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Preface
Smart autonomous aircraft have become the new focus of academic research
and education, due to their important application potential. They offer new
opportunities to perform autonomous missions in field services and tasks such
as search and rescue, observation and mapping, emergency and fire fighting,
hurricane management.

A smart autonomous aircraft does not require any human intervention dur-
ing its mission. Without a pilot onboard, an aircraft either must be controlled
from the ground by a radio-control ground pilot or it must have its own intel-
ligence to fly autonomously. Autonomy is defined as the ability of a system to
sense, communicate, plan, make decisions and act without human interven-
tion. To that end, the goal of autonomy is to teach machines to be smart and
act more like humans. Intelligence is necessary for:

1. Mission planning to chart its own course using navigation with guid-
ance and tracking control, while achieving optimal fuel consumption.

2. Path planning and waypoint generation accounting for changing
weather and air traffic en route.

3. Mode switching and control reconfiguration decisions for implemen-
tation through the use of a flight control system.

4. Staying within the flight envelope of the aircraft.
5. Taking the corrective action to avoid an obstacle or to evade a threat,

in the presence of external abnormal conditions.
6. Taking the corrective action by reconfiguring the set of controls to

safely continue to fly or land the aircraft, in the presence of internal
abnormal conditions.

7. Interpreting the data from a variety of sources to execute these func-
tions.

The objective of this book is to give an interdisciplinary point of view on
autonomous aircraft. It aims to develop models and review different method-
ologies of control and planning used to create smart autonomous aircraft.
Some case studies are examined as well.

The topics considered in this book have been derived from the author’s re-
search and teaching duties in smart aerospace and autonomous systems over
several years. The other part is based on the top literature in the field. This
book is primarily geared at advanced graduate students, PhD students, and
researchers. It assumes at least an undergraduate-level background in engi-
neering.
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1 Introduction
1.1 CURRENT UAV PRESENTATION
An unmanned aircraft is defined by the US Department of Defense [22] as
an aircraft that does not carry a human operator and is capable of flight un-
der remote control or autonomous programming. Unmanned aircraft are the
preferred alternatives for missions that are characterized as dull, dirty or dan-
gerous. Unmanned aerial vehicles (UAV) provide a great degree of flexibility
in mobility and response time [5, 6, 7]. This contributes towards lower mission
costs compared to manned aircraft and enables acquisition of information in a
time frame not previously possible [36]. The AIAA defines an UAV as an air-
craft which is designed or modified not to carry a human pilot and is operated
through electronic input initiated by the flight controller or by an onboard
autonomous flight management control system that does not require flight
controller intervention. During the last decade, significant efforts have been
devoted to increasing the flight endurance and payloads of UAV resulting in
various UAV configurations with different sizes, endurance levels and capabil-
ities. UAV platforms typically fall into one the following four categories: fixed
wing UAV, rotary wing UAV, airships or lighter than air UAV and finally
flapping wing UAV. This book is devoted to fixed wing UAV.

The civilian applications can be divided into four categories:

1. Scientific and research related: environmental monitoring [21], climate
monitoring, pollution monitoring [26], pollutant estimation [56],

2. Security related: surveillance [16, 37], communications [29], pipeline
inspection,

3. Contractor supplied flight services: structure inspection [39, 44, 46],
agriculture and farm management [47, 53, 63], bridge monitoring [10],

4. Safety related: weather and hurricane monitoring [55].

Unmanned aircraft typically have complementary sensors that can pro-
vide aircraft location along with imagery information and that support mis-
sion planning and route following [8, 15, 17]. Both multi-spectral and hyper-
spectral cameras are now available for small UAV. The aircraft are used to
collect relevant sensor information and transmit the information to the ground
control station for further processing. For example, advanced sensors are con-
tributing to precision agriculture which uses the technology to determine crop
nutrient levels, water stress, impacts from pests and other factors that affect
yield. Advances in platform design, production, standardization of image geo-
referencing and mosaiking and information extraction work flow are required
to provide reliable end products [64].

1
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The characteristics of UAV are:

1. Operation in large, outdoor environments.
2. Motion in 3 dimensions meaning that the planning space must be 4

dimensions.
3. Uncertain and dynamic operating environment.
4. Presence of moving obstacles and environmental forces that affect

motion such as winds and changing weather conditions.
5. Differential constraints on movement.

On the basis of gross weight, operational altitude above ground level (AGL)
and mission endurance, UAV can be described broadly as:

1. Group 1 : Micro/Mini tactical (< 10 kg)
2. Group 2 : Small tactical (10 to 20 kg)
3. Group 3 : Tactical (< 500 kg)
4. Group 4 : Persistent (> 500 kg and Flight Level < FL180)
5. Group 5 : Penetrating (> 500 kg and Flight Level > FL180)

Civilian applications deal mainly with group 1 to group 3. Unmanned
aerial systems (UAS) are systems of systems. These systems make use of a
large variety of technologies. These technologies are not always traditionally
aviation-related. Some of them are related to robotics, embedded systems,
control theory, computer science and technology. Many of these technologies
have crossover potential.

Unmanned aircraft rely predominantly on guidance, navigation and control
sensors, microprocessors, communication systems and ground station com-
mand, control and communications (C3). Microprocessors allow them to fly
entire missions autonomously with little human intervention [42]. The prin-
cipal issues for communication technologies are flexibility, adaptability, se-
curity and controllability of the bandwidth, frequency and information/data
flows. The key aspects of the off-board command, control and communications
are: man-machine interfaces, multi-aircraft command, control and communi-
cations, target identification, downsizing ground equipment.

Navigation is concerned with determining where the aircraft is relative to
where it should be, guidance with getting the aircraft to the destination and
control with staying on track. Situation awareness is used for mission planning
and flight mode selection which constitutes the high level control elements.
For inhabited aircraft, the pilot provides the intelligence for interpreting the
data from a variety of sources to execute these functions. Much of this data
is used in pre-flight or pre-mission planning and is updated onboard as the
mission proceeds. As the mission segments are executed and abnormal events
are encountered, flight mode switching takes place; this constitutes the mid-
level control element. On an inhabited aircraft, the pilot flies the aircraft
and makes necessary mode switching and control reconfiguration decisions for
implementation through the use of the flight control system. This constitutes
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the low-level control element and is used to execute the smooth transition
between modes of flight, for example transition from takeoff to level flight
to landing and stay within the flight envelope of the aircraft. External
abnormal conditions cause the pilot to take corrective actions, such as avoiding
a collision or an obstacle or evading a threat. Internal abnormal conditions
can also occur, such as a failure or a malfunction of a component onboard the
aircraft. Once again, the pilot provides the intelligence to take the corrective
action by reconfiguring the set of controls to safely continue to fly or land the
aircraft.

Without a pilot onboard the aircraft, the onboard computing architecture
must provide the environment for re-usability and reconfigurability. The high
level supervisory controller receives mission commands from the command
and control post and decomposes them into sub-missions which will then be
assigned to connected function modules. Upon reception of start and destina-
tion points from the supervisory controller, the route planner generates the
best route in the form of waypoints for the aircraft to follow. A database of the
terrain in the form of a digitized map should be available to the route planner.

Currently, automated functions in unmanned aircraft include critical flight
operations, navigation, takeoff and landing and recognition of lost commu-
nications requiring implementation of return-to-base procedure [54, 60]. Un-
manned aircraft that have the option to operate autonomously today are
typically fully preprogrammed to perform defined actions repeatedly and in-
dependently of external influence [14]. These systems can be described as
self-steering or self-regulating and can follow an externally given path while
compensating for small deviations caused by external disturbances. Current
autonomous systems require highly structured and predictable environments.
A significant amount of manpower is spent directing current unmanned air-
craft during mission performance, data collection and analysis and planning
and re-planning [9].

An unmanned aircraft system (UAS) is a system whose components include
the necessary equipment, network and personnel to control the unmanned
aircraft [5]. Unmanned technology innovations are rapidly increasing. Some
UAS platforms fly throughout areas of operations for several hours at multiple
altitudes. These missions require accurate and timely weather forecasts to im-
prove planning and data collection and to avoid potential weather related acci-
dents [62]. Accurate weather reporting also supports complementary ground
and flight planning synchronization.The UAS replaces the onboard pilot’s
functionality with several distinctive integrated capabilities. From a decision-
making perspective, these include a remote-human operator, coupled with an
information technology based system of components that enable autonomous
functionality. The latter element is significant since it must compensate for
the many limitations that arise as a result of operating with a remote pilot
[25]. As UAS endurance is increasing, weather predictions must be accurate
so that potential weather related incidents can be avoided and coordinated
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flight and ground operations can be improved [34]. UAS have the potential
to be more cost-effective than current manned solutions. UAS can be more
effective than manned aircraft at dull, dirty and dangerous tasks. They are
also capable of missions that would not be possible with manned aircraft.

1.2 AUTONOMOUS AIRCRAFT
In the context of humans and societies, autonomy is the capacity of a rational
individual to make an informed, uncoerced decision and/or to give oneself
his own rules according to which one acts in a constantly changing environ-
ment [33]. Technical systems that claim to be autonomous will be able to
perform the necessary analogies of mind functions that enable humans to be
autonomous. Moreover, like in human and animal societies, they will have to
abide by rule set or law systems that govern the interaction between individual
members and between groups.

Research and development in automation are advancing from a state of
automatic systems requiring human control toward a state of autonomous
systems able to make decisions and react without human interaction [2]. Ad-
vances in technology have taken sensors, cameras and other equipment from
the analog to the digital state, making them smaller, lighter and more energy
efficient and useful.

Autonomy is a collection of functions that can be performed without direct
intervention by the human. Autonomy can be defined as an unmanned system
ability of sensing, perceiving, analyzing, communicating, planning, decision-
making and acting to achieve its goals [40, 41]. Autonomy is a capability
enabled by a set of technologies such as sensing, intelligence, reliability and
endurance [50].

Different levels of autonomy can be considered [22, 58]:

1. Human makes all decisions
2. Computer computes a complete set of alternatives
3. Computer chooses a set of alternatives
4. Computer suggests one alternative
5. Computer executes suggestion with approval
6. Human can veto computer’s decision within time frame
7. Computer executes then reports to human
8. Computer only reports if asked
9. Computer reports only if it wants to

10. Computer ignores the human.

In today’s technology, the last five levels of autonomy have not yet been
attained.

An integrated suite of information technologies is required to achieve au-
tonomous capabilities. The four elements of the decision cycle: observe, ori-
ent, decide, act (OODA), are the same actions that any human would
perform in achieving an objective in daily life. For an autonomous system,
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machine-based elements must perform the same functions to achieve a desired
result. In that case, the observe function is carried out by one or more sen-
sors. The orient function involves the aggregation and fusing of asynchronous
data, the contextual assessment of the situation and environment and the de-
velopment of relevant hypotheses for the decision-making step. The decide
step involves the ability to establish relevant decision criteria, correctly weigh
a variety of factors in creating the best decision-making algorithm, accurate
determining of timing of action and anticipate the consequences of actions in
anticipation of the next decision cycle. The act function is executed by one
or more effectors that interface with the rest of the system [32].

Autonomy is characterized into levels by factors including mission com-
plexity, environmental difficulty and level of human–machine interaction to
accomplish the mission. It is their performance in terms of mission success and
efficiency, through self-awareness and analysis of their situation, self-learning
and self-decision-making, while minimizing human involvement [58]. Auton-
omy is the ability at run time to operate without the need for a sustained
human supervisor [26].

An autonomous aircraft is self-directed by choosing the behavior it has
to follow to reach a human-directed goal. Autonomous aircraft may optimize
their behavior in a goal-directed manner in unexpected situations. In a given
situation, the best solution must be found, ensuring accuracy and correctness
of a decision-making process through a continual process [30].

The primary goal of UAS regulations is their assurance of safe operations.
This goal is quantified as an equivalent level of safety (ELOS) with that
of manned aircraft. UAS depend on the onboard flight control system and/or
the communication link to operate, introducing additional failure modes that
may increase the total number of accidents for the same reliability require-
ment. UAS do not carry passengers and, as a result, the probability of in-
jury and fatalities after an accident is greatly reduced compared with that
of general aviation. Primary accidents can be ground impact, mid-air colli-
sion, unintended movement. Secondary accidents are falling debris resulting
in fatality or injury, damage to property, damage/loss of system, impact on
environment, impact on society.

Since failure frequency requirements prescribed for manned aircraft of the
same size cannot be used directly, other means to derive such requirements
for UAS need to be employed. A different approach frequently used in safety
engineering is to define safety constraints for a specific accident based on the
desired likelihood of the worst possible outcome, which can in turn be used
to determine maximum failure frequency.

The operating environment of the unmanned aircraft is a critical factor in
determining the appropriate level of autonomy and the capability to maneuver
as needed to accomplish the mission. To be able to fly in any airspace, UAS
are required to be certified as airworthy. Airworthiness certification is a core
acquisition and engineering process conducted by system safety. It takes into
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account material, service life and mission requirements within the intended
airspace. The level of certification depends on the mission requirements of
the system. The aircraft structure, propulsion system, control redundancies,
software and control links must all be certified to a certain standard defined
by the service’s technical airworthiness authority (TAA) [18].

An unmanned aircraft system (UAS) comprises individual system elements
consisting of an unmanned aircraft, the control station and any other system
elements necessary to enable flight, i.e., command and control link, and launch
and recovery elements. There may be multiple control stations, command and
control links and launch and recovery elements within a UAS [23].

With no persons onboard the aircraft, the airworthiness objective is pri-
marily targeted at the protection of people and property on the ground. A
civil UAS must not increase the risk to people or property on the ground
compared with manned aircraft of an equivalent category.

Consideration should be given to the need for continued safe flight and
landing. This will bring into question the appropriateness of a flight termi-
nation system that brings the unmanned aircraft down immediately when a
failure occurs, regardless of location. Emergency sites shall be unpopulated
areas. Factors such as gliding capability and emergency electrical power ca-
pacity (e.g., in case of loss of power) should be considered in determining the
location of emergency sites.

The level of UAS autonomy is likely to have the following impacts of cer-
tification issues: human machine interface compliance with air traffic control
(ATC) instructions, command and control link integrity, handling of UAS
failures and compliance with safety objectives, specific autonomy techniques
(e.g., nondeterministic algorithms) but which have to prove safe behavior,
collision avoidance, type of airspace, avoidance of noise sensitive areas and
objects. A UAS is airworthy if the aircraft and all of its associated elements
are in condition for safe operation.

The consideration of UAS flights in the National Air Space (NAS)
where UAS must operate within the FAA/EASA Federal Aviation Reg-
ulations (FAR)/Joint Aviation Regulation (JAR) has put a stringent
requirement on UAS operations. Users of the UAS must consider the safety
of the general public [20, 24]. Sense and avoid (SAA) capability is a technical
approach proposed to bridge the gap between the Federal Aviation Regula-
tions/Joint Aviation Regulation requirements for a pilot in the cockpit to see
and avoid and the unmanned nature of UAS [38]. The sense and avoid mod-
ule is a decentralized independent safety assurance system in the unmanned
aircraft for immediate to short-term collisions with aircraft and terrain. This
module immediately intervenes when the mid-term separation assurance pro-
cess fails. It uses two types of information: surrounding traffic information
and terrain database. Terrain database stores a spatial model of the Earth
objects with their locations and heights in a certain resolution. The traffic in-
formation is obtained from ADS-B transponders of surrounding aircraft. This
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module enables both automatic dependent surveillance-broadcast ADS-B in
and ADS-B out applications which allow data transmission between aircraft
themselves and ground segments [49].

Airborne sense and avoid systems are focusing on an onboard capability to
perform both self-separation and collision avoidance to ensure an appropriate
level of safety, to enable autonomous action by the aircraft where the system
can identify and react to conflicts [4, 11, 19]. Complex SAA systems may
allow for formation flights. Some rules of the air are detect and avoid, air
traffic control clearance, 500 feet rule, 1000 feet rule, check weather before
flight, check fuel level, check environment, navigation, planning.

By definition, autonomous systems are given goals to achieve and these
goals must come from human operators. Furthermore the use of autonomous
systems can increase safety and operational effectiveness. It is assumed that
the use of autonomous systems on unmanned aircraft is always accompanied
by a pilot override function where a remote pilot can take control of the air-
craft at any point [59]. Rational agents are well suited for use in autonomous
unmanned aircraft because they can provide the overall direction and control
for a task or mission and their behavior can be explained by analyzing the be-
liefs, goals, intentions and plans that define their behavior. Information flows
into the flight control system and rational agents from the environment. Both
components communicate with the rational agent making abstract decisions
about the progress of the mission. These abstract decisions are then passed
to the flight control system.

The special feature of an autonomous aircraft is its ability to be goal-
directed in unpredictable situations [19, 27]. This ability is a significant im-
provement in capability compared to the capabilities of automatic systems.
The automatic system is not able to initially define the path according to some
given goal or to choose the goal that is dictating its path. An autonomous sys-
tem is able to make a decision based on a set of rules and limitations [54].
Ideally, unmanned aircraft systems should be able to adapt to any environ-
ment. Their physical operating environment may vary greatly as they operate
in all weather, from low to high altitudes and in airspace that is congested
[51].

Small UAS requires careful codesign over both physical and cyber-elements
to maximize the system efficiency. Mission objectives and success of the sys-
tem as a whole are becoming increasingly dependent on appropriate allocation
of computational resources balanced against demands of the physical actua-
tion systems. A co-optimization scheme is described that considers trade-offs
between costs associated with the physical actuation effort required for con-
trol and the computational effort required to acquire and process incoming
information [12].

Autonomous aircraft use their hardware and software platforms to complete
a given mission in a dynamic and unstructured environment. The architecture
of an autonomous aircraft can be seen as a collection of software processes
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within a software architecture and run on a hardware architecture [41]. Certain
key areas of interest for improving technology are autonomy and cognitive
behavior, communication systems, interoperability and modularity [22].

Autonomous systems can change their behavior in response to unantici-
pated events, whereas automatic systems would produce the same outputs
regardless of any changes experienced by the system or its surroundings [43].
Another definition of autonomy is given in [5]: a UAS is autonomous if it
has the intelligence and experience to react quickly in a reasoned manner to
an unplanned situation. For a UAS to operate with autonomy, a measure of
artificial intelligence must be present within it plus a readily available source
of experience.

Three major levels of autonomy have been identified in unmanned aircraft:

1. Reactive side:

a. Flight control system, actuator function, engine or propulsion con-
trol

b. Aircraft flight mechanics and air data acquisition
2. Reflective side:

a. Flight path command and performance envelope protection such
as the waypoint following system and the guidance and navigation
function

b. Health manager and fault tolerant control in order to detect and
react to possible system failures and malfunctions

3. Decision-making side:

a. Fault detection and identification
b. Situation awareness manager
c. Mission goal manager

The theoretical framework adopted borrows from various disciplines such
as aeronautic, automatic control, robotics, computer science and engineering,
artificial intelligence, operational research. It integrates algorithms for mission
planning, trajectory generation, health monitoring, path following, adaptive
control theory, fault tolerant control for fast and robust adaptation. Together,
these techniques yield a control architecture that allows meeting strict perfor-
mance requirements in the presence of complex vehicle dynamics and partial
vehicle failures. One of the key requirements is that all maneuvers must be
collision free. The temporal and spatial assignments are therefore sometimes
separated [61].

Remark 1.1. Structural mechanics, aerodynamics and propulsion were im-
portant to the airplane. Computing power, planning, communications, sensors
and other information technology-based capabilities are as important to the
unmanned equivalent. The UAS replaces the onboard pilot’s functionality with
several distinctive integrated capabilities.
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1.3 SMART AUTONOMOUS AIRCRAFT
Smart technology is all about adding intelligence to applications. The goal is
to create applications that are smart enough to understand both the concept in
which they operate and the data they receive from sensors and automatically
use this information to take some type of action.

Smart systems trace their origin to a field of research that envisioned
devices and materials that could mimic human muscular and nervous sys-
tem. The essential idea is to produce a nonbiological system that emulates
a biological function. Smart systems consist of systems with sensors and ac-
tuators that are either embedded in or attached to the system to form an
integral part of it. They respond to stimuli and environmental changes and
activate their functions according to these changes. A smart structure is a
system that incorporates particular functions of sensing and actuation: data
acquisition, data transmission, command and control unit, data instructions,
action devices [1]. Research on systems with adaptation and learning is be-
ing developed. However, higher levels of autonomy that include cognition and
reasoning will be required. As stated in [3], everything will, in some sense, be
smart; that is every product, every service and every bit of infrastructure will
be attuned to the needs of humans it serves and will adapt its behavior to
those needs.

A major goal in unmanned aeronautics or aerial robotics is to make au-
tonomous aircraft smarter. Smartness involves the presentation of innovative
ideas, approaches, technologies, findings and outcomes of research and devel-
opment projects.

The development of smart and sustainable vehicles has emerged as one of
the most fundamental societal challenges of the next decade. Vehicles should
be safer and more environmentally friendly. It is thus important to develop
innovative autonomous vehicles and pervasive sensing to monitor the status of
the aircraft and the surroundings [45, 48]. A smart structure is a system with
actuators, sensors, controllers with built-in intelligence. It involves distributed
actuators and microprocessors that analyze the responses from the sensors.
It uses integrated control theory to command the actuators to alter system
response. For example, the use of smart material actuators has been considered
as an effective solution for control surface actuation.

Remark 1.2. The expression smart can be extended to the field of struc-
tural health monitoring (SHM) where sensor networks, actuators and com-
putational capabilities are used to enable the autonomous aircraft to perform
a self-diagnosis with the goal that it can release early warnings about a criti-
cal health state, locate and classify damage or even forecast the remaining life
term [35].

Smart materials can be used in vibration control, active shape control,
and energy harvesting. These materials have the ability to transduce one form
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of energy to another which makes them useful as actuators and sensors [13,
31, 52, 57].

The ability to achieve one’s goals is a defining characteristic of intelligent
behavior [28]. Three topics can be considered:

1. Encoding drives: how the needs of the system are represented.
2. Goal generation: how particular instances of goals are generated from

the drives with reference to the current state.
3. Goal selection: how the system determines which goal instances to

act on.

Thus, a smart autonomous aircraft can be characterized

1. by being smaller, lighter, faster and more maneuverable and main-
tainable,

2. by sensing the presence of wind and characterizing its effect on aircraft
performance, stability and control,

3. by independent path planning functionality,
4. by improved guidance technologies,
5. by quickly assessing the information from the multi-sensor informa-

tion,
6. by operating the protection system, providing aircraft envelope pro-

tection and adapting the flight controls when some degradation in
performance and control can be anticipated,

7. by activating and managing the protection system and providing the
autopilot with feedback on the system status,

8. by modifying the aircraft flight envelope by use of the flight control
system to avoid conditions where flight could potentially be uncon-
trollable,

9. by adapting the control system to maintain safe flight with the re-
duced flight envelope,

10. by automatically generating a flight plan that optimizes multiple
objectives for a predefined mission goal,

11. by optimizing altitude transitions through weather,
12. by delivering actionable intelligence instead of raw information by an

increased system-sensor automation,
13. by improving mission performance with situational awareness and

weather sensing,
14. by using advanced airborne sense-and-avoid technologies,
15. by detecting, tracking and identifying the time critical targets,
16. by constructing a mission plan with uncertain information satisfying

different and possibly conflicting decision objectives,
17. by applying verification methods to these algorithms.

A perspective emerges in this book through a discussion of mission capabil-
ities unique to unmanned aerial systems and an explanation of some processes
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used to develop those capabilities to achieve improved efficiency, effectiveness
and survivability.

1.4 OUTLINE OF THE BOOK
This book is organized as follows:

1. Chapter 1: Introduction: This chapter explains the book’s purpose
and scope. It examines the current unmanned aerial vehicles while
also presenting autonomous systems and smart aircraft.

2. Chapter 2: Modeling: The main topics presented in this chapter
are reference frames and coordinate systems followed by kinematic
and dynamic models for airplanes. In this book, flight is restricted to
the atmosphere. Flight models involve high order nonlinear dynam-
ics with state and input constraints. For translational dynamics, it
is customary to either completely neglect the rotational dynamics by
assuming instantaneous changes of attitude or to treat the aircraft
attitude dynamics as an actuator for the navigational control sys-
tem. The presentation of six degrees of freedom nonlinear equations
of motion for a fixed wing aircraft over a flat, non rotating Earth
modeled by twelve state equations, follows. More innovative model-
ing approaches such as Takagi–Sugeno modeling, fuzzy modeling and
linear hybrid automation are then considered and mission tools pre-
sented. Finally the model of the atmosphere is introduced.

3. Chapter 3: Flight Control: In this chapter, airplane control prob-
lems are considered and solved, in order to achieve motion autonomy.
A common control system strategy for an aircraft is a two loops struc-
ture where the attitude dynamics are controlled by an inner loop, and
the position dynamics are controlled by an outer loop. In the low level
control system, algorithms depend on the type of aircraft, its dynam-
ical model, the type of control design used and finally the inputs and
sensors choice. Autonomous aircraft can encounter a wide range of
flight conditions in an atmospheric flight and, in some cases, distur-
bances can be as strong as the small aircraft’s own control forces.
Topics related to classical linear and nonlinear control methods are
first presented. Then fuzzy control is introduced followed by filter-
ing. Case studies are presented to illustrate the theoretical methods
presented in this chapter.

4. Chapter 4: Flight Planning: Flight planning is defined as finding a
sequence of actions that transforms some initial state into some de-
sired goal state. This chapter begins with path and trajectory plan-
ning: trim trajectories followed by maneuvers without wind. The op-
timal approach can be used to realize the minimum time trajectory
or minimum energy to increase the aircraft’s endurance. Trajectory
generation refers to determining a path in free configuration space
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between an initial configuration of the aircraft and a final configu-
ration consistent with its kinematic and dynamic constraints. Zer-
melo’s problem is then considered; it allows the study of aircraft’s
trajectories in the wind. In the middle of the chapter, guidance and
collision/obstacle avoidance are considered. Planning trajectories is a
fundamental aspect of autonomous aircraft guidance. It can be con-
sidered as a draft of the future guidance law. The guidance system can
be said to fly the aircraft on an invisible highway in the sky by using
the attitude control system to twist and turn the aircraft. Guidance
is the logic that issues the autopilot commands to accomplish cer-
tain flight objectives. Algorithms are designed and implemented such
that the motion constraints are respected while following the given
command signal. Flight planning is also the process of automatically
generating alternate paths for an autonomous aircraft, based on a set
of predefined criteria, when obstacles are detected in the way of the
original path. Aircraft operate in a three-dimensional environment
where there are static and dynamic obstacles and they must avoid
turbulence and storms. As obstacles may be detected as the aircraft
moves through the environment or their locations may change over
time, the trajectory needs to be updated and satisfy the boundary
conditions and motion constraints. Then, mission planning is intro-
duced by route optimization and fuzzy planning. Case studies are
presented to illustrate the methods presented in this chapter.

5. Chapter 5: Flight Safety: In the first part of the chapter, situation
awareness is introduced. Integrated navigation systems are important
components. Situational awareness is used for low level flight control
and for flight and mission planning which constitute the high level
control elements. Data are coming from different kinds of sensors, each
one being sensitive to a different property of the environment, whose
data can be integrated to make the perception of an autonomous air-
craft more robust and to obtain new information otherwise unavail-
able. Due to the uncertainty and imprecise nature of data acquisition
and processing, individual informational data sources must be ap-
propriately integrated and validated. A part of these data is used in
pre-flight or pre-mission planning and is updated onboard as the mis-
sion proceeds. The navigation problem is to find a desired trajectory
and its open loop steering control. An integrated navigation system
is the combination of an onboard navigation solution providing posi-
tion, velocity and attitude as derived from accelerometer and gyro-
inertial sensors. This combination is accomplished with the use of
diverse Kalman filter algorithms as well as Monte Carlo approaches.
SLAM and geolocation are also presented. In autonomous aircraft,
the onboard control system must be able to interpret the meaning of
the system health information and decide on the appropriate course
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of action. This requires additional processing onboard the unmanned
platform to process and interpret the health information and requires
that the health monitoring and vehicle control systems be capable of
integration. The benefit of integrating systems health monitoring with
the command and control system in unmanned systems is that it en-
ables management of asset health by matching mission requirements
to platform capability. This can reduce the chance of mission fail-
ures and loss of the platform due to a faulty component. Integrated
system health monitoring is investigated, presenting some diagnostic
tools and approaches. As there are uncertainties in the information,
usually several scenarios are considered and a trade-off solution is
offered. The smart autonomous aircraft must be able to overcome
environmental uncertainties such as modeling errors, external distur-
bances and an incomplete situational awareness. In the third part
of the chapter, fault tolerant flight control is considered for LTI and
LPV formulations followed by model reference adaptive control and
maneuver envelope determination. The last part of the chapter con-
cerns a fault tolerant planner detailing trim state, reliability analysis,
safety analysis of obstacle avoidance and mission decision.

6. Chapter 6: General Conclusions: Some general conclusions are
given while also surveying the potential future environment of smart
autonomous aircraft.
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2 Modeling
ABSTRACT
The main topics presented in this chapter are reference frames and coordi-
nate systems followed by kinematic and dynamic models for airplanes. In this
book, flight is restricted to the atmosphere. Flight models involve high or-
der nonlinear dynamics with state and input constraints. For the considered
translational dynamics, it is customary to either completely neglect the ro-
tational dynamics by assuming instantaneous changes of attitude or to treat
the aircraft attitude dynamics as an actuator for the navigational control
system. The presentation of six degrees of freedom nonlinear equations of
motion for a fixed wing aircraft over a flat, non rotating Earth modeled by
twelve state equations, follows. More innovative modeling approaches such as
Takagi–Sugeno modeling, fuzzy modeling and linear hybrid automation are
then considered and mission tools presented. Finally the model of the atmo-
sphere is introduced.

2.1 INTRODUCTION
Mathematical models that capture the underlying physical phenomena are
at the heart of many control and planning algorithms. Modeling is a vast
domain of knowledge and only some basic topics concerning smart autonomous
aircraft are presented in this chapter.

A natural approach for reducing the complexity of large scale systems
places a hierarchical structure on the system architecture. For example, in the
common two-layer planning and control hierarchies, the planning level has a
coarser system model than the lower control level. Furthermore, in general,
an aircraft has two separate classes of control systems: the inner loop and the
outer loop. One of the main challenges is the extraction of a hierarchy of mod-
els at various levels of abstraction while preserving properties of interest. The
notion of abstraction refers to grouping the system states into equivalence
classes. A hierarchy can be thought of as a finite sequence of abstractions.
Consistent abstractions are property preserving abstractions, which can be
discrete or continuous [66]. A fixed-wing aircraft has four actuators: forward
thrust, ailerons, elevator and rudder. The aircraft’s thrust provides accelera-
tion in the forward direction and the control surfaces exert various moments
on the aircraft: rudder for yaw torque, ailerons for roll torque and elevator for
pitch torque. The general aircraft’s configuration has six dimensions: three for
the position and three for the orientation. With six degrees of freedom and
four control inputs, the aircraft is an under-actuated system. Traditionally,
aircraft dynamic models have been analytically determined from principles
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such as Newton–Euler laws for rigid-body dynamics. The parameters of these
dynamic systems are usually determined through costly and time-consuming
wind tunnel testing. These methods, while useful, have limitations when ap-
plied to small autonomous aircraft due to several differences which include
[62, 69]:

1. Low Reynolds number and airspeed,
2. Increased dynamic rates due to decreased mass and moments of in-

ertia,
3. Dominance of propulsion dynamic forces and moments versus aero-

dynamic body forces and moments,
4. Asymmetric or atypical designs,
5. Aerobatic maneuvers not possible by manned aircraft.

More information about classical aircraft modeling can be found in some
textbooks such as [4, 18, 27, 38, 74, 104]. More innovative approaches for
modeling small autonomous aircraft are also presented in this chapter.

2.2 REFERENCE FRAMES AND COORDINATE SYSTEMS
Frames are models of physical objects consisting of mutually fixed points
while coordinate systems are mathematical abstracts. Frames are models of
physical references whereas coordinate systems establish the association
with Euclidean space [104]. A reference frame is a set of rigidly related points
that can be used to establish distances and directions. An inertial frame is
a reference frame in which Newton–Euler laws apply [4, 58]. There are co-
ordinated systems in which the phenomena of interest are most naturally
expressed.

The precise definition of a number of Cartesian coordinate reference
frames is fundamental to the process of aircraft performance, navigation,
flight and mission planning [72]. For aircraft performance, position and ve-
locity are considered with respect to the atmosphere. For navigation, flight
and mission planning, position and velocity are considered with respect to
the Earth. Depending on the objective, there may be some particular coordi-
nate system in which the position and velocity make sense. There are many
different reference frames useful for navigation, guidance and control, such
as heliocentric, inertial, Earth, geographical frame, body frame, wind frame
[17, 33, 36, 41, 94]. Each frame is an orthogonal right-handed coordinate
frame axis set. Earth can considered to be flat, round or oblate, rotating or
not [27, 38, 86, 97].

Remark 2.1. As this book is restricted to atmospheric flight, only some ref-
erence frames are detailed in this chapter.
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2.2.1 INERTIAL FRAME

An inertial reference frame (i-frame) is a coordinate frame in which New-
ton’s laws of motion are valid. It is neither rotating nor accelerating. The loca-
tion of the origin may be any point that is completely unaccelerated (inertial)
such as the Great Galactic Center.

2.2.2 EARTH-CENTERED REFERENCE FRAME

For navigation over the Earth, it is necessary to define axis sets which allow
the inertial measurements to be related to the cardinal directions of the Earth.
Cardinal directions have a physical significance when navigating in the vicinity
of the Earth.

2.2.2.1 Geocentric-inertial frame
The geocentric-inertial frame (gi-frame) has its origin at the center [72]
of the Earth and axes which are non-rotating with respect to the fixed stars,
defined by the axes Oxi , Oyi , Ozi with Ozi coincident with the Earth’s polar
axis (which is assumed to be invariant in direction). It is an inertial reference
frame which is stationary with respect to the fixed stars, the origin of which is
located at the center of the Earth. It is also called Earth-centered inertial
frame (ECIF) in [72].

2.2.2.2 Earth frame
The Earth frame (e-frame) has its origin at the center of the Earth and axes
which are fixed with respect to the Earth, assumed to be a uniform sphere,
defined by the axes Oxe , Oye , Oze . The axis Oxe lies along the Greenwich
meridian with the Earth’s equatorial plane. The axis Oze is along the Earth’s
polar axis. The Earth frame rotates with respect to the inertial frame, at a
rate ωec about the axis Oz. This frame is also called Earth-centered Earth
fixed frame (ECEF) in [72].

2.2.3 GEOGRAPHIC FRAME

2.2.3.1 Navigation frame
The navigation frame (n-frame) is a local geographic frame which has
its origin, P , fixed to any arbitrary point that may be free to move relative
to the Earth, assumed to be a uniform sphere. These axes are aligned with
the directions of North, East and the local vertical Down (NED) or East,
North and Up (ENU), both defined as right-handed reference frames. A grid
blanketing the Earth’s surface and determining any point on Earth consists of
lines of longitude and latitude. Longitude is divided into different meridians
from 0 to 180 degrees with the positive direction starting at the Greenwich
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meridian in an Easterly direction. Latitude is measured from the Equator,
positive to the North from 0 to 90 degrees and negative South.

When going from the Earth-frame to a geographic frame, the convention
is to perform the longitude rotation first, then the latitude. The coordinate
transformation matrix of geographic frame with respect to Earth is:

RGE =

⎛
⎝
− sinλ cos � − sinλ sin � cosλ
− sin � cos � 0

− cosλ cos � − cosλ sin � − sinλ

⎞
⎠ (2.1)

where λ represent the latitude and � the longitude.
The turn rate of the navigation frame with respect to the Earth fixed frame

ωen, is governed by the motion of the point P, with respect to the Earth, often
referred to as the transport rate.

2.2.3.2 Tangent plane frame
The tangent plane frame (t-frame) is a geographic system with its origin
on the Earth’s surface: a frame translating with the vehicle center of mass with
North, East and Down (NED) fixed directions, which moves with it. These
axes are aligned with the directions of North, East and the local vertical
Down (NED) or East, North and Up (ENU), both defined as right-handed
reference frames.

The flight path coordinate system relates the velocity vector of the
aircraft with respect to the Earth to the geographic system via two angles:
the flight path angle γ and the heading angle χ. The heading angle χ is
measured from North to the projection of V (the aircraft velocity relative to
the wind) in the local tangent plane and the flight path angle γ takes vertically
up to V.

The transformation matrix is given by:

RV G =

⎛
⎝

cos γ 0 − sin γ
0 1 0

sin γ 0 cos γ

⎞
⎠
⎛
⎝

cosχ sinχ 0
− sinχ cosχ 0

0 0 1

⎞
⎠ =

=

⎛
⎝

cos γ cosχ cos γ sinχ − sin γ
− sinχ cosχ 0

sin γ cosχ sin γ sinχ cos γ

⎞
⎠

(2.2)

The geographic local horizon line of sight (LOS) is defined in terms of
azimuth and elevation relative to the geographic frame: NED frame.

2.2.4 BODY FRAME

In the body-fixed frame (b-frame), the origin and axes of the coordinate
system are fixed with respect to the nominal geometry of the aircraft. The
axes can be aligned with aircraft reference direction or aircraft stability axes
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system. As the aircraft has, in general, a plane of symmetry then xB and
zB lie in that plane. The xB direction is aligned with the principal axis of
symmetry of the aircraft. The origin of the b-frame is defined at an invariant
point such as the center of volume, the center of mass, of the aircraft.

Remark 2.2. In aircraft dynamics, the instantaneous acceleration cen-
ter of rotation (IACR) of an aircraft is the point on the aircraft that has
zero instantaneous acceleration. The instantaneous acceleration center of ro-
tation of a rigid body is related to, but distinct from, the center of rotation
[99].

Direction cosines matrices, quaternions, Euler angles can describe
finite rotations between frames. Rigid body attitude is often represented using
three or four parameters. A 3 × 3 direction cosine matrix of Euler parame-
ters can be used to describe the orientation of the body achieved by three
successive rotations with respect to some fixed frame reference. Assembled
with the three position coordinates η1 = (x, y, z)T , they allow the descrip-
tion of the situation of an aircraft [37, 38, 97, 104]. Unit quaternions and the
axis angle representation use four parameters to represent the attitude. Three
parameters representation of attitude include the Euler angles or Rodrigues
parameters. These three parameter sets can be viewed as embedded subsets of
R

3, thus allowing methods of analysis that are suited to the Euclidean space
R

3. The usual minimal representation of orientation is given by a set of three
Euler angles: roll φ, pitch θ and yaw ψ.

The body-fixed frame is an orthogonal reference frame whose set of axes
is aligned with the roll, pitch and yaw axes of the aircraft. The position of
all points belonging to the rigid body with respect to the inertial-fixed frame
can be completely defined by knowing the orientation of a body-fixed frame
to the aircraft body and the position of its origin with respect to the reference
frame.

Adopting this formulation, the rotation matrix R can be written as a func-
tion of η2 = (φ, θ, ψ)T given by:

RGB = R(η2) = Rz(ψ)Ry(θ)Rx(φ) (2.3)

with

Rx(φ) =

⎛
⎝

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞
⎠

Ry(θ) =

⎛
⎝

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞
⎠

Rz(ψ) =

⎛
⎝

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎞
⎠
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This transformation, also called the direction cosine matrix (DCM), can be
expressed as:

RGB = RT
BG = R(η2) =

⎛
⎝

cosψ cos θ R12 R13

sinψ cos θ R22 R23

− sin θ cos θ sinφ cos θ cosφ

⎞
⎠

(2.4)

where the following notation is used: Rij represents the element on the ith

line and the jth column of RGB:

R12 = − sinψ cosφ+ cosψ sin θ sinφ

R13 = sinψ sinφ+ cosψ sin θ cosφ

R22 = cosψ cosφ+ sinψ sin θ sinφ

R23 = − cosψ sinφ+ sinψ sin θ cosφ

The Euler angles can be obtained by the following relations:

φ = atan2(R32,R33) (2.5)

θ = arcsin(−R31) (2.6)

ψ = atan2(R21,R11) (2.7)

The function atan2(y, x) computes the arctangent of the ratio y/x. It uses
the sign of each argument to determine the quadrant of the resulting angle.

2.2.5 WIND FRAME

Thewind frame (w-frame) is a body carried coordinate system in which the
xw axis is in the direction of the velocity vector of the aircraft relative to the
air flow. The zw axis is chosen to lie in the plane of symmetry of the aircraft
and the yw axis to the right of the plane of symmetry. In the aircraft wind
axes system, the aerodynamic forces and moments on an aircraft are produced
by its relative motion with respect to the air and depend on the orientation
of the aircraft with respect to the airflow. Therefore, two orientation angles
with respect to the relative wind are needed to specify the aerodynamic forces
and moments: the angle of attack α and the side slip angle β.

The transformation matrix of wind with respect to body coordinates is
given by:

RWB = RT
BW =

⎛
⎝

cosα cosβ sinβ sinα cosβ
− cosα sinβ cosβ − sinα sinβ
− sinα 0 cosα

⎞
⎠ (2.8)
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Remark 2.3. In flight dynamics problems, the instantaneous interaction of
the airframe with the air mass is interesting. The atmosphere can be thought
of as a separate Earth fixed system to which appropriate extra components are
added to account for winds, gusts and turbulence.

2.2.6 SPECIAL EUCLIDEAN GROUP

The special Euclidean group is formed by the group of rigid body transfor-
mations [37]. The trajectories of an aircraft evolve on the special Euclidean
group of order 3, SE(3) = R

3 × SO(3), which includes the position and the
orientation of the rigid body.

Definition 2.1. Special Orthogonal Matrix Group SO(3): The rotation
matrix R being an orthogonal matrix, the set of such matrices constitutes the
special orthogonal matrix group SO(3) defined as:

SO(3) =
{
R ∈ R

3×3,RRT = RTR = I3×3, det (R) = 1
}

(2.9)

For a matrix R ∈ R
3×3, the symmetric and anti-symmetric projection

operations are:

Ps(R) =
1

2

(
R+RT

)
(2.10)

Pa(R) =
1

2

(
R−RT

)
(2.11)

The configuration of the aircraft can be completely defined by associat-
ing the orientation matrix and the body-fixed frame origin position vector,
η1 = (x, y, z)T , with respect to the inertial frame using homogeneous matrix
formulation as:

AM =

(
R(η2) η1
03×3 1

)
(2.12)

Definition 2.2. Special Euclidean Group SE(3): The special Euclidean
group of rigid-body transformations in three dimensions SE(3) is defined by:

SE(3) =

{
AM |AM =

(
R(η2) η1
03×3 1

)
R ∈ SO(3) η1 ∈ R

3

}
(2.13)

Theorem 2.1

The set SE(3) is a Lie group. This group consists of pairs (R, b), R being a
rotation matrix and b a vector with a binary operation o:

(R1, b1)o(R2, b2) = (R1R2,R1b2 + b1) (2.14)

and inverse
(R, b)−1 =

(
R−1,−R−1b

)
(2.15)
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Definition 2.3. Lie Algebra: The Lie algebra of the SO(3) group is denoted
by so(3) and is given by

so(3) =
{
R ∈ R

3×3,R = −RT
}

(2.16)

R being an anti-symmetric matrix.

Given a curve C(t) : [−a, a] → SE(3), an element S(t) of the Lie algebra
se(3) can be associated to the tangent vector Ċ(t) at an arbitrary configura-
tion A(t) by:

S(t) = A−1
M (t) ˙AM (t) =

(
Sk(Ω) RT η̇1

0 0

)
(2.17)

where
Sk(Ω) = RT (t)Ṙ(t) (2.18)

is a 3× 3 skew symmetric operator on a vector defined by:

Sk(Ω) = Sk((p, q, r)T ) =

⎛
⎝

0 −r q
r 0 −p
−q p 0

⎞
⎠ (2.19)

such that
∀x, y ∈ R

3 : Sk(y)x = y × x (2.20)

The rotation matrix derivative can be deduced as:

Ṙ(t) = Sk(Ω)R(t) (2.21)

A particular parametrization of the vector space of anti-symmetric or skew-
symmetric matrices so(3) group is the angle-axis parametrization given by:

R(θ, U) = I3×3 + sin θSk(U) + (1 − cos θ)Sk(U)2 (2.22)

where U ∈ S2 denotes the axis of rotation and θ ∈ [0, π] denotes the rotation
angle [14].

A curve on SE(3) physically represents a motion of the rigid body. If
(V (t),Ω(t)) is the pair corresponding to S(t), then V is the linear velocity
of the origin Om of the body frame with respect to the inertial frame, while
Ω physically corresponds to the angular velocity of the rigid body.

2.3 KINEMATIC MODELS
Kinematics introduces time and models the motion of vehicles without con-
sideration of forces.
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2.3.1 TRANSLATIONAL KINEMATICS

There are two critical frames of reference: an inertial frame, which is fixed
with respect to the ground (in this case, a North-East-Down frame), and the
air relative frame which is the aircraft motion relative to the surrounding air.
Air-relative flight path angle γ is the climb of the velocity vector with respect
to the wind. Similarly, the air relative heading χ is the heading with respect to
lateral wind. The bank angle σ is the rotation of the lift around the velocity
vector. Wind is defined in inertial space and represents the motion of the
atmosphere relative to the ground fixed inertial frame.

The derivation of kinematic equations involves three velocity concepts: in-
ertial velocity, local velocity and wind-relative velocity. The aircraft equations
of motion are expressed in a velocity coordinate frame attached to the air-

craft, considering the velocity of the wind W =

⎛
⎝

WN

WE

WD

⎞
⎠, components of the

wind velocity in the inertial frame. The position of the aircraft is assumed to
be described in the local coordinate system NED with unit vectors n, e, d
pointing respectively, North, East and Down.

The translational kinematics of an aircraft taking into account the wind
effect can thus be expressed by the following equations:

ẋ = V cosχ cos γ +WN

ẏ = V sinχ cos γ +WE

ż = −V sin γ +WD

(2.23)

The aircraft relative velocity vector is defined by the airspeed V . The vari-
ables x, y, z are the aircraft inertial coordinates. The x, y directions are chosen
such that the x − y plane is horizontal, the x-direction is aligned with the
principal axis of symmetry of the aircraft and the z-direction is descending
vertically.

2.3.2 SIX DEGREES OF FREEDOM FORMULATION

The kinematic relationship between the different velocities are given by:

(
η̇1
η̇2

)
= RV =

(
RGB 03×3

03×3 J(η2)

)(
V
Ω

)
(2.24)

where the matrix RGB has been previously defined in equation (2.4), while
the matrix J(η2) is defined by:

J(η2) =

⎛
⎝

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

⎞
⎠

−1



28 Smart Autonomous Aircraft: Flight Control and Planning for UAV

=

⎛
⎝

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

⎞
⎠ (2.25)

Both the linear velocity V = (u, v, w)T and angular velocity Ω = (p, q, r)T

are expressed in the body-fixed frame. This matrix J(η2) presents a singularity
for θ = ±π2 .
Remark 2.4. Euler angles are kinematically singular since the transforma-
tion from their time rate of change to the angular vector is not globally defined.

The relationship between the body-fixed angular velocity vector Ω =
(p, q, r)T and the rate of change of the Euler angles η̇2 = (φ̇, θ̇, ψ̇)T can be
determined by resolving the Euler rates into the body fixed coordinate frame:

p = φ̇− ψ̇ sin θ

q = θ̇ cosφ+ ψ̇ sinφ cos θ (2.26)

r = −θ̇ sinφ+ ψ̇ cosφ cos θ

2.3.3 SPECIAL EUCLIDEAN SPACE

In the special Euclidean space, the kinematic model of an aircraft can thus
be formulated as:

Ṙ = RSk(ω) = −Sk(ω)R (2.27)

where R ∈ SO(3) is the rotation matrix that describes the orientation of the
body-frame relative to the inertial frame. This equation is known as Poisson
equation.

2.3.4 CURVATURE AND TORSION

Without wind effect, the kinematic model is given by the following equations:

ẋ = V cosχ cos γ (2.28)

ẏ = V sinχ cos γ (2.29)

ż = −V sin γ (2.30)

Two non-holonomic constraints can thus be deduced [8]:

ẋ sinχ− ẏ cosχ = 0
{ẋ cosχ+ ẏ sinχ} sin γ + ż cos γ = 0

(2.31)

Using the Frenet-Serret formulation, curvature κ can be deduced [7, 79]:

κ = (γ̇2 + χ̇2cos2γ)−1/2 (2.32)
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as well as torsion τ

τ = χ̇γ̈ cos γ+2χ̇γ̇2 sin γ−γ̇χ̈ cos γ
γ̇2+χ̇2 cos2 γ

+−γ̇χ̇2 cosχ cos γ sin2 γ sinχ+χ̇3 sin γ cos2 γ
γ̇2+χ̇2 cos2 γ

(2.33)

Remark 2.5. The Frenet frame equations are pathological when the curve is
perfectly straight or when the curvature vanishes momentarily.

2.4 DYNAMIC MODELS
Dynamics is the effect of force on mass and flight dynamics is the study of
aircraft motion through the air, in 3D. Newton’s and Euler’s laws are used to
calculate their motions. Newton’s second law governs the translation degrees
of freedom and Euler’s law controls the attitude dynamics. Both must be
referenced to an inertial reference frame, which includes the linear and angular
momenta and their time derivative [104]. In classical vector mechanics, the
acceleration of a rigid body is represented by means of the linear acceleration
of a specified point in the body and an angular acceleration vector which
applies to the whole body.

With P the linear momentum vector and f the external force vector, the
time rate of change of the linear momentum equals the external force:

[f ]I =

[
dP

dt

]

I

(2.34)

The time derivative is taken with respect to the inertial frame I. If the ref-
erence frame is changed to the aircraft’s body frame B, Newton’s law can be
written as

[f ]B =
[
dP
dt

]
B
+ [Ω]B × [P ]B =

[
dP
dt

]
B
+ [Sk(Ω)]B [P ]B =

= RBI

[
dP
dt

]
B
+ [Sk(Ω)]B [P ]B

(2.35)

where Sk(Ω) is the skew symmetric form of Ω expressed in body coordinates,
RBI is the transformation matrix of the body coordinates with respect to the
inertial coordinates.

The dynamics of position is given by:

mV̇ +Ω×mV = F (2.36)

where m is the mass of the aircraft and V is the linear velocity of the aircraft.
The dynamics of orientation is given by the Euler equation:

IΩ̇ + Ω× IΩ =M (2.37)

where Ω is the angular velocity of the body relative to the inertial frame, I is
the inertia matrix and M is the torque.
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When the wind is included, the velocity of the aircraft center of gravity
with respect to the air is given by:

VR = VB −RBG

⎛
⎝

WN

WE

WD

⎞
⎠ (2.38)

When this equation is added to the flat Earth equation, the wind compo-
nents must be supplied as inputs. Then, VR rather than VB must be used in
the calculation of aerodynamic forces and moments [55, 73, 74, 84].

As an alternative to analytical method and wind tunnel testing, system
identification provides a method for developing dynamic system models and
identifying their parameters [39]. System identification is the process of deter-
mining a mathematical model of a dynamic system by analyzing the measured
input signals and output states of the system [44]. It uses the inputs and states
to develop a model that describes the relationship between the input signal
and the response of the system. Then the autopilot performs maneuvers de-
signed to excite the autonomous aircraft dynamics. The signal given to the
control surfaces and actuators is recorded. The actual deflection of the control
surfaces can also be recorded. Then various sensors record the current state
of the small autonomous aircraft: linear and angular accelerations, linear and
angular velocities, positions, aerodynamic angles and angles relative to the
Earth’s surface [6].

There are six main elements to system identification:

1. Input signals
2. Data collection
3. Selection of the model structure
4. Selection of the system identification method
5. Optimization of the model using system identification method
6. Model structure and test data.

In this section, aerodynamics forces/moments, point mass models and six
degrees of freedom models are presented due to their usefulness for control,
guidance and navigation.

2.4.1 AERODYNAMICS FORCES AND MOMENTS

The aerodynamic forces and moments generated on an airplane are due to its
geometric shape, attitude to the flow, airspeed and to the properties of the
ambient air mass through which it is flying, air being a fluid. Its pressure,
temperature, density, viscosity and speed of sound at the flight altitude are
important properties [64]. The aerodynamics forces are defined in terms of
dimensionless coefficients; the flight dynamic pressure and a reference area
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are follows:
X = CxqS Axial force
Y = CyqS Side force

Z = CzqS Normal force
(2.39)

where q is the dynamic pressure, S wing surface area, Cx, Cy, Cz are the
x-y-z forces’ coefficients.

The components of the aerodynamic moments are also expressed in terms
of dimensionless coefficients, flight dynamic pressure reference area S and a
characteristic length �, as follows:

L = ClqS� Rolling moment
M = CmqS� Pitching moment
N = CnqS� Yawing moment

(2.40)

where Cl, Cm, Cn are the roll, pitch and yaw moment coefficients.
For airplanes, the reference area S is taken as the wing platform area and

the characteristic length � is taken as the wing span for the rolling and yawing
moment and the mean chord for the pitching moment.

The aerodynamic coefficients Cx, Cy, Cz , Cl, Cm, Cn are primarily a func-
tion of Mach number M , Reynolds number �, angle of attack α and side-slip
angle β and are secondary functions of the time rate of change of angle of
attack and side-slip angle and the angular velocity of the airplane. These
coefficients are also dependent on control surface deflections; otherwise, the
airplane would not be controllable. They are also dependent on other factors
such as engine power level, configuration effects (e.g., landing gear, external
tanks,) and ground proximity effects. Because of the complicated functional
dependence of the aerodynamic coefficient, each coefficient is modeled as a
sum of components that are, individually, functions of fewer variables.

The aircraft is required to be capable of operating in all weather conditions.
One of the most important factors to be considered is the strength of winds.
Flying in constant wind has little influence on the aerodynamic characteristics
of the aircraft as the forces on the aircraft are related to the relative/local air
movements. Winds also affect the aircraft climb performance relative to the
ground [45].

The resultant aerodynamic force produced by the motion of the aircraft
through atmosphere is resolved into components along the wind axes. The
component along the x-axis is called the drag D. It is in the opposition to
the velocity and resists the motion of the aircraft. The component along the
z-axis (perpendicular to the aircraft velocity) is called the lift L. The lift is
normal to an upward direction and its function is to counteract the weight
of the aircraft. It is the lift that keeps the airplane in the air. The third
component, along the y-axis, is a side force that appears when the velocity of
a symmetrical airplane is not in the plane of symmetry, i.e., when there is a
side-slip angle [36].
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2.4.1.1 Negligible side-slip angle
The lift and drag can be expressed as a function of a non dimensional drag
coefficient CL, CD in the form:

L = 1
2ρV

2SCL(V, α)
D = 1

2ρV
2SCD(V, α)

(2.41)

where S is the aerodynamic reference area and ρ is the density of the air.
The drag coefficient is estimated using the common approximation where

the effective drag coefficient CD is the sum of parasitic CD,0 and lift induced
CD,i drag components. Induced drag is a function of the lift coefficient CL,
the aspect ratio AR and the efficiency factor e:

CD(V, α) = CD,0 + CD,i = CD,0 +
C2
L

πARe
= CD,0 +KC2

L (2.42)

The density ρ expressed in Kg/m3 is given by the following relation

ρ =
P

RT
(2.43)

where the Mach number

M =
V

a
(2.44)

represents the ratio of the velocity with the sonic speed a =
√
γairRT, (m/s

2),
R is gas constant, γair = 1.4 is the ratio of specific heat for air, T is the
temperature of the air while the dynamic pressure is given by

q̄ =
ρ

2
V 2 (2.45)

Replacing the lift coefficient with the load factor, the drag D can be com-
puted as:

D =
1

2
ρV SCD0 + 2K

L2

ρV 2S
(2.46)

The aerodynamic forces and moments acting on the aircraft can be ex-
pressed in terms of the non dimensional forces and moments through mul-
tiplication by a dimensionalizing factor [24]. The forces and moments are
therefore given by:

⎛
⎝

X
Y
Z

⎞
⎠ = qS

⎛
⎝

cosα 0 − sinα
0 1 0

sinα 0 cosα

⎞
⎠
⎛
⎝
−CD
CY
CL

⎞
⎠ (2.47)

⎛
⎝

L
M
N

⎞
⎠ = qS

⎛
⎝

brefCl
CrefCm
brefCn

⎞
⎠ (2.48)
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where CL, CY , CD are the lift, side-force and drag coefficients, respectively,
bref the wingspan, Cref the mean aerodynamic chord. The non-dimensional
force coefficient CL, CY , CD and moment coefficients Cl, Cm, Cn are functions
of the control inputs as well as the aircraft state.

The aerodynamic efficiency is the lift to drag ratio:

E =
L

D
=
CL
CD

(2.49)

Lift and drag normally increase when α is increased.

2.4.1.2 Nonnegligible side-slip angle
The effective angle of attack αe and side-slip angle βe for the aircraft
include the components of wind. The aircraft lift force L, drag force D and
side-force C are defined as functions of these angles as follows:

L = q̄SCL(αe, βe)
D = q̄SCD(αe, βe)
C = q̄SCc(αe, βe)

(2.50)

where the aerodynamic force coefficients CL, CD, Cc are transformations of
the aerodynamic force components between the wind axes and the aircraft
body axes given by the following equations:

⎛
⎝

D′

C′

L′

⎞
⎠ = R

⎛
⎝

D
C
L

⎞
⎠ (2.51)

with R = R1R2

R1 =

⎛
⎝

cosα cosβ sinβ sinα cosβ
− cosα sinβ cosβ − sinα sinβ
− sinα 0 cosα

⎞
⎠ (2.52)

R2 =

⎛
⎝

cosαe cosβe − cosαe sinβe − sinαe
sinβe cosβe 0

sinαe cosβe − sinαe sinβe cosαe

⎞
⎠ (2.53)

with

q̄ =
1

2
ρV 2 (2.54)

CL = Cx sinα− Cz cosα
CD = −Cx cosα cosβ − Cy sinβ − Cz sinα cosβ
Cc = Cx cosα sinβ − Cy cosβ + Cz sinα sinβ

(2.55)

The aerodynamics of an airframe and its controls make a fundamental
contribution to the stability and control characteristics of the aircraft. It is
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usual to incorporate aerodynamics in the equations of motion in the form of
aerodynamic stability and control derivatives. An important aspect of flight
dynamics is concerned with the proper definition of aerodynamic derivatives
as functions of common aerodynamic parameters.

2.4.2 TRANSLATIONAL DYNAMICS: COORDINATED FLIGHT

In studies of the guidance system of an aircraft, point-mass models have
usually been employed. In these models, attitude control systems are incor-
porated and through these autopilots, the attitude is assumed to be quickly
controlled. Therefore, in many cases, the aircraft is approximated by a point
mass and only its translational motion is considered.

Remark 2.6. The complete set of translational equations of motion should
be employed in determining the optimal flight trajectories for long-range nav-
igation.

In a coordinated flight, the flight direction is confined to the plane of
symmetry leading to a zero side force. To achieve a coordinated flight and
hence the maximum aerodynamic efficiency, an aircraft requires precise atti-
tude control. In the absence of a side force, the only way the aircraft can turn
horizontally in a coordinated flight is by banking the wings, that is, tilting the
plane of symmetry such that it makes an angle σ, called the bank angle,
with the local vertical plane. The bank angle is the angle between the aircraft
lift and weight force vectors.Weight is the force due to gravity and is directed
toward the center of mass of the Earth. In this section, a flat Earth model
is assumed due to the relatively small scale of the smart aircraft and flight
paths. The dynamic model used in this section is an aerodynamic point
mass model. The applied forces are aerodynamic force (decomposed into lift
L and drag D), the thrust and the weight force. The aerodynamic force is a
function of the motion of the aircraft relative to the surrounding air and the
physical properties of the aircraft (shape, size and surface properties). Lift is
defined as the component of the aerodynamic force acting perpendicularly to
the air-relative velocity vector. Body force due to side-slip is not considered.
Drag is in the opposite side of the motion [104].

mREV EB = fa,p +mg (2.56)

fa,p represent the sum of the aerodynamic and the propulsion forces. The
rotational time derivative is taken with respect to the inertial Earth frame E.
Using Euler’s transformation, it can be changed to the velocity frame V . The

angular velocity is given by

⎛
⎝
−χ̇ sin γ

γ̇
χ̇ cos γ

⎞
⎠. Thus,

RV V EB +ΩVE
[
V EB

]E
=
fa,p
m

+ [g]V (2.57)
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The air relative to inertial transformation is denoted as RAI and is made
up of the standard rotation transformation matrices denoted as Rx,Ry,Rz:

RAI = Rz(χ)Ry(γ)Rx(σ) (2.58)

The air-relative velocity can be described in terms of the airspeed V and the
heading and flight path angle:

Va = RAI

⎛
⎝

V
0
0

⎞
⎠ =

⎛
⎝

V cos γ cosχ
V cos γ sinχ
−V sin γ

⎞
⎠ (2.59)

The gravity force is expressed by:

fg =

⎛
⎝

cos γ cosχ cos γ sinχ − sin γ
− sinχ cosχ 0

sin γ cosχ sin γ sinχ cos γ

⎞
⎠
⎛
⎝

0
0
mg

⎞
⎠ (2.60)

The aerodynamic forces fa and thrust fp are given in body coordinates:

fap = fa + fp =

⎛
⎝

T cosα−D
(T sinα+ L) sinσ
(T sinα+ L) cosσ

⎞
⎠ (2.61)

The thrust is labeled as T , the parameters D and L are, respectively, the
drag and lift forces, m is the aircraft mass and g is the acceleration due to
gravity. α represents the angle of attack.

The thrust depends on the altitude z and the throttle setting η by a known
relationship T = T (z, V, η). Also, it is assumed that the drag is a function
of the velocity, the altitude and the lift: D = D (z, V, L). It is assumed that
the aircraft will operate close to wing level, steady state flight. Therefore, any
uncertainties in drag forces will dominate and be the most influential to the
aircraft dynamics [103].

If wind is not considered, the different forces can be written as follows:

Fx = mV̇ = T cosα−D −mgsinγ (2.62)

Fy = mV cos γχ̇ = (L + T sinα) sin σ (2.63)

Fz = mV γ̇ = (L+ T sinα) cosσ −mg cos γ (2.64)

Therefore, introducing the wind, the following dynamic model containing
only those state variables that concern the control outer-loop design is con-
sidered:

V̇ = −g sin γ +
1

m
(T cosα−D)

−
(
ẆN cos γ cosχ+ ẆE cos γ sinχ− ẆD sin γ

)
(2.65)
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χ̇ =
L+ T sinα

mV cos γ
(sinσ) +

(
ẆN sinχ− ẆE cosχ

V cos γ

)
(2.66)

γ̇ =
T sinα+ L

mV
cosσ − g

V
cos γ

− 1

V

(
ẆN sin γ cosχ+ ẆE sin γ sinχ+ ẆD cos γ

)
(2.67)

This point-mass model employs angle of attack α, bank angle σ and thrust
T as three control variables. Side-slip angle β is controlled to 0, which is the
assumption of a coordinated turn.

Another standard simplified formulation, with the assumption that the
angle of attack is small and the wind negligible, is:

V̇ =
T −D
m

− g sin γ (2.68)

χ̇ = g
nz sinφ

V cos γ
(2.69)

γ̇ =
g

V
(nz cosφ− cos γ) (2.70)

where nz is the load factor.

Definition 2.4. Load Factor: Aircraft load factor nz is defined as lift L
divided by the weight W.

Differentiating equation (2.23) with respect to time and substituting dy-
namics of V, χ, γ from equations ((2.41) to (2.46)), with the assumption of a
small angle of attack and negligible wind, the dynamics of the position of the
aircraft are given by:

ẍ =
T

m
cos γ cosχ− D

m
cos γ cosχ− L

m
(sinσ sinχ+ cosσ sin γ cosχ) (2.71)

ÿ =
T −D
m

cos γ sinχ+
L

m
(sinσ cosχ+ cosσ sin γ sinχ) (2.72)

z̈ = g − T −D
m

sin γ − L

m
cos γ cosσ (2.73)

Remark 2.7. In a coordinated flight, a change in the wind strength or direc-
tion manifests itself as changes in the angles of attack and side-slip causing
a change in the aerodynamic forces. The ground track is affected even by a
steady wind.

The kino-dynamic equations for the aircraft can be expressed, without
wind, as:

ẋ = V cosχ cos γ (2.74)

ẏ = V sinχ cos γ (2.75)
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ż = −V sin γ (2.76)

V̇ = −g sin γ +
1

m
(T cosα−D) (2.77)

χ̇ =
L+ T sinα

mV cos γ
(sinσ) (2.78)

γ̇ =
T sinα+ L

mV
cosσ − g

V
cos γ (2.79)

These equations are equivalent to:

x′ = dx/ds = cosχ cos γ (2.80)

y′ = dy/ds = sinχ cos γ (2.81)

z′ = dz/ds = − sin γ (2.82)

V ′ = dV/ds = − 1

V
g sin γ +

1

mV
(T cosα−D) (2.83)

χ′ = dχ/ds =
L+ T sinα

mV 2 cos γ
(sinσ) (2.84)

γ′ = dγ/ds =
T sinα+ L

mV 2
cosσ − g

V 2
cos γ (2.85)

with dt = ds
V , ds =

√
dx2 + dy2 + dz2,

ψ = arctan

(
dy

dx

)
= arctan

(
y′

x′

)
(2.86)

γ = arctan

(
dz√

dx2 + dy2

)
= arctan

(
z′√

x′2 + y′2

)
(2.87)

It is also possible to express as:

ψ′ =
1

1 +
(
y′
x′

)2

y′′x′ − y′x′′
x′2

=
y′′x′ − y′x′′
x′2 + y′2

(2.88)

γ′ =
z′′x′2 + z′′y′2 − z′x′′x′ − z′y′′y′√

x′2 + y′2
(2.89)

t∗(s) =
∫ s

s0

dt =

∫ s

s0

ds

V ∗(s)
s0 ≤ s ≤ sf (2.90)

φ∗(s) = − arctan

⎛
⎝ cos γ(s)ψ′(s)

γ′(s) + g cos γ(s)

V ∗2(s)

⎞
⎠ (2.91)
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Airplane maneuverability is limited by several constraints such as stall
speed and minimum controllable velocity, engine limitations, structural limi-
tations [73, 74].

Physical limitations mean that the maximum specific lift is limited by max-
imum lift coefficient CL,max and load factor constraints (nmin, nmax):

|CL| ≤ CL,max nmin ≤ nz ≤ nmax (2.92)

The velocity is saturated to prevent stall as follows:

0 < Vstall ≤ V ≤ Vmax (2.93)

The flight path angle rate is saturated to prevent stall and ensure com-
manded paths stay within physical limits.

|γ̇| ≤ γ̇max (2.94)

2.4.2.1 Aircraft at constant altitude
To maintain a level flight or constant altitude, the lift produced by the aircraft
must equal the weight of the aircraft. For a given altitude and airspeed, this
implies a required value of the lift coefficient:

CL = 2
mg

ρV 2S
(2.95)

The drag for level flight is:

D = CD0

ρV 2S

2
+ 2

(mg)2

πAρV 2S
(2.96)

where A is the aspect ratio.
The model of an aircraft at constant altitude can be expressed as:

ẋ = V cosχ
ẏ = V sinχ

V̇ = U1 − aV 2 − b
V 2 sinχ

χ̇ = U2

(2.97)

Differentiating once, the following relations can be obtained:

ẍ = U1 cos (atan2(ẋ, ẏ))−
(
a
(
ẋ2 + ẏ2

)
+

b

ẋ2 + ẏ2

)
cos (atan2(ẋ, ẏ))− ẏU2

(2.98)

ÿ =

(
U1 − a

(
ẋ2 + ẏ2

)− b

ẋ2 + ẏ2

)
sin (atan2(ẋ, ẏ)) + ẋU2 (2.99)
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2.4.2.2 Aircraft in a vertical flight
The model often adopted to describe the aircraft motion is that of a point mass
with three degrees of freedom commonly used for trajectory prediction
[91]. The equations describe the motion of the aircraft center of mass. The
equations of motion for symmetric flight in a vertical plane with thrust parallel
to the aircraft aerodynamic velocity are the following:

ẋ = V cos γ
ż = −V sin γ

mV̇ = T −D(V, z, L)−mg sin γ
mV γ̇ = L−mg cos γ

(2.100)

where V is the aerodynamic velocity modulus, γ is the path angle, m is the
aircraft mass, x, z are the horizontal distance and the altitude, respectively,
g is the gravity acceleration, T, L,D are, respectively, the thrust, the lift and
the aerodynamic drag; the controls are T and L.

2.4.3 TRANSLATIONAL DYNAMICS: NONCOORDINATED FLIGHT

The origins of all of the following coordinates are taken at the aircraft center
of mass.

ẋ = V cosχ cos γ +WN

ẏ = V sinχ cos γ +WE

ż = −V sin γ +WD

(2.101)

The assumption of negligible side-slip angle is relaxed in this approach.
In this point mass model, with the control inputs taken as T, α, β, σ, the
equations of motion of the aircraft are given as follows [43]:

V̇ = −g sin γ + 1
m (T cosα cosβ −D′)+

−
(
ẆN cos γ cosχ+ ẆE cos γ sinχ− ẆD sin γ

) (2.102)

χ̇ = 1
mV cos γ (T (sinα sinσ − cosσ cosα sinβ) + L′ sinσ − C′ cosσ)+

+ 1
V cos γ

(
ẆN sinχ− ẆE cosχ

)

(2.103)

γ̇ = 1
mV (T (sinα cosσ + sinα cosα sinβ) + (L′ cosσ + C′ sinσ))− 1

V g cos γ+

− 1
V

(
ẆN sin γ cosχ+ ẆE sin γ sinχ+ ẆD cos γ

)

(2.104)
The effective angle of attack, the effective side-slip angle, the aircraft rela-

tive velocity and its three components and the dynamic pressure are given as
follows:
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αe = arctan

(
V sinα cosβ −WD

V cosα cosβ −WN

)
(2.105)

βe = arcsin

(
V sinβ −WE

Va

)
(2.106)

Vax = V cosα cosβ −WN

Vay = V sinβ −WE

Vaz = V sinα cosβ −WD

V =
√
V 2
ax + V 2

ay + V 2
az

(2.107)

q̄ =
1

2
ρV 2 (2.108)

CL = Cx sinα− Cz cosα
CD = −Cx cosα cosβ − Cy sinβ − Cz sinα cosβ
Cc = Cx cosα sinβ − Cy cosβ + Cz sinα sinβ

(2.109)

The parameters Cx, Cy, Cz are the aerodynamic coefficients in the x, y, z di-
rections.

Remark 2.8. This model employs angle of attack, side-slip angle, bank angle
and thrust as four control variables and can introduce wind and active side-slip
angle control precisely.

2.4.4 SIX DEGREES OF FREEDOM DYNAMICS

The nonlinear equations of motion for a fixed wing aircraft over a flat, non-
rotating Earth can also be modeled by twelve state equations. Dynamic model-
ing of a fixed wing aircraft typically involves establishment of the flow/stability
frame (whose coordinates are the angle of attack α and angle of side slip β)
[82]. In the stability frame, aerodynamic coefficients can be calculated and
aerodynamic forces (lift, drag and side forces) and aerodynamic moments (in
pitch, roll and yaw) can be determined with respect to the body frame.

The equations of motion for the rigid-body model have appeared in many
textbooks [4, 82, 104].

2.4.4.1 General formulation
Translational motions can be expressed as

⎛
⎝

ẋ
ẏ
ż

⎞
⎠ = RBG

⎛
⎝

u
v
w

⎞
⎠ (2.110)
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u̇ = rv − qw − g sin θ + q̄S

m
Cx +

XT

m
(2.111)

v̇ = pw − ru + g cos θ sinφ+
q̄S

m
Cy +

YT
m

(2.112)

ẇ = qu− pv + g cos θ cosφ+
q̄S

m
Cz +

ZT
m

(2.113)

where u, v, w are the three aircraft velocity components, Cx, Cy, Cz are the
aerodynamic force coefficients in the aircraft body axes xb, yb, zb, S is the wing
area and q̄ is the dynamic pressure, the matrix RBG being given by relation
(2.4).

The rotational dynamic model can be formulated as:

IΩ̇ = IΩ× Ω+M (2.114)

where M are the applied moments such as the moment created by the
gravity, the aerodynamic moments, the propulsion and control moments, the
aerologic disturbances.

In another form, the dynamic equations can be written as:

V̇B = −Sk(Ω)VB +RBEg0 +
FB
m

(2.115)

Ω̇ = −I−1Sk(Ω)IΩ + I−1TB (2.116)

FB and TB are, respectively, the applied force and torque on the aircraft center
of gravity.

The rotational equations are detailed as:

ṗ =
Ixz(Ix − Iy + Iz)

IxIz − I2xz
pq − Iz(Iz − Iy) + I2xz

IxIz − I2xz
qr +

q̄Sb

Ix
Cl (2.117)

q̇ =
Iz − Ix
Iy

pr +
Ixz
Iy

(
r2 − p2)+ q̄Sc̄

Iy
Cm (2.118)

ṙ =
(Ix − Iy)Ix + I2xz

IxIz − I2xz
pq − Ixz Ix − Iy + Iz

IxIz − I2xz
qr +

q̄Sb

Iz
Cn (2.119)

φ̇ = p+ (q sinφ+ r cosφ) tan θ (2.120)

θ̇ = q cosφ− r sinφ (2.121)

ψ̇ =
1

cos θ
(q sinφ+ r cosφ) (2.122)

where Ix, Iy, Iz, Ixz are the components of the aircraft inertial matrix, b
is the wing span aerodynamic chord and Cl, Cm, Cn are rolling, pitching and
yawing aerodynamic moment coefficient, respectively.
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Remark 2.9. Parametric uncertainty can be included by adjusting the aircraft
parameters as well as scaling the non dimensional coefficients.

2.4.4.2 Poincare formulation
In the Euler angle, the model can also be generated in the form of Poincaré
equations:

Q̇ = V(Q)P

M(Q)Ṗ +C(Q,P )P + F(P,Q,U) = 0
(2.123)

where Q = (φ, θ, ψ, x, y, z)T is the generalized coordinate vector, P =
(p, q, r, u, v, w)T is the quasi-velocity vector. The key parameters in the formu-
lation are the kinematic matrixV, the inertia matrixM(Q) and the gyroscopic
matrix C [47]. The force function F(P,Q,U) includes all of the aerodynamic,
engine and gravitational forces and moments. Ultimately, the engine and aero-
dynamic forces depend on the control inputs U . The kinematics and dynamics
are combined to obtain the state equations:

Ẋ = f(X,U, μ) (2.124)

where the state equation X = (φ, θ, ψ, x, y, z, p, q, r, u, v, w)T , the control U =
(T, δe, δa, δr)

T and the parameter μ ∈ R
k is an explicitly identified vector of

distinguished aircraft parameters.
Multivariate orthogonal function modeling can be applied to wind tunnel

databases to identify a generic global aerodynamic model structure that could
be used for many aircraft. A successful generic model structure must meet
several requirements for practicality. It should be global in the sense that
it is valid over a large portion of the flight envelope for each aircraft. The
method should also be formulated in a manner that enables a fundamental
understanding of the functional dependencies [32].

2.4.4.3 Longitudinal model
Longitudinal models are used for a variety of purposes, from performance
analysis to automatic control system design [82]. The longitudinal variables
are Xlong = (x, z, u, w, θ, q)T .

The longitudinal dynamics of a rigid aircraft can be derived from the six
degrees of freedom model by restricting motion to the longitudinal variables.
When written in flight path coordinates, the longitudinal model takes the
following form:

ẋ = V cos γ (2.125)

ż = −V sin γ (2.126)

θ̇ = q (2.127)
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V̇ =
1

m
(T cosα−D −mgD sin γ) (2.128)

γ̇ =
1

mV
(T sinα+ L−mgD cos γ) (2.129)

α = θ − γ (2.130)

q̇ =
M

Iy
(2.131)

M =
1

2
ρV 2ScCM +

1

2
ρV 2ScCz (2.132)

A common alternative representation for the longitudinal model uses flight
path angle as a state variable in place of pitch attitude:

mV̇T = FT cos(α+ αT )−D −mgD sin γ (2.133)

mγ̇VT = FT sin(α+ αT ) + L−mgD cos γ (2.134)

α̇ = q − γ̇ (2.135)

q̇ =
m

Iy
(2.136)

The variables VT , α, β describe the magnitude and direction of the relative
wind. The thrust vector lies in the xb−zb plane but is inclined at an angle αT
to the fuselage reference line, so that positive αT corresponds to a component
of thrust in the negative zb direction. In load factor coordinates, the resultant
aerodynamic force posseses lift and drag as its two components:

fa = q̄S (−CD 0 − CL)T (2.137)

2.4.4.4 Lateral model
The lateral variables areXlat = (y, v, φ, ψ, r)T . The lateral equations are given
as:

ẏ = uN sinψ + v cosφ cosψ (2.138)

ψ̇ = r cosφ (2.139)

φ̇ = p (2.140)
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v̇ =
Yb
m

+ g sinφ− ruN (2.141)

ṗ =
IzzL+ IxzN

IxxIzz − I2xz
(2.142)

ṙ =
IxzL+ IxxN

IxxIzz − I2xz
(2.143)

2.4.5 UNCERTAINTY

Aircraft have to deal with typical types of uncertainties [101]:

1. Uncertainty in aircraft dynamics and limited precision in command
tracking,

2. Uncertainty in the knowledge of the environment (fixed and mobile
obstacle locations, collision avoidance),

3. Disturbances in the operational environment (wind, atmospheric tur-
bulence),

4. Uncertainty in configuration information.

These uncertainties are often introduced by approximations made while
deriving physical models from first principles, unforeseen increases in sys-
tem complexity during operation, time variations, nonlinearities, disturbances,
measurement noises, health degradation, environmental uncertainties. An-
other uncertainty is flexible aircraft effects, such as structural modes and
resulting vibrations.

Uncertainty can arise in various ways. Structural uncertainty refers to
an imprecise knowledge of the system dynamics, whereas input uncertainty
is associated with exogenous signals: disturbances that steer the aircraft away
from its nominal behavior. Many methods have been developed for the con-
struction of uncertainty sets. Some of these methods are purely deterministic
and are based on the derivation of the upper bounds on the set of parameters
that are consistent with data, whereas other methods allow the user to express
preferences in terms of a coherent risk measure [29].

1. The average approach can be used when a more structured and
probabilistic point of view in the description of the uncertainty is
adopted. This framework is often adopted when uncertainty is asso-
ciated with disturbance signals, although the average approach can
also be used for structural uncertainty.

2. The worst case approach is a suitable design methodology when
the uncertainty level is moderate enough that the solution to the prob-
lem secures an adequate performance for all uncertainty outcomes.
For other problems, the uncertainty is much larger; the approach be-
comes too conservative.
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3. The modulating robustness approach consists of using probabil-
ity to quantify the chance that a certain performance specification is
attained. This approach can be used in the context of flight control.
One way to evaluate the probability that a certain performance is
attained is through randomization and explicit bounds on the num-
ber of samples. Methods can be used to solve feasibility problems
with probability specifications, to quantify the chance that a certain
performance is attained.

Uncertainty assessment consists of three steps:

1. uncertainty characterization by percentage uncertainty with confi-
dence level,

2. uncertainty analysis using error propagation techniques,
3. sensitivity analysis based on iterative binary search algorithms.

Parametric uncertainty on a dynamical system is represented as a vec-
tor q in which each element represents a parameter whose nominal value is
considered as uncertain. There are mainly three types of uncertainty:

Box:
qimin ≤ qi ≤ qimax (2.144)

Sphere:
||qi||2 ≤ r (2.145)

Diamond:
||qi||∞ ≤ r (2.146)

Generally, uncertainty is defined as a connected set.
Different norms of a signal can be defined.

Norm H1

‖u‖1 =

∫ +∞

0

|u(t)|dt (2.147)

Norm H2

‖u‖2 =

√∫ +∞

0

u(t)2dt (2.148)

Norm H∞
‖u‖∞ = supt≥0|u(t)|dt (2.149)

Uncertainty can be dealt with in a number of ways:

1. Generative probabilistic graphical models describe how the
data are generated via classical distribution functions. Depending on
the problem, metric learning techniques can be considered for gener-
ative models.
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2. Discriminative models do not attempt to model data generation,
but focus on learning how to discriminate between data belonging
to different categories or classes, in recognizing actions based on a
limited training set of examples.

3. Imprecise-probabilistic models assume the data are probabilistic
but insufficient to estimate a precise probability distribution.

There are three major approaches to the treatment of uncertainty:
Bayesian probabilities, pattern matching and treating uncertainty as
a problem solving task [51, 71]. Uncertainty is a key property of existence
in the physical world: the environment can be stochastic and unpredictable,
physical sensors provide limited noisy and inaccurate information, physical
effectors produce limited, noisy and inaccurate action and often models are
simplified.

If the position of the aircraft is considered as a probability density function,
the 3D Gaussian probability density function is:

Pr (X) =
1

2π
√
detP

exp

(
−1

2
(X − μX)TP−1(X − μX)

)
(2.150)

where μX ∈ R
3 is the mean of X and P ∈ R

3×3 is the covariance matrix.
Such an ellipsoid represents the positional uncertainty. An ellipse corresponds
to the uncertainty about position. A scalar measure of total uncertainty is the
volume of the ellipsoid.

The focus can be put on the uncertainty modeling for an aerodynamic
model because the aircraft model is a complex wing body configuration. The
general aeroelastic equations of motion can be written as [98]:

Mq +Mcδ +Cq̇ +Kq = Fq + Fδ (2.151)

The modal based double lattice method (DLM) is a widely used unsteady
aerodynamic computational method. Under the double lattice method frame-
work, the general aerodynamic force Fq in the frequency domain is represented
by:

Fq =
1

2
ρV 2ΦTp SCp(Ma, ik)q (2.152)

Cp(Ma, ik) ∈ R
na×n represents the dynamic pressure coefficients on aerody-

namic elements due to harmonic modal motion, at a given reduced frequency
k. The expression for Fδ is similar to this equation.
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With the consideration of the calculation uncertainty or error for
Cp(Ma, ik), it can be rewritten as:

Cp = Cp0 +Wcpl ×Δcp ×Wcpr (2.153)

Wcpr andWcpl scale the pressure perturbation so that Δcp satisfies ‖Δcp‖ ≤ 1.
Under the framework, Δcp is assumed to be a diagonal complex valued matrix
accounting for the uncertainty in dynamic pressure on selected aerodynamic
elements. The key to establishing an adequate aerodynamic uncertainty model
is to determine the left and right weighting matrices in equation (2.153).

Robust optimization involves optimizing the mean of some desired observ-
ables and minimizing the variance in those observables. Thus, robust opti-
mization is inherently multi-objective even if there is only a single main ob-
servable to optimize. Its variance must be minimized, resulting in at least two
objectives for any robust optimization problem. Multi-objective optimization
does not usually produce a single solution or design point, but rather a set of
non-dominated solutions. For an optimization problem with two objectives,
two design points (1 and 2) are non-dominated with respect to each other if
one has a superior value for one objective by an inferior value for the other.
For example, when minimizing lift to drag ratio (L/D) and minimizing its
variance, two solutions are non dominated if (L/D)1 > (L/D)2 and σ1 > σ2.
Non-dominated solutions are often represented as a Pareto set that shows
trade-offs between two or more objectives. Because robust optimization in-
volves optimizing both the mean and variance of one or more observables, the
underlying system must compute such information from similar input infor-
mation. For each objective function evaluation, the underlying system accepts
Gaussian random variables with a defined mean and variance, representing ge-
ometric uncertainty in the edge thickness of an airfoil and computed mean and
variance information for the airfoil’s (L/D). Obtaining the variance informa-
tion required involves modeling a stochastic system. There are several methods
for modeling stochastic systems of which Monte Carlo simulations (MCS) are
the most accurate and straightforward but it usually requires on the order
of thousands of deterministic runs to obtain accurate output statistics for a
single design point. Optimization routines usually require several hundreds or
thousands of design point evaluations. If Monte Carlo simulations are used
to obtain the mean and variance the computational cost becomes prohibitive.
Another solution is to find an efficient means of obtaining variance informa-
tion for a system and non intrusive polynomial chaos is a promising candidate.
A single objective function evaluation still requires several deterministic runs,
but this is on the order of tenths rather than thousands making robust opti-
mization computationally feasible. Problems of sequential resource allocation
in stochastic environments are considered in [31].
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2.5 MULTI-MODEL APPROACH
2.5.1 GLOBAL REPRESENTATION FROM LOCAL MODELS

The aircraft motion is supposed to be described by the model:

Ẋ(t) = f(X(t), U(t))

Y (t) = h(X(t), U(t))
(2.154)

The evolution and output functions f, h assumed unknown [87], the objective
is to find a multi-model representation describing the behavior of the aircraft
in the flight envelope D. This domain can be subdivided into N local domains
noted Di such that D = ∪iDi. On each of these domains, the aircraft motion
can be modeled as:

Ẋ(t) = fi(X(t), U(t))

Y (t) = hi(X(t), U(t)) i = 1 . . . N
(2.155)

such that

∀ζ ∈ Di
‖f − fi‖ < Mf

‖h− hi‖ < Mh
(2.156)

The scalars Mf ,Mh represent the maximum bounds on the errors on f, h.
Let μi(ζ) > 0, a function representing the validity of the local model i on

the domain

μi(ζ) : D→ [0, 1] (2.157)

such that μi(ζ) ≈ 1 for ζ ∈ Di and converging rapidly to zero outside Di.
Different functions can be used:

1. Gaussian:

μi(ζ) =

dim(ζ)∏
j=1

exp

⎛
⎝−1

2

(
ζj −mj

i

σji

)2
⎞
⎠ (2.158)

2. Triangular:

μi(ζ) =

dim(ζ)∏
j=1

max

(
min

(
ζj − aji
bji − aji

,
cji − ζj
cji − bji

)
, 0

)
(2.159)

3. Trapezoidal:

μi(ζ) =

dim(ζ)∏
j=1

max

(
min

(
ζj − aji
bji − aji

, 1,
cji − ζj
cji − bji

)
, 0

)
(2.160)

with ζ = (ζ1, ζ2, . . . , ζdim(ζ))
T .
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To obtain the multi-model in the general form:

Ẋ(t) = f̂(X(t), U(t))

Y (t) = ĥ(X(t), U(t))
(2.161)

such that

∀ζ ∈ Di i = 1 . . .N
f̂ = fi
ĥ = hi

(2.162)

The following expressions must thus be respected:

∀ζ ∈ D f̂ =

N∑
i=1

fi�i(ζ) (2.163)

∀ζ ∈ D ĥ =

N∑
i=1

hi�i(ζ) (2.164)

∀ζ ∈ D i = 1 . . .N �i(ζ) =
μi(ζ)∑N
j=1 μj(ζ)

(2.165)

where �i(ζ) is the interpolation function.

2.5.2 LINEAR APPROXIMATE MODEL

The nonlinear state–space equations (2.111) to (2.122) can be formulated as
follows:

f
(
Ẋ,X, U

)
= 0 (2.166)

where X represents the state-space variable while U is the control variable.
Their definitions depend on the model used.

The linear model state-space formulation is the following:

EẊ = A′X +B′U (2.167)

where

E =
∂f

∂Ẋ
|X=Xref ,U=Uref (2.168)

A′ =
∂f

∂X
|X=Xref ,U=Uref (2.169)

B′ =
∂f

∂U
|X=Xref ,U=Uref (2.170)



50 Smart Autonomous Aircraft: Flight Control and Planning for UAV

This general formulation can be used to express linear longitudinal and
lateral models.

The longitudinal and lateral dynamics for a fixed wing aircraft are given
by the linear equations:

u̇ = Xuu+Xww +Xqq +Xθθ +Xδeδe +XtT (2.171)

v̇ = Yvv + Ypp− (u0 − Yr)r + Yφφ+ Yψψ + Yδaδa + Yδrδr (2.172)

ẇ = Zuu+ Zww + Zqq + Zθθ + Zδeδe + ZtT (2.173)

ṗ = Lvv + Lpp+ Lrr + Lδaδa + Lδrδr (2.174)

q̇ =Muu+Mww +Mqq +Mθθ +Mδeδe +MtT (2.175)

ṙ = Nvv +Npp+Nrr +Nδaδa +Nδrδr (2.176)

where δinputs = (δe, δa, δr, T ) are control inputs corresponding to the ele-
vator, aileron, rudder deflection angles and thrust, respectively. The stability
and control derivatives used in this dynamic linear model are derived from a
nonlinear UAV model using linearization. Therefore, these derivatives depend
on the physical parameters and aerodynamic coefficient parameters which are
Xu, Xw, Zu, Zw, Xt, Zδe , Yv, Yδa , Yδr being inversely proportional to the air-
craft mass m, Xt,Mδe proportional to aerodynamic coefficients of Cδt , Cmδe ,
respectively.

Stability investigations are an important part of any vehicle design. They
require the linearization of the equations of motion in order to take advantage
of linear stability criteria. The eigenvalues of the linear equations serve to
indicate frequency and damping.

2.5.2.1 Linear longitudinal model
Linearized longitudinal models are classically used, where the state variable

is given by X =

⎛
⎜⎜⎝

α
q
vT
θ

⎞
⎟⎟⎠ and the control variable is given by U =

(
δe
δt

)

while the matrices are given by:

E =

⎛
⎜⎜⎝

VTe − Zα̇ 0 0 0
−Mα̇ 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (2.177)

A′ =

⎛
⎜⎜⎝

Zα VTe + Zq ZV −XTV sin(αe + αT ) −gD sin γe
Mα +MTα Mq MV +MTV 0

Xα 0 XV +XTV cos(αe + αT ) −gD cos γe
0 1 0 0

⎞
⎟⎟⎠

(2.178)
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B′ =

⎛
⎜⎜⎝

Zδe −Xδt sin(αe + αT )
Mδe MδT

Xδe XδT cos(αe + αT )
0 0

⎞
⎟⎟⎠ (2.179)

where the aerodynamic derivatives constants are X,Y, Z, L,M,N, α, β, δe,
δt, δa, δr. More information about their derivation can be found in [82].

2.5.2.2 Linear lateral model
In the linear lateral model state-space formulation, the state variable is given

by X =

⎛
⎜⎜⎝

β
φ
ps
qs

⎞
⎟⎟⎠ and the control variable is given by U =

(
δa
δr

)
while the

matrices are given by:

E =

⎛
⎜⎜⎝

VTe 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (2.180)

A′ =

⎛
⎜⎜⎝

Yβ gD cos θe Yp Yr − VTe
0 0 cos γe/ cos θe sin γe/ cos θe
Lβ 0 Lp Lr
Nβ 0 Np Nr

⎞
⎟⎟⎠ (2.181)

B′ =

⎛
⎜⎜⎝

Yδa Yδr
0 0
Lδa Lδr
Nδa Nδr

⎞
⎟⎟⎠ (2.182)

2.5.2.3 Linear translational model
The dynamic translational model of an aircraft can be expressed as:

ẋ = V cos γ cosχ
ẏ = V cos γ sinχ
ż = −V sin γ

(2.183)

V̇ =
T −D −mg sin γ

m
(2.184)

χ̇ =
L sinσ

mV cos γ
(2.185)

γ̇ =
L cosσ −mg cos γ

mV
(2.186)
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taking into account the fact that:

L = nzmg

CL =
2nzmg

ρV 2S

CD = CD0 +KC2
L (2.187)

D =
1

2
ρV 2SCD0 +K

4n2
zm

2g2

ρ2V 4S2

The dynamic model can also be rewritten as:

ẋ = V cos γ cosχ
ẏ = V cos γ sinχ
ż = −V sin γ

(2.188)

V̇ =
T

m
− aV 2 − b n

2
z

V 2
− g sin γ (2.189)

χ̇ =
nzg sinσ

V cos γ
(2.190)

γ̇ = g
nz cosσ − cos γ

V
(2.191)

with the parameters a =
ρSCD0

2m , b = 4mg2K
ρ2S2 . The following choice is

made for the state variable X = (x, y, z, V, χ, γ)T and the control input
u = ( Tm , nz, σ)

T

The equilibrium trajectories can thus be obtained for:

u1r = aV 2
r + b cos

2 γr
V 2
r

+ g sin γr
u2r = nzr = cos γr
u3r = σr = 0

(2.192)

The linear translational model is given by:

Ẋ = AX +BU (2.193)

The Jacobian matrices evaluated at the reference trajectories and inputs
give for the state matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 cos γ cosχ −V cos γ sinχ −V sin γ cosχ
0 0 0 cos γ sinχ V cos γ cosχ −V sin γ sinχ
0 0 0 − sin γ 0 −V cos γ

0 0 0 −2aV + b
n2
z

V 3 0 −g cos γ
0 0 0 0 0 0

0 0 0 0 0 g sin γ
V

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.194)
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and for the input matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 −2b nzV 2 0
0 0 g/V
0 g/V 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.195)

The properties of these linear models will be studied in the following chap-
ter.

2.5.3 LINEAR PARAMETER VARYING MODEL: TAKAGI–SUGENO
FORMULATION

In many cases, it is not enough to simply linearize the system around the
equilibrium point because the variable may vary in a wide range far away
from the equilibrium point. Such a local model describes the system’s in-
put/output (I/O) relationship in a small region around the given point. In
contrast, a global model describes the system input/output relationship for
the entire input space. In particular, a nonlinear global model can often be
approximated by a set of linear local models via rule based function approxi-
mation. The Takagi–Sugeno (TS) approach generalizes the classical partition-
ing by allowing a sub-region to partially overlap with neighboring sub-regions
[83].

Takagi–Sugeno models allow the applications of powerful learning tech-
niques for their identification from data [3]. This model is formed using a set
of rules to represent a nonlinear system as a set of local affine models which
are connected by membership functions. This modeling method presents an
alternative technique to represent complex nonlinear systems and reduces the
number of rules in modeling higher order nonlinear systems.

Remark 2.10. Takagi–Sugeno models are proved to be universal function
approximators as they are able to approximate any smooth nonlinear functions
to any degree of accuracy in any convex compact region. This result provides a
theoretical foundation for applying Takagi–Sugeno models to represent complex
nonlinear systems.

Several results have been obtained concerning the identification of Takagi–
Sugeno models. They are based upon two principal approaches:

1. The first one is to linearize the original nonlinear system in various
operating points when the model of the system is known.

2. The second is based on the input-output data collected from the
original nonlinear system when its model is unknown.
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The Takagi–Sugeno model is a specific mathematical form of representing
nonlinear dynamics. There are at least two methods for constructing such a
model from general nonlinear state space dynamics:

1. The first approach, sector nonlinearity, is a method that results in
a Takagi–Sugeno model that is a mathematically exact representation
of the nonlinear system equations.

2. The second approach, local approximation, to fuzzy partition
spaces produces a Takagi–Sugeno model that can capture the dy-
namics of any nonlinearity that the designer who has insight into the
model desires, and therefore can capture the most prominent nonlin-
ear effects of the system while ignoring minor effects. This results in
a simpler, less computationally intensive model and, for this reason,
is generally preferred in practice.

Definition 2.5. Sector Nonlinearity: A continuous mapping φ : R → R

is said to be a sector nonlinearity in [α, β] if φ(0) = 0 and αU2 ≤ Uφ(U) <
βU2, ∀U �= 0.

To generate the Takagi–Sugeno model, the system dynamics are rewritten
as:

Ẋ = A(X,U)X(t) +B(X,U)U(t)
Y (t) = CX(t)

(2.196)

where the A(X,U),B(X,U) matrices are nonlinear and can depend on any
way on the states and the inputs of the system.

The idea behind the Takagi–Sugeno model is to label the model’s nonlin-
earities of interest as premise variables. At any operating condition within a
predefined range, the premise variables can be evaluated. To capture and eval-
uate all the premise variables, the Takagi–Sugeno model defines a set of if-then
rules corresponding to each premise variable’s minimum and maximum over
the predefined range of interest and every combination between premise vari-
ables. Each rule has a corresponding linear system associated to it representing
its combination of minimum and maximum bounds of the premise variables.
These rules for the linear system are then weighted through membership func-
tions and finally summed. The result is equivalent to the nonlinear system and
although the Takagi–Sugeno model is composed of a set of weighted summed
linear systems, the result is nonlinear because the weightings are functions of
the states and inputs.

The Takagi–Sugeno formulation is a combination of linear models that can
represent satisfactorily a nonlinear model with a compromise of complexity
and error. It can be described through the following polytopic form:

Ẋ(t) =
r∑
i=1

�i(ζ(t)) (AiX(t) +BiU(t)) (2.197)
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Y (t) =

r∑
i=1

�i(ζ)CiX(t) (2.198)

X(t), Y (t) are the state and output vectors, ζ = (ζ1(t), ζ2(t), . . . , ζp(t))
T

the premise vector which may depend on the state vector and Ai,Bi,Ci are
constant matrices. The rules are denoted with r and their number is equal to
2|ζ|, where |ζ| denotes the number of nonlinearities considered. In addition,
�i are normalized weighted functions which are defined by:

�i(ζ(t)) =
μi(ζ(t))∑r
i=1 μi(ζ(t))

μi(ζ(t)) =

p∏
j=1

Mij(ζj(t)) (2.199)

Mij(ζ(t)) ∈ [0, 1] denotes the ranking of the membership functions of the
premise variables ζj(t) ∈ Mij and �i(ζ(t)) satisfies the convex sum prop-
erty for all t. The nonlinear system is modeled as a Takagi–Sugeno model
in a compact region of the state space variable using the sector nonlinearity
approach.

There are four important steps involved in order to develop the equivalent
Takagi–Sugeno models to the aircraft represented as a nonlinear system. Those
are:

1. Definition of the premise variable of the nonlinear system and calcu-
lation of their compact region.

2. Determination of the membership functions.
3. Determination of the number of rules involved and each rule with

respect to possible associations between the premise variables.
4. Calculation of Ai,Bi,Ci with respect to the compact region of the

premise variables

This approach guarantees an exact approximation; however, it is often dif-
ficult to find global sectors for the general nonlinear system. Thus local sectors
are utilized since variables in the nonlinear system can be bounded. The latter
means that every bounded nonlinear term (premise variable) is decomposed
in a convex combination of its bounds. In essence, the compact region for the
premise variables should be known a priori in order for the previous to hold
[76].

Remark 2.11. In some cases, a division by different state variables of the
system is necessary to obtain the LPV form. Consequently, some additional
conditions are necessary for the divisions: these state variables must be differ-
ent from zero. To solve this problem, a translation may be realized: if [−α1, α2]
is the variation domain of one of these variables X1, where α1, α2 > 0, the
following translation can be realized:
X̄d = Xd + α1 + ε thus X̄d ∈ [ε, α1 + α2 + ε] , ε > 0
Replacing Xd by X̄d, the appropriate LPV form can be obtained.
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2.5.3.1 Longitudinal model
Since the number of rules needed to create a Takagi–Sugeno model is at least
2p, where p is the number of premise variables, there is a trade-off between hav-
ing a mathematically approximate Takagi–Sugeno model with fewer premise
variables, which is quicker to calculate and more feasible to find Lyapunov
functions for stability and control purposes. For these reasons, only the most
prominent nonlinearities that influence the angular rates of the aircraft are
modeled in the Takagi–Sugeno model. The other nonlinear terms are linearized
[68].

In the first and second rows of the A matrix, there has been a second
order approximating of the gravity terms [12]. This was done because the
zeroth order of gravity and the trimmed lift force cancel taking a second
order approximation of these terms while canceling the zeroth order terms
eliminates need to have constants in the equations and it keeps sufficient
accuracy in the flight envelope. If the pitch rate is defined in the premise
variables:

ζ1 =
SCmac
Iy

q̄CMα ζ2 =
SCmac
2V Iy

q̄CMq ζ3 =
SCmac
Iy

q̄CMδe
(2.200)

with U = δe, X =

⎛
⎜⎜⎜⎜⎝

V
α
q
θ
h

⎞
⎟⎟⎟⎟⎠
, then the matrix A(X,U) is given by:

A(X,U) =

⎛
⎜⎜⎜⎜⎝

0 A12 0 A14 0
0 A22 1 A24 0
0 A32 A33 0 0
0 0 1 0 0
0 A52 0 A54 0

⎞
⎟⎟⎟⎟⎠

(2.201)

with the following matrix elements:

A12 = g cos θ
sinα

α
− FTα

m
− S

m
q̄CDα

A14 = −g cosα sin θ
θ

A22 = −gα
2
+ gθ − FT

mV

sinα

α
− S

mV
q̄CLα

A24 = −g θ
2
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A32 =
SCmac
Iy

q̄CMα

A33 =
SCmacCmac

2V Iy
q̄CMq

A52 = −V cos θ
sinα

α

A54 = V cosα
sin θ

θ

The matrix B(X,U) is given by the following matrix:

B(X,U) =

⎛
⎜⎜⎜⎜⎝

− S
m q̄CDe

− S
mV q̄CLe

SCmac
Iy

q̄CMe

0
0

⎞
⎟⎟⎟⎟⎠

(2.202)

In choosing which nonlinear terms to incorporate, all terms that feed into
the pitch rate are taken. The reason to do this is that longitudinal stabilization
is controlled by commanding the pitch rate of the aircraft. It is thus most
important to control the pitch rate most precisely over the largest nonlinear
region as needed.

In [57], another point of view is taken. Because the full set of aerodynamic
coefficients is deemed too complex for modeling and control design, a low-
fidelity model of the aircraft is obtained through a two-steps simplification
study. First, an analytical study of the importance of each stability derivative
with respect to the nominal value of the total aerodynamic coefficient is per-
formed. Second, open loop time simulations are performed to refine the low
fidelity model and to ascertain the validity of the final reduced set.

2.5.3.2 Lateral model
The lateral Takagi–Sugeno model is constructed by choosing the premise vari-
ables that influence the determination of the roll rate as well as the most
prominent nonlinearity in the yaw rate: the rudder input term. To incorpo-
rate all the nonlinear terms that do so, the following premise variables can be
defined:

ζ1 = IzCLβ + IxzCNβ
ζ2 = IzCLδa + IxzCNδa
ζ3 = IzCLδr + IxzCNδr
ζ4 = IxzCLδr + IxCNδr

(2.203)
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with U =

(
δa
δr

)
, X =

⎛
⎜⎜⎜⎜⎝

β
p
r
φ
ψ

⎞
⎟⎟⎟⎟⎠
,

with the following parameters C1 = Sq̄T
mVT

, C2 = Sbq̄T
1

IxIz−I2xz .
The dynamics are for a trimmed velocity VT = V (trim) and angle of attack

αT = α(trim). The state matrix A(X,U) is given by:

A(X,U) =

⎛
⎜⎜⎜⎜⎝

A11 A12 A13 A14 0
A21 A22 A23 0 0
A31 A32 A33 0 0
0 1 1 0 0
0 0 cosφ 0 0

⎞
⎟⎟⎟⎟⎠

(2.204)

with its matrix elements:

A11 = C1CYβ

A12 = sinαT

A13 = − cosαT

A14 =
g

VT
cosβ

sinβ

β

A21 = C2

(
IzCLβ + IxzCNβ

)

A22 =
C2b

2VT

(
IzCLp + IxzCNp

)

A23 =
C2b

2VT
(IzCLr + IxzCNr)

A31 = C2

(
IxzCLβ + IxCNβ

)

A32 =
C2b

2VT

(
IxzCLp + IxCNp

)

A33 =
C2b

2VT
(IxzCLr + IxCNr )

The control matrix B(X,U) is given by:

B(X,U) =

⎛
⎜⎜⎜⎜⎝

C1CYδa C1CYδr
C2

(
IzCLδa + IxzCNδa

)
C2

(
IzCLδr + IxzCNδr

)
C2

(
IxzCLδa + IxCNδa

)
C2

(
IxzCLδr + IxCNδr

)
0 0
0 0

⎞
⎟⎟⎟⎟⎠

(2.205)
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2.5.3.3 Multi-model approach for tracking error model for an aircraft at
constant altitude

The aircraft model can be represented with the Takagi–Sugeno model. The
inference performed via the Takagi–Sugeno model is an interpolation of all
the relevant linear models. The degree of relevance becomes the weight in the
interpolation process.

Remark 2.12. Even if the rules in a Takagi–Sugeno model involve only linear
combinations of the model inputs, the entire model is nonlinear.

The kinematic equations of motion of an aircraft at constant altitude are
given by

ẋ = V cosχ
ẏ = V sinχ
χ̇ = ω

(2.206)

The reference trajectory satisfies also:

ẋr = Vr cosχr
ẏr = Vr sinχr
χ̇r = ωr

(2.207)

In 2D, the error posture model can be written as:
⎛
⎝

ex
ey
eχ

⎞
⎠ =

⎛
⎝

cosχ sinχ 0
− sinχ cosχ 0

0 0 1

⎞
⎠
⎛
⎝

xr − x
yr − y
χr − χ

⎞
⎠ (2.208)

Differentiating,
⎛
⎝

ėx
ėy
ėχ

⎞
⎠ =

⎛
⎝

ωey − V + Vr cos eχ
−ωex + Vr sin eχ

ωr − ω

⎞
⎠ (2.209)

The considered input is U =

(
V
ω

)
. If an anticipative action is chosen

such as U = UB + UF with UF =

(
Vr cos eχ

ωr

)
then system (2.209) can be

written as:

⎛
⎝

ėx
ėy
ėχ

⎞
⎠ =

⎛
⎝

0 ωr 0

−ωr 0 Vr
sin eχ
eχ

0 0 0

⎞
⎠
⎛
⎝

ex
ey
eχ

⎞
⎠+

⎛
⎝
−1 ey
0 −ex
0 −1

⎞
⎠UB (2.210)

This nonlinear model can be used for the development of control laws with
observers. It is possible with this methodology to prove the stability of the
global structure of the control [34].
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The errors are assumed to be bounded by:

|ex| ≤ emax |ey| ≤ emax |eχ| ≤ π

2
rad (2.211)

while the limits of the inputs are given by:

0 < Vstall ≤ Vr ≤ Vmax |ωr| ≤ ωmax (2.212)

Considering the model of the tracking error, four nonlinearities appear:

n1 = ωr n2 = Vr
sin eχ
eχ

n3 = ey n4 = ex (2.213)

The Takagi–Sugeno model is obtained by a nonlinear sector approach. As
there are four nonlinearities, then r = 24 = 16 Takagi–Sugeno sub-models can
be obtained:

ė(t) =
16∑
i=1

�i(ζ(t)) (Aie(t) +BiUB(t)) (2.214)

with the state and control matrices:

Ai =

⎛
⎝

0 −ε1iωr,max 0
ε1iωr,max 0 μi

0 0 0

⎞
⎠ (2.215)

Bi =

⎛
⎝
−1 ε2i emax
0 ε3i emax
0 −1

⎞
⎠ (2.216)

where:

ε1i =

{
+1 1 ≤ i ≤ 8
−1 Otherwise

}
(2.217)

ε2i =

{
+1 i ∈ {3, 4, 7, 8, 11, 12, 15, 16}
−1 Otherwise

}
(2.218)

ε3i = (−1)i+1 (2.219)

μi =

{
2
πVr,min 1 ≤ i ≤ 4 and 9 ≤ i ≤ 12

Vr,max Otherwise

}
(2.220)

The membership functions �i, i = 1, . . . , 16 for the Takagi–Sugeno models
are:

�1 = ω01ω02ω03ω04 �2 = ω01ω02ω03ω14

�3 = ω01ω02ω13ω04 �4 = ω01ω02ω13ω14

�5 = ω01ω12ω03ω04 �6 = ω01ω12ω03ω14

�7 = ω01ω12ω13ω04 �8 = ω01ω12ω13ω14

�9 = ω11ω02ω03ω04 �10 = ω11ω02ω03ω14

�11 = ω11ω02ω13ω04 �12 = ω11ω02ω13ω14

�13 = ω11ω12ω03ω04 �14 = ω11ω12ω03ω14

�15 = ω11ω12ω13ω04 �16 = ω11ω12ω13ω14

(2.221)
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with:

ω01 =
ωr,max − ωr

ωr,max − ωr,min ω11 = 1− ω01 (2.222)

ω02 =
Vr,max − Vr sin eχeχ

Vr,max − Vr,min sinπ/2
π/2

ω12 = 1− ω02 (2.223)

ω03 =
emax − ex
2emax

ω13 = 1− ω03 (2.224)

ω04 =
emax − ey
2emax

ω14 = 1− ω04 (2.225)

under the hypothesis of controllability for all (Ai, Bi).

2.5.3.4 Multi-model approach for tracking error model for a 3D aircraft
The kinematic equations of motion of an aircraft in 3D are given by

ẋ = V cos γ cosχ
ẏ = V cos γ sinχ
ż = −V sin γ
χ̇ = ω1

γ̇ = ω2

(2.226)

The reference trajectory satisfies also:

ẋr = Vr cos γr cosχr
ẏr = Vr cos γr sinχr
żr = −Vr sin γr

χ̇r = ω1r

γ̇r = ω2r

(2.227)

In 3D, the error posture model can be written as:

⎛
⎜⎜⎜⎜⎝

ex
ey
ez
eχ
eγ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

E1 E2 − sin γ 0 0
− sinχ cosχ 0 0 0
E3 E4 cos γ 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

xr − x
yr − y
zr − z
χr − χ
γr − γ

⎞
⎟⎟⎟⎟⎠

(2.228)

where
E1 = cos γ cosχ

E2 = cos γ sinχ

E3 = sin γ cosχ

E4 = sin γ sinχ
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Differentiating,

⎛
⎜⎜⎜⎜⎝

ėx
ėy
ėz
ėχ
ėγ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

e1
e2
e3

ω1r − ω1

ω2r − ω2

⎞
⎟⎟⎟⎟⎠

(2.229)

where

e1 = ω1 cos γey − ω2ez − V + Vr cos γ cos γr cos eχ + Vr sin γ sin γr

e2 = −ω1 cos γex − ω1 sin γez + Vr cos γr sin eχ

e3 = ω1 sin γey + ω2ex + Vr sin γ cos γr cos eχ − Vr cos γ sin γr

The considered input is U =

⎛
⎝

V
ω1

ω2

⎞
⎠. If an anticipative action is chosen

such as U = UB + UF with

UF =

⎛
⎝

Vr cos γ cos γr cos eχ + Vr sin γ sin γr
ω1r

ω2r

⎞
⎠ (2.230)

then system (2.229) can be written as:

⎛
⎜⎜⎜⎜⎝

ėx
ėy
ėz
ėχ
ėγ

⎞
⎟⎟⎟⎟⎠

= Alin

⎛
⎜⎜⎜⎜⎝

ex
ey
ez
eχ
eγ

⎞
⎟⎟⎟⎟⎠

+BlinUB (2.231)

where

Alin =

⎛
⎜⎜⎜⎜⎝

0 ω1r cos γ −ω2r 0 0
−ω1r cos γ 0 −ω1r sin γ A24 0

ω2r ω1r sin γ 0 A34 A35

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

(2.232)

with its elements

A24 = Vr cos γr
sin eψ
eχ

A34 = Vr cos γr sin γ
cos eχ
eχ

A35 = −Vr sin γr cos γ 1

eχ
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and

Blin =

⎛
⎜⎜⎜⎜⎝

−1 cos γey −ez
0 −ex cos γ + ez sin γ 0
0 sin γey ex
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

(2.233)

This nonlinear model is used for the development of control laws with
observers. The errors are assumed to be bounded by:

|ex| ≤ emax |ey| ≤ emax |ez| ≤ emax |eχ| ≤ π

2
rad |eγ | ≤ π

2
rad

(2.234)
while the limits of the inputs are given by:

Vstall ≤ Vr ≤ Vmax |ω1r| ≤ ωmax |ω2r| ≤ ωmax (2.235)

Considering the model of the tracking error, eleven nonlinearities appear:

n1 = ω1r cos γ n2 = ω1r sin γ n3 = ω2r

n4 = Vr cos γr
sin eψ
eχ

n5 = Vr cos γr sin γ
cos eχ
eχ

n6 = Vr sin γr cos γ
1
eχ

n7 = cos γey n8 = sin γey
n9 = ex n10 = eh n11 = ex cos γ + ez sin γ

(2.236)

The Takagi–Sugeno model is obtained by a nonlinear sector approach. As
there are eleven nonlinearities, then r = 211 = 2048 Takagi–Sugeno sub-
models can be obtained:

ė(t) =

2048∑
i=1

�i(Z(t)) (Aie(t) +BiUB(t)) (2.237)

with the state and control matrices:

Ai =

⎛
⎜⎜⎜⎜⎜⎝

0 ωmax −ωmax 0 0

−ωmax 0 −ωmax Vr
sin eψ
eχ

0

ωmax ωmax 0 Vr
cos eχ
eχ

−Vr 1
eχ

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(2.238)

Bi =

⎛
⎜⎜⎜⎜⎝

−1 cos γey −eh
0 −ex cos γ − ez sin γ 0
0 sin γey ex
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

(2.239)
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The number of sub-models being too important, the implementation is not
an easy task. In this case, only the more influential nonlinearities should be
kept while the others should be linearized by first order approximation. The
following approximation is used: cos eχ ≈ 1.

The following equation model is thus obtained.

⎛
⎜⎜⎜⎜⎝

ėx
ėy
ėz
ėχ
ėγ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

ω1 cos γey − ω2ez − V + Vr cos eγ
−ω1 cos γex − ω1 sin γez + Vr cos γr sin eχ

ω1 sin γey + ω2ex − Vr sin eγ
ω1r − ω1

ω2r − ω2

⎞
⎟⎟⎟⎟⎠

(2.240)

The considered input is U =

⎛
⎝

V
ω1

ω2

⎞
⎠. Then an anticipative action is chosen

such as U = UB + UF with

UF =

⎛
⎝

Vr cos eγ
ω1r

ω2r

⎞
⎠ (2.241)

This error model will be retained in the sequel.
Then the following system is obtained:

ė = Alinee+BlineU +

⎛
⎜⎜⎜⎜⎝

cos eγ
sin eγ cos γr
− sin eγ

0
0

⎞
⎟⎟⎟⎟⎠
Vr (2.242)

where

Aline =

⎛
⎜⎜⎜⎜⎝

0 ω1r cos γ −ω2r 0 0
−ω1r cos γ 0 −ω1r sin γ Vr cos γr 0

ω2r ω1r sin γ 0 0 −Vr
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

(2.243)

Bline =

⎛
⎜⎜⎜⎜⎝

−1 0 0
0 0 0
0 0 0
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

(2.244)
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Three nonlinearities appear:

n1 = ω1r cos γ n2 = ω1r sin γ n3 = ω2r (2.245)

Then there will exist p = 23 = 8 sub-models. Taking into account the limita-
tions on n1, n2, n3 and the mutual exclusion between sin γ and cos γ to attain
their maximum, the following four state matrices can be used.

Al =

⎛
⎜⎜⎜⎜⎝

0 εiω1r −ω2r 0 0
−εiω1r 0 0 Vr cos γr 0
ω2r 0 0 0 −Vr
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

(2.246)

εi = ±1, or

Al =

⎛
⎜⎜⎜⎜⎝

0 0 −ω2r 0 0
0 0 −εjω1r Vr cos γr 0
ω2r εjω1r 0 0 −Vr
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

(2.247)

εj = ±1, and

Bl =

⎛
⎜⎜⎜⎜⎝

−1 0 0
0 0 0
0 0 0
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

(2.248)

Model validation refers to assessing the predictive accuracy of a model with
experimental data. Existing techniques can generally be placed into two cat-
egories [23]:

1. A model perturbation is identified that accounts for the discrep-
ancy between simulation and experiment. If the perturbation belongs
to an allowable set, the result is deemed not to invalidate the model.
This approach mostly relies on linear matrix inequality optimization
and provides rigorous conclusions about model quality.

2. The second method relies on statistical analysis of the estimated
output error between simulation and experiment.

A method based on the gap metric is presented in [23] as a technique to
validate aircraft models using flight data. The gap metric is a generalization
of the statistical validation metric: the Theil inequality coefficient. It al-
lows a comparison for an identified aircraft LTI model to flight data and the
derivation of a set of robustness requirements for closed-loop control.
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The attraction of LPV systems is the possibility of determining a global
model over an extended region of the operating parameter space on data in
a limited region of the operating parameter space. For an aircraft simulation,
this allows the prediction and extrapolation of the flight characteristics into
regions of the operating parameter space where no actual data were previously
available [10].

2.5.4 FUZZY MODELING

Fuzzy logic is a form of soft (approximate) computing that allows for better
tolerance to imprecision through use of fuzzy membership functions (MF).
It is possible to model complex systems with fuzzy logic; each point in the
variable space or universe has a degree of membership to a fuzzy set on the
interval [0, 1]. A fuzzy membership function can also be used to model un-
certainty as a possible distribution. There are three stages in a fuzzy system,
which evaluates disjoint IF-THEN rules of the form:

IF antecedent THEN consequent (2.249)

2.5.4.1 Type 1 Mamdani approach
Fuzzy logic is a modification of boolean or crisp logic which allows approxi-
mate and common sense reasoning in the absence of true or false certainty.
In crisp logic, set membership is all or nothing. In contrast fuzzy logic al-
lows partial membership of sets, known as fuzzy sets, and forms the basis
of fuzzy systems. Fuzzy systems can deal with partial truth and incomplete
data and are capable of producing accurate models of how systems behave in
the real world, particularly when appropriate conventional system models are
not available [63]. The system operates when inputs are applied to the rules
consisting of the current values of appropriate membership functions. Once
activated, each rule will fire and produce an output which will also be a partial
truth value. In the final stage, the outputs from all the rules are combined, in
some way, and converted into a single crisp output value.

In summary, a fuzzy system consists of the following:

1. A set of inputs,
2. A fuzzification system, for transforming the raw inputs into grades

of memberships of fuzzy sets,
3. A set of fuzzy rules,
4. An inference system to activate the rules and produce their outputs,
5. A defuzzification system to produce one or more crisp outputs.

A variation of fuzzy sets is rough sets. The basic idea is to take concepts and
decision values and create rules for upper and lower boundary approximations
of the set. With these rules, a new object can easily be classified into one of
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the regions. Rough sets are especially helpful in dealing with vagueness and
uncertainty in decision situations and for estimating missing data.

Mamdani-type inference expects the output membership functions to
be fuzzy sets. After the aggregation process, there is a fuzzy set for each output
variable that needs defuzzification. It is possible to use a single spike as the
output membership function rather than a distributed fuzzy set. This set of
output is sometimes known as a singleton output membership function and
it can be thought of as a pre-defuzzified fuzzy set. It enhances the efficiency
of the defuzzification process because it greatly simplifies the computation
required by the more general Mamdani method, which finds the centroid of a
2D function [76].

Definition 2.6. Fuzzy Set: Given a set X, a conventional Type 1 fuzzy set
A defined on X is given by a 2D membership function, also called Type 1
membership function. The primary membership function, denoted by μA(X),
is a crisp number in [0, 1], for a generic element X ∈ X. Usually, the fuzzy
set A is expressed as a 2-tuple given by:

A = {(X,μA(X)) |∀X ∈ X} (2.250)

An alternative representation of the fuzzy set A is also found in the litera-
ture [35] as

A =

∫

X∈X

μA(X)dX (2.251)

where
∫
denotes the union of all admissible X .

Definition 2.7. Fuzzy Binary Relation: A relation R ∈ U×W is referred
to as a fuzzy binary relation from U to W, R(X,Y ) is the degree of relation
between X and Y where (X,Y ) ∈ U ×W. If for each X ∈ U, there exists
Y ∈W such that R(X,Y ) = 1, then R is referred to as a fuzzy relation from
U to W. If U = W, then R is referred to as a fuzzy relation on U. R is
referred to as a reflexive fuzzy relation if R(X,X) = 1, ∀X ∈ U, symmetric
if R(X,Y ) = R(Y,X), ∀X,Y ∈ U, transitive fuzzy relation if R(X,Y ) ≤
∨Y ∈U (R(X,Y ) ∧R(Y, Z)) , ∀X,Z ∈ U.

For example, the designed autonomous navigation controller can consist of
six fuzzy logic modules for the control of altitude, yaw angle, roll angle, pitch
angle and motion along x, y, z axes using the error and the rate of change of
these errors [25]. There are five membership functions for each input set as:

1. NB: Negative Big
2. N: Negative
3. Z: Zero
4. P: Positive
5. PB: Positive Big
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There are seven membership functions for each output set as:

1. NB: Negative Big
2. NM: Negative Mean
3. N: Negative
4. Z: Zero
5. P: Positive
6. PM: Positive Mean
7. PB: Positive Big

The membership function used for the input and output are Gaussian:

μAi = exp

(
(ci −X)2

2σ2
i

)
(2.252)

Mean-area defuzzification method can be selected for the controllers [50].

2.5.4.2 Fuzzy estimation of Takagi–Sugeno models
The fuzzy Takagi–Sugeno model is an effective tool for uncertain nonlinear
system approximation and has been applied successfully to control theory
and techniques [46]. The Takagi–Sugeno system consists of if-then rules with
fuzzy rule antecedent and consequent, where fuzzy rule consequent is specified
as an affine function. More precisely, for m dimensional input variable X =
(X1, X2, . . . , Xn)

T ∈ R
n, the ith fuzzy rule is presented as

Ri : IF X1 is Ai1, X2 is Ai2, . . . , Xn is Ain THEN
Y = �i0 +�i1X1 +�i2X2 + · · ·+�inXn; (i = 1, 2, . . . , r)

(2.253)

Bell-shaped membership function can be employed to represent the fuzzy
linguistic proposition Aij(Xj) such that:

μAij (Xj) = exp

[
−
(
Xj − cij
σij

)2
]

(2.254)

where cij and σij denote the mean and the variance of the corresponding
bell-shaped membership function, respectively. Other shapes can also be used.

With weighted-average defuzzifier, the output function of the Takagi–
Sugeno system is derived as:

Ŷ =

r∑
i=1

Φi(X)li(X) (2.255)

where Φi(X) denotes the firing strength of the ith fuzzy rule with respect
to the input variable X by:

Φi(X) =
μi(X)∑r
k=1 μk(X)

(2.256)
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where

μi(X) =

n∏
j=1

μAij (Xj) (2.257)

and

li(X) = �i0+�i1X1+�i2X2+ · · ·+�inXn =
[
1, XT

]T
�i = Xe�i (2.258)

is the corresponding fuzzy rule consequent where�i = (�i0, �i1, . . . , �in)
T

indicates the column vector of parameters for the ith rule consequent part.
Let the input-output dataset be:

D =
{(
XT
k , Y

T
k

)T
: Xk = [Xk1, Xk2, . . . , Xkn]

T
, k = 1, . . . , N

}
(2.259)

where Xk and Yk represent the kth n-dimensional input variable and output
variable, respectively. Mr

D
is the Takagi–Sugeno system with r fuzzy rules,

which is learned from data set D.
Let Ŷ =

[
Ŷ1, Ŷ2, . . . , ŶN

]
be the output of the Takagi–Sugeno system M

r
D
,

Ŷ =

r∑
i=1

Φi�i = Φ� (2.260)

where Φ ∈ R
N×r(n+1) consists of r blocks

Φi = diag(Φi(X1),Φi(X2), . . . ,Φi(XN ))Xe r = 1, . . . , r (2.261)

Φ is called the dictionary of the Takagi–Sugeno System M
r
D
and its compo-

nent Φi is the sub-dictionary of the ith fuzzy rule. The Takagi–Sugeno fuzzy
system dictionary has a natural block structure. Each block is associated with
one fuzzy rule sub-dictionary. In this sense, fuzzy model output Ŷ can be ex-
pressed as a linear combination of the fuzzy rule sub-dictionaries. A fuzzy
clustering method can be used to identify Takagi–Sugeno models, including
identification of the number of rules and parameters of membership functions,
and identification of parameters of local linear models by using a least squares
method. The goal is to minimize the error between the Takagi–Sugeno mod-
els and the corresponding original nonlinear system [24]. Another method of
interval fuzzy model identification can also be used. This method combines
a fuzzy identification methodology with linear programming. This results in
lower and upper fuzzy models or a fuzzy model with lower and upper param-
eters. An approach to fuzzy modeling using the relevance vector learning
mechanisms (RVM) based on a kernel-based Bayesian estimation has also
been proposed. The main concern is to find the best structure of the Takagi–
Sugeno fuzzy model for modeling nonlinear dynamic systems with measure-
ment error. The number of rules and the parameter values of membership
functions can be found as optimizing the marginal likelihood of the relevance
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vector learning mechanisms in the proposed fuzzy inference system (FIS)
[15, 46, 50].

Establishing the Takagi–Sugeno system on the basis of data may lead to a
nonlinear programming problem because it is quite technical to determine
the optimum fuzzy rules including antecedent membership functions
(AMF) and the corresponding consequent parameters. Some numerical op-
timization approaches such as neuro-fuzzy method via gradient-descent op-
timization techniques, genetic algorithms by balancing the trade-off between
model complexity and accuracy and Levenberg-Marquardt algorithms have
been investigated and widely used for fuzzy system modeling [42].

Two important steps are necessary for Takagi–Sugeno fuzzy system
(TSFS) modeling based on data [85]:

1. Determining rule membership functions which divide the input space
into a number of regions.

2. Estimating the rule consequent parameter vector, which is used to
describe the system’s behavior in each region.

Besides the situations in which experts can provide fuzzy rules with some
prior knowledge, statistics and clustering techniques are naturally and ex-
tensively exploited to partition the input space and determine the membership
functions of fuzzy rule antecedents. Many well known clustering techniques
are widely used such as k-means algorithm, fuzzy c-means algorithm and its
extensions, subtractive clustering algorithms, vector quantization (QV) ap-
proach. After fuzzy rule antecedents have been determined, the estimation
of consequent parameters can be viewed as a linear regression problem in the
product space of the given Input-Output data [54].

Given an input-output data set, the Takagi–Sugeno system can be identified
with a minimal number of rules which simultaneously process sparse conse-
quent parameters. To this end, block-structured information existing in the
Takagi–Sugeno model are taken into account and block structured sparse rep-
resentation to the framework of the Takagi–Sugeno system identification are
extended. Block-structured sparse representation as a successor of traditional
sparse representation is introduced in the least absolute shrinkage and
selection operator (LASSO). It provides a regression model where many
blocks of the regression coefficients with small contribution would shrink ex-
actly to zero while keeping high prediction accuracy. The main important
rules are selected while the redundant ones are eliminated. As a result, the
Takagi–Sugeno system is established with a minimal number of rules that also
possess a minimal number of non zero consequent parameters [90].

2.5.4.3 Type 2 fuzzy systems
Type 1 fuzzy sets handle the uncertainties associated with the fuzzy system
inputs and outputs by using precise and crisp membership functions which the
user believes would capture the uncertainties [40]. Once the type 1 membership
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functions have been chosen, the fact that the actual degree of membership
itself is uncertain is no longer modeled in type 1 fuzzy sets. It is assumed that
a given input results in a precise single value of membership. However, the
linguistic and numerical uncertainties associated with dynamic unstructured
environments cause problems in determining the exact and precise antecedents
and consequent membership functions during the fuzzy logic system design.
As a consequence, the designed type 1 fuzzy sets can be sub-optimal under
specific environment and operation conditions. This can cause degradation in
the fuzzy system performance which can result in poor control.

Definition 2.8. Type 2 fuzzy set: A type 2 fuzzy set Ã is characterized by
a 3D membership function, also called T2 membership function, which itself
is fuzzy. The T2 membership function is usually denoted by μÃ(X,U) where
X ∈ X and U ∈ Jx ⊆ [0, 1] where 0 ≤ fx(U) ≤ 1. The amplitude of a
secondary membership function is called secondary grade of membership, Jx
being the primary membership of X.

Definition 2.9. Footprint of uncertainty: Uncertainty in the primary
membership of a Type 2 fuzzy set Ã is represented by a bounded region, called
footprint of uncertainty (FOU) which is defined as the union of all primary
membership:

FOU(Ã) =
⋃
X∈U

Jx (2.262)

If all the secondary grades of a Type 2 fuzzy set Ã are equal to 1, i.e.,

μÃ(X,U) = 1, ∀X ∈ X, ∀U ∈ Jx ⊆ [0, 1] (2.263)

then Ã is called interval type 2 fuzzy logic systems (IT2FLS). The footprint of
uncertainty is bounded by two curves called the lower and upper membership
functions denoted by μ

Ã
, μÃ at all X, respectively, take up the minimum and

maximum of the membership functions of the embedded T1 fuzzy sets of the
footprint of Uncertainty.

A type 2 fuzzy set is characterized by a fuzzy membership function, i.e.,
the membership value, for each element of this set is a fuzzy set in [0, 1],
unlike a type 1 fuzzy set where the membership grade is a crisp number in
[0, 1]. The membership functions of type 2 fuzzy sets are 3D and include a
footprint of uncertainty. It is the third dimension of type 2 fuzzy sets and
the footprint of uncertainty that provide additional degrees of freedom that
make it possible to model and handle uncertainties. Hence, type 2 fuzzy logic
systems have the potential to overcome the limitations of type 1 fuzzy logic
system [40, 59].

Type reduction (TR) followed by defuzzification is commonly used in in-
terval type 2 fuzzy logic systems (IT2FLS)[59]. Some direct approaches
to defuzzification bypass type reduction, the simplest of which is the Nie–
Tan (NT) direct defuzzification method. The original interval type 2 fuzzy
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logic system requires both type reduction and defuzzification where type re-
duction which projects an interval type 2 fuzzy logic system into an interval
of numbers is accomplished using iterative Kernel–Mendel(KM) or En-
hanced Kernel–Mendel (EKM) algorithm. In such an interval type 2 fuzzy
logic system, after computing the firing interval for each rule, fired rules can
be aggregated in two different ways:

1. Aggregation A1: Compute interval type 2 fired-rule output sets;
then take the union of those sets leading to a single interval type 2
fuzzy logic system, reduce that interval type 2 fuzzy logic system by
means of centroid type reduction and finally defuzzify the resulting
type reduced set by computing the average value of the two end points
of the type reduced set.

2. Aggregation A2: Go directly to type reduction by mean of center
of sets, height or modified height type reduction and then defuzzify
the resulting type-reduced set by computing the average value of the
two end points of the type reduced set.

Mini-max uncertainty bounds (UB) are developed that provide closed
form formulas for the lower and upper bounds of both end points of the type-
reduced set. Defuzzification is simple after the bounds have been computed;
it is just the average of the two end points of the approximate type reduced
set: uncertainty bounds and defuzzification.

A closed form type reduction and defuzzification method has also been
proposed; it makes use of equivalent type 1 membership grades. The basic
idea is to first find an equivalent type 1 membership grade, a firing strength
to replace the firing interval, after which those firing strengths are used in
center of sets defuzzification. Finding the equivalent type 1 membership grade
being complicated, the closed form type reduction and defuzzification method
method can only be used as a replacement for aggregation A2.

In the case of a centroid computation for an interval type 2 fuzzy logic
system, fired rule output sets in an interval type 2 fuzzy logic system are
combined by means of the union operation to give one aggregated interval
type 2 fuzzy logic system: A. The defuzzified value of A is computed in two
steps:

1. Compute the centroid of A, which is an interval set, C(A).
2. Defuzzify C(A).

Interval type 2 fuzzy logic system is a bivariate function on the Cartesian
product: μ : X× [0, 1]→ [0, 1] where X is the universe for the primary variable
X of A. The point-valued representation of A is:

A = {(X,U), μA(X,U) = 1, ∀X ∈ X, ∀U ∈ [0, 1]} (2.264)
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The 2D support of μA is called the footprint of uncertainty (FOU) of A,
i.e.,

FOU(A) = {(X,U) ∈ X,× [0, 1] , μA > 0} (2.265)

FOU(A) is bounded by lower and upper bounding membership functions
(MF) which are denoted by μ

A
and μA, respectively, where:

μ
A
= sup {U ∈ [0, 1] , μA(X,U) > 0} (2.266)

and
μ
A
= inf {U ∈ [0, 1] , μA(X,U) > 0} (2.267)

The primary membership function of A at X is the interval
[
μ
A
, μ

A

]
i.e.,

JX =
[
μ
A
, μA

]
(2.268)

An embedded type 1 fuzzy system i.e., Aje, is a fuzzy set whose range is a
subset of [0, 1] determined by μA:

Aje = {(X,U(X)) , X ∈ X, U ∈ JX} (2.269)

where the primary variable X is sampled at N values X1, . . . , XN and,
at each of these values, its primary membership is sampled at Mi values
μi1, . . . , μiMi ; then there will be nA =

∏N
i=1Mi embedded type 1 fuzzy sys-

tems that are contained within FOU(A).
The wavy slide representation for A is:

FOU(A) =

nA⋃
j=1

A
j
e (2.270)

The centroid C(A) of the type 1 fuzzy system A ∈ X = {X1,X2, . . . ,XN}
is defined as:

C(A) =

∑N
i=1XiμA(xi)∑N
i=1 μA(Xi)

(2.271)

The centroid C(A) of an interval type 2 fuzzy system A is the union of the
centroids of all its embedded type 1 fuzzy systems Aje.

C(A) =

nA⋃
j=1

C(Aje) = [Cl(A), Cr(A)] (2.272)

where
Cl(A) = min∀AjeCA(A

j
e) (2.273)

and
Cr(A) = max∀AjeCA(A

j
e) (2.274)
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In the case of a continuous Kernel–Mendel algorithm, for a continuous
domain of support, Cl and Cr can be addressed as:

Cl = minζ∈[a,b]

∫ ζl
a
xμ

A
(X)dX +

∫ b
ζl
xμ

A
(X)dX

∫ ζl
a
μA(X)dX +

∫ b
ζl
μ
A
(X)dX

(2.275)

and

Cr = maxζ∈[a,b]

∫ ζl
a xμA(x)dx +

∫ b
ζl
xμ

A
(x)dx

∫ ζl
a μA(X)dX +

∫ b
ζl
μ
A
(X)dX

(2.276)

ζ∗l , ζ
∗
r the solutions to (2.275) and (2.276) are called switch points and

are computed by continuous Kernel–Mendel (CKM) or Continuous Enhanced
Kernel–Mendel (CEKM).

Transforming the centroid computation into root finding problems: the op-
timization problems that are associated with the continuous Kernel–Mendel
(and continuous enhanced Kernel–Mendel) can be transformed into equivalent
root finding problems. It is those root findings that define the Nie–Tan and
Kernel–Mendel and defuzzification architectures.

Using the Kernel–Mendel method and defuzzification, the defuzzified value
of A,m() is the center of C(A), i.e.,

m =
1

2
(cl + Cr) (2.277)

In the Nie–Tan method, the average is first computed, i.e., Ci, of the lower
membership function and the upper membership function of A at each Xi:

Ci =
1

2

(
μ
A
(Xi) + μA(Xi)

)
, i = 1, . . . , N (2.278)

Each Ci is a spike that is located at X = Xi. Then, one computes the
center of gravity (COG) of the N spikes:

CNT =

∑N
i=1XiCi∑N
i=1 Ci

(2.279)

Equation (2.279) shows that the Nie–Tan formulation of the crisp output
of an interval type 2 fuzzy logic system depends only on the lower and upper
bound of its FOU(A) [35, 40, 59].

2.5.5 LINEAR HYBRID AUTOMATON

A typical aircraft dynamics consists of several flight modes, for example con-
stant velocity (CV), coordinated turn (CT) and so on. The stochastic linear
hybrid system (SLHS) model is well suited for describing such dynamics,
with each discrete state matched to a flight mode, and each pair (AQ, BQ)
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models the discrete-time continuous state evolution corresponding to different
flight modes. When there is no information available about the aircraft intent,
the mode transition is decoupled from the continuous state dynamics. Thus,
the Markov jump transition model can be used to describe the aircraft flight
mode transition [49].

2.5.5.1 Stochastic linear hybrid system
The stochastic linear hybrid system (SLHS) model contains a set of
discrete-time continuous state models, each matched to a discrete state. At
each time k, the discrete-time state dynamics is described by the following
difference equation:

X(k) = AQ(k)X(k − 1) +BQ(k)W̃ (k) (2.280)

where X(k) is the state vector, Q(k) ∈ Q = 1, 2, .., nd is the discrete state at
time k, Q is a finite set of all the discrete states, AQ and BQ are the system
matrices with appropriate dimensions, corresponding to each discrete state
Q ∈ Q, and W̃ (k) ∈ R

p is the white Gaussian process noise with zero mean
and covariance Q̃(k). The initial state is assumed to be independent of W̃ (k)
for any k.

There are two types of discrete transition models in the stochastic linear
hybrid system:

1. The first type is the Markov jump transition model. The discrete
state transition history is a realization of a homogeneous Markov
chain. The finite state space of the Markov chain is the discrete state
space Q. Suppose at each time k, the probability vector is given by
π(k) = (π1, . . . , πnd(k))

T
where each entry of the vector πi(k) denotes

the probability that the system’s true discrete state is k. Then at the
next time step, the probability vector is updated as

π(k + 1) = Γπ(k) (2.281)

where a constant matrix Γ is the Markov transition matrix with

∑
j

Γij = 1 (2.282)

Γij denotes the scalar component in the ith row and the jthcolumn in
the Markov transition matrix Γ. The discrete transition is indepen-
dent of the continuous dynamics.

2. The second type is the state-dependent transition model. The
discrete state transition is governed by

Q(k + 1) = Ã (Q(k), X(k), θ) (2.283)
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where θ ∈ Θ = R
l and Ã is the discrete state transition function

defined as
Ã(i,X, θ) = j if [XT θT ]T ∈ G(i, j) (2.284)

where G(i, j) is the guard condition.

A specific kind of the guard condition is the stochastic linear guard condition

Gij =

{[
X
θ

]
|X ∈ X, θ ∈ Θ,Lij

[
X
θ

]
+ bij ≤ 0

}
(2.285)

where θ ≈ N(θ, θ̄,Σθ) is a l-dimensional Gaussian random vector with mean
θ̄ and covariance Σθ representing uncertainties in the guard condition; Lij
is a ξ × (n + l) matrix, bij is a constant ξ dimensional vector and ξ is the
dimension of the vector inequality. Here, a vector inequality Y ≤ 0 means
that each scalar element of Y is non positive.

2.5.5.2 State transition
In this paragraph, the state dependent transition, guard condition, is mainly
used to model the flight mode transition with intent information (or flight
plan). To reach its destination, the unmanned aircraft needs to perform a
series of given maneuvers following the given routes from one way point to
another. An aircraft changes its flight mode when it reaches a way point,
which can be interpreted as aircraft intent information. With the given aircraft
intent information, the flight mode changes can be modeled as the discrete
state transitions of a hybrid system. The aircraft’s flight mode depends on
which segment it currently stays in. Such partitions can be mathematically
described by the guard conditions. The flight mode transition is dependent on
the current state of the aircraft and can be modeled by the state dependent
discrete state transition function [44].

In real applications, the flight mode transition does not happen exactly at
the way point but around it, due to various uncertainties. The stochastic
linear guard condition is designed to model such uncertainty in the flight
mode transition. The design parameter θ is a Gaussian random variable to
account for the uncertainties. It can be chosen according to the position of
the given way point and Σθ is chosen according to the aircraft’s navigation
capability: for aircraft with high navigational accuracy, Σθ is small, whereas
Σθ is large for aircraft with poor navigational accuracy.

The aircraft’s dynamics can be modeled by a linear hybrid automaton in
which each control location corresponds to one of the phases of the flight
plan. The activities of each control location contain functions which describe
the evolution of the aircraft’s position on a tangent plane coordinate system.
Assuming that the speed during each phase of the flight is constant, the transi-
tions connecting the different control locations are guarded by tests belonging
to one of two categories:
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1. Tests on the aircraft’s position. This type of test is used when
the end of the nth flight phase is defined by passing waypointWPn+1

= (xn+1, yn+1, zn+1), specified by coordinates in the tangent plane
coordinate system.

2. Tests on a clock. This type of test is used when the duration of the
nth phase of the flight plan is specified, instead of its final waypoint.
The clock used has to be initialized when entering control location n.

The model accepts constant values for the wind’s speed and direction as
well as ranges of minimum/maximum values.

2.5.5.3 Specific fuel consumption
In general, the specific fuel consumption of an aircraft is a function of several
variables and flight conditions which makes the resulting system a nonlin-
ear hybrid one. In order to be analyzed, this system must be approximately
modeled by a linear hybrid automaton. This is accomplished by the rate
translation technique which replaces the nonlinear fuel consumption variable
by a piecewise linear variable that approximates the nonlinear one. A model
for the specific fuel consumption sfc reflects its dependency on the aircraft’s
mass and flight condition:

sfc = ḟ = gu(m)

where m = me + f is the total aircraft’s mass with me being the
empty aircraft’s mass, f the current fuel mass onboard and U ∈
{bestrange, endurance,maxspeed, . . .} a parameter determining the flight
condition. Under such conditions, gu is a non-positive function which decreases
when m grows, approximated by:

gu(m) = gu(me) + huf

where gu(me) is the nominal specific fuel consumption for flight condition u
and huf its increment due to the current amount of fuel f in the aircraft, hu
being a negative constant.

Considering a flight plan as the composition of several phases, each of
them corresponding to a constant flight condition, the fuel consumption of
an unmanned aircraft can be modeled by a nonlinear hybrid automaton such
that location Pi models a phase with fuel consumption dynamics given by
sfc = k1i + k2if with k1i , k2i being non-positive constants corresponding to
gu(me) and hu for location i and flight condition u. Also, at each location Pi,
f is constrained to be in the interval [0, F ] where F is the initial amount of
fuel onboard the aircraft.

2.6 MISSION TOOLS
The main purpose of a smart autonomous aircraft is to provide a platform for
the payload to operate from. The smart autonomous aircraft enables sensors
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to be used in the desired location. Hence the design of the smart autonomous
aircraft and its operational requirements are highly influenced by the payload
parameters. Accurately capturing payload performance and its influence on
smart autonomous aircraft design at an early stage allows a more effective
overall system solution.

2.6.1 SENSORS

Autonomous aircraft can incorporate different kinds of sensors, each one sensi-
tive to a different property of the environment, whose data can be integrated
to make the perception of the aircraft more robust and to obtain new in-
formation. Sensors now represent one of the largest cost items in a smart
autonomous aircraft and are necessary for navigation and mission. Main re-
quirements for sensors are:

1. Integration and environmental requirements

a. Integration on aircraft (size, weight)
b. Environmental requirements for aircraft

2. Operational requirements for sensors, depending on the mission

a. Atmospheric propagation of electromagnetic radiations
b. Disruptive conditions for in route, approach/takeoff or on the run-

way (rain, cloud, fog)
c. Image processing requirements for sensors
d. Data bases’ requirements for sensors
e. Terminal area localization and trajectory management require-

ments

Sensors’ state of the art can be summarized as follows [11]:

1. Optronic sensors
2. Passive sensors

a. day light camera: CCD and CMOS
b. Low light level camera for night vision
c. Infrared camera

3. Active system

a. Lidar laser radar (obstacle detection)
b. Active laser imaging (disruptive conditions, fog, rain)

4. Radar sensors

a. Millimeter wave radar (all weather conditions for medium range
5 km and good resolution)

b. SAR (long range 100km, poor resolution)
5. Enhanced vision system (EVS)

Inertial sensors measure rotation rate and acceleration both of which are vec-
tor valued variables [33, 60, 61, 77].
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1. Gyroscopes are sensors for measuring rotation. Rate gyroscopes mea-
sure rotation rate and displacement gyroscopes (also called whole-
angle gyroscopes) measure rotation angles

2. Accelerometers are sensors for measuring accelerations. However, ac-
celerometers cannot measure gravitational acceleration.

Airspeed data are provided by pitot tubes; however the measurements can be
affected by the aircraft hull.

An inertial navigation system estimates aircraft velocity, orientation and
position with respect to the inertial reference frame. It has no external inputs
such as radio signals. Inertial navigation uses gyroscopes and accelerometers
to maintain an estimate of the position, velocity, attitude and attitude rates
of the aircraft on which the inertial navigation system (INS) is carried.
An INS consists of the following:

1. An inertial measurement unit (IMU) or inertial reference unit
(IRU) containing in general three accelerometers and three gyro-
scopes. These sensors are rigidly mounted to a common base to main-
tain the same relative orientation.

2. Navigation computers calculate the gravitational acceleration (not
measured by accelerometers) and doubly integrate the net accelera-
tion to maintain an estimate of the position of the aircraft.

Data coming from different kind of sensors must be integrated. Data fu-
sion for navigation has been characterized by the use of probabilistic tech-
niques such as Kalman filters, Gauss approximation methods, vector maps,
grid maps. These quantitative methods can manage incomplete and inaccu-
rate information, but at a high computational cost and they usually obtain a
description of the world which is more accurate for the task.

During flight, the aircraft angular rates p, q, r can be measured by rate gyro-
scopes. The three orthogonally mounted gyroscopes measure the components
of the angular velocity Ω and use the following discrete matricial equation:

R(k + 1) = δtSk(Ω)R(k) +R(k) (2.286)

to continuously update the estimated orientation matrix RE
B of the aircraft

body-fixed frame with respect to the inertial reference frame. δt is the incre-
ment in time. The measured acceleration aB of the aircraft body frame is
rotated into the inertial frame:

aI = RI
Ba

B (2.287)

and then can be integrated twice to update the estimate of the aircraft’s
position in the inertial frame.

The angle of attack α and the side-slip angle β can be measured by a
spherical flow direction sensor. This sensor uses the differential pressure mea-
surements from several pressure ports on a sphere mounted to the tip of the
aircraft to determine the direction of the flow.
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The Global Positioning System (GPS) currently comprises around
thirty active satellites orbiting the Earth in six planes. A GPS receiver works
by measuring the time of travel of radio signals from four or more satellites
whose orbital position is encoded in the GPS signal. With four known points
in space and four measured time delays, it is possible to compute the position
of the aircraft and the time. If the GPS signals are received after reflecting off
some surface, the distance traveled is longer and this will introduce an error in
the position estimate [19]. Variations in the propagation speed of radiowaves
through the atmosphere is the main cause of errors in the position estimate.
However, these errors vary slowly with time and are approximately constant
over large areas. This allows the error to be measured at a reference station
and transmitted to compatible nearby receivers that can offset the error: this
is the differential global positioning system (DGPS)

Electronic sensors of many types and sizes have emerged to provide the
necessary functionalities. Situation awareness/understanding is an attribute
required for successful aircraft operations. More information about avionics
can be found in some textbooks such as [33].

There is a need to develop a simulation tool that is simple enough to be used
during the early design phase where timing is critical. The tool should be com-
putationally cheap to allow quick evaluation of design spaces and competing
designs. Ideally an agent based modeling and simulation approach supports
creating a complex operational environment through simple agent definition.

There are a few commercial UAV simulators available and the numbers
continue to grow as the use of UAV becomes more popular. Most of these
simulators are developed to replicate the state-of-the-art training and opera-
tion procedures for current type UAV. The tele-operated system can be made
up of five major parts: the motion platform, the aerial platform, the onboard
sensors including wireless operation, the PC to remote control (RC) circuit
and the ground station.

Wireless sensor network (WSN) is characterized by the dense deploy-
ment of sensor nodes that are connected wirelessly to observe physical phe-
nomena. The main advantages of the wireless sensor network include its low
cost, rapid deployment, self-organization and fault tolerance. The wireless sen-
sor network has become essential to unmanned systems for environment and
situation awareness, based on which intelligent control and decision can be
achieved, in a fully autonomous manner. For example, a ground static sensor
network can often be deployed for target detection, classification and track-
ing. A group of smart autonomous aircraft can form a wireless mobile sensor
network to undertake cooperative search, exploration and surveillance.

Intensive research and development work has been done for the wireless sen-
sor network, covering from sensor platform development, wireless communica-
tion and networking, signal and information processing, as well as to network
performance evaluation and design. However, in unmanned systems, there still
are a number of challenges in the underlying wireless sensor network, induced
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by limited network resources (such as node energy and network bandwidth),
sensor heterogeneity, large scale deployment and distributed mechanism. For
example, state estimation, signal processing and sensor fusion are constrained
by the limited sensor resources and network resources, and the associated
algorithms should be jointly designed with the sensor and network resource
management; Consensus is desirable for distributed estimation with only local
information exchanges, but trade-off should be made between the consensus
performance and the communication and computation overhead needed; Big
data processing approaches are to be sought to deal with the huge amount
of sensor data which usually have low quality due to data loss, large data
forwarding delay and compression operation forced by the hard bandwidth
constraint.

2.6.2 CAMERA MODEL

The main purpose of the current UAV is to gather intelligence by the use of
cameras to capture imagery of a location of interest. Digital imaging cameras
use a collection of individual detectors to form an image. The individual de-
tectors are arranged in a rectangular array known as the focal plane array.
The field of view (FOV) at the focal plane array is the angular view of the
focal plane. In general, the field of view characteristics are determined by the
sensors’ designers and forwarded as inputs to UAV manufacturers [78].

One of the fundamental parameters that govern image quality is ground
sample distance (GSD). It is a function of focal lane array, optics and col-
lection geometry:

GSDH = 2 tan

(
FOVH
2PixH

)
R (2.288)

where GSDH refers to the horizontal ground sample distance, FOVH is the
horizontal field of view, PixH is the number of horizontal sensor pixels and R
is the slant range. Similarly, the vertical ground sample distance can be given
as:

GSDV =
2 tan (0.5FOVV PixH)

cos (θlook)
R (2.289)

where θlook is the look angle. But the look angle and the slant range are
dependent on the UAV operational parameters such as altitude and velocity.
The slant range between the UAV and the object of interest is found by:

R =
√
h2 +GR2 (2.290)

where h is the UAV altitude and GR is the ground range from the UAV to
the target.

The ground sample distance acts as a metric to identify the performance
of the camera module, but it does not act as a metric to identify the quality
of the image. Image quality prediction is arbitrary and based on empirical
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approaches. It defines three levels of object discrimination, namely detection,
recognition and identification.

Definition 2.10. Detection is the probability that an imagery feature is
recognized to be part of a general group. Recognition is the discrimination of
the target class. Identification is the discrimination of the target type.

Determining the probability of detection, recognition and identification is
based on the sensor resolution. Targets are replaced by black and white stripes
each of which constitutes a cycle. The total number of cycles for a target of
given dimensions is:

dc =
√
Wtarget +Htarget (2.291)

where dc is the target characteristic dimension and Wtarget, Htarget are the
target width and height (as viewed by the camera), respectively; the number
of cycles across the target is given by:

N =
dc

2GSDavg
(2.292)

More information about cameras can be found in [9, 28].

2.6.3 SOFTWARE

Autonomous aircraft face a rapid growth in the complexity of needs and re-
quirements for aircraft responsible for multiple tasks, able to coordinate and
developed in a way that guarantees safety. Safety can be verified and certified
for a use in a human environment. A parallel evolution similar in the area
of real time embedded systems has spread justifying the emerging field of
cyber-physical systems which mirror a similar increase in complexity. Other
areas are also emerging, such as autonomic computing, sharing same scientific
objectives in the design and implementation of their software architectures.

Software architectures in these areas seek globally to integrate a comput-
erized control system in a context engagement with the real world, with other
treatment information increasingly heavy (mapping, planning, data analysis,
learning, etc.). The experience of autonomous aircraft shows that achieving
of correct and reliable software architectures easily reusable and scalable re-
mains a challenge because it is difficult to get a good decoupling between
sensors, control algorithms and actuators. Taking into account the time and
various constraints led to robotic systems tightly coupled. The characteristics
of the sensors and actuators as well as the specification features of autonomous
aircraft eventually dictate specific solutions in terms of algorithms, architec-
tures, middleware configurations and system. Solutions are costly to develop
and then difficult to change.

The themes covered, always within the context of these software architec-
ture, are not limited to:
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1. Definition of software architectures,
2. Programming languages and programming abstractions,
3. Specification, modeling and validation, especially according to their

impact and constraints on architecture’s software,
4. Aspects of software engineering directly related architecture’s soft-

ware: design, development, testing, validation, management life
cycle,

5. Composition, coordination, inter-connection of these systems.

Remark 2.13. The National air space is a rather complex and heterogeneous
system in which different types of airborne and ground based entities need to
interact and collaborate efficiently often under tight schedules. Each of those
entities follows its own sets of behavioral rules and is characterized by its own
dynamics and operates in a highly dimensional and constantly changing en-
vironment. Hence system modeling in a classical sense may become infeasible
for such large and diversified architecture. The use of agent-based modeling
and simulation is well suited to describe these types of systems as this ap-
proach takes advantage of the concept of decentralization by focusing on each
agent’s microscopic behavior rather than attempting to macroscopically model
the entire framework’s dynamics which instead is left to emerge from the agent
to agent interactions [13].

Typically unmanned aircraft that are designed to fly in urban settings have
to cope with computationally costly algorithms. The fusion of all sensors for
state estimation, flight control and mission management is already complex,
although these are only the basic modules. Furthermore, obstacle sensing has
to be included and environmental mapping integrated, which creates a model
of the environment and its impact on the mission. onboard path planning
is necessary if the area of interest could cause a deviation from the prede-
fined flight software which include, among others, the flight controller, mission
management, sensor fusion, path planning and the required middleware. The
software has to be distributable to different computational units optionally
[21].

Remark 2.14. Beyond the responsibility of responding to unexpected sys-
tem faults, the software enabled control (SEC) program is also charged with
making smart autonomous aircraft more agile without exceeding critical flight
parameters. Improved performance of smart autonomous aircraft is expected
to be achieved when such vehicles are endowed with levels of autonomy that
will allow them to operate safely and robustly under external and internal
disturbances, to be able to accommodate fault conditions without significant
degradation of their performance, to adapt to unexpected events and to coor-
dinate/cooperate among themselves to accomplish mission objectives.
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2.6.3.1 Petri nets
A software modeling approach using Petri nets is presented in [56] to design,
develop and verify/validate small software. The key elements differentiating
hardware and software development include identifying defects, visualizing ar-
chitecture and testing. Visualizing software architecture is normally realized
by creating functional blocks, timing, class and numerous other diagrams.
Software testing is approached by attempting to identify and test all failure
cases post-design, subsequently rectifying found defects. Hardware testing in-
volves the creation of virtual model simulations that are used to identify design
flaws and subsequently improve designs before fabrication and physical tests.
Petri nets are often used to verify system properties, simulate concurrent sys-
tems and analyze temporal attributes of systems.

Petri nets are a graphical and mathematical modeling tool. They can be
used as a communication tool similar to other modeling notations like state-
transition diagrams and entity-relationship diagrams. As a mathematical tool,
it can set up mathematical models that govern the behavior of systems. Those
systems can be asynchronous, concurrent, parallel, stochastic or nondetermin-
istic. Using a Petri net formalism allows to visualize the structure of the rules
based system, making the model more legible and easier to understand. It al-
lows also to express the behavior of the system in mathematical form.

The term fuzzy Petri net (FPN) has been used to describe Petri nets
that use their formalism to implement fuzzy reasoning algorithms. In fuzzy
Petri nets, places can represent propositions, transitions can represent rules
and tokens can represent truth values.

Fuzzy reasoning Petri nets (FRPN) can also be proposed where the
properties of the Petri net are further defined [53]:

1. If a place represents a truth degree, it can have at most one token.
2. Fuzzy reasoning Petri nets are conflict-free nets as rules may share

propositions.
3. Tokens are not removed from the input places after it fires.
4. Complementary arcs do not inhibit the firing of a transition if its

place has a token.

2.6.3.2 Middleware
Middleware designed to describe sensing, control and computational com-
munications of components within unmanned systems enables the creation
of clean interfaces between the low-level mechanics of such systems and the
higher-level logic designed to control them. In [96], a modeling environment is
presented with a domain-specific ontology for autonomous systems, capable
of generating software necessary for inter-computer communications accord-
ing to existing autonomous systems middleware standards. Meta-models are
used to specify the domain-specific modeling language to model the messages
used, the interfaces between components and some of the functionality of the
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components that transmit and receive messages. The generated code supports
the high data rates expected in autonomous systems that use lossy message
compression. Tests for the messaging infrastructure are also generated for
the messages. Also, using this research, this code generation process can be
extended to any component based platform with a similar ontology.

Software verification for highly automated unmanned aircraft is constrained
by certification standards and regulatory rules. As a top level view, the pro-
cesses and tools that were established for the software development, verifica-
tion and validation must be presented [89]. Automated tests must drive the
development of the mission planning, mission management and sensor fusion
system. In the UAV community, there is a high interest in UAV airworthi-
ness certification and especially software development and verification as a
problem. Compared to conventional manned aircraft, the software may be
more complex and larger parts may be safety critical. Autonomy software is
complex and especially adaptive and it is an extreme case for conventional
verification and validation approaches but with formal techniques (run time
monitoring, static analysis, model checking and theorem proving), there exist
some new methodologies for the validation and verification of autonomous
software, although the required level of expertise to master these techniques
increase significantly.

In [30], the focus is on value-driven design and how advances in software
engineering, rationale capture, operational simulation and rapid prototyping
can be leveraged to create an integrated design suite that allows the rapid
design and manufacture of low-cost civilian UAV. Value-driven design is a
movement that is using economic theory to transform system engineering to
better use optimization to improve the design of large systems. The different
modules that can be used are: concept design, CAD, design viewer, manufac-
turing, operational simulation, value model, aerodynamics, structures, cost,
design rationale, reliability, test flight telemetry, mission simulation.

2.6.4 HUMAN SUPERVISORY MODELING

In most current UAV, the role of the human operator has shifted from an
aircraft controller to a mission manager and automation supervisor. A vari-
ety of ground and onboard automation systems relieve the operator of high
frequent tasks such as flight control and support him in tasks such as flight
guidance and sensor management functions of aided/automated target recog-
nition. These systems support the operator in clearly defined tasks during
mission execution. Higher cognitive tasks such as planning, decision making
and problem solving are still solely left to the human. The operator controls
the aircraft using the available automation and orders discrete and rather ab-
stract commands, such as waypoint navigation and supervises their execution.
The human only intervenes in the case of unforeseen events [16].

One application in human supervisory control considers the case where
the human operators act as mission managers overseeing high level aspects
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of the mission (such as resource planning, scheduling and generating new
strategies). Mathematical models for human operators interacting with au-
tonomous aircraft have been developed using a queuing framework; where
external tasks/events arrive according to an underlying stochastic process
and the human supervisor, modeled as a server, has to service this stream of
tasks/events. These queuing based mathematical models can be used to infer
limits of performance on the human operators as well as used for a sensitivity
analysis to parameters (such as variation of the task arrival rate) via the use
of discrete event simulation.

Event modeling is a method of intelligent analyzing of streams of in-
formation (data, percepts) about things that happen (events), and deriving
conclusions from them. The goal is to identify meaningful events and respond
to them appropriately and quickly. The complexity of the event is defined
as both the complexity of the modeled physical phenomenon (fire, weather,
chemical reaction, biological process) as well as the heterogeneity of the data
(digital images, percepts, sensory data, natural language, semi-structured and
structured data). In addition, the emphasis should be placed on the intelligent
aspect of these models. This means that systems should semi-autonomously
perceive their environment and take action.

An important feature is the ability for operators to conclude that there
is insufficient information to make a good decision and require an additional
visit to look at the target. These so-called re-looks are important in minimizing
collateral damage and reducing errors, and have been studied in the context
of optimal stopping problems and inspection problems. Single autonomous
aircraft re-look problems in the presence of fuel constraints have been also
presented. In the first approaches, the operator is primarily modeled with a
stationary confusion matrix, while the true error rates may depend on the
actual search time. Furthermore, multi-video stream visual search tasks with
the possibility of re-look can be much more complex than single UAV coun-
terparts, since the multi-autonomous aircraft aspect requires a fine balance
between planning for the other vehicles and understanding how to re-allocate
the vehicles to gain additional information, all the while under intensive time
pressure [65, 103].

2.6.4.1 Operator modeling
Queuing models for human operators were originally proposed in the con-
text of air traffic control, where the human operator is treated as a serial
controller, capable of handling one complex task at a time. Operator mod-
els were extended in the context of human supervisory control of multiple
autonomous aircraft to account for operator workload and situational aware-
ness. A simplified queuing model can be described as follows: the tasks/events

are generated by a Poisson process with rate λ̂ and the human operator, with
possible help from the decision support system (DSS), services the tasks

at a rate λ̂e. In complex tasks, operators may dedicate themselves only to a
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single task, allowing the incoming tasks to accumulate in the queue. A key
concern in supervisory control is the role of vigilance-like effects whereby op-
erator performance degrade with time, and this is a critical consideration for
human supervisors of autonomous aircraft missions. Data collected in pre-
vious human-in-the-loop experiments have shown that detection probability
in the search task can degrade with increased search time dedicated to the
task. The estimate of detection probability P̂d can be modeled using a logistic
regression of the form

P̂d =
1

1 + exp (β̂T t̂)
(2.293)

where t̂ = [1, ts], ts being the total search time, and β̂ = [β0, β1] is the vector
of parameters of the logistic regression. Using this insight, there are certain
thresholds beyond which the operator performance degrades and it may be
beneficial to temporarily abandon the current search task and possibly relook
at it later.

2.6.4.2 Retrial queuing model
In order to account for re-look in the queuing model, this paragraph formulates
this problem as a retrial. A retrial queue model of the human operator treats
the human as a server and if the server is available, the task can be serviced
immediately. If the server is not available, the task is inserted in a so-called
orbit pool to be serviced at a later time. In this setting, the orbit pool could
represent the list of re-queued targets but also targets waiting to be processed.

This model assumes that new tasks arrive in the system as a Poisson arrival
with rate λ̂. The model further assumes that new tasks are serviced by the
operator at a rate λ̂e. For queuing models, λ̂e has a strong dependence on
numerous factors, but the two principal drivers are operator search time and
vehicle routing policy. Thus, if an operator is not efficient in the search task
and does not route the vehicles along efficient paths, the service rate can
be potentially much lower than the arrival rate λ̂e << λ̂, leading to queue
instability, where the number of outstanding targets will grow unbounded over
time.

The re-queuing policy is one of the most important features of the re-look
task, and yet remains to be completely identified from experimental data.
However, insight can be gained from re-queuing models with Bernoulli feed-
back where the operators perform re-looks (i.e., re-queues the targets) with
some probability. Serious lags have been exposed in determining a possible
cause of air accidents because implications on flight safety lie deep in flight
data that cannot be gained ahead of time. A human strategy method is pre-
sented in [100] to generate a very large sample of flight data for safety analysis.
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2.7 ATMOSPHERE
The Earth’s atmosphere is the gaseous envelope surrounding the planet. It
figures centrally in transfers of energy between the Sun, the Earth and deep
space [75]. It also figures in transfer of energy from one region of the globe
to another. The Earth’s atmosphere is related closely to ocean and surface
processes.

Since the Earth rotates around its own axis and moves around the Sun,
it is convenient to use a non inertial reference frame fixed on Earth when
atmospheric disturbances are analyzed [55]. This reference frame rotates once
a day. The movement of air parcel is measured relatively to the surface of the
Earth. The equations that adequately govern the motion of an air parcel in
this framework takes on the form:

(
dV

dt

)

rotating

=
F

m
− ΩEarth × (ΩEarth × r)− 2ΩEarth × V (2.294)

where ΩEarth is the vector representing the Earth’s rotation about its own
axis, V is the velocity of the air parcel in this rotating frame, r is the position
vector of the air parcel from the center of the Earth, m the mass of the air
parcel and F the net force acting on the air parcel.

The equation giving the velocity is:

Vinertial = Vrelative +ΩEarth × r (2.295)

The motions of the atmosphere are complex and can vary according to a
number of factors. The atmosphere is always in motion due to combined ef-
fects of planetary rotation and thermodynamic variations in local atmospheric
temperature and pressure, leading to strong horizontal air currents. If unac-
counted for, winds can cause large errors in the position of airplanes, which
can lead to a shortfall in range and fuel starvation. Therefore, careful periodic
observations of the wind velocities above selected weather stations along the
route, yielding periodic winds aloft data at a series of altitudes, are essential
for accurate navigation [1, 2, 22, 70]. Adverse weather affects the operations
of aircraft in a wide variety of ways and often very differently in the different
phases of flight. Thus a wide range of specific meteorological factors can be
identified as being potentially hazardous [26, 28, 80]. Winds are driven by
forces [92]. These forces can be:

1. pressure gradient forces, which are due to a change in the air pressure
over a distance,

2. centrifugal and Coriolis forces due to the Earth’s rotation about its
axis of rotation,

3. frictional forces due to the Earth’s surface: roughness or structures.
Frictional forces are strongest within the region near and adjacent to
the Earth’s surface, which is called boundary layer region
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The surface winds typically, going from the Equator to the Pole, have
an East-West-East pattern. The surface winds are stronger in the Southern
hemisphere than in the Northern hemisphere because in the former the surface
drag is weaker because of the relative lack of continental land masses and
topography [92].

Because the atmosphere is a fluid system, it is capable of supporting a
wide spectrum of motions. They range from turbulent eddies of a few meters
to circulations with dimensions of the Earth itself. Two frameworks can be
used to describe the atmospheric behavior [75]:

1. The Eulerian description represents atmospheric behavior in terms
of field properties such as the instantaneous distributions of temper-
ature, motions and constituents.

2. The Lagrangian description represents atmospheric behavior in
terms of properties of individual air parcels, e.g., in terms of their
instantaneous positions, temperature and constituent concentrations.

Remark 2.15. The surface winds are not explained by thermal wind balance.
Indeed, unlike the upper level winds, they must be maintained against the
dissipating effects of friction. The large-scale mid-latitude circulation of the
atmosphere is a turbulent flow. This turbulence is neither fully developed nor
isotropic.

Definition 2.11. Turbulence is a state of fluid flow in which the instanta-
neous velocities exhibit irregular and apparently random fluctuations so that in
practice only statistical properties can be recognized and subjected to analysis.

In the troposphere, altitude < 11000 m, the temperature T̃ (K) and the
pressure P̃ (Pa) can be, respectively, approximated by:

T̃ = 288.15− 0.0065 z P̃ = 101325

(
T̃

288.15

)5.2559

(2.296)

where the altitude z is expressed in meters.
Shape of the mean velocity profile of the wind can be defined on the degree

of surface roughness. Deviations of the air flow velocity from the mean air flow
velocity, like gusts, waves and fluctuations, have various discrete or continuous
modes over a wide range of amplitude, frequencies, wave numbers, length,
scales and time scales [70].

The performance characteristics of an aircraft depend on the properties
of the atmosphere through which it flies. As the atmosphere is continuously
changing with time, it is impossible to determine airplane performance pa-
rameters precisely without first defining the state of the atmosphere [64]. The
Earth’s atmosphere is a gaseous envelope surrounding the planet. The rel-
ative percentages of the constituents remain essentially the same up to an
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altitude of 90 Km owing primarily to atmospheric mixing caused by winds
and turbulence.

2.7.1 GUSTS AND WIND SHEAR

The atmosphere is in a continuous state of motion [64]. The winds and wind
gusts created by the movement of atmospheric air masses can degrade the
performance and flying qualities of an aircraft. In addition, the atmospheric
gusts impose structural loads that must be accounted for in the structural
design of an aircraft. The movement of atmospheric air masses is driven by
solar heating, the Earth’s rotation and various chemical, thermodynamic and
electromagnetic processes.

Wind gusts model presented in [95] takes into account the link between
high gusts and lower frequency fluctuations in wind speed which are repre-
sented by observations of hourly mean speed which are themselves generated
by large-scale meteorological processes.

Wind shear is a type of space and time-dependent airflow vector field.
Wind shear is an atmospheric phenomenon that occurs within thin layers
separating two regions where the predominant air flows are different, either
in speed, in direction or in both speed and direction. The air layer between
these regions usually presents a consistent gradient in the flow field [5]. The
air masses in the troposphere are in constant motion and the region is char-
acterized by unsteady or gusting winds and turbulence. Wind shear is the
variation of the wind vector in both magnitude and direction. Wind shears
are created by the movement of air masses relative to one another or to the
Earth’s surface. Thunderstorms, frontal systems and the Earth’s boundary
layer all produce wind shear to aircraft flying at low altitudes.

If there is a local variation for the wind vector, there exists a wind shear.
Wind shears have always been considered as a potential hazard for aviation
safety [67]. Wind shear is defined as a local variation of the wind vector. It
can also be defined either as a spatial or temporal variation of wind speed
or direction. The variations in wind speed and direction are measured in the
vertical and horizontal directions [64]. A vertical wind shear is one in which the
wind speed and direction varies with changing altitude; horizontal wind shear
refers to variations along some horizontal distance. Wind shears are created by
the movement of air masses relative to one another or to the Earth’s surface.
Thunderstorms, frontal systems and the Earth’s boundary layer all produce
wind shear profiles, which, at times, can be hazardous to aircraft flying at low
altitudes. The strong gusts/fronts associated with thunderstorms are created
by downdrafts within the storm system. As the downdrafts approach the
ground, they turn and move outward along the Earth’s surface. The wind shear
produced by the gust front can be quite severe. The wind shear created by a
frontal system occurs at the transition zone between two different air masses.
The wind shear is created by the interaction of the winds in the air masses.
If the transition zone is gradual, the wind shear will be small. However, if the
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transition zone is small, the conflicting wind speeds and directions of the air
masses can produce a very strong wind shear. The surface boundary layer also
produces wind shear. The shape of the profile is determined primarily by local
terrain and atmospheric condition. Additional problems arise when there is
an abrupt change in surface roughness in addition to internal boundary layers
and when the direction of the wind varies with altitude.

To analyze the influence of wind shear, the magnitude of the shear can be
expressed in terms of the change of wind speed with respect to altitude duW

dz
where a positive wind shear is one which increases with increasing altitude.
The most severe type of wind shear is a downburst.

Definition 2.12. Downburst is a descending column of cold air that spreads
out in radial direction upon hitting the ground [67]. Downbursts are subdivided
into microburst and macroburst according to their horizontal scale of damag-
ing winds. Macroburst is a large downburst with its outburst winds extend-
ing in excess of 4000 m in horizontal dimension. An intense macroburst often
causes widespread tornado-like damage. Damaging winds lasting 5 to 30 min-
utes could be as high as 60 m/s. Microburst is a small downburst with its
outburst winds extending radially 4000 m or less but contains speed changes
larger than 10 m/s within itself. Outburst winds of a microburst may have up
to 70 m/s intensity.

Remark 2.16. Because of severe wind gradients, a microburst is the most
hazardous downburst that brings about catastrophic conditions to aircraft fly-
ing through it, especially for small ones.

The adopted microburst model is the one elaborated by Vicray [67, 93]. This
analytical model is an axisymmetric steady-state model that uses shaping
functions to satisfy the flow mass continuity as well as the boundary layer
effects. The burst velocity components at a point P in this coordinate system
are given by:

Wx =
λ̃x

2

[
ec1(z/zm) − ec2(z/zm)

]
e

2−(x2+y2)
α/r2αp

2α (2.297)

Wy =
λ̃y

2

[
ec1(z/zm) − ec2(z/zm)

]
e

2−(x2+y2)
α/r2αp

2α (2.298)

Wz = −λ̃
{
zm
c1

[
ec1(z/zm) − 1

]− zm
c2

[
ec2(z/zm) − 1

]}

×
[
1− (x2+y2)α

r2αp

]
e

2−(x2+y2)
α/2r2αp

2α

(2.299)

In this model, the horizontal and vertical wind velocities are both func-
tions of horizontal and vertical coordinates. Intensity of vertical velocity Wz

increases with altitude and decreases away from the burst center. The horizon-
tal wind intensity increases with altitude up to an altitude that corresponds
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to the most severe horizontal velocity zm and then decreases with further in-
crease in altitude. Usually zm is located between 200 m and 1000 m above the
ground [67]. Furthermore, the horizontal velocity grows radially from the shaft
reaching its maximum at a radius 1.2 times the downburst shaft radius. Thus
the model is fully defined by specifying only four parameters: the radial dis-
tance from burst center rp, the altitude above the ground zm, the magnitude
of the maximum outflow velocity um and the value of the shaping variable α.
Its value is approximately 2. The scale factor λ̃ can then be determined from

λ̃ =
2um

rp(ec1 − ec2)e1/2α (2.300)

where c1 = −0.15 and c2 = −3.2175 [67].
There are three definitions of altitude: absolute, geometric and geo-

potential related to each other in the following manner:

ha = hG +R0 (2.301)

ha is absolute altitude, hG geometric altitude and R0 is radius of the Earth.

hG =
R0

R0 − hh (2.302)

h is the geo-potential altitude.
Most of the known models of wind and temperature consider the fluctua-

tions around the mean field (measured or produced by numerical meteorolog-
ical prediction) as a Gaussian random field. The covariance structure of the
field has a direct impact on the adverse effect of the uncertainties upon the
collision risk level and it represents the main characteristic of various models.

2.7.2 TURBULENCE

A perturbation model with stochastic white noise properties can be used.
The velocity variations in a turbulent flow can be decomposed into a mean
and a fluctuating part. The size or scale of the fluctuations vary from small
wavelengths of the order of 10−2 m to wavelengths of the order of 10+3 m.
Atmospheric turbulence being a random phenomenon, it can only be described
in a statistical way.

To predict the effect of atmospheric disturbances on aircraft response re-
quires a mathematical model of atmospheric turbulence which is a random
process and the magnitude of the gust fields can only be described by statisti-
cal parameters. The properties of atmospheric turbulence include homogeneity
and stationarity.

Definition 2.13. Homogeneity: The property of homogeneity means that
the statistical properties of turbulence are the same throughout the region of
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interest; stationarity implies that the statistical properties are independent of
time.

Atmospheric turbulence is typically modeled as a filtered Gaussian with
white noise. The three components of turbulence (i.e., longitudinal, lateral
and vertical) are modeled independently. There are two spectral forms of ran-
dom continuous turbulence used to model atmospheric turbulence for aircraft
response: Dryden and Von Karman.

The velocity field within the atmosphere varies in both space and time in a
random manner. This random velocity field is called atmospheric turbulence.
The mathematical model can be proposed as follows:

u =Wh
ln(z/z0)

ln(Wh/z0
), 1 ≤ z ≤ 300 m (2.303)

where u is the mean wind speed, Wh is the measured speed at an altitude h,
z is the aircraft altitude and z0 is a constant depending on the flight phase.

The Dryden turbulence mode is one commonly used atmospheric turbu-
lence model. It specifies the spectra of the three components of turbulence as
follows.

Φug (ωs) = σ2
u

2Lu
π

1

1 + (Luωs)2
(2.304)

Φvg (ωs) = σ2
v

Lv
π

1 + 3(Lvωs)
2

(1 + (Lvωs)2)
2 (2.305)

Φwg (ωs) = σ2
w

Lw
π

1 + 3(Lwωs)
2

(1 + (Lwωs)2)
2 (2.306)

The spectra are given in terms of spatial frequency, which is converted to
temporal frequency ωs by multiplying by the speed of the aircraft.

The power spectral density for the turbulence velocities modeled by Von
Karman is given by:

Φug = σ2
u

2Lu
π

1

(1 + (1.339Luωs)2)
5/6

(2.307)

Φvg = σ2
v

2Lv
π

1 + 8
3 (1.339Lvωs)

2

(1 + (1.339Lvωs)2)
11/6

(2.308)

Φwg = σ2
w

2Lw
π

1 + 8
3 (1.339Lwωs)

2

(1 + (1.339Lwωs)2)
11/6

(2.309)

where σg is the root mean square intensity of the gust component, ωs is
the spatial frequency defined by 2π

λ where λ is the wavelength of a sinusoidal
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component and L is the scale of the turbulence. The subscripts u, v, w refer
to the gust components. The scales and intensities of atmospheric turbulence
depend on altitude and the type of turbulence, i.e., clear air (high or low
altitude) and thunderstorm turbulence.

For an airplane passing through a gust field, it is assumed that the encoun-
tered turbulence is independent of time (i.e., the turbulence is stationary).
The relationship between the spatial and temporal frequency is given by:

ωs =
ω

V0
(2.310)

where ω is in rad/s and V0 is the velocity of the aircraft relative to the air
mass it is passing through.

At medium to high altitudes (above 610 m) the turbulence is assumed to
be isotropic. The characteristic lengths and the intensities in each direction
are equal to each other. A typical characteristic is 530 m. Intensities can be
charted as a function of altitude. Moderate turbulence has a root-mean-square
intensity of about 3 m/s at 610 m, decreasing roughly linearly to near zero at
18000 m.

Whereas lateral turbulence has little effect on the speed on an aircraft, lon-
gitudinal turbulence has a direct effect on airspeed. Longitudinal turbulence
with a spectrum matching that given in equation (2.304) can be obtained by
passing white noise through a filter of the form:

σu =

√
2Lu
Uu

Uu
Lus+ Uu

(2.311)

Vertical turbulence has an indirect effect on airspeed.
Aircraft can experience the effects of severe mechanical turbulence. When

the vortices are almost stationary in location relative to the surface terrain
and topography below, such as the lee of a high cliff, they are referred to as
standing vortices, or, more usual when there is a downwind addition to any
standing vortex in the form of a zone of transitory traveling vortices they
often rotate in different rotations, forming a part of a Karman vortex train.

When the atmosphere is stably stratified, the occurrence of strong winds
generates predominantly only mechanical turbulence, but as soon as the verti-
cal structure of the atmosphere becomes thermally and dynamically unstable,
as the daytime solar heating of the air layer is in contact with the ground,
thermal turbulence generated by warm and buoyant updrafts and cold com-
pensatory downdrafts is added. Whereas mechanical turbulence is often char-
acterized by a steady succession of vortices which fall within a limited size
range, the strength and character of thermal turbulence are much less pre-
dictable, especially when the turbulence is just beginning and thermals of all
sizes rise up from a wide variety of terrain features. There is normally a lot
of possible variation in terms of the linear spacing of thermals and their size,
shape and vertical speeds [102].
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Remark 2.17. Existing UAS platforms currently do not lend themselves to
autonomous operation within complex highly variable aerodynamic environ-
ments. As such, there is a need for an accurate high fidelity airflow model
to help reduce the risk of failure of urban UAS missions. This is specially
important in urban missions. Urban aerodynamics are exceptionally compli-
cated because of complex interactions between geometry, physical conditions
and varying meteorology and possible urban canyons [20].

Estimation of atmospheric turbulence field encountered by an aircraft con-
tinues to be an interesting problem [81]. In meteorology, turbulence has rep-
resented a challenge due to its fine spatial and temporal scale. In numerical
meteorology, wind with horizontal dimensions ranging from 5 to several hun-
dred kilometers can be resolved adequately. However, to accurately diagnose
aircraft normal local accelerations, resolved scales as small as 50 m are needed.
In fact, spatial resolution should be well below the aircraft length [52].

From another point of view, an aircraft itself is in fact a big sensor in
the atmospheric environment. Penetrating a turbulent air zone, the aircraft
responds in a definite way depending on the imposed wind field and aircraft
aerodynamic characteristics. Therefore, from the response, the input including
the turbulence can be identified. As the atmosphere turbulence is random
in nature, it is composed of a wide spectrum of frequencies. Therefore, the
response data can only provide the estimation of the significant components
of the low frequency part of atmospheric turbulence, the wind. A normal force
coefficient is primarily dependent linearly on the angle of attack with much
smaller contributions from other parameters such as the elevator and pitch
rate. Combinations of high wind speeds, thermal and mechanical turbulence,
vertical thermal instability, heavy precipitation and lightning risks can all be
found in severe storms, making them priorities for avoidance at all costs by
aircraft [48].

2.8 CONCLUSION
This chapter has presented classical modeling approaches for autonomous air-
craft with the presentation of reference frames, kinematics and dynamics of
airplanes. Traditionally, aircraft dynamic models have been analytically de-
termined from principles such as Newton–Euler laws for rigid-body dynam-
ics. These approaches are followed by the presentation of less conventional
techniques such as Takagi–Sugeno modeling, fuzzy logic modeling and linear
hybrid automaton. Then mission tools are presented such as sensors, cameras,
simulation tools and software human supervisory modeling. The presentation
of the atmosphere modeling closes the chapter of modeling. Particular at-
tention is given to mathematical models useful for analysis, simulation and
evaluation of control, planning and safety algorithms for autonomous aircraft.
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3 Flight Control
ABSTRACT
In this chapter, airplane control problems are considered and solved, in order
to achieve motion autonomy. A common control system strategy for an aircraft
is a two loops structure where the attitude dynamics are controlled by an inner
loop, and the position dynamics are controlled by an outer loop. In the low
level control system, algorithms depend on the type of aircraft, its dynamical
model, the type of control design used and finally the inputs and sensors
choice. The difficulty is that disturbances can be as strong as the unmanned
aircraft’s own control forces. In this chapter, topics related to classical linear
and nonlinear control methods are first presented. Then fuzzy control is used.

3.1 INTRODUCTION
For successful and efficient operation, flight requires control of position, at-
titude and velocity. Control law design can only be performed satisfactorily
if a set of design requirement or performance criteria is available. Classical
control theory provides a standard approach:

1. Model the dynamics of the aircraft.
2. Represent the task in terms of a state error.
3. Design a control algorithm to drive the state error to zero.
4. Measure all the states if possible.
5. Estimate the system state online.
6. Input the state/output estimate into the control algorithm to close

the loop.

UAV are dynamical systems that can be classified as under-actuated
mechanical systems. An under-actuated mechanical system has fewer con-
trol inputs than degrees of freedom. Under-actuated systems control is an
important challenge.

Two approaches are usually employed for ground track control of UAV. In
the first approach, the guidance and control design problems are separated
into an outer-loop guidance and an inner-loop control design problem [89]:

1. An outer loop controller is designed to track the given position
commands and reach the desired positions given the engine thrust,
the lift and the bank angle as the control inputs. Another possibility
is the engine thrust, the angle of attack and the bank angle. It results
in the aircraft’s navigation from one position to another relative to a
fixed frame. The desired position and velocity can be stored online at
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discrete times serving as nominal values. The difference between the
actual position and velocity and the nominal ones produces accelera-
tion commands in order to correct the errors.

2. An inner loop controller is designed to follow the desired attitude
generated from the outer loop, using the control surface of the aileron,
elevator and rudder. It results in control of aircraft’s orientation. Con-
tinuous control laws using Euler angles cannot be globally defined;
thus, these representations are limited to local attitude maneuvers.
Since attitude control problems are nonlinear control problems, they
can be categorized as [16]:

a. Local attitude control issues address changes in the rigid body
attitude and angular velocity that lie in the open neighborhood
of the desired attitude and angular velocity.

b. Global attitude control issues arise when arbitrary changes in
the rigid body attitude and angular velocity are allowed. No a
priori restrictions are placed on the possible rotational motion.

In the second approach, the guidance and control problems are addressed to-
gether in an integrated and unified framework. The UAV flight controller is
designed to stabilize the attitude of an aircraft by holding a desired orientation
and position. It also provides the means for an aircraft to navigate by track-
ing a desired trajectory/path. Different control techniques have been used to
design flight controllers ranging from linear to nonlinear control algorithms:

1. The problem of path following is making an aircraft converge to and
follow a desired spatial path, while tracking a desired speed profile
that may be path dependent. The temporal and spatial assignments
can be therefore separated.

2. The aim of the trajectory following control system is guiding the
aircraft to stay on a given reference trajectory. Due to unconsidered
disturbances and simplifications made in the model used for guid-
ance, the aircraft will not follow the trajectory without error feed-
back. Therefore a control system for trajectory error reduction must
be designed.

Remark 3.1. In an atmospheric flight, smart autonomous aircraft can
encounter a wide range of flight conditions. In some cases, disturbances can
be as strong as the aircraft’s own control forces.

The main challenges of flight control and planning include:

1. Generation of a feasible trajectory taking into account aircraft’s dy-
namics and capabilities.

2. Tight integration between guidance and control to ensure safety, max-
imizing performance and flexibility.

3. Satisfaction of performance criteria and terminal state constraints.
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An autonomous flight control system must simultaneously account for
changing weather and possible collision avoidance, while achieving optimal
fuel consumption [2]. Depending on the mission, a set of design requirements
may be different. For example, in a dynamic maneuvering situation, the
autopilot is mainly concerned with the control forces that must be exerted
and the resulting six degrees of freedom translational and angular accelera-
tions. In a task requiring precision tracking, the evaluation of the control
system is more influenced by landmarks and the response of the aircraft to
turbulence [85].

Flight models involve high order nonlinear dynamics with state and input
constraints. In the last decades, control for these systems was developed using
the linearization approach. A lot of work has been devoted to the control and
state estimation of these linear systems. The trend now is to use nonlinear
control approaches as well as computational intelligence methods [5, 9, 37, 40,
48, 72].

3.2 LINEAR CONTROL METHODS
Linear control methods are generally divided into:

1. Linear time invariant (LTI) ( linearization around an operating point)

2. Linear time variant (LTV) (linearization around a trajectory)
3. Linear parameter variant (LPV) (multi-model approach)

3.2.1 PROPERTIES OF LINEAR SYSTEMS

Main properties of linear systems are stabilizability, controllability and ob-
servability:

3.2.1.1 Controllability and observability
The following linear system is considered:

Ẋ = AX +BU
Y = CX

(3.1)

The variables X,U, Y are, respectively, the state variable, the input or con-
trol variable and the output or measure variable. The matrices A,B,C are,
respectively, the state matrix, the control matrix and the output matrix.

The following theorems give the Kalman conditions for controllability and
observability.
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Theorem 3.1

Controllability The linear system (3.1) is controllable if and only if the
controllability matrix Co =

[
B,AB,A2B . . .An−1B

]
has rank n. The pair

(A,B) is said to be controllable.

Definition 3.1. Reachability addresses whether it is possible to reach all
points in the state space in a transient fashion. Computation of the states can
be carried out by a dynamical system called an observer.

Theorem 3.2

Observability The linear system (3.1) is Observable if and only if the Ob-

servability matrix Ob =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn−1

⎤
⎥⎥⎥⎥⎥⎦

has rank n. The pair (A,C) is said to

be observable.

3.2.1.2 Stability of a linear system
The system (3.1) is said to be stable if the eigenvalues of the matrix A have
negative real parts. The matrix is said to be Hurwitz.

Remark 3.2. Many different approaches to stability exist such as local sta-
bility, asymptotic stability, bounded input bounded output stability, absolute
stability [72].

An alternative method exists. The Lyapunov method is a useful technique
for determining stability and is at the basis of many linear and nonlinear
control methods such as backstepping and sliding mode. Some definitions and
theorems are introduced in the sequel before the application of the Lyapunov
method to an autonomous linear system.

Definition 3.2. Positive Definite Function and Candidate Function:
A function Ṽ : R

n −→ R is called positive definite if Ṽ (0) = 0, Ṽ (X) >
0, ∀X ∈ R

n − {0} and Ṽ is called a Lyapunov function candidate if it is
positive definite and radially unbounded. If Ṽ is differentiable, then the vector
ṼX(X) = ∇Ṽ (X) denotes the derivative of Ṽ with respect to X.
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Theorem 3.3

Lyapunov Stability Theorem: Let Ṽ be a non negative function on R
n

and let ˙̃V represent the time derivative of Ṽ along trajectories of the system
dynamics:

Ẋ = f(X) X ∈ R
n (3.2)

˙̃V =
∂Ṽ

∂X

dX

dt
=
∂Ṽ

∂X
f(X) (3.3)

Let BR = BR(0) be a ball on radius R around the origin. If there exists R > 0

such that Ṽ is positive definite and ˙̃V is negative semi-definite for all X ∈ BR,
then X = 0 is locally stable in the sense of Lyapunov.

If Ṽ is positive definite and ˙̃V is negative definite in BR, then X = 0 is
locally asymptotically stable.

Remark 3.3. A Lyapunov function Ṽ : R→ R is an energy-like function
that can be used to determine the stability of a system. If a non negative func-
tion that always decreases along trajectories of the system can be found, it can
be concluded that the minimum of the function is a locally stable equilibrium
point.

The following stability analysis is useful in the derivation of the linear
matrix inequalities in the linear parameter varying systems.

The following autonomous linear system is considered:

Ẋ = AX (3.4)

where A is an invertible matrix. This system has a unique equilibrium point
X = 0. To study its stability, the following quadratic form is introduced:

Ṽ (X) = XTPX (3.5)

where P is a constant symmetric definite positive function. The derivative of
this function can be written as:

˙̃V (X) = XT
(
ATP+PA

)
X (3.6)

Hence, the origin is an equilibrium point globally asymptotically stable if there
exists a symmetric definite matrix P such that:

ATP+PA < 0 (3.7)

or equivalently:
ATP+PA+Q = 0 (3.8)

where Q is a symmetric definite positive matrix.
Quadratic stability implies that the equilibrium point X = 0 is uniformly

asymptotically stable.
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Remark 3.4. The principal difficulty is that there is no general rule allowing
to find a Lyapunov function for any system.

The origin is uniformly stable and hence exponentially stable for the fol-
lowing linear time-varying system:

Ẋ = A(t)X (3.9)

assumed to be uniformly completely observable from the output:

Y (t) = C(t)X(t) (3.10)

if there exists a δ > 0 such that the observability Grammian:

Wo(t, t+ δ) =

∫ t+δ

t

ΦT (τ, t)CT (τ)C(τ)Φ(τ, t)dτ ≥ kIn×n, ∀t (3.11)

is uniformly positive definite and if there exists a uniformly positive definite
bounded matrix P ∈ R

n×n satisfying:

k1In×n ≤ P(t) ≤ k2In×n (3.12)

Ṗ(t) = AT (t)P(t) +PA(t) +CT (t)C(t) (3.13)

with (A(t),C(t)) a uniformly completely observable pair [72].
If a pair (A(t),C(t)) is a uniformly completely observable that its observ-

ability Grammian is uniformly positive definite then for any K(t) ∈ R
n×n,

((A(t) +KC(t)) ,C(t)) is also uniformly completely observable.

3.2.2 LINEAR APPROACHES FOR LTI MODELS

Traditional methods for flight control design typically use nested single-input-
single-output (SISO) control loops and strongly structured control architec-
tures. These methods are based on detailed aircraft system analysis and ex-
ploit paths with weak coupling to obtain good results for conventional flight
control design. Autopilots have been designed using these methods. How-
ever, multivariable methods such as optimal control and robust control design
methods are state of the art for more complex flight control tasks under cou-
pled and/or uncertain system dynamics. Three large groups of control design
methodologies are optimal and adaptive control design methods as well as
robust control design methods [74].

Definition 3.3. Robustness is a property that guarantees that essential
functions of the designed system are maintained under adverse conditions in
which the model no longer accurately reflects reality.

Different linear control techniques have been used for the linear models of
an aircraft such as longitudinal and lateral models presented in Chapter 2.
More information on aircraft linear control can be found in some textbooks
such as [9, 12, 18, 64, 89].
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3.2.2.1 PID control
The simplest control law is the proportional, integral, derivative law
(PID). It necessitates three direct feedback gains:

1. P: On the measurement deviation (error to be minimized),
2. I: On its integral (to counter any disturbances),
3. D: On its derivative (to provide damping).

The control law has the following form:

U(t) = KP e(t) +KI

∫ t

0

e(τ)dτ +KV
de(t)

dt
(3.14)

where e(t) represents the error e(t) = R(t) − Y (t), R(t) being the reference
signal and Y (t) is the measured signal; the parameters KP ,KI ,KV are the
gain diagonal matrices.

The advantages of PID law are that tuning is easily linked to physics and
objectives, while the drawbacks are lack of optimization and filtering must be
in series. However, a potential improvement such as transverse acceleration
feedback can be used.

3.2.2.2 Classical methods
Many state-space methods have been used for the design of the autopilots
such as the direct approach, the pole placement, the eigenvalue assignment
by output feedback, the linear quadratic regulator and the adaptive approach.

3.2.2.2.1 Direct approach
One of the earliest control methods is the direct approach where a static
control law can be proposed:

U(t) = KrR(t) +KxX(t) (3.15)

where Kx is the feedback gain matrix and Kr is the feed-forward gain matrix.
These matrices must be determined so that the closed-loop control system has
the following form:

Ẋ = AdX +BdU
Y = CX

(3.16)

The matrix B being generally not invertible, the following gain matrices can
be proposed:

Kx = BT
(
BBT

)−1
(Ad −A) (3.17)

Kr = BT
(
BBT

)−1
Bd (3.18)

This method is seldom used because of the difficulty of the choice of the
matrices Ad,Bd.
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3.2.2.2.2 Pole placement

Theorem 3.4

Pole placement: If the pair (A,B) of system (3.1) is completely controllable,
then for any set of eigenvalues λ1, λ2, . . . , λn ∈ C symmetric with respect to
the real axis, there exists a matrix K ∈ R

n×n such that the eigenvalues of
A+BK are precisely λ1, λ2, . . . , λn.

In this method, the following control law is proposed

U(t) = −KxX(t) (3.19)

If all the eigenvalues λ1, . . . , λn are given then using the characteristic poly-
nomial:

λ(s) = det (sI−A+BKx) (3.20)

Identification or other methods such as Bass–Gura method allow to solve n
equations giving the elements of the matrix Kx.

If only m < n eigenvalues are imposed, the matrix Kx can be decomposed
into the product of two vectors:

Kx = bdT b ∈ Rm d ∈ Rn (3.21)

The closed-loop system is then given by:

Ẋ = AX −B(bdT )X = AX − ϕ� (3.22)

with ϕ = Bb and � = dTX with the requirement that the pair (A, ϕ) is
controllable. The control law can be proposed:

U = −b (k1�T
1 + k2�

T
2 + · · ·+ km�

T
m

)
X (3.23)

with

kj =

∏m
i=1 (λ

d
i − λj)

ϕ�j

∏m
i=1,i�=j (λi − λj)

(3.24)

It imposes the pole placement λdi while the other eigenvalues remain un-
changed. The �j are them eigenvectors of AT associated with the eigenvalues
λ1, . . . , λm.

3.2.2.2.3 Eigenvalue assignment by output feedback
If only some of the state space variables are measurable, the following con-
troller can be proposed:

˙̂
X = AX̂ +BU + L

(
Y −CX̂

)
= (A−BK− LC) X̂ + LY (3.25)
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with
U = −KX̂ (3.26)

The closed loop system can be assigned arbitrary roots if the system is reach-
able and observable.

3.2.2.2.4 Linear quadratic regulator
A well-known classical control method is the linear quadratic regulator
(LQR). The linear quadratic regulator is one of the most commonly used
method to solve optimal control algorithms. The optimal control problem can
be expressed as:

min

(
J =

1

2

∫ T

0

(
XTQX + UTRU

)
dt

)
(3.27)

subject to
Ẋ = AX +BU (3.28)

where the weight matrix Q is a symmetrical semi-definite positive matrix and
R is a symmetrical definite positive weight matrix. The following control law
can be proposed:

U(t) = −KX (3.29)

with
K = R−1BTP (3.30)

where P is the solution of the Riccati equation:

Ṗ = PA+ATP+Q−PBR−1BTP (3.31)

When T →∞, the following equation must be solved:

PA+ATP+Q−PBR−1BTP = 0 (3.32)

Algebraic equations are then solved.

3.2.2.3 Adaptive approach
Adaptive control is a leading methodology intended to guarantee stable high-
performance controllers in the presence of uncertainty [28, 36, 100]. A distinc-
tion is made between indirect adaptive control and direct adaptive control.

1. Indirect adaptive control involves two stages: first an estimate of
the plant model is generated online. Once the model is available, it
is used to generate the controller parameters.
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a. Model reference adaptive control (MRAC) relies on a ref-
erence model and works on minimizing the tracking error be-
tween aircraft output and reference output. With model reference
indirect adaptive control, it is feasible to achieve three impor-
tant goals: trim value, adjustment for the inputs and outputs and
closed-loop tracking of autopilot commands.

b. Self-tuning control (STC) focuses on adapting the PID control
gains of the controller by making use of the estimated parameter
values. This method is known to be more flexible.

2. Direct adaptive control approach estimates the controller param-
eters directly in the controller, instead of estimating a plant model.
This can be done via two main approaches: output error and input
error.

Remark 3.5. The indirect adaptive control is preferable due to its flexibility
and its property of being model based.

Model reference adaptive control (MRAC) is an approach that provides
feedback controller structures and adaptive laws for control of systems with
parameter uncertainties to ensure closed-loop signals boundedness and asymp-
totic tracking of independent reference signals despite uncertainties in the
system parameters. To develop an adaptive state feedback controller, it is
necessary to first solve the related non adaptive control problem assuming
the plant parameters are known, so that an ideal fixed state feedback con-
troller can be obtained. This ideal or nominal controller will be used as a part
of a priori knowledge in the design of the adaptive control scheme. The exis-
tence of such a nominal controller is equivalent to a set of matching equations.
A parameter adaptation scheme must thus be used [28].

The uncertain system given by:

Ẋ(t) = AX(t) +B (U(t) + Δ(X(t))) (3.33)

where X(t) ∈ R
n the state vector is available for feedback, U(t) ∈ R

m the
control input is restricted to the class of admissible controls consisting of
measurable functions, A ∈ R

n×n, B ∈ R
n×m are known matrices and Δ is a

matched uncertainty [100]. The pair (A,B) is assumed to be controllable.

Definition 3.4. The uncertainty is said to be matched with the control input
because the disturbance enters through the same input channel as the control.

The reference model is given by:

Ẋm(t) = AmXm(t) +BmR(t) (3.34)

where Xm(t) ∈ R
n is the reference state vector, R(t) ∈ R

r is a bounded
continuous reference input, Am ∈ R

n×n is Hurwitz (the real parts of its eigen-
values are negative) and Bm ∈ R

n×r with r ≤ m. Since R(t) is bounded, it
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follows that Xm is uniformly bounded for all Xm(0). The matched uncertainty
in (3.33) can be linearly parametrized as:

Δ(X) = WT�(X) + ε(X) |ε(X)| ≤ ε∗, X ∈ Dx (3.35)

where � : Rn → R
s is a known vector of basis functions of the form �(X) =

(�1(X), �2(X), . . . , �s(X))
T ∈ R

s, W ∈ R
s×m is the unknown constant

weight matrix, ε : Rn → R
m is the residual error and Dx ⊆ R

n is a sufficiently
large compact set.

The following feedback control law is considered:

U(t) = Um(t)− Uad(t) (3.36)

where Um(t) is a nominal feedback control given by:

Um(t) = K1X(t) +K2R(t) (3.37)

where K1 ∈ R
m×n,K2 ∈ R

m×r are nominal control gains such that A+BK1

is Hurwitz and Uad(t) is the adaptive feedback control component given by:

Uad(t) = ŴT�(X(t)) (3.38)

where Ŵ ∈ R
s×m is an estimate of W satisfying the weight update law:

˙̂
W = γ

(
�(X(t))eT (t)PB+

˙̂
Wm(t)

)
, γ > 0 (3.39)

where e(t) = X(t)−Xm(t) is the state tracking error,P ∈ R
n×n is the positive

definite solution of the Lyapunov equation:

AT
mP+PAm +Q = 0 (3.40)

for any Q = QT and
˙̂
Wm ∈ R

s×m is a modification term such as

˙̂
Wm = −σŴ for σ modification (3.41)

or
˙̂
Wm = −σ|e(t)|Ŵ for e modification (3.42)

σ is a positive fixed gain.
If Am,Bm are chosen so that:

Am = A+BK1 Bm = BK2 (3.43)

then theorems exist that provide sufficient conditions under which the closed-
loop system errors e(t) are uniformly ultimately bounded for the σ and e
modifications cases [36, 100].



114 Smart Autonomous Aircraft: Flight Control and Planning for UAV

Remark 3.6. The development of envelope protection methods for UAV
is in the context of the adaptive flight control system [98]. Envelope protection
is the task of monitoring and ensuring aircraft operations within its limits.
Recent advances in the flight control system enable autonomous maneuvering
that can challenge a UAV flight envelope. The options available for envelope
protection are either to limit the aircraft inputs to the automatic flight control
system (AFCS) or to limit the actuator commands from the automatic flight
control system. Typically, conservative hard limits are set in a UAV flight
control channels as maximum and minimum allowable command inputs.

In reality, true command limits are complex functions of highly nonlin-
ear aircraft dynamics and therefore vary with flight condition and/or aircraft
configuration. The goal of automatic flight envelope protection is not only
to enable the aircraft to safely operate within its envelope, but also to do
so without restricting the aircraft to a smaller region of its operational en-
velope, hence making use of the aircraft’s full flight envelope. Therefore, an
effective automatic envelope protection system will reduce the compromise
between safety and performance, thus improving the overall confidence of safe
operations of UAV, especially during aggressive maneuvering close to their
operational limits.

3.2.2.4 Robust control method for LTI models
In modeling for robust control design, an exactly known nominal plant is
accompanied by a description of plan uncertainty that is a characterization
of how the true plant might differ from the nominal one. This uncertainty is
then taken into account during the design process [23].

Linear quadratic Gaussian (LQG) or H2, weighted H2 and H∞ are
widely used for robust linear control. The linear, quadratic, gaussian (LQG)
controller combines a linear quadratic estimator with a linear quadratic regu-
lator. It was originally intended for systems disturbed by white Gaussian noise,
susceptible to parameter variation uncertainty [99]. Optimality is guaranteed
under mean-free, uncorrelated, white noise excitation of known variance in
terms of the state, control-input or output signal variances. It is time-related
and is a physical approach to control. The updating Kalman gains are tuned
decoupled while the command gains Riccati equations are solved, minimizing
quadratic criteria. Filtering objectives are not taken directly into account in
the synthesis; filtering must be in series.

The design model, which consists only of the controlled modes, are given
by:

Ẋ = AX +BU + ν
Y = CX + ϑ

(3.44)

where ν, ϑ denote zero-mean white noise. The controller design problem can be
formulated as an LQG design problem with the following objective function:

J = lim
t→∞

(
E
[
XTQX + UTRU

])
(3.45)
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where E[ ] denotes the expected value, the weighting matrices are such that
Q = QT ≥ 0 and R = RT > 0. The design parameters are the LQ regulator
weighting matrices as well as the Kalman–Bucy filter weighting matrices V =
VT ≥ 0 and W = WT > 0. A sufficient condition for stability in the presence
of unstructured additive uncertainty is:

σ̄
[
ΔPH (I+P0H)

−1
]
< 1, ∀ real ω (3.46)

where H(s) denotes the controller transfer function matrix and σ̄ is the
largest singular value of the matrix [39]. The uncontrolled mode dynamics are
represented by an additive uncertainty ΔP; P0 represents the design model.
An upper bound on the magnitude σ̄ [ΔP] can be obtained to form an uncer-
tainty envelope [39].

The design process is summarized as follows:

1. Step 1: Select design parameters Q,R,V,W to obtain a nominal
LQG controller for the design model that gives satisfactory closed-
loop eigenvalues and frequency response.

2. Step 2: Apply the robustness test in the presence of additive uncer-
tainty. If the test fails, adjust the weighting matrices and go back to
step 1.

3. Step 3: Repeat until satisfactory performance and robustness are
obtained.

For example, for lateral control in [74], the Dutch roll mode should be
strongly damped for all parameter variations. A coordinated turn control is
required and loads in turbulence should be improved during maneuvers and
in turbulence.

The dynamics of the aircraft are given by:

Ẋ = AX +BU +BgWg

Y = CX +DU
(3.47)

Wg is the gust velocity and Bg the related input matrix. The plant transfer

matrix G(s) mapping
(
UTWT

g

)T
to Y is given by:

G(s) =

(
A | [B,Bg]
C | [D,0]

)
(3.48)

The signals to be minimized are collected in Z =
[
Y TUT

]T
. The normalized

generalized plant

P(s) =

(
P11(s) P12(s)
P21(s) P22(s)

)
(3.49)

has a minimal state-space realization

Ẋ = ApX +Bp1U +Bp2Wg

Z = Cp1X +Dp11U +Dp12Wg

Y = Cp2X +Dp21U +Dp22Wg

(3.50)
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which combines the aircraft model, the Dryden filter and the weighting func-
tions.

The design aircraft model not only includes a nominal model of the dynam-
ics of the aircraft but also reflects the scaling of the variables and may include
augmentation dynamics such as integrators that the designer has appended
to the aircraft model to meet special command following and disturbance re-
jection performance specifications [6]. The LQG design methodology seeks to
define the MIMO compensator so that the stability-robustness and perfor-
mance specifications are met to the extent possible.

In [3], this LQG technique is used to establish a nominal performance
baseline for the vertical acceleration control of an aircraft. The aircraft is
assumed to be subjected to severe wind gusts causing undesirable vertical
motion. The purpose of the controllers is to reduce the transient peak loads on
the aircraft caused by the gusts. The gust load alleviation system uses motion
sensor feedback to derive the aircraft control surfaces in order to attenuate
aerodynamics loads induced by wind gusts.

The H∞ approach to control systems is very appropriate for the optimiza-
tion of stability and disturbance rejection robustness properties, while the
linear quadratic Gaussian type of cost function is often a more practical crite-
rion for minimizing tracking errors or control signal variations due to reference
input changes.

The synthesis of the optimal H∞ controller is to solve the following opti-
mization problem:

inf
Kstabilizing

‖Fl(P,K)‖ = inf
Kstabilizing

sup
ω
σ̄ (Fl(P,K)(jω)) (3.51)

where the lower linear fractional transformation (LFT) Fl(P,K) is the
transfer function matrix from the exogenous input into the panelist output Z
and σ̄ denotes the largest singular value. Let K0 be the corresponding optimal
controller. Then it possesses the following all-pass property:

σ̄ (Fl(P,K)(jω)) = constant, ∀ω (3.52)

The principle of linear fractional transformation representation is to build an
uncertain system in the form of a feedback between an augmented invariant
system in which parameters are perfectly known and an uncertainty block
grouping the various uncertainties. This allows to separate what is perfectly
known from what is not.
H∞ law is a frequency and global method: tuning a control law (all in a

row) at a given time by seeking to minimize the ∞ norm (i.e., the max.) of
a transfer between disturbing inputs and weighted outputs of an enhanced
model. It offers a good handling of trade-offs between the various objectives
such as filtering in the synthesis. However, it has a delicate management of
time aspects [79]. Therefore to quantitatively demonstrate design trade-offs,
the simultaneous treatment of both H2 and H∞ performance criteria becomes
indispensable [96].
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3.2.3 GAIN SCHEDULING

In the design of aircraft control systems, it is important to realize that the rigid
body equations are only an approximation of the nonlinear aircraft dynamics.
An aircraft has also flexible modes that are important at high frequencies,
being potentially destabilizing. As the aircraft changes its equilibrium flight
conditions, the linearized rigid body model describing its perturbed behavior
changes. This parameter variation is a low-frequency effect that can also act
to destabilize the system. To compensate for this variation, suitable controller
gains must be determined for linearized models at several design equilibrium
points to guarantee stability for actual flight conditions near that equilibrium
point. Thus, it is important to design controllers that have stability robust-
ness, which is the ability to provide stability in spite of modeling errors due
to high frequency unmodeled dynamics and plant parameter variations [85].

Gain scheduling is a practical method of coping with known plant nonlin-
earities.

Definition 3.5. Gain scheduling is the process of varying a set of controller
coefficients according to the current value of a scheduling signal.

Given a set of flight condition variables such as Mach number, angle of
attack, dynamic pressure, center of gravity location ..., control loop gain set-
tings yielding the best handling qualities at each individual flight condition
can be directly selected. Given the control loop gain settings for best handling
qualities, one of the earliest papers [56] presented a procedure for determining
which simplified gains programs would yield the best performance for their
level of complexity.

Conventional gain scheduling is carried out by taking linearization of the
nonlinear plant at a few selected points in the aircraft’s flight envelope.

The nonlinear model is considered:

Ẋ = f(X,U), X ∈ R
n, U ∈ R

m (3.53)

The standard approach is to take linearization at several design points
throughout the flight envelope [67]:

δẊ =
∂f

∂X
|iδX +

∂f

∂U
|iδU = AiδX +BiδU (3.54)

where i represents the evaluation at the ith design points and δX, δU are
perturbations in the system from the design point. A linear control strategy
can be implemented using the linearized system to achieve the desired closed-
loop characteristics. Gain scheduling is performed between the design points
by interpolating the gains to effect a smoothly varying set of gains throughout
the flight envelope [97]. Subsequently, either the model linearization or resul-
tant controller gains are scheduled between the design points by using simple
interpolation methods. In practice, a scheduling variable usually is based on
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the physics of the situation and on particular characteristics of the model.
Simple curve fitting approaches are used. In fact, linear interpolation seems
to be the standard approach [70].

Conventional eigenstructure assignment can be used to place the eigen-
values of the linearized system around a predetermined finite set of trim or
equilibrium conditions. Eigenstructure assignment can be used to select a set
of feedback gains K that guarantees the desired closed-loop dynamic proper-
ties. This method places closed-loop poles of the linearized system:

(Ai −BiK) νdi = λdi ν
d
i (3.55)

The eigenstructure is assigned through the set of n self-conjugate distinct
complex eigenvalues of the linearized closed-loop system, λdi and the n distinct
desired eigenvectors of the linearized closed-loop system νdi .

Remark 3.7. Gain scheduled controllers are effective for tackling the
changes of aircraft dynamics [73]. The classical method selects the design
points, designs LTI controllers at the design points and connects all the LTI
controllers to cover the admissible envelope. The provided airspeed data in-
clude some uncertainties because they are calculated from the measured dy-
namic and static pressures by using pitot tubes and the measurements are
affected by the hull of the aircraft, inaccuracies due to the limited resolution
of onboard sensors. Thus the gain scheduled controller should have robustness
against uncertainties. The onboard actuators have large uncertainties and the
flight controller should have robustness against them. One objective is to de-
sign a flight controller that realizes a model-matching property under wind
gusts as well as the uncertainties related to the onboard sensors and actuators
in the admissible speed range.

3.2.4 RECEDING HORIZON APPROACH FOR LTV MODELS

Receding horizon approach is a well-known control method presented in this
paragraph for linear time varying aircraft models. The linear time-varying
differential equation of the controlled system can be expressed as:

Ẋ = A(t)X +B(t)U X(0) = X0 (3.56)

The system (3.56) is assumed to be uniformly completely controllable.
The receding horizon control problem at any fixed time t ≥ 0 is defined to be
an optimal control problem in which the performance index:

J =

∫ t+T

t

(
XT (τ)Q(τ)X(τ) + UT (τ)R(τ)U(τ)

)
dτ (3.57)

is minimized for some chosen δ ≤ T ≤ ∞ (δ is a positive constant), subject
to linear time-varying dynamical system (3.56) and with the constraint:

X(t+ T ) = 0 (3.58)
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where Q,R are the weighting matrices, Q is a non-negative definite sym-
metric matrix and R is a positive definite symmetric matrix.

The main goal of receding horizon control is to solve the optimal control
Uopt(t) for the preceding interval in the interval [t, t+ T ] with the current state
X(t) as the initial condition, where only the first data of Uopt(t) are employed
as the current control input to the system and the rest of the control Uopt(t)
is discarded [65].

For the next instantaneous time t, the preceding solution process is repeated
and the control input is recomputed:

U∗(t) = −R−1(t)BT (t)P−1(t, t+ T )X(t) (3.59)

where P(t, t+T ) satisfies the matrix Riccati differential equation at any
time τ ∈ (t, t+ T ) = (t, tT ):

Ṗ(τ, tT ) = P(τ, tT )A(τ) +AT (τ)P(τ, tT )+
+Q(τ)−P(τ, tT )B(τ)R−1(τ)BT (τ)P(τ, tT )

(3.60)

with the boundary condition

P(tT , tT ) = 0 (3.61)

For solving the receding horizon control problems, many methods have been
proposed to avoid the online integration of the Riccati differential equation,
such as Lu’s method and Legendre and Jacobi pseudospectral methods [47].
Most of these methods transform the receding horizon control problem into
a quadratic programming or linear equation problem. Another technique can
be proposed to construct an efficient sparse numerical approach for solving
the receding horizon control problem online [65].

3.2.5 LINEAR PARAMETER VARYING MODELS

The Takagi–Sugeno (TS) model theory has proven useful in the description
of nonlinear dynamic systems as a means of blending of models obtained by
local analysis. Such descriptions are referred to as model-based systems.
In addition, the Takagi–Sugeno approach can be used for the synthesis of gain
scheduled controllers [33].

A linear parameter varying model is a linear time-varying system
whose matrices depend on a vector of time-varying parameters that are either
measured in real time or estimated using some known scheduling functions.
This modeling framework is appealing because by embedding the nonlineari-
ties in the varying parameters of the model that depend on some exogenous
signals (for example system states), powerful linear analysis and design tools
can be applied to nonlinear systems [69].
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3.2.5.1 Principle
The LPV controller design starts with the conversion of the aircraft nonlinear
model into an LPV model:

1. The nonlinear model is converted into a linear parameter varying
model with affine dependence on the parameter vector that varies
within a bounded region and depends on the system states through
a known relation based on measured signals. These characteristics
guarantee that the trajectories of the LPV model are trajectories of
the nonlinear model. Some examples of aircraft models have been
given in Chapter 2.

2. This affine model is converted into a polytopic model that is used to
formulate the control problem in terms of linear matrix inequali-
ties (LMI) allowing the convex optimization theory to be employed
in the solution of these LMI applying numerical algorithms available
in the LMI solvers [90].

3. For the controller synthesis, the parameter is assumed to vary freely
taking arbitrary values in the bounded region.

The validity of the local model i is indicated by a function μi(ζ(t)) : D →
[0, 1]. The multi-model made of local linear models can be written as:

Ẋ(t) =

r∑
i=1

�i(ζ(t)) (AiX(t) +BiU(t)) (3.62)

Y (t) =

r∑
i=1

�i(ζ(t)) (CiX(t) +DiU(t)) (3.63)

with

�i(ζ(t)) =
μi(ζ(t))∑r
i=1 μi(ζ(t))

(3.64)

The number of rules r = 2|ζ| denotes the number of nonlinearities consid-
ered.

Instead of designing a single LPV controller for the entire parameter spaces
in a conventional LPV synthesis, LPV controllers can be synthesized for pa-
rameter subspaces which are overlapped with each other. Then, these LPV
controllers are blended into a single LPV controller over the entire parame-
ter space. Thus the performance of the closed-loop system with the blended
controller is preserved when parameter trajectories travel over the overlapped
parameter subspaces [78].

A nonlinear control law U(t) must be determined to stabilize the multi-
model with the general law:

U(t) =
r∑
j=1

�j(ζ(t))KjX(t) (3.65)
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In the closed form, the following relationship is obtained:

Ẋ(t) =

⎛
⎝

r∑
i=1

�i(ζ(t))Ai +

(
r∑
i=1

�i(ζ(t))Bi

)⎛
⎝

r∑
j=1

�j(ζ(t))Kj

⎞
⎠
⎞
⎠X(t)

(3.66)
of the form Ẋ = f(X) with f(0) = 0.

The following Lyapunov function candidate is used:

Ṽ (X) = XTPX (3.67)

where P is a symmetrical definite positive matrix. The origin is an equilibrium

point globally asymptotically stable if ˙̃V (X) < 0. It can be demonstrated that

˙̃V (X) ≤
∑
i,j

XT
(
P (Ai +BiKj) + (Ai +BiKj)

T
P
)
X(t) (3.68)

This inequality is verified if ∀i = 1, . . . , r, ∀j = 1, . . . , r:

P (Ai +BiKj) + (Ai +BiKj)
T
P < 0 (3.69)

Definition 3.6. Linear Matrix Inequality: A linear matrix inequality is
an expression of the form

F0 + F1Θ1 + · · ·+ FdΘd ≤ 0 (3.70)

where Θi, i = 1, . . . , d are real variables, Fi, i = 1, . . . , d are n× n symmetric
matrices and A ≤ 0 means that A is a negative semi-definite matrix; that is,
zTAz ≤ 0, ∀z ∈ R

n.

Remark 3.8. Linear matrix inequalities techniques have been developed
for LPV systems whose time-varying parameter vector � varies within a poly-
tope Θ. In this kind of LPV system, the state matrices range in a polytope
of matrices defined as the convex hull of a finite number r of matrices. Each
polytope vertex corresponds to a particular value of the scheduling variable �.

The simplest polytopic approximation relies on bounding each parame-
ter by an interval. This approximation is known as the bounding box ap-
proach.

Definition 3.7. A quasi-LPV system is defined as a linear time-varying
plant whose state space matrices are fixed functions of some vector of varying
parameters � that depend on the state variables [58].
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3.2.5.2 Parallel distributed compensator
A crucial task for autonomous flying is tracking a predefined trajectory when
wind disturbances are present [44]. For tracking purposes, formulating the
problem with respect to the error posture rather than the inertial coordinates
model of the aircraft can aid the design of the control methodology. Particu-
larly, the reference and the current posture are used for the generation of the
error posture of the aircraft. Among the advantages of using such a model, an
important one is that there can be created any kind of reference trajectory to
be tracked, even discontinuous ones.

In this section, the error posture model and the control methodology design
to track a predefined trajectory are described. Additionally, its equivalence is
shown with respect to a Takagi–Sugeno model which is used in the control
methodology. The control methodology used involves a parallel distributed
compensation (PDC) law to be computed via the use of linear matrix in-
equality (LMI) techniques:

ẋ = V cos γ cosχ+W cos γw cosχw
ẏ = V cos γ sinχ+W cos γw sinχw

ż = −V sin γ +W sin γw
χ̇ = ω1

γ̇ = ω2

(3.71)

In the error posture model, the reference and the current posture used are
denoted as Pref = (xref , yref , zref , χref , γref )

T and Pc = (xc, yc, zc, χc, γc)
T ,

respectively. The reference position is the position of the aircraft to be tracked
and the current is the real one calculated at each time step. The error model
can be determined by applying a transformation of Pref in the local frame
with origin Pc. Hence the tracking error is governed by:

Pe = Te(Pref − Pc) (3.72)

where, in 3D, the matrix Te can be written as:

Te =

⎛
⎜⎜⎜⎜⎝

cos γ cosχ cos γ sinχ − sin γ 0 0
− sinχ cosχ 0 0 0

sin γ cosχ sin γ sinχ cos γ 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

(3.73)

The error posture model can be used for tracking purposes.
Differentiating,

⎛
⎜⎜⎜⎜⎝

ėx
ėy
ėz
ėχ
ėγ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

e1
e2
e3

ω1r − ω1

ω2r − ω2

⎞
⎟⎟⎟⎟⎠

(3.74)
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where

e1 = ω1 cos γey − ω2ez − V + Vr cos γ cos γr cos eχ + Vr sin γ sin γr

e2 = −ω1 cos γex − ω1 sin γez + Vr cos γr sin eχ

e3 = ω1 sin γey + ω2ex + Vr sin γ cos γr cos eχ − Vr cos γ sin γr

The considered input is U =

⎛
⎝

V
ω1

ω2

⎞
⎠. If an anticipative action is chosen

such as U = UB + UF with

UF =

⎛
⎝

Vr cos γ cos γr cos eχ + Vr sin γ sin γr
ω1r

ω2r

⎞
⎠ (3.75)

UB is a feedback control action vector. The control UB is calculated in the
analysis by the use of parallel distributed compensation (PDC) control. The
control law used is designed to guarantee stability within a compact region of
space and the gains are calculated through the use of LMI conditions.

Then system (3.74) can be written as:

⎛
⎜⎜⎜⎜⎝

ėx
ėy
ėz
ėχ
ėγ

⎞
⎟⎟⎟⎟⎠

= Alin

⎛
⎜⎜⎜⎜⎝

ex
ey
ez
eχ
eγ

⎞
⎟⎟⎟⎟⎠

+BlinUB (3.76)

where

Alin =

⎛
⎜⎜⎜⎜⎝

0 ω1r cos γ −ω2r 0 0
−ω1r cos γ 0 −ω1r sin γ Vr cos γr 0

ω2r ω1r sin γ 0 0 −Vr
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

(3.77)

Blin =

⎛
⎜⎜⎜⎜⎝

−1 0 0
0 0 0
0 0 0
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

(3.78)

The controller used for the Takagi–Sugeno system is the parallel dis-
tributed compensation (PDC). In the PDC design, every control law is
used, as the aircraft model is designed from the rules of the Takagi–Sugeno
model. It involves the same sets in the premise part with the Takagi–Sugeno
model fed. Hence for the model described by equation (3.74), the ith control
rule layout is equivalent to the following:
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Rule i : If ζ1(t) is Mi1 AND . . . AND ζp(t) is Mip THEN UB = −KiX(t)
for i = 1, ..., r where r = dim(ζ).

Thus the layout falls under the category of state feedback laws [52]. The
overall state feedback law to be used in the design has the form of:

UB = −
∑r
i=1 μi(ζ(t))KiX(t)∑r

i=1 μi(ζ(t))
= −

r∑
i=1

�i(ζ(t))KiX(t) (3.79)

The matrices Ki are the local feedback gains that are calculated in order
to guarantee global stability of the system. The latter is performed through
the use of LMI conditions which guarantee global stability in the consequent
compact regions of the premise parts.

3.2.5.3 Integral action
The LPV or quasi-LPV model dynamics of the aircraft is given by:

Ẋ(t) = A(�)X(t) +B(�)U(t) (3.80)

If the varying plant matrices A(�), B(�) are assumed to depend affinely on
the parameter �, they can be written as:

A(�) = A0 +
m∑
i=1

�iAi B(�) = B0 +
m∑
i=1

�iBi (3.81)

The time-varying parameter vector �(t) is assumed to lie in a specified
bounded compact set and is assumed to be available for the controller de-
sign. In order to introduce a tracking facility in the proposed scheme, the
aircraft states are first augmented with integral action states given by:

Ẋr(t) = R(t)−CcX(t) (3.82)

where R(t) is the reference to be tracked and Cc is the controlled output
distribution matrix gain. The augmented LPV system becomes:

(
Ẋr(t)

Ẋ(t)

)
=

(
0 −Cc

0 A(�)

)(
Xr(t)
X(t)

)
+

(
0

B(�)

)
U(t)+

(
In×n
0

)
R(t)

(3.83)
Two objectives must be met: the first relates to achieving a good nominal

performance for all the admissible values of � and the second is to satisfy the
closed-loop stability condition for which the small gain theorem is required
for the controller to guarantee stability in the face of faults or failures [1].
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Theorem 3.5

If for the switched polytopic system

Ẋ = A(�(t))X(t) +B(�(t))U(t)
U(t) = K(t) (R(t)−X(t))

(3.84)

where

A(�(t)) =
r∑
i=1

�i(t)Ai B(�i(t)) =
r∑
i=1

�i(t)Bi (3.85)

with

�i(t) > 0

r∑
i=1

�i(t) = 1

and the following assumptions hold:

1. The vertices of any polytopic subsystem, i.e., the subsystem of the
corresponding locally overlapped switched system, satisfy the linear
matrix equalities:

(Ai −BiKj)
T
Pj +Pj (Ai −BiKj) +Qij = 0 (3.86)

where Pj ,Qij are appropriately dimensioned positive symmetric ma-
trices.

2. The gain scheduled controller of every polytopic subsystem is synthe-
sized as:

Kj = B+
j (�i(t)) (BiKi) (3.87)

where B+
j (�i(t)) is the Moore–Penrose inverse of the full row rank

matrix Bj(�i(t).

Then, the system is uniformly input to state bounded under any piecewise
bounded command input.

The proof of this theorem can be found in [1].

Remark 3.9. A linear parameter varying approach for designing a constant
output feedback controller for a linear time-invariant system with uncertain
parameters is presented in [77]. It achieves minimum bound on either the H2

or H∞ performance level. Assuming that the uncertain parameters reside in
a given polytope a parameter-dependent Lyapunov function is described which
enables the derivation of the required constant gain via a solution of a set of
linear matrix inequalities that correspond to the vertices of the uncertain
polytope.
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3.2.5.4 Gain scheduling
For LPV gain scheduled methods, arbitrarily fast variation for parameters is
allowed by using a common Lyapunov function which guarantees the closed-
loop stability. A switched polytopic system is established to describe the air-
craft dynamics within the full flight envelope. Every polytopic subsystem rep-
resents the system dynamics in a part of the flight envelope and its vertices
are the subsystems of a locally overlapped switched system which describes
dynamics on operating points within this part of the flight envelope. For ev-
ery polytopic subsystem, a gain scheduled subcontroller is achieved by inter-
polating between the state-feedback controllers on vertices. Gain scheduled
controller with respect to the full flight envelope is composed of these gain
scheduled subcontrollers [30].

The considered aircraft model is a nonlinear continuous and continuously
differentiable system of the form:

Ẋ = f(X,U) (3.88)

where X ∈ R
n, U ∈ R

m, f : Rn × R
m → R

n.
The aim is to design a controller capable of following some desired tra-

jectories (Xr, Ur) where Xr is a differentiable slowly varying state trajectory
and Ur is the nominal input necessary to follow the unperturbed Xr state.
A subset XU ⊂ R

n+m of the system’s state and input spaces is defined as a
bound of the possible state and input values. A set of operating points is also
defined as {(Xi, Ui) ∈ XU, i ∈ I}; I is the set of all positive integers that form
a regular grid J in the trajectory space.

Linearization of (3.88) about all the points in J yields:

Ai =
∂f

∂X
|(Xi,Ui) Bi =

∂f

∂U
|(Xi,Ui) (3.89)

resulting in perturbed dynamics about the linearization points given by

Ẋ = Ai(X −Xi) +Bi(U − Ui) + f(Xi, Ui)
= AiX̄ +BiŪ + di

di = f(Xi, Ui)− (AiX̄ +BiŪ)
(3.90)

When the linearized systems (3.90) are interpolated through a Takagi–
Sugeno model, a nonlinear approximation of (3.88) is obtained through:

Ẋ ≈ f̂(X,U) =
∑
i∈I

�i(X,U)(AiX +BiU + di) (3.91)

A control law for system (3.91) is also designed as a gain scheduling controller
based on a Takagi–Sugeno model. Under the hypothesis of controllability for
all (Ai,Bi), ∀i ∈ I, and being all of the states measured, full-state feedback
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linear control laws can be synthesized and interpolated through a Takagi–
Sugeno system yielding

U = Ur +
∑
j∈I

�j(X,U)Kj (X −Xr)) (3.92)

In equations (3.91) to (3.92), the expressions � represent the Takagi–
Sugeno linear membership functions relating the input variables to the domain
described by if-then-else rules consequent. The system membership functions
are chosen such as they constitute a convex sum over the input range XU.

Substituting (3.92) in (3.91), the closed-loop perturbed system dynamics
become:

Ẋ − Ẋr =
∑
i

�i(X,U)

⎡
⎣Ai +Bi

⎛
⎝∑

j

�j(X,U)Kj

⎞
⎠
⎤
⎦(X −Xr) + ε (3.93)

where
ε =

∑
i

�i(X,U) [AiXr +BiUr + di]− Ẋr (3.94)

The term
∑

iAiXr is added and subtracted so that the matrix∑
i�i(X,U)

(
Ai +Bi

(∑
j �j(X,U)Kj

))
gives the dynamics of the pertur-

bation from the desired trajectory. Also, from the definition of di, ε represents
the error with respect to Xr as a result of the approximation of the function
f with the Takagi–Sugeno model.

The asymptotic stability conditions of the Takagi–Sugeno gain scheduling
controller around (Xr, Ur) can be derived.

Definition 3.8. Scheduling Indexes: Given the grid point set J and any
linearized dynamics (Ai,Bi), i ∈ J, Ji is defined as the set of all indexes m of
the neighborhood points of (Xi, Ui) whose controllers Km have a non negligible
influence over (Ai,Bi).

Ji contains all points such that

�m(X,U) > 0, ∀(X,U) ∈ {(X,U) : �i(X̄, U) > 0
}

Given a generic input state pair (Xl, Ul), l /∈ I, the stability property for
the tracking error (Xl −Xr)→ 0 requires the following assumption:

Condition 1: (Xi, Ui) ∈ J is assumed to be the nearest linearization grid
point to the operating point (Xl, Ul) ∈ J. The system (Ai,Bi) remains closed-
loop stable using a convex combination of controllers Km,m ∈ J.

Condition 1 is verified using the following test guaranteeing that the
Takagi–Sugeno modeling of the plant f̂ is stable when controlled by the
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Takagi–Sugeno controller for all positive controller combinations. The closed-
loop system dynamics about (Xi, Ui) are considered

Ẋ =

⎡
⎣Ai +Bi

⎛
⎝∑

j

�j(X,U)Kj

⎞
⎠
⎤
⎦X =

∑
j

�i(X,U)(Ai +BiKj)X

(3.95)
obtained by a convex combination of controllers Km,m ∈ J. Equation

(3.95) has the form of a polytopic differential inclusion, where the vertices
are the matrices (Ai + BiKj), j ∈ Ji. Stability of all (Ai + BiKj), j ∈ Ji is
required.

The stability test is repeated for all grid points obtaining:

∀i ∈ I, ∀j ∈ Ji, ∃Pi > 0, (Ai +BiKj)
TPi +Pi(Ai +BiKj) < 0 (3.96)

Inequality (3.96) can be solved using linear matrix inequalities (LMI)
techniques.

The set of Θ, where (3.70) is satisfied, is a convex set that is an LMI specifies

a convex constraint on Θ = (Θ1, . . . ,Θd)
T
. Linear matrix inequalities are

useful tools to describe constraints arising in systems and control applications.

Remark 3.10. If the LMI test fails, then the grid J must be made denser. Fur-
thermore, the LMI test suggests where to add additional linearization points,
in order to make the closed-loop system stable.

Condition 2: The approximation error caused by linearization and succes-
sive Takagi–Sugeno modeling with respect to the original nonlinear system is
small enough as not to compromise robust stability with respect to structured
uncertainties. If the desired closed-loop dynamics are given by

Ad = Ai +BiKi ∀i ∈ I (3.97)

then from (3.95)

∑
j

�j(X,U)(Ai +BiKj)X =

⎛
⎝Ad +

∑
j

�j(X,U)δAij

⎞
⎠X (3.98)

with
δAij = B(Xi, Ui) [K(Xi, Uj)−K(Xi, Ui)] (3.99)

Using the robust stability theorem, under structured uncertainties, the fol-
lowing matrix

A+
∑
i

�i(X,U)
∑
j

�j(X,U)δAij (3.100)

should be tested for stability.
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3.2.5.5 Cost control analysis: Actuator saturation
Aircraft are subject to constraints on input and state. Actuator saturation
is one of the most common constraints but sometimes constraints involving
input and state variables are also useful to limit the rate of variation of inputs
or internal variables.

The Takagi–Sugeno model is given by

Ẋ = A(�)X +B(�)U
Y = C(�)X

(3.101)

Given positive definite weighting matrices W and R and a quadratic ob-
jective function of the form:

J =

∫ ∞

0

(
Y T (t)WY (t) + UTRU(t)

)
dt (3.102)

The designed controller minimizes an upper bound of it, defined by a
quadratic positive definite function, Ṽ = XTPX , so that

J < XT
0 PX0 (3.103)

This bound holds if the following index Jd is negative:

Jd = Y TWY + UTRU + ẊTPX +XTPẊ < 0 (3.104)

Substituting in (3.104) the expression of X,Y and defining U by a parallel
distributed compensator (PDC) control law of the form [4]:

U =

r∑
j=1

�iKjX = K(�)X (3.105)

The double summation condition (3.106) is obtained:

r∑
i=1

r∑
j=1

�i(t)�j(t)X(t)TQijX(t) ≤ 0 (3.106)

where Qij is defined as:

Qij =
1

2

⎛
⎜⎜⎜⎜⎝

2Dij P−1CT
i −Mj P−1CT

j −Mi

CiP
−1 −W−1 0 0 0

−Mj 0 −R−1 0 0
CjP

−1 0 0 −W−1 0
−Mi 0 0 0 −R−1

⎞
⎟⎟⎟⎟⎠

(3.107)

Dij = AiP
−1 +P−1AT

i −BiMj −MT
j B

T
i (3.108)

where Ki = MiP.
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The congruence lemma is used: if Q < 0 then XQX < 0 where X is also
a matrix [32]. The above expression (3.106) is a double summation which is
not directly an LMI. The optimizer Uopt has a piecewise affine structure of
the form:

Uopt = KkX +Gk for X ∈ Ωk = {X,HkX ≤ lk} (3.109)

defined in l regions Ωk, k = 1, . . . , l which conforms a polytopic partition
of the operating domain X.

The objective of this subsection is to design a guaranteed cost optimal
control in the presence of constraints on the inputs and the states of the form:

U ∈ U = {ΦU ≤ Δ+ΛX} (3.110)

defined in the polytopic operating domain, described by:

X ∈ X = {KX ≤ τ} (3.111)

The main idea is to search a parallel distributed compensator (3.105) that
does not need any saturation in the state space. If the initial state is inside
the ball ‖X0‖2 ≤ γ, and the control is bounded by ‖U‖2 ≤ δ, the aim is to
find a controller that guarantees a bound on the cost function (3.103) which
is in turn bounded by some scalar λ such that:

J < XT
0 PX0 < λ (3.112)

Considering the initial state zone, condition (3.112) holds if:

XT
0 PX0 < λ

XT
0 X0

γ2
(3.113)

or

P <
λ

γ2
In×n (3.114)

or
γ2λ−1In×n < P−1 (3.115)

From the constraints in the control action and the PDC controller (3.105)
described as U = K(�)X :

UTU = XTK(�)TK(�)X < δ2 (3.116)

Since XTPX is a Lyapunov function, XTPX < XT
0 PX0 and therefore

(3.116) holds if

1

δ2
XTK(�)TK(�)X <

1

λ
XTPX (3.117)
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The bound condition on the control action can be expressed as the following
LMI: (

P−1 MT
i

Mi λ−1δ2In×n

)
> 0 (3.118)

where Mi = FiP
−1.

Merging all the conditions, the parallel distributed compensator with the
best bound on the performance function that holds the constraints on the
control action |uj | < δj for an initial state inside ‖X0‖2 < γ can be obtained.

3.3 NONLINEAR CONTROL
Numerous techniques exist for the synthesis of control laws for nonlinear sys-
tems. Many nonlinear control approaches for the autonomous aircraft can be
used such as [19, 50, 60, 103]:

1. Dynamic inversion,
2. Model predictive control,
3. Variable structure robust control (sliding mode),
4. Adaptive control,
5. Feedback linearization,
6. Robust control,
7. Backstepping,
8. Tracking by path curvature.

Their application is more general than that of linear control methods.

3.3.1 AFFINE FORMULATION OF AIRCRAFT MODELS

Some of these nonlinear control methods can be applied to an affine formula-
tion of aircraft models. Affine nonlinear control systems are defined as:

Ẋ = f(X) +
m∑
i=1

gi(X)Ui = f(X) +GU (3.119)

Yj = hj(X), j = 1, . . . ,m or Y = h(X) (3.120)

whereX is the state of the aircraft, U is the control input, Y is the measured
output and f, gi, i = 1, . . . ,m are smooth vector fields on M. The constraint
set contains an open set of the origin in R

m. Thus U ≡ 0 is an admissible
control resulting in trajectories generated by the vector field f . The vector
field f is usually called the drift vector field and the gi the control vector
fields.

Definition 3.9. Lie Bracket: The Lie bracket is defined as

[f, g] =
∂g

∂X
f − ∂f

∂X
g (3.121)
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while the adjoint notation is given as:

ad0fg = g

ad1fg = [f, g]
...

adifg =
[
f, adi−1

f g
]

(3.122)

Definition 3.10. Lie Derivative: If the system (3.119) is assumed to have
the same number of inputs and outputs, the kth Lie derivative of hj(X) along
f(X) is

Lfhj(X) =
dhj(X)

dX
f(X) (3.123)

Lvfhj(X) =
dLv−1

f hj(X)

dX
f(X) ∀v = 2, . . . , k (3.124)

Similarly with 1 ≤ i ≤ m, 1 ≤ j ≤ m, k ≥ 1, define

LgiL
k
fhj(X) =

dLkfhj(X)

dX
gi(X) (3.125)

To compute the normal form of this affine system (3.119)–(3.120), the no-
tion of a vector relative degree of the system is important.

Definition 3.11. Vector Relative Degree: The system (3.119) is said to
have vector relative degree (r1, . . . , rm) at a point X0 ∈ R

n if the following
two properties hold:

1. The existence of the Lie derivatives for X ∈ Neighborhood of X0

LgiL
k
fhj(X) = 0 ∀1 ≤ i ≤ m, 1 ≤ k < ri, 1 ≤ j ≤ m (3.126)

2. The m×m matrix

A(X) =

⎛
⎜⎝

Lg1L
r1−1
f h1(X) . . . LgmL

r1−1
f h1(X)

... . . .
...

Lg1L
rm−1
f hm(X) . . . LgmL

rm−1
f hm(X)

⎞
⎟⎠ (3.127)

is non singular at X = X0.

Remark 3.11. The above state-space model (3.119) can be represented as
an equation graph where the nodes represent the state variables X, the input
variables U and the output variables Y are the edges representing the inter-
dependencies among the process variables [29]:

1. There is an edge from a node Xk to a node Xf if
∂ff (X)
∂Xk

�= 0.

2. There is an edge from a node Ui to a node Xf if gif (X) �= 0.
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3. There is an edge from a node Xk to a node Yj if
∂hj(X)
∂Xk

�= 0.

Based on the rules of placing edges, only the structural forms of f, gi, hj
are required to construct an equation graph. A path is an open walk of nodes
and edges of a graph such that no node is repeated. An input-to-output
path (IOP) is defined as a path which starts from an input variable node
and terminates at an output variable node of the equation graph. The length
of a path is the number of edges contained in the path. Once the equation
graph is constructed all the input-to-output paths can be easily identified using
the algorithm. Then alternative single-input-single-output multi-loop control
configurations can be generated by choosing input-to-output path such that
any input/output variable node is included in only one input-to-output path.

Given all the alternative control configurations, they must be evaluated in
order to select the one to be employed. One possible criterion that can be
used for evaluation is structural coupling, i.e., a coupling among the process
variables based on their structural inter-dependencies. This can be captured
through the concept of relative degree.

In an equation graph, the relative degree rij is related to lij, the length of
the shortest input-to-output path connecting ui and yj as follows:

rij = lij − 1 (3.128)

Since the relative degree quantifies how direct the effect of the input Ui is on
the output Yj, it can be used as a measure of structural coupling. A relative
degree matrix (RDM) has as element i, j the relative degree between the
input Ui and the output Yj for the process described by equation (3.119). For a
square system, it is possible to search over all the possible pairings to identify
m input-output pairings such that the off-diagonal (with respect to the rear-
ranged outputs so that the input-output pairs fall on the diagonal) elements
are maximized. For non square systems with m inputs and q outputs (m < q),
in this case, any m-columns of the relative degree matrix can be taken to form
an m × m submatrix. Then the procedure mentioned above can be followed,
to identify suboptimal I-O pairings for each combination of the columns and
select the one with the maximum sum of the off-diagonal elements. In this
case, the relative degrees can be classified into three categories:

1. Diagonal: rd = {rij ∈ R, |i = j}
2. Off-Diagonal: ro = {rij ∈ R, |i �= j} 1 ≤ i, j ≤ min(m, q)
3. Remaining: rr = r − (rd ∪ r0)

where r = {rij ∈ R} |∀i, j.
The problem of identifying the optimal input-output pairings is equivalent

to looking for ro, such that the sum of individual elements of r0 is maximized.

Almost all of the information in the Lie groups is contained in its Lie algebra
and questions about systems evolving on Lie groups could be reduced to their
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Lie algebras. Notions such as accessibility, controllability and observability
can thus be expressed [51].

Definition 3.12. Controllability: The system (3.119) to (3.120) is said to
be controllable if for any two points X0 and Xf in X there exists an admissible
control U(t) defined on some time interval [0, T ] such that the system (3.119)
to(3.120) with initial condition X0 reaches the point Xf in time T.

Remark 3.12. Some of the early works on nonlinear controllability were
based on linearization of nonlinear systems. It was observed that if the lin-
earization of a nonlinear system at an equilibrium point is controllable, the
system itself is locally controllable [13].

A lot of interesting control theoretic information is contained in the Lie
brackets of these vector fields. Chow’s theorem leads to the controllability of
systems without drift. Considering the affine nonlinear model with drift

Ẋ = f(X) +
m∑
i=1

gi(X)Ui U ∈ U ⊂ R
m X ∈ X ⊂ R

n (3.129)

Theorem 3.6

In terms of the accessibility algebras, system (3.129) is locally accessible
if and only if dim (L(X)) = n, ∀X ∈ X and locally strongly accessible if
dim (L0(X)) = n, ∀X ∈ X.

This condition is often referred to as the Lie algebra rank condition
(LARC). If system (3.129) satisfies this rank condition, then it is locally ac-
cessible.

Definition 3.13. Small Time Local Controllability: The system (3.129)
is small time locally controllable from X0, if X0 is an interior point of
Neighborhood(X0), for any T > 0.

Studying controllability of general systems with drift is usually a hard
problem [87, 88].

Theorem 3.7

Assuming the vector fields in the set {f, g1, . . . , gm} are assumed to be real and
analytic and the input vector fields gi are linearly independent of each other,
if the drift term f(X) �= 0 is bounded and the vectors (adf )

k
(gi)(X), ∀i ∈
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{1, . . . ,m} , k ∈ {0, 1, . . . , } together with the vectors [gi, gj] (X) for all pairs
∀i, j ∈ {1, . . . ,m} span TXX, then system (3.129) is small time locally con-
trollable from X if the input controls are sufficiently large, i.e., with controls
λU where U ∈ U, |Ui| ≤ 1, i = 1, . . . ,m for some large scalar λ > 0.

The proof of this theorem can be found in [25].
Depending on the chosen formulation two aircraft affine systems can be

formulated: the first one being without drift and the second one with drift.

3.3.1.1 Affine formulation without drift
The following kinematic equations can be considered, when wind is neglected:

ẋ = V cos γ cosχ
ẏ = V cos γ sinχ
ż = −V sin γ
χ̇ = ω1

γ̇ = ω2

(3.130)

where the state variable is X = (x, y, z, χ, γ)T , the input variable being
U = (V, ω1, ω2)

T and the state equations as:

Ẋ = G(X)U =

⎛
⎜⎜⎜⎜⎝

cos γ cosχ 0 0
cos γ sinχ 0 0
− sin γ 0 0

0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎠
U (3.131)

The Lie brackets of model (3.130) can be calculated as

g4 = [g1, g2] =

⎛
⎜⎜⎜⎜⎝

cos γ sinχ
− cos γ cosχ

0
0
0

⎞
⎟⎟⎟⎟⎠

g5 = [g1, g3] =

⎛
⎜⎜⎜⎜⎝

cosχ sin γ
sin γ sinχ

cos γ
0
0

⎞
⎟⎟⎟⎟⎠

(3.132)

The system is not symmetric as 0 < Vstall ≤ V ≤ Vmax.

Remark 3.13. System (3.131) is a regular system with degree of nonholon-
omy = 2 as span {g1, g2, g3, [g1, g2] , [g1, g3] , [g2, g3]} = R

5.
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3.3.1.2 Affine formulation with drift
3.3.1.2.1 Kinematic formulation
The following equations are considered:

ẋ = V cos γ cosχ+WN

ẏ = V cos γ sinχ+WE

ż = −V sin γ +WD

V̇ = U1

χ̇ = U2

γ̇ = U3

(3.133)

or equivalently

Ẋ = f(X) +GU +Dw =

⎛
⎜⎜⎜⎜⎜⎜⎝

V cos γ cosχ
V cos γ sinχ
−V sin γ

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
U +

⎛
⎜⎜⎜⎜⎜⎜⎝

WN

WE

WD

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.134)
The wind represents the disturbance Dw.
When the accessibility is analyzed using LARC, the following conditions

must be verified:

V �= − (WN cos γ cosχ+WE cos γ sinχ−WD sin γ)

γ �= π
2 , |W | < V and 0 < Vstall ≤ V ≤ Vmax.

3.3.1.2.2 Kino-dynamic formulation in a coordinated flight
The following dynamics are used for this derivation:

ẋ = V cosχ cos γ +WN

ẏ = V sinχ cos γ +WE

ż = −V sin γ +WD

V̇ = −g sin γ +
T cosα−D

m
+

−
(
ẆN cos γ cosχ+ ẆE cos γ sinχ− ẆD sin γ

)
(3.135)

χ̇ =
(L+ T sinα) sinσ

mV cos γ
+

(
ẆN sinχ− ẆE cosχ

V cos γ

)

γ̇ =
1

mV
((L+ T sinα) cos σ −mg cos γ)+

− 1

V

(
ẆN sin γ cosχ+ ẆE sin γ sinχ+ ẆD cos γ

)
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where D = 1
2ρV

2SCD. As the controls T, α, σ appear in a non-affine mode,

the virtual control U = (Ṫ , α̇, σ̇)T is used in this derivation to obtain an affine
system. This is a dynamic extension. The following notations are used:

X1 =

⎛
⎝

x
y
z

⎞
⎠, X2 =

⎛
⎝

V
χ
γ

⎞
⎠, X3 =

⎛
⎝

T
α
σ

⎞
⎠ and the whole state variable

is X =

⎛
⎝

X1

X2

X3

⎞
⎠; the affine model without wind can be written under the

following form
Ẋ1 = f0(X2)

Ẋ2 = f1(X2) + f2(X2, X3)

Ẋ3 = U

(3.136)

where

f0(X2) =

⎛
⎝

V cosχ cosγ
V sinχ cos γ
−V sin γ

⎞
⎠, f1(X2) =

⎛
⎝
−g sin γ

0
− g
V cos γ

⎞
⎠

and f2(X2, X3) =

⎛
⎝

T cosα−D
m

(L+T sinα) sin σ
mV cos γ

1
mV ((L+ T sinα) cos σ)

⎞
⎠.

The complete affine control system can be written as:

Ẋ = f(X) +GU +Dw (3.137)

with the drift

f(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V cosχ cosγ
V sinχ cos γ
−V sin γ

−g sin γ + T cosα−D
m

1
mV cos γ ((L + T sinα) sin σ)

1
mV ((L+ T sinα) cosσ −mg cos γ)

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.138)

and the constant matrix

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.139)
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The wind effect is considered as a perturbation:

Dw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

WN

WE

WD

−
(
ẆN cos γ cosχ+ ẆE cos γ sinχ− ẆD sin γ

)
(
ẆN sinχ− ẆE cosχ

V cos γ

)

− 1
V

(
ẆN sin γ cosχ+ ẆE sin γ sinχ+ ẆD cos γ

)

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.140)

As the wind disturbance does not enter through the same input channel as
the control, this uncertainty is said to be unmatched.

To check the accessibility the following Lie brackets are computed:

g4 = [f, g1] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

1

m
(cosα sinσ)

1

mV cos γ
(sinα sinσ)

1

mV
(cosσ)

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.141)

g5 = [f, g2] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

− 1

m

(
T sinα− ∂D

∂α

)

sinσ

mV cos γ

(
T cosα+

∂L

∂α

)

cosσ

mV

(
T cosα+

∂L

∂α

)

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.142)
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and

g6 = [f, g3] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

cosσ

mV cos γ
(T sinα+ L)

− sinσ

mV
(T sinα+ L)

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.143)

Two other Lie brackets should be calculated in the second order. Then the
LARC condition should be checked for accessibility. This would give some
additional conditions on the wind.

3.3.1.3 Properties
Some additional properties are necessary for the analysis of these affine mod-
els.

Definition 3.14. Stabilizability: Let X0 be an equilibrium point of the con-
trol system Ẋ = f(X,U). The system is said to be asymptotically stabilizable
at X0 if a feedback control U(X) can be found that renders the closed-loop
system asymptotically stable.

Definition 3.15. Robust Global Uniform Asymptotic Stability: Let
Ω be a compact subset of Rn; suppose that the control input U is chosen as
U = k(X). Then the solutions of the closed-loop system for system (3.129) are
robustly globally uniformly asymptotically stable with respect to Ω (RGUAS-
Ω) when there exists a regular function β such that for any initial condition
X0 ∈ R

n, all solutions X(t) of the closed system starting from X0 exist for
all t ≥ 0 and satisfy ‖X(t)‖Ω ≤ β (‖X0‖Ω , t) , ∀t ≥ 0.

Definition 3.16. Robust Stabilizability: The system (3.129) is robustly
stabilizable (RS) when there exists a control law U = k(X) and a compact set
Ω ⊂ R

n such that the solutions of the closed-loop system are robustly globally
uniformly asymptotically stable with respect to Ω.

Definition 3.17. Input to State Stability: The system (3.119) is input to
state stable if there exist comparison functions γ1 and γ2 such that ∀(X0, U),
the unique solution X is such that

‖X(t)‖ ≤ γ1 (t, ‖X0‖) + γ2
(
sups∈[0,t] ‖U(s)‖) t ≥ 0 (3.144)

or

‖X(t)‖ ≤ max{γ1 (t, ‖X0‖) , γ2
(
sups∈[0,t] ‖u(s)‖

)}
t ≥ 0 (3.145)
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If system (3.119) is input to state stable, then it has the global asymp-
totic stability (GAS), bounded input bounded state (BIBS) and con-
vergent input convergent state (CICS) properties [38]. Input to state
stability admits a characterization in terms of a Lyapunov-like function.

Theorem 3.8

System (3.119) is input to state stable if there exists a smooth function
Ṽ : Rn × R→ R and comparison functions α1, α2, α3, α4, such that:

α1 (‖z‖) ≤ Ṽ (z) ≤ α2 (‖z‖) (3.146)

and
∇Ṽ (z)T g(z, Ṽ ) ≤ −α3 (‖z‖) + α4 (‖v‖) (3.147)

The relation between closures, interiors and boundaries is investigated
in [27] for the systems generated by square integrable controls.

3.3.1.4 Decoupling by feedback linearization
The change of coordinates is often used to transform nonlinear systems in
special forms that make easier the interpretation of structural properties. This
is the starting point for the solution of many control problems such as feedback
linearization, state and output feedback stabilization, output regulation and
tracking by system inversion [31, 53].

The principle of this feedback linearization approach is explained for the
following generic system:

Ẋ = f(X) +G(X)U
Y = h(X)

(3.148)

The principle is to derive each output Yi till the input U appears. Assuming
that each output Yi must be derived ρi times, the following relations are
obtained:

Yi = hi(X) (3.149)

Ẏi =
∂hi
∂X

Ẋ =
∂hi
∂X

(f(X) +G(X)U) (3.150)

...

Ẏ
(ρi)
i =

∂h
(ρi−1)
i

∂X
Ẋ =

∂h
(ρi)
i

∂X
(f(X) +G(X)U) = h

(ρi)
i + g

(ρi)
i U (3.151)
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The matrix form can then be written:
⎛
⎜⎜⎜⎜⎝

Y
(ρ1)
1

Y
(ρ2)
2
...

Y
(ρ3)
m

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

h
(ρ1)
1

h
(ρ2)
2
...

h
(ρ3)
m

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

g
(ρ1)
1

g
(ρ2)
2
...

g
(ρ3)
m

⎞
⎟⎟⎟⎟⎠
U (3.152)

If the matrix

⎛
⎜⎜⎜⎜⎝

g
(ρ1)
1

g
(ρ2)
2
...

g
(ρ3)
m

⎞
⎟⎟⎟⎟⎠

is invertible then the control law can be calculated

as:

U =

⎛
⎜⎜⎜⎜⎝

g
(ρ1)
1

g
(ρ2)
2
...

g
(ρ3)
m

⎞
⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎝
R−

⎛
⎜⎜⎜⎜⎝

h
(ρ1)
1

h
(ρ2)
2
...

h
(ρ3)
m

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

(3.153)

The closed-loop system can thus be written as:

Y
(ρi)
i = Ri i = 1, . . . ,m (3.154)

Remark 3.14. If the sum of the characteristic indexes is less than the degree
of the system, then a non observable subsystem has been generated.

A direct application of decoupling for the aircraft model, for a small angle
of attack, is shown next:

V̇ =
T −D
m

− g sin γ (3.155)

χ̇ = g
nz sinφ

V cos γ
(3.156)

γ̇ =
g

V
(nz cosφ− cos γ) (3.157)

Assuming perfect modeling, aircraft dynamics can be feedback linearized with
the following control law [34]

T = Kv(Vd − V ) +mg sin γ +D (3.158)

nz cosφ =
V

g
Kγ(γd − γ) + cos γ = c1 (3.159)

nz sinφ =
V

g
Kχ(χd − χ) cos γ = c2 (3.160)
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where Vd, γd, χd are, respectively, the references of the linear velocity, the flight
path angle and the heading angle. The resulting linear system becomes

V̇ = Kv(Vd − V ) (3.161)

χ̇ = Kχ(χd − χ) (3.162)

γ̇ = Kγ(γd − γ) (3.163)

This controller guarantees convergence to zero of the tracking error.
A robust nonlinear control scheme is proposed in [92] for a nonlinear multi-

input multi-output (MIMO) system subject to bounded time-varying uncer-
tainty which satisfies a certain integral quadratic constraint condition. The
scheme develops a robust feedback linearization approach which uses a stan-
dard feedback linearization approach to linearize the nominal nonlinear dy-
namics of the uncertain nonlinear aircraft and linearizes the nonlinear time-
varying uncertainties at an arbitrary point using the mean value theorem. This
approach transforms an uncertain nonlinear MIMO system into an equivalent
linear uncertain aircraft model with unstructured uncertainty. Finally, a ro-
bust mini-max linear quadratic Gaussian control design is proposed for the
linearized model. This scheme guarantees the internal stability of the closed-
loop system.

3.3.2 INPUT/OUTPUT LINEARIZATION

The aircraft model is expressed by its kinematics:

ẋ = V cos γ cosχ
ẏ = V cos γ sinχ
ż = −V sin γ
χ̇ = ω1

γ̇ = ω2

(3.164)

where the input U = (V, ω1, ω2)
T is used.

The following output is chosen, with the parameter b �= 0

Y1 = x+ b cos γ cosχ
Y2 = y + b cos γ sinχ
Y3 = z − b sin γ

(3.165)

Differentiating,
⎛
⎝

Ẏ1
Ẏ2
Ẏ3

⎞
⎠ =

⎛
⎝

cos γ cosχ −b cosγ sinχ −b sin γ cosχ
cos γ sinχ b cos γ cosχ −b sin γ sinχ
− sin γ 0 −b cosγ

⎞
⎠
⎛
⎝

V
χ̇
γ̇

⎞
⎠ (3.166)

or ⎛
⎝

Ẏ1
Ẏ2
Ẏ3

⎞
⎠ = R(χ, γ)

⎛
⎝

U1

U2

U3

⎞
⎠ (3.167)
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Calculating the inverse of this matrix R(χ, γ), as its determinant is equal
to −b2 cos γ, gives

Ẏ1 = U1

Ẏ2 = U2

Ẏ3 = U3

(3.168)

V = ẋ cosγ cosχ+ ẏ cos γ sinχ− ż sin γ

χ̇ = 1
b cos γ (− sinχU1 + cosχU2)

γ̇ = − cosχ sin γ
b U1 +

− sinχ sin γ
b U2 +

− cos γ
b U3

(3.169)

An input-output linearization has been obtained as long as b �= 0 and
γ �= π

2 .
A simple linear controller of the form:

U1 = Ẏ1d + k1(Y1d − Y1)
U2 = Ẏ2d + k2(Y2d − Y2)
U3 = Ẏ3d + k3(Y3d − Y3)

(3.170)

guarantees exponential convergence to zero of the Cartesian tracking error,
with decoupled dynamics on its three components. The flight path angle and
the heading whose evolutions are governed by relations (3.169) are not con-
trolled.

3.3.3 DYNAMIC INVERSION

Advanced flight control systems have been under investigation for decades.
However, few advanced techniques have been used in practice. Possibly the
most studied method of nonlinear flight control is dynamic inversion. The
problem of inversion or exact tracking is to determine the input and initial
conditions required to make the output of the aircraft exactly track the given
reference. The main idea behind this is to create a detailed nonlinear model
of an aircraft’s dynamics, invert the model and impose desired handling dy-
namics to solve for the required actuator commands. Clearly the drawback
of this method is that the nonlinear model must be very close to the actual
aircraft for the system to be effective.

The application of nonlinear dynamic inversion is demonstrated on the
nonlinear single-input-single-output system

Ẋ = f(X) +G(X)U
Y = h(X)

(3.171)

The output to be controlled is differentiated until the input appears explicitly
in the expression. Thus:

Ẏ =
∂h

∂X
Ẋ =

∂h

∂X
f(X) +

∂h

∂X
G(X)U (3.172)
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Assuming that the inverse of ∂h
∂XG(X) exists for all X ∈ R

n, the use of the
state feedback

U =

(
∂h

∂X
G(X)

)−1(
Ud − ∂h

∂X
f(X)

)
(3.173)

results in an integrator response from the external input Ud to the output Y
[63].

As a direct application, the following derivations are presented, using the
affine formulation of the kino-dynamic model of the aircraft.

Ẋ1 = f0(X2)

Ẋ2 = f1(X2) + f2(X2, X3)

Ẋ3 = U

(3.174)

where U = (Ṫ , α̇, σ̇)T and

f0(X2) =

⎛
⎝

V cosχ cos γ
V sinχ cos γ
−V sin γ

⎞
⎠ f1(X2) =

⎛
⎝
−g sin γ

0
− g
V cos γ

⎞
⎠ (3.175)

f2(X2, X3) =

⎛
⎝

T cosα−D
m

(L+T sinα) sinσ
mV cos γ

1
mV ((L+ T sinα) cosσ)

⎞
⎠ (3.176)

The output chosen is Y = X1. Differentiating this relation, the following
equations are obtained

Ẏ = f0(X2)

Ÿ = B1 (f1(X2) + f2(X2, X3))

Y (3) = B1

(
ḟ1(X2) + ḟ2(X2, X3)

)
+ Ḃ1 (f1(X2) + f2(X2, X3))

= f3(X2, X3) +B2U

(3.177)

where

B1 =

⎛
⎝

cos γ cosχ −V cos γ sinχ −V sin γ cosχ
cos γ sinχ V cos γ cosχ −V sin γ sinχ
− sin γ 0 −V cos γ

⎞
⎠ (3.178)

B2 = B1B4 and f3 =
(
Ḃ1 +B1 (B5 +B3)

)
(f1 + f2) with

B3 =

⎛
⎜⎝

− 1
m
∂D
∂V 0 0

sinσ
mV cos γ

∂L
∂V − (L+T sinα) sinσ

mV 2 cos γ 0 (L+T sinα) sinσ
mV

sin γ
cos2 γ

cosσ
mV

∂L
∂V − (L+T sinα) cosσ

mV 2 0 0

⎞
⎟⎠ (3.179)
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B4 =

⎛
⎜⎝

cosα
m

1
m

(−T sinα− ∂D
∂α

)
0

sinα sinσ
mV cos γ

(
∂L
∂α + T cosα

)
sin σ

mV cos γ
(L+T sinα) cosσ

mV cos γ
sinα cosσ

mV
cos σ
mV

(
∂L
∂α + T sinα

) − (L+T sinα) sinσ
mV

⎞
⎟⎠ (3.180)

B5 =

⎛
⎝

0 0 g cos γ
0 0 0

g
V 2 cos γ 0 g

V sin γ

⎞
⎠ (3.181)

and
Ḃ1 = B6V̇ +B7χ̇+B8γ̇ (3.182)

B6 =

⎛
⎝

0 − cosγ sinχ − cosχ sin γ
0 cos γ cosχ − sin γ sinχ
0 0 − cos γ

⎞
⎠ (3.183)

B7 =

⎛
⎝
− cosγ sinχ −V cos γ cosχ V sinχ sin γ
cos γ cosχ −V cos γ sinχ −V sin γ cosχ

0 0 0

⎞
⎠ (3.184)

B8 =

⎛
⎝
− sin γ cosχ V sin γ sinχ −V cosχ cos γ
− sin γ sinχ −V sin γ cosχ −V cos γ sinχ
− cos γ 0 V sin γ

⎞
⎠ (3.185)

As B2 is invertible, the following control law can be proposed:

U = B−1
2

(
Y (3)
r − f3(X2r)

)
+Kvė+Kpe+Ki

∫
edt (3.186)

with e = Y − Yr.
Remark 3.15. The following relation has been used for these calculations:

ḟ =
∂f

∂V
V̇ +

∂f

∂χ
χ̇+

∂f

∂γ
γ̇ +

∂f

∂T
Ṫ +

∂f

∂α
α̇+

∂f

∂σ
σ̇

Using this approach, the input and initial conditions required to make the
output of the aircraft track a given reference Yr are determined.

3.3.4 CONTROL LYAPUNOV FUNCTION APPROACH

A control Lyapunov function (CLF) is a candidate Lyapunov function
whose derivative can be made negative point-wise by the choice of control
values for the system:

Ẋ = f(X,U) (3.187)

If f is continuous and there exists a continuous state feedback such that the
point X = 0 is a globally asymptotically stable equilibrium of the closed-
loop system, then by standard converse Lyapunov theorem, there must exist
a control Lyapunov function for the preceding system.
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If the function f is affine in the control variable then the existence of a
control Lyapunov function is also sufficient for stabilizability via continuous
state feedback.

3.3.4.1 Properties
Controller design methods based on control Lyapunov functions have at-
tracted much attention in nonlinear control theory [57, 84]. The following
input affine nonlinear system is considered:

Ẋ = f(X) +G(X)U (3.188)

where X ∈ R
n is a state vector, U ∈ R

m is an input vector, f : Rn → R
n,

G : Rn × R
m → R

n are continuous mappings and f(0) = 0 as presented in
relations (3.137) to (3.140).

Definition 3.18. Control Lyapunov Function: A continuously differen-
tiable function Ṽ : R+ × R

n → R is a control Lyapunov function for system
(3.188) with input constraints U ∈ U ⊂ R

m if it is positive definite, decrescent,
radially unbounded in X and satisfies:

infU∈U

{
∂Ṽ

∂t
+
∂Ṽ

∂X
(f(X) +G(X)U)

}
≤ −Υ(X) (3.189)

∀X �= 0, ∀t ≥ 0 where Υ(X) is a continuous positive definite function.

If additionally
˙̃V (X,U) = Lf Ṽ (X) + LGṼ (X)U (3.190)

then a C1 proper definite function Ṽ : R
n → R

+ is a control Lyapunov
function if and only if the following holds

∀X ∈ R
n∗, LGṼ = 0⇒ Lf Ṽ < 0 (3.191)

Definition 3.19. Small Control Property: A control Lyapunov function
Ṽ (X) for system (3.188) is said to satisfy the small control property (SCP)
if for any ε > 0, there exists δ > 0 such that 0 �= ‖X‖ < δ ⇒ ∃‖U‖ < ε such
that Lf Ṽ + LGṼ U < 0.

Theorem 3.9

A control Lyapunov function for system (3.188) satisfies the small control
property if and only if for any ε > 0, there exists δ > 0 such that ‖X‖ < δ
and LGṼ (X) �= 0⇒ Lf Ṽ (X) < εmax1≤j≤n|LGṼ (X)|.

Sector margins for robustness of the controllers are considered.
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Definition 3.20. Sector Margin: A state feedback controller U : Rn ⇒ R
m

is said to have a sector margin [α, β] if the origin of the closed-loop sys-
tem Ẋ = f(X) + G(X)φ(U(X)) is asymptotically stable where φ(U) =

(φ1(U), . . . , φm(U))T and each φj(Uj) is an arbitrary sector nonlinearity in
[α, β].

In order to find a control Lyapunov function with bounded input con-
straints, the partial derivative of Ṽ has to be bounded [66]. Physically there
exists perturbation terms in system (3.188) due to uncertainties and external
disturbances. The issue of uncertainties and disturbances under the input-
to-state framework is discussed in the particular case of relations (3.137) to
(3.140):

Ẋ = f(X) +GU +Dw (3.192)

which introduces a perturbation term Dw ∈ R
n to the nominal system

(3.188), as presented in the paragraph affine formulation with drift.

Definition 3.21. Input to State Stable-Control Lyapunov Function:
A continuously differentiable function Ṽ : R

+ × R
n → R is an input to

state stable-control Lyapunov function (ISS-CLF) for system (3.192) if it is
positive-definite, decrescent, radially unbounded in X and there exist class K
functions Υ and ρ such that

infU∈U

{
∂Ṽ

∂t
+
∂Ṽ

∂X
(f(X) +GU +Dw)

}
≤ −Υ(‖X‖) (3.193)

∀ ‖X‖ ≥ ρ (‖d‖)

3.3.4.2 Trajectory tracking
The kinematic equations of motion of an aircraft are given by:

ẋ = V cos γ cosχ
ẏ = V cos γ sinχ
ż = −V sin γ
χ̇ = ω1

γ̇ = ω2

(3.194)

The reference trajectory satisfies also:

ẋr = Vr cos γr cosχr
ẏr = Vr cos γr sinχr
żr = −Vr sin γr

χ̇r = ω1r

γ̇r = ω2r

(3.195)
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Problem 3.1. For a small initial tracking error, determine the feedback con-
trol law (Vc, χc, γc) so that the tracking error:

(ex, ey, ez, eχ, eγ) (3.196)

converges to a neighborhood about zero.

The following tracking error model has been obtained in chapter 2:

⎛
⎜⎜⎜⎜⎝

ėx
ėy
ėz
ėχ
ėγ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

ω1 cos γey − ω2ez − V + Vr cos eγ
−ω1 cos γex − ω1 sin γez + Vr cos γr sin eχ

ω1 sin γey + ω2ex − Vr sin eγ
ω1r − ω1

ω2r − ω2

⎞
⎟⎟⎟⎟⎠

(3.197)

A feedforward action is used such as:

UF =

⎛
⎝

Vr cos γ cos γr cos eχ + Vr sin γ sin γr
ω1r

ω2r

⎞
⎠ (3.198)

Let the following candidate Lyapunov function be defined by:

Ṽ =
1

2
e2x +

1

2
e2y +

1

2
e2z (3.199)

and

˙̃V = −V ex + Vr cos eγex + Vr cos γr sin eχey − Vr sin eγez (3.200)

by choosing
V = kxex + Vr cos eγ kx > 0 (3.201)

and
eχ = arctan (−kyey) ky > 0 (3.202)

eγ = arctan (kzez) kz > 0 (3.203)

The derivative of the candidate Lyapunov function becomes negative defi-
nite.

Theorem 3.10

Suppose Vr > 0, then for any initial condition ex(t0), ey(t0), ez(t0), the track-
ing control error (ex(t), ey(t), ez(t), eχ(t), eγ(t)) of the closed-loop (3.199) to
(3.203) is uniformly bounded and converges to zero.

The closed-loop system has good robustness property against acceptable
measurement noise and unmodeled disturbances. Proof of a similar theorem
for a constant altitude case can be found in [49].
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3.3.4.3 Path tracking
This paragraph details a control method used to guide an autonomous air-
craft in the case of tracking a predefined path p∗ = (x∗, y∗, z∗)T even in the
presence of bounded disturbances and model uncertainties. To fulfill this re-
quirement, a method based on a Lyapunov controller is employed [14]. The
algorithm is based on the postulation of two fictitious particles, one of them
belonging to the prescribed path and the other corresponding to a particle of
the autonomous aircraft.

Then considering the relative positions of these particles, the method de-
termines:

1. The velocity and orientation that the aircraft particle must follow in
order to approach the path particle.

2. The path particle position refreshment in order not to be reached by
the aircraft particle.

Consider an ideal particle p without dynamics whose position and speed
are, respectively, described in the N-frame by the vectors p = (x, y, z)T and
ṗ = (ẋ, ẏ, ż)T . The speed vector can also be characterized by its magnitude
and orientation

Vd = ‖ṗ‖2 χd = arctan

(
ẏ

ẋ

)
γd = arctan

( −ż
ẋ cosχ+ ẏ sinχ

)

(3.204)
The objective of this paragraph is to determine the expressions correspond-

ing to these variables to ensure the convergence of the hypothetical ideal
particle towards a desired path. The desired path geometric locus is contin-
uously parametrized by a time-dependent scalar variable �. A path particle
pp is considered in this geometric locus whose instantaneous position in the
N-frame is denoted as pp(�) = (xp(�), yp(�), zp(�)). If the purpose is de-
veloping a search of a rectilinear target such as a pipeline or a road, then a
sinusoidal trajectory can be chosen. In this case, the desired path pp is defined
by choosing:

xp = A sin(�) yp = � zp = A cos(�) (3.205)

where A is the width of the corridor where the search is performed. The
orientation of this particle is defined by its evolution on the desired path:

χp = arctan

(
y′p(�)

x′p(�)

)
(3.206)

and

γp = arctan

( −z′p(�)

x′p(�) sinχp + y′p(�) cosχp

)
(3.207)
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with

dxp(�)

d�
= A cos(�)

dyp(�)

d�
= 1

dzp(�)

d�
= −A sin(�) (3.208)

It is useful to define an auxiliary frame attached to pp and aligned with the
path particle orientation p-frame. The angle χp determines the transformation
matrix from the N-frame to the p-frame, local reference frame:

Rp =

⎛
⎝

cos γp cosχp − sinχp sin γp cosχp
cos γp sinχp cosχp sin γp sinχp
− sin γp 0 cos γp

⎞
⎠ (3.209)

The new local frame allows to define a positional error vector ε composed
by the along-track error s, the cross-track error e and the altitude error h:
ε = (s, e, h)T . Then in the N-frame, this error vector can be expressed as:

ε = RT
p (p− pp(�)) (3.210)

Once the expression of the error vector on the N − frame is obtained, the
following definite Lyapunov function is defined:

Ṽ =
1

2
εT ε (3.211)

Then, differentiating (3.211) with respect to time along the trajectories of
ε,

˙̃V = εT ε̇ = εT
(
ṘT
p (p− pp) +RT

p (ṗ− ṗp)
)

(3.212)

Thus

˙̃V = s (Vd(cos(χd) cos(χp) cos(χr) + sin γp sin γd)− Vp) + eVd cos γd sin(χr)+
+hVd (sin γp cos γd cosχr − cos γp sin γd)

(3.213)
where χr = χd − χp.

Finally, to ensure (3.213) to be negative, its first term should always be
negative. If the following parameter is chosen:

Vp = Vd(cos(χd) cos(χp) cos(χr) + sin γp sin γd) + γ̃s+
+h
sVd (sin γp cos γd cosχr − cos γp sin γd)

(3.214)

with γ̃ an arbitrary positive gain constant, this requirement is verified.
On the other hand, looking for a negative definite expression for the second

term, one of the possible options for the selection of χr may be:

χr = − arctan

(
e

Δe

)
(3.215)
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where Δe is an upper bounded positive time-varying variable called look-ahead
distance, used to shape the convergence of ε to zero. Choosing the velocity of
the ideal particle as:

Vd = μ
√
e2 +Δ2

e (3.216)

with μ > 0 determines
˙̃VX = −γ̃s2 − μe2 < 0 (3.217)

The necessary references can be determined that

ud = Vd cos γd cos (χp + χr) (3.218)

vd = Vd cos γd sin (χp + χr) (3.219)

wd = −Vd sin γd (3.220)

with
χd = χp + χr (3.221)

Therefore, the error vector ε converges uniformly globally and exponentially
to zero when the position of the ideal and path particle is governed by (3.215)
to (3.216).

3.3.4.4 Circular path following in wind with input constraints
This section considers the problem of UAV following circular paths to account
for winds [7]. This path-following approach takes into account roll and flight
path angle constraints. The kinematics are taken as:

ẋ = V cosχ cos γ +WN

ẏ = V sinχ cos γ +WE

ż = −V sin γ +WD

(3.222)

If a coordinated turn condition is assumed and the roll and pitch dynamics are
assumed much faster than the heading and altitude dynamics, respectively,
which implies that the roll and flight path angles can be considered as the
control variables:

χ̇ =
g

V
tanφc ż = −V sin γc +WD (3.223)

where φc, γc are the commanded roll angle and flight path angle with the
following constraints:

|φc| ≤ φmax < π

2
|γc| ≤ γmax < π

2
(3.224)
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A circular path is described by an inertially referenced center C =
(CN , CE , CD)

T
, a radius Ξ ∈ R and a direction λ ∈ {−1,+1} as

Porbit(C,Ξ, λ) =
{
r ∈ R

3, r = C + λΞ (cosϕ, sinϕ, 0)
T
, ϕ ∈ (0, 2π)

}

(3.225)
where λ = 1 signifies a clockwise circle and λ = −1 signifies a counterclockwise
orbit. The longitudinal controller is assumed to maintain a constant altitude
and airspeed. As the altitude is assumed to be constant:

γc = arcsin

(
WD

Va

)
(3.226)

with the constraint that |WD| ≤ Va.
The guidance strategy is derived in polar coordinates. Let d =√
(pN − CN )2 + (pE − CE)2 be the lateral distance from the desired center

of the orbit to the UAV and let:

ϕ = arctan

(
pE − CE
pN − CN

)
(3.227)

be the phase angle of the relative position.
Define the wind speed W and wind direction χW so that

(
WN

WE

)
=W

(
cosχW
sinχW

)
(3.228)

The kinematics in polar coordinates are therefore given by:

ḋ = V cos γ cos(χ− ϕ) +W cos(χW − ϕ) (3.229)

ϕ̇ =
V

d
cos γ sin(χ− ϕ) + W

d
sin(χW − ϕ) (3.230)

If the commanded roll angle is given by:

φc =

⎧⎪⎪⎨
⎪⎪⎩

0 if d < dmin
−λφmax if(d ≥ dmin) and (λχ̃ ≥ χ̃max)
λφmax if(d ≥ dmin) and (−λχ̃ ≥ χ̃max)
φ1 otherwise

⎫⎪⎪⎬
⎪⎪⎭

(3.231)

where

φ1 = arctan

(
λ
V 2

gd
cos γ cos χ̃+ σM3

)
(3.232)

where:

σM3 = σM1

(
k1

˙̃
d+ σM2(Ξ)

λg cos χ̃ cos γ + gWV sin(χ− χW )

)
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where k1 > 0, the angles are such that 0 < φmax, γmax, χ̃max < π
2 , the

parameters dmin and Ξ satisfy :

V 2 + VW

g tanφmax
< dmin < Ξ

where σMi is the i
th saturation function

σMi(U) =

⎧⎨
⎩

Mi if U > Mi

−Mi if U < −Mi

U otherwise

⎫⎬
⎭ (3.233)

The magnitude of the wind is such that :

W < V cos χ̃max cos γmax (3.234)

and the parameters M1 and M2 are given, respectively, by:

M1 = tanφmax − V 2

dming
cos γmax cos χ̃max (3.235)

and

M2 =
1

2
M1g

∣∣∣∣cos χ̃max cos γmax −
W

V

∣∣∣∣ (3.236)

Then |φc(t)| ≤ φmax and (d, ḋ)→ (Ξ, 0), the error variables being d̃ = d−Ξ
and χ̃ = χ− χd, χd = ϕ+ λπ2 . Proof of this discussion can be found in [7].

3.3.4.5 Tracking of moving targets with wind term
The aircraft dynamics expressed relative to a moving target and incorporating
a wind term can be expressed as [86]:

ẋ = u1 cosχ+WN − VxT
ẏ = u1 sinχ+WE − VyT

χ̇ = u2

(3.237)

where χ is the heading, u1 is the commanded airspeed, u2 the commanded
heading rate, with the following constraints:

0 < Vstall ≤ u1 ≤ Vmax |u2| ≤ ωmax (3.238)

[WN ,WE ]
T are components of the constant wind velocity and [VxT , VyT ]

T are
components of the constant inertial target velocity [81]. The wind and target
velocity both affect the dynamics additively [86] and this allows to combine
both effects into one variable:

Tx = VxT −WN Ty = VyT −WE (3.239)
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Tx, Ty are treated as unknown constants and the a priori availability of an
upper bound T ∗ is assumed, satisfying

max(Tx, Ty) ≤ T ∗ (3.240)

which encompasses worst-case combined effect of wind and target velocities.
The relative distance of the target is d =

√
x2 + y2 and rd is the desired

standoff radius of the circular orbit. If the polar coordinates are represented
by (d, φ) then :

cosφ =
d2 − r2d
d2 + r2d

sinφ =
2drd
d2 + r2d

(3.241)

The aircraft moves around the standoff circle with a constant angular velocity
ϕ̇ = u0

rd
where u0 is the constant nominal vehicle airspeed.

The following controller can be proposed:

u1 cosχ = −u0 cos(ϕ− φ) + T̂x − vs sinϕ
u1 sinχ = −u0 sin(ϕ− φ) + T̂y + vs cosϕ

(3.242)

where T̂x, T̂y, T̂z are adaptive estimates for the unknown wind and target
motion and vs is a yet-to-be specified signal.

This construction defines a heading given by:

tanχ =
−u0 sin(ϕ− φ) + T̂y + vs cosϕ

−u0 cos(ϕ− φ) + T̂x − vs sinϕ
(3.243)

and an airspeed input given by:

u21 =
(
−u0 cos(ϕ− φ) + T̂x − vs sinϕ

)2

+
(
−u0 sin(ϕ− φ) + T̂y + vs cosϕ

)2

(3.244)
The heading given by equation (3.243) may be differentiated to obtain the
heading rate input. Using relation (3.242) with (3.237) gives:

ḋ = −u0d
2 − r2d
d2 + r2d

+ T̃x cosϕ+ T̃y sinϕ (3.245)

dϕ̇ = −u0 2drd
d2 + r2d

− T̃x sinϕ+ T̃y cosϕ+ vs (3.246)

where T̃x = T̂x − Tx, T̃y = T̂y − Ty are the adaptive estimation errors. The
Lyapunov guidance field can be used to define the perfect case relative motion:

ḋp = −u0
d2p − r2d
d2 + r2d

dpϕ̇p = −u0 2dprd
d2p + r2d

(3.247)

The error signals are defined as :

ed = d− dp eϕ = ϕ− ϕp (3.248)
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and the corresponding error dynamics are then given by:

ėd = −u0
2r2d(d

2 − d2p)ed
(d2 + r2d)(d

2 + d2p)
+ T̃x cosϕ+ T̃y sinϕ (3.249)

ėϕ = −u0 2rd(d+ dp)ed
(d2 + r2d)(d

2 + d2p)
+

1

d

(
−T̃x sinϕ+ T̃y cosϕ+ vs

)
(3.250)

The actual and perfect guidance trajectories are defined from the same
point, which implies that dp(0) = d(0) and ϕp(0) = ϕ(0). Consequently the
error signals are zero at the initial time after the heading convergence to the
desired Lyapunov guidance field is achieved [86].

3.3.4.6 Suboptimal control
Optimal control of nonlinear dynamics with respect to an index of perfor-
mance has also been investigated. One of the difficulties in obtaining op-
timal solutions for a nonlinear system is that optimal feedback control de-
pends on the solution of the Hamilton–Jacobi–Bellman (HJB) equation.
The Hamilton–Jacobi–Bellman equation is difficult to solve in general. Conse-
quently, a number of papers investigated methods to find suboptimal solutions
to nonlinear control problems. One such technique is the power series expan-
sion based method. Another technique that systematically solves the nonlin-
ear regulator problem is the state-dependent Riccati equation (SDRE)
method. By turning the equations of motion into a linear-like structure, linear
optimal control methods such as the LQR methodology and the H∞ design
technique are employed for the synthesis of nonlinear control system. The
state-dependent Riccati equation method, however, needs online computation
of the algebraic Riccati equation at each sample time [95]. This methodology
can be applied to any of the aircraft models presented previously.

3.3.4.6.1 Optimal output transition problem
The minimum time state transition with bounds on the input magnitude leads
to the classical bang-bang type input for the fastest state transition. However,
the transition time can be reduced further if only the system output needs to
be transitioned from one value to another rather than the entire system state.
The time-optimal output transition problem is to change the system output
from one initial value Y (t) = Y , ∀t ≤ 0 to a final value Y (t) = Y , ∀t ≥ Tf .
The output transition problem is posed for the invertible nonlinear system.

If the following invertible affine system is considered:

Ẋ(t) = f(X(t)) +G(X(t))U(t)
Y (t) = h(X(t))

(3.251)

where X(t) ∈ R
n is the state, Y (t) = (Y1(t), Y2(t), ..., Yp(t))

T
is the output,

with the same number of inputs as outputs, i.e., U(t), Y (t) ∈ R
p and the input
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is bounded as:
‖U(t)‖∞ ≤ Umax, ∀t (3.252)

Let X and X be controlled equilibrium points of the system (3.251) corre-
sponding, respectively, to inputs U and U and outputs Y and Y .

Definition 3.22. Delimiting States for Transitions:

f(X) +G(X)U = 0 U = h(X)
f(X) +G(X)U = 0 Y = h(X)

(3.253)

The output transition problem is formally stated next.

Definition 3.23. Output Transition Problem: Given the delimiting states
and a transition

Ẋref = f(Xref (t)) +G(Xref (t))Uref (t)
Yref (t) = h(Xref (t))
‖U(t)‖∞ ≤ Umax

(3.254)

and the following two conditions:

1. The output transition condition: the output transition in the time
interval IT = [0, Tf ] is maintained at the desired value outside the time
interval IT , i.e., from

Yref (t) = Y , ∀t ≤ 0 to Yref (t) = Y , ∀t ≥ Tf (3.255)

2. The delimiting state condition: the system state approaches the de-
limiting states as t varies from: −∞→ +∞

X(t)→ X as t→ −∞ X(t)→ X as t→ +∞ (3.256)

the time-optimal output transition seeks to minimize the transition time Tf
with constraints on the input.

The following output is chosen, for the aircraft:

Y1 = x+ b cos γ cosχ
Y2 = y + b cos γ sinχ
Y3 = z − b sin γ

(3.257)

As long as b �= 0 and γ �= ±π2 , the system is invertible and

Ẏ1 = U1

Ẏ2 = U2

Ẏ3 = U3

(3.258)

with the following constraints Uimin ≤ Ui ≤ Uimax .
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Problem 3.2. Optimal Output Transition Problem: The minimum
time-optimal output transition problem is to find the bounded input-state tra-
jectory U∗, X∗ that satisfies the output transition problem and minimizes the
transition time Tf with the cost function

J =

∫ Tf

0

1 dt = Tf (3.259)

The solution begins with the standard approach based on time optimal
state transition, followed by the solution to the time-optimal output transition
problem for invertible systems. The output transition problem can be solved
using the time optimal state transition approach defined below:

Problem 3.3. Time-optimal State Transition: Given an initial state Xi

and a final state Xf , find a bounded input-state trajectory Xref , Uref that
satisfies the system equation (3.251) and input constraints (3.252) in the
transition interval IT as in (3.254) and achieves the state transition from
Xref (t) = Xi to Xref (Tf ) = Xf while minimizing the transition time Tf .

The optimal output transition approach is presented for invertible sys-
tems. As the system (3.251) was assumed to be invertible, it can be rewritten
through a coordinate transformation T :

X(t) = T (ξ(t), η(t)) (3.260)

in the following form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(r1)

dt(r1)Y1(t)

d(r2)

dt(r2)Y2(t)

. . .

d(rp)

dt(rp)
Yp(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A (ξ(t), η(t)) +B (ξ(t), η(t))U(t) (3.261)

η̇(t) = S1 (ξ(t), η(t)) + S2 (ξ(t), η(t))U(t) (3.262)

where the matrix B is invertible in the region of interest X(t) ∈ X ⊂ R
n. The

state component ξ(t) represents the output and its state derivatives:

ξ(t) =
[
Y1, Ẏ1, . . . , Y

(r1), Y2, Ẏ2, . . . , Y
(r2), . . . , Yp, Ẏp, . . . , Y

(rp)
]T

(3.263)

and
ξ =

[
Y 1, 0, . . . , 0, Y 2, 0, . . . , 0, . . . , 0, Y p, 0, . . . , 0

]T
ξ =

[
Y 1, 0, . . . , 0, Y 2, 0, . . . , 0, . . . , 0, Y p, 0, . . . , 0

]T
.
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Remark 3.16. The invertibility assumption is satisfied if the system in
(3.251) has a well defined relative degree r = [r1, r2, . . . , rp].

During the pre- and post-actuation, the output is constant. Therefore, the
state component ξ is known in terms of the desired output, ξ, ξ, as in (3.263)
as:

ξ(t) = ξ, ∀t ≤ 0 ξ(t) = ξ, ∀t ≥ Tf (3.264)

Moreover, the input to maintain the desired constant output, during pre- and
post-actuation can be found from equations (3.261) to (3.263) as

U(t) = U(η(t)) = − (B (
ξ(t), η(t)

))−1
A
(
ξ(t), η(t)

) ∀t ≤ 0

U(t) = U(η(t)) = − (B (
ξ(t), η(t)

))−1
A
(
ξ(t), η(t)

) ∀t ≥ T
(3.265)

The state dynamics during pre-actuation and post-actuation reduces to the
following time-invariant internal dynamics (obtained by rewriting equation
(3.262)):

η̇ = S1

(
ξ, η

)− S2

(
ξ, η

) (
B
(
ξ, η

))−1
A
(
ξ, η

) ∀t ≤ 0

η̇ = S1

(
ξ, η

)− S2

(
ξ, η

) (
B
(
ξ, η

))−1
A
(
ξ, η

) ∀t ≥ Tf
(3.266)

For specific output transition, the evolution of the internal dynamics (3.266)
as well as the inverse input (3.265) needed to maintain a fixed output (during
pre- and post-actuation) are both determined by the boundary value of the
internal state:

Ψ = (η(0), η(T ))
T

(3.267)

The set Ψ of acceptable boundary values as in (3.267) should satisfy the
following three conditions:

1. Delimiting conditions on the internal state: the internal states
should meet the delimiting state conditions in (3.256). This is satisfied
provided the initial boundary condition η(0) is on the local manifold
Mu(X) of the internal dynamics at X = X and the final boundary
condition η(T ) is on the local stable manifold Ms(X) of the internal
dynamics at X = X.

2. Bounded pre- and post-actuation condition: the inverse input
in equation (3.265) needed to maintain a constant output during pre-
and post-actuation should be bounded and satisfy the input con-
straint in equation (3.252).

3. State transition condition: there exists an input U that satisfies
the input constraint in equation (3.252) and achieves the state tran-
sition from Xref (0) = T

(
ξ, η(0)

)
to Xref (t) = T

(
ξ, η(Tf )

)
, for some

transition time Tf while the state trajectories X(t) remain in R
n

during the transition time interval IT .
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The flexibility in the choice of the boundary values of the internal state in
the optimal output transition approach can reduce the transition time further
compared to the state space transition approach for invertible system [64].

3.3.4.6.2 Incorporating a class of constraints
A method is proposed to systematically transform a constrained optimal
control problem (OCP) into an unconstrained optimal control prob-
lem, which can be treated in the standard calculus of variations. The con-
sidered class of constraints comprises up to m input constraints and m state
constraints with well-defined relative degree, where m denotes the number
of inputs of the given nonlinear system. Starting from an equivalent normal
form representation, the constraints are incorporated into a new system dy-
namics by means of saturation functions and differentiation along the normal
form cascade. This procedure leads to a new unconstrained optimal control
problem, where an additional penalty term is introduced [26]. The following
nonlinear control affine multiple system is considered:

Ẋ = f(X) +
m∑
i=1

gi(X)Ui (3.268)

where the state X = (x, y, z, V, χ, γ, T, α, σ)
T ∈ R

n and the input U =(
Ṫ , α̇, σ̇

)T
∈ R

m, f, gi : R
n → R

n, i = 1, . . . ,m are sufficiently smooth vector

fields. The following state and input constraints are assumed:

Ci(X) ∈ [c−i , c+i
]
, Ui ∈

[
U−
i (X), U+

i (X)
]
, i = 1, . . . ,m (3.269)

as Ṫmin ≤ Ṫ ≤ Ṫmax, α̇min ≤ α̇ ≤ α̇max, σ̇min ≤ σ̇ ≤ σ̇max, Tmin ≤ T ≤
Tmax, αmin ≤ α ≤ αmax, σmin ≤ σ ≤ σmax, 0 < Vstall ≤ V ≤ Vmax,
|γ| ≤ γmax < π

2 , CLmin ≤ CL ≤ CLmax .
The vector relative degree {r1, . . . , rm} of the m functions Ci(X) at a point

X0 is defined by:
LgjL

k
fCi(X) = 0 (3.270)

∀ 1 ≤ j ≤ m, k < ri − 1, 1 ≤ i ≤ m, ∀X ∈ Neigh(X0).
Moreover, the m×m matrix

A(X) =

⎛
⎜⎝

Lg1L
r1−1
f C1(X) . . . LgmL

r1−1
f Cm(X)

... . . .
...

Lg1L
rm−1
f C1(X) . . . LgmL

rm−1
f Cm(X)

⎞
⎟⎠ (3.271)

has to be non singular at X = X0. The m constraints (3.269) have a well-
defined relative degree {r1, . . . , rm} which means that the condition (3.270)
as well as the non singularity of the decoupling matrix (3.271) are satisfied in
a sufficiently large neighborhood of X0.
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Problem 3.4. Optimal Control Problem:

min

[
J(U) = ϕ(X(T )) +

∫ T

0

L(X,U, t)dt

]
(3.272)

subject to

Ẋ = f(X) +

m∑
i=1

gi(X)Ui (3.273)

X(0) = X0 ς(X(T )) = 0 (3.274)

Ci(X) ∈ [c−i , c+i
]
, Ui ∈

[
U−
i (X), U+

i (X)
]
, i = 1, . . . ,m (3.275)

Owing to the well-defined relative degree {r1, . . . , rm}, there exists a change
of coordinates: (

X
Z

)
=

(
ϑY (X)
ϑZ(X)

)
= ϑ(X) (3.276)

with Y T =
(
Y T1 , . . . , Y

T
m

)
where Yi = (Yi,1, . . . , Yi,ri , )

T
defined by:

Yi,1 = Ci(X) = ϑi,1(X), . . . , Yi,j = LjfCi(X) = ϑi,j(X) (3.277)

∀j = 2, . . . , ri, i = 1, . . . ,m.
The single functions ϑi,j are comprised in ϑ = (ϑ1,1, . . . , ϑm,rm)

T
, the ad-

ditional coordinates Z = ϑZ(X) ∈ R
n−1 with r =

∑m
i=1 ri if r < n are

necessary to complete the transformation. In these coordinates, the original
optimal control problem 3.4 can be stated under the following form.

Problem 3.5. Optimal Control Problem:

min

[
J(U) = ϕ(Y (T ), Z(T )) +

∫ T

0

L(Y, Z, U, t)dt

]
(3.278)

subject to
Ẏi,j = Yi,j+1 j = 1, . . . , ri−1 (3.279)

Ẏi,ri = ai,0(Y, Z) +
n∑
i=1

ai,j(Y, Z)Uj ∀i = 1, . . . ,m (3.280)

Ż = b0(Y, Z) +B(Y, Z)U (3.281)

Y (0) = ϑy(X0), χ(Y (T ), Z(T )) = 0 (3.282)

Yi,1 ∈
[
c−i , c

+
i

]
, Ui ∈

[
U

−
i (Y, Z), U

+

i (Y, Z)
]
, i = 1, . . . ,m (3.283)
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where
ai,0 = Lrif Ci(X) ◦ ϑ−1

ai,j = LgiL
ri−1
f Ci(X) ◦ ϑ−1

ϕ = ϕ ◦ ϑ−1

L = L ◦ ϑ−1

Ui
±
= U±

i ◦ ϑ−1

(3.284)

The normal form dynamics comprises the input-output dynamics (3.281)
with the matrix function B : Rr × R

n−r → R
(n−r)×m. The equations (3.280)

for Ẏi,ri can be written in vector notation:

Ẏr = a0(Y, Z) +A(Y, Z)U (3.285)

to determine the input vector U as:

U = A
−1

(Y, Z)
(
Ẏr − a0(Y, Z)

)
(3.286)

The inverse of the decoupling matrix A(Y, Z) = A(X) ◦ ϑ−1 is well defined
due to the full rank condition (3.271).

The state constraints (3.283) can be represented by m saturation functions
Yi,1. This defines the mapping:

Yi,1 = hi,1 (ζi,1) = ψ
(
ζi,1, c

±
i

)
i = 1, . . . ,m (3.287)

Yi,j = hi,j (ζi,1, . . . , ζi,j) = γi,j (ζi,1, . . . , ζi,j−1) + ψ′ (ζi,j) j = 2, . . . , ri
(3.288)

The nonlinear terms are determined with respect to the previous equations
for Yi,j−1. The successive differentiations of Yi,1 along the multiple cascades
lead to a new set of coordinates. The next step is to introduce the constraints
to the objective function via a penalty term. This penalty term is successively
reduced during the numerical solution of the unconstrained optimal control
problem in order to approach the optimal solution [26].

The drawback of this technique is that the numerical solution can be quite
cumbersome.

3.3.4.7 Measurement error input to state stability
Nonlinear output feedback design is an important problem in nonlinear con-
trol [81]. One reason for this is that a separated design of a global asymptotic
stabilizing state feedback and a global convergent observer does not auto-
matically lead to a global asymptotic stable closed-loop in nonlinear feedback
design. Additional effort is necessary in order to guarantee global asymptotic
stability, for example, either to redesign the observer or to redesign the state
feedback [20, 61]. Any affine model of the aircraft presented before can be
used for this analysis. The following theorem can be proposed:
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Theorem 3.11

If Assumptions 1 and 2 hold:
Assumption 1: System Class: The nonlinear control system is of the

form:
Ẋ = f(X) +G(X)U

Y = h(X)
(3.289)

where X ∈ R
n is the state, U ∈ R

m is the input and Y ∈ R
p the output;

the functions f : Rn −→ R
n, G : Rn −→ R

n+m, h : Rn −→ R
n are assumed

to be sufficiently smooth with f(0) = 0, h(0) = 0. The function f is given by
equation (3.138) while the matrix G is given by relation (3.139).

Assumption 2: State Feedback: The globally asymptotically state feed-
back is assumed to be of the form:

U = k(X) = −1

2
R−1(X)RT (X)Ṽ TX (X) (3.290)

where R is a positive definite matrix function with λminI ≤ R(X) ≤ λmaxI
with λmax > λmin > 0. Moreover, suppose that the state feedback (3.290) is
of the form:

U = k(X) = m(X) + p̃(cTi X) (3.291)

where m : Rn −→ R
m,m(0) = 0 is globally Lipschitz and p̃ : Rn −→ R

m is
of the form

p̃(cTi X) =

⎛
⎝

p̃1(c
T
i1
X)

. . .
p̃m(cTimX)

⎞
⎠ (3.292)

where the components p̃j are polynomial functions in a single state Xij , ij ∈
{1, . . . , n} , j = 1, . . . , q,

Then the control system

Ẋ = f(X) +G(X)k(X + e) (3.293)

is input-to-state stable with respect to the measurement error e ∈ R
n.

Remark 3.17. In this theorem, it is assumed that the state feedback (3.290)
is inverse optimal with respect to the performance measure:

Ṽ (X(0)) =

∫ ∞

0

[
Q(X(t)) + UT (t)R(X(t))U(t)

]
dt (3.294)

The Hamilton-Jacobi-Bellman (HJB) equation:

ṼX(X)f(X) + ṼX(X)G(X)k(X) +Q(X) + kT (X)R(X)k(X) = 0 (3.295)

is satisfied when Q(X) ≥ c ‖X‖2 , c > 0 . Furthermore, Ṽ is assumed to be
a positive definite radially unbounded C1 function.
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Remark 3.18. The function m : Rn −→ R
m,m(0) = 0 is globally Lipschitz

means that ‖m(X + e)−m(X)‖ ≤ γ̃ ‖e‖ with γ̃ a constant.

The notation p̃(Xi) means that p̃ is formed by univariate polynomials and
each polynomial depends on a certain state variable, not necessarily different
from each other. Proof of this theorem can be found in [20].

Theorem 3.12

If Assumption 3 holds:
Assumption 3: State Observer: It is assumed that a state observer for

the estimated state X̂ for the control system (3.289) with a globally uniformly
asymptotic observer error dynamics

ė = a(e,X) (3.296)

e = X − X̂ ∈ R
n is known. More precisely, it is assumed that there exists

a Lyapunov function Ṽe such that:

Ṽe(e)a(e,X) < −α̃(Ṽe(e)) (3.297)

for all nonzero e,X where α̃ is a positive-definite function. Moreover sup-
pose that the feedback (3.290) is of the form (3.291) to (3.292),

Then the closed-loop (3.291) is globally asymptotically stable.

The following control can also be proposed:

U = m(X) + p̃(cTi X) + r(Y ) (3.298)

where r depends only on the output measurement.

3.3.4.8 Control Lyapunov function based adaptive control
Control Lyapunov function based adaptive control designs are pro-
posed for the stabilization of multi-input multi-output affine systems. As op-
posed to the classical adaptive approaches, where the control law depends on
estimates of the system nonlinearities, the controller is based on approximat-
ing terms that depend both on the possibly unknown system nonlinearities
and on an unknown control Lyapunov function [8].

Definition 3.24. Robust Control Lyapunov Function (RCLF): A C1

function Ṽ : R
n → R

+ is a robust control Lyapunov function for
system (3.138) to (3.140). If it is positive definite, radially unbounded and
moreover there exists a non negative constant such that Lf Ṽ (X) < 0 if

LgṼ (X) = 0, ∀X ∈ R
n/Ωc(Ṽ ) where Ωc(Ṽ ) is a compact set defined as

Ωc(Ṽ ) =
{
X ∈ R

n|Ṽ (X) ≤ c
}
.
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The robust control Lyapunov function (RCLF) characterizes the re-
solvability of the problem and at the same time, it raises two important design
issues [23]:

1. How does one construct a robust control Lyapunov function for the
aircraft considered as an uncertain nonlinear system? Are they signifi-
cant classes of models for which a systematic construction is possible?

2. Once a robust control Lyapunov function has been found, how does
one construct the robust controller?

A known robust control Lyapunov function for an affine model can be used
to construct an optimal control law directly and explicitly without recourse
to the Hamilton–Jacobi–Isaacs partial differential equation (HJI)

minUmaxW

[
L(X,U) +∇Ṽ (X).f(X,U,W ) = 0

]
(3.299)

for a general system and cost functional

Ẋ = f(X,U,W ) J =

∫ ∞

0

L(X,U)dt (3.300)

This can be accomplished by solving an inverse optimal robust stabilization
problem.

Theorem 3.13

If the system represented by equations (3.138) to (3.140) is robustly stabi-
lizable via a continuous control law then there exists a robust control Lya-
punov function for (3.119). On the other hand, if there exists a robust control
Lyapunov function for system (3.119) then it is robustly stabilizable via a
continuous control law.

Affine aircraft models of the form (3.138) to (3.140) can be transformed
by suitable feedback of the form Ui = αi(X) +

∑
j βij(X)Vj to a linear sys-

tem. Conditions for feedback linearizability can be given in terms of a nested
sequence of vector fields associated with the problem [8].

3.3.4.9 Noisy system
Path following control aims at driving an aircraft towards a given path without
any temporal specifications [59]. It is therefore different from tracking control,
where a precise temporal law is prescribed. The path following problem is
significant for non holonomic systems [17]. Let the motion of the center of
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geometry P (t) of a kinematic aircraft moving in a 3D space be given by:

Ṗ (t) = V (t)

⎛
⎝

cos γ(t) cosχ(t)
cos γ(t) sinχ(t)
− sin γ(t)

⎞
⎠ (3.301)

where the aircraft velocity V (t) is an assigned bounded smooth positive
function defined in R

+.
A pointX(t) is chosen rigidly linked to P (t), that is: ‖X(t)− P (t)‖ = d > 0

and the spherical coordinates of the vector (X(t)−P (t)) are given by χ(t)+ χ̄
and γ(t) + γ̄ where χ̄ and γ̄ are two constants such that −π2 ≤ χ̄, γ̄ ≤ π

2 .
Therefore, X(t) is given by:

X(t) = P (t) + d

⎛
⎝

cos (γ(t) + γ̄) cos (χ(t) + χ̄)
cos (γ(t) + γ̄) sin (χ(t) + χ̄)

− sin (γ(t) + γ̄)

⎞
⎠ (3.302)

If Z(t) =

(
χ(t) + χ̄
γ(t) + γ̄

)
and U = A(Z)Z where A(Z) =

(
d cosZ2 0

0 d

)

adding process and measurement noise, the motion of X(t) is governed by the
following systems:

Ẋ(t) = V (t)

⎛
⎝

cos (Z2(t) + γ̄) cos (Z1(t)− χ̄)
cos (Z2(t) + γ̄) sin (Z1(t)− χ̄)

− sin (Z2(t)− γ̄)

⎞
⎠+

+

⎛
⎝
− sinZ1(t) − cosZ1(t) sinZ2(t)
cosZ1(t) − sinZ1(t) sinZ2(t)

0 cosZ2(t)

⎞
⎠U(t) + eX(t)

(3.303)

Ż = A−1(t)U(t) + eZ(t) (3.304)

where the noise terms eX : R+ → R
3, eZ : R+ → R

2 are continuous mappings
and X0, Z0 are the initial conditions such that:

‖eX‖ ≤ BX ‖eZ‖ ≤ BZ (3.305)

If A = (Ai,j) is an h× k matrix, then

‖A‖ =
⎛
⎝

h∑
i=1

k∑
j=1

A2
ij

⎞
⎠

1/2

(3.306)

β = arccos (cos χ̄ cos γ̄) and

H(z) = A−1(Z) =

(
1

d cosZ2
0

0 1
d

)
(3.307)



166 Smart Autonomous Aircraft: Flight Control and Planning for UAV

H(z) is a bounded map if Ω = R×(−π2 + ε, π2 − ε
)
where ε is any real number

such that 0 < ε < π
2 . This system is nonholonomic and equivalent to the

kinematic constraint:

Ẋ = F (t, Z) +G(Z)H−1Ż (3.308)

which, in general, is a non-integrable relation between the velocities.

Problem 3.6. Let γ̃ : R
+ → Ω be a C2 arc-length parametrized curve

i.e.,
∥∥ ˙̃γ(λ)∥∥ = 1, ∀λ ≥ 0 and Γ = γ̃ (R+), find sufficient conditions on

B = (BX , BZ) and γ̃ such that for any ε > 0, any choice of (eX , eZ) verifying
‖eX(t)‖ ≤ BX and ‖eZ(t)‖ ≤ BZ , ∀t ≥ 0 and any X0 ∈ R

n, there exists a con-
trol U such that the system is solvable on R

+ and limt→+∞sup (d(X(t),Γ)) <
ε where ∀X ∈ R

3, d(X,Γ) = inft≥0 (‖X − γ̃(t)‖).
If
∥∥¨̃γ∥∥ the positive scalar curvature of γ̃ at λ is always sufficiently small

and if at the initial time:

γ̃(0) = X0
˙̃γ(0)G⊥(Z0) > 0 (3.309)

with
∥∥G⊥(Z)

∥∥ = 1 and GT
i (Z0)G

⊥(Z) = 0, ∀i = 1 . . . n− 1, z ∈ Ω then it is
possible to find a parametrization μ(t) of γ̃ and a control U(t) such that the
solution X of system (3.308) with noise

Ẋ = F (t, Z) +G(Z)U

Ż = H(Z)U
X(0) = X0 Z(0) = Z0

(3.310)

verifies the property
X(t) = γ̃(μ(t)), ∀t ≥ 0, limt→+∞μ(t) = +∞

and∥∥∥Ẋ(t)
∥∥∥ ≤ K1,

∥∥∥Ż(t)
∥∥∥ ≤ K2, ∀t ≥ 0, where K1,K2 are suitable constants; U

and μ are given by the following dynamic inversion based controller:

μ̇ = F ˙̃γ(μ, Z) U = −FG(μ, Z) μ(0) = 0 (3.311)

Under the previous hypotheses, it is possible to find a control U such that
the solution X(t) of system (3.310) covers all the path Γ with a positive
bounded speed; the remaining bounded Ż may be considered as the internal
dynamics of the system. It is shown in [17] that under suitable hypotheses on
the curvature of γ̃ and the noise amplitude, the distance between the path
Γ and the solution X(t) may be estimated in terms of a decreasing function,
that is, the system is practically stable.

3.3.4.10 Backstepping control for affine systems with drift
A backstepping control law can be derived for systems of the form [68]:
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Ẋ = f(X) +G(X)U
Y = h(X)

(3.312)

for which holds

Ẏ =
∂h(X)

∂X
Ẋ =

∂h(X)

∂X
(f(X) +G(X)U) = Lfh(X) + LGh(X)U (3.313)

where the Lie derivatives are defined as:

Lfh(X) =
∂h(X)

∂X
f(X) LGh(X) =

∂h(X)

∂X
G(X) (3.314)

3.3.4.10.1 Basic approach for a single-input-single-output system
The single-input-single-output (SISO) form of (3.312) can be written in cas-
cading form:

Ẋ1 = f1(X1) + g1(X1)X2

Ẋ2 = f2(X1, X2) + g2(X1, X2)X3

Ẋ3 = f3(X1, X2, X3) + g3(X1, X2, X3)X4

...

Ẋn−1 = fn−1(X1, X2, . . . , Xn−1) + gn−1(X1, X2, . . . , Xn−1)Xn

Ẏn = fn(X1, X2, . . . , Xn) + gn−1(X1, X2, . . . , Xn)U
Y = h(X1)

(3.315)

Then, the nth order backstepping SISO controller is given by the recursive
relation:

α̇1 = β1
α̇2 = β2

...
α̇i = βi

...
α̇n = βn
U = αn

(3.316)

where:

β1 =

(
Ẏd − Lf1h(X1)− k1Z1 − n1(Z1)

)

Lg1h(X1)

β2 =
(α̇1 − f2(X1, X2)− Lg1h(X1)Z1 − k2Z2 − n2(Z2)Z2)

Lg2h(X1, X2)

βi =
(α̇i−1 − fi(X1, . . . , Xi)− Lgih(Xi)Zi − kiZi − ni(Zi)Zi)

Lgih(X1, X2, . . . , Xi)
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βn =
(α̇n−1 − fi(X1, . . . , Xn)− Lgnh(Xn)Zn − knZn − nn(Zn)Zn)

Lgih(X1, X2, . . . , Xn)

with
Z1 = h(X) − Yd
Zi = Xi − αi−1

(3.317)

Such a backstepping controller results in closed-loop dynamics given by:

Ż = −K(Z)Z + S(X)Z (3.318)

with

K(Z) =

⎛
⎜⎜⎝

k1 + n1(Z1) 0 . . . 0
0 k2 + n2(Z2) . . . 0
. . . . . . . . . . . .
0 0 . . . kn + nn(Zn)

⎞
⎟⎟⎠ (3.319)

and

S(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Lg1 0 . . . 0 0 0
−Lg1 0 g2 0 . . . 0 0
0 −g2 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 gn−1 0
0 0 0 . . . −gn−1 0 0
0 0 0 . . . 0 −gn 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.320)

3.3.4.10.2 Basic backstepping for a coordinated flight
Backstepping is a systematic Lyapunov-based method for nonlinear control
design [82, 83]. It can be applied to the aircraft model that can be transformed
into lower triangular form such as:

Ẋ1 = f(X1) +G(X1)X2

Ẋ2 = U
Y = X1

(3.321)

with the following formulation:
X1 = (x− xr , y − yr, z − zr, V − Vr , χ− χr, γ − γr)T ,
X2 = (T − Tr, α− αr, σ − σr)T
and the control U = (Ṫ − Ṫr, α̇− α̇r, σ̇ − σ̇r)T , with

f1(X1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

V cos γ cosχ− Vr cos γr cosχr
V cos γ sinχ− Vr cos γr sinχr

−V sin γ − Vr sin γr
−g(sin γ − sin γr)

0
− g
V (cos γ − cos γr)

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.322)
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G(X1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1
m

1
2mρSV

2CD(V ) 0
0 0 L

mV cos γ

0 1
2mρSV CL(V ) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.323)

with the following assumptions: sinα ≈ 0, cosα ≈ 1, sinσ ≈ σ, cosσ ≈ 1,
ασ ≈ 0 and the drag and lift are, respectively, approximated by

D −Dr ≈ 1

2
ρSV 2CD(V )(α− αr) (3.324)

L− Lr ≈ 1

2
ρSV 2CL(V )(α − αr) (3.325)

The aircraft has to track a reference trajectory (xr, yr, zr) with a reference
velocity Vr and reference heading χr and flight path angle γr. The reference
controls are calculated accordingly to this reference trajectory.

Using the backstepping procedure, a control law is recursively constructed,
along with a control Lyapunov function (CLF) to guarantee global sta-
bility. For the system (3.321), the aim of the design procedure is to bring the
state vector X1 to the origin. The first step is to consider X2 as the virtual
control of the X1 subsystem and to find a desired virtual control law α1(X1)
that stabilizes this subsystem by using the control Lyapunov function

Ṽ1(X1) =
1

2
XT

1 X1 (3.326)

The time derivative of this control Lyapunov function is negative definite:

˙̃V1(X1) =
∂Ṽ1(X1)

∂X1
(f(X1) +G(X1)α1(X1)) < 0 X1 �= 0 (3.327)

if only the virtual control law:

X2 = α1(X1) (3.328)

could be satisfied.
The key property of backstepping is that it can be stepped back through

the system. If the error between X2 and its desired value is defined as:

Z = X2 − α1(X1) (3.329)

then the system (3.321) can be rewritten in terms of this error state:

Ẋ1 = f(X1) +G(X1) (α1(X1) + Z)

Ż = U − ∂α1(X1)
∂X1

(f(X1) +G(X1) (α1(X1) + Z))

(3.330)
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The control Lyapunov function (3.326) can now be expanded with a term
penalizing the error state Z

Ṽ2(X1, X2) = Ṽ1(X1) +
1

2
ZTZ (3.331)

Differentiating,

˙̃V2(X1, X2) =
∂Ṽ1(X1)
∂X1

(f(X1) +G(X1) (α1(X1) + Z))+

+ZT
(
U − ∂α1(X1)

∂X1
(f(X1) +G(X1) (α1(X1) + Z))

) (3.332)

which can be rendered negative definite with the control law:

U = −kZ + ∂α1(X1)
∂X1

(f(X1) + g(X1) (α1(X1) + Z))+

−∂Ṽ1(X1)
∂X1

(f(X1) +G(Z + α1(X1)))

(3.333)

with k > 0.
This design procedure can also be used for a system with a chain of integra-

tors. The only difference is that there will be more virtual steps to backstep
through. Starting with the state farthest from the actual control, each step of
the backstepping technique can broken up in three parts:

1. Introduce a virtual control α and an error state Z and rewrite the
current state equations in terms of these.

2. Choose a control Lyapunov function for the system, treating it as a
final stage.

3. Choose an equation for the virtual control that makes the control
Lyapunov stabilizable.

The control Lyapunov function is augmented at subsequent steps to reflect
the presence of new virtual states, but the same three stages are followed at
each step. Hence backstepping is a recursive design procedure [82].

3.3.4.10.3 Adaptive backstepping
For systems with parametric uncertainties, there exists a method called adap-
tive backstepping which achieves boundedness of the closed-loop states and
convergence of the tracking error to zero. The following parametric strict-
feedback system is considered as given by equations (3.138) to (3.140):

Ẋ1 = f(X1) +G(X1)X2 +W

Ẋ2 = U
Y = X1

(3.334)

where W is a vector of unknown constant parameters representing the wind.
The control objective is to make the aircraft asymptotically track a given
reference Yr(t). All derivatives of Yr(t) are assumed to be known.
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The adaptive backstepping design procedure is similar to the normal back-
stepping procedure, only this time a control law (static part) and a parameter
update law (dynamic part) are designed along with a control Lyapunov func-
tion to guarantee global stability. The control law makes use of a parameter
estimate Ŵ , which is constantly adapted by the dynamic parameter update
law. Furthermore, the control Lyapunov function now contains an extra term
that penalizes the parameter estimation error W̃ =W − Ŵ [82, 83].

Theorem 3.14

To stabilize the system (3.334), an error variable is introduced for each state:

Z = X2 − Y i−1
r − α1(X1) (3.335)

along with a virtual control law:

αi(X̄i, ϑ̄, Ȳ
i−1
r ) = −ciZi − Zi−1 − ωTi ϑ̂+ ∂αi−1

∂ϑ̂
Γτi

+
∑i−1
k=1

(
∂αi−1

∂Xk
Xk+1 +

∂αi−1

∂Y k−1
r

Y kr

)
+
∑i−1

k=2
∂αi−1

∂ϑ̂
ΓωiZk

(3.336)

for i = 1, 2 . . . n where the tuning function τi and the regressor vectors ωi are
defined as:

τi(X̄i, ϑ̂, Ȳ
i−1
r ) = τi−1 + ωiZi (3.337)

and

ωi(X̄i, ϑ̂, Ȳ
i−1
r ) = ϕ−

i−1∑
k=1

∂αi−1

∂Xk
ϕk (3.338)

where X̄i = (X1, . . . , Xi) and Ȳ ir = (Yr, Ẏr, . . . , Y
i
r ), ci > 0 are design con-

stants. With these new variables, the control and adaptation laws can be
defined as:

U =
1

ς(X)

(
αn

(
X, ϑ̂, Ȳ n−1

r

)
+ Ȳ nr

)
(3.339)

and
˙̂
ϑ = Γτn

(
X, ϑ̂, Ȳ n−1

r

)
= ΓWz (3.340)

where Γ = ΓT > 0 is the adaptation gain matrix and W the regressor matrix

W (Z, ϑ̂) = (ω1, . . . , ωi) (3.341)

The control law (3.339) with (3.341) renders the derivative of the Lyapunov
function:

Ṽ =
1

2

n∑
i=1

Z2
i +

1

2
ϑ̃TΓ−1ϑ̃ (3.342)

negative definite and thus this adaptive controller guarantees global bounded-
ness of X(t) and asymptotically tracking of a given reference Yr(t) with X1.
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3.3.4.11 Sliding mode control
The variable structure based sliding mode is a robust control technique
for control of nonlinear systems. The basic design of sliding mode control
involves the construction of a switching surface with desirable dynamics in
the first step, followed by the derivation of a discontinuous control law in the
second step. Moreover, the sliding mode control law derived in the second step
has to ensure the attractiveness and finite-time reachability of the constructed
switching surface.

3.3.4.11.1 Coordinated flight
The approach is applied on the dynamic model of the aircraft as represented
by equations (3.174) to (3.185) and Y = X1. The basic idea of sliding mode
control defines a sliding surface S(X) = 0 for the controlled system where the
system evolves according to a desired behavior on the surface. The following
sliding surface is chosen

S = ë+KV ė+KP e+KI

∫
edt (3.343)

The candidate control Lyapunov function is:

Ṽ =
1

2
STS (3.344)

After selecting the sliding surface, the control law is designed such that the
sliding surface becomes an attractive surface. This is achieved by enforcing the
sliding condition SṠ < 0 and thus turning the sliding surface to be invariant.

The time derivative is given by:

˙̃V = ST Ṡ (3.345)

where
Ṡ = f4 +B2U (3.346)

with
e = Y − Yr

ė = f0(X2)− Ẏr
ë = B1 (f1(X2) + f2(X2, X3))− Ÿr
e(3) = f3(X2, X3) +B2U − Y (3)

r

(3.347)

and
f4 = −Y (3)

r −KV Ÿr −KP Ẏr −KIYr+
+KVB1(f1 + f2) +KP f0 +KIY + f3

(3.348)

The equivalent control input is computed for Ṡ = 0 giving:

Ueq = B−1
2 f4 (3.349)
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and the sliding mode control law is given by:

U = Ueq − S − Sgn(S) (3.350)

where the Sgn(S) is the sign function.
Sliding mode control is a control strategy that uses high frequency switching

to provide control. The controller switches from one control law to the next,
sliding along the boundaries of the control strategies.

3.3.4.11.2 Non-coordinated flight
A robust control design using the variable structure control approach is uti-
lized in this section, similar to the one presented in [80], which uses the coor-
dinated flight model.

The non-coordinated flight model presented in the second chapter is used
for this derivation. First, an appropriate sliding surface on which the trajectory
has desirable property is selected. The sliding surface is chosen as

S =

(
ë+Kvė +Kpe +Ki

∫ t
0
edτ

β +Kb0

∫ t
0
βdτ

)
(3.351)

where

e =

⎛
⎝

x
y
z

⎞
⎠−

⎛
⎝

xr
yr
zr

⎞
⎠ = Y − Yr (3.352)

These gains are chosen so that S = 0 yields exponentially stable response for
the error e and the slide-slip angle β. Integral feedback in (3.351) provides ad-
ditional flexibility for a robust design. The motion of the closed-loop including
the variable structure control law evolves in two phases:

1. The trajectory beginning from arbitrary initial state is attracted to-
wards S = 0,

2. On the sliding phase, the trajectory slides on S = 0.

The nonlinear aircraft model has uncertain aerodynamic derivatives and
can be written under the following form:

Ẋ1 =

⎛
⎝

V cosχ cos γ
V sinχ cosγ
−V sin γ

⎞
⎠ = f0(X2) (3.353)

Ẋ2 = f1(X2) + f2 (T,X2, X3) (3.354)

where

X1 =

⎛
⎝

x
y
z

⎞
⎠ X2 =

⎛
⎝

V
χ
γ

⎞
⎠ X3 =

⎛
⎝

σ
α
β

⎞
⎠ ω =

⎛
⎝

p
q
r

⎞
⎠ (3.355)
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with

U =

⎛
⎜⎜⎝

Ṫ
p
q
r

⎞
⎟⎟⎠ f1(X2) =

⎛
⎝
−g sin γ

0
− g
V cos γ

⎞
⎠ (3.356)

and

f2(X) =

⎛
⎝

1
m (T cosα cosβ −D)

1
mV cos γ (T (sinα sinσ − cosα sinβ cosσ)− C cosσ + L sinσ)

1
mV (T (cosα sinβ sinσ + sinα cosσ) + C sinσ + L cosσ)

⎞
⎠

(3.357)
T is the thrust and L,D,C are, respectively, the lift, drag and side forces.
The control system is decomposed into a variable structure outer loop and
an adaptive inner loop. The outer loop feedback control system accomplishes
(x, y, z) position trajectory following Yr and side-slip angle control using the
derivative of thrust and three angular velocity components (p, q, r) as virtual
control inputs. The set of equations are:

Ẋ3 = f3(T,X2, X3) +B3(X3)ω (3.358)

with

f3(T,X2, X3) =

⎛
⎝

0 sin γ + cos γ sinσ tanβ cosσ tanβ
0 − cos γ sinσ sec β − cosσ secβ
0 cos γ cosσ − sinσ

⎞
⎠ (f1 + f2)

(3.359)
and

B3(X3) =

⎛
⎝

cosα 0 sinα secβ
− cosα tanβ 1 − sinα tanβ

sinα 0 − cosα

⎞
⎠ (3.360)

and

Ẋ4 = fω(X2, X3, ω) +Bωδ (3.361)

with

fω(X2, X3, ω) =

⎛
⎝
−i1qr
i2pr
−i3pq

⎞
⎠+

(
V

V0

)2

fV

fV =

⎛
⎝

lββ + lqq + (lβαβ + lrα)Δα+ lpp
mαΔα+mqq −mα̇pβ +mVΔV +mα̇

g
V (cos θ cosφ− cos θ)

nββ + nrr + npp+ npαΔα+ nqq

⎞
⎠
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and

Bω =

(
V

V0

)2
⎛
⎝

lδa lδr 0
0 0 mδe

nδa nδr 0

⎞
⎠ (3.362)

V0 being the value of the trim velocity.
In the presence of uncertainty, a discontinuous control law is used for ac-

complishing sliding motion. In the sliding phase, e and β converge to zero
because S = 0. Once the choice of sliding surface has been made, a controller
must be designed such that S = 0 becomes an attractive surface. Differenti-
ating X1 = (x, y, z)T successively gives

Ẍ1 =

⎛
⎝

cosχ cosγ −V sinχ cos γ −V cosχ sin γ
sinχ cos γ V cosχ cos γ −V sinχ sin γ
− sin γ 0 −V cos γ

⎞
⎠
⎛
⎝

V̇
χ̇
γ̇

⎞
⎠ (3.363)

X
(3)
1 = Ḃ1(f0 + f1) +B1(ḟ0 + ḟ1) =

= f3(X2, X3, T ) +B1(X2)B2(T,X2, X3)
(
Ṫ , Ẋ3

)T (3.364)

where

X
(3)
1 =

d3X1

dt3
f3 = Ḃ1(f0 + f1) +B1ḟ0 +B1

∂f1
∂V

(3.365)

B2 is a 3× 4 matrix given by

B2 =

(
∂f1
∂T

∂f1
∂σ

∂f1
∂α

∂f1
∂β

)
(3.366)

Using (3.358), the following relation can be written:

(
Ṫ

Ẋ3

)
= f4(T,X2, X3) +B4(α, β)U0 (3.367)

where B4 is a 4× 4 matrix given by

B4 =

(
1 0
0 1

)
(3.368)

,

f4 =

(
0
f2

)
(3.369)

and

U0 =

(
T
ω

)
(3.370)

Differentiating S given in (3.351) and (3.365) gives

Ṡ = f5(T,X2, X3) +B1Ṫ +B2Ẋ3 = f5(T,X2, X3) +B5

(
Ṫ Ẋ3

)
(3.371)
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where

f5(T,X2, X3) =
(
f3 + kv

(
B1(f0 + f1)− Ÿr

)
− Y (3)

r + kpė+ kie
)

(3.372)

This gives

Ṡ = f5 +B5f4 +B5B4U0 = f∗
5 +Δf5 + (B5 +ΔB5)U0 (3.373)

where starred functions denote nominal values of functions and Δf,ΔB5

denote uncertain functions. For the existence of a variable structure control,
invertibility of matrix B5B4 is required. In a neighborhood of the trim value,
a variable structure control law can be designed. For trajectory control, ma-
neuvering through the region in which singularity lies must be avoided by a
proper trajectory planning [10].

For the derivation of the control law, the Lyapunov approach is used. The
following shows the Lyapunov function

Ṽ =
1

2
STS (3.374)

where S = (S1, S2, S3, S4)
T . The derivative of Ṽ is given by:

˙̃V = ST (f∗
5 +Δf5 + (B5 +ΔB5)Ueq) (3.375)

For making ˙̃V negative, the control law is chosen of the form:

U0 = (B∗
5)

−1
(−f∗

5 −K1S − k2sign(S)) (3.376)

where sign(S) = (sign(S1), sign(S2), sign(S3), sign(S4))
T , K1 is a diag-

onal matrix and k2 > 0 is yet to be chosen. This control system includes
discontinuous functions [80].

Remark 3.19. Classical sliding mode control is known to generate high-
frequency control signals to enforce the sliding condition while under distur-
bances. This phenomenon is usually called chattering. It can be avoided by
smoothing the discontinuous functions replacing sign functions by saturation
functions.

3.3.4.11.3 Integral sliding mode control
The nonlinear aircraft model is considered:

Ẋ = f(X, t) +BU(X, t) +Dw(X, t) (3.377)

where X ∈ R
n is the state, U(X, t) is the control and Dw(X, t) is a pertur-

bation due to external disturbances.
The following assumptions are made:
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1. Assumption 1: Rank(B) = m
2. Assumption 2: The unknown actual value of Dw is bounded by a

known function ‖Dw(X, t)‖ ≤ D̄w(X, t), ∀X and t.

In the integral sliding mode control (ISMC) approach, a law of the
form:

U(X, t) = U0(X, t) + U1(X, t) (3.378)

is proposed. The nominal control U0(X, t) is responsible for the performance of
the nominal system; U1(X, t) is a discontinuous control action that rejects the
perturbations by ensuring the sliding motion. The sliding manifold is defined
by the set

{X |S(X, t) = 0}
with

S(X, t) = G

(
X(t)−X(t0)−

∫ t

t0

(f(X, t) +BU0(X, τ)) dτ

)
(3.379)

G ∈ R
m×n is a projection matrix such that the matrix GB is invertible.

The discontinuous control U1 is usually selected as:

U1(X, t) = −Ξ(X, t) (GB)
T
S(X, t)∥∥∥(GB)

T
S(X, t)

∥∥∥
(3.380)

where Ξ(X, t) is a gain high enough to enforce the sliding motion [15].

Remark 3.20. If the following assumption is made:

f(X, t) = AX Dw = BwW Y = CX (3.381)

with the pair (A,B) being stabilizable and the pair (A,C) being detectable,
then the proposed methodology is summarized in the following algorithm:

1. Solve the Riccati equation:

PA+ATP−P
(
BBT − Ξ−2B̄wB̄

T
w

)
P+CTC = 0 (3.382)

where B̄w = B⊥B⊥+

Bw and the left inverse of B is B+ =
(
BTB

)−1
BT .

The columns of B⊥ ∈ R
n×(n−m) span the null space of BT .

2. Set the sliding manifold as:

S = B+

(
X(t)−X(t0)−

∫ t

t0

(
A−BBTP

)
X(τ)dτ

)
(3.383)

3. Set the control as:

U = −BTPX − Ξ
S

‖S‖ Ξ >
∥∥B+BwW

∥∥ (3.384)
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3.3.4.11.4 Short and fast modes approach
The general formulation of the six degrees of freedom aircraft model presented
in the second chapter is used for this derivation.

Aircraft flight dynamics can generally be segregated into slow and fast
modes: X1 = (α, β, φ)T ∈ R

3 correspond to the slow modes of the system,
and the body angular rates X2 = (p, q, r)T ∈ R

3 represent the fast mode. This
time-scale separation property of aircraft flight dynamics can be exploited to
design a two-loop sliding mode control. The rigid-body aircraft flight dynamics
equations can be expressed in the following square cascade structure:

Ẋ1 = f1(X1, X3) + Δf1(X1, X3, U) +B1(X1, X3)X2

Ẋ2 = f2(X1, X2, X3) +B2(X1, X3)U

Ẋ3 = f3(X1, X2, X3, U)

(3.385)

where X3 = (V, θ)T ∈ R
2 refers to the internal dynamics of the system,

U = (δa, δe, δr) ∈ U ⊂ R
3; the engine thrust T is varied in an open loop

manner and hence is not included in U . Δf1 is the bounded disturbance
acting on the system; B1,B2 are the control input matrices for the outer and
inner loops of the sliding mode control algorithm, respectively. Further system
(3.385) is assumed to be of minimum phase. It is also required that all the
states of a given system be available for feedback to synthesize the sliding
mode control law.

3.3.4.11.4.1 Outer-loop sliding mode control design The outer-loop slid-
ing mode control is formulated by considering the dynamics of the slow mode:

Ẋ1 = f1(X1, X3) + Δf1(X1, X3, U) +B1(X1, X3)X2d (3.386)

where X2d = (pd, qd, rd)
T

is regarded as the virtual control input for the
outer loop. Aerodynamic control forces are considered as a disturbance term,
which is ultimately rejected by the sliding mode control law. The vector rel-
ative degree of (3.386) is (1, 1, 1)

T
. The reference signal XR is defined as:

XR = (αd, βd, φd) (3.387)

and a vector of error variables:

e = X1 −XR = (αd − α, βd − β, φd − φ)T (3.388)

A sliding surface can be chosen as: S = (S1, S2, S3)
T such that:

Si = ei + ki

∫ t

0

eidτ (3.389)

where ei denotes the i
th component of the error vector. The coefficients ki, i =

1, 2, 3 in equation (3.389) are selected such that the error dynamics on a sliding
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surface is asymptotically stable. Differentiating equation (3.389), i = 1, 2, 3
with respect to time gives:

Ṡi = f1 +Δf1 +B1X2d +Pe− ẊR (3.390)

where P = diag(ki) represents a diagonal matrix. Then the following con-
trol input is chosen:

X2d = B−1
1

(
−f1 −Pe+ ẊR −K1(S)sgn(S)

)
(3.391)

where sgn(S) = (sgn(S1), sgn(S2), sgn(S3)). The matrix B1 is assumed
to be non-singular so that the nominal system can be decoupled using state
feedback. The gain matrix K1(S) in equation (3.391) is chosen as a sum of
power law and a constant term:

K1(S) = diag(X3i|Si|α + b1) (3.392)

where X3i > 0, i = 1, 2, 3 and α ∈ (0, 1). The constant b1 in equation (3.392)
is determined by the bounds of the disturbance term

‖Δf1‖ ≤ b1 (3.393)

which can be estimated through numerical simulations. Substituting equations
(3.391) to (3.392) in (3.390), the following relation is obtained:

Ṡ = Δf1 −K1(S)sgn(S) (3.394)

To prove that the switching surface defined in equation (3.389) is attrac-
tive and finite time reachable, the following candidate Lyapunov function is
considered:

Ṽ =
1

2
STS > 0 (3.395)

Taking the time derivative of equation (3.395), one obtains:

˙̃V = ST (Δf1 +K1(S)sgn(S)) (3.396)

Substituting equations (3.392) to (3.393) in equation (3.396), the following
inequality is obtained:

˙̃V ≤ X3i

3∑
i=1

|Si|α+1 < 0, ∀X �= 0 (3.397)

From equations (3.395) to (3.397), it can be inferred that the selected
switching surface is both attractive and finite time reachable. This finishes
the design of the outer-loop SMC [24, 63].
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3.3.4.11.4.2 Inner-loop sliding mode control design The governing equa-
tion for the fast mode is:

Ẋ2 = f2(X1, X2, X3) +B2(X1, X3)U (3.398)

The vector relative degree of equation (3.398) is (1, 1, 1)T . The following error
variable is considered:

e = X2 −X2d = (p− pd, q − qd, r − rd)T (3.399)

Choose the switching surface S = (S1, S2, S3)
T = 0 such that the switching

variable is:
Si = ei ⇒ Ṡ = f2 +B2U (3.400)

The term Ẋ2d being a function of slow variables has been neglected. Choose
the following control input as

U = B−1
2 (−f2 −K2(s)sgn(S)) (3.401)

The gain matrix K2(s) is chosen as a power law term:

K2(S) = diag
(
X3i|Si|α′′)

X3i > 0 α′′ ∈ (0, 1) (3.402)

The attractiveness and finite-time reachability of the chosen sliding surface
in equation (3.400) can be established in a similar manner as demonstrated
for the outer-loop SMC.

The sliding mode control law is inherently discontinuous and hence results
in control chattering, which can excite the unmodeled high frequency plant
dynamics. To reduce chattering, several approaches have been suggested such
as continuation approximation of the discontinuous sliding mode control laws,
power rate reaching law method and higher-order sliding modes. The power
rate reaching law method is used to mitigate chattering [24].

Remark 3.21. Higher-order sliding mode control (HOSMC) enforces
higher-order derivative constraints on the sliding surface, while keeping the
advantages of the classical sliding mode control. HOSMC removes chattering
completely and provides better control accuracy and robustness. The rth order
sliding mode can be defined by:

σ = σ̇ = σ̈ = · · · = σr−1 (3.403)

which forms an r-dimensional constraint set on the dynamics of the system.
Two of the most common HOSMC design approaches are twisting and super-
twisting algorithms [15].

A dynamic sliding mode control approach is presented in [91] for the lon-
gitudinal loop mode.
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3.3.5 MODEL PREDICTIVE CONTROL

Model predictive control is among the techniques that have been used for real
time optimization. It is essentially a feedback control scheme in which the op-
timal control problem is solved over a finite horizon [t, t+ Tf ], where at each
time step t, the future states are predicted over the horizon length Tf based
on the current measurements. The first control input of the optimal sequence
is applied to the aircraft and the optimization is repeated. The closed-loop
implementation provides robustness against modeling uncertainties and dis-
turbances. However, because of the finite horizon, the closed-loop stability
cannot be guaranteed if no special precautions are taken in the design and
implementation. One way to address this issue is to use terminal constraints
or cost-to-go functions combined with a control Lyapunov function.

Model predictive control (MPC) is a strategy that explicitly uses the
model of the aircraft to predict its behavior [94]. The model is used to find
the best control signal possible by minimizing an objective function:

1. The future outputs for a determined horizonN , called the prediction
horizon, are predicted at each instant t, using the system model.
These predicted outputs Y (k+ j|k) for j = 1 . . .N depend on X(k|k)
and the future control signals U(k + j|k), j = 0 . . .N − 1.

2. The set of future control signals is calculated by optimizing a crite-
rion in order to keep the process as close as possible to a reference
trajectory Xr(k + j|l). The objective function usually takes the
form of a quadratic function of errors between the predicted output
signal and the predicted reference trajectory. The control effort is also
included in the objective function in most cases. An explicit solution
can be obtained if the objective function is quadratic, the model is
linear and there are no constraints. Otherwise, a general optimization
method must be used.

3. The control signal U(k|k) is sent to the system, while the control sig-
nal U(k+j|k), j = 1 . . .N−1 are rejected and step 1 is repeated with
all the states brought up to date. Thus U(k + 1|k + 1) is calculated.

In aircraft flight control problems, only noisy outputs or partial state mea-
surements are available. In such a case, the standard approach is to design
an observer to reconstruct the partially unknown state and its estimate is
exploited for regulation purposes [22]. As a consequence, an unknown esti-
mation error, acting as an additional uncertainty source on the system, has
to be taken into account. Along these lines, contributions on output feedback
control MPC share as common denominators the stability of the augmented
system: observer and moving horizon controllers.

The aim is to develop a memoryless output MPC strategy by avoiding the
design of an observer/controller pair that gives rise to nonconvex conditions,
when uncertain model plants are taken into consideration. An output receding
horizon controller is designed by imposing pre-definite matrix structures to
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relevant optimization variables so that the state reconstruction is no longer
necessary. Hence, the design is formulated as a semi-definite programming
problem in terms of the linear matrix inequalities condition.

The norm bounded uncertain linear description of the linear description
for the aircraft dynamics is:

X(t+ 1) = f(X(t), U(t)) = ΦX(t) +GU(t) +Bνν (3.404)

Y (t) = h(X(t), U(t)) = CX(t) (3.405)

Z(t) = CzX(t) +DzU(t) (3.406)

ν(t) = Δ(t)Z(t) (3.407)

with X ∈ Rnx denoting the state, U ∈ Rnu denoting the control input,
Y ∈ Rny denoting the output and ν, Z ∈ Rnz denoting additional variables
which account for the uncertainty. The state information is not fully available
at each time instant. The aircraft is subject to the following component-wise
input and state evolution constraint U(t) ∈ O(U) and X(t) ∈ O(X) where:

O(U) = {U ∈ R
nu : |Ui(t+ k|t)| ≤ Ui,max} (3.408)

and
O(X) = {X ∈ R

nx : |Xi(t+ k|t)| ≤ Xi,max} (3.409)

The following matrices can be defined:

Ã =

(
Φ G
C 0

)
(3.410)

B̃ =

(
Bν

0

)
(3.411)

C̃ =
(
Cz Dz

)
(3.412)

The following set

O(Δ) =
{
Ã+ B̃ΔC̃ where ‖Δ‖ ≤ 1

}
(3.413)

is the image of the matrix norm unit ball under a matrix linear fractional
mapping.

The following closed-loop approach is used

U(t) = −K(t)X(t) (3.414)

The key idea is to determine at each instant time t, on the basis of the
current stateX(t), the pair (P,K) by minimizing the cost index J (X(t),K(t))
and by ensuring the constraints’ fulfillment from t onward:

J (X(0),KX(t)) = max
ν∈Oν

∞∑
t=0

‖X(t)‖2RX
+ ‖KX(t)‖2RU

(3.415)
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where RX ,RU are symmetric positive definite weighting matrices.

O(ν) =
{
ν ∈ R

nz : ‖ν‖22 ≤ ‖CKX(t)‖22
}

(3.416)

represents aircraft uncertainty regions at each time instant.
The symmetrical definite positive matrix satisfies the following linear ma-

trix inequalities:
(

ΦTKPΦK −P+KTRUK+RX + λCT
KCK ΦTKPBν

BT
ν PΦK BT

ν PBν

)
≤ 0 (3.417)

where λ > 0 and

ΦK = Φ +GK

CK = Cz +DzK

RU ,RX being symmetric weighting matrices.

Remark 3.22. The various aircraft outputs tend to react over different peri-
ods because they are affected differently by each input and are often coupled.
Controlling one output with an input at a specified rate to obtain a desirable
response in another coupled output is difficult. Naturally, certain outputs may
need to be managed at higher rates than others to maintain adequate levels of
performance [54]. The use of multiple prediction horizons becomes particularly
useful when attempting to control systems with high degrees of cross couplings
between outputs with multiple degrees of freedom such as an aircraft. In such
cases, prediction horizons may be specific to certain tracked outputs with mul-
tiple degrees of freedom. It may allow for a certain level of decoupling to be
achieved, where the response of a particular output can be adjusted without
greatly affecting the response of other tracked outputs [11].

3.4 FUZZY FLIGHT CONTROL
Fuzzy flight control is part of intelligent control, using tools of computational
intelligence [75]. Evolutionary computation is a kind of optimization method-
ology inspired by the mechanisms of biological evolution and behaviors of
living organisms [104]. It includes also genetic algorithms (GA), advanced
neural networks (ANN), evolutionary programming (EP), swarm intelligence
(SI), ant colony optimization (ACO), particle swarm optimization (PSO).
Variants machine learning (ML) techniques have been used in evolutionary
computation algorithms to enhance the algorithm performance. These ma-
chine learning techniques can include: statistical methods (e.g., mean and
variance), interpolation and regression, clustering analysis, artificial neural
networks (ANN), bayesian network (BN), reinforcement learning (RL). These
machine learning techniques can be incorporated into different evolutionary
computation algorithms in various ways and they affect evolutionary com-
putation also on various aspects, namely: population initialization, fitness
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evaluation and selection, population reproduction and variation, algorithm
adaptation and local search.

A number of authors [21, 68, 76] have reported the development and ap-
plication of neural network based or adaptive/intelligent control algorithms.
A fuzzy logic controller is based on fuzzy logic, an approach that uses logic
variables with continuous values, as opposed to classical logic which operates
on discrete values of either 0 (false) or 1 (true). In the input stage, the data
are mapped to the values obtained from a membership function (triangular,
trapezoidal or bell shaped function). The processing stage consists of a number
of rules.

The majority of the fuzzy control system applied to aircraft has been a
heuristic logic system blended through fuzzy rules. These systems are designed
as intelligent systems for navigation tracking control. Fuzzy gain scheduling
is the most used technique for fuzzy flight control [35, 93].

3.4.1 FUZZY APPROACH FOR TRACKING MOVING TARGETS

The approach proposed in this section is fuzzy-logic based. Three fuzzy mod-
ules are designed; one module is used for adjusting the bank angle value to
control the latitude and the longitude coordinates and the other two are used
for adjusting the elevator and the throttle controls to obtain the desired alti-
tude value [45].

Basically, a fuzzy logic system consists of three main parts: the fuzzifier, the
fuzzy-inference engine and the defuzzifier. The fuzzifier maps a crisp input into
some fuzzy sets. The fuzzy inference engine uses fuzzy if-then rules from a rule
base to reason for the fuzzy output. The output in fuzzy terms is converted
back to a crisp value by the defuzzifier.

Mamdani-type fuzzy rules are used to synthesize the fuzzy logic, controllers
which adopt the following fuzzy if-then rules:

R(l) : IF (X1 is X
(l)
1 AND . . . AND (Xn is X

(l)
n )

THEN (Y1 is Y
(l)
1 ) AND . . . AND (Yk is Y

(l)
k )

(3.418)

where Rl is the lth rule, X,Y are the input and the output state linguistic
variables of the controller, respectively, and U,V ⊂ R

n are the universe of
input and output variables, respectively.

A multi-input-single-output (MISO) fuzzy logic controller with a sin-
gleton fuzzifier is considered: k=1.Using triangular membership functions, al-
gebraic product for logical AND operation, product-sum inference and cen-
troid defuzzification method, the output of the fuzzy controller has the fol-
lowing form:

Y =

∑M
l=1

(∏N
i=1 μXli (Xi)

)
Yl(∏N

i=1 μXli (Xi)
) (3.419)
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where N and M represent the number of input variables and the total
number of rules, respectively. μXli denote the membership function of the lth

input fuzzy set for the ith input variable:

1. FLC1: Altitude Controller: Inputs: altitude error and derivative
of altitude error, output throttle;

2. FLC2: Altitude Controller: Inputs: air speed error and derivative
of air speed error, output elevator;

3. FLC3: Longitude and Latitude Controller: Inputs: bank angle
error and derivative of bank angle altitude error, output bank angle.

There are two main classes of fuzzy controllers:

1. Position type fuzzy logic controller which generates the control input
U from the error e and the error rate Δe: PD fuzzy logic control.

2. Velocity type fuzzy logic controller which generates incremental con-
trol input ΔU from the error and the error rate: PI fuzzy logic control.

In this section, PI type fuzzy logic controllers are preferred for the bank
angle and the altitude controller, because of the nonlinearities of the model
and the inference between the controlled parameters. It is easier to derive the
required change in the control input instead of predicting its exact value:

e(t) = Yref − Y Δe(t) = e(t)− e(t− 1) (3.420)

where Yref and Y denote the applied set point input and plant output, respec-
tively. The output of the controller is the incremental change in the control
signal ΔU

U(t) = U(t− 1) + ΔU(t) (3.421)

The membership functions used for each input of the fuzzy logic controllers
are of triangular types. As the membership functions of the altitude error and
its derivative, five triangular functions were chosen. As the output membership
functions, the bank angle and the throttle control outputs were represented
with seven membership functions [46].

For terrain following/terrain avoidance (TF/TA) [71], to obtain optimal
terrain following/terrain avoidance trajectories, costs such as the mission time,
fuel consumption and height of the aircraft are minimized with different rel-
ative weights. Optimal trajectories can be generated using a global differen-
tial evolution optimization algorithm, then a m multi-output nonlinear model
predictive controller is established to enable the aircraft to track the optimal
paths in real time. The controller uses a neuro-fuzzy predictor model that
is trained using the local linear model tree algorithm. A robustness analysis
shows that the designed controller can effectively reject wind disturbances
while maintaining stability in the presence of uncertainties in the physical
parameters [41]. Since the fuzzy controllers depend on simple rules, they are
much easier to understand and to implement [43].
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3.4.2 STABILIZATION OF TAKAGI–SUGENO SYSTEMS UNDER THE
IMPERFECT PREMISE MATCHING

Based on the Takagi–Sugeno system, the Lyapunov stability theorem is the
main approach for solving stabilization problems. If there is a solution for
the Lyapunov inequalities, the equilibrium point of the closed-loop system is
guaranteed to be asymptotically stable. The common Lyapunov function is a
usual way for obtaining Lyapunov inequalities but it has very narrow feasible
regions that give solutions for the Lyapunov inequalities. In order to resolve
this problem, various techniques have been proposed such as piece-wise Lya-
punov function, fuzzy Lyapunov function, polynomial fuzzy systems, mem-
bership function dependent approach. Among them, the fuzzy Lyapunov
function method is defined as a fuzzy blending of common Lyapunov func-
tions and therefore only one matrix does not need to meet all of the Lya-
punov inequalities. However, the fuzzy Lyapunov function has a restriction
that the maximum norm value of the first derivative of the Takagi–Sugeno
model membership function should be known, but usually, it is very hard or
even impossible to derive it using the mathematical ways [42].

On the other hand, the general method for designing fuzzy controllers is the
parallel distributed compensation (PDC) scheme. There is, however, a
considerable disadvantage that the fuzzy controller should be designed based
on the premise membership function of the fuzzy model. To solve this problem,
the imperfect premise matching method is proposed while the Takagi–Sugeno
model and fuzzy controller do not share the same premise membership func-
tions. Under the imperfect premise matching conditions, the design flexibility
and robustness property of the fuzzy controller can be enhanced compared
with the PDC one. The following nonlinear model is considered:

Ẋ(t) = f (X(t), U(t)) (3.422)

X ∈ R
n is the state vector, U ∈ R

m is the control input vector and
f : R

n+m → R
n is a nonlinear function belonging to class C�, � ∈ Iσ =

{1, 2, . . . , σ}. The nonlinear function (3.422) can be modeled as the Takagi–
Sugeno system within the following compact sets for X(t), U(t):

C1 =
{
X(t) ∈ R

n, ‖X(t)‖ ≤ X̄}
X̄ ∈ R

n+ (3.423)

C2 =
{
U(t) ∈ R

m, ‖U(t)‖ ≤ Ū} Ū ∈ R
m+ (3.424)

The wide range of nonlinear system (3.422) within the sets (3.423) to
(3.424), as shown in the second chapter, can be represented as the Takagi–
Sugeno system.

Rule

Ri IF ζ1(t) is Γ
i
1 AND . . . AND ζp(t) is Γ

i
p THEN Ẋ(t) = AiX(t) +BiU(t)

(3.425)
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where Ri is the i
th fuzzy rule, ζk(t), k ∈ Ip is the kth premise variable and

Γik(i, k) ∈ Ir × Ip is the fuzzy set of the kth premise variable in the ith fuzzy
rule.

Using the singleton fuzzifier, product inference engine and center-average
defuzzification, the Takagi–Sugeno system (3.425) is described as the following
equation:

Ẋ(t) =

r∑
i=1

�i(ζ(t)) (AiX(t) +BiU(t)) (3.426)

in which

�i(ζ(t)) =
μi(ζ(t))∑r
i=1 μi(ζ(t))

(3.427)

μi(ζ(t)) =

p∏
k=1

Γik(ζk(t)) (3.428)

Γik(ζk(t)) is the membership value of the kth premise variable ζk(t) in Γik.
The �i(ζ(t)) satisfies the following properties:

0 ≤ �i(ζ(t)) ≤ 1

r∑
i=1

�i(ζ(t)) = 1, i ∈ Ir (3.429)

A fuzzy controller for system (3.422) is based on the imperfect premise match-
ing method with r rules.

Rule

Rj IF S1(t) is Φ
i
1 AND . . . AND Sq(t) is Φ

i
q THEN U(t) = −KjX(t)

(3.430)
where Rj is the jth fuzzy rule, Sl(t), l ∈ Iq is the lth premise variable and

Φjl (i, k) ∈ Ir × Iq is the fuzzy set of the lth premise variable in the jth fuzzy
rule.

The defuzzified output of the fuzzy controller (3.430) is described as the
following equation:

U(t) = −
r∑
j=1

kj(S(t))KjX(t) (3.431)

in which

kj(S(t)) =
mj(S(t))∑r
j=1mj(S(t))

(3.432)

mj(S(t)) =

p∏
k=1

Φjl (Sl(t)) (3.433)

Φjl (Sl(t)) is the membership value of the lth premise variable Sl(t) in Φjl .
The function kj(S(t)) satisfies the following properties:

0 ≤ kj(S(t)) ≤ 1
r∑
i=1

ki(S(t)) = 1, i ∈ Ir (3.434)
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Definition 3.25. Fuzzy Lyapunov Function: The fuzzy Lyapunov func-
tion (FLF) is defined as:

Ṽ (X) =

r∑
i=1

�i(ζ(t))X
T (t)PiX(t) (3.435)

The main problem with the fuzzy Lyapunov function is that the stabiliza-
tion conditions cannot be handled via LMI because of the time derivative of
the membership function. To overcome this problem, the upper bounds of the
membership functions are considered:

‖�̇k(ζ(t))‖ ≤ Φhk, �k(ζ(t)) ∈ C1, k ∈ Ir (3.436)

where Φhk ∈ R
n+.

Theorem 3.15

Consider a scalar μ > 0 and assumption (3.436). The continuous fuzzy system
(3.426) is stabilized by the fuzzy set controller:

U(t) = −
r∑
j=1

�j(ζ(t))KjX(t) (3.437)

if there exists symmetric matrices Ti,Y and any matrices Ri,Si satisfying
the following LMI:

Ti > 0, i ∈ Ir (3.438)

Ti +Y > 0, i ∈ Ir (3.439)

Oii < 0, i ∈ Ir (3.440)

Oij +Oji < 0, i, j ∈ Ir, i < j (3.441)

where

Oij =

(
Oij11 Oij12

OT
ij12

μ(R+RT )

)
(3.442)

where:
Oij11 = Tφ −

(
AiR

T −BiS
T
j

)− (
RAT

i − SjB
T
i

)

Oij12 = Oij11T
T
j − μ

(
AiR

T −BiS
T
j

)T
+RT

and

Tφ =

r∑
p=1

Φgp(Tp +Y) Y = RM2R
T (3.443)
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3.4.3 FUZZY MODEL PREDICTIVE CONTROL FOR WIND DISTURBANCES
REJECTION

The application of a hybrid approach for the problem of control, combining
neural and fuzzy technologies, is called the adaptive neuro fuzzy inference
system (ANFIS). The ANFIS model is trained with the back-propagation
gradient descent method. This is a hybrid neuro-fuzzy technique that brings
learning capabilities of neural networks to the fuzzy inference system. The
learning algorithm tunes the membership function of a Sugeno-type fuzzy
inference system using the training input/output data. ANFIS has a five-
layered structure given below [101]:

1. Layer 1 contains membership functions of inputs and all inputs are
applied to these functions:

L1Xi = μAi(X), i = 1 . . . n L1Yi = μBi(Y ), i = 1 . . . n (3.444)

There are different types and shapes of the membership functions.
2. In Layer 2, each function value is multiplied by other values coming

from other inputs due to defined rules, and rule base and result values
are named as firing strengths of each rule:

L2i =Wi = μAi(X), i = 1 . . . n μBi(Y ), i = 1 . . . n (3.445)

3. In Layer 3, firing strengths are normalized:

L3i = W̃i =
Wi∑n
j=1Wj

, i = 1 . . . n (3.446)

4. In Layer 4, normalized firing strengths are multiplied by a first order
function of inputs:

L4i = W̃ifi = W̃i (PiX +QiY +Ri) (3.447)

(Pi, Qi, Ri) are parameters of the first order function and these pa-
rameters are consequent parameters.

5. In Layer 5, values coming from all Layer 4 outputs are summed and
output value is obtained:

L5 =

n∑
i=1

W̃ifi (3.448)

The limitation of ANFIS is that it cannot be applied to fuzzy systems when
the membership functions are overlapped by pairs.

ANFIS is the Takagi–Sugeno model put in the framework to facilitate learn-
ing and adaptation procedures. Such a network makes fuzzy logic more sys-
tematic and less reliant on expert knowledge. The objective of ANFIS is to
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adjust the parameters of a fuzzy system by applying a learning procedure
using input-output training data. A combination technique of least square al-
gorithm and back propagation are used for training fuzzy inference systems
[76].

Basic architecture of ANFIS has two inputs, X and Y, and one output, f.
Assume that the rule base contains two Takagi–Sugeno if-then rules as follows:

Rule 1: If X is A1 AND Y is B1 THENf1 = P1X +Q1Y +R1 (3.449)

Rule 2: If X is A2 AND Y is B2 THENf2 = P2X +Q2Y +R2 (3.450)

ANFIS has five layers. The parameters in the adaptive nodes are adjustable.
The rules of the neuro-fuzzy inference subsystems are formulated so that pos-
sible potential situations that may occur to the aircraft are taken into consid-
eration.

A MIMO nonlinear model predictive controller is established to enable the
aircraft to track the paths in real time. The controller uses a neuro-fuzzy
predictor model that is trained using the local linear model tree algorithm.
A robustness analysis shows that the designed controller can effectively reject
wind disturbance while maintaining stability in the presence of uncertainties in
the physical parameters. To reduce the complexity of the plant for prediction
purposes, the input-output data used for training the prediction model are
taken from a simulation of the aircraft with no aerodynamic modeling. Then
the trained predictor is used in a MIMO nonlinear model predictive control
to retrieve the closed-loop control forces and moments. As a result a set of
closed-loop thrust and aerodynamic control surface commands are obtained
with full consideration of the aerodynamic model [41].

The local linear neuro-fuzzy predictor model consists of a set of L neurons
where for i = 1, . . . , L, the ith neuron represents a local linear model (LLM)
with input vector U ∈ R

p and output Ŷi ∈ R defined as

Ŷi = αi0 + αi1U1 + · · ·+ αipUp (3.451)

where αij are the parameters of the ith neuron. The output of the predictor
model is determined as:

Ŷ =

L∑
i=1

Ŷiηi(U) =

L∑
i=1

(
αi0 + αi1U1 + · · ·+ αipUp

)
ηi(U) (3.452)

where U is the normalized input and ηi is the validity function that specifies
the activity of the ith local linear model and is defined as

ηi(U) =
λi(U)∑L
i=1 λj(U)

(3.453)

where for i = 1, . . . , L, the membership functions λi are defined as

λi(U) = exp

(
− (U1 −m1i)

2

2σ̃2
i1

)
. . . exp

(
− (Up −mpi)

2

2σ̃2
ip

)
(3.454)
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wheremij and σ̃ij are the centers and the standard deviations of the Gaussian
distribution functions.

At sample time k, the optimizer calculates the optimal control Ū∗(k) ∈
R
m×Nu by minimizing the performance index:

J =
∑n
i=1

[
α̃i(k)

∑Ny
j=1

(
Ri(k + j)−

[
Ŷc

]
i,j

(k)

)2
]
+

+
∑m
i=1

[
β̃i(k)

∑Nu
j=1

(
[ΔU ]i,j (k)

)2
] (3.455)

where Ri are the reference signal maps and α̃i(k), β̃i(k) are the penalty
factors of the future tracking errors and the changes in control inputs, respec-
tively. Ny is the prediction horizon and Nu is the control horizon. The change
in the control input from the current sample time k to k +Nu − 1 is:

ΔU(k) =

⎛
⎜⎝

ΔU1(k) . . . ΔU1(k +Nu − 1)
... . . .

...
ΔUm(k) . . . ΔUm(k +Nu − 1)

⎞
⎟⎠ (3.456)

Once the optimizer computes Ū∗(k), U∗(k) = U∗(k− 1)+ Ū∗(k) is fed into
the neuro-fuzzy predictor. Initially set U∗(0) = 0, the predictor computes the
current outputs prediction Ŷ (k) and the future outputs prediction

Ŷ (k) =

⎛
⎜⎝

Ŷ1(k + 1) . . . Ŷ1(k +Ny)
... . . .

...

Ŷm(k + 1) . . . Ŷm(k +Ny)

⎞
⎟⎠ (3.457)

for the entire prediction horizon Ny. The current error is:

e(k) =

⎛
⎝

Ŷ1(k)− Y1(k + 1)
. . .

Ŷn(k)− Yn(k + 1)

⎞
⎠ (3.458)

which is produced by both predictive model error and the existence of the
unmeasurable disturbances v(k). The same error for all sample times is con-
sidered within the prediction horizon, that is:

E(k) =

⎛
⎜⎝

1 . . . 1
... . . .

...
1 . . . 1

⎞
⎟⎠ e(k) (3.459)

Next, E(k) is used to correct the future outputs prediction Ŷ (k) and define
the corrected outputs prediction as:

Ŷc(k) = Ŷ (k) + E(k) (3.460)
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Finally, Ŷc(k) and Ri(k+ 1), . . . , Ri(k+Ny) are used to calculate the perfor-
mance measure J defined in relation (3.455). The thrust region least square
algorithm is used as the optimizer to minimize J and calculate U∗(k + 1) to
use in (k + 1)th sample time.

Type 1 and type 2 fuzzy logic systems in airplane control were compared
in [102]. It was found that under high uncertainty levels the type 2 fuzzy logic
system outperformed the type 1 fuzzy logic system. Specifically, the type 1
fuzzy logic system showed oscillatory behavior around the reference altitude
set points. The interval type 2 fuzzy logic system Ã is described by its foot-
print of uncertainty FOU(Ã) which can be thought of as the blurring
of a type 1 membership function (MF). The footprint of uncertainty is
completely described by its two bounding functions, the lower membership
function and the upper membership function, both of which are type 1 fuzzy
logic systems. Consequently, it is possible to use type 1 mathematics to char-
acterize and work with interval type 2 fuzzy system (IT2FS).

Adaptive fuzzy controllers (AFC) are usually classified into two cat-
egories, namely indirect adaptive fuzzy controllers and direct adaptive fuzzy
controllers. In the indirect adaptive fuzzy controllers, two fuzzy logic systems
(FLS) are used as estimation models to approximate the aircraft dynamics.
In the direct scheme, only one fuzzy logic system is applied as a controller
to approximate an ideal control law. An adaptive fuzzy controller system in-
cludes uncertainties caused by unmodeled dynamics, fuzzy approximation er-
rors, external disturbances, which cannot be effectively handled by the fuzzy
logic system and may degrade the tracking performance of the closed-loop
[62]. The interval type 2 fuzzy systems can deal with linguistic and numerical
uncertainties simultaneously. Interval type 2 fuzzy systems can handle the un-
certainties and give performance that outperform their type 1 counterparts.
The third dimension of the interval type 2 fuzzy system and its footprint of
uncertainty gives them more degrees of freedom sufficient for better modeling
the uncertainties [55].

3.5 CONCLUSION
Some well-known techniques of classical linear and nonlinear control meth-
ods as well as some fuzzy approaches were presented in this chapter. Other
techniques have been used for flight control of UAV, but mostly for some
particular missions. While the nonlinear and robust nature of fuzzy control
complements the requirements of flight control well, shortcomings have pre-
vented more pronounced adoption as a flight control technique. Thus, it is
important to conduct a systematic analysis needed for flight approval and
certification.
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4 Flight Planning
ABSTRACT
Flight planning is defined as finding a sequence of actions that transforms some
initial state into some desired goal state. This chapter begins with path and
trajectory planning: trim trajectories, time optimal trajectories and nonholo-
nomic motion planning. Trajectory generation refers to determining a path in
free configuration space between an initial configuration of the aircraft and
a final configuration consistent with its kinematic and dynamic constraints.
The optimal approach can be used to realize the minimum time trajectory
or minimum energy to increase the aircraft’s endurance. Zermelo’s problem
is then considered; it allows the study of aircraft’s trajectories in the wind.
In the middle of the chapter, guidance and collision/obstacle avoidance are
considered. Planning trajectories is a fundamental aspect of autonomous air-
craft guidance. It can be considered as a draft of the future guidance law.
The guidance system can be said to fly the aircraft on an invisible highway
in the sky by using the attitude control system to twist and turn the air-
craft. Guidance is the logic that issues the autopilot commands to accomplish
certain flight objectives. Algorithms are designed and implemented such that
the motion constraints are respected while following the given command sig-
nal. Flight planning is also the process of automatically generating alternate
paths for an autonomous aircraft, based on a set of predefined criteria, when
obstacles are detected in the way of the original path. Aircraft operate in a
three-dimensional environment where there are static and dynamic obstacles
as well as other aircraft and they must avoid turbulence and storms. As ob-
stacles may be detected while the aircraft moves through the environment
or their locations may change over time, the trajectory needs to be updated
and satisfy the boundary conditions and motion constraints. Then, mission
planning is introduced by route optimization and fuzzy planning.

4.1 INTRODUCTION
Flight planning generates paths that are consistent with the physical con-
straints of the autonomous aircraft, the obstacle and collision avoidance and
weighed regions. Weighed regions are regions with abnormally low or high
pressure, wind speeds or any other factor affecting flight. 3D mission plan-
ning involves creating a path generation system which helps the aircraft to
reach the mission goal but also creates a path to satisfy different constraints
during the mission. This path generation system generates the path from the
initial point to the mission goal and navigates the aircraft. Flight planning
requires an awareness of the environment in which it is operating [23]. The

199



200 Smart Autonomous Aircraft: Flight Control and Planning for UAV

position, orientation and velocity of the aircraft are known from the sensors
and the flight management system has information about the meteorological
conditions and probable obstacles to avoid. In this chapter, the assumption is
made that the information required will be available. More information about
situation awareness can be found in the following chapter.

The human approach to navigation is to make maps and erect sign posts
or use landmarks. Robust navigation in natural environments is an essential
capability of smart autonomous aircraft. In general, they need a map of their
surroundings and the ability to locate themselves within that map, in order to
plan their motion and successfully navigate [208, 210]. Map based navigation
requires that the aircraft’s position is always known.

Smart autonomous aircraft should be able to make decisions for performing
tasks or additional actions or for changing current tasks. They should have the
capacity to perceive their environment and consequently update their activity.
The autonomy of these systems is increased as high level decisions, such as
aircraft way point assignment and collision avoidance, are incorporated in the
embedded software [184].

Within the autonomy area, automated guidance and trajectory design play
an important role. onboard maneuver planning and execution monitoring in-
crease the aircraft maneuverability, enabling new mission capabilities and re-
ducing costs [31, 127].

The main tasks of the flight planning system are:

1. Given a mission in terms of waypoints, generate a series of paths while
providing a minimum clearance.

2. Generate the reference trajectories while satisfying aircraft con-
straints.

The route planning problem is about finding an optimum path between a
start point and a destination point considering the dynamics of the aircraft,
the environment and specific constraints implied by operational reasons. The
calculation of a flight plan involves the consideration of multiple elements.
They can be classified as either continuous or discrete, and they can in-
clude nonlinear aircraft performance, atmospheric conditions, wind forecasts,
airspace structure, amount of departure fuel and operational constraints [181].
Moreover, multiple differently characterized flight phases must be considered
in flight planning. The multi-phase motion of an aircraft can be modeled by
a set of differential algebraic dynamic subsystems:

Υ = {Υ0,Υ1, . . . ,ΥN−1}
so that for k ∈ {0, . . . , N − 1},

Υk = {fk : Xk × Uk × R
nlk −→ R

nXk , gk : Xk × Uk × R
nlk −→ R

nZk }
where fk represents the differential equation

Ẋ = fk(X,U, p)
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for the kth subsystem, gk describes the algebraic constraints and k represents
the index for phases. The state set has the following property Xk ⊂ R

nXk ⊆
R
nX and the control set is such that Uk ⊂ R

nUk ⊆ R
nU . A vector of parameter

is p ∈ R
np . Let the switch times between phases be defined as:

tI = t0 ≤ t1 ≤ · · · ≤ tN = tf

That is at time tk, the dynamics subsystem changes from Υk−1 to Υk. As a
consequence, in the time subinterval [tk, tk+1], the system evolution is gov-
erned by the dynamic subsystem Υk. In the sub-interval [tN−1, tN ], the active
dynamics subsystem is ΥN−1. The switch is triggered by a sequence of switch
conditions in the set S = {S1, S2, . . . , SN−1}; S = SA ∪ Sc provides logic con-
straints that relate the continuous state and mode switch. SA corresponds
to the set of autonomous switch and Sc to the set of controlled switch. For
instance, for an autonomous switch, when the state trajectory intersects a
certain set of the state space at subsystem k−1 the system is forced to switch
to subsystem k. For a controlled switch, only when the state belongs to a
certain set, the transition from k − 1 to k is possible. This controlled switch
might take place in response to the control law. Key parameters depend on
the mission. There is no universal way of picking them.

The configuration space may be altered if the aircraft properties or the
characteristics of the environment change. The scenarios in which the UAS
missions are executed are dynamic and can change continuously. Part of the
mission or in the worst case the initial mission objectives could thus be mod-
ified. Based on the particular situation, the aircraft could fly toward a desti-
nation point, to monitor a set of objectives or a specific rectangular area or to
survey a target of interest. When the aircraft must monitor an area or survey
a target, the payload parameters and the altitude of the maneuver must be
set. The planning algorithm is composed of three subalgorithms:

1. Path planning: An integral part of UAV operation is the design
of a flight path or mission path that achieves the objectives of the
mission. If a monitor or a survey task is commanded, it runs assum-
ing subsequent couples of primary mission waypoints (PMW) as
input data. If a fly-to task is commanded, input data consist of the
current aircraft position as the starting point and the commanded
position as the destination point. The fundamentals of flight are in
general: straight and level flight (maintenance of selected altitude),
ascents and descents, level turns and wind drift correction. The al-
gorithm calculates the path between each couple of primary mission
waypoints, called a macroleg, generating an appropriate sequence of
route waypoints and corresponding speed data in a 3D space. Each
macroleg can be composed of climb, cruise and descent phases de-
pending on the relative altitude and position of the primary points
and the obstacles. The global route is the connected sequence of the
macrolegs. Such a route is safe and efficient and is provided as a set
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of waypoints to pass through at a specified speed. The safe algorithm
calculates a set of geometric safe paths from the first to the second
primary waypoints for each couple of waypoints. The cost algorithm
manipulates the safe paths and generates the path that fulfills the air-
craft performance and mission priority. It generates also the reference
trajectories while satisfying aircraft constraints.

2. Mission planning: Mission planning ensures that the UAV operates
in a safe and efficient manner. It identifies a series of ordered point
locations called primary mission waypoints, which will be included in
the route to accomplish the mission objectives. The mission planning
system needs to find motion plans that avoid collision scenarios and
maximize mission efficiency and goal attainment. Furthermore, the
plans cannot exceed the performance limitations of the aircraft. There
are complex trade-offs that must be made with regard to mission
goals, mission efficiency and safety objectives. As autonomous aircraft
operate in an unpredictable and dynamic outdoor environment, it
is necessary to combine pre-flight strategic planning with in-flight
tactical re-planning. There is significant time pressure on tactical re-
planning due to aircraft velocities and the additional constraint for
fixed wing UAV motion, maintaining a minimum stall speed [209].

3. Mission management: It provides the translation of mission ob-
jectives into quantifiable, scientific descriptions giving a measure to
judge the performance of the platform, i.e., the system in which the
mission objectives are transformed into system parameters. The mis-
sion management functions can be split into two different functional
elements:

a. The payload functions are mission specific and directly relate to
the mission.

b. The aircraft management system is defined as the set of functions
that are required for the onboard embedded software to under-
stand, plan, control and monitor the aircraft operations. They
usually represent the safety critical functionality required for the
safe employment of the platform; hence, they include all the flight
critical and safety related functions.

Remark 4.1. Online re-planning onboard the aircraft ensures continued con-
formance with the National Airspace System (NAS) requirements in the
event of an outage in the communication link.

4.2 PATH AND TRAJECTORY PLANNING
The general problem of path planning is to determine a motion for an aircraft
allowing it to move between two configurations while respecting a number of
constraints and criteria. These arise from several factors of various nature and
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generally depend on the characteristics of the system, environment and type
of task.

Problem 4.1. Planning: Given a mechanical system (S), whose motion is
governed by a system of differential equations: find aircraft path and trajectory
such that its movement is constrained limiting the configuration space and the
constraints on the controls.

The planning problem implies the calculation of a trajectory (X (t), U(t))
satisfying the differential equation such that X(t0) = X0 and X(tf ) = Xf .

1. A path is a set of configurations reached by the aircraft to go from
one configuration to another. Path planning (finding a path connect-
ing two configurations without collision) is a kinematical/geometrical
problem. A path is defined as the interpolation of position coordi-
nates. A path does not specify completely the motion of the system
in question.

2. A trajectory is a path over a law describing the time instants of
passage of each system configuration. The path planning is not only
a kinematical/geometrical problem but also a dynamical problem. A
trajectory refers to timely annotated paths; it is aircraft specific.

In this case, the constraints relate to aircraft geometry, kinematics and
dynamics. A solution must optimize a cost function expressed in terms of
distance traveled by the aircraft between two extremal configurations, time or
energy necessary to the implementation of its motion. Optimization problems
are divided in two categories, those with continuous variables and those with
discrete variables.

Trajectory planning can find a path expressed in terms of the degrees of
freedom of the aircraft and velocity/angle rates. A 4D motion planning com-
prises a referenced sequence of 3D waypoints and the desired track velocities
between them. Such tracks are also referred to as trajectory segments. It is
necessary to incorporate an approximation of aircraft dynamics to ensure that
the generated paths are physically realizable [85].

A motion plan consists of two classes of motion primitives [95]:

1. the first class is a special class of trajectories: trim trajectories. A
trim is a steady state or quasi-steady flight trajectory.

2. The second class consists of transitions between trims: maneuvers.

Each flight segment is defined by two end flight constraints which together
with the dynamic model form a system of differential algebraic equations
(DAE). The resolution of the differential algebraic equations for the different
flight segments is often based on the reduction of the aircraft equations of
motion to a system of ordinary differential equations through the explicit
utilization of the flight constraints. A continuously differentiable path should
be preferred to enable smooth transitions. Typically waypoints and paths are
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planned when UAS are operated autonomously. After planning waypoints,
paths are then typically planned joining these waypoints. As there are dynamic
constraints, the paths are planned by using various geometric curves instead
of straight lines. After planning paths, guidance laws are designed for path
following.

4.2.1 TRIM TRAJECTORIES

A trimmed flight, condition is defined as one in which the rate of change (of
magnitude) of the state vector is zero (in the body-fixed frame) and the re-
sultant of the applied forces and moments is zero. In a trimmed trajectory,
the autonomous aircraft will be accelerated under the action of non-zero re-
sultant aerodynamic and gravitational forces and moments; these effects will
be balanced by effects such as centrifugal and gyroscopic inertial forces and
moments.

u̇ = v̇ = ẇ = 0 ṗ = q̇ = ṙ = 0 (4.1)

Under the trim condition, the aircraft motion is uniform in the body-fixed
frame. The aerodynamic coefficients which are variable in time and space
become stationary under this condition and their identification becomes easier
[21, 30]. Their geometry depends on the body-fixed linear velocity vector Ve,
the roll angle φe, pitch angle θe and the rate of yaw angle ψ̇e. The choice of
these quantities should satisfy the dynamic equations, the control saturation
and envelope protection constraints.

For trim trajectories, the flight path angle γ is a constant γ0 while the
angle χ is linearly varying versus time t.

χ(t) = χ0 + tχ1 (4.2)

The parameters γ0, χ0, χ1 being constants, the following relations can be pro-
posed:

x(t) = x0 +
cos γ0
χ1

(cos(χ0 + χ1t)− cosχ0) (4.3)

y(t) = y0 − cos γ0
χ1

(sin(χ0 + χ1t)− sinχ0) (4.4)

z(t) = z0 + sin(γ0)t (4.5)

Trim trajectories are represented in general by helices, with particular cases
such as straight motion or circle arcs. For this kind of helix, curvature κ and
torsion τ are constant:

κ = χ1 cos(γ0)
τ(s) = χ1 sin(γ0)

(4.6)

The dynamic model allows to compute the following relations

T =
D +mg sin γ0

cosα
(4.7)
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σ = 0 (4.8)

and
(L+ T sinα)−mg cos γ0 = 0 (4.9)

A part of a helix can be used to join two configurations, respectively, X0 =
(x0, y0, z0, χ0, γ0) and Xf = (xf , yf , zf , χf , γf). This particular case occurs
when γ0 = γf and the following relationships are verified

χ1 = sin(γ0)
χf − χ0

zf − z0 (4.10)

with the constraint between the initial and final positions:

[χ1(xf − x0) + cos γ0 sinχ0]
2 + [χ1(yf − y0)− cos γ0 cosχ0]

2 = cos2 γ0 (4.11)

L the length of the path being given by

L =
χf − χ0

χ1
(4.12)

The trim trajectories have the advantage of facilitating the planning and
control problems. The role of the trajectory generator is to generate a feasible
time trim trajectory for the aircraft.

4.2.2 TRAJECTORY PLANNING

Aircraft trajectory planning goes from the mathematical optimization of the
aircraft trajectory to the automated parsing and understanding of desired
trajectory goals, followed by their formulation in terms of a mathematical
optimization programming [53, 80, 156, 157].

4.2.2.1 Time optimal trajectories
The subject of this section is to formulate the trajectory generation problem in
minimum time as this system has bounds on the magnitudes of the inputs and
the states [55]. The velocity is assumed to be linearly variable. As the set of
allowable inputs is convex, the time optimal paths result from saturating the
inputs at all times (or zero for singular control). For a linear time-invariant
controllable system with bounded control inputs, the time-optimal control
solution to a typical two point boundary value problem is a bang-bang function
with a finite number of switches [16, 43, 154].

Problem 4.2. The Dubins problem is the problem of describing the minimum
time trajectories for differential system defined as:

ẋ = cosχ
ẏ = sinχ
χ̇ = U
|U | ≤ 1

(4.13)
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It has been proved by Dubins [58] that the optimal arcs of this problem
(4.13) are a concatenation of at most three pieces: S (straight), R (turn to the
right) and L (turn to the left). The shortest path for a Dubins vehicle consists
of three consecutive path segments, each of which is a circle of minimum turn
radius C or a straight line L. So the Dubins set D includes six paths: D =
{LSL,RSR,RSL,LSR,RLR,LRL}. If the paths are sufficiently far apart,
the shortest path will always be of CSC type. In the case of an airplane, this
is always the case.

In [124], the problem of finding a fastest path between an initial configura-
tion (0, 0, χs) and a final configuration (xt, yt, χt) is considered. The direction
dependent model represents an extension of the original Dubins aircraft model
which assumes isotropic speed and minimum turning radius V

R(θ)U .

In [190], the optimal 3D curves are helicoidal arcs. This direction dependent
framework generalizes some of the previous work, in particular Dubins-like
vehicles moving in constant and uniform wind [215].

Problem 4.3. The Markov–Dubins problem is the problem of describing the
minimum time trajectories for the system:

ẋ = cosχ
ẏ = sinχ
χ̇ = ω
ω̇ = U
|U | ≤ 1

(4.14)

This system is a dynamic extension of the Dubins system (4.13).
Flight planning’s aim is leg-based navigation. A leg specifies the flight

path to get to a given waypoint. The crossing points define the rough paths
of aircraft. Thus, the goal is to refine these paths to generate trajectories
parametrized function of time, satisfying the kinematic constraints of the air-
craft.

Remark 4.2. The principle of maximum of Pontryagin (PMP) provides nec-
essary conditions for excluding certain types of trajectories [33] . Most often,
the conclusions derived by applying the PMP characterize a family of sufficient
controls containing the optimal control between two points. An application of
PMP combined with the tools of Lie algebra helped, in the case of mobile robots
to refine the set of optimal trajectories, initially obtained by Reed and Sheep
[39, 109].

4.2.2.2 Nonholonomic motion planning
Nonholonomic motion planning relies on finding a trajectory in the state
space between given initial and final configurations subject to nonholonomic
constraints [28, 29, 160]. The Lie algebraic method relies on a series of lo-
cal planning around consecutive current states [125]. Global trajectory results
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from joining local trajectories. At a current state, a direction of motion to-
wards the goal state is established. Then, a rich enough space of controls is
taken [165]. As the system is controllable, via some vector fields, the controls
are able to generate the fields [61, 171]. The steering method for affine drift-
less systems exploits different properties of such a system, namely nilpotence,
chained form and differential flatness [5, 23].

The methods involving sinusoid at integrally related frequencies can be
modified using some elementary Fourier analysis to steer the system (3.131).

The kinematic equations of motion of an aircraft in 3D are given by:

ẋ = V cos γ cosχ
ẏ = V cos γ sinχ
ż = −V sin γ
χ̇ = ω1

γ̇ = ω2

(4.15)

If the angles are assumed to be small, an approximation to this system is
obtained by setting cos γ ≈ 1, sin γ ≈ γ, cosχ ≈ 1, sinχ ≈ χ. Relabeling the
variables, the preceding system can be written under a chained form:

Ẋ1 = U1

Ẋ2 = U2

Ẋ3 = U3

Ẋ4 = X2U1

Ẋ5 = −X3U1

(4.16)

where X = (x, χ, γ, y, z)T , U = (ẋ, χ̇, γ̇)T . This system can also be written
under the following form:

X =

⎛
⎜⎜⎜⎜⎝

1
0
0
X2

−X3

⎞
⎟⎟⎟⎟⎠
U1 +

⎛
⎜⎜⎜⎜⎝

0
1
0
0
0

⎞
⎟⎟⎟⎟⎠
U2 +

⎛
⎜⎜⎜⎜⎝

0
0
1
0
0

⎞
⎟⎟⎟⎟⎠
U3 = g1U1 + g2U2 + g3U3 (4.17)

Using Lie brackets, the following vectors are calculated:

g4 = [g1, g2] =

⎛
⎜⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎠

g5 = [g1, g3] =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
−1

⎞
⎟⎟⎟⎟⎠

(4.18)

The determinant of the matrix (g1, g2, g3, g4, g5) being different from zero,
the controllability rank condition is satisfied. However, it should be noticed
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that for a fixed-wing aircraft, U1 is not symmetric as 0 < Vstall ≤ U1 ≤ Vmax,
while U2, U3 are symmetric. Hence, small time local controllability cannot be
ensured.

This multi-chained form system can be steered using sinusoid at integrally
related frequencies. To steer this system, first, the controls U1, U2, U3 are used
to steer x, χ, γ to their desired locations:

U1 = δ1 cos (ωt) U2 = δ2 cos (k2ωt) U3 = δ3 cos (k3ωt) (4.19)

where k2, k3 are positive integers.
By integration, x, χ, γ are all periodic and return to their initial values

x =
δ1
ω

sin (ωt) +X10 (4.20)

χ =
δ2
k2ω

sin (k2ωt) +X20 (4.21)

γ =
δ3
k3ω

sin (k3ωt) +X30 (4.22)

y = − δ1δ2
2k2ω

(
cos ((k2 + 1)ωt)

(k2 + 1)ω
+

cos ((k2 − 1)ωt)

(k2 − 1)ω

)
+X20

δ1
ω

sin(ωt) +X40

(4.23)
and

z =
δ1δ3
2k3ω

(
cos ((k3 + 1)ωt)

(k3 + 1)ω
+

cos ((k3 − 1)ωt)

(k3 − 1)ω

)
−X30

δ1
ω

sin(ωt) +X50

(4.24)
where X10, X20, X30, X40, X50 are integration constants.

The problem of steering the approximate model from X0 ∈ R
5 at t = 0 to

Xf ∈ R
5 at t = 1 is considered. The initial conditions allow the calculation of

the integration constants:

X10 = x0 X20 = χ0 X30 = γ0 (4.25)

X40 = y0 +
δ1δ2
2k2ω

(
1

(k2 + 1)ω
+

1

(k2 − 1)ω

)
(4.26)

and

X50 = z0 − δ1δ3
2k3ω

(
1

(k3 + 1)ω
+

1

(k3 − 1)ω

)
(4.27)

The final conditions allow to write:

δ1 =
ω

sinω
(xf − x0) (4.28)

δ2 =
k2ω

sin(k2ω)
(χf − χ0) (4.29)
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δ3 =
k3ω

sin(k3ω)
(γf − γ0) (4.30)

while the following nonlinear equations must be solved in k2, k3, ω to charac-
terize entirely the system:

yf − y0 − χ0(xf − x0) = − δ1δ2
2k2ω

(
cos ((k2 + 1)ω)− 1

(k2 + 1)ω
+

cos ((k2 − 1)ω)− 1

(k2 − 1)ω

)

(4.31)

zf − z0 − γ0(xf − x0) = − δ1δ3
2k3ω

(
cos ((k3 + 1)ω)− 1

(k3 + 1)ω
+

cos ((k3 − 1)ω)− 1

(k3 − 1)ω

)

(4.32)
Once this has been done, all the reference trajectories are characterized.

In the general case, motion planning may be facilitated by a preliminary
change of state coordinates which transforms the kinematics equations of the
aircraft into a simpler canonical form.

4.2.3 PATH PLANNING

The path planning problem can be formulated as follows:

Problem 4.4. Given a C-space Ω, the path planning problem is to find a
curve:

C : [0, 1] −→ Cfree s→ C(s)

where s is the arc-length parameter of C.

Cfree represents the set of configurations free of obstacles. An optimal path
is a curve C that minimizes a set of internal and external constraints (time,
fuel consumption or risk). The complete set of constraints is described in a
cost function τ , which can be isotropic or anisotropic [150]:

1. Isotropic case: The cost function τ depends only on the configura-
tion X .

2. Anisotropic case: The cost function τ depends on the configuration
X and a vector of field force.

The aircraft needs to move smoothly along a path through one or more
waypoints. This might be to avoid obstacles in the environment or to per-
form a task that involves following a piecewise continuous trajectory. Several
path models, such as straight lines segments, Lagrange interpolation, Hermite
interpolation, piecewise linear (quadratic, cubic) interpolation, spline interpo-
lation (cubic, Bezier) can be used [53, 152, 203]. Other techniques can also be
used such as wavefront algorithm, Pythagorean hodograph [52, 87, 90].

The unmanned aircraft minimum curvature radius and pitch angle con-
straints should be satisfied because the aircraft’s curvature radius is highly
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related to the geometry, kinematics and dynamics of the aircraft [17, 18]. In
addition, the pitch angle is generally limited in a certain range for the sake of
the aircraft safety in 3D space; the pitch angle at all points on the trajectory
must be constrained between the assigned lower and upper bounds [40].

The optimal path is essential for path planning. Path planning should pro-
duce not only a feasible path, but also the optimal one connecting the initial
configuration to the final configuration. In [204], a real time dynamic Dubins
helix method for trajectory smoothing is presented. The projection of 3D
trajectory on the horizontal plane is partially generated by the Dubins path
planner such that the curvature radius constraint is satisfied. The helix curve
is constructed to satisfy the pitch angle constraint, even in the case where the
initial and final configurations are close.

4.2.3.1 B-spline formulation
Splines are a set of special parametric curves with certain desirable properties.
They are piecewise polynomial functions, expressed by a set of control points.
There are many different forms of splines, each with their own attributes.
However, there are two desirable properties:

1. Continuity: the generated curve smoothly connects its points.
2. Locality of the control points: the influence of a control point is lim-

ited to a neighborhood region.

Different alternate paths can be represented by B-spline curves to minimize
computation, because a simple curve can be easily defined by three control
points. A parametric B-spline curve p(s) of the order k or degree k− 1 is
defined by (n+ 1) control points pi, knot vector X and by the relationship

p(s) =

n∑
i=0

piNi,k(s) (4.33)

where Ni,k(s) are the Bernstein basis functions and are generated re-
cursively using

Ni,k(s) =
(s−Xi)Ni,k−1(s)

Xi+k−1 −Xi
+

(Xi+k − s)Ni+1,k−1(s)

Xi+k−1 −Xi+1
(4.34)

and

Ni,1 =

{
1
0

If Xi ≤ s ≤ Xi+1

Otherwise

}
(4.35)

The control points define the shape of the curve. By definition, a low degree
B-spline will be closer and more similar to the control polyline (the line formed
by connecting the control points in order). The B-splines used can be third
degree B-splines to ensure that the generated curves stay as close to the control
points as possible [64].
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4.2.3.2 Cubic Hermite spline
The Hermite spline is a special spline with the unique property that the curve
generated from the spline passes through the control points that define the
spline. Thus a set of pre-determined points can be smoothly interpolated by
simply setting these points as control points for the Hermite spline [75].

Cubic Hermite spline interpolation passes through all the waypoints
and it is possible to assign the derivative values at the control points and also
obtain local control over the paths. A solution to the path generation problem
is to use a cubic Hermite spline for each pair of successive waypoints [115].

Given a non negative integer n, Pn denotes the set of all real-valued poly-
nomials. The partition of the interval I = [a, b] is given as a = X1 < X2 <
· · · < Xn = b and fi, i = 1, . . . , n, the corresponding set of monotone data at
the partition points:

p(s) = fiH1(s) + fi+1H2(s) + hiH3(s) + hi+1H4(s) (4.36)

where Hk(s) are the cubic Hermite basis functions for the interval Ii:

H1(s) = ϕXi+1−s
hi

H2(s) = ϕ s−Xihi

H3(s) = −hiηXi+1−s
hi

H4(s) = hiη
s−Xi
hi

(4.37)

where hi = Xi+1 −Xi, ϕ = 3t2 − 2t3, η = t3 − t2.
This methodology can be extended to parametric splines. This entails the

introduction of the independent variable ϑ and the formulation of one separate
equation for each one of the data variable:

xd(ϑ) = Cx3(ϑ− ϑi)3 + Cx2(ϑ− ϑi)2 + Cx1(ϑ− ϑi) + Cx0 (4.38)

where
Cx0 = Xi Cx1 = X ′

i

Cx2 =
3Sxi −x′

i+1−2x′
i

Δϑi
Cx3 =

−2Sxi +x
′
i+1+x

′
i

Δϑi

(4.39)

where (.)′ denotes differentiation with respect to parameter ϑ, Δϑi = ϑi+1 −
ϑi is the local mesh spacing and Sxi = xi+1+xi

Δϑi
is the slope of the linear

interpolant.

4.2.3.3 Quintic Hermite spline

The task is to find a trajectory, a parametrized curve, η(t) =

⎛
⎝

x(t)
y(t)
z(t)

⎞
⎠ with

t ∈ [0, Tf ] from a start point η(0) with specified velocity η̇(0) and accelera-
tion η̈(0) = 0 to a destination point η(Tf ) with specified velocity η̇(Tf ) and
acceleration η̈(Tf ) = 0, taking into account the kinematics of the aircraft, the
operational requirements of the mission and the no-fly areas.
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The objective function to be minimized can be the flight time Tf , the

length of the trajectory
∫ Tf
0 |η̇(t)|dt, the mean flight height above ground

1
Tf

∫ Tf
0 (z(t)− hterrain(x(t), y(t))) with hterrain(x(t), y(t)) denoting the ter-

rain elevation of point (x(t), y(t)).
The approach is based on a discretization of the airspace by a 3D net-

work [2]. Its topology depends on the kinematic properties of the aircraft, the
operational requirements of the mission and the relief of the terrain. Each
directed path in the network corresponds to a trajectory which is both fly-
able and feasible [65]. Generation of the flight path segment is split into two
subsystems:

1. A twice continuously differentiable parametrized curve with appro-
priate conditions is determined using quintic Hermite interpolation

x(t) = a51t
5 + a41t

4 + a31t
3 + a21t

2 + a11t+ a01
y(t) = a52t

5 + a42t
4 + a32t

3 + a22t
2 + a12t+ a02

z(t) = a53t
5 + a43t

4 + a33t
3 + a23t

2 + a13t+ a03

(4.40)

The parameters aij can be determined by the endpoint conditions.
2. The flyability and feasibility of the trajectories are checked using a

simplified model of the aircraft.

4.2.3.4 Pythagorean hodographs
The Pythagorean hodograph condition in R

3 is given by:

x′2(t) + y′2(t) + z′2(t) = σ̃2(t) (4.41)

where σ̃(t) represents the parametric speed. The problem lies in finding an
appropriate characterization for polynomial solutions [62].

Theorem 4.1

If relatively prime real polynomials a(t), b(t), c(t), d(t) satisfy the Pythagorean
condition:

a2(t) + b2(t) + c2(t) = d2(t) (4.42)

they must be expressible in terms of other real polynomials ũ(t), ṽ(t), p̃(t), q̃(t)
in the form:

a(t) = ũ2(t) + ṽ2(t)− p̃2(t)− q̃2(t) = x′(t)
b(t) = 2 (ũ(t)q̃(t) + ṽ(t)p̃(t)) = y′(t)
c(t) = 2 (ṽ(t)q̃(t)− ũ(t)p̃(t)) = z′(t)

d(t) = ũ2(t) + ṽ2(t) + p̃2(t) + q̃2(t) = σ(t)

(4.43)
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This form can be written in several different ways corresponding to permu-
tations of a(t), b(t), c(t) and ũ(t), ṽ(t), p̃(t), q̃(t).

If the polynomials ũ(t), ṽ(t), p̃(t), q̃(t) are specified in terms of Bernstein
coefficients on t ∈ [0, 1], the Bezier control points of the spatial PH curves
they define can be expressed in terms of these coefficients. For example for
ũ(t) = u0(1 − t) + u1t and similarly for ṽ(t), p̃(t), q̃(t), the control points of
the spatial Pythagorean hodograph cubic are found to be of the form:

P1 = P0 +
1

3

⎛
⎝

u20 + v20 − p20 − q20
2 (u0q0 + v0p0)
2 (v0q0 − u0p0)

⎞
⎠ (4.44)

P2 = P1 +
1

3

⎛
⎝

u0u1 + v0v1 − p0p1 − q0q1
(u0q1 + u1q0 + v0p1 + v1p0)
(v0q1 + v1q0 − u0p1 − u1p0)

⎞
⎠ (4.45)

P3 = P2 +
1

3

⎛
⎝

u21 + v21 − p21 − q21
2 (u1q1 + v1p1)
2 (v1q1 − u1p1)

⎞
⎠ (4.46)

The point P0 corresponds to the integration constants.

4.2.4 ZERMELO’S PROBLEM

Zermelo’s problem corresponds to the problem of aircraft in the wind [102].

4.2.4.1 Initial Zermelo’s problem
Zermelo’s problem was originally formulated to find the quickest nautical path
for a ship at sea in the presence of currents, from a given departure point in
R

2 to a given destination point [98]. It can also be applied to the particular
case of an aircraft with a constant altitude and a zero flight path angle and
the wind velocity represented by W = (WN ,WE) [176].

A UAV has to travel through a region of strong constant wind at a constant
altitude. The wind is assumed to have a constant wind velocity W in the y
direction. The autopilot modulates the aircraft’s heading χ to minimize travel
time to the origin.

4.2.4.1.1 First case study
In the first case study, the UAV is assumed to have a constant velocity V and
its heading χ is chosen as an input. The goal is to minimize time with the
following boundary conditions: x0 = y0 = 0 and xf = 1; yf = 0. The control is
assumed to be unconstrained. The minimal time problem can be formulated
as follows:

Min

∫ Tf

0

dt (4.47)
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subject to
ẋ = V cosχ

ẏ = V sinχ+WE

x(0) = y(0) = 0
x(Tf ) = 1 y(Tf) = 0

(4.48)

Using the Pontryagin minimum principle, the following optimal control can
be calculated:

χ∗ = − arcsin

(
WE

V

)
(4.49)

while the optimal trajectories are:

x∗(t) = tV cosχ
y∗(t) = t(V sinχ+WE)

(4.50)

The final time is:

Tf =
1√

V 2 −W 2
E

This resolution is only possible if |WE | ≤ V .

4.2.4.1.2 Second case study
The second case study is an attempt to be more realistic. The input now is the
rate of the heading χ̇, constrained to belong to the interval [−Umax, Umax].
The boundary conditions are slightly different from the first case: x0 = y0 =
χ0 = 0 and χf = 0; yf = 0. The minimal time problem can be formulated as
follows:

Min

∫ Tf

0

dt (4.51)

subject to
ẋ = V cosχ

ẏ = V sinχ+WE

χ̇ = U
x(0) = y(0) = χ(0) = 0
χ(Tf) = 0 y(Tf) = 0

(4.52)

Using the Pontryagin minimum principle, the following optimal control can
be calculated:

U∗ =

{
Umax 0 ≤ t ≤ t1
−Umax t1 ≤ t ≤ Tf

}
(4.53)

with t1 =
Tf
2 while the optimal trajectories are:

χ∗ =

{
Umaxt 0 ≤ t ≤ t1

Umax(Tf − t) t1 ≤ t ≤ Tf
}

(4.54)
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x∗ =

⎧⎨
⎩

V
Umax

sin (Umaxt) 0 ≤ t ≤ t1
V

Umax
sin (Umax(t− Tf)) + 2 V

Umax
sin

(
TfUmax

2

)
t1 ≤ t ≤ Tf

⎫⎬
⎭

(4.55)

y∗ =

{
− V
Umax

cos (Umaxt) +WEt+
V

Umax
0 ≤ t ≤ t1

V
Umax

cos (Umax(t− Tf)) +WE(t− Tf )− V
Umax

t1 ≤ t ≤ Tf

}

(4.56)
The final time can be found from the resolution of the following equation:

Umax
2

WE

V
Tf − cos

(
UmaxTf

2

)
= 1 (4.57)

Depending on the values of Umax, V,W , this equation may have or not a
real positive solution.

Another case study is treated next. The equations describing the optimal
path for the case of linearly varying wind velocity are:

ẋ = V cosχ+WN (y)
ẏ = V sinχ

(4.58)

where (x, y) are its coordinates and WN = V y
h is the velocity of the wind.

The initial value of χ is chosen so that the path passes through the origin. For
the linearly varying wind strength considered here, the optimal steering angle
can be related to the aircraft position through a system of implicit feedback
equation [60]

χ̇ = − cos2 χ
dWN

dy
(4.59)

If WN = W
a y, a being a constant then

χ = arctan

(
W

a
t+ tanχ0

)
(4.60)

The optimal trajectory is then given by:

y = a

(
1

cosχf
− 1

cosχ

)
(4.61)

and

x =
a

2

(
1

cosχf
(tanχf − tanχ)− tanχ

(
1

cosχf
− 1

cosχ

))
+

+
a

2
ln

(
tanχf +

1
cosχf

tanχ+ 1
cosχ

)
(4.62)
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If WN (x, y) = −Wy, it has been proved in [91] that the time to go is given by

Tf =
1

W
(tanχf − tanχ0) (4.63)

Remark 4.3. The following approximate relations can be implemented, for
N waypoints:

χ̇k =
yk − yk−1

xk − xk−1
cos2 χk (4.64)

γ̇k = − (zk − zk−1) cos
2 γk

cosχk(xk − xk−1) + sinχk(yk − yk−1)
(4.65)

for k = 1 . . .N .

4.2.4.2 2D Zermelo’s problem on a flat Earth
The following problem can be solved in the same way using the Pontryagin
maximum principle:

Problem 4.5. 2D Zermelo’s Problem on a Flat Earth: Time optimal
trajectory generation can be formulated as follows:

min

Tf∫

0

dt (4.66)

subject to
ẋ = U1(t) +WN (x, y)
ẏ = U2(t) +WE(x, y)

(4.67)

with
U2
1 (t) + U2

2 (t) ≤ V 2
max (4.68)

The heading angle is the control available for achieving the minimum time
objective [91].

Zermelo’s navigation formula consists of a differential equation for U∗(t) ex-
pressed in terms of only the drift vector and its derivatives. The derivation can
be explained as follows. Let the angle χ(t) be given by U1(t) = Vmax cosχ(t)
and U2(t) = Vmax sinχ(t); the following ordinary differential equation must
be solved:

dχ

dt
= − cos2 χ

∂WN

∂y
+ sinχ cosχ

(
∂WN

∂x
− ∂WE

∂y

)
+ sin2 χ

∂WE

∂x
(4.69)

Remark 4.4. Flying exact trajectories relative to the ground may be good
for optimizing operations (fixed approach trajectories) but the autopilot has to
control the aircraft that drifts with the air mass. Relative to the air mass to
adhere to the ground trajectory, the autopilot must continuously vary the bank
angle during turns.
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The problem is generating an optimal path from an initial position and
orientation to a final position and orientation in the 2D plane for an aircraft
with bounded turning radius in the presence of a constant known wind. Some
researchers have addressed the problem of optimal path planning of an air-
craft at a constant altitude and velocity in the presence of wind with known
magnitude and direction [144, 205]. A dynamic programming method to find
the minimum time waypoint path for an aircraft flying in known wind was
proposed by [94, 95]. A target trajectory in the horizontal plane can be de-
scribed by connecting straight lines and arcs. Clearly, this type of description
forces the aircraft to attain a bank angle instantaneously at the point of tran-
sition between the straight and curved segments. In [68], the curved part of a
trajectory is designed assuming a certain steady bank angle and initial speed
in a no-wind condition. If a strong wind exists, the autopilot has to change the
bank angle depending on the relative direction of the wind during the curved
flight phase or continuously fly with a steeper than nominal bank angle. A
steeper bank angle and changing relative wind direction both affect thrust
control.

In the absence of wind, this is the Dubins problem [66]. The original prob-
lem of finding the optimal path with wind to a final orientation is transformed
over a moving virtual target whose velocity is equal and opposite to the ve-
locity of the wind. An UAV approaching a straight line under a steady wind
can be considered as a virtual target straight line moving with an equal and
opposite velocity to the wind acting on it in a situation where the wind is
absent. So in the moving frame, the path will be a Dubins path. The ground
path is indeed the time optimal path [80].

Time optimal navigation for aircraft in a planar time varying flow field has
also been considered in [193]. The objective is to find the fastest trajectory
between initial and final points. It has been shown that in a point symmetric
time varying flow field, the optimal steering policy necessarily has to be such
that the rate of the steering angle equals the angular rotation rate of the fluid
particles.

In many real scenarios, the direction of wind is not known a priori or it
changes from time to time [131]. An approach based on overlaying a vec-
tor field of desired headings and then commanding the aircraft to follow the
vector field was proposed by [138]. A receding horizon controller was used
in [107] to generate trajectories for an aircraft operating in an environment
with disturbances. The proposed algorithm modifies the online receding hori-
zon optimization constraints (such as turn radius and speed limits) to ensure
that it remains feasible even when the aircraft is acted upon by unknown but
bounded disturbances [130].

4.2.4.3 3D Zermelo’s problem on a flat Earth
Now, the wind optimal time trajectory planning problem for an aircraft in a
3D space is considered [91, 92]. An aircraft must travel through a windy re-
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gion. The magnitude and the direction of the winds are known to be functions
of position, i.e., WN =WN (x, y, z), WE =WE(x, y, z) and WD =WD(x, y, z)
where (x, y, z) are 3D coordinates and (WN ,WE ,WD) are the velocity com-
ponents of the wind. The aircraft velocity relative to the air V is constant.
The minimum-time path from point A to point B is sought. The kinematic
model of the aircraft is

ẋ = V cosχ cosγ +WN

ẏ = V sinχ cos γ +WE

ż = −V sin γ +WD

(4.70)

where χ is the heading angle of the aircraft relative to the inertial frame and
γ is the flight path angle.

Using the principle of the maximum of Pontryagin, the evolution of the
heading is obtained as a nonlinear ordinary differential equation:

χ̇ = sin2 χ∂WE

∂x + sinχ cosχ
(
∂WN

∂x − ∂WE

∂y

)

− tan γ
(
sinχ∂WD

∂x − cosχ∂WD

∂y

)
− cos2 χ∂WN

∂y

(4.71)

while the evolution of the flight path angle is given by a nonlinear ordinary
differential equation:

γ̇ = cos2 γ cosχ∂WN

∂z + cos2 γ ∂WE

∂z + sin γ cos γ
(
∂WN

∂x − ∂WD

∂z

)
+

+sin2 γ ∂WE

∂x − sin2 γ secχ∂WD

∂x − sin γ cos γ tanχ sin2 χ∂WE

∂x +

− sin γ cos γ sin2 χ
(
∂WN

∂x − ∂WE

∂y

)
+ tanχ sin2 γ

(
sinχ∂WD

∂x − cosχ∂WD

∂y

)
+

+sin γ cos γ sinχ cosχ∂WN

∂y

(4.72)
More information about the derivation of these equations can be found in

[23, 74].

Remark 4.5. When it is assumed that there is no wind, the velocity of the
aircraft is constant and the available control inputs are the flight path angle
and the heading angle. The following optimal trajectory can be calculated

x = V t cos γ cosχ+ x0
y = V t cos γ sinχ+ y0
z = −V t sin γ + z0

(4.73)

where (x0, y0, z0) is the initial position of the aircraft. If the final position is
given by (xf , yf , zf ) then the predicted arrival time is:

T =
1

V

√
(xf − x0)2 + (yf − y0)2 + (zf − z0)2 (4.74)
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while the heading angle is given by:

χ = arctan

(
yf − y0
xf − x0

)
(4.75)

and the flight path angle by:

γ = arctan

(
zf − z0

cosχ(xf − x0) + sinχ(yf − y0)
)

(4.76)

When the considered control inputs are the flight path angle rate γ̇, the
heading angle rate χ̇ and the derivative of the velocity V̇ , the idea is to use
the structure and to apply simple bang-bang controls in the planning. The
amount of control available is a concern in the planning for this system due
to the drift term. The class of bang-bang controls is often a sufficiently rich
class of controls for analysis of nonlinear systems. This simple class of controls
makes it possible to integrate the equations forward.

4.2.4.4 3D Zermelo’s problem on a spherical Earth
This paragraph presents the practical trajectory optimization algorithm that
approximates the minimization of the total cost of travel time and fuel con-
sumption for aircraft on a spherical Earth. A typical aircraft trajectory con-
sists of an initial climb, a steady-state cruise and a final descent. Here, aircraft
performance is optimized for the cruise phase only. The cruise trajectory is
divided into segments on several altitudes as the optimal cruise altitude in-
creases due to the reduction in aircraft weight as fuel is used. The aircraft
optimal heading during cruise is the solution of the Zermelo’s problem de-
rived on a spherical Earth surface in the absence of constraints. The horizontal
trajectory segments are optimized based on the cost-to-go associated with ex-
tremal trajectories generated by forward-backward integrating the dynamical
equations for optimal heading and aircraft motion from various points in the
airspace [27, 139].

The direct operating cost for a cruising aircraft can be written as:

J =

∫ Tf

t0

(
Ct + Cf f̃(m, z, V )

)
dt (4.77)

where Ct and Cf are the cost coefficient of time and fuel. The fuel flow

rate f̃ can be approximated by a function of aircraft mass m, altitude z and
airspeed V . The fuel burn for aircraft during cruise F̃ is calculated as:

F̃ = tf̃ (4.78)

where t is the elapsed time. The fuel burn rate f for jets and turboprops is
determined by the specific fuel consumption (SFC) and thrust T :

f̃ =
Cfcr
1000

.SFC.Tf SFC = Cf1

(
1 +

VTAS
Cf2

)
(4.79)
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where Cfcr, Cf1 , Cf2 are the thrust specific fuel consumption coefficients
and VTAS is the true airspeed.

During cruise, thrust equals the aerodynamic drag forces and lift equals
the weight:

T = D = 1
2CD(V, α)ρSV

2

CD(V, α) = CD0 +KC2
L

CL(V, α) =
2mg
ρSV 2

(4.80)

Under the international standard atmosphere (ISA), the tropopause al-
titude is at 11000m and the optimal cruise altitude zopt at or below the
tropopause can be calculated as:

zopt =
(
1− exp

(−f(m,V )KTRgas/2(g +KTRgas)ρ
2
0ISA

))(1000T0ISA
6.5

)

(4.81)
Above the tropopause, it is:

zopt =
−f(m,V )RgasTpropISA

2gρtropISA
+ 11000 m (4.82)

where

f(m,V ) = ln

(
4m2g2K

S2V 4CD0

)
(4.83)

Rgas is the real gas constant for air, the temperature gradient KT , the sea
level density ρ0ISA and the sea level temperature T0ISA considered constant
under the ISA. The air density ρtropISA and temperature TtropISA are all
constant at the troposphere.

Optimal cruise altitudes are computed from relations (4.81) to (4.82)
based on the atmospheric constants and aerodynamic drag coefficients that
are aircraft-type dependent. They vary also with aircraft mass and airspeed.

The aircraft equations of motion at a constant altitude above the spherical
Earth’s surface are

�̇ =
V cosχ+WE(�, λ, z)

R cosλ
(4.84)

λ̇ =
V sinχ+WN (�, λ, z)

R
(4.85)

ṁ = −f (4.86)

subject to the conditions that the thrust equals the drag, � is the longitude
and λ is the latitude, χ is the heading angle and R is the Earth radius R >> z.
The dynamical equation for the optimal aircraft heading is:

χ̇ = −Fwind(χ, �, λ,WE ,WN , V )

R cosλ
(4.87)
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where Fwind(χ, �, λ,WE ,WN , V ) is aircraft heading dynamics in response to
winds and is expressed as:

Fwind = − sinχ cosχ∂WE

∂� + cos2 χ sinλWE + cos2 χ cosλ
(
∂WE

∂λ − ∂WN

∂�

)
+

+sinχ cosχ sinλWN + cosχ sinχ cosλ∂WN

∂λ + V cosχ sinλ+ cos2 χ∂WN

∂�
(4.88)

The minimum-time trajectory is the combination of wind optimal extremals
on several different altitudes, each solved using conditions on that altitude.
The optimal virtual profile provides the initial and subsequent optimal cruise
altitudes as well as the transition time between the altitudes.

4.2.4.5 Virtual goal
The problem is to determine the optimal path in 3D space between the
initial configuration, position X1 and orientation e1 and the final con-
figuration, position X2 and orientation e2, for a constant speed aircraft
and with turn rate constraints. The unit orientation vectors at the initial
and final points are e1 = (cos γ1 cosχ1, cos γ1 sinχ1,− sin γ1)

T and e2 =
(cos γ2 cosχ2, cosγ2 sinχ2,− sin γ2)

T . The proposed path planning algorithm
is based on the following kinematic equations of motion:

ẋ = V cos γ cosχ+WN

ẏ = V cos γ sinχ+WE

ż = −V sin γ +WD

χ̇ = ω1

γ̇ = ω2

(4.89)

where the state vector is defined as X = (x, y, z, χ, γ), the velocity V is as-
sumed to be constant and ω1, ω2 are the control inputs. The trajectory must
satisfy a maximum turn rate constraint or the curvature bound ±κmax and
torsion ±τmax for the aircraft.

The original problem of computing an optimal path in the presence of
wind can be expressed as one of computing the optimal path from an initial
position X1 and orientation e1 with no wind to a final orientation e2 and a
virtual goal that moves with a velocity equal and opposite to the velocity of
the wind [163]. The air path defined as the path traveled by the aircraft with
respect to the moving frame can be of CSC type or of helicoidal type. Let the
minimum time required to reach the final point be Tf . At Tf , the virtual final
point moves from the given final position X2 = (x2, y2, z2) to a new position
X2v = (x2v, y2v, z2v) which can be expressed as a function of Tf .

X2v = X2 − (W cos γ1 cosχ1,W cos γ1 sinχ1,−W sin γ1)
TTf (4.90)

or equivalently

X2v = X2 −
∫ Tf

0

W (t)dt (4.91)
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with W =
√
W 2
N +W 2

E +W 2
D.

Finally, the position to be reached is X2v. The heading angle and the flight
path angle at the virtual goal are χ2, γ2. The reformulated problem (4.90)
is similar to the kinematic model of a 3D Dubins vehicle in the absence of
wind except that the final point X2v is also dependent on Tf . Thus a CSC or
helicoidal path can be computed and the variables X2v, Tf can be obtained
using nonlinear equations solving the algorithm and the ground path can be
computed in the inertial frame using the state equations in (4.89).

4.3 GUIDANCE AND COLLISION/OBSTACLE AVOIDANCE
Aircraft collision is a serious concern as the number of aircraft in operation
increases. In the future, they will be expected to carry sophisticated avoidance
systems when flying together with conventional aircraft. Onboard sensor
systems combined with self-operating algorithms will ensure collision avoid-
ance with little intervention from ground stations. Onboard sensors can detect
other aircraft nearby. Information related to the other aircraft such as position,
velocity and heading angle can be used to build an avoidance command. In
order for an aircraft to maneuver successfully in such a dynamic environment,
a feasible and collision-free trajectory needs to be planned in the physical
configuration space. The avoidance law should be generated in real time and
simple to implement. The ability to sense and avoid natural and man made
obstacles and to rebuild its flight path is an important feature that a smart
autonomous aircraft must possess [195]. Guidance, trajectory generation and
flight and mission planning are the core of the flight management system of a
smart autonomous aircraft [19, 34, 108, 136]. The computational abilities pro-
vide the strongest constraints on the autonomous aircraft, although advances
in the hardware mechanisms are to be expected. Improvements in software
are essential [48, 93, 97].

Collision avoidance is of vital importance for small UAV flying on low
heights which usually encounter a large number of mostly static obstacles
[42]. Due to a limited knowledge of the environment and small computing
power, collision avoidance needs to rely on a little information while being
computationally efficient. Guidance laws are one way of tackling such difficul-
ties [173]. For autonomous missions, sense and avoid capability is a critical
requirement [77].

Collision avoidance can be broadly classified into global and local path
planning algorithms, to be addressed in a successful mission. Whereas global
path planning broadly lays out a path that reaches the goal point, local col-
lision avoidance algorithms which are usually fast, reactive and carried out
online ensure safety of the aircraft from unexpected and unforeseen obstacles
and collisions. The algorithm in [135] first plans a path to the goal avoiding
the obstacles known a priori. If a collision is predicted to occur, the path is
replanned so that the obstacle is avoided. However, the objective is to always
move toward the goal point after collision is avoided. Hence, these algorithms
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are considered to be global path planning algorithms with local collision avoid-
ance features embedded into them.

The problem of trajectory prediction is encountered whenever it is neces-
sary to provide the control system with a projection of the future position of
the aircraft, given the current flight conditions, together with an envelope of
feasible trajectory. The prediction can be integrated in a ground proximity
warning system, to reveal a possible ground collision with a time margin suf-
ficient for undertaking an appropriate control action for avoiding obstacles on
the prescribed flight path. In this case, the knowledge of an envelope of feasi-
ble future position is sought. In [8], an algorithm is presented for determining
future positions of the aircraft center of gravity inside a given prediction hori-
zon from measurements of acceleration and angular velocity. The technique is
based on the weighted combination of two estimates:

1. The projection in the Frenet frame of a helix with vertical axis for
long term prediction in steady and quasi-steady maneuver segments.

2. A third order accurate power series expansion of the trajectory in
the Frenet frame, useful for short term trajectory prediction during
transient maneuvering phases.

4.3.1 GUIDANCE

Guidance is a dynamic process of directing an object toward a given point
that may be stationary or moving [79, 213]. Inertia of the aircraft is ignored
in most approaches and their dynamics are ignored [106]. In this section, three
approaches are presented, two conventional and the last one based on fuzzy
techniques.

Definition 4.1. Guidance is the logic that issues steering commands to the
aircraft to accomplish certain flight objectives. The guidance algorithm gener-
ates the autopilot commands that steer the autonomous aircraft. A guidance
system is defined as a group of components that measures the position of the
guided aircraft with respect to the target and changes its flight path in accor-
dance with a guidance law to achieve the flight mission goal.

A guidance law is defined as an algorithm that determines the required
commanded aircraft accelerations. In guidance studies, only local information
on the wind flow field is assumed to be available and a near optimal trajectory,
namely a trajectory that approximates the behavior of the optimal trajectory,
is determined[132].

There are various approaches to both static and moving obstacle detection
that are mostly based on the collision cone approach. Often collision avoidance
is achieved by tracking an aim-point at a safe distance from the obstacle, using
a homing guidance law. Explicit avoidance laws can be derived by limiting the
consideration to a plane, defined by the relative geometry between the aircraft
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and the obstacle. The main issue is that primary mission objectives are not
fully considered which may cause trajectories to be far from optimal [178].

Geometric techniques including pure pursuit and variants of pursuit
and line of sight guidance laws are mainly found in [62]. The path-following
algorithms based on pure pursuit and line of sight based guidance laws use
a virtual target point (VTP) on the path. The guidance laws direct the
aircraft to chase the virtual target point which eventually drives the aircraft
onto the path. The distance between the virtual target point and the UAV
position projected on the path is often called virtual distance. The stability
of line of sight guidance laws for path following depends significantly on the
selection of the virtual distance parameter. Pure pursuit and line of sight
guidance laws can be combined to create a new guidance law for path following
[186].

3D guidance refers to following the mission path in both the horizon-
tal and vertical planes. It covers both 2D ground track following, as well as
altitude profile following of the desired trajectory. In the 3D case, guidance
commands are generated for the lateral directional control system in terms
of reference roll or heading angles, and for the longitudinal control system in
terms of pitch or altitude commands [178]. A subset of the general 3D prob-
lem is the 2D lateral guidance problem in which the guidance objective is to
ensure accurate ground track following of the aircraft. Thus it must exactly
fly over lines and arcs joining mission waypoints, with minimum cross-track
or lateral deviation.

4.3.1.1 Proportional navigation
Line of sight (LOS) and its variations are still the simplest and most popular
guidance laws in use today [37]. The proportional navigation (PN) guid-
ance law is a strategy that can be applied to any situation where the nominal
trajectory is well known. According to this law, the maneuver of the aircraft
is proportional to the line of sight rate. It is based on the fact that if the
target and the aircraft have constant velocities, then on collision course, the
line of sight rate is zero. There are two basic disturbances that may influence
the guidance loop: the target and the initial conditions. The guidance law is
designed to steer the aircraft in a flight path toward the boundary of a safety
bound. The safety bound can be a minimal radius circle and/or cylinder to
prevent collision.

The center of mass of the aircraft is instantaneously located at R(t) and
its desired value RT (t) with respective velocities V (t) and VT (t) relative to a
stationary frame of reference. The instantaneous position of the target relative
to the aircraft is given by:

e(t) = RT (t)−R(t) (4.92)

with

Ve(t) =
de

dt
= VT (t)− V (t) (4.93)
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The following control law for guidance is used:

Ve(t) = K(t)e(t) (4.94)

where K(t) is a time-varying gain matrix.
The required acceleration control U(t) to be applied to the aircraft is:

U(t) =
dVe
dt

= K(t)V (t) + K̇(t)e(t) (4.95)

A choice of state vector for the guidance problem is:

X(t) = (e(t), ė(t))
T

(4.96)

which yields the linear feedback law:

U(t) =
(
K̇(t),K(t)

)
X(t) (4.97)

This proportional navigation guidance can be easily implemented.
A suitable navigation strategy for a rendezvous would be to achieve simul-

taneously a zero miss distance and a zero relative speed.
A simple approach is to have the instantaneous velocity error V (t) become

aligned with the acceleration error a = V̇T (t) − V̇ (t). This implies that the
cross product of velocity and acceleration errors must vanish:

V × a = 0 (4.98)

Such a navigation law is termed cross product steering [213].

4.3.1.2 Method of adjoints
A terminal guidance is considered where two objects, having constant
speeds, move in a plane toward a collision point. Small perturbations are
assumed with respect to the nominal collision triangle. That is the line of
sight (LOS) deviation λ is small. Let R be the range and Vc = −Ṙ the closing
speed. The usual small perturbation is assumed with the reference line; in
that case the closing speed is assumed to be constant. Then along the line of
sight, the final time Tf and time to go tgo are defined as follows:

Tf =
R0

−Ṙ =
R0

Vc
(4.99)

tgo =
R

−Ṙ (4.100)

The miss distance m is defined as

m = y(Tf) (4.101)
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where y is the relative separation perpendicular to the initial line of sight.
Proportional navigation guidance law states that the command acceleration
of the aircraft normal to the line of sight nc is proportional to the line of sight
rate:

nc = N ′Vcλ̇ (4.102)

where N ′ is the navigation constant [213].

4.3.1.3 Fuzzy guidance scheme
The overall guidance scheme has two components: a waypoint generator and
a fuzzy guidance system. The desired trajectory is specified in terms of a
sequence of waypoints without any requirements on the path between two
successive waypoints [88]. The waypoint generator holds a list of waypoints in
5D, checks aircraft position and updates the desired waypoint when the pre-
vious one has been reached with a given tolerance. The waypoint generator’s
only task is to present the actual waypoint to the fuzzy guidance system
(FGS) [216, 217].

A tolerance ball is included around the waypoint, defining that as actual
target reached. Between the waypoint generator and the fuzzy guidance sys-
tem, a coordinate transformation is performed to convert Earth-fixed frame
position errors into waypoint frame components. Each waypoint defines a co-
ordinate frame centered at the waypoint position (xw , yw, zw) and rotated by
its heading angle χw around the z axis. γw is the flight path angle of the way-
point. The coordinate transformation allows the synthesis of a fuzzy ruleset
valid in the waypoint fixed coordinate frame, which is invariant with respect
to the desired approach direction χw. When a waypoint is reached, the next
one is selected, the actual reference value is changed and the rotation matrix
is updated to transform position and orientation errors into the new waypoint
coordinate frame.

The aircraft autopilots are designed to track desired airspeed, heading and
flight path angles Vd, γd, χd using decoupled closed-loop inertial dynamics and
so three independent Takagi–Sugeno controllers were synthesized to constitute
the fuzzy guidance system.

1. The first controller generates the desired flight path angle γd for the
autopilot using altitude error:

ez = zw − zA γd = fγ(ez) (4.103)

The state vector (VA, γA, χA, zA)
T represents aircraft speed, flight

path angle, heading and altitude, respectively.
2. The second controller computes desired aircraft velocity:

eV = Vw − VA Vd = Vw + fV (eV ) (4.104)
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3. The third one is responsible for the generation of the desired heading
angle χd using the position error along the X,Y axes and the heading
error eχ.

A fuzzy rule set designed at a specific trim airspeed value could yield in-
sufficient tracking performance when the desired waypoint crossing-speed Vw
differs significantly from V [88]. To accommodate large values of eV and to in-
vestigate the effect of disturbance, modeled as aircraft’s speed differential with
respect to crossing-speed Vw, a speed-correlated scale coefficient of position
error is introduced. The rotation matrix is defined as:

R(χw) =

(
cos(χw + π

2 ) sin(χw + π
2 )− sin(χw + π

2 ) cos(χw + π
2 )

)
(4.105)

The position errors in the fixed waypoint coordinate frame are given by:

(
ewx
ewy

)
= R(χw)

(
x− xw
y − yw

)
(4.106)

The velocity compensated position errors ewxc , e
w
yc are defined by

(
ewxc
ewyc

)
=
V ∗

V w

(
x− xw
y − yw

)
(4.107)

where V ∗ represents the airspeed value used during fuzzy guidance system
membership rules design. In this way, position errors used by the fuzzy guid-
ance system to guide the aircraft toward the waypoint with desired approach
direction are magnified when V w requested waypoint crossing-speed is larger
than V ∗ or reduced otherwise.

Remark 4.6. Equation (4.107) may diverge if V ∗ → 0. However, this is not
an operationally relevant condition because the requested waypoint crossing
speed should be defined according to aircraft flight parameters and the stall
velocity must be avoided.

Finally, the desired heading angle produced by the fuzzy controller is:

χd = χw + fχ(e
w
Xc , e

w
Yc) (4.108)

The fuzzy guidance system is based on a Takagi–Sugeno system model de-
scribed by a blending of IF-THEN rules. Using a weighted average defuzzifier
layer, each fuzzy controller output is defined as follows:

Y =

∑m
k=1 μk(X)Uk∑m
k=1 μk(X)

(4.109)

where μi(X)Ui is the i
th membership function of input X to the ith zone.

The membership functions are a combination of Gaussian curves of the form

f(X,σ, c) = exp

(
− (X − c)2

σ2

)
(4.110)
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The fuzzy rules are defined according to the desired approach direction and
the angular rate limitations of the aircraft. The fuzzy knowledge base is de-
signed to generate flyable trajectories using the max linear and angular veloc-
ities and accelerations. The fuzzy guidance system provides different desired
flight path and heading angle commands for different waypoints. The alti-
tude and velocity controllers are implemented using a Takagi–Sugeno model
directly. For the altitude, the input is the altitude error ez and the output
is the desired flight path angle γd. Inputs and outputs are mapped with four
fuzzy sets each:

1. If ez is N∞ then γd is P∞, for big negative errors
2. If ez is Ns then γd is Ps, for small negative errors
3. If ez is Ps then γd is Ns, for small positive errors
4. If ez is P∞ then γd is N∞, for big positive errors

Here, the generic output constant Ps represents the output value s and the
constant Ns represents the output value −s.

The velocity controller is similar to the altitude controller. Three input
fuzzy sets are used for the velocity error eV and three for the resulting ΔVd
output:

1. If eV is N∞ then ΔVd is Ps, for negative errors,
2. If eV is ZE then ΔVd is P0, for near to zero errors,
3. If eV is P∞ then ΔVd is Ns, for positive errors.

Guidance in the horizontal (x, y) plane is more complex. The horizontal
plane fuzzy controller takes its input from scaled position errors ewxc , e

w
yc and

heading error eχ. The error along the X axis is coded into five fuzzy sets:

1. N∞ for big negative lateral errors
2. Ns for small negative lateral errors
3. ZE for near exact alignment
4. Ps for small positive lateral errors
5. P∞ for big positive lateral errors

Three sets are also defined over the Y w axis error

1. ZE for aircraft over the waypoint
2. Ns for waypoint behind the aircraft
3. Ps for waypoint in front of the aircraft

Finally, the heading error may be coded in seven fuzzy sets. In the appli-
cation of equation (4.109), the m fuzzy rules are grouped into S groups, each
with K rules: m = SK. The S groups correspond to S areas on the xy plane.
From the preceding:

Y =
1

C(X)

s∑
i=1

K∑
j=1

μxyi
(
ewXc , e

w
Yc

)
μxij(ex)Uij (4.111)
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or

Y =
1

C(X)

s∑
i=1

μxyi
(
ewXc , e

w
Yc

)
δxi (ex) (4.112)

where

Y =

s∑
i=1

μxyi
(
ewXc , e

w
Yc

)

C(x)
δxi (ex) =

s∑
i=1

μ̄xyi
(
ewXc , e

w
Yc

)
δxi (ex) (4.113)

Fixing
(
ewXc , e

w
Yc

)
in the middle of the pth zone under the assumption that

the contribution from the other zones is near zero yields:

Y
(
ewPXc , e

wP
Yc

)
= μ̄xyp

(
ewPXc , e

wP
Yc

)
δxp (ex) +

s∑
i=1;i�=p

μ̄xyi
(
ewXc , e

w
Yc

)
δxi (ex) (4.114)

or
Y
(
ewPXc , e

wP
Yc

) ≈ μ̄xyp
(
ewPXc , e

wP
Yc

)
δxp (ex) (4.115)

Equation (4.115) shows that once the fuzzy sets for the position errors(
ewPXc , e

wP
Yc

)
are fixed, the definition of fuzzy sets for ex should be computed

by looking first at each area on the XY plane and then adding the cumulative
results. Under this assumption, seven fuzzy sets are defined for the heading
error ex ∈ {Nb, Nm, Ns, ZE, Ps, Pm, Pb}, b is for big, m for medium and s for
small.

The design goals of this fuzzy guidance system are thus:

1. Capability of reaching a set of waypoints in a prescribed order,
2. Possibility of specifying the speed and heading of the aircraft at a

waypoint crossing,
3. Capability of quickly reconfiguring the waypoint set in response to

changes in the mission scenario,
4. Reaching fixed waypoints as well as tracking and reaching moving

waypoints.

In an operational scenario, the waypoint generator may be interfaced with
a mission management system that updates the waypoints when needed.

4.3.2 STATIC OBSTACLES AVOIDANCE

The basic representations of an environment are configuration space and occu-
pancy grid. In configuration space, the dimensions of the environment plus the
coordinates of all obstacles are given. In an occupancy grid, the environment
is specified at a certain resolution with individual voxels either representing
free space or obstacles [31]. There are many ways to represent a map and the
position of the aircraft within the map. The free regions and obstacles may be
represented as polyhedral, each comprising a list of vertices or edges. This is
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potentially a very compact form but determining potential collisions between
the aircraft and obstacles may involve testing against long lists of edges. A
simpler representation is the occupancy grid. The environment is treated as
a grid of cells and each cell is marked as occupied or unoccupied.

Motion planning is realized by an integrated set of algorithms such as colli-
sion checking [78], configuration sampling [103, 128] and path planning [123].
It can be categorized as static, in which all obstacle configuration is known
prior to planning or dynamic in which environment (obstacles) information
becomes known to the planner only through real time sensing of its local
environment.

Given the nature of these aspects as diverse and difficult, most of the
proposed work in the field of motion planning has focused on the consideration
of some versions of the general problem. The ability to perform autonomous
mission planning is considered one of the key enabling technologies for UAV.
The development of algorithms capable of computing safe and efficient routes
in terms of distance, time and fuel is very important [148].

The uniform framework to study the path planning problem among static
obstacles is the configuration space (C-space). The main idea of the C-space
is to represent the aircraft as a point called a configuration. The C-space is
the set of all possible configurations; C-free are the regions of C-space which
are free of obstacles. Obstacles in the environment become C-obstacles in the
C-space.

The main idea in the sampling-based path planning method is to avoid an
exhaustive construction of C-obstacles by sampling the C-space. The sampling
scheme may be deterministic [151, 153] or probabilistic [133, 149]. The key
issue is then to use an efficient grid-search algorithm to find an optimal path
in the sense of a metric.

Definition 4.2. A metric defines the distance between two configurations in
the C-space, which becomes a metric space. This metric can be seen as the
cost-to-go for a specific aircraft to reach a configuration from another one.

A grid search algorithm is an optimization technique that successively per-
forms an exploration and an exploitation process:

1. The exploration process builds a minimum cost-to-go map, called
distance function, from the start to the goal configuration.

2. The exploitation process is a backtracking from the goal to the
start configuration.

Accurate environmental mapping is essential to the path planning process
[37]:

1. Qualitative or topological mapping represents features without
reference to numerical data and is therefore not geometrically exact.
It consists of nodes and arcs, with vertices representing features or
landmarks.
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2. Quantitative or metric mapping adopts a data structure which
is feasible for path planning based on waypoints or subgoals: meadow
maps, Voronoi diagrams, regular occupancy grid, quad-tree mapping.

Planning can be formulated as either a continuous or a discrete task
[199, 162]. There are continuous methods such as potential fields, vector field
histogram and bug algorithms and discrete methods such as visibility graph
planning or Voronoi diagram or A∗ algorithm [7, 9, 23, 41, 117].

4.3.2.1 Discrete methods
In discrete planning, the system is typically modeled as a graph and is called
a transition system. Nodes represent states and edges represent transitions
between states and are labeled by actions that enable these transitions. An
important feature of sampling-based approaches is that the required con-
trollers for feasible trajectories are automatically constructed as a result of
the exploration process.

While many navigation algorithms work directly on the environment de-
scription, some algorithms such as Dijkstra or A∗ require a distance graph
as an input. A distance graph is an environment description at a higher level.
It does not contain the full environment information but it allows for an effi-
cient path planning step. While the quadtree method identifies points with
some free space around them, the visibility graph method uses corner points
of obstacles instead.

Other approaches can abstract a geometric environment into a topological
map based on landmarks. Planning is carried out on this topological map. A
planned route has to be converted back to the geometric space for continuous
motion control. After obtaining discrete routing information, an admissible
and safe path has to be generated for an aircraft to travel from one node to an-
other, compliant with all kinematic and dynamic constraints. Many planning
algorithms address obstacle avoidance while planning a path to reach a des-
tination point using A∗, D∗, Voronoi diagrams, probabilistic roadmap
(PRM) or rapidly exploring random trees (RRT) methods. Goerzen in [72]
reviewed deterministic motion planning algorithms in the literature from the
autonomous aircraft guidance point of view.

Definition 4.3. A directed graph (N,E) is a structure where N is a set of
nodes or vertices and E is a set of edges connecting the nodes (E ⊆ N ×N).
In path planning, nodes usually stand for positions in the space and edges
determine whether it is possible to transit directly between these positions.

UAV have strict payloads and power constraints which limit the number
and variety of sensors available to gather information about knowledge of its
surroundings. In [105], the paths are planned to maximize collected amounts
of information from desired regions while avoiding forbidden regions.
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Graph search algorithms look for a feasible path in a given environment.
Examples of graph search are deterministic graph search techniques such as
the A∗ search algorithm, Voronoi graph search and probabilistic sampling-
based planners. Although these algorithms are mainly used for global path
planning, reactive planners have been achieved by modifying the algorithms
in order to reduce the computation time.

Differential constraints naturally arise from the kinematics and dynam-
ics of the smart autonomous aircraft. When incorporated into the planning
process, a path is produced that already satisfies the constraints [112]. Be-
cause of the difficulty of planning under differential constraints, nearly all
planning algorithms are sampling-based as opposed to combinatorial. From
an initial state X0, a reachability tree can be formed by applying all sequences
of discretized actions. Sampling-based algorithms proceed by exploring one or
more reachability trees that are derived from discretization. In some cases,
it is possible to trap the trees onto a regular lattice structure. In this case,
planning becomes similar to grid search. A solution trajectory can be found
by applying standard graph search algorithms to the lattice. If a solution is
not found, then the resolution may need to be increased.

A planning algorithm that allows the aircraft to autonomously and rapidly
calculate 3D routes can also follow a heuristic approach [211]. This algorithm
is developed and verified in a virtual world that replicates the real world in
which the aircraft is flying. The elements of the real world such as the terrain
and the obstacles are represented as mesh-based models. Such an algorithm
is also based on a graph but aims at increasing the portion of space explored,
identifying several nodes in the 3D space with an iterative approach.

4.3.2.1.1 Deterministic methods
Several methods have been proposed and are mainly based on the construction
of visibility graphs. Following this approach, the nodes of the graph are
candidate path points that the aircraft will fly through and each arc represents
an approximate path between them. To build the visibility graph, the set of
nodes and the arcs that join them without intersecting obstacles have to be
determined.

4.3.2.1.1.1 Visibility graph The visibility graph uses corner points of
obstacles. If the environment is represented as a configuration space, the poly-
gon description of all obstacles is already available. The list of all start and
end points of obstacle border lines plus the autonomous aircraft’s start and
goal position is available. A complete graph is then constructed by linking
every node position of every other one. Finally, all the lines that intersect an
obstacle are deleted, leaving only the lines that allow the flight from one node
to another in a direct line. The characteristic of algorithm 1 is as follows. Let
V = {v1, ..., vn} be the set of vertices of the polygons in the configuration
space as well as the start and goal configurations. To construct the visibility
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graph, other vertices visible to v ∈ V must be determined. The most obvi-
ous way to make this determination is to test all line segments vvi, v �= vi,
to see if they intersect an edge of any polygon. A more efficient way is the
rotational sweep algorithm. For the problem of computing the set of vertices
visible from v, the sweep line I is a half-line emanating from v and a rotational
sweep rotating I from 0 to 2π is used. .

Algorithm 1 Visibility Algorithm

1. Input: A set of vertices {vi} (whose edges do not interset) and a
vertex v

2. Output: A subset of vertices from {vi} that are within line of sight
of v

3. For each vertex vi, calculate αi, the angle from the horizontal axis to
the line segment vvi

4. Create the vertex list ε, containing the αi sorted in increasing order
5. Create the active list S, containing the sorted list of edges that inter-

sect the horizontal half line emanating from v
6. for all αi do
7. if vi is visible to v then
8. add the edge (v, vi) to the visibility graph
9. endif
10. if vi is the beginning of an edge E, not in S, then
11. insert the edge E into S
12. endif
13. if vi is the end of an edge in S then
14. delete the edge from S
15. endif
16. endfor

This algorithm incrementally maintains the set of edges that intersect I,
sorted in order of increasing distance from v. If a vertex vi is visible to v, then
it should be added to the visibility graph. It is straightforward to determine
if vi is visible to v. Let S be the sorted list of edges that intersects the half
line emanating from v. The set is incrementally constructed as the algorithm
runs. If the line segment vvi does not intersect the closed edge in S and if
I does not lie between the two edges incident on v (the sweep line does not
intersect the interior of the obstacles at v) then vi is visible from v [17].

4.3.2.1.1.2 Voronoi algorithm The Voronoi tessellation of a set of pla-
nar points, known as sites, is a set of Voronoi cells. Each cell corresponds to
a side and consists of all points that are closer to its site than to any other
site. The edges of the cells are the points that are equidistant to the two near-
est sites. A generalized Voronoi diagram comprises cells defined by measuring
distances to objects rather than points.
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Definition 4.4. Planar Ordinary Voronoi Diagram: Given a set of a
finite number of distinct points in the Euclidean plane, all locations in that
space are associated with the closest members of the point set with respect to
the Euclidean distance. The result is a tessellation of the plane into a set of
the regions associated with members of the point set. This tessellation is called
a planar ordinary Voronoi diagram generated by the point set, and the
regions constituting the Voronoi diagram, ordinary Voronoi polygons [143].

In hostile environments, a Voronoi diagram can decompose a space defined
by random scattered points into separate cells in such a manner that each cell
will include one point that is closer to all elements in this cell than any other
points [49]. The graph is constructed by using Delaunay triangulation and its
dual graph Voronoi diagrams. The procedure of this cell decomposition starts
with a priori knowledge of the location and of the number of the scattered
points. Formation of triangles formed by three of the Voronoi sites without
including any other sites in this circumcircle is called Delaunay triangulation.
By connecting all the edges together, polygons are formed and these polygons
construct the Voronoi graph.

Considering the formulation of 3D networks, 3D Delaunay method is
used in [159] to partition the space because of uniqueness: regional, nearest
and convex polyhedron.

As it is difficult to control aircraft precisely enough to follow the minimum-
distance path without risk of colliding with obstacles, many skeleton-based
road map approaches have been taken. The Voronoi approach builds a skeleton
that is maximally distant from the obstacles, and finds the minimum distance
path that follows this skeleton. This algorithm is a 2D algorithm, complete
but not optimal. Voronoi diagram is a special kind of decomposition of a
metric space determined by distances to a specified discrete set of objects in
the space [143]. Given a set of points S, the corresponding Voronoi diagram is
generated; each point P has its own Voronoi cell which consists of all points
closer to P than any other points. The border points between polygons are
the collection of the points with the distance to shared generators [7].

The Voronoi algorithm works by constructing a skeleton of points with
minimal distances to obstacles. A free space F in environment (white vox-
els) is defined as well an occupied space F ′ (black voxels). The point
b′ ∈ F ′ is a basis point for p ∈ F if and only if b has minimal distance
to p, compared with all other points in F ′. Voronoi diagram is defined
as {p ∈ F |p has at least two basis points }. Typical computational units are
given in algorithm 2 on page 235. Line 1 set ε to maximum precision while
line 3 compute some data. Line 4 checks topological conditions while line 6
relaxes the ε threshold and line 7 makes sure to reset ε. Line 10 checks locally
for soundness of input and line 13 fixes the problem in the input data. Finally
line 14 replaces correct by best possible. If the relaxation of the ε threshold
and the heuristics of the multi-level recovery process have not helped to com-
pute data that meets the topological conditions then the code finally enters
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Algorithm 2 Voronoi Algorithm

1. ε = lower-bound
2. Repeat
3. x = ComputeData(ε)
4. success = CheckConditions (x, ε)
5. If (not success) then
6. ε = 10ε
7. reset data structure appropriately
8. until (success OR ε > upper-bound
9. ε = lower-bound
10. If (not success) then
11. illegal = CheckInput()
12. If (illegal) then
13. clean data locally
14. restart computation from scratch
15. else
16. x = DesperateMode()

desperate mode, because the optimum is replaced by best possible.
One problem of this approach is that it allows lines to pass very closely to an

obstacle, and so this would only work for a theoretical point robot. However,
this problem can be easily solved by virtually enlarging each obstacle by at
least half of the autonomous aircraft’s largest dimension before applying the
algorithm.

4.3.2.1.1.3 Dijkstra’s algorithm Dijkstra’s algorithm is a method for
computing all shortest paths from a given starting node in a fully connected
graph. Relative distance information between all nodes is required. In the loop,
nodes are selected with the shortest distance in every step. Then distance is
computed to all of its neighbors and path predecessors are stored. The cost
associated with each edge is often the distance but other criteria such as safety,
clearance can be incorporated into the cost function as well.

The algorithm works by maintaining for each vertex the shortest path dis-
tance from the start vertex. Further, a back-pointer is maintained for each
vertex indicating from which neighboring vertex the shortest path from the
start comes. Hence, a shortest path to some vertex can be read out by fol-
lowing the back-pointers back to the start vertex. From the start vertex, the
shortest path distances are propagated through the graph until all vertices
have received their actual shortest path distance.

Dijkstra’s algorithm solves the single source shortest paths problem on a
weighted directed graph G = (V,E) for the case in which all edge weights are
nonnegative, w(u, v) ≥ 0 for each edge (u, v) ∈ E. This algorithm maintains
a set S of vertices whose final shortest-path weights from the source s have
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already been determined. The algorithm repeatedly selects the vertex u ∈
V −S, with the minimum shortest path estimate, adds u to S and relaxes all
edges leaving u.

Algorithm 3 Dijkstra’s Algorithm

1. INITIALIZE-SINGLE-SOURCE(G, s)
2. S = ∅
3. Q= G.V
4. while Q �= ∅
5. u = EXTRACT-MIN(Q)
6. S = S ∪{u}
7. for each vertex v ∈ G.Adj [u]
8. RELAX(u, v, w )

The Dijkstra’s algorithm 3 works as follows. Line 1 initializes the d and
π values and line 2 initializes the set S to the empty set. The algorithm
maintains the invariant that Q = V − S at the start of each iteration of the
while loop of lines 4 to 8. Line 3 initializes the min-priority queue Q to contain
all the vertices in V . Since S = ∅ at that time, the invariant is true after line
3. Each time through the while loop of lines 4 to 8, line 5 extracts a vertex u
from Q = V −S and line 6 adds it to set S, thereby maintaining the invariant.
Vertex u, therefore, has the smallest shortest path estimate of any vertex in
V − S. Then, lines 7 to 8 relax each edge (u, v) leaving u, thus updating the
estimate v.d and the predecessor v.π if the shortest path to v can be improved.

Because Dijkstra’s algorithm always chooses the lightest or closest vertex in
V −S to add to set S, it is said to be a greedy strategy. Greedy algorithms do
not always yield optimal results in general, but Dijkstra’s algorithm computes
shortest paths.

Some hybrid methods can be proposed. One method consists of building
the visibility graph using Dijkstra’s algorithm to find the approximate shortest
paths from each node to the goal and finally implementing a mixed integer
linear programming receding horizon control to calculate the final trajectory.

4.3.2.1.1.4 A∗ algorithm The A∗ algorithm is based on Dijkstra’s algo-
rithm. It focuses the search in the graph towards the goal. A heuristic value
is added to the objective function. It must be a lower bound estimate of the
distance from the current vertex to the goal vertex. A∗ heuristic algorithm
computes the shortest path from one given start node to one given goal node.
Distance graphs with relative distance information between all nodes plus
lower bounds of distance to goal from each node are required. In every step,
it expands only the currently shortest path by adding the adjacent node with
the shortest distance including an estimate of remaining distance to goal. The
algorithm stops when the goal vertex has been treated in the priority queue.
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Algorithm 4 A* Algorithm

1. Input: A graph
2. Output: A path between start and goal nodes
3. Repeat

a. Pick nbest from 0 such that f(nbest) < f(n)
b. Remove nbest from O and add to C
c. If nbest = qgoal, EXIT
d. expand nbest: for all x ∈ Star(nbest) that are not in C
e. if x /∈ O then
f. add x to O
g. else if g(nbest) + C(nbest, x) < g(x) then
h. update x’s back pointer to point to nbest
i. end if

4. Until O is empty

The pseudocode for this approach can be formulated as algorithm 4. If the
heuristic is admissible, i.e., if h(s) ≤ c∗(s, sgoal) for all s, A∗ is guaranteed
to find the optimal solution in optimal running time. If the heuristic is also
consistent, i.e., if h(s) ≤ c∗(s, s′) + h(s′), it can be proven that no state is
expanded more than once by the A∗ algorithm. It has a priority queue which
contains a list of nodes sorted by priority, determined by the sum of the
distance traveled in the graph thus far from the start node and the heuristic.
The first node to be put into the priority queue is naturally the start node.
Next, the start node is expanded by putting all adjacent nodes to the start
node into the priority queue sorted by their corresponding priorities. These
nodes can naturally be embedded into the autonomous aircraft free space and
thus have values corresponding to the cost required to traverse between the
adjacent nodes. The output of the A∗ algorithm is a back-pointer path, which
is a sequence of nodes starting from the goal and going back to the start.
The difference from Dijkstra is that A∗ expands the state s in OPEN with a
minimal value of g(s)+h(s) where h(s) is the heuristic that estimates the cost
of moving from s to sgoal. Let c

∗(s, s′) denote the cost of the optimal solution
between s and s’. The open list saves the information about the parental nodes
found as a candidate solution. The 3D cells in the grid not only have elements
in the neighbourhood on the same height level used but also have cell nodes
with locations above and below. Two additional structures are used, an open
set O and a closed set C. The open set O is the priority queue and the closed
set C contains all processed nodes [17]. The Euclidean distance between the
current point and the destination goal, divided by the maximum possible
nominal speed, can be employed as a heuristic function. This choice ensures
that the heuristic cost will always be lower than the actual cost to reach the
goal from a given node and thus the optimum solution is guaranteed.

Trajectory primitives provide a useful local solution method within the
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sampling-based path planning algorithm to produce feasible but suboptimal
trajectories through complicated environments with relatively low computa-
tional cost. Extensions to the traditional trajectories’ primitives allow 3D
maneuvers with continuous heading and flight path angles through the entire
path. These extensions, which include simple transformations as well as ad-
ditional maneuvers, can maintain closed form solutions to the local planning
problem and therefore maintain low computational cost [96].

4.3.2.1.2 Probabilistic methods
Sampling-based motion planning algorithms have been designed and
successfully used to compute a probabilistic complete solution for a variety
of environments. Two of the most successful algorithms include the proba-
bilistic roadmap method (PRM) and rapidly exploring random trees
(RRT). At a high level, as more samples are generated randomly, these tech-
niques provide collision-free paths by capturing a larger portion of the con-
nectivity of the free space [114].

4.3.2.1.2.1 Probabilistic roadmap method The probabilistic roadmap
method (PRM) sparsely samples the word map, creating the path in two
phase process: planning and query. The query phase uses the result of the
planning phase to find a path from the initial configuration to the final one.
The planning phase finds N random points that lie in free space. Each point is
connected to its nearest neighbors by a straight line path that does not cross
any obstacles, so as to create a network or graph, with a minimal number of
disjoint components and no cycles. Each edge of the graph has an associated
cost which is the distance between its nodes. An advantage of this planner is
that once the roadmap is created by the planning phase, the goal and starting
points can be changed easily. Only the query phase needs to be repeated.

The PRM algorithm combines an off-line construction of the roadmap with
a randomized online selection of an appropriate path from the roadmap. How-
ever, this algorithm cannot be applied in a rapidly changing environment due
to off-line construction of the roadmap.

The roadmap methods described above are able to find a shortest path on a
given path. The issue most path planning methods are dealing with is how to
create such a graph. To be useful for path planning applications, the roadmap
should represent the connectivity of the free configuration space well and cover
the space such that any query configuration can be easily connected to the
roadmap. Probabilistic roadmap approach (PRM) is a probabilistic complete
method that is able to solve complicated path planning problems in arbitrarily
high dimension configuration spaces. The basic concept in PRM is that rather
than attempt to sample all of C-space, one instead samples it probabilistically.
This algorithm operates in two phases, a roadmap construction phase in which
a roadmap is constructed within the C-space and a query phase, in which
probabilistic searches are conducted using the roadmap to speed the search:
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1. Roadmap Construction Phase: tries to capture the connectiv-
ity of free configuration space. An undirected, acyclic graph is con-
structed in the autonomous aircraft C-space in which edges connect
nodes if and only if a path can be found between the nodes corre-
sponding to waypoints. The graph is grown by randomly choosing
new locations in C-space and attempting to find a path from the
new location to one of the nodes already in the graph while main-
taining the acyclic nature of the graph. This relies on a local path
planner to identify possible paths from the randomly chosen location
and one or more of the nodes in the graph. The choice of when to
stop building the graph and the design of the local path planner are
application specific, although performance guarantees are sometimes
possible. Local planning (m milestones, e edges) connect nearby
milestones using a local planner and form a roadmap. Local planning
checks whether there is a local path between two milestones, which
corresponds to an edge on the roadmap. Many methods are available
for local planning. The most common way is to discretize the path
between two milestones into ni steps and the local path exists when
all the intermediate samples are collision free, performing discrete
collision queries at those steps. It is the most expensive part of the
PRM algorithm.

2. Query Phase: When a path is required between two configurations
s and g, paths are first found from s to node s̄ in the roadmap and
from g to some node ḡ in the roadmap. The roadmap is then used to
navigate between ḡ and s̄. After every query, the nodes s and g and
the edges connecting them to the graph can be added to the roadmap.
As in the learning phase, the query phase relies on a heuristic path
planner to find local paths in the configuration space.

Algorithm 5 Roadmap Algorithm

1. nodes ← sample N nodes random configuration
2. for all nodes
3. find knearest nearest neighbors
4. if collision check and γ ≤ γmax then roadmap ← edge
5. end

The local planner should be able to find a path between two configurations
in simple cases in a small amount of time. Given a configuration and a local
planner, one can define the set of configurations to which a local planning
attempt will succeed. This set is called the visibility region of a node under
a certain local planner. The larger the visibility region is, the more powerful
the local planner. The most straightforward sampling scheme shown in algo-
rithm 5 in page 239 is to sample configurations uniformly randomly over the
configuration space.
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For every node, a nearest neighbor search is conducted. Several constraints
have to be satisfied during the construction phase before an edge connection
between two nodes is possible.

4.3.2.1.2.2 Rapidly-exploring random tree method The method rapidly
exploring random tree (RRT) is able to take into account the motion model
of the aircraft. A graph of aircraft configurations is maintained and each node
is a configuration. The first node in the graph is the initial configuration of
the aircraft. A random configuration is chosen and the node with the closest
configuration is found. This point is near in terms of a cost function that in-
cludes distance and orientation. A control is computed that moves the aircraft
from the near configuration to the random configuration over a fixed period
of time. The point that it reaches is a new point and this is added to the
graph. The distance measure must account for a difference in position and
orientation and requires appropriate weighting of these quantities. The ran-
dom point is discarded if it lies within an obstacle. The result is a set of paths
or roadmap. The trees consist of feasible trajectories that are built online by
extending branches towards randomly generated target states.

The rapidly expanding random tree approach is suited for quickly searching
high-dimensional spaces that have both algebraic and differential constraints.
The key idea is to bias the exploration toward unexplored portions of the
space by sampling points in the state space and incrementally pulling the
search tree toward them, leading to quick and uniform exploration of even
high-dimensional state spaces. A graph structure must be built with nodes
at explored positions and with edges describing the control inputs needed to
move from node to node. Since a vertex with a larger Voronoi region has a
higher probability to be chosen as (xnear) and it is pulled to the randomly
chosen state as close as possible, the size of larger Voronoi regions is reduced
as the tree grows. Therefore, the graph explores the state space uniformly
and quickly. The basic RRT algorithm 6 in page 241 operates as follows: the
overall strategy is to incrementally grow a tree from the initial state to the
goal state. The root of this tree is the initial state; at each iteration, a random
sample is taken and its nearest neighbor in the tree computed. A new node is
then created by growing the nearest neighbor toward the random sample.

For each step, a random state (xrand) is chosen in the state space. Then
(xnear) in the tree that is the closest to the (xrand) in metric ρ is selected.
Inputs u ∈ U, the input set, are applied for Δt, making motions toward
(xrand) from (xnear). Among the potential new states, the state that is as
close as possible to (xrand) is selected as a new state (xnew). The new state
is added to the tree as a new vertex. This process is continued until (xnew)
reaches (xgoal).

To improve the performance of the RRT, several techniques have been
proposed such as biased sampling and reducing metric sensitivity. Hybrid
systems models sometimes help by switching controllers over cells during a
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Algorithm 6 RRT Basic Algorithm

1. Build RRT (xinit)
2. Gsub, init(xinit)
3. for k = 1 to maxIterations do
4. xrand ← RANDOM-STATE()
5. xnear ← NEAREST-NEIGHBOR(xrand, Gsub)
6. ubest, xnew , success ← CONTROL(xnear, xrand, Gsub);
7. if success
8. Gsub.add-vertex xnew
9. Gsub.add-edge xnear , xnew, ubest
10. end
11. Return Gsub
12. RRT-EXTEND
13. V ← {xinit} , E ← ∅, i← 0;
14. While i < N , do
15. G← (V,E)
16. xrand ← Sample(i); i← i+ 1)
17. (V, E) ← Extend(G, xrand)
18. end

decomposition. Another possibility is to track space-filling trees, grown back-
wards from the goal.

4.3.2.2 Continuous methods
4.3.2.2.1 Receding horizon control
Receding horizon control, a variant of model predictive control, repeat-
edly solves online a constrained optimization problem over a finite planning
horizon. At each iteration, a segment of the total path is computed using a
dynamic model of the aircraft that predicts its future behavior. A sequence of
control inputs and resulting states is generated that meet the kino-dynamic
and environmental constraints and that optimize some performance objective.
Only a subset of these inputs is actually implemented, however, and the op-
timization is repeated as the aircraft maneuvers and new measurements are
available. The approach is specially useful when the environment is explored
online.

4.3.2.2.2 Mixed integer linear programming
Mixed integer linear programming (MILP) approaches the problem of
collision avoidance as an optimization problem with a series of constraints.
The goal or objective function is to minimize the time needed to traverse
several waypoints. The constraints are derived from the problem constraints
(flight speed, turning radius) and the fact that the aircraft must maintain a
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safer distance from obstacles and other aircraft.
Autonomous aircraft trajectory optimization including collision avoidance

can be expressed as a list of linear constraints, involving integer and continu-
ous variables known as the mixed integer linear program. The mixed integer
linear programming (MILP) approach in [161] uses indirect branch-and-bound
optimization, reformulating the problem in a linearized form and using com-
mercial software to solve the MILP problem. A single aircraft collision avoid-
ance application was demonstrated. Then this approach was generalized to
allow for visiting a set of waypoints in a given order. Mixed integer linear
programming can extend continuous linear programming to include binary or
integer decision variables to encode logical constraints and discrete decisions
together with the continuous autonomous aircraft dynamics. The approach to
optimal path planning based on MILP was introduced in [24, 122, 174]. The
autonomous aircraft trajectory generation is formulated as a 3D optimiza-
tion problem under certain conditions in the Euclidean space, characterized
by a set of decision variables, a set of constraints and the objective function.
The decision variables are the autonomous aircraft state variables, i.e., posi-
tion and speed. The constraints are derived from a simplified model of the
autonomous aircraft and its environment. These constraints include:

1. Dynamics constraints, such as a maximum turning force which causes
a minimum turning radius, as well as a maximum climbing rate.

2. Obstacle avoidance constraints like no-flight zones.
3. Target reaching constraints of a specific way point or target.

The objective function includes different measures of the quality in the so-
lution of this problem, although the most important criterion is the minimiza-
tion of the total flying time to reach the target. As MILP can be considered
as a geometric optimization approach, there is usually a protected airspace
set up around the autonomous aircraft in the MILP formulation. The stochas-
ticity that stems from uncertainties in observations and unexpected aircraft
dynamics could be handled by increasing the size of protected airspaces. An
advantage of the MILP formulation is its ability to plan with non-uniform
time steps between waypoints. A disadvantage of this approach is that it re-
quires all aspects of the problem (dynamics, ordering of all waypoints in time
and collision avoidance geometry) to be specified as a carefully designed and
a usually long list of many linear constraints, and then the solver’s task is ba-
sically to find a solution that satisfies all of those constraints simultaneously
[194].

Then a MILP solver takes the objective and constraints and attempts to
find the optimal path by manipulating the force effecting how much a single
aircraft turns at each time step. Although mixed integer linear programming
is an elegant method, it suffers from exponential growth of the computations
[161, 174].
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4.3.2.2.3 Classical potential field method
The artificial potential field method is a collision-avoidance algorithm
based on electrical fields. Obstacles are modeled as repulsive charges and
destinations (waypoints) are modeled as attractive charges. The summation
of these charges is then used to determine the safest direction to travel.

Let X = (x, y, z)T denote the UAV current position in airspace. The usual
choice for the attractive potential is the standard parabolic that grows
quadratically with the distance to the goal such that:

Uatt =
1

2
kad

2
goal(X) (4.116)

where dgoal = ‖X −Xgoal‖ is the Euclidean distance of the UAV current
position X to the goal Xgoal and ka is a scaling factor. The attractive force
considered is the negative gradient of the attractive potential:

Fatt(X) = −ka (X −Xgoal) (4.117)

By setting the aircraft velocity vector proportional to the vector field force,
the force Fatt(X) drives the aircraft to the goal with a velocity that decreases
when the UAV approaches the goal.

The repulsive potential keeps the aircraft away from obstacles. This
repulsive potential is stronger when the UAV is closer to the obstacles and
has a decreasing influence when the UAV is far away. A possible repulsive
potential generated by obstacle i is:

Urepi(X) =

(
1
2krep

(
1

dobsi (X) − 1
d0

)2

dobsi(X) ≤ d0
0 otherwise

)
(4.118)

where i is the number of the obstacle close to the UAV, dobsi(X) is the
closest distance to the obstacle i, krep is a scaling constant and d0 is the
obstacle influence threshold.

Frepi(X) =

(
krep

(
1

dobsi (X) − 1
d0

1
dobsi (X)

)
êi dobsi(X) ≤ d0

0 otherwise

)
(4.119)

where êi =
∂dobsi (X)

∂X is a unit vector that indicates the direction of the
repulsive force; therefore:

⎛
⎝

ẋd
ẏd
żd

⎞
⎠ = − (Fatt(X) + Frepi(X)) (4.120)

After the desired global velocity is calculated by the potential field method,
the corresponding desired linear velocity Vd and attitude χd, γd can also be
obtained:

Vd = ku

√
ẋ2d + ẏ2d + ż2d (4.121)
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γd = atan2

(
−żd,

√
ẋ2d + ẏ2d

)
(4.122)

χd = atan2(ẏd, żd) (4.123)

where the gain ku is introduced to allow for additional freedom in weighting
the velocity commands. The pitch and yaw angle guidance laws are designed
so that the aircraft’s longitudinal axis steers to align with the gradient of the
potential field. The roll angle guidance law is designed to maintain the level
flight.

Harmonic field approach is useful in avoiding local minima of the classical
potential field methods [23].

4.3.3 MOVING OBSTACLES AVOIDANCE

Smart autonomous aircraft require a collision-avoidance algorithm, also known
as sense and avoid, to monitor the flight and alert the aircraft to necessary
avoidance maneuvers. The challenge is now autonomous navigation in open
and dynamic environments, i.e., environments containing moving objects or
other aircraft as potential obstacles; their future behavior is unknown. Taking
into account these characteristics requires to solve three main categories of
problems [110]:

1. Simultaneous localization and mapping in dynamic environments.
This topic will be discussed in the next chapter.

2. Detection, tracking, identification and future behavior prediction of
the moving obstacles.

3. Online motion planning and safe navigation.

In such a framework, the smart autonomous aircraft has to continuously char-
acterize with onboard sensors and other means. As far as the moving objects
are concerned, the system has to deal with problems such as interpreting ap-
pearances, disappearances and temporary occlusions of rapidly maneuvering
vehicles. It has to reason about their future behavior and consequently make
predictions. The smart autonomous aircraft has to face a double constraint:
constraint on the response time available to compute a safe motion which is a
function of the dynamicity of the environment and a constraint on the tempo-
ral validity of the motion planned which is a function of the validity duration
of the predictions.

Path planning in a priori unknown environments cluttered with dynamic
objects and other aircraft is a field of active research. It can be addressed
by using explicit time representation to turn the problem into the equivalent
static problem, which can then be solved with an existing static planner.
However, this increases the dimensionality of the representation and requires
exact motion models for surrounding objects. The dimensionality increase
raises the computational effort (time and memory) to produce a plan and
motion modeling raises difficult prediction issues.
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There are various approaches to both static and moving obstacles that
are mostly based on the collision cone approach. Often, collision avoidance
is achieved by tracking a waypoint at a safe distance from the obstacles us-
ing a homing guidance law [20]. Atmosphere can be very dynamic. The cloud
behavior is very complex. Typically, in aircraft navigation, clouds and turbu-
lence should be avoided [214]. They are considered as moving obstacles. There
are several ways to model their behavior in a complex environment. Physical
modeling of the cloud/turbulence can be done using Gaussian dispersion
methods, which predict the cloud behavior using statistical dispersion tech-
niques. Another modeling approach is to define the points picked up by the
UAV as the vertices {vi, i = 1, . . . , N}. The vertices are connected by line
segments of constant curvature {κij} with C2 contact at the vertices. The
splinegon representation assumes some reasonably uniform distribution of
vertices [179]. Each vertex has a curvature and length and these can be used
to determine matrices for each segment.

The work presented in [173] is concerned with developing an algorithm that
keeps a certain safety distance while passing an arbitrary number of possibly
moving but non maneuvering obstacles. Starting from a 3D collision cone
condition, input-output linearization is used to design a nonlinear guidance
law [38]. The remaining design parameters are determined considering con-
vergence and performance properties of the closed-loop guidance loop. Then,
the guidance framework is developed in terms of a constrained optimization
problem that can avoid multiple obstacles simultaneously while incorporating
other mission objectives.

4.3.3.1 D∗ algorithm
The algorithm D∗ has a number of features that are useful for real world
applications. It is an extension of the A∗ algorithm for finding minimum cost
paths through a graph for environments where the environment changes at a
much slower speed than the aircraft. It generalizes the occupancy grid to a
cost map c ∈ R of traversing each cell in the horizontal and vertical directions.
The cost of traversing the cell diagonally is c

√
2. For cells corresponding to

obstacles c = ∞. The key features of D∗ is that it supports incremental
replanning. If a route has a higher than expected cost, the algorithm D∗ can
incrementally replan to find a better path. The incremental replanning has a
lower computational cost than completely replanning. Even though D∗ allows
the path to be recomputed as the cost map changes, it does not support a
changing goal. It repairs the graph allowing for an efficient updated searching
in dynamic environments.

Notation

1. X represents a state
2. O is the priority queue
3. L is the list of all states
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4. S is the start state
5. t(x) is the value of state with respect to priority queue

a. t(x): New if x has never been in O
b. t(x): Open if x is currently in O
c. t(x): Closed if x was in O but currently is not

Algorithm 7 D∗ Algorithm

1. Input: List of all states L
2. Output: The goal state, if it is reachable, and the list of states L are

updated so that back-pointer list describes a path from the start to
the goal. If the goal state is not reachable, return NULL

3. For each X ∈ L do
4. t(X) = New
5. endfor
6. h(G) = 0; 0 = {G}; Xc = S
7. The following loop is Dijkstra’s search for an initial path.
8. repeat
9. kmin = process-state (0, L)

10. until (kmin > h(xc)) or (kmin = −1)
11. P=Get-Pointer-list (L, Xc, G)
12. If P = Null then
13. return (Null)
14. end if
15. end repeat
16. endfor
17. Xc is the second element of P Move to the next state in P
18. P= Get-Back-Pointer-List(L, Xc, G)
19. until Xc=G
20. return (Xc)

The D∗ algorithm 7 is devised to locally repair the graph allowing efficient
updated searching in dynamic environments, hence the term D∗. D∗ initially
determines a path starting with the goal and working back to the start using
a slightly modified Dijkstra’s search. The modification involves updating a
heuristic function. Each cell contains a heuristic cost h which for D∗ is an
estimate of path length from the particular cell to the goal, not necessarily
the shortest path length to the goal as it was for A∗. These h values will be
updated during the initial Dijkstra search to reflect the existence of obstacles.
The minimum heuristic values h are the estimate of the shortest path length
to the goal. Both the h and the heuristic values will vary as the D* search
runs, but they are equal upon initialization [17].

Field D∗, like D∗, is an incremental search algorithm which is suitable for
navigation in an unknown environment. It makes an assumption about the
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unknown space and finds a path with the least cost from its current location
to the goal. When a new area is explored, the map information is updated and
a new route is replanned, if necessary. This process is repeated until the goal
is reached or it turns out that that goal cannot be reached (due to obstacles
for instance). The algorithm A∗ can also be used in a similar way [56].

4.3.3.2 Artificial potential fields
The harmonic potential field approach works by converting the goal, represen-
tation of the environment and constraints on behavior into a reference velocity
vector field [126]. A basic setting is

Problem 4.6. Solve
∇2V (P ) = 0 P ∈ Ω (4.124)

subject to V (P ) = 1 at P = Γ and V (Pr) = 0

A provably correct path may be generated using the gradient dynamical
system

Ṗ = −∇V (P ) (4.125)

The harmonic potential field approach can incorporate directional constraints
along with regional avoidance constraints in a provably correct manner to plan
a path to a target point. The navigation potential may be generated using the
boundary value problem (BVP).

Problem 4.7. Solve

∇2V (P ) = 0 P ∈ Ω−Ω′ (4.126)

and
∇ (Σ(P )V (P )) = 0, P ∈ Ω′ (4.127)

subject to V (P ) = 1 at P = Γ and V (Pr) = 0.

Σ(P ) =

⎛
⎝

σ(P ) 0 . . . 0
0 σ(P ) 0 0
0 . . . 0 σ(P )

⎞
⎠ (4.128)

A provably correct trajectory to the target that enforces both the regional
avoidance and directional constraints may be simply obtained using the gra-
dient dynamical system in (4.125). The approach can be modified to take
into account ambiguity that prevents the partitioning of an environment into
admissible and forbidden regions [126].

Dynamic force fields can be calculated based on aircraft position and
velocity. The force field uses scalar modifications to generate a larger and
stronger field in front of the aircraft. Therefore, the force exerted by one air-
craft on another can be calculated using the difference between the bearing
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of the aircraft exerting the force and the one feeling that force. Furthermore,
a secondary calculation occurs that scales the force exerted into a force belt.
This scaling is computed by determining the difference between the exerted
force and the bearing of the aircraft feeling the force. Finally, the repulsive
forces are summed, scaled and added to an attractive force of constant mag-
nitude. This resultant vector is bound by the maximum turning rate and then
used to inform the aircraft of its next maneuvers: a new target waypoint is
sent to the aircraft.

When an aircraft is close to its destination and because it begins to ignore
the other aircraft, it is necessary to extend its force field such that the forces
are exerted on non priority aircraft at a larger distance. This combination
allows the prioritized aircraft to go directly to its goal while providing other
aircraft with an early alert through the expanded force field [164].

The artificial potential method is modified in [164] to handle special cases
by including a priority system and techniques to prevent an aircraft from
circling its final destination. 2D constraints can be imposed because many
UAS must operate in a limited range of altitude. Each UAS has a maximum
operating altitude and the minimum altitude may be imposed by stealth or
the application requirements.

The design and implementation of a potential field obstacle algorithm based
on fluid mechanics panel methods is presented in [47]. Obstacles and the UAV
goal positions are modeled by harmonic functions, thus avoiding the presence
of local minima. Adaptations are made to apply the method to the auto-
matic control of a fixed wing aircraft, relying only on a local map of the
environment that is updated from sensors onboard the aircraft. To avoid the
possibility of collision due to the dimension of the UAV, the detected obsta-
cles are expanded. Considering that the detected obstacles are approximated
by rectangular prisms, the expansion is carried out by moving the faces out-
wards by an amount equal to the wingspan. The minimum value that assured
clearance to the obstacle is a half-span. Then obstacles are further extended
creating prisms.

4.3.3.3 Online motion planner
The virtual net comprises a finite set of points Xe(R) corresponding to a finite
set of prescribed relative positions [206]:

R ∈ M = {R1, R2, . . . , Rn} ⊂ R
3 (4.129)

Xe(Rk) = (Rk, 0)
T
= (Rx,k, Ry,k, Rz,k, 0, 0, 0)

T
k = 1 . . . n (4.130)

where velocity states are zero and n is the number of points in the virtual
net. The obstacle position and uncertainty is represented by an ellipsoid. The
set O(q,Q) centered around the position q ∈ R

3 is used to over-bound the
position of the obstacle i.e.:

O(q,Q) =
{
X ∈ R

6, (SX − q)T Q (SX − q) ≤ 1
}

(4.131)
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where Q = QT and S =

⎡
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦

The online motion planning with obstacle avoidance is performed according
to the following algorithm 8.

Algorithm 8 Online Motion Planner

1. Determine the obstacle location and shape (i.e., q and Q).
2. Determine the growth distance.
3. Construct a graph connectivity matrix between all Ri, Rj ∈ M. In

the graph connectivity matrix, if two vertices are not connected, the
corresponding matrix element is +∞. If they are connected, the cor-
responding matrix element is 1. The graph connectivity matrix is
multiplied element-wise to produce a constrained cost of transition
matrix.

4. Perform graph search using any standard graph search algorithm to
determine a sequence of connected vertices, R(k) ∈ M such that R[1]
satisfies the initial constraints, R[lp] satisfies the final constraints and
the cumulative transition cost computed from the constrained cost of
the transition matrix is minimized.

5. After the path has been determined as a sequence of the waypoints,
the execution of the path proceeds by checking if the current state
X(t) is in the safe positively invariant set corresponding to the next
reference R+.

The set O(q,Q) can account for the obstacle and aircraft physical sizes
and for the uncertainties in the estimation of the obstacle/aircraft positions.
The set O(q,Q) has an ellipsoidal shape in the position directions and is
unbounded in the velocity directions. Ellipsoidal sets, rather than polyhedral
sets, can be used to over-bound the obstacle because ellipsoidal bounds are
typically produced by position estimation algorithms, such as the extended
Kalman filter. This filter will be presented in the next chapter.

4.3.3.4 Zermelo–Voronoi diagram
In many applications of autonomous aircraft, ranging from surveillance, opti-
mal pursuit of multiple targets, environmental monitoring and aircraft routing
problems, significant insight can be gleaned from data structures associated
with Voronoi-like partitioning [11, 12]. A typical application can be the
following: given a number of landing sites, divide the area into distinct non-
overlapping cells (one for each landing site) such that the corresponding site in
the cell is the closest one (in terms of time) to land for any aircraft flying over
this cell in the presence of winds. A similar application that fits in the same
framework is the task of subdividing the plane into guard/safety zones such
that a guard/rescue aircraft residing within each particular zone can reach
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all points in its assigned zone faster than any other guard/rescuer outside its
zone. This is the generalized minimum distance problems where the relevant
metric is the minimum intercept or arrival time. Area surveillance missions
can also be addressed using a frequency based approach where the objective
implies to optimize the elapsed time between two consecutive visits to any
position known as the refresh time [1].

Recent work in patrolling can be classified as [185]:

1. offline versus online: offline computes patrols before sensors are
deployed, while online algorithm controls the sensor’s motion dur-
ing operation and is able to revise patrols after the environment has
changed.

2. finite versus infinite: finite planning horizon algorithm computes
patrols that maximizes reward over a finite horizon while an infinite
horizon maximize an expected sum of rewards over an infinite horizon.

3. controlling patrolling versus single traversal: it is dynamic en-
vironment monitoring versus one snapshot of an environment.

4. strategic versus non strategic patrolling.
5. spatial or spatio-temporal dynamics.

The construction of generalized Voronoi diagrams with time as the
distance metric is in general a difficult task for two reasons: First, the distance
metric is not symmetric and it may not be expressible in closed form. Second,
such problems fall under the general case of partition problems for which the
aircraft’s dynamics must be taken into account. The topology of the agent’s
configuration space may be non-Euclidean; for example, it may be a manifold
embedded in a Euclidean space. These problems may not be reducible to
generalized Voronoi diagram problems for which efficient construction
schemes exist in the literature [143].

The following discussion deals with the construction of Voronoi-like par-
titions that do not belong to the available classes of generalized Voronoi di-
agrams. In particular, Voronoi-like partitions exist in the plane for a given
finite set of generators, such that each element in the partition is uniquely
associated with a particular generator in the following sense: an aircraft that
resides in a particular set of the partition at a given instant of time can arrive
at the generator associated with this set faster than any other aircraft that
may be located anywhere outside this set at the same instant of time. It is
assumed that the aircraft’s motion is affected by the presence of temporally
varying winds.

Since the generalized distance of this Voronoi-like partition problem is the
minimum time to go of the Zermelo’ problem, this partition of the configura-
tion space is known as the Zermelo–Voronoi diagram (ZVD). This problem
deals with a special partition of the Euclidean plane with respect to a gen-
eralized distance function. The characterization of this Voronoi-like partition
takes into account the proximity relations between an aircraft that travels
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in the presence of winds and the set of Voronoi generators. The question of
determining the generator from a given set which is the closest in terms of ar-
rival time, to the agent at a particular instant of time, reduces the problem of
determining the set of the Zermelo–Voronoi partition that the aircraft resides
in at the given instant of time. This is the point location problem.

The dynamic Voronoi diagram problem associates the standard
Voronoi diagram with a time-varying transformation as in the case of time-
varying winds. The dual Zermelo–Voronoi diagram problem leads to a
partition problem similar to the Zermelo–Voronoi Diagram with the differ-
ence that the generalized distance of the dual Zermelo–Voronoi diagram is
the minimum time of the Zermelo’s problem from a Voronoi generator to a
point in the plane. The minimum time of the Zermelo’s navigation problem is
not a symmetric function with respect to the initial and final configurations.
The case of non stationary spatially varying winds is much more complex.

The problem formulation deals with the motion of an autonomous aircraft.
It is assumed that the aircraft’s motion is described by the following equation:

Ẋ = U +W (t) (4.132)

X = (x, y, z)T ∈ R
3, U ∈ R

3 and W = (WN ,WE ,WD)
T ∈ R

3 is the wind
which is assumed to vary uniformly with time, known a priori. In addition,
it is assumed that |W (t)| < 1, ∀t ≥ 0 which implies that system (4.132) is
controllable. Furthermore, the set of admissible control inputs is given by U =
{U ∈ U, ∀t ∈ [0, T ] , T > 0} whereU =

{
(U1, U2, U3) ∈ U|U2

1 + U2
2 + U2

3 = 1
}

the closed unit ball and U is a measurable function on [0, T ].
The Zermelo’s problem solution when W = 0 is the control U∗(χ∗, γ∗) =

(cos γ∗ cosχ∗, cos γ∗ sinχ∗,− sin(γ∗)) where χ∗, γ∗ are constants, as shown in
the previous section. Furthermore, the Zermelo’s problem is reduced to the
shortest path problem in 3D.

Next, the Zermelo–Voronoi diagram problem is formulated:

Problem 4.8. Zermelo–Voronoi Diagram Problem: Given the system
described by (4.132), a collection of goal destination P =

{
pi ∈ R

3, i ∈ �}
where � is a finite index set and a transition cost

C(X0, pi) = Tf (X0, pi) (4.133)

determine a partition B = {Bi : i ∈ �} such that:

1. R3 = ∪i∈�Bi
2. B̄i = Bi, ∀i ∈ �
3. for each X ∈ int(Bi), C(X, pi) < C(X,Pj), ∀j �= i

It is assumed that the windW (t) induced by the winds is known in advance
over a sufficiently long (but finite) time horizon. Henceforth, P is the set of
Voronoi generators or sites, Bi is the Dirichlet domain and B the Zermelo–
Voronoi diagram of R3, respectively. In addition, two Dirichlet domains Bi and
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Bj are characterized as neighboring if they have a non-empty and non-trivial
(i.e., single point) intersection.

The Zermelo’s problem can be formulated alternatively as a moving target
problem as follows:

Problem 4.9. Moving Target Problem: Given the system described by

Ẋ = Ẋ −W (t) = U(t) X(0) = X0 (4.134)

determine the control input U∗ ∈ U such that:

1. The control U∗ minimizes the cost functional J(U) = Tf where Tf is the
free final time
2. The trajectory X∗ : [0, Tf ] → R

3 generated by the control U∗ satisfies the
boundary conditions

X∗(0) = X0 X∗(Tf ) = Xf −
∫ Tf

0

W (τ)dτ (4.135)

The Zermelo’s problem and problem 4.9 are equivalent in the sense that a
solution of the Zermelo’s problem is also a solution of problem 4.9 and vice
versa. Furthermore, an optimal trajectory X∗ of problem 4.9 is related to an
optimal trajectory X∗ of the Zermelo’s problem by means of the time-varying
transformation

X∗(t) = X(t)−
∫ t

0

W (τ)dτ (4.136)

The Zermelo’s minimum time problem can be interpreted in turn as an
optimal pursuit problem as follows:

Problem 4.10. Optimal Pursuit Problem: Given a pursuer and the mov-
ing target obeying the following kinematic equations

Ẋp = Ẋ = U Xp(0) = X0 = X0 (4.137)

ẊT = −W (t) XT (0) = Xf (4.138)

where Xp and XT are the coordinates of the pursuer and the moving target,
respectively, find the optimal pursuit control law U∗ such that the pursuer
intercepts the moving target in minimum time Tf :

Xp(Tf ) = X(Tf ) = XT (Tf ) = Xf −
∫ Tf

0

W (τ)dτ (4.139)

The optimal control of Zermelo’s problem is given by

U∗(χ∗, γ∗) = (cos γ∗ cosχ∗, cos γ∗ sinχ∗,− sin γ∗)
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The same control is also the optimal control for the moving target in problem
4.9. Because the angles χ∗, γ∗ are necessarily constant, the pursuer is con-
strained to travel along a ray emanating from X0 with constant unit speed
(constant bearing angle pursuit strategy ) whereas the target moves along the

time parametrized curve XT : [0,∞]→ R
3 where XT (t) = Xf −

∫ t
0 W (τ)dτ .

4.3.4 TIME OPTIMAL NAVIGATION PROBLEM WITH MOVING AND FIXED
OBSTACLES

A fast autonomous aircraft wishes to go through a windy area so as to reach
a goal area while needing to avoid n slow moving aircraft and some very
turbulent areas. The fast aircraft is regarded as a fast autonomous agent
and the n slow aircraft are regarded as n slow agents. It is assumed that the
trajectories of the n slow agents are known to the fast aircraft in advance. The
objective is to find a control such that the mission is accomplished within a
minimum time. A time optimal navigation problem with fixed and moving
obstacles is considered in this section. This problem can be formulated as an
optimal control problem with continuous inequality constraints and terminal
state constraints. By using the control parametrization technique together
with the time scaling transform, the problem is transformed into a sequence of
optimal parameter selection problems with continuous inequality constraints
and terminal state constraints. For each problem, an exact penalty function
method is used to append all the constraints to the objective function yielding
a new unconstrained optimal parameter selection problem. It is solved as a
nonlinear optimization problem [22].

An exact penalty function method is applied to construct a constraint
violation function for the continuous inequality constraints and the terminal
state constraints. It is then appended to the control function, forming a new
cost function. In this way, each of the optimal parameter selections is further
approximated as an optimal parameter selections subject to a simple non-
negativity constraint or a decision parameter. This problem can be solved as a
nonlinear optimization by any effective gradient based optimization technique,
such as the sequential quadratic programming (SQP) method [118].

4.3.4.1 Problem formulation
Given n+ 1 agents in a 3D flow field, where n slow aircraft follow navigated
trajectories, while the fastest aircraft is autonomously controllable, let the
trajectories of the n slow agents be denoted as:

ηi =

⎛
⎝

xi(t)
yi(t)
zi(t)

⎞
⎠ , i = 1, . . . , n, t ≥ 0.

The flow velocity components at any point (x, y, z) in the 3D flow field can
be denoted by WN (x, y, z, t),WE(x, y, z, t),WD(x, y, z, t), respectively. Then



254 Smart Autonomous Aircraft: Flight Control and Planning for UAV

the motion of the autonomous fast aircraft can be modeled as:

ẋ = V cosχ cos γ +WN (x, y, z, t)
ẏ = V sinχ cos γ +WE(x, y, z, t)
ż = −V sin γ +WD(x, y, z, t)

(4.140)

where V is the velocity of the controlled agent and the angles χ(t), γ(t) are
considered as the control variables, subject to limitation constraints:
|χ(t)| ≤ χmax |γ(t)| ≤ γmax
The relations (4.140) are equivalent to:

η̇(t) = f(η(t), χ(t), γ(t), t) η(0) = η0 t ≥ 0 (4.141)

where η0 is the initial position of the fast autonomous aircraft. The objective
of the Zermelo’s problem is to find an optimal trajectory for the fast agent
An+1 such as the shortest route, the fastest route or the least fuel consumption
to arrive at its goal area without colliding with the fixed obstacles and the
other n slow agents.

Time optimal control problem 4.11 is formulated as given next:

Problem 4.11. Optimal Control Problem

minχ,γTf

subject to

η̇(t) = f(η(t), χ(t), γ(t), t) η(0) = η0 t ≥ 0

√
(x(t) − xi(t))2 + (y(t)− yi(t))2 + (z(t)− zi(t))2 ≥ max {R,Ri}

η(t) ∈ ℵ = {xmin ≤ x ≤ xmax, y = 2hy, z = 2hz}

(4.142)

where Tf represents the time instant at which the fast agent reaches the
goal area. The terminal time Tf depends implicitly on the control function,
which is defined at the first time when the fast autonomous aircraft enters
the target set ℵ. For each i = 1, . . . , n, Ri is the safety radius of the ith slow
aircraft and R is the safety radius of the fast autonomous aircraft.

4.3.4.2 Control parametrization and time scaling transform
Problem 4.11 is a nonlinear optimal control problem subject to continuous
inequality constraints. Control parametrization and time scaling transform
are applied to transform this problem into a nonlinear semi-infinite optimiza-
tion problem to be solved by an exact penalty function method. The control
parametrization is achieved as follows:

χp(t) =

p∑
k=1

ϑχkχ
c
τχk−1,τ

χ
k
(t) γp(t) =

p∑
k=1

ϑγkγ
c
τγk−1,τ

γ
k
(t) (4.143)
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where τk−1 ≤ τk, k = 1, . . . , p and χc, γc are the characteristic functions de-
fined by

χc(t) =

{
1 t ∈ I

0 otherwise

}
γc(t) =

{
1 t ∈ [τk−1, τk]
0 otherwise

}
(4.144)

The switching times τχi , τ
γ
i , 1 ≤ i ≤ p − 1 are also regarded as decision

variables. The time scaling transforms these switching times into fixed times
k/p, k = 1, . . . , p − 1 on a new time horizon [0, 1]. This is achieved by the
following differential equation:

ṫ(s) = ϑt(s)

p∑
k=1

ϑtkχ
t
τχk−1,τ

χ
k
(t) (4.145)

Observations of weather avoidance maneuvering typically reveal reactive
(tactical) deviations around hazardous weather cells. Safety constraints dic-
tate that aircraft must remain separated from one another as from hazardous
weather. Because of weather forecasting errors, weather constraints are not
usually known with certainty. The uncertainty is smaller for short range fore-
casts but the uncertainty increases and becomes substantial for long range
forecasts. Model weather constraints can be modeled as deterministic con-
straints varying with time according to a piece-wise constant function that
is based on a weather forecast model; the most recent short range weather
forecast is made. Aircraft are modeled as points in motion. Their dynamics
are specified in terms of bounds on the aircraft velocity and magnitude of
acceleration. Whereas acceleration bounds give rise to bounds on the radius
of curvature of flight, the scale of the solution is assumed to be large enough
that aircraft dynamics can be approximated with a single representation of
piece-wise linear flight legs connected at way points.

4.3.4.3 RRT variation
In [120], a path planning algorithm based on the 3D Dubins curve for UAV
to avoid both static and moving obstacles is presented. A variation of RRT
is used as the planner. In tree expansion, branches of the trees are generated
by propagating along the 3D Dubins curve. The node sequence of shortest
length together with the Dubins curves connecting them is selected as the
path. When the UAV executes the path, the path is checked for collision
with an updated obstacles state. A new path is generated if the previous
one is predicted to collide with obstacles. Such checking and re-planning loop
repeats until the UAV reaches the goal. The 3D Dubins curve is used in mode
connection because:

1. It allows to assign initial and final heading of the UAV as well as
position.
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2. It is the shortest curve that connects two points with a constraint
on the curvature determined by UAV turning radius of the path and
prescribed initial and final headings.

To connect node (x0, y0, z0, χ0) to (x1, y1, z1, χ1), a 2D Dubins curve C is first
created from (x0, y0, χ0) to (x1, y1, χ1); it is then extended to 3D by assigning:

z = z0 +
�(x, y)

�(x1, y1)
(z − z0) (4.146)

to each (x, y) in C where �(x, y) stands for the length along C from (x0, y0)
to (x, y).

The next step is to propagate the UAV model along the 3D Dubins curve
until reaching the end or being blocked by obstacles. If the end is reached, the
propagatory trajectory is the connection between the two nodes; otherwise, a
connection does not exist due to collision with obstacles.

4.4 MISSION PLANNING
A mission describes the operation of an aircraft in a given region, during
a certain period of time while pursuing a specific objective. waypoints are
locations to which the autonomous aircraft is required to fly. A flight plan
is defined as the ordered set of waypoints executed by the aircraft during a
mission. Along the way, there may be a set of areas to visit and a set of areas
to avoid. In addition, the mission planning strategy should be dynamic as the
mission planning problem is to create a path in a dynamic environment. The
aim is to replace the human expert with a synthetic one that can be deployed
onboard the smart autonomous aircraft [83, 84].

A mission is carried out by performing different actions: actions of move-
ments, actions on the environment, information gathering. The resources used
for the implementation of actions are available in limited quantities [99]. For
the autonomous aircraft, resources are consumable as fuel and electricity lev-
els decline gradually as the mission proceeds. Mission planning adapts flight
to mission needs. The mission planning problem is to select and order the best
subset among the set of objectives to be achieved and to determine the dates
of start and end of each objective, maximizing the rewards obtained during
the objectives and criteria for minimizing the consumption of resources while
respecting the constraints on resources and mission.

Mission planning can be considered as a selection problem. The objec-
tives are linked to rewards whose values vary depending on the importance of
each objective. Planning must choose a subset of objectives to be achieved in
time and limited resources. The existing planning systems are mostly unsuit-
able for solving smart autonomous aircraft problems: they address a problem
where the goal is a conjunction of goals and fail if the goal is not reached.
Moreover, the selection of targets does not entirely solve the problem of mis-
sion planning. Indeed, the selection is often based on a simplified model for
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the resources of the problem and ignores the various ways to achieve the same
goal. In most cases, a practical solution is obtained by combining the selection
of objectives, planning and task scheduling in multi-levels: each level defines
the problem to the scheduling algorithm of the lower level. Unlike the planning
carried out during the mission preparation, planning online is characterized
by the fact that the time taken to find a plan is one of the main criteria for
judging the quality of a method. Models to formalize a planning problem and
associated methods can be classified into three types:

1. Representations of logical type: The dynamics of the aircraft trans-
lates into a succession of consecutive states indexed by a time pa-
rameter. The states are described by a set of logical propositions and
action is an operator to move from one state to another. The pur-
pose of planning is to synthesize a trajectory in state space, predict
rewards earned for the course, select and organize different types of
actions to achieve a goal or optimize the reward functions.

2. Representations of graph type: they offer a more structured repre-
sentation. Among the approaches using graphs include Petri nets and
Bayesian networks.

3. Representations of object type: they have spread because of their
relevance to the object-oriented programming languages.

The aim is to formulate the art of flying an aircraft into logical tasks with
a series of events to maintain control of specific functions of the aircraft. This
concept is a key component with systems designed for future use. The ini-
tial concept of using an expert system to control an aircraft seems simple
but proves difficult to apply. An expert pilot’s decision-making processes are
difficult to initiate with computers [147]. The dynamic environment and condi-
tions affecting an aircraft are areas that have to be adapted to such an expert
system. The many tasks involved in the control of flight must be divided into
manageable steps.

The purpose of the mission planning is to select the objectives to achieve
and find a way to achieve them, taking into account the environment. Among
the possible solutions, the planner must choose the one that optimizes a cri-
terion taking into account the rewards for each goal and cost to achieve them,
and respects the constraints of time and resources. Rewards and constraints
are nonlinear functions of time and resources to the different times when the
aircraft performs the actions that lead to achieving the objectives. For achiev-
ing a goal, there is a beginning of treatment, end of treatment and when
the reward associated with the target is obtained. The mission planner must
choose and order a subset of targets, to achieve among all mission objectives.
It should optimize the choice of its actions, knowing its resources, the envi-
ronment, the maximum reward associated with each objective and the time
constraints associated with them. Techniques were first designed to solve clas-
sical problems from combinatorial optimization such as the traveling salesman
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problem or the Chinese postman problem [202], the maximum flow problem
and the independent set point [140, 142, 146]. Most of these problems are
closely related to graph theory.

Formalism could be based on the decomposition of the problem into two
levels:

1. The top level corresponds to the objectives of the mission,
2. The lowest level describes this achievement as a function of time and

resources.

It formalizes a problem with uncertainties where the number of objectives
of the plan is not fixed a priori.

4.4.1 TRAVELING SALESMAN PROBLEM

A salesman has to visit several cities (or road junctions). Starting at a certain
city, he wants to find a route of minimum length which traverses each of
the destination cities exactly once and leads him back to his starting point.
Modeling the problem as a complete graph with n vertices, the salesman
wishes to make a tour or Hamiltonian cycle, visiting each cycle exactly once
and finishing at the city he starts from [50].

A traveling salesman problem (TSP) instance is given by a complete graph
G on a node set V = {1, 2, ..,m} for some integer m and by a cost function
assigning a cost cij to the arc (i, j) for any i, j in V . The salesman wishes to
make the tour whose total cost is minimum where the total cost is the sum
of the individual costs along the edges of the tour [44].

Problem 4.12. The formal language for the corresponding decision problem
is:

TSP =

⎧⎨
⎩

(G, c, k) : G = (V,E) is a complete graph ,
c is a function from V × V → N, k ∈ N,

G has a traveling salesman tour with cost at most k

⎫⎬
⎭

The data consist of weights assigned to the edges of a finite complete graph,
and the objective is to find a Hamiltonian cycle, a cycle passing through all the
vertices, of the graph while having the minimum total weight. c(A) denotes
the total cost of the edges in the subset A ⊆ E:

c(A) =
∑

(u,v)∈A
c(u, v) (4.147)

In many practical situations the least costly way to go from a place u to
a place w is to go directly, with no intermediate steps. The cost function c
satisfies the triangle inequality if for all the vertices, u, v, w ∈ V

c(u,w) ≤ c(u, v) + c(v, w) (4.148)
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This triangle inequality is satisfied in many applications but not in all. It
depends on the chosen cost. In this case, the minimum spanning tree can be
used to create a tour whose cost is no more than twice that of the minimum
tree weight, as long as the cost function satifies the triangle inequality. Thus,
the pseudocode of the TSP approach can be presented in algorithm 9 below.

Algorithm 9 TSP with Triangle Inequality

1. Select a vertex r ∈ G, V to be a root vertex
2. Compute a minimum spanning tree T for G from root r using MST-

PRIM(G, c, r)
3. Let H be a list of vertices, ordered according to when they are first

visited in a preorder tree walk of T .
4. A state transition rule is applied to incrementally build a solution.
5. return the Hamiltonian cycle H
6. Minimum Spanning Trees: Procedure MST-PRIM(G, c, r)
7. For each u ∈ G, V
8. u.key = ∞
9. u.π = NULL
10. r.key = 0
11. Q = G. V
12. While Q �= 0
13. u= EXTRACT-MIN(Q)
14. for each v ∈ G.Adj [u]
15. if v ∈ Q and w(u, v) < v.key
16. v.π = u
17. v.key = w(u,v)

Lines 7 to 11 of algorithm 9 set the key of each vertex to∞ (except for the
root r, whose key is set to 0 so that it will be the first vertex processed), set
the parent of each vertex to NULL and initialize the min-priority queue Q to
contain all the vertices.

The algorithm maintains the following three-part loop invariant prior to
each iteration of the while loop of lines 12 to 17.

1. A = {(ν, v, π) : ν ∈ V − {r} −Q}.
2. The vertices already placed into the minimum spanning tree are those

in V −Q.
3. For all vertices v ∈ Q, if v.π �= NULL, then v.key < ∞ and v.key

is the weight of a light edge (ν, v, π) connecting v to some vertex,
already placed into the minimum spanning tree.

Line 13 identifies a vertex u ∈ Q incident on a light edge that crosses the
cut (V −Q,Q) (with the exception of the first iteration, in which u = r due
to line 4). Removing u from the set Q adds it to the set V − Q of vertices
in the tree, thus adding (u, u.π) to A. The for loop of lines 14 to 17 updates
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the key and π attributes of every vertex v adjacent to u but not in the tree,
thereby maintaining the third part of the loop invariant.

There are other approximation algorithms that typically perform better
in practice. If the cost c does not satisfy the triangle inequality, then good
approximate tours cannot be found in polynomial time. There are different
approaches for solving the TSP. Classical methods consist of heuristic and ex-
act methods. Heuristic methods like cutting planes and branch and bound can
only optimally solve small problems whereas the heuristic methods, such as
Markov chains, simulated annealing and tabu search, are good for large prob-
lems [113]. Besides, some algorithms based on greedy principles such as near-
est neighbor and spanning tree can be introduced as efficient solving methods.
Nevertheless, classical methods for solving the TSP usually result in exponen-
tial computational complexities. New methods such as nature based optimiza-
tion algorithms, evolutionary computation, neural networks, time adaptive
self-organizing maps, ant systems, particle swarm optimization, simulated an-
nealing and bee colony optimization are among solving techniques inspired
by observing nature. Other algorithms are intelligent water drops algorithms
and artificial immune systems [46].

In an instance of the traveling salesman problem, the distances between
any pair of n points are given. The problem is to find the shortest closed path
(tour) visiting every point exactly once. This problem has been traditionally
been solved in two steps with the layered controller architecture for mobile
robots. The following discussion is mainly based on [116, 172].

Problem 4.13. Dubins Traveling Salesman Problem (DTSP): Given
a set of n points in the plane and a number L > 0, DTSP asks if there exists
a tour for the Dubins vehicle that visits all these points exactly once, at length
at most L.

At the higher decision-making level, the dynamics of the autonomous air-
craft are usually not taken into account and the mission planner might typi-
cally choose to solve the TSP for the Euclidean metric (ETSP) i.e., using the
Euclidean distances between waypoints. For this purpose, one can directly
exploit many existing results on the ETSP on graphs. The first step deter-
mines the order in which the waypoints should be visited by the autonomous
aircraft. At the lower level, a path planner takes as an input this waypoint
ordering and designs feasible trajectory between the waypoints respecting the
dynamics of the aircraft. In this section, the aircraft at a constant altitude is
assumed to have a limited turning radius and can be modeled as Dubins vehi-
cles. Consequently, the path planner could solve a sequence of Dubins shortest
path problems (DSPP) between the successive waypoints. Even if each prob-
lem is solved optimally, however, the separation into two successive steps can
be inefficient since the sequence of points chosen by the TSP algorithm is
often hard to follow for the physical system.

In order to improve the performance of the autonomous aircraft system,
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mission planning and path planning steps are integrated. The Dubins vehicle
can be considered as an acceptable approximation of a fixed wing aircraft at
a constant altitude. Motivated by the autonomous aircraft applications, the
traveling salesman problem is considered for Dubins vehicle DTSP:

Problem 4.14. Given n points on a plane, what is the shortest Dubins tour
through these points and what is its length?

The worst case length of such a tour grows linearly with n and an al-
gorithm can be proposed with performance within a constant factor of the
optimum for the worst case point sets. An upper bound on the optimal length
is also obtained [172]. A practical motivation to study the Dubins travel-
ing salesman problem arises naturally for autonomous aircraft monitoring
a collection of spatially distributed points of interest. In one scenario, the
location of the points of interest might be known and static. Additionally,
autonomous aircraft applications motivate the study of the dynamic travel-
ing repairman problem (DTRP) in which the autonomous aircraft is required
to visit a dynamically changing set of targets [14]. Such problems are ex-
amples of distributed task allocation problems and are currently generating
much interest: complexity issues related to autonomous aircraft assignment
problems, Dubins vehicles keeping under surveillance multiple mobile targets,
missions with dynamic threats ...[67]. Exact algorithms, heuristics as well as
polynomial time constant factor approximation algorithms, are available for
the Euclidean traveling salesman problem. A variation of the TSP is the an-
gular metric problem. Unlike other variations of the TSP, there are no known
reductions of the Dubins TSP to a problem on a finite dimensional graph, thus
preventing the use of well-established tools in combinatorial optimization.

Definition 4.5. Feasible Curve: A feasible curve is defined for the Dubins
vehicle or a Dubins path as a curve γ : [0, T ]→ R

2 that is twice differentiable
almost everywhere and such that the magnitude of its curvature is bounded
above by 1/ρ where ρ > 0 is the minimum turning radius.

The autonomous aircraft configuration is represented by the triplet
(x, y, ψ) ∈ SE(2) where (x, y) are the Cartesian coordinates of the vehi-
cle and ψ its heading. Let P = p1, . . . , pn be a set of n points in a com-
pact region Q ⊆ R

2 and Pn be the collection of all point sets P ⊂ Q with
the cardinality n. Let ETSP(P) denote the cost of the Euclidean TSP over
P, i.e., the length of the shortest closed path through all points in P. Cor-
respondingly, let DTSP(P) denote the cost of the Dubins path through all
points in P, with minimum turning radius ρ. The initial configuration is as-
sumed to be (xinit, yinit, ψinit) = (0, 0, 0). Let Cρ : SE(2) → R̄ associate to
a configuration (x, y, ψ) the length of the shortest Dubins path and define
F0 :]0, π[×]0, π[→]0, π[, F1 :]0, π[→ R and F2 :]0, π[→ R

F0(ψ, θ) = 2 arctan

(
sin(ψ/2)− 2 sin(ψ/2− θ)
cos(ψ/2) + 2 cos(ψ/2− θ)

)
(4.149)
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F1(ψ) = ψ + sin
(
F0(ψ,ψ/2−α(ψ))

2

)

+4 arccos
(
sin

(
0.5(ψ−F0(ψ,ψ/2−α(ψ)))

2

)) (4.150)

F2(ψ) = 2π − ψ + 4 arccos

(
sin(ψ/2)

2

)
(4.151)

where

α(ψ) =
π

2
− arccos

(
sin(0.5ψ)

2

)
(4.152)

The objective is the design of an algorithm that provides a provably good
approximation to the optimal solution of the Dubins TSP. The alternating al-
gorithm works as follows: Compute an optimal ETSP tour of P and label the
edges on the tour in order with consecutive integers. A DTSP tour can be con-
structed by retaining all odd-numbered (except the nth) edges and replacing
all even-numbered edges with minimum length Dubins paths preserving the
point ordering. The pseudocode for this approach is presented in algorithm
10 below.

Algorithm 10 Dubins Traveling Salesman Problem

1. Set (a1, .., an) = optimal ETSP ordering of P
2. Set ψ1: orientation of segment from a1 to a2
3. For i ∈ 2, .., n− 1 do

if i is even then set ψi = psii−1

else set ψi = orientation of segment from ai to ai+1

4. If n is even then set ψn = ψn−1 else set ψn =orientation of segment
from an to a1

5. Return the sequence of configurations (ai, ψi)i∈1...n

The nearest neighbor heuristic produces a complete solution for the Du-
bins traveling salesman problem, including a waypoint ordering and a heading
for each point. The heuristic starts with an arbitrary point and chooses its
heading arbitrarily, fixing an initial configuration. Then at each step, a point
is found which is not yet on the path but close to the last added configura-
tion according to the Dubins metric. This closest point is added to the path
with the associated optimal arrival heading. When all nodes have been added
to the path, a Dubins path connecting the last obtained configuration and
the initial configuration is added. If K headings are chosen for each point,
then an a priori finite set of possible headings is chosen for each point and a
graph is constructed with n clusters corresponding to the n waypoints, and
each cluster containing K nodes corresponding to the choice of the head-
ings. Then the Dubins distances between configurations corresponding to a
pair of nodes in distinct clusters are computed. Finally, a tour through the
n clusters is computed which contains exactly one point in each cluster. This
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problem is called the generalized asymmetric traveling salesman problem over
nK nodes. A path planning problem for a single fixed wing aircraft perform-
ing a reconnaissance mission using one or more cameras is considered in [141].
The aircraft visual reconnaissance problem for static ground targets in terrain
is formulated as a polygon-visiting Dubins traveling salesman problem.

4.4.2 REPLANNING OR TACTICAL AND STRATEGIC PLANNING

The mission parameters are provided by a higher level automated scheduling
system. Strategic planning, which occurs before takeoff, takes a priori infor-
mation about the operating environment and the mission goals and constructs
a path that optimizes for the given decision objectives. Tactical planning
involves re-evaluation and re-generation of a flight plan during flight based on
updated information about the goals and operating environment. The gener-
ated plan should be as close as possible to the optimal plan given available
planning information.

An autonomous aircraft must choose and order a subset of targets, to
achieve among all mission objectives. It should optimize the choice of its
actions, knowing its resources, the environment, the maximum reward asso-
ciated with each objective and the time constraints associated with them.
Formalism could be based on the decomposition of the problem into two lev-
els: the top level corresponds to the objectives of the mission, the lowest level
describes this achievement as a function of time and resources. It formalizes
a problem with uncertainties where the number of objectives of the plan is
not fixed a priori. A static algorithm is used offline to produce one or more
feasible plans. A dynamic algorithm is then used online to gradually build
the right solution to the risks that arise. The terms static and dynamic char-
acterize the environment in which the plan is carried out. Classical planning
assumes that the environment is static, meaning that there is no uncertainty.
A predictive algorithm is then used offline to produce a single plan which can
then be executed on line without being questioned. In the case of a dynamic
environment, several techniques are possible [70].

1. Keep a predictive offline, supplemented by one or reactive algorithms
that are executed when a hazard line makes incoherent the initial
plan, calling it into question and forced most often to re-plan.

2. Take into account the uncertainties from the construction phase off-
line: this is called proactive approaches.

3. Plan always predictively but this time online, short term, in a process
of moving horizon, in which case the execution will gradually resolve
uncertainties and allow for further planning steps.

The level of decision-making autonomy is referred to the planning board.
It requires a calculation of plan online, called re-planning. Updating the plan
online involves the development of a hybrid architecture, incorporating the
outbreak of calculations of new plans in case of hazard and the inclusion of
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the results of this calculation. The proposed architecture allows to set up an
online event planning, with many hierarchical levels of management of the
mission. The mission planning problem is to select and order the best subset
among the set of objectives to be achieved and to determine the dates of
start and end of each objective, maximizing the rewards obtained during the
objectives and criteria for minimizing the consumption of resources, while
respecting the constraints on resources and mission.

Mission planning can be considered as a selection problem. The objectives
are linked to rewards whose values vary depending on the importance of each
objective. Planning must choose a subset of objectives to be achieved in time
and limited resources. The existing planning systems are mostly unsuitable for
solving such problems: they address a problem where the goal is a conjunction
of goals and fail if the goal is not reached. The selection of targets is often based
on a simplified model for the resources of the problem and ignores the various
ways to achieve the same goal. In most cases, a practical solution is obtained
by combining the selection of objectives, planning and task scheduling in
a multi-levels architecture: each level defines the problem to the scheduling
algorithm of the lower level. Unlike the planning carried out during the mission
preparation, planning online is characterized by the fact that the time taken
to find a plan is one of the main criteria for judging the quality of a method.

The onboard intelligence allows the aircraft to achieve the objectives of
the mission and ensuring its survival, taking into account the uncertainties
that occur during a mission. The objectives of the planning function are in
general: order the passage of the various mission areas, calculate a path be-
tween each element of the route; order the realization of the task. The use
of deterministic/random hybrid techniques is intended to provide solutions to
this problem. A mission planning system must be able to:

1. evaluate multiple objectives,
2. handle uncertainty,
3. be computationally efficient.

The mission planning task is non trivial due to the need to optimize for
multiple decision objectives such as safety and mission objectives. For exam-
ple, the safety objective might be evaluated according to a midair collision
risk criterion and a risk presented to third parties’ criterion. The degree of
satisfaction of the safety objective is obtained by aggregating the constituent
criteria. A constraint refers to limits imposed on individual decision criteria
(a decision variable) such as the maximum allowable risk.

For some applications, the mission tasks, for example, spray crops or per-
form surveillance, are conducted at the destination point. Another important
consideration is online or in-flight re-planning. A plan that is optimal when
it is generated can become invalidated or suboptimal by changes to assump-
tions in the flight plan. For example, the unanticipated wind conditions can
increase fuel consumption, it may take an unexpectedly long time to reach
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a waypoint and there may be changes to mission goals as new information
becomes available.

As with manned aircraft, the dependability and integrity of a UAV plat-
form can be influenced by the occurrence of endogenous and exogenous events.
There are a number of safety related technical challenges which must be ad-
dressed including provision of a safe landing zone detection algorithm which
would be executed in the event of a UAV emergency. In the event of such
an emergency, a key consideration of any safety algorithm is remaining flight
time which can be influenced by battery life or fuel availability and weather
conditions. This estimate of the UAV remaining flight time can be used to as-
sist in autonomous decision-making upon occurrence of a safety critical event
[145].

4.4.3 ROUTE OPTIMIZATION

In general, the routing approach consists in reducing a general routing problem
to the shortest path problem. The specification of routes is a problem in its
own right. If the route network is modeled as a directed graph, then the
routing problem is the discrete problem of finding paths in a graph, which
must be solved before the speed profile is sought [168].

4.4.3.1 Classic approach
An automated mission planning can enable a high level of autonomy for a
variety of operating scenarios [74, 116]. Fully autonomous operation requires
the mission planner to be situated onboard the smart autonomous aircraft.
The calculation of a flight plan involves the consideration of multiple elements.
They can be classified as either continuous or discrete, and they can include
nonlinear aircraft performance, atmospheric conditions, wind forecasts, air-
craft structure, amount of departure fuel and operational constraints. More-
over, multiple differently characterized flight phases must be considered in
flight planning. The flight planning problem can be regarded as a trajectory
optimization problem [181]. The mission planning has to define a series of steps
to define a flight route. In the context of mission planning for an autonomous
aircraft, the plan is necessarily relative to displacement. The plan then con-
tains a sequence of waypoints in geometric space considered. A possible path
of research of the current aircraft position to destinations in geometric space,
avoiding obstacles in the best way, is sought. Scheduling algorithms must be
integrated into an embedded architecture to allow the system to adapt its
behavior to its state and dynamic environment [73].

The approach reduces the uncertainty inherent in a dynamic environment
through online re-planning and incorporation of tolerances in the planning
process [121]. The motion plan is constrained by aircraft dynamics and envi-
ronmental/operational constraints. In addition, the planned path must satisfy
multiple, possibly conflicting objectives such as fuel efficiency and flight time.
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It is not computationally feasible to plan in a high dimensional search space
consisting of all the aforementioned decision variables. It is common instead
to plan the path in the world space (x, y, z, t) by aggregating the decision
variables into a single, non-binary cost term.

Integration must take into account that the activation calculations plan
is triggered by events. A random event may occur during a mission whose date
of occurrence is unpredictable. An autonomous system has two main goals:

1. make out its mission while remaining operational,
2. and react to the uncertainties of mission, environment or system.

The embedded architecture must meet these two objectives by organizing
the physical tasks of the mission and the tasks of reasoning. This reaction
is conditioned by the inclusion of planning during execution in a control ar-
chitecture. Each controller is composed of a set of algorithms for planning,
monitoring, diagnosing and execution [45] . This architecture can be applied to
complex problem solving, using hierarchical decomposition. Hierarchical de-
composition is employed to break down the problem into smaller parts both
in time and function. This approach provides a viable solution to real time,
closed-loop planning and execution problems:

1. The higher levels create plans with greatest temporal scope, but low
level of detail in planned activities.

2. The lower levels’ temporal scope decreases, but they have an increase
in detail of the planned activities.

Remark 4.7. Situation awareness includes both monitoring and diagno-
sis. Plan generation and execution are grouped. A hierarchical planning ap-
proach is chosen because it enables a rapid and effective response to dynamic
mission events.

A functional and temporal analysis of the mission has to be performed,
identifying the activities that need to be performed. As the mission problem
is progressively broken down into smaller subproblems, functional activities
emerge. At the lowest level of decomposition, the functional activities are
operating on timescales of seconds. These activities are related to each other
in a tree structure, with the lowest level (leaf) nodes providing the output
commands to the guidance, navigation and control systems.

For the autonomous aircraft, the state is given, at least, by three position
coordinates, three velocity coordinates, three orientation angles and three ori-
entation rate angles, for a total of twelve variables. The dynamic characteris-
tics of the aircraft determine the dimension of the system, and many systems
may use a reduced set of variables that adequately describe the physical state
of the aircraft. It is common to consider smaller state space with coupled
states, or to extend the state space to include higher order derivatives.

Planning schemes may be classified as explicit or implicit.
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1. An implicit method is one in which the dynamic behavior of the
aircraft is specified. Then the trajectory and the actuator inputs re-
quired to go from the start configuration to the goal configuration
are derived from the interaction between the aircraft and the envi-
ronment. The best known example of this method is the potential
field method [104] and its extensions. Some other examples include
the methods that apply randomized approaches [111] or graph theory
[41].

2. Explicit methods attempt to find solutions for the trajectories and
for the inputs of actuators explicitly during the motion. Explicit
methods can be discrete or continuous. Discrete approaches focus
primarily on the geometric constraints and the problem of finding
a set of discrete configurations between the end states that are free
from collisions.

Mission planning problems have been considered from the point of view
of artificial intelligence, control theory, formal methods and hybrid systems
for solving such problems [25]. A class of complex goals impose temporal
constraints on the trajectories for a given system, referred also as temporal
goals. They can be described using a formal framework such as linear tem-
poral logic (LTL), computation tree logic and μ-calculus. The specifica-
tion language, the discrete abstraction of the aircraft model and the planning
framework depend on the particular problem being solved and the kind of
guarantees required. Unfortunately, only linear approximations of the aircraft
dynamics can be incorporated. Multi-layered planning is used for safety anal-
ysis of hybrid systems with reachability specifications and motion planning
involving complex models and environments. The framework introduces a dis-
crete component to the search procedure by utilizing the discrete structure
present in the problem.

The framework consists of the following steps:

1. Construction of a discrete abstraction for the system,
2. High level planning for the abstraction using the specifications and

exploration information from a low level planner,
3. Low level sampling-based planning using the physical model and the

suggested high level plans.

There is a two way exchange of information between the high level and low
level planning layers. The constraints arising due to temporal goals are sys-
tematically conveyed to the low level layer from the high level layer using
synergy. The construction of the discrete abstraction and two way interaction
between the layers are critical issues that affect the overall performance of the
approach.
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4.4.3.2 Dynamic multi-resolution route optimization
An approach is described in this section for dynamic route optimization
for an autonomous aircraft [169]. A multi-resolution representation scheme
is presented that uses B-spline basis functions of different support and
at different locations along the trajectory, parametrized by a dimensionless
parameter. A multi-rate receding horizon problem is formulated as an exam-
ple of online multi-resolution optimization under feedback. The underlying
optimization problem is solved with an anytime evolutionary computing algo-
rithm. By selecting particular basis function coefficients as the optimization
variables, computing resources can flexibly be devoted to those regions of
the trajectory requiring the most attention. Representations that can allow
a UAV to dynamically re-optimize its route while in flight are of interest. A
popular technique for route optimization is dynamic programming, often in
combination with other methods. waypoints generated by dynamic program-
ming serve as input to either an optimal control or a virtual potential field
approach. The potential field method models the route with point masses
connected by springs and dampers. Threats and targets are modeled by vir-
tual force fields of repelling and attracting forces. The optimized route then
corresponds to the lowest energy state of this mechanical equivalent.

The general requirements are wind optimal routes, avoiding regions for
several reasons, minimizing fuel costs and making allowances for a required
time of arrival. The dynamic programming method can be used for the
intended application. Dynamic programming is, however, a global optimizer
and more flexible methods are preferred.

4.4.3.2.1 Route optimization problem formulation
The route is represented by a sequence of waypoints: (xk, yk, zk, tk)

K
k=1 where

(xk, yk, zk) are Cartesian coordinates of the waypoints and tk is the scheduled
time of arrival to the waypoints.

Problem 4.15. The route optimization problem can be expressed as:

X = argX∈DXminJ(X) (4.153)

where X is a list containing the waypoint parameters, J is the route optimality
index and Dx is the domain of the allowed routes. The route optimization
problems of interest can involve thousands of waypoints.

Therefore, direct solution of (4.153) is not possible given onboard pro-
cessing constraints. The optimization set is limited to a parametric family of
trajectories represented by spline functions. The trajectory is parametrized
by a dimensionless parameter u and is represented by samples of x(u), y(u)
and z(u).

Remark 4.8. The span of u for the entire route has to be chosen carefully,
taking into account the maneuverability and velocity of the aircraft.
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Assuming constant velocity, the distance spanned by a fixed Δu should be
approximately the same along the route. Since the optimization will change
the position of the waypoints when the distance spanned by Δu = 1 is small
there will be a higher likelihood of generating routes that are not flyable; the
turns required at waypoints may exceed the aircraft’s maneuvering capability.
On the other hand, a large distance spanned by Δu = 1 will not allow much
flexibility to find the best route. The route parametrization uses the following
B-spline expansion:

x(u) =

Nmax∑
n=0

anψ̃(u − n) + x0(u) (4.154)

y(u) =

Nmax∑
n=0

bnψ̃(u− n) + y0(u) (4.155)

z(u) =

Nmax∑
n=0

cnψ̃(u − n) + z0(u) (4.156)

where ψ̃(u) is a basis function and (x0(u), y0(u), z0(u)) is the initial approxi-
mation of the route (from offline mission planning). The following second-order
B-spline basis function is used

ψ̃(w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 w < 0
w2 0 ≤ w ≤ 1
−2w2 + 6w − 3 1 ≤ w ≤ 2

(3− w)2 2 ≤ w ≤ 3
0 w ≥ 3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.157)

This basis function has support on the interval w ∈ [0, 3]. The representation
(4.154) and (4.155) defines a 3D trajectory. This has to be complemented by
the time dependence of the aircraft position (for evaluating turn constraints).
Assuming a constant speed V,

ṡ = V (4.158)

the path from the trajectory start at u = 0 to a point parametrized by u = w
on the route is given by:

s(w) =

∫ w

u=0

√√√√
((

dx

du

)2

+

(
dy

du

)2

+

(
dz

du

)2
)
du (4.159)

By equations (4.158), (4.159) and solving for w, it is possible to generate
a route, represented by K time stamped waypoints (xk, yk, zk, tk)

K
k=1.
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4.4.3.2.2 Online optimization under feedback
Most existing aircraft route optimization is used off-line. Criteria for the route
optimization are given ahead of the mission and the route is pre-computed.
An algorithm that can re-optimize the route inflight within available compu-
tational time limits is developed. A receding horizon control problem can be
formulated and addressed in [169]. At every sample, an online optimization
algorithm is used to update the route taking into account situation changes
and disturbances. Consider the path point u = k. The planning of the path
for u ≥ k is done as:

xk+1(u) =

Nmax∑
n=0

anψ̃(u − n− k) + xk(u) + Δxk(u) (4.160)

yk+1(u) =

Nmax∑
n=0

bnψ̃(u− n− k) + yk(u) + Δyk(u) (4.161)

zk+1(u) =

Nmax∑
n=0

cnψ̃(u− n− k) + zk(u) + Δzk(u) (4.162)

where xk+1(u), yk+1(u), zk+1(u) is the trajectory as computed before
the update and Δxk(u),Δyk(u),Δzk(u) are corrections to deal with dis-
turbances. The expansion weights an, bn, cn are recomputed at each step
by solving an optimization problem similar to (4.153). The corrections
Δxk(u),Δyk(u),Δzk(u) are introduced in (4.160) to (4.162) because dis-
turbances such as the wind cause the position and velocity of the aircraft
at time u = k to be different from those given by the nominal trajectory
xk(k), yk(k), zk(k). The corrections allow the route optimizer to generate a
new route from the actual position of the aircraft. Assume that at the path
point coordinate u = k, the guidance and navigation system of the aircraft
determines a position deviation Δxk(u),Δyk(u),Δzk(u) and a velocity devia-
tion ΔVx(k),ΔVy(k),ΔVz(k) from the previously planned route. The route is
then adjusted around the aircraft position. Since the B-spline approximation
(4.154) to (4.156) and (4.157) gives a trajectory that is a piece-wise second
order polynomial, the most natural way of computing the correction is also a
piece-wise second order polynomial spline. By matching the trajectory coor-
dinates and derivatives at u = k, the correction can be computed as

Δxk(u) = Δx(k)α̃(u− k) + ΔVx(k)β̃(u− k) (4.163)

Δyk(u) = Δy(k)α̃(u− k) + ΔVy(k)β̃(u− k) (4.164)

Δzk(u) = Δz(k)α̃(u− k) + ΔVz(k)β̃(u− k) (4.165)

where

α̃(w) =

{
1− 0.5w2 0 < w ≤ 1
0.5(w − 2)2 1 < w ≤ 2

}
(4.166)
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β̃(w) =

{
w − 0.75w2 0 < w ≤ 1
0.25(w − 2)2 1 < w ≤ 2

}
(4.167)

The receding horizon update at point u = k computes a trajectory of the form
(4.160) to (4.162) where the expansion weights an, bn, cn(n = 1 . . .Nmax)
are such as to minimize a modified optimality index of the form (4.153).
The modified optimality index takes into account only the future part of the
trajectory for u ≥ k.

4.4.3.2.3 Multi-scale route representation
The route has to be dynamically updated in flight to compensate for both
disturbances and changes in the overall mission structure such as the emer-
gence or disappearance of threats and targets. Route planning in the vicinity
of the current location can usually be done in detail because the current local
information can be expected to be reliable. It must also be done quickly before
the aircraft moves too far. The longer term planning is also less critical at the
current time. An optimal trade-off between different optimization horizons
can be effected with limited computational resources using a multiscale repre-
sentation. A technique similar to wavelet expansion is used as it provides an
efficient way to represent a signal, such as a trajectory over time at multiple
temporal and frequency scales.

4.4.4 FUZZY PLANNING

Many traditional tools for formal modeling, reasoning and computing are of
crisp, deterministic and precise character. However, most practical problems
involve data that contain uncertainties. There has been a great amount of
research in probability theory, fuzzy set theory, rough set theory,
vague set theory, gray set theory, intuitionistic fuzzy set theory and
interval math [187]. Soft set and its various extensions have been applied
with dealing with decision-making problems. They involve the evaluation of
all the objects which are decision alternatives.

The imposition of constraints, such as aircraft dynamic constraints and risk
limits, corresponds to skill level decision-making [10]. The evaluation function
used to calculate path costs is rule based, reflecting the rules level. Finally,
the selection of an evaluation function and scheduling of planning activities,
such as in an anytime framework, mimics the level of knowledge.

Heuristics primary role is to reduce the search space and thus guide the
decision maker onto a satisfying or possibly optimal solution in a short space
of time. It is applicable to mission planning as flight plans tend to follow
the standard flight profile. Additionally, due to the time pressure of online
re-planning, the satisfying heuristic could be used to quickly find a negotiable
path rather than deliver an optimal solution that is late.

The planner can consider as decision criteria: obstacles, roads, ground
slope, wind and rainfall. Decision variables are aggregated into a single cost
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value which is used in a heuristic search algorithm. The rain criterion, for ex-
ample, is represented by the membership function: light rain, moderate rain
and heavy rain. If-then rules are then used to implicate the degree of mem-
bership to the output membership function on the mobility (i.e., difficulty
of traversal) universe. A vector neighborhood can be identified as a suitable
method for overcoming the limited track angle resolution to ensure path opti-
mality. Uncertainty is often mitigated with online re-planning, multi-objective
decision-making and incorporation of tolerance into the planned path [48].

In the context of mission planning, each decision criterion has associated
with it a constraint and ideal value. For example, there is an ideal cruise veloc-
ity and a maximum and minimum airspeed limit. Constraints can be enforced
with simple boundary checking and correspond to the skills’ level of cognition.
Optimization of the selected paths, however, requires evaluation of multiple
decision rules as per the rules’ level. The safety objective may be decomposed
into a risk criterion, no-fly zones criterion, wind and maximum velocity con-
straints. Additionally, an approximation of the dynamic constraints of the
aircraft is required to ensure that the final problem is traversable. Each mem-
bership function objective can be decomposed into individual decision criteria
[170, 175].

4.4.4.1 Fuzzy decision tree cloning of flight trajectories
A graph based mission design approach is developed in [197], involving ma-
neuvers between a large set of trim trajectories. In this approach, the graph
is not an approximation of the dynamics in general, but rather each node
consists of one of the available maneuvers and a connection exists if there
is a low cost transition between trim trajectories. The method can be di-
vided into two primary sections: the off-line mission planning phase and the
onboard phases. The mission planning steps are relatively expensive computa-
tionally and involve creating, cataloging and efficiently storing the maneuvers
and boundary conditions, as well as describing the relationship between the
discretized dynamics and fuel estimates. On the other hand, the onboard pro-
cess quickly leverages the work done on the ground and stored in memory to
quickly generate a transfer using search and correction methods. The onboard
and off-line portions are complementary images of each other: the mission
planning stages translate and compress the continuous system dynamics into
a discrete representation whereas the onboard portion searches and selects
discrete information and reconstructs continuous trajectories [26, 36, 59].

Trajectory optimization aims at defining optimal flight procedures that
lead to time/energy efficient flights. A decision tree algorithm is used to infer
a set of linguistic decision rules from a set of 2D obstacle avoidance trajec-
tories optimized using mixed integer linear programming in [198]. A method
to predict a discontinuous function with a fuzzy decision tree is proposed
and shown to make a good approximation to the optimization behavior with
significantly reduced computational expense. Decision trees are shown to gen-
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eralize to new scenarios of greater complexity than those represented in the
training data and to make decisions on a timescale that would enable imple-
mentation in a real-time system. The transparency of the rule based approach
is useful in understanding the behavior exhibited by the controller. Therefore,
the decision trees are shown to have the potential to be effective online con-
trollers for obstacle avoidance when trained on data generated by a suitable
optimization technique such as mixed integer linear programming.

Adaptive dynamic programming (ADP) and reinforcement learn-
ing (RL) are two methods for solving decision-making problems where a per-
formance index must be optimized over time. They are able to deal with com-
plex problems, including features such as uncertainty, stochastic effects, and
nonlinearity. Adaptive dynamic programming tackles these challenges by de-
veloping optimal control methods that adapt to uncertain systems over time.
Reinforcement learning takes the perspective of an agent that optimizes its
behavior by interacting with an initially unknown environment and learning
from the feedback received.

The problem is to control an autonomous aircraft to reach a target obscured
by one or more threats by following a near optimal trajectory, minimized with
respect to path length and subject to constraints representing the aircraft dy-
namics. The path must remain outside known threat regions at all times. The
threat size is assumed to be constant and the threats and target are assumed
to be stationary. Furthermore, it is assumed that the aircraft flies at constant
altitude and velocity and is equipped with an autopilot to follow a reference
heading input. The output from the controller shall be a change in demanded
heading Δχ and the inputs are of the form {Rtarget, θtarget, Rthreat, θthreat}
where Rtarget, θtarget are range and angle to target and Rthreat, θthreat are
the ranges and angles to any threats present. All angles are relative to the
autonomous aircraft current position and heading.

The system has two modes: learn and run. When in the learning mode,
the mixed integer linear programming is used to generate heading deviation
decisions. The heading deviations are summed with the current heading and
used as a reference input to the aircraft and recorded with the optimization
inputs in a training set. Once sufficient training runs (approximately 100 in
[198]) have been performed, the run mode is engaged where the decision tree is
used to generate the heading deviation commands and performance evaluated.

Predicting a heading deviation and choosing to fix the frame of reference
relative to the aircraft heading results in a data representation that is invari-
ant under global translation and rotation. The independence of these basic
transformations reduces the problem space and improves generalization by
allowing many different scenarios to be mapped on to a single representation.

The optimization solves for the minimum time path to the target using a
linear approximation to the aircraft dynamics. Variables are time to target N
and acceleration a(k) for predicted steps k = 0, . . . , N − 1.
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Problem 4.16. The optimization problem can be formulated as follows:

minN,a(k)

[
N + γ̃

N∑
k=0

‖a(k)‖2
]

(4.168)

subject to ∀k ∈ {0, . . . , (N − 1)}

R(0) = R0 V (0) = V0 (4.169)

V (k + 1) = V (k) + a(k)δz
R(k + 1) = R(k) + V (k)δz + 1

2a(k)δz
2 (4.170)

‖a(k)‖2 ≤ amax ‖V (k)‖2 ≤ amax (4.171)

‖R(N)−Rtarget‖∞ ≤ DT ‖R(k)−Rthreat‖2 ≥ R0 (4.172)

The cost (4.168) primarily minimizes time to target N in steps of δz, with a
small weight γ̃ on acceleration magnitudes to ensure a unique solution. Equa-
tions (4.169) are initial condition constraints defining position, heading and
velocity. Equations (4.170) are forward Euler approximations to the aircraft
dynamics and kinematics. Equations (4.171) are constraints on maximal ac-
celerations and velocities. Equation (4.172) ensures that the aircraft is within
a given tolerance of the target at time N and that at all times the distance
from the aircraft to the obstacle, rthreat, is outside the obstacle radius R0.
These are non convex constraints, features that makes the problem resolution
difficult. The 2-norm constraint of (4.172) is implemented by approximating
it with one of a choice of linear constraints and using binary variables to se-
lectively relax all but one of these. The resulting optimization is mixed linear
integer programming.

The heading deviation command Δχ is found by taking the difference of the
current heading and the heading predicted by the optimization. The heading
predicted by the optimization is found from the velocity vectors V (k+1) that
are part of its output. Heading deviation is calculated in place of the required
heading to obtain the translation and rotation invariance. The optimization
is integrated with the model using the algorithm 11 shown next.

Algorithm 11 Receding Horizon MILP Controller

1. Convert {Rtarget, θtarget, Rthreat, θthreat} to {rtarget, rthreat}
2. Solve the optimization problem
3. Derive initial heading deviation Δχ from optimization output
4. Set new desired heading χk+1

5. Run simulation for δz, i.e., one time step of the optimization
6. Return to step 1
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A linguistic decision tree is a tree structured set of linguistic rules formed
from a set of attributes that describe a system. The leaf nodes of the tree
represent a conditional probability distribution on a set, Lt, of descrip-
tive labels covering a target variable given the branch is true. The algorithm
constructs a decision tree on the basis of minimizing the entropy in a train-
ing database across random set partitions on each variable represented in the
training data. The rules are formulated from sets of labels, LA, describing
the universe of each attribute that provides information about the current
state. The degree of appropriateness of a particular label, L, for a given
instance quantifies the belief that L can be appropriately used to describe X .
An automatic algorithm is used to define the appropriateness measures that
best partition the data. The set of focal elements F for the same universe are
defined as all the sets of labels that might simultaneously be used to describe
a given X .

Definition 4.6. Entropy is a scalar value measure of the compactness of a
distribution. When a probability distribution is used to represent the knowl-
edge, the smaller the entropy of the distribution, the more probability mass
is assigned to a smaller area of the state space and thus the more informa-
tive the distribution is about the state. The entropy h(X) of a multivariate
Gaussian probability distribution over the variable X can be calculated from
its covariance matrix as follows:

h(X) =
1

2
log ((2πe)n|P|) (4.173)

In order to try to mimic the data most readily available to an aircraft and to
achieve the rotational and translational invariance, ranges and bearings are
used to relate threat locations to the aircraft position. Each attribute that
describes the current state, i.e., {Rtarget, θtarget, Rthreat, θthreat}, is covered
by a set of labels or focal elements.

In practice, up to nearly 20 focal elements can be used to capture final
details; the target attribute in this application is the aircraft heading devia-
tion, Δχ, which is covered by a similar set of labels. The membership of the
focal elements can be thought of as the belief that a particular label is an
appropriate description for a given value of the attribute. The membership is
used to enable the probability that a particular branch is a good description
of the current simulation state.

Remark 4.9. The characteristic of bearing data is that it is circular. This can
be achieved by merging the two boundary fuzzy sets from a linear domain to
give a coverage in a polar plot where angle denotes bearing and radius denotes
attribute membership of each focal element.

4.4.4.2 Fuzzy logic for fire fighting aircraft
The focus of this section is a single fire fighting aircraft that plans paths us-
ing fuzzy logic. In this scenario, the system uses basic heuristics to travel to
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a continuously updated target while avoiding various, stationary or moving
obstacles [167]. In a fire fighting scenario it is important that the aircraft
is capable of performing evasive maneuvering in real time. Effective collab-
oration between all the relevant agents can be difficult in a situation where
communication can be minimal and, therefore, obstacle avoidance is crucial
[137].

This method performs a multi-solution analysis supervised by a fuzzy de-
cision function that incorporates the knowledge of the fire fighting problem in
the algorithm. This research explores the use of fuzzy logic in obtaining a rule
base that can represent a fire fighting heuristic. In the fire fighting scenario,
using information from ground troops and the incident commander on the tar-
get drop location (xt, yt, zt)

T and the system’s current location (x0, y0, z0)
T ,

the system drives the difference between its heading angle and the angle to
the target to zero. The system has a sensing range that is considered able to
sense obstacles of ±π

2 rad within a certain radius. When obstacles are detected
within this area, the system alters its velocity and heading angle using infor-
mation about obstacles’ distances and angles and the location of the target
to avoid and then recover from the obstruction. Similarly, when the system
reaches its target location, the target alters its velocity to slow down and
apply the fire retardant.

For this setup, four inputs can be used for the fuzzification interface and
two outputs are given after defuzzification. Inputs into the system are distance
from obstacle, angle from the obstacles, heading angle error and distance to
the target. With these inputs and a rule base, the control input is obtained,
that is, the percentage of the maximum velocity and the heading angle is
outputted from the fuzzy inference system and used as inputs into the system.
The main objective of the controller when there are no obstacles within its
sensing range is to plan a direct path to the target. With an inertial frame
as a reference, the heading angle θ is measured as the angle of the agent’s
current heading from the horizontal and the target angle χ is measured as the
angle to the target from the horizontal. Therefore with information about the
agent location (x0, y0, z0) and the target location (xt, yt, zt), the corresponding
angles are determined by:

χ = arctan

(
y0
x0

)
φ = arctan

(
yt
xt

)
e = φ− χ (4.174)

The agent tries to drive the heading angle error e to zero by making small
heading angle adjustments according to simple if-then rules. Since the target
location is considered to be known, the target distance Dt is easily deter-
mined within the distance formula and given information. When no obstacles
are within the sensing range, the control objective is simple. Once the agent
reaches the target, it will slow down to apply its fire retardant to the loca-
tion. Once this is done, the new target location is the aircraft base to allow
the agent to refuel and reload. If the agent senses an obstacle along its path
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to the target, it must slow down and change its heading to avoid collision.
The obstacle distance D0 and angle β are obtained from information from the
agent’s sensors.

Rules relating the inputs and outputs for the fuzzy logic controller are setup
in the form of IF-THEN statements and are based on heuristics and human
experience. There is a total of 40 rules in [167] for this setup that can be
broken up into two situations: if there is an obstacle within the sensing range
or not. If there is no obstacle detected, the default is set to very far away and
moving toward the target is the agent’s primary objective. However, when
an obstacle is within range, the agent must slow down and change course to
avoid it. Again, once it is clear of this obstacle, it can continue its path toward
the target. The obstacle angle can be described by NB (negative big), NM
(negative medium), NS (negative small), PS (positive small), PM (positive
medium), PB (positive big). The distance to the obstacle is described by either
close, medium, far or very far away (out of range). Similarly, the target angle
is NB (negative big), NM (negative medium), NS (negative small), ZE (zero),
PS (positive small), PM (positive medium) or PB (positive big). The output
velocity is slow, fast or very fast and the output angle change is parallel to the
target angle. The sensing radius used is considered the safe distance from an
obstacle. The first two sets of rules are for an input of obstacle distance very
far while the target distance and heading angle vary. The second three sets
describe the change in heading speed and angle when an obstacle is detected.
The last set case is for when the obstacles are at extreme angles and pose no
threat of collision.

4.4.5 COVERAGE PROBLEM

The coverage of an unknown environment is also known as the sweeping
problem, or mapping of an unknown environment. Basically, the problem can
either be solved by providing ability for localization and map building first,
or by directly deriving an algorithm that performs sweeping without explicit
mapping of the area. Instead of a measure of coverage, an average event
detection time can be used for evaluating the algorithm.

4.4.5.1 Patrolling problem
In [100, 101], the following base perimeter patrol problem is addressed:
a UAV and a remotely located operator cooperatively perform the task of
perimeter patrol. Alert stations consisting of unattended ground sen-
sors (UGS) are located at key locations along the perimeter. Upon detection
of an incursion in its sector, an alert is flagged by the unattended ground sen-
sors. The statistics of the alerts’ arrival process are assumed known. A camera
equipped UAV is on continuous patrol along the perimeter and is tasked with
inspecting unattended ground sensors with alerts. Once the UAV reaches a
triggered unattended ground sensor, it captures imagery of the vicinity until
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the controller dictates it to move on. The objective is to maximize the in-
formation gained and at the same time reduce the expected response time
to alerts elsewhere [129]. The problem is simplified by considering discrete
time evolution equations for a finite fixed number m of unattended ground
sensors’ locations. It is assumed that the UAV has access to real time infor-
mation about the status of alerts at each alert station. Because the UAV is
constantly on patrol and is servicing a triggered unattended ground sensor,
the problem is a cyclic polling system in the domain of a discrete time
controlled queuing system. The patrolled perimeter is a simple closed curve
with N ≥ m nodes that are spatially uniformly separated of which m are the
alert stations (unattended ground sensors locations).

The objective is to find a suitable policy that simultaneously minimizes
the service delay and maximizes the information gained upon loitering. A
stochastic optimal control problem is thus considered [177]. A Markov decision
process is solved in order to determine the optimal control policy [32, 89]. How-
ever, its large size renders exact dynamic programming methods intractable.
Therefore, a state aggregation based approximate linear programming method
is used instead, to construct provably good suboptimal patrol policies [183].
The state space is partitioned and the optimal cost to go or value function is
restricted to be a constant over each partition. The resulting restricted system
of linear inequalities embeds a family of Markov chains of lower dimension, one
of which can be used to construct a lower bound on the optimal value func-
tion. The perimeter patrol problem exhibits a special structure that enables
tractable linear programming formulation for the lower bound [6].

Definition 4.7. Markov Chain: A discrete time Markov chain (MC) is a
tuple M = 〈S, P, sinit,Π, L〉 where S is a countable set of states, P : S ×
S → [0, 1] is the transition probability function such that for any state s ∈
S,
∑

s′∈S P (s, s
′) = 1, sinit ∈ S is the initial state, Π is a set of atomic

propositions and L : S → 2Π is a labeling function.

An observable first-order discrete Markov chain is encoded as the matrix
of state transition properties. Its rows sum to one but the columns do not
necessarily do so. A state Si in a Markov chain is said to be absorbing if
aii = 1. Otherwise such a state is said to be transient.

Definition 4.8. Hidden Markov Model: A hidden Markov model (HMM)
is a Markov model in which the states are hidden. Rather than have access
to the internal structure of the hidden Markov model, all that is available are
observations that are described by the underlying Markov model. A hidden
Markov model λ is described in terms of:

1. N, the number of states in the model.
2. M, the number of distinct observation symbols per state. The individual
symbol is V = {V1, ..., VM}
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3. A, the state transition probability distribution. As for Markov chains A =
{aij} = Prob (qt = Sj |qt−1 = Si)
4. B, the observation symbol probability distribution for state B = {bij} =
Prob (Vk(t)|qj = Si). B is known as the emission matrix
5. π the initial state distribution π = {πi} = Prob(q1|Si)

Definition 4.9. Markov Decision Process: A Markov decision process
(MDP) is defined in terms of the tuple 〈S,A, T,R〉, where:
1. S is a finite set of environmental states
2. A is a finite set of actions
3. T : S×A→ S is the state transition function. Each transition is associated
with a transition probability T (s, a, s′), the probability of ending in state s′,
given that the agent starts in s and executes action a.
4. R : S × A → S is the immediate reward function, received after taking a
specific action from a specific state.

Definition 4.10. Finite Markov Decision Process: A particular finite
Markov decision process is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state s and action a, the
probability of each possible nest state s′ is:

P ass′ = Prob {st+1 = s′|st = s, at = a} (4.175)

where P ass′ represents transition probabilities and t denotes a finite time step.

In the Markov decision process, the value of P ass′ does not depend on the
past state transition history. The agent receives a reward r every time it carries
out the one-step action. Given any current state s and action a, together with
any next state s′, the expected value of the next reward is:

Rass′ = E [rt+1|sr = s, at = a, st+1 = s′] (4.176)

where P ass′ and R
a
ss′ completely specify the dynamics of the finite Markov

Decision Process. In the finite Markov Decision Process, the agent follows
the policy Π. The policy Π is a mapping from each state s and action a to
the probability Π(s, a) of taking action a when in state s. In the stochastic
planning calculation, based on the Markov Decision Process, the policy Π is
decided so as to maximize the value function V Π(s). The V Π(s) denotes the
expected return when starting in S and following Π thereafter. The definition
of V Π(s) is:

V Π(s) = EΠ

[ ∞∑
k=0

γkrt+k+1|st = s

]
(4.177)

where EΠ denotes the expected value given when the agent follows the
policy Π and γ is the discount rate 0 < γ < 1. If the values of P ass′ and



280 Smart Autonomous Aircraft: Flight Control and Planning for UAV

Rass′ are known, dynamic programming is used to calculate the best policy
Π that maximizes the value function V Π(s). When the values of P ass′ and
Rass′ are unknown, a method such as online reinforcement learning is useful
in obtaining the best policy Π in the learning environment [57]. After the
planning calculation has finished, a greedy policy that selects action value a
that maximizes V Π(s) is optimal.

Definition 4.11. Path: A path through a Markov Decision process is a se-
quence of states, i.e.,

ω = q0
(a0,σ

q0
a0

)(q1)−→ q1 −→ . . . qi
(ai,σ

qi
ai

)(qi+1)−→ −→ . . . (4.178)

where each transition is induced by a choice of action at the current step i ≥ 0.
The ith state of a path ω is denoted by ω(i) and the set of all finite and infinite
paths by Pathfin and Path, respectively.

A control policy defines a choice of actions at each state of a Markov de-
cision process. Control policies are also known as schedules or adversaries
and are formally defined as follows:

Definition 4.12. Control Policy: A control policy μ of an MDP model M
is a function mapping a finite path, i.e., ωfin = q0, q1, . . . , qn of M, onto an
action in A(qn). A policy is a function: μ : Pathfin → Act that specifies for
every finite path, the next action to be applied. If a control policy depends only
on the last state of ωfin, it is called a stationary policy.

For each policy μ, a probability measure Probμ over the set of all paths
under μ, Pathμ, is induced. It is constructed through an infinite state Markov
chain as follows: under a policy μ, a Markov Decision Process becomes a
Markov chain that is denoted Dμ whose states are the finite paths of the
Markov Decision Process. There is a one-to-one correspondence between the
paths of Dμ and the set of paths Pathμ in the Markov Decision Process.
Hence, a probability measure Probμ over the set of paths Pathμfin can be
defined by setting the probability of ωfin ∈ Pathfin equal to the product of
the corresponding transition probabilities in Dμ [200].

With fuzzy logic, the cost elements are expressed as fuzzy membership
functions reflecting the inherent uncertainty associated with the planned tra-
jectory, the obstacles along the path and the maneuvers the aircraft is required
to perform as it navigates through the terrain. If employed, the algorithm A∗

can use heuristic knowledge about the closeness of the goal state from the cur-
rent state to guide the search. The cost of every searched cell, n, is composed
of two components: the cost of the least-cost route (found in the search so
far) from the start cell to cell n, and the heuristic (i.e., estimated) cost of the
minimum-cost route from cell n to the destination cell. Given a search state
space, an initial state (start node) and final state (goal node), the algorithm
A∗ will find the optimal (least cost) path from the start node to the goal
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node, if such a path exists. The generated cell route is further optimized and
smoothed by a filtering algorithm.

The filtered route is a series of consecutive waypoints that the autonomous
aircraft can navigate through. The supervisory module reads the objectives
and the status of the mission and based on that it configures the search
engine and assigns weights to the route’s three cost components. Furthermore,
the supervisory module chooses the start and the destination cells for the
search engine depending on the current status of the aircraft, i.e., whether
it is stationary or already navigating towards a destination and needs to be
redirected to another destination. The learning-support module acquires route
cost data from the search engine at certain map landmarks and updates a cost
database that is used later to provide better heuristics to guide the search
engine. Thus a two point boundary value problem (TPBVP) has to be
solved for creating a reference path to be followed by the tracking system.

4.4.5.2 Routing problem
The UAV sensor selection and routing problem is a generalization of
the orienteering problem. In this problem, a single aircraft begins at a
starting location and must reach a designated destination prior to time T .
Along with the starting and ending points, a set of locations exists with an
associated benefit that may be collected by the aircraft. Mission planning can
be viewed as a complex version of path planning where the objective is to
visit a sequence of targets to achieve the objectives of the mission [50, 51].
The integrated sensor selection and routing model can be defined as a mixed
integer linear programming formulation [134].

In [82], a path planning method for sensing a group of closely spaced tar-
gets is developed that utilizes the planning flexibility provided by the sensor
footprint, while operating within dynamic constraints of the aircraft. The
path planning objective is to minimize the path length required to view all of
the targets. In addressing problems of this nature, three technical challenges
must be addressed: coupling between path segments, utilization of the sensor
footprint and determination of the viewing order of the targets. A successful
path planning algorithm should produce a path that is not constrained by end
points or a heading that utilizes the full capability of the aircraft’s sensors and
that satisfies the dynamic constraints on the aircraft. These capabilities can
be provided by discrete time paths which are built by assembling primitive
turn and straight segments to form a flyable path. For this work, each primi-
tive segment in a discrete step path is of specified length and is either a turn
or a straight line. Assembling the left turn, right turn and straight primitives
creates a tree of flyable paths. Thus the objective for the path planner is to
search the path tree for the branch that accomplishes the desired objectives
in the shortest distance. The learning real time A∗ algorithm can be used to
learn which branch of a defined path tree best accomplishes the desired path
planning objectives.
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Field operations should be done in a manner that minimizes time and trav-
els over the field surface. A coverage path planning in 3D has a great potential
to further optimize field operations and provide more precise navigation [76].

Another example follows. Given a set of stationary ground targets in a
terrain (natural, urban or mixed), the objective is to compute a path for the
reconnaissance aircraft so that it can photograph all targets in minimum time,
because terrain features can occlude visibility. As a result, in order for a target
to be photographed, the aircraft must be located where both the target is in
close enough range to satisfy the photograph’s resolution and the target is not
blocked by terrain. For a given target, the set of all such aircraft positions is
called the target’s visibility region. The aircraft path planning can be com-
plicated by wind, airspace constraints, aircraft dynamic constraints and the
aircraft body itself occluding visibility. However, under simplifying assump-
tions, if the aircraft is modeled as a Dubins vehicle, the target’s visibility
regions can be approximated by polygons and the path is a closed tour [141].
Then the 2D reconnaissance path planning can be reduced to the following:
for a Dubins vehicle, find a shortest planar closed tour that visits at least one
point in each of a set of polygons. This is referenced to as the polygon vis-
iting Dubins traveling salesman problem (PVDTSP). Sampling-based
roadmap methods operate by sampling finite discrete sets of poses (positions
and configurations) in the target visibility regions in order to approximate a
polygon visiting Dubins traveling salesman problem instance by a finite-one
in set traveling salesman problem (FOTSP). The finite-one in set trav-
eling salesman problem is the problem of finding a minimum cost closed path
that passes through at least one vertex in each of a finite collection of clusters,
the clusters being mutually exclusive finite vertex sets. Once a road-map has
been constructed, the algorithm converts the finite-one in set traveling sales-
man problem instance into an asymmetric traveling salesman problem
(ATSP) instance to solve a standard solver can be applied.

Another example is the case of a UAV that has to track, protect or pro-
vide surveillance of a ground based target. If the target trajectory is known,
a deterministic optimization or control problem can be solved to give a fea-
sible UAV trajectory. The goal in [4] is to develop a feedback control policy
that allows a UAV to optimally maintain a nominal standoff distance from
the target without full knowledge of the current target position or its future
trajectory. The target motion is assumed to be random and described by a 2D
stochastic process. An optimal feedback control is developed for fixed speed,
fixed altitude UAV to maintain a nominal distance from a ground target in
a way that it anticipates its unknown future trajectory. Stochasticity is in-
troduced in the problem by assuming that the target motion can be modeled
as Brownian motion, which accounts for possible realizations of the unknown
target kinematics. The tracking aircraft should achieve and maintain a nomi-
nal distance d to the target.To this end, the expectation of an infinite-horizon
cost function is minimized, with a discounting factor and with penalty for
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control. Moreover the possibility for the interruption of observations is in-
cluded by assuming that the duration of observation times of the target is
exponentially distributed, giving rise to two discrete states of operation. A
Bellman equation based on an approximating Markov chain that is consistent
with the stochastic kinematics is used to compute an optimal control policy
that minimizes the expected value of a cost function based on a nominal UAV
target distance.

4.4.5.3 Discrete stochastic process for aircraft networks
This section considers a network of autonomous aircraft. Each one is equipped
with a certain kind of onboard sensors, for example, a camera or a different
sensor, taking snapshots of the ground area [212]. The general aim of this
network is to explore a given area, i.e., to cover this area using several appli-
cations: target or even detection and tracking in an unknown area, monitoring
geographically inaccessible or dangerous areas (e.g., wildfire or volcano) or as-
sisting emergency personnel in case of disasters.

The objective is to provide a simple analytical method to evaluate the per-
formance of different mobility patterns in terms of their coverage distribution.
To this end, a stochastic model can be proposed using a Markov chain. The
states are the location of the aircraft and the transitions are determined by
the mobility model of interest. Such a model can be created for independent
mobility models such as the random walk and random direction.

However, for a cooperative network, in which each autonomous aircraft de-
cides where to move based on the information received from other aircraft in
its communication range, creating a simple Markov model is not straightfor-
ward. Therefore, in addition to providing the necessary transition probabilities
for random walk and random direction, an approximation to these probabil-
ities is also proposed for a cooperative network. While intuitive rules for the
movement paths are chosen when one or more autonomous aircraft meet each
other, the proposed model can be extended such that other rules can be in-
corporated.

Several mobility models for autonomous agents have been proposed re-
cently. Some of these are synthetic like the random walk and random direction,
others are realistic and all of them are used mainly to describe the movement
of the users in a given environment. In the autonomous aircraft domain, such
models are good for comparison of different approaches but can give incorrect
results when the autonomous aircraft are performing cooperative tasks. Mo-
bility can increase throughput energy efficiency, coverage and other network
parameters. Therefore, the analysis of mobility models has become a high-
light to design the mobility of the nodes in a way to improve the network
importance.
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4.4.5.3.1 Markov chain
A discrete-time discrete value stochastic process is introduced that can be
used to analyze the coverage performance of the autonomous aircraft network.
Nodes can operate independently or in a cooperative manner. The system area
is modeled as a 2D lattice where autonomous aircraft move from one grid point
to another in each time step. It is assumed that an autonomous aircraft can
only move to the four nearest neighboring grid points: the Von Neumann
neighborhood of radius 1. The probability of moving to a neighboring grid
point is determined by the mobility model of interest. In the following, two
main components of the proposed Markov chain are presented: state proba-
bilities and transition probabilities.

In this model, the states are defined as [current location, previous location].
Depending on the location, the number of associated states is different. If the
current location is at a corner, boundary or middle grid point, there are 2, 3
and 4 associated states, respectively: Pf , Pb, Pl, Pr are, respectively, the prob-
abilities to move forward, backward, left and right. The steady state probabil-
ities of this Markov chain are denoted by π = [π(i, j, k, l)] and the transition
probability matrix by T , where the entities of the matrix are the transition,
probabilities between the states [(i, j); (k, l)]. Accordingly, the transient state

probabilities are denoted by π(n) =
[
π
(n)
i,j,k,l

]
at time step n. The following

relations for the steady state and transient state probabilities can thus be
written:

�π = π.T For steady state
π(n) = π(0)T n For transient state

limn→∞π(n) = �π
(4.179)

where
∑
πi,j,k,l = 1. The initial state π(0) can be chosen to be [1, 0, . . . , 0],

since the solution for �π is independent of the initial condition. From these
linear equations, the steady and transient state probabilities can be obtained.
This is used to determine the coverage of a given mobility pattern.

4.4.5.3.2 Coverage metrics
The steady state coverage probability distribution for an a×a area is denoted
by P = [P (i, j)] , 1 ≤ i ≤ a, 1 ≤ j ≤ a. The probability matrix represents the
percentage of time a given location (i, j) is occupied and can be computed by
adding the corresponding steady state probabilities obtained from (4.179):

P (i, j) =
∑
k,l

π(i, j; k, l) (4.180)

where (k, l) = {(i− 1, j), (i, j − 1), (i+ 1, j), (i, j + 1)} for the non-boundary
states. The (k, l) pairs for boundary states can be determined in a straight-
forward manner. The transient coverage probability distribution P(n) =
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[P (i, j)] , 1 ≤ i ≤ a, 1 ≤ j ≤ a:

P (n) =
∑
k,l

π(n)(i, j; k, l) (4.181)

Using the obtained P (n), the probability that location (i, j) is covered by a
time step can be computed as follows:

C(n)(i, j) = 1−
n∏
ν=0

(
1− P (ν)(i, j)

)
(4.182)

In the case of multiple autonomous aircraft, the state probabilities can be
computed. Given the steady state coverage distribution matrix of the au-
tonomous aircraft k is Pk entities obtained using relation (4.180) and assum-
ing independent/decoupled mobility, the steady state coverage distribution of
an m-autonomous aircraft network can be obtained as:

pmulti(i, j) = 1−
m∏
k=1

(1− Pk(i, j)) (4.183)

The transient behavior of the m−aircraft network can be computed sim-
ilarly, by substituting the (i, j) entry of the transient coverage probability

matrix P
(k)
n from relations (4.181) to (4.183). Some potential metrics of in-

terest are now defined besides the coverage distribution of a mobility model
in a grid, at time step n for a grid of size a× a:

1. Average Coverage:

E
[
C(n)

]
=

1

a2

∑
i,j

C(n)(i, j) (4.184)

2. Full coverage:

ε(n) = Pr
(
C(n) = �1a×a

)
=
∏
i,j

C(n)(i, j) (4.185)

where �1a×a is an a × a matrix of ones. These metrics carry some valuable
information regarding the coverage performance, e.g., how well a given point
is covered, how well the whole area is covered and how much time would be
necessary to cover the whole area.

4.4.5.3.3 Transition probabilities: independent mobility
The state transition probabilities for the random walk and direction mobility
models are first discussed where the transition probabilities are very intuitive.
For a random walk, the knowledge of the previous location is not necessary.
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Therefore, the states of the analytical tool (i, j, k, l) can be further simplified to
(i, j). For a random walk, it is assumed that at each time step, the autonomous
aircraft can go to any one of the neighboring grid points with equal probability.
Clearly, the number of neighboring points change depending on the location.
On the other hand, for a random direction model, the direction is changed only
when the autonomous aircraft reaches the boundary of the grid. Therefore,
the previous location, which is also equivalent to direction for the lattice,
needs to be taken into account. For both of these schemes, as well as for the
cooperative scheme at the boundaries and corners, the next location is chosen
randomly among the available neighboring points with equal probability.

4.4.5.3.4 Transition probabilities: cooperative mobility
A method to approximate the coverage performance of a cooperative mobile
network is proposed in this section. In such a network, the nodes interact
with each other: exchange information, whenever they meet. The objective
is to come up with an appropriate transition probability matrix that can be
used by the proposed stochastic tool. For independent mobility, the proposed
Markov chain can be easily extended to multiple autonomous aircraft. How-
ever, for cooperative mobility, this Markov chain is not sufficient to model the
interactions. The states of a Markov chain that exactly models all the inter-
actions will grow exponentially with the number of autonomous aircraft [158].
Therefore, an approximation method can be proposed to model the behavior
of the aircraft in a way that would allow to treat the cooperative mobility as
independent mobility [201].

To decouple the actions for the aircraft from each other, for an m aircraft
network the following probabilities are defined:

PX =

m−1∑
k=0

PX|k Pr (k + 1nodes meet) , X ∈ {B,F, L,R} (4.186)

where the backward, forward, left-turn and right-turn probabilities are
given by the decision metric PX|k of the cooperative mobility as well as the
number of aircraft that will meet. With the assumption that any node can be
anywhere in the grid with equal probability, probability that exactly k air-
craft out of a total of m aircraft will also be at (i, j) is given by the binomial
distribution:

Pr (k + 1 nodes meet ) =

(
m− 1
k

)(
1

a2

)k (
1− 1

a2

)m−1−k
(4.187)

The entries of the corresponding transition probability matrix can be com-
puted using relations (4.186) to (4.187), given the decision metric PX|k.
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4.4.5.4 Sensor tasking in multi-target search and tracking applications
The problem of managing uncertainty and complexity of planning and exe-
cuting an intelligence surveillance reconnaissance (ISR) mission is ad-
dressed in this section. This intelligence surveillance reconnaissance mission
uses a network of UAV sensor resources [86]. In such applications, it is impor-
tant to design uniform coverage dynamics such that there is little overlap of
the sensor footprints and little space left between the sensor footprints. The
sensor footprints must be uniformly distributed so that it becomes diffi-
cult for a target to evade detection. For the search of a stationary target, the
uncertainty in the position of the target can be specified in terms of a fixed
probability distribution. The spectral multiscale coverage algorithm makes
the sensors move so that points on the sensor trajectories uniformly sample
this stationary probability distribution. Uniform coverage dynamics coupled
with sensor observations help to reduce the uncertainty in the position of the
target [13].

Coverage path planning determines the path that ensures a complete cover-
age in a free workspace. Since the aircraft has to fly over all points in the free
workspace, the coverage problem is related to the covering salesman prob-
lem. Coverage can be a static concept, i.e., it is a measure of how a static
configuration of agents covers a domain or samples a probability distribution.
Coverage can also be a dynamic concept, i.e., it is a measure of how well the
points on the trajectories of the sensor cover a domain. Coverage gets better
and better as every point in the domain is visited or is close to being visited
by an agent. Uniform coverage uses a metric inspired by the ergodic theory
of dynamical system. The behavior of an algorithm that attempts to achieve
uniform coverage is going to be inherently multi-scale. Features of large size
are guaranteed to be detected first, followed by features of smaller and smaller
size [192, 194, 196].

Definition 4.13. Ergodic Dynamics: A system is said to exhibit ergodic
dynamics if it visits every subset of the phase space with a probability equal
to the measure of that subset. For a good coverage of a stationary target, this
translates to requiring that the amount of time spent by the mobile sensors in
an arbitrary set be proportional to the probability of finding the target in that
set. For good coverage of a moving target, this translates to requiring that the
amount of time spent in certain tube sets be proportional to the probability of
finding the target in the tube sets.

A model is assured for the motion of the targets to construct these tube sets
and define appropriate metrics for coverage. The model for the target motion
can be approximate and the dynamics of targets for which precise knowledge
is not available can be captured using stochastic models. Using these metrics
for uniform coverage, centralized feedback control laws are derived for the
motion of the mobile sensors.
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For applications in environmental monitoring with a mobile sensor network,
it is often important to generate accurate spatio-temporal maps of scalar fields
such as temperature or pollutant concentration. Sometimes, it is important
to map the boundary of a region. In [191], a multi-vehicle sampling algorithm
generates trajectories for non uniform coverage of a non stationary spatio-
temporal field characterized by spatial and temporal decorrelation scales that
vary in space and time, respectively. The sampling algorithm uses a nonlinear
coordinate transformation that renders the field locally stationary so that the
existing multi-vehicle control algorithm can be used to provide uniform cover-
age. When transformed back to original coordinates, the sampling trajectories
are concentrated in regions of short spatial and temporal decorrelation scales.

For applications of multi-agent persistent monitoring, the goal can be to
patrol the whole mission domain while driving the uncertainty of all targets
in the mission domain to zero [182]. The uncertainty at each target point
is assumed to evolve nonlinearly in time. Given a closed path, multi-agent
persistent monitoring with the minimum patrol period can be achieved by
optimizing the agent’s moving speed and initial locations on the path [63, 207].

Remark 4.10. The main difference between multi-agent persistent monitor-
ing and dynamic coverage lies in that dynamic coverage task is completed
when all points attain satisfactory coverage level while the persistent monitor-
ing would last forever.

4.4.5.4.1 Coverage dynamics for stationary targets
There are N mobile agents assumed to move either by first order or second
order dynamics. An appropriate metric is needed to quantify how well the
trajectories are sampling a given probability distribution μ. It is assumed that
μ is zero outside a rectangular domain U ∈ R

n and that the agent trajectories
are confined to the domain U. For a dynamical system to be ergodic, the
fraction of the time spent by a trajectory must be equal to the measure of
the set. Let B(X,R) = {R : ‖Y −X‖ ≤ R} be a spherical set and χ(X,R)
be the indicator function corresponding to the set B(X,R). Given trajectory
Xj : [0, t] −→ R

n, j = 1 . . .N the fraction of the time spent by the agents in
the set B(X,R) is given as:

dt(X,R) =
1

Nt

N∑
j=1

∫ t

0

χ(X,R)(Xj)(τ)dτ (4.188)

The measure of the set B(X,R) is given as

μ̄(X,R) =

∫

U

μ(Y )χ(X,R)(Y )dY (4.189)

For ergodic dynamics, the following relation must be verified:
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lim︸︷︷︸
t→∞

dt(X,R) = μ̄(X,R) (4.190)

Since the equation above must be true for almost all points X and all radii
R, this is the basis for defining the metric

E2(t) =

∫ R

0

∫

U

(
dt(X,R)− μ̄(X,R))2 dXdR (4.191)

E(t) is a metric that quantifies how far the fraction of the time spent by the
agents in the spherical sets is from being equal to the measure of the spherical
sets. Let the distribution Ct be defined as

Ct(X) =
1

Nt

N∑
j=1

∫ t

0

δ (X −Xj(τ)) dτ (4.192)

Let φ(t) be the distance between Ct and μ as given by the Sobolev space
norm of negative index H−1 for s = n+1

2 , i.e.,

φ2(t) =
∥∥Ct − μ∥∥2

H−s =
∑
K

Λk|sk(t)|2 (4.193)

where

sk(t) = Ck(t)− μk Λk =
1(

1 + ‖k‖2
)s (4.194)

Ck(t) =
〈
Ct, fk

〉
μk = 〈μ, fk〉 (4.195)

Here, fk are Fourier basis functions with wave number vector k. The metric
φ2(t) quantifies how much the time averages of the Fourier basis functions
deviate from their spatial averages, but with more importance given to large
scale modes than the small scale modes. The case is considered where the
sensors are moving by first order dynamics described by:

Ẋj(t) = Uj(t) (4.196)

The objective is to design feedback laws:

Uj(t) = Fj(X) (4.197)

so that the agents have ergodic dynamics. A model predictive control problem
is formulated to maximize the rate of decay of the coverage metric φ2(t) at
the end of a short time horizon and the feedback law is derived in the limit as
the size of the receding horizon goes to zero. The cost function is taken to be
the first time derivative of the φ2(t) at the end of the horizon [t, t+Δt], i.e.,
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C (t,Δt) =
∑
K

Λksk(t+Δt)ṡk(t+Δt) (4.198)

The feedback law in the limit as Δt→ 0 is given as:

Uj(t) = −Umax Bj
‖Bj(t)‖2

(4.199)

where

Bj(t) =
∑
K

Λksk(t)∇fk (Xj(t)) (4.200)

and ∇fk(t) is the gradient field of the Fourier basis functions fk.

4.4.5.4.2 Coverage dynamics for moving targets
Let the target motion be described by a deterministic set of ordinary differ-
ential equations:

Ż(t) = V (Z(t), t) (4.201)

with Z(t) ∈ U,U ⊂ R
3 being the zone in which the target motion is confined

over a period [0, Tf ]. Let T be the corresponding mapping that describes the
evolution of the target position, i.e., if the target is at point Z(t0) at time
t = t0, its position Z(tf ) = T (Z(t0), t0, tf ).

Given a set A ⊂ U, its inverse image under the transformation T (., t0, tf )
is given as:

T−1(., t0, tf )(A) = {Y : T (Y, t0, tf ) ∈ A} (4.202)

The initial uncertainty in the position of the target is specified by the
probability distribution μ(0, X) = μ0(X).

Let [P t0,tf ] be the family of Perron–Frobenius operators corresponding to
the transformations T (., t0, tf ) i.e.,

∫

A

[
P t0,tf

]
μ(t0, Y )dY =

∫

A

μ(tf , Y )dY =

∫

T−1(.,t0,tf )(A)

μ(t0, Y )dY (4.203)

At time t, the spherical set B(X,R) with radius R and center X is consid-
ered as well as the corresponding tube set:

Ht (B(X,R)) = {(Y, τ) : τ ∈ [0, t] and T (Y, τ, t) ∈ B(X,R)} (4.204)

The tube set Ht(B(X,R)) is a subset of the extended space-time domain
and is the union of the sets

T−1(., τ, t)(B(X,R)) × {τ} , ∀τ ∈ [0, t] (4.205)
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This tube set can be thought of as the set of all points in the extended
space-time domain that end up in the spherical set B(X,R) at time t when
evolved forward in time according to the target dynamics.

The probability of finding a target within any time slice of the tube set is
the same i.e.:

μ
(
τ1, T

−1(., τ1, t)(B(X,R))
)
= μ

(
τ2, T

−1(., τ2, t)(B(X,R))
)
= μ(t, B(X,R))

(4.206)
∀τ1, τ2 ≤ t.
This is because none of the possible target trajectories either leave or enter

the tube setHt(B(X,R)). Let the sensor trajectories be Xj : [0, t]→ R
2, ∀j =

1..N . The fraction of the time spent by the sensor trajectories (Xj(t), t) in
the tube set Ht(B(X,R)) is given as:

dt(X,R) =
1

Nt

N∑
j=1

∫ t

0

χT−1 (., τ, t) (B(X,R)) (Xj(τ)) dτ (4.207)

or

dt(X,R) =
1

Nt

N∑
j=1

∫ t

0

χB(X,R) (T (Xj(τ), τ, t)) dτ (4.208)

χB(X,R) is the indicator function on the set B(X,R). dt(X,R) can be
computed as the spherical integral

dt(X,R) =

∫

B(X,R)

Ct(Y )dY (4.209)

of a distribution

Ct(X) =
1

Nt

N∑
j=1

∫ t

0

P τ,tδXj(τ)(x)dτ (4.210)

referred to as the coverage distribution. δXj(τ) is the delta distribution
with mass at the point Xj(τ). The coverage distribution Ct can be thought
of as the distribution of points visited by the mobile sensors when evolved
forward in time according to the target dynamics.

For uniform sampling of the target trajectories, it is desirable that the
fraction of time spent by the sensor trajectories in the tube must be close to
the probability of finding a target trajectory in the tube which is given as:

μ(t, B(X,R)) =

∫

B(X,R)

μ(t, Y )dY =

∫

T−1(.,0,t)(B(X,R))

μ0(Y )dY (4.211)

This is the basis for defining the metric:

Ψ2(t) =
∥∥Ct − μ(t, .)∥∥2

H−s (4.212)
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Using the same receding horizon approach as described before for stationary
targets, feedback laws similar to that in equation (4.199) are obtained.

During search missions, efficient use for flight time requires flight paths
that maximize the probability of finding the desired subject. The probability
of detecting the desired subject based on UAV sensor information can vary
in different search areas due to environment elements like varying vegetation
density or lighting conditions, making it likely that the UAV can only partially
detect the subject. In [119], an algorithm that accounts for partial detection
in the form of a difficulty map is presented. It produces paths that approxi-
mate the payoff of optimal solutions, the path planning being considered as a
discrete optimization problem. It uses the mode goodness ratio heuristic that
uses a Gaussian mixture model to prioritize search subregions. The algorithm
searches for effective paths through the parameter space at different levels
of resolution. The task difficulty map is a spatial representation of sensor
detection probability and defines areas of different levels of difficulty [15].

4.4.6 RESOURCE MANAGER FOR A TEAM OF AUTONOMOUS AIRCRAFT

Knowledge of meteorological properties is fundamental to many decision pro-
cesses. It is useful if related measurement processes can be conducted in a
fully automated fashion. The first type of cooperation that the autonomous
aircraft may exhibit is to support each other if there is evidence that an
interesting physical phenomenon has been discovered. The second type of
cooperation that the aircraft can exhibit through their control algorithm is
when an aircraft is malfunctioning or may be malfunctioning. If an aircraft
internal diagnostic indicates a possible malfunction, then it will send out an
omnidirectional request to the other aircraft for help to complete its task.
Each autonomous aircraft will calculate its priority for providing help. The
autonomous aircraft send their priority for providing a help message back
to the requesting aircraft. The requester subsequently sends out a message
informing the group of the ID of the highest priority aircraft. The high pri-
ority aircraft then proceeds to aid the requester. The support provided by
the helping aircraft can take on different forms. If the requester suspects a
malfunction in its sensors, the helper may measure some of the same points
originally measured by the autonomous aircraft in doubt. This will help estab-
lish the condition of the requester’s sensors. If additional sampling indicates
the requester is malfunctioning and represents a liability to the group it will
return to base. In this case, the supporter may take over the mission of the
requester [180].

Whether or not the supporter samples all the remaining sample points of
the requester, subsequently abandoning its original points, depends on the
sample points’ priorities. If it is established that the requester is not malfunc-
tioning or the requester can still contribute to the mission’s success, it may
remain in the field to complete its current mission [3].
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4.4.6.1 Routing with refueling depots for a single aircraft
A single autonomous aircraft routing problem with multiple depots is con-
sidered. The aircraft is allowed to refuel at any depot. The objective of the
problem is to find a path for the UAV such that each target is visited at least
once by the aircraft, the fuel constraint is never violated along the path for
the UAV and the total fuel required by the UAV is a minimum. An approx-
imation algorithm for the problem is developed and a fast construction and
improvement heuristic is proposed for the solution [189].

As small autonomous aircraft typically have fuel constraints, it may not be
possible for them to complete a surveillance mission before refueling at one of
the depots. For example, in a typical surveillance mission, an aircraft starts
at a depot and is required to visit a set of targets. It is assumed that the fuel
required to travel a given path for the UAV is directly proportional to the
length of the path. To complete this mission, the aircraft might have to start
at one depot, visit a subset of targets and then reach one of the depots for
refueling before starting a new path. If the goal is to visit each of the given
targets once, the UAV may have to repeatedly visit some depots for refueling
before visiting all the targets. In this scenario, the following problem arises:

Problem 4.17. Routing Problem: Given a set of targets and depots and a
UAV where the aircraft is initially stationed at one of the depots, find a path
for the UAV such that each target is visited at least once, the fuel constraint is
never violated along the path for the UAV and the travel cost for the aircraft
is a minimum. The travel cost is defined as the total fuel consumed by the
aircraft as it traverses its path.

The main difficulty in this problem is mainly combinatorial [113]. As long
as a path of minimum length can be efficiently computed from an origin
to a destination of the autonomous aircraft, the motion constraints of the
autonomous aircraft do not complicate the problem. The UAV can be modeled
as a Dubins aircraft. If the optimal heading angle is specified at each target,
the problem of finding the optimal sequence of targets to be visited reduces
to a generalization of the traveling salesman problem [155].

The autonomous aircraft must visit each target at a specified heading angle.
As a result, the travel costs for the autonomous aircraft may be asymmetric.
Symmetry means that the cost of traveling from target A with the heading χA
and arriving at target B with heading χB may not equal the cost of traveling
from target B with heading χB and arriving at target A with the heading χA.

Definition 4.14. An α approximation algorithm for an optimization problem
is an algorithm that runs in polynomial time and finds a feasible solution whose
cost is at most α times the optimal cost for every instance of the problem.

This guarantee α is also referred to as the approximation factor of the
algorithm. This approximation factor provides a theoretical upper bound on
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the quality of the solution produced by the algorithm for any instance of the
problem. These upper bounds are known a priori. The bound provided by the
approximation factor is generally conservative.

Let T denote the set of targets and D represent the set of depots. Let s ∈ D

be the depot where the UAV is initially located. The problem is formulated
on the complete directed graph G = (V, E) with V = T

⋃
D. Let fij represent

the amount of fuel required by the aircraft to travel from vertex i ∈ V to
vertex j ∈ V. It is assumed that the fuel costs satisfy the triangle inequality,
i.e., for all distinct i, j, k ∈ V, fij + fjk ≥ fik. Let L denote the maximum
fuel capacity of the aircraft. For any given target i ∈ I, it is assumed that
there are depots d1 and d2 such that fd1i + fid2 ≤ aL, where 0 < a < 1 is
a fixed constant. It is also assumed that it is always possible to travel from
one depot to another depot (either directly or indirectly, by passing through
some intermediate depots, without violating the fuel constraints). Given two
distinct depots d1 and d2, let �′d1d2 denote the minimum fuel required to
travel from d1 to d2. Then, let β be a constant such that �′d1d2 ≤ β�′d1d2 for
distinct d1 and d2. A tour for the aircraft is denoted by a sequence of vertices
T = (s, v1, v2, . . . , vp, s) visited by the aircraft, where vi ∈ V for i = 1, . . . , p.
A tour visiting all the targets can be transformed to a tour visiting all the
targets and the initial depot and vice versa.

Problem 4.18. The objective of the problem is to find a tour T =
(s, v1, v2, . . . , vp, s) such that T ⊆ {v1, v2, . . . , vp}, the fuel required to travel
any subsequence of vertices of the tour (d1, t1, t2, . . . , tk, d2) starting at a de-
pot d1 and ending at the next visit to a depot d2, while visiting a sequence of
targets (t1, t2, . . . , tk) ∈ T must be at most equal to L, i.e.,

fd1t1 +

k−1∑
i=1

ftiti+1 + ftkd2 ≤ L (4.213)

The travel cost fsv1 +
∑p−1
i=1 fvivi+1 + fvps is a minimum. Let xij denote an

integer decision variable which determines the number of directed edges from
vertex i to vertex j in the network, xij ∈ {0, 1}, if either i or vertex j is a
target.

The collection of edges chosen by the formulation must reflect the fact that
there must be a path from the depot to every target. Flow constraints are
used to formulate these connectivity constraints. In these flow constraints,
the aircraft collects |T | units of a commodity at the depot and delivers one
unit of commodity at each target as it travels along its path. pij denotes the
amount of commodity flowing from vertex i to vertex j and ri represents the
fuel left in the aircraft when the ith target is visited.

Problem 4.19. The problem can be formulated as mixed integer linear pro-
gramming as follows:
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min
∑

(i,j)∈E

fijxij (4.214)

subject to degree constraints:

∑
i∈V/{k}

xik =
∑

i∈V/{k}
xki ∀k ∈ V (4.215)

∑
i∈V/{k}

xik = 1, ∀k ∈ T (4.216)

Capacity and flow constraints:

∑
i∈V/{s}

(psi − pis) = |T | (4.217)

∑
j∈V/{i}

(pji − pij) = 1 ∀i ∈ T (4.218)

∑
j∈V/{i}

(pji − pij) = 0 ∀i ∈ D/ {s} (4.219)

0 ≤ pij ≤ |T |xij ∀i, j ∈ V (4.220)

Fuel constraints:

−M(1− xij) ≤ rj − ri + fij ≤M(1− xij) ∀i, j ∈ T (4.221)

−M(1− xij) ≤ rj − L+ fij ≤M(1− xij) ∀i ∈ D, ∀j ∈ T (4.222)

−M(1− xij) ≤ ri − fij ∀i ∈ T, ∀j ∈ D (4.223)

xij ∈ {0, 1} , ∀i, j ∈ V; either i or j is a target (4.224)

xij ∈ {0, 1, 2, . . . , |T |} , ∀i, j ∈ D (4.225)

Equation (4.215) states that the in-degree and out-degree of each vertex
must be the same and equation (4.216) ensures that each target is visited
once by the aircraft. These equations allow for the aircraft to visit a depot
any number of times for refueling. The constraints (4.217) to(4.220) ensure
that there are |T | units of commodity shipped from one depot and the aircraft
delivers exactly one unit of commodity at each target. In equations (4.221)
to (4.225), M denotes a large constant and can be chosen to be equal to
L +maxi,j∈Vfij . If the UAV is traveling from target i to target j, equations
(4.221) ensure that the fuel left in the aircraft after reaching target j is rj =
ri − fij . If the UAV is traveling from depot i to target j, equation (4.222)
ensures that the fuel left in the aircraft after reaching target j is rj = L− fij.
If the UAV is directly traveling from any target to a depot constraint, (4.224)
must be at least equal to the amount required to reach the depot.
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An approach to trajectory generation for autonomous aircraft is using
mixed integer linear programming (MILP) and a modification of the
A∗ algorithm to optimize paths in dynamic environments particularly having
pop-ups with a known future probability of appearance. Each pop-up leads to
one or several possible evasion maneuvers, characterized with a set of values
used as decision-making parameters in an integer linear programming model
that optimizes the final route by choosing the most suitable alternative tra-
jectory, according to the imposed constraints such as fuel consumption and
spent time. The decision variables are the UAV state variables, i.e., position
and speed. The constraints are derived from a simplified model of the UAV
and the environment where it has to fly [166].

4.4.6.2 Routing with refueling depots for multiple aircraft
The multiple autonomous aircraft routing problem can also be considered.
Given a set of heterogeneous aircraft, find an assignment of targets to be
visited by each UAV along with the sequence in which it should be visited
so that each target is visited at least once by an autonomous aircraft, all the
UAV return to their respective depots after visiting the targets and the total
distance traveled by the collection of autonomous aircraft is minimized;

Problem 4.20. Let there be n targets and m aircraft located at distinct de-
pots, let V(T ) be the set of vertices that correspond to the initial locations of
the aircraft (targets) with the m vertices, V = {V1, . . . , Vm}, representing the
aircraft (i.e., the vertex i corresponds to the ith aircraft) and T = {T1, . . . , Tn}
representing the targets. Let Vi = Vi ∪ T be the set of all the vertices corre-
sponding to the ith aircraft and let Ci : Ei → R

+ denote the cost function with
Ci(a, b) representing the cost of traveling from vertex a to vertex b for aircraft
i. The cost functions are considered to be asymmetric i.e., Ci(a, b) �= Ci(b, a).
An aircraft either does not visit any targets or visits a subset of targets in T .
If the ith aircraft does not visit any target then its tour TOURi = ∅ and its
corresponding tour C(TOURi) = 0. If the ith aircraft visits at least one tar-
get, then its tour may be represented by an ordered set

{
Vi, Ti1 , . . . , Tiri , Vi

}
where Ti	 , � = 1, . . . , ri corresponds to ri distinct targets being visited in that
sequence by the ith aircraft. There is a cost C(TOURi) associated with a tour
for the ith aircraft visiting at least one target defined as:

C(TOURi) = Ci(Vi, Ti1) +

ri−1∑
k=1

Ci(Tik , Tik+1
) + Ci(Tir1 , Vi) (4.226)

Find tours for the aircraft so that each target is visited exactly once by some
aircraft and the overall cost defined by

∑
i∈V C(TOURi) is minimized.

The approach is to transform the routing problem into a single asymmetric
traveling salesman problem (ATSP) and use the algorithms available for the
asymmetric traveling salesman problem to address the routing problem [140].
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In the generalized traveling salesman problem, a major issue is that its
mathematical formulation involves both continuous and integer decision vari-
ables [69]. To solve the problem, it is necessary to determine the following
topics which minimize the mission completion time:

1. the order of the visit of the points.
2. the number of takeoffs and the number of points that have to be

visited between each takeoff and landing.
3. the continuous path that the aircraft has to follow.

The multi criteria decision analysis (MCDA) technique is a process
that allows to make decisions in the presence of multiple potentially conflicting
criteria [187]. Common elements in the decision analysis process are a set
of design alternatives, multiple decision criteria and preference information
representing the attitude of a decision maker in favor of one criterion over
another, usually in terms of weighting factors. Because of different preferences
and incomplete information, uncertainty always exists in the decision analysis
process [188].

To effectively select the most appropriate decision analysis method for a
given decision problem, an approach consisting of the following steps can be
proposed:

1. Define the problem,
2. define evaluation criteria,
3. calculate appropriateness index,
4. evaluate decision analysis method,
5. choose the most suitable method,
6. conduct sensitivity analysis.

An integrated approach based on graph theory for solving the deadlock
problem in the cooperative decision-making and control is presented in [54].
The vehicle team can contain a group of fixed-wing UAV with different oper-
ational capabilities and kinematic constraints. Because of heterogeneity, one
task cannot be performed by arbitrary vehicles in the heterogeneous group.
The task assignment problem is described as a combinatorial optimization
problem. Each assignment that allocates multiple vehicles to perform multi-
ple tasks on multiple targets is a candidate solution. The execution time that
the mission takes to be accomplished is chosen as the objective function to be
minimized. A vehicle that performs multiple tasks on targets needs to change
its path, waiting for other if another target needs to change its path, waiting
for another vehicle that executes a former or simultaneous task has not fin-
ished or arrived. This creates risks of deadlocks. Two or more vehicles may
fall into a situation of infinite waiting due to shared resources and precedence
constraints among various tasks. A task-precedence graph of solutions is con-
structed and analyzed for detecting deadlocks. In addition, the topological
sort of tasks is used for the path elongation of vehicles. Thus, deadlock-free
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solutions are obtained and the path coordinate is done [35].
The focus is to find a method to manage the non-deadlock condition and

the time constraint. Consequently, the combinatorial optimization problem
could be processed. All initial assignments are encoded according to a scheme
that makes candidate solutions satisfy the constraints. Each feasible assign-
ment of tasks is a feasible solution of the combinatorial optimization problem.
After an initial assignment is generated, it must be checked whether it en-
codes deadlocks because the non-deadlock condition is a prerequisite for the
subsequent process. An initial assignment is first processed into two groups
according to two types of task relation. The first subgraph, the task executing
subgraph, is derived by the vehicle-based task group. The second subgraph,
the task constraint subgraph, is derived by the target tasks [71].

4.5 CONCLUSION
In the first part of this chapter, path and trajectory planning is presented.
Trim is concerned with the ability to maintain flight equilibrium with controls
fixed. Then an algorithm for 2D and 3D open-loop path planning is derived
for the system presented in the previous section. Then, the Zermelo’s naviga-
tion problem is considered in the sequel. Parametric paths are investigated,
depending on the initial and final configurations. Smoother paths can be ob-
tained by asking for the continuity of the derivatives of the path curvature and
torsion. Maneuvers should be kept only to join two trim flight paths. Finally,
some parametric curves such as polynomials, Pythagorean hodograph and η3

splines are presented.
In the second part of the chapter, guidance and collision/obstacle avoidance

topics are investigated into static and dynamic environments. In the author’s
opinion, there is no algorithm better than another. Depending on the mission,
some have a better performance than the others. Only practitioners can choose
the algorithm suitable for their case study.

Mission planning is presented in the last part of this chapter: route opti-
mization, fuzzy planning, coverage problem and resource manager are topics
of this important subject.
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5 Flight Safety
ABSTRACT
Situational awareness is used for low level control and for flight and mission
planning which constitute the high level control elements. Data are coming
from different kinds of sensors, each one being sensitive to a different prop-
erty of the environment. Data can be integrated to make the perception of
an autonomous aircraft more robust. This allows to obtain new information
otherwise unavailable. Due to the uncertainty and imprecise nature of data
acquisition and processing, individual informational data sources must be ap-
propriately integrated and validated. An integrated navigation system is the
combination of an on board navigation solution providing position, velocity
and attitude as derived from accelerometers and gyro-inertial sensors. This
combination is accomplished with the use of different filters, presented in the
first part of the chapter. In autonomous aircraft, the on board control sys-
tem must be able to interpret the meaning of the system health information
and decide on the appropriate course of action. This requires additional pro-
cessing on board the unmanned aircraft to process and interpret the health
information and requires that the health monitoring and aircraft control sys-
tems be capable of integration. In the second part of the chapter, integrated
system health monitoring is investigated, presenting some diagnostic tools
and approaches. As there are uncertainties in the information, usually several
scenarios are considered and a trade-off solution is offered. In the third part
of the chapter, fault tolerant flight control is considered for LTI and LPV for-
mulations followed by model reference adaptive control. The last part of the
chapter concerns fault-tolerant planner detailing trim state discovery, reliabil-
ity analysis, safety analysis of obstacle avoidance and finally risk measurement.

5.1 INTRODUCTION
Selecting the best set of decisions or actions in order to maximize the obtained
cumulative reward for the autonomous aircraft is an important problem in
many application domains. The challenge in using these controllers and plan-
ners in the real world arises from uncertainties that are a result of modeling
errors or inadequacies of available mathematical models as well as a dynamic
environment with meteorological phenomena.

An autonomous flight controller must possess the most adaptive capabil-
ity that can be imagined for any control system [13]: robustness and failure
tolerance.

1. Robustness of the control law:
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a. Taking into account the uncertainties/dispersions, coverage of do-
mains,

b. Guaranteeing compliance with specifications (frequency and time)
at a given probability,

c. Classic robustness/performance trade-off to be managed.
2. Failure tolerance

a. Can be ensured through sophisticated sensor redundancy and
rapid detection/correction of actuator abnormal behavior,

b. Minimum capacity of algorithms to handle double failures in order
to give the autonomous aircraft a chance.

The limitations of this approach can be:

1. Couplings between axes,
2. Simplified equations for controller logic with respect to complexity of

physics/reality,
3. Interaction between control function and other functions and subsys-

tems.

Flight control system is validated through:

1. Ground system studies

a. Definition of algorithms
b. A priori validation of flight envelope with mathematical models
c. A posteriori validation using the unmanned aircraft

2. Electrical system and embedded software studies

a. Encoding on on board computer (real time)
b. Inputs/outputs coupled with electrical hardware
c. Equipment could be backed up to improve reliability

An integrated vehicle health management system is executed in an
environment that includes different sensor technologies and multiple informa-
tion systems that include different data models. Integrated vehicle health
management (IVHM) involves data processing that captures data related
to aircraft components, monitoring parameters, assessing current or future
health conditions and providing recommended maintenance actions [112].

Early applications of system heath monitoring focused on developing health
and usage monitoring systems to improve safety by providing real measures
of equipment use and insure maintenance was performed after the prescribed
number of operating hours. Maintenance nowadays can be performed based
on the actual condition of the equipment.

Remark 5.1. While health monitoring systems developed for manned plat-
forms can be applied for unmanned aircraft, the unmanned systems often have
lower limits on size, weight and power requirements than manned systems
making direct transition of the technology impractical. Another challenge in
transitioning health monitoring technology from manned to unmanned aircraft
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is the absence of an operator on board to interpret the meaning of the health
information and take appropriate action [126].

Advanced fault detection and diagnosis (FDD) techniques limit the
impacts of flight control system failures [21]. Some uncertainties with sufficient
data to determine the precise distributions and distribution parameters can
be described within a probabilistic framework whereas some lacking sufficient
data can be described within a non probabilistic framework [141].

decision-making and estimation are central in unmanned aircraft, as the
need often arises to make inferences about the state of the environment, based
on information which is at best limited, if not downright misleading.

Remark 5.2. Some studies assessing the safety of UAS operations use uni-
form traffic densities. Some others are related to quantitatively establishing
the boundary of well-clean for sense and avoid systems. In [66], a distributed
traffic model is constructed using actual traffic data collected over a one-year
period to enable a probabilistic approach to risk assessment.

5.2 SITUATION AWARENESS
The situation awareness system is capable of detecting problems, finding solu-
tions and reacting to them. Eight subfunctions have been categorized by the
FAA into detect, track, evaluate, prioritize, declare, determine action, com-
mand and execute modules. The category is defined by awareness sensors,
awareness data fusion, self-separation declaration/collision avoidance declara-
tion and self-separation reaction/collision reaction [8].

3D perception and representation of the environment is an important basis
for autonomous intelligent functionality in unstructured environments [18, 86].
To be able to interact properly with its environment, a smart autonomous air-
craft has to know the environment and its state in that environment. Using
several sensors and knowing the map of the environment, localization algo-
rithms allow to compute the position and orientation of the aircraft [114]. Any
localization problem involves four main concepts: the environment, the map
of the environment, the configuration of the aircraft and the measurements of
the environment. Each measurement of the environment is associated to an
equation or a set of equations linking the map, the configuration of the air-
craft and the measurement. The problem of localization can be formulated as
a constraint satisfaction problem(CSP). A constraint satisfaction prob-
lem can be seen as a set of equations or constraints involving variables to be
determined such as the configuration of the aircraft. Each of these variables
is known to belong to a known set called domain or search space. In this case,
each constraint can be considered as a representation of the information [106].

A technique to assist in system analysis is Markov analysis. It is use-
ful when investigating systems where a number of states may be valid and
are also interrelated. The question of whether a system is airworthy is not a
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simple mathematical calculation but depends upon the relative states of the
parts of the system [78, 79]. The problem of making decisions in the presence
of uncertainties has also been studied in the planning literature. The typi-
cal approach there is to formulate these problems in the Markov decision
processes (MDP) framework and search for an optimal policy.

Remark 5.3. If the situation awareness system is combining measurements
from different technologies, their respective data should be aligned in time,
properly compensated for uncertainties that differ by technology or dimension
and given appropriate weights [7].

5.2.1 FILTERS

Estimation of states and parameters for dynamical systems, in general, is
performed in the Bayesian framework, where uncertainty is represented as
the probability density function (PDF) [33]. Developing an estimation
scheme first requires a suitable description of the measurements and the
dynamics equations describing the estimator state-time evolution [53].

Dead reckoning is the estimation of an aircraft location based on its es-
timated speed, direction and time of travel with respect to a previous esti-
mate. The Kalman filter is used to estimate the new configuration. Integrated
navigation systems are used in this context. The primary sensing methods
available are air data, magnetic, inertial and radar sensors. Each of the on
board sensors’ families have their own attributes and associated strengths
and shortcomings. on board sensors are also used in conjunction with exter-
nal navigation aids and systems to achieve the optimum performance for the
navigation system. The quest algorithm has been the most widely and most
frequently implemented algorithm for three axis attitude estimation. It is also
an important component of many attitude Kalman filters [26].

The state dynamics can be modeled as a discrete time system, allowing
for the implementation of several standard filtering approaches such as the
approaches presented in this section. In this section, the general Bayesian
framework for linear and nonlinear filtering is reviewed.

5.2.1.1 Classical Kalman filter
For the linear Gaussian system, it is possible to get exact analytical expres-
sions for the evolving sequence of moments, which characterizes the probabil-
ity density function completely. This is the Kalman filter approach. It is an
effective procedure for combining noisy sensor outputs to estimate the state of
a system with uncertain dynamics. Uncertain dynamics include unpredictable
disturbances of the aircraft, caused by the winds or unpredictable changes
in the sensor or actuator parameters [44]. The classical Kalman filter (KF)
maintains two types of variables:

1. An estimated state vector,
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2. A covariance matrix which is a measure of the estimation uncer-
tainty.

The equations used to propagate the covariance matrix model and manage
uncertainty taking into account how sensor noise and dynamic uncertainty
contribute to uncertainty about the estimated system state are presented next.

By maintaining an estimate of its own estimation uncertainty and the rel-
ative uncertainty in the various sensor outputs, the Kalman Filter is able to
combine all sensor information optimally in the sense that the resulting esti-
mate minimizes any quadratic loss function of estimation error, including the
mean squared value of any linear combination of state estimation errors. The
Kalman filter gain is the optimal weighting matrix for combining new sensor
data with a priori estimate to obtain a new estimate [128].

The Kalman filter is a two step process: prediction and correction. The
correction step makes correction to an estimate based on new information ob-
tained from sensor measurement. In the prediction step, the estimate X̂ and
its associated covariance matrix of estimation uncertainty P are propagated
from time epoch to another. This is the part where the aircraft linearized
dynamics is included. The state of the aircraft is a vector of variables that
completely specify enough of the initial boundary value conditions for propa-
gating the trajectory of the dynamic process forward in time and the procedure
for propagating that solution forward in time is called state prediction.

Algorithm 12 Essential Kalman Filter Equations

1. Predictor (Time Updates)

a. Predicted state vector

X̂−
k = ΦkX̂

+
k−1

b. covariance matrix
P−
k = ΦkP

+
k−1Φ

T
k +Qk−1

2. Corrector (Measurement Updates)

a. Kalman gain

K̄k = P−
kH

T
k

(
HkP

−
k H

T
k +Rk

)−1

b. Corrected state estimator

X̂+
k = X̂−

k + K̄k

(
Zk −HkX̂

−
k

)

c. Corrected covariance matrix

P+
k = P−

k − K̄kHkP
−
k
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The model for propagating the covariance matrix of estimation uncertainty
is derived from the model used for propagating the state vector. The following
formulation is used:

Xk = ΦkXk−1 + ϑk−1

Zk = HkXk + νk−1

(5.1)

The noise process ϑk, νk are white, zero mean uncorrelated and have known
covariance matrices, respectively, Qk,Rk. In the following derivation, X̂−

k

represents the a priori estimate, X̂+
k represents the posteriori estimate, P−

k

represents the a priori covariance and P+
k represents the posteriori covariance.

Algorithm 12 presents the main steps of the Kalman filter.
The Joseph formula is a general covariance update equation valid not

only for the Kalman filter but for any linear unbiased estimator under standard
Kalman filtering assumptions [136]. The Joseph formula is given by:

P+ = (In×n −KH)P−(In×n −KH)T +KRKT (5.2)

where In×n is the identity matrix, K is the gain, H is the measurement map-
ping matrix and P− and P+ are the pre and post measurement update esti-
mation error covariance matrices respectively.

The optimal linear unbiased estimator or equivalently the optimal linear
minimum mean square error estimate or Kalman filter often uses a simplified
covariance update equation such as

P+ = (In×n −KH)P− (5.3)

or
P+ = P− −K(HP−HT +R)KT (5.4)

Remark 5.4. While these alternative formulations require fewer computa-
tions than the Joseph formula, they are only valid when K is chosen as the
optimal Kalman gain.

5.2.1.2 Extended Kalman filter
For a nonlinear system exhibiting Gaussian behavior, the system is linearized
locally about the current mean value and the covariance is propagated using
the approximated linear dynamics. This approach is used in extended Kalman
filter (EKF). The aircraft’s position and attitude is provided in six degrees
of freedom by the flight control computer using a differential GPS sensor,
a magnetometer and an inertial measurement unit. The raw data of these
sensors can be integrated by an extended Kalman filter to provide an accurate
solution in all six degrees of freedom. The extended Kalman filter is also widely
used in attitude estimation.

The problem of nonlinear filtering requires the definition of dynamical and
measurement models. It is assumed that the dynamic state X(t) ∈ R

n at time
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t evolves according to the continuous-time stochastic model:

Ẋ = f(X(t), t) +G(X(t), t)ϑ(t) (5.5)

where f :Rn × R → R
n, G :Rn × R → R

n×m and ϑ(t) is an m-dimensional
Gaussian with white noise process with covariance matrix Q(t). In particular
in equation (5.5), the function f encodes the deterministic force components of
the dynamics, such as gravity, lift, drag . . . while the process noise term models
the stochastic uncertainties. In many applications, a discrete-time formulation
of the dynamical model is used:

Xk+1 = fk(Xk) +Gk(Xk)ϑk (5.6)

whereXk = X(tk), f :R
n → R

n,Gk :R
n → R

n×m and ϑk is an m-dimensional
zero-mean Gaussian white noise sequence with covariance matrix Qk.

Algorithm 13 Extended Kalman Filter Equations

1. The extended Kalman filter update equations are as follows [128]:

X̂−
k+1 = f

(
X̂k, Uk, 0

)

P−
k+1 = AkPkA

T
k +WkQkW

T
k

2. and the measurement update equations are:

Kk = P−
kH

T
k

(
HkP

−
k H

T
k +VkRkV

T
k

)−1

X̂k = X̂−
k +Kk

(
Zk − h(X̂−

k , 0)
)

Pk = (In×n −KkHk)P
−
k

3. where
Xk+1 = fk(Xk, Uk,Wk)

Zk = hk(Xk, Vk)

4. and

Ak =
∂f

∂X
(X̂k, Uk, 0)

Wk =
∂f

∂W
(X̂k, Uk, 0)

Hk =
∂h

∂X
(X̂k, 0),

Vk =
∂h

∂W
(X̂k, 0)
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A sequence of measurements Zk = z1, . . . , zk is related to the corresponding
kinematic states Xk via measurement functions hk :R

n → R
p according to the

discrete-time measurement model

Zk = hk(Xk) + νk (5.7)

In this equation, νk is a p-dimensional zero-mean Gaussian white noise se-
quence with covariance matrix Rk. More general filter models can be formu-
lated from measurement models with non-Gaussian or correlated noise terms
and sensor biases.

In the Bayesian approach to dynamic state estimation, the posterior prob-
ability density function of the states is constructed based on information of
a prior state, and received measurements are constructed. Encapsulating all
available statistical information, the posterior probability density function
p (Xk|Zk) may be regarded as the complete solution to the estimation prob-
lem and various optimal state estimates can be computed from it. Analytical
solutions to the filter prediction and correction steps are generally intractable
and are only known in a few restrictive cases. In practice, models are non-
linear and states can be non-Gaussian; only an approximate or suboptimal
algorithm for the Bayesian state estimator can be derived.

The extended Kalman filter equations are presented in algorithm 13.

Remark 5.5. This approach performs poorly when the nonlinearities are high,
resulting in an unstable estimator. However, the error in mean and covariance
can be reduced if the uncertainty is propagated using nonlinear dynamics for
a minimal set of sample points called sigma points. The PDF of the states,
characterized by sigma points, captures the posterior mean and covariance ac-
curately to the third order in the Taylor series expression for any nonlinearity
with Gaussian behavior. This technique has resulted in the unscented Kalman
filter (UKF). The aforementioned filters are based on the premise of Gaussian
PDF evolution. If the sensor updates are frequent, then the extended Kalman
filter yield satisfactory results.

5.2.1.3 Unscented Kalman filter
The unscented Kalman filter employs a set of deterministically selected points
in order to compute the mean and covariance of Y as well as the cross variance
between U and Y . The EKF and UKF are used extensively in air tracking;
they represent state uncertainties by a covariance matrix and this may not
be adequate in all situations. Higher-order versions of the UKF (also called
Gauss-Hermite filters) make use of efficient Gauss-Hermite quadrature rules.
The unscented Kalman filter selects its points based on moment matching. The
filter formulation is based on standard attitude vector measurement using a
gyro based for attitude propagation [60].

Remark 5.6. For nonlinear systems, the unscented filter uses a carefully
selected set of sample points to map the probability distribution more accurately
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than the linearization of the standard extended Kalman filter (EKF) leading
to faster convergence from inaccurate initial condition particularly in attitude
estimation problems.

The unscented Kalman filter is derived for discrete time nonlinear equation,
where the model is given by:

Xk+1 = f(Xk, k) +Gk�k
Z̃k = h(Xk, k) + νk

(5.8)

where Xk is the n×1 state vector and Z̃k is the m×1 measurement vector. A
continuous time mode can always be expressed in the form of (5.8) through
an appropriate numerical integration scheme. The process noise �k and mea-
surement error noise νk are assumed to be zero mean Gaussian noise processes
with covariances given by Qk and Rk, respectively. The update equations are
first rewritten as:

X̂+
k = X̂−

k +Kkϑk
P̂+
k = P̂−

k −KkP
V V
k KT

k

(5.9)

where X̂−
k and P̂−

k are the pre-update state estimate and covariance, respec-

tively. X̂+
k and P̂+

k are the post-update state estimate and covariance. The
covariance of ϑk is denoted by PV Vk . The innovation ϑk is given by

ϑk = Z̃k − Ẑ−
k = Z̃k − h(X̂−

k , k) (5.10)

The gain Kk is computed by

Kk = PXYk (PV Vk )−1 (5.11)

where PXYk is the cross correlation matrix between X̂−
k and Ẑ−

k .
The unscented filter uses a different propagation from the standard EKF.

Given an n×n covariance matrix P, a set of 2n sigma points can be generated
from the columns of the matrix ±√(n+ λ)P where

√
M is the shorthand

notation for a matrix Z such that ZZT = M.
The set of points is zero mean, but if the distribution has mean μ, then

simply adding μ to each of the points yields a symmetric set of 2n points
having the desired mean and covariance. Because of the symmetric nature of
this set, its odd central moments are zero and so its first three moments are
the same as the original Gaussian distribution. The scalar λ is a convenient
parameter for exploiting knowledge (if available) about the higher moments
of the given distribution [44].

The transformation process is represented by the following algorithm 14
[60].

Remark 5.7. In scalar systems, for example, for n = 1, a value of λ = 2 leads
to errors in the mean and variance that are sixth order. For higher dimensions
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Algorithm 14 Unscented Kalman Filter

1. The set of sigma points are created.
2. The transformed set is given by:

χi(k + 1|k) = f(χi(k|k), Uk, k)

3. The predicted mean is computed as:

X̂(k + 1|k) =
2n∑
i=0

Wiχi(k + 1|k)

4. The predicted covariance is computed as:

P(k + 1|k) =
=
∑2n

i=0 Wi

(
χi(k + 1|k)− X̂(k + 1|k)

(
χi(k + 1|k)− X̂(k + 1|k)

)T)

5. Instantiate each of the prediction points through the observation
model

Zi(k + 1|k) = h (χi(k + 1|k), U(k|k))
6. The predicted observation is calculated by:

Ẑ(k + 1|k) =
2n∑
i=0

WiZi(k + 1|k)

7. Since the observation noise is additive and independent, the innova-
tion covariance is:

Pvv(k + 1|k) = R(k + 1)+

+
∑2n

i=0 Wi

(
Zi(k|k − 1)− Ẑ(k + 1|k)

(
Zi(k|k − 1)− Ẑ(k + 1|k)

)T)

8. Finally, the cross correlation matrix is determined by:

PXZ(k + 1|k) =
=
∑2n

i=0 Wi

(
χi(k|k − 1)− X̂(k + 1|k)

(
Zi(k|k − 1)− Ẑ(k + 1|k)

)T)

systems, choosing λ = 3 − n minimizes the mean squared error up to the
fourth order. However, caution should be exercised when λ is negative because
a possibility exists that the predicted covariance can become non positive semi-
definite. When n + λ tends to zero, the mean tends to that calculated by the
truncated second order filter.
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Another approach can be used that allows for scaling of the sigma points,
which guarantees a positive semi-definite covariance matrix.

This unscented Kalman filtering has several advantages over the extended
Kalman filter including

1. The expected error is lower than the extended Kalman filter.
2. This filter can be applied to a non differentiable function.
3. It avoids the derivation of Jacobian matrices.
4. It is valid to higher order expansions than the standard extended

Kalman filter.

5.2.1.4 Monte Carlo filter
Recently, simulation based sequential filtering methods, using Monte Carlo
simulations, have been developed to tackle nonlinear systems with non-
Gaussian uncertainty, while Kalman filters assume in general that the error
in sensors have a Gaussian probability density function. The Monte Carlo es-
timator makes no assumption about the distribution of errors. Many different
versions of the aircraft state vector are maintained. When a new measurement
is available, it is tested versus the old versions. The best fitting states are kept
and are randomly perturbed to form a new generation of states. Collectively,
these many possible states and their scores approximate a probability density
function for the state to be estimated. Monte Carlo methods are often used
when simulating systems with a large number of coupled degrees of freedom
within significant uncertainty in inputs.

Monte Carlo methods involve representing the probability density function
of the states using a finite number of samples. The filtering task is obtained
by recursively generating properly weighted samples of the state variable us-
ing importance sampling. Monte Carlo filters are based on sequential Monte
Carlo methods. In the particle filter, ensemble numbers or particles are prop-
agated using nonlinear system dynamics. These particles with proper weights,
determined from the measurements, are used to obtain the state estimate.

Monte Carlo methods estimate a probability distribution of a system’s out-
put response from uncertain input parameters [18]. A typical calculation step
of Monte Carlo methods to obtain the model output statistics is as follows:

1. Uncertain input parameters for an analytical or numerical system
model are randomly sampled from their respective probability distri-
bution function.

2. Multiple simulation runs are conducted using each corresponding out-
put for each case. The probability distribution of a user-defined out-
put metric can then be generated while estimating various statistics
such as mean and variance.

In the standard Monte Carlo method, since random sampling of the input
parameter distributions is required, the number of simulation runs must be
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large enough to ensure representation of the entire input parameter range and
also to converge to the output distribution.

Statistical techniques can provide predicted path coordinates under uncer-
tainty. Relevant output statistics such as mean, variances and covariance can
also be calculated. Based on these statistics, the motion path can be aug-
mented with ellipsoids defined by the variances and covariance. The ellipsoids
indicate confidence levels for the predicted position on the path. Given a suffi-
cient sample size n from the Monte Carlo method of motion path coordinates
Xi = (xi, yi, zi)

T , a sample mean vector X̄ = (x̄, ȳ, z̄)T can be defined as:

x̄ =
1

n

n∑
i=1

xi ȳ =
1

n

n∑
i=1

yi z̄ =
1

n

n∑
i=1

zi (5.12)

The sample covariance matrix S is then determined as:

S = 1
n−1

∑n
i=1

(
Xi − X̄

) (
Xi − X̄

)T
=

=

⎛
⎝

s2x rsxy rsxz
rsxy s2y rsyz
rsxz rsyz s2z

⎞
⎠ (5.13)

where sx, sy, sz are the sample standard deviations, sxy, sxz, syz the sample
covariance and r the sample correlation index.

The equation for a confidence ellipsoid can be formulated by the follow-
ing equation:

C2 =
(
X − X̄)T

S−1
(
X − X̄)

(5.14)

where C =
√−2 ln(1− P ) and P is the probability that determines the con-

fidence level of the predicted position.
The principal semi-axes ax, ay of the confidence ellipse in the x − y plane

for a given probability P are obtained from:

ax = Cs′x ay = Cs′y az = Cs′z (5.15)

where s′x, s
′
y are expressed by:

s′x =

√√√√
s2x + s2y +

√
(s2x − s2y)2 + 4r2s2xs

2
y

2
(5.16)

s′y =

√√√√
s2x + s2y −

√
(s2x − s2y)2 + 4r2s2xs

2
y

2
(5.17)

The orientation of the confidence ellipse with respect to the x− y coordinate
is defined by the inclination angle

α =
1

2
arctan

(
2rsxsy
s2x − s2y

)
(5.18)
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5.2.1.5 Particle filter
The aircraft nonlinear dynamical system with states X ∈ R

n and outputs
Z̃ ∈ R

m is given by:
Ẋ = g(X,Δ)

Z̃ = h(X) + ν
(5.19)

where ν is the measurement noise and Δ is a vector of random parameters.
Let p(Δ) be the probability density functions of Δ and Dδ be the domain
of Δ. Discrete measurement updates are available at times t0, t1, . . . , tk. If
the system has only initial condition uncertainty, then Δ = X . Parameter
estimation can be included in this framework by suitably augmenting the
system.

Particle filters are based on the importance sampling theorem, where ran-
dom samples are drawn from a given distribution at time tk−1. Each sample
point is assigned a weight that is determined from the distribution function.
These sample points are taken as initial conditions for the dynamical system
and evolved using (5.19) to time tk. Depending on their locations, the prior
density function is obtained using the corresponding likelihood function in
a Bayesian setting. Based on the new density function, a new set of sample
points are generated and the process repeats.

However, due to particle degeneracy, particle filters require a large number
of ensembles for convergence, leading to higher computational effort. This
problem is tackled through re-sampling. Particle filters with the re-sampling
technique are commonly known as bootstrap filters. However, bootstrap
filters introduce other problems like loss of diversity among particles if the
re-sampling is not performed correctly.

Recently developed techniques have combined importance sampling and
Markov chain Monte Carlo (MCMC) methods to generate samples to get
better estimates of states and parameters. Several other methods, like regular-
ized particle filters and filters involving the Markov chain Monte Carlo move
step, have been developed to improve sample diversity. The main problem
with particle filters is the determination of the weights for each sample. This
greatly affects the accuracy. At the same time, for large scale problems, the
exponential growth in the number of samples makes this method computa-
tionally prohibitive. The problem of determining weights can be resolved by
using the Frobenius–Perron (FP) operator.

The Frobenius–Perron operator is used to predict evolution of uncer-
tainty in the nonlinear system and obtain the prior probability density func-
tion in the estimation process. The Frobenius–Perron operator on the Liou-
ville equation predicts evolution of uncertainty in a more computationally
efficient manner than Monte Carlo.

The problem of determining uncertainty in state due to parametric system
uncertainty, for a nonlinear system, can be solved using the Frobenius–Perron
operator [62]. The definition of the operator in continuous time for the dy-
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namical system
Ẋ = f(X) X ∈ R

n f : X→ X (5.20)

is given by the Liouville equation:

∂P

∂t
+

n∑
i=1

∂Pfi(X)

∂Xi
(5.21)

where f(X) = (f1(X), . . . , fn(X)) and p(t,X) = Ptp(t0, x). The symbol Pt
represents the continuous time Frobenius–Perron operator and p(t0, X) is the
density function at initial time t = t0 ≥ 0.

The Frobenius–Perron operator is a Markov operator and has the fol-
lowing properties:

1. Continuity:

limt→t0 ‖Ptp(t0, X)− p(t0, X)‖ = 0 (5.22)

2. Linearity:

Pt (λ1p1(t0, X) + λ2p2(t0, X)) = λ1Ptp1(t0, X) + λ2Ptp2(t0, X)
(5.23)

such that λ1, λ2 ∈ R and p1(t0, X), p2(t0, X) ∈ L
1.

3. Positivity:
Ptp(t0, X) ≥ 0 if p(t0, X) ≥ 0 (5.24)

4. Norm preserving:

∫

X

Ptp(t0, X)μ(dX) =

∫

X

p(t0, X)μ(dX) (5.25)

such that p(t0, X) ∈ L
1 where L

1 is a set of functions, f : X → R,
satisfying

∫
X
|f(X)|μ(dX) <∞ and μ is a measure defined on X.

These properties ensure that the initial probability density function
p(t0, X) evolves continuously over time while satisfying properties of prob-
ability density functions.

A method of characteristics for solving a first order linear partial differential
equation (PDE) that can be easily solved uses the method of characteristics.
Thus relation (5.21) can be written as:

∂P

∂t
+

n∑
i=1

∂p

∂Xi
fi(X) + p

n∑
i=1

∂fi(X)

∂Xi
(5.26)

Defining

g(X, p) = −p
n∑
i=1

∂fi(X)

∂Xi
(5.27)
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the following form is obtained

∂P

∂t
+

n∑
i=1

∂p

∂Xi
fi(X) = g(X, p) (5.28)

which is in the standard form. Assuming g(X, p) �= 0, (5.28) can be solved by
solving (n+ 1) coupled ordinary differential equations by:

dX1

dt
= f1(X) . . .

dXn

dt
= fn(X)

dp

dt
= g(X, p) (5.29)

These equations trace out a trajectory in the (n + 1) dimensional space
spanned by (X1, . . . , Xn, p). To make the solution unique, the value of p(t,X)
has to be specified at a given point X(t0) at time t0. The evolution of p(t,X)
over R × X can be determined by specifying p(t,X) over several points in
X. These points are obtained by sampling the density function at t0. The
equation (5.29) determines the evolution of p along X(t).

An important point is accuracy in prediction of uncertainty. Since this
method requires a selection of points in the state space, this approach is
similar to Monte Carlo. The main difference is that in the Frobenius–Perron
operator, the value of the density function is determined along the trajectory
and a final time; the value of the density function is known at certain discrete
locations. These locations are values of the state vector at that final time.
The value of the density function over the domain is then determined using
interpolation [11].

Remark 5.8. Process noise cannot be addressed in this framework. This is
a limitation of the Frobenius–Perron operator, or the Liouville equation. To
include process noise, the Fokker–Planck–Kolmogorov equation must be solved.

A nonlinear state estimation algorithm that combines the Frobenius–Perron
operator theory with the Bayesian estimation theory is presented in [33]. Let
the aircraft and measurement model be given by (5.19). It is assumed that
measurements are available at discrete times t0, . . . , tk. At a given time tk, let
Xk, Yk and pk be the state, measurement and probability density functions.
Let p−k (.) and p+k (.) denote the prior and posterior density functions at time
tk. The estimation algorithm is described next.

1. STEP 1: Initialization: To begin, the domain DΔ of the initial
random variable X0 is discretized. From the discretized domain, N
samples are chosen at random, based on probability density functions
P0(X0) of the random variable X0. Let the samples be represented
by X0,i for i = 1, 2, . . . , N and P0(X0, i) be the value of P0(X) at the
sample points. The following steps are then performed recursively
starting from k = 1.
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2. STEP 2: Propagation: With the initial states at the (k− 1)th step
as (Xk−1,iPk−1(Xk−1,i)), equation (5.29) is integrated for each grid

over the interval [tk−1, tk] to get
(
Xk,iP̄k(Xk,i)

)T
. Pk(Xk,i) obtained

by integration are the prior probability density functions values for
Xk,i.

3. STEP 3: Update: First the likelihood function P (Ỹk|Xk = Xk,i) is
determined for each grid point i, using Gaussian measurement noise
and the sensor model in (5.19). It is defined as

�(Ỹk|Xk = Xk,i) =
1√

(2π)m|R| exp
−0.5(Ỹk−h(Xk,i))TR−1(Ỹk−h(Xk,i))

(5.30)
where |R| is the determinant of the covariance matrix of measurement
noise. The probability density functions of the states are constructed
next for each grid point i using classical Bayes rule. It is defined as
the density function of the states given current measurement, i.e.,

P+
k (Xk,i) = P (Xk = Xk,i|Ỹk) =

=
�(Ỹk|Xk=Xk,i)P−

k (Xk=Xk,i)
∑N
j=1 �(Ỹk|Xk=Xk,i)P−

k (Xk=Xk,j)

(5.31)

4. STEP 4: Getting the state estimate: The state estimate for the
kth step is then computed, depending on the desired computation.
The following are commonly used criteria:

a. For the maximum likelihood estimate, maximize the probability
that Xk,i = X̂k. This results in X̂k =mode of P+(Xk,i).

b. For the minimum variance estimate,

X̂k = argmin

N∑
i=1

‖Xk −Xk,i‖2 P+
k (Xk,i) =

N∑
i=1

Xk,iP
+
k (Xk,i)

(5.32)
the estimate is the mean of Xk,i.

c. For the minimum error estimate, minimize the maximum |X −
Xk,i|. This results in X̂ =median of P+

k (Xk,i).
5. STEP 5: Re-sampling: The degeneracy of sample points can be

detected by looking at values of Xk,i for which P+ (Xk,i) < ε for
which ε << 1 and is prespecified. Existing methods for re-sampling
can be used to generate new points and the corresponding posterior
density P+

k (Xk,i) serve as initial states.

5.2.1.6 Wind estimation
Wind is one of the major contributors to uncertainties while flying, particu-
larly in continuous descent operation [57]. The true airspeed (TAS) Va is
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determined via the air data computer (ADC) and pitot-static system for in-
put of impact pressure, static pressure and total air temperature. The ground
speed is calculated by the inertial reference unit and GPS. The flight man-
agement system (FMS) predicts trajectory parameters, such as time and
fuel estimates, by performing calculations that require estimates of the wind
field along the trajectory toward the base to improve the accuracy of these
calculations. An error in estimating the wind field will result in an error of the
predicted ground speed, deceleration and flight path angle. In turn, the flight
path angle error affects the predicted ground speed and predicted vertical
trajectory. Hence, the accuracy of the trajectory, both temporal and spatial,
is greatly influenced by the wind estimation error. The aircraft meteoro-
logical data relay(AMDAR) combines the observed atmospheric data that
contains position (latitude and longitude), altitude, time, temperature, hor-
izontal wind direction and speed, turbulence, humidity and icing, phase of
flight, roll and pitch angles and the aircraft identifier.

The use of automatic dependent surveillance-broadcast (ADS-B) for
meteorological monitoring is explored in [67]. Although originally developed
for surveillance, the data that the system provides can be used to estimate
wind, pressure and temperature profiles. The ground speed vector is the sum
of the airspeed and wind vectors:

Vg = Va +W (5.33)

Vg is the aircraft speed relative to the ground, Va the aircraft speed relative
to the air and W the speed of the wind relative to the ground. Wind can be
estimated from a series of observations of the aircraft ground-speed vector at
different track angles [93, 105].

To estimate the wind from the ADS-B data of one aircraft, the North and
East components of the aircraft true airspeed can be written as:

Vax = ‖Vg‖ sinχg − ‖W‖ sinχw (5.34)

Vay = ‖Vg‖ cosχg − ‖W‖ cosχw (5.35)

where χg and χw are the angles of the ground speed and wind vector with
respect to the North. It follows that during a turn at constant airspeed and
wind vector:

‖Va‖2 − (‖Vg‖ cosχg − ‖W‖ cosχw)2 − (‖Vg‖ sinχg − ‖W‖ sinχw)2 = 0
(5.36)

Equation (5.36) is treated as a nonlinear least squares problem with mea-
surement and solution vector:

X = (‖Vg‖ , χg)T ww = (‖Va‖ , ‖W‖ , χw)T (5.37)

that minimizes
t∑
i=0

‖Zi − Γ(ww , Xi)‖2 (5.38)
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where Zi and Γ(ww , xi) are equal to the right and left parts of relation (5.36),
respectively. To solve this nonlinear least squares problem recursively, the
following algorithm 15 can be proposed.

Algorithm 15 Wind Estimation Algorithm

For k = 0, 1, . . . , n, the solution is:

Wk+1 =Wk +Kk (Zk − Γ(Wk, Xk))

where
Kk = PkH

T
k

(
HkPkH

T
k +Rk

)−1

Pk+1 = (α+ 1) (Pk −KkHkPk + εIn×n)

Hk =
∂Γ(W,X)

∂W
|W=Ŵ ,X=Xk

where α > 0, ε > 0 and P0 and Rt are symmetric positive definite covariance
matrices.

5.2.2 AERIAL SIMULTANEOUS LOCALIZATION AND MAPPING

To be autonomous, aircraft must know the environment in which they are to
move. Autonomous systems have to sense, understand and remember at least
those parts of the environment that are in the vicinity [4]. A main requirement
for autonomous aircraft is to detect obstacles and to generate environmental
maps for sensor data. One approach to represent the environment is the use
of grid-based maps. They allow a fusion of data from different sensors, includ-
ing noise reduction and simultaneous pose estimation, but they have large
memory requirements. Further, they do not separate single objects. A second
approach, called feature-based maps, focuses on individual objects. An early
work uses lines to represent the world in 2D. Later approaches uses planar
or rectangular surfaces for 3D modeling but mostly to rebuild the world with
details and possible texture mapping. A suitable model for autonomous be-
havior is the velocity obstacle paradigm that can be added with the introduced
specifications on how to measure the obstacles.

5.2.2.1 Problem formulation
There is a need to have different map types for different aircraft tasks. Be-
cause map-based aircraft localization and mapping are interdependent, both
problems are solved simultaneously. The field of mapping is divided into met-
ric and topological approaches. Metric maps capture the geometric properties
of the environment while topological maps describe the connectivity of differ-
ent places by means of nodes and graphs. In practice, metric maps are finer
grained than topological maps, but higher resolution comes at a computational
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burden. Metric maps can be discretized based on the probability of space oc-
cupation. The resulting mapping approaches are known as occupancy-grid
mapping. In contrast, the metric maps of geometric elements retain positions
and properties of objects with specific geometric features.

In many cases, it is advantageous to use grid-based maps for sensor fusion
and feature based polygonal metric maps for local planning, e.g., in order to
avoid obstacles. Additionally, non-metric topological maps are most suitable
for global search tasks like route planning. In a complex scenario, an aircraft
must deal with all of these different maps and keep them updated. These tasks
need the usual information exchange. The approach presented in [4] combines
grid maps and polygonal obstacle representations and tackles the problem of
large environments by using small grid maps that cover only essential parts of
the environment for sensor fusion. Characteristic features are recognized; their
shapes are calculated and inserted to a global map that takes less memory
and is easily expandable. This map is not restricted to the sensor environment
and is used for path planning and other applications [96]. Aerial mapping is
an active research area. It addresses the problem of acquiring spatial models
of the environment through aircraft on board sensors. Thrun in [121] has
presented a survey of a mobile robot mapping algorithm with a focus on
indoor environments. However, aircraft navigation occurs outdoor in a 3D
dynamic environment and the situation is quite different.

To achieve real autonomy, an aircraft must be able to localize itself in
the environment it is exploring [12]. When a map is not available, the aircraft
should build it, while at the same time localizing itself within it. This problem,
known as simultaneous localization and mapping (SLAM) can be cast as an
estimation problem. A crucial issue for a SLAM algorithm is to close loops,
i.e., to recognize places that have already been visited. The difficulty of the
SLAM problem increases with the size of the environment.

Since both the aircraft pose and the map are uncertain, the mapping prob-
lem and the induced problem of localizing the robot with respect to the map
are considered [80]. The fundamental principle used in aircraft mapping and
localization is Bayesian filtering. The filter is used to calculate the aircraft
pose and map posterior probability distribution, given all the control and
measurements.

Remark 5.9. If unmanned aircraft could relate the information obtained by
their sensors to their motor/propulsion actions, they would detect incoherence
and would be able to react to unexpected situations.

Some SLAM methods are incremental and allow real time implementation
whereas others require several passes through the whole of the perceived data.
Many incremental methods employ Kalman filters to estimate the map and
the aircraft localization and generate maps that describe the position of land-
marks, beacons and certain objects in the environment. An alternative family
of methods is based on Dempster’s expectation maximization algorithm, which
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tries to find the most probable map by means of a recursive algorithm. These
approaches solve the correspondence problem between sensorial measurement
and objects in the real world [104, 107].

Mapping dynamic environments is a considerable problem since many real-
istic applications for aircraft are in non-static environments. Although Kalman
filter methods can be adapted for mapping dynamic environments by assuming
landmarks that move slowly over time, and, similarly, occupancy grid maps
may consider some motion by reducing the occupancy over time, map gener-
ation in dynamic environments has been poorly explored. Smart autonomous
aircraft address key problems of intelligent navigation, such as navigation in
dynamic environments, navigation in modified environments [7].

An aircraft can be tasked to explore an unknown environment and to map
the features it finds, without the use of infrastructure based localization sys-
tems such as GPS or any a priori terrain data. Simultaneous localization and
mapping allows for the simultaneous estimation of the location of the aircraft
as well as the location of the features it sees [20]. One key requirement for
SLAM to work is that it must re-observe features and this has two effects:

1. The improvement of the location estimate of the feature.
2. The improvement of the location estimate of the platform because of

the statistical correlations that link the platform to the features.

SLAM is generally implemented as a statistical filter, where the predic-
tion and estimation of the location of point features is concurrent with the
prediction and estimation of the pose and velocity of the aircraft. A feature
can be any object in the environment which can be represented by a point in
3D space. The SLAM prediction stage involves the propagation of the aircraft
and feature models and their corresponding uncertainties and mainly relies on
inertial navigation. The SLAM estimation step occurs when there is an ob-
servation of a feature on the ground; the observation is used to improve both
the location estimate of the feature and the location estimate of the aircraft
because of the correlations in the SLAM structure that links the platform to
the feature. The effect that observations have towards correcting the aircraft
location estimates is dependent on the order on which features are observed
and the trajectory of the aircraft. As the aircraft explores unknown terrain,
initializing new features into the map, it becomes necessary to return to the
well-known regions of the map in order to reduce the growth in localization
errors. This process is referred to as closing the loop in which the uncertainty
in both the aircraft localization and map position estimates is reduced via the
correlations made between the aircraft and map states in the SLAM filter.
Additionally, the maneuvers the aircraft takes during feature observations af-
fect the accuracy in localization estimates. The aircraft’s control strategy has
an effect on the accuracy of the filter estimates.

The estimation process minimizes a cost function Jest to obtain the opti-
mal estimate of all landmarks lj , the past trajectories X0:c during [t0, tc], the
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internal parameters ρint and the past process noises ν0:c. The cost function
Jest is the negative log of the posterior p (X0:c, ν0:c, l1,K , ρint| {Zij , U0:c−1})
which provides the maximum a posteriori (MAP) estimate [120]. The as-
sumption is made that the states and parameters have a Gaussian prior, i.e.,

X0 ∝ ℵ
(
X̂0,P

−1
X

)
and ρint ∝ ℵ

(
ρ̂int,P

−1
int

)
, and that uncertainties are also

Gaussian νi ∝ ℵ
(
0,P−1

νi

)
and ϑi ∝ ℵ

(
0,P−1

ϑi

)
. The cost function Jest has the

following form:

Jest =
∥∥∥X0 − X̂0

∥∥∥
2

PX
+‖ρint − ρ̂int‖2Pint+‖ν‖

2
Pνi

+
∑
ij

‖hij(Xi, lj)− Zij‖2Pϑij
(5.39)

subject to the dynamic constraints:

Ẋ = f (X(t), U(t), ν(t), ρint, t) Dynamics (5.40)

Zij = hij (X(ti), lj) + ϑij Measurements (5.41)

and as state and input constraints X(t) ∈ X, U(t) ∈ U, where f and hij are
nonlinear dynamics and measurement functions, respectively.

The control process minimizes another cost function Jmpc to compute the
optimal control policy Uc:N−1 and the corresponding future trajectoryXc+1:N :

Jmpc = J̃XN +

N−1∑
i=c

Li (Xi, Ui, l1:K , ρint) (5.42)

where J̃XN is the terminal cost and Li (Xi, Ui, l1:K , ρint) is the stage-wise cost
function.

Remark 5.10. Factor graphs are used as a common framework to represent
both estimation and control problems. Traditional techniques to solve nonlinear
factor graphs without nonlinear constrained factors typically apply nonlinear
optimization methods. The general dynamics and kinematics can be repre-
sented as a differential equation over the state Lie-group manifold. In factor
graphs, they are equivalent to constrained factors at every time step. Then
sequential quadratic programming method can be used to solve this graph op-
timization [120].

For SLAM to be justified as a localization technique, it must be demon-
strated that the aircraft state errors can be constrained using SLAM alone,
without the need for external data such as from GPS. The amount of infor-
mation contained in the probability distribution of the SLAM estimates when
differing control actions are taken by the aircraft is considered. Information
refers to the degree to which the probability mass in a distribution is concen-
trated to a small volume of the distribution state space: a property measured
by the entropy of the distribution (the compactness of the probability dis-
tribution).
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Information measures are used as a utility function for determining air-
craft control actions that improve localization system performance. There are
several practical limitations to using information measures for planning in
SLAM:

1. In the case of an aircraft, the available actions to optimize over are
large as the aircraft is capable of maneuvering in six degrees of free-
dom.

2. As the number of features N in the map grows, the computational
complexity of evaluating the information measures grows in the or-
der of O(N2). This growth in computational complexity can be mit-
igated to some degree by computing the information utility of pro-
posed paths using approximations.

When also considering the requirement for high-rate control of the aircraft,
the complexity involved in computing the information utility must be reduced
before a real-time planner will be practically feasible. The information gain
for every feasible trajectory is not evaluated in [20], instead the path planner
evaluates the information gain involved with simple straight and level flight
trajectories that involve traveling to and making observations of each feature
in the map. Further control of the aircraft then reduces to what trajectories
should be flown when the observation of the feature is taking place. This
component of the problem is tackled by undertaking an observability analysis
of inertial SLAM and evaluating several behavior based decision rules based
on this analysis. The decision rule trajectories are designed to perform aircraft
motions that excite the direction of locally unobservable modes in the system,
thus maximizing the observability of the states over multiple time segments.

5.2.2.2 Inertial SLAM algorithm
The inertial SLAM algorithm is formulated using an extended Kalman filter in
which map feature locations and the aircraft’s position, velocity and attitude
are estimated using relative observations between the aircraft and each feature
[12, 20, 37].

The estimated state vector X̂(k) contains the 3D aircraft position pn =
(xn, yn, zn), velocity vn, Euler angles ηn2 = (φn, θn, ψn)T and the 3D feature
locations mn

i in the environment

X̂(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pn(k)
vn(k)
ηn2 (k)
mn

1 (k)
mn

2 (k)
...

mn
N (k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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i = 1, . . . , n; the superscript n indicates the vector is referenced in a local-level
navigation frame. The state estimate X̂(k) is predicted forward in time from
X̂(k − 1) via the process model:

X̂(k) = F
(
X̂(k − 1), U(k), k

)
+W (k) (5.43)

where F is the nonlinear state transition function at time k, U(k) is the
system input at time k and W (k) is uncorrelated, zero-mean aircraft process
noise errors of covariance Q. The process model is the standard six degrees
of freedom inertial navigation equations which predict the position, velocity
and attitude of the aircraft. An inertial frame mechanization is implemented:

⎛
⎝

pn(k)
vn(k)
ηn2 (k)

⎞
⎠ =

⎛
⎝

pn(k − 1) + vn(k)Δt
vn(k − 1) +

(
Rn
b (k − 1)f b(k) + gn

)
Δt

ηn2 (k − 1) + Jnb (k − 1)ωb(k)Δt

⎞
⎠ (5.44)

where f b and ωb are, respectively, the body frame referenced aircraft accel-
erations and rotation rates which are provided by the inertial sensors on the
aircraft and gn is the acceleration due to gravity as shown in chapter 2. The
direction cosine matrix Rn

b is given by equation (2.4) and the rotation rate
transformation Jnb between the body and navigation frames has been defined
in equation (2.25). Feature locations are assumed to be stationary and thus
the process models for the position of the ith feature is given as:

mn
i (k) = mn

i (k − 1) (5.45)

An on board sensor makes range and bearing observations Zi(k) to the ith

feature. Such observations can be made using either radar or by using a com-
bination of a vision camera and laser range finder.

The SLAM algorithm requires that point feature can be extracted and
associated from the observation sensor data. Features in this sense are points
in the sensor data that are distinct and recognizable or else points in the sensor
data that appear to correlate well with a given feature model or template that
is specified off-line. The sensor processing algorithm on board the aircraft may
be provided with a visual model and/or a model of the shape of interest that is
likely to be in the environment and the feature extraction will attempt to find
areas in the sensor data that correlate with the properties of the model. Data
association of extracted features from subsequent frames can be performed
using a simple matching of the properties of the sensor data corresponding to
feature or for more generic features by using innovation gating.

The observation Zi(k) is related to the estimated states using:

Zi(k) = Hi (p
n(k), ηn2 (k),m

n
i (k), k) + ν(k) (5.46)

Here, Hi(. . . , k) is a function of the feature location, aircraft position and
Euler angles and ν(k) is uncorrelated, zero-mean observation noise errors of
covariance R. The observation model is given by:
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Zi(k) =

⎛
⎝

ρi
ϕi
vi

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

√
(xs)

2
+ (ys)

2
+ (zs)

2

arctan
(
ys

xs

)

arctan

(
−zs√

(xs)2+(ys)2

)

⎞
⎟⎟⎟⎟⎠

(5.47)

where ρi, ϕi and vi are the observed range, azimuth and elevation angles
to the feature and xs, ys, zs the Cartesian coordinates of psms, the relative
position of the feature with respect to the sensor, measured in the sensor
frame. psms is given by:

psms = Rs
bR

b
n

(
mn
i − pn −Rn

b p
b
sb

)
(5.48)

where Rs
b is the transformation matrix from the body frame to the sensor

frame and psb is the sensor offset from the aircraft center of mass, measured
in the body frame, known as the lever arm.

The estimation process is recursive as presented in the following algorithm.

1. Prediction: the aircraft position, velocity and attitude are predicted
forward in time in between feature observations with data provided
by the inertial sensors. The state covariance P is propagated forward

P (k|k − 1) = ∇FX(k)P (k − 1|k − 1)∇FTX (k) +∇Fw(k)Q∇FTw (k)
(5.49)

where ∇FX and ∇Fw are the Jacobians of the state transition func-
tion with respect to the state vector X̂(k) and the noise input W (k),
respectively.

2. Feature initialization: When the first range/bearing observation of
a particular feature is obtained, its position is calculated using the

initialization function G1

(
X̂(k)

)
, G2

(
X̂(k)

)
which is given as:

G1 −→ mn
i = pn +Rn

b p
b
sb +Rn

bR
b
sp
s
ns (5.50)

G2 −→ psns =

⎛
⎝

ρi cosϕi cos vi
ρi sinϕi cos vi
−ρi sin vi

⎞
⎠ (5.51)

The state vector covariances are then augmented to include the new
feature position:

X̂aug(k) =

(
X̂(k)
mn
i (k)

)
(5.52)

and

Paug(k) =

(
I 0
∇Gx ∇Gz

)(
P(k) 0
0 R(k)

)(
In×n 0
∇Gx ∇Gz

)T

(5.53)
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where ∇Gx and ∇Gz are the Jacobians of the initialization with
respect to the state estimate X̂(k) and the observation Zi(k), respec-
tively. The position of this feature becomes correlated to both the
pose and velocity of the aircraft and the position of other features of
the map.

3. Update: Once a feature has been initialized into the state vector
consisting of the aircraft pose and velocity and the position of this
feature and other features in the environment. The state estimate is
updated as:

X̂ (k|k) = X̂ (k|k − 1) +W(k)ν(k) (5.54)

where the gain matrix W(k) and innovation ν(k) are calculated as:

ν(k) = Zi(k)−Hi

(
X̂ (k|k − 1)

)
(5.55)

W(k) = P (k|k − 1)∇HT
X(k)S−1(k) (5.56)

S(k) = ∇HX(k)P (k|k − 1)∇HT
X(k) +R (5.57)

where ∇HT
x (k) is the Jacobian of the observation function with re-

spect to the predicted state vector X̂ (k|k − 1). The state covariance
P (k|k) is updated after the observation using the covariance update

P (k|k) = P (k|k − 1)−W(k)S(k)WT (k) (5.58)

Once a feature leaves the field of view of the sensor, its position
remains in the state vector and continues to be updated via its cor-
relations to other visible features in the state vector.

The evolution of the probability distributions in the extended Kalman fil-
ter is a function of the state X , due to the linearization of the process and
observation models. When the value of the state can be controlled to some
degree, the evolution of the extended Kalman filter probability distributions
can be controlled in order to minimize entropy. An action can be defined as a
set of controlled states and observations to be made n steps into the future:

a ∈ {X(k), Z(k), X(k + 1), Z(k + 1), . . . , X(k + n), Z(k + n)} (5.59)

In the case of the aircraft in a localization and mapping task, an action
consists of a set of observations of different features to be made as well as the
position, velocity and attitude trajectories of the aircraft over a finite time
horizon [54]. The utility for each possible action that can be made is specified
by the entropic information gain I[X, a] which is defined as the difference
between the entropies of the distributions about the estimated states before
and after taking the action

I[X, a] = h(X)− h(X |a) = −1

2
log

( |P(X |a)|
|P(X)|

)
(5.60)
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where h(X) and P(X) are the prior entropy and covariance and h(X |a) and
P(X |a) are the entropy and covariance of the state X subsequent to taking
action a (i.e., taking a particular aircraft trajectory and making observations
of features along the way). The entropic information gain is a number which
is negative for a loss and positive for a gain in information. The advantage of
entropy and entropic information gain as utility measures in a control problem
is that they represent the whole informativeness of a multivariate distribution
in a scalar value, hence simplifying the control problem to:

a∗ = argmax (I[X, a]) (5.61)

where a∗ is the best control action. This scalar measure, however, can pose
a disadvantage in the sense that the distribution of the information across
states may be uneven. For SLAM purposes, however, the scalar measure is
sufficient for determining overall information gain.

5.2.2.3 Sense-and-avoid setup
Visual control is an active field of research [28]. The localization techniques
for UAV have obtained many promising performances which use GPS, motion
capture system (MCS), laser, camera, kinect RGBD sensor. Collision avoid-
ance, also referred to as sense-and-avoid problem, has been identified as one
of the most significant challenges facing the integration of aircraft into the
airspace. Hence, the term sense relates to the use of sensor information to
automatically detect possible aircraft conflicts and the term avoid relates to
the automated control actions used to avoid any detected/predicted collisions.
The on board single or multiple sensors can provide the sense-and-avoid capa-
bility for aircraft. However, the camera sensor is the best on board candidate
for UAV which can be used in collision avoidance applications. In particular,
UAV requires this collision avoidance ability in the event of failures, for ex-
ample, GPS has dropped out, INS generated the drift, the software/hardware
of UAV has faults suddenly. For applications that need environmental sensing
capabilities, a vision system separated from the flight controller can be in-
stalled on the aircraft. This configuration can use only cameras because they
are lightweight, passive and have low power consumption. A dedicated com-
puter is used to process image information. This results in improved speed
and no influence on the real time behavior of the flight control computer. For
interaction between image-based results and flight control, data exchange is
provided via a local network. A mission planning and automatic control sys-
tem can be installed on the flight control computer. It calculates trajectories
around obstacles, considers changes due to actual image-based map updates
and instructs the aircraft to fly these paths.

Since obstacle mapping and other image-based algorithms require flight
information, a navigation solution provides the global position and attitude
of the aircraft. A limited look-ahead discrete event supervisor controller can
also be used for the sense-and-avoid problem. The controlled UAV and the
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approaching uncontrolled intruding aircraft that must be avoided are treated
as a hybrid system. The UAV control decision-making is discrete while the
embedded flight model dynamics of the aircraft are continuous. The technique
is to compute the controller in an on line fashion on a limited time horizon
[35]. It is assumed that there exists a sensor package on the UAV that is
capable of identifying the position of the intruding aircraft in 3D. Its heading
and speed are initially unknown. In addition to accounting for parametric and
state unknowns, it is also necessary to account for uncontrollable actions that
influence the aircraft’s flight path. For maximum safety, it is assumed that at
every moment the intruder is attempting to collide with the UAV then there
can be no worse scenario.

The basic method to interpret data from depth image sequences follows the
classical approach with occupancy grids. For obstacle mapping, these grids
allow sensor fusion and reduce sensor noise. In this case, a world centric 3D
grid represents the map. Each cell consists of a value describing the presence of
obstacles. Higher values refer to a higher probability of the cell being occupied.
The map is created incrementally by starting with an empty grid and writing
the actual sensor information with each new depth image. Occupancy grid
maps are used to interpret data from depth image sequences. In addition
to that, feature maps are built out of these occupancy grids to store global
obstacle information in a compressed way and to be an input for applications
that use the map.

For this reason, it is a primary requirement to determine the required level
of detailing to represent objects in a feature map [10]. For obstacle avoidance
applications, the important criteria are [14]

1. Small details are not needed.
2. An identification of planes for texture projection is not needed.
3. Real-time capabilities are more important than centimeter accuracy.

These criteria imply that it is sufficient to mark a box around an object and
simply avoid this area. In a real scenario like a city, objects can be modeled
as prisms. The world is split into layers in different heights and each layer has
its own polygonal 2D obstacle map. This is sufficient for a lot of applications
like flight trajectory planning in urban scenarios. The mapping process works
as presented in the following algorithm 16.

This approach uses different map types. The occupancy grid map for sensor
inputs (layer 0) is partitioned into zones and each zone is searched for obstacles
separately (layer 1). Next, a map with separate obstacles but without zone
separation is generated (layer 2) and finally the prism shapes are extracted
out of them (layer 3). Grid resolution and zone sizes are user-defined but may
not change over time when processing image series.

Extracting objects from the grid maps, object features are detected by
segmenting the global map into occupied and free areas applying a threshold.
A single object is a cluster of connected occupied cells of the 3D array. These
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Algorithm 16 : Mapping Algorithm

1. Create an occupancy grid around the aircraft’s position if not existing
in the map.

2. If a new grid is allocated or the grid is extended, check whether
previously stored features can be inserted.

3. Insert the actual sensor data information to the grid.
4. Find clusters of occupied grid cells and mark them as single obstacle

features.
5. Find out which obstacle features are new and which are updates of

objects that have already been identified in the previous loop cycle.
Pre-existing objects may also be removed.

6. Calculate the shape of each new or updated feature.
7. To insert the next sensor data, go back to step 1.

objects are recognized with a flood fill algorithm. By saving the minimal
and maximal values of the coordinates of cells belonging to the object, the
bounding box is calculated and put into the global feature map. For each
object, the binary cell shape is stored in addition to the bounding box so
that this shape can be re-inserted. Compression with an octree structure is
applicable in this approach.

5.2.2.4 Monocular visual–inertial SLAM using fuzzy logic controllers
The uncertainty, inaccuracy, approximation and incompleteness problems
widely exist in real controlling technique. Hence, the model-free control ap-
proach often has the good robustness and adaptability in the highly nonlinear,
dynamic, complex and time-varying UAV dynamics. The fuzzy logic controller
mainly consists of three different types of parameters:

1. Scaling Factors: (SF) are defined as the gains for inputs and out-
puts. Their adjustment causes macroscopic effects to the behavior of
the fuzzy controller, i.e., affecting the whole rule table.

2. Membership Function: (MF) its modification leads to medium size
changes, i.e changing one row/column of the rule tables.

3. Rule weight: (RW) also known as the certainty grade of each rule,
its regulation brings macroscopic modifications for the fuzzy logic
controller, i.e., modifying one unit of the rule tables.

The cross-entropy (CE) method involves an iterative procedure where
each iteration can be broken down in two phases:

1. In the first stage, a random data sample (e.g., scaling factors or mem-
bership function of fuzzy controller) is generated according to a spec-
ified mechanism,
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2. then the parameters of the random mechanism are updated based on
the data in order to produce a better sample in the next iteration.

Fusion of vision and inertial measurement unit can be classified into three
different categories:

1. Correction: where it uses the results from one kind of sensor to
correct or verify the data from another sensor.

2. Colligation: where one uses some variables from the inertial data
together with variables from the visual data.

3. Fusion: to efficiently combine inertial and visual data to improve
pose estimation.

Fuzzy logic controller has a good robustness and adaptability to control
the UAV orientation. This fuzzy logic controller is PID type with

1. Three inputs: the angle error estimation between the angle reference
and the heading of the UAV, the derivative and the integral values of
this estimated error.

2. One output: the command in degrees/seconds to change the heading.

The product t-norm is used for rules conjunction and the defuzzification
method is:

Y =

∑M
i=1 Y

l∑N
i=1

(
μXli (Xi)

)

∑M
i=1

∑N
i=1

(
μXli (Xi)

) (5.62)

where N and M represent the number of input variables and total number
of rules, respectively, μXli (Xi) denotes the membership function of the lth rule

for the ith input variable and Y
l
represents the output of the lth rule [24].

5.2.3 GEOLOCATION

5.2.3.1 Cooperative geolocation with articulating cameras
Geolocation is the tracking of a stationary or moving point of interest using
visual cameras for payloads. It is the process of using sensor data to develop
statistical estimates of a point of interest on the ground.The geolocation sys-
tem for an autonomous aircraft requires the complex integration of several
hardware components (camera, UAV, GPS, attitude sensors) and software
components (camera image processing, inner-loop and path planning control,
and estimation software) to develop accurate estimation of the object being
tracked. The sensor biases and the unknown point of interest state are esti-
mated in a decentralized manner, while using the solution from the on board
navigation system to save significant computation. The joint estimation prob-
lem is solved for multiple UAV cooperating in a decentralized fashion such
that the UAV share information on the point of interest state and model only
their local biases. This decentralized formulation saves computation as well
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as communication, while giving geolocation accuracy that is comparable with
the centralized case. Further, this decentralized approach allows for effective
cooperation not only among autonomous aircraft with potentially different
biases, but among different sensors altogether.

For the application of a vision sensor on a UAV based on its position and
orientation, the camera points through a gimbal’s payload mounted inside the
UAV at the point of interest on the ground, while the aircraft is moving and
the point of interest is potentially moving; the camera gimbals must adjust
their angles to point at the point of interest. The camera is directed at the
point of interest, such that it always remains within the field of view of the
camera [127]. The objective of geolocation is then to estimate the position (2D
or 3D) of the point of interest from the aircraft, gimbals and camera measure-
ments. Uncertainties in the aircraft position and orientation, gimbal angles,
camera specifications and measurements, and disturbances complicate this
problem. The most accurate estimator couples the UAV navigation (NAV),
attitude (ATT), camera gimbals (GIM) and point of interest states in a single
estimator, which requires full UAV and gimbals models and a model for the
point of interest. However, this estimator requires very high computations,
memory and communications in the case of multiple UAV. Fortunately, most
autonomous aircraft use a navigation system with estimators that provide es-
timates and covariances for both the ATT and NAV states. In addition, the
GIM states can be directly measured. Therefore a geolocation estimator can
be developed that estimates the point of interest state only, saving computa-
tion and memory [129].

An extended information filter (EIF) is developed which uses the nav-
igation system to solve the cooperative geolocation problem and makes ex-
plicit the assumptions about the estimates of the UAV state. The state to
be estimated, Xk,POI , is the state of the point of interest, with discrete-time
dynamics governed by:

Xk+1 = f(Xk,Wk) = fPOI (Xk,POI , ϑk,POI) (5.63)

where the disturbance ϑk,POI is zero mean white Gaussian noise with covari-
ance Qk,POI and the subscript k denotes time step tk. Assume there are N

UAV with states ψjk+1 for j = 1, . . . , N composed of UAV position ψjk+1,NAV ,

UAV attitude ψjk+1,ATT for j = 1, . . . , N and camera attitude ψjk+1,GIM for
j = 1, . . . , N written in vector form as:

ψjk+1 =

⎛
⎜⎝

ψjk+1,NAV

ψjk+1,ATT

ψjk+1,GIM

⎞
⎟⎠ (5.64)

The unmanned aircraft are further assumed to have on board navigation
system and measurements of the camera’s gimbal angles, which give an esti-
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mate of the UAV state ψ̂jk+1. A simple model can be used

ψjk+1 = ψ̂jk+1 + ηjk+1 (5.65)

where the UAV state estimate error ηjk+1 is zero-mean, Gaussian and white

with covariance ηRj
k+1. This model is known to be incorrect because the

statistics are not white, but correlated through the navigation filter. Many
times, the errors due to autocorrelation are small. Biases may also exist which
can have a significant effect on accuracy. Measurements of the point of interest
are made on each autonomous aircraft using:

Zjk+1 = hj
(
Xk+1, η

j
k+1, ν

j
k+1

)
= hSCR

(
Xk+1,POI , ψ̂

j
k+1 + ηjk+1, ν

j
k+1,SCR

)

(5.66)
where the sensor noise νjk+1 is zero-mean, white Gaussian noise with co-

variance vRj
k+1. The process noise, sensor noises and navigation system noises

(ϑk, ν
j
k+1, η

j
k+1) are assumed to be uncorrelated with each other. The mea-

surement function in (5.66) is a complicated nonlinear function of the point
of interest state and the UAV state. The cooperative geolocation problem can
now be solved with an extended information filter as follows: The information
matrix Yk and information state Yk are defined based on the state estimate
error covariance Pk and state estimate X̂k as

Yk = P−1
k (5.67)

Yk = YkX̂k (5.68)

The extended information filter algorithm can be written for N autonomous
aircraft as in [129].

5.2.3.2 Geolocation with bias estimation
The assumption that the errors in the estimate of the UAV state are zero-
mean, white and Gaussian is not accurate in the practical case for two reasons:
correlated outputs of the navigation filter and biases in the outputs. Sensor
biases are a significant source of error for geolocation.

Series of sensed points of interest (SPOI) are the line of sight inter-
section of the camera with the ground as computed based on the estimates of
the autonomous aircraft state (NAV, ATT, GIM). Series of sensed points of
interest moves in a roughly circular pattern around the true point of interest
location. The period of this oscillation corresponds directly to the UAV orbit
about the point of interest and is due to non-zero mean errors (biases) in the
autonomous aircraft state estimate. The sensor biases are explicitly modeled
and both the sensor biases and the unknown point of interest location are
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jointly estimated. The biases bjk are now modeled explicitly as a part of the
UAV navigation system output and camera gimbals measurement as:

ψjk = ψ̂jk + bjk + ηjk (5.69)

where the model of the bias state bjk used here is

bjk+1 = bjk + ϑjk,b (5.70)

Autocorrelation of the UAV state estimate error could be taken into account
in the same way as the biases by adding autocorrelation states μj,mk in (5.69)
as

ψjk = ψ̂jk + bjk + ηjk + μj,1k + · · ·+ μ
j,nμ
k (5.71)

where each of the autocorrelation terms correspond to a different frequency
of autocorrelation. The autocorrelation terms can be modeled as

μ
j,nμ
k+1 = aj,mμ

j,nμ
k + ϑjk,μj,m (5.72)

where the parameter aj,m is chosen to capture the appropriate autocorrelation
frequency. The navigation system and camera gimbals measurements are used
directly, while only the biases bj are estimated recursively, with the point
of interest state Xk,POI . This saves significant computation while effectively
improving the estimate of the UAV state and thus improving geolocation [23].

5.3 INTEGRATED SYSTEM HEALTH MONITORING
There are several flight critical components and systems for the UAV: actu-
ators, control surfaces, engines, sensors, flight computers and communication
devices [98]. Faults and failures in such components may compromise UAV
flights. The consequence of a control surface fault is reduced performance and
possibly instability depending on the effectiveness of the health management
system. Sensors in the feedback loop are subject to both hard-over failures
which are catastrophic but relatively easy to detect. Hard-over failures are
typically detected and identified by a sensor with built-in testing. Soft fail-
ures include a small bias in measurements, slow drifting of measurements, a
combination of the two, loss of accuracy and freezing of the sensor to certain
values.

An environmental hazard can cause damage to a UAV. The platform itself
may be damaged as well as the flight critical components and systems. In the
case of a fixed-wing UAV, control surface damage can change the dynamics,
translating in a modified control input-to-state matrix and as an additional
nonlinear term representing asymmetrical post-damage dynamics. A degrada-
tion in the performance of UAV sensors and actuators may be the result of
poor weather or other adverse environmental effects. Forces of nature have a
greater impact on small vehicles than on large aircraft. Constraints on avail-
able on board power, as well as allowed payload mass and volume, indirectly
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limit the complexity of control laws that can be embedded in the small UAV.
The aerodynamic scale and available control authority make it difficult for
small UAV to counteract the effects of wind. For UAV equipped with GPS
receivers, examples of faults include jamming of GPS data and the multi-path
effect of reflections causing delays. These in turn result in inaccurate positions.
All these factors necessarily restrict the choice and numbers of actuators and
sensors.

Definition 5.1. A fault means an unpermitted deviation of characteristic
properties or parameters of the system from the standard condition, and a
failure means a permanent interruption of partial systems.

Remark 5.11. Manned and unmanned aircraft share many common de-
graders and can use similar analytical techniques to detect and track faults
in components and subsystems. The physical implementation of the health
monitoring system may differ in unmanned and manned systems, however,
due to differences in platform size, weight and electrical power. A key require-
ment is the integration of the health management system with an autonomous
aircraft controller [17]. The health monitoring system and the aircraft con-
trol computer must be able to exchange information to realize higher levels of
autonomy. The implementation of integrated system health management typ-
ically involves the collection, processing and monitoring of data from sensors
and signals to determine the state of health of the platform. The weight, size
and power requirements for health monitoring are important constraints in
unmanned systems because they represent a high percentage of the operating
margins for those parameters [39].

Generic, object-oriented fault models, built according to causal-directed
graph theory, can be integrated into an overall software architecture dedicated
to monitoring and predicting the health of mission critical systems [134]. Pro-
cessing over the generic faults is triggered by event detection logic that is
defined according to the specific functional requirements of the system and its
components. Once triggered, the fault models provide an automated way for
performing both upstream root cause analysis (RCA) and for predicting
downstream effects or impact analysis. The methodology has been applied to
integrated system health management (ISHM) implementations [43].

Remark 5.12. The real time flight envelope monitoring system uses a
combination of three separate detection algorithms to provide a warning at
present number of degrees prior to stall. real time aircraft control surface hinge
moment information could be used to provide a robust and reliable prediction
of aircraft performance and control authority degradation. For a given airfoil
section with a control surface, aileron, rudder or elevator, the control surface
hinge moment is sensitive to the aerodynamic characteristics of the section.
As a result, changes in the aerodynamics in the section due to angle of attack
or environmental effects such as icing, heavy rain, surface contaminants or
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bird strike will affect the control surface hinge moment. These changes include
both the magnitude of the hinge moment and its sign in a time-averaged sense
and the variation of the hinge moment with time. The system attempts to
take the real time hinge moment information from the aircraft control surfaces
and develop a system to predict aircraft envelope boundaries across a range
of conditions, alerting the flight management system to reduction in aircraft
controllability and flight boundaries.

By applying genetic optimization and goal seeking algorithms on the air-
craft equipment side, a war game can be conducted between a system and its
model as in [15]. The end result is a collection of scenarios that reveals any
undesirable behaviors of the system under test. It leverages advances in state
and model-based engineering, which are essential in defining the behavior of
an autonomous system. It can also use goal networks to describe test scenarios
[89].

A widely used approach is the fault detection and isolation (FDI) tech-
nique which is based on redundancy management system.

Definition 5.2. Fault detection refers to the decision of whether or not
a fault occurs, and fault isolation is defined as the process of finding and
excluding the faulty component.

Generally, the fault detection and isolation technique is categorized into
hardware redundancy and analytic redundancy management.

Remark 5.13. The triple or quadruple hardware redundancies generally used
for large conventional aircraft are not suitable for small unmanned aircraft
because small inexpensive systems are limited by cost and payload space.

The problem of model-based fault detection and isolation (FDI)
has been widely studied in recent years. Fundamentally, the objective of all
model-based fault detection and isolation approaches is to monitor residuals
constructed by comparing the measured system output to a predicted out-
put synthesized using a model of the expected healthy aircraft behavior. If
the model is accurate, then the measurement predictions should all be close
to the corresponding actual sensor signals. Faults in the actuators, sensors
or the aircraft itself become manifested through discrepancies that become
abnormally large in a statistically significant sense. Known nominal aircraft
models can form the basis for analytic redundancy-based designs that
simultaneously diagnose both sensor and actuator faults.

In [130], a recursive strategy for online detection of actuator faults on a
unmanned aircraft subject to accidental actuator faults is presented. It offers
necessary flight information for the design of fault tolerant mechanisms to
compensate for the resultant side effect when faults occur. The proposed fault
detection strategy consists of a bank of unscented Kalman filters with each
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one detecting a specific type of actuator faults and estimating corresponding
velocity and attitude information.

An undetected fault in a system can have catastrophic effects. A combina-
tion of a fault detection scheme and a control system is also known as a fault
tolerant flight control system (FTFCS). They are used to detect, identify
and accommodate for any type of failure that may occur on board the aircraft
[106].

One approach to fault detection and identification in actuators and sen-
sors is based on multiple model methods [59]. These methods have been
extended to detect faults, identify the fault pattern and estimate the fault
values. Such methods typically use Kalman filter or EKF or UKF filters in
conjunction with multiple hypothesis testing and have been reported to be
effective for bias type faults such as aircraft control surfaces getting stuck at
unknown values or sensors (e.g., rate gyros) that develop unknown constant
varying biases. A basic requirement for these methods is that the inputs and
sensors should be identifiable.

Multiple sensor fault detection, isolation and accommodation (SF-
DIA) schemes are particularly important if the measurements of a failed error
sensor are used in a control system. Since the aircraft control laws require
sensor feedback to set the current dynamic state of the aircraft, even slight
sensor inaccuracies, if left undetected and accommodated for, can lead to
closed-loop instability. Moreover, nowadays, condition monitoring is heading
towards a more informative process, where practitioners need a health man-
agement system where the fault can also be accommodated [131].

The majority of the model based multiple sensor fault detection, isolation
and accommodation schemes rely on linear time invariant (LTI) models.
Unfortunately, in nonlinear time-varying systems, such as aircraft, LTI models
can sometimes fail to give satisfactory results [106]. In general most FDI
methods can be divided into two groups, both initially designed to be robust
when applied to the real aircraft:

1. One that makes use of an aircraft model,
2. One that does not make use of an aircraft model.

There is a set of performance criteria

1. Fault detection time,
2. False alarm rate,
3. Number of undetected faults,
4. Ability to isolate the fault.

Definition 5.3. Reliability is the probability that an item will perform its
intended function for a specified time interval under stated conditions. Avail-
ability is the probability that a given system is performing successfully at
time t, independently of its previous states. Average availability measures
the up-time as a proportion of a given working cycle.
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From the various techniques to quantify reliability, fault tree analy-
sis (FTA) is one of the most commonly used. Other techniques as failure
modes and effects analysis (FMEA), Markov analysis, Monte Carlo
approaches can be combined with fault tree analysis to empower the outcome.
Reliability is a complex theory. Different concepts exist applicable to different
systems, depending on its features. Failure rate λ is widely used as a measure
of reliability. It gives the number of failures per unit time from a number of
components exposed to failure. It is frequently measured in failures per 109

hours and these units are denoted as FIT.
Availability reaches a steady state condition when time tends to infinity

which is affected only by failure and repair rates. Moreover, one must suppose
that the probability distribution function (PDF) of failure is exponential.

A(∞) =
μ

μ+ λf
(5.73)

μ is the repair rate and λf is the failure rate.

5.3.1 DIAGNOSTIC TOOLS AND APPROACHES

Model-based diagnostic and prognostic techniques depend upon mod-
els of the aircraft. In the presence of uncertainties, modeling errors can de-
crease system sensitivity to faults, increase the rate of occurrence of false
alarms and reduce the accuracy of failure prognoses. Robust designs have been
presented that explicitly address the presence of aircraft model uncertainty. In
addition, adaptive designs have been presented that assume known nominal
aircraft dynamics and also consider aircraft with unknown system parameters
[88]. Diagnostic applications are built around three main steps:

1. Observation,
2. Comparison,
3. Diagnosis.

A sensor failure model may be not specifically considered in the design;
rather it is stated that any sensor anomaly will cause the associated output
estimation error not to converge, and thus a failure to be detected and iso-
lated. Moreover, the design can support diagnosis of arbitrary combinations
of sensor faults rather than requiring an output estimator for every sensor to
be monitored.

Model-based approaches have proven fruitful in the design and im-
plementation of intelligent systems that provide automated diagnostic func-
tions [95]. A wide variety of models are used in these approaches to represent
the particular domain knowledge, including analytic state-based models,
input-output transfer function models, fault propagation models and
qualitative and quantitative physics-based models [61].

If the modeling begins in the early stages of UAV development, engineering
models such as fault propagation models can be used for testability anal-
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ysis to aid definition and evaluation of instrumentation suites for observation
of system behavior. Analytical models can be used in the design of mon-
itoring algorithms that process observations to provide information for the
second step in the process. The expected behavior of the smart autonomous
aircraft is compared to the actual measured behavior. In the final diagnostic,
step reasoning about the results of the comparison can be performed in a
variety of ways, such as dependency matrices, graph propagation, constraint
propagation and state estimation [100, 116, 137].

The three primary components of the diagnosis engine for run time analysis
are described next.

1. Hybrid observer employs a filter combined with a hybrid automa-
ton scheme for tracking nominal system behavior. The diagnosis en-
gine architecture includes a hybrid observer that tracks continuous
system behavior and mode changes while taking into account mea-
surement noise and modeling errors.When observer output shows sta-
tistically significant deviations from behavior predicted by the model,
the fault detector triggers the fault isolation scheme.

2. Fault detection and symbol generation: the fault detector con-
tinually monitors the measurement residual R(k) = Y (k) − Ŷ (k)
where Y is the measured value and Ŷ is the expected system out-
put, determined by the hybrid observer. Since the system measure-
ments are typically noisy and the system model imperfectly known,
so that the prediction system is not perfect, the fault detector em-
ploys a statistical testing scheme based on the Z-test for robust fault
detection. A fault signature is defined in terms of magnitude and
higher order derivative changes in a signal.

3. The fault isolation engine uses a temporal causal graph (TCG)
as the diagnosis model. The temporal causal graph captures the dy-
namics of the cause-effect relationships between system parameters
and observed measurements. All parameter changes that can explain
the initial measurement deviations are implicated as probable fault
candidates. Qualitative fault signatures generated using the temporal
causal graph are used to track further measurement deviations. An
inconsistency between the fault signature and the observed deviation
results in the fault candidate being dropped. As more measurements
deviate the set of fault candidates become smaller.

For hybrid diagnosis, to accommodate the mode changes that may occur
during the diagnostic analysis, the fault isolation procedure is extended by
two steps:

1. qualitative roll-back,
2. qualitative roll-forward.
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Fault identification uses a parameter scheme: a mixed simulation-and-
search optimization scheme is applied to estimate parameter deviations in
the system model. When more than one hypothesis remains in the candidate
set, multiple optimization are run simultaneously and each one estimates one
scalar degradation parameter value. The parameter value that produces the
least square error is established as the true fault candidate.

Control surface fault diagnosis is essential for time detection of maneuver-
ing and stability risks for an unmanned aircraft. An approach where a basic
generic model is applied and necessary parameters in residual generators are
identified on the flight is presented in [19]. Initial estimates of parameters
are known from off-line analysis of previous flights. Self-tuning residual gen-
erators are combined with change detection to obtain timely fault diagnosis.
The parameter convergence is investigated as well as detection properties for
the suggested combination of identification and change detection techniques.
Self-tuning can be employed to obtain adaptation to flight parameters while
retaining the capability to detect faults. Change detection is applied to resid-
uals alone and to residuals combined with parameter estimate.

Definition 5.4. A runaway is an unwanted control surface deflection that
can persist until the moving surface stops. A runaway can have various speeds
and is mainly due to electronic component failure, mechanical breakage or a
flight control computer malfunction.

Depending on the runaway dynamic, this fault could either result in an un-
desired pitch maneuver or could require a local structural load augmentation
in the aircraft.

Definition 5.5. A jamming is a generic system failure case that generates
a mechanical control surface stuck at its current position. A negative effect of
surface jamming is the resulting increased drag, which leads to increased fuel
consumption.

Remark 5.14. Employing dissimilar hardware and redundancy-based tech-
niques is the standard industrial practice and provides a high level of robust-
ness and good performance compliant with the certification requirements for
manned aircraft. Fault detection is mainly performed by cross-checks or con-
sistency checks [39]. The current industrial practice for control surface jam-
ming and runaway detection in manned aircraft consists mainly of consistency
checks between two redundant signals. If the difference between the signals
computed in the two flight control computer channels is greater than a given
threshold during a given time, the detection is confirmed. The whole procedure
can be divided into two steps: residual generation and residual evaluation.

Alarms are triggered when the signal resulting from the comparison ex-
ceeds a given threshold during a given time window or confirmation time. The
basic idea of another fault detection and diagnosis is to integrate a dedicated
Kalman filter between residual generation and decision-making blocs.
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5.3.1.1 Sensor selection and optimization
Traditionally, in flight systems, sensors are primarily selected through an ad
hoc heuristic process, where various domain groups are polled as to what sen-
sors they require in the system. Although safety and reliability are just as
important as system performance, the sensors are primarily selected based on
control requirements and performance assessment, rather than on health
monitoring and management. To be incorporated into the design process,
accepted methodologies and procedures must be established that provide jus-
tification of the selected sensors within the constraints of the aircraft require-
ments. To precisely quantify the benefits of sensors in flight systems, heuristic
sensor selection approaches must give way to systematic techniques that are
based on accepted selection criteria and performance metrics that measure
their value to the systems [75].

The goal of the sensor selection process is to provide a suite of sen-
sors that fulfill specified performance requirements within a set of system
constraints. These performance requirements are defined as the figures of
merit (FOM) of the system:

1. Observability addresses how well the sensor suite will provide in-
formation about the given system process, which parameters that are
directly observed and which parameters can be inferred.

2. Sensor reliability/sensor fault robustness addresses sensor re-
liability and how sensor availability impacts the overall sensor suite
performance.

3. Fault detectability/fault discriminability specifically addresses
whether the sensor suite can detect and discriminate system failures.

4. Cost can include development, purchase and maintenance costs for
the sensors as well as resource and communication costs.

Sensor selection is based on a set of criteria called the objective function
which is an algorithmic representation of established figures of merit and
system constraints. Accurate in-flight detection of sensor uncertainties and
failures is crucial in safety- and mission-critical systems of an autonomous
aircraft. For example, if a sensor is indicating that a parameter is out of the
normal operating range, there are two real possibilities and the proper reaction
of the control system is different in both cases:

1. The sensor has failed in such a way that it is providing erroneous mea-
surements and in fact the monitored process is functioning normally.
Given a model-based diagnostic system integrated with the control
system, equipment operation can continue as planned.

2. The measured parameter is truly out of the normal operating range.
The control system needs to take action, or perhaps uses an alterna-
tive or virtual sensor.

Accelerometers are commonly used for health monitoring of aircraft.
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They are used to sense vibration signatures and shock within turbine engines
in order to identify problems during operation [68]. They are used to sense
vibration signatures and shock within turbine engines in order to identify
problems during operation. By employing physics understanding of these sys-
tems, it is possible to identify potential failures at a much earlier time thereby
providing an opportunity to take corrective action. For the specific case of an
aircraft health monitoring system designed to conduct corrective action based
on feedback from accelerometers (e.g., an automated shut down of an engine),
the reliability of the sensor must be ensured.

The self-diagnosis accelerometer (SDA) system actively interrogates
piezoelectric accelerometers to verify the proper operation of the accelerome-
ters. By interrogating the sensor, it is possible to identify the following failure
modes: a physically damaged sensor, electrical disconnection, as well as sen-
sor detachment/loosening from the structure. The interrogation of the sensor
is accomplished by deriving the piezoelectric crystal with a frequency swept
sinusoidal voltage and monitoring the response from the crystal so that the
frequency of a particular resonance is determined. The sensor’s resonant fre-
quency which depends on the electromechanical properties of the accelerom-
eter is far above the specified operational frequency range. Furthermore, the
resonant frequency of the sensor is sensitive to the mounting torque of the
sensor. Other failures such as physical damage to the sensor crystal and elec-
trical disconnection are also both identifiable when interrogating the sensor
with this type of input signal [75].

Information-driven sensor planning utilizes information theoretic functions
to assess the value of a set of sensor measurements and to decide the best
sensor mode or measurement sequence [72]. Because target classification can
be reduced to the problem of estimating one or more random variables from
partial or imperfect measurements, the value of future measurements may be
represented by their expected information value. Information theoretic func-
tions, such as information entropy, have been proposed to assess the informa-
tion value of sensor measurements.

5.3.1.2 Hazard alerting
Smart autonomous aircraft operations are conducted to perform some mis-
sion that could be disrupted by making unplanned maneuvers. Therefore, it
is important that sense-and-avoid systems distinguish threatening from non
threatening traffic or other hazards, and call for a maneuver only when re-
quired for safety [8]. The threat declaration function then must balance two
primary requirements:

1. To determine that a hazard poses a threat such that some maneuver
is required,

2. To minimize these declarations for targets that are actually non-
threatening.
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Hazard alerting systems alert the autonomous aircraft to potential future
undesirable events so that action may be taken to mitigate risks. One way to
develop a hazard alerting system based on probabilistic models is by using
a threshold based approach, where the probability of the undesirable event
without mitigation is compared against a threshold. Another way to develop
such a system is to model the system as a Markov decision process (MDP)
and solve for the hazard alerting strategy that maximizes expected utility [27].

Threshold based approaches to the hazard-alerting system developed
involve using explicit threshold criteria to decide when to alert and what alert
to issue. They typically require computing the probability of the undesirable
event assuming no alert is ever issued and the event probability when fol-
lowing the guidance provided by each alert indefinitely [77]. The probabilities
can be computed using analytic, Monte Carlo, numerical approximation or dy-
namic programming methods. Threshold based systems can be divided into
two categories:

1. Constant threshold system uses thresholds that remain fixed from
scenario to scenario.

2. Dynamic threshold system uses thresholds that vary as the hazard
situation evolves.

5.3.1.3 Fault tree analysis
Fault tree analysis provides a hierarchical and visual representation of com-
binations of possible events affecting a system in a set of odd behaviors pre-
viously defined. The basis of fault tree analysis lies in Boolean algebra for
simple analysis and it is extended to probability and statistics analysis al-
lowing more complex models. Fault tree analysis is an up-bottom technique
oriented to represent failure modes of the system. The basic rules to build a
fault tree are:

1. Describe the top event accurately and the boundaries of the system
behavior.

2. Divide the problem into scenarios as technical failures, human errors
or software and develop them as deep as necessary.

3. Use consistent nomenclature for all devices and events; otherwise the
analysis can be incorrect.

Analysis of common cause failure in redundant control systems can be done
using fault trees. Redundancy in control systems (sensors, control units,
input/output cards, communication systems and actuators) is critical. The
actual implementation of redundancy can follow different strategies. Control
system components have different failure probability and different sensi-
tivity to external common disturbances. Redundancy implies an extra cost
and therefore an accurate reliability analysis to discover critical components
is needed in order to assist the design of such facilities. Fault tree modeling
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can be used to analyze control reliability. A modular decomposition of the
system at different levels and the identification of interactions among them
is used to build the tree. The failure rate associated to each module or com-
ponent is used in the reliability analysis of the whole system. Reliability is
hardly affected by common cause failures (CCF), i.e., events that affect
more than one component at the same time. Common cause failures are in
general unpredictable. They might be the result of an event that affects a
common area where several components are located. The analysis of common
cause failures is an important task in order to ensure the continuous operation
of critical processes [43, 45].

Fault tree analysis construction ends with a system failure probability
model where the combination of elements that lead the system to failure is
explicitly represented. A basic model consists in connecting logical gates (AND
and OR are the basic ones) that describe elements and dependencies among
subsystems. There are different ways to assess the failure probability of the
basic events

Pr
and

= Pr (a1 ∩ .. ∩ an) =
n∏
i=1

Pr(ai) (5.74)

Pr
or

= Pr (a1 ∪ .. ∪ an) =
n∑
i=1

Pr(ai)−
n∏
i=1

Pr(ai) (5.75)

Pr(ai) is the probability of element ai.
In the construction of the fault tree, the top node represents the failure

mode and collects the influence of all the components and subsystems through
branches composed by logical gates. When branches cannot be further devel-
oped those elements placed at the bottom are called basic events. They must
be sufficiently detailed to relate them to those devices from which failure and
repair rates are available or can be calculated. Previous formulas are used
to derive the final availability of the whole system and analyze the influence
of each component and event. Those elements affected by the same adverse
influences (stressors), typically those that are placed together or submitted to
the same ambient conditions, are candidates to be affected by common cause
failures.

Remark 5.15. In redundant studies, the consideration of common cause fail-
ure (CCF) is very important because the total reliability without considering
them can be too optimistic.

A phased mission describes a situation when the requirements for success
change throughout the time of operation; therefore the causes of failure during
the mission also change. The consecutive and distinct periods in the mission
performing different tasks are known as phases, performed in sequence. In
order for the mission to be successful, each of the phases must be completed
successfully; therefore, the mission fails if at least one phase fails [100]. A
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significant factor in the decision-making process of autonomous systems is
the mission failure probability during the future phases. There are two types
of prediction required: before the start of the mission and while the mission
is in progress.

A prognostic tool is expected to provide accurate information in a short
time so that the decision-making process would be well-informed and appro-
priate decisions would be made before a catastrophic event. Fault tree analysis
is suitable when describing a non-repairable system where component failures
are treated independently. Binary decision diagrams can be developed as an
alternative logic function representation. Phased missions are used to define
the behavior of a system during different parts of the mission and to perform
the analysis. The following characteristics determine a phased mission:

1. Every mission consists of many consecutive phases performed in se-
quence.

2. Since a different task is to be performed in each phase there are
different failure criteria in each phase.

3. For a mission to be successful all phases must be completed success-
fully.

The phased mission is represented by a number of fault trees, each of them
expressing the conditions leading to a failure of a phase. Let Fi express the
logical expression for the failure conditions being met in phase i and Phi
express the logical expression for mission failure in phase i; then

Ph1 = F̄1

...

Phi = F 1F 2 . . . F i−1F i

(5.76)

Since the conditional phase failures are mutually exclusive events the total
mission failure probability is simply the sum of mission phase failure proba-
bilities. Fault tree analysis can be used to quantify the probability of mission
failure during mission phase i, Qi:

Qi = Pr (Phi) (5.77)

Since the mission fails if at least one of its phases fails, the logical expression
for mission failure is given by:

Phmission = Ph1 + Ph2 + · · ·+ Phi (5.78)

The total mission failure probability is obtained by adding these mission phase
failure probabilities:

Qmission = Q1 +Q2 + · · ·+Qn (5.79)

where n is the total number of phases in the mission. Once the mission is un-
derway, Qi is updated taking into account the success of the previous phases.
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The updated phase failure probability, Qj|k̄, is the probability of failure in
phase j given that phase k was successfully completed:

Qj|k̄ =
Qj

1−∑k
i=1Qi

(5.80)

Then the overall mission failure probabilities calculated by adding the phase
failure probabilities of the future phases:

Qmission|k̄ =

n∑
j=k+1

Qj|k̄ (5.81)

If the probability of mission failure becomes too high then the future mission
is considered to be too risky and an alternative mission configuration is used.

The probability of collision between two objects provides a quantitative
measure of the likelihood that the objects will collide with each other [31].

5.3.1.4 Failure modes and effects analysis
Fault/failure detection, isolation and recovery (FDIR) methods are
usually designed for flight-critical components such as actuators and sensors,
using detailed models. At some point during normal operation, a fault may be-
gin to develop in a component. As the fault progresses, it may begin to impact
the performance and operation of the platform [99]. If the fault is not detected
and corrected, it will eventually lead to a functional failure and possible col-
lapse of the platform. In autonomous aircraft, the diagnose-repair-replace step
may involve execution of diagnostic procedures, putting the platform in some
sort of sleep or safe mode, then switching to a redundant backup subsystem if
the platform was designed and built with the necessary redundancy. Finally,
aspects of the mission may be re-planned or re-scheduled to accommodate the
break in execution or to accommodate reduced functionality resulting from
the fault or failure. One objective of integrated system health monitoring is to
detect faults after initiation, but before they impact operation. Once a fault is
detected, the health of the platform can be assessed. System health monitoring
enables automated diagnosis and response to a developing fault.

In the case of aircraft maintenance, there exist three criteria or inputs
that affect the failure time and cause the model to lose the other inputs. The
related forecast equation involves four main estimation functions, exponential,
logarithmic, linear and power functions

Ŷ =
(
α1 exp (−β1X1) + γ1 ln (−β1X1) + δ1X1 + ε1X

ζ1
1

)

+
(
α2 exp (−β2X2) + γ2 ln (−β2X2) + δ2X2 + ε2X

ζ2
2

)

+
(
α3 exp (−β3X3) + γ3 ln (−β3X3) + δ3X3 + ε3X

ζ3
3

) (5.82)

where X1 is the total lifetime of takeoffs, X2 is the previous year failure
rate, X3 is the failure time and Ŷ is the estimated failure time. The forecast



Flight Safety 355

equation has been built as the linear combination of four different estimation
functions for each input. Genetic algorithms can be used for the parameter
estimate of a forecast equation [1, 42]. A genetic algorithm has been built
that aims to forecast equation parameters in a way to minimize sum square
errors (SSE) which is represented as

SSE =

n∑
i=1

(Yi − Ŷi)2 (5.83)

where Y is the real failure time, n is the number of data and Ŷ is the estimated
failure time.

5.3.2 RISK-BASED SENSOR MANAGEMENT

A risk-based optimal sensor management scheme has to be developed for in-
tegrated detection and estimation under limited sensor resources in the pres-
ence of uncertainties. The objective is to effectively detect and satisfactorily
estimate every unknown state of interest within a mission domain while min-
imizing the risk associated with the sensing decisions.

Definition 5.6. Integrity risk is defined as the probability of the state es-
timate error exceeding predefined bounds of acceptability.

An expression can be derived that relates the measurement noise and dis-
turbance input autocorrelation functions to the state estimate error vector
[65].

Detection and estimation are integrated into a single-risk based framework,
which facilitates the optimal resource allocation across multiple tasks that are
competing for the same limited sensory resources. A single or multiple sensors
are used to perform detection of discrete random variables concurrently with
the estimation of some other continuous random variables. Bayesian sequen-
tial detection and its extension to Bayesian sequential estimation are used to
address the problem. Two costs can be taken into account for risk evaluation:
the cost of making an erroneous detection or estimation decision without tak-
ing further observations, and the cost of taking more observations to decrease
the risk associated with the detection and estimation decisions. The Renyi
information divergence is introduced as a measure of the relative informa-
tion loss, which is used to define the observation cost, in making a suboptimal
sensor allocation decision.

The Bayesian sequential detection method can be used to address the de-
tection problem. It is a sequential hypothesis testing for a stationary discrete
random variable, which allows the number of observations to vary to achieve
optimal decisions [126]. The risk analysis for integrated decision and estima-
tion requires the comparison of expected information gains for a hybrid mix
of discrete (for detection) and continuous (for estimation) random variables.
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Renyi information measure can be used to model the information gained by
making a certain sensor allocation decision. The relative information loss in
making a suboptimal allocation decision is used to define the observation cost.

5.3.2.1 Bayesian sequential detection
The existence stateX is modeled as a discrete-time, time-independent Markov
chain, where the transitional probability matrix is given by the identity ma-
trix. It is equal to one if a process exists within a given region and zero if no
process exists.

Since the existence state is binary, a sensor model with a Bernoulli dis-
tribution is employed. At time k, the sensor is assumed to give the output
Yk = 1: a positive observation, i.e., process exists, or Yk = 0, a negative obser-
vation or no process exists. The sensor model is given by the following general
conditional probability matrix:

B =

⎛
⎝

Pr (Yk = 0|X = 0) Pr (Yk = 0|X = 1)

Pr (Yk = 1|X = 0) Pr (Yk = 1|X = 1)

⎞
⎠ (5.84)

where Pr (Yk = i|X = l) , i, l = 0, 1 describes the probability of measuring
Yk = i given that the existence state is X = l. Let β be the probability
of the sensor measurement being equal to the true existence state, i.e the
detection probability, hence Pr (Yk = 0|X = 0) = Pr (Yk = 1|X = 1) = β and
Pr (Yk = 0|X = 1) = Pr (Yk = 1|X = 0) = −β.

As measurements are made with time, the probability of process ex-
istence is updated according to Bayes’ rule. This probability is given by
Pr (X = 1; k) = pk and Pr (X = 0; k) = 1 − pk. Hence, it suffices to only
update pk as measurements are collected.

The update equation is as follows:

p̂k =

⎧⎪⎨
⎪⎩

βp̄k
(1−β)(1−p̄k)+βp̄k if Yk = 1

(1−β)p̄k
β(1−p̄k)+(1−β)p̄k if Yk = 0

⎫⎪⎬
⎪⎭

(5.85)

These equations constitute the belief prediction and update equations.
The goal of Bayesian sequential detection is to determine the actual state

of process existence X with minimum risk given a sequence of observations
up to time t. Each decision made can be associated to a Bayes risk, which
considers two types of costs

1. The expected cost of making an erroneous decision,
2. The expected cost of taking future new observations for a possibly

better decision. The observation cost cobs may include sensing energy,
potential information loss, financial cost.
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The sensor will stop and make a decision regarding process existence when
the risk of making a decision with the current data is lower than the risk of
taking another measurement to increase the probability of making a correct
decision [125, 126, 141].

Decision Cost Assignment: The following hypotheses are considered:
H0,the null hypothesis that X = 0 and H1, the alternative hypothesis that
X = 1. Define the cost of accepting hypothesis Hi when the actual existence
state is X = j as C(i, j). Using a uniform cost assignment (UCA), the
decision cost matrix is given by

C(i, j) =

{
0 if i = j
cd(τ) if i �= j

}
τ ≥ 0 (5.86)

where i = 0, 1 correspond to accepting, respectively, H0 and H1 and j = 0, 1
correspond, respectively, to the true state of existence X = 0 and X = 1
cd(τ) ≥ 0 is the cost of making the wrong decision at time τ ≥ 0 indicating
the number of observations.

Detection decision-making: At time t, after taking an observation Yt, p̂t
and p̄t+1 are updated using recursive Bayes rule. If a decision regarding process
existence is made without taking any further future observations, i.e., the
observation number τ = 0, a Bayes risk r is defined as the expected cost of
accepting the wrong hypothesis over all possible realization of X conditioned
on all previous observations.

If the detection probability is close to 0.5, i.e., the sensor returns a true or
false observation with equal probability, more observations need to be taken
before an optimal decision with minimum risk can be reached.

5.3.2.2 Bayesian sequential estimation
Bayesian risk analysis tools are developed for sequential Bayesian estimation.
Consider a linear system for a continuous random variable, which satisfies the
discrete time Markov chain model:

Xk+1 = FkXk + νk
Yk = HkXk + ϑk

(5.87)

where the first equation defines the evolution of the process state se-
quenceXk ∈ R

n, k ∈ N,Fk ∈ R
n×n is the process state matrix, νk ∈ R

n, k ∈ N

is the independent identically distributed Gaussian process noise
(IID) sequence with zero mean and positive semi-definite covariance Qk ∈
R
n×n, Yk ∈ R

m, k ∈ N is the measurement sequence, Hk ∈ R
n×n is the output

matrix and ϑk ∈ R
m, k ∈ N is the independent identically distributed Gaus-

sian measurement noise sequence with zero mean and positive definite co-
variance Rk ∈ R

m×m. The initial condition for the process state is assumed
Gaussian with mean X̄0 and positive definite covariance P0 ∈ R

n×n. The
initial process state, process noise and measurement noise are assumed to be
all uncorrelated.
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As an optimal filter for linear Gaussian systems, the Kalman filter allows
constructing a suitable estimator. At time k, the process state and error co-
variance matrix prediction equations are given:

X̄k = Fk−1X̂k−1

P̄ = Qk−1 + Fk−1P̂k−1F
T
k−1

(5.88)

where X̂k−1 is the process state estimate update at time k given measurements
up to time k − 1. The posterior state estimate is given by:

X̂k = X̄k +Kk

(
Yk −HkX̄k

)
(5.89)

The only decision to be made is whether to accept the estimate as the true
state and hence stop making additional measurements or take at least one
more measurement. Hence, the list of decisions are

1. Accept the estimate and stop taking measurements,
2. Take one more measurement.

Let Xe
k(Yk) be an estimator, i.e., computed estimate, of the actual process

state Xk based on observation Yk. The cost of accepting the estimate Xe
k(Yk)

given the actual process state Xk is defined as C (Xe
k, Xk).

The function C (Xe
k, Xk) = ce(τ) ‖Xe

k −Xk‖2 is a quadratic cost with
ce(τ) > 0 being some τ -dependent cost value and τ > 0 indicating the number
of future observations:

C (Xe
k, Xk) =

{
0 If ‖Xe

k −Xk‖ ≤ ε
ce(τ) If ‖Xe

k −Xk‖ > ε

}
(5.90)

where ε is some preset interval. The updated Kalman filter estimate X̂ can
be used.

For estimation decision-making, at time k, after making a measurement
Yk, if the sensor decides not to take any more measurements, as in the se-
quential detection approach, the Bayes risk is defined as the expected value,
over all possible realizations of the process state, conditioned on all previous
measurements, of the cost of choosing the estimate X̂t.

5.4 FAULT TOLERANT FLIGHT CONTROL
In general, a fault tolerant flight control system is required to perform failure
detection, identification and accommodation for sensor and actuator failures
[97]. Active fault tolerant flight control schemes can be broadly classified into
projection based and online controller redesign based approaches. Currently,
there is a shift from robust passive fault tolerant flight control towards ac-
tive methods relying on switching gain scheduled or linear parameter-varying
(LPV) methods [94]. Much research has been done to find a generic flight
control system, which can be applied to any aircraft and trained in flight and
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a fault-tolerant flight control system able to handle failures and to account
for modeling errors [91]. Significant research effort has focused on control
methods to recover stability with a damaged aircraft. The existing reconfig-
urable control design methods fall into one of the following approaches: linear
quadratic, pseudo-inverse, gain scheduling/linear parameter varying, adaptive
control/model following, eigenstructure assignment, multiple model feedback
linearization or dynamic inversion, robust control, sliding mode control, intel-
ligent control [109, 111, 137]. Adaptive flight control methods adapt to system
uncertainty caused by aircraft damage or failure, which includes aerodynamic
changes, structural degradation, engine damage and reduced flight control ef-
fectiveness [132]. The robust control problem appeared with the objective of
reducing the difference between the dynamic behavior of real systems and
their models [142].

Conventional control systems and deterministic optimization techniques
provide a means to deal with uncertainty within certain boundaries. The
introduction of artificial intelligence methodologies in order to implement,
enhance and improve the UAV autonomous functionalities seems to be a nat-
ural evolution of more conventional feedback control theory: neural networks,
fuzzy logic, genetic algorithm, reinforcement learning, temporal logic, knowl-
edge based systems, constraint satisfaction problem. Adaptive fuzzy con-
trol (AFC) has been proposed for dynamical systems subject to model un-
certainties and external disturbances. Neuro-fuzzy approximations are used
to perform identification of the unknown system dynamics and become com-
ponents of nonlinear controllers that finally make the system’s state vector
converge to the reference set-points. The adaptation gains in the learning
performed by the neuro-fuzzy approximators are finally determined through
Lyapunov stability analysis. A neural network control architecture incor-
porating a direct adaptive control with dynamic inversion can accommodate
damage or failures over a range of failure conditions. This section presents
mostly conventional control systems.

5.4.1 LINEAR TIME INVARIANT FORMULATION

For robust control for linear time invariant systems, there are two fundamen-
tal approaches: the robust control considering dynamic uncertainty and the
robust control considering parametric uncertainty.

The main idea of admissible model matching (AMM) fault tolerant
control approach is that instead of looking for a controller that provides an
exact (or best) matching to a given single behavior after the fault appearance,
a family of closed-loop behaviors that are acceptable is specified [81]. Consider
the following linear time invariant aircraft model:

Ẋ(t) = AX(t) +BU(t) (5.91)

A classical state feedback control law is considered:

U(t) = −KX(t) (5.92)
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In the model matching problem, relations (5.91) to (5.92) result in the closed-
loop behavior that follows the reference model:

Ẋ(t) = (A−BK)X(t) = MX(t) (5.93)

whereM is chosen to be stable. A set of system matrices that are acceptable
are considered and the flight tolerant controller tries to provide a closed-loop
behavior inside the set. Let Ma be a set of matrices such that any solution of

Ẋ(t) = MX(t) M ∈ Ma (5.94)

has an acceptable dynamic behavior. The set of reference models Ma is defined
off-line by the designer.

Moreover, if for the nominal system operation a state feedback Km that
satisfies some nominal control specifications has been obtained, then

Ẋ(t) = (Am −BmKm)X(t) = M∗X(t) (5.95)

and M∗ is known as the reference model.
For a given fault Af ,Bf , the goal of the fault accommodation is to

find a feedback gain Kf that provides an admissible closed-loop behavior
(Af −BfKf ) ∈Ma.

A characterization of Ma can be specified by a set of d inequality con-
straints:

Ma = {M : Φ (mij , i = 1, . . . n, j = 1 . . . n) ≤ 0} (5.96)

where mij , i = 1, . . . n, j = 1 . . . n are the entries of matrix M and Φ : Rn×n →
R
d is a given vector function.

5.4.2 LINEAR PARAMETER VARYING FORMULATION

The aircraft model being a strongly nonlinear system, it can be modeled as
an LPV system, as shown in chapter 2. This is the basis of the development
of model-based methods using LPV models. There are two commonly used
approaches [124]:

1. The fault estimation method where the estimated fault is used as
the fault indicating signal.

2. Residual generation method where the residuals are generated in
order to be robust against modeling errors and unknown inputs.

5.4.2.1 Short-period dynamics
An uncertain quasi-LPV model for the short-period dynamics is provided in
[90]:

(
q̇

Δα̇

)
=

(
0 1

Iyy
Mα(α)unc

1 + cosα
mV0

Zq(α)unc
cosα
mV0

Zq(α)unc

)(
q
Δα

)
+

+

(
1
Iyy
Mδe(α)unc

cosα
mV0

Zδe(α)unc

)
Δδe

(5.97)
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The parameters q and α represent the pitch rate and the angle of attack,
respectively, and δe is the elevator deflection. Iyy and m are the moment of
inertia and the mass of the aircraft, respectively.

The model is valid for an equilibrium point characterized by the speed V0
and altitude z0. The signals Δα = α− α0 and Δδe = δe − δe0 represent large
deviations from the equilibrium values α0, δe0 . The uncertainty is represented
in the form of weighted additive uncertainty on the aerodynamics coefficient.
The following nonlinear dynamic inversion control law is designed as:

Δδe =

(
Mδe(α)

Iyy

)−1(
Uθ − Mα(α)unc

Iyy
Δα

)
(5.98)

The external signal Uθ is the commanded pitch acceleration.

5.4.2.2 General formulation
5.4.2.2.1 Controller design
The aircraft model can be described by the following LPV representation as
follows:

Ẋ(t) = A(�)X(t) +B(�)U(t) (5.99)

Y (t) = C(�)X(t) +D(�)U(t) (5.100)

In [81], additionally to the schedule of the parameters with the operating

conditions p(t), they are scheduled with the fault estimation f̂(t) provided
by a fault, detection and isolation module. Then the scheduling of the linear
parameter varying parameters can be expressed as follows:

�t = �(p(t), f̂(t)) (5.101)

where the fault estimation f̂(t) is in the set of tolerated fault f̂(t) ∈ Ft and
operating point p(t) ∈ P. The time-varying parameter vector � of polytopic
LPV system varies on a polytope. The state space matrices range in a polytope
of matrices defined by the convex hull of a finite number of matrices N :

(
A(�t) B(�t)
C(�t) D(�t)

)
∈ Co

{(
Aj(�j) Bj(�j)
Cj(�j) Dj(�j)

)
, j = 1, . . . , N

}

(
A(�t) B(�t)
C(�t) D(�t)

)
=

N∑
j=1

αj(�t)

(
Aj(�j) Bj(�j)
Cj(�j) Dj(�j)

)
(5.102)

with αj(�t) ≥ 0,
∑N

j=1 αj(�t) = 1 and �j = �(pj , fj) is the vector

of parameters corresponding to the jth model. Each jth model is called a
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vertex system. Consequently, the LPV fault representation can be expressed
as follows:

Ẋ(t) =

N∑
j=1

αj(�t) (Aj(�j)X(t) +Bj(�j)U(t)) (5.103)

Y (t) =

N∑
j=1

αj(�t) (Cj(�j)X(t) +Dj(�j)U(t)) (5.104)

whereAj ,Bj ,Cj,Dj are the state space matrices defined for the jth model.
The state space matrices of system (5.103) to (5.104) are equivalent to the
interpolation between LTI models, that is:

A(�t) =

N∑
j=1

αj(�t) (Aj(�j)) (5.105)

and analogously for the other matrices. There are several ways of implement-
ing (5.102) depending on how αj(�t) functions are defined. They can be
defined with a barycentric combination of vertexes.

Considering the system to be controlled is the LPV fault representation
(5.103); a state feedback control law is written as follows:

U(t) = −K�X(t) = −
N∑
j=1

αj(�t) (Kj(�j)X(t)) (5.106)

such that the closed-loop behavior satisfies:

�t =
N∑
j=1

αj(�t) (Mj(�j)) (5.107)

where
Mj(�j) = Aj(�j)−Bj(�j)Kj(�j) (5.108)

The admissibility condition can be expressed using LMI; the following set
of LMI regions should be solved if and only if a symmetric matrix Xj exists
for all j ∈ [1 . . .N ] such that:

(Aj −BjKj)Xj +Xj

(
AT
j −KT

j B
T
j

)
+ 2αXj < 0 (5.109)

( −rXj (Aj −BjKj)Xj

Xj

(
AT
j −KT

j B
T
j

) −rXj

)
< 0 (5.110)

In [103], the problem of designing an LPV state feedback controller for un-
certain LPV systems that can guarantee some desired bounds on the H∞ and
H2 performances and that satisfies some desired constraints on the closed-loop



Flight Safety 363

location is considered. The H∞ performance is convenient to enforce robust-
ness to model uncertainty and to express frequency domain specifications such
as bandwidth and low frequency gain. The H2 performance is useful to handle
stochastic aspects such as measurement noise and random disturbances. By
constraining the poles to lie in a prescribed region a satisfactory transient
response can be ensured [103].

A common issue in LPV controller design method based on robust control
theory is the conservatism of the designed controllers. As a means to reduce
the conservatism and to improve the closed-loop performance achieved by
a single LPV controller, a switching LPV controller design method can use
the multiple parameter dependent Lyapunov functions. The moving region of
the gain scheduling variables is divided into subregions and each subregion is
associated with one local LPV controller [47].

5.4.2.2.2 Observer based approach
The aircraft equations of motion can be described as:

Ẋ(t) = A(�)X(t) +B(�)U(t) +
m∑
j=1

Lj(�)fj(t) (5.111)

Y (t) = C(�)X(t) +D(�)U(t) +

m∑
j=1

Mj(�)fj(t) (5.112)

There are different failure signals fj affecting the system; the matrices
A,B,C,D are parameter dependent; Lj are the directions of the faults acting
on the input, most often on the actuators, while Mj are the output fault
directions most often acting on the sensors. In a particular FDI filter synthesis
problem, the goal is to detect a subset of these faults and be insensitive to
the rest of them [123].

The following approach has been used for the LPV aircraft actuator model
and nonlinear elevator in [123]. The observer based approach is to estimate
the outputs of the system from the measurements by using a Luenberger
observer, assuming a deterministic setting or aKalman filter in the stochastic
case. Then the weighted output estimation error is used as a residual. It is
desired to estimate the output, a linear parameter varying function of the
state, i.e., C(�)X(t), using a functional or generalized LPV Luenberger-like
observer with the following observer:

Ż(t) = F(�)Z(t) +K(�)Y (t) + J(�)U(t) (5.113)

W̃ (t) = G(�)Z(t) +R(�)Y (t) + S(�)U(t) (5.114)

Ŷ (t) = W̃ (t) +D(�)U(t) (5.115)

R(t) = Q
(
Y (t)− Ŷ (t)

)
= Q1(�)Z(t) +Q2(t)Y (�) +Q3(�)U(t) (5.116)
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where Z(t) ∈ R
q is the state vector of the functional observer and

F,K,J,R,G,S D,Q,Q1,Q2,Q3 are matrices with appropriate dimensions.
The output W̃ (t) of this observer is said to be an estimate of C(�)X(t), in
an asymptotic sense in the absence of faults. The residual R(t) is generated
based on the states of the observer, where the Qi entries are free parameters,
but have to satisfy the following set of equations:

eig (F(�)) < 0 (5.117)

TA(�) − F(�)T = K(�)C (5.118)

J(�) = TB(�) −K(�)D (5.119)

Q1(�)T +Q2(�)C = 0 (5.120)

Q3(�) +Q2(�)D = 0 (5.121)

where T is a coordinated transformation matrix constant if C,D are also
constant. It can be seen that the residual depends solely on faults in the
asymptotic sense, given a stable estimator dynamics.

In [101], a fault tolerant control strategy is presented that compensates the
effects of time-varying or constant actuator faults by designing an adaptive
polytopic observer (APO) which is able to estimate both the states of the
system and the magnitude of the actuator faults. Based on the information
provided by this adaptive polytopic observer, a state feedback control law is
derived in order to stabilize the system.

5.4.3 SLIDING MODE APPROACH

Sliding mode theory has found applications in the field of fault tolerant con-
trol which exploits robustness properties with respect to matched uncertain-
ties. Sliding mode techniques have robustness properties with respect to the
matched uncertainty [3]. Most applications of sliding mode to fault tolerant
control deal with actuator faults as these faults occurring in the input chan-
nels are naturally classified as matched uncertainties. Another property is
associated with the ability of sliding mode observer to reconstruct unknown
signals in the system (e.g., faults) while simultaneously providing accurate
state estimation. Sliding mode observers are able to reconstruct unknown sig-
nals in the system (e.g., faults) while simultaneously providing accurate state
estimation. This reconstruction capability is advantageous in comparison to
traditional residual based fault tolerant control since the fault reconstruction
signals provide further information with regard to the shape and size of the
unknown fault signals. The scheme presented in [3] is from a sensor fault tol-
erant control point of view and uses the existing controller in the closed-loop
system. A sliding mode observer is used to reconstruct sensor fault and then
use this signal to correct the corrupted measurement before it is used by an
existing controller. Only a small modification to the feedback loop is required
to implement this scheme and the observer designed independently. Sliding
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mode control cannot directly deal with total actuator failure because the com-
plete loss of effectiveness of a channel destroys the regularity of the sliding
mode and a unique equivalent can no longer be determined [46]. The integral
switching function aims to eliminate the reaching phase present in traditional
sliding mode control so that the sliding mode will exist from the time instant
the controller is switched online.

Most of the technologies for LTI based FDI design can be directly extended
to LPV models to deal with normal changes in the system, e.g., a change
of operating conditions. Although LPV representations are better than LTI
models in terms of modeling the behavior of a real system and can deal with
changes in operating conditions, plant-model mismatches or uncertainty are
still present [2]. Consider an uncertain affine LPV aircraft model subject to
actuator faults represented by:

Ẋ(t) = A(�)X(t) +B(�)U(t) +D(�)fi(t) +Mζ(t, y, u)
Ym(t) = C(�)X(t) + d(t)

(5.122)

The inputs U(t) and output measurements Ym are available for the FDI
scheme. The proposed observer has the structure:

˙̂
X(t) = A(�)X̂(t) +B(�)U(t) −Gl(�)eym(t) +Gmν(t, y, u)

Ŷ (t) = CX̂(t)
(5.123)

where Gl(�),Gm ∈ R
n×p are the observer gain matrices and ν(t) repre-

sents a discontinuous switched component to introduce a sliding motion. The
output estimation error is:

eym(t) = Ŷ (t)− Ym(t) = Ce(t)− d(t) (5.124)

where e(t) = X̂(t)−X(t). The state estimation error output is:

ė(t) = A(�)e(t)−Gl(�)eym(t) +Gmν(t, y, u)−D(�)fi(t)−Mζ(t, y, u)
(5.125)

The objective of the observer is to force the output estimation error eym(t)
to zero in finite time and then a sliding mode is said to have been attained
on the sliding surface

S = {e ∈ R
n : eym(t) = 0} (5.126)

Ideally the measurements corruption term d(t) = 0 in which case relation
(5.126) corresponds to a surface in which the output of the observer exactly
follows the plant output. The idea is that during sliding, the signal ν(t) must
take on average to maintain sliding.

Parameters in LPV systems can be viewed as parametric uncertainty or pa-
rameters which can be measured in real time during flight [41]. An H∞ filter
is designed in [50] for an LPV system. Conditions of existence of parameter-
dependent Lyapunov function are formulated via LMI constraints and an al-
gorithm for LPV filter gain based on the solutions to the LMI conditions is
presented.
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5.4.4 DIRECT MODEL REFERENCE ADAPTIVE CONTROL

Flight control systems are designed to tolerate various faults in sensors and
actuators during flight; these faults must be detected and isolated as soon as
possible to allow the overall system to continue its mission [43]. Fault tol-
erant flight control (FTFC) aims to increase the survivability of a failed
aircraft by reconfiguring the control laws rather than by means of hardware
redundancy, only. There are many control approaches possible in order to
achieve fault tolerant flight control [79]. An important aspect of these algo-
rithms is that they should not only be robust but even adaptive in order
to adapt to the failure situation. Currently, much research is performed in
the field of indirect adaptive control, where the adaptation is more extensive
than only tuning the PID control gains. One of these new indirect control
possibilities is adaptive model predictive control (AMPC) which deals
with inequality constraints. These constraints are a good representation for
actuator faults.

5.4.4.1 Linear approach
Adaptive control algorithms are able to deal with changes in the system’s
dynamics due to possible systems components’ faults and failures. Actuator
and sensor faults have been implicated in several aircraft loss of control acci-
dents and incidents. Direct model reference adaptive control (MRAC)
methods have been suggested as a promising approach for maintaining stabil-
ity and controllability in the presence of uncertainties and actuator failures
without requiring explicit fault detection, identification and controller recon-
figuration. In addition to actuator faults, a sensor fault is unknown sensor
bias which can develop during operation in one or more sensors such as rate
gyros, accelerometers, altimeters [58].

Consider a linear time-invariant aircraft model, subject to actuator failures
and sensor biases, described by:

Ẋ(t) = AX(t) +BU(t) Y (t) = X(t) + β (5.127)

where A ∈ R
n×n, B ∈ R

n×m are the system and input matrices (assumed
to be unknown and uncertain), X(t) ∈ R

n is the system state and U(t) ∈ R
m

is the control input. The state measurement Y (t) ∈ R
n includes an unknown

constant bias β ∈ R
n, which may be present at the outset or may develop

or change during operation. In addition to sensor bias, some of the actuators
U(t) ∈ R

m (for example control surface or engines in aircraft flight control)
may fail during operation [58]. Actuator failures are modeled as:

Uj(t) = U j t ≥ tj , j ∈ Jp (5.128)

where the failure pattern Jp = {j1, j2, . . . , jp} ⊆ {1, 2, . . . ,m} and the

failure time of occurrence tj are all unknown. Let V (t) = (V1, V2, . . . , Vm)
T ∈

R
m denote the applied (commanded) control input signal.
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In the presence of actuator failures, the actual input vector U(t) to the
system can be described as:

U(t) = V (t) + σ(U − V (t)) = (Im×m − σ)V (t) + σU (5.129)

where

U =
[
U1, U2, . . . , Um

]T
σ = diag (σ1, σ2, . . . , σm) (5.130)

where σ is a diagonal matrix (failure pattern matrix) whose entries are
piecewise constant signals: σi = 1 if the ith actuator fails and σi = 0 otherwise.

The actuator failures are uncertain in value U j and time of occurrence
tj . The objective is to design an adaptive feedback control law using the
available measurement Y (t) with unknown bias β such that the closed-loop
signal boundedness is ensured and the system state X(t) tracks the state of
a reference model described by:

Ẋm(t) = AmXm(t) +BmR(t) (5.131)

where X ∈ R
n is the reference model state, Am ∈ R

n×n is Hurwitz, Bm ∈
R
n×mr and R(t) ∈ R

nr , (1 ≤ mr ≤ m) is a bounded reference input used
in aircraft operation. The reference model (Am,Bm) is usually based on the
nominal plant parameters and is designed to capture the desired closed-loop
response to the reference input. For example, the reference model may be
designed using optimal and robust control methods such as linear quadratic
regulator (LQR), H2, H∞.

This paragraph considers the single reference input case mr = 1,Bm ∈ R
n;

the actuators are assumed to be similar (for example segments of the same
control surface), that is, the columns bi of the B matrix can differ only by
unknown scalar multipliers. It is also assumed that:

bi = Bm/αi i = 1, . . . ,m (5.132)

for some unknown (finite and nonzero) αi values whose signs are assumed
known. The multiplier αi represents the uncertainty in the effectiveness of
the ith actuator due to modeling uncertainties and/or reduced effectiveness
(example caused by partial loss of an aircraft control surface). The objective
is to design an adaptive control law that will ensure closed-loop signal bound-
edness and asymptotic state tracking, i.e., limt→∞(X(t)−Xm(t)) = 0 despite
system state uncertainties, actuator failures and sensor bias faults.

The adaptive controller should synthesize the control signal U(t) capable
of compensating for actuator failures and sensor bias faults automatically.
It is assumed that the following matching conditions hold: there exist gains
K1 ∈ R

n×m, k2, k3 ∈ R
m such that

Am = A+B(Im×m − σ)KT
1

Bm = B(Im×m − σ)k2
BσU = −B(Im×m − σ)(KT

1 β + k3)
(5.133)
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The first two matching conditions are typical MRAC matching conditions
which address actuator failures without sensor bias, whereas the third con-
dition contains a modification because of sensor bias. At least, one actuator
must be functional for the matching condition to be satisfied. The reference
model (Am,Bm) represents the desired closed-loop characteristics and it is
usually designed using an appropriate state feedback for the nominal plant
(A,B). Thus the matching conditions are always satisfied under nominal
conditions. For the adaptive control scheme, only Am and Bm need to be
known. Because Am is a Hurwitz matrix, there exist positive definite matri-
ces: P = PT ,Q = QT ∈ R

n×n, such that the following Lyapunov inequality
holds:

AT
mP+PAm ≤ −Q (5.134)

The sensor measurements available for feedback have unknown biases as
in equation (5.127). Let β̂(t) denote an estimate of the unknown sensor bias.

Using β̂, the corrected state X(t) ∈ R
n is defined as:

X = Y − β̂ = X + β̃ β̃ = β − β̂ (5.135)

An adaptive control law can be designed as:

U = K̂T
1 Y + k̂2R + k̂3 (5.136)

where K̂1(t) ∈ R
n×m, k̂2, k̂3 ∈ R

m are the adaptive gains. Therefore, the
closed-loop corrected state equation is:

Ẋ =
(
A+B(Im×m − σ)KT

1

)
X+

B(Im×m − σ)
(
K̃T

1 Y + k2R+ k̃3

)
+B(Im×m − σ)k2R+

+B(Im×m − σ)KT
1 β +B(Im×m − σ)k3 + ˙̃

β +BσU

(5.137)

where K̃1 = K̂1 −K1, k̃2 = k̂2 − k2, k̃3 = k̂3 − k3. Using equation (5.133)
in equation (5.137):

Ẋ = AmX +BmR+B(Im×m − σ)
(
K̃T

1 Y + k̃2R+ k̃3

)
−Amβ̃ +

˙̃
β (5.138)

A measurable auxiliary error signal ê(t) ∈ R
n is defined as ê = X−Xm de-

noting the state tracking error. Using equations (5.131) to (5.138), the closed-
loop auxiliary error system can be expressed.

Theorem 5.1

For the system given by equations (5.127), (5.129), (5.131) and the adaptive
controller given by relation (5.136), the gain adaptation laws can be proposed
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as:
˙̂
K1j = −sign(αj)Γ1jB

T
mPê

˙̂
k2j = −sign(αj)γ2jBT

mPê
˙̂
k3j = −sign(αj)γ3jBT

mPê

(5.139)

Γ1j ∈ R
n×n being a constant symmetric positive definite matrix, γ2j , γ3j

constant positive scalars, P defined in (5.134) and the bias estimation law
selected as:

˙̂
β = −ηP−1AT

mPê (5.140)

where η ∈ R is a tunable positive constant gain, guarantees that ê → 0 and
all the closed-loop signals including e(t), the adaptive gains and bias estimate
are bounded.

To demonstrate this theorem, studies were performed on a fourth order
longitudinal dynamics model of an aircraft in a wings-level cruise condition
with known nominal trim conditions in [58].

Recently, virtual sensors and virtual actuators for linear systems have
been proposed as a fault reconfiguration approach. A sensor fault tolerant
control combines a set-based FDI module with controller reconfiguration
(CR) based on the use of virtual sensors. The detection mechanism is based
on the separation between pre-computed invariant sets and transition sets
where appropriate residual variables jump when faults occur. The closed-loop
system is then reconfigured by means of a virtual sensor which is adapted to
the identified fault [83].

Virtual sensors for linear systems have been proposed as a fault accom-
modation approach. In particular, this approach of virtual sensors can be
extended for fault tolerant control to linear parameter varying systems. The
main idea of this fault tolerant control method is to reconfigure the control
loop such that the nominal controller could still be used without need of re-
tuning it. The aircraft with the faulty sensor is modified adding the virtual
sensor block that masks the sensor fault and allows the controller to see the
same plant as before the fault. The linear parameter varying virtual sensor is
designed using LMI regions and taking into account the effect of the fault and
the operating point. This approach requires to approximate the linear parame-
ter varying model in a polytopic way guaranteeing the desired specifications at
the expense of introducing some conservatism. As a benefit, controller design
can be reduced to solve a convex optimization problem [82].

In [109], an application of robust gain scheduling control concept is pre-
sented. It uses a liner parameter varying control synthesis method to design
fault tolerant controllers. To apply the robust linear parameter varying con-
trol synthesis method, the nonlinear dynamics must be represented by a linear
parameter varying model which is developed using the function substitution
method over the entire flight envelope. The developed linear parameter vary-
ing model associated with the aerodynamic coefficients’ uncertainties repre-
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sents nonlinear dynamics including those outside the equilibrium manifold.
Passive and active fault tolerant control are designed for the longitudinal
equations in the presence of elevator failure.

Instead of identifying the most likely model of the faulty plant, models
that are not compatible with the observations are discarded. This method
guarantees that there will not be false alarms as long as the model of the non
faulty aircraft remains valid; i.e., if the assumption regarding the bounds on
the exogenous disturbances are not violated and the model of the dynamics of
the aircraft is valid then no fault is declared. Moreover, one need not compute
the decision threshold used to declare whether or not a fault has occurred
[102].

Remark 5.16. The regulation of aircraft trajectory in the vicinity of obstacles
must focus on critical outputs which vary as a function of the aircraft’s position
relative to obstacles. Aircraft mismanagement relative to its environment can
lead to grave consequences.

In [34], the possibility of addressing the issue of critical regulation is ad-
dressed via gain scheduling techniques, aimed at modifying the control pa-
rameters and possibly controller architecture as the conditions surrounding
the plan evolve. The output depends on parameter vector which is a function
of the aircraft environment. Parameter dependent control laws are explored to
meet the condition of closed-loop system stability by looking simultaneously
for parameter dependent Lyapunov functions. The use of parameter depen-
dent Lyapunov function in the context of generalized LMI based H∞ control
results in analysis and synthesis conditions in the form of parametrized LMI
[25].

5.4.4.2 Nonlinear approach
An alternative indirect adaptive nonlinear control approach allows a recon-
figurable control routine placing emphasis on the use of physical models to
be developed and thus producing internal parameters which are physically in-
terpretable at any time. This technique can deal with control surface failures
as well as structural damage resulting in aerodynamic changes. Reconfiguring
control is implemented by making use of adaptive nonlinear inversion for
autopilot control. The adaptativity of the control setup is achieved with a real
time identified physical model of the damaged aircraft. In failure situations,
the damaged aircraft model is identified by the two-step method in real time
and this model is then provided to the model based adaptive nonlinear dy-
namic inversion (NDI) routine into a modular structure which allows flight
control reconfiguration on line.

Three important modules of this control setup can be discussed:

1. aerodynamic model identification,
2. adaptive nonlinear control and
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3. control allocation.

Aircraft often use redundant control inputs for tracking flight paths. A
system with more inputs than degrees of freedom is an overactuated system.
The reference signals can be tracked with a certain combination of existing
control effectors [30]. Control allocation is able to distribute the virtual
control law requirements to the control effectors in the best possible manner
while accounting for their constraints [56]. Even under the condition that
control effectors are damaged, the control reallocation can be implemented
without redesigning the control law for fault-tolerant control. The general
approaches of control allocation include interior-point algorithms, weighed
pseudoinverse, linear programming, quadratic programming, sequential least-
squares and quantized control allocation approach. Most previous works study
linear control allocation by programming algorithms, which can be iteratively
conducted to minimize the error between the commands produced by virtual
control law and the moments produced by practical actuator combination.

The performance of the fault tolerant flight control system can be aug-
mented with different control allocation (CA) methods. These methods can
be used to distribute the desired control forces and moments over the different
control effectors available, i.e., control surfaces and engines which makes the
control system more versatile when dealing with in-flight failures. Control
allocation is especially important when some dynamic distribution of the
control commands is needed towards the different input channels. The main
assumption in nonlinear dynamic inversion is that the plant dynamics are as-
sumed to be perfectly known and therefore can be canceled exactly. However,
in practice, this assumption is not realistic, not only with respect to system
uncertainties but especially to unanticipated failures for the purpose of fault
tolerant flight control.

In order to deal with this issue, robust control can be used as an outer
loop control or neural networks to augment the control signal [52]. However,
another solution is the use of a real time identification algorithm, which pro-
vides updated model information to the dynamics inversion controller. These
augmented structures are called adaptive nonlinear dynamics inversion
(ANDI). Three consecutive inversion loops can be implemented: a body an-
gular rate loop, an aerodynamic angle loop and a navigation loop which can
be placed in a cascaded order based upon the timescale separation principle.
The navigation loop tracks the course, the flight path, the angle of attack and
the throttle setting.

A high performance flight control system based on the nonlinear dynamic
inversion principle requires highly accurate models for aircraft aerodynamics.
In general, the accuracy of the internal model determines to what degree the
aircraft nonlinearities can be canceled. In [122], a control system is presented
that combines nonlinear dynamic inversion with multivariate spline-based con-
trol allocation. Three control allocation strategies that use expressions for the
analytic Jacobian and Hessian of the multivariate spline models are presented.
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A major advantage of nonlinear dynamic inversion is that gain scheduling is
avoided through the entire flight envelope. Furthermore, the simple structure
allows easy and flexible design for all flying modes. It can be augmented with
a control allocation module in the case that an aircraft has redundant or
cross-coupled control effectors.

In a first stage, a number of different control allocation methods can be
compared using a simplified aircraft model, yielding two methods: weighted
least square (WLS) and direct control allocation (DCA). Weighted least
square is in theory able to find a feasible solution in all attainable virtual
control. This is due to the fact that it is able to free up previously saturated
actuators. Direct control allocation is an alternative approach to optimization
based control allocation. Instead of optimizing some criterion, Direct con-
trol allocation produces a solution based on geometric reasoning. The direct
control allocation method looks for the largest virtual control that can be
produced in the direction of the desired virtual control. High-performance
aircraft are designed with significantly overlapping control moment effective-
ness at a particular flight condition and so the resultant control allocation is
underdetermined [87]. In the context of solving the three moment constrained
control allocation, much of the existing literature has focused on efficient nu-
merical optimization methods that are practically implementable in the flight
software, relaxing the requirement that the moments are globally linear in
the controls and the explicit consideration of the actuator dynamics and fault
tolerance.

5.4.5 BACKSTEPPING APPROACH

An incremental type sensor-based backstepping control approach is presented
in [116], based on singular perturbation theory and Tikhonov theorem. This
Lyapunov function based method used measurements of control variables and
less model knowledge and it is not susceptible to the model uncertainty caused
by fault scenario. A flight controller combines nonlinear dynamic inversion
with the sensor-based backstepping control approach.

An aircraft under many post-failure circumstances can still achieve a cer-
tain level of flight performance with the remaining valid control effectors.
However, as a consequence of the structural actuator failures, the control au-
thority or the safe flight envelope of the aircraft is inevitably limited. In the
sensor-based backstepping control approach, a singular perturbation theory
based control approximation is adopted. To apply the singular perturba-
tion theory, the system dynamics of the control plant need to have the
timescale separation property. In the aircraft system, the actuator system can
be viewed as a subsystem cascaded to the body angular dynamic system. Be-
cause the actuator dynamics are much faster than the body rate dynamics,
the time scale separation property of the aircraft is guaranteed. The following
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expression holds for the body angular rate aerodynamics:
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where U = (δa, δe, δr)
T
, MCA =

⎛
⎝

b 0 0
0 c 0
0 0 b

⎞
⎠ME , where MCA is the con-

trol allocation matrix, ME is the control effectiveness matrix, U is the vector
consisting of all the control inputs and Cls, Cms, Cns are the non dimensional
moments contributed by all of the current states.

Rewriting relation (5.141), a simplified formulation of the aircraft motion
equation is derived:

Ẋ = f(X) + gU X = (p, q, r)
T

g =
1

2
ρV 2SI−1MCA (5.142)
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The error is defined as e = X − Xr where Xr = (pr, qr, rr)

T . To design a
single loop body rate backstepping controller, the control Lyapunov function
Ṽ is chosen as follows:

Ṽ (e) =
1

2
e2 +

1

2
Kλ2 where λ̇ = e (5.144)

where K is a diagonal matrix of controller gains and λ is an integral term
introduced to remove the tracking errors caused by the internal dynamics.

Using relations (5.144) to (5.143), the following expression can be derived
for the desired state of the control system e = Xdes −Xr and:

˙̃V = eė+Kλe = e
(
Ẋdes − Ẋr +Kλ

)
(5.145)

To stabilize this system, Ẋdes can be selected as:

Ẋdes = −Pe−P(X −Xr) + Ẋr −Kλ (5.146)

where P is a positive diagonal matrix to stabilize the system such that ė =
−c(X −Xr) and the equivalent inputs are computed as Rred = MCAu.

εU̇red = −sign
(

∂Ẋ

∂Ured

)
Ẋ − Ẋdes (5.147)



374 Smart Autonomous Aircraft: Flight Control and Planning for UAV

where ε is a turning parameter with a small positive value. From relation
(5.141), the following formulation can be obtained:

εU̇eq = −sign
(
1

2
ρV 2SI−1

)
Ẋ +P(X −Xr)− Ẋr +Kλ (5.148)

and

Ueqk = Ueqk−1
+

∫ kT

(k−1)T

U̇eqdt (5.149)

According to relation (5.146), the control input U can be solved using a
control allocation algorithm if MCA is available.

5.4.6 CONTROL PROBABILISTIC METHODS

The development of algorithms for aircraft robust dynamic optimization con-
sidering uncertainties is relatively limited compared to aircraft robust static
optimization. Modeling uncertainty and propagating it through computational
models is a key step in robust optimization considering uncertainties. The
Monte Carlo (MC) method is a natural choice for this because of its ease
of implementation. An alternative method known as the polynomial chaos
(PC) expansion scheme can provide accuracy comparable to the Monte Carlo
method at a significantly lower computational cost. In [70], an approach for
dynamic optimization considering uncertainties is developed and applied to
robust aircraft trajectory optimization. The non intrusive polynomial chaos
expansion scheme can be employed to convert a robust trajectory optimiza-
tion problem with stochastic ordinary differential equation into an equivalent
deterministic trajectory optimization problem with deterministic ordinary dif-
ferential equation.

Robust optimization has attracted increasing attention due to its ability
to offer performance guarantees for optimization problems in the presence of
uncertainty. Robust control design requires the construction of a decision such
that the constraints are satisfied for all admissible values of some uncertain
parameter. An alternative approach is to interpret robustness in a probabilistic
sense, allowing for constraint violation for low probability, formulating chance
constrained optimization problems. Randomization of uncertainty offers an
alternative way to provide performance guarantees without assumption on the
probability distribution. Typically, it involves sampling the uncertainty and
substituting the chance constraint with a finite number of hard constraints,
corresponding to the different uncertainty realization [74].

A method based on probability and randomization has emerged to syn-
ergize with the standard deterministic methods for control of systems with
uncertainty [22]. The study of robustness of complex systems began based
on a deterministic description of the uncertainty acting on the system to be
controlled [44, 142]. However, these deterministic methodologies were affected
by serious computational problems, especially for uncertainty entering in a
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nonlinear fashion into the control system. For this reason, approximation and
relaxation techniques have been proposed. Only upper and lower bounds of
the robustness margins can be determined.

The starting point of probabilistic and randomized methods is to assume
that the uncertainty affecting the system has a probabilistic nature. The objec-
tive is then to provide probabilistic assessments/characteristics on the system.
A given performance level is robustly satisfied in a probabilistic sense if it is
guaranteed against most possible uncertainty outcomes. The risk of a system
property being violated can be accepted for a set of uncertainties having small
probability measure. Such systems may be viewed as being practically robust
from an engineering point of view.

Remark 5.17. The probabilistic approach is not limited to control problems,
but is useful in a wide range of related areas such as robust optimization and
general engineering design, where decisions that work satisfactorily well in an
uncertain or adversarial environment should be devised.

One of the advantages of the probabilistic approach for control is to use
classical worst case bounds of robust control together with probabilistic
information, which is often neglected in a deterministic context. The prob-
abilistic approach has also connections with adaptive control methods. The
interplay of probability and robustness leads to innovative concepts such as
the probabilistic robustness margin and the probability degradation
function. However, assessing probabilistic robustness may be computation-
ally hard, since it requires the computation of multi-dimensional probability
integrals. These integrals can be evaluated exactly only in very special cases
of limited practical interest [22]. This computational problem can be resolved
by means of randomized techniques, which have been used to tackle difficult
problems that are too hard to be treated via exact deterministic methods.
Specific examples include the Monte Carlo method in computational physics
and the Las Vegas techniques in computer science.

In the context of unmanned aircraft, uncertainty randomization re-
quires the development of specific techniques for generating random samples
of the structured uncertainty acting on the system. The probability is esti-
mated using a finite number of random samples. Since the estimated probabil-
ity is itself a random quantity, this method always entails a risk of failure, i.e.,
there exists a non zero probability of making an erroneous estimation. The re-
sulting algorithms are called randomized algorithms; (RA) i.e., algorithms
that make random choices during execution to produce a result. Randomized
algorithms have low complexity and are associated with robustness bounds
which are less conservative than the classical ones, obviously at the expense
of a probabilistic risk.

In the probabilistic approach, the system is not fixed a priori but depends
on some parameters (for instance, parameters defining the controller) that
need to be determined in order to make the system behave as desired. A
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randomized algorithm for design should be able to determine these param-
eters to guarantee the desired system specifications up to a given level of
probability. For example, in order to account for unknown kinematic target,
the target motion can be assumed to be robustly defined by planar Brown-
ian motion. Stochastic problems in the control of Dubins vehicles typically
concentrate on variants of the traveling salesman problem and other routing
problems, in which the target location is unknown or randomly generated.
The goal of the work developed in [6] is to develop a feedback control policy
that allows a UAV to optimally maintain a nominal standoff distance from
the target without full knowledge of the current target position or its future
trajectory. The feedback control policy is computed off-line using a Bellman
equation discretized through an approximating Markov chain. The tracking
aircraft should achieve and maintain a nominal distance to the target. If the
target is also modeled as a Dubins vehicle with a Brownian heading angle,
the knowledge of the target’s heading angle would provide the UAV with an
indicator of the target’s immediate motion and an appropriate response.

Let a performance function f(q) be defined for a generic uncertain dynamic
system, where q ∈ Q is a vector of random uncertain parameters and Q ⊂ R

�

is a given uncertainty domain. Two probabilistic analysis problems can be
defined:

Problem 5.1. Reliability estimation: Given Γ > 0, estimate the reliability
of the estimation of the specification f(q) ≤ Γ, that is, evaluate:

Rl = Pr {f(q) ≤ Γ} (5.150)

Problem 5.2. Performance level estimation: Given ε ∈ [0, 1], estimate
a performance level Γ such that f(q) ≤ Γ holds with reliability at 1 − ε, that
is, to find Γ such that:

Pr {f(q) ≤ Γ} ≥ 1− ε (5.151)

Remark 5.18. The availability of samples drawn from this probability is
needed and the stated results hold irrespective of the probability measure. This
is important, since in some practical situations, the samples can be directly ac-
quired through measurements or experiments on the real UAV. In other cases,
when samples are not directly available, they must be generated and hence a
probability measure on the uncertain set has to be assumed. In this situation,
the UAV reliability Rl depends on the specific choice of this measure. In ex-
treme cases, the probability may vary between zero and one, when considering
different measures.

Without any guidelines on the choice of the measure, the obtained proba-
bility estimate may be meaningless. In many cases of interest, with bounded
uncertainty set Q, the uniform probability distribution possesses such worst
case properties, and the distribution is often used in practice, when little is
known about the actual distribution. In other cases, when the uncertainty
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is concentrated around the mean, the traditional Gaussian distribution or
truncated Gaussian can be used [53]. For general sets, asymptotic sampling
techniques that progressively reach a steady-state distribution that coincides
with the desired target distribution are usually employed: Markov chain
Monte Carlo methods (MCMC). These methods do not produce indepen-
dent identically distributed samples at steady state and also the time needed
for such algorithms in order to reach steady state is not known in advance.
Hence, explicit analytic results for finite sample complexity are not generally
available [5].

5.5 FAULT TOLERANT PLANNER
5.5.1 ARTIFICIAL INTELLIGENCE PLANNERS

Artificial intelligence planners are useful for converting domain knowledge
into situational-relevant plans of action but execution of these plans cannot
generally guarantee hard real time response [89]. Planners and plan-execution
systems have been extensively tested on problems such as mobile robot control
and various dynamic system simulations, but the majority of architectures
used today employ a best-effort strategy. As such, these systems are only
appropriate for soft real time domain in which missing a task deadline does
not cause total system failure [36].

To control mobile robots, for example, soft real time plan execution
succeeds because the robot can slow down to allow increased reaction times
or even stop moving should the route become too hazardous [76]. For au-
tonomous aircraft flight, hard real time response is required, and fault
tolerance is mandated. Moreover, a planner is desired, particularly for select-
ing reactions to anomalous or emergency situations. Violating response timing
constraints in safety-critical systems may be catastrophic. Developing explicit
mechanisms for degrading system performance if resource shortage does not
allow all constraints to be met is a major real time research issue [108].

The interface of a real time resource allocator with an artificial intelligence
planner to automatically create fault-tolerant plans that are guaranteed to
execute in hard real time, is described in [48]. The planner produces an ini-
tial plan and task constraint set required for failure avoidance. This plan is
scheduled by the resource allocator for the nominal no-fault case as well as
for each specified internal fault condition, such as a processor or communi-
cation channel failure. If any resource is overutilized, the most costly task
is determined using a heuristic. The costly task is fed back to the planner,
which invokes dynamic backtracking to replace this task, or, if required, gen-
erate a more schedulable task set. This combination of planning and resource
allocation takes the best elements from both technologies: plans are created
automatically and are adaptable, while plan execution is guaranteed to be
tolerant to potential faults from a user-specified list and capable of meeting
hard real time constraints. This work is improved by adding fault-tolerance
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and the capability to reason about multiple resource classes and instances of
each class, so that all aspects relevant to plan execution are explicitly consid-
ered during the planning phase.

A heuristic is presented in [40] to combine pertinent information from plan-
ning and resource allocation modules. The resulting bottleneck task informa-
tion is used to guide planner backtracking when scheduling conflicts arise. An
algorithm is described which incorporates this heuristic and a fault condition
list to develop a set of fault-tolerant plans which will execute with hard real
time safety guarantees. The utility of this algorithm can be illustrated with
the example of an aircraft agent that must be tolerant to a single-processor
failure during plan execution then describe related work in the development
of planning and plan-execution agent architectures.

During planning, the world model is created incrementally based on initial
states and all available transitions. The planner builds a state-transition net-
work from initial to goal states and selects an action (if any) for each state
based on the relative gain from performing the action. The planner back-
tracks if the action selected for any state does not ultimately help achieve
the goal or if the system cannot be guaranteed to avoid failure. The plan-
ner minimizes memory and time usage by expanding only states produced by
transitions from initial states or their descendants and includes a probability
model which promotes a best first state space search as well as limiting search
size via removal of highly improbable states. Planning terminates when the
goal has been reached while avoiding failure states. During plan construction,
action transition timing constraints are determined such that the system will
be guaranteed to avoid all temporal transitions to failure (TTF), any one
of which would be sufficient to cause catastrophic system failure. The tem-
poral model allows computation of a minimum delay before each temporal
transitions to failure can occur; then the deadline for each preemptive action
is set to this minimum delay. After building each plan, all preemptive ac-
tions (tasks) are explicitly scheduled such that the plan is guaranteed to meet
all such deadlines, thus guaranteeing failure avoidance. The establishment of
Bayesian networks relies mainly on knowledge from experts who give causal
relationship between each node according to their experience [38].

Smart autonomous aircraft path planning systems should meet feasibility,
optimality and real time requirements.

5.5.2 TRIM STATE DISCOVERY

Automatic trajectory planners require knowledge of aircraft flight envelopes to
ensure their solution is feasible. Existing flight management systems presume
a nominal performance envelope, requiring on-line identification or charac-
terization of any performance degradation. Given predictable failures such as
control surface jam, stability and controllability can be evaluated off-line to
establish a stabilizable trim state database that can be used in real time to
plan a feasible landing trajectory. In less predictable cases such as structural
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damage, performance can only be determined on line. Damage or failures that
significantly impact performance introduce pressure to respond quickly and
accurately. Although adaptive control methods may maintain stability and
controllability of a damaged aircraft, in many situations the flight envelope
unavoidably contracts. The result may be the need for the increased thrust
or larger actuator deflections to compensate for the reduced performance. As
saturation limits are reached, reference commands are no longer possible, ne-
cessitating alteration of the flight plan in addition to the control law. Aircraft
dynamics are nonlinear; thus it is typically difficult to extend stability and
controllability results in a manner that identifies the full operating envelope.
To make valid sequence decisions when damage/failure occurs, an emergency
flight management system is proposed in [133].

Knowledge of the safe maneuvering envelope is of vital importance to pre-
vent loss of control aircraft accidents [51]. In this section, determination of
the safe maneuvering envelope is addressed in a reachability framework. The
forwards and backwards reachable sets for a set of initial trim condi-
tions are obtained by solving a Hamilton–Jacobi partial differential equation
through a semi-Lagrangian method.

Definition 5.7. The safe maneuvering set is defined as the intersection
between the forwards and backwards reachable sets for a given set of a priori
known safe states. The flight envelope describes the area of altitude and
airspeed where an airplane is constrained to operate.

The flight envelope boundaries are defined by various limitations on the
performance of the airplane, for example, available engine power, stalling
characteristics, structural considerations. A common way to present the flight
envelope is the diagram which relates the altitude, velocity and possibly other
variables at which the aircraft can safely fly. The boundaries defined on the
flight envelope are adequate during normal operation of aircraft.

Remark 5.19. The main problem with the conventional definition of flight
envelope is that only constraints on quasi-stationary states are taken into ac-
count. Additionally, constraints posed on the aircraft state by the environment
are not part of the conventional definition. The aircraft’s dynamic behavior
can pose additional constraints on the flight envelope.

Ther safe maneuver envelope is the part of the state space for which safe
operation of the aircraft can be guaranteed and external constraints will not
be violated. It is defined by the intersection of three envelopes:

1. Dynamic envelope: constraints posed on the envelope by the dy-
namic behavior of the aircraft, due to its aerodynamics and kinemat-
ics. It is the region of the aircraft’s state space in which the aircraft
can be safely controlled and no loss of control events can occur.
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2. Structural envelope: constraints posed by the airframe and pay-
load, defined through maximum accelerations and loads.

3. Environmental envelope: constraints due to the environment in
which the aircraft operates.

Reachable set analysis is a useful tool in safety verification of systems.

Definition 5.8. Reachable Set: The reachable set describes the set that can
be reached from a given set of initial conditions within a certain amount of
time, or the set of states that can reach a given target set within a certain
time.

The dynamics of the system can be evolved backwards and forwards in
time resulting in the backwards and forwards reachable set. For a forwards
reachable set, the initial conditions are specified and the set of all states that
can be reached along trajectories that start in the initial set is determined.
For the backwards reachable sets, a set of target states are defined and a
set of states from which trajectory states that can reach that target set are
determined. The dynamics of the system are given by:

Ẋ = f(X,U, d) (5.152)

where X ∈ R
n is the state of the system, U ∈ U ⊂ R

m is the control input
and d ∈ D ⊂ R

q a disturbance input.

Definition 5.9. The backwards reachable set S(τ) at time τ, 0 ≤ τ ≤ tf
of (5.152) starting from the target set S0 is the set of all states X(τ), such
that there exists a control input U(t) ∈ U, τ ≤ t ≤ tf , for all disturbance
inputs d(t) ∈ D, τ ≤ t ≤ tf for which some X(tf) in S0 are reachable from
X(τ) along a trajectory satisfying (5.152).

Definition 5.10. The forwards reachable set V(τ) at time τ, 0 ≤ τ ≤ tf
of (5.152) starting from the initial set V0 is the set of all states X(τ), such
that there exists a control input U(t) ∈ U, τ ≤ t ≤ tf , for all disturbance
inputs d(t) ∈ D, τ ≤ t ≤ tf for which some X(0) in V0 are reachable from
X(τ) along a trajectory satisfying (5.152).

If the initial target set is known to be safe, then all states that are part
of both the forwards and backwards reachable sets can be considered safe as
well.

To cope with in-flight damage/failure, the planner must guide the aircraft
through a sequence of feasible trim states leading to a safe landing. Before
transitioning from the current proven equilibrium state to a new state, the
feasibility of the new state should be predicted; otherwise the aircraft may
transition outside its operating envelope. The process of trim state discovery
computes a path trim state space with 3D coordinates (VT , γ̇, χ̇) translated
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to physical 3D space to verify required altitude and airspace constraints are
met.

Trim state discovery can be used to characterize unknown failures, for which
envelope constraint information cannot be obtained prior to the discovery pro-
cess. This requires use of a dynamic path planning strategy in which envelope
constraints, as they are approached, are modeled as obstacles for the state
path planner.

Problem 5.3. Trim State Discovery: Given an initial stable damaged air-
craft position in trim state space s0 = (V0, χ̇0, γ0) and an ideal final approach
trim state sapp, generate a continuous path PT in trim state space from s0
to sapp where PT is a sequence of continuous trim states and transitions. All
trim states in PT must be stabilizable in the presence of disturbances.

With the above formulation, trim state discovery is mapped to motion
planning with obstacle avoidance. Every step (local transition) through trim-
state space involves two phases: exploration and exploitation.

Failure or damage events that degrade performance pose significant risk
to aircraft in flight. Adaptive control and system identification may stabilize
a damaged aircraft, but identified models may be valid only near each local
operating point. A guidance strategy designed to discover a set of feasible
flight states sufficient to enable a safe landing given an unknown degradation
event is presented in [133]. The aircraft is progressively guided through a
sequence of trim states that are stabilizable given local envelope estimates.
The proposed guidance strategy progressively explores trim state space rather
than 3D physical space, identifying a set of trim states. A potential field
method is adapted to steer exploration through trim states’ space, modeling
envelope constraints as obstacles and desirable trim states as attractors.

Design of maneuvers for carefree access of an aircraft to its complete flight
envelope including post-stall regimes is useful for devising recovery strate-
gies from an accident scenario. Maneuvers for an aircraft can be efficiently
designed if a priori knowledge of its maneuverability characteristics is avail-
able to the control designers. Different types of agility metrics that charac-
terize aircraft maneuvering capabilities based on different criteria have been
proposed. Another approach to define maneuverability characteristics is based
on computing attainable equilibrium sets. This approach involves a 2D section
of attainable equilibrium sets of a particular maneuver using an inverse
trimming formulation [63].

Construction of maneuvers based on attainable equilibrium sets involves
accessing desired aircraft states in the attainable equilibrium set from a normal
flying condition, such as a level flight trim condition. Computing an attainable
equilibrium set for a given aircraft model and developing control algorithm
to switch aircraft states between different operating points lying within the
accessible region defined by attainable equilibrium sets are thus essential for
aircraft maneuver design. For aircraft models, use of nonlinear control design
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techniques based on dynamic inversion (DI) or sliding mode control
(SMC) have been proposed for control prototyping to design maneuvers.

A procedure for computing a 2D attainable equilibrium region (AER)
section is based on the assumption that the boundary of the attainable equilib-
rium region is defined by saturation of one or more control surfaces. Therefore,
a point lying on the boundary of an attainable equilibrium region is initially
located using a continuation method. Using the trim point on the boundary
as a starting condition, a separate continuation procedure is carried out with
the saturated control fixed at its limit value to obtain the envelope containing
equilibrium points.

To compute the attainable equilibrium region, the extended bifurcation
analysis (EBA) method uses one control input as a continuation parameter.
It consists of two stages:

1. In stage 1, a trim point lying on the attainable equilibrium region
boundary is computed simultaneously solving the following set of
state and constraint equations:

Ẋ = f(X,U, p) = 0 g(X) = 0 (5.153)

where X = (V, α, β, p, q, r, φ, θ)T ∈ X ⊂ R
8 is the vector of state vari-

ables, U ∈ R is a continuation parameter and p denotes a bounded set
of free control parameters, g(X) represent the desired constraint. To
solve the augmented system of (5.153) using the extended bifurca-
tion analysis, it is necessary that an equal number of constraints,
for example 3, as the number of free parameters are imposed so that
the continuation problem becomes well posed. The continuation run
is terminated when any of the free control parameters saturate or the
continuation parameter itself reaches its deflection limit. Continua-
tion results obtained for system (5.153) provide the augmented state
vector for the trim point lying on the attainable equilibrium region
boundary along with information about the saturated control. There-
fore this trim point can be used as a starting point for computing the
attainable equilibrium region boundary.

2. In stage 2, a continuation procedure consisting of multiple runs is
carried out to trace the boundary of attainable region. Thus the sys-
tem (5.154) is solved:

Ẋ = f(X,U, p1, p2, ps) = 0 g(X) = 0 (5.154)

where p1, p2 are the two free control parameters, ps is the saturated
control and g(X) is a 2D vector representing the specified constraints.
Continuation for system (5.154) is carried out until the continuation
parameter reaches its deflection limit or any of the two free control
parameters saturate. In case a free control parameter saturates be-
fore the limit of continuation parameter is reached, the fixed and free



Flight Safety 383

control parameters are interchanged and the continuation procedure
continues. However, if the continuation parameter reaches its limit be-
fore any of the free control parameters attain its maximum/minimum
value, then the fixed and continuation parameters are exchanged and
the continuation process repeats. The solution of each continuation
run of stage 2 is appended with the results of the subsequent runs.
The starting point for any continuation run in stage 2 is automatically
available from the solution of the preceding run. The continuation
procedure is carried out until a bounded attainable zone is obtained.

In [9], an approach is presented for safe landing trajectory generation of
an airplane with structural damage to its wing in proximity to local terrain.
A damaged airplane maneuvering flight envelope is estimated by analyzing
the local stability and flying qualities at each trim condition. The safety value
index to prioritize choice of trim conditions for post-damage flight is chosen
to be the trim state distance of a flight envelope boundary. A potential field
strategy is used to rapidly define emergency landing trajectories. The damage
to an aircraft can cause a shift in the center of gravity which complicates
the equations of motion. The damaged aircraft center of gravity variation is
calculated with respect to the center of gravity position of the undamaged
aircraft. The new equations of motion according to the new center of gravity
location can be derived. The damaged airplane trim states are derived using
the airplane nonlinear equations of motion:

Ẋ = f(X,U) (5.155)

X = (V, α, β, p, q, r, φ, θ) ∈ R
8, U = (δa, δe, δr, T ) ∈ R

4 and f is the vector
of nonlinear six degrees of freedom equations. The desired trim conditions
represent a constant speed V , desired turn rate χ̇ and desired flight path angle
γ for a reference altitude z. One method for deriving these trim conditions is
to solve the nonlinear constrained optimization problem that minimizes the
following cost function:

Jtrim(X,U) =
1

2
ẊTQẊ (5.156)

where Q represents the weighting matrix describing each state’s priority with
respect to maintaining the trim state.

A safety value index relating trim state distance (in respective flight enve-
lope dimensions) to the flight envelope boundary can be defined. This metric
is calculated based on the normalized distance of each trim state to the flight
envelope boundary. The task of the flight planner is to identify an appropriate
sequence of trim states from the initial airplane state where damage occurs
to the desired landing site position and heading. A trajectory consists of a
sequence of states or motion primitives that can be divided into the trim
trajectories and the maneuver. A neighborhood set is defined for each trim
condition and maneuvers are guaranteed based on the neighboring states of



384 Smart Autonomous Aircraft: Flight Control and Planning for UAV

each trim. Motion planning takes place in discrete space by considering a fixed
time step for trim and maneuver trajectory segments.

5.5.3 OBSTACLE/COLLISION AVOIDANCE SYSTEMS

5.5.3.1 Safety analysis of collision/obstacle avoidance system
Collision avoidance systems are critical to the safety of airspace. Quantifi-
cation of the overall (system level) safety impact of collision avoidance system
requires an understanding of the relevant interactions among the various lay-
ers of protection against collisions, as well as the frequencies and patterns of
encounters that can lead to collisions [125]. One can divide the overall problem
of estimating the risk of collision into three steps:

1. Determine the conflict frequency,
2. Given the conflict, determine the chances of resolving it by a deployed

collision avoidance system,
3. Determine collision chances, given mid-air collision which is the fail-

ure of the collision avoidance system to resolve a conflict.

The concept of conflict probability is proposed for collision avoidance between
two aircraft and collision risk reduction [92]. The collision probability calcu-
lation involves the relative trajectory between the objects and the combined
relative position-error probability density. The volume for conflict probability
is defined to be a cylindrically shaped volume much larger than the actual
size of the aircraft. The cylindrical height of a conflict volume is aligned ver-
tically. The circular cross section of the cylinder lies in the horizontal plane
containing the North-South and the East-West directions. The position error
covariances of the two aircraft are assumed Gaussian and are combined to
form the relative position error covariance matrix, which is centered on the
primary aircraft. The conflict volume is centered on the secondary aircraft.
The probability that the primary aircraft will penetrate the conflict volume
is the conflict probability. Conflict probability can be used as a metric.

From the system reliability and safety modeling standpoint, a collision
avoidance system relies on time redundancy because there are several con-
secutive attempts to detect and resolve a conflict. This time redundancy is
supplemented by functional redundancy because the time before the conflict
is separated into distinct phases or layers with the conflict resolution task
assigned to distinct subsystems. This functional separation is motivated by
the increased urgency of the task combined with less uncertainty about the
conflict. Therefore, as a general rule, as time progresses, conflict resolution
should be less complex in order to facilitate reliability and can be simpler
as it deals with less uncertainty. In addition, increasing the diversity of the
protective layers provides some protection against common cause failures
that can defeat the intended redundancy.
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Combining structural and time-redundancy is well recognized as providing
a more efficient means of protection than each type of redundancy alone in
other applications, such as in designing a fault tolerant computer system to
negotiate the effects of transient faults. Although detection becomes more ef-
ficient as time progresses, there is potential for accumulation of failures. If
dynamic interactions are confined to a single layer of protection, then a hier-
archical analysis is possible as advocated in the context of a sense-and-avoid
system: an inner loop that includes a collision encounter model and relies on
Monte Carlo simulation combined with an outer-loop analysis based on fault
trees. However, if different layers share common failure modes, neglecting this
coupling in the fault tree analysis can lead to non conservative risk estimates
[125].

Sampling-based approaches have several advantages for complex motion
planning problems including efficient exploration of high dimensional con-
figuration spaces, paths that are dynamically feasible by construction and
trajectory-wise (e.g., non-enumerative) checking of possible complex con-
straints. The RRT algorithm has been demonstrated as a successful planning
algorithm for UAV [64]. However, it does not explicitly incorporate uncer-
tainty. The RRT algorithm can be extended to an uncertain environment
incorporating uncertainty into the planned path. The tree can be extended
with different conditions sampled from a probabilistic model as with particle
filters. Each vertex of the tree is a cluster of the simulated results. The like-
lihood of successfully executing an action is quantified and the probability of
following a full path is then determined. Another approach identifies a finite-
series approximation of the uncertainty propagation in order to reduce model
complexity and the resulting number of simulations per node. In [64], a chance
constrained RRT algorithm is used to handle uncertainty in the system model
and environmental situational awareness. The chance constrained formulation
is extended to handle uncertain dynamics obstacles.

Path planning of smart autonomous aircraft with known and unknown
obstacles is considered as one of the key technologies in unmanned vehicle
systems. The fault tree analysis method was applied to the traffic alert
and collision avoidance (TCAS) for safety analysis while failure modes
and effects analysis (FMEA) was also used. Functional failure analysis
(FFA) was performed for safety analysis of UAV operation including collision
avoidance.

Two critical hazards were defined in this analysis: midair collision and
ground impact. The Markov decision process (MDP) solver can be pro-
posed to generate avoidance strategies optimizing a cost function that bal-
ances flight-plan deviation with anti-collision. The minimum distance from
the aircraft to an obstacle during collision avoidance maneuver is chosen as
the criterion for the performance assessment. To successfully perform colli-
sion avoidance maneuvers, the minimum distance to the obstacle dmin must
be greater than the radius of the obstacle rn including a safe margin. The
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worst case analysis in the presence of all the possible uncertainties is cast
as a problem to find the combinations of the variations where the minimum
distance to the obstacle dmin appears [113].

Problem 5.4. Initial robustness analysis can be carried out by solving the
following optimization problem:

dmin = min(d(t)) (5.157)

subject to PL ≤ P ≤ PU where P is the uncertain parameters set, PL and PU
are the lower and upper bounds of P , d(t) is the distance to the obstacle, T is
the collision avoidance maneuver during the period and dmin is the minimum
distance to the obstacle.

Several methods can be used to solve this problem such as sequential
quadratic programming (SQP), genetic algorithms or global opti-
mization. Genetic algorithms can be applied to the UAV collision avoidance
system to find the global minimum. The uncertain parameter set is consid-
ered here as the genetic representation, i.e., the chromosome. Each of the
uncertainties corresponds to one gene. A binary coded string is generated to
represent the chromosome where each of the uncertain parameters lies be-
tween the lower and upper bounds. The selection function of a roulette wheel
can be used for this study.

In [72], an approach for building a potential navigation function and
roadmap based on the information value and geometry of the targets is pre-
sented. The method is based on a potential function defined from conditional
mutual information that is used to design a switched feedback control law, as
well as to generate a PRM for escaping local minima, while obtaining valuable
sensor measurements. Shaffer in [108] presents a method of re-planning in case
of failure of one of the fins while Atkins in [10] presents a planning technique
for loss of thrust.

5.5.3.2 Informative motion planning
Informative motion planning consists in generating trajectories for dynami-
cally constrained sensing agents. The aircraft platforms used as mobile agents
to traversing the operating environment are typically subject to nonholonomic
and differential dynamic constraints. Obstacles in the operating environment
can both constrain the aircraft motion and occlude observations. Finally, the
limitations inherent in the available sensing mechanism (e.g., narrow field of
view) can further limit the informativeness of agent plans. The information-
rich rapidly exploring random tree (IRRT) algorithm is proposed in [69]
as an on-line solution method that by construction accommodates very gen-
eral constraint characterizations for the informative motion planning problem.
The method IRRT extends the RRT by embedding information collection, as
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predicted using the Fisher information matrix (FIM) at the tree expan-
sion and path selection levels, thereby modifying the structure of the growing
feasible plan collection and biasing selection toward information-rich paths.
As the IRRT is a sampling-based motion planner, feasible solutions can be
generated on-line.

Several solution strategies to effect information-rich path planning can be
considered. Analytical solutions often use the Fisher information matrix to
quantify trajectory information collection in an optimal control framework.
Solutions seek to maximize, for example, a lower bound on the determinant
of the Fisher information matrix at the conclusion of the trajectory. While
analytical solutions often have a simple form and perform optimally for low
dimension unconstrained problems, they typically are difficult to scale to com-
plicated scenarios. Another approach is the heuristic path shape that performs
well in steady state. For aircraft with side-mounted cameras, circular trajecto-
ries with optima radii at a fixed altitude and varying altitude can be proposed.
While these heuristically constrained trajectories may capture the physical
and geometrical intuition of bearings-only target tracking, the gap between
anticipated and realized informativeness of the motion plan can become arbi-
trarily large when operating under realistic dynamic and sensing constraints.
The partially observable Markov decision process framework is a way of solv-
ing problems of planning under uncertainty with observations but there are
also tractability issues. Belief space planning can be considered for both the
target tracking problem and its inverse; that of localizing a vehicle through
sensor measurements of perfectly known targets in a previously mapped envi-
ronment. Partially observable Markov decision process solutions are currently
intractable for vehicle models with complex dynamics [16].

5.5.4 GEOMETRIC REINFORCEMENT LEARNING FOR PATH PLANNING

Smart autonomous aircraft often fly in a complicated environment. Many
threats such as hills, trees, other aircraft can be fatal in causing the au-
tonomous aircraft to crash [138]. These threats can only in general be detected
within a limited range from a single aircraft. However, by sharing information
with other autonomous aircraft, these threats can be detected over a longer
distance. Furthermore, an effective path for navigation should be smooth, pro-
vide an escape route and must be computationally efficient [55]. In previous
work on path planning for a single autonomous aircraft, Voronoi graph search
and visibility graph search have been proven to be effective only in a sim-
ple environment. They are not real time and also lead to fatal failure when
the map information is not entirely available, such as when obstacles are not
detected [32].

Evolutionary algorithms can be used as a candidate to solve path plan-
ning problems and provide feasible solutions within a short time [29, 84].
A radial basis functions artificial neural network (RBF-ANN) assisted dif-
ferential evolution (DE) algorithm is used to design an off-line path plan-
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ner for autonomous aircraft coordinated navigation in known static environ-
ments [115, 116, 118]. The behavior coordination and virtual (BCV)
goal method proposes a real time path planning approach based on the coor-
dination of the global and local behaviors. A fuzzy logic controller (FLC) for
controlling the local behavior is designed to achieve the threat avoidance [49].

Path planning of multiple autonomous aircraft concentrates on collabora-
tive framework, collaborative strategies and consistency. The Voronoi
graph search and the A∗ or Dijkstra algorithms plan a global path for multiple
aircraft to simultaneously reach the target in an exhaustive procedure [73].

Path planning of multiple autonomous aircraft can also be addressed from
the perspective of reinforcement learning. Q-learning is a way to solve the
path planning problem. The basic idea of Q-learning is to obtain the optimal
control strategy from the delayed rewards according to the observed state of
the environment in a learning map and to make a control strategy to select
the action to achieve the purpose. But the method is actually designed for
the entire map of the environment known to planners. Q-learning fails to use
the geometric distance information which is a very valuable element for path
planning when only partial information of the map is available. Moreover
for multiple autonomous aircraft, the shared information from other aircraft
cannot be well exploited as there are a lot of unnecessary calculations to
propagate from one point to another in Q-learning. Also some special points
such as the start and target points are not well considered.

An algorithm based on reinforcement learning using the geometric distance
and risk information from detection sensors and other autonomous aircraft can
be proposed. It builds a general path planning model. By dividing the map
into a series of lattices, path planning is formulated as the problem of optimal
path planning. A continuous threat function can be used to simulate the real
situation. To reduce the complexity of calculation, the parameters of control
are finely modulated to control the size of the map. Moreover, the algorithm is
generalized to multiple autonomous aircraft by using the information shared
from other aircraft, which provides an effective solution for path planning
and avoids local optimum. In this approach, the autonomous aircraft detect
threatening objects in real time and share the information with each other.
Collisions are avoided by the virtual aircraft created from an aircraft which is
considered as a new obstacle for the other aircraft. Further, the reward matrix
can be changed in terms of an exposure risk function. The target planner gets
the final path according to all known threat information and aircraft real time
positions [138].

Modeling of probabilistic risk exposure to obstacles can be presented as
follows. It is necessary for an autonomous aircraft to keep a certain distance
from regions of high risk to ensure safe flying. So the measure of probabilistic
risk exposure to obstacles can be seen as a continuous distribution function.
For example, consider the case where an obstacle is at position (xi, yi, zi); the
measure of the risk is denoted by Fi, in which the parameters are related to
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the dimension of the planning space. In the 3D space,

Fi(x, y, z) =
1√
2πσi

exp

(
− d2i
2σi

)
(5.158)

where
di =

√
(x− xi)2 + (y − yi)2 + (z − zi)2 (5.159)

σi is an adujstable parameter.
The probabilistic risk of the area where aircraft could not fly over can be

represented as a very big value. Furthermore, when more than one obstacle
exists on the map, the probabilistic risk at position (x, y, z) can be calculated
as:

F (x, y, z) = 1−
M∏
i=1

[1− fi(x, y, z)] (5.160)

Cooperative and geometric learning algorithm is executed when a
new threatening object is detected and the weight matrix Q is updated. This
weight matrix describes the relationship between different points in the map.
It is designed to measure any two points on the map in terms of risk and
geometric distance [140]. The risk matrix Q and time or length matrix T on
a path can be computed by:

Q =

∫

C

Fi(x, y, z)ds T =

∫

C

V ds (5.161)

where C is the point set of a given path and V is the speed of the autonomous
aircraft. In order to find the next point for the current aircraft configuration,
the relationship weight matrix based on the geometric distance and integral
risk measure is considered.

The key idea of the cooperative and geometric learning algorithm is to
calculate the cost matrix G which can be used to find the optimal path from
a starting point to a target point in terms of distance and integral risk. Each
element in the matrix G is defined to be the sum of cost from its position to
a target point.

A hybrid approach to the autonomous motion control in cluttered envi-
ronments with unknown obstacles combining the optimization power of evo-
lutionary algorithm and the efficiency of reinforcement learning in real time
is presented in [73]. This hybrid navigation approach tends to combine the
high level efficiency of deliberative model-based schemes and the low level
navigation ability of reactive schemes.

5.5.5 PROBABILISTIC WEATHER FORECASTING

Weather conditions such as thunderstorms, icing, turbulence and wind have
great influences on UAV safety and mission success. It is therefore important
to incorporate weather forecasting into path planning. The recent development
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in numerical weather prediction makes possible the high resolution ensemble
forecasting. In ensemble forecasting, different weather models with model in-
puts, initial conditions and boundary conditions are being slightly changed
for each run. Each single run contains a different number of ensemble mem-
bers and generates a prediction spectrum. This allows to build an objective
and stochastic weather forecast that supports statistical post-processing [119].
Based on this information, a probabilistic weather map can be constructed.
With continuous ensemble forecasting updating at a rate of once per time
unit, this analysis provides an online 4D weather map. In the probabilistic 3D
weather map, the path can be optimally planned. The problem is defined as
follows.

Problem 5.5. Given a UAV in an area of operation described by nonuniform
grids, each waypoint assigned with a probability of adverse weather that is
updated periodically, find a path from start to destination with minimum cost
on defined terms and meeting the constraints on mission failure risk. The cost
function is defined as:

Min (J = wtimeTtime + wweaWwea) (5.162)

subject to:
Rmission < Rcritical Ttime < Tmax (5.163)

where wtime, wwea are the weighting factors on mission duration and weather
condition, respectively, with: wtime + wwea = 1, Rmission is the risk of the
mission and Rcritical is the critical risk level defined by users. Ttime is the
mission duration and Tmax is the maximum mission duration allowed and
Wwea is the weather condition along the flight route.

Incremental search algorithm makes an assumption about the unknown
space and finds a path with the least cost from its current location to the
goal. When a new area is explored, the map information is updated and a
new route is replanned if necessary. This process is repeated until the goal
is reached or it turns out that the goal cannot be reached (due to obstacles,
for instance). When the weather map is updated, the weather in cells close to
the UAV is more certain than those in the grids far away from the UAV. In
this sense, the weather uncertainty in grids is proportional to its distance to
the UAV. When the uncertainties become larger, the weather condition can
be regarded as unknown. Therefore the weather map is not completely known
[71].

The mission risk evaluation and management can be improved by integrat-
ing an uncertainty factor in path planning. The uncertainty factor for a grid
denoted as U(x) can be defined as a Gaussian function:

Uun(X) = 1− exp

(
− (X −X0)

2

2σ2

)
(5.164)
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where σ is an adjustable parameter, X0 is the UAV current location and X
are the centers of the grids. Everytime the weather forecasting is updated,
this uncertainty factor is recalculated to obtain a new set of uncertainty so
that the impact of adverse weather to mission success is also updated. The
probability of adverse weather in each grid is then weighted by the uncertainty
factor:

Pad−un = Pad(i) (1− Uun(i)) (5.165)

where Pad−un is the probability of adverse weather adjusted by the uncertainty
factor, Pad(i) is the probability of adverse weather in ith grid and Uun(i) is
the probability of adverse weather adjusted by the uncertainty factor.

To evaluate the mission risk of a planned path, the probability of adverse
weather in each grid cell needs to be converted to the probability of UAV
failure as it traverses the cell. The Weibull distribution can be used to
calculate the probability of failure. The inputs consist of the probability of
adverse weather occurring in each cell along the path and the time that the
UAV spends flying through each of the cells. In the study presented by [139],
the Weibull scale factor is calculated as:

α =
μfail

Γ
(
1 + 1

β

) (5.166)

where Γ(.) is the Gamma function and μfail is the average time to failure for
the aircraft in each cell. Then a Weibull distribution can be established to
calculate the probability of UAV failure.

5.5.6 RISK MEASUREMENT

The determination of the minimum number of aircraft needed for the mission
subject to fuel constraints, risk, cost and importance of various points for sam-
pling is important. The measurement space includes sample points and the de-
sirable neighborhoods that surround them. The sample points or the desirable
neighborhoods are where the autonomous aircraft will make measurements.
Risk refers to turbulent regions. The measurement space also includes forbid-
den points and the undesirable neighborhoods that surround them [11, 141].
The forbidden points are points of turbulence and other phenomena that could
threaten the aircraft. The undesirable neighborhoods surrounding them also
represent various degrees of risk. The planning algorithm automatically es-
tablishes the order in which to send the aircraft taking into account its value,
on board sensor payload, on board resources such as fuel, computer CPU and
memory. The priority of sample points and their desirable neighborhoods are
taken into account. The planning algorithm also calculates the optimal path
around undesirable regions routing the aircraft to or at least near the points
to be sampled [65, 126].

Remark 5.20. In the planning phase to establish likely positions, human
experts can be consulted. The experts provide subjective probabilities of the
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points of interest. The points on the sampling grid are the sample points.
Sample points arising from the highest probability hypothesis positions have
priority 1, sample points associated with lower probability hypothesis positions,
priority 2.

Each sample point is surrounded by what are referred to as desirable neigh-
borhoods. Depending on local weather, topography. the desirable neighbor-
hoods are generally concentric closed balls with a degree of desirability as-
signed to each ball. The desirable region need not have spherical geometry.
The notion of a desirable neighborhood is inspired by the fact that a sample
point may also be a forbidden point and at least part of the sample point’s
desirable neighborhood falls within the forbidden point’s undesirable neigh-
borhood; the aircraft may only sample within a desirable neighborhood that
is consistent with its risk tolerance [66, 100].

A forbidden point and the undesirable neighborhoods containing the point
generally represent a threat to the aircraft. The threat may take the form of
high winds, turbulence, icing conditions, mountains. The undesirable neigh-
borhoods around the forbidden point relate to how spatially extensive the
threat is. A method of quantifying the risk and incorporating it into the path
assignment algorithm can use fuzzy logic to quantify how much risk a given
neighborhood poses for an autonomous aircraft. This quantitative risk is then
incorporated into the aircraft cost for traveling through the neighborhood.
Once the cost is established, an optimization algorithm is used to determine
the best path for the aircraft to reach its goal.

When determining the optimal path for the autonomous aircraft to follow,
both the planning algorithm and the control algorithm running on each air-
craft take into account forbidden points and the undesirable neighborhood
around each forbidden point. The path planning and control algorithms will
not allow the aircraft to pass through a forbidden point. Depending on its
risk tolerance, an aircraft may pass through various neighborhoods of the
forbidden point, subsequently experiencing various degrees of risk.

Remark 5.21. Both the concepts of risk and risk tolerance are based on
human expertise and employ rules carrying a degree of uncertainty. This un-
certainty is born of linguistic imprecision, the inability of human experts to
specify a crisp assignment for risk. Owing to this uncertainty, risk and risk
tolerance are specified in terms of fuzzy logic.

Risk is represented as a fuzzy decision tree. The risk tree is used to define
forbidden points and the undesirable neighborhoods surrounding the forbid-
den points. The best path algorithm is actually an optimization algorithm
that attempts to minimize a cost function to determine the optimal trajec-
tory for each autonomous aircraft to follow, given a priori knowledge. The cost
function for the optimization algorithm takes into account various factors as-
sociated with the aircraft properties and mission. Two significant quantities
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that contribute to the cost are the effective distance between the initial and
final proposed positions of the aircraft and the risk associated with travel.

Aircraft are assigned as a function of their abilities to sample high priority
points first. The planning algorithm determines flight paths by assigning as
many high priority points to a path as possible, taking into account relative
distances including sampling and non-sampling velocity, risk from forbidden
points and fuel limitations. Once flight paths are determined, the planning
algorithm assigns the best aircraft to each path using the fuzzy logic deci-
sion tree for path assignment. The planning algorithm must assign aircraft to
the flight paths determined by an optimization procedure: the aircraft path
assignment problem. The planning algorithm makes this assignment using a
fuzzy logic-based procedure [135].

Remark 5.22. The fuzzy degree of reliability experts assign to the sensors
of aircraft (i) Ai is denoted as μsr(Ai). This is a real number between 0 and
1 with 1 implying the sensors are very reliable and 0 that they are totally
unreliable. Likewise μnsr(Ai) is the fuzzy degree of reliability of other non-
sensor system on board the aircraft (i). This fuzzy concept relates to any non-
sensor system such as propulsion, computers, hard disk, deicing system. The
value of aircraft (i) is denoted V (Ai). The amount of fuel that aircraft (i) has
at time t is denoted fuel(Ai, t). All the aircraft participating in a mission are
assumed to leave base at time t = t0.

Given the fuzzy grade of membership, it is necessary to defuzzify, i.e., make
definite aircraft path assignments. The set of all possible permutations of the
aircraft’s possible paths is considered. An assignment benefit is calculated. In
order to formalize the priorities, a multi-objective control problem must be
addressed. To formalize objectives and priorities, a scalar objective function
and a set of bounds of increasing difficulties are assigned to each objective.
The bounds can be listed in a priority table where the first priority objectives
are found in the first column and so on. The columns thus correspond to
different intersections of level sets of the objective function [85].

5.6 CONCLUSION
The smart autonomous aircraft must be able to overcome environmental un-
certainties such as modeling errors, external disturbances and an incomplete
situational awareness. This chapter tackles flight safety, presenting first sit-
uation awareness then integrated system health monitoring. The benefit of
integrating systems health monitoring with the command and control system
in unmanned aircraft is that it enables management of asset health by match-
ing mission requirements to platform capability. This can reduce the chance
of mission failures and loss of the platform due to a faulty component. Fault
tolerant control and fault tolerant planners are the last part of this chapter.
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6 General Conclusions
The study of smart autonomous aircraft is an innovative and ongoing part of
research. A common perspective of autonomy is to segregate functions accord-
ing to the nature of the tasks involved, such as those that are unique to the
aircraft as compared to those that are applicable to the mission-level activi-
ties. Aircraft level autonomy includes vehicle stabilization and flight control,
maneuvering flight and basic auto-land. Mission level autonomy encompasses
functions such as auto-navigation, route planning, mission objective determi-
nation, flight plan contingencies, dynamic trajectory management and colli-
sion/obstacle avoidance.

In order to conduct this research, certain requirements for the design and
simulation of concepts must be set. Accurate models of aircraft are necessary
for the design of controllers and evaluation of the performance. The software
architecture exhibits a multi-loop control structure in which an inner loop con-
troller stabilizes the aircraft dynamics, while a guidance outer-loop controller
is designed to control the vehicle kinematics, providing path-following capa-
bilities. The problem of path following can be described as that of making an
aircraft converge to and follow a desired spatial path, while tracking a desired
velocity profile that may be path dependent. Collision/obstacle avoidance is
another important component of the sense and avoid system, while the on
board intelligence is to monitor their health and prevent flight envelope vio-
lations for safety. A UAV health condition depends on its aerodynamic load-
ing, actuator operating status, structural fatigue. Any technique to maintain
specific flight parameters within the operational envelope of an autonomous
aircraft falls under envelope protection. Since UAV are expected to be oper-
ated more aggressively than manned counterparts, envelope protection is very
important in smart autonomous aircraft and must be done automatically due
to the absence of a pilot on board. Finally, it is important to ensure that the
mission planning algorithm is deterministic in terms of computation time and
solution cost. This book presented diverse methods useful for all these topics.

Autonomous aircraft sector growth is predicted to continue to rise and is
described as the most dynamic growth part of the world aerospace industry
this decade. Unmanned technologies will continue to improve in many differ-
ent capability areas: such as increasingly data-intensive multi-sensor, multi-
mission capabilities, learning, adapting and acting independently of human
control. Autonomous mission performance demands the ability to integrate
sensing, perceiving, analyzing, communicating, planning, decision-making and
executing to achieve mission goals versus system functions. If mission learn-
ing is employed, smart autonomous aircraft can develop modified strategies
for themselves by which they select their behavior. The future of smart au-
tonomous aircraft is characterized as a movement beyond autonomous execu-
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tion to autonomous mission performance. The difference between execution
and performance is associated with mission outcomes that can vary even dur-
ing a mission and requires deviation from the pre-programmed task. Software
for autonomous aircraft is typically embedded, concurrent and must guaran-
tee system properties such as safety, reliability and fault tolerance. There is
a pressing need to regard the construction of new software applications as
the composition of reusable building blocks. A key limitation that still re-
mains for many tasks and applications is the ability of a machine to complete
its decision cycle in real time. In this case, real time is defined by the task
time constant that drives the decision process for the application at hand.
This involves study and research in system theory, control theory, artificial
intelligence, mission and flight planning and control of autonomous aircraft.
Technology is evolving rapidly.



Acronyms
2D Two-dimensional
3D Three-dimensional

b-frame Body-fixed frame
e-frame Earth-fixed frame
gi-frame Geocentric inertial fixed-frame
i-frame Inertial-fixed frame
n-frame Navigation frame
w-frame Wind frame

ACO Ant colony optimization
ADS-B Automatic dependent surveillance broadcast
AER Attainable equilibrium region
AFC Adaptive fuzzy control

AFCS Automatic flight control system
AGL Above ground level
AIAA American Institute of Aeronautics and Astronautics
AMF Antecedent membership function

AMPC Adaptive model predictive control
ANDI Adaptive nonlinear dynamic inversion
ANFIS Adaptive neural fuzzy inference system
ANN Artificial neural network
APO Adaptive polytopic observer
ATC Air traffic control

ATSP Asymmetric traveling salesman problem
BCV Behavior coordination virtual
BIBS Bounded input bounded state
BN Bayesian network

BVP Boundary value problem
C3 Command, control, communication
CA Control allocation

CCF Common cause failures
CE Cross entropy

CEKM Continuous enhanced Kernel–Mendel
CICS Convergent input convergent state
CKM Continuous Kernel–Mendel
CLF Control Lyapunov function
CPT Conditional probability table
CR Controller reconfiguration

CSC Circle straight circle
CSP Constraint satisfaction problem
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CT Coordinated turn
CV Constant velocity

DAG Directed acyclic graph
DCA Direct control allocation
DCM Direction cosine matrix
DE Differential evolution
DI Dynamic inversion

DLM Double-lattice method
DME Distance measurement equipment

DMOC Discrete mechanics and optimal control
DOF Degrees of freedom
DSPP Dubins shortest path problem
DSS Decision support system

DTRP Dynamic traveling repairman problem
DTSP Dynamic traveling salesman problem

EA Evolutionary algorithm
EASA European aviation safety agency
EBA Extended bifurcation analysis
EFCS Electronic flight control system
EIF Extended information filter
EKF Extended Kalman filter
EKM Enhanced Kernel–Mendel
ELOS Equivalent level of safety
ENU East North Up frame
EP Evolutionary programming

ESD Event sequence diagram
EST Expansive search trees

ETSP Euclidean traveling salesman problem
EVS Enhanced vision system
FAA Federal aviation authority
FAR Federal aviation regulations
FCC Flight control computer
FDD Fault detection and diagnosis
FDI Fault detection isolation

FDIR Fault detection isolation and response
FFA Functional fault analysis
FGS Fuzzy guidance system
FIFO First-in, first-out
FIM Fisher information matrix
FIS Fuzzy inference system
FL Flight level

FLC Fuzzy logic controller
FLF Fuzzy Lyapunov function

FMEA Failure modes and effects analysis
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FOM Figures of merit
FOTSP Finite-one in set traveling salesman problem

FP Frobenius–Perron
FRBS Flight rule based system

FT Fault tree
FTA Fault tree analysis

FTFCS Flight tolerant flight control system
FU Footprint of uncertainty
GA Genetic algorithm

GAS Global asymptotic stability
GFS Genetic fuzzy system
GIS Geographic information system

GNC Guidance, navigation and control
GNSS Global navigation satellite system
GPS Global positioning system
GVD Generalized Voronoi diagram
HJB Hamilton–Jacobi–Bellman
HJI Hamilton–Jacobi–Isaacs

HOSMC Higher order sliding mode control
IACR Instantaneous acceleration center of rotation
IEEE Institute of electrical and electronic engineers
IHU Intelligent hardware units
IID Independent identically distributed
ILS Instrument landing system
IMU Inertial measurement unit
INS Inertial navigation system
IO Input output

IOP Input-to-output path
IRRT Information-rich rapidly exploring random tree
IRU Inertial reference unit
ISA International standard atmosphere

ISHM Integrated system health management
ISMC Integral sliding mode control
ISR Intelligence, surveillance, reconnaissance
IT2 Interval type 2

IVMH Integrated vehicle health management
JAR Joint aviation regulations
KF Kalman filter
KM Kernel–Mendel

LARC Lie algebra rank condition
LASSO Least absolute shrinkage and selection operation
LIFO Last in first out
LLM Local linear model
LMI Linear matrix inequality
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LOS Line of sight
LPV Linear parameter variant
LQE Linear quadratic estimator
LQG Linear quadratic Gaussian
LRU Line replaceable unit
LS Least squares
LTI Linear time invariant
LTL Linear temporal logic
LTV Linear time variant
OLS Orthogonal least squares

OODA Observe, orient, decide, act
MA Maneuver automaton

MAS Multi-agent system
MBFS Model based fuzzy system

MC Monte Carlo
MCDA Multi-criteria decision analysis
MCS Motion capture system

MCMC Markov chain Monte Carlo
MDL Motion description language
MDP Markov decision process
MF Membership function

MFP Mission flight planning
MILP Mixed integer linear programming
MIMO Multi-input multi-output system
MISO Multi-input single-output

ML Machine learning
MLD Master logic diagram

MMAE Multiple model adaptive estimation
MP Mission priority

MPC Model predictive control
MR Mission risk

MRAC Model reference adaptive control
MST Minimum spanning trees

MTBF Mean time between failure
MTTR Mean time to repair

NAS National air space
NDI Nonlinear dynamic inversion

NDM Naturalistic decision making
NED North East Down frame

NOWR Neighboring optimal wind routing
NP Nonpolynomial
NT Nie-Tau

OCP Optimal control problem
OLS Orthogonal least squares
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OODA Observe, orient, decide, act
OWP Optimal wind routing

PC Polynomial chaos
PD Proportional derivative

PDC Parallel distributed compensator
PDE Partial differential equation
PDF Probability distribution function
PID Proportional integral derivative
PMP Pontryagin maximum principle
PN Proportional navigation
POI Point of interest

POMDP Partially observable Markov decision process
PP Pole placement

PRA Probabilistic risk assessment
PRM Probabilistic road map
PSO Particle swarm optimization

PVDTSP Polygon visiting Dubins traveling salesman problem
PWM Primary waypoints mission

QV Quantization vector
RA Randomized algorithm

RBF Radial basis function
RCA Root cause analysis

RCLF Robust control Lyapunov function
RDM Relative degree matrix

RF Radio frequency
RGUAS Robust global uniform asymptotic stability

RHC Receding horizon control
RHTA Receding horizon task assignment

RL Reinforcement learning
RPDM Recognition primed decision making
RRT Rapidly exploring random tree
RS Robust stabilizability
RT Risk tolerance

RVM Relevance vector learning mechanism
RW Rule weight
SAA Sense and avoid
SCP Set covering problem
SDA Self-diagnosis accelerometer

SDRE State-dependent Riccati equation
SEC Software enabled control
SF Scaling factors

SFC Specific fuel consumption
SFDIA Sensor fault detection, isolation, accommodation

SGP Set covering problem
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SHM System health management
SI Swarm intelligence

SISO Single-input single-output
SLAM Simultaneous localization and mapping
SLHS Stochastic linear hybrid system
SMC Sliding mode control
SPOI Sensed points of interest
SPP Sensory graph plan
SQP Sequential quadratic programming
SSE Sum Square errors
STC Self-tuning controller
SVD Singular value decomposition

SVD-QR Singular value decomposition and QR
TA Terrain avoidance

TAA Technical airworthiness authority
TCAS Traffic alert and collision avoidance
TCG Temporal causal graph
TF Terrain following

TPBVP Two-point boundary value problem
TR Type reduction

TSFS Takagi–Sugeno fuzzy system
TSK Takagi–Sugeno–Kang
TSP Traveling salesman problem
TTF Temporal transition to failure
UAS Unmanned aerial systems
UAV Unmanned aerial vehicle
UB Uncertainty bounds

UCA Uniform cost assignment
UKF Unscented Kalman filter
VFF Virtual force field
VOR VHF omni-directional range
VSC Variable structure control
VTP Virtual target point
WG Waypoint generation
WLS Weighted least squares
WSN Wireless sensor network
ZVD Zermelo–Voronoi diagram



Nomenclature
α Angle of attack
β Side-slip angle
χ Heading angle

η =

(
η1
η2

)
6D vector position and orientation of the body-
fixed frame expressed in the Earth-fixed frame

η1 =

⎛
⎝

x
y
z

⎞
⎠ 3D position of the body-fixed frame expressed in

the Earth-fixed frame

η2 =

⎛
⎝

φ
θ
ψ

⎞
⎠ Orientation of the body-fixed frame expressed in

the Earth-fixed frame, expressed with Euler angles
γ Flight path angle
Γ Markov transition matrix
λ Latitude
κ Curvature of the trajectory

δe, δa, δr Deflection angles, respectively, of the elevator,
aileron and rudder

� Longitude
μi Validity parameter of the local model i
� Membership function
ν Innovation vector
ω Angle rate
ωa Solid body rotation speed of the air
ωs Spatial frequency

Ω =

⎛
⎝

p
q
r

⎞
⎠ Angular velocity expressed in the fixed frame

φ Roll angle

λ̃ Scale factor
σ Bank angle
ψ Yaw angle
ρ Volume mass of the surrounding fluid
θ Pitch angle
Θ Darboux vector
τ Torsion of the trajectory
A State space matrix
AR Aspect ratio
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B(s) Binormal vector
B Control space matrix
C Side-force
C Measurement space matrix
Cc Side-force aerodynamic force coefficient
CD Drag aerodynamic force coefficient
CL Lift aerodynamic force coefficient
Cl Tangential aerodynamic torque coefficient
Cm Normal aerodynamic torque coefficient
Cn Lateral aerodynamic torque coefficient
d Distance
D Drag Force
E Energy
F Force acting on the vehicle
g Acceleration of the gravity
G Guard condition
h Altitude
H Hamiltonian function

In∗n n ∗ n identity matrix
J Cost function
I Inertia matrix
K Control gain matrix
L Lift force
m Mass
M Moment acting on the vehicle

n, e, d Unit vectors pointing, respectively, to North,
East and Down

N(s) Normal vector
N(s) Set of natural numbers
On∗m n*m zero matrix
nz Load factor

Ox, Oy, Oz Axes according, respectively, to x, y and z di-
rections

P Pressure or linear momentum
Pd Detection probability

Prob Probability
Q State weighting matrix
Q Configuration
R 3 *3 Rotation matrix
R Set of real numbers
Ra Aerodynamic frame
Rf Inertial fixed frame
Rm Body-fixed frame
R 6 *6 Generalized rotation matrix
s Curvilinear abscissa

Sref Characteristic or reference of wetted area
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sfc Specific fuel consumption
Sj Surface of the panel j

Sk(V ) Skew matrix related to the vector V
SO(3) Special orthogonal matrix group
T Thrust

T(s) Tangent vector
U Control vector

V =

⎛
⎝

u
v
w

⎞
⎠ Linear velocity of the vehicle expressed in the

body-fixed frame

V Generalized velocity of the vehicleV = (V,Ω)T

V = (u, v, w)T Vectorial velocity field
Va Relative vehicle airspeed

Ṽ Lyapunov function
W 3D wind speed in the inertial frame
Wg Weight force
WPn nth waypoint
WN Spectral density matrix

W̃ White Gaussian process noise
X State space vector

Xu, Xw, Zu, Zw, . . . Aerodynamic derivatives
Y Output vector
Z Measured output vector
Z Matrix Z
Z Set Z
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