UserD recommends channel 4 to other
users. As a result, both user A and user C access the same channel 4, and thus lead to congestion
and a reduced rate for both users

The static recommendation scheme in [5], however, ignores two important
characteristics of cognitive radios. The first one is the time variability we men-
tioned before. The second one is the congestion effect. As depicted in Fig. 2.1, too
many users accessing the same channel leads to congestion and a reduced rate for
everyone.

To address the shortcomings of the static recommendation scheme, in this chapter
we propose an adaptive channel recommendation scheme, which adaptively changes
the spectrum access probabilities based on users’ latest channel recommendations.
We formulate and analyze the system as a Markov decision process (MDP), and
propose a numerical algorithm that always converges to the optimal spectrum access
policy.

The main results and contributions of this chapter include:

• Markov decision process formulation: we formulate and analyze the optimal
recommendation-based spectrum access as an average reward MDP.

• Existence and structure of the optimal policy: we show that there always exists a
stationary optimal spectrum access policy, which requires only the channel rec-
ommendation information of the most recent time slot. We also explicitly charac-
terize the structure of the optimal stationary policy with channel homogeneity in
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two asymptotic cases (either the number of channels or the number of users goes
to infinity).

• Novel algorithm for finding the optimal policy: we propose an algorithm based on
the recently developed Model Reference Adaptive Search method [7] to find the
optimal stationary spectrum access policy. The algorithm has a low complexity
even when dealing with a continuous action space of the MDP. We also show
that it always converges to the optimal stationary policy. We further propose an
efficient heuristic scheme for the heterogeneous channel recommendation, which
can significantly reduce the computational time while has small performance loss.

• Superior performance: we show that the proposed algorithm achieves up to 18 and
100% performance improvement than the static channel recommendation scheme
in homogeneous and heterogeneous channel environments, respectively, and is
also robust to channel dynamics.

The rest of the chapter is organized as follows. We introduce the system model
in Sect. 2.2. We then review the static channel recommendation scheme and dis-
cuss the motivation for designing an adaptive channel recommendation scheme in
Sect. 2.3. The Markov decision process formulation and the structure results of the
optimal policy are presented in Sect. 2.4, followed by the Model Reference Adaptive
Search based algorithm in Sect. 2.5. We then develop a heuristic scheme for hetero-
geneous channel recommendation in Sect. 2.6. We illustrate the performance of the
algorithms through numerical results in Sect. 2.8 and conclude in Sect. 2.9. Due to
space limitations, the details for several proofs are provided in [8].

2.2 System Model

We consider a cognitive radio network with M parallel and stochastically hetero-
geneous primary channels. N homogeneous secondary users try to access these
channels using a slotted transmission structure (see Fig. 2.2). The secondary users
can exchange information by broadcasting messages over a common control chan-
nel.1 We assume that the secondary users are located close-by, thus they experience
similar spectrum availabilities and can hear one another’s broadcasting messages. To
protect the primary transmissions, secondary users need to sense the channel states
before their data transmission.

The system model is described as follows:

• Channel state: For each primary channel m, the channel state at time slot t is

Sm(t) =
{
0, if channel m is occupied by primary transmissions,

1, if channel m is idle.

1 Please refer to [9] for the details on how to set up and maintain a reliable common control channel
in cognitive radio networks.
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Fig. 2.2 Structure of each spectrum access time slot

Fig. 2.3 Two states
Markovian channel model

• Channel state transition: The states of different channels change according to
independent Markovian processes (see Fig. 2.3). We denote the channel state
probability vector of channelm at time t as pm(t) � (Pr{Sm(t) = 0}, Pr{Sm(t) =
1}), which follows a two-state Markov chain as pm(t) = pm(t − 1)Γm,∀t ≥ 1,
with the transition matrix

Γm =
[
1 − pm pm

qm 1 − qm

]
.

Note that when pm = 0 or qm = 0, the channel state stays unchanged. In the rest
of the chapter, we will look at the more interesting and challenging cases where
0 < pm ≤ 1 and 0 < qm ≤ 1. The stationary distribution of the Markov chain is
given as

lim
t→∞ Pr{Sm(t) = 0} = qm

pm + qm
, (2.1)

lim
t→∞ Pr{Sm(t) = 1} = pm

pm + qm
. (2.2)

• Heterogeneous channel throughput:When a secondary user transmits successfully
on an idle channel m, it achieves a data rate of Bm . Different channels can support
different data rates.

• Channel contention: To resolve the transmission collisionwhenmultiple secondary
users access the same channel, a backoff mechanism is used (see Fig. 2.2 for
illustration). The contention stage of a time slot is divided into λ∗ mini-slots, and
each user n executes the following two steps:
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1. Count down according to a randomly and uniformly chosen integral backoff
time (number of mini-slots) λn between 1 and λ∗.

2. Once the timer expires, monitor the channel and transmit RTS/CTSmessages to
grab the channel if the channel is clear (i.e., no ongoing transmission). Note that
if multiple users choose the same backoff mini-slot, a collision will occur with
RTS/CTS transmissions and no users can grab the channel. Once successfully
grabing the channel, the user starts to transmit its data packet.

Suppose that km users choose channel m to access. Then the probability that user
n (out of the km users) successfully grabs the channel m is

Prn = Pr{λn < min
i �=n

{λi }}

=
λ∗∑

λ=1

Pr{λn = λ}Pr{λ < min
i �=n

{λi }|λn = λ}

=
λ∗∑

λ=1

1

λ∗

(
λ∗ − λ

λ∗

)km−1

. (2.3)

For the ease of exposition, we will focus on the asymptotic case where λ∗ goes to
∞. This is a good approximation when the number of mini-slots λ∗ for backoff is
much larger than the number of users N and collisions rarely occur. It simplifies
the analysis as

lim
λ∗→∞

λ∗∑
λ=1

1

λ∗

(
λ∗ − λ

λ∗

)km−1

= lim
1
λ∗ →0

λ∗−1∑
λ=0

(
λ

λ∗

)km−1 1

λ∗

=
1∫

0

zkm−1dz = 1

km
, (2.4)

and thus the expected throughput of user n is

un(t) = Bm Sm(t)

km
. (2.5)

In Sect. 2.7, we also generalize the results to the case that λ∗ < ∞.

2.3 Introduction to Channel Recommendation

In this section, we first give a review of the static channel recommendation scheme
in [5] and then discuss the motivation for adaptive channel recommendation.
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2.3.1 Review of Static Channel Recommendation

The key idea of the static channel recommendation scheme is that secondary users
inform each other about the available channels they have just accessed. More specif-
ically, each secondary user executes the following four stages synchronously during
each time slot (See Fig. 2.2):

• Spectrum sensing: sense one of the channels based on channel selection result
made at the end of the previous time slot.

• Channel contention: if the channel sensing result is idle, compete for the channel
with the backoff mechanism described in Sect. 2.2.

• Data transmission: transmit data packets if the user successfully grabs the channel.
• Channel recommendation and selection:

– Announce recommendation: if the user has successfully accessed an idle channel,
broadcast this channel ID to all other secondary users.

– Collect recommendation: collect recommendations from other secondary users
and store them in a buffer. Typically, the correlation of channel availabilities
between two slots diminishes as the time difference increases. Therefore, each
secondary user will only keep the recommendations received from the most
recent W slots and discard the out-of-date information. The user’s own success-
ful transmission history within W recent time slots is also stored in the buffer.
W is a system design parameter and will be further discussed later.

– Select channel: choose a channel to sense at the next time slot by putting more
weights on the recommended channels according to a static branching proba-
bility Prec. Suppose that the user has 0 < R < M different channel recommen-
dations in the buffer, then the probability of accessing a channel m is

Pm =
{

Prec
R , if channel m is recommended,

1−Prec
M−R , otherwise.

(2.6)

A larger value of Prec means that putting more weight on the recommended
channels. When R = 0 (no channel is recommended) or M (all channels
are recommended), the random access is used and the probability of selecting
channel m is Pm = 1

M .

To illustrate the channel selection process, let us take the network in Fig. 2.1 as
an example. Suppose that the branching probability Prec = 0.4. Since only R =
1 recommendation is available (i.e., channel 4), the probabilities of choosing the
recommended channel 4 and any unrecommended channel are 0.4

1 = 0.4 and 1−0.4
6−1 =

0.12, respectively.
Numerical studies in [5] showed that the static channel recommendation scheme

achieves a higher performance over the traditional random channel access scheme
without information exchange. However, the fixed value of Prec limits the
performance of the static scheme, as explained next.
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2.3.2 Motivations for Adaptive Channel Recommendation

The static channel recommendation mechanism is simple to implement due to a fixed
value of Prec. However, it may lead to significant congestions when the number of
recommended channels is small. In the extreme case when only R = 1 channel is
recommended, calculation (2.6) suggests that every user will access that channel
with a probability Prec. When the number of users N is large, the expected number
of users accessing this channel N Prec will be high. Thus heavy congestion happens
and each secondary user will get a low expected throughput.

A better way is to adaptively change the value of Prec based on the number of
recommended channels. This is the key idea of our proposed algorithm. To illustrate
the advantage of adaptive algorithms, let us first consider a simple heuristic adaptive
algorithm in a homogeneous channel environment, i.e., for each channel m, its data
rate Bm = B and channel state changing probabilities pm = p, qm = q. In this
algorithm, we choose the branching probability such that the expected number of
secondary users choosing a single recommended channel is one. To achieve this, we
need to set Prec as in Lemma 2.1.

Lemma 2.1 If we choose the branching probability Prec = R
N , then the expected

number of secondary users choosing any one of the R recommended channels is one.

Without going through detailed analysis, it is straightforward to show the benefit
for such adaptive approach through simple numerical examples. Let us consider a
network with M = 10 channels and N = 5 secondary users. For each channel m, the
initial channel state probability vector is pm(0) = (0, 1) and the transition matrix is

Γm =
[
1 − 0.01ε 0.01ε
0.01ε 1 − 0.01ε

]
,

where ε is called the dynamic factor. A larger value of ε implies that the channels
are more dynamic over time. We are interested in time average system throughput

U =
∑T

t=1
∑N

n=1 un(t)
T , where un(t) is the throughput of user n at time slot t . In the

simulation, we set the total number of time slots T = 2,000.
We implement the following three channel access schemes:

• Random access scheme: each secondary user selects a channel randomly.
• Static channel recommendation scheme as in [5] with the optimal constant
branching probability Prec = 0.7.

• Heuristic adaptive channel recommendation scheme with the variable branching
probability Prec = R

N .

Figure2.4 shows that the heuristic adaptive channel recommendation scheme
outperforms the static channel recommendation scheme, which in turn outperforms
the random access scheme. Moreover, the heuristic adaptive scheme is more robust
to the dynamic channel environment, as it decreases slower than the static scheme
when ε increases.
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Fig. 2.4 Comparison of three channel access schemes

We can imagine that an optimal adaptive scheme (by setting the right Prec(t) over
time) can further increase the network performance. However, computing the optimal
branching probability in closed-form is very difficult. In the rest of the chapter, we
will focus on characterizing the structures of the optimal spectrum access strategy
and designing an efficient algorithm to achieve the optimum.

2.4 Adaptive Channel Recommendation
with Channel Homogeneity

We first study the optimal channel recommendation in the homogeneous channel
environment, i.e., each channel m has the same data rate Bm = B and identical
channel state changing probabilities pm = p, qm = q. The generalization to the
heterogeneous channel setting will be discussed in Sect. 2.6. To find the optimal
adaptive spectrum access strategy, we formulate the system as a Markov Decision
Process (MDP). For the sake of simplicity, we assume that the recommendation
buffer size W = 1, i.e., users only consider the recommendations received in the last
time slot. Our method also applies to the case when W > 1 by using a high-order
MDP formulation, although the analysis is more involved.
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2.4.1 MDP Formulation for Adaptive Channel
Recommendation

We model the system as a MDP as follows:

• System state: R ∈ R � {0, 1, . . . ,min{M, N }} denotes the number of recom-
mended channels at the end of time slot t . Since all channels are statistically
homogenous, then there is no need to keep track of the recommended channel IDs.

• Action: Prec ∈ P � (0, 1) denotes the branching probability of choosing the set
of recommended channels.

• Transition probability: The probability that action Prec in system state R in time
slot t will lead to system state R′ in the next time slot is P Prec

R,R′ = Pr{R(t + 1) =
R′|R(t) = R, Prec(t) = Prec}. We can compute this probability as in (2.7), with
detailed derivations given in [8].

P Prec
R,R′ = ∑

mr +mu=R′

∑
R≥m̄r ≥mr ,M−R≥m̄u≥mu

∑
nr +nu=N ,nr ≥m̄r ,nu≥m̄u

(
N
nr

)

×Pnr
rec(1 − Prec)

nu

(
m̄r

mr

)
(1 − q)mr qm̄r −mr R!

(R−m̄r )!
(

nr − 1
m̄r − 1

)
R−nr

×
(

m̄u

mu

) (
p

p+q

)mu
(

q
p+q

)m̄u−mu (M−R)!
(M−R−m̄u)!

(
nu − 1
m̄u − 1

)
(M − R)−nu .

(2.7)

• Reward: U (R, Prec) is the expected system throughput in next time slot when the
action Prec is taken in current systemstate R, i.e.,U (R, Prec) = ∑

R′∈R P Prec
R,R′UR′ ,

where UR′ is the system throughput in state R′. If R′ idle channels are utilized by
the secondary users in a time slot, then these R′ channels will be recommended at
the end of the time slot. Thus, we have UR′ = R′ B. Recall that B is the data rate
that a single user can obtain on an idle channel.

• Stationary policy: π ∈ Ω � P |R| maps from each state R to an action Prec,
i.e., π(R) is the action Prec taken when the system is in state R. The mapping is
stationary and does not depend on time t .

Given a stationary policy π and the initial state R0 ∈ R, we define the network’s
value function as the time average system throughput, i.e.,

Φπ(R0) = lim
T →∞

1

T
Eπ

[
T −1∑
t=0

U (R(t), π(R(t)))

]
.

We want to find an optimal stationary policy π∗ that maximizes the value function
Φπ(R0) for any initial state R0, i.e., π∗ = argmaxπ Φπ(R0),∀R0 ∈ R. Notice that
this is a systemwide optimization, although the optimal solution can be implemented
in a distributed fashion. For example, each user can calculate the optimal spectrum
access policy off-line, and determine the real-time optimal channel access probability
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Prec locally by observing the number of recommended channels R after entering the
network.

2.4.2 Existence of Optimal Stationary Policy

MDP formulation above is an average reward based MDP. We show in Theorem 2.1
that an optimal stationary policy that is independent of initial system state always
exists in our MDP formulation.

Theorem 2.1 There exists an optimal stationary policy for the adaptive channel
recommendation MDP.

Furthermore, the optimal stationary policy π∗ is independent of the initial state
R0 due to the irreducibility of the adaptive channel recommendation MDP, i.e.,
Φπ∗(R0) = Φπ∗ ,∀R0 ∈ R, where Φπ∗ is the maximum time average system
throughput. In the rest of the chapter, we will just use “optimal policy” to refer
“optimal stationary policy that is independent of the initial system state”.

2.4.3 Structure of Optimal Stationary Policy

Next we characterize the structure of the optimal policy without using the closed-
form expressions of the policy (which is generally hard to achieve). The key idea is to
treat the average reward based MDPs as the limit of a sequence of discounted reward
MDPs with discounted factors going to one. Under the irreducibility condition, the
average reward based MDP thus inherits the structure property from the correspond-
ing discounted reward MDP [10]. We can write down the Bellman equations of the
discounted version of our MDP problem as:

Vt (R) = max
Prec∈P

∑
R′∈R

P Prec
R,R′ [UR′ + βVt+1(R′)], ∀R ∈ R, (2.8)

where Vt (R) is the discounted maximum expected system throughput starting from
time slot t when the system in state R, and 0 < β < 1 is the discounted factor.

Due to the combinatorial complexity of the transition probability P Prec
R,R′ in (2.7),

it is difficult to obtain the structure results for the general case. We further limit our
attention to the following two asymptotic cases.

2.4.3.1 Case One: The Number of Channels M Goes to Infinity
While the Number of Users N Stays Finite

In this case, the number of channels is much larger than the number of secondary
users, and thus heavy congestion rarely happens on any channel. Thus it is safe
to emphasizing on accessing the recommended channels. Before proving the main
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result of Case One in Theorem 2.2, let us first characterize the property of discounted
maximum expected system payoff Vt (R).

Proposition 2.1 When M = ∞ and N < ∞ , the value function Vt (R) for the
discounted adaptive channel recommendation MDP is nondecreasing in R.

Based on the monotone property of the value function Vt (R), we prove the
following main result.

Theorem 2.2 When M = ∞ and N < ∞, for the adaptive channel recom-
mendation MDP, the optimal stationary policy π∗ is monotone, that is, π∗(R) is
nondecreasing on R ∈ R.

2.4.3.2 Case Two: The Number of Users N Goes to Infinity
While the Number of Channels M Stays Finite

In this case, the number of secondary users is much larger than the number of chan-
nels, and thus congestion becomes a major concern. However, since there are infi-
nitely many secondary users, all the idle channels at each time slot can be utilized
as long as users have positive probabilities to access all channels. From the system’s
point of view, the cognitive radio network operates in the saturation state. Formally,
we show that

Theorem 2.3 When N = ∞ and M < ∞, for the adaptive channel channel
recommendation MDP, any stationary policy π satisfying 0 < π(R) < 1,∀R ∈ R
is optimal.

2.5 Model Reference Adaptive Search for Optimal
Spectrum Access Policy

Next we will design an algorithm that can converge to the optimal policy under
general systemparameters (not limiting to the two asymptotic cases). Since the action
space of the adaptive channel recommendation MDP is continuous (i.e., choosing
a probability Prec in (0, 1)), the traditional method of discretizing the action space
followed by the policy, value iteration, or Q-learning cannot guarantee to converge to
the optimal policy. Toovercome this difficulty,wepropose a newalgorithmdeveloped
from the Model Reference Adaptive Search method, which was recently developed
in theOperations Research community [7].Wewill show that the proposed algorithm
is easy to implement and is provably convergent to the optimal policy.
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2.5.1 Model Reference Adaptive Search Method

We first introduce the basic idea of the Model Reference Adaptive Search (MRAS)
method. Later on, we will show how the method can be used to obtain optimal
spectrum access policy for our problem.

The MRAS method is a new randomized method for global optimization [7]. The
key idea is to randomize the original optimization problem over the feasible region
according to a specified probabilistic model. The method then generates candidate
solutions and updates the probabilistic model on the basis of elite solutions and a
reference model, so that to guide the future search toward better solutions.

Formally, let J (x) be the objective function to maximize. The MRAS method is
an iterative algorithm, and it includes three phases in each iteration k:

• Random solution generation: generate a set of random solutions {x} in the feasible
set χ according to a parameterized probabilistic model f (x, vk), which is a proba-
bility density function (pdf)with parameter vk . The number of solutions to generate
is a fixed system parameter.

• Reference distribution construction: select elite solutions among the randomly
generated set, such that the chosen ones satisfy J (x) ≥ γ . Construct a reference
probability distribution as

gk(x) =

⎧⎪⎨
⎪⎩

I{J (x)≥γ }
E f (x,v0)[ I{J (x)≥γ }

f (x,v0)
]

k = 1,

eJ (x) I{J (x)≥γ }gk−1(x)

Egk−1 [eJ (x) I{J (x)≥γ }] k ≥ 2,
(2.9)

where I{� } is an indicator function, which equals 1 if the event � is true and zero
otherwise. Parameter v0 is the initial parameter for the probabilistic model (used
during the first iteration, i.e., k = 1), and gk−1(x) is the reference distribution in
the previous iteration (used when k ≥ 2).

• Probabilistic model update: update the parameter v of the probabilistic model
f (x, v) by minimizing the Kullback-Leibler divergence between gk(x) and
f (x, v), i.e.,

vk+1 = argmin
v

Egk

[
ln

gk(x)

f (x, v)

]
. (2.10)

By constructing the reference distribution according to (2.9), the expected per-
formance of random elite solutions can be improved under the new reference
distribution, i.e.,

Egk [eJ (x) I{J (x)≥γ }] =
∫

x∈χ
e2J (x) I{J (x)≥γ }gk−1(x)dx

Egk−1 [eJ (x) I{J (x)≥γ }]

= Egk−1 [e2J (x) I{J (x)≥γ }]
Egk−1 [eJ (x) I{J (x)≥γ }] ≥ Egk−1 [eJ (x) I{J (x)≥γ }]. (2.11)
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To find a better solution to the optimization problem, it is natural to update the
probabilistic model (from which random solution are generated in the first stage) to
as close to the new reference probability as possible, as done in the third stage.

2.5.2 Model Reference Adaptive Search for Optimal
Spectrum Access Policy

In this section, we design an algorithm based on the MRAS method to find the
optimal spectrum access policy. Here we treat the adaptive channel recommendation
MDP as a global optimization problem over the policy space. The key challenge is
the choice of proper probabilistic model f (·), which is crucial for the convergence
of the MRAS algorithm.

2.5.2.1 Random Policy Generation

To apply theMRASmethod, we first need to set up a randompolicy generationmech-
anism. Since the action space of the channel recommendation MDP is continuous,
we use the Gaussian distributions. Specifically, we generate sample actions π(R)

from a Gaussian distribution for each system state R ∈ R independently, i.e.
π(R) ∼ N (μR, σ 2

R).2 In this case, a candidate policy π can be generated from
the joint distribution of |R| independent Gaussian distributions, i.e.,

(π(0), . . . , π(min{M, N })) ∼ N (μ0, σ
2
0 ) × · · · × N (μmin{M,N }, σ 2

min{M,N }).

As shown later, Gaussian distribution has nice analytical and convergent properties
for the MRAS method.

For the sake of brevity, we denote f (π(R), μR, σR) as the pdf of the Gaussian
distribution N (μR, σ 2

R), and f (π,μ, σ ) as random policy generation mechanism
with parameters μ � (μ0, . . . , μmin{M,N }) and σ � (σ0, . . . , σmin{M,N }), i.e.,

f (π,μ, σ ) =
min{M,N }∏

R=0

f (π(R), μR, σR)

=
min{M,N }∏

R=0

1√
2ϕσ 2

R

e
− (π(R)−μR )2

2σ2R ,

where ϕ is the circumference-to-diameter ratio.

2 Note that theGaussian distribution has a support over (−∞,+∞), which is larger than the feasible
region of π(R). This issue will be handled in Sect. 2.5.2.2.
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2.5.2.2 System Throughput Evaluation

Given a candidate policy π randomly generated based on f (π,μ, σ ), we need to
evaluate the expected system throughput Φπ . From (2.7), we obtain the transition
probabilities Pπ(R)

R,R′ for any system state R, R′ ∈ R. Since a policy π leads to
a finitely irreducible Markov chain, we can obtain its stationary distribution. Let
us denote the transition matrix of the Markov chain as Q � [Pπ(R)

R,R′ ]|R|×|R| and
the stationary distribution as p = (Pr(0), . . . , Pr(min{M, N })). Obviously, the
stationary distribution can be obtained by solving the equation pQ = p. We then
calculate the expected system throughput Φπ by Φπ = ∑

R∈R Pr(R)UR .

Note that in the discussion above,we assume thatπ ∈ Ω implicitly,whereΩ is the
feasible policy space. Since Gaussian distribution has a support over (−∞,+∞), we
thus extend the definition of expected system throughput Φπ over (−∞,+∞)|R| as

Φπ =
{∑

R∈R Pr(R)UR π ∈ Ω,

−∞ Otherwise.

In this case, whenever any generated policy π is not feasible, we have Φπ = −∞.
As a result, such policy π will not be selected as an elite sample (discussed next)
and will not be used for probability updating. Hence the search of MRAS algorithm
will not bias towards any unfeasible policy space.

2.5.2.3 Reference Distribution Construction

To construct the reference distribution, we first need to select the elite policies.
Suppose L candidate policies, π1, π2, . . . , πL , are generated at each iteration. We
order them based on an increasing order of the expected system throughputs Φπ ,
i.e., Φπ̂1 ≤ Φπ̂2 ≤ . . . ≤ Φπ̂L , and set the elite threshold as γ = Φπ̂�(1−ρ)L
 , where
0 < ρ < 1 is the elite ratio. For example, when L = 100 and ρ = 0.4, then γ = Φπ̂60

and the last 40 samples in the sequence will be selected as elite samples. Note that as
long as L is sufficiently large, we shall have γ < ∞ and hence only feasible policies
π are selected. According to (2.9), we then construct the reference distribution as

gk(π) =

⎧⎪⎨
⎪⎩

I{Φπ ≥γ }
E f (π,μ0,σ0)[ I{Φπ ≥γ }

f (π,μ0,σ0)
]

k = 1,

eΦπ I{Φπ ≥γ }gk−1(π)

Egk−1 [eΦπ I{Φπ ≥γ }] k ≥ 2.
(2.12)

2.5.2.4 Policy Generation Update

For the MRAS algorithm, the critical issue is the updating of random policy gener-
ation mechanism f (π,μ, σ ), or solving the problem in (2.10). The optimal update
rule is described as follow.
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Theorem 2.4 The optimal parameter (μ, σ ) that minimizes the Kullback-Leibler
divergence between the reference distribution gk(π) in (2.12) and the new policy
generation mechanism f (π,μ, σ ) is

μR =
∫
π∈Ω

e(k−1)Φπ I{Φπ≥γ }π(R)dπ∫
π∈Ω

e(k−1)Φπ I{Φπ≥γ }dπ
, ∀R ∈ R, (2.13)

σ 2
R =

∫
π∈Ω

e(k−1)Φπ I{Φπ≥γ }[π(R) − μR]2dπ∫
π∈Ω

e(k−1)Φπ I{Φπ≥γ }dπ
, ∀R ∈ R. (2.14)

2.5.2.5 MARS Algorithm for Optimal Spectrum Access Policy

Based on the MARS algorithm, we generate L candidate polices at each iteration.
Then the updates in (2.13) and (2.14) are replaced by the sample average version
in (2.15) and (2.16) in Algorithm 1, respectively. As a summary, we describe the
MARS-based algorithm for finding the optimal spectrum access policy of adaptive
channel recommendation MDP in Algorithm 1.

We then analyze the computational complexity of the MRAS algorithm. For each
iteration, the sample generation inLine 4 inAlgorithm1 involves L sampleswith each
generated from |R|Gaussian distributions. This step has the complexity ofO(L|R|).
The elite sample selection in Line 5 involves the sorting operation, which typically
has the complexity of O(L ln L). The update in Line 6 involving the summation
operation also has the complexity of O(L|R|). Suppose that it takes Z iterations for
the algorithm to converge. Then the total computational complexity of the MRAS
algorithm is O(Z L|R| + Z L ln L).

Algorithm 1 MRAS-based Algorithm For Adaptive Recommendation Based
Optimal Spectrum Access
1: initialize parameters for Gaussian distributions (μ0, σ 0), the elite ratio ρ, and the stopping

criterion ξ . Set initial elite threshold γ0 = 0 and iteration index k = 0.
2: repeat:
3: increase iteration index k by 1.
4: generate L candidate policies π1, . . . , πL from the random policy generation mechanism

f (π,μk−1, σ k−1).
5: select elite policies by setting the elite threshold γk = max{Φπ̂�(1−ρ)L
 , γk−1}.
6: update the random policy generation mechanism by (for any ∀R ∈ R)

μR,k =
∑L

i=1 e(k−1)Φπ I{Φπi ≥γk }πi (R)∑L
i=1 e(k−1)Φπ I{Φπi ≥γk }

, (2.15)

σ 2
R,k =

∑L
i=1 e(k−1)Φπ I{Φπi ≥γk }[πi (R) − μR]2∑L

i=1 e(k−1)Φπ I{Φπi ≥γk }
. (2.16)

7: until maxR∈R σR,k < ξ.
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2.5.3 Convergence of Model Reference Adaptive Search

In this part, we discuss the convergence property of the MRAS-based optimal
spectrum access policy. For ease of exposition, we assume that the adaptive channel
recommendation MDP has a unique global optimal policy. Numerical studies in [7]
show that the MRAS method also converges for the multiple global optimums case.
We shall show that the random policy generationmechanism f (π,μk, σ k)will even-
tually generate the optimal policy.

Theorem 2.5 For the MRAS algorithm, the limiting point of the policy sequence {πk}
generated by the sequence of random policy generation mechanism { f (π,μk, σ k)}
converges point-wisely to the optimal spectrum access policy π∗ for the adaptive
channel recommendation MDP, i.e.,

lim
k→∞ E f (π,μk ,σ k )[π(R)] = π∗(R), ∀R ∈ R, (2.17)

lim
k→∞ V ar f (π,μk ,σ k )[π(R)] = 0, ∀R ∈ R. (2.18)

From Theorem 2.5, we see that parameter (μR,k, σR,k) for updating in (2.15) and
(2.16) also converges, i.e.,

lim
k→∞ μR,k = π∗(R), ∀R ∈ R,

lim
k→∞ σR,k = 0, ∀R ∈ R.

Thus, we can use maxR∈R σR,k < ξ as the stopping criterion in Algorithm 1.

2.6 Adaptive Channel Recommendation
with Channel Heterogeneity

We now generalize the adaptive channel recommendation to the heterogeneous
channel setting. Recall that the system state R in the homogeneous channel case
only keeps track of how many channels are recommended. In a heterogeneous chan-
nel environment, each channel has different a data rate Bm and channel state changing
probabilities pm and qm . Keeping track of the number of recommend channels
is not enough for optimal decision. Intuitively, if a channel with higher data rate
Bm is recommended, users should choose this channel with a higher weight. The
new system state for the heterogeneous channel case should be defined as a vector
R � (I1, . . . , IM ), where Im = 1 if channel m is recommended and Im = 0 other-
wise. The objective of the heterogeneous channel recommendation MDP is then to
find the optimal channel access probabilities {Pm(R)}M

m=1 for each system state R
where Pm(R) is the probability of selecting channel m.

Similarly with the homogeneous channel case, we can apply the MRAS method
(by replacing system state R and decision variables Prec in Algorithm 1 with R and
{Pm(R)}M

m=1, respectively) to obtain the optimal solutions with the new formulation.
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However, the number of decision variables {Pm(R)}M
m=1 in the heterogeneous channel

model equals to M2M , which causes exponential blow up in the computational com-
plexity (i.e., O

(
Z L M2M + Z L ln L

)
with the similar analysis as in Sect. 2.5.2.5).

We next focus on developing a low complexity efficient heuristic algorithm to solve
the MDP.

Recall that in the heuristic algorithm in Lemma 2.1 for the homogeneous channel
recommendation, the weight of selecting each recommended channel is 1

N and total
weights of choosing recommended channels are R 1

N . Similarly, we can design a
low complexity heuristic algorithm for the heterogeneous channel recommendation.
More specifically, we set the weight of selecting channel m is Pm

1 (Pm
0 , respectively)

when the channel is recommended (the channel is not recommended, respectively).
Given the system is in state R, the probability of choosing channel m is proportional
to its weight of its state Im , i.e.,

Pm(R) = Pm
Im∑M

m′=1 Pm
Im′

. (2.22)

In this case, the total number of decision variables Pm
Im
is reduced to 2M , which grows

linearly in the number of channels M . Let π = {(Pm
1 , Pm

0 )}M
m=1 ∈ (0, 1)2Mdenote

the set of corresponding decision variables. Our objective is to find the optimal π

that maximizes the time average throughput Φπ . We can again apply the MRAS
method to find the optimal solution, which is given in Algorithm 2. The procedures
of derivation is very similar with the MRAS method for the homogeneous channel
recommendation; we omit the details due to space limit. With the similar analysis as
in Sect. 2.5.2.5, we see that the heuristic algorithm has the computational complexity
of O (Z L M + Z L ln L).

Algorithm 2 MRAS-based Algorithm For Optimizing Heuristic Heterogeneous
Channel Recommendation
1: initialize parameters for the elite ratio ρ, Gaussian distributions μ(0) =

{(μm
1 (0), μm

0 (0))}M
m=1, σ (0) = {(σm

1 (0), σm
0 (0))}M

m=1, and the stopping criterion ξ .
Set initial elite threshold γ0 = 0 and iteration index k = 0.

2: repeat:
3: increase iteration index k by 1.
4: generate L candidate policies π1, . . . ,π L from the random policy generation mechanism

f (π ,μ(k − 1), σ (k − 1)).
5: select elite policies by setting the elite threshold γk = max{Φπ̂�(1−ρ)L
 , γk−1}.
6: update the random policy generation mechanism by (for any Im ∈ {0, 1}, m ∈ M )

μm
Im

(k) =
∑L

i=1 e(k−1)Φπ I{Φπ i ≥γk } Pm
Im∑L

i=1 e(k−1)Φπ I{Φπ i ≥γk }
, (2.20)

σm
Im

(k) =
(∑L

i=1 e(k−1)Φπ I{Φπ i ≥γk }(Pm
Im

− μm
Im

(k))2∑L
i=1 e(k−1)Φπ I{Φπ i ≥γk }

) 1
2

. (2.21)

7: until maxIm∈{0,1},m∈M σm
Im

(k) < ξ.
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Note that the optimal policy π∗ for the heuristic heterogeneous channel
recommendation is also a feasible policy for the heterogeneous channel recom-
mendation MDP. The performance of the optimal policy for the heterogeneous
channel recommendation MDP thus dominates the heuristic heterogeneous channel
recommendation. However, numerical results show that the heuristic heterogeneous
channel recommendation has a small performance loss comparing to the optimal
policy while gaining a significant computation complexity reduction.

2.7 Adaptive Channel Recommendation
in General Channel Environment

For the ease of exposition, we consider the Markovian channel model in the analysis
above. Such a channel model can be a good approximation of reality if the primary
traffic is highly bursty [11]. We now extend the MRAS-based channel recommen-
dation algorithm to a general channel environment including the non-Markovian
setting, where it is difficult to obtain the statistical properties apriori.

The key idea is to cast the system throughput optimization problem in the general
channel environment as a stochastic optimization problem. Let S = (S1, . . . , SM ) be
the states of all channels, which is a random vector generated from a general prob-
ability distribution ψ . Then the stochastic system throughput optimization problem
is given as

max
π

ES∼ψ [Φπ (S)], (2.23)

whereΦπ (S) denotes the system throughput under the channel states S, and ES∼ψ [·]
denotes the expected system throughput under the channel state distribution ψ .
Recent result in [12] shows that the MRAS algorithm can be used to solve such
stochastic optimization problem by drawing a large samples of channel-states
{S(1), . . . , S(L)} from the probability distribution ψ and evaluating the expected
performance by the sample average (i.e., ES∼ψ [Φπ (S)] = 1

L

∑L
l=1 Φπ (S(l))).When

the size of channel-states samples is large enough, theMRAS algorithm can converge
to the optimal solution π∗ approximately [12]. Based on the idea above, secondary
users can first probe the channel environment by sensing and recording the chan-
nel states {S(t)}T

t=1 over a long time period consisting of T time slots. Note that
the channel probing can be achieved in a collaborative way that each user selects
one channel to sense, and shares the sensing results with other users at end of the
probe period. Then each user can apply the MRAS algorithm to compute the near-
optimal channel recommendation policyπ∗ by constitutingΦπ as 1

T

∑T
t=1 Φπ (S(t))

in Algorithm 2.
Note that the optimization problem in (2.23) can also be generalized to take other

dynamic factors into account. For example, let � = (�1, . . . , �M ) denote the loss
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rates of all the channels, which follow a probability distributionφ. Then the stochastic
system throughput optimization problem can be written as

max
π

ES∼ψ,�∼φ[Φπ (S, �)], (2.24)

where Φπ (S, �) denotes the expected system throughput under the channel states S
and channel loss rates �. We can solve the problem (2.24) with a similar procedure
as described above.

As another example, we can apply the optimization formulation in (2.23) to
address the issue of heterogeneous user capacities. Let a(t) = (a1(t), . . . , aN (t))
be the channel selections of all users at time slot t , and let Bm

n denote the mean
data rate that user n achieves on channel m. Then the stochastic system throughput
optimization problem in (2.23) can be written as

max
π

ES∼ψ [Φπ (S)] = max
π

1

T

T∑
t=1

Φπ (S(t))

= max
π

E{a(t)}T
t=1∼π

[
1

T

T∑
t=1

U (S(t), a(t))

]
.

whereU (S(t), a(t)) denotes the system throughput under channel states S and chan-
nel selections a, which can be computed as U (S(t), a(t)) = ∑N

n=1 San(t)(t)Ban(t)
n ×

gan(t)
n (a(t)). Here gan

n (a) denotes the probability that user n successfully grabs the
channel an , which can be derived from the adopted channel contention mecha-
nism. For the random backoff mechanism in this chapter, we have gan(t)

n (a(t)) =
1∑N

i=1 I{ai (t)=an (t)}
. Similarly, by the sample average approach (i.e., drawing L samples

of actions over T time slots {a(t)}T
t=1 from the policy π ), we can obtain the expected

system throughput as

ES∼ψ [Φπ (S)] =
∑T

t=1
∑L

l=1 U (S(t), al(t))

T L
,

and then apply the MRAS algorithm to find the solution.

2.8 Simulation Results

In this section,we investigate the proposed adaptive channel recommendation scheme
by simulations. The results show that the adaptive channel recommendation scheme
not only achieves a higher performance over the static scheme and random access
scheme, but also is more robust to the dynamic change of the channel environments.
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Fig. 2.5 The convergence of MRAS-based algorithm with different number of candidate policies
per iteration

2.8.1 Simulation Setup

We initialize the parameters of MRAS algorithm as follows. We set μR = 0.5 and
σR = 0.5 for the Gaussian distribution, which has 68.2% support over the feasible
region (0, 1). We found that the performance of the MRAS algorithm is insensitive
to the elite ratio ρ when ρ ≤ 0.3. We thus choose ρ = 0.1.

When using the MRAS-based algorithm, we need to determine how many (fea-
sible) candidate policies to generate in each iteration. Figure2.5 shows the conver-
gence of MRAS algorithm with 100, 300, and 500 candidate policies per iteration,
respectively. We have two observations. First, the number of iterations to achieve
convergence reduces as the number of candidate policies increases. Second, the con-
vergence speed is insignificant when the number changes from 300 to 500. We thus
choose L = 500 for the experiments in the sequel.

Homogeneous Channel Recommendation

We first consider a cognitive radio network consisting of M = 10 stochastically
homogeneous primary channels, and N = 5 secondary users. The data rate of each
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channel is normalized to be 1Mbps. In order to take the impact of primary user’s
long run behavior into account, we consider the following two types of homogeneous
channel environments (i.e., channel state transition matrices):

Type 1: Γ 1 =
[
1 − 0.005ε 0.005ε
0.025ε 1 − 0.025ε

]
, (2.25)

Type 2: Γ 2 =
[
1 − 0.01ε 0.01ε
0.01ε 1 − 0.01ε

]
, (2.26)

where ε is the dynamic factor. Recall that a larger ε means that the channels are more
dynamic over time. Using (2.2), we know that channel environments Γ 1 and Γ 2

have the stationary channel idle probabilities of 1/6 and 1/2, respectively. In other
words, the primary activity level is much higher with the Type 1 channel environment
than with the Type 2 channel environment. We implement the adaptive channel
recommendation scheme, and benchmark it with the static channel recommendation
scheme in [5] and the randomaccess scheme.We choose the dynamic factor εwithin a
wide range to investigate the robustness of the schemes to the channel dynamics. The
results are shown in Figs. 2.6 and 2.7. From these figures, we see that the adaptive
channel recommendation scheme offers 5–18% performance gain over the static
scheme. Moreover, the adaptive channel recommendation is much more robust to
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Fig. 2.6 System throughput with M = 10 channels and N = 5 users under the Type 1 channel
state transition matrix
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Fig. 2.7 System throughput with M = 10 channels and N = 5 users under the Type 2 channel
state transition matrix

the dynamic channel environment changing. The reason is that the optimal adaptive
policy takes the channel dynamics into account while the static one does not.

2.8.2 Heuristic Heterogenous Channel Recommendation

We now evaluate the proposed heuristic heterogeneous channel recommendation
mechanism in Sect. 2.6. e implement the heuristic heterogeneous channel recommen-
dation mechanism in heterogenous channel environments. The data rates of M = 10
channels are {B1 = 0.2, B2 = 0.6, B3 = 0.8, B4 = 1, B5 = 2, B6 = 4, B7 =
6, B8 = 8, B9 = 10, B10 = 20} Mbps. The stochastic channel state changing envi-
ronment is given as:

{Γ1 = Γ 1, Γ2 = Γ 1, Γ3 = Γ 1, Γ4 = Γ 1, Γ5 = Γ 1,

Γ6 = Γ 2, Γ7 = Γ 2, Γ8 = Γ 2, Γ9 = Γ 2, Γ10 = Γ 2}. (2.27)

Here subscript denotes channel index, and superscript denote channel type index.We
also implement static channel recommendation, the optimal homogeneous channel
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Fig. 2.8 Comparison of heuristic heterogenous channel recommendation, optimal homogeneous
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recommendation (Algorithm1) and optimal heterogeneous channel recommendation
(similarwithAlgorithm1by replacing systemstate R anddecision variables Prec with
R and {Pm(R)}M

m=1, respectively) as benchmarks. The results are depicted in Fig. 2.8.
From the figure, we see that the heuristic heterogeneous channel recommendation
achieves up-to 70 and 100% performance improvement over the optimal homoge-
neous channel recommendation and static channel recommendation, respectively.
The performance loss is at most 20% comparing with the the optimal heterogeneous
channel recommendation. Note that the number of decision variables in the optimal
heterogeneous channel recommendation is M2M = 10,240, while the number of
decision variables in the heuristic heterogeneous channel recommendation is only
2M = 20. The convergence of the heuristic heterogeneous channel recommendation
hence is much faster than the optimal heterogeneous channel recommendation.

2.8.3 Simulation with Real Channel Data

We now evaluate the adaptive channel recommendation scheme using real channel
data. The data we used (from Xu et al. [13]) is the spectral measurements taken
in 850–870MHz public safety band in Maryland. The measured band is divided
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Fig. 2.9 Channel activity map from trace data of 850–870MHz band in Maryland [13]

into 60 channels, and each channel has a bandwidth of 25KHz. The measurements
were taken over a duration of 25min, with each time slot being 0.01s. PU’s activity
is determined by the energy detection with a threshold of 10dB above the noise
floor [14]. Figure2.9 visualizes the real trace data. We observe that these channels
exhibit a large number of busy/idle cycles (i.e., temporal correlations) and statistically
heterogeneous channel availabilities.

We implement the heuristic heterogeneous channel recommendation scheme in a
network consisting of 6 channels from the real data. We set the mean data rates of all
channels as {B1 = 5, B2 = 8, B3 = 12, B4 = 15, B5 = 18, B6 = 20}Mbps. For the
channel contention, we set the number of backoff mini-slots λ∗ = 20. Besides the
system-wide throughput, we also consider the average access delay, i.e., the average
number of time slots that a secondary user needs to wait until its data packet can
successfully go through for transmission without blocking. A data packet can be
blocked due to the factors such as the channel availability and channel contentions.
As a benchmark, we also implement a belief-based channel access scheme proposed
in previous work [15, 16] as follows:

• Each user n maintains the following two vectors: Xn = (Xn
1 , . . . , Xn

M ) and Yn =
(Y n

1 , . . . , Y n
M ), where Xn

m and Y n
m record the number of time slots in which the
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channel m has been sensed to be free, and the number of time slots in which the
channel m has been sensed. Set Xn

m = Y n
m = 1 initially.

• At the beginning of each time slot, each user n computes its belief as ωn
m = Xn

m
Y n

m

and chooses each channel m with probability ωn
m∑M

m′=1 ωn
m′
.

• At the end of each time slot, each user n broadcasts the sensing result to other
users, and then updates the parameters Xn and Y n based on the overall sensing
results of all users.

The key idea of the belief-based channel access is to select channels based on
the belief ωn

m generated from the history of users’ observations Xn and Y n . We
implement the adaptive channel recommendation and belief-based channel access
schemes with the number of users N ranging from 2 to 8. The results are shown in
Figs. 2.10 and 2.11. Compared with the belief-based channel access scheme, we see
that the channel recommendation scheme can achieve up-to 30% system throughput
improvement, and reduce up-to 15% access delay.
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Fig. 2.10 System average throughput of channel recommendation and belief-based channel access
(benchmark) schemes with heterogeneous channel date rates
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Fig. 2.11 Average access delay of channel recommendation and belief-based channel access
(benchmark) schemes with heterogeneous channel date rates

2.9 Summary

In this chapter, we propose an adaptive channel recommendation scheme for efficient
spectrum sharing. We formulate the problem as an average reward based Markov
decision process. We first prove the existence of the optimal stationary spectrum
access policy, and then characterize the structure of the optimal policy in two asymp-
totic cases. Furthermore, we propose a novelMRAS-based algorithm that is provably
convergent to the optimal policy. Numerical results show that our proposed algorithm
outperforms the static approach in the literature by up to 100% in terms of system
throughput. Our algorithm is also more robust to the channel dynamics compared to
the static counterpart.
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Chapter 3
Imitative Spectrum Access Mechanism

3.1 Introduction

In this chapter, we will design distributed spectrum access mechanism based on
imitation, which is also a common phenomenon in many social animal and human
interactions [1]. Imitation is simple (just follow a successful action of another user)
and turns out to be an efficient strategy inmany applications. For example, Schlag [2]
used imitation to solve the multi-armed bandit problem. Lopes et al. [3] designed an
efficient imitation-based social learning mechanism for robots. Imitation in wireless
networks, however, has several fundamental differences from the previous approach.
For example, when multiple users imitate the same channel choice, then the data rate
obtained by each user will be reduced due to the congestion on that channel.

Recently, Iellamo et al. [4] proposed an imitation-based spectrum access mech-
anism for spectrum sharing networks, by assuming that all the secondary users are
homogeneous (i.e., they experience the same channel condition) and the true expected
throughput on a channel is known by a secondary user once the user has chosen the
channel. In this chapter, we relax these restrictive assumptions and design an imi-
tative spectrum access mechanism based on user’s local observations such as the
realized data rates and transmission collisions. The key idea is that each user applies
the maximum likelihood estimation to estimate its expected throughput, and imitates
another neighboring user’s channel selection if neighbor’s estimated throughput is
higher. Moreover, as imitation requires limited information sharing, we introduce
the information sharing graph to model the social information sharing relationship
among the secondary users. For example, in practical wireless systems it is often the
case that a user can only receive message broadcasting from a subset of users that
are close enough due to the geographical constraint. Moreover, we also generalize
the proposed imitation based spectrum access mechanism to the case that secondary
users are heterogeneous. The main results and contributions of this chapter are as
follows:
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• Imitative Spectrum Access: We propose a novel imitation-based distributed
spectrum access mechanism on a general information sharing graph. Each
secondary user first estimates its expected throughput based on local observations,
and then chooses to imitate a better neighbor. The imitation-based mechanism
leverages the social intelligence of the secondary user crowd and only requires a
low computational power for each individual user.

• Convergence to the Imitation Equilibrium: We show that the imitative spectrum
access mechanism converges to the imitation equilibrium, wherein no imitation
can be further carried out on the time average.When the information sharing graph
is connected, we show that the imitation equilibrium corresponds to a fair channel
allocation, such that all the users achieve the same throughput in the asymptotic
case.

• Imitative Spectrum Access with User Heterogeneity:We further design an imitation-
based spectrum access mechanism with user heterogeneity, where different users
achieve different data rates on the same channel. Numerical results show that the
proposed mechanism achieves up-to 530% fairness improvement with at most
20% performance loss, compared with the centralized optimal solution. This
demonstrates that the proposed imitation-based mechanism can achieve efficient
spectrum utilization and meanwhile provide good fairness across secondary users.

The rest of the chapter is organized as follows. We introduce the system model in
Sect. 3.2. We then present the imitative spectrum access mechanism in Sect. 3.3, and
study the dynamics and convergence of the imitative spectrum access mechanism in
Sect. 3.4.Weproposed imitative spectrumaccessmechanismwith user heterogeneity,
and illustrate the performance of the proposedmechanisms through numerical results
in Sects. 3.5 and 3.6, respectively, Finally, we conclude the chapter in Sect. 3.7. Due
to space limitations, the details for several proofs are provided in [5].

3.2 System Model

In this part, we first discuss the system model of distributed spectrum sharing, and
then introduce the information sharing graph for the imitation mechanism.

3.2.1 Spectrum Sharing System Model

We consider a spectrum sharing network with a setM = {1, 2, . . . , M} of indepen-
dent and stochastically heterogeneous licensed channels. A set N = {1, 2, . . . , N }
of secondary users try to opportunistically access these channels, when the channels
are not occupied by primary (licensed) transmissions. For simplicity, we assume that
all secondary users accessing the same channel will interfere with each other (i.e.,
the interference graph under the protocol interference model [6] is fully meshed).
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The case with the spatial reuse (i.e., the interference graph can be partially meshed)
will be considered in a future work. The system model has a slotted transmission
structure as in Fig. 3.1 and is described as follows.

(1) Channel State: the channel state for a channel m during a time slot τ is

Sm(τ ) =
{
0, if channelm is occupied by primary transmissions,

1, if channelm is idle.

(2) Channel State Changing: for a channel m, we assume that the channel state
is an i.i.d. Bernoulli random variable, with an idle probability θm ∈ (0, 1)
and a busy probability 1 − θm . This model can be a good approximation of
the reality if the time slots for secondary transmissions are sufficiently long or
the primary transmissions are highly bursty [2]. The motivation of considering
the i.i.d. channel state model is to focus our analysis on the spectrum contention
due to secondary users’ dynamic channel selections. However, numerical results
show that the proposed mechanism also works well in the Markovian channel
environment where channel states have correlations between time slots. Please
refer to Sect. 3.6.1.2 for a detailed discussion.

(3) Heterogeneous Channel Throughput: if a channel m is idle, the achievable data
rate by a secondary user in each time slot bm(τ ) evolves according to an i.i.d.
random process with a mean Bm , due to the local environmental effects such as
fading [3]. For example, we can compute the data rate bm(τ ) according to the
Shannon capacity as

bm(τ ) = Em log2

(
1 + ηnhm(τ )

υm

)
, (3.1)

where Em is the bandwidth of channel m, ηn is the fixed transmission power
adopted by user n according to the requirements such as the primary user pro-
tection, υm denotes the background noise power, and hm(τ ) is the channel gain.
In a Rayleigh fading channel environment, the channel gain hm(τ ) is a random
variable that follows the exponential distribution [3]. Here we first consider the
homogeneous user case that all users achieve the same mean data rate on the
same channel (but users can achieve different data rates on different channels).
In Sect. 3.5, we will further consider the heterogeneous user case that different
users can achieve different mean data rates even on the same channel. This will
allow users to have different transmission technologies, choose different cod-
ing/modulation schemes, and experience different channel conditions.

(4) Time Slot Structure: each secondary user n executes the following stages syn-
chronously during each time slot:

• Channel Sensing: sense one of the channels based on the channel selection
decision generated at the end of previous time slot (see below). Access the
channel if it is idle.
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Fig. 3.1 Multiple stages in a single time slot

• Channel Contention: use a backoff mechanism to resolve collisions when
multiple secondary users access the same idle channel.1 The contention stage
of a time slot is divided into λmax mini-slots2 (see Fig. 3.1), and user n executes
the following two steps. First, count down according to a randomly and uni-
formly chosen integral backoff time (number of mini-slots) λn between 1 and
λmax. Second, once the timer expires, transmit RTS/CTSmessages if the chan-
nel is clear (i.e., no ongoing transmission). Note that if multiple users choose
the same backoff value λn , a collision will occur with RTS/CTS transmissions
and no users win the channel contention.

• Data Transmission: transmit data packets if the RTS/CTS message exchange
is successful (i.e., the user wins the channel contention).

• Channel Selection: choose a channel to access in the next time slot according
to the imitative spectrum access mechanism (introduced in Sect. 3.3).

Suppose that km users choose the same idle channel m to access. Then the prob-
ability that a user n (out of the km users) successfully grabs the channel m is

g(km) = Pr{λn < min
i �=n

{λi }}

=
λmax∑
λ=1

Pr{λn = λ}Pr{λ < min
i �=n

{λi }|λn = λ}

=
λmax∑
λ=1

1

λmax

(
λmax − λ

λmax

)km−1

,

which is a decreasing function of the total contending users km . Then the long-run
expected throughput of a secondary user n choosing a channel m is given as

Un = θm Bm g(km). (3.2)

1 For ease of exposition, we adopt the backoff mechanism as an example. Our analysis can apply
to many other medium access control (MAC) schemes such as TDMA.
2 Note that in general the length of a mini-slot is much smaller than the length of spectrum sensing
and access period in a time slot. For example, for IEEE 802.11af systems (also known as WhiteFi
Networks), the length of a mini-slot is 4 microseconds and the spectrum sensing duration is 0.5
milliseconds [7].
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3.2.2 Social Information Sharing Graph

In order to carry out imitations, we assume that there exists a common control
channel for the information exchange among secondary users.3 As an alternative,
we can adopt the proximity-based communication approach [8], such that sec-
ondary users equipped with the radio interfaces such as near field communication
(NFC)/bluetooth/WiFi Direct can communicate with each other directly for informa-
tion exchange. Since information exchange typically would incur an overhead such
as the extra energy consumption, it is important to design a proper incentive mech-
anism for stimulating collaborative information exchange among secondary users.
One possible approach is to design mechanisms such that users receive exogenous
incentives for cooperation. For example, a payment based incentive mechanism [9]
compensates users’ contributions by rewarding them with virtual currency. In rep-
utation based incentive mechanisms [10], users’ cooperative behaviors are moni-
tored by some centralized authority or collectively by the whole user population, so
that any user’s selfish behaviors would be detected and punished. In general, such
an approach requires centralized infrastructures (e.g., secondary base-station/access
point), which would incur a high system overhead and may not be feasible in our
context of distributed spectrum sharing.

The centralized infrastructures are not available, motivated by the observation
that the hand-held devices are typically carried by human beings, we can leverage
the endogenous incentive which comes from the intrinsic social relationships among
users to promote effective and trustworthy cooperation. For example, when a user
is at home or work, typically family members, neighbors, colleagues, or friends are
nearby. The user can then exploit the social trust from these neighboring users to
achieve effective cooperation for information exchange. Indeed, with the explosive
growth of online social networks such as Facebook and Twitter, more and more
people are actively involved in online social interactions, and social connections
among people are being extensively broadened. This has opened up a new avenue to
integrate the social interactions for cooperative networking design.

Specifically, we introduce the social information sharing graph G = {N ,E } to
model cooperative information exchange relationships due to the social ties among
the secondary users. Here the vertex set is the same as the user setN , and the edge
set is given as E = {(n, m) : enm = 1,∀n, m ∈ N } where enm = 1 if and only
if users n and m have social tie between each other, e.g., kinship, friendship, or
colleague relationships. Furthermore, for a pair of users n and m who have a social
edge between them on the social graph, we formalize the strength of social tie as
δnm ∈ [0, 1], with a higher value of δnm being a stronger social tie. Each secondary
user n can specify a cooperation threshold ϕn and is willing to share information

3 There are several approaches for establishing a common control channel in cognitive radio net-
works, e.g., sequence-based rendezvous [11], adaptive channel hopping [12] and user grouping
[13]. Please refer to [14] for a comprehensive survey on the research of common control channel
establishment in cognitive radio networks.



40 3 Imitative Spectrum Access Mechanism

with those users with whom he has a high enough social tie above the cooperation
threshold ϕn . Moreover, to thwart the potential attacks of releasing false channel
information by malicious users and enhance the security level of imitation based
spectrum access, each secondary user n can set a trust threshold ηn and choose to
trust the information from those users having a high enough social tie above the trust
threshold ηn . In the sequel, we denote the neighborhood of user n for effective and
trustworthy information sharing asNn � {k : enk = 1 and δnk ≥ ηn and δkn ≥ ϕk}.
In terms of implementation, the social relationship identification procedure can be
carried out prior to the imitative spectrum access. Specifically, two secondary users
can locally initiate the “matching” process to detect the common social features
between them. For example, two users can match their contact lists. If they have
the phone numbers of each other or many of their phone numbers are the same,
then it is very likely that they know each other. As another example, two device
users can match their home and working addresses and identify whether they are
neighbors or colleagues. To preserve the privacy of the secondary users, the private
set intersection and homomorphic encryption techniques proposed in [15, 16] can be
adopted to design a privacy-preserving social relationship identification mechanism.

We should emphasize that when it is difficult to leverage the social trust among
some secondary users and the centralized infrastructures are not available, similar to
the file sharing in the P2P systems [17], we can adopt the Tit-for-Tat mechanism for
information sharing. Specifically, based on the principle of reciprocity, a secondary
user will always share information with its partner as long as its partner (i.e., another
user) also shares information with it. If the partner refuses to share information, the
user will punish its partner by not sharing information either. As a result, the partner
would suffer and learn to share information with the user again. Notice that since
the imitative spectrum access mechanism can work on a generic social informa-
tion sharing graph, we can also use a hybrid approach of several different schemes
mentioned above for establishing the information sharing relationships among the
secondary users.

Since our analysis is from secondary users’ perspective, we will use terms
“secondary user” and “user” interchangeably in the following sections.

3.3 Imitative Spectrum Access Mechanism

We now apply the idea of imitation to design an efficient distributed spectrum access
mechanism, which utilizes user’s local estimation of its expected throughput. Each
user randomly chooses a neighboring user in the information sharing graph, and
follows the neighbor’s channel selection if the neighbor’s throughout is better than its.

3.3.1 Expected Throughput Estimation

In order to imitate a successful action, a user needs to compare its and other users’
performances (throughputs). In practice, many wireless devices only have a limited
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view of the network environment due to hardware constraints. To incorporate the
effect of incomplete network information, we first introduce themaximum likelihood
estimation (MLE) approach to estimate user’s expected throughput based on its
local observations. We choose MLE mainly due to the efficiency and the ease of
implementation of this method [18]. To achieve accurate local estimation based on
local observations, a user needs to gather a large number of observation samples. This
motivates us to divide the spectrum access time into a sequence of decision periods
indexed by t (t = 1, 2, . . .), where each decision period consists of L time slots (see
Fig. 3.2 for an illustration). During a single decision period, a user accesses the same
channel in all L time slots. Thus the total number of users accessing each channel does
not change within a decision period, which allows users to learn the environment.

According to (4.1), a user’s expected throughput during decision period t depends
on the probability of grabbing the channel g(km(t)) on that period, the channel idle
probability θm , and the mean data rate Bm .

3.3.1.1 MLE of Channel Grabbing Probability g(km(t))

At the beginning of each time slot τ(τ = 1, . . . , L) of a decision period t , we assume
that a user n chooses to sense the same channel m. If the channel is idle, the user will
contend to grab the channel according to the backoff mechanism in Sect. 3.2. At the
end of each time slot τ , a user observes Sn(t, τ ), In(t, τ ), and bn(t, τ ). Here Sn(t, τ )

denotes the state of the chosen channel (i.e., whether occupied by the primary traffic),
In(t, τ ) indicates whether the user has successfully grabbed the channel, i.e.,

In(t, τ ) =
{
1, if user n successfully grabs the channel

0, otherwise,

and bn(t, τ ) is the received data rate on the chosen channel by user n at time slot τ .
Note that if Sn(t, τ ) = 0 (i.e., the channel is occupied by the primary traffic), we set
In(t, τ ) and bn(t, τ ) to be 0. At the end of each decision period t , each user n will
have a set of local observations Ωn(t) = {Sn(t, τ ), In(t, τ ), bn(t, τ )}L

τ=1.
When channel m is idle (i.e., no primary traffic), consider km(t) users contend for

the channel according to the backoff mechanism in Sect. 3.2. Then a particular user n

Fig. 3.2 The period structure of maximum likelihood estimation of various system parameters

http://dx.doi.org/10.1007/978-3-319-15215-8_4
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out of these km(t) users grabs the channel with the probability g(km(t)). Since there
are a total of

∑L
τ=1 Sn(t, τ ) rounds of channel contentions in the period t and each

round is independent, the total number of successful channel captures
∑L

τ=1 In(t, τ )

by user n follows the Binomial distribution. User n then computes the likelihood of
g(km(t)), i.e., the probability of the realized observations Ωn(t) given the parameter
g(k(t)) as

L [Ωn(t)|g(km(t))] =
(∑L

l=1 Sn(t, l)∑L
l=1 In(t, l)

)
g(km(t))

∑L
l=1 In(t,l)

× (1 − g(km(t)))
∑L

l=1 Sn(t,l)−∑L
l=1 In(t,l).

Then MLE of g(km(t)) can be computed by maximizing the log-likelihood func-
tion lnL [Ωn(t)|g(km(t))], i.e., maxg(km (t)) lnL [Ωn(t)|g(km(t))]. By the first order
condition, we obtain the optimal solution as g̃(km(t)) = ∑L

τ=1 In(t, τ )/
∑L

τ=1·
Sn(t, τ ), which is the sample averaging estimation. When the length of deci-
sion period L is large, by the central limit theorem, we know that g̃(km(t)) ∼
N

(
g(km(t)), g(km (t))(1−g(km(t)))∑L

τ=1 Sn(t,τ )

)
, whereN (·) denotes the normal distribution.

3.3.1.2 MLE of Channel Idle Probability θm

Wenext apply theMLE to estimate the channel idle probability θm . Since the channel
state Sn(t, τ ) is i.i.d over different time slots and different decision periods, we can
improve the estimation by averaging not only over multiple time slots but also over
multiple periods.

Similarly with MLE of g(km(t)), we first compute one-period MLE of θm as

θ̂m =
∑L

τ=1 Sn(t,τ )

L . When the length of decision period L is large, we have that θ̂m

follows the normal distribution with the mean θm , i.e., θ̂m ∼ N
(
θm,

θm (1−θm )
L

)
.

We then average the estimation over multiple decision periods. When a user n
finishes accessing a channel m for a total C periods, it updates the estimation of
the channel idle probability θm as θ̃m(C) = 1

C

∑C
i=1 θ̂m(i), where θ̃m(C) is the

estimation of θm based on the information of all C decision periods, and θ̂m(i) is the

one-period estimation. By doing so, we have θ̃m(C) ∼ N
(
θm,

θm (1−θm )
C L

)
, which

reduces the variance of one-period MLE by a factor of C .

3.3.1.3 MLE of Average Data Rate Bm

Since the received data rate bn(t, τ ) is also i.i.d over different time slots and different
decision periods, similarly with the MLE of the channel idle probability θm , we can
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Algorithm 3 Imitative Spectrum Access
1: initialization:
2: choose a channel an randomly for each user n.
3: end initialization

4: loop for each decision period t and each user n in parallel:
5: for each time slot τ in the period t do
6: sense and contend to access the channel an .
7: record the observations Sn(t, τ ), In(t, τ ) and bn(t, τ ).
8: end for
9: estimate the expected throughput Ũn(t).
10: select another user n′ ∈ Nn randomly and enquiry its estimated throughput Ũn′ (t).
11: if Ũn′ (t) > Ũn(t) then
12: choose channel an′ (i.e., the one chosen by user n′) in the next period.
13: else choose the original channel in the next period.
14: end if
15: end loop

obtain the one-period MLE of mean data rate Bm as B̂m =
∑L

τ=1 bn(t,τ )∑L
τ=1 In(t,τ )

, and the

averaged MLE estimation over C periods as B̃m(C) = 1
C

∑C
i=1 B̂m(i).

By the MLE, we can obtain the estimation of g(k(t)), θm , and Bm as g̃(km(t)),
θ̃m and B̃m , respectively, and then estimate the true expected throughput Un(t) =
θm Bm g(k(t)) as Ũn(t) = θ̃m B̃m g̃(km(t)). Since g̃(km(t)), θ̃m , and B̃m follow inde-
pendent normal distributions with the mean g(km(t)), θm , and Bm , respectively, we
thus have E[Ũn(t)] = E[θ̃m B̃m g̃(km(t))] = Un(t), i.e., the estimation of expected
throughput Un(t) is unbiased. In the following analysis, we hence assume that

Ũn(t) = Un(t) + ωn, (3.3)

where ωn ∈ (ω, ω) is the random estimation noise with the probability density
function f (ω) satisfying

f (ω) > 0, ∀ω ∈ (ω, ω), (3.4)

E[ωn] =
ω∫

ω

ω f (ω)dω = 0. (3.5)

3.3.2 Imitative Spectrum Access

We now propose the imitative spectrum access mechanism in Algorithm 3. The key
motivation is that, by leveraging the social intelligence of the secondary user crowd,
the imitation based mechanism only requires a low computational power for each
individual user. More specifically, we let users imitate the actions of those neigh-
boring users that achieve a higher throughput (i.e., Lines 11 to 14 in Algorithm 3).
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This mechanism only relies on local throughput comparisons and is easy to imple-
ment in practice. Each user n at each period t first collects the local observations
Ωn(t) = {Sn(t, τ ), In(t, τ ), bn(t, τ )}L

τ=1 (i.e., Lines 5 to 8 in Algorithm 3) and esti-
mates its expected throughput with theMLEmethod as introduced in Sect. 3.3.1 (i.e.,
Line 9 in Algorithm 3). Then user n carries out the imitation by randomly sampling
the estimated throughput of another user who shares information with him (i.e., Line
10 in Algorithm 3). Such a random sampling can be achieved in different ways. For
example, user n can randomly generate a user ID n′ from the set Nn and broadcast
a throughput enquiry packet including the enquired user ID n′. Then user n′ will
send back an acknowledgement packet including the estimation of its own expected
throughput.

Intuitively, the benefits of adopting the imitation based channel selection are two-
fold. On one hand, since each user has incomplete network information, by enquiring
another user’s throughput information, each user would have a better view of chan-
nel environment. If a channel offers a higher data rate, more users trend to exploit
the channel due to the nature of imitation. On the other hand, if too many users
are utilizing the same channel, a user can improve its data rate through congestion
mitigation by imitating users on another channel with less contending users. In the
following Sect. 3.4, we show that the proposed imitation-based mechanism can drive
a balance between good channel exploitation and congestion mitigation, and achieve
a fair spectrum sharing solution.

We shall emphasize that, in the imitative spectrum access mechanism, we require
that each user can (randomly) select only one user for the throughput enquiry, in order
to promote diversity in users’ channel selections for further congestionmitigation and
reduce the system overhead for information exchange. We also evaluate the imitative
spectrum access schemes, such that each user can selectmultiple users for throughput
enquiry and imitate the channel selection of the best user among these inquired users
(please refer to [5] for more details).We observe that the performance of the imitative
spectrum access decreases as the number of users for throughput enquiry increases.
This is because when each user imitates the best channel selection from multiple
users, as the number of enquired users increases, the probability that more users
will simultaneously select the same good channel to access in next time slot will
increase. This would reduce the diversity of users’ channel selections (i.e., increases
channel congestion) and hence lead to performance degradation in spectrum sharing,
compared with the case of randomly enquiring only one user. Moreover, enquiring
multiple users in the same time period will incur a higher system overhead for
information exchange.

3.4 Convergence of Imitative Spectrum Access

We then investigate the convergence of imitative spectrum access. Since users’ imi-
tations reply on the information exchange, the structure of the information sharing
graph hence plays an important role on the convergence of the mechanism. To better
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understand the structure property, we will introduce an equivalent and yet more
compact cluster-based graphical representation of the information sharing graph.

3.4.1 Cluster-Based Graphical Representation
of Information Sharing Graph

We now introduce the cluster-based presentation. The cluster concept here is similar
with the community structure in social networks analysis [19, 20]. Intuitively, a
cluster here can be viewed as a set of users who have similar information sharing
structure. Formally, we define that

Definition 3.1 (Cluster) A set of users form a cluster if they can share information
with each other and they can also share information with the same set of users that
are out of the cluster.

Taking the information sharing graph on the left hand-side in Fig. 3.3 as an exam-
ple, we see that users 1 to 4 form a cluster. However, users 1 to 5 do not form a
cluster, since user 5 shares information with user 7 while user 1 does not. Further-
more, we can regard a single user as a special case of cluster. In this case, a general
information sharing graph can be represented compactly as a cluster-based graph.
Let K = {1, 2, . . . , K } be the set of clusters, and wkk′ ∈ {0, 1} denote the infor-
mation sharing relationship between two clusters k and k′. The variable wkk′ = 1
if cluster k communicates with cluster k′ (i.e., the users in cluster k share infor-
mation with the users in cluster k′) and wkk′ = 0 otherwise. Then we denote the
cluster-based graph as CG = {K ,W }. Here vertex set K is the cluster set, and

(a)

(b)

(d)

(c)

(e)

Fig. 3.3 An illustration of cluster-based representation of information sharing graph
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Algorithm 4 Algorithm for Constructing Cluster-based Graph
1: � Construct the set of clusters:
2: set the un-merged node set U = N .
3: set cluster index k = 0.
4: loop until U = ∅:
5: select one node n ∈ U randomly.
6: update cluster index k = k + 1.
7: set the set of nodes in cluster k as Ωk = {n}.
8: for each node m ∈ Nn ∩ U \Ωk do
9: if Nn\{m} = Nm\{n} then
10: update Ωk = Ωk ∪ {m}.
11: end if
12: end for
13: update U = U \Ωk .
14: end loop
15: � Construct the set of edges between clusters:
16: set the set of K identified clusters above as ϒ = {1, . . . , K }.
17: for each cluster k ∈ ϒ do
18: for any cluster h ∈ ϒ\{k} do
19: if there exists nodes n ∈ Ωk and m ∈ Ωh such that m ∈ Nn and n ∈ Nm then
20: set wkh = 1.
21: else set wkh = 0.
22: end if
23: end for
24: end for

edge set W = {(k, k′) : wkk′ = 1,∀k, k′ ∈ K }. We also denote the set of clusters
that communicates with cluster k as Kk = {k : (i, k) ∈ W ,∀k ∈ K }. Since the
users in cluster k and the users in cluster k′ ∈ Kk can share information with each
other, we also define that Ck � Kk ∪ {k}.

As illustrated in Fig. 3.3, an information sharing graph can be represented as dif-
ferent cluster-based graphs (e.g., graphs (c) and (e) in Fig. 3.3). In general fact, we
can first consider the original information sharing graph as a primitive cluster-based
graph by regarding each single user as a cluster (e.g., graph (a) in Fig. 3.3). We then
further carry out the clustering (e.g., graph (d) in Fig. 3.3) and obtain the cluster-
based graph (e). We next merge clusters 1 and 2 of this cluster-based graph into one
cluster and then obtain the most compact cluster-based graph (c) in this example. We
summarize the algorithm for constructing the cluster-based graph in Algorithm 4.
Note that for the practical implementation, the knowledge of cluster-based graphs is
not required. The use of clutter-based graph here is to facilitate the analysis of the
convergence of imitative spectrum access mechanism. The convergence properties
of the imitative spectrum access mechanism are determined by the original infor-
mation exchange graph, and are the same for all these cluster-based graphs since
they preserve the structural property of the original information exchange graph
(i.e., two users share information in the cluster-based graph if and only if they share
information in the original graph).

Next we explore the property of the cluster-based representation. We denote the
cluster that a user n ∈ N belongs to as k(n) and the set of users in cluster k ∈ K
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as N (k). According to the definition of cluster, we can see that if users n and n′
share information with each other, then they either belong to the same cluster or two
different clusters that communicate with each other. Thus we have that

Lemma 3.1 The set of users that share information with user n is the same as the set
of users in user n’s cluster and the clusters that communicate with user n’s cluster,
i.e., Nn = ∪k′∈Ck(n)

N (k′).

Furthermore, the cluster-based representation also preserves the connectivity of the
information sharing graph (i.e., it is possible to find a path from any node to any
other node).

Lemma 3.2 The information sharing graph is connected if and only if the corre-
sponding cluster-based graph is also connected.

3.4.2 Dynamics of Imitative Spectrum Access

Based on the cluster-based graphical representation of information sharing graph,
we next study the evolution dynamics of the imitative spectrum access mechanism.
Suppose that the underlying information sharing graph can be represented by K
clusters, and the number of users in each cluster k is zk with

∑K
k=1 zk = N . For the

ease of exposition, we will focus the case that the number of users zk in each cluster
k is large. Numerical results show that the observations also hold for the case that
the number of users in a cluster is small (see Sects. 3.6 for details).

With a large cluster user population, it is convenient to use the population state
x(t) to describe the dynamics of spectrum access. We then denote the population
state of all users as x(t) � (x1(t), . . . , xK (t)) and the population state of cluster k
as xk(t) � (xk

1 (t), . . . , xk
M (t)). Here xk

m(t) denotes the fraction of users in cluster k

choosing channel m to access at period t , and we have
∑M

m=1 xk
m(t) = 1.

In the imitative spectrum access mechanism, each user n relies on its local esti-
mated expected throughput Ũn(t) to decide whether to imitate other user’s channel
selection. Due to the random estimation noise ωn , the evolution of the population
state {x(t),∀t ≥ 0} is stochastic and difficult to analyze directly. However, when the
population of cluster users zk is large, due to the law of large number, such stochastic
process can bewell approximated by itsmean deterministic trajectory {X(t),∀t ≥ 0}
[21]. Here X(t) � (X1(t), . . . , X K (t)) is the deterministic population state of all
the users, and Xk(t) � (Xk

1(t), . . . , Xk
M (t)) is the deterministic population state of

cluster k. Consider a user in cluster k chooses channel i , and let P j
i,k(X(t)) denote

the probability that this user in the deterministic population state X(t) will choose
channel j in next period. According to [21], we have

Lemma 3.3 There exists a scalar δ such that, for any bound ε > 0, decision period
T > 0, and any large enough cluster size zk , the maximum difference between the
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stochastic and deterministic population states over all periods is upper-bounded by
ε with an arbitrarily large probability, i.e.,

Pr{ max
0≤t≤T

max
m∈M

|Xk
m(t) − xk

m(t)| ≥ ε} ≤ e−ε2zk , ∀k ∈ K , (3.6)

given that X(0) = x(0).

The proof is similar with Lemma 1 in [21] and hence is omitted here. As illustrated
in Fig. 3.4, Lemma 3.3 indicates that the trajectory of the stochastic population state
{x(t),∀t ≥ 0} is within a small neighborhood of the trajectory of the deterministic
population state {X(t),∀t ≥ 0} when the user population N is large enough. More-
over, since the MLE is unbiased, the deterministic population state {X(t),∀t ≥ 0}
is also the mean field dynamics of stochastic population state {x(t),∀t ≥ 0} [21]. If
the deterministic dynamics {X(t),∀t ≥ 0} converge to an equilibrium, the stochastic
dynamics {x(t),∀t ≥ 0} must also converge to the same equilibrium on the time
average [21].

We now study the evolution dynamics of the deterministic population state

{X(t),∀t ≥ 0}. Let U (m, X(t)) = θm Bm g
(∑K

k=1 zk Xk
m(t)

)
denote the expected

throughput of a user that chooses channel m with a total of
∑K

k=1 zk Xk
m(t) contend-

ing users in the population state X(t). Recall that in the imitative spectrum access
mechanism, each user will randomly choose another user that shares information
with it, and imitate that user’s channel selection if that user’s estimated throughput
is higher. Suppose that the user n is in cluster k choosing channel i . According to
Lemma 3.1, the set of users that share informationwith user n are in set of clustersCk .
Thus, we can obtain the probability P j

i,k(X(t)) that this user n will imitate another
user n′ on channel j in next period as

P j
i,k(X(t)) =

∑
k′∈Ck

zk′∑
l∈Ck

zl
Xk′

j (t)

× Pr{Ũ ( j, X(t)) > Ũ (i, X(t))}. (3.7)

Fig. 3.4 Illustration of the
approximation of stochastic
population state x(t) by
deterministic population
state X(t)
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Here zk′∑
l∈Ck

zl
Xk′

j (t) denotes the probability that a user choosing channel j in cluster

k′ ∈ Ck will be selected for imitation. From (3.3), we have

Ũ ( j, X(t)) − Ũ (i, X(t)) = U ( j, X(t)) − U (i, X(t))

+ ωn′ − ωn, (3.8)

whereωn, ωn′ are the random estimation noises with the probability density function
f (ω). Let 
 = ωn − ωn′ , and we can obtain the probability density function of
random variable 
 as

q(
) =
ω∫

ω

f (ω) f (
 + ω)dω. (3.9)

We further denote the cumulative distribution function 
 as Q(
), i.e., Q(
) =∫ 


−∞ q(s)ds. Then from (3.7) and (3.8), we have for any j �= i ,

P j
i,k(X(t)) =

∑
k′∈Ck

zk′∑
l∈Ck

zl
Xk′

j (t)Q(U ( j, X(t)) − U (i, X(t))), (3.10)

and
Pi

i,k(X(T )) = 1 −
∑
j �=i

P j
i,k(X(t)). (3.11)

Based on (3.10) and (3.11), we obtain the evolution dynamics of the deterministic
population state {X(t),∀t ≥ 0} as
Theorem 3.1 For the imitative spectrum access mechanism, the evolution dynamics
of deterministic population state {X(t),∀t ≥ 0} are given as

Ẋk
m(t) =

M∑
i=1

Xk
i (t)

∑
k′∈Ck

zk′∑
l∈Ck

zl
Xk′

m (t)

× Q(U (m, X(t)) − U (i, X(t)))

− Xk
m(t)

M∑
i=1

∑
k′∈Ck

zk′∑
l∈Ck

zl
Xk′

i (t)

× Q(U (i, X(t)) − U (m, X(t))), (3.12)

where the derivative is with respect to time t.

3.4.3 Convergence of Imitative Spectrum Access

We now study the convergence of the imitative spectrum access mechanism. Let
x∗ � (x1∗, . . . , xK∗) denote the equilibrium of the imitative spectrum access, and
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a∗
n denote the channel chosen by user n in the equilibrium x∗. We first introduce the

definition of imitation equilibrium.

Definition 3.2 (Imitation Equilibrium) A population state x∗ is an imitation equi-
librium if and only if for each user n ∈ N ,

U (a∗
n , x∗) ≥ max

a∈Δn(x∗)\{a∗
n } U (a, x∗), (3.13)

where Δn(x∗) � {m ∈ M : ∃a∗
i = m,∀i ∈ Nn} denotes the set of channels are

chosen by users that share information with user n in the equilibrium x∗.

The intuition of Definition 3.2 is that no imitation can be carried out to improve any
user’s data rate in the equilibrium. For the imitative spectrum access mechanism, we
show that

Theorem 3.2 For the imitative spectrum access mechanism, the evolution dynam-
ics of deterministic population state {X(t),∀t ≥ 0} asymptotically converge to an
imitation equilibrium X∗such that

U (m, X∗) = U (i, X∗),∀m, i ∈ Δn(X∗), ∀n ∈ N . (3.14)

According to Lemma 3.3, we know that the stochastic imitative spectrum access
dynamics {x(t),∀t ≥ 0}will be attracted into a small neighborhood around the imita-
tion equilibrium X∗. Moreover, since the imitation equilibrium X∗ is also the mean
field equilibrium of stochastic dynamics {x(t),∀t ≥ 0}, the stochastic dynamics
{x(t),∀t ≥ 0} hence converge to the imitation equilibrium X∗ on the time average.
That is, the fraction of users adopting a certain channel selection will converge to
a fixed vale on the time average. However, a user would keep switching its channel
during the process. This is because that when many other users also utilize the same
channel, the user would imitate to select another channel with less contending users
to mitigate congestion. The mechanism hence can drive a balance between good
channel exploitation and congestion mitigation.

According to the definition of Δn(X∗), we see from Theorem 3.2 that two users
will achieve the same expected throughput if they share information with each other
(i.e., they are neighbors in the information sharing graph). Moreover, when the infor-
mation sharing graph is connected, we can show that all the users achieve the same
throughput at the imitation equilibrium.

Lemma 3.4 When the information sharing graph is connected, all the users follow-
ing the imitative spectrum access mechanism achieve the same expected throughput,
i.e., U (a∗

n , X∗) = U (a∗
n′, X∗),∀n, n′ ∈ N .

Furthermore, we can show in Corollary 3.5 that the convergent imitation
equilibrium is the most fair channel allocation in terms of the widely-used Jain’s

fairness index J =
(

(
∑N

n=1 U (a∗
n ,X∗))2

N
∑N

n=1 U (a∗
n ,X∗)2

)
[22]. Notice that the fair channel allocation
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is due to the nature of imitation. If the channel allocation is unfair, there must exist
some secondary users that achieve a higher throughput than others. In this case, other
users with a lower throughput will imitate the channel selection of those users until
the performance of all users are equal (i.e., fair spectrum sharing).

Lemma 3.5 When the information sharing graph is connected, the Jain’s fairness
index J is maximized at the imitation equilibrium.

Wenext discuss the efficiencyof the imitation equilibrium.Similar to the definition
of price of anarchy (PoA) in game theory, we will quantify the efficiency ratio of
imitation equilibrium X∗ over the centralized optimal solution and define the price
of imitation (PoI) as

PoI =
∑N

n=1 U (a∗
n , X∗)

maxX
∑N

n=1 U (an, X)
.

Since it is difficult to analytically characterize thePoI for the general case,we focus on
the case that all the channels are homogenous, i.e., Bm = Bm′ = B and θm = θm′ = θ

for any m, m′ = 1, . . . , M . Let Z be the number of channels being utilized at the
imitation equilibrium X∗, i.e., Z = | ∪N

n=1 Δn(X∗)|. We can show the following
result.

Theorem 3.3 When the information sharing graph is connected and all the channels

are homogenous, the PoI of imitative spectrum access mechanism is at least
Ng( N

Z )

M .

We also evaluate the performance of imitative spectrum access mechanism for
the general case in Sect. 3.6. Numerical results demonstrate that the mechanism is
efficient, with at most 20% performance loss, compared with the centralized optimal
solution.

3.5 Imitative Spectrum Access with User Heterogeneity

For the ease of exposition, we have considered the case that users are homogeneous,
i.e., different users achieve the same data rate on the same channel. We now consider
the general heterogeneous case where different users may achieve different data rates
on the same channel.

Let bn
m(τ ) be the realized data rate of user n on an idle channel m at a time slot τ ,

and Bn
m be the mean data rate of user n on the idle channel m, i.e., Bn

m = E[bn
m(τ )].

In this case, the expected throughput of user n is given as U m
n = θm Bn

m g(km).
For imitative spectrum access mechanism in Algorithm 3, each user carries out
the channel imitation by comparing its throughput with the throughput of another
user. However, such throughput comparison may not be feasible when users are
heterogeneous, since a user may achieve a low throughput on a channel that offers a
high throughput for another user.

To address this issue,we propose a new imitative spectrumaccessmechanismwith
user heterogeneity in Algorithm 5. More specifically, when a user n on a channel
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m randomly selects another neighboring user n′ on another channel m′, user n′
informs user n about the estimated channel grabbing probability g̃(km′) instead of
the estimated expected throughput. Then user n will compute the estimated expected
throughput on channel m′ as

Ũ m′
n = θ̃m′ B̃n

m′ g̃(km′ ). (3.15)

If Ũ m′
n > Ũ m

n , then user n will imitate the channel selection of user n′.
To implement the mechanism above, each user n must have the information of its

own estimated channel idle probability θ̃m′ and data rate B̃n
m′ of the unchosen channel

m′. Hence we add an initial channel estimation stage in the imitative spectrum access
mechanism in Algorithm 5. In this stage, each user initially estimates the channel
idle probability θ̃m and data rate B̃n

m by accessing all the channels in a randomized
round-robin manner. This ensures that all users do not choose the same channel at the
same period. LetMn (equals to the empty set � initially) be set of channels probed
by user n andM c

n = M \Mn . At beginning of each decision period, user n randomly
chooses a channel m ∈ M c

n (i.e., a channel that has not been accessed before) to
access. At end of the period, user n can estimate the channel idle probability θ̃m and
data rate B̃n

m according to the MLE method introduced in Sect. 3.3.1.
Numerical results show that the proposed imitative spectrum access mechanism

with user heterogeneity can still converge to an imitation equilibrium satisfying
the definition in (3.2), i.e., no user can further improve its expected throughput
by imitating another user. Numerical results show that the imitative spectrum access
mechanismwith user heterogeneity achieves up-to 500% fairness improvement with
at most 20% performance loss, compared with the centralized optimal solution. This
demonstrates that the proposed imitation-based mechanism can achieve efficient
spectrum utilization and meanwhile provide good fairness across secondary users.

3.6 Simulation Results

In this section, we evaluate the proposed imitative spectrum access mechanisms by
simulations. We consider a spectrum sharing network consisting M = 5 Rayleigh
fading channels. The data rate on an idle channel m of user n is computed according

to the Shannon capacity, i.e., bn
m = Em log2(1+ ηnhn

m
n0

), where Em is the bandwidth
of channel m, ηn is the power adopted by user n, n0 is the noise power, and hn

m
is the channel gain (a realization of a random variable that follows the exponential
distribution with the mean h̄n

m). By setting different mean channel gain h̄n
m , we can

have different mean data rates Bn
m = E[bn

m]. In the following simulations, we set
ζm = 10 MHz, n0 = −100 dBm, and ηn = 100 mW. We set the number of time
slots in each decision period as 100. We will consider both cases with homogeneous
and heterogenous users.
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Algorithm 5 Imitative Spectrum Access With User Heterogeneity
1: loop for each user n ∈ N in parallel:

� Initial Channel Estimation Stage
2: while Mn �= M do
3: choose a channel m from the set M c

n randomly.
4: sense and contend to access the channel m at each time slot of the decision period.
5: record the observations Sn(t, τ ), In(t, τ ) and bn(t, τ ).
6: estimate the channel idle probability θ̃m and data rate B̃n

m .
7: set Mn = Mn ∪ {m}.
8: end while

� Imitative Spectrum Access Stage
9: for each time period t do
10: sense and contend to access the channel m at each time slot of the decision period.
11: record the observations Sn(t, τ ), In(t, τ ) and bn(t, τ ).
12: estimate the expected throughput Ũ an

n (t).
13: select another user n′ ∈ Nn randomly and enquiry its channel grabbing probability

g̃(kan′ ).

14: estimate the expected throughput Ũ
an′
n (t) based on (3.15).

15: if Ũ
an′
n (t) > Ũ an

n (t) then
16: choose channel an′ (i.e., the one chosen by user n′) in the next period.
17: else choose the original channel in the next period.
18: end if
19: end for
20: end loop

3.6.1 Imitative Spectrum Access with Homogeneous Users

3.6.1.1 I.i.d. Channel Environment

We first implement the imitative spectrum access mechanism with N = 150 homo-
geneous users (i.e., Algorithm 3) and the number of backoff mini-slots λmax = 50.
For each user n, themean channel data rates {Bn

m}M
m=1 = {15, 70, 90, 40, 100}Mbps,

respectively. The channel states are i.i.d. Bernoulli random variable with the mean
idle probabilities {θm}M

m=1 = { 23 , 4
7 ,

5
9 ,

1
2 ,

4
5 }, respectively.

We consider that the information sharing graphs are represented by different
cluster-based graphs as shown in Fig. 3.5. In Graph (a), clusters 1 and 3 do not
communicate directly and they are connected to cluster 2. In Graph (b), all three
clusters are isolated. We show the time average user’s throughput in Fig. 3.6. We see
that all the users achieve the same average throughput on Graph (a). This verifies the
theoretic result that when information sharing graph is connected (i.e., the
corresponding cluster-based graph is connected), all the users achieve the same aver-
age throughput in the imitation equilibrium. When information sharing graph is not
connected (e.g., Graph (b)), we see that users in different clusters may achieve dif-
ferent throughputs. However, all the users in the same cluster have the same average
throughput. This is also an imitation equilibrium given the constraint of their infor-
mation sharing.Moreover, we see that all the channels will be utilized in the imitation
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(a) (b)

Fig. 3.5 Four types of cluster-based graphs with zk representing the number of users in each
cluster k

(a) (b)

Fig. 3.6 Users’ average throughputs and fractions of users on different channels on cluster-based
graphs (a) and (b) in Fig. 3.5

equilibria on both Graphs (a)and (b). A channel of a higher data rate will be utilized
by a larger fraction of users.

3.6.1.2 Markovian Channel Environment

For the interests of obtaining closed form solutions and deriving engineering
insights, we have considered the i.i.d. channel model so far. We now evaluate the
proposed mechanism in the Markovian channel environment. We denote the channel
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state probability vector of channel m at a time slot τ as pm(τ ) � (Pr{Sm(τ ) =
0}, Pr{Sm(τ ) = 1}), which follows a two-states Markov chain as pm(τ + 1) =
pm(τ )Γm,∀τ ≥ 1, with the transition matrix Γm =

[
1 − pm pm

qm 1 − qm

]
. In this case,

we can obtain the stationary distribution that the channelm is idlewith a probability of
θm = pm

pm+qm
. The study in [23] shows that the statistical properties of spectrumusage

fromempiricalmeasurement data canbe accurately captured and reproducedbyprop-
erly setting the transition matrix. In this experiment, we choose different pm and qm

for different channels such that the idle probabilities {θm}M
m=1 = { 23 , 4

7 ,
5
9 ,

1
2 ,

4
5 } are

the same as before. We consider that N = 150 users are randomly scattered across
a square area of a side-length of 250m with the information sharing graph as shown
in Fig. 3.7. As mentioned in Sect. 3.4.1, this information sharing graph can also be
regarded as a cluster-based graph by considering a single user as a cluster.

The results are shown in the upper part of Fig. 3.8. We observe that the imitative
spectrum accessmechanism still achieves the imitation equilibrium in theMarkovian
channel environment. The average throughput that each user achieves is the same
as that in i.i.d. channel environment on the connected graph (a) in Fig. 3.6. This
is because that our proposed Maximum Likelihood Estimation of the channel idle
probability θm follows the sample average approach. By the law of large numbers,
when the observation samples are sufficient, such a sample average approach can
achieve an accurate estimation of the average statistics of the channel availability,
even if the channel state is not an i.i.d. process.

Fig. 3.7 Asquare area of a length of 250mwith 150 scattered users. Each user can share information
with those users that are connected with it by an edge
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Fig. 3.8 Users’ average throughputs and fractions of users on different channels on the information
sharing graph in Fig. 3.7

3.6.2 Imitative Spectrum Access with Heterogeneous Users

We then implement the imitation spectrum access mechanism with heterogeneous
users (i.e., Algorithm 5) on the same information sharing graph in Fig. 3.7. The mean
data rates of 100 randomly chosen users out of these 150 users are homogeneous
with the same data rates as before (i.e., {Bn

m}M
m=1 = {15, 70, 90, 40, 100} Mbps).

For the remaining 50 users, we set that the users’ data rates are heterogenous with
the mean data rate of user n on channel m as Bn

m = 100 + R where R is a random
value drawn from the uniform distribution over (0, 100). The results are shown in
the bottom part of Fig. 3.8. We see that the mechanism converges to the equilibrium
wherein homogeneous users achieve the same expected throughput and heterogenous
users may achieve different expected throughputs. Moreover, we observe that the
mechanism converges to a stable user distribution on channels. This implies that no
user can further improve its expected throughput by imitating another user. That is,
the equilibrium is an imitation equilibrium satisfying the definition in (3.13).
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3.6.3 Performance Comparison

We now compare the proposed imitative spectrum access mechanism with the
imitation-based spectrum access mechanism in [4]. Notice that the mechanism in
[4] requires the global network information including the channel characteristics
and other users’ channel selections to compute user’s throughput. When users are
homogenous (i.e., different users achieve the same data rate on the same channel),
both mechanisms can converge to the imitation equilibrium and hence achieve the
same performance. Due to space limit, please refer to [5] for the details of perfor-
mance comparison in the homogenous user case.

Wenow focus on performance comparisons for themore general and practical case
that users are heterogenous. As the benchmark, we also implement the centralized
optimal solution that maximizes the system-wide throughput (i.e., max

∑N
n=1 Un)

and the decentralized spectrum access solution by Q-learning mechanism proposed
in [24]. Similarly to the setting in Sect. 3.6.2, we consider N = 100, 150, . . . , 300
randomly scattered users, respectively. The mean data rate of user n on channel m
is Bn

m = R, where R is a random value drawn from the uniform distribution over
(0, 200). For each fixed user number N , we average over 50 runs.

We first show the system-wide throughput achieved by different mechanisms
in Fig. 3.9. We see that the system-wide throughput of all the solutions decreases
as the number of users increases. As the user population increases, the contention
among users becomes more severe, which leads to more spectrum access collisions.
We observe that the proposed imitative spectrum access mechanism with user het-
erogeneity achieves up-to 32% performance improvement over the imitation-based
spectrum access mechanism in [4]. This is because that the mechanism in [4] carries
out imitation based on other user’s throughput information directly, which ignores
the fact that users are heterogeneous. While our mechanism takes user heterogene-
ity into account and carries out imitation based on the channel contention level.
Compared with Q-learning mechanism, the imitative spectrum access mechanism
can achieve better performance, with a performance gain of around 5%. Moreover,
the performance loss of the imitative spectrum access mechanism with respect to
the centralized optimal solution is at most 20% in all cases. This demonstrates the
efficiency of the imitative spectrum access mechanism with user heterogeneity.

We then compare the fairness achieved by different mechanisms in Fig. 3.10.
We adopt the widely-used Jain’s fairness index [22] to measure the fairness. A
larger index J represents a more fair channel allocation, with the best case J = 1.
Figure3.10 shows that the centralized optimal solution is poor in terms of fair-
ness (with the highest index value J = 0.2). This reason is that the centralized
optimal solution would allocate the best channels to a small fraction of users only
(to avoid congestion) and most users will share those channels of low data rates.
Our imitative spectrum access is much more fair and achieves up to 530 and 300%
fairness improvement over the centralized optimization and Q-learning, respectively.
This demonstrates that the proposed imitation-based mechanism can provide good
fairness across users.
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Fig. 3.9 Comparison of system-wide throughput of different solutions

Fig. 3.10 Comparison of fairness of the solutions of different solutions
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3.7 Summary

In this chapter, we design a distributed spectrum access mechanism with incomplete
network information based on social imitations. We show that the imitative spectrum
access mechanism can converge to an imitation equilibrium on different informa-
tion sharing graphs. When the information sharing graph is connected and users are
homogeneous, the imitation equilibrium corresponds to a fair channel allocation such
that all the users achieve the same throughput. We also extend the imitative spectrum
accessmechanism to the case that users are heterogeneous. Numerical results demon-
strate that the proposed imitation-based mechanism can achieve efficient spectrum
utilization and meanwhile provide good fairness across secondary users.
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Chapter 4
Evolutionarily Stable Spectrum
Access Mechanism

4.1 Introduction

In this chapter, motivated by the evolution rule observed in many social animal and
human interactions, we propose a new framework of distributed spectrum access
with and without complete network information (i.e., channel statistics and user
selections). A key feature of this framework is that we design the spectrum access
mechanisms based on bounded rationality of secondary users, i.e., each user tries
to improve its strategy adaptively over time, which requires much less computation
power than the full rationality case, and thus may better match the reality of wireless
communications. This framework has a sharp differencewith the approaches of using
non-cooperative game for distributed spectrum access in which secondary users are
fully rational and thus often adopt their channel selections based on best responses,
i.e., the best choices they can compute by having the complete network information.
To have full rationality, a user needs to have a high computational power to collect
and analyze the network information in order to predict other users’ behaviors. This
is often not feasible due to the limitations of today’s wireless devices.

We first propose an evolutionary game approach for distributed spectrum access
with the complete network information, where each secondary user takes a compar-
ison strategy (i.e., comparing its payoff with the system average payoff) to evolve
its spectrum access decision over time. We then propose a learning mechanism for
distributed spectrum access with incomplete information, which does not require any
prior knowledge of channel statistics or information exchange among users. In this
case, each secondary user estimates its expected throughput locally, and learns to
adjust its channel selection strategy adaptively.

The main results and contributions of this chapter are as follows:

• Evolutionary spectrum access mechanism: we formulate the distributed spectrum
access over multiple heterogeneous time-varying licensed channels as an evolu-
tionary spectrum access game, and study the evolutionary dynamics of spectrum
access.

© The Author(s) 2015
X. Chen and J. Huang, Social Cognitive Radio Networks,
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DOI 10.1007/978-3-319-15215-8_4

61



62 4 Evolutionarily Stable Spectrum Access Mechanism

• Evolutionary dynamics and stability: we show that the evolutionary spectrum
access mechanism converges to the evolutionary equilibrium, and prove that it is
globally evolutionarily stable.

• Learning mechanism with incomplete information: we further propose a learn-
ing mechanism without the knowledge of channel statistics and user information
exchange. We show that the learning mechanism converges to the same evolution-
ary equilibrium on the time average.

• Superior performance: we show that the proposed mechanisms can achieve up to
35%performance improvement over the distributed reinforcement learningmech-
anism in literature, and are robust to the perturbations of users’ channel selections.

The rest of the chapter is organized as follows. We introduce the system model
in Sect. 4.2. After briefly reviewing the evolutionary game theory in Sect. 4.3, we
present the evolutionary spectrum access mechanism with complete information in
Sect. 4.4. Then we introduce the learning mechanism in Sect. 4.5. We illustrate the
performance of the proposed mechanisms through numerical results in Sect. 4.6 and
finally conclude in Sect. 4.7. Due to space limitations, the details for several proofs
are provided in [1].

4.2 System Model

We consider a cognitive radio network with a setM = {1, 2, . . . , M} of independent
and stochastically heterogeneous licensed channels. A set N = {1, 2, . . . , N } of
secondary users try to opportunistically access these channels, when the channels are
not occupied by primary (licensed) transmissions. The system model has a slotted
transmission structure as in Fig. 4.1 and is described as follows.

• Channel State: the channel state for a channel m at time slot t is

Sm(t) =

⎧⎪⎨
⎪⎩
0, if channel m is occupied by

primary transmissions,

1, if channel m is idle.

Fig. 4.1 Multiple stages in a single time slot
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• Channel State Changing: for a channel m, we assume that the channel state is an
i.i.d. Bernoulli random variable, with an idle probability θm ∈ (0, 1) and a busy
probability 1−θm . Thismodel can be a good approximation of the reality if the time
slots for secondary transmissions are sufficiently long or the primary transmissions
are highly bursty [3]. Numerical results show that the proposed mechanisms also
work well in the Markovian channel environment.

• Heterogeneous Channel Throughput: if a channel m is idle, the achievable data
rate bm(t) by a secondary user in each time slot t evolves according to an i.i.d.
randomprocesswith amean Bm , due to the local environmental effects such fading.
For example, in a frequency-selective Rayleigh fading channel environment we
can compute the channel data rate according to the Shannon capacity with the
channel gain at a time slot being a realization of a random variable that follows
the exponential distribution [4].

• Time Slot Structure: each secondary user n executes the following stages synchro-
nously during each time slot:

– Channel Sensing: sense one of the channels based on the channel selection
decision generated at the end of previous time slot. Access the channel if it is
idle.

– Channel Contention: use a backoff mechanism to resolve collisions when mul-
tiple secondary users access the same idle channel. The contention stage of a
time slot is divided into λmax mini-slots1 (see Fig. 4.1), and user n executes the
following two steps. First, count down according to a randomly and uniformly
chosen integral backoff time (number of mini-slots) λn between 1 and λmax.
Second, once the timer expires, transmit RTS/CTS messages if the channel is
clear (i.e., no ongoing transmission). Note that if multiple users choose the
same backoff value λn , a collision will occur with RTS/CTS transmissions and
no users can successfully grab the channel.

– Data Transmission: transmit data packets if the RTS/CTS message exchanges
go through and the user successfully grabs the channel.

– Channel Selection: in the complete information case, users broadcast the cho-
sen channel IDs to other users through a common control channel,2 and then
make the channel selection decisions based on the evolutionary spectrum access
mechanism (details in Sect. 4.4). With incomplete information, users update the
channel estimations based on the current access results, and make the channel
selection decisions according to the distributed learning mechanism (details in
Sect. 4.5).

1 For the ease of exposition, we assume that the contention backoff size λmax is fixed. This corre-
sponds to an equilibrium model for the case that the backoff size λmax can be dynamically tuned
according to the 802.11 distributed coordination function [5]. Also, we can enhance the performance
of the backoff mechanism by determining optimal fixed contention backoff size according to the
method in [6].
2 Please refer to [7] for the details on how to set up and maintain a reliable common control channel
in cognitive radio networks.
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Suppose that km users choose an idle channel m to access. Then the probability
that a user n (out of the km users) grabs the channel m is

g(km) = Pr{λn < min
i �=n

{λi }}

=
λmax∑
λ=1

Pr{λn = λ}Pr{λ < min
i �=n

{λi }|λn = λ}

=
λmax∑
λ=1

1

λmax

(
λmax − λ

λmax

)km−1

,

which is a decreasing function of the number of total contending users km . Then the
expected throughput of a secondary user n choosing a channel m is given as

Un = θm Bm g(km). (4.1)

For the ease of exposition, we will focus on the analysis of the proposed spec-
trum access mechanisms in the many-users regime. Numerical results show that our
algorithms also apply when the number of users is small (see Sect. 4.6.3 for the
details). Since our analysis is from secondary users’ perspective, we will use terms
“secondary user” and “user” interchangeably.

4.3 Overview of Evolutionary Game Theory

For the sake of completeness, wewill briefly describe the background of evolutionary
game theory.Detailed introduction can be found in [8]. Evolutionary game theorywas
first used in biology to study the change of animal populations, and then later applied
in economics to model human behaviors. It is most useful to understand how a large
population of users converge to Nash equilibria in a dynamic system [8]. A player in
an evolutionary game has bounded rationality, i.e., limited computational capability
and knowledge, and improves its decisions as it learns about the environment over
time [8].

4.3.1 Replicator Dynamics

As mentioned, the evolutionary game theory was first proposed in Biology to study
the interactive behaviors among a population of animals [8]. The game consists of
animals (players) using different strategies. The strategy of an animal is inherited
by its offsprings. Animals with higher fitness will leave more offsprings, so in the
next generation the composition of the population will change. Such a reproduction
process can be modeled by a set of differential equations called replicator dynamics.
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Formally, a player in the population chooses a strategy i from a finite set of
strategiesI = {1, . . . , I }. The population state x(t) = (x1(t), . . . , xI (t)) describes
the dynamics of the reproduction process, with xi (t) denoting the proportion of
players in the population adopting the strategy i at time t . The replicator dynamics
are then given by

ẋi (t) = β (R(i, x(t)) − R(x(t))) , ∀i ∈ I , (4.2)

where R(i, x(t)) is the payoff of the players choosing strategy i , R(x(t)) is the
average payoff of the population, and β > 0 is the rate of strategy adaptation. It
means that the strategy that works better than the average will be promoted.

4.3.2 Evolutionarily Stable Strategy

The evolutionarily stable strategy (ESS) is a key concept to describe the evolutionary
equilibrium. For simplicity, we will introduce the ESS definition (the strict Nash
equilibrium inDefinition 4.2, respectively) in the context of a symmetric gamewhere
all users adopt the same strategy i at the ESS (strict Nash equilibrium, respectively).
The definition can be (and will be) extended to the case of asymmetric game [8],
where we view the population’s collective behavior as a mixed strategy i at the ESS
(strict Nash equilibrium, respectively).

An ESS ensures the stability such that the population is robust to perturba-
tions by a small fraction of players. Suppose that a small share ε of players
in the population deviate to choose a mutant strategy j , while all other players
stick to the incumbent strategy i . We denote the population state of the game as
x(1−ε)i+ε j = (

xi = 1 − ε, x j = ε, xl = 0,∀l �= i, j
)
, where xa denotes the fraction

of users choosing strategy a, and the corresponding payoff of choosing strategy a as
R(a, x(1−ε)i+ε j ).

Definition 4.1 ([8]) A strategy i is an evolutionarily stable strategy if for every
strategy j �= i , there exists an ε̄ ∈ (0, 1) such that R(i, xε j+(1−ε)i ) > R( j, xε j+(1−ε)i )

for any j �= i and ε ∈ (0, ε̄).

Definition 4.1means that themutant strategy j cannot invade the population when
the perturbation is small enough, if the incumbent strategy i is an ESS. It is shown
in [8] that any strict Nash equilibrium in noncooperative games is also an ESS.

Definition 4.2 ([8]) A strategy i is a strict Nash equilibrium if for every strat-
egy j �= i , it satisfies that R(i, i, . . . , i) > R( j, i, . . . , i), where R(a, i, . . . , i)
denotes the payoff of choosing strategy a ∈ {i, j} given other players adhering to the
strategy i .

To understand that a strict Nash is an ESS, we can set ε → 0 in Definition 4.1,
which leads to R(i, xi ) > R( j, xi ),∀ j �= i , i.e., given that almost all other players
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play the incumbent strategy i , choosing any mutant strategy j �= i will lead to a loss
in payoff.

Several recent results applied the evolutionary game theory to study various net-
working problems. Niyato and Hossain [3] investigated the evolutionary dynamics
of heterogeneous network selections. Zhang et al. [9] designed incentive schemes for
resource-sharing in P2P networks based on the evolutionary game theory.Wang et al.
[10] proposed the evolutionary game approach for collaborative spectrum sensing
mechanism design in cognitive radio networks. According to Definition 4.1, the ESS
obtained in [3, 9, 10] is locally evolutionarily stable (i.e., the mutation ε is small
enough). Here we apply the evolutionary game theory to design spectrum access
mechanism, which can achieve global evolutionary stability (i.e., the mutation ε can
be arbitrarily large).

4.4 Evolutionary Spectrum Access

We now apply the evolutionary game theory to design an efficient and stable spec-
trum access mechanism with complete network information. We will show that the
spectrum access equilibrium is an ESS, which guarantees that the spectrum access
mechanism is robust to random perturbations of users’ channel selections.

4.4.1 Evolutionary Game Formulation

The evolutionary spectrum access game is formulated as follows:

• Players: the set of usersN = {1, 2, . . . , N }.
• Strategies: each user can access one of the set of channels M = {1, 2, . . . , M}.
• Population state: the user distribution over M channels at time t , x(t) = (xm(t),

∀m ∈ M ), where xm(t) is the proportion of users selecting channel m at time t .
We have

∑
m∈M xm(t) = 1 for all t .

• Payoff: a user n’s expected throughput Un(an, x(t)) when choosing channel an ∈
M , given that the population state is x(t). Since each user has the information of
channel statistics, from (4.1), we have

Un(an, x(t)) = θan Ban g(N xan (t)). (4.3)

We also denote the system arithmetic average payoff under population state x(t) as

U (x(t)) = 1

M

M∑
m=1

θm Bm g(N xm(t)). (4.4)
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Algorithm 6 Evolutionary Spectrum Access Mechanism
1: initialization:
2: set the global strategy adaptation factor α ∈ (0, 1].
3: select a random channel for each user.
4: end initialization

5: loop for each time slot t and each user n ∈ N in parallel:
6: sense and contend for the chosen channel and transmit data packets if successfully grabbing

the channel.
7: broadcast the chosen channel ID to other users through a common control channel.
8: receive the information of other users’ channel selection and calculate the population state

x(t).
9: compute the expected payoffUn(an, x(t)) and the systemaverage payoffU (x(t)) according

to (4.3) and (4.4), respectively.
10: if Un(an, x(t)) < U (x(t)) then
11: generate a random value δ according to a uniform distribution on (0, 1).

12: if δ < α
xan (t)

(
1 − Un (an ,x(t))

U (x(t))

)
then

13: select a new channel m with probability

pm = max {θm Bm g(N xm(t)) − U (x(t)), 0}∑M
m′=1 max {θm′ Bm′ g(N xm′ (t)) − U (x(t)), 0} .

14: else select the original channel.
15: end if
16: end if
17: end loop

4.4.2 Evolutionary Dynamics

Based on the evolutionary game formulation above, we propose an evolutionary
spectrum access mechanism in Algorithm 6 by reversing-engineering the replicator
dynamics. The idea is to let those users who have payoffs lower than the system
average payoff U (x(t) to select a better channel, with a probability proportional
to the (normalized) channel’s “net fitness” θm Bm g(N xm(t)) − U (x(t)). We show
that the dynamics of channel selections in the mechanism can be described with the
evolutionary dynamics in (4.5).

Theorem 4.1 For the evolutionary spectrum access mechanism in Algorithm 6, the
evolutionary dynamics are given as

ẋm(t) = α

(
Un(m, x(t))

U (x(t))
− 1

)
, ∀m ∈ M , (4.5)

where the derivative is with respect to time t.
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4.4.3 Evolutionary Equilibrium in Asymptotic Case λmax = ∞

We next investigate the equilibrium of the evolutionary spectrum access mechanism.
To obtain useful insights, we first focus on the asymptotic case where the number of
backoff mini-slots λmax goes to ∞, such that

g(k) = lim
λmax →∞

λmax∑
λ=1

1

λmax

(
λmax − λ

λmax

)k−1

= lim
1

λmax
→0

λmax −1∑
λ=0

(
λ

λmax

)k−1 1

λmax

=
1∫

0

zk−1dz = 1

k
. (4.6)

This is a good approximation when the number of mini-slots λmax for backoff
is much larger than the number of users N and collisions rarely occur. In this case,

Un(an, x(t)) = θan Ban
N xm (t) and U (x(t)) =

∑M
i=1 θi Bi

N . According to Theorem 4.1, the
evolutionary dynamics in (4.5) become

ẋm(t) = α

(
θm Bm
xm (t)

1
M

∑M
i=1

θi Bi
xi (t)

− 1

)
. (4.7)

From (4.7), we have

Theorem 4.2 The evolutionary spectrum access mechanism in asymptotic case

λmax = ∞globally converges to the evolutionary equilibrium x∗ =
(

x∗
m = θm Bm∑M

i=1 θi Bi
,

∀m ∈ M

)
.

Theorem 4.2 implies that

Lemma 4.1 The evolutionary spectrum access mechanism converges to the equilib-
rium x∗ such that users on different channels achieve the same expected
throughput, i.e.,

Un(m, x∗) = Un(m′, x∗), ∀m, m′ ∈ M . (4.8)

We next show that for the general case λmax < ∞, the evolutionary dynamics
also globally converges to the ESS equilibrium as given in (4.8).
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4.4.4 Evolutionary Equilibrium in General Case λmax < ∞

For the general case λmax , since the channel grabbing probability g(k) does not have
the close-form expression, it is hence difficult to obtain the equilibrium solution of
differential equations in (4.5). However, it is easy to verify that the equilibrium x∗
in (4.8) is also a stationary point such that the evolutionary dynamics (4.5) in the
general case λmax < ∞ satisfy ẋm(t) = 0. Thus, at the equilibrium x∗, users on
different channels achieve the same expected throughput.

We now study the evolutionary stability of the equilibrium. In general, the
equilibrium of the replicator dynamics may not be an ESS [8]. For our model, we
can prove the following.

Theorem 4.3 For the evolutionary spectrum access mechanism, the evolutionary
equilibrium x∗ in (4.8) is an ESS.

Actually we can obtain a stronger result than Theorem 4.3. Typically, an ESS is
only locally asymptotically stable (i.e., stable within a limited region around the
ESS) [8]. For our case, we show that the evolutionary equilibrium x∗ is globally
asymptotically stable (i.e., stable in the entire feasible region of a population state
x, {x = (xm, m ∈ M )|∑M

m=1 xm = 1 and xm ≥ 0,∀m ∈ M }).
To proceed, we first define the following function

L(x) =
M∑

m=1

xm∫
−∞

θm Bm g(N z)dz. (4.9)

Since g(·) is a decreasing function, it is easy to check that the Hessian matrix of L(x)

is negative definite. It follows that L(x) is strictly concave and hence has a unique
global maximum L∗. By the first order condition, we obtain the optimal solution x∗,
which is the same as the evolutionary equilibrium x∗ in (4.8). Then by showing that
V (x(t)) = L∗ − L(x(t)) is a strict Lyapunov function, we have

Theorem 4.4 For the evolutionary spectrum access mechanism, the evolutionary
equilibrium x∗ in (4.8) is globally asymptotically stable.

Since the ESS is globally asymptotically stable, the evolutionary spectrum access
mechanism is robust to any degree of (not necessarily small) random perturbations
of channel selections.

4.5 Learning Mechanism for Distributed Spectrum Access

For the evolutionary spectrum access mechanism in Sect. 4.4, we assume that each
user has the perfect knowledge of channel statistics and the population state by infor-
mation exchange on a common control channel. Such mechanism leads to significant
communication overhead and energy consumption, and may even be impossible in
some systems.We thus propose a learningmechanism for distributed spectrumaccess
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Algorithm 7 Learning Mechanism For Distributed Spectrum Access
1: initialization:
2: set the global memory weight γ ∈ (0, 1) and the set of accessed channels Mn = ∅ for

each user n.
3: end initialization

4: loop for each user n ∈ N in parallel:


 Initial Channel Estimation Stage
5: while Mn �= M do
6: choose a channel m from the set M c

n randomly.
7: sense and contend to access the channel m at each time slot of the decision period.
8: estimate the expected throughput Ũm,n(0) by (4.10).
9: set Mn = Mn ∪ {m}.
10: end while


 Access Strategy Learning Stage
11: for for each time period T do
12: choose a channel m to access according to the mixed strategy f n(T ) in (4.11).
13: sense and contend to access the channel m at each time slot of the decision period.
14: estimate the qualities of the chosen channel m and the unchosen channels m′ �= m by

(4.13) and (4.12), respectively.
15: end for
16: end loop

with incomplete information. The challenge is how to achieve the evolutionarilybreak
stable state based on user’s local observations only.

4.5.1 Learning Mechanism for Distributed Spectrum Access

The proposed learning process is shown inAlgorithm7 and has two sequential stages:
initial channel estimation (line 5 to 10) and access strategy learning (line 11 to 15).
Each stage is defined over a sequence of decision periods T = 1, 2, . . . , where each
decision period consists of tmax time slots (see Fig. 4.2 as an illustration).

The key idea of distributed learning here is to adapt each user’s spectrum access
decision based on its accumulated experiences. In the first stage, each user initially

Fig. 4.2 Learning time structure
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estimates the expected throughput by accessing all the channels in a randomized
round-robin manner. This ensures that all users do not choose the same channel at
the same period. Let Mn (equals to ∅ initially) be the set of channels accessed by
user n and M c

n = M \Mn . At beginning of each decision period, user n randomly
chooses a channel m ∈ M c

n (i.e., a channel that has not been accessed before) to
access. At end of the period, user n can estimate the expected throughput by sample
averaging as

Zm,n(0) = (1 − γ )

∑tmax
t=1 bm(t)I{an(t,T )=m}

tmax
, (4.10)

where 0 < γ < 1 is called the memory weight and I{an(t,T )=m} is an indicator
function and equals 1 if the channel m is idle at time slot t and the user n chooses
and successfully grabs the channel m. Motivation of multiplying (1− γ ) in (4.10) is
to scale down the impact of the noisy instantaneous estimation on the learning. Note
that there are tmax time slots within each decision period, and thus the user will be
able to have a fairly good estimation of the expected throughput if tmax is reasonably
large. Then user n updates the set of accessed channels as Mn = Mn ∪ {m}. When
all the channels are accessed, i.e., Mn = M , the stage of initial channel estimation
ends. Thus, the total time slots for the first stage is Mtmax.

In the second stage, at each period T ≥ 1, each user n ∈ N selects a channel
m to access according to a mixed strategy f n(T ) = ( f1,n(T ), . . . , fM,n(T )), where
fm,n(T ) is the probability of user n choosing channel m and is computed as

fm,n(T ) =
∑T −1

τ=0 γ T −τ−1Zm,n(τ )∑M
i=1

∑T −1
τ=0 γ T −τ−1Zi,n(τ )

, ∀m ∈ M . (4.11)

Here Zm,n(τ ) is user n’s estimation of the quality of channelm at period τ (see (4.12)
and (4.13) later). The update in (4.11) means that each user adjusts its mixed strategy
according to its weighted average estimations of all channels’ qualities.

Suppose that user n chooses channel m to access at period τ . For the unchosen
channels m′ �= m at this period, user n can empirically estimate the quality of this
channel according to its past memories as

Zm′,n(τ ) = (1 − γ )

τ−1∑
τ

′=0

γ τ−τ
′−1Zm′,n(τ

′
). (4.12)

For the chosen channel m, user n will update the estimation of this channel m by
combining the empirical estimation with the real-time throughput measurement in
this period, i.e.,

Zm,n(τ ) =(1 − γ )

⎛
⎝ τ−1∑

τ
′=0

γ τ−τ
′−1Zm,n(τ

′
) +

∑tmax
t=1 bm(t)I{an(t,τ )=m}

tmax

⎞
⎠ . (4.13)
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4.5.2 Convergence of Learning Mechanism

We now study the convergence of the learning mechanism. Since each user only
utilizes its local estimation to adjust its mixed channel access strategy, the exact ESS
is difficult to achieve due to the random estimation noise. We will show that the
learning mechanism can converge to the ESS on time average.

According to the theory of stochastic approximation [11], the limiting behaviors of
the learning mechanism with the random estimation noise can be well approximated
by the corresponding mean dynamics. We thus study the mean dynamics of the
learning mechanism. To proceed, we define the mapping from the mixed channel
access strategies f (T ) = ( f 1(T ), . . . , f N (T )) to the mean throughput of user n
choosing channelm as Qm,n( f (T )) � E[Un(m, x(T ))| f (T )]. Here the expectation
E[·] is taken with respective to the mixed strategies f (T ) of all users. We show that

Theorem 4.5 As the memory weight γ → 1, the mean dynamics of the learning
mechanism for distributed spectrum access are given as (∀m ∈ M , n ∈ N )

ḟm,n(T ) = fm,n(T )

(
Qm,n( f (T )) −

M∑
i=1

fi,n(T )Qi,n( f (T ))

)
, (4.14)

where the derivative is with respect to period T .

Interestingly, similarly with the evolutionary dynamics in (4.5), the learning dynam-
ics in (4.14) imply that if a channel offers a higher throughput for a user than the
user’s average throughput over all channels, then the user will exploit that channel
more often in the future learning. However, the evolutionary dynamics in (4.5) are
based on the population level with complete network information, while the learning
dynamics in (4.14) are derived from the individual local estimations. We show in
Theorem 4.6 that the mean dynamics of learning mechanism converge to the ESS in
(4.8), i.e., Qm,n( f ∗) = Qm′,n( f ∗).
Theorem 4.6 As the memory weight γ → 1, the mean dynamics of the learning
mechanism for distributed spectrum access asymptotically converge to a limiting
point f ∗ such that

Qm,n( f ∗) = Qm′,n( f ∗), ∀m, m′ ∈ M ,∀n ∈ N . (4.15)

Since Qm,n( f ∗) = E[Un(m, x(T ))| f ∗] and the mean dynamics converge to the
equilibrium f ∗ satisfying (4.15) (i.e., E[Un(m, x(T ))| f ∗] = E[Un(m′, x(T ))| f ∗]),
the learning mechanism thus converges to the ESS (4.8) (achieved by the evolution-
ary spectrum access mechanism) on the time average. Note that both the evolutionary
spectrum access mechanism in Algorithm 6 and learning mechanism in Algorithm 7
involve basic arithmetic operations and random number generation over M chan-
nels, and hence have a linear computational complexity of O(M) for each iteration.
However, due to the incomplete information, the learning mechanism typically takes
a longer convergence time in order to get a good estimation of the environment.
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4.6 Simulation Results

In this section, we evaluate the proposed algorithms by simulations. We consider a
cognitive radio network consisting M = 5 Rayleigh fading channels. The channel
idle probabilities are {θm}M

m=1 = { 23 , 4
7 ,

5
9 ,

1
2 ,

4
5 }. The data rate on a channel m is

computed according to the Shannon capacity, i.e., bm = ζm log2(1 + Pnhm
N0

), where
ζm is the bandwidth of channel m, Pn is the power adopted by users, N0 is the noise
power, and hm is the channel gain (a realization of a random variable that follows
the exponential distribution with the mean h̄m). In the following simulations, we
set ζm = 10MHz, N0 = −100 dBm, and Pn = 100mW. By choosing different
mean channel gain h̄m , we have different mean data rates Bm = E[bm], which equal
15, 70, 90, 20 and 100Mbps, respectively.

4.6.1 Evolutionary Spectrum Access in Large
User Population Case

We first study the evolutionary spectrum mechanism with complete network infor-
mation in Sect. 4.4 with a large user population.We found that the convergence speed
of the evolutionary spectrum access mechanism increases as the strategy adaptation
factor α increases (see Fig. 4.3). We set the strategy adaptation factor α = 0.5 in the
following simulations in order to better demonstrate the evolutionary dynamics. We
implement the evolutionary spectrum access mechanism with the number of users
N = 100 and 200, respectively, in both large and small λmax cases.

4.6.1.1 Large λmax Case

We first consider the case that the number of backoff mini-slots λmax = 100,000,
which is much larger that the number of users N and thus collisions in channel con-
tention rarely occur. This case canbe approximated by the asymptotic caseλmax = ∞
in Sect. 4.4.3. The simulation results are shown in Figs. 4.4 and 4.5. From these
figures, we see that

• Fast convergence: the algorithm takes less than 20 iterations to converge in all
cases (see Fig. 4.4).

• Convergence to ESS: in both N = 100 and 200 cases, the algorithm converges to

the ESS x∗ =
(

θ1B1∑M
i=1 θi Bi

, . . . , θM BM∑M
i=1 θi Bi

)
(see Figure the left column of 4.4). At

the ESS x∗, each user achieves the same expected payoff Un(a∗
n , x∗) =

∑M
i=1 θi Bi

N
(see the right column of Fig. 4.4).

• Asymptotic stability: to investigate the stability of the evolutionary spectrum access
mechanism, we let a fraction of users play the mutant strategies when the system
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Fig. 4.3 The iterations need for the convergence of the evolutionary spectrum accessingmechanism
with different choices of strategy adaptation factor α. The confidence interval is 95%

is at the ESS x∗. At time slot t = 30, ε = 0.5 and 0.9 fraction of users will
randomly choose a new channel. The result is shown in Fig. 4.5. We see that the
algorithm is capable to recover the ESS x∗ quickly after the mutation occurs. This
demonstrates that the evolutionary spectrum access mechanism is robust to the
perturbations in the network.

4.6.1.2 Small λmax Case

We now consider the case that the number of backoff mini-slots λmax = 20, which
is smaller than the number of users N . In this case, severe collisions in channel con-
tention may occur and hence lead to a reduction in data rates for all users. The results
are shown in Figs. 4.6 and 4.7. We see that a small λmax leads to a system perfor-
mance loss (i.e.,

∑N
n=1 Un(an(T ), x(T )) <

∑M
m=1 θm Bm), due to severe collisions

in channel contention. However, the evolutionary spectrum access mechanism still
quickly converges to the ESS as given in (4.8) such that all users achieve the same
expected throughput, and the asymptotic stable property also holds. This verifies the
efficiency of the mechanism in the small λmax case.
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Fig. 4.4 The fraction of users on each channel and the expected user payoff of accessing different
channels with the number of users N = 100 and 200, respectively, and the number of backoff
mini-slots λmax = 100,000

Fig. 4.5 Stability of the evolutionary spectrum access mechanism. Fraction of users in total N =
200 users who choose mutant channels randomly at time slot 30 equal to 0.5 and 0.9, respectively,
and the number of backoff mini-slots λmax = 100,000
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Fig. 4.6 The fraction of users on each channel and the expected user payoff of accessing different
channels with the number of users N = 100 and 200, respectively, and the number of backoff
mini-slots λmax = 20

Fig. 4.7 Stability of the evolutionary spectrum access mechanism. Fraction of users in total N =
200 users who choose mutant channels randomly at time slot 30 equal to 0.5 and 0.9, respectively,
and the number of backoff mini-slots λmax = 20
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Fig. 4.8 Learning mechanism for distributed spectrum access with the number of users N = 100
and 200, respectively, and the number of backoff mini-slots λmax = 100,000

4.6.2 Distributed Learning Mechanism in Large
User Population Case

Wenext evaluate the learningmechanism for distributed spectrum access with a large
user population. We implement the learning mechanism with the number of users
N = 100 and N = 200, respectively, in both large and small λmax cases. We set the
memory factor γ = 0.99 and the length of a decision period tmax = 100 time slots,
which provides a good estimation of the mean data rate. Figures4.8 and 4.9 show
the time average user distribution on the channels converges to the ESS, and the
time average user’s payoff converges the expected payoff at the ESS. Note that users
achieve this result without prior knowledge of the statistics of the channels, and the
number of users utilizing each channel keeps changing in the learning scheme.

4.6.3 Evolutionary Spectrum Access and Distributed
Learning in Small User Population Case

We then consider the case that the user population N is small. We implement the pro-
posed evolutionary spectrum access mechanism and distributed learning mechanism
with the number of users N = 4 and the number of backoff mini-slots λmax = 20.
The results are shown in Fig. 4.10. We see that the evolutionary spectrum access
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Fig. 4.9 Learning mechanism for distributed spectrum access with the number of users N = 100
and 200, respectively, and the number of backoff mini-slots λmax = 20

Fig. 4.10 Evolutionary spectrum access and Learning mechanism for distributed spectrum access
with the number of users N = 4, and the number of backoff mini-slots λmax = 20
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mechanism converges to the equilibrium such that channel 5 has 2 users and both
channel 1 and 2 have 1 user. These 4 users achieve the expected throughput equal to
50, 40, 38 and 38 Mbps, respectively, at the equilibrium. It is easy to check that any
user unilaterally changes its channel selection at the equilibrium will lead to a loss in
throughput, hence the equilibrium is a strict Nash equilibrium. According to [8], any
strict Nash equilibrium is also an ESS and hence the convergent equilibrium is an
ESS. For the distributed learning mechanism, we see that the mechanism also con-
verges to the same equilibrium on the time average. This verifies that effectiveness
of the proposed mechanisms in the small user population case.

4.6.4 Performance Comparison

To benchmark the performance of the proposed mechanisms, we compare them with
the following two algorithms:

• Centralized optimization: we solve the centralized optimization problem maxx∑N
n=1 Un(an, x), i.e., find the optimal population state xopt that maximizes the

system throughput.
• Distributed reinforcement learning: we also implement the distributed algorithm
in [2] by generalizing the single-agent reinforcement learning to the multi-agent
setting. More specifically, each user n maintains a perception value Pn

m(T ) to
describe the performance of channel m, and select the channel m with the proba-

bility fm,n(T ) = eν Pn
m (T )∑M

m′=1 e
ν Pn

m′ (T )
where ν is called the temperature. Once a pay-

off Un(T ) is received, user n updates the perception value as Pn
m(T + 1) =

(1 − μT )Pn
m(T ) + μT Un(T )I{an(T )=m} where μT is the smooth factor satisfy-

ing
∑∞

T =1 μT = ∞ and
∑∞

T =1 μ2
T < ∞. As shown in [2], when ν is sufficiently

large, the algorithm converges to a stationary point. We hence set μT = 100
T and

ν = 10 in the simulation, which guarantees the convergence and achieves a good
system performance.

Since the proposed learning mechanism in this chapter can converge to the same
equilibrium as the evolutionary spectrum access mechanism, we only implement the
evolutionary spectrum access mechanism in this experiment. The results are shown
in Fig. 4.11. Since the global optimum by centralized optimization and the ESS
by evolutionary spectrum access are deterministic, only the confidence interval of
the distributed reinforcement learning is shown here. We see that the evolutionary
spectrum access mechanism achieves up to 35% performance improvement over
the distributed reinforcement learning algorithm. Compared with the centralized
optimization approach, the performance loss of the evolutionary spectrum access
mechanism is at most 38%. When the number of users N is small (e.g., N ≤
50), the performance loss can be further reduced to less than 25%. Note that the
solution by the centralized optimization is not incentive compatible, since it is not a
Nash equilibrium and user can improve its payoff by changing its channel selection
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Fig. 4.11 Comparison of the evolutionary spectrum access mechanism with the distributed rein-
forcement learning and centralized optimization. The confidence interval is 95%

unilaterally. While the evolutionary spectrum access mechanism achieves an ESS,
which is also a (strict) Nash equilibrium and evolutionarily stable. Interestingly,
the curve of the evolutionary spectrum access mechanism in Fig. 4.11 achieves a
local minimum when the number of users N = 5. This can be interpreted by the
property of the Nash equilibrium.When the number of users N = 4, these four users
will utilize the three channels with high data rate (i.e., Channels 2, 3, and 5 in the
simulation). When the number of users N = 5, the same three channels are utilized
at the Nash equilibrium. In this case, there will be a system performance loss due to
severer channel contention. However, no user at the equilibrium is willing to switch
to another vacant channel, since the remaining vacant channels have low data rates
and such a switch will incurs a loss to the user. When the number of users N = 8,
all given channels are utilized at the Nash equilibrium, and this improves the system
performance.
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4.7 Summary

In this chapter, we study the problem of distributed spectrum access of multiple
time-varying heterogeneous licensed channels, and propose an evolutionary spec-
trum access mechanism based on evolutionary game theory. We show that the equi-
librium of the mechanism is an evolutionarily stable strategy and is globally stable.
We further propose a learning mechanism, which requires no information exchange
among the users. We show that the learning mechanism converges to the evolution-
arily stable strategy on the time average. Numerical results show that the proposed
mechanisms can achieve efficient and stable spectrum sharing among the users.
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Chapter 5
Conclusion

In this book, we propose a novel social cognitive radio networking paradigm, where
secondary users share the spectrum collaboratively based on social interactions. The
key motivation is to leverage the wisdom of crowds to overcome various challenges
due to incomplete network information and limited capability of individual secondary
users.

Specifically, we develop three socially inspired distributed spectrum sharing
mechanisms: adaptive channel recommendation mechanism, imitation-based social
spectrum sharing mechanism, and evolutionarily stable spectrum access mechanism.
For adaptive channel recommendation mechanism, inspired by the recommendation
system in the e-commerce industry such as Amazon, we treat secondary users as
customers and the channels as goods, and secondary users collaboratively recom-
mend “good” channels to each other for achieving more informed spectrum access
decisions. For imitative spectrum access mechanism, we leverage a common social
phenomenon “imitation” to devise efficient spectrum sharing mechanism, such that
secondary users imitate the spectrum access strategies of their elite neighbours to
improve the networking performance. For the evolutionarily stable spectrum access
mechanism, motivated by the evolution rule observed in many social animal and
human interactions, we propose an evolutionary game approach for distributed
spectrum access, such that each secondary user evolves its spectrum access deci-
sion adaptively over time by comparing its performance with the collective net-
work performance. Numerical results also demonstrate that the proposed socially
inspired distributed spectrum sharing mechanisms can achieve superior networking
performance.

For the future direction, we can explore other social phenomena such as social
reciprocity and leverage the social community structures to design efficient socially
inspired distributed spectrum sharing mechanisms. Another important direction is
to consider the security issue. How to devise a secure distributed spectrum sharing
mechanism against malicious attacks by effectively utilizing the social trust among
secondary users will be very interesting and challenging.
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